Supplementary Information

Chapter 2 – 5

Environmental footprints of bio-based products for the chemical industry

Emma Anna Roosje Zuiderveen

Promotoren:

Prof. dr. M.A.J. Huijbregts
Dr. ir. R. van Zelm

Copromotoren:

Dr. S.V. Hanssen

Dr. S. Sala (Joint Research Center, Italië)

Manuscriptcommissie:

Prof. dr. B. Wicke

Prof. dr. Y. van der Meer (Maastricht University)

Dr. ir. B.R.P. Steubing (Universiteit Leiden)

Content

Chapter 2, The potential of emerging bio-based products to reduce environmental impacts:	3
Chapter 3, Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process	2 4
Chapter 4, The environmental sustainability of alternative ways to produce benzene, toluene and xylene	31
Chapter 5, Land-use change emissions limit climate benefits of bio-based chemicals	52

Chapter 2

Supplementary Information S2

Supplementary Information

The potential of emerging bio-based products to reduce environmental impacts

Emma A. R. Zuiderveen^{1,2*}, Koen J. J. Kuipers¹, Carla Caldeira², Steef V. Hanssen¹, Mitchell K. van der Hulst^{1,3}, Melinda M.J. de Jonge¹, Anestis Vlysidis^{2,4}, Rosalie van Zelm¹, Serenella Sala², Mark A. J. Huijbregts^{1,3}

¹ Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027, Ispra, VA, Italy.
 Department of Circularity & Sustainability Impacts, TNO, Princetonlaan 6, 3584CB Utrecht, The Netherlands
 School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece

Contents

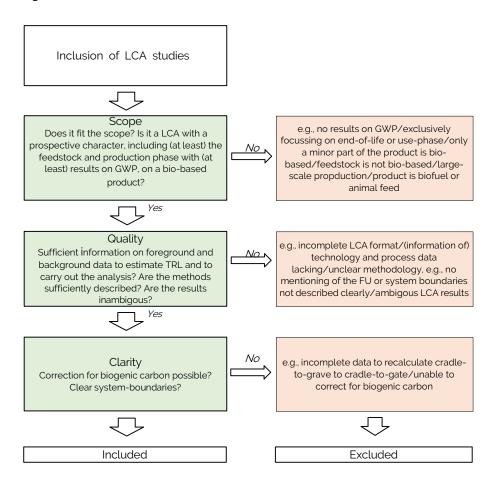
5.1	Methods: Decision Frees	5
S.2	Methods: Overview TRLs	7
S.3 increas	Arithmetic average RRs per bio-based product with corresponding 95% CI: ordered from largest reduction to highest se	8
S.4	Additional calculations in 'Greenhouse gas Footprints'	. 10
S.5 single	Predicted mean reduction (RR) and 95% CI for GHG emissions per product category, feedstock category and TRL based of linear mixed-effect models	
S.6 emissio	Predicted mean RR and 95% CI for the GHG emissions and if it in- or excluded Land Use Changes (LUC) related GHG ons based on single linear mixed-effect models	. 11
S.7 acidific	Predicted mean RR and 95% CI per feedstock category based on single linear mixed-effect models for eutrophication, cation, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts	. 12
S.8 acidific	Predicted mean RR and 95% CI per product category based on single linear mixed-effect models for eutrophication, cation, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts	. 13
S.9 acidific	Overview of arithmetic average RRs and corresponding 95% CI for greenhouse gas emissions, eutrophication, cation, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts	. 14
S.10 with n	Overview of the predicted mean and 95% CI of the RRs across all product types and studies for all environmental impact ≤ 30. Separate random-effects models were ran for each impact category	
Refere	nces	16
Dataha	ase References	17

Abbreviations

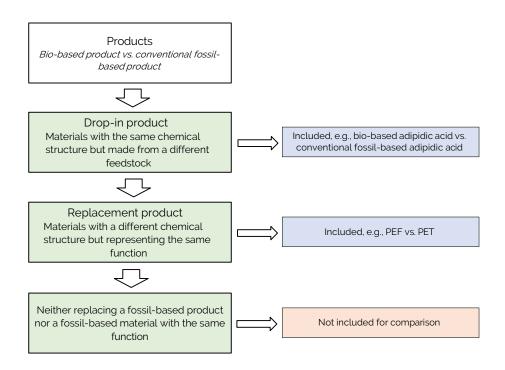
BBP Bio-based products
GHG Greenhouse gas
LCA Life Cycle Assessment
LMM Linear mixed-effects model

LUC Land Use Change

NREU Non Renewable Energy Use


RR Response Ratio

TRL Technology Readiness level


Arithmetic average The ratio of the sum to the total number
Predicted mean The mean calculated by running LMM

S.1 Methods: Decision Trees

The screening and inclusion of prospective LCAs followed two criteria. For the first criteria, we followed the decision tree in Figure S.1.1 on the scope, quality and clarity of the study. For the second criteria, we followed the decision tree in Figure S.1.2.

Figure S.1.1: Decision tree study selection related to the scope of the study. Furthermore, if the quality and/or clarity was lacking the study had to be excluded as well.

Figure S.1.2: Decision tree on products to include in the comparative assessment. The bio-based product is a 'drop-in' of a fossil-based product, meaning it has the same chemical structure, or it can be compared to a fossil-based product which has the same function

S.2 Methods: Overview TRLs

Only in a few cases the TRL was addressed by the study itself. The TRL evaluation was therefore based on the TRL specification from Moni et al. (2020)¹ and afterwards regrouped into broader category classes (TRL 1-3, TRL 4-5, TRL 6-9). Studies directly based on lab- or experimental data were assigned 'TRL 1-3'; studies based on simulations of the process, including downstream steps, were assigned 'TRL 4-5'; and studies in pilot phase or operating under expected conditions were assigned 'TRL 6-9'.

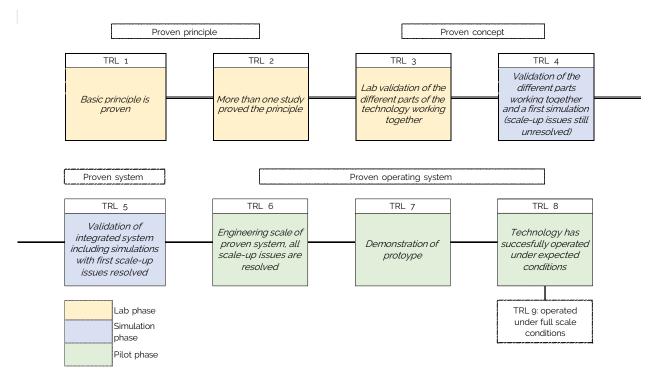


Figure S.2: Description of TRLs (Technology Readiness Level) as applied in this study

S.3 Arithmetic average RRs per bio-based product with corresponding 95% CI: ordered from largest reduction to highest increase.

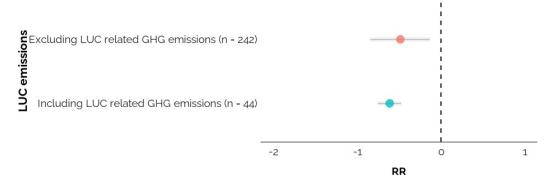
Table S.3: overview of the bio-based products, the number of data points (n), the arithmetic average RR and 95% CI; if n = 1, there is no 95% CI, which is indicated with 0; *indicates the bio-based product with their average and 95% CI below zero.

Bio-based product	n	Arithmetic average (RR)	Lower end 95% CI	Higher end 95% CI
WOOD FIBRE/PLA/TPS BIOCOMPOSITE	1	-2.75	0.00	0.00
WOOD FIBRE/PLA BIOCOMPOSITE	1	-2.64	0.00	0.00
SPIRO-BISPHENOL	1	-1.87	0.00	0.00
BOPLA	3	-1.69	-2.06	-1.32
1,3-PROPANEDIOL	4	-1.68	-2.34	-1.02
3-HYDROXY PROPIONIC ACID	1	-1.55	0.00	0.00
BIOLUBRICANT	1	-1.54	0.00	0.00
POLYLIMONENE CARBONATE	1	-1.52	0.00	0.00
HEXANOIC ACID	4	-1.48	-1.66	-1.31
BIOPOLYETHYLENE/BAGASSE FIBERS BIOCOMPOSITE	2	-1.35	-1.36	-1.33
DIOL V	1	-1.30	0.00	0.00
POLYLACTIDE	1	-1.28	0.00	0.00
BIOPOLYMER	1	-1.23	0.00	0.00
WAX ESTERS	1	-1.19	0.00	0.00
ADIPIC ACID	5		-1.76	
	5 6	-1.17 -1.13	-1.76 -1.93	-0.58 -0.32
NANOCELLULOSE (MICROFIBRILLATED CELLULOSE (MFC))				
POLYGETER RINDERS	3	-1.09	-1.33	-0.85
POLYESTER BINDERS	2	-1.09	-1.36	-0.81
WHEAT-GLUTEN-BASED PACKAGING FILM	1	-1.01	0.00	0.00
CELLULOSE NANOWHISKERS	2	-1.01	-3.15	1.13
LACTIC ACID	18	-0.97	-1.64	-0.29
AROMATICS	5	-0.96	-2.61	0.69
FLAX MAT/PLA BIOCOMPOSITE LAMINATES	1	-0.93	0.00	0.00
PEF	3	-0.92	-1.99	0.14
LINSEED OIL/FLAX FIBRE/MMP BIOCOMPOSITE	1	-0.92	0.00	0.00
3-PROPANEDIOL	1	-0.91	0.00	0.00
POLYITACONIC ACID	2	-0.90	-1.40	-0.41
SPIROCYCLIC DIOL	1	-0.89	0.00	0.00
1,3-BUTADIENE	6	-0.85	-1.24	-0.46
LEVOGLUCOSAN	1	-0.84	0.00	0.00
EPOXY RESIN SUPERSAP	3	-0.83	-0.90	-0.76
PP	3	-0.80	-2.01	0.40
ISOBUTANOL	2	-0.80	-1.17	-0.44
ETHYLENE	13	-0.79	-1.28	-0.30
BIOETHANOL-BASED PVC	1	-0.79	0.00	0.00
FORMIC ACID	3	-0.77	-1.25	-0.29
CURAUÁ/PP COMPOSITE	1	-0.76	0.00	0.00
PROPYLENE GLYCOL	3	-0.75	-1.71	0.21
2,3-BUTANEDIOL	4	-0.70	-0.81	-0.60
PE	1	-0.70	0.00	0.00
MULCH FILM	3	-0.68	-0.79	-0.57
1,4-BUTANEDIOL	2	-0.66	-0.82	-0.50
ALKYL POLYGLYCOSIDES	1	-0.64	0.00	0.00
STARCH-FILLED POLYPROPYLENE	2	-0.64	-0.65	-0.63
LIGNIN POWDER	1	-0.64	0.00	0.00
PLA	5	-0.60	-1.08	-0.12

		0.00		
CURED WOOD FLOORING COATING	1	-0.60	0.00	0.00
PROPIONIC ACID	6	-0.59	-0.78	-0.40
TEREPHTHALIC ACID	3	-0.57	-1.34	0.21
LACTIDE	8	-0.53	-0.56	-0.50
ACETONITRILE	1	-0.52	0.00	0.00
OLEFINS	1	-0.52	0.00	0.00
SODIUM POLYACRYLATE (NA-PA)	2	-0.50	-0.52	-0.48
SUCCINIC ACID	21	-0.47	-0.97	0.02
PSA BIOADHESIVE	1	-0.47	0.00	0.00
ETHYL LACTATE	2	-0.46	-0.83	-0.09
PHA	11	-0.45	-0.77	-0.13
POLYETHYLENE	1	-0.44	0.00	0.00
N-VINYL-2-PYRROLIDONE	4	-0.41	-0.50	-0.32
POLYURETHANE FOAM (PUF)	4	-0.41	-0.54	-0.28
PU FOAMS	1	-0.37	0.00	0.00
PHB	8	-0.34	-0.85	0.16
FDCA	1	-0.32	0.00	0.00
PHB/KENAF COMPOSITE	1	-0.30	0.00	0.00
CAPROIC ACID	3	-0.28	-0.60	0.03
ALGINATE-BASED PLASTIC	1	-0.27	0.00	0.00
PHENOLIC	1	-0.27	0.00	0.00
P-XYLENE	2	-0.27	-1.84	1.30
HDPE	6	-0.23	-0.48	0.01
PAG BIOADHESIVE	1	-0.22	0.00	0.00
MODAL ANTI BACTERIAL FABRIC	2	-0.22	-0.32	-0.12
BIOFILM	1	-0.19	0.00	0.00
BUTYLCATECHOL	1	-0.19	0.00	0.00
LLDPE	2	-0.18	-0.95	0.58
EPOXIDIZED SUCROSE SOYATE COMPOSITES	1	-0.17	0.00	0.00
LDPE	2	-0.17	-0.90	0.56
1,3-DIHYDROXYACETONE	3	-0.12	-0.46	0.22
SOY BIOADHESIVE	1	-0.04	0.00	0.00
HEXAMETHYLENEDIAMINE	12	-0.03	-0.10	0.05
ISOBUTENE	3	-0.02	-0.36	0.31
TANNIN BIOADHESIVE	1	0.03	0.00	0.00
KETONE WAX	1	0.04	0.00	0.00
PET	9	0.05	-0.06	0.00
METHANOL	2	0.10	-1.69	1.90
PBS	7	0.10	-0.22	0.43
PHLA		0.16	0.00	0.43
ACETONE	1 2	0.19	-0.14	0.52
	3	0.19		
2-METHYL TETRAHYDROFURAN			-0.19	0.63
MANGO KERNEL STARCH FILM	1	0.24	0.00	0.00
POLY(LACTIC ACID)/CELLULOSE NANOCRYSTAL/LIMONENE	1	0.34	0.00	0.00
NANOFIBRILLATED CELLULOSE (NFC)-REINFORCED EPOXY	1	0.49	0.00	0.00
NANOCELLULOSE YARN	1	0.55	0.00	0.00
MYCOBAMBOO	1	0.74	0.00	0.00
BACTERIAL CELLULOSE (BC)-REINFORCED EPOXY COMPOSITES	1	0.81	0.00	0.00
SCG/PBS COMPOSITE	1	0.89	0.00	0.00
METAL WORKING FLUIDS (MWF)	2	1.02	-1.90	3.93
CNC FOAM	1	1.05	0.00	0.00
LIGNIN BIOADHESIVE	2	1.37	0.76	1.98

S.4 Additional calculations in 'Greenhouse gas Footprints'

Table S.4: additional GHG emission calculations in the section 'Greenhouse gas Footprints'.


	GHG emissions (Gt CO2 eq./yearly)	Percentage of global emissions yearly	Source			
Total GHG emissions	52	100%	Ritchie, H. and M. Roser. CO₂ and Greenhouse Gas			
globally			Emissions. <i>Our World in Data</i> (2020) ²			
Total GHG emissions	1.8	3.4%	Zheng, J. & Suh, S. Strategies to reduce the global			
Plastics (fossil-based)			carbon footprint of plastics (2019) ³			
Total GHG emissions	0.91	2%	Galán-Martín, Á. et al. Sustainability footprints of a			
Primary Industry			renewable carbon transition for the petrochemical			
(based on the six main			sector within planetary boundaries (2021) ⁴			
platform chemicals)						
	Ethylene	Butadiene	Plastics			
Total amount produced	2.01E11	1.2E10	-			
yearly (kg)						
GHG emissions fossil-	1.45	1.2	-			
based cradle-to-gate						
(kg CO2 eq. /kg						
chemical)						
Bio-based potential	57%	57%	38%			
reduction	(95% CI: 32, 73%)	(95% CI: 37, 71%)	(95% CI: -23, 50%)			
% of GHG emissions	18.3% / 0.3%	0.9% / 0.02%	- / 1.32%			
primary industry /						
global						
Calculation	$\frac{(RP_{BBP} \cdot GHG_{fossil}) \cdot T_{product}}{100} \cdot 100$					
	$\frac{GHG_{total}}{GHG_{total}}$ · 100					
	with RP_{BBP} as biobased product reduct	tion potential; GHG _{fossil} as	GHG emissions fossilbased product;			
	$T_{product}$ as total amount produced (kg/year); GHG _{total} as total GHG emissions (Primary Industry/Global)					
Sources	Reduction potentials taken from S.1 and Figure 2a; Levi, P.G. and J.M. Cullen. 2018. Mapping Global Flows of					
	Chemicals: From Fossil Fuel Feedstocks to Chemical Products ⁵ , Ecoinvent Centre. Ecoinvent database (Version					
	3.7) ⁶ .		•			

S.5 Predicted mean reduction (RR) and 95% CI for GHG emissions per product category, feedstock category and TRL based on single linear mixed-effect models

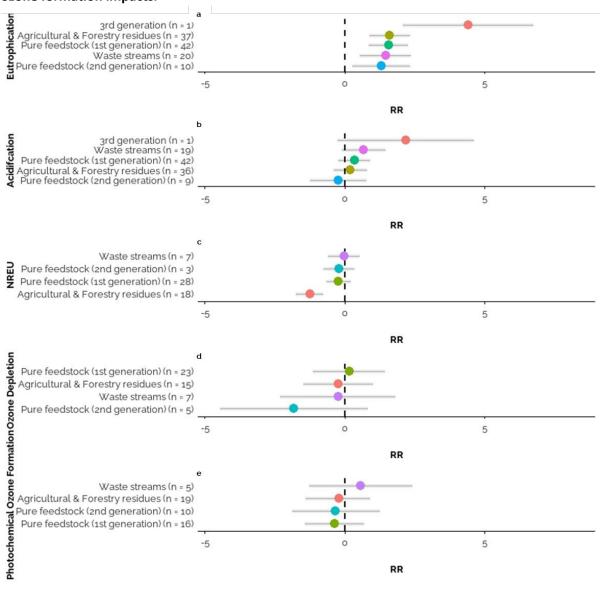
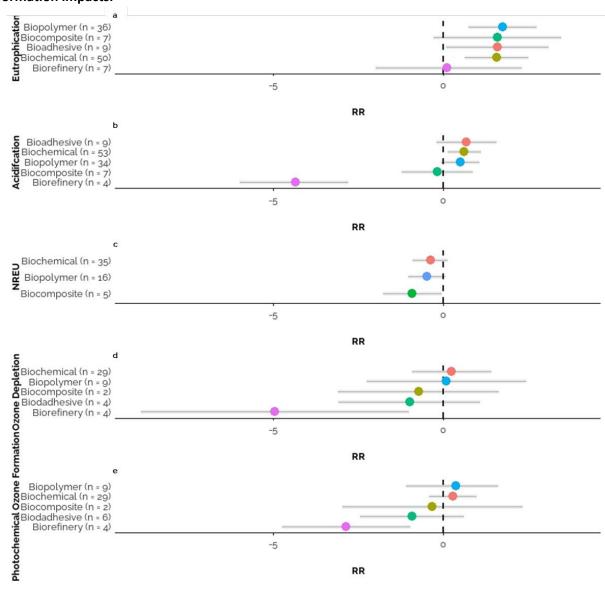
Table S.5: Change in GHG footprint response ratios (RR) of bio-based products in comparison to fossil-based counterfactual in relation to key parameters: product category, feedstock category and TRL category (corresponding to Fig. 2 in the main text). Here, predictions with corresponding 95% confidence intervals are in percentages.

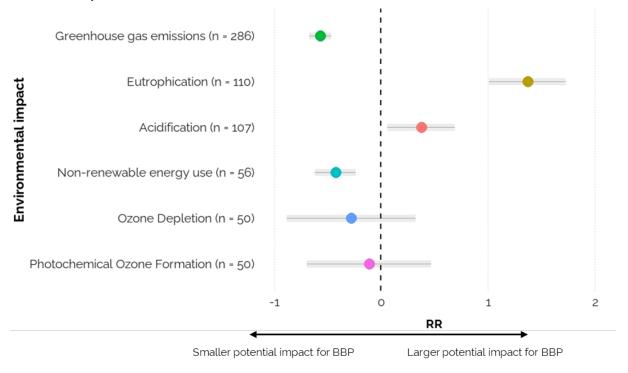
	n	Prediction [95% CI]
Product category		
Bioadhesive	13	-19% [-52% to 35%]
Biochemical	135	-46% [-56% to -35%]
Biocomposite	17	-50% [-68% to -22%]
Biofiber	11	-53% [-75% to -12%]
Biopolymer	91	-38% [-50% to -24%]
Biorefinery	19	-73% [-84% to -55%]
Feedstock category		
3 rd generation feedstock	4	7% [-56% to 161%]
Agricultural & forestry residues	89	-51% [-59% to -38%]
Waste streams	61	-33% [-48% to -14%]
Pure feedstock (1st generation)	96	-49% [-58% to -38%]
Pure feedstock (2 nd generation)	36	-50% [-62% to -34%]
TRL		
TRL 1-3	71	-38% [-51% to -21%]
TRL 4-5	142	-41% [-51% to -29%]
TRL 6-9	46	-58% [-69% to -44%]

S.6 Predicted mean RR and 95% CI for the GHG emissions and if it in- or excluded Land Use Changes (LUC) related GHG emissions based on single linear mixed-effect models.

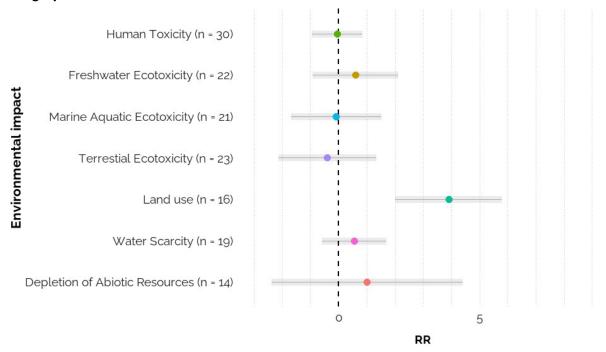
Figure S.6: LMM on relationship RR GHG emissions and studies either in- or excluding LUC. Average estimate including LUC is -46% (95% CI: 38, 53%) and excluding LUC is -39% (95% CI: 13, 57%). Omnibus F:0.44, p-value: 0.51.

S.7 Predicted mean RR and 95% CI per feedstock category based on single linear mixed-effect models for eutrophication, acidification, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts.


Figure S.7: LMM on relationship RR environmental footprints and feedstock category: (a) Eutrophication: omnibus F: 1.58, p-value: 0.19; (b) Acidification: omnibus F: 1.08, p-value: 0.37; (c) NREU: omnibus F: 7.32, p-value: 0.0006*; (d) Ozone Depletion: omnibus F: 0.65, p-value: 0.59; (e) Photochemical Ozone Formation: omnibus F: 0.25, p-value: 0.85. *For NREU, the feedstock category as single effect proved significant, but due to the low number of data points for each category we consider this result highly uncertain.

S.8 Predicted mean RR and 95% CI per product category based on single linear mixed-effect models for eutrophication, acidification, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts.


Figure S.8: LMM on relationship RR environmental footprints and product category: (a) Eutrophication: omnibus F: 0.46, p-value: 0.76; (b) Acidification: omnibus F: 9.08, p-value: 2.20E-05*; (c) NREU: omnibus F: 0.50, p-value: 0.61; (d) Ozone Depletion: omnibus F: 1.44, p-value: 0.26; (e) Photochemical Ozone Formation: omnibus F: 2.62, p-value: 0.047*.

S.9 Overview of arithmetic average RRs and corresponding 95% CI for greenhouse gas emissions, eutrophication, acidification, non-renewable energy-use, ozone depletion and photochemical ozone formation impacts

Figure S.9: Plot showing overall **arithmetic averages** and 95% CI of GHG, Eutrophication, Acidification, NREU, Ozone Depletion and Photochemical Ozone Formation impacts. Both arithmetic averages and predicted mean RRs from LMM (Figure 3 in the main text) show the same trends. In percentages, on average the GHG footprint is reduced with 43% (95% CI: 37, 49%), eutrophication is increased with 293% (95% CI: 175, 464%), acidification is increased with 45% (95% CI: 6, 99%), NREU is reduced with 35% (95% CI: 21, 46%), ozone depletion is reduced with 24% (95% CI: -59, 38%) and photochemical ozone formation is reduced with 11% (95% CI: -50, 60%).

S.10 Overview of the predicted mean and 95% CI of the RRs across all product types and studies for all environmental impacts with $n \le 30$. Separate random-effects models were ran for each impact category.

Figure S.10: plot showing predicted mean and 95% CI of the other environmental impacts' RRs (with $n \le 30$) collected from the 130 studies (Human Ecotoxicity, Freshwater Ecotoxicity, Marine Aquatic Ecotoxicity, Land Use, Water Scarcity, Depletion of Abiotic Resources).

References

- 1. Moni, S. M., Mahmud, R., High, K. & Carbajales-Dale, M. Life cycle assessment of emerging technologies: A review. *J. Ind. Ecol.* **24**, 52–63 (2020).
- 2. Ritchie, H. & Roser, M. CO₂ and Greenhouse Gas Emissions. *Our World in Data*. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2020).
- 3. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. *Nat. Clim. Chang.* **9**, 374–378 (2019).
- 4. Galán-Martín, Á. *et al.* Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. *One Earth* **4**, 565–583 (2021).
- 5. Levi, P. G. & Cullen, J. M. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. *Environ. Sci. Technol.* **52**, (2018).
- 6. Ecoinvent. Ecoinvent database (Version 3.7). (2020).

Database References

- 1. Urban, R. A. & Bakshi, B. R. 1,3-Propanediol from fossils versus biomass: A life cycle evaluation of emissions and ecological resources. Ind. Eng. Chem. Res. 48, 8068–8082 (2009).
- 2. Aryapratama, R. & Janssen, M. Prospective life cycle assessment of bio-based adipic acid production from forest residues. J. Clean. Prod. 164, 434–443 (2017).
- 3. Benalcázar, E. A., Deynoot, B. G., Noorman, H., Osseweijer, P. & Posada, J. A. Production of bulk chemicals from lignocellulosic biomass via thermochemical conversion and syngas fermentation: a comparative techno-economic and environmental assessment of different site-specific supply chain configurations. Biofuels, Bioprod. Biorefining 11, 861–886 (2017).
- 4. Ekman, A. & Börjesson, P. Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. J. Clean. Prod. 19, 1257–1265 (2011).
- 5. Liptow, C. & Tillman, A.-M. A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil. J. Ind. Ecol. 16, 420–435 (2012).
- 6. Liptow, C., Tillman, A. M., Janssen, M., Wallberg, O. & Taylor, G. A. Ethylene based on woody biomass What are environmental key issues of a possible future Swedish production on industrial scale. Int. J. Life Cycle Assess. 18, 1071–1081 (2013).
- 7. Tufvesson, P., Ekman, A., Sardari, R. R. R., Engdahl, K. & Tufvesson, L. Economic and environmental assessment of propionic acid production by fermentation using different renewable raw materials. Bioresour. Technol. 149, 556–564 (2013).
- 8. Zhang, Y., Hu, G. & Brown, R. C. Life cycle assessment of commodity chemical production from forest residue via fast pyrolysis. Int. J. Life Cycle Assess. 19, 1371–1381 (2014).
- 9. Fiorentino, G., Ripa, M., Mellino, S., Fahd, S. & Ulgiati, S. Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J. Clean. Prod. 66, 174–187 (2014).
- 10. Adom, F., Dunn, J. B., Han, J. & Sather, N. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts. Environ. Sci. Technol. 48, 14624–14631 (2014).
- 11. Cok, B., Tsiropoulos, I., Roes, A. L. & Patel, M. K. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod. Biorefining 8, 16–29 (2014).
- 12. Khoo, H. H., Wong, L. L., Tan, J., Isoni, V. & Sharratt, P. Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resour. Conserv. Recycl. 95, 174–182 (2015).
- 13. Gonzalez-Garay, A., Gonzalez-Miquel, M. & Guillen-Gosalbez, G. High-Value Propylene Glycol from Low-Value Biodiesel Glycerol: A Techno-Economic and Environmental Assessment under Uncertainty. ACS Publ. 5, 5723–5732 (2017).
- 14. Gunukula, S., Runge, T. & Anex, R. Assessment of Biocatalytic Production Parameters to Determine Economic and Environmental Viability. ACS Sustain. Chem. Eng. 5, 8119–8126 (2017).
- 15. Mandegari, M. A., Farzad, S., van Rensburg, E. & Görgens, J. F. Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioprod. Biorefining 11, 971–990 (2017).
- 16. Zucaro, A., Forte, A. & Fierro, A. Greenhouse gas emissions and non-renewable energy use profiles of bio-based succinic acid from Arundo donax L. lignocellulosic feedstock. Clean Technol. Environ. Policy 19, 2129–2143 (2017).
- 17. Chen, W. S., Strik, D. P. B. T. B., Buisman, C. J. N. & Kroeze, C. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environ. Sci. Technol. 51, 7159–7168 (2017).
- 18. Zheng, J. L., Zhu, Y. H., Zhu, M. Q., Sun, G. T. & Sun, R. C. Life-cycle assessment and techno-economic analysis of the utilization of bio-oil components for the production of three chemicals. Green Chem. 20, 3287–3301 (2018).
- 19. Tripodi, A. et al. Acetonitrile from Bioethanol Ammoxidation: Process Design from the Grass-Roots and Life Cycle

- Analysis. ACS Sustain. Chem. Eng. 6, 5441-5451 (2018).
- 20. Yang, M., Tian, X. & You, F. Manufacturing Ethylene from Wet Shale Gas and Biomass: Comparative Technoeconomic Analysis and Environmental Life Cycle Assessment. Ind. Eng. Chem. Res. 57, 5980–5998 (2018).
- 21. Alonso-Fariñas, B., Gallego-Schmid, A., Haro, P. & Azapagic, A. Environmental assessment of thermo-chemical processes for bio-ethylene production in comparison with bio-chemical and fossil-based ethylene. J. Clean. Prod. 202, 817–829 (2018).
- 22. Brunklaus, B., Rex, E., Carlsson, E. & Berlin, J. The future of Swedish food waste: An environmental assessment of existing and prospective valorization techniques. J. Clean. Prod. 202, 1–10 (2018).
- 23. González-García, S., Argiz, L., Míguez, P. & Gullón, B. Exploring the production of bio-succinic acid from apple pomace using an environmental approach. Chem. Eng. J. 350, 982–991 (2018).
- 24. Jonker, J. G. G. et al. Economic performance and GHG emission intensity of sugarcane- and eucalyptus-derived biofuels and biobased chemicals in Brazil. Biofuels, Bioprod. Biorefining 13, 950–977 (2019).
- 25. Kim, H., Choi, J., Park, J. & Won, W. Production of a sustainable and renewable biomass-derived monomer: conceptual process design and techno-economic analysis. Green Chem. 22, 7070–7079 (2020).
- 26. Wang, J., You, S., Lu, Z., Chen, R. & Xu, F. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Bioresour. Technol. 307, 123179 (2020).
- 27. Lokesh, K. et al. Hybridised sustainability metrics for use in life cycle assessment of bio-based products: Resource efficiency and circularity. Green Chem. 22, 803–813 (2020).
- 28. van Duuren, J. B. J. H. et al. A limited LCA of bio-adipic acid: Manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol. Bioeng. 108, 1298–1306 (2011).
- 29. Ögmundarson, Ó., Sukumara, S., Laurent, A. & Fantke, P. Environmental hotspots of lactic acid production systems. GCB Bioenergy 12, 19–38 (2020).
- 30. Yang, M. & Rosentrater, K. A. Life Cycle Assessment and Techno-Economic Analysis of Pressure Sensitive Bio-Adhesive Production. Energies 2019, Vol. 12, Page 4502 12, 4502 (2019).
- 31. Yang, M. & Rosentrater, K. A. Cradle-to-gate life cycle assessment of structural bio-adhesives derived from glycerol. Int. J. Life Cycle Assess. 26, 799–806 (2021).
- 32. Arias, A., González-García, S., González-Rodríguez, S., Feijoo, G. & Moreira, M. T. Cradle-to-gate Life Cycle Assessment of bio-adhesives for the wood panel industry. A comparison with petrochemical alternatives. Sci. Total Environ. 738, 140357 (2020).
- 33. Le Duigou, A., Deux, J. M., Davies, P. & Baley, C. PLLA/flax mat/balsa bio-sandwich-environmental impact and simplified life cycle analysis. Appl. Compos. Mater. 19, 363–378 (2012).
- 34. Mahalle, L., Alemdar, A., Mihai, M. & Legros, N. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. Int. J. Life Cycle Assess. 19, 1305–1315 (2014).
- 35. Deng, Y. et al. Life cycle assessment of flax-fibre reinforced epoxidized linseed oil composite with a flame retardant for electronic applications. J. Clean. Prod. 133, 427–438 (2016).
- 36. Quintana, A., Alba, J., del Rey, R. & Guillén-Guillamón, I. Comparative Life Cycle Assessment of gypsum plasterboard and a new kind of bio-based epoxy composite containing different natural fibers. J. Clean. Prod. 185, 408–420 (2018).
- 37. Ita-Nagy, D., Vázquez-Rowe, I., Kahhat, R., Chinga-Carrasco, G. & Quispe, I. Reviewing environmental life cycle impacts of biobased polymers: current trends and methodological challenges. International Journal of Life Cycle Assessment vol. 25 2169–2189 (2020).
- 38. Akiyama, M., Tsuge, T. & Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 80, 183–194 (2003).
- 39. Kim, S. & Dale, B. E. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy

- consumption and greenhouse gas emissions. Biomass and Bioenergy 28, 475-489 (2005).
- 40. Broeren, M. L. M. et al. Environmental assessment of bio-based chemicals in early-stage development: a review of methods and indicators. Biofuels, Bioprod. Biorefining 11, 701–718 (2017).
- 41. Piccinno, F., Hischier, R., Seeger, S. & Som, C. Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. J. Clean. Prod. 174, 283–295 (2018).
- 42. Tan, L. et al. Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. J. Clean. Prod. 178, 494–506 (2018).
- 43. Ekman, A. & Börjesson, P. Life cycle assessment of mineral oil-based and vegetable oil-based hydraulic fluids including comparison of biocatalytic and conventional production methods. Int. J. Life Cycle Assess. 16, 297–305 (2011).
- 44. Brière, R. et al. Life cycle assessment of the production of surface-active alkyl polyglycosides from acid-assisted ball-milled wheat straw compared to the conventional production based on corn-starch. Green Chem. 20, 2135–2141 (2018).
- 45. Montazeri, M. & Eckelman, M. J. Life cycle assessment of UV-Curable bio-based wood flooring coatings. J. Clean. Prod. 192, 932–939 (2018).
- 46. Adom, F. K. & Dunn, J. B. Life cycle analysis of corn-stover-derived polymer-grade l-lactic acid and ethyl lactate: greenhouse gas emissions and fossil energy consumption. Biofuels, Bioprod. Biorefining 11, 258–268 (2017).
- 47. Garcia Gonzalez, M. N., Levi, M. & Turri, S. Development of polyester binders for the production of sustainable polyurethane coatings: Technological characterization and life cycle assessment. J. Clean. Prod. 164, 171–178 (2017).
- 48. Kikuchi, Y., Oshita, Y., Mayumi, K. & Hirao, M. Greenhouse gas emissions and socioeconomic effects of biomass-derived products based on structural path and life cycle analyses: A case study of polyethylene and polypropylene in Japan. J. Clean. Prod. 167, 289–305 (2017).
- 49. de Léis, C. M., Nogueira, A. R., Kulay, L. & Tadini, C. C. Environmental and energy analysis of biopolymer film based on cassava starch in Brazil. J. Clean. Prod. 143, 76–89 (2017).
- 50. Petrucci, R. et al. Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. J. Polym. Environ. 26, 1891–1902 (2018).
- 51. Zhang, D., del Rio-Chanona, E. A., Wagner, J. L. & Shah, N. Life cycle assessments of bio-based sustainable polylimonene carbonate production processes. Sustain. Prod. Consum. 14, 152–160 (2018).
- 52. García González, M. N., Börjesson, P., Levi, M. & Turri, S. Development and Life Cycle Assessment of Polyester Binders Containing 2,5-Furandicarboxylic Acid and Their Polyurethane Coatings. J. Polym. Environ. 26, 3626–3637 (2018).
- 53. Cheroennet, N., Pongpinyopap, S., Leejarkpai, T. & Suwanmanee, U. A trade-off between carbon and water impacts in bio-based box production chains in Thailand: A case study of PS, PLAS, PLAS/starch, and PBS. J. Clean. Prod. 167, 987–1001 (2017).
- 54. Patel, M. K. et al. Second-generation bio-based plastics are becoming a reality Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioprod. Biorefining 12, 426–441 (2018).
- Warlin, N. et al. A rigid spirocyclic diol from fructose-based 5-hydroxymethylfurfural: synthesis, life-cycle assessment, and polymerization for renewable polyesters and poly(urethane-urea)s. Green Chem. 21, 6667–6684 (2019).
- 56. Kookos, I. K., Koutinas, A. & Vlysidis, A. Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour. Conserv. Recycl. 141, 317–328 (2019).
- 57. Manzardo, A. et al. Life Cycle Assessment Framework To Support the Design of Biobased Rigid Polyurethane Foams. ACS Omega 4, 14114–14123 (2019).
- 58. Mankar, S. V. et al. Synthesis, Life Cycle Assessment, and Polymerization of a Vanillin-Based Spirocyclic Diol toward Polyesters with Increased Glass-Transition Temperature. ACS Sustain. Chem. Eng. 7, 19090–19103 (2019).
- 59. Moretti, C., Junginger, M. & Shen, L. Environmental life cycle assessment of polypropylene made from used cooking oil.

- Resour. Conserv. Recycl. 157, 104750 (2020).
- 60. Fridrihsone, A., Romagnoli, F., Kirsanovs, V. & Cabulis, U. Life Cycle Assessment of vegetable oil based polyols for polyurethane production. J. Clean. Prod. 266, 121403 (2020).
- 61. Parajuli, R. et al. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Sci. Total Environ. 598, 497–512 (2017).
- 62. Cai, H. et al. Life-cycle analysis of integrated biorefineries with co-production of biofuels and bio-based chemicals: co-product handling methods and implications. Biofuels, Bioprod. Biorefining 12, 815–833 (2018).
- 63. Fernandez-Dacosta, C. et al. Can we assess innovative bio-based chemicals in their early development stage? A comparison between early-stage and life cycle assessments. J. Clean. Prod. 230, 137–149 (2019).
- 64. Mercado, G., Dominguez, M., Herrera, I. & Melgoza, R. M. Are Polymers Toxic? Case Study: Environmental Impact of a Biopolymer. J. Environ. Sci. Eng. B 6, 121–126 (2017).
- 65. Vink, E. T. H. et al. The Sustainability of NatureWorksTM Polylactide Polymers and IngeoTM Polylactide Fibers: an Update of the Future. Macromol. Biosci. 4, 551–564 (2004).
- 66. Harding, K. G., Dennis, J. S., von Blottnitz, H. & Harrison, S. T. L. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 130, 57–66 (2007).
- 67. Pachón, E. R., Mandade, P. & Gnansounou, E. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresour. Technol. 303, 122946 (2020).
- 68. Vera, I., Hoefnagels, R., van der Kooij, A., Moretti, C. & Junginger, M. A carbon footprint assessment of multi-output biorefineries with international biomass supply: a case study for the Netherlands. Biofuels, Bioprod. Biorefining 14, 198–224 (2020).
- 69. Zah, R., Hischier, R., Leão, A. L. & Braun, I. Curauá fibers in the automobile industry a sustainability assessment. J. Clean. Prod. 15, 1032–1040 (2007).
- 70. Kim, S., Dale, B. E., Drzal, L. T. & Misra, M. Life Cycle Assessment of Kenaf Fiber Reinforced Biocomposite. J. Biobased Mater. Bioenergy 2, 85–93 (2008).
- 71. De Figueirêdo, M. C. B. et al. Life cycle assessment of cellulose nanowhiskers. J. Clean. Prod. 35, 130–139 (2012).
- 72. Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919–928 (2013).
- 73. Manda, B. M. K., Worrell, E. & Patel, M. K. Prospective life cycle assessment of an antibacterial T-shirt and supporting business decisions to create value. Resour. Conserv. Recycl. 103, 47–57 (2015).
- 74. Piccinno, F., Hischier, R., Seeger, S. & Som, C. Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste. ACS Sustain. Chem. Eng. 3, 1047–1055 (2015).
- 75. Hervy, M., Evangelisti, S., Lettieri, P. & Lee, K. Y. Life cycle assessment of nanocellulose-reinforced advanced fibre composites. Compos. Sci. Technol. 118, 154–162 (2015).
- 76. Tufvesson, L. M. & Börjesson, P. Wax production from renewable feedstock using biocatalysts instead of fossil feedstock and conventional methods. Int. J. Life Cycle Assess. 13, 328–338 (2008).
- 77. Bernier, E., Lavigne, C. & Robidoux, P. Y. Life cycle assessment of kraft lignin for polymer applications. Int. J. Life Cycle Assess. 18, 520–528 (2013).
- 78. Deng, Y., Achten, W. M. J., Van Acker, K. & Duflou, J. R. Life cycle assessment of wheat gluten powder and derived packaging film. Biofuels, Bioprod. Biorefining 7, 429–458 (2013).
- 79. Pang, M. M., Pun, M. Y., Chow, W. S. & Ishak, Z. A. M. Carbon footprint calculation for thermoformed starch-filled polypropylene biobased materials. J. Clean. Prod. 64, 602–608 (2014).

- 80. Frascari, D., Molina Bacca, A. E., Wardenaar, T., Oertlé, E. & Pinelli, D. Continuous flow adsorption of phenolic compounds from olive mill wastewater with resin XAD16N: life cycle assessment, cost–benefit analysis and process optimization. J. Chem. Technol. Biotechnol. 94, 1968–1981 (2019).
- 81. Ghasemi, S., Sibi, M. P., Ulven, C. A., Webster, D. C. & Pourhashem, G. A Preliminary Environmental Assessment of Epoxidized Sucrose Soyate (ESS)-Based Biocomposite. Mol. 2020, Vol. 25, Page 2797 25, 2797 (2020).
- 82. Sadhukhan, J. et al. Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chem. 21, 2635–2655 (2019).
- 83. Lin, Z., Nikolakis, V. & Ierapetritou, M. Life cycle assessment of biobased p -xylene production. Ind. Eng. Chem. Res. 54, 2366–2378 (2015).
- 84. Dros, A. B., Larue, O., Reimond, A., De Campo, F. & Pera-Titus, M. Hexamethylenediamine (HMDA) from fossil- vs. biobased routes: an economic and life cycle assessment comparative study. Green Chem. 17, 4760–4772 (2015).
- 85. Liptow, C., Tillman, A. M. & Janssen, M. Life cycle assessment of biomass-based ethylene production in Sweden is gasification or fermentation the environmentally preferable route? Int. J. Life Cycle Assess. 20, 632–644 (2015).
- 86. Khoo, H. H., Ee, W. L. & Isoni, V. Bio-chemicals from lignocellulose feedstock: Sustainability, LCA and the green conundrum. Green Chem. 18, 1912–1922 (2016).
- 87. Forte, A., Zucaro, A., Basosi, R. & Fierro, A. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery. Mater. 2016, Vol. 9, Page 563 9, 563 (2016).
- 88. Montazeri, M. & Eckelman, M. J. Life Cycle Assessment of Catechols from Lignin Depolymerization. ACS Sustain. Chem. Eng. 4, 708–718 (2016).
- 89. Gezae Daful, A. & Görgens, J. F. Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem. Eng. Sci. 162, 53–65 (2017).
- 90. Moussa, H. I., Elkamel, A. & Young, S. B. Assessing energy performance of bio-based succinic acid production using LCA. J. Clean. Prod. 139, 761–769 (2016).
- 91. Morales, M. et al. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ. Sci. 9, 2794–2805 (2016).
- 92. Cespi, D., Passarini, F., Vassura, I. & Cavani, F. Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chem. 18, 1625–1638 (2016).
- 93. Gargalo, C. L. et al. Assessing the environmental sustainability of early stage design for bioprocesses under uncertainties: An analysis of glycerol bioconversion. J. Clean. Prod. 139, 1245–1260 (2016).
- 94. Morales, M. et al. Environmental and economic assessment of lactic acid production from glycerol using cascade bioand chemocatalysis. Energy Environ. Sci. 8, 558–567 (2015).
- 95. Yu, J. & Chen, L. X. L. The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics from Cradle to Gate of a Biomass Refinery. Environ. Sci. Technol. 42, 6961–6966 (2008).
- 96. Kim, S. & Dale, B. E. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: A life cycle perspective. Environ. Sci. Technol. 42, 7690–7695 (2008).
- 97. Kendall, A. A life cycle assessment of biopolymer production from material recovery facility residuals. Resour. Conserv. Recycl. 61, 69–74 (2012).
- 98. Eerhart, A. J. J. E., Faaij, A. P. C. & Patel, M. K. Replacing fossil based PET with biobased PEF; Process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422 (2012).
- 99. Nuss, P. & Gardner, K. H. Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. Int. J. Life Cycle Assess. 18, 603–612 (2013).
- 100. Akanuma, Y., Selke, S. E. M. & Auras, R. A preliminary LCA case study: Comparison of different pathways to produce purified terephthalic acid suitable for synthesis of 100 % bio-based PET. Int. J. Life Cycle Assess. 19, 1238–1246 (2014).

- 101. Papong, S. et al. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 65, 539–550 (2014).
- 102. Hohenschuh, W., Kumar, D. & Murthy, G. S. Economic and cradle-to-gate life cycle assessment of poly-3-hydroxybutyrate production from plastic producing, genetically modified hybrid poplar leaves. J. Renew. Sustain. Energy 6, 063113 (2014).
- Heimersson, S., Morgan-Sagastume, F., Peters, G. M., Werker, A. & Svanström, M. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. N. Biotechnol. 31, 383–393 (2014).
- 104. Zolkarnain, N. et al. Evaluation of environmental impacts and GHG of palm polyol production using life cycle assessment approach. J. oil Palm Res. 27, 144–155 (2015).
- 105. Sun, X. Z., Minowa, T., Yamaguchi, K. & Genchi, Y. Evaluation of energy consumption and greenhouse gas emissions from poly(phenyllactic acid) production using sweet sorghum. J. Clean. Prod. 87, 208–215 (2015).
- 106. Tecchio, P., Freni, P., De Benedetti, B. & Fenouillot, F. Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. J. Clean. Prod. 112, 316–325 (2016).
- 107. Gontia, P. & Janssen, M. Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: case study of thermo-mechanical and sulfite pulp mills. J. Clean. Prod. 131, 475–484 (2016).
- 108. Chen, L., Pelton, R. E. O. & Smith, T. M. Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. J. Clean. Prod. 137, 667–676 (2016).
- 109. Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families. Environ. Sci. Technol. 50, 2846–2858 (2016).
- 110. Belboom, S. & Léonard, A. Does biobased polymer achieve better environmental impacts than fossil polymer? Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass and Bioenergy 85, 159–167 (2016).
- 111. Kim, S. & Dale, B. E. Life Cycle Assessment Study of Biopolymers (Polyhydroxyalkanoates) Derived from No-Tilled Corn (11 pp). Int. J. Life Cycle Assess. 2005 103 10, 200–210 (2004).
- 112. Ingrao, C. et al. Spent-coffee grounds as a zero-burden material blended with bio-based poly(butylene succinate) for production of bio-composites: Findings from a Life Cycle Assessment application experience. Environ. Impact Assess. Rev. 97, 106919 (2022).
- 2 Zuiderveen, E. A. R., Ansovini, D., Gruter, G.-J. M. & Shen, L. Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process. Clean. Environ. Syst. 2, 100036 (2021).
- 114. Haus, M. O., Winter, B., Fleitmann, L., Palkovits, R. & Bardow, A. Making more from bio-based platforms: life cycle assessment and techno-economic analysis of N-vinyl-2-pyrrolidone from succinic acid. Green Chem. 24, 6671–6684 (2022).
- 115. Quinteiro, P., Gama, N. V., Ferreira, A., Dias, A. C. & Barros-Timmons, A. Environmental assessment of different strategies to produce rigid polyurethane foams using unrefined crude glycerol. J. Clean. Prod. 371, 133554 (2022).
- 116. Yang, F., Meerman, H., Zhang, Z., Jiang, J. & Faaij, A. Integral techno-economic comparison and greenhouse gas balances of different production routes of aromatics from biomass with CO2 capture. J. Clean. Prod. 372, 133727 (2022).
- 117. Fazeni-Fraisl Energieinstitut, K. et al. Comparative life cycle assessment of first- and second-generation bio-isobutene as a drop-in substitute for fossil isobutene. Biofuels, Bioprod. Biorefining 17, 207–225 (2023).
- Boekaerts, B. et al. Assessment of the environmental sustainability of solvent-less fatty acid ketonization to bio-based ketones for wax emulsion applications. Green Chem. 23, 7137–7161 (2021).
- 119. Müller-Carneiro, J., Figueirêdo, M. C. B. de, Rodrigues, C., Azeredo, H. M. C. de & Freire, F. Ex-ante life cycle assessment framework and application to a nano-reinforced biopolymer film based on mango kernel. Resour. Conserv. Recycl. 188,

- 106637 (2023).
- 120. Gian, M., García-Velásquez, C. & van der Meer, Y. Comparative life cycle assessment of the biochemical and thermochemical production routes of biobased terephthalic acid using Miscanthus in the Netherlands. Clean. Environ. Syst. 6, 100085 (2022).
- 121. Guiton, M. et al. Comparative Life Cycle Assessment of a microalgae-based oil metal working fluid with its petroleum- based and vegetable-based counterparts. J. Clean. Prod. 338, 130506 (2022).
- 122. Gadkari, S., Kumar, D., Qin, Z. hao, Ki Lin, C. S. & Kumar, V. Life cycle analysis of fermentative production of succinic acid from bread waste. Waste Manag. 126, 861–871 (2021).
- 123. Rajendran, N. & Han, J. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. Waste Manag. 156, 168–176 (2023).
- 124. García-Velásquez, C. & van der Meer, Y. Mind the Pulp: Environmental and economic assessment of a sugar beet pulp biorefinery for biobased chemical production. Waste Manag. 155, 199–210 (2023).
- 125. Kim, T., Bamford, J., Gracida-Alvarez, U. R. & Benavides, P. T. Life Cycle Greenhouse Gas Emissions and Water and Fossil-Fuel Consumptions for Polyethylene Furanoate and Its Coproducts from Wheat Straw. ACS Sustain. Chem. Eng. 10, 2830–2843 (2022).
- 126. Kim, T., Bhatt, A., Tao, L. & Benavides, P. T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 380, 135110 (2022).
- 127. Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A. & Steubing, B. Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. J. Clean. Prod. 383, 135331 (2023).
- 128. Ayala, M., Thomsen, M. & Pizzol, M. Life Cycle Assessment of pilot scale production of seaweed-based bioplastic. Algal Res. 71, 103036 (2023).
- 129. Carcassi, O. B. et al. Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation. Sustain. 2022, Vol. 14, Page 1384 14, 1384 (2022).
- 130. Alvarenga, R. A. et al. Life cycle assessment of bioethanol-based PVC. Biofuels, Bioprod. Biorefining 7, 386–395 (2013).

Chapter 3

Supplementary Information S3

Supplementary Information

Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process

Emma A. R. Zuiderveen^{1,2*}, Davide Ansovini³, Gert-Jan M. Gruter^{3,4}, Li Shen⁵

¹ Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

² European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027, Ispra, VA, Italy.
³ Avantium, Zekeringstraat 29, 1014 BV, Amsterdam, the Netherlands

Contents

S1 Life cycle inventory	26
S1.1 5-HMF (hydroxymethylfurfural) from corn fructose	26
S1.2 Production of xylitol from xylose	27
S2 Sensitivity Analyses	29
S2.1 Share of renewable electricity, different scenarios	
S2.2 Waste water treatment modelling	29
S2.3 Separation of HMF from DMSO	29
Literature	30

⁴ Van't Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS, Amsterdam, the Netherlands

⁵ Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, the Netherlands

S1 Life cycle inventory

S1.1 5-HMF (hydroxymethylfurfural) from corn fructose

From corn to glucose

As shown in **Figure 2**, 5-HMF is made via dehydration of fructose which is obtained from corn glucose. The harvested corn is processed in a wet-milling plant to extract starch. The decision for wet-milling to process starch instead of dry-milling is based on the fact that the latter produces a lower purity starch compared to the former. Higher purity is more suitable to produce a high purity glucose. Corn starch is further converted into sugars (dextrose or glucose) by enzymatic hydrolysis (Tsiropoulos et al., 2013).

LCA results reported by Tsiropoulos, Cok, & Patel (Tsiropoulos et al., 2013) of glucose production from European corn were used in the baseline model for NREU and GHG emissions including corn cultivation, wet-milling and glucose production (**Table 3**). Their study was based on Ecoinvent 2.2 data aiming to evaluate NREU and GHG emissions for corn production in Europe. Results on acidification, eutrophication and land use were not reported. Therefore, literature data(Chheda et al., 2007; Hobbs, 2009; Vink and Davies, 2015) and ecoinvent data were used for the assessment of the three missing impact categories for processes of corn cultivation, wet milling and dextrose/glucose production. All data is represented in **Table 3**.

From glucose to fructose

In order to obtain fructose (90% High Fructose Corn Syrup, HFCS-90), the glucose stream goes through isomerization (to an equilibrium fructose: glucose 42:58 mixture), refining and evaporation stages. Chromatographic separation is used to separate the fructose from most of the glucose (Hobbs, 2009). The steps to purify the sugar stream are rather difficult to assess because of lack of literature data. A similar approach as described in earlier LCA research (Eerhart et al., 2012) on PEF production was therefore adopted. Only the most energy intensive step during the corn sweetener refining step is assessed: evaporation of water after isomerization and separation. Previous research suggests a NREU of 3.9 MJ per kg fructose (Eerhart et al., 2012); input modelling was based on natural gas (30.3 MJ/kg).

Dehydration of fructose to 5-HMF

5-HMF is not a bulk chemical and the LCA data in literature is scarce. 5-HMF can be obtained by selective dehydration of fructose/HFCS-90 (HFCS 90% fructose). For this study, the dehydration of 5-HMF is based on a process described by Roquette and Dumesic (Chheda et al., 2007). Based on the

published data, dehydration of fructose to 5-HMF requires 1.65 MJth/kg 5-HMF final energy (heat duty and reboiler duty). It should be noted that this energy requirement does not include phase separation nor production purification due to unavailable information. This thermal energy is assumed to be supplied by a natural gas boiler. In the dehydration step, a conversion efficiency of 95% and a selectivity of 89% lead to 1.83 kg of fructose to produce 1 kg of HMF. The solvents used during the process are methyl isobutyl ketone (MIBK)/2-butanol/DMSO but are assumed without losses. Working with a biphasic system modified with DMSO to dehydrate fructose to HMF has not been proven economically feasible (Chheda et al., 2007). The feasibility of the choice of the solvents is further discussed in section 4.2. For this study it has only served as a simplified model.

S1.2 Production of xylitol from xylose

All four fibres are produced from wood pulp using classical or modified viscose production (i.e. Modal) with xylose as one of the by-products from the pulping process. Viscose Austria and Modal Austria, produce viscose via an integrated plant including both pulp and fibre production. It is highly optimized in terms of energy and material (re-)use. For Viscose Asia, the process heat and power supply were largely based on coal and no pulp mill integration with the fibre production is present (Shen et al., 2010). Xylose as a by-product of the Lenzing Viscose Austria process, has the lowest impacts and is therefore used as baseline for the NREU and GHG emissions in our study. However, data on eutrophication, acidification and land use impact are largely missing. These impact categories will be approximated by using Ecoinvent data (3.3) and by applying economic allocation (4% for xylose). Figure S1 provides the overview of xylose data used in the baseline analysis.

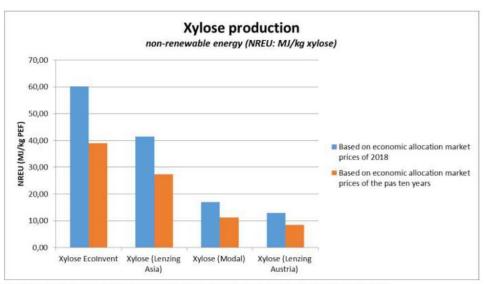


Figure S1: impacts of the four viscose LCA datasets, comparing Xylose Ecoinvent data, xylose Lenzing Asia, Xylose Modal and Xylose Lenzing Austria.

S2 Sensitivity Analyses

S2.1 Share of renewable electricity, different scenarios

Table S1: Share of renewable electricity, different scenarios.

	2018	2030 low	2030 high	2050 ren:	2050 ren:
	Baseline	ren:	ren:	86%	100%
Grid electricity mix		23.5%	43.5%		
Coal	42.5%	38%	18%	0%	0%
Natural gas	35.2%	35%	35%	3%	0%
Nuclear	8.7%	3.5%	3.5%	11%	0%
Offshore wind	0.5%	8%	18%	35%	35%
Onshore wind	7.1%	8%	11%	19%	20%
Solar	0%	2%	6%	13%	35%
Hydropower	4.6%	1.5%	1.5%	9%	10%
Other renewables	4.6%	5%	7%	10%	0%

S2.2 Waste water treatment modelling – extra note

A pilot project at DuPont (plastic and fiber plant) in 2001 to recycle wastewater, aiming at closing the water cycle, has been successful in reducing wastewater by 90%. A three-step treatment system was applied: the purified water could then be re-used in the factory. They used an (1) alternating aerobic anoxic sludge process (N and P elimination), (2) ultra-filtration membrane system (suspended solid elimination) and (3) hyper filtration (nitrate, chloride and sulfate reduction)(Dohmann et al., 2001). However, an in-depth study to set up and calculate wastewater recycling of TERRA wastewater is well beyond the scope of this project. Nonetheless, it shows there are definitely options to reduce the impact of eutrophication and acidification when wastewater is treated and reused.

S2.3 Separation of HMF from DMSO – extra note

Separating HMF from DMSO by distillation will lead to the intensification of the carbon emission of HMF. However, studying again Dumesic's research on 5- HMF production and the use of dimethyl sulfoxide (DMSO) and MIBK/2-butanol as solvents, they suggest low-temperature separation processes such as vacuum evaporation or vacuum distillation for HMF purification in this biphasic system (Chheda et al., 2007).

Literature

- Chheda, J.N., Román-Leshkov, Y., Dumesic, J.A., 2007. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 9, 342–350. https://doi.org/10.1039/b611568c
- Dohmann, M., Melin, T., Aachener Tagung Siedlungswasserwirtschaft und Verfahrenstechnik (4 : 2001.09.11-12 : Aachen), 2001.

 Membrantechnik in der Wasseraufbereitung und Abwasserbehandlung : Perspektiven, Neuentwicklungen und Betriebserfahrungen im In- und Ausland ; Begleitbuch zur 4. Aachener Tagung Siedlungswasserwirtschaft und Verfahrenstechnik, 11. 12. September 2001. Inst. f. Verfahrenstechnik.
- Eerhart, A.J.J.E., Faaij, A.P.C., Patel, M.K., 2012. Replacing fossil based PET with biobased PEF; Process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422. https://doi.org/10.1039/c2ee02480b
- Hobbs, L., 2009. Sweeteners from Starch: Production, Properties and Uses, in: Starch. Elsevier Inc., pp. 797–832. https://doi.org/10.1016/B978-0-12-746275-2.00021-5
- Shen, L., Worrell, E., Patel, M.K., 2010. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274. https://doi.org/10.1016/j.resconrec.2010.10.001
- Tsiropoulos, I., Cok, B., Patel, M.K., 2013. Energy and greenhouse gas assessment of European glucose production from corn-a multiple allocation approach for a key ingredient of the bio-based economy. J. Clean. Prod. 43, 182–190. https://doi.org/10.1016/j.jclepro.2012.12.035
- Vink, E.T.H., Davies, S., 2015. Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo® Polylactide Production. Ind. Biotechnol. 11, 167–180. https://doi.org/10.1089/ind.2015.0003

Chapter 4

Supplementary Information S4

Supplementary Information

The environmental sustainability of alternative ways to produce benzene, toluene and xylene

Emma A. R. Zuiderveen^{1,2}, C. Caldeira², T. Vries³, N.J. Schenk³, M.A.J. Huijbregts^{1,4}, S. Sala², S.V. Hanssen¹, R. van Zelm¹

¹ Department of Environmental Science, Radboud Institute for Biological & Environmental Sciences, Radboud University, Nijmegen, the Netherlands

² European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027, Ispra, VA, Italy
 ³ BioBTX, Zernikelaan 17, 9747 AA, Groningen, The Netherlands
 ⁴ Department of Circularity & Sustainability Impacts, TNO, Princetonlaan 6, 3584CB Utrecht, The Netherlands
 E-mail contact: emma.zuiderveen@ru.nl

1.	Materials 1.1	& methods	
	1.2	Carbon accounting	
	1.3	Allocation	33
	1.4	Distillation	35
	1.5	Evaluating emerging technologies	35
	1.6	Electricity use in fossil-BTX pathway	36
	1.7	Impact assessment PB-LCIA	36
	1.8	Resource use perspective	38
2.	Results		41
	2.1	Endpoint results	41
	2.2	Midpoint results	41
	2.3	Absolute assessments results	43
	2.4	Sensitivity Analysis: electricity market scenarios for 2050	44
	2.5	Sensitivity Analysis: plastic recycling scenarios for 2050	45
	2.6	Sensitivity Analysis: Glycerol production from other feedstock	45
	2.7	Sensitivity Analysis: Allocation strategies	46
3.	Discussion	1	48
	3.1	Impact other types of biomass feedstock	48
	3.2	Plastic feedstock supply	48

1. Materials & methods

1.1 BioBTX

The BTX production pathways (Figure 1 in the main text) from both mixed plastic waste and biomass is based on the Integrated Cascading Catalytic Pyrolysis process developed by BioBTX, a pilot-company located in the Netherlands. Firstly, the feedstock is the thermally cracked; secondly, the pyrolysis vapours are catalytically converted to BTX; thirdly, the BTX is separated and collected. BioBTX' primary data is based on a capacity of 48 kt feedstock/year and includes the core technology and downstream steps (BioBTX, 2022).

1.2 Carbon accounting

The system boundary was set to cradle-to-grave with an incineration end-of-life scenario based on the chemical structure of BTX. The fossil carbon content can therefore lead to an additional $3.36 \text{ kg CO}_2 \text{ eq./kg}$ BTX (Table S.1). In the case of bio-BTX, the additional CO₂ emissions were considered neutral. This was justified following the biogenic global warming potential (GWP_{bio}) approach by Cherubini et al. (2011) and allocating temporary carbon storage in bio-products based on Guest et al., (2013), where biogenic carbon can be considered neutral, because both the crop rotation period and the storage period in the technosphere are short. This method accounts for the fate of the carbon embedded in the end products.

Table S.1: data on carbon content BTX and related emissions

	Chemical formula	Molar weight (g/mol)	CO ₂ emissions related to carbon content
Benzene	C ₆ H ₆	78.11	3.38 kg CO ₂
Toluene	C ₇ H ₈	92.14	3.35 kg CO ₂
Xylene	C ₈ H ₁₀	106.16	3.32 kg CO ₂

1.3 Allocation

Figure S.1 indicates the points of allocation in the MPW- and bio-BTX pathways. Table S.2 is an overview of the different allocation factors including calculations.

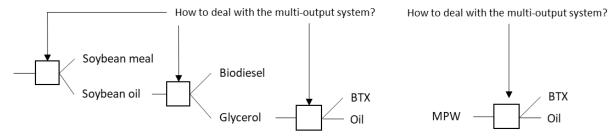


Figure S. 1: overview of points of allocation in both MPW- and bio-BTX pathways.

Table S. 2: allocation factors for mass, economic and energy allocation. Fossil-BTX production is based on economic allocation only, due to the aggregated dataset in Ecoinvent, see 1.1.6 for more information. MPW = Mixed Plastic Waste; LHV = Lower Heating Value; BTX = benzene-toluene-xylene.

	Products	Calculation	Allocation factor
Mass	MPW BTX	m_p / m_t	BTX: 0.69
allocation			Oil: 0.31
	Bio BTX	m _p / m _t	Meal: 0.19
			Oil: 0.81
			Biodiesel: 0.90
			Glycerol: 0.10
			BTX: 0.48
			Oil: 0.52
Energy	MPW BTX	m _{px} LHV / (m _{p1,2,3} LHV _{p1,2,3})	BTX: 0.67
allocation		LHV BTX: 40.5	Oil: 0.33
		LHV natural gas: 47.1	
		LHV light fuel oil: 43	
	Bio BTX	$m_p LHV / (m_{p1,2} LHV_{p1,2})$	Meal: 0.64
		LHV BTX: 40.5	Oil: 0.36
		LHV biodiesel: 43.5 MJ/kg	
		LHV glycerol: 18 MJ/kg	Biodiesel: 0.96
		LHV Soybean meal: 15.4 MJ/kg	glycerol: 0.04
		LHV Soybean oil: 37 MJ/kg	
			BTX: 0.46
			Oil: 0.54
Economic	MPW BTX	m _p Price _p / (m _{p1,2,3} Price _{p1,2,3}), prices taken from 2011-2022 with the	1. BTX: 0.33
allocation		exception of bio-oil, data was available for 2011, 2018, 2019, 2020. 1. Bio-oil price	Oil: 0.67
		2. Bio-oil as light fuel oil price	2. BTX: 0.79
			Oil: 0.21
	Bio BTX	m_p Price _p / $(m_{p1,2,3}$ Price _{p1,2,3}), prices taken from 2011-2022 with the	Soybean oil: 0.34
		exception of bio-oil, data was available for 2011, 2018, 2019, 2020. 1. Bio-oil price	Soybean meal: 0.66
		2. Bio-oil as light fuel oil price	Biodiesel: 0.93
		m _p Price _p / (m _{p1,2} Price _{p1,2}) for glycerol and biodiesel (2011-2021)	Glycerol: 0.07
			1. BTX: 0.16
			Oil: 0.84
			2. BTX: 0.59
			Oil: 0.41

1.4 Distillation

An additional distillation step is applied to the crude BTX output, based on a simplified distillation step. Calculations are based on Piccinno et al., (2016), sum over each of the three chemicals is taken:

$$Q_{distillation} = \frac{C_p * m_{mix} * (T_{boil} - T_0) + \Delta H_{vap} * m_{dist} * (1.2 * R_{min} + 1)}{\eta_{heat} - 0.1}$$
(1)

where C_p is the specific heat capacity, m_{mix} and m_{dist} the mass of the mixture and distillate, T_{boil} the boiling point and T_0 the room temperature, ΔH_{vap} the enthalpy of evaporation, R_{min} the minimum reflux ratio (set to 1, due to lack of information), and η_{heat} the heating efficiency is, heating losses are assumed to be 31% (Piccinno et al., 2016).

1.5 Evaluating emerging technologies

Here, we follow the framework of van der Hulst et al., (2020) based on three successive steps to evaluate technology maturing up to industrial scale. The upscaling involves both technical aspects as well as adjustments to background processes. The steps are shown in Table S.3.

Table S. 3: stepwise approach for technology maturing. TRL = Technology Readiness level; MPW = Mixed Plastic Waste; ICCP = Integrated Cascading Catalytic Pyrolysis; SSP = Shared Socioeconomic pathway.

Steps	Modelled	Current	Commercial scale (base	Industrial scale (2050)	Fossil-based
	changes	scale	scenario; 2022)		production (2022,
		(2022)			2050)
Phase I: definition	Technical	TRL 7	TRL 9	TRL 9	TRL 9
TRL stage	Development				
	Feedstock	Biomass, MPW	Biomass, MPW	Biomass, MPW	Oil, naphtha
	Technology	ICCP	ICCP	ICCP	Catalytic reformate & steam cracking
Phase II: process	Process changes	-	Including downstream steps,	Increased energy efficiency	-
changes, size			increased yield and energy	based on a generic energy	
scaling and process			input	reduction rate of 1% per year	
synergies				(Bazzanella and Ausfelder,	
				2017; Blok, 2004; IEA et al.,	
				2013)	
	Product scaling	0.8		Since the FU is formulated as	
		kton/year	48 kton/year	"1 kg of BTX production" and	-
				assuming linear size scaling,	
				interventions remain the	
				same.	
	Process	-			-
	synergies:		An on-site gas system is	An on-site gas system is	
	Heat recovery &				

	Reduction of waste streams		proposed producing electricity with waste gasses: • A boiler with Elec _{eff} of 28% is applied (U.S. Department of Energy, 2016)	proposed producing electricity with co-produced gasses: • A boiler with Elec _{eff} of 28% is applied (U.S. Department of Energy, 2016)	
Phase III: industrial learning and external developments	Changes to background processes	-	Electricity market of 2020 (Ecoinvent, 2020)	Electricity market of 2050 (Mendoza Beltran et al., 2020), based on narrative: SSP2 RCP2.6 (baseline) SSP2 RCP4.5 SSP2 RCP1.9	Same as industrial scale BTX production
		-	C-loss: burned or waste to energy: 100%	Plastic flows, SSP2 RCP 2.6 baseline scenario for 2050 (Stegmann et al., 2022)	Same as industrial scale BTX production

1.6 Electricity use in fossil-BTX pathway

The Ecoinvent 3.8 datasets on naphtha-based BTX is formatted as a unit process, therefore "electricity" as input from the technosphere is not indicated as such. For this reason, the electricity use could not be automatically adapted to the future electricity market dataset. Table S.4 includes the total electricity for fossil-BTX which was separately assessed.

Table S. 4: total electricity use in fossil-BTX process, to adapt to a electricity market of 2050. Data on primary energy and share of electricity is taken from the original PlasticsEurope data documentation (PlasticsEurope, 2013).

	Primary energy (MJ)	Share electricity of total energy demand (%)	Share mass (%)	Total electricity in MJ per kg BTX
Benzene	80.3	0.5	48	0.19
Toluene	65.7	0.3	33	0.07
Xylenes	67.6	1	19	0.13

1.7 Impact assessment PB-LCIA

In the following section the PB-LCIA impact assessment is discussed step by step, with a summary in Table S.5. The LCI elementary flows are converted into impacts on the Safe Operating Spaces (SOS) of the Planetary Boundaries (PB) by multiplying the flows with characterization factors (1) taken from Ryberg et al. (2018). For the missing CFs on biosphere integrity, the approach of Galán-Martín et al. (2021) was adopted.

The transgression level is defined as the impact of the product in relation to the safe operating space of the PB (2). This involves downscaling, i.e. allocating, the safe operating space to the level of BTX production (3). This is done based on the sharing principle 'equal per capita', assuming it is fair to share equally among the population. To then translate one's personal share of SOS to the chemical BTX, allocation was based on economic value. This based on the assumption that a higher economic value promotes well-being and therefore should result in a larger share of the SOS. For more explanation on the transgression level definitions, read Tulus et al. (2021).

Furthermore, the life cycle impact assessment requires a continuous input, because PBs are expressed in annual threshold levels (Steffen et al., 2015). Therefore, the functional unit should include a time dimension (kg/year; Ryberg et al., 2018). In our case this is defined as total annual BTX production (in weight). However, this cancels out in the formula 3 and 4.

(1) IMP_{b, BTX} =
$$\sum LCI_{e,BTX} CF_{eb}$$

(2)
$$TL_{b, BTX} = \frac{IMP_{b,BTX}}{sos_{b,BTX}}$$

(3) Based on equal per capita approach and gross value added:
$$sos_{b, BTX} = \frac{SOS_b}{pop^{TOT}} pop_{btx} \frac{GVA_{BTX}}{GVA^{TOT}}$$

Combining (2) and (3) gives:

(4)
$$TL_{b, BTX} = \frac{IMP_{b,BTX} GVA^{TOT}}{SOS_b price_c}$$

 $LCI_{e,BTX}$ is a LCI elementary flow e in BTX production, CF_{eb} is the characterization factor for the LCI elementary flow e linked to PB b (for an overview of the PBs, see Table S.3). The characterization factors are taken from Ryberg et al. (2021, 2018), see Supplementary-file S.2. The pop^{tot} represents the total population and pop_{btx} the population that benefits from BTX production, which was assumed equal in this case. The GVA_{BTX} is the gross value added associated with BTX, GVA^{TOT} is the total gross value added of the world.

Table S. 5: AESA methods and definitions, summary of Planetary Boundary concepts and the PB-LCIA method.

Planetary Boundary (PB)	Control Variable (CV)	Safe Operating Space (SOS)
Climate change	Atmospheric CO2 concentration (ppm)	72
	Energy imbalance at top-of-atmosphere (W m ⁻²)	1
Stratospheric ozone depletion	Stratospheric O3 concentration (DU)	15

Ocean acidification	Carbonate ion concentration (Ωarag) 0.69			
Biogeochemical flows	Global: P flow from freshwater to ocean (Tg P yr ⁻¹)	6.6		
	Global: biological fixation of N (Tg N yr ⁻¹)	62		
Land-system change	Global: area (%) of original forest cover	25		
Freshwater use	Global: maximum consumptive blue water use (km³yr⁻¹)	4000		
Biosphere integrity	Biodiversity intactness (% BII loss)	10		
PB-LCIA				
Method	<u>Characterization-based</u> : CFs linking LCIA to PBs (Ryberg et al., 2	2021, 2018). Additionally, for		
	biosphere integrity, CF is based on the approach of Galán-M	lartín et al. (2021), build on		
	work from Hanafiah et al. (2012) and updated using Wilting e	et al. (2017) and GLOBIO 3.5		
	MSA values (Schipper et al., 2016).			
Sharing Principle	Equal per capita (EPC) and gross value added (GVA)			
Equation PB-LCIA	$IMP_{pb,BTX} = \sum_{e \in E} LCI_{eBTX}CF_{epb}$, $\forall pb \in PB$,			
	where IMP _{pb,BTX} is the impact of the production of BTX (per FU) related	to the planetary boundary (pb),		
	where PB is the total of all the planetary boundaries, LCl _{eBTX} is the life	cycle inventory elementary flow		
	e (expressed over time) associated with BTX production, CF_{epb} is the o	characterization factor (CF) that		
	maps the elementary flow e onto the control variable.			
Equation transgression level	$TL_{pb,BTX} = \frac{\mathit{IMP}_{\mathit{pb},\mathit{BTX}}\mathit{GVA}^{\mathit{TOT}}}{\mathit{SOS}_{\mathit{pb}}\mathit{price}_{\mathit{c}}}$			
	where $IMP_{pb,BTX}$ is the LCI impact mapped onto the control variable (CV) of planetary boundary pb. The			
	GVA ^{TOT} is the total gross value added of the world - the global GVA is retrieved from The World Bank			
	database. To be consistent, the basic prices (price _c) are taken from Tulus et al. (2021): 2.55 (xylene),			
	0.73 (toluene) and 0.88 (benzene) in USD2018. The SOS _{pb} is the total So			
	arrive at this equation, see Supplementary S.10 and the work of Tulus et al., 2021.			

1.8 Resource use perspective

Mixed plastic waste

Currently, MPW is most commonly incinerated with energy recovery (Jeswani et al., 2021). To model the energy recovery from incinerating mixed plastic waste, the PEF guidelines (EC, 2021) are followed (5). An average Dutch incineration efficiency is assumed: 33.3%, with 28% for electricity and 9.3% thermal efficiency, and 4% of electricity for self-consumption (Corsten et al., 2013). Only electricity is considered in our model. Nevertheless, the heat generated could be further used leading to additional benefits. To account for the avoided product, i.e. bio-oil, light fuel oil is used. The lower heating value from different sources are shown in Table S.6. Based on the Product Environmental Footprint (PEF) the following energy recovery formula is used:

$$E_{recovery} = E_{ER} - LHV \times E_{se,heat} \times X_{ER,heat} - LHV \times E_{se,elec} \times X_{ER,elec}$$
 (5)

Where $E_{recovery}$ is the energy recovery with credits for avoided primary energy (which is the overall GHG benefit/disadvantage); E_{ER} the emissions and resources consumed for energy recovery (modelled with Ecoinvent 3.8: Waste plastic, mixture {CH}| treatment of, municipal incineration); $E_{se,heat}$ and $E_{se,elec}$ are the emissions and resources consumed that would have arisen from

specific substituted energy source (as Ecoinvent 3.8: Electricity, medium voltage $\{NL\}$ | market for Heat, district or industrial, natural gas $\{RER\}$ | market group for); $X_{ER,heat}$ and $X_{ER,elec}$ is the efficiency of energy recovery (28% for electricity and 9.3% thermal efficiency); LHV is the lower heating value of the material used for energy recovery (Table S.6).

Table S. 6: different data on LHV of plastics and mixed plastic waste.

Material*	Lower Heating Value (MJ/kg)	Source
MPW: DKR-350	32.9 PET: 22.7; PE: 43; PP: 33; PVC: 19	Calculated based on composition
MPW	44	Jeswani et al. (2021)
Plastics	23 – 42	Bergsma et al. (2011)

^{*} Mixed-plastic waste contains impurities (0.1 kg/kg MPW).

Crude glycerol

Crude glycerol can be refined to provide the pharmaceutical, food and cosmetic industry with pure glycerol, which is valuable but only economically feasible for large producers (Kaur et al., 2020). Direct combustion of glycerol is challenging due to its high viscosity and low energy density, therefore, recent developments are made to convert glycerol into fuel, hydrogen, biogas and/or co-generate heat and power(Monteiro et al., 2018; Tan et al., 2013). The main alternative uses of glycerol are therefore modelled as (Table S.7): purification of glycerol (Cespi et al., 2014) and combustion of biogas, fermented from glycerol (Stucki et al., 2011) to generate electricity and heat (Ecoinvent, 2020). The counterfactual of pure glycerol, i.e. synthetic glycerol, is based on synthetization of propylene via epichlorohydrin and is taken from Ecoinvent (3.8).

Table S. 7: overview data on alternative uses for crude glycerol.

Input

Input

Output

Heat*

Biogas

Crude glycerol

Heat and power						
via biogas	Biogas y	ield	1004.30	m³/t DM	(Stucki et al., 201	1)
(fermentation)	per kg ci	rude glycerol	0.80	m³/kg DM		
	CH4 con	tent	50%		(IEA, 2020)	
	Electricit	ty efficiency	35%		(IEA, 2020)	
Thermal efficiency		efficiency	50%		(IEA, 2020)	
	MJ per n	n3 biogas	18	MJ/m³ for 50% CH4 content	(IEA, 2020)	
			I			
		Modelled			Amount	unit
	Innut	Flectricity*			0.57	MI

MJ

kg

m3

3.47

0.8034

1

		T	_		
	Input	Biogas	0.8034	m3	
	Input	Processing (based on: heat and power co-generation, biogas,	1	kWh	
		gas engine)			
	Input	Processing (based on: heat and power co-generation, biogas,	1	MJ	
		gas engine)			
	Output	Electricity	5.12	MJ	
	Output	Heat	7.23	MJ	
	* Energy consumption per m³ of biogas: 0.158 kWh of electricity and 3.470 MJ heat per m³ biogas (Stucki et al., 2011).				
Purification of	Glycerol re	fining: 1.2 kg CO ₂ eq./kg crude glycerol (Cespi et al., 2014).			
glycerol					
Synthetic glycerol	Ecoinvent 3.8: Glycerine {RER} production, from epichlorohydrin.				
Heat and power	LHV glycer	LHV glycerol: ~16 MJ/kg. Glycerol has a very high activation energy resulting in an auto-ignition			
(direct	temperature of 370 °C. <i>Conclusion</i> : Direct combustion of glycerol is challenging due to its high viscosity and			h viscosity and	
combustion)	low energy density.				
Syngas	Steam refo	orming producing syngas (white et al., 2018). Conclusion: still in a	levelopment, not d	considered as	
production	"common	use".			
(steam					
reforming)					

2. Results

2.1 Endpoint results

Table S.8: ReCiPe 2016 endpoint results for commercial scale (2022) and future scenario (2050) BTX-pathways. BTX = benzene, toluene and xylene.

Product	Endpoint	Unit / kg BTX	Commercial	Future
MPW-BTX	Resources	USD (2013)	2.49E-02	1.46E-02
Bio-BTX			1.94E-01	1.79E-01
Fossil-BTX			5.66E-01	5.65E-01
MPW-BTX	Human Health	DALY	4.60E-06	1.39E-06
Bio-BTX			5.78E-06	1.82E-06
Fossil-BTX			6.15E-06	3.35E-06
MPW-BTX	Ecosystems	Species·yr	1.35E-08	4.19E-09
Bio-BTX			1.36E-07	1.26E-07
Fossil-BTX			1.67E-08	8.40E-09

2.2 Midpoint results

Table S.9: ReCiPe 2016 midpoint results for commercial scale (2022) and future (2050) BTX-pathways. BTX = benzene, toluene and xylene.

Product	Midpoint impact category	Unit / kg BTX	Current	Future
MPW-BTX	Freshwater ecotoxicity	1,4-DBC eq.	1.5E-04	1.1E-04
Bio-BTX			1.9E-03	1.8E-03
Fossil-BTX			1.1E-04	1.0E-04
MPW-BTX	Marine ecotoxicity	1,4-DBC eq.	2.6E-04	2.0E-04
Bio-BTX			4.0E-03	4.0E-03
Fossil-BTX			2.4E-04	2.5E-04
MPW-BTX	Terrestial ecotoxicity	1,4-DBC eq.	6.7E-03	4.0E-03
Bio-BTX			6.9E-01	6.9E-01
Fossil-BTX			2.8E-03	3.4E-03
MPW-BTX	Fossil resource scarcity	kg oil-eq	1.2E-01	4.6E-02
Bio-BTX			6.0E-01	4.9E-01
Fossil-BTX			1.4E+00	1.4E+00
MPW-BTX	Mineral resource scarcity	Kg Cu eq.	9.2E-04	6.2E-04
Bio-BTX			8.7E-03	8.6E-03
Fossil-BTX			3.2E-04	3.4E-04
MPW-BTX	Freshwater eutrophication	kg P eq.	3.5E-05	5.3E-06
Bio-BTX			1.8E-04	1.4E-04
Fossil-BTX			2.5E-05	2.2E-05
MPW-BTX	Marine eutrophication	kg N eq.	5.3E-06	3.7E-06
Bio-BTX			2.5E-04	2.5E-04

Fossil-BTX			3.0E-06	3.0E-06
MPW-BTX	Terrestial acidification	kg SO₂ eq.	1.3E-03	4.5E-04
Bio-BTX			1.1E-02	9.1E-03
Fossil-BTX			4.7E-03	4.6E-03
MPW-BTX	Global warming potential	kg CO₂ eq.	4.6E+00	1.3E+00
Bio-BTX			3.2E+00	-3.7E-01
Fossil-BTX			5.2E+00	2.3E+00
MPW-BTX	Water consumption	m^3	8.0E-03	1.5E-02
Bio-BTX			4.2E-02	6.1E-02
Fossil-BTX			3.2E-02	3.5E-02
MPW-BTX	Ionizing radiation	kBq Co-60 eq.	2.0E-01	3.9E-02
Bio-BTX			1.6E-01	5.5E-02
Fossil-BTX			2.1E-02	1.1E-02
MPW-BTX	Land occupation	m²-annual crop eq.	8.9E-03	5.7E-03
Bio-BTX			1.4E+01	1.4E+01
Fossil-BTX			6.5E-03	7.6E-03
MPW-BTX	Land transformation	m² annual crop eq	2.3E-05	1.5E-05
Bio-BTX			2.2E-04	2.3E-04
Fossil-BTX			6.3E-06	7.4E-06
MPW-BTX	Ozone depletion	kg CFC11 eq.	5.3E-07	4.5E-07
Bio-BTX			3.0E-05	3.0E-05
Fossil-BTX			7.2E-08	6.2E-08
MPW-BTX	Particulate matter formation	kg PM2.5 eq.	4.7E-04	1.6E-04
Bio-BTX			4.4E-03	3.1E-03
Fossil-BTX			1.9E-03	1.8E-03
MPW-BTX	Toxicity, carcinogenic	1,4-DBC eq.	6.2E-03	4.6E-03
Bio-BTX			2.1E-02	1.9E-02
Fossil-BTX			5.8E-03	5.7E-03
MPW-BTX	Toxicity, non-carcinogenic	1,4-DBC eq.	1.6E-02	9.7E-03
Bio-BTX			1.6E-01	1.6E-01
Fossil-BTX			3.5E-03	3.7E-03
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

Table 10: Table S.9: Environmental Footprint midpoint results commercial scale (2022) BTX-pathways. BTX = benzene, toluene and xylene

Midpoint impact category	Unit	Biobased BTX	MPW-BTX	Fossil-BTX
Climate change	kg CO2 eq	2.9E+00	4.8E+00	5.2E+00
Ozone depletion	kg CFC11 eq	3.0E-07	3.5E-08	6.1E-10
lonising radiation	kBq U-235 eq	8.4E-02	1.7E-02	1.2E-04
Photochemical ozone formation	kg NMVOC eq	1.4E-02	1.3E-03	5.1E-03
Particulate matter	disease inc.	8.5E-08	5.5E-09	6.7E-08
Human toxicity, non-cancer	CTUh	8.7E-08	5.9E-09	3.1E-09
Human toxicity, cancer	CTUh	1.3E-09	1.5E-10	4.4E-10
Acidification	mol H+ eq	1.8E-02	1.6E-03	6.2E-03
Eutrophication, freshwater	kg P eq	7.2E-04	3.6E-05	4.7E-07

Eutrophication, marine	kg N eq	1.7E-02	4.5E-04	9.7E-04
Eutrophication, terrestrial	mol N eq	5.6E-02	5.0E-03	1.1E-02
Ecotoxicity, freshwater	CTUe	3.8E+02	8.4E+00	9.7E-01
Land use	Pt	6.9E+02	8.8E-01	4.1E-03
Water use	m3 depriv.	1.5E+00	1.8E-01	1.4E+00
Resource use, fossils	MJ	2.8E+01	8.6E+00	6.1E+01
Resource use, minerals and metals	kg Sb eq	5.3E-06	1.7E-07	2.0E-08

2.3 Absolute assessments results

Table S.11: PB-LCIA results for commercial (2022) and future (2050) scale BTX-pathways. SoSOS = Share of Safe Operating Space.

Product	Planetary Boundary	SoSOS current	SoSOS future
MPW-BTX	Climate_Change (CO2 concentration)	109	32
Bio-BTX	Climate_Change (CO2 concentration)	47	0
Fossil-BTX	Climate_Change (CO2 concentration)	115	45
MPW-BTX	Climate_Change (Energy imbalance)	103	0.4
Bio-BTX	Climate_Change (Energy imbalance)	53	0
Fossil-BTX	Climate_Change (Energy imbalance)	109	0.6
MPW-BTX	Stratospheric Ozone Depletion	0	0
Bio-BTX	Stratospheric Ozone Depletion	0	0
Fossil-BTX	Stratospheric Ozone Depletion	0	0
MPW-BTX	Ocean Acidification	35	0.1
Bio-BTX	Ocean Acidification	15	0
Fossil-BTX	Ocean Acidification	37	0.1
MPW-BTX	Biochemical flow P	3	0
Bio-BTX	Biochemical flow P	5	2
Fossil-BTX	Biochemical flow P	2	1
MPW-BTX	Biochemical flow N	0	0
Bio-BTX	Biochemical flow N	21	21
Fossil-BTX	Biochemical flow N	0	0
MPW-BTX	Land-system change	0	0
Bio-BTX	Land-system change	0	0
Fossil-BTX	Land-system change	0	0
MPW-BTX	Freshwater use	67	31
Bio-BTX	Freshwater use	75	59
Fossil-BTX	Freshwater use	9	10
MPW-BTX	Biosphere integrity	10	3
Bio-BTX	Biosphere integrity	68	61
Fossil-BTX	Biosphere integrity	11	5

Table 12: Carrying-capacity based normalization for LCA (Bjørn and Hauschild, 2015; Sala et al., 2020). Total production of BTX per year was taken as 1.22E11 kg (ref).

Impact category	Unit	Normalisation	Biobased BTX	MPW-BTX	Fossil BTX
		factor			
Ecotoxicity,	CTUe	1.3E+14	3.5E-01	7.7E-03	9.0E-04
freshwater					
Climate change	kg CO2 eq	6.8E+12	5.2E-02	8.5E-02	9.3E-02
Eutrophication,	kg P eq	5.8E+09	1.5E-02	7.5E-04	9.9E-06
freshwater					
Resource use,	MJ	2.2E+14	1.5E-02	4.7E-03	3.3E-02
fossils					
Particulate matter	disease inc.	5.2E+05	1.3E+00	1.3E-03	1.6E-02
Eutrophication,	kg N eq	2.0E+11	1.0E-02	2.8E-04	5.9E-04
marine					
Land use	Pt	1.3E+13	6.7E+00	8.4E-03	3.9E-05
Photochemical	kg NMVOC eq	4.1E+11	4.2E-03	3.9E-04	1.5E-03
ozone formation					
Resource use,	kg Sb eq	2.2E+08	3.0E-03	9.4E-05	1.1E-05
minerals and					
metals					
Human toxicity,	CTUh	4.1E+06	2.6E-03	1.7E-04	9.2E-05
non-cancer					
Acidification	mol H+ eq	1.0E+12	2.2E-03	1.9E-04	7.5E-04
Eutrophication,	mol N eq	6.1E+12	1.1E-03	9.0E-06	1.9E-05
terrestrial					
Water use	m3 depriv.	1.8E+14	1.0E-03	1.2E-04	9.2E-04
Human toxicity,	CTUh	9.6E+05	1.6E-04	1.9E-05	5.6E-05
cancer					
Ozone depletion	kg CFC11 eq	5.4E+08	6.7E-05	7.8E-06	1.4E-07
Ionising radiation	kBq U-235 eq	5.3E+14	1.9E-05	4.0E-06	2.9E-08

2.4 Sensitivity Analysis: electricity market scenarios for 2050

Alongside the baseline scenario for the SSP2 narrative on the electricity market of 2050, two more scenarios were tested: a representative concentration pathway of 1.9 W/m^2 (RCP1.9) as well as 4.5 W/m^2 (RCP4.5) in 2100 (Stehfest et al., 2014). 1.0416

Table S.13: ReCiPe 2016 global warming potential results for future (2050) BTX-pathways. The baseline scenario for the SSP2 narrative on the electricity market of 2050: RCP 2.6; a more optimistic scenario of 1.9 W/m2 (RCP1.9); and a more conservative scenario of 4.5 W/m2 (RCP4.5) in 2100. BTX = benzene, toluene and xy lene.

Product	Midpoint impact category	Unit / kg BTX	RCP 1.9	RCP 2.6	RCP 4.5
MPW-BTX	Global warming potential	kg CO₂ eq.	1.25E+00	1.32E+00	1.51E+00
Bio-BTX			-0.46E+00	-0.40E+00	-0.073E+00
Fossil-BTX			2.3E+00	2.3E+00	2.4E+00

2.5 Sensitivity Analysis: plastic recycling scenarios for 2050

Alongside the 2°C-Circulair Economy, we tested less optimistic scenarios of SSP2 baseline and SSP2-RCP 2.6. The SSP2 baseline scenario included 14% chemical or mechanical recycling, 17% landfill stock and 69% littered or incineration with energy recovery. The SSP2-RCP2.6 scenario included 29% recycling, 58% landfill stock and 13% littered or incineration with energy recovery (Stegmann et al., 2022).

Table S.14: Global warming potential results for future (2050) BTX-pathways applying different recycling scenarios.

Product	Midpoint impact category	Unit / kg BTX	2°C-CE	RCP baseline	RCP 2.6
MPW-BTX	Global warming potential	kg CO₂ eq.	1.3	3.2	1.3
Bio-BTX			-0.4	1.6	-0.4
Fossil-BTX			2.3	4.1	2.3

2.6 Sensitivity Analysis: Glycerol production from other feedstock

Glycerol production has a big impact on the production of bio-BTX. Figure S.2 shows the environmental impact of different glycerol production routes. These are: glycerol from palm oil (Ecoinvent 3.8: Glycerine {MY} | esterification of palm oil), glycerol from rapeseed oil (Ecoinvent 3.8: Glycerine {Europe without Switzerland} | esterification of rape oil) and glycerol from soybean oil from Brazil (Ecoinvent 3.8: Glycerine {Br} | esterification of soybean oil).

The default of glycerol as a co-product of US soybean bio-diesel has the lowest impact in terms of GHG, acidification, land use and water consumption. Glycerol from rapeseed oil and soybean oil from Brazil have higher GHG emissions, resulting from large impacts from clear-cutting of primary forest to arable land. Likewise, palm oil is known for its large GHG impact from direct land-use changes (Achten and Verchot, 2011), but also cultivation of the palm fruit bunches themselves is very GHG intensive. For the USA produced glycerol, no LUC emissions were included in line with PAS2050 guidelines (PAS2050, 2011).

If cultivation requires land use conversion from (tropical) forest to agricultural land, the resulting GHG emissions are high and in regard to the impact of biodiesel and glycerol, it often exceeds fossil-based emission levels (Uusitalo et al., 2014). In this regard, and based on the other agricultural relevant impact categories (Figure S.2), glycerol from soybean biodiesel production in the USA has the lowest impact out of the four options. However, the use of other feedstock, e.g. lignin (Fan et al., 2020), could further decrease bio-BTX's impact, this is discussed in the discussion section.

Moreover, the total GHG emissions of bio-BTX increases from 3 kg CO_2 -eq./kg BTX to 4.3 (rape oil), 8.8 (from palm oil) and 11.8 (Brazil) kg CO_2 -eq./kg BTX.

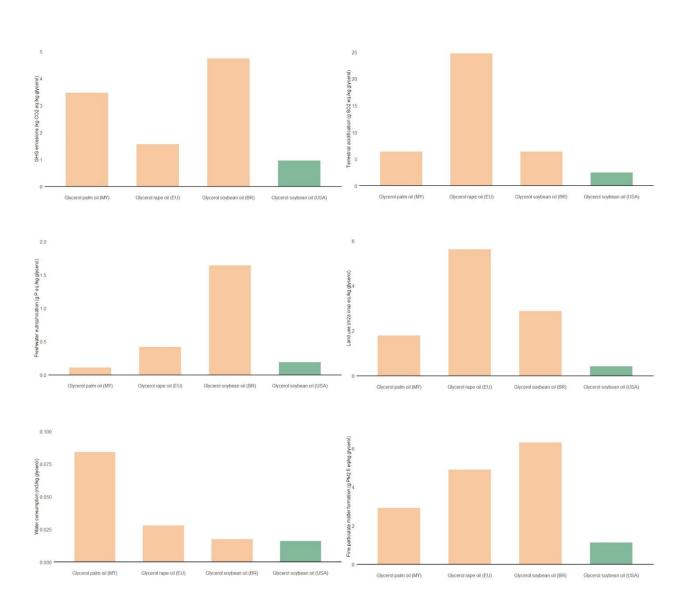


Figure S. 2: results on the production of 1 kg of glycerol made from (1) palm oil (left bar); (2) rapeseed oil (one to the right); (3) soybean oil from Brazil (one from the right bar); (4) soybean oil USA (right bar). Top left: GHG emissions, middle top: Terrestrial acidification, top right: Freshwater eutrophication, bottom left: Land use, middle left: Water consumption, bottom right: Fine particulate matter formation. Green bar represents the base case glycerol from soybeans (USA).

2.7 Sensitivity Analysis: Allocation strategies

In the figure down below the results when applying mass, energy and economic allocation on the GHG

emissions of the BTX pathways are shown. Other ways to handle multifunctionality were not applied. Substitution was not applicable because glycerol is a by-product and not the main product, and the co-products in the final step are not marginal - it would lead to skewed impacts. In addition, system expansion was not a solution because the goal of the study is focused on the determination of the impact of the production of 1 kg of BTX (Moretti et al., 2020).

Allocation strategies

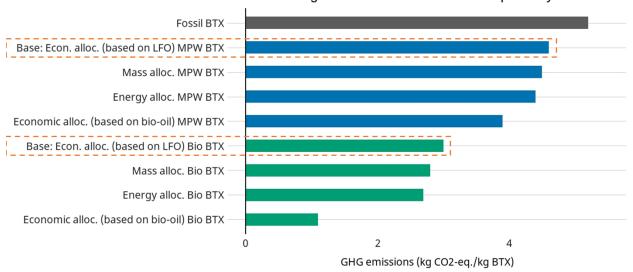


Figure 3: Climate change results of MPW and bio-BTX applying mass, energy and economic allocation. The base scenario is indicated with the orange box. BTX = benzene-toluene-xylene; MPW = Mixed Plastic Waste; LFO = Light Fuel oil.

3. **Discussion**

3.1 Impact other types of biomass feedstock

Table S.15: Greenhouse gas (GHG) emissions, freshwater eutrophication, acidification and land use impact of biomass cultivation per kg of BTX, based on yields from literature. The percentage are the in- or decrease in impact compared to soybean cultivation impact. N.A. = not available.

	Based on a yield of:	GHG impact (per kg BTX)	Eutrophication	Acidification	Land use	Source
Lignin	10% ⁱ	N.A	N.A	N.A	N.A	N.A
Sugarcane bagasse	12.5% ^j	0.05 -95%	0.0001 - 48 %	0.028 +632%	2.8 - 73%	Ecoinvent 3.8
Pine wood	13.3% ^k	0.30 -74%	0.00006 - 71 %	0.00128 - 66%	28.57 +180%	Ecoinvent 3.8
Sawdust	6.4% ^I	0.13 -89%	0.0001 - 72 %	0.0006 - 85 %	7.03 - 31%	Ecoinvent 3.8
Willow wood	27%	0.23 -80%	0.0002 +15%	0.0015 - 60 %	3.52 - 66%	Ecoinvent 3.8
Soybean ⁿ	This study	1.17	0.000193	0.00377	10.2	Ecoinvnt 3.8

i (Vural Gursel et al., 2019); j (Ghorbannezhad et al., 2018); k (Mendes et al., 2016); l (Balasundram et al., 2020); m based on mass allocation of 0.25 (Carpio and Simone de Souza, 2017) of sugar from sugarcane production, Brazil. n the impact of soybean cultivation as allocated to glycerol production.

3.2 Plastic feedstock supply

Table S.16: Data and calculations on plastic waste feedstock and it availability for BTX production. BTX = benzene-toluene-xylene.

	2020	2030	2050	Source
Plastic generated annually (Mt)	512	702	1078	(Stegmann et al., 2022)
Plastic waste generated annually (Mt)	436	572	953	(Stegmann et al., 2022)
Total plastic waste generated (Mt)	6300	-	12000	(Geyer et al., 2017)
BTX production annually (Mt)	122	143	195	(IEA, 2020, 2018)
Plastic waste required to cover annual BTX production	79%	71%	58%	(yield * BTX production)/annual plastic waste
Total plastic waste required to cover BTX production from total plastic waste generated	5.5%	-	4.6% Up to 2050: 4.84 Gt BTX produced in total => 77% of current generated 6300 Mt waste	(yield * BTX production)/total plastic waste
Share of biogenic carbon content	-	-	If 45%, an additional 1.5 kg CO ₂ -eq. per kg MPW-BTX is avoided due to biogenic carbon content (net zero emissions)	(0.45 * 3.36 kg CO ₂)

3.3 Substitution

To compare to the data of Yang et al. (2022), substitution was applied to the bio-BTX product system. This involved substitution of bio-oil, treated as 'light fuel oil {RER}| market for' and the on-site generated electricity as grid electricity. This resulted in credits of in total 2.25 kg CO₂ eq./kg bio-BTX. However, the impact of the process itself increased as well (due to avoidance of allocation), which was mainly affected by an increased impact of glycerol production, i.e., 4.03 kg CO₂ eq./kg bio-BTX.

4. References

- Achten, W.M.J., Verchot, L. V., 2011. Implications of biodiesel-induced land-use changes for CO2 emissions: Case studies in Tropical America, Africa, and Southeast Asia. Ecol. Soc. 16. https://doi.org/10.5751/ES-04403-160414
- Balasundram, V., Ibrahim, N., Kasmani, R.M., Isha, R., Hamid, M.K.A., Hasbullah, H., 2020. Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: a comprehensive review. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-020-00909-5
- Bazzanella, A.M., Ausfelder, F., 2017. Low carbon energy and feedstock for the European chemical industry.
- BioBTX, 2022. The future of BTX BioBTX [WWW Document]. URL https://biobtx.com/ (accessed 2.3.22).
- Bjørn, A., Hauschild, M.Z., 2015. Introducing carrying capacity-based normalisation in LCA: framework and development of references at midpoint level. Int. J. Life Cycle Assess. 20, 1005–1018. https://doi.org/10.1007/S11367-015-0899-2/TABLES/1
- Blok, K., 2004. Improving Energy Efficiency by Five Percent and More per Year? J. Ind. Ecol. 8, 87–99. https://doi.org/10.1162/1088198043630478
- Carpio, L.G.T., Simone de Souza, F., 2017. Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions. Renew. Energy 111, 771–780. https://doi.org/10.1016/J.RENENE.2017.05.015
- Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., Chieregato, A., Dubois, J.L., Cavani, F., 2014.

 Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chem. 17, 343–355. https://doi.org/10.1039/C4GC01497A
- Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H., Hertwich, E., 2011. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 3, 413–426. https://doi.org/10.1111/j.1757-1707.2011.01102.x
- Corsten, M., Worrell, E., Rouw, M., Van Duin, A., 2013. The potential contribution of sustainable waste management to energy use and greenhouse gas emission reduction in the Netherlands. Resour. Conserv. Recycl. 77, 13–21. https://doi.org/10.1016/J.RESCONREC.2013.04.002
- EC, 2021. Commission recommendation of 16.12.2021 on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products and organisations. COM 9332 Final.
- Ecoinvent, 2020. Ecoinvent database (Version 3.8) [WWW Document]. URL https://v37.ecoquery.ecoinvent.org/ (accessed 11.10.21).
- Fan, L., Ruan, R., Li, J., Ma, L., Wang, C., Zhou, W., 2020. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite. Appl. Energy 263, 114629. https://doi.org/10.1016/J.APENERGY.2020.114629
- Galán-Martín, Á., Tulus, V., Díaz, I., Pozo, C., Pérez-Ramírez, J., Guillén-Gosálbez, G., 2021. Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth 4, 565–583. https://doi.org/10.1016/J.ONEEAR.2021.04.001
- Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3. https://doi.org/10.1126/SCIADV.1700782/SUPPL FILE/1700782 SM.PDF
- Ghorbannezhad, P., Firouzabadi, M.D., Ghasemian, A., de Wild, P.J., Heeres, H.J., 2018. Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). J. Anal. Appl. Pyrolysis 131, 1–8. https://doi.org/10.1016/j.jaap.2018.02.019

- Guest, G., Cherubini, F., Strømman, A.H., 2013. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 17, 20–30. https://doi.org/10.1111/j.1530-9290.2012.00507.x
- Hanafiah, M.M., Hendriks, A.J., Huijbregts, M.A.J., 2012. Comparing the ecological footprint with the biodiversity footprint of products. J. Clean. Prod. 37, 107–114. https://doi.org/10.1016/j.jclepro.2012.06.016
- IEA, 2020. Chemicals [WWW Document]. Paris https://www.iea.org/reports/chemicals. URL https://www.iea.org/reports/chemicals (accessed 10.19.20).
- IEA, 2018. The future of petrochemicals: Towards more sustainable plastics and fertilisers, The future of petrochemicals. https://doi.org/10.1787/9789264307414-en
- IEA, ICCA, DECHEMA, 2013. Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes.
- Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., Azapagic, A., 2021. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 769, 144483. https://doi.org/10.1016/J.SCITOTENV.2020.144483
- Kaur, J., Sarma, A.K., Jha, M.K., Gera, P., 2020. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Reports 27, e00487. https://doi.org/10.1016/J.BTRE.2020.E00487
- Mendes, F.L., Ximenes, V.L., de Almeida, M.B.B., Azevedo, D.A., Tessarolo, N.S., de Rezende Pinho, A., 2016. Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. J. Anal. Appl. Pyrolysis 122, 395–404. https://doi.org/10.1016/J.JAAP.2016.08.001
- Mendoza Beltran, A., Cox, B., Mutel, C., van Vuuren, D.P., Font Vivanco, D., Deetman, S., Edelenbosch, O.Y., Guinée, J., Tukker, A., 2020. When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. J. Ind. Ecol. 24, 64–79. https://doi.org/10.1111/jiec.12825
- Monteiro, M.R., Kugelmeier, C.L., Pinheiro, R.S., Batalha, M.O., da Silva César, A., 2018. Glycerol from biodiesel production: Technological paths for sustainability. Renew. Sustain. Energy Rev. 88, 109–122. https://doi.org/10.1016/J.RSER.2018.02.019
- Moretti, C., Corona, B., Edwards, R., Junginger, M., Moro, A., Rocco, M., Shen, L., 2020. Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling. Energies 2020, Vol. 13, Page 3579 13, 3579. https://doi.org/10.3390/EN13143579
- PAS2050, 2011. PAS 2050: 2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services [WWW Document]. https://doi.org/https://doi.org/978.0.580.71382.8
- Piccinno, F., Hischier, R., Seeger, S., Som, C., 2016. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097. https://doi.org/10.1016/j.jclepro.2016.06.164
- PlasticsEurope, 2013. Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers: Benzene, Toluene and Xylenes (Aromatics, BTX).
- Ryberg, M.W., Bjerre, T.K., Nielsen, P.H., Hauschild, M., 2021. Absolute environmental sustainability assessment of a Danish utility company relative to the Planetary Boundaries. J. Ind. Ecol. 25, 765–777. https://doi.org/10.1111/JIEC.13075
- Ryberg, M.W., Owsianiak, M., Richardson, K., Hauschild, M.Z., 2018. Development of a life-cycle impact assessment methodology linked to the Planetary Boundaries framework. Ecol. Indic. 88, 250–262. https://doi.org/10.1016/J.ECOLIND.2017.12.065
- Sala, S., Crenna, E., Secchi, M., Sanyé-Mengual, E., 2020. Environmental sustainability of European production and consumption assessed against planetary boundaries. J. Environ. Manage. 269. https://doi.org/10.1016/j.jenvman.2020.110686
- Schipper, A., Bakkenes, M., Meijer, J., Alkemade, R., Huijbregts, M., 2016. The GLOBIO model. A technical description of version 3.5 36.
- Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D.P., Junginger, M., 2022. Plastic futures and their CO2 emissions. Nat. 2022 6127939 612, 272–276. https://doi.org/10.1038/s41586-022-05422-5
- Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Müller, C., Gerdien Prins, A., 2014. Integrated Assessment of Global Environmental Change with IMAGE 3.0 Model description and policy applications. The Hague.
- Stucki, M., Jungbluth, N., Leuenberger, M., 2011. Life Cycle Assessment of Biogas Production from Different Substrates, Final Report.
- Tan, H.W., Abdul Aziz, A.R., Aroua, M.K., 2013. Glycerol production and its applications as a raw material: A review. Renew.

- Sustain. Energy Rev. 27, 118–127. https://doi.org/10.1016/J.RSER.2013.06.035
- Tulus, V., Pérez-Ramírez, J., Guillén-Gosálbez, G., 2021. Planetary metrics for the absolute environmental sustainability assessment of chemicals. Green Chem. 23, 9881–9893. https://doi.org/10.1039/D1GC02623B
- U.S. Department of Energy, 2016. Gas Turbines (DOE CHP Technology Fact Sheet Series) [WWW Document]. Fact Sheet, 2016 | Dep. Energy. URL https://www.energy.gov/eere/amo/downloads/gas-turbines-doe-chp-technology-fact-sheet-series-fact-sheet-2016 (accessed 2.15.22).
- Uusitalo, V., Väisänen, S., Havukainen, J., Havukainen, M., Soukka, R., Luoranen, M., 2014. Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil. Renew. Energy 69, 103–113. https://doi.org/10.1016/j.renene.2014.03.020
- van der Hulst, M.K., Huijbregts, M.A.J., Loon, N., Theelen, M., Kootstra, L., Bergesen, J.D., Hauck, M., 2020. A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate. J. Ind. Ecol. 24, 1234–1249. https://doi.org/10.1111/jiec.13027
- Vural Gursel, I., Dijkstra, J.W., Huijgen, W.J.J., Ramirez, A., 2019. Techno-economic comparative assessment of novel lignin depolymerization routes to bio-based aromatics. Biofuels, Bioprod. Biorefining 13, 1068–1084. https://doi.org/10.1002/bbb.1999
- Wilting, H.C., Schipper, A.M., Bakkenes, M., Meijer, J.R., Huijbregts, M.A.J., 2017. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. Environ. Sci. Technol. 51, 3298–3306. https://doi.org/10.1021/acs.est.6b05296
- Yang, F., Meerman, H., Zhang, Z., Jiang, J., Faaij, A., 2022. Integral techno-economic comparison and greenhouse gas balances of different production routes of aromatics from biomass with CO2 capture. J. Clean. Prod. 372, 133727. https://doi.org/10.1016/J.JCLEPRO.2022.133727

Chapter 5

Supplementary Information S5

Supplementary Information

Land-use change emissions limit climate benefits of bio-based chemicals

Emma A. R. Zuiderveen^{1,2,*}, M.A.J. Huijbregts^{1,4}, C. Caldeira^{2,3}, S. Sala², R. van Zelm¹, S.V. Hanssen¹*

¹ Department of Environmental Science, Radboud Institute for Biological & Environmental Sciences, Radboud University,

Nijmegen, the Netherlands

² European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027, Ispra, VA, Italy

³ Syensqo Lyon Research and Innovation Center, 85 Avenue des Freres Perret 69190 Saint-Fons, France

⁴ Department of Circularity & Sustainability Impacts, TNO, Princetonlaan 6, 3584CB Utrecht, The Netherlands

* Corresponding author: emma.zuiderveen@ru.nl / steef.hanssen@ru.nl

Contents

1. Me	ethods	54
1.1	Inventory table	54
1.2	Conversion efficiencies table	58
1.3	Process descriptions	59
1.4	Allocation methods	62
1.5	Sensitivity Analysis	63
	sults	
3 Dis	scussion	72

1. Methods

1.1 Inventory table

Table 17: Inventory table containing inventory and supply chain data, and other relevant values.

Parameter	Specification	Value	Unit	Source
		Biomass		
Fertilizer GHG emissions	Woody biomass	0.055	kg CO₂-eq/kg dbm	Based on multiple sources, from Hanssen et al. (2020)
	Woody biomass (willow)	0.07	kg CO₂-eq/kg dbm	Therasme et al. (2021)
	Woody biomass (RoW, willow)	0.02	kg CO ₂ -eq/kg dbm	Ecoinvent
	Woody biomass (DE, willow)	0.018	kg CO ₂ -eq/kg dbm	Ecoinvent
	Woody biomass (RoW, poplar)	0.020	kg CO₂-eq/kg dbm	Ecoinvent
	Grasses	0.03	kg CO ₂ -eq/kg dbm	Tadele et al. (2019)
	Grasses (Miscanthus)	0.054	kg CO₂-eq/kg dbm	Hamelich & Hoogwijk, 2007
	Grasses (CH, organic)	0.009	kg CO₂-eq/kg dbm	Ecoinvent
	Grasses (RoW, permant grassland)	0.009	kg CO₂-eq/kg dbm	Ecoinvent
	Grasses (RoW, organic)	0.083	kg CO₂-eq/kg dbm	Ecoinvent
	Sugarcane (South America)	0.073	kg CO₂-eq/kg dbm	Based on multiple sources, from Hanssen et al., (2020)
	Sugarcane (RoW)	0.151	kg CO₂-eq/kg dbm	Based on multiple sources, from Hanssen et al., (2020)
	Sugarcane	0.11	kg CO ₂ -eq/kg dbm	Edwards et al. (2010)
	Sugarcane	0.04	kg CO₂-eq/kg dbm	Kikuchi et al. (2013)
	Sugarcane (BR)	0.047	kg CO₂-eq/kg dbm	Ecoinvent
	Sugarcane (RoW)	0.041	kg CO ₂ -eq/kg dbm	Ecoinvent
Harvesting GHG emissions	Harvesting, combine	0.015	kg CO₂-eq/kg wbm	Ecoinvent
	Harvesting, sugarcane	0.0025	kg CO ₂ -eq/kg wbm	Ecoinvent
	Harvesting, ground crops	0.0009	kg CO ₂ -eq/kg wbm	Ecoinvent
	Mowing (for grasses)	0.004	kg CO ₂ -eq/kg wbm	Ecoinvent
	Tillage, ploughing	2.4E-6	kg CO ₂ -eq/kg wbm	Ecoinvent
	Tillage, harrowing	2.2E-6	kg CO₂-eq/kg wbm	Ecoinvent
	Tractor, agriculture (0.05 tkm)	1.56	kg CO₂-eq/tkm	Ecoinvent
Total cultivation GHG emissions	Woody biomass	0.07	kg CO₂-eq/kg dbm	Therasme et al. (2021)
	Woody biomass	0.1	kg CO ₂ -eq/kg dbm	Njakou Djomo et al. (2010)
	Woody biomass	0.11	kg CO ₂ -eq/kg dbm	Caputo et al. (2014)
	Woody biomass	0.09	kg CO ₂ -eq/kg dbm	IEA, 2013
	Wood chips	0.05	kg CO ₂ -eq/kg dbm	Ecoinvent
	Grasses	0.04	kg CO ₂ -eq/kg dbm	Zucaro et al., 2014
	Sugarcane	0.12	kg CO₂-eq/kg cane	Powar et al., 2021
	Sugarcane	0.08	kg CO₂-eq/kg cane	Renouf et al., 2010
	Sugarcane	0.04	kg CO₂-eq/kg cane	Renouf et al (2016)
	Agricultural residues	0.03	kg CO₂-eq/kg dbm	GREET
	Agricultural residues	0.03	kg CO₂-eq/kg dbm	Allocated share corn (Ecoinvent, 2020), 0.1 (market value-based)

Moisture content	Woody biomass	50%	percentage	Bachmann et al. (2023),
				PBL
	Grasses (Miscanthus)	30%	percentage	Benalcázar et al. (2017)
	Agricultural residues (corn stover)	30%	percentage	Benalcázar et al. (2017)
	Agricultural residues (other)	50%	percentage	Benalcázar et al. (2017)
	Dry biomass (final moisture content at gate)	10%	percentage	
Conversion factor wet biomass to dry	Woody biomass	1.4	dimensionless	Calculations
,	Grasses	1.2	dimensionless	Calculations
	Agricultural residues	1.3	dimensionless	Calculations
Energy content biomass	Woody biomass	18.4	MJ/kg dbm	Phyllis, 2023
	Grasses	18.6	MJ/kg dbm	Phyllis, 2023
	Agricultural residues	17.95	MJ/kg dbm	Phyllis, 2023
Drying energy	Drying energy	2.3	MJ/kg H₂O	Calculation based on Piccinno et al. (2016)
Transport GHG emissions	Truck (0.55 tkm) and barge (0.5 tkm)	0.053	kg CO ₂ -eq/kg wbm	Calculations
	Freight	0.098	kg CO ₂ -eq/kg chemical	Calculations
Number of operational	Asia & pacific	324	refineries	Statista, 2023
petroleum refineries:	North-America	190	refineries	Statista, 2023
		156	refineries	Statista, 2023 Statista, 2023
	Europe Latin America	62	refineries	Statista, 2023
	Asia & pacific	324	refineries	Statista, 2023
Land surface	North-America	44579000	km ²	5141.514, 2525
	Europe	24709000	km²	
	Latin America	10180000	km²	
	Asia & pacific	20111457	km²	
	Chen	nical processes		
Methanol				
Input	Dry biomass (straw)	3.23	kg	Galán-Martín et al.
	Electricity	0.61	MJ	(2021) based on Liu et al.
	Electricity, cooling	3.10	MJ	(2019), adjusted with
	Heat, steam	3.02	MJ	Puig-Gamero et al.
	Oxygen Zinc (removing sulphur	1.05 0.0003	kg	(2021) & Ecoinvent 3.7 & Afzal et al. 2023. *Heat
	substances) Cu/Zn/Al		kg	demand covered by
	Dolomite (removing tar)	0.07	kg	steam produced
	Zeolite powder	0.015	kg	internally (Oliveira et al., 2020)
Output	Methanol	1	kg	
	Heat	3.02	MJ	Re-used internally
	Wastewater	0.05	kg	
	Solid waste	0.07	kg	
Input	Dry biomass (woody biomass)	2.27	kg	Yadav et al. (2020),
mput	Electricity	3.70	MJ	adjusted with Ecoinvent
	Heat, steam	3.02	MJ	3.8 & Afzal et al. 2023 &
	Water, cooling	22.87	MJ	Liu et al. (2020). Heat
	Oxygen	1.051	kg	demand covered by
	Zinc (removing sulphur substances)	0.0003	kg	steam produced internally (Oliviera et al.
	Dolomite	0.07	kg	2019)

	Zaalita nawdar	0.015	ka	
Output	Zeolite powder Methanol	0.015	kg kg	
Output	Heat	3	MJ	Re-used internally
	Wastewater	0.05	kg	ne-used internally
	Solid waste	0.07	kg	
Methanol-to-olefins (0.07	Νg	
Input	Methanol	2.92	kg	Dutta et al. (2019)
прис	Electricity	1.54	MJ	Dutta et al. (2019)
	Electricity, cooling	1.61	MJ	
	Steam	0.25	kg	
	Zeolite	0.008	kg	
	Water, cooling	2.6	m3	
Output	Ethylene	0.61	kg	
Output	Propylene	0.39	kg	
	Sales gas	0.04	kg	Re-used internally
	Pentane	0.02	kg	Substitution
	Butene	0.11	kg	Substitution
	Ethane	0.01	kg	Substitution
	Hydrogen	0.01	kg	Substitution
Methanol-to-aromati		0.01	Ng	Substitution
Input	Methanol	6.05	kg	Jiang et al. (2020); Yang
mpat	Wethanor	0.03	Ng .	et al. (2022)
	Electricity (cooling)	1.03	MJ	Ct ui. (2022)
	Electricity	0.30	MJ	
	Steam	4.89	MJ	
	Heat	2.75	MJ	
Output	Benzene	0.09	kg	
Output	Toluene	0.30	kg	
	Xylene	0.61	kg	
	LPG	1.19	kg	Re-used internally
	Dry gas	0.30	kg	Re-used internally
	Pentane	0.23	kg	ne used internally
	C9+	0.17	kg	Substitution as diesel
	Wastewater	0.003	m3	Substitution as dieser
Syngas production	wastewater	0.003	IIIS	
Input	Woody biomass	1.7	kg	Bachmann et al. (2022)
прис	Electricity	0.76	MJ	Bacililailii et al. (2022)
	Steam (MP)	0.00	kg	
	Oxygen	0.87	kg	
	Water, process	1.22	kg	
Output	Syngas	1	kg	
Output	Heat	2.27	kg	Substitution
	Solid waste	0.04	Kg	Substitution
Input	Lignocellulosic	1.95	kg	
iliput	Electricity	0.74	MJ	
	Steam (MP)	0.00	kg	
	Oxygen			
		0.54 1.23	kg ka	
Output	Water, process	1.23	kg ka	
Output	Syngas Heat	5.03	kg ka	Substitution
	Solid waste	0.05	kg kg	Substitution
FT syngas to naphtha		0.03	۸ğ	
Input	Syngas (2:1)	2.3	kg	Van Der Giesen et al.
прис	Cobalt catalyst (as cobalt)	0.00017	kg	(2014), updated with
				work from Liu et al. (2020).
	Energy (self-sufficient)*			* The remaining
	Energy (sen summering			hydrocarbon chains that

				are too short to convert
				into fuels but are
				sufficient to generate
•				energy to run the plant.
Output	Synthetic fuel	3.83	kg	
	Of which: naphtha C5-C11	1	kg	
	Jet fuel C9–C16 (paraffin's)	1.80	kg	Substitution as kerosene
	Diesel	1.03	kg	Substitution
Steam cracking (naphth		_		
Input	Naphtha	1.13	kg	Ren et al. (2006)
.	Energy (heat from steam	16	MJ	
Output	Ethylene	0.67	kg	
	Propylene	0.33	kg	
	Aromatics	0.31	kg	
	Butadiene	0.11	kg	Substitution
	H2	0.02	kg	Substitution
Fermentation to ethan				
Biomass input	Sugarcane	5.20	kg wbm	Ecoinvent
	Woody biomass	3.80	kg dbm	Ecoinvent
	Grasses / lignocellulosic	3.90	kg dbm	*Same process (SSF) is
	biomass			required
GHG emissions gate-	Ethanol (sugarcane)	0.03	kg CO ₂ -eq/kg ethanol	Ecoinvent
to-gate				
	Ethanol (woody biomass)	0.43	kg CO ₂ -eq/kg ethanol	Ecoinvent
	Ethanol (grasses)	0.31	kg CO ₂ -eq/kg ethanol	Ecoinvent
Catalytic dehydration				
Input	Ethanol	1.71	kg	Bazzanella and Ausfelder,
	Electricity	0.83	MJ	(2017); Nitzsche et al.
	NaOH (50% solution)	0.005	kg	(2016)
	H2SO4 solution	0.017	kg	
	Water	0.45	kg	
Output	Ethylene	1	kg	
	C4-hydrocarbon	0.01	kg	Substitution
	Wastewater		m3	
Dimerization & metath	esis			
Input	Ethylene	1.21	kg	Kikuchi et al. (2017)
	H2	0.00068	kg	
	Electricity	10.01	MJ	
	Heavy oil	0.21	kg	* by-products are used to
				replace the heavy oil
				input
Output	Propylene	1	kg	
	C5H12, C6H14, C3H8	0.21	Kg	Re-used internally
Pyrolysis to aromatics				
Input	Biomass (woody biomass)	5.05	Kg	Yang et al. (2022)
	Electricity	self-	MJ	* "Onsite steam and
		sufficient		electricity are generated
				from coke, NGCs, humins,
				and unreacted biomass.
				The remaining electricity
				(4.2MJ) is exported."
	Catalyst (Zeolite)	0.10	kg	
		0.61	MJ	
	Heat, distillation			
Output	Heat, distillation Aromatics	1	kg	
Output			kg MJ	Substitution
Output	Aromatics	1		Substitution Substitution

	Solid waste	0.03	kg	
		Energy		
GHG emissions	Electricity, current mix	0.14	kg CO2 eq./MJ	(Ecoinvent, 2020; Galán- Martín et al., 2021)
	Electricity, renewables mix	0.04	kg CO2 eq./MJ	(Ecoinvent, 2020; Galán- Martín et al., 2021)
	Heat, natural gas or district	0.04	kg CO2 eq./MJ	Ecoinvent
	Heat from steam	0.10	kg CO2-eq/MJ	Ecoinvent
Gas to electricity	Natural gas LHV	47.1	MJ/kg	
	LPG LHV	48.5	MJ/kg	
	Simple cycle gas turbine	16.5	MJ electricity/kg natural gas	Efficiency 20-35%
	СНР	20.7	MJ electricity/kg natural gas	Efficiency 44 %
Production volume (2022)	Methanol	171.84	million metric tons	Statista, 2023
	Ethylene	225.52	million metric tons	Statista, 2023
	Propylene	150.3	million metric tons	Statista, 2023
	Aromatics	116.68	million metric tons	Straits Research, 2023

1.2 Conversion efficiencies table

Table 18: Conversion efficiencies per route, depending on product and feedstock. Minimum and maximum values are used in the sensitivity analysis. These values are also used in the sensitivity analysis on conversion efficiencies.

Product	Feedstock	Route	Conversion	Conversion	Conversion efficiency
			efficiency (default)	efficiency (max)	(min)
methanol	woody	MeOH-BASED, woody	0.44	0.70	0.38
ethylene	woody	MeOH-BASED, woody	0.15	0.31	0.13
propylene	woody	MeOH-BASED, woody	0.15	0.31	0.13
aromatics	woody	MeOH-BASED, woody	0.07	0.16	0.06
ethylene	woody	EtOH BASED, woody	0.15	0.22	0.09
propylene	woody	EtOH BASED, woody	0.13	0.18	0.03
ethylene	woody	NAPHTHA-BASED, woody	0.23	0.28	0.10
propylene	woody	NAPHTHA-BASED, woody	0.23	0.28	0.10
aromatics	woody	NAPHTHA-BASED, woody	0.23	0.28	0.10
aromatics	woody	BIO-OIL-BASED, woody	0.20	0.20	0.14
methanol	grassy	MeOH-BASED, grassy	0.31	0.45	0.31
ethylene	grassy	MeOH-BASED, grassy	0.11	0.20	0.11
propylene	grassy	MeOH-BASED, grassy	0.11	0.20	0.11
aromatics	grassy	MeOH-BASED, grassy	0.05	0.10	0.05
ethylene	grassy	EtOH BASED, grassy	0.15	0.45	0.08
propylene	grassy	EtOH BASED, grassy	0.12	0.37	0.03
ethylene	grassy	NAPHTHA-BASED, grassy	0.20	0.33	0.10
propylene	grassy	NAPHTHA-BASED, grassy	0.20	0.33	0.10
aromatics	grassy	NAPHTHA-BASED, grassy	0.20	0.33	0.10
methanol	residues	MeOH-BASED, residues	0.31	0.53	0.31
ethylene	residues	MeOH-BASED, residues	0.11	0.23	0.11
propylene	residues	MeOH-BASED, residues	0.11	0.23	0.11
aromatics	residues	MeOH-BASED, residues	0.05	0.12	0.05
ethylene	residues	NAPHTHA-BASED, residues	0.20	0.33	0.17
propylene	residues	NAPHTHA-BASED, residues	0.20	0.33	0.17
aromatics	residues	NAPHTHA-BASED, residues	0.20	0.33	0.17
ethylene	residues	EtOH BASED, residues	0.15	0.20	0.08
propylene	residues	EtOH BASED, residues	0.12	0.17	0.03
ethylene	sugarcane	EtOH BASED, sugarcane	0.11	0.17	0.08

1.3 Process descriptions

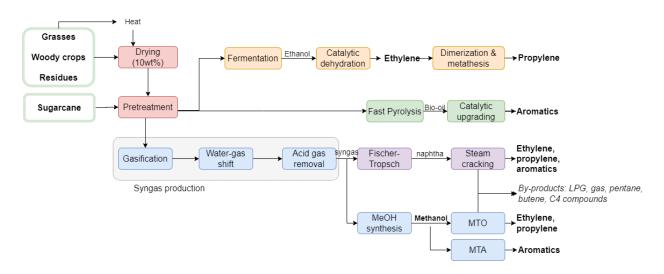


Figure 4: overview of chemical production routes from (i) grasses, (ii) woody crops, (iii) agricultural residues and (iv) sugarcane. Orange: ethanol-based routes; Blue: methanol-based routes via syngas production; Purple: naphtha-based routes; Green: bio-oil based routes. Down below, technical description of part of the route is given.

Gasification to methanol

Inventory data is based on work of Galán-Martín et al. (2021), based on a simulated process (Liu et al., 2020). The biomass-to-methanol process includes a raw material pretreatment unit, water-gas conversion unit, acid-gas removal unit, methanol synthesis and refining unit. After dried biomass is treated in the first two units, a water-gas shift reaction follows. The WGS unit is to adjust the H₂/CO proportion to improve the methanol yield and conversion rate. Next is the acid-gas removal, before the syngas enters this unit, it is cooled to 40°C by a low pressure waste heat boiler. The acid gas is then removed from syngas. Last step is to convert syngas into methanol. It is mixed with hydrogen and pressurized, followed by a methanol purification step (Lui et al., 2020).

Fermentation to ethanol

Data is based on the following processes:

Sugarcane: This industrial process converts 50% of the sugarcane juice for raw sugar and the other 50%, along with the by-product molasses, into ethanol. Wet biomass is first crushed in crushing mills, then fed in the reactor to extract sugars, after which an ethanol fermentation process follows. In a final step, the ethanol is dehydrated to a 95% solution state (Ecoinvent, 2023).

Optimized features related to a modern plant are included, such as reduced steam consumption, efficient high-pressure boilers and molecular sieves for ethanol dehydration, leading to an electricity surplus (Chagas et al., 2016).

- Grasses/lignocellulosic: Includes a pretreatment with steam and a Saccharification and Simultaneous Fermentation process (SSF). By-products are fibers and proteins from grass, these are allocated based on economic value (Ecoinvent, 2023).
- Woody biomass: Includes a dilute acid pre-hydrolysis and a SSF process. Process heat and electricity supply is covered by combustion of unconverted biomass (Ecoinvent, 2023)

Gasification & Fisher-Tropsch process to naphtha

The gasification of biomass to syngas process is modelled according to the LCI from Bachmann et al. (2022), based on a circulating fluidized bed gasifier. Gasification involves no pretreatment but requires a biomass moisture content of less than 15% (Bachmann et al., 2022), which was managed by a previous drying step (Piccinno et al., 2016) that was applied to the biomass feedstock.

The Fischer-Tropsch process was modelled based on data from Van Der Giesen et al. (2014), updated with work from Liu et al. (2020). The syngas input has a H:CO ratio of 2:1. The process takes place in a fixed bed reactor over a cobalt-based catalyst, with a pressure between 20-60 bar and at a temperature between 180-250°C (Boerrigter et al., 2004). The process is exothermic and produces heat, which is reused in the process itself leading to a self-sufficient process. The process produces diesel and paraffins (jet fuel) as by-products.

Fast pyrolysis to aromatics

The life cycle modelling is based on work from Yang et al. (2022). The fast pyrolysis step requires no pretreatment except drying, producing bio-oil (~25wt%) from woody biomass (Huang et al., 2020), the vapors are passed over a zeolite-based catalyst to obtain aromatics with a selectivity of 85% (Zheng et al., 2017), and including a distillation step at the end (Yang et al., 2022).

Catalytic dehydration to ethylene

This process catalytically dehydrates ethanol to ethylene at $300-450^{\circ}$ C in a fluidized bed reactor over a 1% H_2SO_4 solution as catalyst (Nitzsche et al., 2016). A gas separation removes the gaseous hydrocarbon byproducts (Bazzanella and Ausfelder, 2017), the dehydration reactor effluent is quenched to a temperature of 40° C and pressurized, remaining water is removed with NaOH. Finally, the effluent is sent to an ethylene

purification unit, where it is separated (Yang et al., 2018). The process is highly selective to ethylene (97%) and endothermic (Bazzanella and Ausfelder, 2017).

Dimerization & metathesis to propylene

Inventory data is taken from Kikuchi et al. (2017). Ethylene can be converted into propylene in a metathesis reaction at 200°C and 1 atm along with butane (Takai et al., 2006), which can be obtained through dimerization of ethylene, a process at 400°C and 1 atm (Kikuchi et al., 2013).

Methanol-To-Olefins & Methanol-To-Aromatics

Data on the MTO process was taken from work by Dutta et al. (2019), and MTA processes were based on work by Jiang et al. (2020). Methanol is dehydrated in a catalytic reactor to olefins (450°C), over a zeolite catalyst. The product stream is then compressed using cooling water, after which it is treated with CO₂ before the olefins are separated by distillation. The by-products are sales gas, pentane, butane, ethane, hydrogen (Dutta et al., 2019). In regard to the MTA process, methanol is first fed into an aromatization reactor and heated to 455°C. The product stream is cooled and water is removed, after which it is pressurized and fed into a train of distillation columns to separate the aromatics. The by-products are LPG, dry gas, pentane, C9+ (Jiang et al., 2020).

Steam cracking

Inventory data is taken from research of Ren et al. (2006) on naphtha steam cracking, which is partly based *The Handbook of Petrochemicals and Processes* (Wells, 1991). The (bio-)naphtha is fed into a pyrolysis furnace and preheated to 650°C, after which the pyrolysis takes place in a reactor at temperatures up to 1100°C. The cracked gas is then quenched, condensed and fractionated. In the last phase the fractionate is separated through distillation, refrigerated and extracted into olefins, aromatics, and the (by-)products butadiene, H₂. The other products - fuel oil, C4 and C8+ fractions - flow back to the refinery (Ren et al., 2006).

Table 19: Overview of each core process in terms of feedstock, product and by-product. Descriptions are given above.

Main process	Feedstock	Main product	By-products
Gasification	Biomass	Methanol	Heat
Fermentation	Biomass	Ethanol	Electricity
Fast Pyrolysis	Biomass	Aromatics	Heat, electricity
Gasification	Biomass	Syngas	Heat
Fischer-Tropsch synthesis	Syngas	Naphtha	Synthetic fuel, jet fuel (C ₉ -

			C ₁₆ ; paraffin's), diesel
Steam cracking	Naphtha	Olefins, aromatics	Butadiene, H ₂
Catalytic dehydration	Ethanol	Ethylene	C ₄ -hydrocarbons
Dimerization & metathesis	Ethylene	Propylene	Hydrocarbons (C5H12,
			C6H14, C3H8)
Methanol-to-Olefins (MTO)	Methanol	Product gas (olefin-rich)	Sales gas, pentane, butane,
			ethane, hydrogen
Methanol-to-Aromatics (MTA)	Methanol	Reformate (BTX-rich)	LPG, dry gas, pentane, C ₉₊

1.4 Allocation methods

The default allocation method substitutes the emissions of the by-products (Table 4). In the sensitivity analysis, allocation based on calorific value is applied. Calorific values of products and by-products are shown in Table 5.

Table 20: Overview of by-products in terms of chemicals and energy, their emissions and database names.

By-products	GHG emission	Unit	Name
Pentane	0.74	kg CO2-eq/kg	Pentane {GLO} market for APOS, U
Butene	1.69	kg CO2-eq/kg	Butene, mixed {RoW} market for butene, mixed APOS, U
Kerosene	0.42	kg CO2-eq/kg	Kerosene {RoW} market for APOS, U
Diesel	0.43	kg CO2-eq/kg	Diesel {GLO} market group for APOS, U
Hydrogen	1.44	kg CO2-eq/kg	H2 {RoW} market for APOS, U
C6 alkanes	0.60	kg CO2-eq/kg	Average of: Hexane {GLO} market for APOS, U & 2-methylpentane {GLO} market for APOS, U
Butadiene	1.23	kg CO2-eq/kg	Butadiene {RoW} market for butadiene APOS, U
Electricity, current	0.14	kg CO2 eq./MJ	Electricity, Europe based APOS, U
Heat from	0.10	kg CO2-eq/MJ	Heat, from steam, in chemical industry {RER} market for heat, from
steam			steam, in chemical industry APOS, U
Steam	0.28	kg CO2-eq/kg	Steam, in chemical industry {RER} market for steam, in chemical industry APOS, U

Table 21: Calorific values of (by-)products to allocate emissions (calorific-value based allocation method).

Methanol 22.7 Ethylene 47.2 Propylene 45.8 BTX (benzene) 41.8 Pentane 45.4
Propylene 45.8 BTX (benzene) 41.8
BTX (benzene) 41.8
· ,
Pentane 45.4
Butene 45.3
LPG 46.1

Dry gas (methane)	55.5
Pentane	48.6
Diesel	44.8
Kerosine	46.4
Butadiene	44.6
Paraffin	46.0
Ethane	51.9
Hydrogen	141.8
Syngas	5
Naphtha	45
Ethanol	26.7
Toluene	40.6
Xylene	40.9

1.5 Sensitivity Analysis: Cultivation emissions

Table 22: Overview of emissions related to biomass cultivation applied in sensitivity analysis regarding cultivation emissions.

Feedstock	Туре	GHG emissions (kg CO ₂ -eq/kg wbm)	GHG emissions (kg CO ₂ -eq/kg dbm)	Location	Source
Grasses	Cultivation and harvest emissions	0.047	0.062	NA	Default
Grasses	Fertillizer emissions	0.009	0.012	СН	Grass, organic {CH} grass production, permanent grassland, organic, extensive APOS, U - excl. transport, harvest, etc.
Grasses	Fertillizer emissions	0.009	0.012	RoW	Grass, organic {RoW} grass production, permanent grassland, organic, extensive APOS, U - excl., transport, harvest etc.
Grasses	Cultivation and harvest emissions	0.083	0.110	RoW	Grass, organic {RoW} grass production, organic, intensive APOS, U - excl. transport, harvest etc.
Grasses	Cultivation and harvest emissions	0.039	0.052	Mediterranea n	Zucaro et al., 2014
Grasses	Fertillizer emissions	0.054	0.072	NA	Hamelinck & Hoogwijk, 2007
Grasses	Fertillizer emissions	0.030	0.040	NA	Tadele et al. (2019)
Grasses	Fertillizer emissions	0.030	0.040	NA	Tadele et al. (2019)
Sugarcane	Cultivation and harvest emissions	0.072	0.072	NA	Default
Sugarcane	Fertillizer emissions	0.151	0.151	RoW	Hanssen et al., (2020): Smeets et al., 2009
Sugarcane	Fertillizer emissions	0.073	0.073	South America	Hanssen et al., (2020): Smeets et al., 2009
Sugarcane	Cultivation and harvest emissions	0.080	0.080	Australia	Renouf et al., 2010
Sugarcane	Cultivation and harvest emissions	0.11	0.110	NA	Edwards et al. (2011)
Sugarcane	Cultivation and harvest emissions	0.118	0.118	India	Powar et al., 2021
Sugarcane	Cultivation and harvest emissions	0.040	0.040	Brazil	Kikuchi et al. (2013)

Sugarcane	Fertillizer emissions	0.041	0.041	RoW	Sugarcane {RoW} production APOS, U - excl. transport, harvesting etc.
Sugarcane	Cultivation and harvest emissions	0.044	0.044	Australia	Renouf et al., 2018
Sugarcane	Cultivation and harvest emissions	0.046	0.046	RoW	Sugarcane {RoW} production APOS, U
Sugarcane	Fertillizer emissions	0.047	0.047	Brazil	Sugarcane {BR-SP} sugarcane production APOS, U - excl. transport, harvesting etc.
Woody crops	Cultivation and harvest emissions	0.052	0.075	NA	Default
Woody crops	Cultivation and harvest emissions	0.050	0.072	RoW	Ecoinvent, wood chips
Woody crops	Cultivation and harvest emissions	0.018	0.026	DE	Wood chips and particles, willow {DE} willow production, short rotation coppice APOS, U - excl. transport etc.
Woody crops	Fertillizer emissions	0.020	0.029	RoW	Wood chips and particles, willow {RoW} willow production, short rotation coppice APOS, U - excl. transport etc.
Woody crops	Fertillizer emissions	0.020	0.029	RoW	Wood chips and particles, willow {RoW} willow production, short rotation coppice APOS, U - excl. transport etc.
Woody crops	Fertillizer emissions	0.055	0.079	NA	Hanssen et al., (2020)
Woody	Cultivation and harvest emissions	0.070	0.101	NA	Therasme et al. (2021)
Woody crops	Cultivation and harvest emissions	0.090	0.129	NA	IEA, 2013
Woody crops	Cultivation and harvest emissions	0.100	0.144	NA	Njakou Djomo et al. (2010)
Woody crops	Cultivation and harvest emissions	0.110	0.158	NA	Caputo et al. (2014)
Woody crops	Cultivation and harvest emissions	0.018	0.026	DE	Wood chips and particles, willow {DE} willow production, short rotation coppice APOS, U - excl. transport etc.
Agricultural residues	Cultivation and harvest emissions	0.000	0.000	NA	No cultivation impact
Agricultural residues	Cultivation and harvest emissions	0.07	0.080619	USA	GREET
Agricultural residues	Cultivation and harvest emissions	0.03	0.032831	RoW	Default, allocated share of ecoinvent corn

2. Results

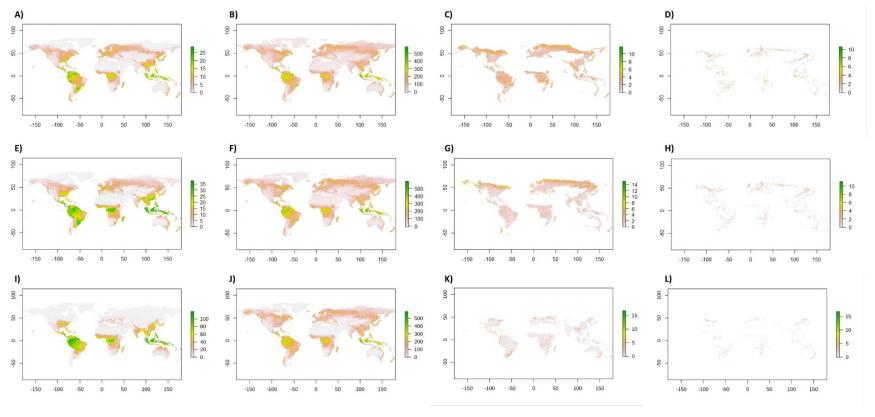


Figure 5: Maps of crop-specific yield estimates, carbon stocks, calculated LUC emissions including global all cover types and LUC emissions including abandoned and marginal land and degraded and managed forests, over a 30-year evaluation period (from left to right), of the feedstocks; (A-D) Woody crops; (E-H) Grasses; and (I-L) Sugarcane. Data is derived from the IMAGE integrated assessment model (Stehfest et al., 2014) coupled to the global vegetation and hydrological model LPJml (Schaphoff et al., 2018; Sitch et al., 2003).

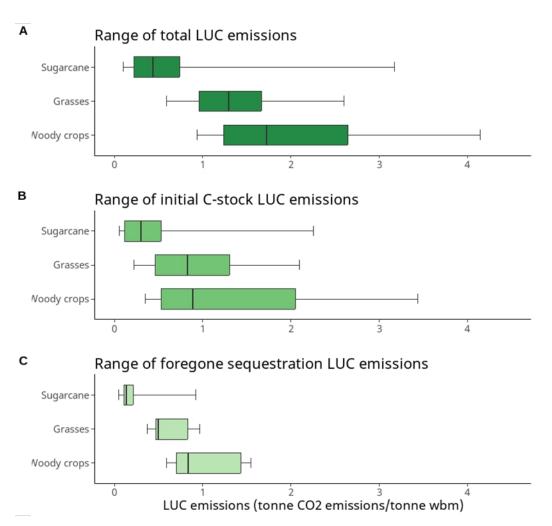


Figure 6: Boxplots (5,25,50,75,95 percentiles) of default LUC emissions: (A) Total LUC emissions (= initial C-stock emissions + foregone sequestration emissions); (B) Initial C-stock LUC emissions; (C) LUC emissions related to foregone sequestration.

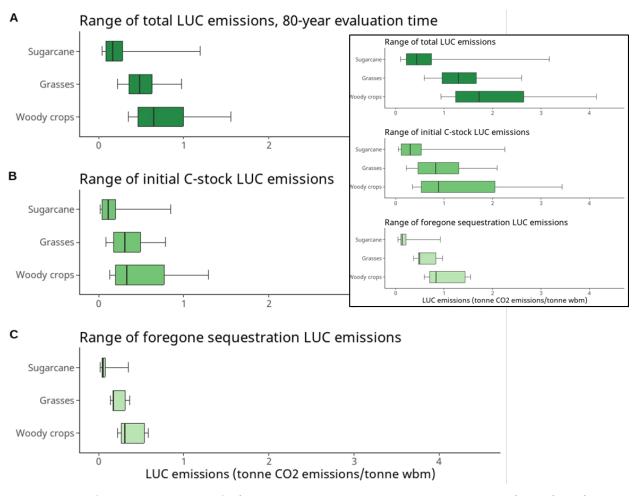


Figure 7: Boxplots (5,25,50,75,95 percentiles) of LUC emissions over a 80-year evaluation time instead of the default of 30-years: (A) Total LUC emissions (= initial C-stock emissions + foregone sequestration emissions); (B) Initial C-stock LUC emissions; (C) LUC emissions related to foregone sequestration. The smaller plot is Figure S.1, for comparison.

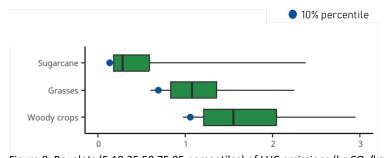


Figure 8: Boxplots (5,10,25,50,75,95) percentiles) of LUC emissions (kg CO_2 /kg wbm) that only include the land cover type of abandoned and marginal land.

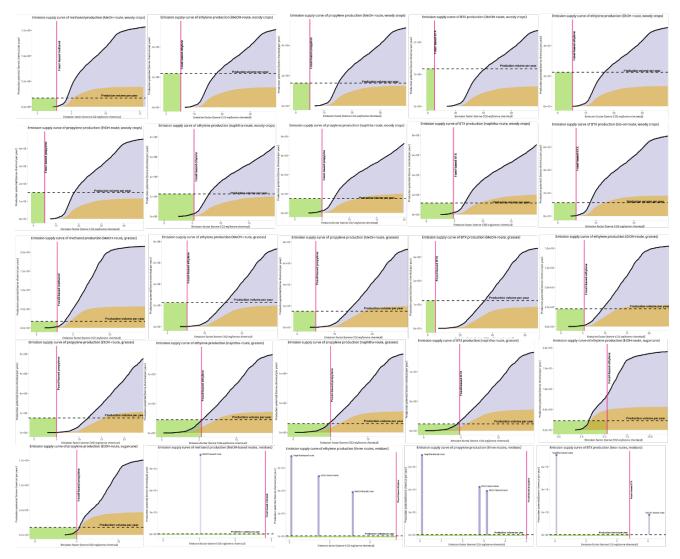


Figure 9: Emission supply curves of each route per feedstock in 25 panels (residue-based routes are shown in four panels in total, per chemical: methanol, ethylene, propylene and BTX). The dashed line shows the current production volume of the chemical; the pink line represents the fossil-based emissions; the green rectangles indicate the area of mitigation potential; sandy colored curve refers to 'abandoned and marginal land' and purple to 'managed and degraded forests'.

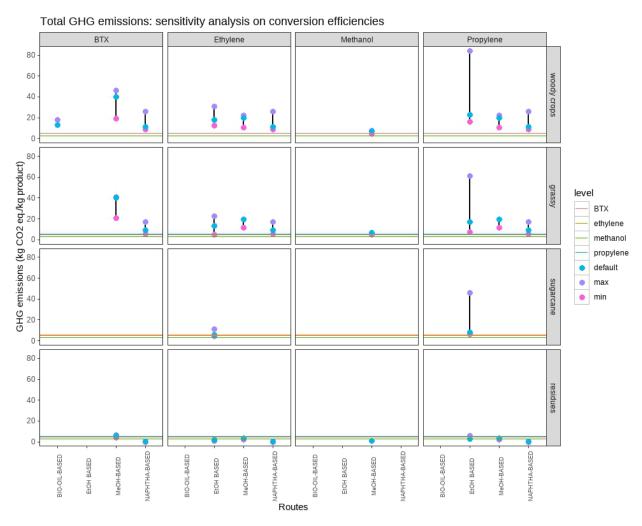


Figure 10: Sensitivity analysis plot on conversion efficiencies. Blue dot: default GHG emissions; Pink dot: GHG emissions based on minimal conversion efficiencies values from literature; Purple dot: GHG emissions based on maximal conversion efficiencies values from literature. Lines indicate fossil-based products' GHG emissions.

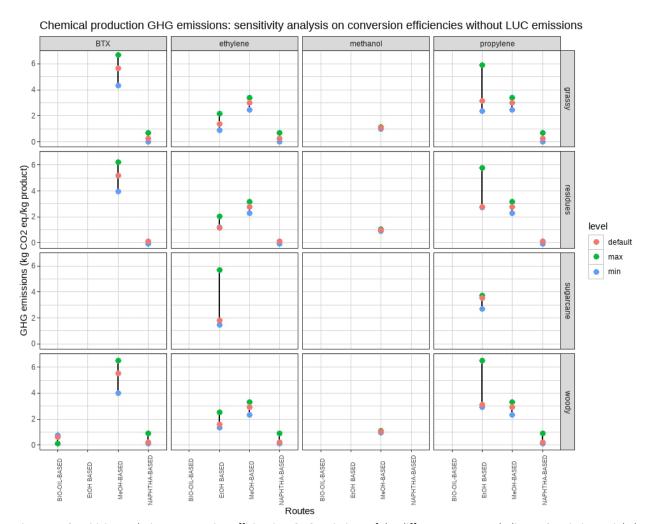
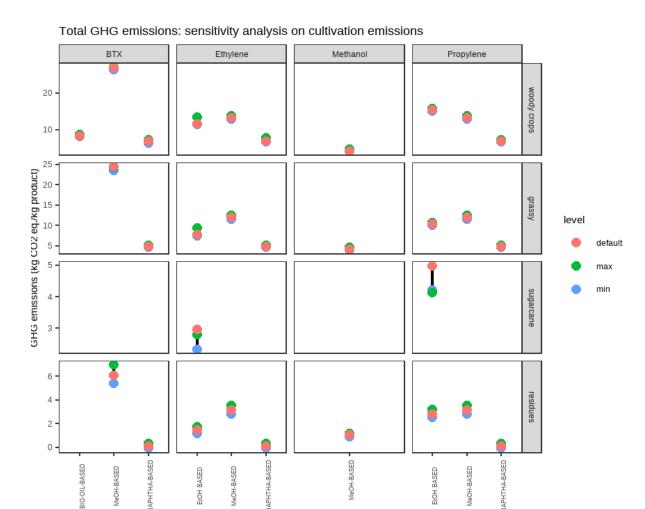



Figure 11: Sensitivity analysis on conversion efficiencies: GHG emissions of the different routes, excluding LUC emissions. Pink dot: default GHG emissions; Blue dot: GHG emissions based on minimal conversion efficiencies values from literature; Green dot: GHG emissions based on maximal conversion efficiencies values from literature.

Figure 12: Sensitivity analysis plot on cultivation emissions. Red dot: default GHG emissions; Green dot: GHG emissions based on minimal cultivation emission values from literature; Blue dot: GHG emissions based on maximal cultivation emission values from literature (details in Table S.6).

Routes

3. Discussion

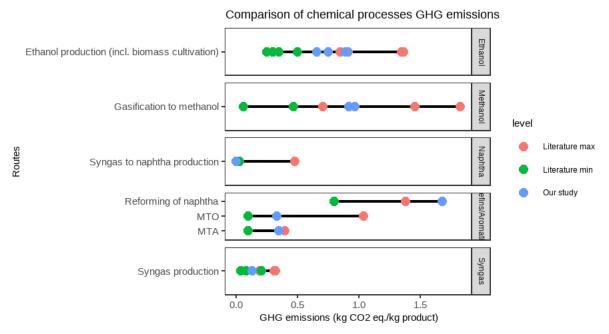


Figure 13: Plots showing chemical processing related GHG emissions from literature and this study. The multiple same coloured dots within one plot represents the same route and product but with different biomass feedstock input.

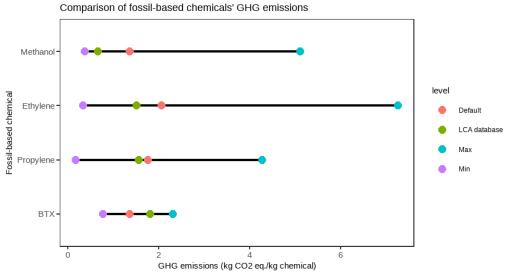


Figure 14: Plot showing cradle-to-gate GHG emissions of fossil-based chemicals; range based on detailed study from Cullen et al., (2024) and LCA datasets of Ecoinvent.

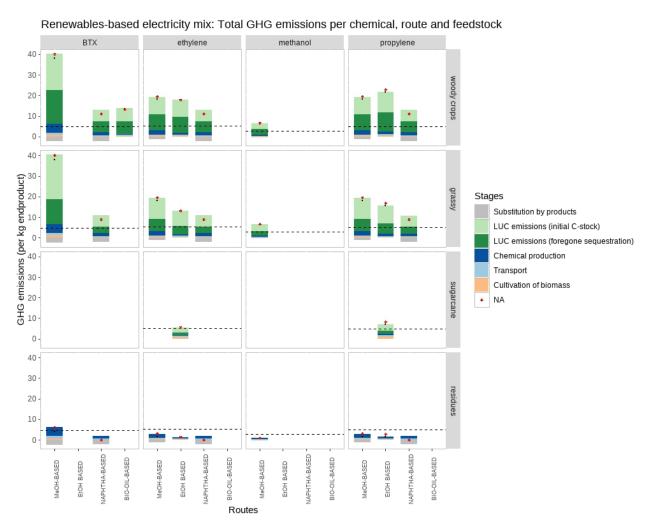


Figure 15: Plots on total GHG emissions per chemical, route and feedstock based on a renewables-based electricity-mix during chemical production. Black dot represents overall total GHG emissions; Red dot represents the default overall GHG emissions (incl. current electricity-mix). Modelling of the cleaner electricity mix was based on the 'low emissions & carbon-neutral (incl. CCS)' dataset (Galán-Martín et al., 2021), which was based on projections from IMAGE, assessing external developments for 2050 in the electricity sector. This resulted in 0.04 kg CO2-eq/MJ of electricity, instead of the default of 0.14 kg CO2-eq/MJ.

4. References

- Bachmann, M., Völker, S., Kleinekorte, J., Bardow, A., 2022. Syngas from What? Comparative Life-Cycle Assessment for Syngas Production from Biomass, CO2, and Steel Mill Off-Gases. ACS Sustain. Chem. Eng. https://doi.org/10.1021/ACSSUSCHEMENG.2C05390/ASSET/IMAGES/LARGE/SC2C05390 0004.JPEG
- Bazzanella, A.M., Ausfelder, F., 2017. Low carbon energy and feedstock for the European chemical industry.
- Benalcázar, E.A., Deynoot, B.G., Noorman, H., Osseweijer, P., Posada, J.A., 2017. Production of bulk chemicals from lignocellulosic biomass via thermochemical conversion and syngas fermentation: a comparative techno-economic and environmental assessment of different site-specific supply chain configurations. Biofuels, Bioprod. Biorefining 11, 861–886. https://doi.org/10.1002/bbb.1790
- Boerrigter, H.P.C.H., Calis, H.P., Slort, D.J., Bodenstaff, H., Kaandorp, A.J., Den Uil, H., Veringa, H.J., 2004. Gas cleaning for integrated biomass gasification (BG) and Fischer-Tropsch (FT) systems. Petten, The Netherlands.
- Dutta, A., Karimi, I.A., Farooq, S., 2019. Technoeconomic Perspective on Natural Gas Liquids and Methanol as Potential Feedstocks for Producing Olefins. Ind. Eng. Chem. Res 58, 963–972. https://doi.org/10.1021/acs.iecr.8b05277
- Ecoinvent, 2020. Ecoinvent database (Version 3.8) [WWW Document]. URL https://v37.ecoquery.ecoinvent.org/ (accessed 11.10.21).
- Galán-Martín, Á., Tulus, V., Díaz, I., Pozo, C., Pérez-Ramírez, J., Guillén-Gosálbez, G., 2021. Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth 4, 565–583. https://doi.org/10.1016/J.ONEEAR.2021.04.001
- Hanssen, S.V., Daioglou, V., Steinmann, Z.J.N., Doelman, J.C., Van Vuuren, D.P., Huijbregts, M.A.J., 2020. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Chang. 10, 1023–1029. https://doi.org/10.1038/s41558-020-0885-y
- Huang, M., Ma, Z., Zhou, B., Yang, Y., Chen, D., 2020. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites. Bioresour. Technol. 301, 122754. https://doi.org/10.1016/j.biortech.2020.122754
- Jiang, J., Feng, X., Yang, M., Wang, Y., 2020. Comparative technoeconomic analysis and life cycle assessment of aromatics production from methanol and naphtha. J. Clean. Prod. 277, 123525. https://doi.org/10.1016/J.JCLEPRO.2020.123525
- Kikuchi, Y., Hirao, M., Narita, K., Sugiyama, E., Oliveira, S., Chapman, S., Arakaki, M.M., Cappra, C.M., 2013. Environmental Performance of Biomass-Derived Chemical Production: A Case Study on Sugarcane-Derived Polyethylene. J. Chem. Eng. JAPAN 46, 319–325. https://doi.org/10.1252/JCEJ.12WE227
- Kikuchi, Y., Oshita, Y., Mayumi, K., Hirao, M., 2017. Greenhouse gas emissions and socioeconomic effects of biomass-derived products based on structural path and life cycle analyses: A case study of polyethylene and polypropylene in Japan. J. Clean. Prod. 167, 289–305. https://doi.org/10.1016/j.jclepro.2017.08.179
- Liu, C.M., Sandhu, N.K., McCoy, S.T., Bergerson, J.A., 2020. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel production. Sustain. Energy Fuels 4, 3129–3142. https://doi.org/10.1039/C9SE00479C
- Liu, Y., Li, G., Chen, Z., Shen, Y., Zhang, H., Wang, S., Qi, J., Zhu, Z., Wang, Y., Gao, J., 2020. Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment. Energy 204, 117961. https://doi.org/10.1016/J.ENERGY.2020.117961
- Nitzsche, R., Budzinski, M., Gröngröft, A., 2016. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour. Technol. 200, 928–939. https://doi.org/10.1016/J.BIORTECH.2015.11.008
- Oliveira, C.C.N., Rochedo, P.R.R., Bhardwaj, R., Worrell, E., Szklo, A., 2020. Bio-ethylene from sugarcane as a competitiveness strategy for the Brazilian chemical industry. Biofuels, Bioprod. Biorefining 14, 286–300. https://doi.org/10.1002/bbb.2069
- Piccinno, F., Hischier, R., Seeger, S., Som, C., 2016. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097. https://doi.org/10.1016/j.jclepro.2016.06.164
- Ren, T., Patel, M., Blok, K., 2006. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 31, 425–451. https://doi.org/10.1016/J.ENERGY.2005.04.001
- Renouf, M.A., 2016. Greenhouse gas abatement from sugarcane bioenergy, biofuels, and biomaterials, in: Sugarcane-Based Biofuels and Bioproducts. Wiley Blackwell, pp. 333–362. https://doi.org/10.1002/9781118719862.ch13
- Tadele, D., Roy, P., Defersha, F., Misra, M., Mohanty, A.K., 2019. Life Cycle Assessment of renewable filler material (biochar) produced from perennial grass (Miscanthus). AIMS Energy 7, 430–440. https://doi.org/10.3934/energy.2019.4.430

- Takai, T., Mochizuki, D., Michiaki, U., 2006. Method of producing propylene containing biomass-origin carbon. US8389784B2.
- Van Der Giesen, C., Kleijn, R., Kramer, G.J., 2014. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ. Sci. Technol. 48, 7111–7121. https://doi.org/10.1021/ES500191G/SUPPL_FILE/ES500191G_SI_001.PDF
- Wells, G.M., 1991. Handbook of petrochemicals and processes. Gower Publishing Company, Hampshire, UK. https://doi.org/10.4324/9780429447341
- Yang, F., Meerman, H., Zhang, Z., Jiang, J., Faaij, A., 2022. Integral techno-economic comparison and greenhouse gas balances of different production routes of aromatics from biomass with CO2 capture. J. Clean. Prod. 372, 133727. https://doi.org/10.1016/J.JCLEPRO.2022.133727
- Yang, M., Tian, X., You, F., 2018. Manufacturing Ethylene from Wet Shale Gas and Biomass: Comparative Technoeconomic Analysis and Environmental Life Cycle Assessment. Ind. Eng. Chem. Res. 57, 5980–5998. https://doi.org/10.1021/acs.iecr.7b03731
- Zheng, A., Jiang, L., Zhao, Z., Huang, Z., Zhao, K., Wei, G., Li, H., 2017. Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production: chemistry, catalyst and process. Wiley Interdiscip. Rev. Energy Environ. 6, e234. https://doi.org/10.1002/WENE.234