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| Chapter 1

We seem to move our bodies with ease. This feeling of effortlessness makes
sensorimotor control and learning seem simple, but beneath the level of
consciousness is a prodigious control system at work. It decides on the
movement to make, prepares the movement, and activates the muscles that
execute the movement. During the movement, it responds to unexpected
perturbations and learns from these events to improve future movements
if needed. How does the central nervous system so smoothly control our
movements inrich and dynamic natural environments?

Over the past decades, many studies have examined the control processes
underlying our actions. Behavioral experiments have been used to investigate
the interaction between sensory inputs and motor output (Tresilian, 2012).
By manipulating the sensory feedback and recording the responses of the
participants, researchers have tried to infer the control system’s computational
mechanisms that govern the behavior (Franklin & Wolpert, 2011). With the
development of modern techniques to record brain activity, researchers have
additionally mapped these computational mechanisms onto areas and circuits
of the brain (Kandel & Hudspeth, 2000).

Most of these studies used straightforward experimental tasks with well-
controlled stimulus-response behaviors that unnaturally constrain the body.
In natural environments, stimuli are contextually embedded and continuously
changing, and responses are more complex and heterogeneous. Most natural
behaviors depend on closed action-perception loops: continuous interactive
processes in which an action affects the sensory input and the sensory input
affects the action (Fig. 1.1A) (Gordon et al., 2011). This allows us to actively
explore ourenvironments tosearch forusefulinformation, also known as active
sensing (Little & Sommer, 2013; Schroeder, Wilson, Radman, Scharfman, &
Lakatos, 2010).

Some of the processes that are thought to underlie sensorimotor behavior are
shown in Figure 1.1B. Forward internal models, which simulate the relationship
between motor commands and the consequences of the movement without
actually executing the movement, play animportantrolein the action-perception
loop (Gordon etal., 2011; Kawato, 1999; von Holst & Mittelstaedt, 1950; Wolpert
et al., 2000). The sensory input from the body and environment is thought to be
continuously compared to sensory predictions that are computed by the forward
internal model based on an efference copy of the motor commands. Based on
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an estimate of the state of the body and the environment, the action is in turn
updated if needed (Scott, 2004), closing the action-perception loop.
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Figure 1.1. Interaction between action and perception in natural environments. A) Most natural
behaviors depend on closed action-perception loops, in which there is a continuous interaction
between action and perception. B) This interaction is also reflected in some of the processes
that are thought to underlie sensorimotor behavior. To execute a movement, an inverse
internal model determines the required motor commands. These motor commands are sent
to the muscles to generate the necessary forces. An efference copy of the motor commands is
sent to a forward internal model, which predicts the sensory consequences of the movement
by simulating the interaction of the motor system and the environment. These predictions are
compared to the actual sensory feedback to estimate the state of the body and the environment,
and, depending on the control policy, the movement is adjusted if needed. Adapted from Scott
(2004) and Wolpert et al. (2000).

In this thesis, | will study two natural behaviors, reaching and steering, to
examine the processes that underlie the smooth control of our movements
in rich and dynamic environments in more detail. In the following sections, |
will first describe how the central nervous system selects and plans actions
in rich environments. | will focus on reaching, and more specifically on hand
choice (Chapter 2). After this, | will describe the online control of movements
based on sensory feedback and sensory predictions, followed by a section
about motor learning and adaptation. | will focus on the role of vestibular
sensory feedback and predictions during the control of self-motion in dynamic
environments (Chapter 3 and 4). Finally, | will provide an outline of the thesis.

1.1 Action selection and movement planning

1.1.1 Serial and parallel processing
Natural environments give rise to many action opportunities (Cisek, 2007).
How do we decide what to do and how to do it? Action decisions are thought to
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be based on the desirability and the costs of the possible actions (Shadmehr,
Huang, & Ahmed, 2016; Trommershauser, Maloney, & Landy, 2009; Wolpert &
Landy, 2012). If you are very thirsty for example, it might be more desirable to
take a sip of your drink instead of reaching for some food. And if there are two
jugs of your favorite drink on the table, you will probably reach for the one that
is closest to you because it is easiest to reach, minimizing the energetic costs
of the movement (Cos, Bélanger, & Cisek, 2011).

When you determine what to do and how to do it has been a topic of debate.
Traditional views of cognition state that the brain processes information in a
serial manner, with temporally separable perceptual, cognitive and motor
processes (Donders, 1869/1969). The perceptual system is thought to
transform the incoming sensory information into an internal representation
of the environment (Marr, 1982). The cognitive system in turn decides what
action to execute based on this representation, and provides the motor
system with the movement plan to be implemented. However, neural data
has shown substantial overlap in brain regions associated with perceptual,
cognitive, and motor processes (for a review, see Cisek & Kalaska, 2010). This
suggests that the processes are more integrated than proposed by the serial
processing model.

As an alternative to this serial processing model, the parallel processing
model has been proposed, in which multiple possible movement plans are
defined in parallel that compete for execution (Cisek & Kalaska, 2005). This
ideais based on an experimentin which nonhuman primates were instructed to
reach towards one of two targets. Before the actual reach target was specified,
neural activity in the motor cortex was found to represent both targets.
After the reach target was specified, neural activity increased in the neural
population representing the selected target and decreased in the neural
population representing the unselected target. This was taken to suggest
that the brain specifies multiple potential movement plans before reaching a
decision, although some suggest that these findings are the result of averaging
neural activity across trials (see Dekleva, Kording, & Miller, 2018).

1.1.2 Hand choice experiments

If deciding between two possible reach targets evokes multiple movement
plans, deciding between the left and right hand to reach to a single target may
similarly lead to the specification of parallel movement plans that compete
for execution. | will focus on this question in Chapter 2 of this thesis. When
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choosing which hand to use, in general people select the hand closest to
the target (Bryden, Pryde, & Roy, 2000). However, this choice is biased by
handedness and expected task success (Schweighofer et al., 2015). During
body motion, hand choice is also influenced by the inertial forces on the arm,
modulating the biomechanical costs of the reaching movement (Bakker, Selen,
& Medendorp, 2019; Bakker, Weijer, van Beers, Selen, & Medendorp, 2017;
Oostwoud Wijdenes et al., 2022).

Preferences in hand choice can be studied psychometrically, e.g., using a
paradigm in which the target is presented at different locations relative to the
body (Fig. 1.2A, from Oliveira, Diedrichsen, Verstynen, Duque, & lvry, 2010).
The targets appear one at a time at various locations on a semicircle and
participants are instructed to reach to the target as quickly as possible with
either hand. Reaches towards the same target location are repeated multiple
times to compute the probability of left and right hand choices for each target
location (Fig. 1.2B). The target location for which participants have an equal
probability of using the left or the right hand can be determined by fitting a
psychometric function to the choice data, and is called the point of subjective
equality (PSE). The PSE provides information about biases in hand choice,
and will for example be slightly shifted towards the left of the body midline in
right-handed participants.
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Figure 1.2. Experimental paradigm used to study hand choice (adapted from Oliveira et al.,
2010). A) Experimental setup. Participants place their hands on the start locations and reach
for a target that appears on a semicircle. B) Hand choice as a function of target angle for two
fictional participants. The point of subjective equality (PSE; dashed vertical colored lines) is
the target angle for which participants have an equal probability of choosing the left or the right
hand (dotted horizontal line), and can be determined by fitting a psychometric function (solid
colored lines) to the hand choice data (colored squares). Relative to the body midline (dotted
vertical line), in general, the PSE will be slightly shifted to the left for a right-handed participant
(blue data) and slightly shifted to the right for a left-handed participant (orange data).
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It is unclear whether hand choice is governed by a competition between
reach plans or by serial processing of hand choice and subsequent reach
implementation. Some behavioral and neural findings suggest that hand
choice relies on a competitive process between movement plans for the left
and right hand. Reaches toward targets that are close to the PSE, at which the
competition between the left and right hand is expected to be highest, have
longer reaction times (Oliveira et al., 2010; Stoloff, Taylor, Xu, Ridderikhoff,
& lvry, 2011) and are associated with greater neural activity in the parietal
cortex, a brain region important for movement planning and control, than
reaches toward lateral targets (Fitzpatrick, Dundon, & Valyear, 2019).

However, results of other studies are at odds with the idea that hand choice
relies on a competitive process between movement plans for the left and right
hand. Bernier et al. (2012) found neural activity in the parietal and motor
cortex only after the reach target had been presented and the reaching hand
had been instructed by the color of the target or a preceding cue. Similarly,
in nonhuman primates, Cui and Andersen (2011) studied eye and reaching
movements and found that some neurons in the parietal cortex only became
active after the effector was chosen or instructed by the color of the target.
These results could be interpreted as if the brain first determines the effector
to move and then defines the movement plan, as in serial processing.

In Chapter 2, | will examine whether deciding between the left and right
hand leads to the specification of parallel movement plans that compete for
execution. For this we use a paradigm similar to the paradigm described by
Oliveira et al. (2010), and measure neural activity during hand choice using
electroencephalography, or EEG (see Box 1). In the analysis of the EEG data,
we focus on neural oscillations in the beta band, which have a frequency of 13
to 30 Hz. It has long been known that the power of oscillations in the beta band
over the sensorimotor cortex changes before and during voluntary movements
of the hand (Jasper & Penfield, 1949; Pfurtscheller, 1992). During movement
planning, the beta-band power decreases contralateral to the hand thatis used
for the subsequent movement (for a review, see Kilavik, Zaepffel, Brovelli,
MacKay, & Riehle, 2013). Modulations of this decrease have been shown to be
predictive of the upcoming action (Pape & Siegel, 2016), and might therefore
similarly reflect hand choice. If hand choice is reflected in beta-band power
during movement planning, we expect the power to decrease less with more
uncertainty about the hand to use for the upcoming movement, either due to
the location of the target or the task instructions.
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Box 1: Electroencephalography

Electroencephalography (EEG) is a method used to record electrical activity
in the brain. By placing electrodes on the scalp using an EEG cap (Fig. 1.3A),
synchronized activity of groups of neurons, also called field potentials, can
be measured (Westbrook, 2000). The signal mainly reflects the activity from
neurons close to the scalp, and the measured electrical activity is small
(typically in the range of 20 to 100 microvolts). In experimental settings, EEG
is often used to detect changes in the neuronal activity in response to certain
events or stimuli (Cohen, 2014a). A common way to extract this information
from the signal is by processing the EEG data and examining changes in
the power of the signal in certain frequency bands using time-frequency
analyses (Fig. 1.3B) (Cohen, 2014b). These changes in the power are due to
synchronization and desynchronization of the activity of groups of neurons
in the brain. Frequency bands that are often distinguished are the delta band
(2to4Hz), thetaband (5to 7Hz),alphaband (8to 12 Hz), betaband (13to30Hz),
and gamma band (above 30 Hz).
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Figure 1.3. Electroencephalography (EEG) setup and signal. A) Illustration of an EEG setup.
Electrodes are attached to an EEG cap to measure the electrical activity in the brain. The
measurements are usually processed to be able to analyze specific patterns in the neuronal
activity. Adapted from Nagel (2019). B) The neuronal activity measured at the level of the EEG
electrodes reflects the sum (lower panel) of multiple sine waves with different amplitudes and
frequencies (upper panels). EEG analyses often focus on fluctuations in the power of the signal
in specific frequency bands, as these fluctuations have been linked to changes in specific
cognitive processes. Adapted from Cohen (2014c).
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1.2 Online control of movement, motor learning
and adaptation

1.2.1 Online control of movement

To execute a movement, action plans need to be transformed into motor
commands that are sent to the muscles to generate the required forces (Kim,
Avraham, & Ivry, 2021). However, movements are frequently perturbed during
execution due to motor noise and external forces. For example, a gust of wind
might push the hand away from the reach target during a reaching movement.
How does our body correct for such unexpected disturbances of the movement?

Task Optimal feedback control law State estimator
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Cost = c 9 Position
inaccuracy 'g
+effort | x Position
— |3 ) B —
S Velocity Velocity
Q
1)
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Time
Motor command Efference copy 1
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Figure 1.4. Optimal feedback control (adapted from Wolpert & Bastian, 2021). Optimal feedback
control theory describes the online control of movements and proposes that the brain specifies
a control policy with time-varying gains based on the movement goals and costs. The feedback
gains determine how the motor command should be changed based on the state of the body
and the environment. These states are estimated and depend on both sensory feedback and
predictions from an internal forward model based on the efference copy of the motor command.
In general, optimal control policies allow for movement variability in dimensions that are
irrelevant for reaching the movement goal.



Generalintroduction |

Optimal feedback control theory, proposed by Todorov and Jordan in 2002,
describes the online control of movements (Fig. 1.4). Itis a general framework
that applies to different types of movement, such as walking, reaching and eye
movements. According to this theory, the state of the system can be estimated
at any point during the movement with a forward internal model that predicts
the sensory feedback based on an efference copy of the motor commands
(Scott, 2004; Todorov & Jordan, 2002). These predictions are integrated with
the actual, noisy, sensory feedback to compute an optimal estimate of the state
of the body and the environment. The brain is thought to formulate a control
policy based on the specific movement goals and to correct for perturbations
only if these goals might not be reached, allowing for movement variability in
dimensions that are irrelevant for reaching the movement goal.

1.2.2 Motor learning and adaptation

Differences between predictions of the sensory feedback and the actual sensory
feedback can be due to noise. For example, due to motor noise it is impossible
to execute a movement in the exact same way twice (van Beers, Haggard, &
Wolpert, 2004). However, consistent differences between the predictions and
the feedback may also be due to changes in the mapping between the control
policy and the movement outcome or between the movement outcome and the
sensory feedback (e.g., experimentally introduced by a force field perturbation
or a visuomotor rotation, respectively, Kim et al., 2021).

Such differences between the predicted and the actual sensory feedback, also
called sensory prediction errors, drive sensorimotor adaptation (Kim et al.,
2021). Based on sensory prediction errors, the internal models and the control
policy can be updated. Models of motor adaptation describe how this is done.
Trial-to-trial changes in the internal model predictions can for example be
described by mathematical models with a learning and a retention rate (see for
example Smith, Ghazizadeh, & Shadmehr, 2006). The learning rate represents
the proportion of the error that the system corrects for from one trial to the
next, while the retention rate represents the proportion of the current estimate
of the perturbation that is retained. Sensory information is thus not only
critical for perception in general, but also for updating the internal models and
the control policy through motor learning.

15
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Figure 1.5. Reach adaptation studies dissociated the contribution of sensory feedback and
sensory predictions (adapted from Burge et al., 2008). A) Participants made reaching movements
towards a target while the reliability of the sensory feedback and the mapping between the
control policy and the sensory feedback was experimentally manipulated. The reliability of the
mapping between the movement and the visual feedback depended on the predictability and
standard deviation (o, _,) of trial-to-trial changes in the mapping between the position of the
hand and the visual feedback. Here, two autocorrelated random walks (same predictability) with
different standard deviations (0.9 and 2.5°) were used. The reliability of the sensory feedback
was manipulated by varying the blur of the visual feedback (o, ; 4° x 4° and 24° x 24°). B) During
the step phase of the experiment, participants adapted to a large shift in the visual feedback of
8.2°. The average adaptation profiles across subjects are shown, along with the curves of the
best-fitting power laws. The speed of adaptation, or the decrease in the error, depended on both
the reliability of the mapping and the reliability of the visual feedback.

Studies in reach adaptation have experimentally manipulated the reliability
of the sensory feedback and the mapping between the control policy and
the sensory feedback to dissociate the contribution of sensory feedback and
sensory predictions in motor adaptation (Burge, Ernst, & Banks, 2008; Wei
& Kording, 2010). Participants made reaching movements towards a target
while the visual feedback about the position of their hand was perturbed.
The authors found that participants adapted faster to these perturbations
when the mapping between the control policy and the visual feedback was
less reliable (i.e., the perturbations were more variable and less predictable)
and adapted slower when the visual feedback was less reliable (i.e., blurred)
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(Fig. 1.5). These findings suggest that motor adaptation follows the predictions
of Bayesian models in that systems adapt faster to perturbations when the
estimate of the mapping is more uncertain because the estimate could be
incorrect, and adapt slower when the sensory feedback is more noisy as if the
observed perturbation is a measurement error.

1.2.3 Artificial signals

If a sensory system breaks down, estimates of the state of the body and the
environment might be deteriorated and cannot be adequately updated. In
such a situation, a clear benefit may be obtained by reinstating the missing
information through an artificial sensory channel. Based on models of motor
learning, in principle, any consistent mapping between a movement and
feedback can be learned. For example, Dadarlat et al. (2015) showed that
monkeys can learn to use the information from a prosthetic device, stimulating
the primary somatosensory cortex, to make accurate reaching movements.
The artificial feedback signal provided information about the relative position
of the hand and the reach target. This signal was completely novel to the
monkeys but was required to be able to complete the task. Similarly, Schumann
and 0'Regan (2017) showed that healthy human participants can learn to use
an "extra sense” providing information about their head orientation relative
to the magnetic north through auditory stimuli. Also, steps have been taken
to use vibrations on the skin to substitute hearing in people with deafness or
hearing problems (Perrotta, Asgeirsdottir & Eagleman, 2021).

Another example of an artificial mapping between a movement and the
sensory feedback is steering (Danz, 2021). The term "artificial" refers here
to the indirect relationship between the neural control mechanism and the
resulting steering action, which relies on the interaction between the driver
and the steering wheel system. During driving, steering motor commands
are generated to control a steering wheel which in turn controls the motion
of the vehicle and the body. Even though the steering motor commands are
cognitively mediated and the mapping between the steering movement and the
sensory feedback is indirect, in principle, people could build an internal model
of this mapping. In Chapter 3 and 4 of this thesis, | willexamine whether people
can learn this mapping to accurately estimate and control their self-motion.

1.2.4 Self-motion estimation
To interact with our environment, we require an accurate percept of our self-
motion relative to the world. To successfully reach for a drink while your body

17

|d



18

| Chapter 1

isin motion, for example, you need to anticipate and account for the movement
of your body. In general, self-motion estimation depends on the integration of
sensory information, primarily vestibular, visual, and somatosensory signals,
and motor information (Angelaki & Cullen, 2008; Britten, 2008).

Vestibular signals are generated in the vestibular system, located in the inner
ear (Goldberg, Walker, & Hudspeth, 2000). The vestibular system consists of
the semicircular canals and the otoliths (Fig. 1.6A). The semicircular canals
sense rotational movements of the head, and the otoliths sense linear motion
of the head as well as the orientation of the head relative to gravity. Both the
semicircular canals and otoliths contain hair cells that convert head motion
into vestibular signals. When the head accelerates, such as during self-motion,
the hair bundles of the hair cells deflect. Depending on the direction of the
deflection, the cell depolarizes or hyperpolarizes, which affects the firing rate
of the afferent nerve fibers.

During self-motion, the visual system detects the changes in the image on our
retina that result from the motion, also called optic flow (Fig. 1.6B) (Britten,
2008). The pattern of the optic flow depends on the heading direction. The
center of expansion in the image aligns with the heading direction, and other
points in the image move with different velocities depending on the speed
of the self-motion and the depth of the visual scene. Neurons in the medial
superior temporal area of the brain are known to be sensitive to optic flow (Gu,
Watkins, Angelaki, & DeAngelis, 2006), and are therefore thought to play an
importantrole in heading and self-motion estimation.

7~ Utricle
Saccule

— Cochlea

\
Middle ear /

Figure 1.6. Sensory information used for self-motion estimation. A) The vestibular system is
located in the inner ear and consists of the semicircular canals and the otoliths. Hair cells in the
semicircular canals and the otoliths convert head acceleration into vestibular signals. Adapted
from Cullen (2019). B) During self-motion, the visual system detects optic flow. The center of
expansion in the image on the retina (black X) aligns with the heading direction, whereas other
points in the image move with different velocities (yellow arrows). From Britten (2008).
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In addition to vestibular and visual information, somatosensory cues can be
used to estimate self-motion. Proprioceptors in the neck and body sense the
orientation of the head on the body and of the body in space, respectively
(Alberts et al., 2016; Clemens, De Vrijer, Selen, Van Gisbergen, & Medendorp,
2011). Additionally, cues provided by the wind, vibrations and changes in
pressure give information about the self-motion (Campos & Biilthoff, 2012).
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Figure 1.7. Estimation of active and passive self-motion (from Laurens and Angelaki, 2017).
During active self-motion, an internal forward model (sensory internal model) predicts the
sensory feedback based on an efference copy of the motor commands used to generate the
self-motion (self-motion signal). If an accurate internal forward model is available, the sensory
prediction error will be small, and the self-motion estimate will depend mainly on the predicted
sensory feedback. During passive self-motion, the sensory feedback cannot be predicted, and
the self-motion estimate will be driven by the sensory prediction errors. Laurens and Angelaki
(2017) have described a model that uses a Kalman filter to compute optimal self-motion
estimates during both active and passive self-motion. The computations additionally rely on a
gating mechanism, which is thought to scale the response sensitivity of neurons in the vestibular
processing pathway based on the size of the prediction error (i.e., after the introduction of a
large prediction error, the neurons robustly encode the prediction error, whereas the response
decreases during motor learning) (Brooks, Carriot, & Cullen, 2015).

Also in self-motion estimation, motor information and sensory predictions
are known to play an important role (Brooks & Cullen, 2019). When the self-
motion is actively generated, the sensory feedback can be predicted based on
an efference copy of the motor commands used to generate the motion. During
passive self-motion, however, such predictions about the self-motion cannot
be made. This distinction between active and passive movements was already

19
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made in the 19 century by Helmholtz (1867). Recent modeling work has led
to a unified theory for active and passive self-motion estimation (Cullen, 2019;
Laurens & Angelaki, 2017), in which the self-motion estimate is computed
using the sensory prediction error (Fig. 1.7). This sensory prediction error is
small during active self-motion, and the self-motion estimate will therefore
depend mainly on the sensory predictions. During passive self-motion, on the
other hand, the sensory prediction error will drive the self-motion estimate.

In the central nervous system, neural correlates of components of this unified
theoretical framework have been found. In monkeys, neurons in the vestibular
nuclei, which receive input from the vestibular nerve and output to higher
neural structures that compute self-motion estimates, are active during
passive self-motion (for a review, see Cullen, 2012). However, the activity is
attenuated during active self-motion. The activity in these neurons is therefore
thought to reflect the sensory prediction error. Additionally, because of its
projections to the vestibular nuclei, the forward internal model that is used
to compute the sensory predictions is thought to be located in the cerebellum
(Brooks etal., 2015).

1.2.5 Closed-loop steering experiments

The unified theoretical framework for the estimation of passive and active
self-motion assigns an important role to the efference copy, but the model
is agnostic as to the nature of the motor signal. Building on the observation
that we can learn consistent mappings between a movement and the sensory
feedback, such as in sensory prosthetics, this opens up the possibility that
also motor signals that have an indirect, or artificial, relationship with self-
motion cues can be used to predict the sensory feedback during self-motion
estimation. Such motor signals are of efferent nature, but the movement is
indirectly linked to another action and this relationship has to be learned. As
described above, the steering motor commands that are generated during
driving are an example of motor signals that have an indirect relationship with
the sensory feedback. Closed-loop steering experiments have been used to
study the integration of sensory feedback and sensory predictions based on
such motor signals in self-motion estimation.

Roy and Cullen (2001) examined closed-loop steering in monkeys (Fig. 1.8).
Monkeys were seated on a turntable and were trained to control the speed
of their rotational self-motion with a steering wheel. Neural activity in the
vestibular nuclei, which is thought to reflect the sensory prediction error, was
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similar during active steering and passive rotations of the body. This suggests
that the steering motor commands are not used to predict the sensory feedback,
at least not at this level of the vestibular processing pathway. However, during
visual self-motion, neurons in the medial superior temporal area in monkeys
showed different responses to optic flow patterns generated during active
steering compared to when the same optic flow patterns were passively viewed
(Jacob & Duffy, 2015; Page & Duffy, 2008; but see also Egger & Britten, 2013).

A Turntable-fixed laser B

| Head velocity

Passive prediction
| .\ Firing rate

500 ms

100 deg s~

50sps’

Turntable

Figure 1.8. Closed-loop steering experiment with rotational self-motion in monkeys (adapted
from Angelaki and Cullen, 2008). A) Monkeys used a steering wheel to control the rotation of a
turntable to align a laser target attached to the turntable (T, ) with a moving target (T_,).
B) Neurons in the vestibular nuclei reliably encoded the self-motion. The activity of these
neurons is thought to reflect the sensory prediction error, and these results therefore suggest
that the vestibular sensory feedback was not predicted by a forward internal model based on the
steering motor commands.

More recently, closed-loop steering has also been studied in human
participants (Alefantis et al., 2022; Lakshminarasimhan et al., 2018;
Stavropoulos, Lakshminarasimhan, Laurens, Pitkow, & Angelaki, 2022).
Alefantis et al. (2022) showed that, after training with optic flow cues, humans
can navigate a virtual environment using a joystick without any online sensory
feedback. This suggests that participants formed an internal model of the
steering dynamics with training. Stavropoulos et al. (2022) used a similar
experiment but varied the steering dynamics slightly from trial to trial. They
found that participants could accurately navigate the environment with
online optic flow cues, but performed worse when only vestibular cues were
available, as if their estimate of the self-motion was biased by an incorrect
internal model of the steering dynamics.
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Box 2: Linear motion platform

To examine the role of sensory feedback and sensory predictions in self-motion
estimation we use a linear motion platform, also called the sled (Fig. 1.9). During
an experiment, participants are seated on the sled and control the lateral sled
motion by rotating a steering wheel mounted in front of them. The angle of the
steering wheel relative to the start angle encodes the velocity of the sled. If
participants for example rotate the steering wheel to the left, the sled moves to
the left, and the further they rotate the steering wheel, the faster the sled moves.
The exact mapping between the steering wheel angle and the sled velocity is
adjustable. To be able to test the role of vestibular feedback, experiments are
done in darkness, excluding visual feedback. Additionally, participants wear
headphones to mask auditory cues from the moving sled with white noise sounds.

Figure 1.9. Linear motion platform used for closed-loop steering experiments. During the
experiment, participants are seated with their interaural axis aligned with the motion axis of
the platform, such that they are laterally translated, and rotate a steering wheel to control the
sled velocity. Experiments are done in darkness, and participants wear headphones to mask any
auditory cues.
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In Chapter 3 of this thesis, | will further examine whether the brain can build
an accurate internal model of the steering dynamics in a closed-loop steering
experiment with online vestibular feedback. Participants control a linear
motion platform, also called the sled (see Box 2), with a steering wheel and
learn to align their body with a memorized visual target. We examine their
responses to abrupt changes in the steering dynamics during the experiment,
and compare their steering behavior to that of participants who do not receive
any online sensory feedback. If the brain builds an internal model of the
steering dynamics, we expect participants who do receive online sensory
feedback to respond to the abrupt changes in the steering dynamics while the
steering movement is ongoing.

1.2.6 Reweighting sensory and motor information

Based on the unified theoretical framework for passive and active self-motion,
self-motion estimates are thought to be most accurate when they are based
on both sensory predictions and sensory feedback (Laurens & Angelaki,
2017). However, participants should in principle be able to fairly accurately
estimate their self-motion based on sensory feedback alone as well. This has
also been observed in path integration studies, in which participants estimate
their passive self-motion by integrating the online sensory feedback over
time (Grasso, Glasauer, Georges-Francois, & Israél, 1999; Lappe, Jenkin, &
Harris, 2007; Petzschner & Glasauer, 2011). As described above, studies in
reach adaptation have tried to dissociate the contribution of sensory feedback
and sensory predictions by experimentally manipulating the reliability of the
sensory feedback and the mapping between the reaching movement and the
sensory feedback (Burge et al., 2008; Wei & Kérding, 2010).

In Chapter 4, | will use an experimental design that is inspired by these reach
adaptation studies to examine the contributions of internal model predictions
and sensory feedback during closed-loop steering in more detail, building
on the experiment described in Chapter 3. Next to the abrupt changes in the
steering dynamics, we vary the steering dynamics slightly from trial to trial as
well. This way we intend to manipulate the weights on sensory predictions and
online vestibular feedback. We examine the steering behavior for within-trial
responses to the sensory feedback and predictions of the steering dynamics
acrosstrials. We expect participants to rely more on predictions of the steering
dynamics and less on the online sensory feedback if the steering dynamics are
more predictable.
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1.3 Thesis outline

In this thesis | will examine the processes that underlie the control of our
movements in rich and dynamic environments. | will focus on two natural
behaviors: reaching and steering. In Chapter 2, | will focus on reaching and
will study the selection of actions and movement planning by looking at hand
choice. More specifically, | will examine whether deciding between the left and
right hand leads to the specification of parallel movement plans that compete
for execution using EEG. In Chapter 3 and 4, | will focus on steering and will
study the role of vestibular sensory feedback and sensory predictions during
the control of self-motion. In Chapter 3, | will examine whether self-motion
estimation during a closed-loop steering experiment depends on an internal
model of the steering dynamics, or whether the self-motion estimate is
primarily based on the online vestibular feedback. In Chapter 4, | will examine
in more detail the role of internal model predictions and vestibular feedback in
self-motion estimation during steering. By varying the steering dynamics from
trial to trial, we aim to dissociate the contributions of sensory predictions and
online feedback. In Chapter 5, | will summarize and discuss the findings. | will
additionally consider their broader implications for sensorimotor control and
will make suggestions for future research.
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Chapter 2
Cortical beta-band power modulates
with uncertainty in effector
selection during motor planning

This chapter has been adapted from:

van Helvert, M.J.L., Oostwoud Wijdenes, L., Geerligs, L., & Medendorp, W.P. (2021).
Cortical beta-band power modulates with uncertainty in effector selection during
motor planning.

Journal of Neurophysiology, 126, 1891-1902.
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Abstract

While beta-band activity during motor planning is known to be modulated
by uncertainty about where to act, less is known about its modulations to
uncertainty about how to act. To investigate this issue, we recorded oscillatory
brain activity with EEG while human participants (n = 17) performed a hand
choice reaching task. The reaching hand was either predetermined or of
participants’choice, and the target was close to one of the two hands or atabout
equal distance from both. To measure neural activity in a motion-artifact-free
time window, the location of the upcoming target was cued 1000-1500 ms
before the presentation of the target, whereby the cue was valid in 50% of
trials. As evidence for motor planning during the cueing phase, behavioral
observations showed that the cue affected later hand choice. Furthermore,
reaction times were longer in the choice than in the predetermined trials,
supporting the notion of a competitive process for hand selection. Modulations
of beta-band power over central cortical regions, but not alpha-band or
theta-band power, were in line with these observations. During the cueing
period, reaches in predetermined trials were preceded by larger decreases
in beta-band power than reaches in choice trials. Cue direction did not affect
reaction times or beta-band power, which may be due to the cue being invalid
in 50% of trials, retaining effector uncertainty during motor planning. Our
findings suggest that effector uncertainty modulates beta-band power during
motor planning.
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2.1 Introduction

At a picnic with many delicacies, there are numerous opportunities for action.
We can look at one of several treats, or reach for it, and when we reach, we
could use the left or right hand. How is this decision process being solved?
Computational theories suggest that the brain chooses the action that
maximizes utility, which depends on the cost associated with performing the
action and the desirability of the outcome, i.e., the reward (Haggard, 2008;
Shadmehr et al., 2016; Wolpert & Landy, 2012). In neural terms, it follows
that the circuits involved in deciding between actions based on utility are
strongly coupled to the circuits responsible for generating an action. Indeed,
neurophysiological studies have suggested that multiple potential motor
plans can be encoded in parallel and compete for selection within the brain's
sensorimotor regions (Cisek, 2006).

In non-human primates, most of the evidence for this process of embodied
decision making comes from experiments that manipulated the number or
location of potential targets (Basso & Wurtz, 1997; Cisek & Kalaska, 2005;
Glaser, Perich, Ramkumar, Miller, & Kording, 2018; Klaes, Westendorff,
Chakrabarti, & Gail, 2011). For example, in a unimanual reaching task with two
potential targets, neural activity in dorsal premotor cortex represents both
options simultaneously and reflects the selection of one over the other when
the choice is made (Cisek & Kalaska, 2005; but see Dekleva, Kording, & Miller,
2018, for an alternative interpretation). Analogous results have also been
observed in humans. For instance, Tzagarakis et al. (2010, 2015) reported
that cortical beta-band desynchronization, associated with motor planning
(Jasper & Penfield, 1949; Pfurtscheller, 1992), depends on the number of
potential targets and their directional uncertainty. Grent-'t-Jong et al. (2014,
2015) reported that the proximity of two potential reach goals has a direct
influence on motor cortex activity, as measured by oscillatory power (see also
Tzagarakis et al., 2015).

Utility of a movement does not only depend on the location of the target, it is
also determined by the effector that needs to be moved. Within this notion,
target and effector selection can be considered as part of an integrated
computation in movement planning, in which the expected utility of each
potential movement is defined by the distance and direction of the respective
target relative to the respective effector (Bakker, Selen, & Medendorp,
2018; Dancause & Schieber, 2010; Schweighofer et al., 2015). Accordingly,
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if multiple potential targets evoke multiple concurrent movement plans of a
single effector, deciding between multiple effectors to move to a single target
may also lead to the specification of parallel movement plans. This has been
indeed observed when selecting between eye versus arm movements; cortical
areas involved in these movements are simultaneously activated until the
effector is selected, as observed both in monkeys (Cui & Andersen, 2011) and
humans (see Medendorp & Heed, 2019, for review). However, it is important to
realize that eye and hand movements serve different purposes and, in natural
situations, are typically used in combination (Heed, Beurze, Toni, Réder,
& Medendorp, 2011), which could explain their simultaneous specification.

It is less clear whether the brain simultaneously specifies motor plans for
the two arms. Using a combined EEG-fMRI study, Bernier et al. (Bernier et
al., 2012) tested participants in an arm choice experiment with a fixed target
location, and found activity in parietal and premotor cortex only contralateral
to the reaching arm after target onset. This could be interpreted as if effector
selection precedes movement planning, i.e. that hand selection is not
associated with the simultaneous specification of two motor plans. This would
be in line with findings of monkey area 5, showing that neurons only become
activated after the hand of the reach is specified, but not if a target is presented
without the hand being specified (Cui & Andersen, 2011). However, it could
also be possible that the substantial differences in expected utility between
contralateral and ipsilateral arm movements, due to the eccentric location of
the target, biased the competition for selection to the contralateral motor plan
in Bernier et al.'s study (2012).

Other studies do suggest competition between motor plans of the two hands.
Reaction times are longer for reaches towards the target direction that leads
to equiprobable right/left hand choices (point of subjective equality, PSE),
resembling a more competitive hand selection process for this direction
compared to other, lateral target directions (Bakker et al., 2018; Oliveira et
al., 2010). Also, preparing reaches with two hands simultaneously results
in more movement variability than preparing a single reach, suggesting that
reach plans of the two hands share a common neural resource (Oostwoud
Wijdenes, Ivry, & Bays, 2016). Using transcranial magnetic stimulation over
left posterior parietal cortex, Oliveira et al. (2010) demonstrated that the
competition between hands can be biased towards the ipsilateral, left hand.
Fitzpatrick etal. (2019) reported greater BOLD activity in parietal cortex at the
PSE than away, consistent with competition between the hands. Finally, using
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EEG, Hamel-Thibault et al. (2018) presented evidence that hand selection at
the PSE depended upon the phase of delta-band oscillations at target onset
in contralateral motor regions, as if excitability of motor regions acts as a
modulatory factor for hand choice.

While there is ample evidence about the involvement of beta-band oscillations
in response selection (van Wijk, Daffertshofer, Roach, & Praamstra, 2009), the
specific role in hand selection processing during movement planning is less
clear. Beta-band power oversensorimotorregions decreases during instructed
delayed-reach tasks, most pronounced over the hemisphere contralateral to
the hand (forareview, see Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 2013).
This is typically seen as a small phasic decrease after the initial cue, followed
by a more sustained decrease until the execution of the movement. This
sustained decrease is modulated by the participants’ readiness hazard and
followed by a post-movement rebound (Schoffelen, Oostenveld, & Fries, 2005;
Tzagarakis et al., 2010). It has also been reported that fluctuations in beta-
band activity over contralateral and ipsilateral hemispheres during movement
planning are predictive of upcoming actions (Pape & Siegel, 2016).

Given the importance of beta-band synchronization in movement planning,
here we examine the role of these oscillations in coding multiple movement
plans during hand choice. Participants performed a hand choice reaching task
whereby the target location was cued 1000-1500 ms before it was presented.
This allowed us to analyze the oscillatory activity within a clearly defined
and motion-artifact-free time window just prior to movement onset. We
hypothesized that if beta-band power reflects effector uncertainty, the power
would decrease less if there was more uncertainty about which hand to move,
similar to the effect of target direction uncertainty (Tzagarakis et al., 2010).
We further reasoned that there would be more competition, and thus more
uncertainty about which hand to move, if the target was in a direction close to
PSE than if the target was close to either of the two hands (Oliveira etal., 2010).

2.2 Methods

2.2.1 Participants

Twenty participants took part in the study (5 males and 15 females, mean age
21 vyears, age range 19-26 years). All participants were right-handed,
confirmed using the Edinburgh Handedness Inventory (Laterality Quotient,
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M =186.92, SD =13.54) (Oldfield, 1971). Participants had normal or corrected-
to-normal vision and reported no history of neurological or psychiatric
diseases, or use of psychoactive medication or substances in the month
prior to participation. The ethics committee of the Faculty of Social Sciences
of Radboud University Nijmegen, the Netherlands, approved the study. All
participants gave written informed consent prior to the start of the study, and
were reimbursed for their time with a fixed amount of course credit.

2.2.2 Setup

Participants were seated in front of a touch screen (ProLite TF4237MSC-B3AG;
liyama, Tokyo, Japan), positioned in the horizontal plane at the level of their
thoracic diaphragm. The screen had a resolution of 1920 x 1080 pixels (pixel
pitch 0.4845 mm) and a refresh rate of 60 Hz. As illustrated in Figure 2.1A, two
starting positions for the left and right index finger were presented as gray
discs of 3.5 cm diameter, approximately 20 cm away from the participant's
sternum and 9 cm on either side of the body midline. A white fixation cross
with a width of 2.5 cm was presented along the body midline, 12 cm in front
of the two start positions. Cues and targets were presented as light orange
and blue 3.5 cm discs, respectively, at 30 cm distance from the point midway
between the two start positions, in five different directions: -40°, -10°, 0°,
10°, 40°. A 64-channel active electrode EEG system was used to record brain
activity (Brain Products, Gilching, Germany). The onset of visual stimuli on
the touch screen was determined using a photodiode and was used to identify
and align epochs in the EEG recording. Horizontal and vertical electro-
oculograms (EOGs) were recorded by placing electrodes at the supraorbital
and infraorbital ridges of the left eye and the outer canthi of the left and right
eye. Impedance values for all electrodes were kept below 20 kQ and the signal
was referenced against the signal on left mastoid electrode TP9. The data
were filtered online with a low cutoff value of 0.016 Hz and a high cutoff value
of 200 Hz and digitized with a sampling frequency of 500 Hz and a resolution of
0.1 pV. The experiment was controlled using custom-written software in
Python, based on the Kivy library for multi-touch applications.
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Figure 2.1. /llustration of the experimental setup, procedure, and paradigm. A) Schematic
illustration of the experimental setup. Start positions (gray disks), gaze fixation cross, and the
five potential cue and target directions (white disks) are shown. B) Order of events in a single
trial. C) Choice trials; the upper panels show a correctly cued trial, during which the cue (orange)
appeared at the same position as the target (blue), the lower panels show an incorrectly cued
trial, during which the target appeared at a different position than the cue. Note that the other
potential cue and target directions were not shown during the experiment. D) Predetermined
trials; same asin C), but here the cue stimulus instructed which hand to use (here: left hand).

2.2.3 Paradigm

The experiment took place in a completely darkened room, except for the light
of the touch screen. Participants performed a unimanual reaching task in which
they were free to use either hand (choice trials) or in which the response hand
was instructed on the screen (predetermined trials). All trials were initiated by
asking participants to place the tips of their left and right index fingers on the
starting positions, which then turned white, and look at the fixation cross. After
a delay of 1 s one of the five target directions was cued for either 1.00, 1.25, or
1.50 s (Fig 2.1B). Presented as a full orange disk, the cue instructed a choice
trial (Fig 2.1C); if the color filled half of the disc, it signaled a predetermined
trial (Fig 2.1D), with the filled side (left or right) instructing which hand to use.
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Participants were informed about the types of cues prior to the experiment and
practiced this before the start of the experiment. Furthermore, the cue was
either valid in terms of the upcoming target direction (i.e., correctly cued the
target, Fig 2.1C and 2.1D, upper panels) or invalid (Fig 2.1C and 2.1D, lower
panels). At target presentation the cue disappeared and a short beep was
played. Participants were asked to touch the target as fast as possible while
the eyes were free to move. To ensure that participants were motivated to reach
toward the target quickly, they received a feedback message and a score after
each response. If participants adequately touched the target within 0.7 s (i.e.,
reaction + movement time) the message read, ‘Well done! +1 point’, followed
by the total earned score across trials. If this duration was beyond 0.7 s, the
feedback message was ‘Too slow’, and no points were obtained. Participants
did not receive areward based on their scores, but were incentivized to move as
fastas possible by showing them the scores of the best performing participants
before the start of the experiment. If the movement was initiated prior to the
onset of the target, the trial was restarted. The incorrectly cued trials serve
to verify that motor planning occurred during the cueing phase rather than
participants waiting for the target to start preparing their movement.

Each participant completed 900 trials in total, which took about one hour.
These comprised of 450 correctly cued trials (90 repetitions of each of the five
locations) and 450 incorrectly cued trials (22 or 23 repetitions of each of the
20 cue xtargetcombinations). There were 800 choice trialsand 100 predetermined
trials, of which 50 left hand and 50 right hand trials (25 correctly cued trials and
25 incorrectly cued trials each). The number of predetermined trials was lower
than the number of choice trials, as the predetermined trials were added as
intervening catch trials. During these trials, no choice had to be made about the
hand to use. For each participant, trials were presented in a random order in six
blocks of 150 trials, separated by short breaks. Prior to the main experiment,
participants performed 30 practice trials, including all trial types.

2.2.4 Data analysis

2.2.4.1 Behavioral analysis

Behavioral data were processed in MATLAB R2017a. Statistical analyses were
done in R 4.0.1 and the alpha level was set to 0.05. Choice data were based on
the touch screen measurements. Movement onset was defined as the moment
the first hand released contact with the touch screen after the target was
presented. Hand choice was determined as the hand that departed from the
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touch screen first. Trials during which the participant released both hands and
predetermined trials during which the participant did not use the instructed
hand were not taken into account in further analyses. On average, this was
the case in 8 trials per participant (SD = 3.22). Hand choice preferences were
quantified as the proportion of right hand choices for each target direction.

Although there were only five cue and target directions, we summarized the
psychometric data for the correctly cued choice trials by fitting a cumulative
Gaussian distribution per participant using a maximum likelihood approach
(Wichmann & Hill, 2001):

_t-w?

PO = A+ (- 20 ;s [l e = dt (eq.2.1)

in which P (x) represents the proportion of right hand choices for cue and
target direction x. The mean of the curve, p, represents the participant's PSE,
i.e. the direction at which the right and left hand were chosen equally often.
Parameteroisthe standard deviation of the Gaussian, and reflects the variation
in choice behavior. Parameter A represents the lapse rate, accounting for
errors caused by participant lapses or mistakes, e.g. unduly reaching with the
right hand to the most leftward target. Its value was restricted to small values
(< 0.1). We equated the cue direction closest to the PSE direction as the
direction that evoked the highest effector competition. Note that the fitted cue
direction corresponds to the direction for which the proportion of right hand
choices is closest to 0.5 for all participants. Data from three participants were
excluded as they showed such a strong preference to reach with their dominant
right hand that it was not possible to fit a cumulative Gaussian function, and
therefore to select a PSE cue. The extreme left and right directions induced the
lowest effector competition. For plotting purposes we also fitted a cumulative
Gaussian distribution to the proportion of right hand choices for the five
different cue and target directions averaged across participants.

The incorrectly cued choice trials tested whether participants planned
movements during the cueing phase. If participants instigated reach planning
upon cue presentation, we expect that this would affect the reach upon target
presentation. To test if cue direction affected hand choice a cue direction
(-40°, -10°, 0°, 10°, 40°) x target direction (-40°, -10°, 0°, 10°, 40°) repeated-
measures ANOVA was performed on the proportion of right hand responses for
all choice trials (ez package in R). F statistic values were adjusted for violations
of sphericity with Greenhouse-Geisser corrections.
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Reaction time (RT) was defined as the time between target onset and movement
onset. Trials with reaction times <100 ms or >1000 ms were excluded from
further analyses. On average, this was the case in 1 trial per participant
(SD =1.19). Movement time (MT) was defined as the time between movement
onsetand the time when the finger first touched the target. Trials with movement
times >1000 ms were excluded from further analyses since these typically
involved corrective movements. On average, this was the case in 9 trials per
participant (SD =17.92). To test if effector competition was reflected in reaction
times, a linear mixed-effects model with participant number as a random factor
with random intercept and fixed factors instruction (predetermined, choice), cue
direction (PSE, extreme), cue validity (correct, incorrect), and cue time (1.00,
1.25, 1.50 s), as well as the interaction effects, was fitted to the reaction times
of all trials using maximum likelihood estimation (nlme package in R). Model fits
were assessed with a likelihood ratio test. Bonferroni corrected pairwise t-tests
were used to further analyze significant interaction effects post hoc.

2.2.4.2 EEG analysis

EEG data were processed offline using the MATLAB software toolbox FieldTrip,
version 20171130 (Oostenveld, Fries, Maris, & Schoffelen, 2011). Data were
splitinto epochs aligned to the onset of the cue (t=0s) and the signal was re-
referenced against the average signal of the EEG electrodes. Slow drifts in the
signal were eliminated by applying a high-pass filter with a cutoff frequency
of 1 Hz. Eye blinks were semi-automatically identified based on the difference
signal between the two vertical EOG electrodes following the FieldTrip
procedure for rejection of eye blink artifacts. Trials with eye blinks around the
onset of the cue (time window from 75 ms prior to cue onset to 25 ms after
cue onset) were removed from further analyses. On average, this resulted in
removal of 18 trials per participant (SD = 16.89). Ocular artifacts during the
remainder of the trial were removed from the signal by running an independent
component analysis. Rejection of components with an evident ocular origin
was done according to the criteria described by McMenamin et al. (2010).
After removal of these components, trials with excessive muscle activity
in the time window from 200 ms prior to cue onset until target onset were
semi-automatically identified and removed from further analyses following
the FieldTrip procedure for rejection of muscle artifacts (for further details,
see Gonzalez-Moreno et al.,, 2014). On average, this resulted in removal of
102 trials per participant (SD =50.76). Bad channels were identified by visually
inspecting the preprocessed data and were repaired by replacing the data
with the plain average signal of neighboring channels based on triangulation
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(two channels repaired in total). Data were low-pass filtered with a cutoff
frequency of 40 Hz and down-sampled to 200 Hz.

Time-frequency representations of the data were computed with a Hanning
taper with variable window length (5 cycles of the frequency of interest per
time window), 10 ms steps and a 1 Hz resolution. The procedure was repeated
with the epochs realigned to the onset of the movement (t=0s). Power values
were corrected relative to a baseline computed per participant, trial group,
frequency bin and channel. This baseline was defined as the average power
in the time window from 200 ms before cue onset until cue onset, and was
computed after averaging across trials in a trial group. Results were similar
with a baseline from 500 to 200 ms before cue onset. Baseline-corrected
power values were expressed in decibels.

First, we sought to identify clusters of channels that showed activity related
to movement preparation. More specifically, we performed a nonparametric
cluster-based permutation test to find clusters of channels that showed
a decrease in power in the beta-band frequency range (13 to 30 Hz) prior
to either left or right hand responses. Trials for which the hand to use was
predetermined were grouped based on the hand used (left or right hand). Both
correctly and incorrectly cued trials were included, as we did not expect cue
direction to affect which hand was prepared for these predetermined trials.
We used a nonparametric cluster-based permutation test to find clusters
of channels that showed contrasting activity prior to left and right hand
movements. This cluster-based permutation test is based on the calculation of
cluster-level statistics, connecting samples that are adjacent in space and time
(Maris & Oostenveld, 2007). To contrast left and right hand trials, power values
in the right hand trial group were subtracted from the power values in the left
hand trial group. The remainder was averaged along the frequency dimension
within the beta-band range (13 to 30 Hz). The permutation test was applied for
the channels in the left and right hemisphere separately, and channels were
spatially clustered using triangulation of the sensor positions. Clusters in time
were restricted to occur in the time window from 500 ms before movement
onsetuntilmovement onset, mainly overlapping with the reaction time window.
Both the cluster alpha level and the alpha level to reject the null hypothesis of
no clusters in the data were set to 0.05. Mirror-symmetric channels that could
be found in a significant cluster in the left hemisphere as well as a significant
cluster in the right hemisphere were selected for further analyses, and data
were averaged across the channels within a channel cluster.
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Second, we were interested in whether effector competition was reflected
in beta-band power during motor planning. Trials were grouped based on
instruction (predetermined, choice), cue direction (extreme, PSE) and hand
used (left, right). For the predetermined trials, both correctly and incorrectly
cued trials were included. For the choice trials, only the correctly cued trials
were included, as participants might have chosen to switch hands after the
presentation of an incorrectly cued target, making it inappropriate to group
trials based on the hand used. For reaches towards the extreme cues, only
left hand trials were included for the leftmost cue (-40°) and only right hand
trials were included for the rightmost cue (40°). Power values were computed
for the sensor clusters ipsilateral and contralateral to the hand used, and
were collapsed across hands, resulting in trial groups based on instruction
(predetermined, choice), cue direction (extreme, PSE) and sensor cluster
(contralateral, ipsilateral). Power values were averaged along the frequency
dimension in the beta-band range (13 to 30 Hz).

To test if beta-band power was modulated by instruction, cue direction and
sensor cluster, we performed a repeated-measures ANOVA on the average
beta-band power during the time window from cue onset until 1000 ms after
cue onset (cue-locked) as well as the time window from 1000 ms before
response onset until response onset (response-locked), with instruction
(predetermined, choice), cue location (extreme, PSE), and sensor cluster
(ipsilateral, contralateral) as factors. A Bayesian ANOVA was used to compute
Bayes factors for all main and interaction effects (BayesFactor package in R,
see also Rouder, Morey, Speckman, & Province, 2012). To examine whether
the effects were limited to the power in the beta-band frequency range, the
procedure was repeated for the power in the theta-band (5 to 7 Hz) and alpha-
band frequency range (8 to 12 Hz).

2.3 Results

To examine if cortical power reflects uncertainty in hand choice, participants
performed a cued hand choice reaching experiment, whereby the hand to use
was chosen by the participant, based on a cue and target, or instructed by
the cue. Figure 2.2A shows the proportion of right hand choices for the five
different target directions when correctly cued averaged across participants
(black circles) and their psychometric fit (black line), superimposed on the
fits of individual participants (gray lines) with the direction at which the right
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and left hand were chosen equally often (point of subjective equality, PSE;
gray circles). Confirming previous literature (Bryden et al., 2000; Gabbard &
Rabb, 2000), the ipsilateral hand was typically selected to reach for peripheral
targets, i.e. the left hand reached to the -40° target, the right hand reached to
the 40° target. Most participants had a negative PSE, indicating an overall bias
to selecting the right hand, which is consistent with the right hand preference
of our participants. The direction closest to the participants’' PSE was selected
as the high competition direction: -10° (n =13), 0° (n=3), or 10° (n =1). We
will refer to this direction as the participant’'s PSE cue or target.

We used theincorrectly cued choice trials to find behavioral evidence for motor
planning during the cueing phase. We reasoned that if participants simply
postponed motor planning until the presentation of the target, the cueing
phase should not affect response behavior. Alternatively, if motor planning
occurs in the cueing phase, it should bias hand choice. Figure 2.2B shows that
cue location affects hand choice. For example, fora -40° cue and target (lower-
left circle), participants almost invariably use the left hand, while for the -40°
target in combination with other cue locations the subsequent hand choice
is more ambiguous. Similar effects can be seen across all invalid cue-target
combinations. Thus motor planning during the cueing phase affected later
hand choice. In support, across all choice trials, a repeated-measures ANOVA
showed significant main effects of cue (F(1.68, 26.83) =27.02, p < 0.001) and
target direction (F(1.66,26.57) =102.18, p <0.001) on hand choice, as well as
a significant interaction (F(7.04, 112.60) = 7.60, p < 0.001). This confirms that
the cue affects the eventual response, justifying our choice to study movement
preparation during the cue period.

To test whether the paradigm evokes competitive processes in which both
hands compete for movement execution we performed a reaction time analysis.
Figure 2.2C shows the reaction times for the different conditions. A linear
mixed-effects model fitted on the reaction times with fixed effects instruction
(predetermined, choice), cue direction (PSE, extreme), cue validity (correct,
incorrect) and cue time (1.00, 1.25, 1.50 s) showed a main effect of instruction,
illustrating longer reaction times for choice trials than for predetermined trials
(x?(1) = 31.56, p < 0.0001). There was also a main effect of cue time (y?(2) =
45.02, p<0.0001). Post hoc tests revealed that reaction times were longest for
the shortest cue period (M = 349 ms) and shortest for the longest cue period
(M=332ms) (p<0.0001).
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Based on Oliveira et al. (2010) we hypothesized that reaction times would
be longer for the PSE cue, where the effector uncertainty is highest, than for
the extreme cues, but there was no main effect of cue direction on reaction
time. However, there were two significant interaction effects with the factor
cue direction: the two-way interaction between instruction and cue direction
(x2(1) = 5.37, p = 0.021) and the three-way interaction between instruction,
cue direction and cue validity (x*(1) = 12.20, p < 0.001). The two-way
interaction seems to be driven by longer reaction times for choice trials than
predetermined trials if the cue was in an extreme direction (p = 0.16), rather
than if the cue was in the PSE direction (p = 0.66). The three-way interaction
suggests that this effect was driven by the incorrectly cued trials. Overall,
reaction times were not longer for the PSE cue than for the extreme cues.
However, for incorrectly cued choice trials, reaction times were longer for the
extreme cues than for the PSE cue.

Finally, there was a significant interaction effect of instruction and cue validity
on reaction time (y2(1) = 15.36, p < 0.0001), demonstrating that incorrect
cues only prolonged reaction times for choice trials (p < 0.0001), but not
for predetermined trials (p = 0.064). Most likely participants did switch
hands from cue to target in choice trials, while switching was not allowed in
predetermined trials.

We next turned to examining the cortical mechanisms, studying whether
power changes in motor planning regions reflect uncertainty about the
upcoming effector. Our focus is on the role of beta-band oscillations, known
to be involved in motor planning, and implicated in the coding of multiple
target-specific motor plans. We used the predetermined trials to select the
cortical regions that show beta-band activity during left and right hand
motor planning around movement onset. As shown in Figure 2.3, we found
two clusters of sensors that showed a significant selectivity in the beta band
for the contralateral hand, one in the left (p = 0.039) and one in the right
(p = 0.021) hemisphere. The mirror-symmetric channels that could be found
in both significant clusters mostly covered central areas of the brain. Across
the left hemisphere these channels were FC1, C1, C3, C5, T7, CP1 and CP5, and
across the right hemisphere these channels were FC2, C2, C4, C6, T8, CP2 and
CPé6. These clusters are centered around central channels C3 and C4, known to
be involved in movement planning (Pfurtscheller, 1992).
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Figure 2.2. Choice behavior and reaction times. A) Proportion of right hand choices as a function
of cue and target direction for correctly cued choice trials (black circles) fitted with a cumulative
Gaussian distribution for all participants (black line). Points of subjective equality (gray circles)
and cumulative Gaussian fits for individual participants (gray lines). Error bars represent SEM.
On average, 79 trials (SD =1.87) were included for each direction per participant. B) Proportion
of right hand choices as a function of cue (gray lines) and target direction (abscissa) for
correctly and incorrectly cued choice trials for all participants. A repeated-measures ANOVA
revealed significant main effects of cue and target direction, as well as an interaction effect,
on hand choice (n =17). On average, 20 trials (SD = 0.83) were included for each combination
per participant. Error bars represent SEM. C) Reaction times as a function of instruction, cue
direction, cue validity and cue time for all participants. Violin shape outlines show the kernel
density estimates of the individual participant data points (colored dots). Black dots show the
mean across participants. A linear-mixed effects model revealed significant main effects of
instruction and cue time on reaction times, as well as three interaction effects involving the
factors instruction, cue direction and cue validity (n=17).
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Figure 2.3. Topographic map of beta-band power preceding left and right hand movements.
A) Mean beta-band power for the predetermined trials (correctly and incorrectly cued)
preceding left and right hand movements (time-locked to movement onset, averaged across
the 500 ms preceding movement onset). On average, 40 left hand trials (SD = 4.25) and 42 right
hand trials (SD = 3.78) were included per participant. B) Mean difference in beta-band power
between the hands (left minus right hand). Channel clusters (black dots) were identified with a
nonparametric cluster-based permutation test (n=17).

We examined whether beta-band power within these channels during the
cueing phase reflects a hand selection process. Figure 2.4 illustrates relative
beta-band power as a function of time, aligned to cue onset (left panels) and
response onset (right panels), for both the choice and predetermined trials
at the PSE and extreme cues, separately for sensor clusters ipsilateral and
contralateral to the selected hand. While there appears a clear difference
after cue presentation between choice and predetermined trials in the
contralateral cluster, this effect is less pronounced in the ipsilateral cluster.
In the contralateral cluster, the power in the beta-band after onset of the
cue decreased more in predetermined than choice trials; this difference is
sustained untilresponse onset, and appears slightly larger for cues at PSE than
at an extreme location. An instruction (predetermined, choice) x cue direction
(PSE, extreme) x sensor cluster (ipsilateral, contralateral) repeated measures
ANOVA with beta-band power aligned to cue onset revealed significant
main effects of sensor cluster (F(1, 16) = 40.61, p < 0.0001), consistent with
the contralateral selectivity, and instruction (F(1, 16) = 20.14, p < 0.001),
consistent with a smaller decrease in beta-band power in choice trials than
in predetermined trials. Similar results were found for the signal aligned to
response onset, with significant main effects of sensor cluster (F(1,16) =83.77,
p <0.0001) and instruction (F(1, 16) =20.42, p<0.001).

There was no main effect of cue direction on beta-band power aligned to cue
onset (F(1,16) =2.30, p=0.149) or aligned to response onset (F(1, 16) =1.31,
p=0.269), nor were there any significant interaction effects. One could expect
that in the contralateral hemisphere, for choice trials but not predetermined
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trials, there would be more competition between the hands, and thus more
uncertainty, for PSE than for extreme cues. However, an instruction (choice,
predetermined) x cue direction (PSE, extreme) repeated measures ANOVA
on beta-band power aligned to cue onset in the contralateral cluster only
showed a significant main effect of instruction (F(1, 16) =29.67, p < 0.0001).
The interaction between instruction and cue direction was not significant
(F(1, 16) = 0.64, p = 0.436). Also a Bayesian ANOVA revealed a Bayes factor
for the interaction between instruction and cue direction of 0.423, which can
be interpreted as inconclusive evidence (Jeffreys, 1961). Similar results were
found when the signal was aligned to response onset.
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Figure 2.4. Beta-band power. Relative beta-band power as a function of time in the contralateral
(left columns) and ipsilateral (right columns) sensor cluster for the PSE (upper row) and
the extreme cue (bottom row). Left and right subpanels show the signal aligned to cue and
movement onset, respectively. Shaded areas represent SEM. Repeated-measures ANOVAs with
the average beta-band power during the time window from cue onset until 1 s after cue onset and
the time window from 1 s before response onset until response onset revealed significant main
effects of instruction and sensor cluster (n = 17). The number of trials included per participant
was higher in the choice condition (PSE cue: M =69, SD=7.01; extreme cue: M =132, SD=10.53)
than in the predetermined condition (PSE cue: M =17, SD =2.09; extreme cue: M =16, SD =2.15).

Toexamine whetherthe effect of effectoruncertainty isspecific to the signalin the
beta-band, we performed the same analysis in the alpha (8 to 12 Hz) and theta-
band (5 to 7 Hz) frequency range. Power in the alpha-band is known to show a
similar reduction to beta-band power prior to movement onset (Pfurtscheller,
1992). However, alpha-band power does not modulate with directional
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uncertainty about the upcoming movement (Tzagarakis et al., 2015). Figure 2.5A
shows the power in the alpha-band as a function of time, grouped based on
instruction (predetermined, choice), cue direction (extreme, PSE), and sensor
cluster (ipsilateral, contralateral). A repeated-measures ANOVA on the average
alpha-band power during the cue phase did not reveal any significant main
effects of instruction (F(1, 16) =2.77, p=0.116), cue direction (F(1, 16) =0.77,
p = 0.393), or sensor cluster (F(1, 16) = 4.46, p = 0.051), or any significant
interaction effects.

Finally, we examined the effect of effector uncertainty on the oscillations in
the theta-band, which have been implicated in motor planning and anticipation
(Dufour, Thénault, & Bernier, 2018; Perfetti et al., 2011). Figure 2.5B shows
the power in the theta-band as a function of time during the cueing phase. A
repeated-measures ANOVA did not reveal significant main effects of instruction
(F(1,16) =0.00, p=0.967), cue direction (F(1, 16) =0.85, p =0.371), or sensor
cluster (F(1,16) =0.45, p=0.514), or any interactions.
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Figure 2.5. Alpha-band and theta-band power. A) Relative alpha-band power as a function of
time aligned to cue onset in the contralateral (left columns) and ipsilateral (right columns)
sensor cluster for the PSE (upper row) and extreme cue (bottom row). Shaded areas represent
SEM. B) Relative theta-band power as a function of time. Configurations the same as panel A.
Repeated-measures ANOVAs with the average alpha-band and theta-band power during the
time window from cue onset until 1 s after cue onset did not reveal any significant effects of
instruction, cue location and sensor cluster (n=17). These analyses included the same trials as
reported in Figure 2.4.
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2.4 Discussion

To investigate the effect of effector uncertainty on beta-band oscillatory
activity during motor preparation, participants performed a hand reaching task
whereby the effector to use was either predetermined or free of choice. We
hypothesized that competition between the left and right hand would be low,
independent of the cue direction, if the hand to be used was predetermined.
If participants were free to choose a hand, we expected greater competition
and hence a smaller decrease in beta-band power. Additionally, we expected
more competition during hand choice for the PSE cue, where the right and left
hand were chosen equally often, than for eccentric cues. Results indicate that
effector competition indeed affects beta-band power during motor planning:
when participants were free to choose the hand to use beta-band power
decreased less than when the hand to use was predetermined. We did not
observe a significant effect of cue direction on beta-band power.

Thestrength of the presentstudyis the use of a cueing paradigm inahand choice
experiment, which allowed to validate that participants prepared the movement
in a clearly defined and motion-artifact-free analysis interval. Our results
demonstrate that effector uncertainty induced by instruction affected beta-
band power over central brain areas during motor planning. More specifically,
beta-band power decreased less when participants were free to choose the
hand to use than when the hand was predetermined. Lower levels of beta-
band power are thought to be associated with a readiness to move (Khanna &
Carmena, 2017). This idea is in line with our expectations, as the instruction to
use a specific hand should diminish competition between left and right-hand
motor plans, and therefore ease motor planning. This is further underlined by
the observation that instruction also affected reaction times: reaction times
were longer when participants were free to choose the hand to use than when
the hand was predetermined. This reaction time pattern has been previously
observed by Oliveira et al. (2010) and is thought to show that hand selection
comes with a cost. All in all, our results suggest that beta-band power was
affected by effector uncertainty induced by instruction, with a smaller decrease
in power when participants chose the hand for the ensuing reach.

Contrary to our expectations, our results do not show an effect of cue direction,
neither on beta-band power, nor on reaction times. We expected that reaches
towards the PSE would elicit more competition between the left and right hand
than reaches towards targets in the periphery, for which one hand is usually
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clearly preferred over the other (Bakker et al., 2018; Oliveira et al., 2010;
Stoloff et al., 2011). Indeed, Oliveira et al. (2010) reported that a reaction time
difference disappeared by restricting reaches to only one hand, as we do in the
predetermined condition. Our experimental cueing paradigm did not elicit a
difference in effector competition for the PSE and extreme targets. A potential
reason can be found in the introduction of incorrect cues, which could have
unintendedly increased uncertainty about the effector to use. For every presented
cue, there was only 50% chance that the target would be presented in the same
direction. The incorrect cues were included to be able to show that participants
prepared their movement during the cueing phase, rather than waiting for
the target. Without this experimental manipulation, it remains questionable
whether participants in fact prepared a movement during the cueing phase.
As a disadvantage, the presence of invalid cues may have resulted in too much
uncertainty about which hand to use and therefore participants did not yet fully
commit to preparing a single hand. It would be interesting for future studies
to develop a paradigm that can control for movement preparation, as in the
present paradigm, while incentivizing participants to commit to the movement.
The effect of cue validity on effector uncertainty should be limited to the choice
trials, as competition is thought to be low for reaches with a predetermined hand,
regardless of the direction of the cue and target. Indeed, our results show that
incorrect cues prolong reaction times for choice trials, but not for predetermined
trials. Thus, the introduction of the incorrect cues might have resulted in a lack of
a difference in effector uncertainty for the PSE and extreme targets for the choice
trials, explaining why no effect of cue direction was observed here.

The absence of an effect of cue direction for the choice trials cannot be explained
by an overall lack of movement preparation during the cue period. Not only do
our results show that incorrect cues prolong reaction times for choice trials, but
hand choice was also biased by the direction of the (incorrect) cue. Additionally,
we found that reaction times were shorter with longer cue times. These findings
suggest that participants prepared the movement based on the cue. Thisisin line
with findings from previous delayed response cueing experiments; Tzagarakis
et al. (2010, 2015) found that reaction times were longer if the cue was less
informative in terms of the direction of the upcoming target, and Oostwoud
Wijdenes et al. (2016) showed that movement variability during a reaching
movement was larger if the preceding cue did not specify the hand to use.

In our analysis, the effect of effector uncertainty induced by instruction on
brain oscillatory activity over central areas of the brain was limited to the
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powerin the beta-band. Even though oscillations in the alpha-band are known
to show a similar decrease in power during motor planning to oscillations in
the beta-band (Pfurtscheller, 1992), we did not observe a modulation of
alpha-band power based on effector uncertainty. This is in line with findings
for directional uncertainty where beta-band but not alpha-band power
decreases more if target direction is more certain (Grent-'t-Jong et al., 2014;
Tzagarakis et al., 2015). Additionally, Rhodes et al. (2018) found that alpha-
band power during a cue period only decreases (followed by an increase) if the
direction of the upcoming target is unambiguous, suggesting the activity to be
related to movement execution processes rather than motor planning. It thus
seems as if alpha-band and beta-band power over central areas of the brain
reflect complementary but distinct processes, with alpha-band power being
insensitive to uncertainty about the upcoming movement.

Theta-band power is known to increase during motor planning (Perfetti et al.,
2011), and has been shown to modulate with the anticipation of visual feedback
(Dufour et al., 2018). Here, we did not observe a modulation of theta-band
power based on effector uncertainty induced by instruction. Thus, the effect
of effector uncertainty on oscillatory power during motor planning seems to
be reflected in beta-band power specifically, with the reservation that we did
not analyze power changes in the gamma band. Van Der Werf et al. (2010)
have reported direction-selective synchronization in the 70 to 90 Hz gamma-
frequency band, originating from the medial aspect of the posterior parietal
cortex, when planning a reaching movement. Future work should address
whether gamma-band synchronization also modulates with hand choice.

How the modulation of beta-band power over central areas of the brain
coincides with other changes in neural activity observed during effector
selection remains to be answered. Here, we focused on beta-band activity
from channels positioned along the central coronal plane of the head, covering
central areas of the brain. Localizing the exact neural source of this activity,
however, was not one of the main objectives of this study. Previous studies have
attempted to find the source of neural activity related to effector uncertainty.
Hand choice has, for instance, been shown to be related to the phase of delta-
band oscillations at the onset of the reach target in the dorsal premotor cortex
and primary motor cortex contralateral to the hand used (Hamel-Thibault et
al., 2018). Additionally, BOLD activity appears to be modulated by effector
uncertainty in parietal cortex (Fitzpatrick et al., 2019), which is in line with the
finding that TMS over the posterior parietal cortex biases hand choice (Oliveira
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et al., 2010). It remains unknown whether these phenomena, distinct in the
type of neural activity and source location, are linked, and for example arise
from activity in the same neuronal ensembles, or whether these findings arise
from independent processes.

In general, motor decisions are thought to be biased by the expected utility of
potential movements. This utility depends on the costs and benefits of a certain
movement and is based on the location of the movement target relative to the
effector. However, also other factors might be taken into account, such as the
task or trial instruction. Neural activity related to motor decision making based
on utility is thought to intertwine with the activity related to motor planning
(Cisek, 2006). Evidence for this has been found in both human (Grent-'t-Jong et
al., 2014,2015; Tzagarakis etal., 2010, 2015) and non-human primates (Basso &
Wurtz, 1997; Cisek & Kalaska, 2005; Glaseretal., 2018; Klaesetal., 2011). Inline
with this, we observe an effect of motor decision making on beta-band power - a
neural marker of motor planning (Jasper & Penfield, 1949; Pfurtscheller, 1992).

Our results are in line with the idea that motor plans for the two arms are
prepared in parallel and compete for execution. We found that beta-band
power during movement preparation decreased less with higher effector
uncertainty, and thus more competition between the two hands, suggesting
less commitment to a single motor plan. The idea of parallel processing of
motor plans has however been a topic of debate. Bernieretal. (2012) suggested
that effector selection actually precedes motor planning. In their experiment,
they found activity in the parietal and premotor cortex contralateral to the hand
used, butthis was only observed after target onset, and thus after the hand was
thought to be selected. However, their hand choice experiment differed from
the paradigm used here. Bernier et al. (2012) asked participants to reach to
two eccentric targets. Additionally, participants never actually chose the hand
to use themselves, but were eitherinstructed early on in the trial (based on the
cue) or at target onset. Both the location of the targets and the instruction of
the hand might have diminished possible competition between left and right
hand movement plans, similar as to the predetermined reaches towards an
extreme target direction here. It is important to point out though that Bernier
et al.'s (2012) findings are in line with results from monkey studies that show
that neuronal activity only encodes selected reach plans, instead of potential
reach plans, in area 5 (Cui & Andersen, 2011) and dorsal premotor cortex
(Dekleva et al., 2018). Based on these results, Dekleva et al. (2018) challenge
the idea of the parallel specification of motor plans for potential reaching
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actions (Cisek & Kalaska, 2005), and suggest that evidence for the encoding
of multiple motor plans is simply a result of trial averaging. Unfortunately, we
lack the signal-to-noise ratio to address this issue at the single trial level, but
this would be an interesting issue for further research.

The difference in beta-band power between predetermined and choice
trials observed here fits with the idea that effector uncertainty modulates
oscillatory activity. However, factors other than effector uncertainty may have
affected beta-band power during the experiment as well. For example, muscle
co-contractions during control of arm posture have been shown to modulate
beta-band power (Snyder, Beardsley, & Schmit, 2019). Here, most trials in
which participants moved both hands were choice trials (76 out of the 85 trials
in total with two-hand movements that were removed from the analysis). Even
though this supports the notion of higher effector uncertainty for the choice
trials, this could also indicate that muscle activity in the two arms was higher
for choice than predetermined trials. In line with this, for the predetermined
trials, muscle activity during the delay period could be increased in the
instructed arm only as a result of response inhibition. Future work should
address whether the differences observed in beta-band power correlate with
muscle contraction forces.

[t could also be asked whether the unbalanced number of trials in the
predetermined and choice conditions biased our conclusions. While
participants completed 100 predetermined trials versus 800 choice trials, we
do not believe that participants perceived the predetermined cue stimulus as
a deviant. The effect of instruction on beta-band power did not show up just
shortly after the presentation of the cue, which might reflect the processing of
a surprising visual stimulus, but appeared to be sustained and to even increase
throughout the cue period. In support, although the data for the predetermined
trials had slightly larger variability than the data for the choice trials, the main
effect of instruction on beta-band power was highly significant (p < 0.001).

In conclusion, the results of this study suggest that effector competition during
motor planning is reflected in beta-band, but not alpha or theta-band, power
over central regions. More specifically, beta-band power decreased less with
more competition between the leftand right hand. Alpha and theta band power
lacked these modulations. Our findings support the more general idea that the
brain specifies multiple possible effector-specific actions in parallel up to the
level of motor preparation.
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Abstract

The brain’'s computations for active and passive self-motion estimation can
be unified with a single model that optimally combines vestibular and visual
signals with sensory predictions based on efference copies. It is unknown
whether this theoretical framework also applies to the integration of artificial
motor signals, like those that occur when driving a car, or whether self-motion
estimation in this situation relies on sole feedback control. Here, we examined
if training humans to control a self-motion platform leads to the construction
of an accurate internal model of the mapping between the steering movement
and the vestibular reafference. Participants (n = 15) sat on a linear motion
platform and actively controlled the platform’s velocity using a steering wheel
to translate their body to a memorized visual target (Motion condition). We
compared their steering behavior to that of participants (n =15) who remained
stationary and instead aligned a non-visible line with the target (Stationary
condition). To probe learning, the gain between the steering wheel angle and
the platform or line velocity changed abruptly twice during the experiment.
These gain changes were virtually undetectable in the displacement error in
the Motion condition, whereas clear deviations were observed in the Stationary
condition, showing that participants in the Motion condition made within-trial
changes to their steering behavior. We conclude that vestibular feedback
allows not only the online control of steering, but also a rapid adaptation to
the gain changes in order to update the brain's internal model of the mapping
between the steering movement and the vestibular reafference.
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3.1 Introduction

Self-motion estimation depends on the integration of sensory and motor
information. During passively generated motion (e.g., a passenger in a moving
car), perception of self-motion comes primarily from the visual system, which
provides optic flow cues (Britten, 2008), and the vestibular system (Angelaki
& Cullen, 2008; Medendorp & Selen, 2017). Because sensory signals may be
ambiguous (e.g., the otoliths cannot distinguish between translational motion
and gravitational acceleration), the brain is thought to use an internal sensory
integration model that combines sensory information from different modalities
to form a final self-motion percept (Angelaki, Shaikh, Green, & Dickman, 2004,
Clemensetal., 2011; Merfeld, Zupan, & Peterka, 1999).

When the motion is generated actively, the brain can also integrate information
related to the motor command to estimate self-motion (for a review, see
Brooks & Cullen, 2019). In fact, self-motion is judged better when it is actively
generated than passively imposed (Carriot, Brooks, & Cullen, 2013; Genzel,
Firzlaff, Wiegrebe, & MacNeilage, 2016; Medendorp, 2011; Sanders, Chang,
Hiss, Uchanski, & Hullar, 2011). Also, patients with vestibular deficits perceive
self-motion significantly better when self-generated (Glasauer, Amorim,
Viaud-Delmon, & Berthoz, 2002; Kaski et al., 2016; Medendorp, Alberts,
Verhagen, Koppen, & Selen, 2018; Worchel, 1952).

While these findings could be interpreted as evidence that vestibular signals
(and sensory signals more generally) are functionally less important in
actively moving subjects, recent modeling work has provided a unified theory
for how active and passive motion can be estimated (Cullen, 2019; Laurens
& Angelaki, 2017), with a fundamental role for both sensory signals and the
efference copy. According to this theory, a multisensory self-motion estimate
is computed using sensory prediction errors, i.e., the difference between
actual and predicted sensory signals. During active motion, motor commands
can be used to anticipate the corresponding sensory reafference, such that
the sensory prediction error is minimal. In contrast, sensory activity cannot
be anticipated during passive motion, resulting in non-zero sensory prediction
errors, which then drive the self-motion estimate.

Under both active and passive motion, vestibular signals (as well as other
sensory signals like vision) are continuously monitored to update the internal
prediction. Thus, without intact sensory organs, the sensory prediction errors
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cannot be corrected, and the self-motion estimate may no longer be accurate
during either active or passive motion. Because sensory information and motor
commands, as well as the neural processing itself, are endowed with intrinsic
random noise, Laurens and Angelaki (2017) modelled the computations using
a Kalman filter to determine the optimal (Bayesian) estimate of self-motion.
Given uncertainty in the moment-to-moment sensory information, such a
Bayesian computation also relies on a priori expectations about incoming
sensory signals (Clemens et al., 2011; Laurens & Droulez, 2007; MacNeilage,
Ganesan, & Angelaki, 2008; Prsa, Jimenez-Rezende, & Blanke, 2015).

While this framework suggests that not only sensory signals but also efference
copies of motor commands are critical in self-motion perception, it is agnostic
as to the nature of the motor signal. This opens up the possibility that also
artificial (or indirect) motor signals can be used for self-motion perception, as
long as they are associated with an accurate internal model for predicting the
sensory reafference. Such artificial motor signals are for example generated
when driving a car; the steering is cognitively mediated and of efferent nature.
The use of such artificial motor signals for self-motion perception is the topic
of the present study.

Data on this issue are sparse and contradictory. For example, Roy and
Cullen (20071) taught monkeys to drive themselves using a steering wheel
that controlled the speed of the turntable on which they were seated. They
compared neural activity between an active steering condition and voluntary
head rotation conditions. While neuronal activity was suppressed at early
sensory levels during active head rotations, reflecting a near-zero prediction
error, this was not observed during self-generated driving, during which
neurons responded as if the motion was externally applied. These findings
suggest that an artificial motor signal, here a cognitive steering signal, is not
used to predict the sensory afference at early sensory levels. In contrast, other
work (Jacob & Duffy, 2015; Page & Duffy, 2008) has reported that neurons in
the dorsal stream (medial superior temporal area) show altered responses to
visual self-motion when monkeys steerto move in a certain direction compared
to when they passively view the same optic flow pattern (but see also Egger &
Britten, 2013), asif the brain not only relied on sensory self-motion information
but also made an internal model prediction based on steering-related signals.
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In the present study we address this issue in humans, testing whether and
how steering-related signals are used in self-motion perception. Recent
virtual reality experiments examined how humans (and monkeys) virtually
navigated to a memorized location by integrating optic flow generated by their
own joystick movements (Alefantis et al., 2022; Lakshminarasimhan et al.,
2018; Stavropoulos et al., 2022). Biases in their steering depended on optic
flow density, as a marker of the reliability of sensory evidence, and the control
gain of the joystick, as a measure of the internal model prediction of the optic
flow, suggesting that the brain combined both signals in the percept of non-
vestibular self-motion. However, the authors mainly focused on the processing
of visual information, and the role of the vestibular sense was only studied
under continuously changing control dynamics of the joystick (Stavropoulos
et al., 2022). It remains unknown if the brain formed an internal model to
predict the vestibular self-motion signal or whether it solved the task primarily
using vestibular feedback control, without relying on the control dynamics.
In support of the latter, vestibular feedback control models have previously
been suggested for goal-directed path integration, in which the distance of
a traveled path is computed from the sole inertial sensory input (Glasauer,
Schneider, Grasso, & lvanenko, 2007).

We created a motor signal of cognitive nature (an artificial efference copy)
and test how it is used in combination with vestibular-derived self-motion
signals. This outflow signal was generated by training subjects to drive their
own body, by handling a steering wheel that controlled the lateral motion
velocity of a vestibular platform, to a memorized visual target (Motion
condition). We examined how vestibular feedback is used in the online
control of steering and studied the dynamics by which the mapping between
steering movement and resulting vestibular feedback - the internal model -
is learned by abruptly changing the gain between the steering wheel angle
and the velocity of the platform twice during the experiment. If participants
construct an internal model of the mapping between the steering movement
and the vestibular reafference, we expect rapid, within-trial, changes to their
steering behavior after these gain changes in order to align their body with the
memorized target. We compared their behavior to that of participants who did
not have vestibular feedback about their motion, and could thus only employ
a feedforward strategy, as they handled the steering wheel to control a line
cursor (Stationary condition).
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3.2 Methods

3.2.1 Participants

Thirty participants were randomly assigned to one of two experimental
conditions. The Motion group included 15 participants (five men and ten
women) ranging in age from 18 to 35 years, and the Stationary group included
15 participants (six men and nine women) ranging in age from 18 to 29 years.
All participants were naive to the purpose of the experiment and reported to
have normal or corrected-to-normal vision and no history of motion sickness.
The ethics committee of the Faculty of Social Sciences of Radboud University
Nijmegen, the Netherlands, approved the study and all participants gave
written informed consent prior to the start of the study. Participants were
reimbursed for their time with course credit or €12,50. The experimental
session took around 75 minutes per participant.

3.2.2 Setup

The experiment took place in a dark room. Participants were seated on a
custom-built linear motion platform, also called the sled, with their interaural
axis aligned with the motion axis of the sled (Fig. 3.1A). The track of the
sled was approximately 95 cm long. The sled was powered by a linear motor
(TB15N; Tecnotion, Almelo, The Netherlands) and controlled by a servo drive
(Kollmorgen S700; Danaher, Washington, DC, United States). Participants
were restrained by a five-point seat belt and could stop the motion of the sled
atany time by pressing one of the emergency buttons on either side of the sled
chair. A steering wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland)
with a range of rotation from 450 to +450 deg and a resolution of 0.0549 deg
was mounted in front of the participants at chest level. The steering wheel was
placed at a comfortable handling distance from the body for each individual
participant. The angle of the steering wheel encoded the linear velocity of
the sled (Motion condition) or a vertical line cursor (Stationary condition).
Visual stimuli were presented on a 55 inch OLED screen (55EA8809-ZC; LG,
Seoul, South Korea) with a resolution of 1920 x 1080 pixels and a refresh rate
of 60 Hz, positioned centrally in front of the sled track at a viewing distance
of approximately 170 cm. Participants wore headphones during the entire
experiment to mask the noise of the moving sled with white noise sounds. The
experiment was controlled using custom-written software in Python (version
3.6.9; Python Software Foundation).
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Figure 3.1. Experimental setup and paradigm. A) Experimental setup. Participants were seated
with their interaural axis aligned with the motion axis of the sled and turned a steering wheel.
B) Motion condition paradigm. Participants were first shown the body cursor (white line),
followed by the target (orange line). After the disappearance of the target, a beep instructed
participants to turn the steering wheel to translate their body in alignment with the memorized
target location. After the motion, visual feedback about the distance from the reappearing
body cursor to the target location (Feedback I) and the movement duration (Feedback Il) was
provided. C) Stationary condition paradigm. Participants were first shown the line cursor
(white line), followed by the target (orange line). After the disappearance of the target, a
beep instructed participants to turn the steering wheel to translate the memorized line cursor
in alignment with the memorized target location. Participants remained stationary and did not
receive any visual feedback during the steering movement. After the movement, visual feedback
about the distance from the reappearing line cursor to the target location (Feedback I) and the
movement duration (Feedback II) was provided.

3.2.3 Paradigm

3.2.3.1 Motion condition

In the Motion condition, participants turned the steering wheel to laterally
translate their body to align with a memorized visual target. The angle of
the steering wheel encoded the linear velocity of the sled. The experimental
session started with a two-minute familiarization with visual feedback to
become acquainted with the initial gain between the angle of the steering
wheel and the velocity of the sled (1.4 cm/s per deg, see below). After the
familiarization, the main experiment started.

Figure 3.1B shows the sequence of events during an experimental trial. At the
start of the trial, the position of the body midline was presented on the screen
as a vertical white line with a length of 25.4 cm for 1 s. We will refer to this
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line as the body cursor. Next, the target, represented by a vertical orange line
with the same length, was presented for 1 s. The target distance, defined as
the distance from the body cursor to the target location, was 20, 30 or 40 cm.
The target could appear to the left or to the right of the body midline. After
disappearance of the target, a beep was played via the headphones to inform
the participant to start the steering movement to align their body midline with
the memorized target location.

The motion started when the participant turned the steering wheel 0.0549 deg
(one “click") away from the steering wheel angle at trial start. Participants
received no visual information during the motion. As described above, the
initial gain between the angle of the steering wheel and the velocity of the
sled was 1.4 cm/s per deg. To probe learning, the gain changed abruptly twice
during the experiment (trial 1-90: 1.4 cm/s per deg; trial 91-162: 0.8 cm/s per
deg; trial 163-234: 1.4 cm/s per deg). Participants were not informed about
the initial gain or the gain changes, and were instructed to make a smooth
steering movement. The latency between the rotation of the steering wheel
and the translation of the sled was typically lower than 10 ms. The maximum
absolute velocity of the sled was set to 100 cm/s. If the steering wheel angle
encoded a higher sled velocity, it was capped at this maximum velocity
(< 1 trial per participant). During the motion, white noise was played through
the headphones to mask any auditory cues. When the absolute velocity
encoded by the steering wheel angle fell below 2 cm/s the sled stopped, and
the white noise sound ended.

After the motion, participants received feedback about the accuracy of their
displacement and the duration of the steering movement. First, both the body
cursor and the target were presented on the screen for 1 s. This informed
participants about how far they ended from the target location, and whether
they undershot or overshot the target location with their self-generated
motion. To incentivize participants to adequately perform the task they also
received a score. Two points were awarded if the undershoot or overshoot
was smaller than 0.15 times the target distance, represented on the screen by
a translucent orange rectangular area centered on the target stimulus. One
point or zero points were awarded if the undershoot or overshoot was between
0.15and 0.30 times or larger than 0.30 times the target distance, respectively.
Subsequently, a line of text reiterating the score and the total score so far and
a line of text with the movement duration were presented on the screen for 1 s.
Participants were encouraged to finish their steering movement within 900 to
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1300 ms from movement start to ensure suprathreshold vestibular stimulation
while remaining below the maximal sled velocity. The line of text read: “Timing
perfect”if the movement ended after 900 to 1300 ms, and "n ms too short/long” if
the movement took shorter or longer. The lines of text were preceded by colored
circles, with the color quickly informing the participants about their performance
(displacement accuracy: green, orange and red for two, one and zero points,
respectively; movement duration: green, orange and red for a perfect timing,
300 ms too short or long and more than 300 ms too short or long, respectively).

Trials were presented in blocks of six trials with the target presented at
different locations: 20, 30 and 40 cm to the left and right of the body cursor
at trial start. Target distances within a trial block were presented in a semi-
random order, with leftward and rightward displacements alternating, and
each distance presented once in either direction. The sled started a trial at the
location where the previous trial ended. However, if the position of the sled at
the end of a trial was restricting its motion on the next trial (because of the
limited sled track length of ~95 cm) to less than 1.5 times the target distance,
the sled was first passively moved to a position 30 cm away from the middle
of the sled track in the direction opposite that of the upcoming displacement,
leaving ~80 cm for the motion. The main experiment started with 18 practice
trials, during which the experimenter was present for task instructions. The
practice trials were followed by the 234 experimental trials, of which the
first always tested a rightward displacement. The experimental trials were
separated by short breaks (< 2 minutes) after every 36 trials, during which the
lightsin the experimental room were turned on to prevent dark adaptation.

3.2.3.2 Stationary condition

In the Stationary condition, participants turned the steering wheel to laterally
translate a non-visible line cursorin alignment with a memorized visual target,
while the sled (and thus the body) remained stationary. The experimental
session started with a two-minute familiarization with visual feedback to
become acquainted with the initial gain between the angle of the steering
wheel and the velocity of the line cursor (1.4 cm/s per deg, see below). After
the familiarization, the main experiment started.

During the main experiment, targets were presented as in the Motion condition
(Fig. 3.1C). However, instead of the body cursor, participants controlled a non-
visible line cursor that moved independently of the stationary body. At the start
of the trial, the line cursor was presented on the screen in front of the participant,
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aligned with the body midline, as a vertical white line with a length of 25.4 cm for
1 s. After the subsequent presentation of the target, a beep was played via the
headphones to inform the participant to start the steering movement to align the
line cursor with the memorized target. Note that neither the line cursor nor the
target was visible during the steering movement. White noise was played through
the headphones during the steering movement to keep conditions similar.

The gain between the steering wheel angle from trial start and the velocity of
the line cursor changed over trials in the same way as in the Motion condition
(trial 1-90: 1.4 cm/s per deg; trial 91-162: 0.8 cm/s per deg; trial 163-234:
1.4 c¢cm/s per deg). During the steering movement, the position of the line
cursor was updated in the background by adding up the products of the
encoded velocities and the time between steering wheel samples. Contrary
to the Motion condition, no maximum absolute velocity was set. When the
absolute velocity encoded by the steering wheel angle fell below 2 cm/s the
white noise sound ended and participants received feedback and a score as in
the Motion condition (the updated position of the line cursor, in contrast to the
body cursor, was shown along with the target).

Trials were presented in blocks of six trials as in the Motion condition. The
main experiment started with 18 practice trials, during which the experimenter
was present for task instructions. The practice trials were followed by the
234 experimental trials, of which the first always tested a rightward
displacement. The experimental trials were separated by short breaks
(< 2 minutes) after every 36 trials, during which the lights in the experimental
room were turned on to prevent dark adaptation.

3.2.4 Data analysis

Data were processed offline in MATLAB (version R2017a; The MathWorks,
Inc., Natick, Massachusetts, United States). Trials during which participants
displaced the sled (Motion condition) or the line cursor (Stationary condition)
in the direction opposite of the target or during which participants rotated the
steering wheel less than 7.5 deg from the angle at trial start were excluded
from the analysis. Additionally, for the Motion condition, trials during which
the absolute velocity encoded by the steering wheel angle reached the set
maximum of 100 cm/s or during which the sled reached one of the ends of the
sled track were excluded. On average, one trial was excluded per participant
(mean + SD; Motion condition: 1.40 + 1.45 trials per participant; Stationary
condition: 0.67 + 0.82 trials per participant).
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For all included trials movement onset was defined as the first time point
the steering wheel rotated more than 2.5 deg away from the angle at trial
start. Movement end was defined as the first time point after movement
onset the steering wheel angle fell below 2.5 deg from the angle at trial
start. Participants failed to bring the steering wheel angle back within
this range (i.e., stopped steering prematurely) on average on five trials
per participant (Motion condition: 4.60 + 4.17 trials; Stationary condition:
5.20 + 6.70 trials). For these trials, movement end was defined as the time point
the steering wheel angle remained constant for at least 100 ms or reached a
local minimum while encoding a low velocity (i.e., rotated less than 7.5 deg
away from the angle at trial start). Movement duration was defined as the time
between movement onset and movement end. Displacement error was defined
as the distance between the body cursor (Motion condition) or the line cursor
(Stationary condition) at movement end and the target. Negative errors represent
undershoots; positive errors represent overshoots. Relative displacement errors
were computed as the ratio of the displacement error and the target distance.

3.2.4.1 Normalized steering behavior and encoded velocity

To be able to depict changes in steering behavior and the encoded velocity
of the sled or the line cursor in response to the two gain changes across
participants, we first normalized the time traces of the steering wheel angle
and the encoded velocity. For each participant, we first calculated the mean
movement duration, the mean maximum absolute steering wheel angle and
the mean maximum absolute encoded velocity (speed) of the baseline trials
(trials 73-90, the last three trial blocks before the first gain change), grouped
based on target distance and direction. We subsequently normalized the
movement duration, steering wheel angle and encoded velocity samples
on each trial by dividing them by the mean movement duration, the mean
maximum absolute steering wheel angle and the mean maximum speed,
respectively, of the three baseline trials with a corresponding target distance
and direction. Normalized steering wheel angles and normalized encoded
velocities were resampled to 1000 samples per trial using linear interpolation
and were averaged across participants. We then created a corresponding
linearly spaced time vector of 1000 samples for each trial running from zero,
representing movement onset, to the mean normalized movement duration
across participants for plotting purposes.
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3.2.4.2 Scale factors and skewness

To quantify changes in steering kinematics in response to the two gain
changes, we scaled both the raw time and raw steering wheel angle samples
on each trialrelative to the baseline trials with a corresponding target distance
and direction. This linear transformation from baseline trial b to trial of interest
i can be described by:

=% o |*12 (ea.a1)

where t, and t, represent the time vectors, a, and a, the vectors with steering
wheel angles, and s, and s_the scale factors for the time vector and the vector
with steering wheel angles, respectively. To fit the scale factors, the data from
the baseline trialand the trial of interest were first resampled to have matching
lengths (i.e., the trial with the least samples was resampled using linear
interpolation to have as many samples as the longer trial). Subsequently, scale
factors were fitted by minimizing the combined sum of squared errors using
the fminsearch function in MATLAB. For each trial, the fitted scale factors
relative to the three baseline trials with a corresponding target distance and
direction were averaged. This approach is similar to a baseline normalization
of the movement duration and the maximum absolute steering wheel angle of
the respective trial, but because it takes all samples of the trial into account
it is more robust to changes in the shape of the steering profiles (e.g., less
biased by long tails).

We additionally assessed skewness of the time traces of the steering wheel
angle as a function of time by calculating Bowley's coefficient of skewness for
each trial i

Q3; - 2Q,; + Oy, ( 3.2)
p, ==t =% T eqg. o.
' Qs; - Qy,

where B represents the skewness coefficient, and Q,, @,, and Q, represent the
times at which 25%, 50%, and 75% of the total distance travelled during the
trial was covered, respectively. The skewness coefficients were baseline
corrected by subtracting the average of the baseline trials with a corresponding
target distance and direction. Negative skewness coefficients represent left-
skewed steering profiles relative to baseline; positive skewness coefficients
represent right-skewed steering profiles relative to baseline.



Predictive steering in self-motion estimation |

3.2.4.3 Statistics

Statisticalanalyses were donein R (version 4.0.1; see R Core Team, 2017) using
the package ez (version 4.4-0; see Lawrence, 2016). Results were considered
significant if the p-value was smaller than 0.05. To characterize baseline
performance, we examined the average displacement error, movement
duration and the maximum absolute steering wheel angle across the baseline
trials (trials 73-90) with a mixed factorial ANOVA with condition (Motion and
Stationary) as between-subject factor and target distance (20, 30 and 40 cm)
and target direction (leftward and rightward) as within-subject factors. The
results were adjusted according to the Greenhouse-Geisser correction in case
of violations of sphericity. We report the generalized eta squared (n2) as a
measure of the effect size (Bakeman, 2005).

To assess differences in changes in steering behavior in response to the two
gain changes, we compared the behavior on trial 90 and trial 91 (high-to-low
gain change) and on trial 162 and trial 163 (low-to-high gain change). We
examined the change in the relative displacement error, the two scale factors
and the skewness coefficient using a mixed factorial ANOVA with condition
(Motion and Stationary) as between-subject factor and gain change (high-to-
low and low-to-high) as within-subject factor. Data from one participant in the
Stationary condition were excluded from the analyses due to a trial rejection
around the low-to-high gain change. We additionally assessed whether the
change in the relative displacement error was significantly different from zero
in the Motion condition using a one-sample t-test for each gain change. We
report Cohen's d as a measure of the effect size (Cohen, 1988).

3.3 Results

We created a closed-loop steering experiment, in which the participant's
motor signal, enacted through a steering movement, directly influenced the
ensuing body motion, and hence the feedback from the vestibular system. We
examined how vestibular feedback is used in the online control of steering and
studied the time course by which the mapping between steering movement
and the whole-body translation is updated to changes in the control dynamics
(Motion condition). We compared this to the steering of an external object
(aline cursor) in a body-stationary condition (Stationary condition).
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Figure 3.2A shows the mean displacement error across participants as a
function of the trial block per target distance and condition, pooled across
target directions. Displacement errors across the baseline trials (trial blocks
13-15) were similar across conditions (F, ,, = 1.83, p =.187, n2 =.02) and target
directions (F, ,, = 1.97, p =172, né =.02), but varied across target distances
(F1_62,45_41 =33.95, p<.001, né =.28). Participants were most accurate on baseline
trials with an intermediate target distance (mean + SD; 30 cm: 0.60 + 3.94 cm),
overshot the target location on trials with a small target distance (20 cm: 2.81
3.07 cm), and undershot the target location on trials with a large target distance
(40 cm: -3.18 £ 5.34 cm). Displacement errors across the baseline trials thus
showed a range effect (Petzschner & Glasauer, 2011; Poulton, 1975). In the
Stationary condition, participants undershot and overshot the target location
shortly after the high-to-low and low-to-high gain change, respectively,
irrespective of the target distance. However, the gain changes did not seem to
influence the displacement error in the Motion condition. As this apparent lack
of an effect of the gain changes in the Motion condition might be due to the low
temporal resolution (trials were averaged across all six trials composing a trial
block), we will refrain from statistics here. We will zoom in on the effect of the
gain changes on the level of single trials later on.

The apparent lack of an effect of the gain changes on the displacement
error in the Motion condition could also suggest that participants used the
online vestibular feedback to make within-trial adjustments to their steering
movement. These within-trial adjustments are likely to be reflected in the
duration of the movement, the angle of the steering wheel and the velocity of
the sled encoded by the angle of the steering wheel. The velocity of the sled is
directly affected by the gain changes, and both the movement duration and the
steering wheel angle can be adjusted in response to this error.

Figure 3.2B shows the mean movement duration across participants as a
functionofthetrialblock pertargetdistance and condition, pooled acrosstarget
directions. Movement duration across the baseline trials was similar across
conditions (Fm = 0.58, p =.454, n% =.01) and target directions (FL28 = 0.96,
p =337, n% =.005), but varied across target distances (Fi 530001 = 46.57,
p <.001, n2 =.22). Participants took more time for the movement the longer
the target distance (20 cm: 859 + 125 ms; 30 cm: 947 = 112 ms; 40 cm: 1006
+ 111 ms). Overall, the baseline movement duration was at the lower end of
the imposed window from 900 to 1300 ms (Motion condition: 925 + 147 ms;
Stationary condition: 949 £ 111 ms). In the trial block after the high-to-low gain
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change, the movement duration increased immediately in the Motion condition
across all target distances, followed shortly by the Stationary condition.
Movement duration remained elevated, with a larger overall increase for the
Stationary condition. In the trial block after the low-to-high gain change,
movement duration immediately returned to baseline values in the Motion
condition, whereas movement duration decreased a little more gradually in the
Stationary condition.

Figure 3.2C shows the mean maximum absolute steering wheel angle across
participants as a function of the trial block per target distance and condition,
pooled across target directions. The maximum absolute steering wheel angle
across the baseline trials was similar across conditions (F1’26= 0.43,p=.520, nZ
=.01)andtargetdirections(F1'28=1.57,p=.221,n(z;=.004),butvariedacrosstarget
distances (le56= 117.34,p<.001, nZ=.36). Participantsincreased the maximum
angle with increasing target distances (20 cm: 28.74 + 5.23 deg; 30 cm: 34.49
+ 5.60 deg; 40 cm: 39.09 + 6.55 deg). We additionally found a small but
1,28=5'55'
p =.026, né& =.01). This interaction effect seems to be driven by a higher
mean maximum absolute steering wheel angle for leftward than rightward
displacements across the baseline trials in the Stationary condition (leftward:
35.75 + 6.92 deg; rightward: 33.62 + 6.54 deg), whereas the angle was
similar across directions in the Motion condition (leftward: 33.19 + 7.20 deg;
rightward: 33.84 + 7.95 deg).

significantinteractioneffectbetweentargetdirectionand condition (F

In the trial block after the high-to-low gain change, the maximum absolute
steering wheel angle increased in the Motion condition across all target
distances. The maximum absolute steering wheel angle remained relatively
high until the low-to-high gain change, after which it decreased rapidly. In
the Stationary condition, the maximum absolute steering wheel angle also
increased and decreased after the high-to-low and low-to-high gain change,
respectively, but more gradually.

Figure 3.2D shows the mean maximum speed of the sled or the line cursor
encoded by the steering wheel angle as a function of the trial block per target
distance and condition, pooled across target directions. Due to the rapid
changes in the steering wheel angle in the Motion condition in response to the
gain changes, the maximum speed of the sled remained rather constant across
the experiment. In the Stationary condition, the maximum speed of the line
cursor returned to baseline values more gradually.
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Figure 3.2. Displacement error, movement duration, maximum absolute steering wheel angle
and maximum speed. A) Mean displacement error across participants as a function of trial
block grouped based on target distance (panels) and experimental condition (colored lines).
Displacement errors have been averaged across leftward and rightward displacements within
atrial block. Negative numbers represent undershoots; positive numbers represent overshoots.
Colored shaded areas represent between-subjects SEM. Horizontal dark and light gray bands
show the range of displacement errors for which participants received 2 points and 1 point,
respectively. Dashed vertical lines represent breaks, and solid vertical lines represent changes
in the gain between the steering wheel angle and the velocity of the sled (Motion condition) or
the line cursor (Stationary condition). Vertical light gray bands show the baseline trial blocks
(trial blocks 13-15). Amixed factorial ANOVA revealed a significant main effect of target distance
on the baseline displacement error (p <.001; Motion condition: n = 15; Stationary condition:
n=15).B) Same configuration asin A, but with the mean movement duration across participants.
Horizontal light gray bands show the 900 to 1300 ms window within which participants were
encouraged to finish their movement. A mixed factorial ANOVA revealed a significant main effect
of target distance on the baseline movement duration (p <.001). C) Same configuration as in A,
but with the mean maximum absolute steering wheel angle across participants. A mixed factorial
ANOVA revealed a significant main effect of target distance on the baseline maximum absolute
steering wheel angle (p <.001), as well as a significant interaction effect between target
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direction and experimental condition (p =.026, not visible in the figure). D) Same configuration
as in A, but with the mean maximum speed across participants. The speed is directly related to
the steering wheel angle shown in C, with a gain of 1.4 cm/s per deg (trial block 1-15 and trial
block 28-39) or 0.8 cm/s per deg (trial block 16-27).

To be able toinspect the effect of the gain changes at a high temporal resolution
of single trials, while taking the semi-random trial order into account, we
computed the relative displacement error as the ratio of the displacement
error and the target distance. Figure 3.3A shows the relative displacement
error across all trials, separately for the Motion condition and the Stationary
condition. While the relative displacement error straddled closely around zero
in the Motion condition, also after the gain changes, this was not the case in
the Stationary condition, where there are clear deviations following the gain
changes. Figure 3.3B illustrates the difference in the relative displacement
error between the first trial after and the last trial before the gain changes,
showing larger changes in the relative displacement error in the Stationary
condition (high-to-low: -0.53 + 0.28; low-to-high: 0.85 + 0.52) than in the
Motion condition (high-to-low: -0.11 + 0.32; low-to-high: 0.18 + 0.50). A mixed
factorial ANOVA revealed a significant main effect of the gain change (F1.27 =
57.54, p <.001, né =51) and a significant interaction effect between the gain
change and the condition (F1,27 = 23.89, p <.001, né =.30) on the change in
the relative displacement error. This interaction effect indicates that the gain
changes indeed affected the relative displacement error differently across
conditions. Two one-sample t-tests revealed that the changes in the relative
displacement errorin the Motion condition were not significantly different from
zero (high-to-low: t(14) = -1.34, p =.202, d = -0.35; low-to-high: t(14) = -1.39,
p=.186,d=0.36).

The observation that the relative displacement error was virtually constant
across gain changes in the Motion condition, also on the level of single trials,
suggests that participants indeed used the online vestibular feedback to make
within-trial adjustments to their steering movement, as described above.
Figure 3.4 illustrates these within-trial adjustmentsin response to the two gain
changes. Participants in the Motion condition increased the duration and the
absolute steering wheel angle of their steering movement within the first trial
after the high-to-low gain change (trial 91) relative to the previous baseline
trial (trial 90) to compensate for the lower gain (Fig. 3.4A). In the Stationary
condition, no online feedback was available, and participants could thus not
have been aware of the gain changes during the trials immediately after. This
is alsoreflected in their behavior: the duration and the absolute steering wheel

67

|w



68

| Chapter 3

angle of their steering movement remained similar from the trial before the
gain change (trial 90) to the trial after (trial 91), resulting in a substantial
decrease in the encoded velocity and an undershoot of the target location
(see also Fig. 3.3A). In both conditions, however, participants increased
the absolute steering wheel angle in later trials with the low gain, leading
to a restoration of the encoded velocity close to baseline values, as shown
in Figure 3.4B (trial 162). After the low-to-high gain change, participants in
the Motion condition decreased the duration and the absolute steering wheel
angle again within the first trial (trial 163) to compensate for the higher gain.
In the Stationary condition, steering behavior remained the same from the trial
before the gain change (trial 162) to the trial after (trial 163). This resulted in
a substantial increase in the encoded velocity and an overshoot of the target
location (see also Fig. 3.3A).
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Figure 3.3. Relative displacement error. A) Mean relative displacement error across participants
as a function of trial grouped based on experimental condition (colored lines). Relative
displacement error was computed as the ratio of the displacement error and the target distance.
Colored shaded areas represent between-subjects SEM. Dark and light gray bands show the
range of displacement errors for which participants received 2 points and 1 point, respectively.
Dashed vertical lines represent breaks, and solid vertical lines represent changes in the gain
between the steering wheel angle and the velocity of the sled (Motion condition) or the line
cursor (Stationary condition). B) Mean difference in relative displacement error between the
first trial after and the last trial before the gain changes (high-to-low: trial 91 - trial 90; low-
to-high: trial 163 - trial 162) across participants. Violin shape outlines show the kernel density
estimates of the individual participant data points (colored dots connected by colored lines).
Solid and dashed horizontal lines within the violin shapes represent the median and interquartile
range, respectively. A mixed factorial ANOVA revealed a significant interaction effect between
the gain change and the experimental condition (p <.001; Motion condition: n = 15; Stationary
condition: n=14), as well as a significant main effect of the gain change (p <.001).
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Figure 3.4. Steering behavior around the gain changes. A) Average absolute steering wheel
angle (left panels) and average speed (right panels) as a function of time across participants for
the trial before and after the high-to-low gain change (trial 90 and 91, respectively), in the
Motion (green colors) and Stationary condition (blue colors). Values were normalized relative to
baseline. Colored shaded areas represent between-subjects SEM. B) Same configuration as in
A, butwith the trial before and after the low-to-high gain change (trial 162 and 163, respectively).

We next quantified the within-trial adjustments in response to the gain
changes in both conditions at a high temporal resolution of single trials by
scaling of the time-axis and steering wheel angle-axis relative to the baseline
(trials 73-90). With this linear transformation, the axes of the trial of interest
are independently stretched and compressed to match the baseline trial.
Figures 3.5A and 3.5B show the fitted scale factors for the time-axis,
describing the movement duration, and the steering wheel angle-axis,
respectively, across all trials. In line with Figure 3.4, both the movement
duration and steering wheel angle increased relative to baseline immediately
after the high-to-low gain change and decreased immediately after the low-
to-high gain change in the Motion condition. Similar patterns were observed
for the Stationary condition, albeit with a one-trial delay and slower changes
in behavior. Participants in both conditions continued to adjust their steering
behavior in response to the gain changes across trials. This is most clearly
visible after the high-to-low gain change: after the immediate increase in
movement duration and steering wheel angle, participants continued to
increase the steering wheelangle across trials while decreasing the movement
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duration. The latter is not surprising, as we encouraged participants to finish
their steering movement within a time window from 900 to 1300 ms, and
thereby indirectly encouraged them to adjust the steering wheel angle instead
of the movement duration.
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Figure 3.5. Scale factors movement duration and steering wheel angle. A) Mean movement
duration scale factor across participants as a function of trial grouped based on experimental
condition (colored lines). Scale factors were fitted relative to the baseline trials (trials 73-90,
vertical light gray band) with a corresponding target distance and direction. Colored shaded
areas represent between-subjects SEM. Dashed vertical lines represent breaks, and solid
vertical lines represent changes in the gain between the steering wheel angle and the velocity
of the sled (Motion condition) or the line cursor (Stationary condition). B) Same as in A, but
with the steering wheel angle scale factor. C) Mean difference in the movement duration scale
factor between the first trial after and the last trial before the gain changes (high-to-low:
trial 91 - trial 90; low-to-high: trial 163 - trial 162) across participants. Violin shape outlines show
the kernel density estimates of the individual participant data points (colored dots connected by
colored lines). Solid and dashed horizontal lines within the violin shapes represent the median
and interquartile range, respectively. A mixed factorial ANOVA revealed a significant interaction
effect between the gain change and the experimental condition (p =.003; Motion condition: n = 15;
Stationary condition: n = 14), as well as a significant main effect of the gain change (p <.001).
D) Same asin C, but with the steering wheel angle scale factor. A mixed factorial ANOVA revealed
asignificantinteraction effect between the gain change and the experimental condition (p =.003).

Figure 3.5C illustrates the difference in the movement duration scale factor
between the first trial after and last trial before the gain changes, showing a

significant main effect of the gain change (F, , = 14.56, p <.001, n% =.19) and
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a significant interaction effect between the gain change and the condition
(F1.27 =10.34, p =.003, ne =.14). Figure 3.5D illustrates the difference in the
steering wheelangle scale factor across the trials just before and after the gain
changes, showing no significant main effect of the gain change (F1,27 =1.39,p
=.249, né =.03), but a significant interaction effect between the gain change
and the condition (F, ,,=10.66, p=.003, n% =.18). These significant interaction
effects indicate that the gain changes affected the scale factors differently
across conditions. Participants in the Motion condition increased both the
movement duration and the steering wheel angle from one trial to the next
after the high-to-low gain change to compensate for the lower gain, illustrated
by the positive changes in the scale factors (movement duration: 0.15 + 0.12;
steering wheel angle: 0.22 + 0.21). After the low-to-high gain change, these
participants decreased the movement duration and the steering wheel angle
to compensate for the higher gain, illustrated by the negative changes in the
scale factors (movement duration: -0.12 + 0.20; steering wheel angle: -0.20
+ 0.47). As expected, participants in the Stationary condition kept their
behavior constant across the high-to-low gain change (movement duration:
-0.017 £ 0.09; steering wheel angle: 0.04 + 0.15) and the low-to-high gain
change (movement duration: -0.05 + 0.20; steering wheelangle: 0.17 £ 0.42).

These results show that participants in the Motion condition used the online
vestibular feedback to change their steering behavior within the first trial
after the gain changes. We therefore examined the skewness of the observed
steering profiles. If participants in the Motion condition rapidly correct their
steering movement after a gain change, early in the motion, we expect a skew
of the steering profile. We computed Bowley's skewness coefficient for each
trial. This skewness coefficient provides information about how the distance
travelled is distributed across the trial duration. Figure 3.6A shows the
mean skewness coefficient across participants as a function of trial number,
separately for the Motion and the Stationary condition. In the Motion condition,
the skewness coefficient decreased after the high-to-low gain change,
indicating a left-skewed steering profile (i.e., the increase of the absolute
steering wheel angle was slower than the decrease, see also trial 91 in
Fig. 3.4A). After the low-to-high gain change, the skewness coefficient
increased, indicating a right-skewed steering profile (i.e., the increase of the
absolute steering wheel angle was faster than the decrease, see also trial 163
in Fig. 3.4B). Both changes in the skewness coefficient were short-lasting and
did not persist across the trials following the first trial after the gain changes.
In the Stationary condition, skewness coefficients remained rather constant
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across trials and gain changes. Figure 3.6B illustrates the difference in the
skewness coefficient across the trials just before and after the gain changes,
showing a small but significant interaction effect between the gain change
and the condition (F1,27 =5.54, p =.026, N2 =.11). This indicates that the gain
changes affected the skewness coefficient differently across conditions, with
more skewed steering profiles in the Motion condition (high-to-low: -0.017 +
0.033; low-to-high: 0.020 + 0.034) than in the Stationary condition (high-to-
low: -0.001 £0.015; low-to-high: -0.005 + 0.033). No significant main effect of
the gain change was found (F, ., =3.83, p =.061, né =.08).
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Figure 3.6. Skewness. A) Mean skewness coefficient across participants as a function of trial
grouped based on experimental condition (colored lines). Skewness coefficients were baseline
corrected by subtracting the average across the baseline trials (trials 73-90, vertical light gray
bands) with a corresponding target distance and direction. Negative skewness coefficients
represent left-skewed steering profiles; positive skewness coefficients represent right-skewed
steering profiles. Colored shaded areas represent between-subjects SEM. Dashed vertical lines
represent breaks, and solid vertical lines represent changes in the gain between the steering
wheel angle and the velocity of the sled (Motion condition) or the line cursor (Stationary
condition). Insets show the zoomed views of the trials before and after the gain changes.
B) Mean difference in the skewness coefficient between the first trial after and the last trial
before the gain changes (high-to-low: trial 91 - trial 90; low-to-high: trial 163 - trial 162) across
participants. Violin shape outlines show the kernel density estimates of the individual participant
data points (colored dots connected by colored lines). Solid and dashed horizontal lines within
the violin shapes represent the median and interquartile range, respectively. A mixed factorial
ANOQOVA revealed a significant interaction effect between the gain change and the experimental
condition (p =.026; Motion condition: n = 15; Stationary condition: n = 14).
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3.4 Discussion

Participants were tested in a naturalistic self-motion task in which they
actively controlled their own body motion on a motion sled, while traversing
to a remembered target location in darkness (Motion condition). The goal
was to examine whether participants estimated their self-motion based
on the vestibular signals resulting from their body motion and developed
an internal model about the mapping of the steering movement and the
vestibular reafference. To find signatures of this internal model construction
we unexpectedly changed the gain between the steering movement and the
sled motion twice during the experiment and recorded participants' changes
in steering behavior. We compared their steering behavior with that of
participants who controlled a line cursor instead of their own body motion, and
thus did not have access to online vestibular feedback (Stationary condition).

In the Motion condition, the sudden gain changes did not result in systematic
changes in displacement errors (Fig. 3.2 and 3.3). Instead, we observed
within-trial changes in steering behavior immediately after the gain changes;
participants increased and decreased the movement duration and the steering
wheel angle to compensate for the high-to-low and the low-to-high gain
changes, respectively (Fig. 3.4 and 3.5). These within-trial adjustments,
resulting in skewed steering profiles (Fig. 3.6), suggest that participants
continuously monitored and integrated the available vestibular feedback to
keep track of their self-motion when aligning their body with the memorized
target. Additionally, participants continued to revise the movement duration
and steering wheel angle in subsequent trials with the new gain, gradually
improving their adaptation to the new control dynamics (i.e., revise the
movement duration and the steering wheel angle to be able to adhere to the
imposed movement duration). This shift from fast and reactive changes in
behavior to more tactful and planned changes suggests that participants built
and updated an internal model of the steering signal and the associated self-
motion based on the online vestibular feedback.

In contrast, in the Stationary condition, the gain changes resulted in
substantially increased displacement errors (Fig. 3.2 and 3.3). This is not
surprising; participants assigned to this condition found out about the gain
changes at the earliest at the end of the first trial after the gain changes, based
on the visual feedback about their displacement error. Across trials, however,
these participants adjusted their steering behavior based on this feedback
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to compensate for the gain changes; after the gain changes they gradually
changed the movement duration and the steering wheelangle, without changing
the skewness of their steering movement (Fig. 3.4, 3.5 and 3.6), causing the
displacement error to decrease. Overall, the results suggest that also the
participants in the Stationary condition built an internal model, illustrated
by their overall ability to perform the task (i.e., the displacement error at the
end of the baseline did not differ from the Motion condition), and employed a
feedforward control strategy to gradually improve their performance across
trials after the gain changes based on the visual feedback at the end of the trial.

Could participants in the Motion condition have performed the task without
forminganinternalmodel (and thus without online predictions of the self-motion,
i.e., the vestibular reafference)? By integrating the vestibular information
relating to the velocity of the sled over time - as in models of path integration
(Lappe et al., 2007) - participants could have kept track of the position of the
sled in space, and stopped the sled when the required travel distance, specified
by the target, was reached. However, the fast changes in steering behavior in
response to the gain changes, as also shown by the changes in the scale factors
and skewness coefficient describing the steering profiles (Fig. 3.4, 3.5 and 3.6),
suggest that participants had some expectations relating to the velocity of the
sled. So, the tentative explanation of our results is that participants are able to
generate predictions about the vestibular feedback based on artificial motor
signals (i.e., the steering movement) and compare these predictions to the
actual online vestibular feedback in order to estimate their self-motion (Cullen,
2019; Laurens & Angelaki, 2017). These computations are similar to those
underlying the perception of true active self-motion, and our results therefore
suggest that artificial signals, such as the steering motor signal, can serve as an
efference copy that can be integrated in self-motion perception.

Importantly, we do not want to claim that sensory feedback strategies play no
role in this steering behavior. For example, the steering profiles differ slightly
between the Motion and Stationary condition when the adaptation is complete
- the former showing a plateaued phase in steering wheel angle midway the
motion as well as in the associated velocity (as generated by our platform)
while the latter showing a symmetric bell-shaped steering profile. If a bell-
shaped steering profile reflects optimal adaptation, our participants may not
have adapted optimally to the control dynamics, but also may not have ignored
these dynamics. Since the vestibular system, specifically the otolith, is mainly
sensitive to acceleration, a phase of constant velocity sacrifices the reliability
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of vestibular feedback about the motion. To maintain task performance, this
would require the participants to rely on an internal representation of the
control dynamics and an adjusted control policy.

The present study builds on experiments in both self-motion perception and
motor learning. Motor learning experiments, such as force field experiments
during which reaching movements are perturbed by forces applied to the
arm, have shown that participants adapt to new but sustained environments
faster if online (visual) feedback is available (Batcho, Gagné¢, Bouyer, Roy, &
Mercier, 2016; Franklin, So, Burdet, & Kawato, 2007). Additionally, even when
the environment is completely unpredictable and changes from trial to trial,
participants have been shown to be able to use online feedback to adapt by
adjusting their behavior (Crevecoeur, Thonnard, & Lefévre, 2020). Our results are
in line with these observations; after the unexpected gain changes, participants
in the Motion condition, who had online vestibular feedback, adjusted their
steering behavior faster than participants in the Stationary condition. Of note,
reaching movements are often ballistic, with movement durations around 600 ms,
and are therefore likely to depend to a large extent on feedforward processes.
The steering movements in the current experiment were slower, with movement
durations around 900 ms, and there might therefore have been even more time for
online adjustments, making continuous reliance on sensory feedback certainly
a key aspect of the control strategy. Follow-up studies are required to further
investigate the nature of the efference copy and the corresponding internal
model representation based on artificial motor signals.

Our study is one among the few recent studies that tested self-motion
perception under a direct coupling between the actions of the participants
and the sensory feedback (Alefantis et al., 2022; Lakshminarasimhan et al.,
2018; Stavropoulos et al., 2022). These recent experiments imposed fewer
artificial constraints than the traditional open-loop psychophysical paradigms
on self-motion perception (e.g., de Winkel et al., 2013; Dokka, MacNeilage,
DeAngelis, & Angelaki, 2011; Fetsch, Turner, DeAngelis, & Angelaki, 2009; ter
Horst, Koppen, Selen, & Medendorp, 2015; Tramper & Medendorp, 2015). In
the previous psychophysical experiments, the perception of self-motion was
assessed by responses on a two-alternative forced choice task, allowing to
estimate how the brain weighs and adapts to sensory cues during the motion
in the absence of changing motor cues (Tramper & Medendorp, 2015; Zaidel,
Turner, & Angelaki, 2011). While these experiments have led to important
advances in the self-motion perception field, they cannot inform us how cues
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with time-varying noise levels are integrated over longer periods of time or
which utility functions and task dependencies guide the naturalistic closed-
loop navigation behavior.

In a recent study by Stavropoulos et al. (2022), human participants controlled
their self-displacement on a motion platform to navigate to a target with and
withoutthe presence of concurrentopticflow. They found thatsteering behavior
in darkness was biased (i.e., participants undershot the target location), and
therefore concluded that participants could not accurately estimate their self-
motion and update their internal model based on the vestibular cues alone.
This conclusion differs from the present results, but could be explained by
differences in the experimental design. More specifically, their participants
did not receive any performance-related feedback, and the control dynamics
of the motion platform changed from trial to trial, both of which may have kept
participants from building an accurate internal model of the mapping between
the steering movement and the vestibular feedback.

The rapid changes in steering behavior in response to the gain changes
suggest that our participants quickly updated their internal models to
anticipate the ensuing self-motion. Further support for this notion comes from
previous studies showing that, during passive but predictable self-motion,
the effects of the self-motion are anticipated. For example, during passively-
induced angular (for a review, see Blouin, Bresciani, Guillaud, & Simoneau,
2015) and linear whole-body displacements (Sarwary, Selen, & Medendorp,
2013), participants were able to anticipate and counteract the inertial forces
exerted on the arm, resulting in accurate goal-directed reaching movements.
Also Prsa et al. (2015) showed that passive angular displacement estimates
in human participants were biased towards the average over a block of
random displacement magnitudes, suggesting that participants built up some
expectations about the vestibular input.

Roy and Cullen (2001) have shown that neurons in the vestibular nuclei (VN) of
monkeys respond similarly during steering-controlled and passively-induced
self-motion. Under the assumption that the firing rates of neurons in the VN
reflect sensory prediction errors (Brooks et al., 2015; Laurens & Angelaki,
2017), this suggests that no steering-related predictions about the vestibular
reafference are made in the VN. Even though the vestibular cerebellum is often
suggested to house the internal modelfor self-motion estimation because of its
projections to the vestibular nuclei (Cullen, Brooks, Jamali, Carriot, & Massot,
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2011), the internal model of the mapping between steering movements and
self-motion seems located on a more downstream level within the vestibular
processing pathway (Alefantis et al., 2022). This is in line with observations
during the processing of the visual reafference of steering movements; Page
and Duffy (2008) reported that neurons in the medial superior temporal area
in monkeys responded differently to optic flow cues resulting from steering
movements compared to passive viewing of the same optic flow cues.

The use of artificial signals in self-motion perception is currently exploited in
the development of vestibular implants for patients with a vestibular deficit
(Guyot et al., 2016; van de Berg et al., 2017). These vestibular implants
electrically stimulate the vestibular nerve in a biomimetic way and provide
patients with artificial vestibular feedback. Similarly, these patients have been
shown to benefit from tactile and auditory cues that provide information about
the vestibularinput through an arbitrary mapping (forareview, see Guyot etal.,
2016). This mapping has to be learned, similar to the gain in the present study,
and the learning of such a mapping has even been extended to augmenting
perception in healthy human subjects by adding an extra "vestibular” sense
(i.e., head orientation relative to the geomagnetic North) (Schumann &
0'Regan, 2017). Altogether, these experiments show that participants can
learn the mapping between an artificial sensory feedback signal and their self-
motion, similar to the artificial motor signal used in the current study.
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Abstract

Self-motion estimation is thought to depend on sensory information as well as
on sensory predictions derived from motor feedback. In driving, the vestibular
afferencecaninprinciple be predicted based onthe steeringmotor commands if
an accurate internal model of the steering dynamics is available. Here, we used
a closed-loop steering experiment to examine whether participants can build
such aninternal model of the steering dynamics. Participants steered a motion
platform on which they were seated to align their body with a memorized visual
target. We varied the gain between the steering wheel angle and the velocity of
the motion platform across trials in three different ways: unpredictable (white
noise), moderately predictable (random walk), or highly predictable (constant
gain). We examined whether participants took the across-trial predictability of
the gain into account to control their steering (internal model hypothesis), or
whether they simply integrated the vestibular feedback over time to estimate
their travelled distance (path integration hypothesis). Results from a trial
series regression analysis show that participants took the gain of the previous
trial into account more when it followed a random walk across trials than when
it varied unpredictably across trials. Furthermore, on interleaved trials with
a large jump in the gain, they made fast corrective responses, irrespective
of gain predictability. These findings suggest that the brain can construct an
internal model of the steering dynamics to predict the vestibular reafference in
driving and self-motion estimation.
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4.1 Introduction

Sensory feedback, especially visual and vestibular, is important in self-motion
estimation. People can estimate their self-motion from visual (Britten, 2008)
or vestibular (Cheng & Gu, 2018) information alone, but are more precise
when feedback from both is available and integrated (Britton & Arshad,
2019; DeAngelis & Angelaki, 2011; Keshavarzi, Velez-Fort, & Margrie, 2023;
Medendorp & Selen, 2017; ter Horst et al., 2015).

When the motion is generated actively, self-motion estimates also depend
on predictions from internal models of sensory and body dynamics that
transform motor commands into predicted sensory consequences (Brooks &
Cullen, 2019; Laurens & Angelaki, 2017). In combination with actual sensory
feedback, these predictions lead to better estimates of self-motion (Campos,
Butler, & Bilthoff, 2012; Carriot et al., 2013; Genzel et al., 2016; Medendorp,
2011; Sanders et al., 2011), also in patients with vestibular deficits (Glasauer
et al., 2002; Kaski et al., 2016; Medendorp et al., 2018; Worchel, 1952). Both
during passive and active self-motion, the sensory feedback is thought to be
continuously monitored in order to update the self-motion estimate and adjust
the internal model if necessary (Brooks et al., 2015; Prsa et al., 2015).

The role of sensory feedback and predictions in self-motion estimation has been
studied with closed-loop steering experiments in both monkeys (Egger & Britten,
2013; Jacob & Duffy, 2015; Page & Duffy, 2008; Roy & Cullen, 2001) and humans
(Alefantis et al., 2022; Lakshminarasimhan et al., 2018; Stavropoulos et al., 2022;
van Helvert, Selen, van Beers, & Medendorp, 2022). In these experiments, the
self-motionis controlled by a joystick or steering wheel, and the sensory feedback
canin principle be predicted based on the steering motor command if an accurate
internal model of the steering dynamics is available. Alefantis et al. (2022) studied
human steering behavior in a virtual environment and found that participants
were able to navigate the environment on trials with optic flow cues, but also on
interleaved trials without any sensory feedback, suggesting that participants
had formed an internal model of the steering dynamics with training. Similarly,
Stavropoulos et al. (2022) studied navigation with optic flow and vestibular cues
while the steering dynamics varied from trial to trial according to a random walk
(i.e., the dynamics on the previous trial are predictive of the dynamics on the
current trial), from responsive to sluggish steering control. Their participants
could steer accurately whenever optic flow cues were provided, but less so when
only vestibular cues were available and steering control was responsive. It is thus
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not evident that vestibular cues alone can be used to build an internal model by
which the generated self-motion can be predicted based on the steering motor
command under changing steering dynamics. Thisis the topic of the present study.

We have previously examined the role of predictions and sensory feedback,
in particular vestibular feedback, in self-motion estimation in a steering
experiment in which the steering dynamics changed only twice during
the experiment (van Helvert et al., 2022). Seated on a linear motion sled,
participants were instructed to align their body with a memorized visual target
using a steering wheel that controlled their lateral body motion. We found that
participants responded rapidly (i.e., made within-trial adjustments to their
steering movement) to the sudden step changes in the steering dynamics (i.e.,
the gain between the steering wheel angle and their body velocity). Across
trials, participants’ performance gradually improved further by adjusting to the
new steering dynamics. One explanation of these findings is that participants
builtaninternal model of the steering dynamics, which transforms the steering
motor commands into predicted vestibular feedback, that they continued to
update throughout the experiment based on the vestibular feedback (Brooks
et al., 2015; van Helvert et al., 2022). Another explanation is that participants
simply relied on path integration mechanisms (Lappe et al., 2007; Loomis et
al., 1993; Zhou & Gu, 2023), estimating their location relative to the target by
integrating the vestibular information over time without building an internal
model of the steering dynamics. In the present study we aim to distinguish
between these two explanations (internal model versus path integration),
taking inspiration from studies on the adaptation of reaching movements.

Burge et al. (2008) and Wei and Kérding (2010) studied visuomotor adaptation
of reaching movements while the uncertainty of the visual feedback about the
reach endpoint and the uncertainty of the spatial mapping between the reach
endpoint and the visual feedback was varied. It was found that adaptation
proceeded slower with higher visual feedback uncertainty and faster with
higher spatial mapping uncertainty. Gonzalez Castro et al. (2014) compared
adaptation to a force field that varied in strength unpredictably across trials
or to a force field that followed a random walk across trials. They found that
participants relied more on sensory feedback in the unpredictable condition,
while trusting sensory predictions more in the random walk condition.

In the present study, we used a similar experimental design to dissociate the
contribution of vestibular feedback and vestibular predictions in self-motion
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estimation during driving. Participants steered a linear sled on which they
were seated to translate their body to a memorized visual target. We varied the
gain between the steering wheel angle and the velocity of the sled across trials
in three different ways: a white noise condition (unpredictable gain), a random
walk condition (moderately predictable gain) and a constant gain condition
(highly predictable).

We examined the steering behavior for within-trial responses to the vestibular
feedback and vestibular predictions based on an internal model of the steering
dynamics. Furthermore, we assessed the participants’' responses to more
extreme changes in the steering dynamics by introducing large jumps in the
gain (i.e., step trials) near the end of each trial block. If participants simply
integrated the vestibular information over time to estimate the travelled
distance (path integration hypothesis), we would expect to see no differences
in the steering behavior across the three conditions. In contrast, if participants
did take the across-trial predictability of the gain into account (internal model
hypothesis), we expect them to respond fastest to changes in the gain in the
white noise condition, followed by the random walk condition and the constant
gain condition.

4.2 Methods

4.2.1 Participants

The study was approved by the ethics committee of the Faculty of Social
Sciences of Radboud University Nijmegen, the Netherlands. Twenty-six naive
participants took partin the study (7 men and 19 women; 18-30 years old) and
gave their written informed consent before the start of the experiment. They
reported to have normal or corrected-to-normal vision, normal hearing, and
no history of motion sickness. The experiment took around 90 minutes per
participant, and participants were compensated with course credit or €15,00.

4.2.2 Setup

Participants were seated on a custom-built linear motion platform, also called
the sled, and used a steering wheel to control the sled speed (Fig. 4.1A). They
sat with their interaural axis aligned with the motion axis of the sled, such that
they were laterally translated. They were restrained by a five-point seat belt
and could stop the sled motion at any time by pressing one of the emergency
buttons on either side of the sled chair. The experiment was performed in
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darkness. The sled was powered by a linear motor (TB15N; Tecnotion, Almelo,
The Netherlands) and controlled by a servo drive (Kollmorgen S700; Danaher,
Washington, DC, USA). The sled track was approximately 93 cm long. The
steering wheel (G25 Racing Wheel; Logitech, Lausanne, Switzerland) was
mounted at a comfortable handling distance in front of the participant at chest
level and had a resolution of 0.0549° and a range of rotation from -450° to
+450°. The steering wheel angle was recorded at 100 Hz. Participants viewed a
55-inch OLED screen (55EA8809-ZC; LG, Seoul, South Korea) with a resolution
of 1920 x 1080 pixels and a refresh rate of 60 Hz, positioned centrally in front
of the sled track at a viewing distance of approximately 170 cm, and wore
noise-cancelling earphones to mask auditory cues induced by the sled motion
with white noise sounds (QuietComfort 20; Bose Corporation, Framingham,
MA, USA). The experiment was controlled using custom-written software in
Python (v.3.6.9; Python Software Foundation).
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< Figure 4.1. Experimental setup and paradigm. A) Experimental setup. Participants were seated
with their interaural axis aligned with the motion axis of the sled and turned a steering wheel to
control the sled velocity. B) Experimental paradigm. Participants were first shown their location
as a white line, followed by the target location as an orange line. After the disappearance of the
target location, a beep instructed participants to turn the steering wheel to translate their body
and align it with the memorized target location. When the sled speed was again close to 0 cm/s,
visual feedback about the displacement error (Feedback | and Il) and the movement duration
(Feedback I1) was provided. Inset shows the zoomed view of the feedback bars in Feedback II.
C) Sled position, velocity and acceleration as a function of time (aligned to movement onset) for
five representative condition-specific trials in the constant gain condition (gray lines). For each
trial, the measured absolute sled position relative to the start location, the absolute sled velocity
encoded by the steering wheel angle, and the sled acceleration, computed by low-pass filtering
the derivative of the encoded sled velocity using a moving average filter with a window length of
nine samples, are shown. D) Example of the steering gain across trials. Each participant
completed nine trial blocks. Each trial block started with 36 condition-specific trials, in which
the gain varied from trial to trial (white noise and random walk condition) or remained the same
(constant gain condition). Participants were exposed to the exact same gains in the white noise
and random walk condition, but trials were organized such that their lag-1 autocorrelation was
close to zero in the white noise condition and above 0.8 in the random walk condition. Each trial
block was concluded with a baseline trial (gain of 1.0 cm/s per deg), followed by four step trials
(high gain of 1.4 cm/s per deg; dark gray areas) and six washout trials (baseline gain of 1.0 cm/s
per deg; light gray areas). Participants completed three trial blocks per condition, each followed
by a short break (dashed vertical lines), and completed 18 practice trials before the experiment
(baseline gain of 1.0 cm/s per deg).

4.2.3 Paradigm

Figure 4.1B shows the order of events during an experimental trial. At the start
of a trial, a vertical white line aligned with the body midline (width 0.3 cm and
height 25.4 cm) was presented on the screen for 1 second, which represented
the start location of the body. After this, a vertical orange line (width 0.3 cm
and height 25.4 cm) was presented on the screen for 1 second, representing
the target location. The target location was alternately presented to the left
and to the right of the start location of the body. The target distance, defined as
the distance between the start location of the body and the target location, was
always 30 cm. Participants were not informed about the fixed target distance.

After disappearance of the target, a short beep was played via the earphones
to instruct the participant to rotate the steering wheel to align their body
midline with the memorized target location. The sled motion started when
the participant turned the steering wheel 0.0549 deg (the smallest detectable
change) away from the steering wheel angle at trial start. The steering
wheel angle at trial start was typically between -20 and 20 deg, with 0 deg
representing the center of the range. The angle of the steering wheel relative
to the angle at trial start encoded the velocity of the sled, but the exact
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steering gain changed throughout the experiment (see below). The latency
between the rotation of the steering wheel and the translation of the sled was
approximately 25 ms. The maximum speed of the sled was set to 100 cm/s. If
the steering wheel angle encoded a higher sled speed, it was capped at this
maximum speed. The sled stopped when the steering wheel angle fell within
-2 to 2 deg from the start angle, or when the steering wheel angle fell within
-6 to 6 deg from the start angle and remained constant for 100 ms or started
rising again (stopped steering prematurely or started a new steering
movement). If the sled reached one of the ends of the track, it also stopped.
Figure 4.1C shows the sled position, velocity and acceleration as a function of
time for five representative trials. White noise was played via the earphones
during the steering movement to mask auditory cues induced by the
sled motion.

After the sled stopped, participants received feedback about their
performance. First, both the current location of the body and the target
location were presented on the screen for 1s. This informed participants about
how far they ended up from the target location and whether they undershot
or overshot the target location. To encourage participants to be as accurate
as possible, participants received "hit” feedback if the distance between the
current location of the body and the target location was smaller than 4.5 cm.
This "hit" area was represented on the screen by a translucent orange
rectangular area (width 9 cm and height 25.4 cm) horizontally centered on the
target location (Feedback | in Fig. 4.1B). After this, two horizontal feedback
bars (width 15.2 cm and height 1T ¢cm) were shown for 2 s (Feedback Il in
Fig. 4.1B). The center of the feedback bars was green, flanked by orange and
red areas towards the edges. A white bar on the upper feedback bar reiterated
the displacement error, with the center of the green area corresponding to the
target location, and the left and right edges of the green area corresponding to
an undershoot and overshoot of 4.5 cm, respectively (i.e., the "hit" window).
A cheerful sound was played via the earphones if the participant "hit" the
target. A white bar on the lower feedback bar showed the movement duration.
Participants were encouraged to finish their steering movement within
800-1200 ms from movement start to ensure suprathreshold vestibular
stimulation while remaining below the maximum sled speed. The center of the
green area of the feedback bar corresponded to a movement duration of 1000
ms, and the left and right edges of the green area corresponded to a movement
duration of 800 and 1200 ms, respectively. If the displacement error or the
movement duration was out of bounds (i.e., actual location of the white bar
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was more extreme than the left and right outer edges of the red areas of the
feedback bar, corresponding to movement durations of 200 ms and 1800 ms,
respectively), the white bar was presented on the outer edge of the feedback
bar closest to the true location.

The next trial started after the feedback had disappeared. If the location of the
sled at the end of the trial restricted its motion on the next trial to less than
45 cm, the sled was first passively moved to a new starting location. This
starting location was 15 cm away from the middle of the sled track in the
direction opposite of the upcoming target location, leaving approximately
60 cm for the upcoming displacement.

As described above, the steering gain (i.e., the gain between the angle
of the steering wheel and the velocity of the sled) changed throughout
the experiment. All participants experienced three different conditions:
arandom walk condition, a white noise condition, and a constant gain condition
(Fig. 4.1D). In total, the experiment consisted of nine trial blocks, with three
trial blocks per condition. Each trial block started with 36 trials specific to the
condition. On the last of these condition-specific trials, the steering gain was
always 1.0 cm/s per deg (baseline trial), and this trial was always followed by
four trials with a high gain of 1.4 cm/s per deg (step trials) and six trials with
the baseline gain of 1.0 cm/s per deg (washout trials).

For the random walk condition, the gains of the other condition-specific
trials were generated backwards, starting from the baseline trial, in the
following way:

gain; = gain; 1 + noise (eq.4.1)

in which i is the trial number. Noise samples were drawn from a Gaussian
distribution with a mean of 0 cm/s per deg and a standard deviation of 0.1 cm/s
per deg. Random walks were drawn until a walk (excluding the baseline trial)
met the following criteria: a mean gain between 0.99 and 1.01 cm/s per deg,
a standard deviation between 0.139 and 0.141 cm/s per deg, and a lag-1
autocorrelation value higher than 0.8 (i.e., high predictability). Autocorrelation
values were computed by dividing the autocovariance values by the variance of
the gains, such that the autocorrelation values fell within -1 to 1. We controlled
the standard deviation to ensure spread in the gains while avoiding gains more
extreme than the gain on the step trials. The procedure was repeated three
times per participant, yielding three random walks per participant.
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For the white noise condition, the gains from the three random walks, except
for the baseline trials, were shuffled. This was done 10,000 times per walk,
and for each walk the instance with the lowest absolute lag-1 autocorrelation
value was selected (all between 0.001 and -0.001). This way, the condition-
specific trials in the white noise trial blocks had the same means and standard
deviations as the condition-specific trials in the random walk trial blocks. In
the constant gain condition, all 36 condition-specific trials in the three trial
blocks had a gain of 1.0 cm/s per deg (baseline gain).

The conditions were presented in a random order per participant. The number
of repetitions of all six possible combinations was balanced across participants
whose data was included in the analysis (see below). The three trial blocks per
condition were presented consecutively butin random order. At the end of each
trial block, the percentage of "hit" trials was presented on the screen, followed
by a short break (> 45 seconds) during which the lights in the experimental
room were turned on to prevent dark adaptation. Before the experiment, all
participants completed 18 practice trials with a baseline gain of 1.0 cm/s per
deg, during which the experimenter was present for task instructions. In total,
each participant completed 432 trials.

4.2.4 Data analysis

Data were processed offline in MATLAB (v.R2017a; the MathWorks, Inc.,
Natick, MA). Data from two participants were excluded from the analysis
because of their relatively low scores (average percentage of "hit" trials across
trial blocks 48 and 58%; range included participants 66-90%). Trials during
which participants rotated the steering wheel less than 7.5 deg or displaced
the sledin the direction opposite of the target were excluded from the analysis.
Additionally, trials during which the speed encoded by the steering wheel
angle reached the set maximum of 100 cm/s or during which the sled reached
one of the ends of the sled track were excluded. On average, one trial was
excluded per participant (range 0-2 trials).

Movement onset was defined as the first time point that the steering wheel
was rotated more than 2 deg. Movement end was defined as the first time point
after movement onset that the steering wheel angle fell within -2 to 2 deg, or
as the time point after which the steering wheel angle remained constant for
at least 100 ms or reached a local minimum between -7.5 and 7.5 deg (i.e.,
failed to bring the steering wheel back to the start position or started a new
steering movement). Movement duration was defined as the time between
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movement onset and movement end. Displacement error was defined as
the difference between the location of the body at movement end and the
target location. Negative errors represent undershoots and positive errors
represent overshoots.

4.2.4.1 Trial series regression analysis

To examine whether the predictability of the gains affected the steering
behavior on the condition-specific trials in the white noise and random walk
condition, we performed a trial series regression analysis. For each time point
t within trial i, we modelled the steering wheel angle a as a linear combination
of a constant representing the average steering wheel angle at time point t
across trials, the gain on trialj (i.e., the current trial), the gain on trial i-1 (i.e.,
the previous trial), and residual error €:

ai(t) = Bo(t) + By () X gain; + () X gain;_; + &(t) (eq. 4.2)

First, we selected the condition-specific trials (including the baseline trial
but excluding the first trial of each trial block) and sampled the absolute
steering wheel angle every 20 ms from 0 to 800 ms after movement onset
for computational efficiency. Gains were z-scored based on the means and
standard deviations of the gains on the included trials within the corresponding
trial block. Trial blocks from the constant gain condition were not included in
this analysis, because the gain was kept constant throughout the condition-
specific trials, making it impossible to use a regression analysis. The
regression model was fitted per sampled time point within a trial, per trial block
of the white noise and random walk condition, and per participant, yielding
5,904 runs in total (41 time points x 6 trial blocks x 24 participants).

To check whether the autocorrelation in the gains in the random walk condition
could potentially lead to autocorrelated regression coefficients, we used
simulations of the regression modelin Equation 4.2. These simulations showed
that the regression coefficients could be reliably estimated, both when the
autocorrelation values of the predictors were high, similar to the random walk
condition, and when the autocorrelation values were close to zero, similar
to the white noise condition. This shows that the gains were distinct enough
across trials to reliably estimate the regression coefficients described in
Equation 4.2 in both the white noise and the random walk condition.
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Based on the regression coefficients from the regression fits, we additionally
predicted the absolute steering wheel angle as a function of time, as well as
the separate effects of the current and the previous gain on the steering wheel
angle, for the baseline and step trials. To compute the predictions, gains were
z-scored based on the means and standard deviations of the gains from the
included condition-specific trials within the corresponding trial block and were
multiplied with the regression coefficients following Equation 4.2. Predictions
were made per sampled time point within a trial, per trial block of the white
noise and random walk condition, and per participant. If the predicted steering
wheel angle fell below 2 deg, the steering movement ended.

4.2.4.2 Statistics

Statistical analyses were done in MATLAB and R (v.4.0.1; see R Core Team,
2017). The alpha value for statistical significance was set t0.05, and this value
was Bonferroni-correctedin case of multiple comparisons (exact value of alpha
specified with the results of the tests). To compare the overall performance
across conditions and trial block repetitions, we examined the average
displacement error, movement duration and maximum absolute steering
wheel angle across trials within a block using a two-way repeated-measures
ANOVA with condition (white noise, random walk, and constant gain) and trial
block number (first, second, and third repetition) as within-subject factors
using the ez-package in R (v.4.4-0; see Lawrence, 2016). The results were
adjusted according to the Greenhouse-Geisser correction in case of violations
of sphericity, and we report the generalized eta-squared (nZ) as a measure
of the effect size. To examine the responses to the step changes in the gain
across conditions, we averaged the displacement error, movement duration
and maximum absolute steering wheel angle on the baseline trial and the step
trials across trial blocks within a condition and examined differences between
the trials and conditions using a two-way repeated-measures ANOVA with
condition (white noise, random walk, and constant gain) and trial (baseline and
first, second, third, and fourth step trial) as within-subject factors. We used
paired-samples t-tests to directly compare the groups post hoc. To compare
the results of the regression fits across the white noise and random walk
condition, we averaged the regression coefficients across trial blocks within
a condition and compared the values of the regression coefficients across the
two conditions at each time point with a paired-samples t-test in MATLAB.
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4.3 Results

We used a closed-loop steering experiment in which participants steered a
linear sled to align their body with a memorized visual target. We varied the
steering gain in three different ways, and examined whether participants took
the predictability of the gain into account in their steering behavior (internal
model hypothesis) or whether participants simply integrated the vestibular
information over time (path integration hypothesis).

4.3.1 General observations

Figure 4.2A shows the average displacement error across participants as a
function of trial number for each of the three conditions. Participants hit the
target on average in 75% of trials (range 66-90%). The average displacement
error was close to zero in all three conditions (white noise: M = 0.25 cm,
SD=1.12cm;randomwalk: M=0.03cm, SD=1.06 cm; constantgain:M=0.30cm,
SD =1.12 cm) and in all three trial blocks within a condition (first repetition:
M =10.18 cm, SD = 1.22 cm; second repetition: M = 0.32 cm, SD = 1.05 cm;
third repetition: M = 0.09 cm, SD = 1.02 cm). In line, the overall displacement
error did not differ significantly across the conditions (Fué = 1.23,
p=.301, nz =.01 1) oracross the three trial blocks within a condition (F2,46= 1.58,
p =.218, né =.008). Additionally, there was no significant interaction effect
between the condition and the trial block number (F,,, = 1.02, p =.401, ¢

4,92
=.011). The included participants were thus able to hit the target in most trials.

Figure 4.2B shows the average movement duration in the same format as
in Figure 4.2A. On average, participants finished their steering movement
within the imposed time window from 800 to 1200 ms in all three conditions
(white noise: M =970 ms, SD = 97 ms; random walk: M = 994 ms, SD = 108 ms;
constant gain: M = 972 ms, SD = 86 ms) and in all three trial blocks (first
repetition: M =987 ms, SD =101 ms; second repetition: M=974 ms, SD =99 ms;
third repetition: M = 975 ms, SD = 93 ms). There was no significant difference
in the overall movement duration across conditions (F1.61,36.95 = 1.78,
p =.188, n% =.012) or trial blocks (FZ'46 =1.32, p=.277, n& =.004). Additionally,
there was no significant interaction effect between the condition and the trial
block number (F, ,, = 1.32, p =.268, N =.004).

Figure 4.2C shows the average maximum absolute steering wheel angle in the
same format as in Figure 4.2A. The average maximum absolute steering wheel
angle was similar across conditions (white noise: M = 46.7 deg, SD = 7.0 deg;
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random walk: M=44.9 deg, SD = 6.9 deg; constant gain: M=45.7 deg, SD=7.0deg)
and repetitions (first repetition: M = 45.4 deg, SD = 7.1 deg; second repetition:
M = 46.2 deg, SD = 7.0 deg; third repetition: M = 45.7 deg, SD = 6.9 deg). In line,
the maximum absolute steering wheel angle was not significantly affected by the

age _ _ 2 _ . _
condition (ZI-'M6 =2.13,p=.130, Mg =.011) or the trial block number (F, ,; ., ., =1.23,
p =294, N =.003), nor was there an interaction effect (F2 936738 = 1-14, p =.338,
5 93,67.
ng =.002).
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Figure 4.2. Displacement error, movement duration and maximum absolute steering wheel angle.
A) Mean displacement error across participants as a function of trial number grouped based
on the experimental condition (panels). Negative numbers represent undershoots; positive
numbers represent overshoots. Colored shaded areas represent between-subjects means
+ SE. Participants completed three trial blocks per condition in sequence and the conditions
were presented in arandom order per participant. Each trial block was concluded with a baseline
trial, followed by four step trials with a high gain (dark gray vertical areas) and six washout
trials with the baseline gain (light gray vertical areas). Dashed vertical lines represent breaks
and horizontal light gray bands show the range of displacement errors within which participants
“hit" the target. B) Same configuration as in A, but with the mean movement duration across
participants. Horizontal light gray bands show the time window within which participants were
encouraged to finish their steering movement. C) Same configuration as in A, but with the mean
maximum absolute steering wheel angle across participants.
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Figure 4.3. Trial series regression model. The trial series regression model described the steering
wheel angle as a function of a constant, the gain on the current trial, and the gain on the previous
trial. A) Mean value of the regression coefficient representing the constant across trial blocks
and participants as a function of time grouped based on experimental condition (colored lines).
Values represent the average steering wheel angle as a function of time across the condition-
specific trials within a trial block. Colored shaded areas represent between-subjects means *
SE. B) Same configuration as in A, but with the mean value of the regression coefficient of the
current gain across trial blocks and participants. Negative regression coefficients indicate that
participants decreased and increased the steering wheel angle with an increase and decrease
in the gain relative to the mean, respectively. C) Same configuration as in A, but with the mean
value of the regression coefficient of the previous gain across trial blocks and participants. The
regression coefficient differed significantly between the conditions from 180 to 600 ms after
movement onset, as also indicated by the light gray shaded horizontal area (p <.0012).
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4.3.2 Trial series regression analysis

These findings suggest that, overall, the steering behavior was similar across
conditions and trial blocks. However, in the white noise and random walk
condition, the steering gain varied from trial to trial and across participants.
Averaging across trials within a trial block and across participants could
therefore mask effects of the gain on the steering behavior at the single-trial
level. To examine the relationship between the gain and the steering behavior
atthe single-trial level we fitted a trial series regression model (see Methods).
Using this approach, we describe for each condition-specific trial of the white
noise and random walk condition the steering wheel angle at a certain point
in time as a function of the gain on the current trial, the gain on the previous
trial, and a constant (or offset). Figure 4.3 shows the results of the regression
model. The regression coefficient representing the constant as a function of
time follows the average steering wheel profile (Fig. 4.3A). The constant did
not differ significantly across the two conditions (smallest p-value: p =.113 at
560 ms after movement onset; Bonferroni-corrected o =.0012).

Figure 4.3B shows the regression coefficient for the current gain, which was
zero at the beginning of the steering movement and started to decrease after
approximately 300 ms in the white noise condition (significantly different from
zero from 340 to 800 ms after movement onset; range p-values from p =.0008
to p <.0001; Bonferroni-corrected o =.0012) as well as in the random walk
condition (significantly different from zero from 440 to 800 ms after movement
onset; range p-values from p =.0004 to p <.0001; Bonferroni-corrected
a =.0012). Negative regression coefficients indicate that participants
decreased the steering wheel angle with an increase in the gain relative to the
mean gain and vice versa. Participants thus reacted adequately to changes
in the gain from trial to trial by steering against the gain change midway the
steering movement. The regression coefficient for the current gain did not
differ across the two conditions (smallest p-value: p =.0074 at 540 ms after
movement onset; Bonferroni-corrected o =.0012).

Figure 4.3C shows the regression coefficient for the previous gain, which
decreased almost immediately after movement onset and started increasing
again after approximately 400 msin both conditions. The regression coefficient
differed significantly from zero from 40 to 540 ms in the white noise condition
(range p-values from p =.0011 to p <.0001; Bonferroni-corrected « =.0012),
and from 80 to 660 ms in the random walk condition (range p-values from
p =.0009 to p <.0001; Bonferroni-corrected o =.0012). The effect was small



Internal models in active self-motion estimation |

in the white noise condition, as expected. The regression coefficient was
significantly more negative in the random walk condition than in the white
noise condition (significant from 180 to 600 ms after movement onset; range
p-values from p=.0012 to p <.0001; Bonferroni-corrected « =.0012), indicating
that the effect of the previous gain on the steering wheel angle was larger in
the random walk condition. This is in line with the internal model hypothesis,
asitis more advantageous to take the previous gain into account in the random
walk condition because it is more predictive of the current gain due to the
high autocorrelation.

4.3.3 Step trial analysis

To examine whether these differences in the steering strategy across the
conditions were also directly visible in the steering behavior after larger jumps
in the gain, we added four step trials with a high gain of 1.4 cm/s per deg to
the end of each trial block. All step trials were preceded by a baseline trial and
were followed by six washout trials, all with a gain of 1.0 cm/s per deg.

Figure 4.4 shows the displacement error, movement duration and maximum
absolute steering wheel angle for the baseline and step trials, grouped
based on the condition and averaged across trial blocks and participants. To
examine participants' responses to the step changes in the gain, we compared
the baseline trial and the step trials across conditions. In all conditions, the
average displacement error on the first step trial was positive and larger than
the average displacement error on the baseline trial (Fig. 4.4A). There was
a significant main effect of the trial on the displacement error (FA,92 =18.27,
p <.001, né =.205), and post hoc paired-samples t-tests revealed that there
was a significant difference between the baseline trial and all four step trials
(range p-values from p =.002 to p <.0001; Bonferroni-corrected o =.005),
and between the first step trial and the subsequent step trials (all p-values
<.0001; Bonferroni-corrected o =.005). There was no significant main effect
of the condition on the displacement error (Fub =0.83, p =.444, nZ =.006), or
a significant interaction effect (F&184 =0.41,p=.912, 77?; =.007). However, in all
three conditions the overshoot of the target location on the first step trial was
smaller than 12 cm, which is the displacement error that would be expected
if participants did not respond to the increase in the gain (target distance of
30 cm and gain increase from 1.0 cm/s per deg to 1.4 cm/s per deg). This
suggests that participants changed their steering movement online during the
first step trial to compensate for the increase in the gainin all three conditions.
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This is confirmed by changes in the movement duration (Fig. 4.4B) and
maximum absolute steering wheel angle (Fig. 4.4C) from the baseline trial
to the step trials. The movement duration differed significantly across trials
in all conditions (F,,, = 30.57, p <.001, né =.122), with significantly shorter
movement durations on the step trials than on the baseline trial (all p-values
<.0001; Bonferroni-corrected o =.005). Interestingly, the movement duration
increased again across the step trials, with significantly longer movement
durations on the third step trial than on the first and second step trials (range
p-values from p =.0001 to p <.0001; Bonferroni-corrected o =.005). There was
nosignificantmain effect of the condition onthe movementduration (F2146=1.89,
5150 = 0.75, p =.644, NG =.004).
Similarly, the maximum absolute steering wheel angle differed significantly
across trials in all conditions (F,,, = 92.17, p <.001, n% =.205), with a
significantly larger maximum absolute steering wheel angle on the baseline
trial than on all four step trials (all p-values <.001; Bonferroni-corrected «
=.005). The maximum absolute steering wheel angle continued to decrease
significantly across the first three step trials (all p-values <.001; Bonferroni-
corrected o =.005). There was no significant main effect of the condition on
the maximum absolute steering wheelangle (F, ,,=3.01, p =.059, n2 =.020), or
an interaction effect between the trial and the condition (F, ,, =0.79, p =.611,
n2 =.003). Participants seemed to fine-tune their steering behavior after the

8,184
large jump in the gain by increasing the movement duration again slightly and

p =162, n2 =.019), or an interaction effect (F

continuing to decrease the maximum absolute steering wheel angle across the
step trials, thereby minimizing the displacement error while simultaneously
adhering to the imposed time window.

The similarity in the correction across conditions and the fine-tuning of the
steering behavior across the step trials is also shown in Figure 4.5. In this
figure, the steering wheel angle as a function of time is normalized relative to
the baseline trials. For each participant and trial block, we first resampled the
steering wheel angles of the baseline and the four step trials to 200 samples
per trial using linear interpolation. The movement duration and steering wheel
angles on these trials were then normalized by dividing them by the movement
duration and the maximum absolute steering wheelangle of the corresponding
baseline trial, respectively. Normalized steering wheel angles were averaged
across trial blocks and participants, and a corresponding linearly spaced
time vector of 200 samples was created for each trial running from zero,
representing movement onset, to the mean normalized movement duration
across trial blocks and participants.
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Figure 4.4. Displacement error, movement duration and maximum absolute steering wheel angle
on baseline and step trials. A) Mean displacement error across trial blocks and participants as a
function of the trial grouped based on the experimental condition (colored lines). Negative
numbers represent undershoots; positive numbers represent overshoots. Colored shaded areas
represent between-subjects means + SE. B) Same configuration as in A, but with the mean
movement duration across trial blocks and participants. C) Same configuration as in A, but with
the mean maximum absolute steering wheel angle across trial blocks and participants. Inset
shows the maximum absolute steering wheel angles for the baseline and first and second step
trials of the white noise and random walk conditions, predicted based on the results of the trial
series regression model.

As described above, participants decreased both the movement duration and
the maximum absolute steering wheel angle in response to the increase in the
gain from the baseline to the first step trial. They did this already early on within
the first step trial. Even though the responses to the higher gain are similar
across conditions, the decrease in the maximum absolute steering wheel angle
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from the baseline trial to the first step trial seems to be slightly smaller in the
random walk condition, as also shown in Figure 4.4C. Participants continued to
decrease the maximum absolute steering wheel angle across the subsequent
step trials, while slightly increasing the movement duration again towards the
baseline movement duration.

White noise Random walk Constant gain
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Figure 4.5. Steering behavior on the baseline and step trials. Average absolute steering wheel
angle as a function of time across trial blocks and participants for the baseline and step trials

grouped based on the experimental condition (panels). Values were normalized relative to
baseline. Colored shaded areas represent between-subjects means + SE.

Based on the results of the regression model fitted to the condition-specific
trials, we made predictions for the steering wheel angle as a function of time
for the baseline and the first two step trials in the white noise and random
walk condition. Figure 4.6A shows the mean experimentally observed absolute
steering wheel angles as a function of time for the baseline and the first two
step trials. These steering wheel profiles are the same as the profiles shown
in Figure 4.5, but without the baseline normalization. Overall, the steering
wheel angles were slightly smaller in the random walk condition than in the
white noise condition, and this difference is accurately predicted based on the
regression model, as shown in the right panelin Figure 4.6A.

We could additionally separate the effects of the current and the previous gain
on the changes in the steering wheel profiles across the baseline and the first
two step trials. Figure 4.6B shows the products of the regression coefficients for
the current and the previous gain and the z-scored gains as a function of time
for each of the three trials. For the baseline trials, the z-scored current gain was
close to zero, as the gain on the baseline trial was always 1.0 cm/s per deg and
the mean gain across the condition-specific trials within a trial block was set to
be close to the baseline gain. Additionally, since the gain on the trial before the
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baseline trialvaried across trial blocks and participants, the average contribution
of the previous gain is also close to zero for the baseline trial. The steering wheel
angle as a function of time on this trial was thus similar to the constant in the
regression model, representing the average steering wheel angle as a function
of time across the condition-specific trials within the trial block.
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Figure 4.6. Predicted steering behavior on the baseline and step trials, based on the trial series
regression model. A) Mean absolute steering wheel angle as a function of time across trial
blocks and participants for the baseline and the first two step trials in the white noise and random
walk conditions (left panel), and the predicted values based on the regression coefficients of
the regression model (right panel). Steering wheel angles were predicted for the baseline trial
and the first two step trials, per trial block and participant. Colored shaded areas represent
between-subjects means + SE. B) Mean predicted change in the steering wheel angle relative
to the average steering wheel profile, represented by the constant of the regression model,
based on the current and previous gain (shaded areas) as well as the sum (solid colored lines,
colored shaded areas represent between-subjects means + SE) for the baseline and the first two
step trials (horizontal panels) of the white noise and random walk conditions (upper and lower
panels, respectively) across trial blocks and participants. Dashed colored lines show the sum of
the predicted change in the same trial for the other condition as a reference line.
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On the first step trial, the effect of the gain experienced on the previous trial,
the baseline trial, on the steering wheel angle is again very close to zero. The
effect of the gain on the current trial is however large in both conditions. The
predicted change in the steering wheel angle relative to the average angle is
slightly greater in the white noise condition due to the slightly more negative
value for regression coefficient B,, as shown in Figure 4.3B. On the second step
trial, there is an effect of the gain on both the previous and the current trial
on the steering wheel angle. In the random walk condition, the effect of the
previous gain is larger than in the white noise condition due to a significantly
more negative value for regression coefficient B,, as shown in Figure 4.3C.
This leads to a greater overall reduction in the steering wheel angle over time
relative to the mean angle, starting rather early on in the movement. This can
also be observed, albeit a little less pronounced, from the greater reduction in
the maximum absolute steering wheelangle in the random walk condition from
the first to the second step trial in Figure 4.4C (see the inset for the predicted
maximum absolute steering wheel angle), and the greater difference between
the steering wheel profiles of the first and the second step trial in the random
walk condition in Figure 4.5. Hence, there are differences in the steering
behavior across the white noise and random walk conditions, which can be
mainly observed on the second step trial, due to different effects of the gain on
the previous and current trial on the steering wheel angle.

4.4 Discussion

Inthis study, participants used a steering wheelto move theirbody to a memorized
visual target location. They were exposed to three experimental conditions, in
which the gain between the steering wheel angle and the velocity of the linear
motion platform varied with different levels of predictability from one trial to the
next. In the white noise condition, the steering gain varied randomly from trial
to trial (i.e., not predictable), in the random walk condition it was moderately
predictable, and in the constant gain condition it remained constant across trials
(i.e., highly predictable). The goal was to examine whether participants took the
predictability of the gain into account in their steering behavior, by forming and
relying on an internal model of the steering dynamics, or whether they simply
relied on the vestibular feedback in their steering, as in path integration.

Using a trial series regression analysis, we have shown that participants used
a different steering strategy for the white noise and random walk conditions
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(Fig. 4.3). The average steering wheel angle and the regression coefficient
for the current gain were similar across conditions throughout the trial,
but the regression coefficient for the previous gain was significantly more
negative in the random walk condition from 180 to 600 ms after movement
onset. This suggests that participants decreased the steering wheel angle
more in the random walk condition than in the white noise condition if the
gain on the previous trial was higher than the average gain, and vice versa.
Based on the results of the regression model, we also predicted the subtle
differences between the white noise and random walk condition in the
changes in the steering behavior from the baseline to step trials, in which the
gain was suddenly higher for four consecutive trials (Fig. 4.6). Participants
thus took the previous gain into account in the random walk condition, which
is a useful strategy given the high autocorrelation in the gains. We conclude
that participants formed an internal representation of the steering dynamics,
whichisin line with the internal model hypothesis.

In all conditions, including the constant gain condition, participants decreased
the maximum absolute steering wheel angle and the movement duration on the
firststep trial. Acrossthe subsequentstep trials (Fig. 4.5), participantsimproved
their adaptation to the new steering dynamics by simultaneously increasing
the movement duration and decreasing the maximum absolute steering wheel
angle to adhere to the time window imposed in the experiment, similar as in van
Helvert et al. (2022). These tactful changes in the steering behavior underline
the idea that participants built and updated an internal model of the steering
dynamics and the associated self-motion based on the vestibular feedback. In
principle, we could have also predicted the steering behavior on the third and
fourth step trial based on the fitted regression model. For these trials, both the
gain on the current and the previous trial would be the same as for the second
step trial, and the prediction would thus be that the steering behavior remains
the same across these three trials. Even though the changes in the steering
behavior are relatively small across these step trials, see for example Figure 4.4
and 4.5, it seems plausible that participants revised their steering strategy on
these trials, given that the dynamics on the step trials were different from the
dynamics experienced during the condition-specific trials.

In our previous study (van Helvert et al., 2022), participants performed a
similar steering experiment but the steering gain changed only twice during
the whole experiment, comparable with the constant gain condition in the
current experiment. We found that participants responded rapidly to these
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changes in the steering dynamics, suggesting that participants had some
expectations about their velocity and the steering dynamics, but we could
not further distinguish between the internal model hypothesis and the path
integration hypothesis. Here, we dissociate the contribution of vestibular
feedback and predictions by changing the steering dynamics across trials with
different levels of predictability. We show that participants use the vestibular
feedback during the trial to estimate their self-motion, but also that their
steering behavior depends on the predictability of the steering gain. Important
to note, this conclusion is based mainly on the results of the regression model,
in which the data from the constant gain condition could not be included. Due
to the high predictability of the steering gain, we expected participants to
respond slowest on the step trials in the constant gain condition, but the data
did not support this notion. To study steering behavior with a high predictability
of the steering gain, future studies could include white noise and random walk
conditions with varying levels of variability, similar to Burge et al. (2008) who
studied the trade-off between prediction and estimation based on sensory
feedback in reach adaptation.

Stavropoulos et al. (2022) also used a closed-loop steering experiment to
study the role of vestibular feedback and predictions in self-motion estimation.
Participants used a joystick to navigate to a target while the steering dynamics
changed from trial to trial following a bounded random walk. They found
that the steering behavior was biased with responsive steering control and
concluded that participants were not able to accurately steer and build an
internal model of the steering dynamics based on the vestibular feedback
alone. Our previousresults suggested that participants can accurately estimate
their self-motion and suggest that they build an internal model of the steering
dynamics based on just vestibular feedback (van Helvert et al., 2022), and here
we show that they can even do this under steering dynamics that change from
trial to trial. This discrepancy between the results might be explained by the
fact that the velocity of the motion platform used by Stavropoulos et al. (2022)
was close to constant. This may have made it more difficult for participants
to estimate their self-motion, as the vestibular organs and more specifically
the otoliths, which process information about translational motion, are
known to be mainly sensitive to acceleration (Benson, Spencer, & Stott, 1986;
Fernandez & Goldberg, 1976; Fitze, Mast, & Ertl, 2023). Also, participants in
our experiments received feedback about their performance at the end of each
trial, which is likely to have removed any possible biases in participants’ self-
motion estimates.
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The present study is based on previous studies of visuomotor and force field
adaptation in reaching movements that examined the role of sensory feedback
and predictions (Burge et al., 2008; Gonzalez Castro et al., 2014; Wei & Kérding,
2010). These studies showed that participants respond faster to perturbations
if the mapping between the reaching movement and the sensory feedback
is more uncertain, due to a greater reliance on the feedback. Additionally,
Gonzalez Castro et al. (2014) examined motor adaptation when the force field
perturbation strength varied randomly across trials and when it varied according
to a random walk. They showed that participants relied more on predictions of
the perturbation in the random walk condition. This is in line with our finding that
the effect of the previous gain on the steering behavior is more pronounced in
the random walk condition than in the white noise condition.

Our results suggest that participants build an internal model of the steering
dynamics to estimate their self-motion during active steering. Multiple studies
have looked for neural markers of such an internal model and have tried to
unravel its location in the vestibular processing pathway (Egger & Britten,
2013; Jacob & Duffy, 2015; Lakshminarasimhan, Avila, Pitkow, & Angelaki,
2023; Page & Duffy, 2008; Roy & Cullen, 2001). In general, the cerebellum is
thought to play an important role in the internal model computations for self-
motion estimation (Brooks et al., 2015; Cullen, 2023; Laurens & Angelaki,
2017; Rineau, Bringoux, Sarrazin, & Berberian, 2023), also because of its
projections to the vestibular nuclei. Neurons in the vestibular nuclei are
known to distinguish between active and passive self-motion, being less
sensitive to actively generated, and thus predictable, self-motion (Cullen
et al.,, 2011). However, these neurons respond similarly to passive self-
motion and self-motion generated by a steering movement (Roy & Cullen,
2001). One explanation for this may be that the monkeys in the experiment
were not trained enough to build an internal model of the steering dynamics.
Another explanation may be that the cerebellum does not predict the sensory
consequences of the steering movement, and that the internal model of the
steering movement is located more downstream in the vestibular processing
pathway (Alefantis et al., 2022). Similarly, during the processing of the visual
reafference of steering movements in monkeys, markers for an internal model
were found in the medial superior temporal area (Page & Duffy, 2008) and the
posterior parietal cortex (Lakshminarasimhan et al., 2023).

The sensorimotor processes that underlie driving have gained additional
interest with the development of automated vehicles (Nash & Cole, 2020;
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Nash, Cole, & Bigler, 2016). Nash and Cole (2016) have described these
sensorimotor processes in detail, and have shown that a driver model that
includes an internal model of the mapping between the steering wheel angle
and the sensory feedback accurately describes human steering behavior
in their experimental set up (Nash & Cole, 2020). Our results are in line
with these findings. Based on the predictions of such an internal model,
feedforward control actions can be made, which can be extremely importantin
driving given the delays in the sensorimotor system (Nash et al., 2016). Along
these lines, the present results may also stimulate novel concepts for artificial
navigation systems, e.g., those providing independent mobility to sensory-
deprived people and vehicle control.

In conclusion, our results show that participants take the predictability of
changes in the steering dynamics into account during driving. This suggests
that participants build an internal model of the gain between the steering
wheel angle and their self-motion, and use this model to predict the vestibular
reafference in driving and self-motion estimation.
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Natural environments are continuously changing and full of action
opportunities. Yet, we seem to effortlessly move around and interact with
objects in the environment in daily life. In this thesis, | aimed to unravel how
the central nervous system so smoothly selects and controls our movements
in rich and dynamic environments. In Chapter 2, | investigated the neural
processes underlying action selection and movement planning by examining
hand choice. In Chapter 3 and 4, | focused on the computational processes for
online movement control, examining the role of vestibular sensory feedback
and predictions in the control of self-motion during steering. In this chapter,
| will summarize and discuss these findings. | will additionally consider their
broader implications for sensorimotor control and make suggestions for
future research.

5.1 Action selection and movement planning

In Chapter 2, | focused on the neural processes underlying hand selection and
reach planning. In 2005, Cisek and Kalaska reported that the neural activity in
the motor cortex of nonhuman primates simultaneously represents multiple
potential reach targets before the actual target is specified. This was taken
to suggest that the brain prepares multiple movement plans in parallel, while
they compete for selection and execution. Whether this idea of competition and
parallel planning also applies to the selection of left and right hand reaches
has been a topic of debate (Bernier et al., 2012; Oliveira et al., 2010).

To examine whether deciding between using the left or right hand in a reach
leads to the specification of parallel movement plans that compete for
execution, participants were asked to perform a hand choice reaching task
while recording the activity of groups of neurons in central cortical regions
using electroencephalography (EEG; see Box 1 in Chapter 1). To be able to
measure the neural activity during reach planning, the location of the reach
target was announced by a cue presented 1000 to 1500 ms before the actual
target. The cue additionally indicated whether participants were supposed
to reach with the hand of their choice, or whether they had to use the left or
right hand. Reach reaction times were longer when participants were free to
choose which hand to use compared to when the reaching hand was instructed
by the cue. This supports the notion of a competitive process for hand
selection. Additionally, the power of neural oscillations in the beta band during
movement preparation decreased less when participants had to choose which
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hand to use compared to when the hand was predetermined. Lower levels of
beta-band power have been associated with a readiness to move (Khanna &
Carmena, 2017), and these results therefore suggest that participants were
less prepared to move when they had to choose which hand to use. | conclude
that hand choice is governed by a competitive process between movement
plans for the left and right hand, and that this competitive process modulates
beta-band power during reach planning.

Surprisingly, | did not find an effect of the location of the reach target on
reaction times and beta-band power. | expected the competition between
movement plans for the left and right hand to be highest for reaches to the
target location for which participants have an equal probability of using the
left and the right hand (the point of subjective equality or PSE). This lack of an
effect of the target location could be explained by the fact that the location of
the upcoming target was cued incorrectly in half of the trials. These incorrect
cues were introduced to be able to demonstrate that participants started
preparing the movement before target onset, and thus that the neural activity
before target onset was related to reach planning. However, it might have
resulted in participants not fully committing to preparing a movement with a
single hand during the cueing phase.

5.1.1 Serial and parallel processing

While these results are in line with the idea that movement plans for the
left and right hand are prepared in parallel and compete for execution, the
idea of parallel processing is not undebated. Dekleva et al. (2018) recorded
activity from neurons in the motor cortex while monkeys prepared reaching
movements towards two potential targets. They replicated the trial-averaged
findings of Cisek and Kalaska (2005), showing that the neuronal activity
represents both targets before the actual reach target is specified. However,
an additional analysis showed that the activity at the level of a single trial only
represents a single reach plan. This can be taken to suggest that the brain
processes information in a serial manner and decides on the action to execute
before planning the action, instead of preparing multiple potential action plans
in parallel.

Similar to the results described by Cisek and Kalaska (2005), my results are
based on data that were averaged across trials. Unfortunately, the signal-to-
noise ratio of my data was too low to investigate the neural oscillations at the
single-trial level. To assess whether beta-band power during reach preparation
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represents movement plans for a single hand or both hands at the single-
trial level, future studies could try to improve the signal-to-noise ratio of the
data, for example by applying more sophisticated artifact removal techniques
or by reducing muscle artifacts introduced by the reaching movements. The
latter could perhaps be achieved by reducing the distance between the start
positions of the hands and the reach targets. In my experiment, this distance
was approximately 30 cm. Reducing the size of the reaching movement might
make it more likely that the motion remains confined within the arms and hands.
Additionally, if the signal-to-noise ratio is sufficiently high to analyze the beta-
band power at the single-trial level, it may be possible to associate it with the
behavior demonstrated during the trial. For example, a negative correlation
between the decrease in beta-band power during reach planning and reach
reaction times would strengthen the idea that both reflect competition between
left and right hand reach plans during hand choice.

5.1.2 Hand choice during body motion

In general, the decision to reach with the left or right hand is thought to be
based on the desirability and the costs of the two options (Shadmehr et al.,
2016; Trommershauser et al., 2009; Wolpert & Landy, 2012). In daily life, we
often reach while our body is moving. In this situation, the biomechanical costs
of the potential movements depend on the inertial forces exerted on the arms
(Cos et al., 2011). Researchers in my lab have previously investigated how
hand choice is affected by passive body motion, and found that hand choice
is modulated by sinusoidal body motion (Bakker et al., 2019, 2017; Oostwoud
Wijdenes et al., 2022). This sinusoidal modulation of choice behavior was
also visible in a read-out of the corticospinal excitability (Oostwoud Wijdenes
et al., 2022), and might also be visible in beta-band power during reach
planning. To examine this in a future study, participants could perform a hand
choice experiment during body motion while their neural activity is recorded
using EEG. Previous studies have shown that EEG can be reliably recorded
during body motion (Gutteling & Medendorp, 2016; Gutteling, Selen, &
Medendorp, 2015).

The observation that hand choice and corticospinal excitability are modulated
by sinusoidal body motion suggests that participants continuously monitor
the sensory feedback about their body motion and take it into account when
deciding which hand to use. In Chapter 3 and 4, | built upon these studies and
examined the role of vestibular feedback, but also predictions of the vestibular
feedback, in the online control of movements.
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5.2 Online control of movements and motor
learning and adaptation

In Chapter 3 and 4, | focused on the online control of movements and examined
the role of vestibular feedback and vestibular predictions in self-motion
estimation in a closed-loop steering experiment. Of note, our movements
can be the result of our own actions, but they can also be passively imposed.
During active movements, the sensory consequences of the movement can be
predicted by an internal forward model based on efference copies of the motor
commands (von Holst & Mittelstaedt, 1950). For self-motion estimation, the
computations underlying active and passive movements have been formalized
with a single mathematical model (Cullen, 2019; Laurens & Angelaki, 2017).
In this model, active self-motion estimates rely both on sensory feedback and
predictions, whereas passive self-motion estimates rely on sensory feedback
only. However, the model leaves open the possibility that sensory predictions
can be made based on motor signals that have an indirect relationship with
self-motion cues, such as the motor signals that occur when driving a car. It
is unknown whether the brain can also predict the sensory feedback based on
such motor signals. In principle, the sensory feedback could be predicted if an
accurate internal forward model of the steering dynamics is available.

In Chapter 3, | examined if participants could construct an accurate internal
model of the mapping between a steering movement and the vestibular
reafference. Participants were asked to translate their body to a memorized
visual target using a steering wheel that controlled the velocity of the linear
motion platform they were seated on (see Box 2 in Chapter 1). They were able
to learn to control the motion platform and made fast within-trial changes to
their steering behavior in response to unexpected changes in the mapping
between the steering wheel angle and the platform velocity. They additionally
gradually improved their adaptation to the new control dynamics. | compared
their steering behavior to that of participants who remained stationary
during the experiment, and thus did not receive any online sensory feedback.
These participants responded more slowly to the unexpected changes in the
mapping, and | therefore conclude that the online vestibular feedback plays an
important role in the online control of the steering movement.

The finding that participants who received online vestibular feedback
responded rapidly to the unexpected changes in the mapping between the
steering wheelangle and the platform velocity suggests that these participants
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had expectations about the sensory feedback. This in turn implies that they
constructed an internal model of the mapping between the steering movement
and the vestibular reafference. However, these results could in principle also
be explained in the context of path integration, in which participants keep track
of their position by integrating the vestibular feedback over time without taking
predictions of the sensory feedback into account (Grasso et al., 1999). In my
experiment, participants could have simply stopped the platform motion when
their path integration derived position had reached the memorized location of
the target, independent of the mapping between the steering wheel angle and
the platform velocity.

In Chapter4, |thereforeinvestigatedtherole ofsensoryfeedbackandpredictions
during steering in more detail. | aimed to manipulate the contribution of sensory
feedback and predictions by changing the consistency of the mapping between
the steering wheel angle and the platform velocity across trials. | compared
three conditions with varying levels of the predictability of the mapping
across trials: predictable (constant gain), moderately predictable (random
walk), and unpredictable (white noise). Again, as described in Chapter 3,
participants made fast within-trial changes to their steering behavior on
trials with a large jump in the mapping between the steering wheel angle and
the platform velocity irrespective of the predictability of the mapping. This
suggests that online vestibular feedback plays an important role in the online
control of the steering movement. | additionally found that participants took
the mapping between the steering wheel angle and the platform velocity of the
previous trial into account more when it followed a random walk across trials
than when it varied unpredictably across trials. Given that the autocorrelation
in the mapping across trials was relatively high in the random walk condition,
this is a useful strategy. | conclude that participants consider the predictability
of changes in the control dynamics during steering, which suggests that they
construct aninternal model to predict the vestibular reafference.

5.2.1 Trialseries regression analysis

In Chapter 4, | show that participants take the previous mapping between the
steering movement and their self-motion into account more when the mapping
is more predictable across trials. This conclusion is based on the results of a
trial series regression analysis, in which the steering wheel angle at a certain
time point is modelled as a linear combination of the average steering wheel
angle across trials, the mapping on the current trial, the mapping on the
previous trial and a residual error. Even though this relatively simple model
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could reliably show differences across two of the experimental conditions
(moderately predictable and unpredictable mapping), a more complex model
could perhaps uncover more subtle differences in the steering behavior across
conditions. Such a model could for example take the dependencies between
data points within a trial into account (the steering wheel angle at time point
t+1 depends on the steering wheel angle at time point t), and could describe
in more detail how participants relied on the mapping within and across trials
(e.g., how much of what participants learned about the mapping during the trial
do they transfer to the next trial?). Additionally, the use of a regression model
prohibited us from including the data from one of the experimental conditions
due to the constant mapping across trials. Perhaps a more complex model could
describe the steering behavior with a constant gain. Alternatively, future studies
could use the trial series regression model to compare steering behavior across
multiple experimental conditions with a changing mapping across trials but with
different levels of variability (i.e., more or less overall spread in the mapping)
to examine the effect of the reliability of the mapping on the steering behavior.

5.2.2 Neural correlates of internal models in closed-loop steering
experiments

Whether humans and nonhuman primates are able to build an internal model
during steering has been a topic of debate (see for example Angelaki & Cullen,
2008; Danz, 2021; Nash & Cole, 2020). Roy and Cullen (2001) recorded neural
responses in the vestibular nuclei of monkeys during vestibular self-motion
caused by active steering and passive rotations of the body. Neurons in the
vestibular nuclei are known to respond to passive movements of the body but
show decreased firing during active movements. This neural activity is therefore
thought to reflect sensory predictions errors. They found that neural activity
during active steering was similar to that observed during passive rotations.
This suggests that sensory feedback was not correctly predicted during active
steering based on the steering motor commands, and sensory prediction errors
remained. Even though the monkeys were able to make accurate steering
movements, it has been suggested that the monkeys were not exposed to enough
training to build an internal model of the control dynamics of the steering wheel
(Angelaki & Cullen, 2008). Perhaps the activity of neurons in the vestibular
nuclei would decrease during active steering after more extensive training.

Alternatively, predictionsbased on motorsignalsthathaveanindirectrelationship
with the sensory feedback might be processed at a more downstream level
within the vestibular pathway (Alefantis et al., 2022). Typically, the cerebellum
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is suggested to house internal models of the motor system (Wolpert, Miall, &
Kawato, 1998), and more specifically the internal model for the estimation of
active self-motion (Cullen et al., 2011). During visual self-motion in monkeys,
neurons in the medial superior temporal area have been shown to respond
differently to optic flow cues during active steering and passive viewing (Jacob
& Duffy, 2015; Page & Duffy, 2008; but see also Egger & Britten, 2013). Similarly,
in humans, Schmitt et al. (2022) found that neural activity at the cortical level
recorded with EEG differed between passive viewing of an optic flow stimulus
and active reproduction of that same stimulus using a joystick. These differences
in neural activity suggest that the visual sensory feedback was predicted
during active reproduction based on the motor commands generated during the
steering movement, and that these predictions were processed at a relatively
downstream level of the visual processing pathway.

To look for a neural correlate of the internal model of the mapping between the
steering movement and the sensory feedback during vestibular self-motion,
future studies could build upon the experiments described in Chapter 3 and 4
and use EEG to compare neural activity across conditions that differ in the
expected weights on sensory feedback and sensory predictions (e.g., varying
levels of predictability of the mapping between the steering movement and the
vestibular reafference, or active versus passive self-motion).

5.2.3 Reweighting sources of (noisy) information

In Chapter 4, | aimed to manipulate the relative contributions of sensory feedback
and sensory predictions for online control by changing the steering dynamics
across trials. This idea was based on studies in reach adaptation, in which the
experimenters changed the reliability of the sensory feedback and the mapping
between the reach endpoint and the sensory feedback by blurring the visual
feedback and perturbing it with specific statistical regularities, respectively
(Burge et al., 2008; Wei & Kérding, 2010). A similar approach has been used in
a steering experiment in virtual reality in which monkeys and humans used a
joystick to steer to a memorized target location using optic flow cues (Alefantis
et al., 2022). During the experiment, the reliability of the visual feedback was
manipulated by changing the density of the optic flow elements. The reliability
of the mapping between the steering movement and the sensory feedback was
manipulated by perturbing the optic flow and changing the gain of the joystick.

In the framework of Bayesian inference, the brain is thought to combine
information from multiple sources and weigh the information according to its
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reliability (Kérding & Wolpert, 2004). In patients with a sensory deprivation,
the reliability of the information from a certain source might be decreased or
the information might be missing completely. In such a situation, the brain
is thought to build a percept based on the remaining sources of information
(Angelaki & Laurens, 2020; Medendorp et al., 2018). Angelaki and Laurens
(2020) examined this by training monkeys to report the direction of gravity in a
visual orientation task, after which the monkeys underwent surgery that led to
a complete vestibular loss. Three weeks after the surgery, the monkeys were
able to perform the task almost as well as before the surgery, suggesting that
the monkeys learned to use the remaining sources of sensory information to
estimate the direction of gravity.

In a pilot study that has not been included in this thesis, | similarly tried
to examine the mechanisms of multisensory reweighting in vestibular
patients. | was specifically interested to see how patients with a congenital
loss of vestibular function weigh the remaining sensory (i.e., visual and
somatosensory) and prior information to estimate the direction of gravity.
Previously, researchers from my lab have shown that participants who have
slowly developed a vestibular impairment rely almost entirely on visual
information when estimating the direction of gravity (Alberts, Selen, Verhagen,
& Medendorp, 2015; Alberts, Selen, Verhagen, Pennings, & Medendorp,
2018). I tried to generalize these findings to the situation where the participant
had never had a functioning vestibular system. Three participants with Usher
syndrome (type 1) were asked to perform a rod-and-frame task, during which
theyindicated whethera line that was briefly flashed inside a square frame was
rotated clockwise or counterclockwise relative to the orientation of gravity. |
expected them to show a larger effect of the orientation of the square frame
on the judged orientation of the line than healthy control participants due to
an increased weight on visual information (Alberts et al., 2018). Preliminary
results suggest that thisisindeed true for two out of the three participants, but
further research is needed to confirm this in a larger group. However, building
on these experiments, in which the reliability of sources of information is
altered (i.e., actively manipulated or due to loss), would be an interesting
approach for future research to more elaborately study the role of sensory
feedback and predictions in sensorimotor control.

5
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5.3 Conclusion

In this thesis, | have studied the processes underlying action selection and
movement planning, on the one hand, and the online control of movements,
necessitating motor learning and adaptation, on the other hand, as if they are
distinct. However, the brain is thought to continuously and parallelly select,
plan, execute, control and learn from our actions. To describe these processes,
Pezzulo and Cisek (2016) proposed the hierarchical affordance competition
theory, which combines the ideas of parallel processing of movement plans and
feedback control. More specifically, due to the ability of the brain to predict the
consequences of actions, the brain is thought to select and control upcoming
actions by taking directly available action opportunities into account, as well
as those that might become available during or after execution. This process is
continuous and relies heavily on the online sensory feedback, as the potential
actions change over time due to changes in the environment and due to our
own actions. To enable us to smoothly interact with our environment, the brain
is thus thought to continuously define the best upcoming action and to check
whetheritis executed properly through continuous feedback control.

In summary, in the first part of this thesis | investigated the neural processes
underlying action selection and movement planning and showed that reach
plans for the left and right hand are prepared in parallel during hand choice
and compete for execution. This competition is reflected in neural oscillations
over central cortical regions during movement preparation. In the second part
of this thesis, | investigated the computational processes for online movement
control and demonstrated that both online vestibular feedback and vestibular
predictions play an important role in the online control of steering. These
vestibular predictions are based on an internal model of the mapping between
the steering movement and the self-motion. The results of the present thesis
give insight into the processes that underlie the selection and control of our
actions in rich and dynamic natural environments.
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Dutch summary

In ons dagelijks leven lijken we moeiteloos door onze omgeving te bewegen
terwijl we daarbij interacteren met voorwerpen om ons heen. Hoewel onze
omgeving continu verandert en ontelbare mogelijkheden voor interacties
bevat, gaat ons dit meestal gemakkelijk af. Op de achtergrond spelen er echter
complexe en onbewuste hersenprocessen die de noodzakelijke koppeling
tussen perceptie en actie voor interactie met de omgeving tot stand brengen.
In dit proefschrift heb ik een aantal van deze processen onderzocht.

In Hoofdstuk 2 heb ik onderzocht hoe onze hersenen bewegingen selecteren
en voorbereiden. Met behulp van elektro-encefalografie, een methode om
de elektrische activiteit van de hersenen te meten, heb ik bekeken of onze
hersenen tijdens het kiezen van een beweging met de linker- of de rechterhand
in eerste instantie beide bewegingen voorbereiden. De resultaten laten zien
dat proefpersonen langer nodig hadden om met de beweging te beginnen
wanneer ze zelf mochten kiezen tussen de linker- of de rechterhand dan
wanneer de te bewegen hand vooraf bepaald was. Ook zag ik dat de sterkte van
béetagolven, trillingen met een frequentie van 13tot 30 Hz, in de hersenactiviteit
voorafgaand aan de beweging sterker afnam als de te bewegen hand vooraf
bepaald was, wat geassocieerd kan worden met een betere voorbereiding
van de beweging. Deze resultaten suggereren dat de hersenen gelijktijdig
meerdere bewegingen voorbereiden als er gekozen moet worden voor de
linker- of de rechterhand.

In Hoofdstuk 3 en 4 heb ik onderzocht hoe de hersenen er tijdens een beweging
voor zorgen dat de beweging efficiént verloopt op basis van zintuiglijke
terugkoppeling en verwachtingen over de beweging. Hiervoor heb ik gebruik
gemaakt van experimenten waarbij de proefpersonen op een bewegend
platform zaten en een stuur gebruikten om de beweging van het platform
te controleren. In Hoofdstuk 3 heb ik het stuurgedrag van proefpersonen
die op het bewegende platform zaten vergeleken met het stuurgedrag van
proefpersonen die tijdens het experiment niet zelf bewogen maar wel het
resultaat op eenschermzagen. De proefpersonendie zelf bewogenreageerden
sneller op plotselinge veranderingen in de relatie tussen de beweging van het
stuur en het platform dan proefpersonen waar het stuur alleen tot een visuele
verandering leidde. Dit suggereert dat de proefpersonen de informatie van het
evenwichtsorgaan vergeleken met de verwachtingen die ze over de beweging
hadden op basis van hun stuurgedrag.
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In Hoofdstuk 4 ging ik dieper in op de rol van verwachtingen in stuurgedrag
door te onderzoeken of proefpersonen meer vertrouwen op verwachtingen
over de beweging van het platform als de relatie tussen de beweging van het
stuur en de beweging van het platform voorspelbaarder is. Hiervoor heb ik het
stuurgedrag van proefpersonen vergeleken in drie experimentele condities. In
eén conditie bleef de relatie tussen de beweging van het stuur en de beweging
van het platform constant. In de andere twee condities veranderde deze
relatie van beweging tot beweging en was de voorspelbaarheid van de relatie
relatief hoog (“random walk” of "dronkemanswandeling”) of laag ("witte
ruis”). Wanneer de voorspelbaarheid van de relatie relatief hoog was, bleken
proefpersonen in hun stuurgedrag meer rekening te houden met de relatie
tussen de beweging van het stuur en de beweging van het platform tijdens de
voorgaande beweging dan wanneer de voorspelbaarheid van de relatie relatief
laag was. Dit suggereert dat de proefpersonen in de hersenen een interne
representatie, of een intern model, gevormd hadden van de relatie tussen de
beweging van het stuur en de zintuiglijke terugkoppeling over de beweging
van het platform, waarmee ze voorspellingen maakten om de beweging van
het platform beterin te schatten.
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Research data management

This research followed the applicable laws and ethical guidelines. Research
Data Management was conducted according to the FAIR principles. The
paragraphs below specify in detail how this was achieved.

Ethics

This thesis is based on the results of human studies, which were conducted
in accordance with the principles of the Declaration of Helsinki. The Ethical
Committee of the faculty of Social Sciences (ECSS) has given a positive advice
to conduct these studies to the Dean of the Faculty, who formally approved
the conduct of these studies (ECSW2017-0805-504 and ECSW-2022-082).
Data collection was performed at the Donders Centre for Cognition. Informed
consent was obtained on paper following the Centre procedure. The forms are
archived in the central archive of the Centre for 10 years after termination of
the studies. This research was funded by an internal grant from the Donders
Centre for Cognition.

Findable and accessible

The table below details where the data and research documentation for
each chapter can be found on the Donders Repository. All data archived as a
Data Sharing Collection (DSC) remain available for at least 10 years after
termination of the studies.

Chapter DAC RDC DSC DSC
License
2 DAC_2017.00123_568 RDC_2017.00123_052 DSC_2017.00123_365 RU-DI-
HD-1.0
3 DAC_2019.00064_438 RDC_2019.00064_388 DSC_2019.00064_640 RU-DI-
NH-1.0
4 DAC_2023.00037_058 RDC_2023.00037_928 DSC_2023.00037_462

DAC = Data Acquisition Collection, RDC = Research Documentation Collection, DSC = Data
Sharing Collection

The manuscript of Chapter 4 is currently under review, and the data are shared
with the reviewersina DSC and will be made publicly available once the article
has been published. It will then be shared under the CC-BY-4.0 license.
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Interoperable and reusable

The raw data are stored in the Data Acquisition Collection (DAC) in their
original form. For the Research Documentation Collection (RDC) and DSC
long-lived file formats have been used, ensuring that data remains usable in
the future. We provide a description of the experimental setup, raw data (DAC
and DSC), and the analysis scripts (RDC and DSC) in the readme files to make
sure that the results are reproducible.

Privacy

The privacy of the participants in this thesis has been warranted using random
individual subject codes. A pseudonymization key linked this random code with
the personal data. This pseudonymization key was stored on a network drive
that was only accessible to members of the project who needed access to it
because of their role within the project. The pseudonymization key was stored
separately from the research data. The pseudonymization keys were destroyed
within one month after finalization of these projects.
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