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We seem to move our bodies with ease. This feeling of effortlessness makes 
sensorimotor control and learning seem simple, but beneath the level of 
consciousness is a prodigious control system at work. It decides on the 
movement to make, prepares the movement, and activates the muscles that 
execute the movement. During the movement, it responds to unexpected 
perturbations and learns from these events to improve future movements 
if needed. How does the central nervous system so smoothly control our 
movements in rich and dynamic natural environments?

Over the past decades, many studies have examined the control processes 
underlying our actions. Behavioral experiments have been used to investigate 
the interaction between sensory inputs and motor output (Tresilian, 2012). 
By manipulating the sensory feedback and recording the responses of the 
participants, researchers have tried to infer the control system’s computational 
mechanisms that govern the behavior (Franklin & Wolpert, 2011). With the 
development of modern techniques to record brain activity, researchers have 
additionally mapped these computational mechanisms onto areas and circuits 
of the brain (Kandel & Hudspeth, 2000).

Most of these studies used straightforward experimental tasks with well-
controlled stimulus-response behaviors that unnaturally constrain the body. 
In natural environments, stimuli are contextually embedded and continuously 
changing, and responses are more complex and heterogeneous. Most natural 
behaviors depend on closed action-perception loops: continuous interactive 
processes in which an action affects the sensory input and the sensory input 
affects the action (Fig. 1.1A) (Gordon et al., 2011). This allows us to actively 
explore our environments to search for useful information, also known as active 
sensing (Little & Sommer, 2013; Schroeder, Wilson, Radman, Scharfman, & 
Lakatos, 2010).

Some of the processes that are thought to underlie sensorimotor behavior are 
shown in Figure 1.1B. Forward internal models, which simulate the relationship 
between motor commands and the consequences of the movement without 
actually executing the movement, play an important role in the action-perception 
loop (Gordon et al., 2011; Kawato, 1999; von Holst & Mittelstaedt, 1950; Wolpert 
et al., 2000). The sensory input from the body and environment is thought to be 
continuously compared to sensory predictions that are computed by the forward 
internal model based on an efference copy of the motor commands. Based on 
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an estimate of the state of the body and the environment, the action is in turn 
updated if needed (Scott, 2004), closing the action-perception loop.

Figure 1.1. Interaction between action and perception in natural environments. A) Most natural 
behaviors depend on closed action-perception loops, in which there is a continuous interaction 
between action and perception. B) This interaction is also reflected in some of the processes 
that are thought to underlie sensorimotor behavior. To execute a movement, an inverse 
internal model determines the required motor commands. These motor commands are sent 
to the muscles to generate the necessary forces. An efference copy of the motor commands is 
sent to a forward internal model, which predicts the sensory consequences of the movement 
by simulating the interaction of the motor system and the environment. These predictions are 
compared to the actual sensory feedback to estimate the state of the body and the environment, 
and, depending on the control policy, the movement is adjusted if needed. Adapted from Scott 
(2004) and Wolpert et al. (2000).

In this thesis, I will study two natural behaviors, reaching and steering, to 
examine the processes that underlie the smooth control of our movements 
in rich and dynamic environments in more detail. In the following sections, I 
will first describe how the central nervous system selects and plans actions 
in rich environments. I will focus on reaching, and more specifically on hand 
choice (Chapter 2). After this, I will describe the online control of movements 
based on sensory feedback and sensory predictions, followed by a section 
about motor learning and adaptation. I will focus on the role of vestibular 
sensory feedback and predictions during the control of self-motion in dynamic 
environments (Chapter 3 and 4). Finally, I will provide an outline of the thesis.

1.1	 Action selection and movement planning

1.1.1	 Serial and parallel processing
Natural environments give rise to many action opportunities (Cisek, 2007). 
How do we decide what to do and how to do it? Action decisions are thought to 
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be based on the desirability and the costs of the possible actions (Shadmehr, 
Huang, & Ahmed, 2016; Trommershäuser, Maloney, & Landy, 2009; Wolpert & 
Landy, 2012). If you are very thirsty for example, it might be more desirable to 
take a sip of your drink instead of reaching for some food. And if there are two 
jugs of your favorite drink on the table, you will probably reach for the one that 
is closest to you because it is easiest to reach, minimizing the energetic costs 
of the movement (Cos, Bélanger, & Cisek, 2011).

When you determine what to do and how to do it has been a topic of debate. 
Traditional views of cognition state that the brain processes information in a 
serial manner, with temporally separable perceptual, cognitive and motor 
processes (Donders, 1869/1969). The perceptual system is thought to 
transform the incoming sensory information into an internal representation 
of the environment (Marr, 1982). The cognitive system in turn decides what 
action to execute based on this representation, and provides the motor 
system with the movement plan to be implemented. However, neural data 
has shown substantial overlap in brain regions associated with perceptual, 
cognitive, and motor processes (for a review, see Cisek & Kalaska, 2010). This 
suggests that the processes are more integrated than proposed by the serial 
processing model.

As an alternative to this serial processing model, the parallel processing 
model has been proposed, in which multiple possible movement plans are 
defined in parallel that compete for execution (Cisek & Kalaska, 2005). This 
idea is based on an experiment in which nonhuman primates were instructed to 
reach towards one of two targets. Before the actual reach target was specified, 
neural activity in the motor cortex was found to represent both targets. 
After the reach target was specified, neural activity increased in the neural 
population representing the selected target and decreased in the neural 
population representing the unselected target. This was taken to suggest 
that the brain specifies multiple potential movement plans before reaching a 
decision, although some suggest that these findings are the result of averaging 
neural activity across trials (see Dekleva, Kording, & Miller, 2018).

1.1.2	 Hand choice experiments
If deciding between two possible reach targets evokes multiple movement 
plans, deciding between the left and right hand to reach to a single target may 
similarly lead to the specification of parallel movement plans that compete 
for execution. I will focus on this question in Chapter 2 of this thesis. When 
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choosing which hand to use, in general people select the hand closest to 
the target (Bryden, Pryde, & Roy, 2000). However, this choice is biased by 
handedness and expected task success (Schweighofer et al., 2015). During 
body motion, hand choice is also influenced by the inertial forces on the arm, 
modulating the biomechanical costs of the reaching movement (Bakker, Selen, 
& Medendorp, 2019; Bakker, Weijer, van Beers, Selen, & Medendorp, 2017; 
Oostwoud Wijdenes et al., 2022).

Preferences in hand choice can be studied psychometrically, e.g., using a 
paradigm in which the target is presented at different locations relative to the 
body (Fig. 1.2A, from Oliveira, Diedrichsen, Verstynen, Duque, & Ivry, 2010). 
The targets appear one at a time at various locations on a semicircle and 
participants are instructed to reach to the target as quickly as possible with 
either hand. Reaches towards the same target location are repeated multiple 
times to compute the probability of left and right hand choices for each target 
location (Fig. 1.2B). The target location for which participants have an equal 
probability of using the left or the right hand can be determined by fitting a 
psychometric function to the choice data, and is called the point of subjective 
equality (PSE). The PSE provides information about biases in hand choice, 
and will for example be slightly shifted towards the left of the body midline in 
right-handed participants.

Figure 1.2. Experimental paradigm used to study hand choice (adapted from Oliveira et al., 
2010). A) Experimental setup. Participants place their hands on the start locations and reach 
for a target that appears on a semicircle. B) Hand choice as a function of target angle for two 
fictional participants. The point of subjective equality (PSE; dashed vertical colored lines) is 
the target angle for which participants have an equal probability of choosing the left or the right 
hand (dotted horizontal line), and can be determined by fitting a psychometric function (solid 
colored lines) to the hand choice data (colored squares). Relative to the body midline (dotted 
vertical line), in general, the PSE will be slightly shifted to the left for a right-handed participant 
(blue data) and slightly shifted to the right for a left-handed participant (orange data).
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It is unclear whether hand choice is governed by a competition between 
reach plans or by serial processing of hand choice and subsequent reach 
implementation. Some behavioral and neural findings suggest that hand 
choice relies on a competitive process between movement plans for the left 
and right hand. Reaches toward targets that are close to the PSE, at which the 
competition between the left and right hand is expected to be highest, have 
longer reaction times (Oliveira et al., 2010; Stoloff, Taylor, Xu, Ridderikhoff, 
& Ivry, 2011) and are associated with greater neural activity in the parietal 
cortex, a brain region important for movement planning and control, than 
reaches toward lateral targets (Fitzpatrick, Dundon, & Valyear, 2019).

However, results of other studies are at odds with the idea that hand choice 
relies on a competitive process between movement plans for the left and right 
hand. Bernier et al. (2012) found neural activity in the parietal and motor 
cortex only after the reach target had been presented and the reaching hand 
had been instructed by the color of the target or a preceding cue. Similarly, 
in nonhuman primates, Cui and Andersen (2011) studied eye and reaching 
movements and found that some neurons in the parietal cortex only became 
active after the effector was chosen or instructed by the color of the target. 
These results could be interpreted as if the brain first determines the effector 
to move and then defines the movement plan, as in serial processing.

In Chapter 2, I will examine whether deciding between the left and right 
hand leads to the specification of parallel movement plans that compete for 
execution. For this we use a paradigm similar to the paradigm described by 
Oliveira et al. (2010), and measure neural activity during hand choice using 
electroencephalography, or EEG (see Box 1). In the analysis of the EEG data, 
we focus on neural oscillations in the beta band, which have a frequency of 13 
to 30 Hz. It has long been known that the power of oscillations in the beta band 
over the sensorimotor cortex changes before and during voluntary movements 
of the hand (Jasper & Penfield, 1949; Pfurtscheller, 1992). During movement 
planning, the beta-band power decreases contralateral to the hand that is used 
for the subsequent movement (for a review, see Kilavik, Zaepffel, Brovelli, 
MacKay, & Riehle, 2013). Modulations of this decrease have been shown to be 
predictive of the upcoming action (Pape & Siegel, 2016), and might therefore 
similarly reflect hand choice. If hand choice is reflected in beta-band power 
during movement planning, we expect the power to decrease less with more 
uncertainty about the hand to use for the upcoming movement, either due to 
the location of the target or the task instructions.
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Box 1: Electroencephalography

Electroencephalography (EEG) is a method used to record electrical activity 
in the brain. By placing electrodes on the scalp using an EEG cap (Fig. 1.3A), 
synchronized activity of groups of neurons, also called field potentials, can 
be measured (Westbrook, 2000). The signal mainly reflects the activity from 
neurons close to the scalp, and the measured electrical activity is small 
(typically in the range of 20 to 100 microvolts). In experimental settings, EEG 
is often used to detect changes in the neuronal activity in response to certain 
events or stimuli (Cohen, 2014a). A common way to extract this information 
from the signal is by processing the EEG data and examining changes in 
the power of the signal in certain frequency bands using time-frequency 
analyses (Fig. 1.3B) (Cohen, 2014b). These changes in the power are due to 
synchronization and desynchronization of the activity of groups of neurons 
in the brain. Frequency bands that are often distinguished are the delta band  
(2 to 4 Hz), theta band (5 to 7 Hz), alpha band (8 to 12 Hz), beta band (13 to 30 Hz),  
and gamma band (above 30 Hz).

Figure 1.3. Electroencephalography (EEG) setup and signal. A) Illustration of an EEG setup. 
Electrodes are attached to an EEG cap to measure the electrical activity in the brain. The 
measurements are usually processed to be able to analyze specific patterns in the neuronal 
activity. Adapted from Nagel (2019). B) The neuronal activity measured at the level of the EEG 
electrodes reflects the sum (lower panel) of multiple sine waves with different amplitudes and 
frequencies (upper panels). EEG analyses often focus on fluctuations in the power of the signal 
in specific frequency bands, as these fluctuations have been linked to changes in specific 
cognitive processes. Adapted from Cohen (2014c).
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1.2	 Online control of movement, motor learning 
and adaptation

1.2.1	 Online control of movement
To execute a movement, action plans need to be transformed into motor 
commands that are sent to the muscles to generate the required forces (Kim, 
Avraham, & Ivry, 2021). However, movements are frequently perturbed during 
execution due to motor noise and external forces. For example, a gust of wind 
might push the hand away from the reach target during a reaching movement. 
How does our body correct for such unexpected disturbances of the movement?

Figure 1.4. Optimal feedback control (adapted from Wolpert & Bastian, 2021). Optimal feedback 
control theory describes the online control of movements and proposes that the brain specifies 
a control policy with time-varying gains based on the movement goals and costs. The feedback 
gains determine how the motor command should be changed based on the state of the body 
and the environment. These states are estimated and depend on both sensory feedback and 
predictions from an internal forward model based on the efference copy of the motor command. 
In general, optimal control policies allow for movement variability in dimensions that are 
irrelevant for reaching the movement goal.
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Optimal feedback control theory, proposed by Todorov and Jordan in 2002, 
describes the online control of movements (Fig. 1.4). It is a general framework 
that applies to different types of movement, such as walking, reaching and eye 
movements. According to this theory, the state of the system can be estimated 
at any point during the movement with a forward internal model that predicts 
the sensory feedback based on an efference copy of the motor commands 
(Scott, 2004; Todorov & Jordan, 2002). These predictions are integrated with 
the actual, noisy, sensory feedback to compute an optimal estimate of the state 
of the body and the environment. The brain is thought to formulate a control 
policy based on the specific movement goals and to correct for perturbations 
only if these goals might not be reached, allowing for movement variability in 
dimensions that are irrelevant for reaching the movement goal.

1.2.2	 Motor learning and adaptation
Differences between predictions of the sensory feedback and the actual sensory 
feedback can be due to noise. For example, due to motor noise it is impossible 
to execute a movement in the exact same way twice (van Beers, Haggard, & 
Wolpert, 2004). However, consistent differences between the predictions and 
the feedback may also be due to changes in the mapping between the control 
policy and the movement outcome or between the movement outcome and the 
sensory feedback (e.g., experimentally introduced by a force field perturbation 
or a visuomotor rotation, respectively, Kim et al., 2021).

Such differences between the predicted and the actual sensory feedback, also 
called sensory prediction errors, drive sensorimotor adaptation (Kim et al., 
2021). Based on sensory prediction errors, the internal models and the control 
policy can be updated. Models of motor adaptation describe how this is done. 
Trial-to-trial changes in the internal model predictions can for example be 
described by mathematical models with a learning and a retention rate (see for 
example Smith, Ghazizadeh, & Shadmehr, 2006). The learning rate represents 
the proportion of the error that the system corrects for from one trial to the 
next, while the retention rate represents the proportion of the current estimate 
of the perturbation that is retained. Sensory information is thus not only 
critical for perception in general, but also for updating the internal models and 
the control policy through motor learning.
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Figure 1.5. Reach adaptation studies dissociated the contribution of sensory feedback and 
sensory predictions (adapted from Burge et al., 2008). A) Participants made reaching movements 
towards a target while the reliability of the sensory feedback and the mapping between the 
control policy and the sensory feedback was experimentally manipulated. The reliability of the 
mapping between the movement and the visual feedback depended on the predictability and 
standard deviation (σwalk) of trial-to-trial changes in the mapping between the position of the 
hand and the visual feedback. Here, two autocorrelated random walks (same predictability) with 
different standard deviations (0.9 and 2.5°) were used. The reliability of the sensory feedback 
was manipulated by varying the blur of the visual feedback (σblur; 4° x 4° and 24° x 24°). B) During 
the step phase of the experiment, participants adapted to a large shift in the visual feedback of 
8.2°. The average adaptation profiles across subjects are shown, along with the curves of the 
best-fitting power laws. The speed of adaptation, or the decrease in the error, depended on both 
the reliability of the mapping and the reliability of the visual feedback.

Studies in reach adaptation have experimentally manipulated the reliability 
of the sensory feedback and the mapping between the control policy and 
the sensory feedback to dissociate the contribution of sensory feedback and 
sensory predictions in motor adaptation (Burge, Ernst, & Banks, 2008; Wei 
& Körding, 2010). Participants made reaching movements towards a target 
while the visual feedback about the position of their hand was perturbed. 
The authors found that participants adapted faster to these perturbations 
when the mapping between the control policy and the visual feedback was 
less reliable (i.e., the perturbations were more variable and less predictable) 
and adapted slower when the visual feedback was less reliable (i.e., blurred)  
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(Fig. 1.5). These findings suggest that motor adaptation follows the predictions 
of Bayesian models in that systems adapt faster to perturbations when the 
estimate of the mapping is more uncertain because the estimate could be 
incorrect, and adapt slower when the sensory feedback is more noisy as if the 
observed perturbation is a measurement error.

1.2.3	 Artificial signals
If a sensory system breaks down, estimates of the state of the body and the 
environment might be deteriorated and cannot be adequately updated. In 
such a situation, a clear benefit may be obtained by reinstating the missing 
information through an artificial sensory channel. Based on models of motor 
learning, in principle, any consistent mapping between a movement and 
feedback can be learned. For example, Dadarlat et al. (2015) showed that 
monkeys can learn to use the information from a prosthetic device, stimulating 
the primary somatosensory cortex, to make accurate reaching movements. 
The artificial feedback signal provided information about the relative position 
of the hand and the reach target. This signal was completely novel to the 
monkeys but was required to be able to complete the task. Similarly, Schumann 
and O’Regan (2017) showed that healthy human participants can learn to use 
an “extra sense” providing information about their head orientation relative 
to the magnetic north through auditory stimuli. Also, steps have been taken 
to use vibrations on the skin to substitute hearing in people with deafness or 
hearing problems (Perrotta, Asgeirsdottir & Eagleman, 2021).

Another example of an artificial mapping between a movement and the 
sensory feedback is steering (Danz, 2021). The term "artificial" refers here 
to the indirect relationship between the neural control mechanism and the 
resulting steering action, which relies on the interaction between the driver 
and the steering wheel system. During driving, steering motor commands 
are generated to control a steering wheel which in turn controls the motion 
of the vehicle and the body. Even though the steering motor commands are 
cognitively mediated and the mapping between the steering movement and the 
sensory feedback is indirect, in principle, people could build an internal model 
of this mapping. In Chapter 3 and 4 of this thesis, I will examine whether people 
can learn this mapping to accurately estimate and control their self-motion.

1.2.4	 Self-motion estimation
To interact with our environment, we require an accurate percept of our self-
motion relative to the world. To successfully reach for a drink while your body 
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is in motion, for example, you need to anticipate and account for the movement 
of your body. In general, self-motion estimation depends on the integration of 
sensory information, primarily vestibular, visual, and somatosensory signals, 
and motor information (Angelaki & Cullen, 2008; Britten, 2008).

Vestibular signals are generated in the vestibular system, located in the inner 
ear (Goldberg, Walker, & Hudspeth, 2000). The vestibular system consists of 
the semicircular canals and the otoliths (Fig. 1.6A). The semicircular canals 
sense rotational movements of the head, and the otoliths sense linear motion 
of the head as well as the orientation of the head relative to gravity. Both the 
semicircular canals and otoliths contain hair cells that convert head motion 
into vestibular signals. When the head accelerates, such as during self-motion, 
the hair bundles of the hair cells deflect. Depending on the direction of the 
deflection, the cell depolarizes or hyperpolarizes, which affects the firing rate 
of the afferent nerve fibers.

During self-motion, the visual system detects the changes in the image on our 
retina that result from the motion, also called optic flow (Fig. 1.6B) (Britten, 
2008). The pattern of the optic flow depends on the heading direction. The 
center of expansion in the image aligns with the heading direction, and other 
points in the image move with different velocities depending on the speed 
of the self-motion and the depth of the visual scene. Neurons in the medial 
superior temporal area of the brain are known to be sensitive to optic flow (Gu, 
Watkins, Angelaki, & DeAngelis, 2006), and are therefore thought to play an 
important role in heading and self-motion estimation.

Figure 1.6. Sensory information used for self-motion estimation. A) The vestibular system is 
located in the inner ear and consists of the semicircular canals and the otoliths. Hair cells in the 
semicircular canals and the otoliths convert head acceleration into vestibular signals. Adapted 
from Cullen (2019). B) During self-motion, the visual system detects optic flow. The center of 
expansion in the image on the retina (black X) aligns with the heading direction, whereas other 
points in the image move with different velocities (yellow arrows). From Britten (2008).
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In addition to vestibular and visual information, somatosensory cues can be 
used to estimate self-motion. Proprioceptors in the neck and body sense the 
orientation of the head on the body and of the body in space, respectively 
(Alberts et al., 2016; Clemens, De Vrijer, Selen, Van Gisbergen, & Medendorp, 
2011). Additionally, cues provided by the wind, vibrations and changes in 
pressure give information about the self-motion (Campos & Bülthoff, 2012).

Figure 1.7. Estimation of active and passive self-motion (from Laurens and Angelaki, 2017). 
During active self-motion, an internal forward model (sensory internal model) predicts the 
sensory feedback based on an efference copy of the motor commands used to generate the 
self-motion (self-motion signal). If an accurate internal forward model is available, the sensory 
prediction error will be small, and the self-motion estimate will depend mainly on the predicted 
sensory feedback. During passive self-motion, the sensory feedback cannot be predicted, and 
the self-motion estimate will be driven by the sensory prediction errors. Laurens and Angelaki 
(2017) have described a model that uses a Kalman filter to compute optimal self-motion 
estimates during both active and passive self-motion. The computations additionally rely on a 
gating mechanism, which is thought to scale the response sensitivity of neurons in the vestibular 
processing pathway based on the size of the prediction error (i.e., after the introduction of a 
large prediction error, the neurons robustly encode the prediction error, whereas the response 
decreases during motor learning) (Brooks, Carriot, & Cullen, 2015).

Also in self-motion estimation, motor information and sensory predictions 
are known to play an important role (Brooks & Cullen, 2019). When the self-
motion is actively generated, the sensory feedback can be predicted based on 
an efference copy of the motor commands used to generate the motion. During 
passive self-motion, however, such predictions about the self-motion cannot 
be made. This distinction between active and passive movements was already 
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made in the 19th century by Helmholtz (1867). Recent modeling work has led 
to a unified theory for active and passive self-motion estimation (Cullen, 2019; 
Laurens & Angelaki, 2017), in which the self-motion estimate is computed 
using the sensory prediction error (Fig. 1.7). This sensory prediction error is 
small during active self-motion, and the self-motion estimate will therefore 
depend mainly on the sensory predictions. During passive self-motion, on the 
other hand, the sensory prediction error will drive the self-motion estimate.

In the central nervous system, neural correlates of components of this unified 
theoretical framework have been found. In monkeys, neurons in the vestibular 
nuclei, which receive input from the vestibular nerve and output to higher 
neural structures that compute self-motion estimates, are active during 
passive self-motion (for a review, see Cullen, 2012). However, the activity is 
attenuated during active self-motion. The activity in these neurons is therefore 
thought to reflect the sensory prediction error. Additionally, because of its 
projections to the vestibular nuclei, the forward internal model that is used 
to compute the sensory predictions is thought to be located in the cerebellum 
(Brooks et al., 2015).

1.2.5	 Closed-loop steering experiments
The unified theoretical framework for the estimation of passive and active 
self-motion assigns an important role to the efference copy, but the model 
is agnostic as to the nature of the motor signal. Building on the observation 
that we can learn consistent mappings between a movement and the sensory 
feedback, such as in sensory prosthetics, this opens up the possibility that 
also motor signals that have an indirect, or artificial, relationship with self-
motion cues can be used to predict the sensory feedback during self-motion 
estimation. Such motor signals are of efferent nature, but the movement is 
indirectly linked to another action and this relationship has to be learned. As 
described above, the steering motor commands that are generated during 
driving are an example of motor signals that have an indirect relationship with 
the sensory feedback. Closed-loop steering experiments have been used to 
study the integration of sensory feedback and sensory predictions based on 
such motor signals in self-motion estimation.

Roy and Cullen (2001) examined closed-loop steering in monkeys (Fig. 1.8). 
Monkeys were seated on a turntable and were trained to control the speed 
of their rotational self-motion with a steering wheel. Neural activity in the 
vestibular nuclei, which is thought to reflect the sensory prediction error, was 
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similar during active steering and passive rotations of the body. This suggests 
that the steering motor commands are not used to predict the sensory feedback, 
at least not at this level of the vestibular processing pathway. However, during 
visual self-motion, neurons in the medial superior temporal area in monkeys 
showed different responses to optic flow patterns generated during active 
steering compared to when the same optic flow patterns were passively viewed 
(Jacob & Duffy, 2015; Page & Duffy, 2008; but see also Egger & Britten, 2013).

Figure 1.8. Closed-loop steering experiment with rotational self-motion in monkeys (adapted 
from Angelaki and Cullen, 2008). A) Monkeys used a steering wheel to control the rotation of a 
turntable to align a laser target attached to the turntable (Ttable) with a moving target (Tgoal).  
B) Neurons in the vestibular nuclei reliably encoded the self-motion. The activity of these 
neurons is thought to reflect the sensory prediction error, and these results therefore suggest 
that the vestibular sensory feedback was not predicted by a forward internal model based on the 
steering motor commands.

More recently, closed-loop steering has also been studied in human 
participants (Alefantis et al., 2022; Lakshminarasimhan et al., 2018; 
Stavropoulos, Lakshminarasimhan, Laurens, Pitkow, & Angelaki, 2022). 
Alefantis et al. (2022) showed that, after training with optic flow cues, humans 
can navigate a virtual environment using a joystick without any online sensory 
feedback. This suggests that participants formed an internal model of the 
steering dynamics with training. Stavropoulos et al. (2022) used a similar 
experiment but varied the steering dynamics slightly from trial to trial. They 
found that participants could accurately navigate the environment with 
online optic flow cues, but performed worse when only vestibular cues were 
available, as if their estimate of the self-motion was biased by an incorrect 
internal model of the steering dynamics.
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Box 2: Linear motion platform

To examine the role of sensory feedback and sensory predictions in self-motion 
estimation we use a linear motion platform, also called the sled (Fig. 1.9). During 
an experiment, participants are seated on the sled and control the lateral sled 
motion by rotating a steering wheel mounted in front of them. The angle of the 
steering wheel relative to the start angle encodes the velocity of the sled. If 
participants for example rotate the steering wheel to the left, the sled moves to 
the left, and the further they rotate the steering wheel, the faster the sled moves. 
The exact mapping between the steering wheel angle and the sled velocity is 
adjustable. To be able to test the role of vestibular feedback, experiments are 
done in darkness, excluding visual feedback. Additionally, participants wear 
headphones to mask auditory cues from the moving sled with white noise sounds.

Figure 1.9. Linear motion platform used for closed-loop steering experiments. During the 
experiment, participants are seated with their interaural axis aligned with the motion axis of 
the platform, such that they are laterally translated, and rotate a steering wheel to control the 
sled velocity. Experiments are done in darkness, and participants wear headphones to mask any 
auditory cues.
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In Chapter 3 of this thesis, I will further examine whether the brain can build 
an accurate internal model of the steering dynamics in a closed-loop steering 
experiment with online vestibular feedback. Participants control a linear 
motion platform, also called the sled (see Box 2), with a steering wheel and 
learn to align their body with a memorized visual target. We examine their 
responses to abrupt changes in the steering dynamics during the experiment, 
and compare their steering behavior to that of participants who do not receive 
any online sensory feedback. If the brain builds an internal model of the 
steering dynamics, we expect participants who do receive online sensory 
feedback to respond to the abrupt changes in the steering dynamics while the 
steering movement is ongoing.

1.2.6	 Reweighting sensory and motor information
Based on the unified theoretical framework for passive and active self-motion, 
self-motion estimates are thought to be most accurate when they are based 
on both sensory predictions and sensory feedback (Laurens & Angelaki, 
2017). However, participants should in principle be able to fairly accurately 
estimate their self-motion based on sensory feedback alone as well. This has 
also been observed in path integration studies, in which participants estimate 
their passive self-motion by integrating the online sensory feedback over 
time (Grasso, Glasauer, Georges-François, & Israël, 1999; Lappe, Jenkin, & 
Harris, 2007; Petzschner & Glasauer, 2011). As described above, studies in 
reach adaptation have tried to dissociate the contribution of sensory feedback 
and sensory predictions by experimentally manipulating the reliability of the 
sensory feedback and the mapping between the reaching movement and the 
sensory feedback (Burge et al., 2008; Wei & Körding, 2010).

In Chapter 4, I will use an experimental design that is inspired by these reach 
adaptation studies to examine the contributions of internal model predictions 
and sensory feedback during closed-loop steering in more detail, building 
on the experiment described in Chapter 3. Next to the abrupt changes in the 
steering dynamics, we vary the steering dynamics slightly from trial to trial as 
well. This way we intend to manipulate the weights on sensory predictions and 
online vestibular feedback. We examine the steering behavior for within-trial 
responses to the sensory feedback and predictions of the steering dynamics 
across trials. We expect participants to rely more on predictions of the steering 
dynamics and less on the online sensory feedback if the steering dynamics are 
more predictable.
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1.3	 Thesis outline

In this thesis I will examine the processes that underlie the control of our 
movements in rich and dynamic environments. I will focus on two natural 
behaviors: reaching and steering. In Chapter 2, I will focus on reaching and 
will study the selection of actions and movement planning by looking at hand 
choice. More specifically, I will examine whether deciding between the left and 
right hand leads to the specification of parallel movement plans that compete 
for execution using EEG. In Chapter 3 and 4, I will focus on steering and will 
study the role of vestibular sensory feedback and sensory predictions during 
the control of self-motion. In Chapter 3, I will examine whether self-motion 
estimation during a closed-loop steering experiment depends on an internal 
model of the steering dynamics, or whether the self-motion estimate is 
primarily based on the online vestibular feedback. In Chapter 4, I will examine 
in more detail the role of internal model predictions and vestibular feedback in 
self-motion estimation during steering. By varying the steering dynamics from 
trial to trial, we aim to dissociate the contributions of sensory predictions and 
online feedback. In Chapter 5, I will summarize and discuss the findings. I will 
additionally consider their broader implications for sensorimotor control and 
will make suggestions for future research.
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Chapter 2
Cortical beta-band power modulates 
with uncertainty in effector 
selection during motor planning
This chapter has been adapted from:
van Helvert, M.J.L., Oostwoud Wijdenes, L., Geerligs, L., & Medendorp, W.P. (2021). 
Cortical beta-band power modulates with uncertainty in effector selection during 
motor planning.

 Journal of Neurophysiology, 126, 1891-1902.
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Abstract

While beta-band activity during motor planning is known to be modulated 
by uncertainty about where to act, less is known about its modulations to 
uncertainty about how to act. To investigate this issue, we recorded oscillatory 
brain activity with EEG while human participants (n = 17) performed a hand 
choice reaching task. The reaching hand was either predetermined or of 
participants’ choice, and the target was close to one of the two hands or at about 
equal distance from both. To measure neural activity in a motion-artifact-free 
time window, the location of the upcoming target was cued 1000-1500 ms  
before the presentation of the target, whereby the cue was valid in 50% of 
trials. As evidence for motor planning during the cueing phase, behavioral 
observations showed that the cue affected later hand choice. Furthermore, 
reaction times were longer in the choice than in the predetermined trials, 
supporting the notion of a competitive process for hand selection. Modulations 
of beta-band power over central cortical regions, but not alpha-band or 
theta-band power, were in line with these observations. During the cueing 
period, reaches in predetermined trials were preceded by larger decreases 
in beta-band power than reaches in choice trials. Cue direction did not affect 
reaction times or beta-band power, which may be due to the cue being invalid 
in 50% of trials, retaining effector uncertainty during motor planning. Our 
findings suggest that effector uncertainty modulates beta-band power during 
motor planning.
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2.1	 Introduction

At a picnic with many delicacies, there are numerous opportunities for action. 
We can look at one of several treats, or reach for it, and when we reach, we 
could use the left or right hand. How is this decision process being solved? 
Computational theories suggest that the brain chooses the action that 
maximizes utility, which depends on the cost associated with performing the 
action and the desirability of the outcome, i.e., the reward (Haggard, 2008; 
Shadmehr et al., 2016; Wolpert & Landy, 2012). In neural terms, it follows 
that the circuits involved in deciding between actions based on utility are 
strongly coupled to the circuits responsible for generating an action. Indeed, 
neurophysiological studies have suggested that multiple potential motor 
plans can be encoded in parallel and compete for selection within the brain’s 
sensorimotor regions (Cisek, 2006).

In non-human primates, most of the evidence for this process of embodied 
decision making comes from experiments that manipulated the number or 
location of potential targets (Basso & Wurtz, 1997; Cisek & Kalaska, 2005; 
Glaser, Perich, Ramkumar, Miller, & Kording, 2018; Klaes, Westendorff, 
Chakrabarti, & Gail, 2011). For example, in a unimanual reaching task with two 
potential targets, neural activity in dorsal premotor cortex represents both 
options simultaneously and reflects the selection of one over the other when 
the choice is made (Cisek & Kalaska, 2005; but see Dekleva, Kording, & Miller, 
2018, for an alternative interpretation). Analogous results have also been 
observed in humans. For instance, Tzagarakis et al. (2010, 2015) reported 
that cortical beta-band desynchronization, associated with motor planning 
(Jasper & Penfield, 1949; Pfurtscheller, 1992), depends on the number of 
potential targets and their directional uncertainty. Grent-’t-Jong et al. (2014, 
2015) reported that the proximity of two potential reach goals has a direct 
influence on motor cortex activity, as measured by oscillatory power (see also 
Tzagarakis et al., 2015).

Utility of a movement does not only depend on the location of the target, it is 
also determined by the effector that needs to be moved. Within this notion, 
target and effector selection can be considered as part of an integrated 
computation in movement planning, in which the expected utility of each 
potential movement is defined by the distance and direction of the respective 
target relative to the respective effector (Bakker, Selen, & Medendorp, 
2018; Dancause & Schieber, 2010; Schweighofer et al., 2015). Accordingly, 



30 | Chapter 2

if multiple potential targets evoke multiple concurrent movement plans of a 
single effector, deciding between multiple effectors to move to a single target 
may also lead to the specification of parallel movement plans. This has been 
indeed observed when selecting between eye versus arm movements; cortical 
areas involved in these movements are simultaneously activated until the 
effector is selected, as observed both in monkeys (Cui & Andersen, 2011) and 
humans (see Medendorp & Heed, 2019, for review). However, it is important to 
realize that eye and hand movements serve different purposes and, in natural 
situations, are typically used in combination (Heed, Beurze, Toni, Röder,  
& Medendorp, 2011), which could explain their simultaneous specification.

It is less clear whether the brain simultaneously specifies motor plans for 
the two arms. Using a combined EEG-fMRI study, Bernier et al. (Bernier et 
al., 2012) tested participants in an arm choice experiment with a fixed target 
location, and found activity in parietal and premotor cortex only contralateral 
to the reaching arm after target onset. This could be interpreted as if effector 
selection precedes movement planning, i.e. that hand selection is not 
associated with the simultaneous specification of two motor plans. This would 
be in line with findings of monkey area 5, showing that neurons only become 
activated after the hand of the reach is specified, but not if a target is presented 
without the hand being specified (Cui & Andersen, 2011). However, it could 
also be possible that the substantial differences in expected utility between 
contralateral and ipsilateral arm movements, due to the eccentric location of 
the target, biased the competition for selection to the contralateral motor plan 
in Bernier et al.’s study (2012).

Other studies do suggest competition between motor plans of the two hands. 
Reaction times are longer for reaches towards the target direction that leads 
to equiprobable right/left hand choices (point of subjective equality, PSE), 
resembling a more competitive hand selection process for this direction 
compared to other, lateral target directions (Bakker et al., 2018; Oliveira et 
al., 2010). Also, preparing reaches with two hands simultaneously results 
in more movement variability than preparing a single reach, suggesting that 
reach plans of the two hands share a common neural resource (Oostwoud 
Wijdenes, Ivry, & Bays, 2016). Using transcranial magnetic stimulation over 
left posterior parietal cortex, Oliveira et al. (2010) demonstrated that the 
competition between hands can be biased towards the ipsilateral, left hand. 
Fitzpatrick et al. (2019) reported greater BOLD activity in parietal cortex at the 
PSE than away, consistent with competition between the hands. Finally, using 
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EEG, Hamel-Thibault et al. (2018) presented evidence that hand selection at 
the PSE depended upon the phase of delta-band oscillations at target onset 
in contralateral motor regions, as if excitability of motor regions acts as a 
modulatory factor for hand choice.

While there is ample evidence about the involvement of beta-band oscillations 
in response selection (van Wijk, Daffertshofer, Roach, & Praamstra, 2009), the 
specific role in hand selection processing during movement planning is less 
clear. Beta-band power over sensorimotor regions decreases during instructed 
delayed-reach tasks, most pronounced over the hemisphere contralateral to 
the hand (for a review, see Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 2013). 
This is typically seen as a small phasic decrease after the initial cue, followed 
by a more sustained decrease until the execution of the movement. This 
sustained decrease is modulated by the participants’ readiness hazard and 
followed by a post-movement rebound (Schoffelen, Oostenveld, & Fries, 2005; 
Tzagarakis et al., 2010). It has also been reported that fluctuations in beta-
band activity over contralateral and ipsilateral hemispheres during movement 
planning are predictive of upcoming actions (Pape & Siegel, 2016).

Given the importance of beta-band synchronization in movement planning, 
here we examine the role of these oscillations in coding multiple movement 
plans during hand choice. Participants performed a hand choice reaching task 
whereby the target location was cued 1000-1500 ms before it was presented. 
This allowed us to analyze the oscillatory activity within a clearly defined 
and motion-artifact-free time window just prior to movement onset. We 
hypothesized that if beta-band power reflects effector uncertainty, the power 
would decrease less if there was more uncertainty about which hand to move, 
similar to the effect of target direction uncertainty (Tzagarakis et al., 2010). 
We further reasoned that there would be more competition, and thus more 
uncertainty about which hand to move, if the target was in a direction close to 
PSE than if the target was close to either of the two hands (Oliveira et al., 2010).

2.2	 Methods

2.2.1	 Participants
Twenty participants took part in the study (5 males and 15 females, mean age  
21 years, age range 19-26 years). All participants were right-handed, 
confirmed using the Edinburgh Handedness Inventory (Laterality Quotient,  
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M = 86.92, SD = 13.54) (Oldfield, 1971). Participants had normal or corrected-
to-normal vision and reported no history of neurological or psychiatric 
diseases, or use of psychoactive medication or substances in the month 
prior to participation. The ethics committee of the Faculty of Social Sciences 
of Radboud University Nijmegen, the Netherlands, approved the study. All 
participants gave written informed consent prior to the start of the study, and 
were reimbursed for their time with a fixed amount of course credit.

2.2.2	 Setup
Participants were seated in front of a touch screen (ProLite TF4237MSC-B3AG; 
Iiyama, Tokyo, Japan), positioned in the horizontal plane at the level of their 
thoracic diaphragm. The screen had a resolution of 1920 x 1080 pixels (pixel 
pitch 0.4845 mm) and a refresh rate of 60 Hz. As illustrated in Figure 2.1A, two 
starting positions for the left and right index finger were presented as gray 
discs of 3.5 cm diameter, approximately 20 cm away from the participant’s 
sternum and 9 cm on either side of the body midline. A white fixation cross 
with a width of 2.5 cm was presented along the body midline, 12 cm in front 
of the two start positions. Cues and targets were presented as light orange 
and blue 3.5 cm discs, respectively, at 30 cm distance from the point midway 
between the two start positions, in five different directions: -40°, -10°, 0°, 
10°, 40°. A 64-channel active electrode EEG system was used to record brain 
activity (Brain Products, Gilching, Germany). The onset of visual stimuli on 
the touch screen was determined using a photodiode and was used to identify 
and align epochs in the EEG recording. Horizontal and vertical electro-
oculograms (EOGs) were recorded by placing electrodes at the supraorbital 
and infraorbital ridges of the left eye and the outer canthi of the left and right 
eye. Impedance values for all electrodes were kept below 20 kΩ and the signal 
was referenced against the signal on left mastoid electrode TP9. The data 
were filtered online with a low cutoff value of 0.016 Hz and a high cutoff value 
of 200 Hz and digitized with a sampling frequency of 500 Hz and a resolution of  
0.1 µV. The experiment was controlled using custom-written software in 
Python, based on the Kivy library for multi-touch applications.
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Figure 2.1. Illustration of the experimental setup, procedure, and paradigm. A) Schematic 
illustration of the experimental setup. Start positions (gray disks), gaze fixation cross, and the 
five potential cue and target directions (white disks) are shown. B) Order of events in a single 
trial. C) Choice trials; the upper panels show a correctly cued trial, during which the cue (orange) 
appeared at the same position as the target (blue), the lower panels show an incorrectly cued 
trial, during which the target appeared at a different position than the cue. Note that the other 
potential cue and target directions were not shown during the experiment. D) Predetermined 
trials; same as in C), but here the cue stimulus instructed which hand to use (here: left hand).

2.2.3	 Paradigm
The experiment took place in a completely darkened room, except for the light 
of the touch screen. Participants performed a unimanual reaching task in which 
they were free to use either hand (choice trials) or in which the response hand 
was instructed on the screen (predetermined trials). All trials were initiated by 
asking participants to place the tips of their left and right index fingers on the 
starting positions, which then turned white, and look at the fixation cross. After 
a delay of 1 s one of the five target directions was cued for either 1.00, 1.25, or 
1.50 s (Fig 2.1B). Presented as a full orange disk, the cue instructed a choice 
trial (Fig 2.1C); if the color filled half of the disc, it signaled a predetermined 
trial (Fig 2.1D), with the filled side (left or right) instructing which hand to use. 
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Participants were informed about the types of cues prior to the experiment and 
practiced this before the start of the experiment. Furthermore, the cue was 
either valid in terms of the upcoming target direction (i.e., correctly cued the 
target, Fig 2.1C and 2.1D, upper panels) or invalid (Fig 2.1C and 2.1D, lower 
panels). At target presentation the cue disappeared and a short beep was 
played. Participants were asked to touch the target as fast as possible while 
the eyes were free to move. To ensure that participants were motivated to reach 
toward the target quickly, they received a feedback message and a score after 
each response. If participants adequately touched the target within 0.7 s (i.e., 
reaction + movement time) the message read, ‘Well done! +1 point’, followed 
by the total earned score across trials. If this duration was beyond 0.7 s, the 
feedback message was ‘Too slow’, and no points were obtained. Participants 
did not receive a reward based on their scores, but were incentivized to move as 
fast as possible by showing them the scores of the best performing participants 
before the start of the experiment. If the movement was initiated prior to the 
onset of the target, the trial was restarted. The incorrectly cued trials serve 
to verify that motor planning occurred during the cueing phase rather than 
participants waiting for the target to start preparing their movement.

Each participant completed 900 trials in total, which took about one hour. 
These comprised of 450 correctly cued trials (90 repetitions of each of the five 
locations) and 450 incorrectly cued trials (22 or 23 repetitions of each of the  
20 cue x target combinations). There were 800 choice trials and 100 predetermined 
trials, of which 50 left hand and 50 right hand trials (25 correctly cued trials and 
25 incorrectly cued trials each). The number of predetermined trials was lower 
than the number of choice trials, as the predetermined trials were added as 
intervening catch trials. During these trials, no choice had to be made about the 
hand to use. For each participant, trials were presented in a random order in six 
blocks of 150 trials, separated by short breaks. Prior to the main experiment, 
participants performed 30 practice trials, including all trial types.

2.2.4	 Data analysis

2.2.4.1	 Behavioral analysis
Behavioral data were processed in MATL AB R2017a. Statistical analyses were 
done in R 4.0.1 and the alpha level was set to 0.05. Choice data were based on 
the touch screen measurements. Movement onset was defined as the moment 
the first hand released contact with the touch screen after the target was 
presented. Hand choice was determined as the hand that departed from the 
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touch screen first. Trials during which the participant released both hands and 
predetermined trials during which the participant did not use the instructed 
hand were not taken into account in further analyses. On average, this was 
the case in 8 trials per participant (SD = 3.22). Hand choice preferences were 
quantified as the proportion of right hand choices for each target direction.

Although there were only five cue and target directions, we summarized the 
psychometric data for the correctly cued choice trials by fitting a cumulative 
Gaussian distribution per participant using a maximum likelihood approach 
(Wichmann & Hill, 2001):

�
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in which P (x) represents the proportion of right hand choices for cue and 
target direction x. The mean of the curve, µ, represents the participant’s PSE, 
i.e. the direction at which the right and left hand were chosen equally often. 
Parameter σ is the standard deviation of the Gaussian, and reflects the variation 
in choice behavior. Parameter λ represents the lapse rate, accounting for 
errors caused by participant lapses or mistakes, e.g. unduly reaching with the 
right hand to the most leftward target. Its value was restricted to small values  
(< 0.1). We equated the cue direction closest to the PSE direction as the 
direction that evoked the highest effector competition. Note that the fitted cue 
direction corresponds to the direction for which the proportion of right hand 
choices is closest to 0.5 for all participants. Data from three participants were 
excluded as they showed such a strong preference to reach with their dominant 
right hand that it was not possible to fit a cumulative Gaussian function, and 
therefore to select a PSE cue. The extreme left and right directions induced the 
lowest effector competition. For plotting purposes we also fitted a cumulative 
Gaussian distribution to the proportion of right hand choices for the five 
different cue and target directions averaged across participants.

The incorrectly cued choice trials tested whether participants planned 
movements during the cueing phase. If participants instigated reach planning 
upon cue presentation, we expect that this would affect the reach upon target 
presentation. To test if cue direction affected hand choice a cue direction 
(-40°, -10°, 0°, 10°, 40°) x target direction (-40°, -10°, 0°, 10°, 40°) repeated-
measures ANOVA was performed on the proportion of right hand responses for 
all choice trials (ez package in R). F statistic values were adjusted for violations 
of sphericity with Greenhouse-Geisser corrections.
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Reaction time (RT) was defined as the time between target onset and movement 
onset. Trials with reaction times <100 ms or >1000 ms were excluded from 
further analyses. On average, this was the case in 1 trial per participant  
(SD = 1.19). Movement time (MT) was defined as the time between movement 
onset and the time when the finger first touched the target. Trials with movement 
times >1000 ms were excluded from further analyses since these typically 
involved corrective movements. On average, this was the case in 9 trials per 
participant (SD = 17.92). To test if effector competition was reflected in reaction 
times, a linear mixed-effects model with participant number as a random factor 
with random intercept and fixed factors instruction (predetermined, choice), cue 
direction (PSE, extreme), cue validity (correct, incorrect), and cue time (1.00, 
1.25, 1.50 s), as well as the interaction effects, was fitted to the reaction times 
of all trials using maximum likelihood estimation (nlme package in R). Model fits 
were assessed with a likelihood ratio test. Bonferroni corrected pairwise t-tests 
were used to further analyze significant interaction effects post hoc.

2.2.4.2	 EEG analysis
EEG data were processed offline using the MATL AB software toolbox FieldTrip, 
version 20171130 (Oostenveld, Fries, Maris, & Schoffelen, 2011). Data were 
split into epochs aligned to the onset of the cue (t = 0 s) and the signal was re-
referenced against the average signal of the EEG electrodes. Slow drifts in the 
signal were eliminated by applying a high-pass filter with a cutoff frequency 
of 1 Hz. Eye blinks were semi-automatically identified based on the difference 
signal between the two vertical EOG electrodes following the FieldTrip 
procedure for rejection of eye blink artifacts. Trials with eye blinks around the 
onset of the cue (time window from 75 ms prior to cue onset to 25 ms after 
cue onset) were removed from further analyses. On average, this resulted in 
removal of 18 trials per participant (SD = 16.89). Ocular artifacts during the 
remainder of the trial were removed from the signal by running an independent 
component analysis. Rejection of components with an evident ocular origin 
was done according to the criteria described by McMenamin et al. (2010). 
After removal of these components, trials with excessive muscle activity 
in the time window from 200 ms prior to cue onset until target onset were 
semi-automatically identified and removed from further analyses following 
the FieldTrip procedure for rejection of muscle artifacts (for further details, 
see Gonzalez-Moreno et al., 2014). On average, this resulted in removal of  
102 trials per participant (SD = 50.76). Bad channels were identified by visually 
inspecting the preprocessed data and were repaired by replacing the data 
with the plain average signal of neighboring channels based on triangulation 
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(two channels repaired in total). Data were low-pass filtered with a cutoff 
frequency of 40 Hz and down-sampled to 200 Hz.

Time-frequency representations of the data were computed with a Hanning 
taper with variable window length (5 cycles of the frequency of interest per 
time window), 10 ms steps and a 1 Hz resolution. The procedure was repeated 
with the epochs realigned to the onset of the movement (t = 0 s). Power values 
were corrected relative to a baseline computed per participant, trial group, 
frequency bin and channel. This baseline was defined as the average power 
in the time window from 200 ms before cue onset until cue onset, and was 
computed after averaging across trials in a trial group. Results were similar 
with a baseline from 500 to 200 ms before cue onset. Baseline-corrected 
power values were expressed in decibels.

First, we sought to identify clusters of channels that showed activity related 
to movement preparation. More specifically, we performed a nonparametric 
cluster-based permutation test to find clusters of channels that showed 
a decrease in power in the beta-band frequency range (13 to 30 Hz) prior 
to either left or right hand responses. Trials for which the hand to use was 
predetermined were grouped based on the hand used (left or right hand). Both 
correctly and incorrectly cued trials were included, as we did not expect cue 
direction to affect which hand was prepared for these predetermined trials. 
We used a nonparametric cluster-based permutation test to find clusters 
of channels that showed contrasting activity prior to left and right hand 
movements. This cluster-based permutation test is based on the calculation of 
cluster-level statistics, connecting samples that are adjacent in space and time 
(Maris & Oostenveld, 2007). To contrast left and right hand trials, power values 
in the right hand trial group were subtracted from the power values in the left 
hand trial group. The remainder was averaged along the frequency dimension 
within the beta-band range (13 to 30 Hz). The permutation test was applied for 
the channels in the left and right hemisphere separately, and channels were 
spatially clustered using triangulation of the sensor positions. Clusters in time 
were restricted to occur in the time window from 500 ms before movement 
onset until movement onset, mainly overlapping with the reaction time window. 
Both the cluster alpha level and the alpha level to reject the null hypothesis of 
no clusters in the data were set to 0.05. Mirror-symmetric channels that could 
be found in a significant cluster in the left hemisphere as well as a significant 
cluster in the right hemisphere were selected for further analyses, and data 
were averaged across the channels within a channel cluster.
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Second, we were interested in whether effector competition was reflected 
in beta-band power during motor planning. Trials were grouped based on 
instruction (predetermined, choice), cue direction (extreme, PSE) and hand 
used (left, right). For the predetermined trials, both correctly and incorrectly 
cued trials were included. For the choice trials, only the correctly cued trials 
were included, as participants might have chosen to switch hands after the 
presentation of an incorrectly cued target, making it inappropriate to group 
trials based on the hand used. For reaches towards the extreme cues, only 
left hand trials were included for the leftmost cue (-40°) and only right hand 
trials were included for the rightmost cue (40°). Power values were computed 
for the sensor clusters ipsilateral and contralateral to the hand used, and 
were collapsed across hands, resulting in trial groups based on instruction 
(predetermined, choice), cue direction (extreme, PSE) and sensor cluster 
(contralateral, ipsilateral). Power values were averaged along the frequency 
dimension in the beta-band range (13 to 30 Hz).

To test if beta-band power was modulated by instruction, cue direction and 
sensor cluster, we performed a repeated-measures ANOVA on the average 
beta-band power during the time window from cue onset until 1000 ms after 
cue onset (cue-locked) as well as the time window from 1000 ms before 
response onset until response onset (response-locked), with instruction 
(predetermined, choice), cue location (extreme, PSE), and sensor cluster 
(ipsilateral, contralateral) as factors. A Bayesian ANOVA was used to compute 
Bayes factors for all main and interaction effects (BayesFactor package in R, 
see also Rouder, Morey, Speckman, & Province, 2012). To examine whether 
the effects were limited to the power in the beta-band frequency range, the 
procedure was repeated for the power in the theta-band (5 to 7 Hz) and alpha-
band frequency range (8 to 12 Hz).

2.3	 Results

To examine if cortical power reflects uncertainty in hand choice, participants 
performed a cued hand choice reaching experiment, whereby the hand to use 
was chosen by the participant, based on a cue and target, or instructed by 
the cue. Figure 2.2A shows the proportion of right hand choices for the five 
different target directions when correctly cued averaged across participants 
(black circles) and their psychometric fit (black line), superimposed on the 
fits of individual participants (gray lines) with the direction at which the right 
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and left hand were chosen equally often (point of subjective equality, PSE; 
gray circles). Confirming previous literature (Bryden et al., 2000; Gabbard & 
Rabb, 2000), the ipsilateral hand was typically selected to reach for peripheral 
targets, i.e. the left hand reached to the -40° target, the right hand reached to 
the 40º target. Most participants had a negative PSE, indicating an overall bias 
to selecting the right hand, which is consistent with the right hand preference 
of our participants. The direction closest to the participants’ PSE was selected 
as the high competition direction: -10° (n = 13), 0° (n = 3), or 10° (n = 1). We 
will refer to this direction as the participant’s PSE cue or target.

We used the incorrectly cued choice trials to find behavioral evidence for motor 
planning during the cueing phase. We reasoned that if participants simply 
postponed motor planning until the presentation of the target, the cueing 
phase should not affect response behavior. Alternatively, if motor planning 
occurs in the cueing phase, it should bias hand choice. Figure 2.2B shows that 
cue location affects hand choice. For example, for a -40° cue and target (lower-
left circle), participants almost invariably use the left hand, while for the -40° 
target in combination with other cue locations the subsequent hand choice 
is more ambiguous. Similar effects can be seen across all invalid cue-target 
combinations. Thus motor planning during the cueing phase affected later 
hand choice. In support, across all choice trials, a repeated-measures ANOVA 
showed significant main effects of cue (F(1.68, 26.83) = 27.02, p < 0.001) and 
target direction (F(1.66, 26.57) = 102.18, p < 0.001) on hand choice, as well as 
a significant interaction (F(7.04, 112.60) = 7.60, p < 0.001). This confirms that 
the cue affects the eventual response, justifying our choice to study movement 
preparation during the cue period.

To test whether the paradigm evokes competitive processes in which both 
hands compete for movement execution we performed a reaction time analysis. 
Figure 2.2C shows the reaction times for the different conditions. A linear 
mixed-effects model fitted on the reaction times with fixed effects instruction 
(predetermined, choice), cue direction (PSE, extreme), cue validity (correct, 
incorrect) and cue time (1.00, 1.25, 1.50 s) showed a main effect of instruction, 
illustrating longer reaction times for choice trials than for predetermined trials 
(χ2(1) = 31.56, p < 0.0001). There was also a main effect of cue time (χ2(2) = 
45.02, p < 0.0001). Post hoc tests revealed that reaction times were longest for 
the shortest cue period (M = 349 ms) and shortest for the longest cue period 
(M = 332 ms) (p < 0.0001).
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Based on Oliveira et al. (2010) we hypothesized that reaction times would 
be longer for the PSE cue, where the effector uncertainty is highest, than for 
the extreme cues, but there was no main effect of cue direction on reaction 
time. However, there were two significant interaction effects with the factor 
cue direction: the two-way interaction between instruction and cue direction 
(χ2(1) = 5.37, p = 0.021) and the three-way interaction between instruction, 
cue direction and cue validity (χ2(1) = 12.20, p < 0.001). The two-way 
interaction seems to be driven by longer reaction times for choice trials than 
predetermined trials if the cue was in an extreme direction (p = 0.16), rather 
than if the cue was in the PSE direction (p = 0.66). The three-way interaction 
suggests that this effect was driven by the incorrectly cued trials. Overall, 
reaction times were not longer for the PSE cue than for the extreme cues. 
However, for incorrectly cued choice trials, reaction times were longer for the 
extreme cues than for the PSE cue.

Finally, there was a significant interaction effect of instruction and cue validity 
on reaction time (χ2(1) = 15.36, p < 0.0001), demonstrating that incorrect 
cues only prolonged reaction times for choice trials (p < 0.0001), but not 
for predetermined trials (p = 0.064). Most likely participants did switch 
hands from cue to target in choice trials, while switching was not allowed in 
predetermined trials.

We next turned to examining the cortical mechanisms, studying whether 
power changes in motor planning regions reflect uncertainty about the 
upcoming effector. Our focus is on the role of beta-band oscillations, known 
to be involved in motor planning, and implicated in the coding of multiple 
target-specific motor plans. We used the predetermined trials to select the 
cortical regions that show beta-band activity during left and right hand 
motor planning around movement onset. As shown in Figure 2.3, we found 
two clusters of sensors that showed a significant selectivity in the beta band 
for the contralateral hand, one in the left (p = 0.039) and one in the right  
(p = 0.021) hemisphere. The mirror-symmetric channels that could be found 
in both significant clusters mostly covered central areas of the brain. Across 
the left hemisphere these channels were FC1, C1, C3, C5, T7, CP1 and CP5, and 
across the right hemisphere these channels were FC2, C2, C4, C6, T8, CP2 and 
CP6. These clusters are centered around central channels C3 and C4, known to 
be involved in movement planning (Pfurtscheller, 1992).
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Figure 2.2. Choice behavior and reaction times. A) Proportion of right hand choices as a function 
of cue and target direction for correctly cued choice trials (black circles) fitted with a cumulative 
Gaussian distribution for all participants (black line). Points of subjective equality (gray circles) 
and cumulative Gaussian fits for individual participants (gray lines). Error bars represent SEM. 
On average, 79 trials (SD = 1.87) were included for each direction per participant. B) Proportion 
of right hand choices as a function of cue (gray lines) and target direction (abscissa) for 
correctly and incorrectly cued choice trials for all participants. A repeated-measures ANOVA 
revealed significant main effects of cue and target direction, as well as an interaction effect, 
on hand choice (n = 17). On average, 20 trials (SD = 0.83) were included for each combination 
per participant. Error bars represent SEM. C) Reaction times as a function of instruction, cue 
direction, cue validity and cue time for all participants. Violin shape outlines show the kernel 
density estimates of the individual participant data points (colored dots). Black dots show the 
mean across participants. A linear-mixed effects model revealed significant main effects of 
instruction and cue time on reaction times, as well as three interaction effects involving the 
factors instruction, cue direction and cue validity (n = 17).
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Figure 2.3. Topographic map of beta-band power preceding left and right hand movements. 
A) Mean beta-band power for the predetermined trials (correctly and incorrectly cued) 
preceding left and right hand movements (time-locked to movement onset, averaged across 
the 500 ms preceding movement onset). On average, 40 left hand trials (SD = 4.25) and 42 right 
hand trials (SD = 3.78) were included per participant. B) Mean difference in beta-band power 
between the hands (left minus right hand). Channel clusters (black dots) were identified with a 
nonparametric cluster-based permutation test (n = 17).

We examined whether beta-band power within these channels during the 
cueing phase reflects a hand selection process. Figure 2.4 illustrates relative 
beta-band power as a function of time, aligned to cue onset (left panels) and 
response onset (right panels), for both the choice and predetermined trials 
at the PSE and extreme cues, separately for sensor clusters ipsilateral and 
contralateral to the selected hand. While there appears a clear difference 
after cue presentation between choice and predetermined trials in the 
contralateral cluster, this effect is less pronounced in the ipsilateral cluster. 
In the contralateral cluster, the power in the beta-band after onset of the 
cue decreased more in predetermined than choice trials; this difference is 
sustained until response onset, and appears slightly larger for cues at PSE than 
at an extreme location. An instruction (predetermined, choice) x cue direction 
(PSE, extreme) x sensor cluster (ipsilateral, contralateral) repeated measures 
ANOVA with beta-band power aligned to cue onset revealed significant 
main effects of sensor cluster (F(1, 16) = 40.61, p < 0.0001), consistent with 
the contralateral selectivity, and instruction (F(1, 16) = 20.14, p < 0.001), 
consistent with a smaller decrease in beta-band power in choice trials than 
in predetermined trials. Similar results were found for the signal aligned to 
response onset, with significant main effects of sensor cluster (F(1, 16) = 83.77,  
p < 0.0001) and instruction (F(1, 16) = 20.42, p < 0.001).

There was no main effect of cue direction on beta-band power aligned to cue 
onset (F(1, 16) = 2.30, p = 0.149) or aligned to response onset (F(1, 16) = 1.31, 
p = 0.269), nor were there any significant interaction effects. One could expect 
that in the contralateral hemisphere, for choice trials but not predetermined 
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trials, there would be more competition between the hands, and thus more 
uncertainty, for PSE than for extreme cues. However, an instruction (choice, 
predetermined) x cue direction (PSE, extreme) repeated measures ANOVA 
on beta-band power aligned to cue onset in the contralateral cluster only 
showed a significant main effect of instruction (F(1, 16) = 29.67, p < 0.0001). 
The interaction between instruction and cue direction was not significant 
(F(1, 16) = 0.64, p = 0.436). Also a Bayesian ANOVA revealed a Bayes factor 
for the interaction between instruction and cue direction of 0.423, which can 
be interpreted as inconclusive evidence (Jeffreys, 1961). Similar results were 
found when the signal was aligned to response onset.

Figure 2.4. Beta-band power. Relative beta-band power as a function of time in the contralateral 
(left columns) and ipsilateral (right columns) sensor cluster for the PSE (upper row) and 
the extreme cue (bottom row). Left and right subpanels show the signal aligned to cue and 
movement onset, respectively. Shaded areas represent SEM. Repeated-measures ANOVAs with 
the average beta-band power during the time window from cue onset until 1 s after cue onset and 
the time window from 1 s before response onset until response onset revealed significant main 
effects of instruction and sensor cluster (n = 17). The number of trials included per participant 
was higher in the choice condition (PSE cue: M = 69, SD = 7.01; extreme cue: M = 132, SD = 10.53) 
than in the predetermined condition (PSE cue: M = 17, SD = 2.09; extreme cue: M = 16, SD = 2.15).

To examine whether the effect of effector uncertainty is specific to the signal in the 
beta-band, we performed the same analysis in the alpha (8 to 12 Hz) and theta-
band (5 to 7 Hz) frequency range. Power in the alpha-band is known to show a 
similar reduction to beta-band power prior to movement onset (Pfurtscheller, 
1992). However, alpha-band power does not modulate with directional 
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uncertainty about the upcoming movement (Tzagarakis et al., 2015). Figure 2.5A  
shows the power in the alpha-band as a function of time, grouped based on 
instruction (predetermined, choice), cue direction (extreme, PSE), and sensor 
cluster (ipsilateral, contralateral). A repeated-measures ANOVA on the average 
alpha-band power during the cue phase did not reveal any significant main 
effects of instruction (F(1, 16) = 2.77, p = 0.116), cue direction (F(1, 16) = 0.77,  
p = 0.393), or sensor cluster (F(1, 16) = 4.46, p = 0.051), or any significant 
interaction effects.

Finally, we examined the effect of effector uncertainty on the oscillations in 
the theta-band, which have been implicated in motor planning and anticipation 
(Dufour, Thénault, & Bernier, 2018; Perfetti et al., 2011). Figure 2.5B shows 
the power in the theta-band as a function of time during the cueing phase. A 
repeated-measures ANOVA did not reveal significant main effects of instruction 
(F(1, 16) = 0.00, p = 0.967), cue direction (F(1, 16) = 0.85, p = 0.371), or sensor 
cluster (F(1, 16) = 0.45, p = 0.514), or any interactions.

Figure 2.5. Alpha-band and theta-band power. A) Relative alpha-band power as a function of 
time aligned to cue onset in the contralateral (left columns) and ipsilateral (right columns) 
sensor cluster for the PSE (upper row) and extreme cue (bottom row). Shaded areas represent 
SEM. B) Relative theta-band power as a function of time. Configurations the same as panel A. 
Repeated-measures ANOVAs with the average alpha-band and theta-band power during the 
time window from cue onset until 1 s after cue onset did not reveal any significant effects of 
instruction, cue location and sensor cluster (n = 17). These analyses included the same trials as 
reported in Figure 2.4.
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2.4	 Discussion

To investigate the effect of effector uncertainty on beta-band oscillatory 
activity during motor preparation, participants performed a hand reaching task 
whereby the effector to use was either predetermined or free of choice. We 
hypothesized that competition between the left and right hand would be low, 
independent of the cue direction, if the hand to be used was predetermined. 
If participants were free to choose a hand, we expected greater competition 
and hence a smaller decrease in beta-band power. Additionally, we expected 
more competition during hand choice for the PSE cue, where the right and left 
hand were chosen equally often, than for eccentric cues. Results indicate that 
effector competition indeed affects beta-band power during motor planning: 
when participants were free to choose the hand to use beta-band power 
decreased less than when the hand to use was predetermined. We did not 
observe a significant effect of cue direction on beta-band power.

The strength of the present study is the use of a cueing paradigm in a hand choice 
experiment, which allowed to validate that participants prepared the movement 
in a clearly defined and motion-artifact-free analysis interval. Our results 
demonstrate that effector uncertainty induced by instruction affected beta-
band power over central brain areas during motor planning. More specifically, 
beta-band power decreased less when participants were free to choose the 
hand to use than when the hand was predetermined. Lower levels of beta-
band power are thought to be associated with a readiness to move (Khanna & 
Carmena, 2017). This idea is in line with our expectations, as the instruction to 
use a specific hand should diminish competition between left and right-hand 
motor plans, and therefore ease motor planning. This is further underlined by 
the observation that instruction also affected reaction times: reaction times 
were longer when participants were free to choose the hand to use than when 
the hand was predetermined. This reaction time pattern has been previously 
observed by Oliveira et al. (2010) and is thought to show that hand selection 
comes with a cost. All in all, our results suggest that beta-band power was 
affected by effector uncertainty induced by instruction, with a smaller decrease 
in power when participants chose the hand for the ensuing reach.

Contrary to our expectations, our results do not show an effect of cue direction, 
neither on beta-band power, nor on reaction times. We expected that reaches 
towards the PSE would elicit more competition between the left and right hand 
than reaches towards targets in the periphery, for which one hand is usually 
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clearly preferred over the other (Bakker et al., 2018; Oliveira et al., 2010; 
Stoloff et al., 2011). Indeed, Oliveira et al. (2010) reported that a reaction time 
difference disappeared by restricting reaches to only one hand, as we do in the 
predetermined condition. Our experimental cueing paradigm did not elicit a 
difference in effector competition for the PSE and extreme targets. A potential 
reason can be found in the introduction of incorrect cues, which could have 
unintendedly increased uncertainty about the effector to use. For every presented 
cue, there was only 50% chance that the target would be presented in the same 
direction. The incorrect cues were included to be able to show that participants 
prepared their movement during the cueing phase, rather than waiting for 
the target. Without this experimental manipulation, it remains questionable 
whether participants in fact prepared a movement during the cueing phase. 
As a disadvantage, the presence of invalid cues may have resulted in too much 
uncertainty about which hand to use and therefore participants did not yet fully 
commit to preparing a single hand. It would be interesting for future studies 
to develop a paradigm that can control for movement preparation, as in the 
present paradigm, while incentivizing participants to commit to the movement. 
The effect of cue validity on effector uncertainty should be limited to the choice 
trials, as competition is thought to be low for reaches with a predetermined hand, 
regardless of the direction of the cue and target. Indeed, our results show that 
incorrect cues prolong reaction times for choice trials, but not for predetermined 
trials. Thus, the introduction of the incorrect cues might have resulted in a lack of 
a difference in effector uncertainty for the PSE and extreme targets for the choice 
trials, explaining why no effect of cue direction was observed here.

The absence of an effect of cue direction for the choice trials cannot be explained 
by an overall lack of movement preparation during the cue period. Not only do 
our results show that incorrect cues prolong reaction times for choice trials, but 
hand choice was also biased by the direction of the (incorrect) cue. Additionally, 
we found that reaction times were shorter with longer cue times. These findings 
suggest that participants prepared the movement based on the cue. This is in line 
with findings from previous delayed response cueing experiments; Tzagarakis 
et al. (2010, 2015) found that reaction times were longer if the cue was less 
informative in terms of the direction of the upcoming target, and Oostwoud 
Wijdenes et al. (2016) showed that movement variability during a reaching 
movement was larger if the preceding cue did not specify the hand to use.

In our analysis, the effect of effector uncertainty induced by instruction on 
brain oscillatory activity over central areas of the brain was limited to the 
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power in the beta-band. Even though oscillations in the alpha-band are known 
to show a similar decrease in power during motor planning to oscillations in 
the beta-band (Pfurtscheller, 1992), we did not observe a modulation of 
alpha-band power based on effector uncertainty. This is in line with findings 
for directional uncertainty where beta-band but not alpha-band power 
decreases more if target direction is more certain (Grent-’t-Jong et al., 2014; 
Tzagarakis et al., 2015). Additionally, Rhodes et al. (2018) found that alpha-
band power during a cue period only decreases (followed by an increase) if the 
direction of the upcoming target is unambiguous, suggesting the activity to be 
related to movement execution processes rather than motor planning. It thus 
seems as if alpha-band and beta-band power over central areas of the brain 
reflect complementary but distinct processes, with alpha-band power being 
insensitive to uncertainty about the upcoming movement.

Theta-band power is known to increase during motor planning (Perfetti et al., 
2011), and has been shown to modulate with the anticipation of visual feedback 
(Dufour et al., 2018). Here, we did not observe a modulation of theta-band 
power based on effector uncertainty induced by instruction. Thus, the effect 
of effector uncertainty on oscillatory power during motor planning seems to 
be reflected in beta-band power specifically, with the reservation that we did 
not analyze power changes in the gamma band. Van Der Werf et al. (2010) 
have reported direction-selective synchronization in the 70 to 90 Hz gamma-
frequency band, originating from the medial aspect of the posterior parietal 
cortex, when planning a reaching movement. Future work should address 
whether gamma-band synchronization also modulates with hand choice.

How the modulation of beta-band power over central areas of the brain 
coincides with other changes in neural activity observed during effector 
selection remains to be answered. Here, we focused on beta-band activity 
from channels positioned along the central coronal plane of the head, covering 
central areas of the brain. Localizing the exact neural source of this activity, 
however, was not one of the main objectives of this study. Previous studies have 
attempted to find the source of neural activity related to effector uncertainty. 
Hand choice has, for instance, been shown to be related to the phase of delta-
band oscillations at the onset of the reach target in the dorsal premotor cortex 
and primary motor cortex contralateral to the hand used (Hamel-Thibault et 
al., 2018). Additionally, BOLD activity appears to be modulated by effector 
uncertainty in parietal cortex (Fitzpatrick et al., 2019), which is in line with the 
finding that TMS over the posterior parietal cortex biases hand choice (Oliveira 



48 | Chapter 2

et al., 2010). It remains unknown whether these phenomena, distinct in the 
type of neural activity and source location, are linked, and for example arise 
from activity in the same neuronal ensembles, or whether these findings arise 
from independent processes.

In general, motor decisions are thought to be biased by the expected utility of 
potential movements. This utility depends on the costs and benefits of a certain 
movement and is based on the location of the movement target relative to the 
effector. However, also other factors might be taken into account, such as the 
task or trial instruction. Neural activity related to motor decision making based 
on utility is thought to intertwine with the activity related to motor planning 
(Cisek, 2006). Evidence for this has been found in both human (Grent-’t-Jong et 
al., 2014, 2015; Tzagarakis et al., 2010, 2015) and non-human primates (Basso & 
Wurtz, 1997; Cisek & Kalaska, 2005; Glaser et al., 2018; Klaes et al., 2011). In line 
with this, we observe an effect of motor decision making on beta-band power - a 
neural marker of motor planning (Jasper & Penfield, 1949; Pfurtscheller, 1992).

Our results are in line with the idea that motor plans for the two arms are 
prepared in parallel and compete for execution. We found that beta-band 
power during movement preparation decreased less with higher effector 
uncertainty, and thus more competition between the two hands, suggesting 
less commitment to a single motor plan. The idea of parallel processing of 
motor plans has however been a topic of debate. Bernier et al. (2012) suggested 
that effector selection actually precedes motor planning. In their experiment, 
they found activity in the parietal and premotor cortex contralateral to the hand 
used, but this was only observed after target onset, and thus after the hand was 
thought to be selected. However, their hand choice experiment differed from 
the paradigm used here. Bernier et al. (2012) asked participants to reach to 
two eccentric targets. Additionally, participants never actually chose the hand 
to use themselves, but were either instructed early on in the trial (based on the 
cue) or at target onset. Both the location of the targets and the instruction of 
the hand might have diminished possible competition between left and right 
hand movement plans, similar as to the predetermined reaches towards an 
extreme target direction here. It is important to point out though that Bernier 
et al.’s (2012) findings are in line with results from monkey studies that show 
that neuronal activity only encodes selected reach plans, instead of potential 
reach plans, in area 5 (Cui & Andersen, 2011) and dorsal premotor cortex 
(Dekleva et al., 2018). Based on these results, Dekleva et al. (2018) challenge 
the idea of the parallel specification of motor plans for potential reaching 
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actions (Cisek & Kalaska, 2005), and suggest that evidence for the encoding 
of multiple motor plans is simply a result of trial averaging. Unfortunately, we 
lack the signal-to-noise ratio to address this issue at the single trial level, but 
this would be an interesting issue for further research.

The difference in beta-band power between predetermined and choice 
trials observed here fits with the idea that effector uncertainty modulates 
oscillatory activity. However, factors other than effector uncertainty may have 
affected beta-band power during the experiment as well. For example, muscle 
co-contractions during control of arm posture have been shown to modulate 
beta-band power (Snyder, Beardsley, & Schmit, 2019). Here, most trials in 
which participants moved both hands were choice trials (76 out of the 85 trials 
in total with two-hand movements that were removed from the analysis). Even 
though this supports the notion of higher effector uncertainty for the choice 
trials, this could also indicate that muscle activity in the two arms was higher 
for choice than predetermined trials. In line with this, for the predetermined 
trials, muscle activity during the delay period could be increased in the 
instructed arm only as a result of response inhibition. Future work should 
address whether the differences observed in beta-band power correlate with 
muscle contraction forces.

It could also be asked whether the unbalanced number of trials in the 
predetermined and choice conditions biased our conclusions. While 
participants completed 100 predetermined trials versus 800 choice trials, we 
do not believe that participants perceived the predetermined cue stimulus as 
a deviant. The effect of instruction on beta-band power did not show up just 
shortly after the presentation of the cue, which might reflect the processing of 
a surprising visual stimulus, but appeared to be sustained and to even increase 
throughout the cue period. In support, although the data for the predetermined 
trials had slightly larger variability than the data for the choice trials, the main 
effect of instruction on beta-band power was highly significant (p < 0.001).

In conclusion, the results of this study suggest that effector competition during 
motor planning is reflected in beta-band, but not alpha or theta-band, power 
over central regions. More specifically, beta-band power decreased less with 
more competition between the left and right hand. Alpha and theta band power 
lacked these modulations. Our findings support the more general idea that the 
brain specifies multiple possible effector-specific actions in parallel up to the 
level of motor preparation.
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Abstract

The brain’s computations for active and passive self-motion estimation can 
be unified with a single model that optimally combines vestibular and visual 
signals with sensory predictions based on efference copies. It is unknown 
whether this theoretical framework also applies to the integration of artificial 
motor signals, like those that occur when driving a car, or whether self-motion 
estimation in this situation relies on sole feedback control. Here, we examined 
if training humans to control a self-motion platform leads to the construction 
of an accurate internal model of the mapping between the steering movement 
and the vestibular reafference. Participants (n = 15) sat on a linear motion 
platform and actively controlled the platform’s velocity using a steering wheel 
to translate their body to a memorized visual target (Motion condition). We 
compared their steering behavior to that of participants (n = 15) who remained 
stationary and instead aligned a non-visible line with the target (Stationary 
condition). To probe learning, the gain between the steering wheel angle and 
the platform or line velocity changed abruptly twice during the experiment. 
These gain changes were virtually undetectable in the displacement error in 
the Motion condition, whereas clear deviations were observed in the Stationary 
condition, showing that participants in the Motion condition made within-trial 
changes to their steering behavior. We conclude that vestibular feedback 
allows not only the online control of steering, but also a rapid adaptation to 
the gain changes in order to update the brain’s internal model of the mapping 
between the steering movement and the vestibular reafference.
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3.1	 Introduction

Self-motion estimation depends on the integration of sensory and motor 
information. During passively generated motion (e.g., a passenger in a moving 
car), perception of self-motion comes primarily from the visual system, which 
provides optic flow cues (Britten, 2008), and the vestibular system (Angelaki 
& Cullen, 2008; Medendorp & Selen, 2017). Because sensory signals may be 
ambiguous (e.g., the otoliths cannot distinguish between translational motion 
and gravitational acceleration), the brain is thought to use an internal sensory 
integration model that combines sensory information from different modalities 
to form a final self-motion percept (Angelaki, Shaikh, Green, & Dickman, 2004; 
Clemens et al., 2011; Merfeld, Zupan, & Peterka, 1999).

When the motion is generated actively, the brain can also integrate information 
related to the motor command to estimate self-motion (for a review, see 
Brooks & Cullen, 2019). In fact, self-motion is judged better when it is actively 
generated than passively imposed (Carriot, Brooks, & Cullen, 2013; Genzel, 
Firzlaff, Wiegrebe, & MacNeilage, 2016; Medendorp, 2011; Sanders, Chang, 
Hiss, Uchanski, & Hullar, 2011). Also, patients with vestibular deficits perceive 
self-motion significantly better when self-generated (Glasauer, Amorim, 
Viaud-Delmon, & Berthoz, 2002; Kaski et al., 2016; Medendorp, Alberts, 
Verhagen, Koppen, & Selen, 2018; Worchel, 1952).

While these findings could be interpreted as evidence that vestibular signals 
(and sensory signals more generally) are functionally less important in 
actively moving subjects, recent modeling work has provided a unified theory 
for how active and passive motion can be estimated (Cullen, 2019; Laurens 
& Angelaki, 2017), with a fundamental role for both sensory signals and the 
efference copy. According to this theory, a multisensory self-motion estimate 
is computed using sensory prediction errors, i.e., the difference between 
actual and predicted sensory signals. During active motion, motor commands 
can be used to anticipate the corresponding sensory reafference, such that 
the sensory prediction error is minimal. In contrast, sensory activity cannot 
be anticipated during passive motion, resulting in non-zero sensory prediction 
errors, which then drive the self-motion estimate.

Under both active and passive motion, vestibular signals (as well as other 
sensory signals like vision) are continuously monitored to update the internal 
prediction. Thus, without intact sensory organs, the sensory prediction errors 
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cannot be corrected, and the self-motion estimate may no longer be accurate 
during either active or passive motion. Because sensory information and motor 
commands, as well as the neural processing itself, are endowed with intrinsic 
random noise, Laurens and Angelaki (2017) modelled the computations using 
a Kalman filter to determine the optimal (Bayesian) estimate of self-motion. 
Given uncertainty in the moment-to-moment sensory information, such a 
Bayesian computation also relies on a priori expectations about incoming 
sensory signals (Clemens et al., 2011; Laurens & Droulez, 2007; MacNeilage, 
Ganesan, & Angelaki, 2008; Prsa, Jimenez-Rezende, & Blanke, 2015).

While this framework suggests that not only sensory signals but also efference 
copies of motor commands are critical in self-motion perception, it is agnostic 
as to the nature of the motor signal. This opens up the possibility that also 
artificial (or indirect) motor signals can be used for self-motion perception, as 
long as they are associated with an accurate internal model for predicting the 
sensory reafference. Such artificial motor signals are for example generated 
when driving a car; the steering is cognitively mediated and of efferent nature. 
The use of such artificial motor signals for self-motion perception is the topic 
of the present study.

Data on this issue are sparse and contradictory. For example, Roy and 
Cullen (2001) taught monkeys to drive themselves using a steering wheel 
that controlled the speed of the turntable on which they were seated. They 
compared neural activity between an active steering condition and voluntary 
head rotation conditions. While neuronal activity was suppressed at early 
sensory levels during active head rotations, reflecting a near-zero prediction 
error, this was not observed during self-generated driving, during which 
neurons responded as if the motion was externally applied. These findings 
suggest that an artificial motor signal, here a cognitive steering signal, is not 
used to predict the sensory afference at early sensory levels. In contrast, other 
work (Jacob & Duffy, 2015; Page & Duffy, 2008) has reported that neurons in 
the dorsal stream (medial superior temporal area) show altered responses to 
visual self-motion when monkeys steer to move in a certain direction compared 
to when they passively view the same optic flow pattern (but see also Egger & 
Britten, 2013), as if the brain not only relied on sensory self-motion information 
but also made an internal model prediction based on steering-related signals.
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In the present study we address this issue in humans, testing whether and 
how steering-related signals are used in self-motion perception. Recent 
virtual reality experiments examined how humans (and monkeys) virtually 
navigated to a memorized location by integrating optic flow generated by their 
own joystick movements (Alefantis et al., 2022; Lakshminarasimhan et al., 
2018; Stavropoulos et al., 2022). Biases in their steering depended on optic 
flow density, as a marker of the reliability of sensory evidence, and the control 
gain of the joystick, as a measure of the internal model prediction of the optic 
flow, suggesting that the brain combined both signals in the percept of non-
vestibular self-motion. However, the authors mainly focused on the processing 
of visual information, and the role of the vestibular sense was only studied 
under continuously changing control dynamics of the joystick (Stavropoulos 
et al., 2022). It remains unknown if the brain formed an internal model to 
predict the vestibular self-motion signal or whether it solved the task primarily 
using vestibular feedback control, without relying on the control dynamics. 
In support of the latter, vestibular feedback control models have previously 
been suggested for goal-directed path integration, in which the distance of 
a traveled path is computed from the sole inertial sensory input (Glasauer, 
Schneider, Grasso, & Ivanenko, 2007).

We created a motor signal of cognitive nature (an artificial efference copy) 
and test how it is used in combination with vestibular-derived self-motion 
signals. This outflow signal was generated by training subjects to drive their 
own body, by handling a steering wheel that controlled the lateral motion 
velocity of a vestibular platform, to a memorized visual target (Motion 
condition). We examined how vestibular feedback is used in the online 
control of steering and studied the dynamics by which the mapping between 
steering movement and resulting vestibular feedback – the internal model - 
is learned by abruptly changing the gain between the steering wheel angle 
and the velocity of the platform twice during the experiment. If participants 
construct an internal model of the mapping between the steering movement 
and the vestibular reafference, we expect rapid, within-trial, changes to their 
steering behavior after these gain changes in order to align their body with the 
memorized target. We compared their behavior to that of participants who did 
not have vestibular feedback about their motion, and could thus only employ 
a feedforward strategy, as they handled the steering wheel to control a line 
cursor (Stationary condition).
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3.2	 Methods

3.2.1	 Participants
Thirty participants were randomly assigned to one of two experimental 
conditions. The Motion group included 15 participants (five men and ten 
women) ranging in age from 18 to 35 years, and the Stationary group included 
15 participants (six men and nine women) ranging in age from 18 to 29 years. 
All participants were naïve to the purpose of the experiment and reported to 
have normal or corrected-to-normal vision and no history of motion sickness. 
The ethics committee of the Faculty of Social Sciences of Radboud University 
Nijmegen, the Netherlands, approved the study and all participants gave 
written informed consent prior to the start of the study. Participants were 
reimbursed for their time with course credit or €12,50. The experimental 
session took around 75 minutes per participant.

3.2.2	 Setup
The experiment took place in a dark room. Participants were seated on a 
custom-built linear motion platform, also called the sled, with their interaural 
axis aligned with the motion axis of the sled (Fig. 3.1A). The track of the 
sled was approximately 95 cm long. The sled was powered by a linear motor 
(TB15N; Tecnotion, Almelo, The Netherlands) and controlled by a servo drive 
(Kollmorgen S700; Danaher, Washington, DC, United States). Participants 
were restrained by a five-point seat belt and could stop the motion of the sled 
at any time by pressing one of the emergency buttons on either side of the sled 
chair. A steering wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland) 
with a range of rotation from 450 to +450 deg and a resolution of 0.0549 deg 
was mounted in front of the participants at chest level. The steering wheel was 
placed at a comfortable handling distance from the body for each individual 
participant. The angle of the steering wheel encoded the linear velocity of 
the sled (Motion condition) or a vertical line cursor (Stationary condition). 
Visual stimuli were presented on a 55 inch OLED screen (55EA8809-ZC; LG, 
Seoul, South Korea) with a resolution of 1920 x 1080 pixels and a refresh rate 
of 60 Hz, positioned centrally in front of the sled track at a viewing distance 
of approximately 170 cm. Participants wore headphones during the entire 
experiment to mask the noise of the moving sled with white noise sounds. The 
experiment was controlled using custom-written software in Python (version 
3.6.9; Python Software Foundation).
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Figure 3.1. Experimental setup and paradigm. A) Experimental setup. Participants were seated 
with their interaural axis aligned with the motion axis of the sled and turned a steering wheel.  
B) Motion condition paradigm. Participants were first shown the body cursor (white line), 
followed by the target (orange line). After the disappearance of the target, a beep instructed 
participants to turn the steering wheel to translate their body in alignment with the memorized 
target location. After the motion, visual feedback about the distance from the reappearing 
body cursor to the target location (Feedback I) and the movement duration (Feedback II) was 
provided. C) Stationary condition paradigm. Participants were first shown the line cursor 
(white line), followed by the target (orange line). After the disappearance of the target, a 
beep instructed participants to turn the steering wheel to translate the memorized line cursor 
in alignment with the memorized target location. Participants remained stationary and did not 
receive any visual feedback during the steering movement. After the movement, visual feedback 
about the distance from the reappearing line cursor to the target location (Feedback I) and the 
movement duration (Feedback II) was provided.

3.2.3	 Paradigm

3.2.3.1	 Motion condition
In the Motion condition, participants turned the steering wheel to laterally 
translate their body to align with a memorized visual target. The angle of 
the steering wheel encoded the linear velocity of the sled. The experimental 
session started with a two-minute familiarization with visual feedback to 
become acquainted with the initial gain between the angle of the steering 
wheel and the velocity of the sled (1.4 cm/s per deg, see below). After the 
familiarization, the main experiment started.

Figure 3.1B shows the sequence of events during an experimental trial. At the 
start of the trial, the position of the body midline was presented on the screen 
as a vertical white line with a length of 25.4 cm for 1 s. We will refer to this 
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line as the body cursor. Next, the target, represented by a vertical orange line 
with the same length, was presented for 1 s. The target distance, defined as 
the distance from the body cursor to the target location, was 20, 30 or 40 cm. 
The target could appear to the left or to the right of the body midline. After 
disappearance of the target, a beep was played via the headphones to inform 
the participant to start the steering movement to align their body midline with 
the memorized target location.

The motion started when the participant turned the steering wheel 0.0549 deg 
(one “click”) away from the steering wheel angle at trial start. Participants 
received no visual information during the motion. As described above, the 
initial gain between the angle of the steering wheel and the velocity of the 
sled was 1.4 cm/s per deg. To probe learning, the gain changed abruptly twice 
during the experiment (trial 1-90: 1.4 cm/s per deg; trial 91-162: 0.8 cm/s per 
deg; trial 163-234: 1.4 cm/s per deg). Participants were not informed about 
the initial gain or the gain changes, and were instructed to make a smooth 
steering movement. The latency between the rotation of the steering wheel 
and the translation of the sled was typically lower than 10 ms. The maximum 
absolute velocity of the sled was set to 100 cm/s. If the steering wheel angle 
encoded a higher sled velocity, it was capped at this maximum velocity  
(< 1 trial per participant). During the motion, white noise was played through 
the headphones to mask any auditory cues. When the absolute velocity 
encoded by the steering wheel angle fell below 2 cm/s the sled stopped, and 
the white noise sound ended.

After the motion, participants received feedback about the accuracy of their 
displacement and the duration of the steering movement. First, both the body 
cursor and the target were presented on the screen for 1 s. This informed 
participants about how far they ended from the target location, and whether 
they undershot or overshot the target location with their self-generated 
motion. To incentivize participants to adequately perform the task they also 
received a score. Two points were awarded if the undershoot or overshoot 
was smaller than 0.15 times the target distance, represented on the screen by 
a translucent orange rectangular area centered on the target stimulus. One 
point or zero points were awarded if the undershoot or overshoot was between 
0.15 and 0.30 times or larger than 0.30 times the target distance, respectively. 
Subsequently, a line of text reiterating the score and the total score so far and 
a line of text with the movement duration were presented on the screen for 1 s.  
Participants were encouraged to finish their steering movement within 900 to 
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1300 ms from movement start to ensure suprathreshold vestibular stimulation 
while remaining below the maximal sled velocity. The line of text read: “Timing 
perfect” if the movement ended after 900 to 1300 ms, and “n ms too short/long” if 
the movement took shorter or longer. The lines of text were preceded by colored 
circles, with the color quickly informing the participants about their performance 
(displacement accuracy: green, orange and red for two, one and zero points, 
respectively; movement duration: green, orange and red for a perfect timing, 
300 ms too short or long and more than 300 ms too short or long, respectively).

Trials were presented in blocks of six trials with the target presented at 
different locations: 20, 30 and 40 cm to the left and right of the body cursor 
at trial start. Target distances within a trial block were presented in a semi-
random order, with leftward and rightward displacements alternating, and 
each distance presented once in either direction. The sled started a trial at the 
location where the previous trial ended. However, if the position of the sled at 
the end of a trial was restricting its motion on the next trial (because of the 
limited sled track length of ~95 cm) to less than 1.5 times the target distance, 
the sled was first passively moved to a position 30 cm away from the middle 
of the sled track in the direction opposite that of the upcoming displacement, 
leaving ~80 cm for the motion. The main experiment started with 18 practice 
trials, during which the experimenter was present for task instructions. The 
practice trials were followed by the 234 experimental trials, of which the 
first always tested a rightward displacement. The experimental trials were 
separated by short breaks (< 2 minutes) after every 36 trials, during which the 
lights in the experimental room were turned on to prevent dark adaptation.

3.2.3.2	 Stationary condition
In the Stationary condition, participants turned the steering wheel to laterally 
translate a non-visible line cursor in alignment with a memorized visual target, 
while the sled (and thus the body) remained stationary. The experimental 
session started with a two-minute familiarization with visual feedback to 
become acquainted with the initial gain between the angle of the steering 
wheel and the velocity of the line cursor (1.4 cm/s per deg, see below). After 
the familiarization, the main experiment started.

During the main experiment, targets were presented as in the Motion condition 
(Fig. 3.1C). However, instead of the body cursor, participants controlled a non-
visible line cursor that moved independently of the stationary body. At the start 
of the trial, the line cursor was presented on the screen in front of the participant, 
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aligned with the body midline, as a vertical white line with a length of 25.4 cm for 
1 s. After the subsequent presentation of the target, a beep was played via the 
headphones to inform the participant to start the steering movement to align the 
line cursor with the memorized target. Note that neither the line cursor nor the 
target was visible during the steering movement. White noise was played through 
the headphones during the steering movement to keep conditions similar.

The gain between the steering wheel angle from trial start and the velocity of 
the line cursor changed over trials in the same way as in the Motion condition 
(trial 1-90: 1.4 cm/s per deg; trial 91-162: 0.8 cm/s per deg; trial 163-234:  
1.4 cm/s per deg). During the steering movement, the position of the line 
cursor was updated in the background by adding up the products of the 
encoded velocities and the time between steering wheel samples. Contrary 
to the Motion condition, no maximum absolute velocity was set. When the 
absolute velocity encoded by the steering wheel angle fell below 2 cm/s the 
white noise sound ended and participants received feedback and a score as in 
the Motion condition (the updated position of the line cursor, in contrast to the 
body cursor, was shown along with the target).

Trials were presented in blocks of six trials as in the Motion condition. The 
main experiment started with 18 practice trials, during which the experimenter 
was present for task instructions. The practice trials were followed by the  
234 experimental trials, of which the first always tested a rightward 
displacement. The experimental trials were separated by short breaks  
(< 2 minutes) after every 36 trials, during which the lights in the experimental 
room were turned on to prevent dark adaptation.

3.2.4	 Data analysis
Data were processed offline in MATL AB (version R2017a; The MathWorks, 
Inc., Natick, Massachusetts, United States). Trials during which participants 
displaced the sled (Motion condition) or the line cursor (Stationary condition) 
in the direction opposite of the target or during which participants rotated the 
steering wheel less than 7.5 deg from the angle at trial start were excluded 
from the analysis. Additionally, for the Motion condition, trials during which 
the absolute velocity encoded by the steering wheel angle reached the set 
maximum of 100 cm/s or during which the sled reached one of the ends of the 
sled track were excluded. On average, one trial was excluded per participant 
(mean ± SD; Motion condition: 1.40 ± 1.45 trials per participant; Stationary 
condition: 0.67 ± 0.82 trials per participant).
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For all included trials movement onset was defined as the first time point 
the steering wheel rotated more than 2.5 deg away from the angle at trial 
start. Movement end was defined as the first time point after movement 
onset the steering wheel angle fell below 2.5 deg from the angle at trial 
start. Participants failed to bring the steering wheel angle back within 
this range (i.e., stopped steering prematurely) on average on five trials 
per participant (Motion condition: 4.60 ± 4.17 trials; Stationary condition:  
5.20 ± 6.70 trials). For these trials, movement end was defined as the time point 
the steering wheel angle remained constant for at least 100 ms or reached a 
local minimum while encoding a low velocity (i.e., rotated less than 7.5 deg 
away from the angle at trial start). Movement duration was defined as the time 
between movement onset and movement end. Displacement error was defined 
as the distance between the body cursor (Motion condition) or the line cursor 
(Stationary condition) at movement end and the target. Negative errors represent 
undershoots; positive errors represent overshoots. Relative displacement errors 
were computed as the ratio of the displacement error and the target distance.

3.2.4.1	 Normalized steering behavior and encoded velocity
To be able to depict changes in steering behavior and the encoded velocity 
of the sled or the line cursor in response to the two gain changes across 
participants, we first normalized the time traces of the steering wheel angle 
and the encoded velocity. For each participant, we first calculated the mean 
movement duration, the mean maximum absolute steering wheel angle and 
the mean maximum absolute encoded velocity (speed) of the baseline trials  
(trials 73-90, the last three trial blocks before the first gain change), grouped 
based on target distance and direction. We subsequently normalized the 
movement duration, steering wheel angle and encoded velocity samples 
on each trial by dividing them by the mean movement duration, the mean 
maximum absolute steering wheel angle and the mean maximum speed, 
respectively, of the three baseline trials with a corresponding target distance 
and direction. Normalized steering wheel angles and normalized encoded 
velocities were resampled to 1000 samples per trial using linear interpolation 
and were averaged across participants. We then created a corresponding 
linearly spaced time vector of 1000 samples for each trial running from zero, 
representing movement onset, to the mean normalized movement duration 
across participants for plotting purposes.



62 | Chapter 3

3.2.4.2	 Scale factors and skewness
To quantify changes in steering kinematics in response to the two gain 
changes, we scaled both the raw time and raw steering wheel angle samples 
on each trial relative to the baseline trials with a corresponding target distance 
and direction. This linear transformation from baseline trial b to trial of interest 
i can be described by:
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where ti and tb represent the time vectors, ai and ab the vectors with steering 
wheel angles, and st and sα the scale factors for the time vector and the vector 
with steering wheel angles, respectively. To fit the scale factors, the data from 
the baseline trial and the trial of interest were first resampled to have matching 
lengths (i.e., the trial with the least samples was resampled using linear 
interpolation to have as many samples as the longer trial). Subsequently, scale 
factors were fitted by minimizing the combined sum of squared errors using 
the fminsearch function in MATL AB. For each trial, the fitted scale factors 
relative to the three baseline trials with a corresponding target distance and 
direction were averaged. This approach is similar to a baseline normalization 
of the movement duration and the maximum absolute steering wheel angle of 
the respective trial, but because it takes all samples of the trial into account 
it is more robust to changes in the shape of the steering profiles (e.g., less 
biased by long tails).

We additionally assessed skewness of the time traces of the steering wheel 
angle as a function of time by calculating Bowley’s coefficient of skewness for 
each trial i:

� (eq. 3.2)
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where B represents the skewness coefficient, and Q1, Q2, and Q3 represent the times at which 25%, 50%, 

and 75% of the total distance travelled during the trial was covered, respectively. The skewness 

coefficients were baseline corrected by subtracting the average of the baseline trials with a 

corresponding target distance and direction. Negative skewness coefficients represent left-skewed 
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where B represents the skewness coefficient, and Q1, Q2, and Q3 represent the 
times at which 25%, 50%, and 75% of the total distance travelled during the 
trial was covered, respectively. The skewness coefficients were baseline 
corrected by subtracting the average of the baseline trials with a corresponding 
target distance and direction. Negative skewness coefficients represent left-
skewed steering profiles relative to baseline; positive skewness coefficients 
represent right-skewed steering profiles relative to baseline.
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3.2.4.3	 Statistics
Statistical analyses were done in R (version 4.0.1; see R Core Team, 2017) using 
the package ez (version 4.4-0; see Lawrence, 2016). Results were considered 
significant if the p-value was smaller than 0.05. To characterize baseline 
performance, we examined the average displacement error, movement 
duration and the maximum absolute steering wheel angle across the baseline 
trials (trials 73-90) with a mixed factorial ANOVA with condition (Motion and 
Stationary) as between-subject factor and target distance (20, 30 and 40 cm) 
and target direction (leftward and rightward) as within-subject factors. The 
results were adjusted according to the Greenhouse-Geisser correction in case 
of violations of sphericity. We report the generalized eta squared ( ) as a 
measure of the effect size (Bakeman, 2005).

To assess differences in changes in steering behavior in response to the two 
gain changes, we compared the behavior on trial 90 and trial 91 (high-to-low 
gain change) and on trial 162 and trial 163 (low-to-high gain change). We 
examined the change in the relative displacement error, the two scale factors 
and the skewness coefficient using a mixed factorial ANOVA with condition 
(Motion and Stationary) as between-subject factor and gain change (high-to-
low and low-to-high) as within-subject factor. Data from one participant in the 
Stationary condition were excluded from the analyses due to a trial rejection 
around the low-to-high gain change. We additionally assessed whether the 
change in the relative displacement error was significantly different from zero 
in the Motion condition using a one-sample t-test for each gain change. We 
report Cohen’s d as a measure of the effect size (Cohen, 1988).

3.3	 Results

We created a closed-loop steering experiment, in which the participant’s 
motor signal, enacted through a steering movement, directly influenced the 
ensuing body motion, and hence the feedback from the vestibular system. We 
examined how vestibular feedback is used in the online control of steering and 
studied the time course by which the mapping between steering movement 
and the whole-body translation is updated to changes in the control dynamics 
(Motion condition). We compared this to the steering of an external object  
(a line cursor) in a body-stationary condition (Stationary condition).
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Figure 3.2A shows the mean displacement error across participants as a 
function of the trial block per target distance and condition, pooled across 
target directions. Displacement errors across the baseline trials (trial blocks 
13-15) were similar across conditions (F1,28 = 1.83, p =.187,  =.02) and target 
directions (F1,28 = 1.97, p =.172,  =.02), but varied across target distances 
(F1.62,45.41 = 33.95, p <.001,  =.28). Participants were most accurate on baseline 
trials with an intermediate target distance (mean ± SD; 30 cm: 0.60 ± 3.94 cm), 
overshot the target location on trials with a small target distance (20 cm: 2.81 ± 
3.07 cm), and undershot the target location on trials with a large target distance 
(40 cm: -3.18 ± 5.34 cm). Displacement errors across the baseline trials thus 
showed a range effect (Petzschner & Glasauer, 2011; Poulton, 1975). In the 
Stationary condition, participants undershot and overshot the target location 
shortly after the high-to-low and low-to-high gain change, respectively, 
irrespective of the target distance. However, the gain changes did not seem to 
influence the displacement error in the Motion condition. As this apparent lack 
of an effect of the gain changes in the Motion condition might be due to the low 
temporal resolution (trials were averaged across all six trials composing a trial 
block), we will refrain from statistics here. We will zoom in on the effect of the 
gain changes on the level of single trials later on.

The apparent lack of an effect of the gain changes on the displacement 
error in the Motion condition could also suggest that participants used the 
online vestibular feedback to make within-trial adjustments to their steering 
movement. These within-trial adjustments are likely to be reflected in the 
duration of the movement, the angle of the steering wheel and the velocity of 
the sled encoded by the angle of the steering wheel. The velocity of the sled is 
directly affected by the gain changes, and both the movement duration and the 
steering wheel angle can be adjusted in response to this error.

Figure 3.2B shows the mean movement duration across participants as a 
function of the trial block per target distance and condition, pooled across target 
directions. Movement duration across the baseline trials was similar across 
conditions (F1,28 = 0.58, p =.454,  =.01) and target directions (F1,28 = 0.96,  
p =.337,  =.005), but varied across target distances (F1.53,42.71 = 46.57,  
p <.001,  =.22). Participants took more time for the movement the longer 
the target distance (20 cm: 859 ± 125 ms; 30 cm: 947 ± 112 ms; 40 cm: 1006 
± 111 ms). Overall, the baseline movement duration was at the lower end of 
the imposed window from 900 to 1300 ms (Motion condition: 925 ± 147 ms; 
Stationary condition: 949 ± 111 ms). In the trial block after the high-to-low gain 
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change, the movement duration increased immediately in the Motion condition 
across all target distances, followed shortly by the Stationary condition. 
Movement duration remained elevated, with a larger overall increase for the 
Stationary condition. In the trial block after the low-to-high gain change, 
movement duration immediately returned to baseline values in the Motion 
condition, whereas movement duration decreased a little more gradually in the 
Stationary condition.

Figure 3.2C shows the mean maximum absolute steering wheel angle across 
participants as a function of the trial block per target distance and condition, 
pooled across target directions. The maximum absolute steering wheel angle 
across the baseline trials was similar across conditions (F1,28 = 0.43, p =.520, 
=.01) and target directions (F1,28 = 1.57, p =.221,  =.004), but varied across target 
distances (F2, 56 = 117.34, p <.001, =.36). Participants increased the maximum 
angle with increasing target distances (20 cm: 28.74 ± 5.23 deg; 30 cm: 34.49  
± 5.60 deg; 40 cm: 39.09 ± 6.55 deg). We additionally found a small but 
significant interaction effect between target direction and condition (F1,28 = 5.55,  
p =.026,  =.01). This interaction effect seems to be driven by a higher 
mean maximum absolute steering wheel angle for leftward than rightward 
displacements across the baseline trials in the Stationary condition (leftward: 
35.75 ± 6.92 deg; rightward: 33.62 ± 6.54 deg), whereas the angle was 
similar across directions in the Motion condition (leftward: 33.19 ± 7.20 deg; 
rightward: 33.84 ± 7.95 deg).

In the trial block after the high-to-low gain change, the maximum absolute 
steering wheel angle increased in the Motion condition across all target 
distances. The maximum absolute steering wheel angle remained relatively 
high until the low-to-high gain change, after which it decreased rapidly. In 
the Stationary condition, the maximum absolute steering wheel angle also 
increased and decreased after the high-to-low and low-to-high gain change, 
respectively, but more gradually.

Figure 3.2D shows the mean maximum speed of the sled or the line cursor 
encoded by the steering wheel angle as a function of the trial block per target 
distance and condition, pooled across target directions. Due to the rapid 
changes in the steering wheel angle in the Motion condition in response to the 
gain changes, the maximum speed of the sled remained rather constant across 
the experiment. In the Stationary condition, the maximum speed of the line 
cursor returned to baseline values more gradually.
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Figure 3.2. Displacement error, movement duration, maximum absolute steering wheel angle 
and maximum speed. A) Mean displacement error across participants as a function of trial 
block grouped based on target distance (panels) and experimental condition (colored lines). 
Displacement errors have been averaged across leftward and rightward displacements within 
a trial block. Negative numbers represent undershoots; positive numbers represent overshoots. 
Colored shaded areas represent between-subjects SEM. Horizontal dark and light gray bands 
show the range of displacement errors for which participants received 2 points and 1 point, 
respectively. Dashed vertical lines represent breaks, and solid vertical lines represent changes 
in the gain between the steering wheel angle and the velocity of the sled (Motion condition) or 
the line cursor (Stationary condition). Vertical light gray bands show the baseline trial blocks 
(trial blocks 13-15). A mixed factorial ANOVA revealed a significant main effect of target distance 
on the baseline displacement error (p <.001; Motion condition: n = 15; Stationary condition:  
n = 15). B) Same configuration as in A, but with the mean movement duration across participants. 
Horizontal light gray bands show the 900 to 1300 ms window within which participants were 
encouraged to finish their movement. A mixed factorial ANOVA revealed a significant main effect 
of target distance on the baseline movement duration (p <.001). C) Same configuration as in A, 
but with the mean maximum absolute steering wheel angle across participants. A mixed factorial 
ANOVA revealed a significant main effect of target distance on the baseline maximum absolute 
steering wheel angle (p <.001), as well as a significant interaction effect between target 
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direction and experimental condition (p =.026, not visible in the figure). D) Same configuration 
as in A, but with the mean maximum speed across participants. The speed is directly related to 
the steering wheel angle shown in C, with a gain of 1.4 cm/s per deg (trial block 1-15 and trial 
block 28-39) or 0.8 cm/s per deg (trial block 16-27).

To be able to inspect the effect of the gain changes at a high temporal resolution 
of single trials, while taking the semi-random trial order into account, we 
computed the relative displacement error as the ratio of the displacement 
error and the target distance. Figure 3.3A shows the relative displacement 
error across all trials, separately for the Motion condition and the Stationary 
condition. While the relative displacement error straddled closely around zero 
in the Motion condition, also after the gain changes, this was not the case in 
the Stationary condition, where there are clear deviations following the gain 
changes. Figure 3.3B illustrates the difference in the relative displacement 
error between the first trial after and the last trial before the gain changes, 
showing larger changes in the relative displacement error in the Stationary 
condition (high-to-low: -0.53 ± 0.28; low-to-high: 0.85 ± 0.52) than in the 
Motion condition (high-to-low: -0.11 ± 0.32; low-to-high: 0.18 ± 0.50). A mixed 
factorial ANOVA revealed a significant main effect of the gain change (F1,27 = 
57.54, p <.001,  =.51) and a significant interaction effect between the gain 
change and the condition (F1,27 = 23.89, p <.001,  =.30) on the change in 
the relative displacement error. This interaction effect indicates that the gain 
changes indeed affected the relative displacement error differently across 
conditions. Two one-sample t-tests revealed that the changes in the relative 
displacement error in the Motion condition were not significantly different from 
zero (high-to-low: t(14) = -1.34, p =.202, d = -0.35; low-to-high: t(14) = -1.39, 
p =.186, d = 0.36).

The observation that the relative displacement error was virtually constant 
across gain changes in the Motion condition, also on the level of single trials, 
suggests that participants indeed used the online vestibular feedback to make 
within-trial adjustments to their steering movement, as described above. 
Figure 3.4 illustrates these within-trial adjustments in response to the two gain 
changes. Participants in the Motion condition increased the duration and the 
absolute steering wheel angle of their steering movement within the first trial 
after the high-to-low gain change (trial 91) relative to the previous baseline 
trial (trial 90) to compensate for the lower gain (Fig. 3.4A). In the Stationary 
condition, no online feedback was available, and participants could thus not 
have been aware of the gain changes during the trials immediately after. This 
is also reflected in their behavior: the duration and the absolute steering wheel 
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angle of their steering movement remained similar from the trial before the 
gain change (trial 90) to the trial after (trial 91), resulting in a substantial 
decrease in the encoded velocity and an undershoot of the target location 
(see also Fig. 3.3A). In both conditions, however, participants increased 
the absolute steering wheel angle in later trials with the low gain, leading 
to a restoration of the encoded velocity close to baseline values, as shown 
in Figure 3.4B (trial 162). After the low-to-high gain change, participants in 
the Motion condition decreased the duration and the absolute steering wheel 
angle again within the first trial (trial 163) to compensate for the higher gain. 
In the Stationary condition, steering behavior remained the same from the trial 
before the gain change (trial 162) to the trial after (trial 163). This resulted in 
a substantial increase in the encoded velocity and an overshoot of the target 
location (see also Fig. 3.3A).

Figure 3.3. Relative displacement error. A) Mean relative displacement error across participants 
as a function of trial grouped based on experimental condition (colored lines). Relative 
displacement error was computed as the ratio of the displacement error and the target distance. 
Colored shaded areas represent between-subjects SEM. Dark and light gray bands show the 
range of displacement errors for which participants received 2 points and 1 point, respectively. 
Dashed vertical lines represent breaks, and solid vertical lines represent changes in the gain 
between the steering wheel angle and the velocity of the sled (Motion condition) or the line 
cursor (Stationary condition). B) Mean difference in relative displacement error between the 
first trial after and the last trial before the gain changes (high-to-low: trial 91 - trial 90; low-
to-high: trial 163 - trial 162) across participants. Violin shape outlines show the kernel density 
estimates of the individual participant data points (colored dots connected by colored lines). 
Solid and dashed horizontal lines within the violin shapes represent the median and interquartile 
range, respectively. A mixed factorial ANOVA revealed a significant interaction effect between 
the gain change and the experimental condition (p <.001; Motion condition: n = 15; Stationary 
condition: n = 14), as well as a significant main effect of the gain change (p <.001).
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Figure 3.4. Steering behavior around the gain changes. A) Average absolute steering wheel 
angle (left panels) and average speed (right panels) as a function of time across participants for 
the trial before and after the high-to-low gain change (trial 90 and 91, respectively), in the 
Motion (green colors) and Stationary condition (blue colors). Values were normalized relative to 
baseline. Colored shaded areas represent between-subjects SEM. B) Same configuration as in 
A, but with the trial before and after the low-to-high gain change (trial 162 and 163, respectively).

We next quantified the within-trial adjustments in response to the gain 
changes in both conditions at a high temporal resolution of single trials by 
scaling of the time-axis and steering wheel angle-axis relative to the baseline  
(trials 73-90). With this linear transformation, the axes of the trial of interest 
are independently stretched and compressed to match the baseline trial.  
Figures 3.5A and 3.5B show the fitted scale factors for the time-axis, 
describing the movement duration, and the steering wheel angle-axis, 
respectively, across all trials. In line with Figure 3.4, both the movement 
duration and steering wheel angle increased relative to baseline immediately 
after the high-to-low gain change and decreased immediately after the low-
to-high gain change in the Motion condition. Similar patterns were observed 
for the Stationary condition, albeit with a one-trial delay and slower changes 
in behavior. Participants in both conditions continued to adjust their steering 
behavior in response to the gain changes across trials. This is most clearly 
visible after the high-to-low gain change: after the immediate increase in 
movement duration and steering wheel angle, participants continued to 
increase the steering wheel angle across trials while decreasing the movement 
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duration. The latter is not surprising, as we encouraged participants to finish 
their steering movement within a time window from 900 to 1300 ms, and 
thereby indirectly encouraged them to adjust the steering wheel angle instead 
of the movement duration.

Figure 3.5. Scale factors movement duration and steering wheel angle. A) Mean movement 
duration scale factor across participants as a function of trial grouped based on experimental 
condition (colored lines). Scale factors were fitted relative to the baseline trials (trials 73-90, 
vertical light gray band) with a corresponding target distance and direction. Colored shaded 
areas represent between-subjects SEM. Dashed vertical lines represent breaks, and solid 
vertical lines represent changes in the gain between the steering wheel angle and the velocity 
of the sled (Motion condition) or the line cursor (Stationary condition). B) Same as in A, but 
with the steering wheel angle scale factor. C) Mean difference in the movement duration scale 
factor between the first trial after and the last trial before the gain changes (high-to-low:  
trial 91 - trial 90; low-to-high: trial 163 - trial 162) across participants. Violin shape outlines show 
the kernel density estimates of the individual participant data points (colored dots connected by 
colored lines). Solid and dashed horizontal lines within the violin shapes represent the median 
and interquartile range, respectively. A mixed factorial ANOVA revealed a significant interaction 
effect between the gain change and the experimental condition (p =.003; Motion condition: n = 15;  
Stationary condition: n = 14), as well as a significant main effect of the gain change (p <.001).  
D) Same as in C, but with the steering wheel angle scale factor. A mixed factorial ANOVA revealed 
a significant interaction effect between the gain change and the experimental condition (p =.003).

Figure 3.5C illustrates the difference in the movement duration scale factor 
between the first trial after and last trial before the gain changes, showing a 
significant main effect of the gain change (F1,27 = 14.56, p <.001,  =.19) and 
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a significant interaction effect between the gain change and the condition  
(F1,27 = 10.34, p =.003,  =.14). Figure 3.5D illustrates the difference in the 
steering wheel angle scale factor across the trials just before and after the gain 
changes, showing no significant main effect of the gain change (F1, 27 = 1.39, p 
=.249,  =.03), but a significant interaction effect between the gain change 
and the condition (F1,27 = 10.66, p =.003,  =.18). These significant interaction 
effects indicate that the gain changes affected the scale factors differently 
across conditions. Participants in the Motion condition increased both the 
movement duration and the steering wheel angle from one trial to the next 
after the high-to-low gain change to compensate for the lower gain, illustrated 
by the positive changes in the scale factors (movement duration: 0.15 ± 0.12; 
steering wheel angle: 0.22 ± 0.21). After the low-to-high gain change, these 
participants decreased the movement duration and the steering wheel angle 
to compensate for the higher gain, illustrated by the negative changes in the 
scale factors (movement duration: -0.12 ± 0.20; steering wheel angle: -0.20  
± 0.47). As expected, participants in the Stationary condition kept their 
behavior constant across the high-to-low gain change (movement duration: 
-0.01 ± 0.09; steering wheel angle: 0.04 ± 0.15) and the low-to-high gain 
change (movement duration: -0.05 ± 0.20; steering wheel angle: 0.17 ± 0.42).

These results show that participants in the Motion condition used the online 
vestibular feedback to change their steering behavior within the first trial 
after the gain changes. We therefore examined the skewness of the observed 
steering profiles. If participants in the Motion condition rapidly correct their 
steering movement after a gain change, early in the motion, we expect a skew 
of the steering profile. We computed Bowley’s skewness coefficient for each 
trial. This skewness coefficient provides information about how the distance 
travelled is distributed across the trial duration. Figure 3.6A shows the 
mean skewness coefficient across participants as a function of trial number, 
separately for the Motion and the Stationary condition. In the Motion condition, 
the skewness coefficient decreased after the high-to-low gain change, 
indicating a left-skewed steering profile (i.e., the increase of the absolute 
steering wheel angle was slower than the decrease, see also trial 91 in  
Fig. 3.4A). After the low-to-high gain change, the skewness coefficient 
increased, indicating a right-skewed steering profile (i.e., the increase of the 
absolute steering wheel angle was faster than the decrease, see also trial 163 
in Fig. 3.4B). Both changes in the skewness coefficient were short-lasting and 
did not persist across the trials following the first trial after the gain changes. 
In the Stationary condition, skewness coefficients remained rather constant 
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across trials and gain changes. Figure 3.6B illustrates the difference in the 
skewness coefficient across the trials just before and after the gain changes, 
showing a small but significant interaction effect between the gain change 
and the condition (F1, 27 = 5.54, p =.026,  =.11). This indicates that the gain 
changes affected the skewness coefficient differently across conditions, with 
more skewed steering profiles in the Motion condition (high-to-low: -0.017 ± 
0.033; low-to-high: 0.020 ± 0.034) than in the Stationary condition (high-to-
low: -0.001 ± 0.015; low-to-high: -0.005 ± 0.033). No significant main effect of 
the gain change was found (F1, 27 = 3.83, p =.061,  =.08).

Figure 3.6. Skewness. A) Mean skewness coefficient across participants as a function of trial 
grouped based on experimental condition (colored lines). Skewness coefficients were baseline 
corrected by subtracting the average across the baseline trials (trials 73-90, vertical light gray 
bands) with a corresponding target distance and direction. Negative skewness coefficients 
represent left-skewed steering profiles; positive skewness coefficients represent right-skewed 
steering profiles. Colored shaded areas represent between-subjects SEM. Dashed vertical lines 
represent breaks, and solid vertical lines represent changes in the gain between the steering 
wheel angle and the velocity of the sled (Motion condition) or the line cursor (Stationary 
condition). Insets show the zoomed views of the trials before and after the gain changes.  
B) Mean difference in the skewness coefficient between the first trial after and the last trial 
before the gain changes (high-to-low: trial 91 - trial 90; low-to-high: trial 163 - trial 162) across 
participants. Violin shape outlines show the kernel density estimates of the individual participant 
data points (colored dots connected by colored lines). Solid and dashed horizontal lines within 
the violin shapes represent the median and interquartile range, respectively. A mixed factorial 
ANOVA revealed a significant interaction effect between the gain change and the experimental 
condition (p =.026; Motion condition: n = 15; Stationary condition: n = 14).
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3.4	 Discussion

Participants were tested in a naturalistic self-motion task in which they 
actively controlled their own body motion on a motion sled, while traversing 
to a remembered target location in darkness (Motion condition). The goal 
was to examine whether participants estimated their self-motion based 
on the vestibular signals resulting from their body motion and developed 
an internal model about the mapping of the steering movement and the 
vestibular reafference. To find signatures of this internal model construction 
we unexpectedly changed the gain between the steering movement and the 
sled motion twice during the experiment and recorded participants’ changes 
in steering behavior. We compared their steering behavior with that of 
participants who controlled a line cursor instead of their own body motion, and 
thus did not have access to online vestibular feedback (Stationary condition).

In the Motion condition, the sudden gain changes did not result in systematic 
changes in displacement errors (Fig. 3.2 and 3.3). Instead, we observed 
within-trial changes in steering behavior immediately after the gain changes; 
participants increased and decreased the movement duration and the steering 
wheel angle to compensate for the high-to-low and the low-to-high gain 
changes, respectively (Fig. 3.4 and 3.5). These within-trial adjustments, 
resulting in skewed steering profiles (Fig. 3.6), suggest that participants 
continuously monitored and integrated the available vestibular feedback to 
keep track of their self-motion when aligning their body with the memorized 
target. Additionally, participants continued to revise the movement duration 
and steering wheel angle in subsequent trials with the new gain, gradually 
improving their adaptation to the new control dynamics (i.e., revise the 
movement duration and the steering wheel angle to be able to adhere to the 
imposed movement duration). This shift from fast and reactive changes in 
behavior to more tactful and planned changes suggests that participants built 
and updated an internal model of the steering signal and the associated self-
motion based on the online vestibular feedback.

In contrast, in the Stationary condition, the gain changes resulted in 
substantially increased displacement errors (Fig. 3.2 and 3.3). This is not 
surprising; participants assigned to this condition found out about the gain 
changes at the earliest at the end of the first trial after the gain changes, based 
on the visual feedback about their displacement error. Across trials, however, 
these participants adjusted their steering behavior based on this feedback 
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to compensate for the gain changes; after the gain changes they gradually 
changed the movement duration and the steering wheel angle, without changing 
the skewness of their steering movement (Fig. 3.4, 3.5 and 3.6), causing the 
displacement error to decrease. Overall, the results suggest that also the 
participants in the Stationary condition built an internal model, illustrated 
by their overall ability to perform the task (i.e., the displacement error at the 
end of the baseline did not differ from the Motion condition), and employed a 
feedforward control strategy to gradually improve their performance across 
trials after the gain changes based on the visual feedback at the end of the trial.

Could participants in the Motion condition have performed the task without 
forming an internal model (and thus without online predictions of the self-motion, 
i.e., the vestibular reafference)? By integrating the vestibular information 
relating to the velocity of the sled over time – as in models of path integration 
(Lappe et al., 2007) – participants could have kept track of the position of the 
sled in space, and stopped the sled when the required travel distance, specified 
by the target, was reached. However, the fast changes in steering behavior in 
response to the gain changes, as also shown by the changes in the scale factors 
and skewness coefficient describing the steering profiles (Fig. 3.4, 3.5 and 3.6), 
suggest that participants had some expectations relating to the velocity of the 
sled. So, the tentative explanation of our results is that participants are able to 
generate predictions about the vestibular feedback based on artificial motor 
signals (i.e., the steering movement) and compare these predictions to the 
actual online vestibular feedback in order to estimate their self-motion (Cullen, 
2019; Laurens & Angelaki, 2017). These computations are similar to those 
underlying the perception of true active self-motion, and our results therefore 
suggest that artificial signals, such as the steering motor signal, can serve as an 
efference copy that can be integrated in self-motion perception.

Importantly, we do not want to claim that sensory feedback strategies play no 
role in this steering behavior. For example, the steering profiles differ slightly 
between the Motion and Stationary condition when the adaptation is complete 
– the former showing a plateaued phase in steering wheel angle midway the 
motion as well as in the associated velocity (as generated by our platform) 
while the latter showing a symmetric bell-shaped steering profile. If a bell-
shaped steering profile reflects optimal adaptation, our participants may not 
have adapted optimally to the control dynamics, but also may not have ignored 
these dynamics. Since the vestibular system, specifically the otolith, is mainly 
sensitive to acceleration, a phase of constant velocity sacrifices the reliability 
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of vestibular feedback about the motion. To maintain task performance, this 
would require the participants to rely on an internal representation of the 
control dynamics and an adjusted control policy.

The present study builds on experiments in both self-motion perception and 
motor learning. Motor learning experiments, such as force field experiments 
during which reaching movements are perturbed by forces applied to the 
arm, have shown that participants adapt to new but sustained environments 
faster if online (visual) feedback is available (Batcho, Gagné, Bouyer, Roy, & 
Mercier, 2016; Franklin, So, Burdet, & Kawato, 2007). Additionally, even when 
the environment is completely unpredictable and changes from trial to trial, 
participants have been shown to be able to use online feedback to adapt by 
adjusting their behavior (Crevecoeur, Thonnard, & Lefèvre, 2020). Our results are 
in line with these observations; after the unexpected gain changes, participants 
in the Motion condition, who had online vestibular feedback, adjusted their 
steering behavior faster than participants in the Stationary condition. Of note, 
reaching movements are often ballistic, with movement durations around 600 ms, 
and are therefore likely to depend to a large extent on feedforward processes. 
The steering movements in the current experiment were slower, with movement 
durations around 900 ms, and there might therefore have been even more time for 
online adjustments, making continuous reliance on sensory feedback certainly 
a key aspect of the control strategy. Follow-up studies are required to further 
investigate the nature of the efference copy and the corresponding internal 
model representation based on artificial motor signals.

Our study is one among the few recent studies that tested self-motion 
perception under a direct coupling between the actions of the participants 
and the sensory feedback (Alefantis et al., 2022; Lakshminarasimhan et al., 
2018; Stavropoulos et al., 2022). These recent experiments imposed fewer 
artificial constraints than the traditional open-loop psychophysical paradigms 
on self-motion perception (e.g., de Winkel et al., 2013; Dokka, MacNeilage, 
DeAngelis, & Angelaki, 2011; Fetsch, Turner, DeAngelis, & Angelaki, 2009; ter 
Horst, Koppen, Selen, & Medendorp, 2015; Tramper & Medendorp, 2015). In 
the previous psychophysical experiments, the perception of self-motion was 
assessed by responses on a two-alternative forced choice task, allowing to 
estimate how the brain weighs and adapts to sensory cues during the motion 
in the absence of changing motor cues (Tramper & Medendorp, 2015; Zaidel, 
Turner, & Angelaki, 2011). While these experiments have led to important 
advances in the self-motion perception field, they cannot inform us how cues 
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with time-varying noise levels are integrated over longer periods of time or 
which utility functions and task dependencies guide the naturalistic closed-
loop navigation behavior.

In a recent study by Stavropoulos et al. (2022), human participants controlled 
their self-displacement on a motion platform to navigate to a target with and 
without the presence of concurrent optic flow. They found that steering behavior 
in darkness was biased (i.e., participants undershot the target location), and 
therefore concluded that participants could not accurately estimate their self-
motion and update their internal model based on the vestibular cues alone. 
This conclusion differs from the present results, but could be explained by 
differences in the experimental design. More specifically, their participants 
did not receive any performance-related feedback, and the control dynamics 
of the motion platform changed from trial to trial, both of which may have kept 
participants from building an accurate internal model of the mapping between 
the steering movement and the vestibular feedback.

The rapid changes in steering behavior in response to the gain changes 
suggest that our participants quickly updated their internal models to 
anticipate the ensuing self-motion. Further support for this notion comes from 
previous studies showing that, during passive but predictable self-motion, 
the effects of the self-motion are anticipated. For example, during passively-
induced angular (for a review, see Blouin, Bresciani, Guillaud, & Simoneau, 
2015) and linear whole-body displacements (Sarwary, Selen, & Medendorp, 
2013), participants were able to anticipate and counteract the inertial forces 
exerted on the arm, resulting in accurate goal-directed reaching movements. 
Also Prsa et al. (2015) showed that passive angular displacement estimates 
in human participants were biased towards the average over a block of 
random displacement magnitudes, suggesting that participants built up some 
expectations about the vestibular input.

Roy and Cullen (2001) have shown that neurons in the vestibular nuclei (VN) of 
monkeys respond similarly during steering-controlled and passively-induced 
self-motion. Under the assumption that the firing rates of neurons in the VN 
reflect sensory prediction errors (Brooks et al., 2015; Laurens & Angelaki, 
2017), this suggests that no steering-related predictions about the vestibular 
reafference are made in the VN. Even though the vestibular cerebellum is often 
suggested to house the internal model for self-motion estimation because of its 
projections to the vestibular nuclei (Cullen, Brooks, Jamali, Carriot, & Massot, 
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2011), the internal model of the mapping between steering movements and 
self-motion seems located on a more downstream level within the vestibular 
processing pathway (Alefantis et al., 2022). This is in line with observations 
during the processing of the visual reafference of steering movements; Page 
and Duffy (2008) reported that neurons in the medial superior temporal area 
in monkeys responded differently to optic flow cues resulting from steering 
movements compared to passive viewing of the same optic flow cues.

The use of artificial signals in self-motion perception is currently exploited in 
the development of vestibular implants for patients with a vestibular deficit 
(Guyot et al., 2016; van de Berg et al., 2017). These vestibular implants 
electrically stimulate the vestibular nerve in a biomimetic way and provide 
patients with artificial vestibular feedback. Similarly, these patients have been 
shown to benefit from tactile and auditory cues that provide information about 
the vestibular input through an arbitrary mapping (for a review, see Guyot et al., 
2016). This mapping has to be learned, similar to the gain in the present study, 
and the learning of such a mapping has even been extended to augmenting 
perception in healthy human subjects by adding an extra “vestibular” sense 
(i.e., head orientation relative to the geomagnetic North) (Schumann & 
O’Regan, 2017). Altogether, these experiments show that participants can 
learn the mapping between an artificial sensory feedback signal and their self-
motion, similar to the artificial motor signal used in the current study.
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Abstract

Self-motion estimation is thought to depend on sensory information as well as 
on sensory predictions derived from motor feedback. In driving, the vestibular 
afference can in principle be predicted based on the steering motor commands if 
an accurate internal model of the steering dynamics is available. Here, we used 
a closed-loop steering experiment to examine whether participants can build 
such an internal model of the steering dynamics. Participants steered a motion 
platform on which they were seated to align their body with a memorized visual 
target. We varied the gain between the steering wheel angle and the velocity of 
the motion platform across trials in three different ways: unpredictable (white 
noise), moderately predictable (random walk), or highly predictable (constant 
gain). We examined whether participants took the across-trial predictability of 
the gain into account to control their steering (internal model hypothesis), or 
whether they simply integrated the vestibular feedback over time to estimate 
their travelled distance (path integration hypothesis). Results from a trial 
series regression analysis show that participants took the gain of the previous 
trial into account more when it followed a random walk across trials than when 
it varied unpredictably across trials. Furthermore, on interleaved trials with 
a large jump in the gain, they made fast corrective responses, irrespective 
of gain predictability. These findings suggest that the brain can construct an 
internal model of the steering dynamics to predict the vestibular reafference in 
driving and self-motion estimation.
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4.1	 Introduction

Sensory feedback, especially visual and vestibular, is important in self-motion 
estimation. People can estimate their self-motion from visual (Britten, 2008) 
or vestibular (Cheng & Gu, 2018) information alone, but are more precise 
when feedback from both is available and integrated (Britton & Arshad, 
2019; DeAngelis & Angelaki, 2011; Keshavarzi, Velez-Fort, & Margrie, 2023; 
Medendorp & Selen, 2017; ter Horst et al., 2015).

When the motion is generated actively, self-motion estimates also depend 
on predictions from internal models of sensory and body dynamics that 
transform motor commands into predicted sensory consequences (Brooks & 
Cullen, 2019; Laurens & Angelaki, 2017). In combination with actual sensory 
feedback, these predictions lead to better estimates of self-motion (Campos, 
Butler, & Bülthoff, 2012; Carriot et al., 2013; Genzel et al., 2016; Medendorp, 
2011; Sanders et al., 2011), also in patients with vestibular deficits (Glasauer 
et al., 2002; Kaski et al., 2016; Medendorp et al., 2018; Worchel, 1952). Both 
during passive and active self-motion, the sensory feedback is thought to be 
continuously monitored in order to update the self-motion estimate and adjust 
the internal model if necessary (Brooks et al., 2015; Prsa et al., 2015).

The role of sensory feedback and predictions in self-motion estimation has been 
studied with closed-loop steering experiments in both monkeys (Egger & Britten, 
2013; Jacob & Duffy, 2015; Page & Duffy, 2008; Roy & Cullen, 2001) and humans 
(Alefantis et al., 2022; Lakshminarasimhan et al., 2018; Stavropoulos et al., 2022; 
van Helvert, Selen, van Beers, & Medendorp, 2022). In these experiments, the 
self-motion is controlled by a joystick or steering wheel, and the sensory feedback 
can in principle be predicted based on the steering motor command if an accurate 
internal model of the steering dynamics is available. Alefantis et al. (2022) studied 
human steering behavior in a virtual environment and found that participants 
were able to navigate the environment on trials with optic flow cues, but also on 
interleaved trials without any sensory feedback, suggesting that participants 
had formed an internal model of the steering dynamics with training. Similarly, 
Stavropoulos et al. (2022) studied navigation with optic flow and vestibular cues 
while the steering dynamics varied from trial to trial according to a random walk 
(i.e., the dynamics on the previous trial are predictive of the dynamics on the 
current trial), from responsive to sluggish steering control. Their participants 
could steer accurately whenever optic flow cues were provided, but less so when 
only vestibular cues were available and steering control was responsive. It is thus 
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not evident that vestibular cues alone can be used to build an internal model by 
which the generated self-motion can be predicted based on the steering motor 
command under changing steering dynamics. This is the topic of the present study.

We have previously examined the role of predictions and sensory feedback, 
in particular vestibular feedback, in self-motion estimation in a steering 
experiment in which the steering dynamics changed only twice during 
the experiment (van Helvert et al., 2022). Seated on a linear motion sled, 
participants were instructed to align their body with a memorized visual target 
using a steering wheel that controlled their lateral body motion. We found that 
participants responded rapidly (i.e., made within-trial adjustments to their 
steering movement) to the sudden step changes in the steering dynamics (i.e., 
the gain between the steering wheel angle and their body velocity). Across 
trials, participants’ performance gradually improved further by adjusting to the 
new steering dynamics. One explanation of these findings is that participants 
built an internal model of the steering dynamics, which transforms the steering 
motor commands into predicted vestibular feedback, that they continued to 
update throughout the experiment based on the vestibular feedback (Brooks 
et al., 2015; van Helvert et al., 2022). Another explanation is that participants 
simply relied on path integration mechanisms (Lappe et al., 2007; Loomis et 
al., 1993; Zhou & Gu, 2023), estimating their location relative to the target by 
integrating the vestibular information over time without building an internal 
model of the steering dynamics. In the present study we aim to distinguish 
between these two explanations (internal model versus path integration), 
taking inspiration from studies on the adaptation of reaching movements.

Burge et al. (2008) and Wei and Körding (2010) studied visuomotor adaptation 
of reaching movements while the uncertainty of the visual feedback about the 
reach endpoint and the uncertainty of the spatial mapping between the reach 
endpoint and the visual feedback was varied. It was found that adaptation 
proceeded slower with higher visual feedback uncertainty and faster with 
higher spatial mapping uncertainty. Gonzalez Castro et al. (2014) compared 
adaptation to a force field that varied in strength unpredictably across trials 
or to a force field that followed a random walk across trials. They found that 
participants relied more on sensory feedback in the unpredictable condition, 
while trusting sensory predictions more in the random walk condition.

In the present study, we used a similar experimental design to dissociate the 
contribution of vestibular feedback and vestibular predictions in self-motion 
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estimation during driving. Participants steered a linear sled on which they 
were seated to translate their body to a memorized visual target. We varied the 
gain between the steering wheel angle and the velocity of the sled across trials 
in three different ways: a white noise condition (unpredictable gain), a random 
walk condition (moderately predictable gain) and a constant gain condition 
(highly predictable).

We examined the steering behavior for within-trial responses to the vestibular 
feedback and vestibular predictions based on an internal model of the steering 
dynamics. Furthermore, we assessed the participants’ responses to more 
extreme changes in the steering dynamics by introducing large jumps in the 
gain (i.e., step trials) near the end of each trial block. If participants simply 
integrated the vestibular information over time to estimate the travelled 
distance (path integration hypothesis), we would expect to see no differences 
in the steering behavior across the three conditions. In contrast, if participants 
did take the across-trial predictability of the gain into account (internal model 
hypothesis), we expect them to respond fastest to changes in the gain in the 
white noise condition, followed by the random walk condition and the constant 
gain condition.

4.2	 Methods

4.2.1	 Participants
The study was approved by the ethics committee of the Faculty of Social 
Sciences of Radboud University Nijmegen, the Netherlands. Twenty-six naïve 
participants took part in the study (7 men and 19 women; 18-30 years old) and 
gave their written informed consent before the start of the experiment. They 
reported to have normal or corrected-to-normal vision, normal hearing, and 
no history of motion sickness. The experiment took around 90 minutes per 
participant, and participants were compensated with course credit or €15,00.

4.2.2	 Setup
Participants were seated on a custom-built linear motion platform, also called 
the sled, and used a steering wheel to control the sled speed (Fig. 4.1A). They 
sat with their interaural axis aligned with the motion axis of the sled, such that 
they were laterally translated. They were restrained by a five-point seat belt 
and could stop the sled motion at any time by pressing one of the emergency 
buttons on either side of the sled chair. The experiment was performed in 
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darkness. The sled was powered by a linear motor (TB15N; Tecnotion, Almelo, 
The Netherlands) and controlled by a servo drive (Kollmorgen S700; Danaher, 
Washington, DC, USA). The sled track was approximately 93 cm long. The 
steering wheel (G25 Racing Wheel; Logitech, Lausanne, Switzerland) was 
mounted at a comfortable handling distance in front of the participant at chest 
level and had a resolution of 0.0549° and a range of rotation from -450° to 
+450°. The steering wheel angle was recorded at 100 Hz. Participants viewed a 
55-inch OLED screen (55EA8809-ZC; LG, Seoul, South Korea) with a resolution 
of 1920 x 1080 pixels and a refresh rate of 60 Hz, positioned centrally in front 
of the sled track at a viewing distance of approximately 170 cm, and wore 
noise-cancelling earphones to mask auditory cues induced by the sled motion 
with white noise sounds (QuietComfort 20; Bose Corporation, Framingham, 
MA, USA). The experiment was controlled using custom-written software in 
Python (v.3.6.9; Python Software Foundation).
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< Figure 4.1. Experimental setup and paradigm. A) Experimental setup. Participants were seated 
with their interaural axis aligned with the motion axis of the sled and turned a steering wheel to 
control the sled velocity. B) Experimental paradigm. Participants were first shown their location 
as a white line, followed by the target location as an orange line. After the disappearance of the 
target location, a beep instructed participants to turn the steering wheel to translate their body 
and align it with the memorized target location. When the sled speed was again close to 0 cm/s, 
visual feedback about the displacement error (Feedback I and II) and the movement duration 
(Feedback II) was provided. Inset shows the zoomed view of the feedback bars in Feedback II.  
C) Sled position, velocity and acceleration as a function of time (aligned to movement onset) for 
five representative condition-specific trials in the constant gain condition (gray lines). For each 
trial, the measured absolute sled position relative to the start location, the absolute sled velocity 
encoded by the steering wheel angle, and the sled acceleration, computed by low-pass filtering 
the derivative of the encoded sled velocity using a moving average filter with a window length of 
nine samples, are shown. D) Example of the steering gain across trials. Each participant 
completed nine trial blocks. Each trial block started with 36 condition-specific trials, in which 
the gain varied from trial to trial (white noise and random walk condition) or remained the same 
(constant gain condition). Participants were exposed to the exact same gains in the white noise 
and random walk condition, but trials were organized such that their lag-1 autocorrelation was 
close to zero in the white noise condition and above 0.8 in the random walk condition. Each trial 
block was concluded with a baseline trial (gain of 1.0 cm/s per deg), followed by four step trials 
(high gain of 1.4 cm/s per deg; dark gray areas) and six washout trials (baseline gain of 1.0 cm/s 
per deg; light gray areas). Participants completed three trial blocks per condition, each followed 
by a short break (dashed vertical lines), and completed 18 practice trials before the experiment 
(baseline gain of 1.0 cm/s per deg).

4.2.3	 Paradigm
Figure 4.1B shows the order of events during an experimental trial. At the start 
of a trial, a vertical white line aligned with the body midline (width 0.3 cm and 
height 25.4 cm) was presented on the screen for 1 second, which represented 
the start location of the body. After this, a vertical orange line (width 0.3 cm 
and height 25.4 cm) was presented on the screen for 1 second, representing 
the target location. The target location was alternately presented to the left 
and to the right of the start location of the body. The target distance, defined as 
the distance between the start location of the body and the target location, was 
always 30 cm. Participants were not informed about the fixed target distance.

After disappearance of the target, a short beep was played via the earphones 
to instruct the participant to rotate the steering wheel to align their body 
midline with the memorized target location. The sled motion started when 
the participant turned the steering wheel 0.0549 deg (the smallest detectable 
change) away from the steering wheel angle at trial start. The steering 
wheel angle at trial start was typically between -20 and 20 deg, with 0 deg 
representing the center of the range. The angle of the steering wheel relative 
to the angle at trial start encoded the velocity of the sled, but the exact 



86 | Chapter 4

steering gain changed throughout the experiment (see below). The latency 
between the rotation of the steering wheel and the translation of the sled was 
approximately 25 ms. The maximum speed of the sled was set to 100 cm/s. If 
the steering wheel angle encoded a higher sled speed, it was capped at this 
maximum speed. The sled stopped when the steering wheel angle fell within 
-2 to 2 deg from the start angle, or when the steering wheel angle fell within  
-6 to 6 deg from the start angle and remained constant for 100 ms or started 
rising again (stopped steering prematurely or started a new steering 
movement). If the sled reached one of the ends of the track, it also stopped. 
Figure 4.1C shows the sled position, velocity and acceleration as a function of 
time for five representative trials. White noise was played via the earphones 
during the steering movement to mask auditory cues induced by the 
sled motion.

After the sled stopped, participants received feedback about their 
performance. First, both the current location of the body and the target 
location were presented on the screen for 1 s. This informed participants about 
how far they ended up from the target location and whether they undershot 
or overshot the target location. To encourage participants to be as accurate 
as possible, participants received “hit” feedback if the distance between the 
current location of the body and the target location was smaller than 4.5 cm.  
This “hit” area was represented on the screen by a translucent orange 
rectangular area (width 9 cm and height 25.4 cm) horizontally centered on the 
target location (Feedback I in Fig. 4.1B). After this, two horizontal feedback 
bars (width 15.2 cm and height 1 cm) were shown for 2 s (Feedback II in  
Fig. 4.1B). The center of the feedback bars was green, flanked by orange and 
red areas towards the edges. A white bar on the upper feedback bar reiterated 
the displacement error, with the center of the green area corresponding to the 
target location, and the left and right edges of the green area corresponding to 
an undershoot and overshoot of 4.5 cm, respectively (i.e., the “hit” window). 
A cheerful sound was played via the earphones if the participant “hit” the 
target. A white bar on the lower feedback bar showed the movement duration. 
Participants were encouraged to finish their steering movement within  
800-1200 ms from movement start to ensure suprathreshold vestibular 
stimulation while remaining below the maximum sled speed. The center of the 
green area of the feedback bar corresponded to a movement duration of 1000 
ms, and the left and right edges of the green area corresponded to a movement 
duration of 800 and 1200 ms, respectively. If the displacement error or the 
movement duration was out of bounds (i.e., actual location of the white bar 
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was more extreme than the left and right outer edges of the red areas of the 
feedback bar, corresponding to movement durations of 200 ms and 1800 ms, 
respectively), the white bar was presented on the outer edge of the feedback 
bar closest to the true location.

The next trial started after the feedback had disappeared. If the location of the 
sled at the end of the trial restricted its motion on the next trial to less than  
45 cm, the sled was first passively moved to a new starting location. This 
starting location was 15 cm away from the middle of the sled track in the 
direction opposite of the upcoming target location, leaving approximately  
60 cm for the upcoming displacement.

As described above, the steering gain (i.e., the gain between the angle 
of the steering wheel and the velocity of the sled) changed throughout 
the experiment. All participants experienced three different conditions:  
a random walk condition, a white noise condition, and a constant gain condition  
(Fig. 4.1D). In total, the experiment consisted of nine trial blocks, with three 
trial blocks per condition. Each trial block started with 36 trials specific to the 
condition. On the last of these condition-specific trials, the steering gain was 
always 1.0 cm/s per deg (baseline trial), and this trial was always followed by 
four trials with a high gain of 1.4 cm/s per deg (step trials) and six trials with 
the baseline gain of 1.0 cm/s per deg (washout trials).

For the random walk condition, the gains of the other condition-specific 
trials were generated backwards, starting from the baseline trial, in the 
following way:
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in which i is the trial number. Noise samples were drawn from a Gaussian 
distribution with a mean of 0 cm/s per deg and a standard deviation of 0.1 cm/s 
per deg. Random walks were drawn until a walk (excluding the baseline trial) 
met the following criteria: a mean gain between 0.99 and 1.01 cm/s per deg, 
a standard deviation between 0.139 and 0.141 cm/s per deg, and a lag-1 
autocorrelation value higher than 0.8 (i.e., high predictability). Autocorrelation 
values were computed by dividing the autocovariance values by the variance of 
the gains, such that the autocorrelation values fell within -1 to 1. We controlled 
the standard deviation to ensure spread in the gains while avoiding gains more 
extreme than the gain on the step trials. The procedure was repeated three 
times per participant, yielding three random walks per participant.
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For the white noise condition, the gains from the three random walks, except 
for the baseline trials, were shuffled. This was done 10,000 times per walk, 
and for each walk the instance with the lowest absolute lag-1 autocorrelation 
value was selected (all between 0.001 and -0.001). This way, the condition-
specific trials in the white noise trial blocks had the same means and standard 
deviations as the condition-specific trials in the random walk trial blocks. In 
the constant gain condition, all 36 condition-specific trials in the three trial 
blocks had a gain of 1.0 cm/s per deg (baseline gain).

The conditions were presented in a random order per participant. The number 
of repetitions of all six possible combinations was balanced across participants 
whose data was included in the analysis (see below). The three trial blocks per 
condition were presented consecutively but in random order. At the end of each 
trial block, the percentage of “hit” trials was presented on the screen, followed 
by a short break (> 45 seconds) during which the lights in the experimental 
room were turned on to prevent dark adaptation. Before the experiment, all 
participants completed 18 practice trials with a baseline gain of 1.0 cm/s per 
deg, during which the experimenter was present for task instructions. In total, 
each participant completed 432 trials.

4.2.4	 Data analysis
Data were processed offline in MATL AB (v.R2017a; the MathWorks, Inc., 
Natick, MA). Data from two participants were excluded from the analysis 
because of their relatively low scores (average percentage of “hit” trials across 
trial blocks 48 and 58%; range included participants 66-90%). Trials during 
which participants rotated the steering wheel less than 7.5 deg or displaced 
the sled in the direction opposite of the target were excluded from the analysis. 
Additionally, trials during which the speed encoded by the steering wheel 
angle reached the set maximum of 100 cm/s or during which the sled reached 
one of the ends of the sled track were excluded. On average, one trial was 
excluded per participant (range 0-2 trials).

Movement onset was defined as the first time point that the steering wheel 
was rotated more than 2 deg. Movement end was defined as the first time point 
after movement onset that the steering wheel angle fell within -2 to 2 deg, or 
as the time point after which the steering wheel angle remained constant for 
at least 100 ms or reached a local minimum between -7.5 and 7.5 deg (i.e., 
failed to bring the steering wheel back to the start position or started a new 
steering movement). Movement duration was defined as the time between 
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movement onset and movement end. Displacement error was defined as 
the difference between the location of the body at movement end and the 
target location. Negative errors represent undershoots and positive errors 
represent overshoots.

4.2.4.1	 Trial series regression analysis
To examine whether the predictability of the gains affected the steering 
behavior on the condition-specific trials in the white noise and random walk 
condition, we performed a trial series regression analysis. For each time point 
t within trial i, we modelled the steering wheel angle a as a linear combination 
of a constant representing the average steering wheel angle at time point t 
across trials, the gain on trial i (i.e., the current trial), the gain on trial i-1 (i.e., 
the previous trial), and residual error ε:

𝑎𝑎!(𝑡𝑡) = 𝛽𝛽"(𝑡𝑡) + 𝛽𝛽#(𝑡𝑡) × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔! + 𝛽𝛽$(𝑡𝑡) × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔!%# + 𝜀𝜀!(𝑡𝑡) � (eq. 4.2)

First, we selected the condition-specific trials (including the baseline trial 
but excluding the first trial of each trial block) and sampled the absolute 
steering wheel angle every 20 ms from 0 to 800 ms after movement onset 
for computational efficiency. Gains were z-scored based on the means and 
standard deviations of the gains on the included trials within the corresponding 
trial block. Trial blocks from the constant gain condition were not included in 
this analysis, because the gain was kept constant throughout the condition-
specific trials, making it impossible to use a regression analysis. The 
regression model was fitted per sampled time point within a trial, per trial block 
of the white noise and random walk condition, and per participant, yielding  
5,904 runs in total (41 time points x 6 trial blocks x 24 participants).

To check whether the autocorrelation in the gains in the random walk condition 
could potentially lead to autocorrelated regression coefficients, we used 
simulations of the regression model in Equation 4.2. These simulations showed 
that the regression coefficients could be reliably estimated, both when the 
autocorrelation values of the predictors were high, similar to the random walk 
condition, and when the autocorrelation values were close to zero, similar 
to the white noise condition. This shows that the gains were distinct enough 
across trials to reliably estimate the regression coefficients described in 
Equation 4.2 in both the white noise and the random walk condition.
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Based on the regression coefficients from the regression fits, we additionally 
predicted the absolute steering wheel angle as a function of time, as well as 
the separate effects of the current and the previous gain on the steering wheel 
angle, for the baseline and step trials. To compute the predictions, gains were 
z-scored based on the means and standard deviations of the gains from the 
included condition-specific trials within the corresponding trial block and were 
multiplied with the regression coefficients following Equation 4.2. Predictions 
were made per sampled time point within a trial, per trial block of the white 
noise and random walk condition, and per participant. If the predicted steering 
wheel angle fell below 2 deg, the steering movement ended.

4.2.4.2	 Statistics
Statistical analyses were done in MATL AB and R (v.4.0.1; see R Core Team, 
2017). The alpha value for statistical significance was set to.05, and this value 
was Bonferroni-corrected in case of multiple comparisons (exact value of alpha 
specified with the results of the tests). To compare the overall performance 
across conditions and trial block repetitions, we examined the average 
displacement error, movement duration and maximum absolute steering 
wheel angle across trials within a block using a two-way repeated-measures 
ANOVA with condition (white noise, random walk, and constant gain) and trial 
block number (first, second, and third repetition) as within-subject factors 
using the ez-package in R (v.4.4-0; see Lawrence, 2016). The results were 
adjusted according to the Greenhouse-Geisser correction in case of violations 
of sphericity, and we report the generalized eta-squared ( ) as a measure 
of the effect size. To examine the responses to the step changes in the gain 
across conditions, we averaged the displacement error, movement duration 
and maximum absolute steering wheel angle on the baseline trial and the step 
trials across trial blocks within a condition and examined differences between 
the trials and conditions using a two-way repeated-measures ANOVA with 
condition (white noise, random walk, and constant gain) and trial (baseline and 
first, second, third, and fourth step trial) as within-subject factors. We used 
paired-samples t-tests to directly compare the groups post hoc. To compare 
the results of the regression fits across the white noise and random walk 
condition, we averaged the regression coefficients across trial blocks within 
a condition and compared the values of the regression coefficients across the 
two conditions at each time point with a paired-samples t-test in MATL AB.
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4.3	 Results

We used a closed-loop steering experiment in which participants steered a 
linear sled to align their body with a memorized visual target. We varied the 
steering gain in three different ways, and examined whether participants took 
the predictability of the gain into account in their steering behavior (internal 
model hypothesis) or whether participants simply integrated the vestibular 
information over time (path integration hypothesis).

4.3.1	 General observations
Figure 4.2A shows the average displacement error across participants as a 
function of trial number for each of the three conditions. Participants hit the 
target on average in 75% of trials (range 66-90%). The average displacement 
error was close to zero in all three conditions (white noise: M = 0.25 cm,  
SD = 1.12 cm; random walk: M = 0.03 cm, SD = 1.06 cm; constant gain: M = 0.30 cm,  
SD = 1.12 cm) and in all three trial blocks within a condition (first repetition: 
M = 0.18 cm, SD = 1.22 cm; second repetition: M = 0.32 cm, SD = 1.05 cm; 
third repetition: M = 0.09 cm, SD = 1.02 cm). In line, the overall displacement 
error did not differ significantly across the conditions (F2,46 = 1.23,  
p =.301,  =.011) or across the three trial blocks within a condition (F2,46 = 1.58,  
p =.218,  =.008). Additionally, there was no significant interaction effect 
between the condition and the trial block number (F4,92 = 1.02, p =.401,  
=.011). The included participants were thus able to hit the target in most trials.

Figure 4.2B shows the average movement duration in the same format as 
in Figure 4.2A. On average, participants finished their steering movement 
within the imposed time window from 800 to 1200 ms in all three conditions 
(white noise: M = 970 ms, SD = 97 ms; random walk: M = 994 ms, SD = 108 ms;  
constant gain: M = 972 ms, SD = 86 ms) and in all three trial blocks (first 
repetition: M = 987 ms, SD = 101 ms; second repetition: M = 974 ms, SD = 99 ms;  
third repetition: M = 975 ms, SD = 93 ms). There was no significant difference 
in the overall movement duration across conditions (F1.61,36.95 = 1.78,  
p =.188,  =.012) or trial blocks (F2,46 = 1.32, p =.277,  =.004). Additionally, 
there was no significant interaction effect between the condition and the trial 
block number (F4,92 = 1.32, p =.268,  =.004).

Figure 4.2C shows the average maximum absolute steering wheel angle in the 
same format as in Figure 4.2A. The average maximum absolute steering wheel 
angle was similar across conditions (white noise: M = 46.7 deg, SD = 7.0 deg; 
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random walk: M = 44.9 deg, SD = 6.9 deg; constant gain: M = 45.7 deg, SD = 7.0 deg)  
and repetitions (first repetition: M = 45.4 deg, SD = 7.1 deg; second repetition: 
M = 46.2 deg, SD = 7.0 deg; third repetition: M = 45.7 deg, SD = 6.9 deg). In line, 
the maximum absolute steering wheel angle was not significantly affected by the 
condition (F2,46 = 2.13, p =.130,  =.011) or the trial block number (F1.48,33.96 = 1.23,  
p =.294,  =.003), nor was there an interaction effect (F2.93,67.38 = 1.14, p =.338, 

 =.002).

Figure 4.2. Displacement error, movement duration and maximum absolute steering wheel angle. 
A) Mean displacement error across participants as a function of trial number grouped based 
on the experimental condition (panels). Negative numbers represent undershoots; positive 
numbers represent overshoots. Colored shaded areas represent between-subjects means  
± SE. Participants completed three trial blocks per condition in sequence and the conditions 
were presented in a random order per participant. Each trial block was concluded with a baseline 
trial, followed by four step trials with a high gain (dark gray vertical areas) and six washout 
trials with the baseline gain (light gray vertical areas). Dashed vertical lines represent breaks 
and horizontal light gray bands show the range of displacement errors within which participants 
“hit” the target. B) Same configuration as in A, but with the mean movement duration across 
participants. Horizontal light gray bands show the time window within which participants were 
encouraged to finish their steering movement. C) Same configuration as in A, but with the mean 
maximum absolute steering wheel angle across participants.
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Figure 4.3. Trial series regression model. The trial series regression model described the steering 
wheel angle as a function of a constant, the gain on the current trial, and the gain on the previous 
trial. A) Mean value of the regression coefficient representing the constant across trial blocks 
and participants as a function of time grouped based on experimental condition (colored lines). 
Values represent the average steering wheel angle as a function of time across the condition-
specific trials within a trial block. Colored shaded areas represent between-subjects means ± 
SE. B) Same configuration as in A, but with the mean value of the regression coefficient of the 
current gain across trial blocks and participants. Negative regression coefficients indicate that 
participants decreased and increased the steering wheel angle with an increase and decrease 
in the gain relative to the mean, respectively. C) Same configuration as in A, but with the mean 
value of the regression coefficient of the previous gain across trial blocks and participants. The 
regression coefficient differed significantly between the conditions from 180 to 600 ms after 
movement onset, as also indicated by the light gray shaded horizontal area (p <.0012).
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4.3.2	 Trial series regression analysis
These findings suggest that, overall, the steering behavior was similar across 
conditions and trial blocks. However, in the white noise and random walk 
condition, the steering gain varied from trial to trial and across participants. 
Averaging across trials within a trial block and across participants could 
therefore mask effects of the gain on the steering behavior at the single-trial 
level. To examine the relationship between the gain and the steering behavior 
at the single-trial level we fitted a trial series regression model (see Methods). 
Using this approach, we describe for each condition-specific trial of the white 
noise and random walk condition the steering wheel angle at a certain point 
in time as a function of the gain on the current trial, the gain on the previous 
trial, and a constant (or offset). Figure 4.3 shows the results of the regression 
model. The regression coefficient representing the constant as a function of 
time follows the average steering wheel profile (Fig. 4.3A). The constant did 
not differ significantly across the two conditions (smallest p-value: p =.113 at 
560 ms after movement onset; Bonferroni-corrected α =.0012).

Figure 4.3B shows the regression coefficient for the current gain, which was 
zero at the beginning of the steering movement and started to decrease after 
approximately 300 ms in the white noise condition (significantly different from 
zero from 340 to 800 ms after movement onset; range p-values from p =.0008 
to p <.0001; Bonferroni-corrected α =.0012) as well as in the random walk 
condition (significantly different from zero from 440 to 800 ms after movement 
onset; range p-values from p =.0004 to p <.0001; Bonferroni-corrected  
α =.0012). Negative regression coefficients indicate that participants 
decreased the steering wheel angle with an increase in the gain relative to the 
mean gain and vice versa. Participants thus reacted adequately to changes 
in the gain from trial to trial by steering against the gain change midway the 
steering movement. The regression coefficient for the current gain did not 
differ across the two conditions (smallest p-value: p =.0074 at 540 ms after 
movement onset; Bonferroni-corrected α =.0012).

Figure 4.3C shows the regression coefficient for the previous gain, which 
decreased almost immediately after movement onset and started increasing 
again after approximately 400 ms in both conditions. The regression coefficient 
differed significantly from zero from 40 to 540 ms in the white noise condition 
(range p-values from p =.0011 to p <.0001; Bonferroni-corrected α =.0012), 
and from 80 to 660 ms in the random walk condition (range p-values from  
p =.0009 to p <.0001; Bonferroni-corrected α =.0012). The effect was small 
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in the white noise condition, as expected. The regression coefficient was 
significantly more negative in the random walk condition than in the white 
noise condition (significant from 180 to 600 ms after movement onset; range 
p-values from p =.0012 to p <.0001; Bonferroni-corrected α =.0012), indicating 
that the effect of the previous gain on the steering wheel angle was larger in 
the random walk condition. This is in line with the internal model hypothesis, 
as it is more advantageous to take the previous gain into account in the random 
walk condition because it is more predictive of the current gain due to the 
high autocorrelation.

4.3.3	 Step trial analysis
To examine whether these differences in the steering strategy across the 
conditions were also directly visible in the steering behavior after larger jumps 
in the gain, we added four step trials with a high gain of 1.4 cm/s per deg to 
the end of each trial block. All step trials were preceded by a baseline trial and 
were followed by six washout trials, all with a gain of 1.0 cm/s per deg.

Figure 4.4 shows the displacement error, movement duration and maximum 
absolute steering wheel angle for the baseline and step trials, grouped 
based on the condition and averaged across trial blocks and participants. To 
examine participants’ responses to the step changes in the gain, we compared 
the baseline trial and the step trials across conditions. In all conditions, the 
average displacement error on the first step trial was positive and larger than 
the average displacement error on the baseline trial (Fig. 4.4A). There was 
a significant main effect of the trial on the displacement error (F4,92 = 18.27,  
p <.001,  =.205), and post hoc paired-samples t-tests revealed that there 
was a significant difference between the baseline trial and all four step trials 
(range p-values from p =.002 to p <.0001; Bonferroni-corrected α =.005), 
and between the first step trial and the subsequent step trials (all p-values 
<.0001; Bonferroni-corrected α =.005). There was no significant main effect 
of the condition on the displacement error (F2,46 = 0.83, p =.444,  =.006), or 
a significant interaction effect (F8,184 = 0.41, p =.912,  =.007). However, in all 
three conditions the overshoot of the target location on the first step trial was 
smaller than 12 cm, which is the displacement error that would be expected 
if participants did not respond to the increase in the gain (target distance of  
30 cm and gain increase from 1.0 cm/s per deg to 1.4 cm/s per deg). This 
suggests that participants changed their steering movement online during the 
first step trial to compensate for the increase in the gain in all three conditions.
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This is confirmed by changes in the movement duration (Fig. 4.4B) and 
maximum absolute steering wheel angle (Fig. 4.4C) from the baseline trial 
to the step trials. The movement duration differed significantly across trials 
in all conditions (F4,92 = 30.57, p <.001,  =.122), with significantly shorter 
movement durations on the step trials than on the baseline trial (all p-values 
<.0001; Bonferroni-corrected α =.005). Interestingly, the movement duration 
increased again across the step trials, with significantly longer movement 
durations on the third step trial than on the first and second step trials (range 
p-values from p =.0001 to p <.0001; Bonferroni-corrected α =.005). There was 
no significant main effect of the condition on the movement duration (F2,46 = 1.89,  
p =.162,  =.019), or an interaction effect (F8,184 = 0.75, p =.644,  =.004). 
Similarly, the maximum absolute steering wheel angle differed significantly 
across trials in all conditions (F4,92 = 92.17, p <.001,  =.205), with a 
significantly larger maximum absolute steering wheel angle on the baseline 
trial than on all four step trials (all p-values <.001; Bonferroni-corrected α 
=.005). The maximum absolute steering wheel angle continued to decrease 
significantly across the first three step trials (all p-values <.001; Bonferroni-
corrected α =.005). There was no significant main effect of the condition on 
the maximum absolute steering wheel angle (F2,46 = 3.01, p =.059,  =.020), or 
an interaction effect between the trial and the condition (F8,184 = 0.79, p =.611, 

 =.003). Participants seemed to fine-tune their steering behavior after the 
large jump in the gain by increasing the movement duration again slightly and 
continuing to decrease the maximum absolute steering wheel angle across the 
step trials, thereby minimizing the displacement error while simultaneously 
adhering to the imposed time window.

The similarity in the correction across conditions and the fine-tuning of the 
steering behavior across the step trials is also shown in Figure 4.5. In this 
figure, the steering wheel angle as a function of time is normalized relative to 
the baseline trials. For each participant and trial block, we first resampled the 
steering wheel angles of the baseline and the four step trials to 200 samples 
per trial using linear interpolation. The movement duration and steering wheel 
angles on these trials were then normalized by dividing them by the movement 
duration and the maximum absolute steering wheel angle of the corresponding 
baseline trial, respectively. Normalized steering wheel angles were averaged 
across trial blocks and participants, and a corresponding linearly spaced 
time vector of 200 samples was created for each trial running from zero, 
representing movement onset, to the mean normalized movement duration 
across trial blocks and participants.
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Figure 4.4. Displacement error, movement duration and maximum absolute steering wheel angle 
on baseline and step trials. A) Mean displacement error across trial blocks and participants as a 
function of the trial grouped based on the experimental condition (colored lines). Negative 
numbers represent undershoots; positive numbers represent overshoots. Colored shaded areas 
represent between-subjects means ± SE. B) Same configuration as in A, but with the mean 
movement duration across trial blocks and participants. C) Same configuration as in A, but with 
the mean maximum absolute steering wheel angle across trial blocks and participants. Inset 
shows the maximum absolute steering wheel angles for the baseline and first and second step 
trials of the white noise and random walk conditions, predicted based on the results of the trial 
series regression model.

As described above, participants decreased both the movement duration and 
the maximum absolute steering wheel angle in response to the increase in the 
gain from the baseline to the first step trial. They did this already early on within 
the first step trial. Even though the responses to the higher gain are similar 
across conditions, the decrease in the maximum absolute steering wheel angle 
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from the baseline trial to the first step trial seems to be slightly smaller in the 
random walk condition, as also shown in Figure 4.4C. Participants continued to 
decrease the maximum absolute steering wheel angle across the subsequent 
step trials, while slightly increasing the movement duration again towards the 
baseline movement duration.

Figure 4.5. Steering behavior on the baseline and step trials. Average absolute steering wheel 
angle as a function of time across trial blocks and participants for the baseline and step trials 
grouped based on the experimental condition (panels). Values were normalized relative to 
baseline. Colored shaded areas represent between-subjects means ± SE.

Based on the results of the regression model fitted to the condition-specific 
trials, we made predictions for the steering wheel angle as a function of time 
for the baseline and the first two step trials in the white noise and random 
walk condition. Figure 4.6A shows the mean experimentally observed absolute 
steering wheel angles as a function of time for the baseline and the first two 
step trials. These steering wheel profiles are the same as the profiles shown 
in Figure 4.5, but without the baseline normalization. Overall, the steering 
wheel angles were slightly smaller in the random walk condition than in the 
white noise condition, and this difference is accurately predicted based on the 
regression model, as shown in the right panel in Figure 4.6A.

We could additionally separate the effects of the current and the previous gain 
on the changes in the steering wheel profiles across the baseline and the first 
two step trials. Figure 4.6B shows the products of the regression coefficients for 
the current and the previous gain and the z-scored gains as a function of time 
for each of the three trials. For the baseline trials, the z-scored current gain was 
close to zero, as the gain on the baseline trial was always 1.0 cm/s per deg and 
the mean gain across the condition-specific trials within a trial block was set to 
be close to the baseline gain. Additionally, since the gain on the trial before the 
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baseline trial varied across trial blocks and participants, the average contribution 
of the previous gain is also close to zero for the baseline trial. The steering wheel 
angle as a function of time on this trial was thus similar to the constant in the 
regression model, representing the average steering wheel angle as a function 
of time across the condition-specific trials within the trial block.

Figure 4.6. Predicted steering behavior on the baseline and step trials, based on the trial series 
regression model. A) Mean absolute steering wheel angle as a function of time across trial 
blocks and participants for the baseline and the first two step trials in the white noise and random 
walk conditions (left panel), and the predicted values based on the regression coefficients of 
the regression model (right panel). Steering wheel angles were predicted for the baseline trial 
and the first two step trials, per trial block and participant. Colored shaded areas represent 
between-subjects means ± SE. B) Mean predicted change in the steering wheel angle relative 
to the average steering wheel profile, represented by the constant of the regression model, 
based on the current and previous gain (shaded areas) as well as the sum (solid colored lines, 
colored shaded areas represent between-subjects means ± SE) for the baseline and the first two 
step trials (horizontal panels) of the white noise and random walk conditions (upper and lower 
panels, respectively) across trial blocks and participants. Dashed colored lines show the sum of 
the predicted change in the same trial for the other condition as a reference line.
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On the first step trial, the effect of the gain experienced on the previous trial, 
the baseline trial, on the steering wheel angle is again very close to zero. The 
effect of the gain on the current trial is however large in both conditions. The 
predicted change in the steering wheel angle relative to the average angle is 
slightly greater in the white noise condition due to the slightly more negative 
value for regression coefficient β1, as shown in Figure 4.3B. On the second step 
trial, there is an effect of the gain on both the previous and the current trial 
on the steering wheel angle. In the random walk condition, the effect of the 
previous gain is larger than in the white noise condition due to a significantly 
more negative value for regression coefficient β2, as shown in Figure 4.3C. 
This leads to a greater overall reduction in the steering wheel angle over time 
relative to the mean angle, starting rather early on in the movement. This can 
also be observed, albeit a little less pronounced, from the greater reduction in 
the maximum absolute steering wheel angle in the random walk condition from 
the first to the second step trial in Figure 4.4C (see the inset for the predicted 
maximum absolute steering wheel angle), and the greater difference between 
the steering wheel profiles of the first and the second step trial in the random 
walk condition in Figure 4.5. Hence, there are differences in the steering 
behavior across the white noise and random walk conditions, which can be 
mainly observed on the second step trial, due to different effects of the gain on 
the previous and current trial on the steering wheel angle.

4.4	 Discussion

In this study, participants used a steering wheel to move their body to a memorized 
visual target location. They were exposed to three experimental conditions, in 
which the gain between the steering wheel angle and the velocity of the linear 
motion platform varied with different levels of predictability from one trial to the 
next. In the white noise condition, the steering gain varied randomly from trial 
to trial (i.e., not predictable), in the random walk condition it was moderately 
predictable, and in the constant gain condition it remained constant across trials 
(i.e., highly predictable). The goal was to examine whether participants took the 
predictability of the gain into account in their steering behavior, by forming and 
relying on an internal model of the steering dynamics, or whether they simply 
relied on the vestibular feedback in their steering, as in path integration.

Using a trial series regression analysis, we have shown that participants used 
a different steering strategy for the white noise and random walk conditions 
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(Fig. 4.3). The average steering wheel angle and the regression coefficient 
for the current gain were similar across conditions throughout the trial, 
but the regression coefficient for the previous gain was significantly more 
negative in the random walk condition from 180 to 600 ms after movement 
onset. This suggests that participants decreased the steering wheel angle 
more in the random walk condition than in the white noise condition if the 
gain on the previous trial was higher than the average gain, and vice versa. 
Based on the results of the regression model, we also predicted the subtle 
differences between the white noise and random walk condition in the 
changes in the steering behavior from the baseline to step trials, in which the 
gain was suddenly higher for four consecutive trials (Fig. 4.6). Participants 
thus took the previous gain into account in the random walk condition, which 
is a useful strategy given the high autocorrelation in the gains. We conclude 
that participants formed an internal representation of the steering dynamics, 
which is in line with the internal model hypothesis.

In all conditions, including the constant gain condition, participants decreased 
the maximum absolute steering wheel angle and the movement duration on the 
first step trial. Across the subsequent step trials (Fig. 4.5), participants improved 
their adaptation to the new steering dynamics by simultaneously increasing 
the movement duration and decreasing the maximum absolute steering wheel 
angle to adhere to the time window imposed in the experiment, similar as in van 
Helvert et al. (2022). These tactful changes in the steering behavior underline 
the idea that participants built and updated an internal model of the steering 
dynamics and the associated self-motion based on the vestibular feedback. In 
principle, we could have also predicted the steering behavior on the third and 
fourth step trial based on the fitted regression model. For these trials, both the 
gain on the current and the previous trial would be the same as for the second 
step trial, and the prediction would thus be that the steering behavior remains 
the same across these three trials. Even though the changes in the steering 
behavior are relatively small across these step trials, see for example Figure 4.4 
and 4.5, it seems plausible that participants revised their steering strategy on 
these trials, given that the dynamics on the step trials were different from the 
dynamics experienced during the condition-specific trials.

In our previous study (van Helvert et al., 2022), participants performed a 
similar steering experiment but the steering gain changed only twice during 
the whole experiment, comparable with the constant gain condition in the 
current experiment. We found that participants responded rapidly to these 
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changes in the steering dynamics, suggesting that participants had some 
expectations about their velocity and the steering dynamics, but we could 
not further distinguish between the internal model hypothesis and the path 
integration hypothesis. Here, we dissociate the contribution of vestibular 
feedback and predictions by changing the steering dynamics across trials with 
different levels of predictability. We show that participants use the vestibular 
feedback during the trial to estimate their self-motion, but also that their 
steering behavior depends on the predictability of the steering gain. Important 
to note, this conclusion is based mainly on the results of the regression model, 
in which the data from the constant gain condition could not be included. Due 
to the high predictability of the steering gain, we expected participants to 
respond slowest on the step trials in the constant gain condition, but the data 
did not support this notion. To study steering behavior with a high predictability 
of the steering gain, future studies could include white noise and random walk 
conditions with varying levels of variability, similar to Burge et al. (2008) who 
studied the trade-off between prediction and estimation based on sensory 
feedback in reach adaptation.

Stavropoulos et al. (2022) also used a closed-loop steering experiment to 
study the role of vestibular feedback and predictions in self-motion estimation. 
Participants used a joystick to navigate to a target while the steering dynamics 
changed from trial to trial following a bounded random walk. They found 
that the steering behavior was biased with responsive steering control and 
concluded that participants were not able to accurately steer and build an 
internal model of the steering dynamics based on the vestibular feedback 
alone. Our previous results suggested that participants can accurately estimate 
their self-motion and suggest that they build an internal model of the steering 
dynamics based on just vestibular feedback (van Helvert et al., 2022), and here 
we show that they can even do this under steering dynamics that change from 
trial to trial. This discrepancy between the results might be explained by the 
fact that the velocity of the motion platform used by Stavropoulos et al. (2022) 
was close to constant. This may have made it more difficult for participants 
to estimate their self-motion, as the vestibular organs and more specifically 
the otoliths, which process information about translational motion, are 
known to be mainly sensitive to acceleration (Benson, Spencer, & Stott, 1986; 
Fernandez & Goldberg, 1976; Fitze, Mast, & Ertl, 2023). Also, participants in 
our experiments received feedback about their performance at the end of each 
trial, which is likely to have removed any possible biases in participants’ self-
motion estimates.
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The present study is based on previous studies of visuomotor and force field 
adaptation in reaching movements that examined the role of sensory feedback 
and predictions (Burge et al., 2008; Gonzalez Castro et al., 2014; Wei & Körding, 
2010). These studies showed that participants respond faster to perturbations 
if the mapping between the reaching movement and the sensory feedback 
is more uncertain, due to a greater reliance on the feedback. Additionally, 
Gonzalez Castro et al. (2014) examined motor adaptation when the force field 
perturbation strength varied randomly across trials and when it varied according 
to a random walk. They showed that participants relied more on predictions of 
the perturbation in the random walk condition. This is in line with our finding that 
the effect of the previous gain on the steering behavior is more pronounced in 
the random walk condition than in the white noise condition.

Our results suggest that participants build an internal model of the steering 
dynamics to estimate their self-motion during active steering. Multiple studies 
have looked for neural markers of such an internal model and have tried to 
unravel its location in the vestibular processing pathway (Egger & Britten, 
2013; Jacob & Duffy, 2015; Lakshminarasimhan, Avila, Pitkow, & Angelaki, 
2023; Page & Duffy, 2008; Roy & Cullen, 2001). In general, the cerebellum is 
thought to play an important role in the internal model computations for self-
motion estimation (Brooks et al., 2015; Cullen, 2023; Laurens & Angelaki, 
2017; Rineau, Bringoux, Sarrazin, & Berberian, 2023), also because of its 
projections to the vestibular nuclei. Neurons in the vestibular nuclei are 
known to distinguish between active and passive self-motion, being less 
sensitive to actively generated, and thus predictable, self-motion (Cullen 
et al., 2011). However, these neurons respond similarly to passive self-
motion and self-motion generated by a steering movement (Roy & Cullen, 
2001). One explanation for this may be that the monkeys in the experiment 
were not trained enough to build an internal model of the steering dynamics. 
Another explanation may be that the cerebellum does not predict the sensory 
consequences of the steering movement, and that the internal model of the 
steering movement is located more downstream in the vestibular processing 
pathway (Alefantis et al., 2022). Similarly, during the processing of the visual 
reafference of steering movements in monkeys, markers for an internal model 
were found in the medial superior temporal area (Page & Duffy, 2008) and the 
posterior parietal cortex (Lakshminarasimhan et al., 2023).

The sensorimotor processes that underlie driving have gained additional 
interest with the development of automated vehicles (Nash & Cole, 2020; 
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Nash, Cole, & Bigler, 2016). Nash and Cole (2016) have described these 
sensorimotor processes in detail, and have shown that a driver model that 
includes an internal model of the mapping between the steering wheel angle 
and the sensory feedback accurately describes human steering behavior 
in their experimental set up (Nash & Cole, 2020). Our results are in line 
with these findings. Based on the predictions of such an internal model, 
feedforward control actions can be made, which can be extremely important in 
driving given the delays in the sensorimotor system (Nash et al., 2016). Along 
these lines, the present results may also stimulate novel concepts for artificial 
navigation systems, e.g., those providing independent mobility to sensory-
deprived people and vehicle control.

In conclusion, our results show that participants take the predictability of 
changes in the steering dynamics into account during driving. This suggests 
that participants build an internal model of the gain between the steering 
wheel angle and their self-motion, and use this model to predict the vestibular 
reafference in driving and self-motion estimation.
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Natural environments are continuously changing and full of action 
opportunities. Yet, we seem to effortlessly move around and interact with 
objects in the environment in daily life. In this thesis, I aimed to unravel how 
the central nervous system so smoothly selects and controls our movements 
in rich and dynamic environments. In Chapter 2, I investigated the neural 
processes underlying action selection and movement planning by examining 
hand choice. In Chapter 3 and 4, I focused on the computational processes for 
online movement control, examining the role of vestibular sensory feedback 
and predictions in the control of self-motion during steering. In this chapter, 
I will summarize and discuss these findings. I will additionally consider their 
broader implications for sensorimotor control and make suggestions for 
future research.

5.1	 Action selection and movement planning

In Chapter 2, I focused on the neural processes underlying hand selection and 
reach planning. In 2005, Cisek and Kalaska reported that the neural activity in 
the motor cortex of nonhuman primates simultaneously represents multiple 
potential reach targets before the actual target is specified. This was taken 
to suggest that the brain prepares multiple movement plans in parallel, while 
they compete for selection and execution. Whether this idea of competition and 
parallel planning also applies to the selection of left and right hand reaches 
has been a topic of debate (Bernier et al., 2012; Oliveira et al., 2010).

To examine whether deciding between using the left or right hand in a reach 
leads to the specification of parallel movement plans that compete for 
execution, participants were asked to perform a hand choice reaching task 
while recording the activity of groups of neurons in central cortical regions 
using electroencephalography (EEG; see Box 1 in Chapter 1). To be able to 
measure the neural activity during reach planning, the location of the reach 
target was announced by a cue presented 1000 to 1500 ms before the actual 
target. The cue additionally indicated whether participants were supposed 
to reach with the hand of their choice, or whether they had to use the left or 
right hand. Reach reaction times were longer when participants were free to 
choose which hand to use compared to when the reaching hand was instructed 
by the cue. This supports the notion of a competitive process for hand 
selection. Additionally, the power of neural oscillations in the beta band during 
movement preparation decreased less when participants had to choose which 
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hand to use compared to when the hand was predetermined. Lower levels of 
beta-band power have been associated with a readiness to move (Khanna & 
Carmena, 2017), and these results therefore suggest that participants were 
less prepared to move when they had to choose which hand to use. I conclude 
that hand choice is governed by a competitive process between movement 
plans for the left and right hand, and that this competitive process modulates 
beta-band power during reach planning.

Surprisingly, I did not find an effect of the location of the reach target on 
reaction times and beta-band power. I expected the competition between 
movement plans for the left and right hand to be highest for reaches to the 
target location for which participants have an equal probability of using the 
left and the right hand (the point of subjective equality or PSE). This lack of an 
effect of the target location could be explained by the fact that the location of 
the upcoming target was cued incorrectly in half of the trials. These incorrect 
cues were introduced to be able to demonstrate that participants started 
preparing the movement before target onset, and thus that the neural activity 
before target onset was related to reach planning. However, it might have 
resulted in participants not fully committing to preparing a movement with a 
single hand during the cueing phase.

5.1.1	 Serial and parallel processing
While these results are in line with the idea that movement plans for the 
left and right hand are prepared in parallel and compete for execution, the 
idea of parallel processing is not undebated. Dekleva et al. (2018) recorded 
activity from neurons in the motor cortex while monkeys prepared reaching 
movements towards two potential targets. They replicated the trial-averaged 
findings of Cisek and Kalaska (2005), showing that the neuronal activity 
represents both targets before the actual reach target is specified. However, 
an additional analysis showed that the activity at the level of a single trial only 
represents a single reach plan. This can be taken to suggest that the brain 
processes information in a serial manner and decides on the action to execute 
before planning the action, instead of preparing multiple potential action plans 
in parallel.

Similar to the results described by Cisek and Kalaska (2005), my results are 
based on data that were averaged across trials. Unfortunately, the signal-to-
noise ratio of my data was too low to investigate the neural oscillations at the 
single-trial level. To assess whether beta-band power during reach preparation 



110 | Chapter 5

represents movement plans for a single hand or both hands at the single-
trial level, future studies could try to improve the signal-to-noise ratio of the 
data, for example by applying more sophisticated artifact removal techniques 
or by reducing muscle artifacts introduced by the reaching movements. The 
latter could perhaps be achieved by reducing the distance between the start 
positions of the hands and the reach targets. In my experiment, this distance 
was approximately 30 cm. Reducing the size of the reaching movement might 
make it more likely that the motion remains confined within the arms and hands. 
Additionally, if the signal-to-noise ratio is sufficiently high to analyze the beta-
band power at the single-trial level, it may be possible to associate it with the 
behavior demonstrated during the trial. For example, a negative correlation 
between the decrease in beta-band power during reach planning and reach 
reaction times would strengthen the idea that both reflect competition between 
left and right hand reach plans during hand choice.

5.1.2	 Hand choice during body motion
In general, the decision to reach with the left or right hand is thought to be 
based on the desirability and the costs of the two options (Shadmehr et al., 
2016; Trommershäuser et al., 2009; Wolpert & Landy, 2012). In daily life, we 
often reach while our body is moving. In this situation, the biomechanical costs 
of the potential movements depend on the inertial forces exerted on the arms 
(Cos et al., 2011). Researchers in my lab have previously investigated how 
hand choice is affected by passive body motion, and found that hand choice 
is modulated by sinusoidal body motion (Bakker et al., 2019, 2017; Oostwoud 
Wijdenes et al., 2022). This sinusoidal modulation of choice behavior was 
also visible in a read-out of the corticospinal excitability (Oostwoud Wijdenes 
et al., 2022), and might also be visible in beta-band power during reach 
planning. To examine this in a future study, participants could perform a hand 
choice experiment during body motion while their neural activity is recorded 
using EEG. Previous studies have shown that EEG can be reliably recorded 
during body motion (Gutteling & Medendorp, 2016; Gutteling, Selen, & 
Medendorp, 2015).

The observation that hand choice and corticospinal excitability are modulated 
by sinusoidal body motion suggests that participants continuously monitor 
the sensory feedback about their body motion and take it into account when 
deciding which hand to use. In Chapter 3 and 4, I built upon these studies and 
examined the role of vestibular feedback, but also predictions of the vestibular 
feedback, in the online control of movements.
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5.2	 Online control of movements and motor 
learning and adaptation

In Chapter 3 and 4, I focused on the online control of movements and examined 
the role of vestibular feedback and vestibular predictions in self-motion 
estimation in a closed-loop steering experiment. Of note, our movements 
can be the result of our own actions, but they can also be passively imposed. 
During active movements, the sensory consequences of the movement can be 
predicted by an internal forward model based on efference copies of the motor 
commands (von Holst & Mittelstaedt, 1950). For self-motion estimation, the 
computations underlying active and passive movements have been formalized 
with a single mathematical model (Cullen, 2019; Laurens & Angelaki, 2017). 
In this model, active self-motion estimates rely both on sensory feedback and 
predictions, whereas passive self-motion estimates rely on sensory feedback 
only. However, the model leaves open the possibility that sensory predictions 
can be made based on motor signals that have an indirect relationship with 
self-motion cues, such as the motor signals that occur when driving a car. It 
is unknown whether the brain can also predict the sensory feedback based on 
such motor signals. In principle, the sensory feedback could be predicted if an 
accurate internal forward model of the steering dynamics is available.

In Chapter 3, I examined if participants could construct an accurate internal 
model of the mapping between a steering movement and the vestibular 
reafference. Participants were asked to translate their body to a memorized 
visual target using a steering wheel that controlled the velocity of the linear 
motion platform they were seated on (see Box 2 in Chapter 1). They were able 
to learn to control the motion platform and made fast within-trial changes to 
their steering behavior in response to unexpected changes in the mapping 
between the steering wheel angle and the platform velocity. They additionally 
gradually improved their adaptation to the new control dynamics. I compared 
their steering behavior to that of participants who remained stationary 
during the experiment, and thus did not receive any online sensory feedback. 
These participants responded more slowly to the unexpected changes in the 
mapping, and I therefore conclude that the online vestibular feedback plays an 
important role in the online control of the steering movement.

The finding that participants who received online vestibular feedback 
responded rapidly to the unexpected changes in the mapping between the 
steering wheel angle and the platform velocity suggests that these participants 
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had expectations about the sensory feedback. This in turn implies that they 
constructed an internal model of the mapping between the steering movement 
and the vestibular reafference. However, these results could in principle also 
be explained in the context of path integration, in which participants keep track 
of their position by integrating the vestibular feedback over time without taking 
predictions of the sensory feedback into account (Grasso et al., 1999). In my 
experiment, participants could have simply stopped the platform motion when 
their path integration derived position had reached the memorized location of 
the target, independent of the mapping between the steering wheel angle and 
the platform velocity.

In Chapter 4, I therefore investigated the role of sensory feedback and predictions 
during steering in more detail. I aimed to manipulate the contribution of sensory 
feedback and predictions by changing the consistency of the mapping between 
the steering wheel angle and the platform velocity across trials. I compared 
three conditions with varying levels of the predictability of the mapping 
across trials: predictable (constant gain), moderately predictable (random 
walk), and unpredictable (white noise). Again, as described in Chapter 3,  
participants made fast within-trial changes to their steering behavior on 
trials with a large jump in the mapping between the steering wheel angle and 
the platform velocity irrespective of the predictability of the mapping. This 
suggests that online vestibular feedback plays an important role in the online 
control of the steering movement. I additionally found that participants took 
the mapping between the steering wheel angle and the platform velocity of the 
previous trial into account more when it followed a random walk across trials 
than when it varied unpredictably across trials. Given that the autocorrelation 
in the mapping across trials was relatively high in the random walk condition, 
this is a useful strategy. I conclude that participants consider the predictability 
of changes in the control dynamics during steering, which suggests that they 
construct an internal model to predict the vestibular reafference.

5.2.1	 Trial series regression analysis
In Chapter 4, I show that participants take the previous mapping between the 
steering movement and their self-motion into account more when the mapping 
is more predictable across trials. This conclusion is based on the results of a 
trial series regression analysis, in which the steering wheel angle at a certain 
time point is modelled as a linear combination of the average steering wheel 
angle across trials, the mapping on the current trial, the mapping on the 
previous trial and a residual error. Even though this relatively simple model 
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could reliably show differences across two of the experimental conditions 
(moderately predictable and unpredictable mapping), a more complex model 
could perhaps uncover more subtle differences in the steering behavior across 
conditions. Such a model could for example take the dependencies between 
data points within a trial into account (the steering wheel angle at time point 
t+1 depends on the steering wheel angle at time point t), and could describe 
in more detail how participants relied on the mapping within and across trials 
(e.g., how much of what participants learned about the mapping during the trial 
do they transfer to the next trial?). Additionally, the use of a regression model 
prohibited us from including the data from one of the experimental conditions 
due to the constant mapping across trials. Perhaps a more complex model could 
describe the steering behavior with a constant gain. Alternatively, future studies 
could use the trial series regression model to compare steering behavior across 
multiple experimental conditions with a changing mapping across trials but with 
different levels of variability (i.e., more or less overall spread in the mapping) 
to examine the effect of the reliability of the mapping on the steering behavior.

5.2.2	 Neural correlates of internal models in closed-loop steering 
experiments
Whether humans and nonhuman primates are able to build an internal model 
during steering has been a topic of debate (see for example Angelaki & Cullen, 
2008; Danz, 2021; Nash & Cole, 2020). Roy and Cullen (2001) recorded neural 
responses in the vestibular nuclei of monkeys during vestibular self-motion 
caused by active steering and passive rotations of the body. Neurons in the 
vestibular nuclei are known to respond to passive movements of the body but 
show decreased firing during active movements. This neural activity is therefore 
thought to reflect sensory predictions errors. They found that neural activity 
during active steering was similar to that observed during passive rotations. 
This suggests that sensory feedback was not correctly predicted during active 
steering based on the steering motor commands, and sensory prediction errors 
remained. Even though the monkeys were able to make accurate steering 
movements, it has been suggested that the monkeys were not exposed to enough 
training to build an internal model of the control dynamics of the steering wheel 
(Angelaki & Cullen, 2008). Perhaps the activity of neurons in the vestibular 
nuclei would decrease during active steering after more extensive training.

Alternatively, predictions based on motor signals that have an indirect relationship 
with the sensory feedback might be processed at a more downstream level 
within the vestibular pathway (Alefantis et al., 2022). Typically, the cerebellum 
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is suggested to house internal models of the motor system (Wolpert, Miall, & 
Kawato, 1998), and more specifically the internal model for the estimation of 
active self-motion (Cullen et al., 2011). During visual self-motion in monkeys, 
neurons in the medial superior temporal area have been shown to respond 
differently to optic flow cues during active steering and passive viewing (Jacob 
& Duffy, 2015; Page & Duffy, 2008; but see also Egger & Britten, 2013). Similarly, 
in humans, Schmitt et al. (2022) found that neural activity at the cortical level 
recorded with EEG differed between passive viewing of an optic flow stimulus 
and active reproduction of that same stimulus using a joystick. These differences 
in neural activity suggest that the visual sensory feedback was predicted 
during active reproduction based on the motor commands generated during the 
steering movement, and that these predictions were processed at a relatively 
downstream level of the visual processing pathway.

To look for a neural correlate of the internal model of the mapping between the 
steering movement and the sensory feedback during vestibular self-motion, 
future studies could build upon the experiments described in Chapter 3 and 4  
and use EEG to compare neural activity across conditions that differ in the 
expected weights on sensory feedback and sensory predictions (e.g., varying 
levels of predictability of the mapping between the steering movement and the 
vestibular reafference, or active versus passive self-motion).

5.2.3	 Reweighting sources of (noisy) information
In Chapter 4, I aimed to manipulate the relative contributions of sensory feedback 
and sensory predictions for online control by changing the steering dynamics 
across trials. This idea was based on studies in reach adaptation, in which the 
experimenters changed the reliability of the sensory feedback and the mapping 
between the reach endpoint and the sensory feedback by blurring the visual 
feedback and perturbing it with specific statistical regularities, respectively 
(Burge et al., 2008; Wei & Körding, 2010). A similar approach has been used in 
a steering experiment in virtual reality in which monkeys and humans used a 
joystick to steer to a memorized target location using optic flow cues (Alefantis 
et al., 2022). During the experiment, the reliability of the visual feedback was 
manipulated by changing the density of the optic flow elements. The reliability 
of the mapping between the steering movement and the sensory feedback was 
manipulated by perturbing the optic flow and changing the gain of the joystick.

In the framework of Bayesian inference, the brain is thought to combine 
information from multiple sources and weigh the information according to its 
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reliability (Körding & Wolpert, 2004). In patients with a sensory deprivation, 
the reliability of the information from a certain source might be decreased or 
the information might be missing completely. In such a situation, the brain 
is thought to build a percept based on the remaining sources of information 
(Angelaki & Laurens, 2020; Medendorp et al., 2018). Angelaki and Laurens 
(2020) examined this by training monkeys to report the direction of gravity in a 
visual orientation task, after which the monkeys underwent surgery that led to 
a complete vestibular loss. Three weeks after the surgery, the monkeys were 
able to perform the task almost as well as before the surgery, suggesting that 
the monkeys learned to use the remaining sources of sensory information to 
estimate the direction of gravity.

In a pilot study that has not been included in this thesis, I similarly tried 
to examine the mechanisms of multisensory reweighting in vestibular 
patients. I was specifically interested to see how patients with a congenital 
loss of vestibular function weigh the remaining sensory (i.e., visual and 
somatosensory) and prior information to estimate the direction of gravity. 
Previously, researchers from my lab have shown that participants who have 
slowly developed a vestibular impairment rely almost entirely on visual 
information when estimating the direction of gravity (Alberts, Selen, Verhagen, 
& Medendorp, 2015; Alberts, Selen, Verhagen, Pennings, & Medendorp, 
2018). I tried to generalize these findings to the situation where the participant 
had never had a functioning vestibular system. Three participants with Usher 
syndrome (type 1) were asked to perform a rod-and-frame task, during which 
they indicated whether a line that was briefly flashed inside a square frame was 
rotated clockwise or counterclockwise relative to the orientation of gravity. I 
expected them to show a larger effect of the orientation of the square frame 
on the judged orientation of the line than healthy control participants due to 
an increased weight on visual information (Alberts et al., 2018). Preliminary 
results suggest that this is indeed true for two out of the three participants, but 
further research is needed to confirm this in a larger group. However, building 
on these experiments, in which the reliability of sources of information is 
altered (i.e., actively manipulated or due to loss), would be an interesting 
approach for future research to more elaborately study the role of sensory 
feedback and predictions in sensorimotor control.
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5.3	 Conclusion

In this thesis, I have studied the processes underlying action selection and 
movement planning, on the one hand, and the online control of movements, 
necessitating motor learning and adaptation, on the other hand, as if they are 
distinct. However, the brain is thought to continuously and parallelly select, 
plan, execute, control and learn from our actions. To describe these processes, 
Pezzulo and Cisek (2016) proposed the hierarchical affordance competition 
theory, which combines the ideas of parallel processing of movement plans and 
feedback control. More specifically, due to the ability of the brain to predict the 
consequences of actions, the brain is thought to select and control upcoming 
actions by taking directly available action opportunities into account, as well 
as those that might become available during or after execution. This process is 
continuous and relies heavily on the online sensory feedback, as the potential 
actions change over time due to changes in the environment and due to our 
own actions. To enable us to smoothly interact with our environment, the brain 
is thus thought to continuously define the best upcoming action and to check 
whether it is executed properly through continuous feedback control.

In summary, in the first part of this thesis I investigated the neural processes 
underlying action selection and movement planning and showed that reach 
plans for the left and right hand are prepared in parallel during hand choice 
and compete for execution. This competition is reflected in neural oscillations 
over central cortical regions during movement preparation. In the second part 
of this thesis, I investigated the computational processes for online movement 
control and demonstrated that both online vestibular feedback and vestibular 
predictions play an important role in the online control of steering. These 
vestibular predictions are based on an internal model of the mapping between 
the steering movement and the self-motion. The results of the present thesis 
give insight into the processes that underlie the selection and control of our 
actions in rich and dynamic natural environments.
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Dutch summary

In ons dagelijks leven lijken we moeiteloos door onze omgeving te bewegen 
terwijl we daarbij interacteren met voorwerpen om ons heen. Hoewel onze 
omgeving continu verandert en ontelbare mogelijkheden voor interacties 
bevat, gaat ons dit meestal gemakkelijk af. Op de achtergrond spelen er echter 
complexe en onbewuste hersenprocessen die de noodzakelijke koppeling 
tussen perceptie en actie voor interactie met de omgeving tot stand brengen. 
In dit proefschrift heb ik een aantal van deze processen onderzocht.

In Hoofdstuk 2 heb ik onderzocht hoe onze hersenen bewegingen selecteren 
en voorbereiden. Met behulp van elektro-encefalografie, een methode om 
de elektrische activiteit van de hersenen te meten, heb ik bekeken of onze 
hersenen tijdens het kiezen van een beweging met de linker- of de rechterhand 
in eerste instantie beide bewegingen voorbereiden. De resultaten laten zien 
dat proefpersonen langer nodig hadden om met de beweging te beginnen 
wanneer ze zelf mochten kiezen tussen de linker- of de rechterhand dan 
wanneer de te bewegen hand vooraf bepaald was. Ook zag ik dat de sterkte van 
bètagolven, trillingen met een frequentie van 13 tot 30 Hz, in de hersenactiviteit 
voorafgaand aan de beweging sterker afnam als de te bewegen hand vooraf 
bepaald was, wat geassocieerd kan worden met een betere voorbereiding 
van de beweging. Deze resultaten suggereren dat de hersenen gelijktijdig 
meerdere bewegingen voorbereiden als er gekozen moet worden voor de 
linker- of de rechterhand.

In Hoofdstuk 3 en 4 heb ik onderzocht hoe de hersenen er tijdens een beweging 
voor zorgen dat de beweging efficiënt verloopt op basis van zintuiglijke 
terugkoppeling en verwachtingen over de beweging. Hiervoor heb ik gebruik 
gemaakt van experimenten waarbij de proefpersonen op een bewegend 
platform zaten en een stuur gebruikten om de beweging van het platform 
te controleren. In Hoofdstuk 3 heb ik het stuurgedrag van proefpersonen 
die op het bewegende platform zaten vergeleken met het stuurgedrag van 
proefpersonen die tijdens het experiment niet zelf bewogen maar wel het 
resultaat op een scherm zagen. De proefpersonen die zelf bewogen reageerden 
sneller op plotselinge veranderingen in de relatie tussen de beweging van het 
stuur en het platform dan proefpersonen waar het stuur alleen tot een visuele 
verandering leidde. Dit suggereert dat de proefpersonen de informatie van het 
evenwichtsorgaan vergeleken met de verwachtingen die ze over de beweging 
hadden op basis van hun stuurgedrag.
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In Hoofdstuk 4 ging ik dieper in op de rol van verwachtingen in stuurgedrag 
door te onderzoeken of proefpersonen meer vertrouwen op verwachtingen 
over de beweging van het platform als de relatie tussen de beweging van het 
stuur en de beweging van het platform voorspelbaarder is. Hiervoor heb ik het 
stuurgedrag van proefpersonen vergeleken in drie experimentele condities. In 
één conditie bleef de relatie tussen de beweging van het stuur en de beweging 
van het platform constant. In de andere twee condities veranderde deze 
relatie van beweging tot beweging en was de voorspelbaarheid van de relatie 
relatief hoog (“random walk” of “dronkemanswandeling”) of laag (“witte 
ruis”). Wanneer de voorspelbaarheid van de relatie relatief hoog was, bleken 
proefpersonen in hun stuurgedrag meer rekening te houden met de relatie 
tussen de beweging van het stuur en de beweging van het platform tijdens de 
voorgaande beweging dan wanneer de voorspelbaarheid van de relatie relatief 
laag was. Dit suggereert dat de proefpersonen in de hersenen een interne 
representatie, of een intern model, gevormd hadden van de relatie tussen de 
beweging van het stuur en de zintuiglijke terugkoppeling over de beweging 
van het platform, waarmee ze voorspellingen maakten om de beweging van 
het platform beter in te schatten.
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Research data management

This research followed the applicable laws and ethical guidelines. Research 
Data Management was conducted according to the FAIR principles. The 
paragraphs below specify in detail how this was achieved.

Ethics
This thesis is based on the results of human studies, which were conducted 
in accordance with the principles of the Declaration of Helsinki. The Ethical 
Committee of the faculty of Social Sciences (ECSS) has given a positive advice 
to conduct these studies to the Dean of the Faculty, who formally approved 
the conduct of these studies (ECSW2017-0805-504 and ECSW-2022-082). 
Data collection was performed at the Donders Centre for Cognition. Informed 
consent was obtained on paper following the Centre procedure. The forms are 
archived in the central archive of the Centre for 10 years after termination of 
the studies. This research was funded by an internal grant from the Donders 
Centre for Cognition.

Findable and accessible
The table below details where the data and research documentation for 
each chapter can be found on the Donders Repository. All data archived as a 
Data Sharing Collection (DSC) remain available for at least 10 years after 
termination of the studies.

Chapter DAC RDC DSC DSC 
License

2 DAC_2017.00123_568 RDC_2017.00123_052 DSC_2017.00123_365 RU-DI-
HD-1.0

3 DAC_2019.00064_438 RDC_2019.00064_388 DSC_2019.00064_640 RU-DI-
NH-1.0

4 DAC_2023.00037_058 RDC_2023.00037_928 DSC_2023.00037_462

DAC = Data Acquisition Collection, RDC = Research Documentation Collection, DSC = Data 
Sharing Collection

The manuscript of Chapter 4 is currently under review, and the data are shared 
with the reviewers in a DSC and will be made publicly available once the article 
has been published. It will then be shared under the CC-BY-4.0 license.
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Interoperable and reusable
The raw data are stored in the Data Acquisition Collection (DAC) in their 
original form. For the Research Documentation Collection (RDC) and DSC 
long-lived file formats have been used, ensuring that data remains usable in 
the future. We provide a description of the experimental setup, raw data (DAC 
and DSC), and the analysis scripts (RDC and DSC) in the readme files to make 
sure that the results are reproducible.

Privacy
The privacy of the participants in this thesis has been warranted using random 
individual subject codes. A pseudonymization key linked this random code with 
the personal data. This pseudonymization key was stored on a network drive 
that was only accessible to members of the project who needed access to it 
because of their role within the project. The pseudonymization key was stored 
separately from the research data. The pseudonymization keys were destroyed 
within one month after finalization of these projects.
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