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INTRODUCTION

In 2004, Novoselov and Geim exfoliated, for the first time, atomically thin monolay-
ers of graphite, called graphene. [1,2] Together with the work of many others, this
initiated a new, rapidly growing field on two-dimensional (2D) materials, which
now includes various other materials, such as hexagonal Boron Nitride (hBN),
transition metal dichalcogenides (TMDCs) and many more. [3,4] Already on their
own, various 2D materials host exciting properties, ranging from exceptionally high
electron mobilities to large tensile strengths. Moreover, collective many-body exci-
tations have striking new features in 2D, such as quadratically dispersing acoustic
phonon modes [5], excitons with enormous binding energies [6-8] or low-energy
plasmon modes which couple strongly to electrons [5,9].

Arguably even more intriguing is the ability to stack arbitrary combinations of
2D materials into multilayered heterostructures. [10] This is possible even with
significant lattice mismatch, because the van-der-Waals force that keeps the layers
together is relatively weak, thus giving rise to an almost endless variety of novel
artificial materials that can be created. [11] This freedom is now being exploited
to design novel devices and has already yielded transistors, photo-detectors and
more. [12,13]

The versatility and tunability of layered materials is furthermore extraordinarily
interesting for the study of correlation effects, which are induced by many-body
interactions and may cause electrons to behave unlike the effective non-interacting
(quasi-)particles of a Fermi liquid. This gives rise to some of the more unintuitive
and less-well understood phenomena in solid-state physics, such as unconventional
superconductivity, quantum magnetism or Mott insulating behaviour. Moreover,
these phenomena can be especially pronounced in layered materials, because the
reduced internal screening compared to three-dimensional (3D) bulk materials may
lead to relatively strong electron-electron interactions. At the same time, layered
materials are sensitive to external stimuli, such as environmental screening, doping
or applied fields [10,14], which makes their properties relatively easy to tune. The
combination of these features thus paves the way for a microscopic control over
correlated phenomena.

However, in order to gain full control over correlated layered materials, we require
a fundamental understanding of the physics that governs their properties. In this
thesis, we place particular focus on layered superconductors, which host many
phenomena that are not yet well understood. This includes, for example, the
superconducting critical temperature in doped semi-conducting TMDCs, which
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has been observed to enhance as the number of material layers is increased. [15-
17] Other examples include the drastic increase of the critical temperature of
monolayer FeSe when grown on top of a SrTiO3 substrate [18,19] or the emergence
of superconductivity in twisted bilayer graphene and twisted bilayer WSes at
specific ‘magic’ twist angles [20-22]. Moreover, most high-T,. superconductors have
a layered structure, which is believed to be crucial for the emergence of their
peculiar superconducting state. [23] So far, a universal theory which explains such
‘unconventional’ layered superconductors does not exist.

The theoretical description of layered materials is however complicated by the
reduced screening. It causes the long-range nature of the Coulomb interaction to be
less suppressed when compared to 3D bulk materials. Therefore, a theory that is
capable of describing Coulomb-induced effects in layered materials cannot rely on
local approximations commonly used for 3D systems. To resolve this, there are well-
established ‘one-loop’ theories which can explicitly take into account non-locality,
such as the GW approximation [24,25] or (extensions to) Eliashberg theory [26-28].
However, in 2D it is unknown to what extent so-called ‘vertex corrections’ to those
theories are required. In this thesis, we will address these complications and propose
methods to resolve them.

Overall, the aim of this thesis is to gain a deeper theoretical understanding of
the effect of the long-range 2D Coulomb interaction, as well as screening to it, on
the normal and superconducting states of layered materials. To this end, we will
develop and apply methods that go beyond state-of-the-art, in order to analyze the
importance of non-locality and vertex corrections to one-loop theories in 2D systems.

We start in chapter 2 by reviewing the prerequisite quantum many-body theory
used throughout the thesis. Here we furthermore discuss the recently developed
discrete Lehman representation (DLR), which is a considerable advancement that
allows for calculations at significantly lower temperatures than previously possible.
In chapter 3 we briefly introduce two material classes, graphene and TMDCs, which
we studied in collaboration with our experimental colleagues. These materials will
furthermore serve as an inspiration for generic models used throughout this thesis.
After these introductory chapters, we proceed by presenting our results. In chapter 4
we consider a doped heterostructure of graphene and WSs. In this system, angle-
resolved photoemission spectroscopy (ARPES) measurements show a cascade of
replica bands below the conduction band minimum, which cannot be explained by
considering isolated monolayers alone. In order to explain this phenomenon, we
study the effect of dynamical interlayer screening to normal state properties. Based
on our results, we are able to give a qualitative description of the normal state of
such heterostructures which is in agreement with the experimental findings.

In the chapters that follow, we shift our focus to the superconducting state. In
chapter 5, we first consider a generic 2D monolayer in a static dielectric screening
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environment. By consistently taking into account the non-local 2D Coulomb
interaction and the electron-phonon interaction, we reveal a screening-induced
crossover to an unconventional superconducting state mediated by dynamical
charge fluctuations called ‘plasmons’. We furthermore discuss the properties of this
plasmonic superconducting state and list some of its experimentally observable
signatures.

In chapter 6 we extend the methods of the previous chapter to bilayer systems,
to study the effect of dynamic interlayer screening to the superconducting state.
In this way, we are able to make general qualitative predictions for the trends of
critical temperatures of plasmon-mediated layered superconductors.

Finally, in chapter 7, we propose a new formalism which can quantify the importance
of vertex corrections for the superconducting state. Using this formalism, we aim
to verify the validity of one-loop theories in 2D materials. We will show preliminary
results for local interaction models, which serve as a proof of concept for the
method.






BRIEF REVIEW OF QUANTUM MANY BODY THEORY

The following chapter summarizes the theoretical methods and frameworks used
throughout this thesis. While all text in this chapter has been written by me, the
attentive reader might find overlap of information and/or structure with other
works from which inspiration has been drawn. References to those works will be
highlighted whenever applicable.

The structure of this chapter is as follows. In section 2.1 we will first briefly discuss
the quantum many-body Hamiltonian, which forms the basis for all the physics in
this thesis. In section 2.2, we discuss a general framework for describing properties of
this Hamiltonian in the form of Hedin’s equations. These equations are in principle
exact, but unfeasible to solve for a general condensed matter system. Therefore, in
section 2.3, we describe the common GoWq approximation to Hedin’s equations,
as well as the cumulant extension to it. An important ingredient for the GoWj
theory is the unscreened (bare) Coulomb interaction, which we discuss in detail in
section 2.4. In section 2.5, we discuss natural extensions of the GoW theory into
the superconducting state, focusing on a one-loop theory for superconductivity
as well as the closely related Eliashberg theory. Finally, we discuss the discrete
Lehman representation in section 2.6, which is a significant numerical advancement
that allows us to perform (superconductivity) calculations at lower temperatures
than before.

In the following chapter and throughout the thesis, we will use units within which
the reduced Planck constant i = 1, the Boltzmann constant kg = 1 and the
vacuum permittivity o = 1/(4m).
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2.1 THE HAMILTONIAN

Our ultimate aim is to describe physical observables that are governed by the
time-independent Schrédinger equation

HU = E7. (2.1)

In this thesis we consider crystalline materials, consisting of negatively charged
electrons and positively charged ionic cores distributed on a periodic lattice. One
of the most general formulations for the Hamiltonian operator of such a system is
the following Frohlich-like Hamiltonian, written in second quantization as

H = Z Z Z ht(g)) (k)cIcaO'ckba'
k ab o

1
T T
+ 2 Z Z Z Vabed (K, K’ Q)01 gao Ol — qeor Cuc do Cichor
kk’q abed oo’

+> wi(q) (bLubqy + ;)
qv
+ Z Z ggb(k> q) (bqu + btqu) CI{+qaackbU

kq abov

—H Z cI{aackao' (22)

kao

Here ch and C a0 ATC the usual fermionic creation and annihilation operators,
respectively, for an electron in the state with crystal momentum k, orbital a and
spin o. Similarly, bj:[u and by, are the respective bosonic creation and annihilation
operators of a phonon in a state with momentum q and branch v. In the following
we will briefly discuss each term in the Hamiltonian.

The first term is the kinetic non-interacting single-electron term. The matrix el-
ements hg%)(k) describe the non-interacting quasi-particle states resulting from
the static ionic potential. Most generally, h(°) can also depend on spin indices,
for example to describe spin-orbit coupling, but in this thesis we will focus on
materials where such terms are small such that we can neglect them. h(®) can
be described by a tight-binding model, which is either derived from or inspired
by ab-initio downfolding methods. [29-31] For free electrons, the matrix elements
would be given by hfl%) (k) ~ %(5@, with m. the electron mass.

The second term of the Hamiltonian captures the electron-electron repulsion re-
sulting from the Coulomb interaction. The effect of this term on the electronic
properties is the main focus of this thesis. The matrix elements V,p.q(k, k', q) will
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be discussed in further detail in section 2.4.

The third and fourth term capture the dynamics of the ionic lattice and its coupling
to the electrons, respectively. The phonon dispersion w, (q) captures the energy of
the eigenmodes, enumerated by v. The electron-phonon coupling ¢%, (k, q) describes
the scattering strength of an electron from state (k,b) to state (k + q, a), under
the emission or absorption of a phonon with momentum q and mode v.

The final term is the chemical potential term. This term is strictly spoken not part
of the Hamiltonian, but it appears whenever one calculates the density operator
e~ PH—uN) /Z in the grand canonical ensemble, with u the chemical potential, N
the number operator and Z the partition function. Since we are generally interested
in expectation values of operators, we will absorb the chemical potential term into
the Hamiltonian for simplicity.
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2.2 HEDIN’S EQUATIONS

The following section introduces the Green’s function as well as the general many-
body framework we will use throughout the thesis. In writing this section, informa-
tion and derivations have been gathered from a variety of sources. Most influential
have been the GW review article by F. Aryasetiawan and O. Gunnarsson [25] and
the lecture notes of the Jiilich autumn school on correlated electrons [31-33]. The
introduction of the Green’s function and many-body perturbation theory can also
be found in many textbooks, such as Mahan [34], Bruus and Flensberg [35] or
Coleman [36].

2.2.1 The Green’s Function

Obtaining the full eigenspectrum and the corresponding eigenvectors of Eq. 2.2
would, in principle, allow for the evaluation of any physical observable. However,
due to the enormous amount of particles in a solid state system (on the order of
Avogadro’s number N4 ~ 6 x 10?3 particles*), it is impossible to obtain or even store
that information numerically. Fortunately, it turns out that in order to describe
properties of a many-body quantum system, knowledge of the single-particle
Green’s function is often enough. For brevity, we discuss the Green’s function
immediately in imaginary time, as this makes the finite temperature derivations
more straightforward. For the interested reader, all derivations in this section are
also discussed in real time and in more detail in common textbooks. [34-36]

We define the single-particle fermionic Green’s function as

Gap(k,7q —Tp) = — <TCka(Ta)CLb(Tb)>

_ {—<cka<n>clib<n>> when 7, > 7, 23

T\ ey (M) (Ta)) when 7 > 7,

with ¢l (7) = e7#¢{e=7H the annihilation (creation) operator at imaginary time
7 in the Heisenberg picture. 7 denotes the time-ordering operator. Green’s functions
are also commonly referred to as a propagators, because it contains information on
the likelihood of an electron that is created at time 73, in state (k,b), to propagate
and be in state (k,a) at a later time 7, > 73,. Similarly, it describes the propagation
of holes when 7, > 7.

Instead of working directly with time variables, it is often more convenient to
Fourier transform the Green’s function to the frequency domain. Since we are

By exploiting lattice symmetries one can already significantly reduce the number of particles that
need to be taken into account. Nonetheless, exact methods are currently restricted to relatively
small system sizes.
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working here with imaginary time Green’s functions, with a periodic time variable
7 with a periodicity given by the inverse temperature 5 = 1/(kgT), the frequency
axis will consist of discrete Matsubara frequencies. The Fourier transform for
fermionic Green’s functions is therefore given by

6 |
G (K, iton) = / Gy (K, T)e T (2.4)
0

with iw, = (2n + 1)7/8 a fermionic Matsubara frequency and n being an integer.
Analytical continuation to the real-frequency retarded (advanced) Green’s function
GE (k,w) (G4 (k,w)) can be done from here by substituting iw,, — w + 148, where 4
is an infinitesimally small constant with positive (negative) sign. For completeness,
the fermionic Fourier transform back to imaginary time is given by

Gav(k, 7) =3 ZGab (K, iwy )e~n T (2.5)

The single-particle phononic Green’s function D is defined in a similar way as the
fermionic one

Dy(a,7a = 1) = = (T (b (7a) + 81 (70)) (bqu(m) +0lu(m)) ). (26)

Similar to the fermionic Green’s function, it describes the propagation of a phonon
with momentum q and mode v which is emitted at time 7, and absorbed at time
Ta (or, equivalently, a phonon with inverse momentum —q being absorbed at time
7, and re-emitted at time 7,). The bosonic Fourier transforms have the same
expressions as the fermionic ones, except that the Matsubara frequencies are now
given by iv,, = 2mn/f, with m being an integer. Here and in the following we
will use the convention of using the character w with subscript n for fermionic
Matsubara frequencies and the character v with subscript m for bosonic ones.

THE SPECTRAL FUNCTION To gain some more physical intuition to the
Green’s function, it is helpful to write it in the spectral representation. We do this
by inserting the completeness relation 1 =3 j [7){j] in Eq. 2.3 and subsequently
Fourier transforming to Matsubara frequency, yielding

Gap(k,iw,) = %Z <Z}::m i>E<j’c%‘i>e_ﬁ(Ei+Ej)

/ dw “”k‘*’) (2.7)
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where E; are eigenvalues of the Hamiltonian and |é) the corresponding eigenstates.
Z is the partition function. In the second line we defined the spectral function as

Aw(k,w) = —%Im (Gfb(k,w))

1
Z Y 8w+ By — Ey)e AEAED) <i‘cka
i

i) (o) 28)

From Eq. 2.7 we understand that the Green’s function is given by an integral
over poles. The spectral function Au(k,w) determines the position of these poles
and the intensity they have. Whenever the frequency w is equal to the difference
between two eigenenergies F; — F; the spectral function peaks, such that the
Green’s function has poles whenever an excitation at frequency w is possible. This
reflects that the Green’s function can also intuitively be understood to describe
a photoemission process. In fact, using an experimental technique called angle-
resolved photoemission spectroscopy (ARPES) one can directly probe the spectral
function for occupied states with both momentum and frequency resolution. [37]
Besides providing the single-particle excitation spectrum, the spectral function can
also be used to evaluate the electron density as

n= 5303 Gualkiin)
kn a
- [ dulcwneo) (2.9)
(e’ k a

with ng(w) = 1/(e? + 1) the Fermi-Dirac distribution function. Comparing this
expression to the expression for the density of a free electron gas, we learn that the
trace of the momentum-summed spectral function can be understood as a density
of states (DOS)

Nw) =YY Au(k,w). (2.10)
k a

We have shown that if we can calculate the single-particle Green’s function for
a given system, we can predict single-particle spectral properties and electron
densities. In principle, any other expectation value of a single-particle operator can
be obtained as well. [24,25] One of the strengths of the Green’s function formalism
is the ability to obtain this information without having to diagonalize the full
Hamiltonian.

THE BARE GREEN’S FUNCTION  The Green’s function of a non-interacting sys-
tem Hy = Zkab(hfl%) (k) —,u5ab)CIkab we call the bare Green’s function G((lob) (k,iwny,).
Since we can derive exact expressions for this Green’s function, it is a good starting
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Gg(})))(ka ’Lwn) - _’_ Gab(k, an) = *
k,iw, @ bk iw, @

Figure 2.1: Feynman diagrams corresponding to the bare (left) and dressed (right)
single-particle Green’s functions, propagating from orbital b to orbital a with crystal
momentum k and Matsubara frequency iw,.

point for the perturbation theory we will discuss in the next section. To this end,
we derive from the usual fermionic commutation relations that

(A (k)7 F(hO) (k)7
Cka(T):Z[e (R (1) zm]abckb and CLa(T):Z[e (A (1) I”)LbCLb»

b b

where the time dependence is treated in the Heisenberg picture. Here and in

the following we denote matrices in the orbital basis with a hat, where Z is the

identity matrix. Substituting these expressions into the definition of the Green’s

function and remembering that for a non-interacting Hamiltonian <c;rmckb> =

ng (iL(O) (k) — f,u) , e find for the bare Green’s function (written as a matrix in
a

the orbital basis)
GO (K, 7) = =0 00~T1) (nF (;a<0> (k) — iu) - i@(T)) . (211)
Performing the Fourier transform yields
A . . ~1
GOk, iw,) = (I(iwn +p) — hO (k)) . (2.12)

In terms of Feynman diagrams, the bare electronic Green’s function is denoted by
a single straight line, as shown in Fig. 2.1.
In a similar way as for electrons, we can derive that the bare phonon Green’s
function is given by

1 1 2w, (q)

D (q, ivy,) = @ @ ) = w @ (2.13)

2.2.2  Hedin’s Perturbation Theory

When including interaction terms to our Hamiltonian, i.e. H = Hy + V/, it is no
longer straightforward to find an analytic expression for the Green’s function. A
common way to treat this problem is in perturbation theory, where we expand

11
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Vabcd(q) =  Jmmmmmm— Wabcd(qviym) = /
b q ¢ b q,ivm,

Q
PP

Figure 2.2: Feynman diagrams corresponding to the bare (left) and dressed (right)
interactions of an electron at orbital b scattered to site a and an electron at orbital d
scattered to orbital ¢, with momentum transfer q and energy transfer iv,,. The gray
Green’s function lines are considered amputated and do not enter the expressions.

in terms of the interaction V. The resulting Green’s function we call the dressed
Green’s function G (k, iwy,), depicted diagrammatically by the double line shown
in Fig. 2.1.

A full derivation of Hedin’s many-body perturbation theory would be too lengthy
to cover here. For a more detailed discussion we refer the reader to the review
article by Aryasetiawan and Gunnarsson [25] or to the 2011 Jiilich lecture notes by
Held [31]. Common textbooks [34-36] also cover many-body perturbation theory.
In most Green’s function based perturbation theories, a central quantity is the
self-energy ¥, (k, iwy,). It is the quantity which connects the bare Green’s function

G((l%)(k, iwy,) to the dressed one Ggp(k, iw,) in the so-called Dyson equation

Gap(k,iwn) = GY) (k,iwn) + Y GO (K, iwn) Sac (K, iwn) Gaa(k, iwy)
cd
-1

- (i(iwn + ) — B0 (k) — S(k, iwn)) (2.14)

ab

The equivalent expression in terms of Feynman diagrams is

=P = —Pp— + —b—@—iz
G G G G

The self-energy is the sum of all irreducible single-particle diagrams, i.e., all
diagrams that do not fall apart when one Green’s function line is cut.

We now transferred the problem from calculating the Green’s function G to calculat-
ing the self-energy Y. The way of approximating the self-energy therefore becomes
the cornerstone of diagrammatic quantum many-body theories in condensed matter
physics. The most straightforward approximation is to simply apply perturbation
theory in terms of the bare interaction V' (denoted diagrammatically by a dashed
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line, as shown in Fig. 2.2). Truncating after first order in V' yields the Hartree-Fock
self-energy

K, iw,,
k — k'
d, c R "\\
SHF (K, iwn) = K, iwn : K, i + K, iw, —p—t S K iw,
a bd ¥ jw, €0
1 .
= E Z Z‘/abcd(q = O)Gdc(k/7lwn’)
k/,n’ cd
1 .
-3 3 Vaean(k — K)Gea(K' i) (2.15)

k/.n’ cd

where the gray Green’s function lines are considered amputated and do not enter the
corresponding mathematical expressions. The first term is the Hartree contribution.
It is essentially a mean-field term, which captures the response of an electron to the
total density of all other electrons. The second term is the Fock contribution, which
takes into account non-local exchange. While the Hartree-Fock approximation works
relatively well for atoms, it breaks down for solids due to missing contributions
from screening and/or correlations. [25] In these cases, the perturbation series
converges prohibitively slow or even diverges. A solution was proposed by Lars
Hedin, in his pioneering work in 1965. [24] He devised a perturbation series in the
screened interaction W, instead of the bare interaction V. Screening reduces the
strength of the interaction in solids, such that a perturbation series in W might
converge where the previous method could not. Similar to the Green’s function,
the screened interaction is given by a Dyson equation

Wabcd(qa Zum) = Vabcd(q> + Z Vabef(q)Pfegh(q7Z.Vm)Whgcd((L Z'Vm)a (216)
efgh

with the corresponding diagrammatic expression

Here we used a wavy line to denote the screened interaction, as defined in Fig 2.2.
The function P is the polarization, which can here be understood as a bosonic
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W G
G >
G

Figure 2.3: Feynman diagrams corresponding to the self-energy 3 (left), polarization
P (middle) and vertex I' (right). Orbital, momentum and frequency indices have been
omitted for simplicity.

self-energy. Both the self-energy and the polarization are defined by Hedin using
the vertex I" as [24, 25, 31|

1
Sap(k, iwy) = — 3 3N Gealk, iwn ) Wikan(k — K, iwy, — i)

n’k’ cdkl
X Fcakl(k7 Wh, k/a iwn/) (217)
. 1 . . .
Pabcd(qa ZVm) :E Z Z Gka(ka an)Gbl(k + q, 1wy + Zl/m)
nk kl
X Tride(kK 4+ q, iwy, + ivpm, K, iw,). (2.18)

Finally, the loop is closed by defining the vertex as
Fabcd (k, iwnv klv iwn’) = 5ac(5bd

0%
+ Z (5> (k7 iwnv k/a iwn’)Gij (kl? iw’ﬂ')le (k’ an)
ijkl bajk
X Filcd(ka iwn, klv iwn’)a (219)

where 03/0G denotes a functional derivative. The corresponding diagrams are
shown in Fig. 2.3.

Egs. 2.16-2.19, together with Eq. 2.14, form a closed set of equations known as
Hedin’s equations. [24,25,31] They have to be solved self-consistently, by choosing
some starting point and iterating through the equations until convergence is reached,
as illustrated in Fig. 2.4. This procedure would, in principle, yield the exact many-
body single-particle Green’s function of a given Hamiltonian. However, in practice
it takes an unfeasible amount of computation power to actually perform these
calculations, such that further approximations discussed in the next section are
necessary.

While in the original formulation of Hedin’s equations the interaction V' is assumed
to be a Coulomb interaction, one can include phonons in this scheme by integrating
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Figure 2.4: The self-consistency cycle for solving Hedin’s equations. The diagonal line
denoted by GW illustrates the self-consistency cycle of the GW approximation, in which
the vertex I' is approximated by unity.

them out. This procedure leads to the following substitution for all bare interactions
in Hedin’s equations [34, 35]

Vabed(d) = Vea(a) +V, bcd(qa iVn,), (2.20)

where V. ,(q) is the bare Coulomb interaction and VA" (q,iv,,) is an effective
electron-electron interaction mediated by phonons given by [32, 33]

Vi (@, i) Zgab a)9cq(a) Dy (a, ivy,). (2.21)

In this way, we treat the electron-phonon and the Coulomb interactions on equal
footing, such that we take the mutual screening of the phonons by the Coulomb
interaction and vice versa into account.
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k — K, iw, — iw,

Sk, iw,) = k,iw, k,iw,
b d I{I7 iCU7L/ Cca
k,iw,
. . a d .
Habcd(qa ZVm) = q,Wn b C q, WWm

k+q,iw, + v,

Figure 2.5: Feynman diagrams corresponding to the GW self-energy ¥ (top) and po-
larization II (bottom). The gray Green’s function and interaction lines are considered
amputated.

2.3 GyWp THEORY

One of the most common ways to make Hedin’s equations more feasible to solve
is by employing the GW approximation (GWA). [24,25,31, 38| It is obtained by
approximating the vertex I' by unity

Fabcd(k7 iwna k/a iwn’) ~ 5ac§bd~ (222)

As a consequence, the self-energy 3 and the polarization P simplify to

) 1 ) . )
Yap(k, iwy,) ~ ~3 kz; ; Waean(k — K iwy, — iwn)Gea(K' iwn) (2.23)
) ) 1 ) ) .
Pabcd(q7 ZVm) ~ Habcd(qa ZVm) = = Z Gda(ka an)Gbc(k + q, 1wy + ZVm)a (224)
kiw,

with the corresponding diagrams shown in Fig. 2.5. As a consequence of this
approximation, Hedin’s self-consistency cycle is simplified by skipping the vertex
function, as illustrated in Fig. 2.4.

The GWA can be interpreted as an extension to the Hartree-Fock approximation,
where instead of the bare interaction V' the screened interaction W is used. GW
calculations are commonly performed in a one-shot, or GoWy, approximation. In
this framework one starts from G = G©) and subsequently performs the GW
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self-consistency cycle only once, i.e., without reaching a self-consistent solution.
Surprisingly, it turns out that ab-initio GoWj results are generally much closer to
experiments than self-consistent ab-initio GW results, especially for semiconductors
and insulators. [39,40] While there is not yet a consensus on why this is the case,
there are strong hints that it is due to an error cancellation of missing vertex
corrections and missing terms from self-consistency. [41-43] A drawback of the
GoWy approximation is that it is non-conserving, such that the total electron
number is not conserved before and after the calculations. [41,44] To correct for
this, we include a chemical potential shift in the dressed Green’s function, such
that it has the same electron-density as the bare Green’s function (i.e., the bare
and dressed Green’s functions will have different chemical potentials).

Arguably the largest success of the GoW( approximation has been in the ab-
initio description of band gaps of semi-conductors. Density functional theory
(DFT) calculations using the local density approximation (LDA) consistently
underestimate band gaps for semiconductors such as Si, GaAs, Ge and more
[25,45-47]. Including Hartree-Fock (HF) corrections leads to an overestimation
of the band gap. [46] Since screening heavily reduces the strength of the bare
interaction, GoW predicts band gaps which are in between those of the LDA and
the HF, thus yielding results much closer to experimental results. [39,40] However,
as any approximation, the GWA has limited validity. It breaks down for sufficiently
strong interactions, such that it cannot describe strongly correlated electron physics,
such as Mott-insulating states. In those cases different approximations, such as
dynamical mean field theory (DMFT) [48,49], should be used instead. Another
scenario where the GWA fails is for dilute metals. For the three-dimensional
electron gas the GWA is known to fail when the electron gas parameter ry =
m*e?/(ey/mn) 2 1 [9,34,43,50,51], but in two dimensions its exact limits are
not known. Some indications that a theory beyond the GWA should be used are
the presence of a sharp plasmon-induced shakeoff feature below the conduction
band, or the experimental observation of multiple shakeoff features. [52,53] In
such cases, extensions to the GWA that include vertex corrections should be used.
One example of such a method is the GW+cumulant approach, which will be
discussed in Sect. 2.3.3. In the preceding sections we will discuss each step of a
GoW calculation in detail.

2.3.1 Random Phase Approximation

The first step in GoW, theory is to evaluate the polarization function IT(). It
turns out to correspond to the polarization function obtained from the random
phase approximation (RPA), which was derived independently from the GoWj
approximation. [54-58] It can be derived by substituting the exact expression of
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the bare Green’s function (Eq. 2.12) into the GW expression of the polarization
(Eq. 2.24) and subsequently evaluating the Matsubara sums. The result is the
well-known Lindhard function [54]

1 . . .
19 (q,ivm) = 95 S G0 (K, iwa) G (k + q it + i)

Kk, iw,

=235, o) = nrlSicrai) gy 1), (0 + @) O + )

ZVm. + gk i £k+q,j
(2.25)

where the factor g in front is the (spin, valley, etc.) degeneracy factor. & ; is the
bare electron dispersion in the band basis, obtained from the unitary transformation

bii = O T () hap ()T, (k) — i, (2.26)
ab

where a and b are orbital indices and 7 is a band index. The Lindhard function
is a linear response function of the electron density to some perturbation. The
poles of II(¥) are at the energy difference between two single-electron states and
the Fermi-Dirac distribution functions in the numerator ensure that one of those
states is occupied and the other is unoccupied. In other words, the Lindhard
function describes the excitation of electrons across the Fermi surface, creating
electron-hole pairs. There is a continuum of points in the frequency-momentum
space where electron-hole pairs can be excited, which we call the electron-hole
continuum. [9,34] The bare Coulomb interaction V is screened by these virtual
electron-hole excitations, which results in the screened Coulomb interaction W' given
by Eq. 2.16. For simplicity, we commonly approximate the Coulomb interaction
using the density-density approximation Viped(q) & Vae(q)dapdeq- In this case V
and W are matrices, such that the Dyson equation for W simplifies to a matrix
equation

W (i) = V(@) + V(@O (q i)W (i)
= (2~ V@ (qin) V(. (2.27)

An alternative way to derive this expression is using the linear response formalism,
in which the screened Coulomb interaction is given by the sum of the bare potential
and the induced potential W(q, ivy,) = V(q) + Vinda(Q, i, ). The induced potential
is written in linear response theory as Vina(q,iv,,) = W(q,ivm)on(q, ivy,) ~
W(q, iy, ) IO (q, iv,, )V (q). Substituting the two expressions yields again Eq. 2.27.
19, 34]

PLASMONS The screened Coulomb interaction W is frequency dependent and
has poles whenever the dielectric function &(q, iv,,) = Z—V (q)I1(9)(q, iv,, ) vanishes.
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These poles describe the excitation of a quantized, coherent oscillation of the electron
density. [9,34] Since those oscillations are the quantum mechanical counterpart of
classical plasma oscillations, the corresponding bosonic quasi-particles are called
plasmons. A plasmon has a relatively long lifetime as long as its dispersion wq
lies outside the electron-hole continuum. Once the plasmon dispersion merges
with the electron-hole continuum, the collective excitation will decay into single
electron-hole pairs and is therefore damped by a process we call Landau damping.
The shape and energy of the plasmon dispersion has important consequences,
especially for optical properties. For example, many metals have their characteristic
color because the plasmon dispersion lies in the visible spectrum, allowing them to
absorb certain wavelengths of light. Plasmons can also couple to electrons, creating
new excitations that are called plasmon polarons. These states have been observed
in bulk materials using ARPES measurements [52,59] and more recently also in
two-dimensional in doped semi-conductors. [60,61] Even more, while it has not
yet been verified experimentally, the coupling between electrons and plasmons has
also been predicted to be able to mediate superconductivity. [62-72] The effects
of electron-plasmon coupling on the normal and superconducting states will be
discussed in detail in chapters 5 and 6.

Experimentally, the most effective way to measure plasmons (and other bosonic
excitations) is using electron energy loss spectroscopy (EELS). [73] The basic idea
behind EELS is to radiate the sample with a beam of electrons within a narrow and
known range of kinetic energies. When these electrons interact with the material
some will scatter inelastically, losing some energy in the process. By measuring
this energy loss one can infer the excitation energies that exist within the material.

PLASMON-POLE APPROXIMATION Calculating the screened interaction W in
the RPA is computationally expensive. The plasmon pole approximation (PPA) aims
to simplify the RPA by casting W in the form of a bare phononic propagator. [25,74]
In this way we gain a more intuitive understanding of the strength of the electron-
plasmon coupling. We furthermore obtain an analytic expression for the pole-
structure of W, which will allow us to perform some Matsubara summations
analytically. We start by writing the screened Coulomb interaction in the spectral
representation

2w

G = (2.28)

Wabcd(qa Zym) = Vabcd(q) + / dWBabcd(qv w)
0

where the first term is the repulsive bare Coulomb interaction and the second term is
the effective plasmon induced attractive electron-electron interaction. Bypeqa(q,w) =
—Im (W2, ,(a,w) — Vapea(q)) /7 is the spectral function of the screened interaction.

In the PPA we assume that the spectral function is completely governed by the
plasmon excitations, i.e., we neglect spectral weight coming from electron-hole
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excitations. Therefore, we approximate (assuming a single orbital system for
simplicity) [25]
B(q,w) = |aq|* (8 (w — wq) = (w +wq)) , (2.29)

where |aq] is the electron-plasmon coupling and wq is the plasmon dispersion. As a
consequence, the second term of the screened Coulomb interaction has the form of
a bare phonon propagator

2wq

(iVm)? — w3’

W(q,ivm) = V(a) + |ag|” (2.30)
The dispersion wq can be determined from the roots of the real part of the dielectric
function. For the 2D free electron gas we can find it analytically, by writing the
RPA polarization at w > kprq as [75]

Re (H(O)(q,w)) ~ 9N < (2.31)

Y
w? — (qur)? 7

with Ny the DOS at the Fermi energy and vp = \/2Er/m* the Fermi velocity.
Substituting this expression into the dielectric function and finding its roots

yields [68]
_ (gNoV (q))?

The electron-plasmon coupling can then be found without further approximations
from Eq. 2.30 as

jaaf? = Sa (V(@) ~ Walw = 0)). (2.33)

Substituting the bare Coulomb interaction of the 2D free electron gas V(q) =
2me? /(Aeq) as well as its DOS Ny = Am*/(2), and expanding around q = 0 gives

2mge?n
wg ~ 1/ preeral LS NG (2.34)

1
NGk (2.35)
where n = ErNy/A is the electron density. We find that in the long-wavelength
limit the plasmon dispersion has a square-root dependence on q and that the
electron-plasmon coupling has an inverse square-root dependence on q. These are
characteristic features of the 2D free electron gas plasmon mode. In contrast, in the
3D free electron gas the plasmon dispersion will tend towards the classical plasma
frequency wq—0 — wy in the long-wavelength limit. [9] Furthermore, because the
square-root structure of 2D plasmons is derived in the small q limit, most 2D

1
|aq|2 ~ §qu(q) x
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materials which can be approximated by a Fermi liquid around the Fermi energy
will have a plasmon dispersion of this form. [9] Even weakly doped graphene, which
has a linearly dispersing electron dispersion around the Fermi level, has a plasmon
dispersion which is proportional to /q. [5]

2.3.2  Normal State Renormalization

Once we have calculated the screened interaction W, we can evaluate the GoWy
self-energy by simply substituting GO for G in Eq. 2.23

Sk, iwy,) = —= Z ZWacdb (k — K/, iwy, — iwp )G(g)(k’,iwn/). (2.36)
k’ n' ed

The dressed Green’s function in GoWj is finally obtained using the Dyson equation
(Eq. 2.14). A more physically intuitive picture arises when we substitute the spectral
representation of W (Eq. 2.28). In this case we can perform the Matsubara sum
analytically, yielding in the density-density approximation

Sap(K,iwn) ==Y Y Tui(K) T (K ) Vaarn (k — K )np (e i)
k’ 1

+ ; Z /_O:O dwTai(k/)T;fl)(k/)Baabb(k W) n?(w) + np(gk,ﬂ.).

Wy +w — i
(2.37)

The electron dispersion in the band basis £k ; and the corresponding transformation
matrices T are defined in Eq. 2.26. In the (single-orbital) PPA the GoWj self-energy
simplifies further to

Sk, iwn) = — Z V(k —K)np(&)

o (nB(Wq) +nF(lk—q) , "B(Wq) +1—1F(fk—q)
+Z‘ al ( iwn + wq — fk—q + iwy, — wg — fk—q )

(2.38)

This expression will be useful for analyzing the GoW results and for analytical
derivations based on the GoW approximation.

The first term of the Go Wy self-energy is simply the Fock self-energy, which together
with the Hartree potential forms the Hartree-Fock approximation. It captures the

redistribution of electrons due to the static mean field of all other electrons. As such,

it is frequency independent and only causes shifts in the occupied non-interacting
electron states.

The second term captures the retardation effects induced by screening. It can be
understood as the effect of the plasmons on the normal state. Due to its frequency
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dependence, it can cause an additional pole to appear in the dressed Green’s
function, which induces an additional ‘shakeoff band’ in the spectral function
below the conduction band minimum. This new state reflects the excitation of a
quasi-particle consisting of a coupled electron-plasmon mode, which is often called
a plasmaron in the literature. [76-79] Plasmarons were originally thought to have
been observed in graphene [76,77,80-83], but after further works that investigated
the effect of vertex corrections, it is now understood that the plasmaron is actually
an artifact of the GoWy approximation. [78,79] Instead, the shakeoff bands observed
in graphene, as well as in other two-dimensional materials [61], originate from
incoherent plasmon polaron excitations, consisting of electrons dressed by a cloud
of plasmon excitations. [52,53,61,78,79,84,85]

The plasmon polaron shakeoff bands can be described correctly by the GoW,
approximation in the limit of a dense electron gas with weak electron-plasmon
coupling. However, as the electron density is reduced and/or the electron-plasmon
coupling is enhanced, one at some point requires a theory that includes vertex
corrections. The exact regime of validity of GoWj is not known, but some signatures
that vertex corrections are important are that the energy splitting AFE of the
shakeoff band is overestimated compared to experiments, or when multiple shakeoff
bands are observed below the conduction band minimum. [52,78,84] One theory
which can include vertex corrections is the GW-+cumulant approach, which we will
discuss in the next section.

2.3.3 GW + Cumulant Theory

As mentioned in the previous section, the GWA is known to work well for the
corrections to the electron quasi-particle bands beyond the LDA, but it generally
fails in the description of shakeoff bands. While GoWj can yield a single shakeoff
band, this shakeoff band often has an overestimated binding energy and intensity.
[38,52,53,84] Furthermore, experimentally one observes a whole cascade of shakeoff
bands, each separated by the binding energy AFE. These can be interpreted as
electrons dressed by multiple boson modes at once, yielding excitations at energies
n X AFE below the conduction band minimum, where n is the number of coupled
boson modes.

To go beyond the GWA one needs to include vertex corrections. There are various
methods which achieve this, including, but not limited to, the GWI' methods
[41], local field effects in the Kukkonen and Overhausen (KO) approximation
[86,87] and excitonic corrections using the Bethe-Salpeter Equation (BSE) [88]
or T-matrix approaches [89]. The method of interest in this section, however, is
the GW+cumulant approach. [52,53,84] This method was shown to accurately
reproduce shakeoff bands, with binding energies and intensities comparable to those
measured in experiments, for a variety of materials including elemental Na and
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Al [52], silicon [85,90,91] as well as various 2D materials such as graphene [90] and
monolayer TMDCs [61]. The GW+cumulant method is based on an exponential
cumulant expansion of the Green’s function, which is motivated by the spectrum of
3D core-electrons coupled to bosonic modes, in which case the electronic spectral
function can be evaluated analytically and has an exponential form. [92,93] In fact,
for 3D core-electrons the GW+cumulant method is exact. [38] It was furthermore
shown that an exponential form of the Green’s function implies that there are
dynamical vertex correction terms included in the self-energy. [78] There is, however,
no formal proof for the correctness of the ansatz in the cumulant expansion.

One of the main benefits of the GW+cumulant method is that it is rather
lightweight, such that it can be done after a GoW calculation without much
additional computational complexity. We further note that the cumulant method
is not restricted to Coulomb induced shakeoff bands. It can also be used in combi-
nation with the Fan-Migdal self-energy or with the Frohlich self-energy to describe
phonon-induced Frohlich polarons. [94] In this section we will derive the main
equations of the retarded GW+cumulant formalism by Kas et al. [84] To this end,
we will closely follow Refs. [52] and [84], which is why the derivations are done in
real time and real frequencies.

Unlike the many-body perturbation theory we discussed at the beginning of this
chapter, the cumulant expansion is a perturbative theory directly in the Green’s
function itself. It is given by the following exponential ansatz for the real-time
Green’s function

Gk, t) = GO (k, t)eC kD
— GOV (k, 1) + GO (k, 1)C(k, 1) + %G(O)(h DOk, 1?2 +0(C?),  (2.39)

where C(k,t) is the cumulant function which we aim to find. We compare the
cumulant expansion to the usual self-energy expansion

G(k,t) = G (k1)
+ FT (GO (,0)2 (0, 0)G O (k,w))
+FT (G<0> (k, w)Z(k, )G (k, ) S(k, w) GO (k, w))
+0(2?), (2.40)

where we used Fourier transforms (denoted by F7) to avoid convolutions on the
time axis. Since up to first order in the interaction the GoWy self-energy is exact
(barring the Hartree term), we require the two expansions to be equivalent up to
first order. This leads to the requirement

GOk, 1Ok, t) = FT (G<0)(k,w)§](k,w)G(°) (k,w)) , (2.41)
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from which we find an expression for the cumulant function by inverting the bare
Green’s function

O(k, t) = je~t(Tatntio)t / ‘i‘”e*ith(O)(k,w)z(k,w)a@(k,w), (2.42)

2

where we assumed ¢ > 0. We then split the self-energy into its static and dynamic
parts, i.e. ¥(k,w) = ¥ (k) + XY (k, w), which allows us to split the cumulant
as well O(k,t) = Cstat(k,t) + C¥2(k,t). The cumulant from the static part of the
self-energy can be evaluated using contour integration as

© dw efi(wfsker,Jrié)t

Ot (k, 1) = iT5 (k) / Tt e A SR

yielding exactly the Fock contribution of GoWj theory. The dynamic part can be
simplified by writing the self-energy in the spectral representation

00 r_
Zdyn(k7 w) _ / dew’ Bk(w /€k + M) , (2.44)
o w—w + i
where we defined
1
Bx(w) = - ’Im (Zdy“(k,w +ex — ,u))’ . (2.45)

Substituting this into Eq. 2.42 and shifting the integration variables w() — w(") +
€x — p yields

[ dw [ (st 1 Pr(w')
dyn k _ “uw 1 —i(w+id)t ) 2.4
¢ (k1) z/_oo%T/_oodwe (W+i0)2w—w +1id (246)

For clarity we extract the w integral

(W, t) = dwe 1w Hid)t 2.47
(W'?) /,Oo we (w+id)2w—w +id’ (2.47)
which is evaluated using contour integration techniques. We identify two poles: a
simple pole at w; = w’ — id and a second-order pole at wy = —id. The respective
residua are

Ry = wﬁ_}ﬂ&(w —wi)f(w) = We_w '
. d ot 1
R = Jim G5 mw) @) =i~ G

where f(w) is the integrant. From the residue theorem we find the integral as

211

I(W',t) = =2mi (Ry + Ry) = W)

(e—W Fiw't - 1) 7 (2.48)
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where the additional negative sign comes from the inversion of the integration

boundaries due to the poles being on the negative side of the imaginary axis.

Substituting this integral back into Eq. 2.46 and relabeling w’ as w yields the result
from Ref. [84]

CYn(k, t) :/ dwﬁk(:’) (e +iwt —1). (2.49)
oo w

Numerically, the w = 0 term in the integral has to be handled carefully due to
cancelling singularities. By expanding the exponential function around w = 0 we
find that the integrant at this point is —#28y(w = 0)/2. The dressed Green function
in the cumulant approximation is finally found by substituting C'(k, t) back into
Eq. 2.39

G(k,t) = —iO(t > 0)ei(—omtn=S"+id)t O (1), (2.50)

We can get some physical intuition by separating the parts of C4¥"(k,#) which do
and do not oscillate in time. To that end we define

Ow(t) = /_OO dwﬁl:j(f)e_w7 (2.51)
Ay = /Oo dwﬁkcgw) = —Re (Ziyn(ek - ,u)) , (2.52)
B
ax = /_Oo dw ‘;(;J) (2.53)
Zk = e_ak, (254)
such that
C(Kk,t) = Ok (t) + iAxt — ay. (2.55)

Substituting this expression into Eq. 2.50 to obtain the cumulant Green’s function
yields
G(k,t) = —iZ,O(t > 0)e!(Tortn="" () +Asc4id) 1 O(t), (2.56)

From this we learn that Ay shifts the quasiparticle dispersion, that Zy is the
renormalization constant and that Ox(t) is the oscillating part which induces the
shakeoff bands.

To illustrate the appearance of shakeoff bands, we consider the extreme forward

scattering limit, i.e. |aq|? ~ |a|?0(q), of the GoWj self-energy in the PPA (Eq. 2.38).

We also take the limit of zero temperature and only consider occupied states, such
that the dynamic part of the self-energy is given by
lal?

WHid+w, —ex+

Yk, w) = (2.57)
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Figure 2.6: A representative example of the dressed spectral function A(k,w) of a free-
electron gas, evaluated at k = I' using the extreme forward scattering self-energy given by
Eq. 2.57. The solid red line denotes the GW+cumulant approximation, the dashed blue line
represents the GoWg approximation and the vertical dotted lines denote w = —p —n X wp,
for n = 0...3. These data were obtained for m* = 0.5me, u = 0.5¢V, |a|* = 0.5¢V? and
wp = 1eV. Delta functions are represented using Lorentzian broadening, with 6 = 0.02eV.

Here wy, is some effective plasmon frequency. The oscillating part is now trivially
given by O(t) = |al*exp(iwpt) /w;. Expanding Eq. 2.56 in terms of O(t) and Fourier
transforming leads to the following spectral function [52]

Z (|a|2> ( e 4 — yostat
W— K+ (k) + A+ nwy), (2.58)

where A = —|a|?/w, and Z = exp(—|al?/w?). We show A(k = T',w) in Fig. 2.6,
together with the corresponding result in the GoWq approximation (obtained by
substituting Eq. 2.57 into the Dyson equation). The n = 0 term simply yields
the quasi-particle peak also predicted by GoWj theory. Higher orders of n give
a cascade of shakeoff features which appear at energies in multiples of w, below
the conduction band minimum. Each of these peaks represents a plasmon polaron
excitation, consisting of a single electron dressed by a cloud of n plasmon states.
Peaks further away from the conduction band minimum are suppressed by the
factor 1/n!, indicating the reduced probability of exciting plasmon polarons with
multiple plasmon modes. On the other hand, the GoWq approximation predicts
only a single shakeoff feature, which is furthermore located in between multiples
wp below the conduction band minimum.
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2.4 2D COULOMB INTERACTIONS

In the previous sections we discussed theories that describe how Coulomb interac-
tions affect the normal state. In this section we will discuss the starting point for
such calculations, namely the Coulomb matrix elements V5.q(k, k', q) and the basis
they are defined in. For the non-interacting electronic term of the Hamiltonian,
the most natural basis is the Bloch basis, because we immediately have access
to the band energies &k ;. When including electron-electron terms, however, it is
more intuitive to use a local basis, as used for example to define the (extended)
Hubbard model. A particularly convenient local basis are Wannier functions, which
are highly localized atomic-like orbitals. [29,30,95-97] They are especially popular
in the ab-initio downfolding community, because the Wannier basis allows to define
an effective low-energy tight-binding model which reproduces a subset of non-
interacting bands around the Fermi energy. From there, downfolding methods are
used to define effective (interacting) models within this low-energy subspace, such
that computationally demanding computations can be performed on a significantly
smaller low-energy subspace only.

In this section we will first derive the Coulomb matrix elements in a local basis.
Then, we will briefly describe the constrained random phase approximation (cRPA),
which is a downfolding method used to obtain effective Coulomb matrix elements
in the low-energy subspace. [30] Finally, we will discuss the Wannier function
continuum electrostatics (WFCE) approach [98], which is a method for augmenting
2D Coulomb matrix elements to include screening effects from the surrounding
materials. For a more in-depth discussion on downfolding methods or on the cRPA,
we refer the reader to Refs. [29,30,97].

2.4.1 2D Coulomb Matriz Elements in a Local Basis

The most general form of the Coulomb matrix elements in a local orbital basis is

Vabea(k, X', @) = (Parctq(1)] (Pea—q ()| V (1, ') [farc (r)) [doic(x)) . (2.59)

with V(r,r’) = e?/|r — 1’| the bare Coulomb potential. The Bloch states are
defined by

(bak(r) = Z eikaa (R7 I‘). (260)
R

Here the new basis function w,(R,r) is an atomic-like wave function, which we
assume to be localized within the unit cell R. For material realistic calculations
these basis functions are often taken to be maximally localized Wannier functions
[29,95,96], but for model calculations we might assume a completely local delta-
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function instead. In either case, we assume that w,(R,r) has negligible overlap
with the basis functions outside its unit-cell, such that
Fincrq(0)om(r) = Y wi (R, rjup(R/,x)e xRl
R,R/
~ Z w* (R, r)wy (R, r)e R (2.61)
R

which no longer depends on the momentum k. Consequently, also the Coulomb
matrix elements lose the dependence on the individual momenta k and k’

Vabea(@) = Y (wa(R,1)| (we(0,2)| V(x,1') [wa(0, ') [wy(R, 1)) e "IR. (2.62)
R
Finally, we employ the density-density approximation, in which we assume the
terms with ¢ = b and ¢ = d dominate in the Coulomb interaction and neglect
all other elements. This approximation is justified when the overlap of the basis
functions between different orbitals is small. We arrive at

Vaars(@) ~ Y / dr / dr'|wa (R, )| [wy (0, r')[*V (r, ' )e IR, (2.63)
R

For model calculations, we might assume the basis functions w, (R, r) to be com-
pletely localized, such that |w,(R,r)? = §(R + 7, — r), with 7, the location of
orbital @ within the unit cell. In this case

Vaans(a) ~ Z/dr/dr’é(R + 7, —1)8(1, — )V (1, r’)e—iqR
R

= Z V(R + 7y, 7p)e 9B
R

S )
T RiTom |

we end with the Fourier transform of the bare Coulomb potential. Evaluating this
integral in 2D yields ,

Vi@ ~ T
with 7, the in-plane vector connecting orbital a and b within the unit-cell, and
dap the out-of-plane distance between orbital ¢ and b. For the integration we
approximated > g ~ 1/A4 [ dR, where A is the unit-cell area.

6—14017'@6—(1(1(1177 (2.65)

2.4.2  c¢RPA and Static Environmental Screening

The cRPA is a downfolding method used to construct the effective Coulomb
interaction within a low-energy subset of bands. It takes into account the screening
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from all the bands that are being integrated out in the downfolding procedure.
To start the discussion, we separate the non-interacting band structure into a
low-energy target space and a high-energy rest space. Correspondingly, the RPA
polarization can be separated by splitting the sum over band indices in Eq. 2.25,
such that

O (q, i) = 0O ot (i) + T2 (q, ivm), (2.66)

where H‘Egl)rget (a9, ) includes only transitions within bands in the target space
and all other transitions are captured in Higgt(q,ium) The transitions in H](rcgt
have energies much larger than the Fermi ener%y7 such that we might neglect the
dynamics of the rest-space polarization, i.e., Hrebt q,iVm) &~ Hgggt( ). The screened
Coulomb interaction (in the density-density approximation for simplicity) can now

be rewritten as [30]

W (@) = (2~ V(@) (010 (@i) + T (@) V()

= (2~ U@l iv) (a). (2.67)

The resulting expression is of the same form as W in the full RPA except that we
use an effective bare ‘background screened’” Coulomb interaction U, which includes
screening from the rest space. It is given by

O = (T - V@i@) V(=@ Vi) (268

In principle, one can obtain U(q) from the full (DFT) band structure on a given
momentum-mesh. However, in order to perform converged dynamic and non-
local GoWj calculations in 2D, one often needs a prohibitively large momentum
resolution to capture the long-wavelength behaviour of the 2D Coulomb interaction
and plasmon dispersion. Furthermore, to consider environmental screening in
this framework, one needs to explicitly take the environmental materials into
account in the microscopic model. To remedy this, Rosner et al. proposed the
Wannier function continuum electrostatics (WFCE) approach. [98] It is based
on the realization that in the macroscopic long-wavelength limit, the dielectric
function epack(q) can be expressed using classical electrostatics. The resulting
equations can be fitted to a single bulk ¢cRPA calculation in order to obtain
the ab-initio parameters of the (analytic) electrostatic screening model. In this
way, the Coulomb interaction U(q) can be determined for arbitrary momentum
points q, without having to perform computationally expensive cRPA calculations.
In addition, the macroscopic dielectric function allows us to tune the effect of
environmental screening, without having to perform additional cRPA calculations.
Therefore, the WFCE formalism is ideal for model calculations incorporating the
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Embedded
—— Mounted

top
ext

€back(q)

€int

h=1.04

bot
ext

h=0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6
q (&)

Figure 2.7: (Left) Schematic image of the slab configuration for the electrostatic screening
model. The red box illustrates the thin slab with dielectric constant einy and the black
boxes illustrate the half-infinite substrates with dielectric constants '2F and eb2f. The
blue dashed lines illustrate electric field lines between two charged particles (black dots).
(Right) The background dielectric function epack(q) for a variety of h, at eine = 5. We
consider a material which is mounted on a substrate with e2% = 5 and vacuum above
el =1 (solid lines), and a material embedded from the top and bottom in a dielectric

material with gexy = (eLoF + eb2f)/2 = 3 (dotted lines).

ext

effect of screening from the environment, as well as screening from bands in the
rest space.

For the electrostatic screening model, let us consider a slab of thickness h with
internal dielectric constant i,y encapsulated from the top and bottom by half-
infinite semi-conductors with respective dielectric constants £'°° and £P%, as

illustrated in the left panel of Fig. 2.7. By solving the Poisson equation for such a
system we find [98,99]

1- 5topﬁbot e~ 2ah

€back(d) = €in s 2.69
( ) ! 1+ (ﬁtop + 6bot)€_qh + Btopﬁbote_Qqh ( )
where rop/bot
op/bo
€int — Eext
ﬁto /bot — ob/bot (270)
v Eint + szlta/b t

€back(q) as a function of ¢ is shown in the right panel of Fig. 2.7 for a variety
of material thicknesses h (solid lines). In the long wavelength limit epack(q —
0) = (€5 4 £bot) /2 the dielectric function yields the average dielectric constant of
the environment, whereas for the short wavelength limit epaek(q — 00) = gint it
gives the internal screening of the slab. For intermediate q, the dielectric function
interpolates between these two limits. For simplicity, one might approximately
describe the dielectric environment with a single scalar ey & (1°F 4 £P9%) /2, such

that

1 — &2e— 240

1+ 28e—ah 4 g2¢—2qh’

<<fback(q) ~ Eint (271)
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~ . . . . t
where & = (£int — Eext)/(Eint + €ext ). This approximation is exact when eof = gbot

and otherwise yields results which are qualitatively similar to the full expression,
as shown by the dotted lines in the right panel of Fig. 2.7.

The classical expressions above are scalar functions, whereas the density-density
Coulomb interaction is matrix valued. To remedy this, the WFCE argues that
the electrostatic dielectric function above mainly alters the leading eigenvalue of
the Coulomb interaction, whereas the subleading eigenvalues are approximately
unchanged from those of the corresponding layered bulk material. [98] This can
be understood by analyzing the eigenvectors of the diagonalization procedure,
which show that the eigenvalues of the bare Coulomb interaction correspond to
energies of effective generalized charge density waves. The charge density wave
corresponding to the leading eigenvalue has the longest wavelength, such that it
will be most sensitive to the dielectric environment. In this way, the WFCE can
be used to obtain the effective Coulomb interaction in a 2D material from bulk
calculations. Since this part of the WFCE is not explicitly used in this thesis we
will not discuss it here, but further information can be found in the original work
by M. Résner et al. [98] Suffice to say, the WFCE has been shown to accurately
describe two-dimensional Coulomb interactions from first principles in a variety of
material systems. [98,100-104]
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2.5 SUPERCONDUCTIVITY

In 1950, Frohlich derived an effective electron-electron interaction mediated by
phonons by performing perturbation theory in the electron-phonon coupling
strength. He found an expression of the form [33,36, 105, 106]

2wq

Vph7eff(k7 kl7 q) ~ 9k,q9k’,—q (272)

(i — w0-a)? &3

Importantly, this interaction can be negative and thus attractive when ey —eyx/_g <
wq. It was Bardeen, Schrieffer and Cooper, with their famous BCS theory, who
first realized that this attraction between electrons could lead to the formation of
bound electron pairs, which we now call Cooper pairs. [107] These Cooper pairs
are bosonic quasi-particles, which means that they can condense into a single
collective ground state. At low enough temperatures, scattering processes or energy
fluctuations are not strong enough to overcome the binding energy A of the Cooper
pairs, such that there are no processes which can alter their kinetic energy. As a
consequence, Cooper pairs can flow without resistance in this regime, which gives
rise to the superconducting state.

2.5.1 BCS Theory

The BCS theory gives a microscopic understanding of superconductivity by treating
the effective electron-electron interaction in the mean-field approximation. [107] In
a conventional superconductor without an applied field, we can assume that the
Cooper pairs have a vanishing total momentum. For simplicity we can therefore
consider the following Hamiltonian, which captures the interaction between two
electrons of opposite momentum

H=Y ecf e+ VK)o e, (2.73)
k,o k,k’/

where Veff(k k') = VPhefi(k —k k—k’). Defining a set of operators for the creation
and annihilation of Cooper pairs

AL = CLTC]:ki and A, = €3 Coeps (2.74)

we can apply the usual mean-field approximation Al A,, ~ Al (A,,) — (A[)A,, +
(Ab(Ak,). Substituting this back into the Hamiltonian above and neglecting any
constant energy shifts we find the mean-field BCS Hamiltonian

H = Zskclacka + Z (AkcLTcT_M + A;c_kicm) , (2.75)
k,o k
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with the gap-function

A= VKK ) (e 00r)- (2.76)
k/

The eigenvalues of the BCS Hamiltonian are given by Ex = £4/¢f + |Ag|?, from
which we learn that a superconducting energy gap Ay opens around the Fermi
energy. Using the eigenvectors of the BCS Hamiltonian we find a self-consistent
expression for the gap-function

tanh (BEy /2)

Ao == VI K) %

Kk’

Ay (2.77)

which is known as the BCS gap-equation. At temperatures T above the supercon-
ducting transition temperature T, the gap-equation only has the trivial solution
Ax = 0. When T' < T, there are additional non-trivial solutions, such that the
gap-function Ay can be understood as the order parameter of the superconducting
phase.

A common approximation is to simplify the effective phonon-mediated interaction
by a step function. It should be a negative constant —Agcg/Ny in the region where
Vphs eff jg attractive and zero elsewhere

Noveﬂ(k, k/) ~ _/\BCS@(|5k| < OJD)@(‘S](/‘ < wD), (2.78)

where wp is an effective phonon frequency, Ny is the DOS at the Fermi energy and
ABcs = 2Nog? /wp is the dimensionless phonon mediated coupling strength. Within
this simple model the superconducting critical temperature and superconducting
gap at T'= 0K are readily found to be

k?BTC ~ 1.13CUD671/)‘BCS (279)
Ap_g ~ 2wpe~/ABos, (2.80)

BCS theory, and its strong-coupling extension Eliashberg theory, have been used to
describe a plethora of conventional superconductors. [108-114] Materials for which
these theories break down are called unconventional superconductors, for example
signified by a weak isotope effect or by the BCS ratio kgT./Ar—g = 0.57 being
violated. There is as-of-yet no general theory which can describe unconventional
superconductivity, but a common suggestion for its origin is that it is not phonons,
but other bosons that mediate the Cooper pairing. [115] For example, in many
iron-based unconventional superconductors, spin fluctuations have been proposed
as a promising candidate for the coupling. [116-118] In this thesis the focus is
on the 2D Coulomb interaction, which gives rise to the non-local and dynamic
screened Coulomb interaction W described in Sect. 2.3. As we have shown with
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the PPA, the interaction can be split into a high-frequency repulsive term V(q) =
W(q, iy — 00), and an attractive low-frequency term AW (q, iv,,) = W(q, ivy,) —
V(q) induced by plasmons. The similarity of the attractive term to the conventional
phonon-mediated electron-electron interaction, as well as the strong electron-
plasmon coupling in the long-wavelength limit, hints at the possibility of plasmon-
mediated superconductivity. [63-66,68-72,119-121] However, a complication in
the description of 2D plasmons is the inherently non-local nature of the 2D
plasmon mode due to its gapless /g dispersion in the long-wavelength limit. As a
consequence, a theory which can capture both the non-locality and the dynamic
nature of the Coulomb interaction is required to describe plasmon mediated
superconductivity. We therefore need a theory that goes beyond the mean-field
BCS theory.

2.5.2  One-Loop Theory

In the one-loop theory of superconductivity we essentially perform a GW calculation
in the superconducting state. In this way we go beyond the mean-field approximation
of BCS, allowing the treatment of a both non-local and dynamic interaction. Even
more, the framework allows for a consistent treatment of multiple interactions,
properly taking account their mutual screening in the RPA. We start the derivation
by defining the spinors

iea(7) = (Mf&) o) = (o (e () (281)

which allow us to use the usual definition of the two-particle Green’s function in
the Nambu-Gor’kov formalism [122,123]

Gan(k,7) = = ( Ttha (7, 0) )

(T (e 0) = (Teur (1)1, (0))
(T s (M ) = (Tel ()61, (0) )
_ (Ga(k,7) Fup(k,7)

- (Fibas ) ~Ghl-k, —T>) ’
where we used a bold notation for matrices in the Nambu-Gor’kov basis and we

assumed that the diagonal spin-up and spin-down Green’s functions are equivalent.
The off-diagonal elements are the anomalous propagators, defined as

(2.82)

Fop(k,7) = — <TckaT(T)c7kb ¢(0)> . (2.83)
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Similarly, we define the bare Green’s function and self-energy matrices in the
Nambu-Gor’kov basis respectively as

O e 5
G (k,iw,) = Gl (ks iton) (0) ! . (2.84)
0 -Gy, (—k, —iwy,)
. _ Eab(k7 an) ¢ab(k7 an)
Yok, iwy,) = ( ki) — o (—k, i) ) (2.85)
such that we can write down the Dyson equation
Gap(k,iwn) = G (k,iwn) + > GY (K, iwn) Sae(k, itwn) Gaa(k, iw,)
cd
. . -1
- (G<0> (k,iw,) " — (K, iwn)) . (2.86)

Performing the block-inversion in the Nambu-Gor’kov space yields expressions for
the normal and anomalous propagators

Gap(k,iwn) =Y O(K, iwn) ;' G (K, itwy,) (2.87)

Fap(k,iwn) = — Y Ok, iwy) 3 G4 (k. iwn ) dealk, iwn)GL) (—k, —iw,), (2.88)

cde
where the denominator is given by

Oup(k, itn) = 0ap + Y G5 (, iwn ) Gac(k, iwn )Gy (—k, —iwn) dly (. iwn). (2.89)

cde

We defined G(®)(k, iw,) as the dressed normal-state electronic Green’s function
. . . —1
G5 (i) = (Ll + 1) = hOK) = (ki) (2.90)

ab

In the one-loop approximation we write the Nambu-Gor’kov self-energy in a GW-like
form [26,27,33,112,124-126]

1
o (k, iwy,) = -3 S mGea(Kiwn ) s Wacan(k — K iwp — iw,),  (2.91)
k/,n’ cd

where 73 is the third Pauli matrix. In the community of electron-phonon interactions,

this approximation of the self-energy is also known as the Fan-Migdal self-energy.

[126] In the case of neglected Coulomb interactions, it is justified by Migdal’s
theorem, which states that vertex corrections are of the order (m./M)'/? x w./Er
[26], where m./M is the ratio of the electron and ionic masses and w./EF is
the ratio of the characteristic phonon energy and the Fermi energy. Therefore,
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in systems where w, > Er the one-loop self-energy approximation breaks down.
When including Coulomb contributions, the one-loop self-energy has a less well-
defined limit of applicability. Therefore, in chapter 7, we will introduce a formalism
for quantifying the importance of corrections beyond the one-loop approximation
in the presence of Coulomb interactions. For now, we assume that the one-loop
self-energy holds as long as r; > 1, similar to the GWA discussed in section 2.3.
Performing the matrix products yields the usual GW self-energy (Eq. 2.23) for the
diagonal components of X and

Gy (K, icon) = % SO S Woean(k — K i, — i) Foa(K o) (292)
k’,n’ cd

for the off-diagonal anomalous components. Substituting Eq. 2.88 finally gives the
gap-equation for the one-loop superconductivity theory. Similar to the BCS theory,
we only find non-trivial solutions of the gap-equation when 1" < T, such that ¢ can
be understood as the order parameter of the superconducting phase. Notably, when
the interaction W has no frequency dependence, the BCS gap-equation (Eq. 2.77)
with Vefi(k, k') = W(k — k') is recovered.

LINEARIZATION Solving the one-loop gap-equation is a rather involving calcu-
lation, since one needs to self-consistently solve a non-linear equation. Linearizing
in the anomalous self-energy leads to a significant reduction of the computational
cost, since it recasts the gap-equation into a leading eigenvalue problem. To this
end, we assume that calculations are performed close to the superconducting phase
transition. In this case, the anomalous self-energy (i.e., the order parameter) is
small, such that we can neglect terms of O(¢?) in the Dyson equation, yielding
Oup(k,iw,) = dap, such that

Gap(K, iw,) ~ G (K, itw,) (2.93)
Fap(k,iwn) = — Y GO (K, iwn)dac(k, iwa) Gy (—k, —iw,).  (2.94)
cd

Substituting the linearized F' into Eq. 2.92 finally gives the linearized gap-equation
for the one-loop superconductivity theory

1
MNT) bap (K, i) = -3 D> Wacan(k — K, iwy, — i)
k’,n’ cdef
G (K iwn )b e (K icon )Y (— K, —itwn).
(2.95)

Here we introduced the factor A(T") on the left-hand side. In this way, we have
cast the linearized gap-equation into the form an an eigenvalue problem, with ¢
being the eigenvector and A(T") the leading eigenvalue. The temperature at which
MT) = 1 is the superconducting critical temperature 7.
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2.5.3 Eliashberg Theory

The one-loop theory described above is closely related to the well known Eliashberg
theory for phonon-mediated superconductivity. [27,28,33,125] Here, we will discuss
the theory in the context of the one-loop theory discussed above, deriving only the
relevant elements and highlighting the difference between the two theories. For a
more complete discussion of Eliashberg theory we refer the reader to the Jilich
lecture notes by Heid [33], the review article by Marsiglio [127] or the master thesis
by Berges [128].

Eliashberg theory was developed for phonon-mediated superconductors and there-
fore heavily simplifies the Coulomb interaction. First of all, it neglects dynamic
screening to the Coulomb interaction, as well as the mutual screening between
the electron-phonon and electron-electron interactions. Second of all, the (bare)
Coulomb potential is approximated by a local parameter u, which is usually
defined by a projection of V(q) onto the Fermi surface. [109,111,129] Using these
simplifications, the electron-electron interaction can be written as

NOW(qail/m) ~ *Aph(q, il/m,) + MC, (296)

with —APP(q, iv,,) the attractive phonon-induced electron-electron interaction. The
DOS at the Fermi energy Ny was added to make the interaction dimensionless and
we omitted the orbital indices for simplicity. In Eliashberg theory we furthermore
assume that the bare electron dispersion ey effectively includes the Coulomb induced
normal-state renormalization, such that we can neglect the Coulomb contributions
to the normal-state self-energy. Using those simplifications we can express Eliashberg
theory as a set of three coupled equations known as the Eliashberg equations
[112,124,128]

_ 1 APP (K — K, iy, — dwons) — p©
Ok, iwn) = > ( 50 ) ) DK, iwy) (2.97)
K .n’ ’ n
, 1 1 = W NP (k — K, i, — iwn) ,
Aeen) = 14 BN O i) ) B
n k’,n’ ’ n
_ 1 AR (K — K, iy — iwn) _
x(k den) = =z > 50 ) (e — o+ (K iwn)),  (2.99)

’ ’
k/\n

where O (k, iw,) = (wn Z (K, iwn))” + (e — 1+ x(k, iwn))? + | (K, iw,)|2. The new
quantities Z and x can be interpreted as the mass-renormalization factor and the
chemical potential shift, respectively. Together they capture the phonon-induced
normal-state renormalization coming from the one-loop self-energy, which can be
expressed as (K, iw,) = iw, (1 — Z(k,iw,)) + x(k, iw,).
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While the Eliashberg equations are nowadays routinely solved numerically [130], this
was not always doable in the past. Therefore, considerable work has been put into
finding exact solutions to the Eliashberg equations under certain approximations.
[108,131-133] Now, we will use a few of those approximations and use them to
derive an analytic BCS-like expression for T.. The first approximation is to again
linearize the gap-equation by neglecting terms of O(¢?). The second is to assume a
constant DOS (i.e., N(g) = Ny) in order to simplify the momentum sums. Lastly,
we assume similarly to the BCS theory that the phonon-mediated electron-electron
interaction is local and can be written as a step-function

APR (i, — iwns) = ABesO(|wn| < wp)O(lwnr| < wp). (2.100)

With these approximations we find that the normal state renormalization simplifies
heavily to Z =~ 1 + Agcs and x ~ 0. The gap-equation becomes

1 PP (G, — dwps) — €
BNo f (wn Z)2 + (1 — 1)?

Pliwn) = P(iwn ). (2.101)

From this expression it is clear that the superconducting state depends on two
distinct energy scales. The low-energy physics |w,| < wp is dominated by the
electron-phonon interaction Apcs, whereas the high energy physics |w,| > wp is
dominated by Coulomb repulsion ;©. As a consequence, one needs a large amount
of Matsubara frequencies to converge both regimes of the gap-equation. One can
improve the convergence by introducing the Tolmachev-Morel-Anderson (TMA)
pseudo-potential [109, 134]
c

7 e — (2.102)

1+ uClog (%)

with Ep the bandwidth. It is derived by integrating out the high-energy physics,
such that we are left with an effective gap-equation ¢ for the low-energy physics

6= ABcs —p° T Z

7 (2.103)

\w /|[<wp |wn |
Analytically solving this gap-equation gives an expression for the critical tempera-
ture [108]
Z
kgT. = 1.13wpexp | ——— ] . (2.104)
ABcs — p*

This expression is reminiscent of the BCS result in Eq. 2.79, but includes additional
effects. The critical temperature is still exponentially dependent on the coupling
ABcs, but the coupling is effectively reduced by a constant p*. Intuitively, this
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reflects the competition between the phonon-mediated attraction and the Coulomb
induced repulsion between electrons in a Cooper pair. Furthermore, the exponent
is multiplied by a factor Z ~ 1 4+ Agcs > 1, which reduces the T, due to the
renormalization of the normal state.
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2.6 DISCRETE LEHMAN REPRESENTATION

Phase transitions to correlated phases often occur at temperatures as low as a few
Kelvin. Superconductivity, as discussed in the previous section, is one example
of such a phase and of particular interest in this thesis. However, performing
calculations at such low temperatures is challenging, due to the increasingly large
Matsubara frequency point density as the temperature is reduced. To illustrate
this, let us introduce a high-frequency cutoff energy w. to the frequency axis,
which is the most straightforward way to represent the Matsubara axis numerically.
Since the Matsubara frequencies are given by odd or even multiples of 27/3 for
fermionic or bosonic quantities, respectively, we can determine the number of
required Matsubara points for a given bosonic Matsubara mesh as

N,, = round (Bw./7) x O(Sw.), (2.105)

and similarly for a fermionic mesh. We find that the amount of Matsubara points
scales linearly with 8. As a consequence, performing numerical Matsubara sum-
mations at lower temperatures quickly becomes prohibitively computationally
expensive and/or numerical representations of Green’s functions quickly become
too memory intensive.

To circumvent this problem, significant effort has been put into finding more
efficient ways to represent quantities on the Matsubara axis. Some examples include
representing the Green’s function by an orthogonal polynomial expansion, such as
Chebyshev [135] or Legendre [136,137] polynomials. These methods can improve
the scaling to N, = O(+/f3). Other examples include power grid methods [138,139],
in which the imaginary time axis is discretized non-uniformly, with a higher point
density around 7 = 0 and (. Such methods can already improve the scaling
to N, = O(log(5)). Recently, a variety of methods have been proposed which
exploit the physical structure of the Green’s function to find even more compact
representations. In this thesis the discrete Lehman representation (DLR) [140,141]
has been used such that we will focus on that, but related methods such as the
intermediate representation (IR) [142-145] and the minimax isometry method [146]
exist and have been used effectively. [147-151]

Any fermionic single-particle Green’s function G can be expressed by a spectral
representation Eq. 2.7, here Fourier transformed to the imaginary time axis

Glr) = / dwK (7,0) A(w), (2.106)
with A(w) the spectral function and K (7,w) = —e~*7 /(1 4+ ¢~ %) the fermionic
kernel. This expression yields a well-defined way to obtain the imaginary-time
Green’s function G(7) from the retarded real-time Green’s function G(t). However,
the opposite procedure of obtaining G(¢) from G(7), known as analytic continuation,
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is an infamously ill-defined problem. This is a consequence of the low rank of the
fermionic kernel K. It is however exactly this property which can be exploited to
find a compact representation of G. Numerically, we discretize the 7 and w axes
and introduce a real-frequency cutoff energy w,, such that we can write the spectral
representation as a matrix-vector product

Gr, =Y K Ay, (2.107)
j

with the fermionic kernel K, ,,, = —e~%i7i /(1 4 e~ /i),

Shinaoka et al. [142] realized that, due to the low rank of K, it is possible to
construct an efficient orthogonal basis (the IR basis) for the Green’s function by
performing a singular value decomposition (SVD) of K. While this procedure
gives the mathematically optimal compression of the kernel K, the resulting basis
functions are complicated and known only numerically. The DLR, on the other
hand, uses the interpolative decomposition (ID) instead of a SVD. The resulting
basis is slightly less compact than the IR, but has the advantage that its basis
functions are given by analytical exponentials

" e~ WkTi

G, ~ —_— O 2.108
l ; T+ e P 9% (2.108)

Here wy, is a subset of r optimal real-frequencies which has to be determined
numerically, and g is the compressed representation of the Green’s function G-,.
The real-frequencies wy have been chosen in such a way that we only need to know
G, on a subset of r imaginary time points in order to obtain g;. These points,
denoted by 7, are called the interpolation nodes. Equivalently, one can obtain g
by evaluating the Matsubara Green’s function G(iw,) on a subset of Matsubara
frequency interpolation nodes iw,, . Therefore, a common procedure when using the
DLR is the following: first evaluate the Green’s function only on the interpolation
nodes Ty, or iwy,, , then invert Eq. 2.108 (or a similar expression for the Matsubara
axis) to obtain gy, and finally interpolate the Green’s function for any imaginary
time point or Matsubara frequency by evaluating

T
—WET
e k

G~ Y T O (2.109)
k=1

. . 1
k=1 "

The problem, then, is to determine the optimal subset of real-frequencies wy and
interpolation nodes 75 and iw,,. The procedure is rather mathematical such that
we will not discuss it here, but it can be found in the original work. [140] It turns
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Figure 2.8: Comparison of the full Matsubara frequency point density and the point
density in the DLR, for a fermionic Green’s function G'(iw,) = (iw, —4 ¢V) ™. The black
dots denote the full Matsubara axis, whereas the red dots denote the DLR interpolation
nodes iwn, . This data has been obtained for g = 86\/"1, we = 1006V and € = 1071°.

out that the optimal sets do not depend on the Green’s function itself, only on the
properties of the mesh. As a consequence, the algorithm for finding the optimal
subsets has to be done only once and may be pre-computed. Furthermore, the size
of the optimal subsets scale as r o« O(log(Bw.)log(1/€)), where € is the accuracy
with which the DLR reproduces the original Green’s function. In other words, for
a given accuracy € and high-energy cutoff w., the DLR allows to represent the
full imaginary time axis using O(log(3)) elements. This is possible because the
interpolation nodes are logarithmically distributed around the iw,—o point (7 =0
and 7 = ( points) of the Matsubara (imaginary time) axis, as shown in Fig. 2.8.

DLR implementations are publicly available for Fortran (libdlr) [152], Julia (Nu-
mericalEFT) [153] and c++ (cppdlr) [154], with most of them also having Python
interfaces. In this thesis we will be using the cppdlr library, since it is integrated in
the TRIQS framework. [155]



BRIEF OVERVIEW OF RELEVANT MATERTALS

In this chapter we will highlight two specific 2D material classes which are of
particular interest for this thesis: graphene and transition metal dichalcogenides
(TMDCs). These materials are often combined together, forming van-der-Waals
heterostructures. [10-12] As we will explore in chapter 4, such layered systems can
give rise to exciting new physics.

3.1 GRAPHENE

Graphene is famously the first 2D material ever fabricated. It is a zero-overlap
semimetal, where the low-energy electron dispersion is given by two linearly dis-
persing bands that cross at the Fermi energy. This unusual band structure makes
graphene stand out among the class of 2D materials, leading to various intriguing
phenomena including Klein tunneling [5,156,157] or the half-integer quantum Hall
effect [3,5,158,159]. The atomic lattice of graphene consists of carbon atoms bound
in a hexagonal pattern, shown in Fig. 3.1. This strong carbon-carbon bond makes
graphene one of the strongest materials, while at the same time being flexible
and having exceptionally high electrical and thermal conductivities. [1,3] Due to
these particular properties graphene is still extensively studied today, especially in
combination with other materials, for example in 2D heterostructures.

The unit cell vectors of graphene are

a = % <\3§> and a, = g (_%) : (3.1)

where a &~ 1.42 A is the distance between two carbon atoms. [5] The corresponding
reciprocal lattice vectors are

2 (1) w21, 5

The electron configuration of carbon is 1522s%2p?. In graphene, the 2s orbitals
hybridize with the 2p, and 2p, orbitals, forming in-plane o-bonds between the
carbon atoms in the hexagon. The remaining 2p, orbitals form out-of-plane m-
states, which are strongly delocalized across the system. These m-states dictate
the low-energy physics of graphene and are captured well in a tight-binding model
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Figure 3.1: (Left) Schematic image of the graphene real-space lattice. The black spheres
denote carbon atoms and the red arrows indicate the unit cell vectors a; and as. (Right)
The first Brillouin zone of graphene. The blue arrows indicate the reciprocal lattice vectors
b:1 and bz. The various symbols indicate the high-symmetry points.

with only nearest-neighbour hopping t = —2.97eV. [5,160] Diagonalizing it and
expanding around the high-symmetry points (indicated also in Fig. 3.1)

K= (Lomiose) 0 K = (ol vin) 33

yields the well-known linear Dirac dispersion
ex = Foplg| + O (7)), (3.4)

with q = k— K) the momentum relative to the K (K’) point and v = 3alt|/2 the
graphene Fermi velocity. To compare, we show in Fig. 3.2 a full DFT band structure
of graphene. One can recognize in red the linear dispersion around the Fermi energy
at the K point. The K’ point is equivalent to the K point by symmetry of the
lattice, such that there are two Dirac cones at the Fermi surface. This gives graphene
an additional degeneracy on top of the spin degeneracy, often called the valley
degeneracy. The DFT band-structure also includes the higher-energy bands from
the o-states in yellow. These bands will not directly affect the low-energy physics,
but they will screen the Coulomb interaction. For doped graphene systems, we
furthermore introduce a chemical potential shift . This shift changes the electron
density by n = k% /7, with kp = pu/vp the Fermi wave vector.

Equipped with the low-energy Dirac model, we can now evaluate the polarization
in the RPA using Eq. 2.25. The expression is rather lengthy, but can be found,
for example, in Refs. [5,162-164]. In the small q and static screening limit, the
polarization is given by

IsGuh 4 _

2

(g = 0,0 =0)~ - 2mv
F

_gsngoa (35)
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T M K T

Figure 3.2: The DFT band structure of graphene, reproduced from the Ph.D. thesis of M.

Rosner with permission. [161] The yellow lines are bands from the o-states and the red
lines are bands from the 7w-states.

where g, = 2 and g, = 2 are the spin and valley degeneracy factors, respectively.

We find that the static polarization in the long-wavelength limit reproduces the
Thomas-Fermi limit, i.e., it does not depend on q and is proportional to the DOS
at the Fermi energy Nj. If we consider dynamical screening at small q and for
w > vpq we find that

2
1O (q — 0,w) ~ 7919“53 A (3.6)
T

Substituting this expression into Eq. 2.27 and using Eq. 2.68 for the bare Coulomb
interaction we can evaluate screened Coulomb interaction W. From its poles we
then evaluate the graphene plasmon dispersion, which yields

gsgve2,u gsgve2UF\/ ™
Wq A \/ q= \/ q. (3.7

25back(q) 25back(q)

As expected for two-dimensional systems, we find a plasmon mode with a /g
dispersion for small . Similar to the 2D electron gas discussed in Sect. 2.3.1, the

graphene plasmon is extremely sensitive to doping and environmental screening.

However, unlike the electron gas, the graphene plasmon is proportional to n'/4

instead of v/n.
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Figure 3.3: (Left) Schematic image of the real-space lattice of a TMDC monolayer in the
2H phase. The larger blue spheres denote transition metal atoms and the smaller yellow
spheres denote chalcogen atoms above and below the plane. The red arrows indicate the
unit cell vectors a; and as. (Right) The corresponding first Brillouin zone. The blue
arrows indicate the reciprocal lattice vectors by and bs. The various symbols indicate the
high-symmetry points, as well as the @) point.

3.2 TRANSITION METAL DICHALCOGENIDES

Following graphene, the TMDCs were among the second set of materials to have
been exfoliated to atomically thin layers. [3] While the class of TMDCs also
includes metals, we will focus here on the semi-conducting TMDCs, which includes
materials such as MoSy, WSy and more. [165] Interestingly, the band-gap of
these materials changes from indirect in the bulk to direct in the monolayer
limit. This property makes them very promising for the design of atomically thin
transistors [12,13,165-168] or optical devices [169-172]. TMDCs furthermore have
a rich phase diagram, with a variety of correlated phases. Of particular interest in
this thesis is superconductivity, which has been observed in doped monolayers of
MoSs [173] and WS, [174], as well as in multilayered structures. [15-17]

Here we will focus on direct band-gap semi-conducting monolayer TMDCs in the
2H phase, with a particular focus on MoSs and WSs. Similar to graphene, these
TMDCs have a hexagonal lattice. Unlike graphene however, the three corners of
the hexagon are occupied by a transition metal atom and the other three corners
by two chalcogen atoms above and below the 2D plane, as shown in the left panel
of Fig. 3.3. The lattice vectors are

a = o <\/§> and as = - <\/§> , (3.8)

-1
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Figure 3.4: The DFT band structure of the 2H phase of two-dimensional MoS>. In the
left and right panels the linewidths represent the contributions from the Mo d-orbitals
and from the S p-orbitals, respectively. This figure has been reproduced from the Ph.D.
thesis of M. Résner with permission. [161]

where now « is the distance between two neighbouring transition metal atoms.
Both MoS; and WS, have a ~ 3.16 A . [175] The corresponding first Brillouin zone
is shown in the right panel of Fig. 3.3, with reciprocal lattice vectors given by

by = :QJ,_Z (‘f) and by — ?TZ (*_@ . (3.9)

Most of the monolayer semi-conducting TMDCs have qualitatively similar band
structures around the Fermi energy, with quantitative differences in the size of the
band gap, the strength of the spin-orbit coupling and the location of the Fermi
energy. As a representative example, we show in Fig. 3.4 the DFT band structure of
monolayer MoSy. We see that the valence and conduction bands of monolayer MoSs
have mostly d-orbital character coming from the transition metal atoms. [176]
The respective maxima and minima both lie at the K and K’ points, such that
it is a direct band gap semi-conductor. The size of the band-gap is 1.58 ¢V, when
evaluated in DFT using the PBE exchange-correlation functional. [165,177-179]
GoW)j corrections enhance the gap to 2.53eV, which is significantly closer to
experimental observations. [180]

We furthermore note that for both MoS, and WSs, the bottom of the conduction
band has a relatively weak spin-orbit splitting of around 30 meV, such that it
can be approximated well using an effective free-electron model when including
spin and valley degeneracy factors g, = 2 and g, = 2, respectively. The corre-
sponding effective masses are m* x 0.43m. and m* ~ 0.37m,., for MoSs and WSs,
respectively. [177,178] As a consequence, the low-energy plasmon mode of weakly
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electron-doped MoS, or WSy can be approximated well by that of the 2D free
electron gas (discussed in Sect. 2.3.1). Here, we write it in terms of the chemical
potential p for consistency with chapter 4, such that in the long-wavelength limit

[ gsgue?p
Wq & | F———q. 3.10
4 5back(q) ( )

For cases where the effective-mass approximation breaks down, there are downfolded
three-band models which have been shown to accurately describe the low-energy
physics of MoSs and WS, (as well as other semi-conducting TMDCs). [101,181]
This is for example the case upon sufficiently strong electron doping, when the
band minimum between the K and I' points shifts below the Fermi energy. The
Brillouin zone point of this band minimum is often denoted by @ or X, as also
indicated in Fig. 3.3 (though it is not a high-symmetry point).



INTERLAYER PLASMON POLARONS IN
WS3;/GRAPHENE HETEROSTRUCTURES

This chapter is based on the following publication:

S. Ulstrup, Y. in 't Veld, J. A. Miwa, A. J. H. Jones, K. M. McCreary, J. T.
Robinson, B. T. Jonker, S. Singh, R. J. Koch, E. Rotenberg, A. Bostwick, C.
Jozwiak, M. Rosner and J. Katoch, Observation of Interlayer Plasmon Polaron in
Graphene/ WSy Heterostructures, Nature Comm. 15, 3845 (2024)

The GoWj + cumulant calculations and the corresponding analysis was done by
me. Fig. 4.3 has also been made by me. Sects. 4.4 and 4.B have been written by me,
with revisions from M. Rosner. All other text was initially written by S. Ulstrup
and J. Katoch, with revisions from me and M. Rosner and further input from all
other authors.

Other contributions are as follows. K. M. McCreary, B. T. Jonker, J. T. Robinson, S.
Singh and J. Katoch contributed to synthesizing or assembling the heterostructures.
The angle-resolved photoemission spectroscopy measurements were performed
and/or analyzed by S. Ulstrup, J. A. Miwa, R. J. Koch, E. Rotenberg, A. Bostwick,
C. Jozwiak, J. Katoch and A. J. H. Jones. M. Rosner performed the density
functional theory calculations and the corresponding analysis.

The text in this chapter is mostly equivalent to the original work, with minor edits
by me to improve cohesion with the rest of the thesis.

4.1 INTRODUCTION

Sophisticated heterostructure designs involving two-dimensional (2D) crystals with
pre-defined lattice mismatch and interlayer twist angle have emerged as promising
platforms for tailoring potential energy surfaces and excitations in solid state
quantum simulators [182,183]. While these systems leverage fine-control of complex
lattice structures and quantum states, the close proximity of materials may further
induce additional interlayer correlation effects [184]. For example, in heterostruc-
tures composed of graphene and semiconducting transition metal dichalcogenides
(TMDCs), superlattice bands are generated concomitant with screening-induced
band shifts that dictate quasiparticle band alignments and gaps [185-188]. Intrigu-
ingly, recent experiments on twisted bilayer graphene interfaced with single-layer
(SL) WSes point towards even richer interactions, as the presence of SL WSe,y
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stabilises superconductivity below the magic twist angle of bilayer graphene [189].
In S WS contacted with the topological insulator BisSes, interlayer exciton-
phonon bound states have been detected [190]. Such observations point to the
importance of interlayer collective excitations involving bosonic modes. These may
lead to the formation of polaronic quasiparticles that dramatically impact charge
transport, surface reactivity, thermoelectric and optical properties, as observed in a
variety of crystals and interfaces composed of polar materials [191-195]. Similarly,
when oscillations of the charge density couple to conduction electrons the more
elusive plasmon polaron emerges [85], which has been detected in electron-doped
semiconductors [59,61,196] and graphene [76].

We endeavour to determine how the electronic excitation spectrum of a representa-
tive semiconducting SL TMDC is affected by a doped graphene overlayer, as is
present in a variety of device architectures [197-202]. To this end, we focus on SL
WS, as this material exhibits a direct band gap at the K-point of the Brillouin zone
(BZ) and a large spin-orbit coupling (SOC) induced splitting of the valence bands,
allowing to simultaneously resolve energy- and momentum-dependent electronic
excitations around the valence and conduction band extrema using high-resolution
angle-resolved photoemission spectroscopy (ARPES) [203,204]. The heterostruc-
tures are supported on 10-30 nm thick hBN, which serves two purposes: (i) it
replicates the heterostructures that are typically used in transport and optical
measurements, and (ii) provides an atomically flat and inert interface that preserves
the salient dispersion of SL. WS,, since hybridization is strongly suppressed due to
the large band gap of hBN [203]. The entire stack is placed on degenerately-doped
TiOs in order to prevent charging during photoemission. The quasiparticle band
structure from the heterostructure is spatially-resolved using micro-focused angle-
resolved photoemission spectroscopy (microARPES) during in situ electron doping
by depositing potassium atoms on the surface. In order to determine the effect
of the graphene overlayer, we measure two types of heterostructures - one with
graphene and one without. A schematic of our doped heterostructures is presented
in Fig. 4.1(a). Spectra are collected along the -Q-K direction of the SL WSy BZ,
as sketched in Fig. 4.1(b).

4.2 ELECTRONIC STRUCTURE OF DOPED WSy AND GRAPHENE /WSy

Figure 4.1(c) presents ARPES spectra of the effect of strong electron-doping on
bare WS, with potassium atoms deposited directly on the surface. Before doping,
the expected band structure of S WSs is observed with a local valence band
maximum (VBM) at I and a global VBM at K, a total gap larger than 2 eV and
a SOC splitting of 430 meV in the VBM [205] (see left panel of Fig. 4.1(c)). At
an estimated highest electron density of (3.0 & 0.2) - 10'3 cm ™2, induced by the
adsorbed potassium atoms, the conduction band minimum (CBM) is populated and
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Figure 4.1: Quasiparticle bands of electron-doped WS» heterostructures. a, Layout of
systems with doping achieved by deposition of potassium atoms. b, Brillouin zone (BZ) of
SL WS, with ARPES measurement direction marked by a dashed line. ¢, ARPES spectra
of bare (left panel) and potassium dosed WS (right panel) supported on hBN. The
achieved electron density in the strongly doped case is estimated to be (3.0 +0.2) - 10
em™2. d, Close-up of the CBM region marked in (c). e-f, Corresponding ARPES spectra
for WSy with graphene on top. The achieved electron density in the potassium-dosed
graphene layer is (4.8 £0.1) - 10'* cm™2. The close-up of the CBM region of WS, in (f)
reveals the formation of a polaron via a sharp quasiparticle peak, which is demarcated by
a blue arrow, and several shake-off replicas marked by purple ticks.

the shape of the VBM is strongly renormalized, as observed in the right panel of
Fig. 4.1(c) and previously reported [203]. The direct band gap at K is furthermore
reduced to (1.64 + 0.02) eV (Supplementary Fig. 1 of the original work [60]),

indicating enhanced internal screening. A detailed view of the CBM region in Fig.

4.1(d), reveals the CBM to be relatively broad with an energy distribution curve
(EDC) linewidth of (0.17 +0.02) eV and a momentum distribution curve (MDC)
width of (0.29 4 0.02) A—' (Supplementary Fig. 2 of the original work [60]).

These spectra are contrasted with the situation where a graphene layer is placed

on top of WSy in Fig. 4.1(e). In the undoped case shown in the left panel of Fig.
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4.1(e), the bands exhibit the same general features as seen in the left panel of Fig.
4.1(c), although they are noticeably sharper and shifted towards the Fermi energy
due to the additional screening of the Coulomb interaction by the graphene [186].
Furthermore, a replica of the WS, local VBM around I is noticeable close to Q
due to the superlattice formed between graphene and WS, [187]. Upon doping
graphene to an electron density of about (4.8 £0.1) - 10'® cm™2, the SL WS,
valence band shifts down in energy and the shape of the VBM does not renormalize
as in the case of bare WS, (see right panel of Fig. 4.1(e) and Supplementary Fig.
1 of the original work [60]). The strongly doped graphene is accompanied by a
relatively small occupation in the WSy CBM (see ARPES spectra of doped WSs
and graphene in Supplementary Fig. 3 of the original work [60]). The total gap is
now (2.04 £0.02) eV (Supplementary Fig. 1 of the original work [60]), indicating
that the non-local Coulomb interaction in WS, is not fully suppressed. However,
the CBM region looks dramatically different, as seen by comparing Figs. 4.1(f)
and 4.1(d). In the situation with a doped graphene overlayer, a sharp quasiparticle
peak occurs. The peak is accompanied by a series of replica bands towards lower
kinetic energy, that are conventionally called shake-off bands. The EDC and MDC
linewidths of the main quasiparticle peak are reduced by a factor of 3-4, compared
to bare K/WS,y (Supplementary Fig. 2 of the original work [60]). The feature
bears resemblance to a Frohlich polaron that is observable in ARPES when the
conducting electrons couple strongly to phonons [191,192,195, 206].

Density functional theory (DFT) calculations for the K/graphene/WS, heterostruc-
ture (see Appendix 4.A) confirm the experimental results which show that the
graphene Dirac bands do not strongly hybridize with the WSy CBM at K, in
line with previous reports [207,208]. As a result, there is only a vanishingly small
charge transfer from the strongly K doped graphene layer to the WS, layer. This
explains the experimental observation of strongly doped graphene, accompanied
by the small K valley occupation in WS,. This also explains the absence of VBM
renormalization in WSs covered by graphene, as this only occurs at carrier concen-
trations larger than (2.0 +0.2) - 10" cm™2 in WSy [203]. These DFT calculations,
however, do not reproduce the still significant band gap or the shake-off bands,
pointing towards the important role played here by many-body interactions, that
are beyond the scope of DFT calculations.

4.3 DOPING-DEPENDENCE OF SHAKE-OFF BANDS

In order to understand the origin of the shake-off bands in the dispersion at K in the
graphene/ WS, heterostructure, we tune the charge carrier density by sequentially
increasing the amount of adsorbed potassium on graphene. After each dosing step
we measure both the WS, conduction band region and the graphene Dirac cone to
correlate the evolution of the shake-off bands spectral line shapes with the filling
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Figure 4.2: Doping-dependence of shake-off bands. a, Second-derivative ARPES intensity
in the CBM region of potassium dosed graphene/ WS, at the given electron density in
graphene (ng). The error bars on the ng values are £0.1 - 10'* ecm™2. Ticks demarcate
shake-off bands and the double-headed arrows indicate their energy separation (AE). b,
Energy distribution curves (EDCs) with fits (black curves) to Lorentzian components
on a linear background. Peak components are shown with fitted positions marked by
colored ticks. ¢, Sketch of graphene Dirac cone and Fermi surface (dashed circle) with
radius kr measured simultaneously by ARPES at each doping step. d, ARPES spectrum
of potassium dosed graphene on WSy with kr indicated by an arrow. The spectrum is
for the maximum achieved doping of graphene of (5.2 + 0.1) - 10"® cm ™2
of shake-off energy separation with graphene doping extracted from the analysis. The
dashed line is a fit to a function proportional to \/ng.

. e, Increase

of the Dirac cone. Second derivative plots of the ARPES intensity are shown in
Fig. 4.2(a) to highlight the relatively faint shake-off bands compared to the intense
quasiparticle peak for a range of doping where the graphene carrier concentration
is varied over a range of (1.0 4 0.1) -10*® cm~2. Corresponding EDCs with fits
to Lorentzian components are shown in Fig. 4.2(b). The graphene wave vector
kp, illustrated with the Dirac cone in Fig. 4.2(c), is extracted from ARPES cuts
through the center of the graphene Dirac cone at K¢, as shown for doped graphene
on WS; in Fig. 4.2(d). The Fermi momentum is then obtained from an MDC
fit at Er and given as the difference in k between the MDC peak position and
K¢. Note that K¢ is determined by mapping the (E,k;,k,)-dependent ARPES
intensity around the Dirac cone. One of the Dirac cone branches is suppressed
in Fig. 4.2(d) because of strong photoemission matrix element effects along this
particular cut, which is taken along the so-called dark corridor [209]. The EDC
analysis of the shake-off bands as a function of graphene doping reveals the energy
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separation between shake-off bands increases from (50 £ 8) meV to (141 & 18) meV
and that the increase is proportional to /n¢g, as shown in Fig. 4.2(e), while the
WSy CBM binding energy, and thus doping level, approximately stays constant.
Note that a minimum carrier density in graphene of ng = (4.1 £0.1) - 10!3 cm=?2
is required for the WSy CBM to become occupied and thereby make the shake-off
bands observable. The EDC fits in Fig. 4.2(b) demonstrate that the shake-off band
intensity relative to the main quasiparticle peak diminishes with doping in line
with our theoretical analysis below. Combined with the diminishing intensity of
shake-offs towards higher binding energies, this reduces the number of shake-off
bands we can observe with increasing doping.

These observations provide further clues on the origin of the shake-off bands. An
internal coupling between WSy conducting electrons and phonons can be ruled out,
because the energy separation of the shake-off bands at high doping exceeds the
WS, phonon bandwidth of 55 meV [210]. Given the significant doping of graphene,
there are, however, two other bosonic excitations that could be responsible for the
shake-off bands in WSs: phonons and plasmons in graphene. In doped graphene
there are indeed phonons with energies between 150 and 200 meV with significant
electron-phonon coupling. These phonon energies change, however, only by up
to 20 meV upon tuning the electron doping [211,212] and can thus be ruled
out as the origin for the observed shake-offs. In stark contrast, plasmons in 2D
materials are known to be significantly affected by the doping level of the system.
Indeed, significant plasmon excitations have been observed in graphene in the
regime of doping we are considering [76]. Taken together with the significant
doping dependence of the energy separation between shake-off bands, this suggests
that the observed feature is an interlayer plasmon polaron with unusually sharp
line shapes and well-defined shake-offs occurring at moderate low WSs doping
levels, unlike the previously observed plasmonic polarons in electron-doped bulk
materials [59,85,196] and in internally doped SL MoS. [61].

4.4 MANY-BODY ANALYSIS OF ELECTRON-PLASMON INTERACTIONS

To theoretically substantiate this interpretation, we use a generic model consisting
of a single layer with a parabolic electronic spectrum, mimicking the occupied WS,
K-valley by setting the effective mass to m* = 0.3m, and the chemical potential
to pws, = 0.02eV (nws, ~ 0.5 - 103 cm~2). As justified by our DFT calculations,
we assume that the WS, and graphene layers are electronically decoupled, such
that the only coupling between them is the long-range Coulomb interaction. Based
on this, we apply the plasmon-pole approximation (PPA) for the screened Coulomb
interaction W, (w), which we subsequently use within the GoW¢ and retarded GoW
+ cumulant (GoWq + C) [84] frameworks to calculate the interacting spectral
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Figure 4.3: Theoretical results. a-b, The plasmon dispersion w, and electron-plasmon
coupling ag, respectively, for various v. The vertical dotted line denotes ¢ = kr. c-e,
EDCs of the WS, normal state spectral function in GoWy theory (green dashed) and
GoWo + C theory (red solid) at K for a variety of v. The vertical dotted black lines
denote w = —pws, — n(wg=k, — Hws, ), for n =0 to 4. f, Energy splitting AF between
the WS, CBM and the first shakeoff band as a function of v, in GoWy theory (green
dashed) and GoWo + C theory (red solid). The black dotted line denotes wq=k, — ftws,,
and the gray horizontal lines denote the experimentally measured AFE.

function within the effective WS, K-valley. All theoretical methods are discussed
in detail in Sect. 2.3.

For the plasmon pole model, we assume a 2D plasmon dispersion of the form
wy = v/4e?vq/epback(q), as depicted in Fig. 4.3(a). Here the environmental screening
is taken into account using the long-wavelength limit of the non-local background di-
electric function epack(q) (Eq. 2.71), given by ephack(q) = €ext +qh (€2, —€2:1)/ (2€ext)
[99], where eoxt = 3.0 and e;,; = 8.57 are the dielectric constants of the substrate
and the WS, layer, respectively, and h ~ 3.0 A an effective dielectric thickness of
the WS, layer. In the plasmon dispersion, v is a tunable parameter which would
correspond to a chemical potential in an isolated two-dimensional free electron
gas, that here controls the energy scale of the plasmon. The electron-plasmon
coupling a? is given by the usual long-wavelength PPA expression a2 = w,U,/2,
with U, = 2me?/(Ae,q) the background screened Coulomb interaction in the WSs

layer and A = 8.79 A% the WS, unit-cell area. In Fig. 4.3(b) we show a2 for a
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variety of plasmon energy scales v. Note that the electron-plasmon coupling and
the plasmon dispersion are related, such that ag increases as v increases.

In Figs. 4.3(c-e) we show EDCs of the dressed spectral function Ay (w) within the
effective WS, K-valley, for various plasmon energy scales v. Within both GoW,
and GoWj + C theories, we identify the expected CBM quasiparticle peak at
w = —0.02eV and a plasmon polaron shakeoff peak with reduced intensity at
lower energies. Within GoW( + C this is extended to a whole series of partially
pronounced plasmon polaron shakeoff peaks, which reduce in intensity for peaks
further from the CBM. As v is enhanced, the separation between shakeoff bands AFE
increases and the shakeoff peak intensity decreases. These results are reminiscent
of polarons formed by dispersionless bosons, where the energy separation between
shakeoff bands is given by the boson frequency wy, [52]. This suggests that, even
though the 2D plasmon is a highly dispersive mode, there exists an effective plasmon
frequency which dictates the energy separation AFE. Since WSs is only weakly
doped we can evaluate the spectral function of the first shakeoff band in GoWq +
C theory analytically (see Appendix 4.B) and understand that the shakeoff bands
appear in multiples of wy—j, — pws, below the CBM (indicated by vertical black
lines in Figs. 4.3(c-e)), with kp ~ 0.04 A=! the WSy Fermi wavevector. To confirm
this prediction, we plot in Fig. 4.3(f) the energy splitting AE in GoWq + C theory
(red line) as a function of the plasmon energy scale v, which follows the analytically
predicted AE = wy—r, — pws, (dotted line). From the analytical derivations we
also understand that the intensity of the first shakeoff peak is proportional to

a . _
4=kr vr (4.1)

A:—w:—w:k X
k=i ( a=kr) (Wg=kp — HwWS,)? [vpr — VP |’

with vy = Owy/0¢q|q=k, the plasmon group velocity at ¢ = kp and vp the WSy
Fermi velocity. Due to the low WSs occupation, both pws, < wg=k, and vp < vy,
which explains the reduced intensity of the shakeoff peaks upon enhancing the
plasmon energy scale v. Finally, the analytic GyWy + C expressions explain that
the non-zero intensity between the shakeoff peaks and the CBM is a consequence
of the gapless dispersion of the 2D plasmon mode.

Comparing GoWy and GoWy + C theory, we show in Figs. 4.3(c-e) that the
EDCs predicted by GoW theory (green lines) capture only a single shakeoff band,
whereas GoW( + C theory (red lines) predicts an infinite series of shakeoff bands.
Furthermore, Fig. 4.3(f) shows that AFE predicted by GoWq theory overestimates
AFE from GoWj + C theory by more than 50 meV for all plasmon energy scales v
considered. These discrepancies are consistent with earlier works [52,61,84,85,213]
and are a clear sign that correlations beyond GoWj theory (i.e., vertex corrections)
are playing a significant role here.

From the analysis above, we understand that in order to observe an enhancement
of AE on the order of 100 meV upon K-adsorption, the plasmon energy at g = kg
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Figure 4.4: Illustrations of the Coulomb interaction in WS, and its screening channels
in graphene/ WS, heterostructures. Wavy lines and “bubbles" represent bare Coulomb
interactions and polarization processes, respectively. a, Coulomb interaction and screening
from WSs only. b, Coulomb interaction between electrons in WS, screened by graphene
polarization processes only, which couple graphene plasmons to the WSy Coulomb inter-
action. c, Illustration of mixed screening channels from WSy and graphene. Interlayer
polarization effects are suppressed due to the vanishingly small hybridization between the
WS, K valley and graphene’s Dirac cone.

should increase by the same amount. Additionally, the group velocity of the plasmon
should be of similar magnitude to the WS, Fermi velocity to increase the shakeoff
intensity. These restrictions allow us to investigate the origin of the relevant plasmon
mode. To this end, we depict in Fig. 4.4 the three possible screening channels to
the Coulomb interaction within the WSy layer, which could be responsible for the
relevant plasmonic mode. Fig. 4.4(a) describes screening processes from within the
WSs layer, which induces a plasmon mode that is spatially restricted to the WSy
layer. Due to the quadratic dispersion of the WS, CBM, this plasmon mode behaves
as wy'S? = \/4e2 ws, q/eq in the long wavelength limit [9]. There are therefore two
ways in which the energy of this mode can be tuned: doping of the WS35 layer and
external screening to it. As for doping, from the ARPES data we learn that the
WS, CBM does not exhibit an observable shift over the range of K-doping where
the polaron effect emerges. Additionally, no shifts in the valence bands are observed,
such that we can conclude that the WSs occupation is not significantly altered over
this doping range. We can therefore exclude that WSy doping significantly changes
the WS, plasmon energy. As for screening, static screening from the graphene layer
can change the energy scale of the WSs plasmon and is sensitive to the doping of
graphene. However, within a Thomas-Fermi screening model, we understand that
as the doping of graphene is increased, the screening increases, such that the WSy
plasmon energy decreases with enhanced K-doping. This is opposite to the trend
which is observed experimentally, thereby excluding this mechanism. We conclude
that the WS, plasmon energy is not significantly enhanced upon K-doping, which
means it cannot cause changes of the shakeoff energy splitting on the order of 100
meV.

Fig. 4.4(b) describes a dynamical screening process from the graphene layer, which
induces a graphene-like plasmon mode which is coupled into the WSs layer via
long-range Coulomb interaction. The experimental data as well as the DFT results
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show that the graphene layer is readily doped by K-adsorption, such that this
plasmon mode, which behaves as w? = \/2€?pcq/eq in the long wavelength limit [5],
significantly increases in energy. While the trends in this scenario are correct, the
graphene plasmon energy scale of w?:kF ~ 460 meV at the measured graphene
occupation of ng = 4.8 - 10'® ecm™? yields an energy separation AE which is too
large compared to the measured values. In addition, the group velocity of the
graphene plasmon vql:’fF is approximately 4 times larger than the WSy vp, such
that the intensity of the resulting shakeoff peak is reduced. However, hybridization
with another boson mode, such as a phonon mode in graphene, could flatten the
plasmon dispersion and lower its energy at ¢ = kg to a more suitable regime, such
that it could induce the observed plasmon polaron bands in the WS, layer.
Finally, Fig. 4.4(c) describes interlayer screening processes, which induces interlayer
plasmon modes. These can be interpreted as hybridized graphene and WSs plasmon
modes. Such modes live on energy scales in between those of decoupled intralayer
graphene and WS, modes, while at the same time being sensitive to the graphene
occupation. These hybridized interlayer plasmon modes can explain all relevant
experimental observations without the need of taking further bosonic excitations
into account.

Based on this, we conclude that the shakeoff bands observed in K-doped graphene/ WS,
heterostructures are signatures of interlayer plasmon polarons, which are formed
by WSs electrons coupling either to renormalized graphene plasmon modes, or
to interlayer hybridized plasmon modes as a result of the inter-layer Coulomb
interaction in the heterostructure.

4.5 DISCUSSION

Taking only the WSy layer in the passive screening and/or doping background
of K-doped graphene into account cannot explain the experimentally observed
K-tunable formation of a series of shakeoff bands within the WSy K valley. Our
results thus clearly underline the relevance of the full heterostructure, and especially
the interlayer Coulomb coupling, in facilitating the formation of plasmon polaron
bands in the WS, layer. The graphene layer acts as a buffer to weaken the doping
of the WS, layer, as well as providing an interlayer plasmon mode, which couples
strongly to the WSs electrons and leads to the formation of plasmon polarons. The
sensitivity of these interlayer plasmon modes to the graphene occupation leads to
a high degree of tunability in the positions of the plasmon polaron shakeoff bands.
The missing higher order shake-off bands in the GoW( approximation are further
evidence for the need of vertex corrections [52,61, 78], which we incorporated here
within the GoyWy + C approach.

The impact of these findings could be far-reaching, as interfaces between graphene
and TMDCs have been exploited in various ways: to induce large spin-orbital
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Figure 4.5: DFT heterostructure model. a-b, View from the (a) side and (b) top of the
utilized 4 x 4 WSy / 5 x 5 graphene supercell with K doping.

proximity effects [214], for the stabilization of superconductivity below magic angle
twists in bilayer graphene interfaced with WSe, [189], or for charge carrier control of
Wigner crystallization and realizations of discrete Mott states in dual-gated TMDC
heterobilayers contacted with graphite [182,183]. Our observation of interlayer
polaronic quasiparticles induced by interlayer Coulomb coupling and upon adding
charge to a contacting graphene layer will thus be important to consider in the
interpretation and modelling of device measurements. Further experiments will
be required to evaluate their impact on the optoelectronic properties and band
engineering of heterostructures as well as their utility for ultrathin photonics and
plasmonic devices.

METHODS

Detailed discussion on the fabrication of the heterostructures, as well as on the micro-
focused angle-resolved photoemission spectroscopy can be found in the original
work. [60] Here, we will only discuss the methods relevant for the theoretical
discussions.

4.A DENSITY FUNCTIONAL THEORY CALCULATIONS

To study the hybridization and the possible charge transfer between the graphene
and WS, layers, we performed density functional theory (DFT) calculations using
ad x4 WSy /5 x5 graphene supercell with K doping, as indicated in Fig. 4.5. The
supercell height has been fixed to about 26 A to suppress unwanted wavefunction
overlap between adjacent supercells. The WSs lattice constant has been fixed to its
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E-E_(eV)

r M K r

Figure 4.6: DFT electronic structure. a-b, Band structure of WS, with SOC (red line)
plotted together with the unfolded band structure without SOC (dots) in the (a) WS;
and (b) graphene primitive BZs. Blue and black dots represent W and C weights.

experimental value of 3.184 A while the graphene lattice constant has been strained
by about 3% to 2.547 A to obtain a commensurable heterostructure. The graphene-
WS, interlayer separation has been set to previously reported 3.44 A [215] and the
K-graphene distance has been optimized in DFT yielding 2.642 A in the out-of-plane
direction. All calculations were performed within the Vienna Ab initio Simulation
Package (VASP) [216,217] utilizing the projector-augmented wave (PAW) [218,219]
formalism within the PBE [220] generalized-gradient approximation (GGA) using
12 x 12 x 1 k point grids and an energy cut-off of 400¢eV.

In Fig. 4.6 we show the resulting unfolded band structure (without SOC effects)
together with the pristine WSy band structure (including SOC effects) following
the approach from Ref. [221] as implemented in [222]. From this we can clearly
see that in the heterostructure new states in the gap of WSy arise, which we
identify as graphene bands. Due to unfolding (matrix element) effects, the second
linear band forming graphene’s Dirac cone is not visible. Upon unfolding to the
primitive graphene structure, the Dirac point becomes visible (right panel) showing
a graphene Fermi energy of about 0.6 €V in good agreement with the experimentally
achieved range. In the upmost valence states around the K-point, we see that
the graphene and WS, bands hybridize similar to reported band structures on
undoped graphene/WSs [208,215]. In the conduction band region, we however see
that graphene states are far from the K-valley, such that hybridization between
graphene p, and W d» orbitals (which are dominating the K-valley) is almost
completely suppressed. As a result, there is negligible charge transfer from graphene
to WSs, so that primarily graphene is doped by potassium. This is fully in line
with our experimental results.



4.B ANALYTICAL GoWg + C EXPRESSIONS

4.B ANALYTICAL GoWy + C EXPRESSIONS

For the GoWy + C calculations we use the formalism proposed by Kas et al. [84],

discussed in detail in Sect. 2.3.3. Numerical calculations are performed using the
full GoWj self-energy in the PPA (defined by Eq. 2.38), but for the analytical
analysis we are mainly interested in the occupied states. Therefore, we will neglect
the last term of Eq. 2.38, such that the dynamic part of the GoW self-energy is
approximated by

- a2 ng(wWq) + nr(Ekrq — 1)

Zdyn( )N NE)
k zq: Tw — exqq + 1+ wq + 90

(4.2)

where e, = k?/(2m*) is the electron dispersion. We will furthermore focus on
the effective K-valley of the WS, layer by setting k = 0 and we will assume zero
temperature for simplicity. Taking the limit 6 — 0 we find for the spectral function
of the self-energy (defined by Eq. 2.44)

Pr=o(w Za@ = Eq)d (W —eq+wq), (4.3)

with ©(z) the Heaviside step function. Substituting Sx—o(w) into the three terms
of the cumulant function gives

z(aq wq)t

O=o( Za ool ) (44)
q
1
Ak=o = Za?lg — O —cq), (4.5)
a q qa
1
2
ax—o = Y ag————50(1 —eq). (4.6)
’ ; % (eq —wq)? 4

To obtain a Green’s function for each shakeoff band separately, we expand in Eq. 2.56
exp (Ox(t)) = >, Og(t)/n!, such that each term in the expansion corresponds
to the n-th shakeoff band. Fourier transforming and subsequently evaluating the
spectral function Ax—g(w) = lims_,o —Im (Gk=o(w)) /7 gives

Ag—o(w) = Zx=00 (w + Ecsm)
1
+ Zi—0 Y a2 ———— 01— £q)d (w + Ecpm — £q + wq)
(€q — wq)
+0(0?), (4.7)

where Ecpw is the energy of the CBM. For all parameter regimes considered, wq—egq

is a monotonically increasing function of the norm ¢ in the range 0 < ¢ < kp.
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As a consequence, the step-function restricts the shakeoff band induced by a
dispersive 2D plasmon mode to the energy range between w = —FEcpym and
w = —FEcBM + [t — Wg=k,, Where we used that w,—g = 0 for 2D plasmons, leading
to the maximal energy splitting AE = wy—, — p. In contrast, a dispersionless
boson mode with energy w; has a smaller allowed energy range —Ecpy —wp < w <
—FEcpmM + it — wp, which leads to a shakeoff feature which is completely detached
from the CBM.

At each w, the spectral intensity of the first occupied shakeoff band can be evaluated

by approximating Z f(q f qf(q)dg, with A the unit-cell area, and using
the property ¢ (g(x )) E 6( x;)/|g' (z;)] with z; the solutions of g(z;) = 0.
This finally yields
A ag q(w)
AL (W) = Zio o 2(w) 0(0 < q(w) < k). (4.8)
o 27 (fq() ~ o)) |52 — 52| g

with g(w) the solution of w4 Ecem = €4(w) — Wq(w)- Evaluating this function at
the lower edge of the allowed frequency range (i.e., at ¢(w) = kr) yields Eq. 4.1 of
the main text.



CROSSOVER BETWEEN PHONON- AND
PLASMON-MEDIATED SUPERCONDUCTIVITY

This chapter is based on the following publication:

Y. in 't Veld, M. I. Katsnelson, A. J. Millis and M. Résner, Screening Induced
Crossover between Phonon- and Plasmon-Mediated Pairing in Layered Supercon-
ductors, 2D Materials 10, 045031 (2023)

All calculations and derivations in this chapter have been done by me. The figures
have also been made by me. The text in the original work was written by all
collaborators equally. The text in this chapter is mostly equivalent to the original
work, with minor edits by me to improve cohesion with the rest of the thesis.

5.1 INTRODUCTION

Superconductivity in ultra-thin two-dimensional (2D) films is of long-standing
scientific importance and has undergone a recent revival of interest. Experimental
studies of atomically thin elemental superconductors [223-225], superconducting
2D electron gases formed in layered oxide heterostructures [226,227], as well as
2D van-der-Waals materials such as transition metal dichalcogenides [15,16,228—
232|, FeSe [18,19,67,119,233], and various forms of multilayer graphene [212,
234-236] have produced results that challenge the conventional understanding of
superconductivity. Most recently, the ability to tune properties by gate voltages and
novel heterostructuring including “moiré” systems [20,101,102,237-240] has further
increased the interest in 2D superconductivity and rendered layered superconductors
a promising platform for many-body material design.

The origin of superconductivity observed in atomically thin 2D materials remains
debated. In some materials unconventional coupling mechanisms from charge [63—
66, 68-72,106, 119-121, 228, 241] or spin [116-118] fluctuations as well as their
combined effect [242] have been proposed, while for other compounds conventional
electron-phonon coupling has been suggested as the origin of pairing [243-248|. Even
the conventional theory of 2D superconductivity is challenging since in ultra-thin
systems the reduced electronic screening yields gapless ,/g-like plasmon excitations
with diverging electron-plasmon coupling in the long-wavelength limit [61, 249,
250], implying Coulomb interactions with enhanced long-range character in space
and strong retardation in frequency [61, 249, 250]. These particular plasmonic
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properties have a non-trivial influence on superconductivity that is qualitatively
different from phonon mediated mechanisms. Additionally, the low-energetic gapless
plasmon allows for efficient hybridization between plasmons and longitudinal
optical phonons [251]. Thus, in contrast to conventional 3D superconductors, in
which plasmons have large gaps, a fully momentum-dependent and dynamical
theory is required to accurately describe 2D superconductors in the presence of
electron-phonon and electron-electron interactions. [27,28,65,66,70,121,129,241]
Furthermore, even for 3D materials the commonly used Tolmachev-Morel-Anderson
pseudopotential p* approximation for the Coulomb interaction [109,134] has been
called into question [252], further highlighting the need for a consistent treatment
of both interactions.

Here, we present a first step towards addressing these fundamental theoretical issues
at hand of a generic monolayer model. Focusing on s-wave superconductivity we
present a consistent theory including both electron-electron and electron-phonon
interactions on the same one-loop theoretical level. We study the interplay of
electron-phonon, electron-plasmon, and phonon-plasmon interactions effects on
normal-state as well as superconducting properties as a function of the external
screening and find that conventional electron-phonon mediated superconductors
can be driven to an unconventional plasmon-mediated regime when the overall
screening is small.

5.2 FORMALISM

We use a non-local 2D background-screened Coulomb interaction

2me?

U(q) - Agback(q)q7

(5.1)

with epack(q) being the background dielectric function of capping and substrate
layers set a distance h from the two dimensional electron gas (here taken to be
atomically thin), given by Eq. 2.71. epak(q) interpolates as a function of the
effective material thickness h between the external dielectric screening eeyt (from
the substrate and encapsulating materials) in the long-wavelength limit and the
internal interband screening &;,,+ in the short-wavelength limit with epack(q) — €ext
for h — 0, as shown in Sect. 2.4.2. This model has been shown to adequately describe
non-metallic screening channels in ab initio calculations for Coulomb [98,100-104]
and electron-phonon [253] interactions in various layered materials. With a small
extension, the model can also describe asymmetric dielectric environments, where
the dielectric environment above (efoP) and below (£P%) the 2D material differ.
However, as we have shown in Sect. 2.4.2, for the purposes of this paper we may to

. . . . . +
sufficient accuracy approximate such a situation by averaging eext ~ (€pos + 52‘;';) /2.



5.2 FORMALISM

The Coulomb interaction U(q) may thus be tuned in experiments by varying the
substrate on which the sample is mounted and the materials that encapsulate it.
For simplicity we consider dispersionless longitudinal (LO) and transverse (TO)
optical phonons with the same phonon frequency w, and momentum-independent
electron-phonon coupling g2 (for most of the calculation in this paper set to 0.3 eV
and 0.3 eV?2, respectively), such that the bare phonon-mediated electron-electron
O/To(u/m) = 922w, /[(ivm)? — w?] (see Appendix 5.A for non-
local electron- phonon coupling models). While this phonon frequency is set for
computational reasons to a value higher than physical phonon frequencies in most
materials, it is still much less than the Fermi energy or zone boundary plasmon
frequency. Thus, this value does not affect our qualitative conclusions. We use the
random phase approximation (RPA) to compute the mutual screening of electrons
and longitudinal phonon modes (the transverse mode is unaffected by the Coulomb
interaction) from the metallic states. The longitudinal interaction then reads

interactions read v

U(q) + vph O (ivym)
1— [U(q) + 052 (ivm)TO) (q, ivy,)’

Ir(q,ivm) = (5.2)

with I1(°)(q, iv,,,) the RPA polarization given by Eq. 2.25. The full interaction is
given by Io(q, ivym) = I(q, ivp) + v} (ivy,) and hosts frequency and momentum
dependent screened electron-phonon [254-256] and electron-electron interactions
including their hybridization. We evaluate the electron dispersion within a nearest-
neighbour square-lattice tight binding model with a hopping of t = 1.5eV (m* ~
0.1m.) and a chemical potential yielding approximately quarter filling. The electron
gas parameter 1y = m*e?/(cexir/mn) < 1 for all values of oy considered, justifying
the RPA [34,50]. To study the effects of plasmons we will compare to results
obtained with the statically screened

Ula) + vy (ivim)

I q, ivy,) = : : 5.3
(@) = ) B ) O (i —0) )
and the non-mutually screened
o0 (iv,,
19 (i) = D Lo () (54)

1= U(@UO(q,ivm) 1 — vl (v, TTO(q, ivy,)

longitudinal interactions.

The spectral functions of the longitudinal interaction A (q,w) = —Im (I (q,w)),
together with their local spectra Ap(w) = 35 AL(q,w), are shown in Fig. 5.1
for a variety of eex¢ (for h = 0). For clarity we present only the longitudinal part.
For gexy = 1 we find the /g-like 2D plasmon dispersion. In this regime the bare
Coulomb interaction strongly screens the electron-phonon interaction, causing the
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Figure 5.1: Momentum-integrated longitudinal interaction spectral function Ar(w) =
> az0 AL (q,w) (top panel) and momentum-resolved longitudinal spectral function
Ar(q,w) (bottom panels) of the mutually screened longitudinal interaction Ir(q,w),
calculated using Eq. 5.2 on the real frequency axis for various €ext in the h = 0 limit.
The dotted gray line in the bottom panels traces the upper frequency boundary of the
electron-hole continuum.

latter to be negligible. As a result, Ay (w) is governed by the plasmon spectrum. As
Eext 1S increased, the electron-phonon interaction is screened less, and the phonon
dispersion starts to appear at large g. The effective phonon frequency is reduced in
comparison to the bare w, as a result of screening. This is also visible in Ay (w),
showing phonon peaks always below w., which gain intensity as €.y, decreases. In
addition we find that as €.y is increased the resulting softening of the plasmon
allows for the phonons and plasmons to hybridize at a ¢ value which for the
parameters used here is around ¢ =~ 0.05kp, with kr the Fermi wave vector. This
non-trivial momentum and frequency structure of the interaction necessitates a
consistent theory that retains both the full frequency and momentum structure
of the normal and anomalous self-energies to describe superconductivity in 2D
materials.

We treat both the normal and anomalous self-energies in a one-loop approximation.
The linearized equation for the anomalous self-energy ¢(k,iw,,) is an eigenvalue
equation given by Eq. 2.95, where instead of W(q,iv,,) we use Iy(q,ivy,). The
leading eigenvalue \(T') is defined such that at the transition temperature T,
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A(T.) = 1. The dressed normal-state Green’s function G.(k,iw,) is obtained from
Eq. 2.14, with the normal-state self-energy given by Eq. 2.36. The k = k¥’ terms in
the momentum sums are excluded to account for the counteracting positive charge
background. The gap equation was solved using an iterative solver implemented in
the TRIQS [155] and TPRF [257] packages using 180 x 180 k& and ¢ grids and a
Matsubara cut-off of w. = 30€V.

5.3 TRANSITION TEMPERATURE

Resolving low T is challenging due to the number of required Matsubara frequencies.
Instead we analyze A\ at a fixed temperature 7' = 98K (the reference 7. for
Eext — 00) which serves as a proxy for the dependence of T, on parameters.

The solid-blue curve in Fig. 5.2(a) shows X of as a function of the strength of the
Coulomb interaction controlled by the background dielectric constant eyt in the
h = 0 limit. As gex¢ — 00 the Coulomb interaction is suppressed and the eigenvalue
tends to the value A =1 found for T"= 98 K in the phonon-only model. Decreasing
Eext from oo initially decreases A\ consistent with the conventional expectation
that the Coulomb repulsion formally counteracts the phonon-mediated attraction.
However, a minimum in A\ at eyt &~ 3 is evident, and for smaller o the leading
eigenvalue again increases, signalling a different behavior in the Coulomb-dominated
small eqy regime.

In Fig. 5.2(a) we compare the full A to that from the statically screened inter-
action I3'(q,iv,,) (orange-dotted line), and the dynamical interaction without
mutual screening between the electron-electron and electron-phonon interactions
IOC PM(q,ivy) (green-dashed line). In the weak Coulomb regime e > 7 we see
that dynamic screening has a negligible effect on superconductivity (orange and
blue lines coincide) but the static Coulomb interaction is important (difference
from black line). In this regime the plasmon is strongly Landau-damped over
most of the relevant momentum range, rendering the electron-phonon interac-
tion the dominant pairing interaction. The superconducting state can qualita-
tively be understood within the Tolmachev-Morel-Anderson pseudopotential p*
approximation [109,134], such T o< e~/*", with the effective pairing strength
L/A = (1 + Mpn)/(Apn — 1) [131-133]. As €y is decreased the Coulomb repul-
sion parameterized by p* increases in strength, leading to a lower T, and thus a
lower A. Furthermore, we find in this regime that A is overestimated when the
cross-coupling of the longitudinal phonon and the plasmon is neglected (difference
between green and orange/blue lines). This effect can be understood as an effective
decrease of Ay, due to the static Coulomb interaction screening the electron-phonon
interaction [129,241,258].

In the eyt < 3 regime we see that the static screening approximation (orange line)
predicts a strongly suppressed A compared to the full model (blue line). This is
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Figure 5.2: (a) Leading eigenvalue X of Eq. 2.95 at temperature T'=T; 7> = 98K as
a function of the external background screening parameter ext at h = 0 (lower axis)
and the inverse gas parameter 1/r; = (m*e®/(cext 7rn))71 (upper axis), for a variety
of different models for the total interaction. (Black-dashed) Neglecting the Coulomb
interaction, i.e., lo(q, ivm) where U(q) = 0. (Green-dashed) Neglecting mutual screening
ISP (q,ivp). (Yellow-dotted) Statically mutually screened I§*%!(q, ivm). (Blue-solid)
Fully dynamically and mutually screened Io(q,ivs,). (b) The critical temperatures for
the full dynamic and mutually screened model obtained by solving the linearized gap
equation including (blue) and excluding (red) normal-state renormalization. (c¢)-(e) The
leading eigenvalue A at 7' = 98 K as a function of external screening eex, for a variety of
effective material thicknesses h at €ine = 5.

due to the static Coulomb interaction which strongly screens the electron-phonon
interaction, rendering conventional phonon pairing negligible. From this we can
conclude that in this regime the dominant pairing channel is the electron-plasmon
interaction. This is in line with the spectral functions shown in Fig. 5.1, where
the phonon mode is negligible compared to the plasmon mode at gqt = 1. Mutual
screening between the different bosons again decreases A\ (difference between green
and blue curves), which we still understand as resulting from the strong screening
of the electron-phonon interactions in this limit.

The minimum around eyt ~ 3 arises from the crossover between the two different
pairing regimes, which vanish in opposite limits. Here, the electron-plasmon coupling
is too weak and the static Coulomb repulsion too strong to induce any strong
pairing.

In the inset of Fig. 5.2(a) we compare the actual T, of the full model to T,
calculated from Eq. 2.95 without the normal-state self energy. For the full model,
the computational complexities restrict us to 7. only over part of the .y range,
but in the model without normal-state self-energy the entire curve can be traced
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Figure 5.3: Spectral function of the dressed normal-state Green’s function

—Im (Ge(k,iwn)) calculated on the real frequency axis for various gext, at h = 0.

out. These curves confirm that the .y dependence of A is a good proxy for T,
such that T, as a function of €.y, will show the same trends as A\. We further see, in
agreement with results previously obtained in the 3D plasmon-only model [70,252],
that normal-state self-energy effects drastically reduce T, which is in 2D, however,
strongly tuned by the screening eext.

In Figs. 5.2(c)-(e) we further show A for various eeyt, at fixed internal screen-
ing €;,+ = 5 (graphene has &;,; ~ 2 and transition metal dichalcogenides have
gt =~ 10) [98,102] for various finite material thicknesses h. We again find the
same qualitative behaviour with distinct plasmon and phonon mediated regimes
at small and large 4y, respectively. As the material thickness / increases the
superconducting state becomes less susceptible to the external screening, while the
internal screening €;,¢+ becomes more and more dominant (see Appendix 5.B for
details).

5.4 NORMAL-STATE

In Fig. 5.3 we show the spectral function of G.(k,w) for h = 0. For ey = 30
and eqxt = 15 we find the conventional electron-phonon coupling induced mass
enhancement, accompanied by an increase of the spectral weight at the bottom
of the quasi-particle band. Both of these features are characteristic for phononic
normal-state renormalizations. [126] This is in line with the decrease of T, by
a factor of about 3 for ¢ > 7, as shown in the inset of Fig. 5.2, which is well

approximated by the ratio of T, with and without normal-state contributions
1+)‘ph

T.(S)/To(S = 0) m e wh = e !~ 1/2.72.

As eox¢ is decreased below 5, spectral weight of occupied states around k = 0 is
shifted away from the main quasi-particle band into a plasmonic side band at lower
energies. Eventually, at €.t = 1, due to the strong static Coulomb interaction,
most of the spectral weight has shifted into the shake-off band, rendering the latter
strongly coherent and the initial quasi-particle band incoherent. These results are
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Figure 5.4: Eigenvector ¢(k,iwy) corresponding to the leading eigenvalue of Eq. 2.95 at
temperature 7' = T 7> = 98K, as a function of k. (left panels) and as a function of
Matsubara frequency wy, (right panels), for cext in the plasmonic (blue solid), phononic
(red dashed) and intermediate (green dotted) regimes. In all cases ¢(k, iwy) is scaled such
that ¢(k = kp, iwn=0) = 1.

reminiscent of plasmonic polarons, which were observed in various 2D materials
using angle-resolved photoemission spectroscopy (ARPES) measurements. [61, 76|
At goxy = 1, T, is reduced by a factor of 18 by the normal-state self-energy,
as visible in the inset of Fig. 5.2. This significant 7, reduction is caused by
the strong spectral weight transfer described by G.(k,w) ~ Z,Go(k,w), where
Z' =1 - 0,%(k,w)|w=g, is a measure for the amount of spectral weight transfer.
This approximation is justified in the low eyt regime, as here the dynamic and
non-local Coulomb interactions do not significantly change the effective mass. [241]
Within this approximation it is clear that the anomalous self-energy of Eq. 2.36 is
scaled by a factor Z? < 1, yielding a strongly reduced 7. [70,252]

5.5 ANOMALOUS SELF-ENERGY

The distinct phonon and plasmon mediated regimes are also clearly visible in
the eigenvectors ¢(k,iw,), shown in Fig. 5.4. In the phonon-mediated regime
(Eext > 3), &(k,iw,) shows the conventional characteristics of electron-phonon
mediated superconductivity affected by static Coulomb repulsion; we find a strong
peak around iw,—¢ with a width on the order of the phonon frequency w. accom-
panied by a negative high-frequency tail. In momentum space ¢(k,iw,) is only
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weakly structured as a result of the momentum-independent bare electron-phonon
interaction vpp, (ivy,) in our model. Approximating the Coulomb interaction with a
constant Tolmachev-Morel-Anderson pseudopotential p* might thus be reasonable
for phonon mediated superconductivity in this regime.

In the plasmon-mediated regime (cext < 3), ¢(k,iw,) also shows a peak around
iWn—0, but with an enhanced width, which increases with decreasing eext. The
high-frequency negative tail is furthermore strongly enhanced. In momentum space,
¢(k,iw,) has a strong momentum dependence around kg, which is qualitatively
changing with Matsubara frequency. While ¢(k, iw,,) shows a maximum at iw,—o,
it turns into a minimum at large iw,, which we identify as a clear signature of
plasmonic superconductivity in 2D. In the plasmon-dominated limit at eqy = 1,
we interpret this behaviour as a result of the interplay between the static bare
and dynamic screened Coulomb interaction W(q,w) = U(q) + AW (q, w), which,
respectively, yield a repulsive static ¢c(q) and attractive dynamic ¢paw (q,w) in
analogy to the conventional electron-phonon paring mechanism under the influence
of static Coulomb repulsion. Here, however, the dynamic ¢aw (q, w) is controlled by
the rather large plasmon energies, which does not allow for a separation of energies
anymore. As a result there is no logarithmic renormalization of the repulsive term
from U(q). This explains the strong negative tail in frequency space. Since the
attractive paw (q,w) is driven by the plasmon frequencies the pairing frequency is
enhanced. Finally, as the attraction is induced by the electron-plasmon coupling,
which strongly favours pairing at small momentum transfer ¢, we find a pronounced
momentum structure. The plasmon-mediated regime is very sensitive to the precise
value of €eyt, which is in line with the Coulomb-based interpretation.

In the intermediate regime around ey ~ 3 we find a pronounced negative tail in the

frequency domain, which cannot be compensated by the weak momentum structure.

This again shows the interplay between the weak electron-plasmon coupling and
strong static Coulomb repulsion, which explains the suppressed superconducting
state here.

5.6 EXPERIMENTAL VERIFICATION

Our theory predicts plasmonic effects to superconductivity to be dominant at low
external screening eq.y < 3. Therefore, using substrates with dielectric constants
in this range, such as very thin hBN or SiO4 [259-261] and especially suspended
monolayers (i.e., €ext = 1), are promising options for finding plasmon mediated
superconductivity, while a substrate such as SrTiO3, with a large dielectric constant
of eext > 100 below room temperature [262], will most likely screen out any
plasmonic effects. In addition, we argue in Appendix 5.B that thin materials
(h < SA) with low internal screening, are likely especially good candidates to
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observe the distinct plasmon and phonon regimes, since these materials are most
sensitive to the external dielectric environment eqyg.

The most promising method would be measuring the critical temperature as a
function of external screening. Especially the observation of an enhanced 7T, upon
reduced external screening is a clear sign of plasmon mediated superconductivity, as
this is in direct contradiction to predictions from conventional electron-phonon me-
diated superconductivity. In the conventional Tolmachev-Morel-Anderson Coulomb
pseudopotential p* approximation, reduced external screening would reduce T,
due to enhanced static Coulomb repulsion. Therefore, if plasmonic effects play a
role, fitting the pu* parameter using the experimentally measured T, will result in
unexpected trends as a function of .y, even in the intermediate regime where
T, is not yet increasing with eqyt. This might be realized with spatially varying
the screening environment [263,264] of the layered superconductor by partially
covering it, such that the external dielectric environment changes between the
covered and non-covered parts of the superconductor.

A second hint towards plasmonic superconductivity is an unusual T, behavior
as a function of doping. In conventional superconductors one expects T, to scale
exponentially with the density of states at the Fermi level Ny, since A, o< No.
In the two dimensional case considered here the main density of states feature is
a van Hove singularity. Decreasing the density away from it would be expected
to lead to a dramatic decrease in T.. However, as we show in Appendix 5.C, in
the plasmon mediated regime T, is less affected by Ny and might even increase at
small doping because decreasing the density also increases the relative importance
of the electron-electron interaction.

Thirdly, the observation of plasmonic renormalization effects in the normal state
signifies a strong electron-plasmon coupling, and thus hints towards plasmonic
effects in the superconducting state as well. In our results, plasmon mediated
superconductivity is always accompanied by plasmonic shake-off bands and spectral
weight transfer away from the Fermi energy. These effects could be observed by,
for example, ARPES measurements.

Finally, the isotope effect may also be modified in the plasmonic regime, as it
involves both the ionic mass (phonon frequency) dependence of the electron-phonon
coupling via A\,, = g?/w. and the interplay of the phonon and plasmon frequency
scales. Note also that in realistic materials additional complications arise [265-268].
A full treatment is therefore beyond the scope of this paper. To nevertheless obtain
an estimate, we present in Fig. 5.5(a) the leading eigenvalue A as a function of
Eext for different phonon frequencies w, with A, o g?/w, held fixed, for the fully
dynamically (solid lines) and statically (dotted lines) screened interactions. We see
that at large eoxt = 7 (phonon regime) there is a substantial dependence of A on
the phonon frequency, while at smaller .y the leading eigenvalue becomes almost
independent of the phonon frequency.
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Figure 5.5: Isotope effect analysis of the leading eigenvalue A at ' = 98 K and h = 0.

(a) X\ as a function of eext, for various we. (b) A/A(we = 0.3e¢V) as a function of w., for

various €ext. In all plots, we kept A, constant by changing g2 accordingly for each we.

Solid (dotted) lines signify calculations using fully dynamically and mutually screened

Io(q,ivm) (statically mutually screened I5'“*(q, ivm)).

To understand the implications of this result, note that in the conventional theory
of electron-phonon-coupled superconductivity one may approximate the eigenvalue
Eq. 2.95 as

(T, we) = COpn — p*)In e, (5.5)
where the constant C' includes factors arising from the normal state self energy and
from angular and frequency integrations. At eqoy = 100, p* ~ 0 such that Eq. 5.5
may be recast as

/\(T7 we) -1+ ln().gﬁ
MT, we = 0.3eV) In %3V

(5.6)

Fig 5.5(b) plots this ratio against Inw,. For eqx = 100 the agreement between the
calculated data and the simple formula is excellent. As eqy is decreased, we find
in Fig 5.5(a) a decrease in the dependence of \ on we, which is reflected in panel
(b) as a decrease in the slope of the ratio. In the statically screened interaction
case (dotted lines) we may understand this decrease in slope as arising from the
dependence of p* on w, (in the strong coulomb limit, u* o« —1/Inw.). Thus in
the instantaneous interaction picture a weaker isotope effect is a signature of the
importance of p* and goes along with a low T.. A weak isotope effect accompanied
by a high T, therefore indicates plasmonic pairing. However this analysis requires
independent assessments of Ay, and p* in the conventional picture and may not
be definitive in any given experimental system.
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5.7 CONCLUSIONS

We have shown that superconductivity in layered materials, when consistently
influenced by electron-phonon, electron-plasmon, and phonon-plasmon interactions,
can develop three distinct regimes, which can be tuned by the overall strength of
Coulomb interactions. For strong Coulomb interactions (small screening) we find a
plasmon mediated regime, for (strongly) reduced Coulomb interactions we find that
phonon mediation becomes prominent, while for intermediate Coulomb interaction
the static repulsion is too strong and the plasmonic pairing too weak such that
superconductivity is suppressed. These regimes have clear individual footprints in
the gap functions and also show distinctively different impacts on the normal-state
self-energy renormalizations. We can expect to find these phases for materials with
a small internal background screening €;,,;. The external, e.g., substrate-screening,
tunability will be most prominent if the effective height h of the material is small.
Our results furthermore show that two-dimensional superconductivity mediated by
plasmons is possible within the RPA when the background screening is weak, such
that the plasmon dispersion is well separated from the electron-hole continuum.
Note that in all cases considered here rs < 1 holds (different to Takada’s [63,64]
seminal results). In this regime the electron-phonon pairing is mostly suppressed
due screening. While above we focused on the sensitive role of the screening ey,
we show in Appendix 5.C that the plasmonic regime also survives as a function
of doping, with distinctively different characteristics from the phonon-mediated
regime. Our results are qualitatively similar to the findings by Wang et al. in
3D [252]. However, here we consistently account for the mutual screening between
electrons and phonons, find a minimum in 7, around r = 0.25, and have an overall
more pronounced structure in T,(ry), which we find to be strongly influenced by
the environmental screening. We attribute these differences between 3D and 2D to
the qualitatively different characteristics of plasmonic excitations in 2D.

The pronounced sensitivity to the background screening which drives the crossover
between the plasmon- and phonon-mediated regimes is important for the de-
scriptions and measurements of layered superconducting heterostructures. Most
experimental data on layered superconductors are obtained from samples mounted
on some substrates or encapsulated by other layered materials, which creates a
non-local screening environment as described by our background-dielectric function.
Our results also show that this background screening channel can be utilized to
precisely tune the superconducting state via modifications of the environment. In
the limit of strong substrate screening phonons are responsible for Cooper pairing.
In this regime our results show that the Coulomb pseudo-potential ;* can be a valid
approximation. However, mutual screening should be taken into account and the
static but non-local Coulomb interaction must be handled carefully [129,241,258].
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Figure 5.6: Leading eigenvalue \ at temperature 7' = TS 7> = 58 K as a function of
the local background screening parameter €, using a non-local Frohlich electron-phonon
interaction g(q)2 with parameters h = QA, g% =0.7¢V? and w. = 0.3 €V, for a variety
of different models for the total interaction. (Black-dashed) Neglecting the Coulomb
interaction, i.e., In(q, ivm) where ve(q) = 0. (Yellow-dotted) Statically mutually screened
I§'**(q,ivm,). (Blue-solid) Fully dynamically and mutually screened Io(gq, ivm ).

The intermediate regime around ey = 3, in which both electron-plasmon and
electron-phonon interactions act simultaneously, is likely especially relevant, since
commonly used substrates for 2D materials, such as hBN or SiOs, have dielectric
constants in this range. [259-261] In this regime, the p* approximation can cause
an underestimation of the critical temperature and would hide plasmonic footprints
on the gap function. As discussed in the Appendix 5.C, a signature of this situation
could be that fits of ;* to experimental results yield unexpected trends as a function
of € or the doping of a system. An alternative potential signature of plasmonic
effects on the superconducting state is the observation of plasmonic shake-off bands
in the normal state, which our results show accompany the plasmon-mediated and
intermediate regimes. In future work it may also be interesting to fully analyze the
isotope effect in the plasmon mediated regime and to investigate the difference in
coherence length and penetration depth between the two regimes. All these effects
could have distinct footprints of plasmon mediated superconductivity, which might
help to identify this pairing experimentally.
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5.A NON-LOCAL ELECTRON-PHONON INTERACTION

In order to understand how non-locality in the bare electron-phonon coupling will
affect the results of the main text, we consider the following Frélich electron-phonon
coupling appropriate for 2D materials [269]

2
9(q)* = grerfc <;hq> : (5.7)

where erfc(x) is the complementary error function and h tunes the non-locality
induced by the effective thickness of the material. For h = 0 we recover the local
coupling g(q)? = g% model from the main text. The non-local bare electron-phonon
interactions are vthO/To(q, ivm) = 9(q)*2we /[(ivm)? — w?]. In Fig. 5.6 we show the
leading eigenvalue A of the superconducting gap equation at 7' = 58 K (which is the
critical temperature T}, if Coulomb contributions are neglected), where h = 2 A and
g% = 0.7eV2. The phonon energy was set to w, = 0.3€V, as in the main text. We
find that non-locality in the bare electron-phonon interaction does not qualitatively
change the results discussed in the main text. This can be understood from the
structure of the Frohlich interaction, which strongly suppresses the electron-phonon
interaction in the ¢ = 1/h &~ 1.3kp regime (and thus reduces T, by reducing the
effective App,), while the interplay between phonon and plasmon branches takes
place at much smaller momenta ¢ ~ 0.05kr (see the main text). The interplay is
thus only weakly affected by the non-locality of the electron-phonon interaction
and as a result the qualitative structure of the plasmon- and phonon-mediated
regimes is not changed.

5.B NON-LOCAL BACKGROUND SCREENING

In Fig. 5.7 we show the superconducting leading eigenvalue A at T' = 98K as
a function of external screening e.,;. We compare A including (blue-solid) and
excluding (yellow-dotted) plasmonic contributions to understand the behaviour
of the plasmon and phonon mediated regimes upon varying material properties
h and &;,;. Similar to the conclusions of the main text, we find that plasmonic
contributions to superconductivity are strong when the total screening is weak. The
effective height h tunes whether e.,; or £;,; contributes most to the total screening,
as discussed in chapter 2. For example, at o = 0 the background screening is
completely determined by the external screening at all momenta ¢, such that
plasmonic enhancement of A is found only when e.,+ < 10. On the other hand, for
h=5A the effect of .,y is rather weak, and we only find plasmonic enhancement
for weak internal screening e;,; < 10.

From this, we clearly understand that if the overall screening is weak plasmons
can enhance superconductivity (as compared to the situation with electron-phonon
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Figure 5.7: The leading eigenvalue A at 7' = 98 K including non-local background
screening as a function of external screening .., for a variety of effective material
thicknesses (or setback distance of screening layer from superconducting sheet) h and
internal screening &;,¢. (Yellow-dotted) Statically mutually screened I§***(q, ivy). (Blue-
solid) Fully dynamically and mutually screened Io(q, ivm ). The gray circles surround the
point where €cpt = Eint-

and statically screened Coulomb interaction only), the interplay between enhanced
electron-plasmon and electron-phonon interactions generically suppresses super-
conductivity as a result of the simultaneously present and equally strong static
Coulomb repulsion in this regime, and that for enhanced overall screening the
systems behaves as a conventional superconductor under the influence of static
Coulomb repulsion.
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Figure 5.8: (a) The leading eigenvalue A of Eq. 2.95 at temperature 7' = 98 K for the fully
mutual and dynamic model I(q,ivm ), as a function of € x rs, while varying the electron
occupation, for various € and at h — 0. The dotted gray line indicates the location of the
Van Hove singularity. The other panels show the corresponding eigenvectors ¢(k, iw,,) at
e=1(b) and £ = 15 (c) at temperature T' = 98 K, as a function of k, and as a function
of Matsubara frequency ws,, for various electron occupations. In all cases ¢(k,iw,) was
scaled such that ¢(k = kp,iwn=0) = 1.

5.C DOPING DEPENDENCE

To investigate the dependence of our results on the doping level, we performed
additional calculations varying the electron occupation n. Changing the carrier
concentration changes the effective electron-electron interaction strength, parame-
terized by the electron gas parameter r; = m*e?/(g/7n), and also may move the
Fermi level nearer or farther from the van Hove singularity. Fig. 5.8(a) shows the
leading eigenvalue A as a function of the electron occupation (here parameterized
by ers) for the full dynamically mutually screened model Iy(q, iv, ). The previously
noted non-monotonic variation of A with interaction strength is observed at all
densities. As the doping is increased towards the van Hove singularity (around
rs = 0.5/¢), the density of states at the Fermi level increases, and therefore T,
increases as well due to the enhanced A*. At larger r5 and € # 1 the systematic
decrease in A arises from the combination of decrease in density of states as the
Fermi level is moved away from the van Hove singularity and the increase in
effective electron-electron interaction. However for ¢ = 1 the theory is in the
plasmon mediated regime where the eigenvalue increases as the interaction strength
decreases; this competes with the density of states effect leading to the weakly
non-monotonic 75 dependence.



5.C DOPING DEPENDENCE

In Fig. 5.8 (b) and (c) we analyze the eigenvectors ¢(k, iw,,) for e = 1 (plasmon
regime) and € = 15 (phonon regime), respectively. The trends of the eigenvector
with occupation are rather different in the two regimes. At e = 15 the results
can be understood using the conventional electron-phonon and static Coulomb
interactions. As r, is increased away from the Van Hove singularity (doping is

reduced), the screening is reduced and thus the Coulomb interaction is enhanced.

This is reflected in ¢(k,iw,) by the enhanced high-frequency tail and by the more
pronounced momentum structure at large r5. At € = 1 we find that the negative
high-frequency tail at kr is reduced as r, increases, which is opposite to what
one would expect from the Tolmachev-Morel-Anderson Coulomb pseudopotential
approximation p* [109,134], showing again the breakdown of this approximation
in the weakly screened limit. We also find that, unlike at ¢ = 15, the strong

momentum peak of ¢(k,iw,) at e =1 and w,, = 10€V is reduced as ry increases.

Simultaneously the momentum structure at iw,—¢ is enhanced, such that we see
a shift of the momentum structure from iw, = 10eV to iw,—g as rs increases at
¢ = 1. A final feature that highlights the distinct phonon and plasmon regimes is
the width of the peak of ¢(k,iw,,) along w,. At e = 15 the width is close to the bare
phonon frequency w, for all ry, showing that the dominant pairing boson is the
phonon at all doping levels. On the other hand, at e = 1 the width of ¢(k,iw,) at
k =T decreases as r4 increases. This indicates that the energy of the pairing boson
decreases with decreased doping, as expected for the two-dimensional plasmon
dispersion.
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ENHANCED SUPERCONDUCTIVITY FROM
DYNAMICAL ENVIRONMENTAL SCREENING

This chapter is based on work that is currently in preparation for publication and
was done in collaboration with M.I. Katsnelson, A.J. Millis, and M. Rosner. All
calculations were performed by me, with frequent discussions on the interpretation
and further steps from all collaborators. The text in this chapter has been written
by me, with input from M. Rosner.

6.1 INTRODUCTION

In the previous chapter we have seen that the fundamental interactions that drive
correlated physics in layered materials can be tuned via static environmental
screening. Such static Coulomb engineering is in fact a very efficient tool for
the precise tailoring of many-body properties of 2D materials, including band-
gaps [98,102,186,270,271], exciton binding energies [186,264] and potentially even
Mott insulating phases [272]. In chapter 5 specifically, we have shown that the
properties of layered superconductors, such as superconducting gaps or critical
temperatures, can also be tuned in this way. [62,101, 129]

This concept is, however, not restricted to static environmental screening. In fact,
dynamical screening from the environment, which can be described by bosonic
excitations in surrounding materials, has also been shown to affect correlated
material properties. Via this mechanism, substrate bosons can for example change
exciton binding energies [273,274] or induce interlayer plasmon polaron excitations
[60], as discussed in detail in chapter 4. The drastic T, enhancement of monolayer
FeSe when grown on top of Sr'TiO3 has furthermore been hypothesized to originate
from SrTiO3 boson modes [19,275], such as phonons [67,233,276-279] or plasmons
[119], coupled into the FeSe layer. In layered bulk superconductors, the hybridization
of intralayer plasmon modes via dynamical interlayer screening was theoretically
predicted to enhance the critical temperature significantly [68,72] and has also been
suggested to be a relevant pairing channel in high-T,. superconductors. [69,280] Also
in twisted bilayer graphene and twisted bilayer WSes, coupled interlayer plasmon
modes have been argued to play a role in the superconducting state. [281-283]
They have furthermore been suggested to yield a relatively high plasmon-induced
critical temperature in a stack consisting of a Dirac semi-metal and a transition
metal dichalcogenide. [284]
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Layer 1: Phonons and Coulomb

Layer 2: Coulomb only

Figure 6.1: Schematic illustration of the heterostructure that we consider. The top layer
is the target layer, which hosts superconductivity. The bottom layer is a neighbouring
layer which (dynamically) screens the target layer via the long-range Coulomb interaction.
Hybridization between the layers is assumed to be negligible.

Taken together, these works show that dynamical environmental screening can
affect correlated ground states of 2D materials in non-trivial ways. It is therefore
intriguing to study to what extent this mechanism can be exploited to tailor
correlated phases in layered materials. More specifically, the tunability of plasmon-
induced phases in this way needs to be studied, since plasmonic properties, such as
dispersions or electron-plasmon couplings, are particularly sensitive to dynamical
environmental screening. [285-290]

To this end, we will show in the following that such ‘boson engineering’ is especially
promising for layered plasmon-mediated superconductors [62—-64, 71,284], because
it allows to tune the plasmon-induced superconducting pairing at low frequencies,
without affecting the high-frequency static Coulomb induced repulsion. In this way,
by engineering the 2D plasmon mode via dynamical environmental screening, we
are be able to find significantly enhanced plasmon-induced superconducting critical
temperatures.

As a proof of concept, we will consider the effect of interlayer dynamical screening
in a bilayer system, consisting of a superconducting and a metallic layer. We further
assume that the layers do not hybridize electronically, for example because they
are spatially separated by insulating hexagonal boron nitride (hBN) layers. In this
way, we aim to understand how the superconducting state can be tailored solely
by exploiting interlayer dynamical screening. Using the formalism of chapter 5,
we furthermore consistently take into account the mutual screening between all
relevant boson modes.
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6.2 MODEL

In Fig. 6.1 we show a schematic illustration of the heterostructure we are considering.

It consists of two metallic monolayers, which are separated by an interlayer distance
d. Electronic hybridization between the layers is assumed to be negligible and
thus neglected. We assume layer 1 hosts superconductivity that is mediated by
the combination of phonon and plasmon modes within that layer. Layer 2 acts
as a metallic environment which screens layer 1. For simplicity, we neglect the
electron-phonon coupling in layer 2, such that it is not superconducting at the
temperatures we are considering. Layer 2 does, however, host plasmon modes
which can be coupled into the superconducting layer via the interlayer Coulomb
interaction.

We define the non-interacting Hamiltonian using the effective-mass approximation,
such that it is given in the layer-basis as

- _ (K*/(2m}) — Ep 0
a0 = (/0 o)~ Er) (04

with m7 and mj the effective masses in layer 1 and 2, respectively, and Ery and Epo
the respective Fermi energies. In the layer basis, the diagonal components capture
the intralayer contributions, whereas the off-diagonal terms capture interlayer
electronic hybridization. Since we aim to study the impact of environmental
screening, we will fix the properties of the superconducting layer (layer 1) to
mj = 0.2m, and Er; = 1€V, while the properties of layer 2 will be varied.

For the interaction, we use the same model as in Chap. 5 and Ref. [62] extended
to a multilayer system. We will furthermore use the density-density approximation

for all interactions, such that they can be described by matrices in the layer basis.

Therefore, the total interaction matrix is given by

+ 1) 1o (ivm), (6.2)

with Z the identity matrix. In this formalism, the bare Coulomb interaction
U(q) and the electron-electron interaction mediated by the longitudinal optical
(LO) phonon mode fl()%) ro(q,ivy) are mutually screened by each other in the
random phase approximation (RPA). The transverse optical (TO) phonon mode
(and the corresponding electron-electron interaction IAI()?})’TO (ivy)) is assumed to
be unscreened. The RPA polarization tensor is a matrix in the density-density

approximation ﬂ(o)(q, 1V ). Since the layers are not hybridized, it is diagonal

. , 119(q, ivm, 0
H(O)(Qa i) = ( ! ((é ) oo (Q, ivm) ) (6.3)
2 ) m

I(q,ivm,) = [f — (U(q) + I;E%),Lo(q, wm)) ﬂ(o)(q,ium)} - (U(q) + fz()g)’LO(q, ium))
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with Hgo)(q7 iVy,) the Lindhard function evaluated for layer 1.

For the phonon modes in layer 1, we assume that both the TO and LO phonon
modes have frequency w. = 0.3eV and electron-phonon coupling 9;2311 =0.3eV2. In
order to make numerical computations more feasible, these parameters have values
that are high for realistic materials. However, they are still in the regime w, < Ep
where Migdal’s theorem is believed to be valid, such that our qualitative conclusions
are not affected. In layer 2 we assume that the electron-phonon interaction vanishes,
such that the total longitudinal and transverse phonon mediated electron-electron
interaction matrices are given by

2 .
2(0 . (0 . g Doy (iv, 0
I;h%LO(wm) = I;(ah),To(Wm) = < ph pO( m) O> , (6.4)

with Dpp (ivh,) = 2w/ ((ivy)* — w?) the bare phonon propagator in layer 1. The
layers are coupled via the long-range Coulomb interaction in the density-density
approximation. The diagonal components of the corresponding matrix have the
usual intralayer bare 2D Coulomb interaction Uy = 2me?/(Aeq), where € captures
the electrostatic screening from the environment of the heterostructure. The off-
diagonal terms are approximated by a layer-distance dependant exponential form-
factor exp(—qd), such that the full bare Coulomb matrix is given by

U(q) = Uy <61qd elqd> . (6.5)

In this chapter our focus is on the effect of interlayer screening on the superconduct-
ing layer. In principle, superconductivity can also be induced in the neighbouring
layer via the proximity effect, but here we neglect such effects. We can therefore
simplify our theory by integrating out the screening layer, such that we find an ef-
fective scalar interaction in layer 1. It is given by I (q, ivy,) = I£(q, ivm) + 1T (ivh,),
with the transversal part given by I{ (iv,,) = githh(iVm) and the longitudinal
part by

I £O)(Qa i)

~ : (6.6)
1= T'%q, ivy) I\ (q, ivm)

I (q,ivm) =

Here I {O)(q, 1V, ) is the effective bare interaction in layer 1, which is defined as

113" (q, ivn)
1— UqH;O) (q,ivm)

I{9(q,ivm) = Uq + 92, Dpi (ivm) + Uge ™4 Uge ™. (6.7)

The resulting expression for I{ is reminiscent of the full mutually screened interac-
tion of a monolayer in a static dielectric environment as given by Eq. 5.2. [62] The
only difference is the last term in Eq. 6.7, which takes into account polarization
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processes in layer 2 that are coupled into layer 1 via the interlayer Coulomb in-
teraction. We use I to perform GoWj and linearized one-loop superconductivity
calculations within layer 1, following the formalism outlined in Sect. 2.5 and in
Ref. [62].

6.3 COMPUTATIONAL DETAILS

All calculations were performed using the TRIQS [155] and TPRF [257] codebases,
using a linearly discretized momentum mesh of 300x300 points. The Matsubara
axis was represented using the recently developed discrete Lehman representation
(DLR) [140], which drastically reduces the temperature scaling of the required
amount of Matsubara frequencies to O(log(5)) compared to a full Matsubara mesh
which scales as O(8). Due to the improved scaling with temperature, we can now
resolve the superconducting critical temperatures in the low screening limit. For all
calculations, the DLR error tolerance was set to ¢ = le — 10 and the high-energy
cutoff to wmax = 50eV. Real-frequency GoWj calculations have been performed
on a 100x100 momentum mesh and a linearly spaced frequency mesh with 1000
points between -20 and 20 eV.

6.4 INTERLAYER PLASMON MODES

In order the connect to the usual Eliashberg formalism of superconductivity, we
write the effective electron-electron interaction in layer 1 in the spectral represen-
tation

I(q,ivy,) =Uq + €1 /000 dw (/\(Ll(w) + )\T(w)) w? (6.8)

No (tvm)? — w?’

where Ny is the DOS at the Fermi energy and we defined the longitudinal electron-
electron coupling as

2Ny BL(w)

L,y — a

ALw) = 205a) (6.9)
with BE (w) = —Im (I{(q, w)) /7. The transversal electron-electron coupling A” (w)

originates from an unscreened Einstein phonon mode, such that it is described
by the usual BCS expression A\ (w) = 2Nog§h/w55(w — w,). The longitudinal
electron-electron coupling )\{; (w) originates from the hybridized longitudinal phonon
mode and interlayer plasmon modes. We stress that in the high-frequency limit
I(q, ivy, — o0) = Uq is simply the intralayer bare Coulomb repulsion and is there-
fore unaffected by the neighbouring layer. We therefore conclude that dynamical
interlayer screening allows us to tune only the attractive low-energy part of the
interaction, without altering the high-energy repulsive part.
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Figure 6.2: The longitudinal electron-electron coupling )\{; (w) within layer 1, for different
interlayer distances d at e =1 (a), e = 5 (b) and € = 10 (c). The dashed black lines denote
the edges of the electron-hole continua and the dotted white lines denote the plasmon
dispersion of an isolated layer (i.e., at d x kp = 00). These results were obtained for
equivalent monolayers, with m] = m3 = 0.2m. and Er; = Epz = 1€V. The temperature
is set to 7' = 100 K.

We show Af(w) in Fig. 6.2, for various interlayer distances d and environmental
dielectric constants e. For infinite layer distance (left-most panels) we reproduce the
hybridized phonon-plasmon mode of a monolayer in a static dielectric environment.
[62] In this case, at large € there is clear hybridization between the dispersionless
phonon mode and the ,/g-like two-dimensional plasmon mode, whereas at smaller
€ the Coulomb interaction screens out the phonon-mode, such that the phonon-
plasmon hybridization is negligible. As the interlayer distance is decreased to a
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Figure 6.3: (a,b) Momentum-resolved GoWy spectral function Ax(w), for different
interlayer distances at € = 1 (a) and € = 5 (b). (c¢,d) Linecut of the spectral function
Ax(w) at k =T at € = 1 and € = 5, respectively. These results were obtained for equivalent
monolayers, with m] = m3 = 0.2m. and Er1 = Er2 = 1eV. The temperature is set to
T =100K.

finite number at € = 1, two distinct inter-layer plasmon modes appear, as is typical
of coupled two-dimensional plasmon modes. [287-290| The high-energy mode is a
charged mode, because the corresponding electron density oscillations are in-phase
between the layers. It still follows a /g-like dispersion in the long-wavelength limit,
but is shifted to higher energies compared to the plasmon mode at d = oo (indicated
by the dotted white line) as the interlayer distance decreases. The low-energy mode
is a charge neutral mode, since its oscillations of the electron-density are out of
phase between the layers. It has a linear dispersion and lies below the energy of
the isolated layer plasmon mode. As the interlayer distance decreases, this mode
shifts into the electron-hole continuum (indicated by the dashed black lines), such
that it is Landau damped if the layers are close enough. Similar trends can be
observed for € > 1 as well, but in this case the distance at which the charge neutral
mode starts to be Landau damped is larger. As for the longitudinal phonon mode,
its coupling strength to the electrons (reflected by its intensity in Fig. 6.2) is not
significantly affected by the dynamical interlayer screening. This is a consequence
of the different energy scales of the phonon and plasmon modes. It does, however,
hybridize more strongly with the charge neutral plasmon mode than with the
charged plasmon mode.

87



88

SUPERCONDUCTIVITY FROM DYNAMICAL ENVIRONMENTAL SCREENING

6.5 NORMAL-STATE

In the left panels of Fig. 6.3 we show the dressed electronic spectral function
Ak (w) = —Im(G(k,w))/7 in the GoW approximation of a monolayer in a static
dielectric environment. These results are reminiscent to those obtained previously
in chapter 5 and Ref. [62] for a square lattice. Around the Fermi energy at e = 5 we
find the typical phononic mass-enhancement, which is strongly reduced for £ = 1
due to the screening from the Coulomb interaction. Below the band minimum we
find additional spectral weight coming from plasmon polaron excitations. For ¢ =1
these excitations induce a relatively coherent shakeoff band, whereas for e = 5
they induce an incoherent shoulder. The energy separation between the shakeoff
feature and the band minimum is determined by a representative energy scale
of the plasmon dispersion, as discussed in chapter 4 and in Ref. [60]. When we
introduce the second layer (shown in the right panels of Fig. 6.3(a) and (b)), we
find qualitatively the same features. Quantitatively, however, the plasmon polaron
shakeoff features shift to lower energies, further away from the band minimum, as
seen in the frequency linecuts of Ay (w) at k =T (shown in panels (¢) and (d) of
Fig. 6.3). This is a consequence of the shift of the plasmonic spectral weight to
higher energies, due to the enhanced frequency of the charged interlayer plasmon
mode and due to the Landau damping of the neutral interlayer plasmon mode.
These results reproduce the conclusion of chapter 4, that interlayer dynamical
screening can affect the normal state of a material.

6.6 EFFECT OF INTERLAYER COUPLING TO SUPERCONDUCTIVITY

In chapter 5 we have shown that, in the regime of weak (static) environmental
screening, plasmons are able to mediate superconductivity in two-dimensional
monolayers. [62] However, because of the unfeasible amount of required Matsubara
frequencies at low temperatures, our conclusions were based on calculations at
temperatures well above the critical temperature T, by observing the behaviour of
the leading eigenvalue of the linearized superconducting gap equation. Here, by
making use of the recent advances in the compact representation of the Matsubara
axis by way of the DLR [140], we are able to do calculations at low enough
temperatures to actually resolve T, for our chosen parameters. Therefore, we can
confirm the conclusions of our previous work directly using 7., which we will briefly
summarize here.

The gray line in Fig. 6.4 shows the superconducting critical temperature T, of a
monolayer in a static dielectric environment, as a function of the external dielectric
constant €. At & = oo (the dashed horizontal line) the only interactions contributing
to the superconductivity are the LO and TO electron-phonon interactions. Reducing
¢ from there to the regime ¢ = 20, T is reduced by the conventional static Coulomb
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Figure 6.4: The superconducting critical temperature T, within layer 1 as a function
of external screening ¢, for different interlayer distances d. The horizontal dashed line
denotes the T, corresponding to ¢ = cc.

repulsion. Dynamical screening effects do not play a major role here, therefore
we denote this regime the phononic regime. As ¢ decreases further, T, reaches a
minimum around € & 3. Here the electron-phonon coupling is strongly reduced by
static Coulomb screening, while at the same time the plasmon-induced attraction
is not yet strong enough to overcome the effect of static Coulomb repulsion. The
result is a strongly suppressed T.. Beyond this minimum, for ¢ < 2, the plasmon
mediated electron-electron attraction starts to dominate the interaction, leading
again to an enhancement of T,. This regime we denote as the plasmonic regime.
It is clear that the balance between static repulsion and dynamical attraction plays
an important role in the behaviour of T, as a function of €. In the monolayer limit,
the static and dynamic parts of the Coulomb interaction are inherently linked, such
that attempts to change one will unavoidably also change the other. The addition
of a neighbouring metallic layer can circumvent this limitation, because it can tune
the dynamics of the Coulomb interaction without altering the static high-frequency
limit. The T, obtained when including an additional layer at distance d = 1.15/kp
and d = 0.23/kp are shown in the red and blue lines of Fig. 6.4, respectively. In
the phonon-mediated regime (¢ 2 20) we find relatively small changes in T.. In
this regime, phonon mediated attraction and static Coulomb induced repulsion
dominate over the plasmonic contributions, such that changes to the plasmonic
properties from interlayer coupling are ineffective. However, for ¢ < 20 we do find
a significant enhancement of 7, as the interlayer distance d is reduced. Here the
plasmons that contribute to superconductivity are efficiently tuned by dynamical
screening from the neighbouring layer.
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Figure 6.5: (a) The momentum-summed anomalous self-energy ¢(iw,) at 7= 100K as
a function of Matsubara frequency wy. The left, middle and right panels have e =1, 5
and 10, respectively. The vertical dotted line indicates the bare phonon frequency wpp.
In all cases ¢ is normalized such that ¢(iwn=0) = 1. (b) The half-width at half-height of
@(iwn). (c) The high-frequency tail of ¢(iwr). These results were obtained for equivalent
monolayers, with mi7 = m5 = 0.2m. and Er1 = Ep2 = 1€V.

ANOMALOUS SELF-ENERGY In Fig. 6.5(a) we show the local (momentum-
summed) anomalous self-energy ¢(iw,) = >, ¢(k,iw,). Since ¢(k, iw, ) is obtained
from the linearized gap equation, it has an arbitrary normalization factor. Here,
the normalization factor was fixed such that ¢(iw,—¢) = 1. For all d we find
the characteristic features of the crossover from phonon to plasmon mediated
superconductivity as ¢ is reduced, as discussed in chapter 5 and Ref. [62]. In
short, the increased half-width at half-height (HWHH) of ¢(iw,,) (shown in panel
(b)) as € reduces reflects that the dominating mediating boson switches from the
lower-energy phonon mode to the higher-energy plasmon mode. Furthermore, the
high-frequency tail (shown in panel (¢)) is reduced as € reduces due to the enhanced
static Coulomb repulsion at low e.

Introducing the neighbouring metallic layer does not qualitatively change the trends
of ¢(iw,) as a function of €, indicating that there is still a crossover from phonon
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to plasmon mediated superconductivity. Quantitatively there are some differences
however. Firstly, the half-width at half-height of ¢(iw,,) is enhanced by interlayer
dynamical screening. Similarly to the changes in the normal state spectral function,
this reflects that the spectral weight of the interaction is shifted to higher energies.
Secondly, the high-frequency tail of ¢(iw,,) is reduced upon reducing d. This can be
analyzed in an approximate BCS picture, in which the high-frequency tail of ¢(iw,,)
behaves as —p*/(Aeg — 1), with p* the TMA Coulomb pseudopotential and Aog
being an effective parameter describing the electron-electron attraction. [36,109]
We expect the value of \eg to increase as the layers are brought closer together,
because of the enhanced T,. The reduced high-frequency tail therefore indicates
that the pseudopotential p* is also enhanced upon reduced d. These results again
hint towards a delicate balance between dynamical attraction, and (renormalized)
static repulsion.

6.7 QUALITATIVE MODELLING OF PLASMON MEDIATED SUPERCONDUC-
TIVITY

In order to disentangle the different contributions to the superconducting state, we
define a set of model parameters. Using these parameters we aim to explain the
qualitative behaviour of T, using a McMillan-Allen-Dynes-like expression for the
critical temperature [108,131-133]

Z,

kT = 1.13wegexp <H) . (6.10)
)\eff - M*

Here the effective dimensionless electron-electron pairing strength A.g is defined as

the total momentum and frequency integral of the electron-electron coupling

Aeﬂz/o dw(Z)\L )4+ AT )) (6.11)

This effective coupling is counteracted by the static Coulomb repulsion. Similar
to the coupling, we will define a corresponding dimensionless parameter u©. A
common definition of u¢ is a double Fermi surface average of Uq- [109,111,129]
Here, we instead define it by the momentum sum p¢ = Ny > q Uq for consistency
with Aeg. From Eliashberg theory we understand, however, that it is not the bare
potential ;¢ that enters the effective low-energy gap-equation, but the renormalized
Tolmachev-Morel-Anderson pseudopotential p* [109,134], given by

uC
. , 6.12
=1y pClog (Ep/wes) (6.12)
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Figure 6.6: Qualitative modelling of plasmon mediated superconductivity. (a) The
modelled critical temperature T% as a function of e for different interlayer distances d.
(b) The change of the effective pairing strength Adeg = deg — A5 °° (s0lid lines) and
TMA pseudo-potential Ap* = u* — pyj_ . (dotted lines) upon introducing a neighbouring
metallic layer. (¢) The change of the effective boson frequency Awesr = wet — wlF ™. (d)
The relative change of the effective mass-renormalization factor Zeg/Z%5°°. All results
were obtained for m] = m3 = 0.2m. and Ep1 = Eps = 1€V, at T = 100 K.

where Ep is the bandwidth (set here to Ep = 4Er; for simplicity). The effective
boson frequency weg we define using the logarithmic average

Weff = €XP [)\1& /000 dw <zq: /\g (w) + /\T(w)> log(w)] . (6.13)

The final contribution to the critical temperature is the mass-renormalization factor
Zogr. Similar to Eliashberg theory, we define it using the frequency derivative of
the GoW self-energy evaluated at kg

82(]6‘1?, iwn)

= 1 —_
Zett A(iwn)

(6.14)

1wy, =0

In Fig. 6.6(a) we show T°% as a function of ¢ for different interlayer distances d.
As expected, the quantitative values of T¢ are incorrect due to the simplifications
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made by averaging over momentum and frequency. This is especially true for low

¢, where the non-local nature of the Coulomb interaction becomes more important.

Nonetheless, T, CCH qualitatively follows the same trends as the numerical T, shown in

Fig. 6.4, with a clear phononic regime at large € and a plasmonic regime at small ¢.

It also correctly captures the enhancement of superconductivity due to dynamical
interlayer screening upon reducing d. Therefore, we will use this model to analyze
the response of each of the effective parameters in T¢ to dynamical interlayer
screening. In this way, we aim to find the features a bilayer heterostructure should
have for an optimal T..

In the solid lines of Fig. 6.6(b) we show the change of A\g upon introducing the
neighbouring metallic layer at distance d, as a function of €. In all cases we find
an enhancement of A\eg. The enhancement is larger if the layers are closer, as a
consequence of the enhanced interlayer coupling. Furthermore, the enhancement is
larger at small e, reflecting the plasmonic nature of the additional coupling.

The dotted lines in Fig. 6.6(b) show the change of p* upon introducing the
neighbouring metallic layer. As argued before, p is not affected by the interlayer
coupling. However, the pseudo-potential u* can be altered by interlayer coupling
via changes in the effective boson frequency weg. This effect is mostly negligible
in the phononic regime, but in the plasmonic regime ¢ < 3 it causes a significant

enhancement of p*, as a consequence of the enhanced weg depicted in Fig. 6.6(c).

For most values of €, Aeg is enhanced significantly more than p*, which is the
driving force behind the T, enhancement from dynamic interlayer screening in
Fig. 6.4(a). However, around € ~ 1 we find that Al.g and Ap* have similar values,
with for d x kp = 1.15 even Aup* > Aleg. This explains the relatively weak T,
enhancement for € = 1 compared to € ~ 3.

In Fig. 6.6(d) we show the relative change of Zeg due to dynamical interlayer
screening. Interestingly, the mass-renormalization is enhanced in the phononic
regime, whereas it is reduced in the plasmonic regime. The actual changes are,
however, only on the order of a few percent, such that mass-renormalization
from dynamical interlayer screening alone cannot qualitatively explain the T,
enhancement. We therefore conclude that the driving force behind the enhancement
of T, due to dynamical interlayer screening is the enhancement of the effective
electron-electron attraction Aeg. This enhancement is however weakened by the
enhancement of ©* in the low € regime as a consequence of the enhanced weg.

6.8 OPTIMIZING SUPERCONDUCTIVITY

From the modelling in the previous section we understand that in order to obtain a
large T, enhancement, the neighbouring layer should induce a low-energy plasmon
mode which couples strongly to the electrons. With this in mind, we explore
two different avenues for creating heterostructures with optimal 7T: the choice of
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Figure 6.7: Variations in the effective mass of the neighbouring layer m3 at fixed density.
The interlayer distance is set to d x kp = 0.23 and T = 100K. (a,b) \(w) for ¢ = 1
and ¢ = 5, respectively, for two effective masses. The black and white dotted lines are
the edges of the electron-hole continua of the target layer and the neighbouring layer,
respectively. (c) The superconducting leading eigenvalue as a function of , for various
m3. (d) The change of the effective pairing strength (solid lines) and effective TMA
pseudopotential (dotted lines) with respect to the isolated monolayer. (e) The relative
change of the mass-renormalization factor with respect to the isolated monolayer.

neighbouring material (captured by the effective mass m3) and the doping of the
neighbouring material (captured by the Fermi energy Fps).

VARYING THE EFFECTIVE MASS In Fig. 6.7 we summarize the results when
tuning the effective mass of the neighbouring layer m3 at fixed interlayer distance
d X krp = 0.23. In these calculations the electron density in layer 2 was kept
fixed by changing the Fermi energy Epo correspondingly. In panels (a) and (b)
we show the longitudinal interaction A} (w) in the superconducting layer (layer
1), for two different layer 2 effective masses. We find that the interaction in
layer 1 is significantly affected by the effective mass of the neighbouring metallic
layer. Enhancing m3 shifts both the charged and neutral plasmon modes to lower
energies. For mj = 0.1 the linear neutral mode is still above the continuum of
layer 1 (indicated by the black lines), but is broadened by the continuum of layer 2
(indicated by white lines). As mj is increased to 0.4 it gets damped further, such
that it has negligible spectral weight. The charged plasmon mode, on the other
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hand, has large regions in the (q,w) space where it is undamped. Notably, for
m3 = 0.1 this region is limited by the continuum of layer 2 (white lines), whereas for
m3 = 0.4 it is limited by the continuum of layer 1 (black lines). Therefore, besides
shifting down the plasmon dispersions, enhancing mj also increases the spectral
weight of the charged plasmon mode by shifting away the layer 2 electron-hole
continuum. This effect is reflected in the enhancement of Aog shown in the solid
lines of panel (d).

The dotted lines of panel (d) show that the Coulomb pseudopotential p* is reduced
for enhanced m3. This is a consequence of the reduced energy of the charged
plasmon mode. Both the enhancement of \eg and the reduction of p* contribute
to an enhanced critical temperature T, as reflected by the enhancement of the
leading eigenvalue A in panel (c). We note, however, that the enhancement of A
is not the same for all e, with at ¢ = 1 even negligible changes of A. This can
be explained by the larger mass-renormalization Z.g shown in panel (e), which
counteracts the enhancement induced by the changes in Aeg and p*.

Overall we conclude that a neighbouring layer with a large effective mass is generally
favourable for interlayer plasmon mediated superconductivity.

VARYING THE FERMI ENERGY In Fig. 6.8 we summarize the effect of tuning
the Fermi energy of the neighbouring layer Ery at fixed effective mass m3, thereby
changing the electron density in layer 2. Opposite to the effective mass, enhancing
Ers causes the charged plasmon mode to shift to higher energies, as shown on

panels (a) and (b). This leads to the enhancement of p* shown in panel (d).

Interestingly, the effect of Eps on Aeg is relatively weak, such that the combined

Ader — Ap* suggests a reduction of the leading eigenvalue A with increased Eps.

The reason that this reduction is not visible in the numerical evaluation of X\ in
panel (c) is the mass-renormalization Zg, which is significantly reduced. As a
consequence, the different contributions to 7T, cancel each other, such that the
total effect of enhancing Eps is only a relatively small enhancement of the critical
temperature.

6.9 CONCLUSIONS

We have shown that dynamic screening from a metallic environment can significantly
affect the superconducting state of a two-dimensional material. Especially in the
regime of intermediate screening, where in the monolayer limit 7, has a minimum
due to the strong static Coulomb repulsion, T, can be enhanced by an order of
magnitude from dynamic interlayer screening. The driving mechanism behind
this enhancement is the hybridization of the two single layer plasmon modes,
yielding a charged and a charge neutral interlayer plasmon mode. The linear
neutral mode is usually Landau damped, such that it has a negligible effect on

95



SUPERCONDUCTIVITY FROM DYNAMICAL ENVIRONMENTAL SCREENING

EF2=0.5 eV EF2=2.0 eV A
2.0 =
(c)
1s 1.0
1.0 0.8 Er, =05 eV
—— Ep=1.0eV
0.5 0.6 e Ep=2.0eV
Ny =~ Erp=4.0 eV
0.0 +2 0.4 +— — . .
0.0 0.2 0.4 0.0 0.2 0.4 10° 10t 102
&
o Er,=0.5eV Er=2.0eV Mesrand Au™ Zer/Z85
’ = (o)
1.00 = 2
15 7/
1.0 0.95 A
0.5 ‘
0.90 A
0.0 += . . - : : : :
0.0 0.2 0.4 0.0 0.2 0.4 100 10! 102 100 10! 102
q/ke q/ke £ £

Figure 6.8: Variations in the Fermi energy of the neighbouring layer Fr2. The interlayer
distance is set to d x kr = 0.23 and T = 100K. (a,b) A\j(w) for e = 1 and ¢ = 5,
respectively, for two Fermi energies. The black and white dotted lines are the edges of
the electron-hole continua of the target layer and the neighbouring layer, respectively.
(c) The superconducting leading eigenvalue as a function of ¢, for various Er2. (d) The
change of the effective pairing strength (solid lines) and effective TMA pseudopotential
(dotted lines) with respect to the isolated monolayer. (e) The relative change of the
mass-renormalization factor with respect to the isolated monolayer.

the superconducting state. The ,/g-like charged mode, however, does couple to
electrons, with a coupling strength that is stronger than the coupling of the inherent
monolayer plasmon mode, thus giving rise to the enhancement of T,.. The enhanced
coupling strength is however counteracted by the Coulomb pseudopotential p* and
the mass-renormalization Z, which are also affected by interlayer coupling. Our
results show that, in order to get the most favourable combination of all these
competing effects for high T, the metallic layer neighbouring the superconducting
layer should have large effective mass. The electron density of the neighbouring
layer should furthermore be large for optimal T, although we find this effect to be
significantly less relevant than the effective mass.

For experimental verification of our results, electron doped semiconducting tran-
sition metal dichalcogenides are especially promising. Some of the TMDCs, such
as MoSy [173] and WS,y [291], have been shown to be superconducting in the
monolayer limit upon electron doping. Even more, the normal state of TMDCs
has been shown to be sensitive to (dynamical) environmental screening [60, 186]
and the conduction band minimum is well described by an effective mass approxi-



6.9 CONCLUSIONS

mation [177,178]. A heterostructure of such a superconducting TMDC monolayer
and another metallic monolayer with larger effective mass, such as electron-doped
doped MoSey [177,178,292], might therefore be an experimental realization of the
model discussed here. However, electronic hybridization between the layers can
induce additional effects which are not discussed here. To suppress such effects, a
spacer layer of hBN might be placed in between the metallic monolayers, which is
a method often used in the investigation of excitonic bound states. [292,293]

Our results might furthermore be relevant in the observed enhancement of T, in
electron-doped semi-conducting TMDC heterostructures as the number of material
layers is increased. [15-17] Previous work has shown that effects from static
screening alone cannot explain this behaviour [101], but additional coupling from
interlayer plasmon modes could explain the T, enhancement.
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This chapter is based on unpublished work that was done in collaboration with
M.I. Katsnelson, M. Rosner and A.J. Millis. All calculations and derivations were
performed by me, with frequent discussions on the interpretation and further steps
from all collaborators. The text in this chapter has been written by me, with input
from M. Rosner.

7.1 INTRODUCTION

Eliashberg theory is one of the most common theories used for the evaluation of
(ab-initio) superconducting critical temperatures T,. [27,28,125] As discussed in
chapter 2, the theory is based on a one-loop approximation of the self-energy in
which vertex corrections are neglected. This approximation is justified by Migdal’s
theorem, which states that vertex corrections are small with a factor w./Ep in 3D
systems, with w, the effective phonon frequency and Er the Fermi energy. [26]
There have been several works devoted to studying the limits of Migdal’s theorem.
For example, the validity of Migdal’s theorem has been debated in the regime
of large electron-phonon coupling Agcs. [294-296] Closely related works have
developed theories that go beyond Eliashberg theory, for example by systematically
including higher-order self-energy diagrams [297-301] or by deriving algorithms
that find the exact self-energy in certain limits [302,303]. Other works have instead
focused on corrections to the interaction, for instance by including vertex corrections
in the form of the Kukkonen-Overhausen ansatz [71,252] or by incorporating the
renormalization of phononic properties by the electrons [304].

So far in this thesis, we have used the one-loop approximation to describe combined
phonon- and plasmon-mediated superconductivity in layered 2D materials. However,
the applicability of this approximation is formally not ensured in this case, since
Migdal’s theorem is only valid for electron-phonon mediated superconducting
systems in 3D. [26,296,305] It is therefore important to understand to what extent
the results in the previous chapters are affected by vertex corrections. A number
of works have investigated Migdal’s theorem in systems with dimension other than
3. [294, 295, 306] Schrodi et al. furthermore systematically studied the effect of
vertex corrections in 1, 2 and 3D systems, without resorting to the common Fermi
surface averaging approximation. [296]

A further complication in 2D systems is the relatively weak screening of the
Coulomb interaction compared to 3D bulk materials. As a consequence, the 2D
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Coulomb interaction is relatively strong and non-local. The effect of such non-local
interactions on vertex corrections to the superconducting state has, to the best of
our knowledge, not been studied yet. Moreover, it is unknown if Migdal’s theorem
holds for other bosons, such as the 2D plasmon mode, which do not have a well-
defined characteristic energy scale we.

In order to address these questions, we propose here a formalism for quantifying the
importance of vertex corrections in the presence of (non-local) Coulomb interactions.
The formalism is based on a perturbation theory around the leading eigenvalue of the
linearized superconducting gap equation. In this way, it avoids the computationally
expensive diagonalization of the full beyond one-loop superconducting kernel. The
formalism furthermore allows to disentangle the contributions of different diagrams
to the vertex corrections, yielding a better understanding of the origin of the
breakdown of one-loop theories.

After deriving the formalism, we will present preliminary results for a 2D phonon-
mediated superconductor with and without a local Coulomb repulsion term, which
will will serve as a proof of concept for the formalism.

7.2 SECOND-ORDER DIAGRAMS

In order to systematically investigate second-order corrections beyond the one-loop
approximation, we define a Dyson perturbation series that starts from the solution
of the one-loop gap equation. To avoid double counting diagrams, the one-loop
calculation is performed without normal state renormalization, such that we define
the one-loop self-energy in Nambu-Gor’kov space as

) (1) Kk, iwy,
z(OL)(k7 iwn) = ((b(l)’*((l){ i) ¢ (O w )> 7 (7.1)

where (;5(1)(k7 iwy,) is the anomalous self-energy in the one-loop approximation
defined in Eq. 2.92. The one-loop Green’s function G(O% (k. iw,) is given by the
usual Dyson equation

GOY (K, iw,) = GO (k, iw,) + GO (k, iw,) =Y (k, iw,) GOV (K, iw,)

_ G (k, iwn) FO (k, iwn) (7.2)
T A\FWI(kiw,) GO (—k, —iw,) )’ '
with F(1) (k, iw,, ) the anomalous propagator in the one-loop approximation, defined
in Eq. 2.88 by setting G(¢) = G0,
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Corrections beyond the one-loop self-energy are treated in a procedure reminiscent
of screening in the constrained random phase approximation. [30] We find for the
dressed Green’s function

Gk, itwn) = GOV (K, iton)+ GOV (K, icwn) (S, i) = DOV (K, i) ) G, i),

(7.3)
where 3(k, iw,,) is the exact self-energy. We are interested here in the lowest order
vertex corrections, such that we truncate the Dyson series after second order in
W. This corresponds to the following self-energy diagrams (omitting all indices for
clarity)

pIE & + + —de. +O(W?),  (7.4)

where d.c. stands for double counted diagrams. Note that the bare Green’s function
lines in these diagrams are given by the one-loop solution G(©Y | instead of the bare
Green’s function G(©. The first diagram in Eq. 7.4 simply yields a one-loop self-
energy which additionally includes the GoW( normal-state renormalization terms
that we neglected in (%), The second diagram is second order in W, but it is not
a vertex correction term. For the normal part, it generates diagrams which are part
of the self-consistent GWA, but not of the GoW¢ approximation. For the anomalous
part, it partially captures the effect of GoWq normal state renormalization on the
superconducting state. The third diagram is a vertex correction term of second
order in W, which is not captured in any one-loop theory.

In order to shorten the mathematical expressions in this chapter, we introduce
respective fermionic and bosonic four-vectors as

kn = (kyiw,) and G = (q,iv), (7.5)

as well as the corresponding sum ) =, = and analogously for the bosonic
vector. Using this shorthand, we show in Fig. 7.1 the two beyond one-loop self-
energy diagrams in more detail. As in Eliashberg theory, each bare vertex (indicated
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- 7 2 P - — f
kn kn kTL kn kn kn kn

Figure 7.1: Second-order self-energy diagrams. The solid lines are one-loop electron
propagators in the Nambu Gor’kov space G(OL), the wavy lines are the electron-electron
interactions W and the dots are vertices given by 73 matrices. For all indices we use the
four-vector notation defined in Eq. 7.5 and the gray Green’s function lines are considered
amputated.

by black dots in Fig. 7.1) is accompanied by a 73 Pauli matrix, such that the
mathematical expression of the second-order self-energy correction is

. 1 - - S
2@ (k,) 5 > mGOY (k) GO (k)G OM (k)75

ki, Ky
X |=W(En — Ry [~ (E, - k)]
]. g - - — —
o5 > GOV ) GOM (K] — K + K, 7sG OV ()7
Y ki, Ky
X [—W(En - E;L)} [—W(En - Eg)} . (7.6)

The first and second term correspond to the left and right diagram of Fig. 7.1,
respectively. By performing the matrix products in Nambu-Gor’kov space we find
expressions for the normal and anomalous elements of the self-energy, defined by

2) (1. 2(2)( n) ¢(2)(En)
% )(kn) = <¢(2),*(En) _2(2)(_En)> ' (77)

—
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Figure 7.2: The lowest-order three point vertex I' (En, I_cZL) The solid lines are bare normal-
state propagators G and the wavy lines are the electron-electron interactions W. For
all indices we use the four-vector notation defined in Eq. 7.5 and gray lines are considered
amputated.

Since we are mainly interested in corrections to the critical temperature, we
furthermore linearize all expressions in the anomalous propagator (i.e., neglect
terms of O(F?)). This yields for the normal-state self-energy corrections

GO KT (., ki)W (K — KL), (7.8)

where the gray Green’s function lines are considered amputated. The first term
corresponds to the self-energy of the second self-consistency cycle in the GWA, with
E(l)(En) the GoWj self-energy defined in Eq. 2.36. The second term is a second-
order vertex correction term, with the lowest-order three-point vertex I‘(En, E;L)
defined diagrammatically in Fig. 7.2 and given mathematically by

Lk, k) = —*ZW )G O (k= @) GO (K], — G- (7.9)

q”m

103



104 BEYOND ONE-LOOP SUPERCONDUCTIVITY THEORY

In a similar way, we obtain for the anomalous self-energy corrections

P (kn) = +
LS
N

A%

(7.10)
where we defined the one-loop anomalous propagator diagram as
FO(f,) = ——¢—. (7.11)
kn,

The corresponding mathematical expression is

+5;W<knk;>F<”<k;>( (ks ) + D(—Fn, —K1))
1) Pl
5ZF X(kn, k). (7.12)

The first two terms capture the effect of normal-state renormalization from the

first non-trivial term in the GoWq Dyson series to the superconducting state. The
second and third diagrams are typical three-point vertex corrections diagrams,
similar to the normal-state vertex corrections in Eq. 7.8. The final diagram is
a four-point vertex correction, where the four-point vertex X(En,lg;) is shown
diagrammatically in Fig. 7.3 and given by

X (kn, K. = Z W (K, — KW (kp — KNGO K, + kp — KNGO (=E"). (7.13)
k//

In principle, the following anomalous self-energy contribution is also contained in
the diagrams of Fig. 7.1
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Figure 7.3: The four-point vertex X(I%Js;) The solid lines are bare normal-state
propagators G(*) and the wavy lines are the electron-electron interactions W. For all
indices we use the four-vector notation defined in Eq. 7.5 and the gray Green’s function
lines are considered amputated.

However, since the anomalous self-energy ¢! is solved self-consistently in one-
loop superconductivity theory, this diagram is already contained in the one-loop
anomalous propagator F(1), such that it is removed to avoid double counting.

7.3 THE PERTURBATIVE FORMALISM

As discussed in chapter 2, the linearized gap-equation can be written as an eigen-

problem
Ny = Ko, (7.14)

where \; are eigenvalues defined such that at T' = T, the leading eigenvalue (from
here on denoted by A) is unity. We define a matrix-vector product in this basis as

(K@k -5 > Ky g k). (7.15)

In order to quantify the beyond one-loop corrections, we aim to find the change of
the leading eigenvalue A as a consequence of second-order self-energy correction
terms defined in Eq. 7.12. To this end, we start from a given one-loop kernel
obtained from Eq. 2.95

KV = Wk, — E,)GO(K)GO(-F), (7.16)

with eigenvalues /\El) and (right) eigenvectors 551), such that

ADGH = KOG, (7.17)
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The matrix K1) is in general not symmetric, which means its (right) eigenvectors
are not orthogonal. As a consequence, we cannot use the conventional eigenvalue
perturbation theory. Therefore, we use an extension of the perturbative formalism
which makes use of the left eigenvectors d;glL) defined by

FUDT\D _ GAILT (1), (7.18)

Here the left and right one-loop eigenvalues \(1) are equivalent, because KW g
a square matrix. Applying the perturbative formalism, we find that a beyond
one-loop correction kernel K(?) causes the following change in the eigenvalues

A A 4 U R@IGW Lo (( <2>) ) (7.19)

where we normalized the one-loop eigenvectors such that (b(lL) T(b(l) 1. Therefore,
the change in the leading eigenvalue AA?) due to perturbation K@ is given by

AN = ) —\( 7 Z D (F, IEQ)k, pM (K. (7.20)

We note that the left eigenvectors ¢'*) are a mathematical construct, without
physical relevance on their own. They can be obtained by evaluating the (right)
eigenvectors of the transposed one-loop kernel KWL.T

Expressions for the kernels K2 can be found by substituting the linearized
expression of F(1) (Eq. 2.94) into the expression for the anomalous self-energy
correction ¢ (Eq. 7.12). The resulting eigenvalue corrections we split into three
contributions AN = AXC®) 1+ AXNCT) + AXZX) | by also splitting the kernel
K@ = @ 4 gCD 4 @) In this way, we can disentangle the corrections
from the various diagrams discussed in the previous section. The (23) term is the
GW-like correction from the first two terms in Eq. 7.12, such that its kernel is
given by

K
Fou

— W, — B,) GO (RGO (F,)
x (GO(=F) 2D (=F,) + SO (GO (R,)) (7.21)
The (2I") kernel contains the three-point vertex corrections and is given by

KED, == W (= B)GOF)GO(F,) (D(—Fn—F,) + TR E,)) . (7:22)

And finally, the four-point vertex correction kernel (2x) is defined as

K2, =GO (k)G <k, )x(kn. K,)- (7.23)
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7.4 THE MODEL

We will apply the formalism to the same system as described in chapter 5, i.e.,
a square-lattice model with only nearest-neighbour hopping t = 1.5eV. As a
proof of concept, we will assume that the interaction has the form of an effective
electron-electron interaction mediated by a local Einstein phonon mode, given by

2w,

W(q, i) = W(ivy) = U + ¢ (7.24)

(ivm)? — w2’

here ¢? and w,. are the electron-phonon coupling and the Einstein frequency,
respectively, and we additionally include a local Coulomb repulsion term U. In
order to quantify the strength of the phonon induced electron-electron interaction,
we define the usual BCS pairing strength Apcs = 292 No/we, with Ny the density
of states (DOS) at the Fermi energy.

Even with a local interaction, the momentum dependence of the Green’s function
causes the numerical complexity of solving for beyond one-loop corrections to be
significantly larger than the one-loop theory. For simplicity, we therefore make
an approximation reminiscent of dynamical mean field theory (DMFT) by inte-
grating all vertices over their momentum arguments. In this way we eliminate the
momentum dependencies of the self-energies and vertices. We find the following
expressions for the vertices

1
T (it i) & — = > W (iwn — it ) GO (iwnn ) GO (iwy — iwy + iwnr) (7.25)

B n'’
1
i i) 5 D W (it = o)W (it = )
X GO (i + iwn, — iwnr ) GO (—iwpn). (7.26)

where we defined the local Green’s function G (iw,) = >, GO (k,iw,). All
eigenvectors and kernels are also local in this approximation, such that

KD, = Wi —iwn) Y GO (K, iw ) GO (K, —iw,) (7.27)
k
x (G(O)(fk, —iwn )2 (—iwp) + 2D (i, ) GO (K, iwn/))
Ki(i?z‘wn/ ~ — W (iwy — iwy) Z G(O)(kv iwn/)G(O) (—k, —iwn) (7.28)
k
X (T(—iwp, —iwy ) + T(iwy, iwy))
K29, mx(iwniwn) Y GO (K, iwn ) GO (=K, —iw,). (7.29)

k
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Figure 7.4: One-loop (a) and second-order (b-d) contributions to the kernel of the
linearized superconducting gap equation. Here ¢> = 0.5e¢V?, w, = 0.3eV, Er = 4eV and
U = 0. The temperature was set to the critical temperature in the corresponding one-loop
approximation. Note that the color scale is linear in between +10~% and logarithmic
elsewhere.

The corrections to the leading eigenvalues are now given by

1 L),. . .
AN = ST o wn) KD L, 08 (iwn). (7.30)

n,n’
For later reference, the one-loop kernel in this local approximation is given by

RS i == Wiy —iwn) Y GO (K, it ) GO (—k, —itwy). (7.31)

W ,TW,,
k

COMPUTATIONAL DETAILS The model described in this section was imple-
mented in the TRIQS [155] and TPRF [257] codebase. All momentum sums were
performed on linearly discretized meshes with 600x600 points. The one-loop gap
equation was first solved using a discrete Lehman representation (DLR) [140, 154]
of the Matsubara axis, using a real-frequency cutoff of w. = 30eV and a DLR
tolerance of € = 1071Y. The beyond one-loop kernels where then evaluated on full
linearly discretized Matsubara meshes, with a high-frequency cutoff at w. = 30eV.

7.5 PRELIMINARY RESULTS: ELECTRON-PHONON COUPLING

To start, we will neglect the Coulomb contributions and consider the importance
of vertex corrections for superconductivity mediated by a local phonon mode only
(i.e., U =0). In Fig. 7.4(a) we show the corresponding one-loop kernel defined by
Eq. 7.31. It is positive for all frequencies, reflecting the attractive nature of the
phonon mediated electron-electron interaction. Analyzing its structure, we note
that the peak along iw,, = iw, s corresponds to the phononic pole of the interaction
W (iwy, — iwy ). The peak along iw, at iw, = 0 instead originates from the product
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of Green’s functions. Together, these features render the region of +w, around the
Fermi energy the dominant region for conventional phonon-mediated pairing.

The GW-like correction K(**), shown in panel (b), has a negative sign for all
frequencies. This reflects the well-known reduction of the critical temperature
due to normal-state renormalization. [126] The frequency structure of K () is
furthermore qualitatively similar to that of K (!, such that one can approximately

interpret the GW-like correction as a scalar renormalization of the one-loop kernel.

A similar approximation can be derived from the low-energy limit of Eliashberg
theory, in which the scalar mass-renormalization factor Z effectively rescales the
phonon-induced electron-electron attraction (as discussed in chapter 2). [108,133]
The corrections to the kernel from second-order vertex corrections, shown in panels
(c) and (d), have a more complicated structure. Both have sign changes at iw, =0
and at iw, = 0, indicating that there are both repulsive and attractive corrections
in different regions of the frequency space. To make an educated guess about the

changes to the critical temperature, we may consider only the diagonal iw,, = iw,.

As mentioned before, in the one-loop kernel this diagonal originates from the
phononic pole, such that corrections to it can be understood as renormalizations
of the interaction strength. We find that corrections from the three-point vertex
K@D (shown in panel (c)) are negative along iw, = iw,, such that we predict it
to effectively reduce the one-loop coupling strength and thus reduce the critical
temperature. These findings are consistent with previous works. [297-299, 301|
Corrections from the four-point vertex K (¥ (shown in panel(d)) are however
not as clear to interpret, because of the sign change along iw, = iw, . For the
current parameters, the region of negative sign is relatively small compared to the
region of positive sign, such that we expect the four-point vertex to enhance the
critical temperature. We do not expect that tuning the electron-phonon coupling
g2 changes this interpretation, since it enters as a scalar prefactor in the expression
for K(2¥). However, tuning the phonon frequency w, or the Fermi energy Ep has a
less trivial effect on the kernel, such that this could affect the sign of the corrections
to T, from the four-point vertex.

In Fig. 7.5 we show the various second-order corrections AX?) to the leading
eigenvalue of the linearized one-loop gap-equation \(1). In all cases, the temperature
was tuned such that A(") = 1. In panel (a) we tune the effective coupling strength
Apcs by varying g2, while fixing w, = 0.3e¢V and Er = 4eV. The GW-like
correction A(?¥) is negative, again reflecting the reduction of 7. due to normal-state
renormalization. The signs of the vertex corrections AXT) and AXZX) are opposite,
as predicted from the analysis of the kernels. Interestingly, however, they also have
similar magnitude, such that the total vertex corrections AX®T) 4+ AN (black
dashed line) has a magnitude less than 0.05 up to g* ~ 1.7eV?2. Since in all cases
we/Er < 1, these findings are in agreement with Migdal’s theorem.
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Figure 7.5: Second-order corrections to the leading eigenvalue of the linearized one-loop
gap-equation. In all cases, the temperature was fixed to the critical temperature in the
corresponding one-loop approximation, such that AN =1 for all parameters. Here we
start from the parameters ¢> = 0.5eV?, w. = 0.3eV, Er = 46V and U = 0, and from
there vary g2 in panel (a) and vary w. and g2 such that Apcs is fixed in panel (b). The
dotted vertical line in panel (b) indicates where we = EF.

To further test the validity of Migdal’s theorem in 2D, we vary in panel (b) the
phonon frequency w, at fixed Agcs. We find that ANCD) g negative for all w,.
Its magnitude furthermore increases as w, increases, up until w, = Ep, after
which it is saturates to AXN®T) ~ —0.25. The corrections from the four-point
vertex term AX2X) now also become negative as w, is increased and saturate to
AN ~ —0.07 for w, > Ep. Since both vertex corrections are negative, we do not
get the cancellation effect we observed when varying Agcs. The total magnitude of
vertex corrections therefore increases as w, is tuned closer to Ef, as predicted by
Migdal’s theorem.

7.6 PRELIMINARY RESULTS: LOCAL COULOMB INTERACTIONS

In Fig. 7.6 we show the one-loop and beyond one-loop kernels when including a
local Coulomb interaction U = 0.3eV. The one-loop kernel, shown in panel (a),
depends linearly on the interaction W. Inclusion of a local Coulomb interaction
therefore simply reduces the intensity of the kernel by the iw,-independent term
~U >, GO (K, iw, )G (~k, —iw,). As a consequence, the kernel has an attrac-
tive low-frequency region along the diagonal, and a repulsive high-frequency tail for
wy — 00. This structure yields the typical sign-change in the anomalous self-energy
when the Coulomb interaction is treated as a scalar pseudo-potential in Eliashberg
theory. [36,109]
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Figure 7.6: One-loop and second-order contributions to the kernel of the linearized
superconducting gap equation, when including both electron-phonon coupling and a local
Coulomb repulsion term. Here g = 0.5¢V?, w, = 0.3¢V, Er = 46V and U = 0.36V.
The temperature was fixed to T' = 51K, which is the critical temperature at U = 0 in
the one-loop approximation. Note that the color scale is linear in between +10~% and
logarithmic elsewhere.

Similar to the U = 0 case, the GW-like kernel K(*®) has a similar structure to the
one-loop kernel, but with opposite sign. Therefore, it still effectively reduces the
phonon induced attraction along the diagonal. Interestingly, however, it now has
an attractive high-frequency limit, which may counteract the T, reduction from
mass-renormalization observed at U = 0.

The structure of the vertex-corrections kernels K and K% is significantly
altered by the including of Coulomb repulsion. For K(?7)| the diagonal is positive,
whereas it was negative at U = 0. This indicates that vertex corrections from
the three-point vertex might switch from repulsive to attractive as the value of
U is increased. On the other hand, the diagonal of the kernel K(2X) has a qual-
itatively similar structure as the corresponding kernel at U = 0, such that we
hypothesize it to still reduce the critical temperature upon the inclusion of non-zero
U. However, in both cases, the high-frequency limit is drastically altered upon
the inclusion of Coulomb repulsion. It has alternating attractive and repulsive
regions, which might have hard-to-predict consequences for the critical temperature.

In Fig. 7.7(a) we show A" as well as the various contributions to AA?) when
including Coulomb repulsion U. To limit computational cost, these calculations
have been done at fixed temperature 7' = 51 K, such that A(!) changes as we vary
U.

Let us first focus on the regime U < Apcs/No (i-e., left of the gray dotted line).
Here, A(V) (green line) is suppressed by enhanced Coulomb repulsion U, as predicted
by conventional Eliashberg theory. [109,131-134] Interestingly, the magnitude of the
T.-suppression from GW-like normal state renormalization (red line) is also reduced

111



112

BEYOND ONE-LOOP SUPERCONDUCTIVITY THEORY

Leading Subleading
1.0 1 (@) 1.0 1 (b)
U =Agcs/No —e M)
0.8 0.84 —e- AACD £AARD o ApD
e A R @0
0.6+ 0.6- A M

U (ev) U (eV)

Figure 7.7: Second-order corrections to the one-loop leading (a) and subleading (b)
eigenvalues, upon varying the local Coulomb repulsion U. Here g% = 0.5eV?, we = 0.3 eV
and Er = 4¢eV. The temperature was fixed to T' = 51 K, which is the critical temperature
at U = 0 in the one-loop approximation.

for larger U, thus counteracting the suppression of A(!). This is a consequence of
the attractive high-frequency limit of the corresponding kernel K (%)

The correction from the three-point vertex AX2T) is negative at U = 0, but changes
to positive as soon as the Coulomb interaction is increased to U = 0.2eV. The
four-point vertex correction AX2X) is negative for all frequencies, however, thus
counteracting the corrections from AAY) . As a consequence, the total second-
order vertex corrections (black dashed line) are smaller than 5% for U < 0.5€V.
When U increases further, the vertex corrections significantly enhance the critical
temperature due to the increasing size of AN?D) | which reaches its maximum
around U = Apcs/No.

In the regime U > Apcg/No (i.e., right of the gray dotted line) the strength of the
Coulomb repulsion is stronger than the phonon induced electron-electron interaction
for all frequencies. As a consequence, the one-loop kernel KM (iw,,,iw, ) < 0 for
all iw,, and iw, . Unintuitively, we find that the one-loop leading eigenvalue A"
saturates as U is increased in this regime. The GW-like normal-state renormalization
furthermore becomes positive for U 2 5eV, suggesting that it enhances the critical
temperature. Around the same value of U we find that the sign of the total second-
order vertex corrections changes sign, due to strong cancellation of the AX?") and
AXNZX) corrections. We hypothesize that these unusual findings are a consequence
of the relative strength of vertex corrections, such that our perturbative formalism
breaks down. This hypothesis is further corroborated by the fact that U is on a
similar order of magnitude as the bandwidth W = 4t = 6¢V in this regime, such
that strong correlation effects on the DMFET level are expected to play a role.



7.7 CONCLUSIONS & OUTLOOK

In Fig. 7.7(b) we furthermore show the corrections to the subleading eigenvalue of
the one-loop gap-equation. As expected, we find for all U that the one-loop sub-
leading eigenvalue (green line) is smaller than the corresponding leading eigenvalue
shown in panel (a). However, when including all second-order vertex corrections
(obtained from adding the green solid and black dashed lines), we find that the
corrected subleading eigenvalue becomes larger than the corrected leading eigen-
value for U 2 7eV. This suggests a phase transition to another superconducting
state, which cannot be described using our formalism. These data therefore again
indicate that our perturbative formalism breaks down in the regime of large U,
such that higher-order vertex corrections are relevant.

7.7 CONCLUSIONS & OUTLOOK

In conclusion, we have proposed a formalism for quantifying the importance of vertex
corrections beyond one-loop theories in superconducting systems. The formalism
is based on a perturbative expansion of the leading eigenvalue of the linearized
superconducting gap-equation. For a 2D nearest-neighbour tight-binding model on
a square lattice, we have shown that vertex corrections are small for 2D phonon-
mediated superconductivity, as long as w./Er < 1 and the coupling strength Apcs
is small enough, in agreement with Refs. [295,296]. At larger coupling strengths
of Apcs = 2.5, the corrections from the three-point and four-point vertices both
become significant, but opposite in sign, such that the total vertex corrections to the
one-loop leading eigenvalue are less than 5 percent up to Agpcs ~ 3. The inclusion
of a local Coulomb term U in the interaction introduces additional structure in
the beyond one-loop kernels, which causes the sign of vertex corrections to change
from repulsive to attractive as U is increased. The magnitude of the corrections to
the leading eigenvalue are, however, less than 5% for U < 0.5¢€V.

We need to stress, however, that the results in this chapter are preliminary. Addi-
tional checks for convergence and further comparisons to literature still have to be
done. We should furthermore investigate the magnitude of higher order perturba-
tions to the leading eigenvalue, which may serve as a signature of the breakdown
of our formalism. Nonetheless, the results in this chapter suggest that the one-loop
theory for superconductivity is justified for conventional 2D electron-phonon me-
diated superconductors as long as w./FEr < 1, coupling strengths Apcs < 3 and
local Coulomb interactions U < 0.5eV. To connect to conventional approaches, the
latter corresponds to a dimensionless Coulomb potential u& = NoU < 0.13.

The formalism we proposed is not limited to local interactions, such that a natural
extension of this work is to investigate the effect of non-locality in the interaction W
on vertex corrections in 2D. However, the O(N{) scaling of the vertex functions with
the momentum mesh size Ny, quickly makes computations unfeasibly expensive when
using the simple linearly discretized meshes employed here. More sophisticated
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methods for evaluating momentum sums, including methods based on tensor
networks [307]| or adaptive Brillouin zone integration methods [308,309], could
be used instead. Our formalism can furthermore be used to explore the effect of
a boson with a momentum dependent dispersion on vertex corrections. This is
especially relevant for the weak screening limit of layered materials, as discussed
in chapters 5 and 6, where the 2D plasmon modes with a /g dispersion play a
significant role in the superconducting pairing mechanism. [62,68,69,72] Finally, a
non-local extension of our formalism may be used to study vertex corrections in
superconductors whose gap-function has unconventional symmetry, such as p-wave
or d-wave symmetry.



CONCLUSIONS & OUTLOOK

In this thesis we have implemented and applied methods that go beyond the state
of the art to evaluate normal and superconducting state properties, in order to
gain a deeper understanding of the role of screening to the Coulomb interaction in
layered 2D materials.

For the normal state, we have shown in chapter 4 that interlayer dynamical
screening can induce novel interlayer plasmon polaron excitations. These excitations
create so far unseen shakeoff features in the spectral function of a WSs/graphene
heterostructure, and lead to electronic spectral weight transfer away from the Fermi
energy.

For the superconducting state, we have shown in chapter 5 that, already in a 2D
monolayer, internal dynamical screening from conduction electrons can give rise
to an unconventional plasmon-mediated pairing mechanism. We have furthermore
shown in chapter 6 that plasmon modes in a neighbouring layer can similarly
contribute to the pairing via dynamical interlayer screening, with the potential of
yielding more than an order of magnitude enhancement of the superconducting
critical temperature in some cases.

Moreover, for both the normal and superconducting states we have shown that the
applicability of commonly used one-loop theories, such as the GWA or Eliashberg
theory, requires special attention in 2D systems. Therefore, in chapter 7, we intro-
duced a formalism for evaluating the necessity of vertex corrections that go beyond
the one-loop approximation.

The results of this thesis show that a careful consideration of all screening channels
is crucial for the understanding of superconductivity in layered materials. Based on
our findings, we expect plasmons to play a role in the Cooper pairing in most 2D
superconductors, especially for materials mounted on substrates with low dielectric
constants. We furthermore anticipate that stacking such layered materials into
superconducting heterostructures can significantly enhance the superconducting
critical temperature due to additional pairing strength from interlayer plasmon
modes. Such effects could be especially relevant in heterostructures of TMDCs,
in which such an enhancement of 7. upon stacking multiple monolayers was
experimentally already observed. [15-17]

To make material-specific quantitative theoretical predictions, the methods used
throughout this thesis have to be connected to first principle methods. To this
end, we could make use of a downfolded three-band model, which is known to
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correctly describe the low-energy physics of the semi-conducting TMDCs. [101,181]
Coulomb interaction matrix elements as well as phonon properties can furthermore
be obtained using the constrained random phase approximation (cRPA) [30,98|
and constrained density functional perturbation theory (¢cDFPT) [310], respec-
tively. Therefore, all tools for investigating the existence of a plasmon mediated
superconducting state in TMDCs from first principles are in principle already
available.

Experimentally proving the existence of plasmonic contributions to the supercon-
ducting state is, however, not trivial. Most signatures we discussed in chapters 5 and
6 are inconclusive on their own. Therefore, to aid the experimental classification,
footprints of plasmonic pairing on additional physical observables should be studied
theoretically. For example, plasmonic signatures to the superconducting coherence
length and penetration depth might be identified using the formalism recently
proposed by Witt et al. [311] Moreover, the effect of plasmonic superconductivity on
spectral features, such as superconducting gap sizes or coherence peaks, should be
investigated. Such information is unavailable in the current imaginary-time based
formalism due to the low accuracy of common analytical continuation schemes,
but using novel continuation methods, such as the minimal pole method [312,313]
or Nevanlinna [314,315], we may be able to gain access to this information.
Finally, it is clear that the applicability of common theoretical methods should be
re-evaluated for layered systems. To this end, the formalism described in chapter 7
should be extended and applied to 2D models with non-local Coulomb interactions
and dispersive boson modes, for example using the plasmon-pole approximation.
This is, however, involving due to the computational complexity of the formalism,
which becomes prohibitively large when taking momentum dependencies into ac-
count. To remedy this, we may employ recent numerical advances, such as the
extension of the DLR to three-point functions [141], which can be used to treat the
frequency dependence of the kernels, or tensor network methods [307], which may
be used to find compressed representations of the quantities defined on momentum
meshes.



POPULAR SUMMARY

Scientific understanding of the world around us is always gained by a combination
of theory and experiment. Either something is first measured experimentally and
afterwards explained by a theoretical model, or a theoretical model makes a
prediction which is then verified (or not) by an experiment. Nowadays, most of
our theoretical models are written in the language of mathematics, which means
we need to solve equations in order to compare our theories to experiments. In
many cases this is unfeasible to do by hand, but fortunately a computer is perfectly
suited for such tasks. In this thesis we therefore focus on developing and applying
theoretical models which we can solve using computers.

The subject of this thesis are the electronic properties of so-called layered materials.
These are materials that consist of stacks of weakly-bound, atomically thin layers.
An everyday example of a layered material is graphite, which is made out of stacks
of flat sheets of carbon atoms called graphene. Because of the weak interlayer
bonds, the graphene sheets can easily detach, which makes it possible to write with
a stick of graphite. In this thesis, we are specifically interested in layered materials
which consist of only a few atomically thin layers. These are particularly promising
for future applications, since their small thickness might allow for the creation of
extremely thin (around one millionth of a millimeter) and flexible electronic devices.
However, to aid the design of such devices, we need a theoretical understanding of
what gives rise to the electronic properties of layered materials and how we can
influence them.

The electronic properties of a material are mostly determined by the behaviour
of tiny particles called electrons. An electron is never alone, because it is always
being repelled by all other electrons due to its negative charge. As a consequence,
all electrons ‘feel’ each other at all times; they are correlated with each other.
The aim of this thesis is to construct theoretical models of these electron correla-
tions, such that we can gain a deeper understanding of their effect on the electronic
properties of layered materials.

After the introductory chapters, we start in Ch. 4 by investigating the behaviour
of electrons in a two-layer material, consisting of an atomically thin layer of WSy
(tungsten disulfide) and a layer of graphene on top. In this material our experimental
colleagues from Denmark and the United States found signatures of a new kind of
movement of the electrons in the WS layer, which was not present without the
graphene layer. It is already well known that electrons can oscillate collectively,
which forms waves that are called plasmons, similar to how water particles form
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waves in the ocean. From our theoretical modelling we now understand that the
experimental signature in WSs was likely created by electrons in the WSy layer
‘feeling’ these plasmon waves in the graphene layer. This creates a new state where
the electron and plasmon move together, like a boat floating up and down on the
ocean waves.

In the chapters that follow we focus on superconductivity in layered materials. A
superconductor is a material in which electrical current can flow without resistance,
which means that it does not produce heat and therefore does not waste energy.
An important property of superconductors is the critical temperature, denoted by
T., which indicates below which temperature a material becomes superconducting.
Unfortunately, for most materials this critical temperature is extremely low, around
—270°C, such that everyday applications seem out of reach. There is a class of
materials, however, for which T, lies much closer to room-temperature. These are
the so-called ‘high-T,’ superconductors, of which the highest critical temperature
currently is T, ~ —140 °C. Intriguingly, these materials have a layered structure,
which is believed to be crucial for their high critical temperatures. Therefore, if we
want to eventually find a superconductor at room temperature, it is promising to
study which mechanisms play a role for superconductivity in layered materials.
To this end, we study in Chs. 5 and 6 if plasmons, the collective electron waves
we mentioned before, also play a role in layered superconductors. We did this by
extending existing theories to include the effect of plasmons. Based on this, we
show that neglecting plasmons in a theory will often lead to an underestimation of
the critical temperature. We furthermore describe experimental signatures of the
effect of plasmons on superconductors, such that future experiments may be able
to verify our predictions.

Ch. 7 describes a more abstract work in which we introduce a new method for
determining the validity of theories for superconductivity. Using this method we
study in which regimes one can apply state-of-the-art methods and in which regimes
we will need to develop new theories.

All in all, we show in this thesis that one needs to carefully consider the effect of
the repulsive force between electrons to theoretically describe layered materials. We
have both explained experimental data based on our current theoretical models, as
well as proposed new theories and mechanisms that may be verified in the future.
Therefore, the results of this thesis contribute to a deeper theoretical understanding
of the electronic properties of layered materials.



POPULAIRE SAMENVATTING

Het verkrijgen van wetenschappelijke kennis over de wereld om ons heen gebeurt
altijd door een combinatie van theorie en experiment. Ofwel iets wordt experimenteel
gemeten en daarna verklaard door een theoretisch model, of een theoretisch model
doet een voorspelling die vervolgens word geverifieerd (of niet) door een experiment.
Tegenwoordig zijn de meeste van onze theorieén geschreven in de taal van de
wiskunde, wat betekend dat we formules zullen moeten oplossen om een theorie
te kunnen vergelijken met experimenten. Dit is meestal onbegonnen werk met de
hand, maar gelukkig zijn computers perfect geschikt voor dit soort taken. In dit
proefschrift richten we ons daarom op het ontwikkelen en toepassen van theoretische
modellen die we kunnen oplossen met computers.

Het onderwerp van dit proefschrift zijn de elektronische eigenschappen van zoge-
naamde gelaagde materialen. Dit zijn materialen die bestaan uit stapels van zwak
gebonden lagen die een enkel atoom dik zijn. Een alledaags voorbeeld van een
gelaagd materiaal is grafiet, wat bestaat uit stapels van platte vellen koolstofatomen
die we grafeen noemen. Vanwege de zwakke bindingen tussen de lagen, kunnen
de grafeenvellen elkaar gemakkelijk loslaten. Dit maakt het mogelijk om met een
staafje grafiet te kunnen schrijven. In dit proefschrift kijken we specifiek naar
gelaagde materialen die uit slechts een paar atomair dunne lagen bestaan. Deze zijn
veelbelovend voor toekomstige toepassingen, omdat hun kleine dikte de constructie
van extreem dunne (rond een miljoenste van een millimeter) en flexibele elektronis-
che apparaten mogelijk kan maken. Om het ontwerp van dergelijke apparaten te
helpen moeten we echter begrijpen wat de eigenschappen van gelaagde materialen
zijn en hoe we deze kunnen beinvloeden.

De elektronische eigenschappen van een materiaal worden grotendeels bepaald door
het gedrag van kleine deeltjes die we elektronen noemen. Een elektron is nooit
alleen, omdat zijn negatieve lading ervoor zorgt dat het afgestoten zal worden van
alle andere elektronen. Als gevolg hiervan ‘voelen’ alle elektronen elkaar altijd;
ze zijn gecorreleerd met elkaar. Het doel van dit proefschrift is om theoretische
modellen van deze elektron correlaties te maken, om beter te kunnen begrijpen
wat hun effect is op de elektronische eigenschappen van gelaagde materialen.

Na de inleidende hoofdstukken beginnen we in hoofdstuk 4 met het onderzoeken van
het gedrag van elektronen in een materiaal wat bestaat uit twee lagen, een atomair
dunne laag WSy (wolfraam disulfide) en een laag grafeen. In dit materiaal hebben
onze experimentele collega’s in Denemarken en de Verenigde Staten kenmerken
gezien van een nieuwe soort beweging van de elektronen in de WS laag, die niet
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zichtbaar is zonder de grafeen laag. Het is bekend dat elektronen collectief kunnen
trillen en dat dit golven vormt die we plasmonen noemen, vergelijkbaar met hoe
waterdeeltjes golven vormen in de oceaan. Aan de hand van onze theoretische
modellen begrijpen we nu dat de kenmerken in de WS laag waarschijnlijk gevormd
worden doordat de elektronen in de WS, laag deze plasmonen in de grafeen laag
kunnen ‘voelen’. Dit creéert een nieuwe toestand waarin een elektron en de plasmon
samen bewegen, vergelijkbaar met een boot die op en neer deint op de golven.

In de volgende hoofdstukken richten we ons op supergeleiding in gelaagde materialen.
Een supergeleider is een materiaal waarin elektriciteit kan stromen zonder weerstand,
waardoor het geen hitte produceert en dus geen energie verspilt. Een belangrijke
eigenschap van supergeleiders is de kritische temperatuur, aangegeven met T,
wat de temperatuur is waaronder een materiaal supergeleidend wordt. Helaas is
de kritische temperatuur van de meeste materialen extreem laag, rond —270°C,
waardoor alledaagse toepassingen onmogelijk zijn. Er is echter een klasse materialen
waarvan 7T, een stuk dichter bij kamertemperatuur ligt. Deze worden de ‘high-T,’
supergeleiders genoemd, waarvan op dit moment de hoogste kritische temperatuur
T. ~ —140°C is. Interessant genoeg hebben deze materialen een gelaagde structuur,
die ook belangrijk lijkt te zijn voor hun hoge kritische temperaturen. Om dus
uiteindelijk een supergeleider op kamertemperatuur te vinden, is het veelbelovend
te bestuderen welke mechanismen een rol spelen voor supergeleiding in gelaagde
materialen.

Met dit als doel bestuderen we in hoofdstukken 5 en 6 of plasmonen, de eerder
genoemde collectieve elektron golven, ook een rol spelen in gelaagde supergeleiders.
We hebben dit gedaan door bestaande theorieén uit te breiden door het effect van
plasmonen mee te nemen. Hiermee laten we zien dat het negeren van plasmonen
in een theorie er in veel gevallen voor zorgt dat de kritische temperatuur van
een materiaal onderschat zal worden. Daarnaast beschrijven we ook een aantal
experimentele kenmerken van het effect van plasmonen op supergeleiders, zodat
toekomstige experimenten onze resultaten kunnen verifiéren.

Hoofdstuk 7 beschrijft een meer abstract werk, waarin we een nieuwe methode
introduceren die de betrouwbaarheid van theorieén voor supergeleiding kan bepalen.
Met deze methode bestuderen we in welke regimes we gebruikelijke theorieén kun-
nen toepassen en voor welke regimes we nieuwe theorieén zullen moeten ontwikkelen.

Al met al laten we in dit proefschrift zien dat de afstotende kracht tussen elektronen
zorgvuldig meegenomen moet worden om gelaagde materialen theoretisch te kunnen
beschrijven. We hebben zowel experimentele resultaten verklaard aan de hand
van onze huidige theoretische modellen, als nieuwe theorieén en mechanismen
voorgesteld die in de toekomst geverifieerd kunnen worden. De resultaten van dit
proefschrift dragen dus bij aan een dieper theoretisch begrip van de elektronische
eigenschappen van gelaagde materialen.
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As aresult of their large surface-to-volume ratio, layered materials are generally
much more sensitive to external stimuli compared to bulk systems. At the same
time, the Coulomb interaction between electrons in layered materials can be
particularly strong and is generically long-ranged, due to the reduced screening
in atomically thin materials. The combination of these features paves the way
for control over correlation effects induced by the Coulomb interaction, which
would render microscopic material properties tunable from the outside.

To exploit these possibilities, we require a fundamental understanding of the
physics that governs the properties of these systems. To this end, we theoretically
study in this thesis the effect of the long-range 2D Coulomb interaction, as
well as screening to it, on the electronic structure and the superconducting
properties of layered van-der-Waals heterostructures. By developing and
applying methods that go beyond state-of-the-art, we show that dynamical
screening can induce novel interlayer electronic excitations, as well as introduce
additional superconducting pairing mechanisms. Moreover, these effects
are found to be highly sensitive to screening from the environment, yielding
efficient tuning knobs for spectral functions and superconducting critical
temperatures. The results in this thesis show that a careful consideration of all
screening channels is crucial for a reliable description of layered materials and
simultaneously opens up various avenues towards controllable microscopic
material properties.
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