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Chapter 1

Introduction

Survival analysis is a branch of statistics dealing with time to event data. A time-to-event
data point is a measurement of the amount of time that is passed between a predefined time
origin and the event of interest. To be concrete, the predefined time origin might be the
time at which a patient is admitted in a medical study, or when a user subscribes to a video
streaming platform the first time. The event of interest can be cancer relapse, or when the
user terminates his/her subscription. Survival analysis might be defined succinctly as the
statistical analysis of survival data, i.e. the collection of methods used to conduct inference
and making predictions with survival data. These methods find application in several fields
ranging from epidemiology, to finance and engineering. For this reason, the user/ patient
in the previous example is generically referred to as the subject. In general, the scientist
involved in the analysis of time to event data is interested in understanding which “features”
of a subject (and eventually how) influence its survival time. Having an idea of the relation-
ship between the covariates (i.e. the “features”) and survival time allows performing patient
screening and, eventually, aid decision-making for treatment. Furthermore, recent years have
seen a surge of interest in the concept of personalized or precision medicine. The core idea is
to gather many covariates for each subject, e.g. clinical information and genetic character-
istics, and then use this massive amount of data to discover patterns, i.e. understand which
covariates are important to predict the survival time of patients. The fundamental belief
is that this might eventually lead to a better understanding of the mechanisms underlying
diseases and allow for personalized treatment. However, traditional regression methods in
survival analysis are not suited to cope with such “high dimensional” data.

The scope of this thesis is to understand the limitations of regression methods in Survival
analysis in the modern high dimensional regime, eventually proposing novel strategies to
improve the latter.

1.1 A short introduction to Survival Analysis

Time to event data are generally censored, i.e. the information over certain subjects is
incomplete. There exist (at least) three type of censoring known respectively as left, interval
and right censoring [40]. When it is only known that a subject experienced the event before
a certain time, we say that the subject is left censored; e.g. the time at which a patient is
diagnosed might (most likely) not coincide with the onset time of the disease. A subject is
interval censored if it is only known that she experienced the event in a certain time interval;
e.g. when a patient is regularly monitored by a physician, the relapse of an acute medical
condition is only known to have happened in between the penultimate and last check-ups.
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Finally, a patient is right censored when it is only known that she experienced the event
after a certain time (if at all); for instance, if death is the event of interest and a patient
under study survives until the end of the study. In this thesis, we will only deal with right
censoring, being the case encountered most often in applications. The discussion might
be extended “mutati mutandis” to other censoring types. We will further assume that the
mechanism underlying censoring is uninformative, i.e. the event “Alice is censored” does not
depend on Alice’s covariates. The assumption of uninformative censoring is mathematically
convenient, but might not always be realistic. In that case, competing risks models [48]
might be considered, but these are not treated in the present thesis.

1.1.1 Homogeneous Populations

In order to introduce the mathematical notation relevant for Survival Analysis, we start
by considering the case of a homogeneous population. An homogeneous population might
be thought of as made up of a priori “identical” subjects. Perhaps the simplest example is
that of a batch of e.g. springs produced in the same factory, all in the same manner. If
we are interested in testing the mechanical strain resistance of the springs, we might run an
experiment where we stretch the springs until they break. In this case the survival time is
the positive stretching force applied on the string, when the latter breaks. It is clear that
not all the springs will break at the same value of the applied force, but there will rather
be a distribution of forces. Models used for heterogeneous populations are introduced as
a generalization of the homogenous ones in the next section. Mathematically, a subject is
taken to be a realization of a random variable T , the time to event, which follows an unknown
law, also known as probability distribution. This associates to each event T ∈ (t, t + dt) a
probability f(t)dt. One of the aim of survival analysis, in this context, is to infer the shape
of f , i.e. the law of the population, from a sample T1, . . . , Tn (a finite set of measurements),
i.e. the observed time to event for n subjects.
In order to make inference and/or predict the survival time of future patients, we usually
need to postulate a statistical model. A statistical model encodes our assumptions regarding
the data generating process. In practice, this amounts to assuming that the data generating
distribution belongs to a certain class of functions or that it can be well approximated by a
function in the latter. Often, Survival analysis models are specified in terms of the hazard
rate function λ. This is the probability per unit time at which a subject experiences the
event of interest, given that he/she has survived up to t. Mathematically,

λ(t) dt := P
[
T ∈ (t, t+ dt)

∣∣∣T > t
]
. (1.1)

Knowledge of λ fixes the density f too. Introducing the survival function

S(t) := P
[
T > t

]
, (1.2)

we notice that by definition

f(t)dt = P
[
T ∈ (t, t+ dt)

]
= P

[
T ∈ (t, t+ dt)

∣∣∣T > t
]
P
[
T > t

]
= λ(t) S(t) dt , (1.3)

on the other hand

f(t)dt = P
[
T ≥ t

]
− P

[
T ≥ t+ dt

]
= − d

dt
S(t) dt (1.4)
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which together imply

− d

dt
S(t) = λ(t) S(t) , (1.5)

which is solved by

S(t) = e−Λ(t), Λ(t) :=

∫ t

0

λ(t)dt , (1.6)

since S(0) = 1 by definition of survival function. Hence, the probability density for a positive
random variable T can always be written as

f(t) = λ(t)e−Λ(t), t ∈ R+ → λ(t) ∈ R+ . (1.7)

Consider the case where all n subjects under investigation have independently experienced
the event of interest before the end of the study, then the likelihood of the sample reads

n∏
i=1

f(Ti) =
n∏

i=1

λ(Ti)e
−Λ(Ti) . (1.8)

In practice, however, some subjects will be censored. When a subject is right censored, for
instance, the typical format in which data are stored is the following: for each subject a
time T ∈ R+ and an indicator ∆ ∈ {0, 1} are recorded (a value ∆ = 1 indicates that the
subject experienced the event while under observation and 0 otherwise). Pragmatically one
might describe the data generating process by introducing two fictitious random variables,
the latent event time Y and the latent censoring time C and define the observable T,∆ as
follows

T = min{Y, C} ∆ = 1
[
Y ≤ C

]
. (1.9)

The latent event time Y is the time at which the subject experience the event under study,
i.e. Y follows the model (1.7), which is only observable if the subject has not yet been
censored, i.e. if ∆ = 1, meaning Y < C. The probability of the event T ∈ (t, t+ dt),∆ = 1
under the model (1.9) can then be easily deduced,

P
[
T ∈ (t, t+ dt),∆ = 1

]
= P

[
Y ∈ (t, t+ dt), Y ≤ C

]
= (1.10)

= P
[
C > t+ dt

]
P
[
Y ∈ (t, t+ dt)

]
= λ(t)e−Λ(t)SC(t+ dt)dt

where SC(t) = P
[
C > t

]
is the survival function of C. The case ∆ = 0 can be worked out

similarly and gives

P
[
T ∈ (t, t+ dt),∆ = 0

]
= e−Λ(t+dt)fC(t)dt (1.11)

where fc(t) is the density of C. This gives the probability density

f(t,∆) = λ(t)∆e−Λ(t) × SC(t)
∆fC(t)

1−∆ . (1.12)

Since we are only interested in fitting the value of λ, the additional contribution coming from
the distribution of the censoring time is generally neglected, as it appears as an additive
constant in the log-likelihood.
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1.1.2 Heterogeneous Populations

As already anticipated in the introduction of this chapter, it is often of interest to understand
how the covariates of the subject are related to the survival time. In medicine, for exam-
ple, the risk of prostate cancer might increase with the age of the patient and its smoking
habits. This motivates the introduction of survival regression models that try to capture the
relationship between the event time t of the subject and his/her characteristics X. This is
equivalent to specify an hazard rate function λ(.|X) which depends not only on time, but
also on the covariates X ∈ Rp. Different functional forms for the hazard λ(.|X) or assump-
tions on how X enters in λ(.|X) yield different models.
The class of Proportional Hazards (PH) models, for instance, postulates that X appears
in the hazard rate only via a so-called risk score exp{X′β}, which multiplies the common
baseline hazard rate λ

λ(t|X) = λ(t) exp{X′β} . (1.13)
Above we have indicated with ′ the scalar product of two vectors, i.e. for a,v ∈ Rd, a′v :=∑d

k=1 akvk. This implies that the ratio of the hazards of two patients depends only on the
difference in risk score which is constant over time

log
λ(t|X)

λ(t|Z)
= X′β − Z′β (1.14)

and hence the name, since the hazards for different patients are proportional (at all times
with the same constant).
Another example is the class of Accelerated Failure Time (AFT) models,

λ(t|X) = λ(t exp{X′β}) exp{X′β} . (1.15)

For a complete overview of different survival models we refer to [48]. In this thesis, we will
focus on fully-parametric and semi-parametric models.
Fully parametric models assume a parametric form for the hazard rate function λ, e.g. the
Weibull model, which is the only model in both PH and AFT classes, reads

λθ(t|X) = ρeϕtρ−1eX
′β, θ := (ρ, ϕ,β) ∈ R+ × R× Rp . (1.16)

But making assumptions on the baseline hazard might result in a mis-specified model, hence
practictioners generally prefer the Cox semi-parametric PH model [25], which does not make
any assumption on the baseline hazard, but assumes the PH form. The latter can be in-
formally regarded as a parametric model with the function t → λ0(t) being an “infinite
dimensional” parameter to be inferred from the data, i.e.

λθ(t|x) = λ0(t)e
X′β, θ = (λ0,β) ∈ F × Rp (1.17)

with F is the set of all mappings f from R+ to R+, such that exp
{
−

∫ +∞
0

f(t)dt
}
= 0.

Alternatives to the Cox semi-parametric PH model are flexible parametric models for the
hazard rate, such as the Piece-Wise Exponential model [35]. In this case the hazard is
assumed to be piece-wise constant, with jumps at d+ 1 knots τ1, . . . , τd+1, this gives

λθ(t|X) =
d∑

k=1

exp(ωk)1[τk < t < τk+1]e
X′β, θ := (ω1, . . . , ωd,β) ∈ Rd × Rp ,

where exp(ωk) is the value of the hazard in the interval (τk, τk+1). This is a simple case of a
parametrization in terms of a linear combination of basis spline functions [8].

Having briefly illustrated a restricted subset of the models available in the analysis of
time to event data, we give a short introduction to estimation via the maximum likelihood
method.
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1.2 A primer on frequentist estimation

A statistical regression model is a collection of conditional distributions of the response Y
given the covariates X, i.e.

Y |X ∼ f(.|X′β,σ), (1.18)

with the functional form f fixed and where β ∈ Rp are the regression parameters and σ ∈ Rd

are the nuisance parameters. To be clear, in Linear regression Y is the continuous value to
be predicted, whilst in Survival analysis Y = (∆, T ), an array containing as first component
the event indicator and as second component the event time. Each value of the parameters
β,σ identifies a conditional distribution that might describe the empirical data.

Once a model is chosen, one wonders : i) if there is a “best” conditional distribution in our
putative set and ii) how do we select it. Generally, the most widely adopted method to select
a conditional distribution is the Maximum Likelihood (ML) one, originally introduced by
Fisher [34, 2] (although other methods like e.g. the method of moments exists and are used
in some contexts). This prescribes to select the values of β,σ that maximize the likelihood
of the data

n∏
i=1

f(Yi|X′
iβ,σ), (1.19)

or, as is done in practice more often, by minimizing minus the logarithm of the latter (rescaled
by the sample size for better numerical behaviour)

ℓn(β,σ) := − 1

n

n∑
i=1

log f(Yi|X′
iβ,σ) , (1.20)

where ℓ stands for loss. The value of β,σ where ℓn attains its minimum is called the
Maximum Likelihood Estimator (since there the Likelihood is maximal)

β̂n, σ̂n := argmin
β,σ

{ℓn(β,σ)} . (1.21)

This choice for β,σ is optimal in the sense that it minimizes the “distance” (which we shall
soon define appropriately) between the conditional distribution of the data under the model
(1.18) and the empirical density of the data

fn(y,x) :=
1

n

n∑
i=1

δ(y − Yi)δ(x−Xi), (1.22)

where δ is the Dirac’s delta, which assigns a probability mass of 1/n to each point in the
training data-set. This “distance” is quantified by the Kullback-Liebler(KL) divergence [24].
Given two distributions f, g : Ω ⊆ Rℓ → R+ (almost everywhere non-vanishing over Ω), the
KL divergence is defined as

DKL[f, g] :=

∫

Ω⊆Rℓ

f(x) log
[f(x)
g(x)

]
dx . (1.23)

The Jensen inequality [71] can be used to show that the quantity above is non-negative and
vanishes if and only if the f coincides with g almost everywhere, i.e. on all subsets of Ω with
non-vanishing f probability density. However, DKL is not symmetric and does not satisfy
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the triangle inequality, thus it is formally not a distance and hence the name divergence. In
our setting, we have

DKL[fn, f ] = −
∫

fn(y,x) log
f(y|x′β,σ)

fn(y,x)
dydx =

=

∫
fn(y,x) log f(y|x′β,σ)dydx−H[fn] = (1.24)

= ℓn(β,σ) +H[fn] (1.25)

where H[fn] is the Shannon Entropy of the discrete distribution fn [24], which does not
depend on the parameters of the model. Hence, the Maximum Likelihood method selects
the value of (β,σ) that makes our model closest to the empirical density of the data fn.
However, one would rather like to minimize the divergence DKL[f0, f ] between the model
(1.18) and the actual density from which the data are (assumed to be) “pulled”, which we
call f0.

The Maximum Likelihood (ML) methodology was developed under the scenario where
the number of covariates p is much smaller than the total number of patients recorded n. In
this case, it is possible to show that the ML estimator posses several desirable properties like
consistency and asymptotic normality and is even optimal in a certain sense, as it saturates
the Cramer-Rao bound [11, 84]. This scaling regime was realistic during the last century,
when the number of recordings per patient (the number of covariates) counted few units.
Although the “classical” setting with p ≪ n remains relevant in a number of applications, for
instance when there is experimental control of covariates. Nowadays, the scenarios “small n,
large p” and “large n, large p”, where the number of recordings per patient p is much larger
than, or comparable to, the total number of patients recorded n, are becoming increasingly
common. In this modern setting, which is referred to as “high dimensional regime”, the
classical methodology breaks down: the ML estimator might not be well-defined or may not
even exist; when it does exist, it is frequently biased and has a large variance, making it an
unreliable tool for inference and prediction.

While the main focus of the thesis is on survival analysis models, it is easier to showcase
some of the aforementioned “overfitting problems”, arising when p is proportional to n, in the
context of the linear regression model. For this model the ML estimator is available in closed
form, i.e. can be written explicitly as a function of the data, hence the main concepts can be
easily illustrated in this framework. Survival analysis models, in contrast, are non-linear and
there exists no closed form for the ML estimator. We must then resort to more complicated
mathematical methods, which might hinder the exposition of the core ideas at this stage,
but will be timely addressed in the following chapters of the thesis.

1.3 What is the problem with high dimensional data?
Consider data generated according to a simple linear model,

Y = Xβ0 + ϵ, ϵ ∼ N (0, σ2In) , (1.26)

with X ∈ Rn×p fixed and β0 ∈ Rp fixed.
To make an example, suppose we model the height of the firstborn child (at adulthoood) as
a function of the height of the father and of the mother. That is, we suppose that the height
of the firstborn child is a linear combination of the height of the parents. To do this, we
use data from a registry containing the measured height of 1000 firstborn sons or daughters,
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together with the height of the parents. Sex might be an important factor here, as generally
men are taller than women, so we include a binary variable indicating the gender of the
child. In this (very simplistic) model p = 3, n = 1000 and the design matrix X is 1000× 3.
When p < n the ML estimator β̂n of β0 exists and can be computed explicitly as

β̂n = argmin
β∈Rp

{ 1

2n
∥Y −Xβ∥22

}
=

(
X′X

)−1
X′Y , (1.27)

provided X′X is non-singular, i.e. all its eigenvalues are strictly positive. Substituting the
expression for the linear model, we obtain

β̂n = β0 + ϵ̃, ϵ̃ :=
(
X′X

)−1
X′ϵ , (1.28)

hence β̂n is unbiased, since ϵ̃ has a null expectation by (1.26). The Mean Squared Error
(MSE) reads

Eϵ

[
∥β̂n − β0∥22

]
= Eϵ

[
∥ϵ̃∥22

]
= σ2Tr

((
X′X

)−1
)
=

p

n
σ2 1

p
Tr

(
Σ̂n

−1)
(1.29)

where the expectation is conditional on the covariates, which are regarded as fixed, and we
defined Σ̂n :=

∑n
i=1 XiX

′
i/n, the empirical covariance matrix. Notice that

λ−1
max(Σ̂n) ≤

1

p
Tr

(
Σ̂−1

n

)
≤ λ−1

min(Σ̂n), (1.30)

where λmin(Σ̂n), λmax(Σ̂n) are, respectively, the smallest and largest eigenvalue of Σ̂n. Hence,
the MSE is controlled by the ratio p/n, the minimum eigenvalue of the empirical covariance
matrix λ−1

min(Σ̂n) and by the conditioning number c(Σ̂n) := λmax(Σ̂n)/λmin(Σ̂n). Whilst the
prediction error is

Eϵ

[ 1
n
∥X(β̂n − β0)∥22

]
=

1

n
Eϵ

[
ϵ′Pϵ

]
=

p

n
σ2, P := X

(
X′X

)−1
X (1.31)

since P is a projection matrix of rank p.
When p ≪ n and provided pλ−1

min(Σ̂n)σ
2 = o(n), the estimation error, quantified by the MSE,

and the prediction error tend asymptotically to 0 as n diverges to infinity. In particular,
the fact that the MSE vanishes asymptotically implies (via Chebishev inequality) that the
estimator β̂n is consistent for the whole vector β0, i.e.

∥β̂n − β0∥22
P−−−→

n→∞
0 . (1.32)

In words, as n increases we estimate better and better the target β0.
This picture changes as soon as p is comparable (not even bigger than) n, i.e. when p

grows proportionally to n (p < n), such that p = pn = ζn, ζ ∈ (0, 1). In this case,

Eϵ

[ 1
n
∥X(β̂n − β0)∥22

]
= ζσ2 (1.33)

and
Eϵ

[
∥β̂n − β0∥22

]
= ζδλ−1

min(Σ̂n), δ ∈ [1/c(Σ̂n), 1] (1.34)

which does not vanish as n → ∞. Hence, the consistency of β̂n is lost, and the prediction
error does not vanish, even asymptotically. The situation further complicates when p > n.
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In that case, the empirical covariance matrix Σ̂n is singular, and the Maximum Likelihood
estimator is ill-defined, since there exist infinite minimizers of (1.27). Notice, however, that
we have, for any v independent from the data Y,X

v′β̂n = v′β0 + ε, ε := v′(X′X
)−1

X′ϵ ∼ N (0, v2n), (1.35)

where
v2n :=

1

n
v′Σ̂−1

n v,
1

n
λ−1
max(Σ̂n)∥v∥22 ≤ v2n ≤ 1

n
λ−1
min(Σ̂n)∥v∥22 . (1.36)

Thus, provided λ−1
min(Σ̂n)∥v∥22 = o(n), we have L2 consistency

∥v′β̂n − v′β0∥22
P−−−→

n→∞
0 . (1.37)

This means that the estimation error for each component is still “small”, however, when
adding all the contributions up, the vector difference remains finite even in the limit, since
the number of components p grows with n proportionally.

The impossibility of estimating consistently a large number of parameters simultaneously
is a manifestation of the so-called “curse of dimensionality”. This “problem” is known in
the statistical community since the 60’, starting from the works of Kolmogorov and Huber,
notably [86, 43, 31]. In a certain sense, we are “asking too much” : when p is large and
comparable to, or larger than, n there is not enough data to meaningfully estimate all the
parameters of the model. Put it in other words, if p is of order n, minimizing the Kullback-
Liebler divergence (1.23) between the model (1.18) and the empirical density leads to a
poor estimate of (β,σ). The value of the parameters (β,σ) that are selected leads to a
conditional distribution that “mimics excessively” the empirical density, in jargon it is said
that the model “over-fits” [3]. This can be easily seen by computing the estimator for the
noise variance

σ̂2
n =

1

n
∥Y −Xβ̂n∥22 =

1

n
ϵ′(In −P)ϵ . (1.38)

Its expectation equals (again, always for p < n)

E
[
σ̂2

n

]
=

1

n
E
[
∥Y −Xβ̂n∥22

]
=

1

n
E
[
ϵ′(In −P)ϵ

]
= (1− p/n)σ2 . (1.39)

It can be shown via standard concentration inequalities [31, 85] that (1.38) concentrates
around its average for large n (1.39), i.e. the fluctuations around the mean are of or-
der 1/n. Hence, as the ratio ζ = p/n increases towards one, the variance is progressively
under-estimated, eventually reaching zero at ζ = 1. This shows that the model increasingly
“interprets noise as signal”, leading to interpolation when ζ = 1 where the inferred noise
variance σ̂2

n is zero (with high probability) and the Mean Squared Error of β̂n equals σ2.
The lack of consistency prevents the study of the asymptotics of MAP estimators via the

classical statistical framework, as in e.g. [33], since Taylor expansions around the true value
are not valid. A possible way to restore consistency is to reduce the number of covariates
included in the regression model, i.e. reduce p. This is the subject of the next subsection.

1.4 Feature selection and data reduction
Feature selection and data reduction are distinct collections of methods which aim at selecting
a subset of the original covariates/features in order to avoid the problems that we have
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discussed in the previous section by effectively reducing p, the number of covariates included
in the regression model. The main distinction between feature selection and data reduction
is in how the data are used to make this selection. Feature (or model) selection makes use
of the response data Y = (Y1, . . . , Yn), whilst data reduction does not. The aims are also
intrinsically different : feature or model selection aims at selecting a target “true” model that
generated the data, whilst data reduction only aims at reducing the number of covariates.

1.4.1 Feature selection

Suppose that originally we are given p “raw” covariates. A priori there exist 2p models, one
for each possible subset of covariates (not accounting for the interactions between variables!),

Mτ := {β0 : β0,k = 0, if τk = 0}, τ ∈ {0, 1}p . (1.40)

In a high dimensional setting, brute force or “all subset” model selection by searching in the
set above is computationally intractable since, as noted above, the cardinality of this set is
exponential in p. Alternatively, one can restrict the set of models to

Mk := {β0 : β0,k+1 = β0,k+2 = · · · = β0,p = 0}, k ∈ {1, . . . , p} , (1.41)

which is a sequence of subsets, i.e. Mk ⊂ Mk+1. In this case, one is required to compare p
different models at most, which is more computationally tractable. However, compared to all
subset selection, the ordering (or labelling) of the various features matters. The true model
might include, say features 1, 2, 10, which is a subset of cardinality 3, but is only included in
M10 [11]. There exist testing procedures that implement this idea in practice, like stepwise
forward (or backward) selection [13] and minimization of model selection criteria such as AIC
[1] and BIC [72], to name a few. Step-wise selection is advocated to be unstable, as small
perturbation of the data set can lead to wildly different estimated models [13]. Furthermore,
statistical inference after having selected a model based on the response data should account
for the model selection procedure : confidence statements computed “as if” the selected
model were the true one are too narrow. Likewise, goodness of fit or prediction metrics
will be optimistically biased. However, besides very simple models, the computation of the
confidence intervals is far from trivial [40, 50]. Nevertheless, a reduction of the number of
covariates to be included in the model might be necessary in applications, for instance when
the sample size is not sufficiently large. For this reason, post model selection inference is still
an active research topic. In this context, the Cox reduction method [26] has been recently
proposed as an approximation to all subset selection in the high dimensional regime. The
authors proposed the following procedure. Initially, the covariates are arranged on a cube
s× s× s = p (without loss on generality as one can just add zeros to make a perfect cube).
This cube can be traversed in 3s2 ways, each time collecting s features. The idea then is
to run 3s2 regressions over s variables (so that each feature is regressed 3 times with other
s − 1 different covariates) and retain those features that are deemed significant (up to a
certain user defined confidence level via a statistical test) two or more times (on the total of
3, for each covariate). This procedure is iterated, (if necessary one arranges the features in a
square, rather than a cube and proceeds similarly), until 10, 20 covariates are left. Then one
can proceed to check if the remaining features are dependent and eventually eliminate those
that are strongly correlated. Finally, once a sufficienlty small number of covariates is isolated,
one can run an “all subset regression” in order to select the models that are consistent with
the data. Recently, a theoretical analysis of this model selection process have been carried
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out in [52]. There, the authors point out some weaknesses and propose improvements of
the original approach of [26]. In particular, a strength of the method is the fact that it
should be consistent if the procedure is run several times with different randomization. An
inconsistency points out that the conclusion drawn by the method might not be accurate.

1.4.2 Data reduction

Data-reduction techniques, conversely, aim at reducing the number of predictors/covariates
to be included in the regression model, in an “un-supervised” manner, i.e. without using the
responses. Doing so guarantees to not alter the statistical inference task that follows [40].
Perhaps the simplest instance of data reduction is Principal Components (PC). Consider the
sample scatter matrix Sn := X′X, this is a symmetric positive semi-definite matrix in Rp×p,
hence it can be diagonalized as

S = X′X = O′ΛO, (1.42)

with O ∈ Rp×p an orthogonal matrix and Λ a diagonal matrix with eigenvalues λ1, . . . , λp, i.e.
Λ = diag(λ1, . . . , λp). By its definition, there can be at most min{p, n} non-zero eigenvalues.
The eigenvalues can always be ordered as λ1 > λ2 > · · · > λp: the first principal component
is the eigenvector corresponding to the first eigenvalue (the largest), and so on and so forth.
Retaining only a subset of the principal components, say those corresponding to eigenvalues
larger than a certain (user specified) threshold, leads to a reduced, or more parsimonious,
model. However, it remains the problem of how to choose in practice the threshold, or
equivalently how many principal components one should include. After having reduced the
original covariate vector, retaining, say, the first k < p Principal Components, one can
conduct ordinary regression. This is generally known as Principal Component Analysis
(PCA). There exist several more involved generalization of PCA. We refer to [41] for an
exhaustive presentation, which is not the scope of this manuscript. Alternative strategies,
that do not rely on Principal Components, have also been proposed in the literature [40].
In redundancy analysis, for instance, the idea is that some columns of X are redundant, i.e.
can be predicted from the knowledge of the remaining columns. The method proceed to
eliminate features that can be predicted sufficiently accurately (which is quantified by a user
provided threshold), by a possibly non-linear relationship involving the remaining predictors.
More generally, methods aiming at extracting a reduced representation of the features, from
knowledge of the features only, go under the umbrella of unsupervised learning algorithms
[41].

Instead of reducing the number of covariates/features included in the regression model, an
alternative way to restore consistency is to incorporate previous knowledge in the regression
problem. This is the topic of the next section.

1.5 Prior beliefs, Bayesian statistics and consistency in
the high dimensional regime

Previous or “prior” knowledge is essentially incorporated as unverifiable assumptions on the
data generating process. This is often done by adding a regularizer, also-called a penalization
function, to the objective function (1.20) that is to be minimized in order to estimate the
parameters of our model. The regularizer acts by discouraging a priori unlikely values for
the parameters of the model, effectively penalizing the latter, hence the alternative name.
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Such a procedure might be perceived to be “ad hoc”, or “artificial”, however, it has a “natural”
interpretation in the Bayesian formulation of statistics.

In Bayesian statistics, after a likelihood function (or equivalently a model) is assumed,
the central object of interest is the posterior distribution of the model parameters given the
data

p(β,σ|D) ∝
{ n∏

i=1

f(Ti|X′
iβ,σ)

}
π(β,σ), (1.43)

where π is the prior density function. Mathematically, the prior function incorporates the
previous knowledge of the scientist by assigning more weight (density) to values of the
parameters that are believed (by all scientist with the same prior π) to be more likely “a
priori”, i.e. before seeing the data. The posterior function might be interpreted as the
updated belief of the scientist (with the prior π) over the parameters (β,σ) given the data
(the empirical evidence). At difference with the Frequentist framework, where we select a
parameter value from model (1.18), also-called a point estimate [11], in Bayesian statistics
we obtain a distribution over all the conditional distributions (identified by the values of the
parameters, once a likelihood is assumed) in the model. This distribution is subjective, i.e.
depends on the prior. This means that all scientists with the same prior will agree on the
conclusion, i.e. will have the same posterior, but this is not true if the priors are different.
However, one might argue that also in the Frequentist approach the scientist chooses a
model, based on e.g. affinity with the data and computational convenience, and this point
is necessarily subjective. Hence, all the scientist that agree on the same set of assumptions
will finally draw the same conclusion. Eventually, in a fully Bayesian approach, we should
consider also a prior over the different models adopted in the analysis [37].

In general, however, obtaining a closed form expression for the posterior is impossible
(computationally hard). When the number of parameters included in the model is reasonably
contained, there exist numerical ways of sampling from the posterior (1.43), e.g. via the
Monte-Carlo Markov Chain (MCMC) method, or via the Gibbs sampling procedure [37]. In
the modern high dimensional regime these methods are computationally slower [9, 18] and
the posterior density might be replaced, for computational convenience, with a Dirac delta
at the posterior mode (the value of β,σ where the posterior is maximal), also known as the
Maximum A Posterior (MAP) estimator. By its definition the MAP estimator solves

β̂n, σ̂n := argmin
β,σ

{Hn(β,σ)} (1.44)

Hn(β,σ) := nℓn(β,σ) + r(β,σ) , (1.45)

where r is called the regularization function

r(β,σ) := − log π(β,σ) (1.46)

To summarize, the Maximum A Posteriori estimator can be seen as a generalization of
the Maximum Likelihood estimator, where additional previous knowledge is incorporated
through the regularization function r (the minus logarithm of the prior). Since the regu-
larization acts as a penalty for those values of β,σ which have a small prior probability
(values that are assumed to be unlikely a priori), (1.44) is sometimes called Penalized or
Regularized Maximum Likelihood estimator. Different priors enforce different beliefs on the
data generating process, which result in different properties of the resulting MAP estimator.

Priors that enforce the belief in an underlying sparse model, have received much attention
in the last two decades. A model is sparse if the number of covariates that are correlated with
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the outcome is “small”. To make the discussion clear, suppose that we have data generated
from the linear model (1.26). Formally, we can define the support of β0 as the set of non-null
components, i.e. supp(β0) =

{
µ ∈ {1, . . . , p} : |β0,µ| > 0

}
, where we indicated with β0,µ

the µ-th component of β0. Then the model is sparse if supp(β0) has a small cardinality
s0 := |supp(β0)| ≪ p. The Least Absolute Shrinkage and Selection Operator (LASSO)
regularization introduced in [83]

r(β) = α∥β∥1 = α

p∑
k=1

|βk| (1.47)

which corresponds to a Laplace (or double exponential) prior, is an important, but by no
means the only, example. For the linear regression model, the corresponding MAP estimator
is defined as

β̂n = argmin
β∈Rp

{ 1

2n
∥Y −Xβ∥22 + α∥β∥1

}
(1.48)

where α is a free parameter that tunes the amount of regularization. Unfortunately, β̂n in
(1.48) cannot be solved in closed form. However, it has been shown in e.g. [15, 10], that for
α in a suitable range O(

√
log(p)/n), the Mean Square Error converges to zero in probability

as n diverges
∥β̂n − β0∥2

P−−−→
n→∞

0 , (1.49)

under the assumption that the underlying true signal is sufficiently sparse, i.e.

∥β0∥1 = o
(√

log(p)/n
)
, (1.50)

where we used the little o notation of Landau [84, 15], provided that the compatibility
condition ∥∥∥ β′

0β̂n

∥β0∥22
β0 − β0

∥∥∥
2

2
≤ β̂′

nΣ̂nβ̂n
s0
ϕ2
0

(1.51)

is satisfied for some ϕ0 > 0. The condition above is essentially a constraint on the correlations
between the covariates. Informally, the covariates should not be too correlated [15]. In
practice, however, α is generally chosen in a data-driven manner, for instance by cross
validation, or variants of the latter, which aims at optimal prediction (which can be actually
measured), which in turn is often in conflict with variable selection. As a consequence, cross
validation methodologies tend to select a value of α that is smaller than the one prescribed
by the theory in order to achieve consistency [62, 15]. Furthermore, the validity of (1.51) is
in general difficult to check, in practice, as β0 is unknown. Finally, while a “parsimonious”
model is often appealing in terms of interpretability, the assumption of a sparse model is not
directly verifiable and might not be always empirically justified [31]. In fact, it can be shown
that the Lasso or other typically used sparsity inducing penalties might return estimators
having very large MSE, when the sparsity assumption does not hold [51].

To summarize, a vast theoretical literature has established the LASSO regularization
and its variants as valuable tools in high dimensional statistics, since when properly tuned
they can restore consistency, if the underlying β0 is sufficiently sparse. However, in the
proportional regime, where the number of covariates associated with the outcome (s0) is pro-
portional to the number of samples (n), i.e. s0 = νp, ν ∈ (0, 1) with the number of covariates
p = ζn, ζ ∈ (0,∞), consistency is lost, even when imposing a properly tuned regularization.
During the last two decades, different theoretical methods have been explored in order to
establish the asymptotic behaviour of MAP estimators in this regime. The realization that
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heuristic methods from statistical physics are well suited to cope with optimization problems
in this “inconsistency” regime can be traced back to [58] and more specifically to the study
of learning in neural networks in its early days [36].
In the next section, we aim at introducing this alternative language or notation, with em-
phasis on the application to statistical models.

1.6 Asymptotic behaviour of MAP estimators in the pro-
portional regime via statistical physics

An optimization problem can be viewed as a statistical physics’ problem, via the analogy
that “a physical system tends to occupy the minimal energy configuration as the temperature
tends toward zero”. This seemingly trivial observation is at the base of successful ideas like
simulated annealing [49]. Simulated annealing is a randomized algorithm which aims at
obtaining a solution of an optimization problem, for instance the Maximum A Posteriori
estimator (1.44). This is achieved by sampling configurations β ∈ Rp,σ ∈ Rd according to
the Boltzmann probability density

pγ(β,σ|D) =
1

Zn(γ|D)
e−γHn(β,σ|D), Zn(γ|D) =

∫
e−γHn(β,σ|D)dβ dσ (1.52)

with Hn(.|D) defined as in (1.20) and where D indicates the data-set, i.e. D := {(Y1,X1),
. . . , (Yn,Xn)}. For the more statistically oriented reader, the expression (1.52) might appear
very similar to the posterior distribution of Bayesian Statistics [55, 65]. Indeed, the latter
is recovered when γ = 1. As the temperature vanishes, i.e. in the limit γ → ∞ (and with a
sufficiently smooth annealing schedule), the sampled configurations “will be close” to β̂n, σ̂n.
This is because as γ → ∞, the Boltzmann density (1.52) is “strongly peaked” around the
solution of the optimization problem defining the MAP estimator (1.44). So we see that
the present formulation interpolates elegantly between the Bayesian formulation and the
Frequentist one. However, one might question if there is any practical advantage of such a
formulation. We shall soon see that there is indeed an advantage in this reformulation of the
problem. Densities like the one in (1.52) are the “bread and butter” of the statistical physics
of disordered systems, where one would identify:

• D as the quenched disorder

• H(β,σ|D) as the Hamiltonian of a fictitious physical system with degrees of freedom
coinciding with the parameters of the model, i.e. with β,σ

• Zn(γ|D) as the partition function (a.k.a. the evidence in Bayesian terminology) .

Powerful methods like the replica and the cavity method have been invented to deal with
such problems in the last century [59, 75, 69]. Indeed, the so-called “statistical mechanics ap-
proach” has been extremely successful when applied to modelling in several cross-disciplinary
scientific areas involving some kind of random optimization, e.g. neural networks and ma-
chine learning [73, 32, 29, 20, 54, 38], random satisfiability problems [57, 60, 67], economy
[20, 16], information processing [28, 5, 47, 79, 87] and more recently high dimensional statis-
tics [27, 6, 45, 46, 63, 21].
In statistical physics, the central quantity of interest is the free energy density

fn(γ|D) := − 1

nγ
logZn(γ|D) . (1.53)
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When γ = 1 this is exactly the logarithm of the Bayesian’s evidence (per sample), i.e. the
normalization constant of the posterior (which is a function of the observed data). In the limit
γ → ∞, this quantity is related to the optimal value of the optimization problem defining the
MAP estimator. This can be seen via an application of the Laplace approximation method

−1

γ
log

∫

Ω⊆Rd

exp{−γh(x)} dx ∼
γ→∞

min
x∈Ω

{h(x)}+O(1/γ) , (1.54)

where the right-hand side is an asymptotic expansion in γ with reminder of order 1/γ [61, 66].
In the limit, we obtain an identity

lim
γ→∞

fn(γ|D) =
1

n
min

β,σ∈Rp×Rd

{
Hn(β,σ|D)

}
. (1.55)

The Laplace’s identity above can be interpreted as a formal statement of the intuition be-
hind simulated annealing: all the points that are not the one(s) at which the Hamiltonian
attains its minimum, have an exponentially smaller probability of being observed, where the
exponent is proportional to the inverse temperature γ that is diverging.

Asymptotic theory makes statements on the average behaviour of an estimator, e.g. what
is its MSE, or what is the plug in prediction error, under an assumed “true” model and other
regularity conditions over the data generating process [11]. Suppose in fact that we are
interested in computing the expected value of the optimum of the objective function under
the joint distribution of covariates and responses, i.e.

En = ED

[ 1
n

min
β,σ∈Rp×Rd

{
Hn(β,σ|D)

}]
. (1.56)

In this case, even when the samples in D are i.i.d., min Hn(β,σ|D) is not a sum of i.i.d.
random variables and computing its expectation is non-trivial. In the statistical mechanics
formulation, we have

En = lim
γ→∞

fn(γ), fn(γ) := − 1

nγ
ED

[
logZn(γ|D)

]
, (1.57)

where we have heuristically exchanged the expectation with the limit. However, En is still
non-trivial to compute, as computing Zn(γ|D) at fixed D is already a challenge in its own.
It is here that the advantage of the statistical mechanics calculation bears fruit : the replica
method and its relative, the cavity method, have been devised to circumvent exactly this
problem.

The replica method builds on the following relation

EX

[
logX

]
= lim

r→0

1

r
logEX

[
Xr

]
, (1.58)

which can be justified rigorously for a positive random variable (a random variable that
assumes strictly positive values with probability one). Applied to our problem at hand, this
leads to

fn(γ) = lim
r→0

f (r)
n (γ), f (r)

n (γ) := − 1

γnr
logED

[
Zr

n(γ|D)
]
. (1.59)

So far the procedure is perfectly “respectable”, in the sense that if Zn(γ|D) exists, then it
can be justified rigorously under mild assumptions on [64]. However, computing arbitrary
real moments of Zn(γ|D) is yet a daunting task in many cases. For this reason, the replica
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method proceeds by computing f
(r)
n (γ) approximately to leading order in n, “only” for r

integer. This gives a formal expression for f (r)(γ)

f (r)(γ) = lim
n→∞

f (r)
n (γ) , (1.60)

when r is an integer. In physics f (r)(γ) is known as the “replicated” free energy density, since

Zr
n(γ|D)) =

∫
e−γ

∑r
α=1 Hn(β,σ|D)

r∏
α=1

dβα dσα (1.61)

is the partition function of a system of r independent replicas of the system, at a fixed
realization of the disorder D (a fixed realization of the data-set). Finally, the value of f(γ)
is obtained by taking the limit r → 0 of the formal expression for f (r)(γ) valid at integer r.
The procedure can be compactly summarized as

lim
n→∞

En = lim
γ→∞

lim
r→0

lim
n→∞

f (r)
n (γ) . (1.62)

Notice that we have exchanged : i ) the limit n → ∞ with γ → ∞ and ii) the limit n → ∞
with r → 0.

The replica and the cavity method give access to the asymptotic value of En and test
functions of the estimators β̂n, σ̂n. However, because of their heuristic nature, neither of
the methods are able to clarify what is the type of convergence in the previous sentence.
The latter might, in some cases, be obtained via a rigorous approach. A massive amount of
work, first in the field of mean field spin glass models [77, 78, 19], established the rigorous
validity of various heuristic results obtained via the replica method, by means of the interpo-
lation method, introduced originally in [39], and then later extended in [4] for applications
to information theory and inference. A different “algorithmic” method, is the one introduced
originally in [12], later adopted to establish the rigorous formulation of the Approximate Mes-
sage Passing framework [5, 28]. This method differs from the Gaussian Interpolation method
previously mentioned, and is based on the analysis of the Thouless Anderson Palmer (TAP)
equations, which were originally introduced in [80]. Recently, particularly in the field of infer-
ence and high dimensional statistics, the Convex Min Max Gaussian theorem [82, 81, 62, 54]
has emerged as an alternative to prove the replica formulas in the zero temperature limit
and when the original Hamiltonian is a convex function of the degrees of freedom.
For these reasons, the belief of the statistical mechanics community is that the replica method
leads to the “correct answer”. However, the question “why does the replica calculation recipe
work?” remains, as yet, unanswered [64].
We would however highlight some points in favor of the heuristic statistical mechanics pro-
cedure :

• the “power” of the replica method is that it allows to tackle any problem that can be
re-written in the statistical mechanics formulation (via a Boltzmann-Gibbs measure),
e.g. optimization problems, in a unified manner following a well-defined recipe ;

• the proof of the results obtained via the replica method have been possible because
of the knowledge acquired via the replica method in the first place. There are recent
exceptions [82], which however recover the same results;

• when possible, proving the results obtained via the replica (or the cavity) method
requires a non-trivial amount of pages of work, which easily exceeds the number of
pages of a replica derivation [64] .
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Furthermore, the emerging mathematical theory is, at least in the opinion of the author,
beautiful and somewhat “exotic”: the free energy f

(r)
n (γ) is defined over the space of config-

urations of r replicas and we are “taking the limit” r → 0. It is here that the “magic” of the
replica method is believed to lie, i.e. in the parametrization of this dependency. For this
step there exist several, in fact infinite, possible choices of increasing complexity [59, 29, 30].
The simplest parametrization, is the so-called replica symmetric ansatz. In this thesis we
will only deal with the latter, as it has been shown to lead to the correct result, when the
Hamiltonian is a convex function of the degrees of freedom.
However, the steps of the “recipe” somewhat obscure the underlying approximation taken.
In this regard the cavity method [59, 56], is more “direct”, since it hinges on explicit approx-
imations and assumptions. This is one of the reasons that motivated the author to explore
also this alternative heuristic, which provides a complementary view of the subject.

1.7 Aim and structure of this thesis
The first chapter of this thesis focus on Generalized Linear Models (GLMs) and can be con-
sidered as a preparation to the following chapters, which conversely are devoted to Survival
analysis models.

The goal of chapter 2 is to study an ad hoc penalization that can be tuned in order
to obtain an asymptotically unbiased MAP estimator. Limiting our-selves to quadratic
penalties for mathematical simplicity, we propose to use a “covariant” prior, also known as
uniform shrinkage prior in Bayesian literature [23]. This is a generalization of the well known
ridge penalization [42], where the matrix of the quadratic form defining the regularization
is the empirical covariance matrix (in place of the identity as for ridge). The net effect
is to return an estimator which is uniformly shrunk with respect to the ML one. The
proposed methodology is shown to return asymptotically unbiased estimators, provided the
regularization strength is chosen appropriately (as a function of ∥β0∥2) and p < n. The
precise value of the regularization strength can be chosen by solving a set of non-linear
equations, which is derived by setting up a statistical mechanics theory and carrying out the
calculations via the cavity method. This gives me the opportunity to introduce the statistical
mechanics approach to learning and optimization [32], which will also be a key ingredient in
many chapters. The performance of the proposed estimator is tested numerically, confirming
the theoretical findings.

Chapter 3 deals with the Cox semi-parametric Proportional Hazards model, which is
arguably the most famous model used for survival data. Previous articles [21, 74, 22] at-
tempted to construct a statistical mechanics theory for this model, but were unable to: i)
account for the semi-parametric nature of the Cox model, ii) account for censoring. My first
contribution in this chapter is to overcome these limitations, namely to devise an efficient
numerical scheme to solve the replica symmetric equations of the model in question directly,
without the need of the variational approximation (which might not always be accurate)
and to include censoring in the theory. The inclusion of censoring complicates the picture
painted in the previous studies in a non-trivial manner, both numerically and theoretically.
In fact, when observations are censored, the ML estimator might not exist [17, 44, 88]. When
the ML estimator exists, we confirm through numerical simulations that the theory is able
to predict accurately the behaviour of the estimator. Starting from the considerations of
the first chapter, we then devise a procedure to solve, approximately, the replica symmetric
equations starting from the data, i.e. without the need to know the true data generating
process (of course under assumptions on the latter). This is vital in order to compute the de-
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biasing factors from the theory, in practice. The methodology has been tested on synthetic
data, showing that the estimators obtained in this manner are effectively un-biased.

In chapter 4, it was the intention of the author to “put on firmer ground” at least some
of the findings of chapter 3, in order to complement the insight gained from the statistical
physics approach. Tackling directly the Cox regression model is a highly non-trivial math-
ematical challenge. For this reason, I focused instead on the asymptotic behaviour of the
Piece-Wise Exponential model, which can be rigorously established by means of the Convex
Gaussian Min Max theorem [82]. The Piece-Wise Exponential model is a “flexible” para-
metric PH model, where the base hazard rate is parametrized by a linear combination of
piece-wise functions defined over user-specified intervals. The Cox model can be interpreted
as a special case of the model considered in this section, when the intervals are fixed accord-
ing to a specific data-driven manner first proposed by Breslow [14, 53]. However, here, the
proof hinges on the fact that the number of intervals is finite, i.e. does not grow with the
sample size (n), hence our results are not directly applicable to the Cox model.

We extend, in chapter 5, the replica theory for the Cox model by considering the regu-
larized Cox regression, allowing for an arbitrary regularization function when the covariates
are sampled from a multivariate standard normal distribution. Hence, the first contribution
of this chapter is to precisely quantify the behaviour of the Regularized Maximum Partial
Likelihood Estimator as function of the distribution of the entries of β0. The second con-
tribution of this chapter is to propose a variant of the Generalized Approximate Message
Passing algorithm [28, 70] to compute the MAP estimator for the Cox regression model. The
update equations of this algorithm suggest the computation of a local field that can then
be used to estimate all the order parameters of the theory from the data, i.e. without the
need of solving the RS equations of the theory which require the perfect knowledge of the
data generating process (which is not available in practice). This strategy is similar, but not
identical, to the Adaptive TAP or Expectation Consistent [68] inspired procedure adopted
in [76] for the LASSO in linear regression models. We show via numerical experiments that
this strategy is correct and easy to implement.

In the last chapter we show that, when the covariant prior is used as a regularizer and
ζ < 1, one can estimate all the unknowns of the theory, including the signal strength and
the nuisance parameters for any positive definite population covariance matrix Σ0. Thanks
to recent advancements in the field [7], the Replica Symmetric order parameters can be
measured directly from the data, without solving the Replica Symmetric equations of the
theory both for Generalized Linear Models (GLMs) and Cox regression model. Second,
when the model is a parametric GLM, we show that it is possible to easily estimate the
signal strength and other nuisance parameters, directly from the data by solving a set of
moment matching equations. A more involved procedure is proposed and tested for the Cox
semi-parametric model, building on the ideas proposed in chapter two, showing via numerical
experiments that the resulting estimators are approximately unbiased.
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Chapter 2

Penalization-induced shrinking without
rotation in high dimensional GLM
regression: a cavity analysis

This chapter is published in Journal of Physics A : Mathematical and Theoretical, https:
//iopscience.iop.org/article/10.1088/1751-8121/aca4ab/meta. The notation in this
chapter is different from the notation in the introduction. The dot product between two
vectors a,v ∈ Rd is indicated with a ·, i.e a · v =

∑d
k=1 ak vk.

2.1 Abstract
In high dimensional regression, where the number of covariates is of the order of the number
of observations, ridge penalization is often used as a remedy against overfitting. Unfortu-
nately, for correlated covariates such regularisation typically induces in generalized linear
models not only shrinking of the estimated parameter vector, but also an unwanted rota-
tion relative to the true vector. We show analytically how this problem can be removed
by using a generalization of ridge penalization, and we analyse the asymptotic properties of
the corresponding estimators in the high dimensional regime, using the cavity method. Our
results also provide a quantitative rationale for tuning the parameter controlling the amount
of shrinking. We compare our theoretical predictions with simulated data and find excellent
agreement.

2.2 Introduction

2.2.1 Setting and motivation

In statistical regression the goal is to understand the relationship between a response T ∈ R
and a set of covariates X ∈ Rp, given n previously recorded observations. In generalized
linear models (GLM) our hypotheses are encoded in a statistical model

p(T |X · β,σ) (2.1)

where β ∈ Rp are the regression parameters and σ ∈ Rd are the nuisance parameters. For
simplicity we assume that the covariates follow a multivariate normal distribution

X ∼ N (0,A0) (2.2)
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and that our model is correctly specified, so our n observations
{(T1,X1), . . . , (Tn,Xn)} are actually generated according to (2.1), i.e. p(Ti|Xi · β0,σ0) for
some “true” unknown values β0 and σ0 that we would like to estimate. The parameter estima-
tors β̂n, σ̂n are found by optimizing an objective function constructed from the observations
available

β̂n, σ̂n := argmax
β,σ

{
ln(β,σ)

}
(2.3)

ln(β,σ) =
n∑

i=1

log p(Ti|Xi · β,σ) + π(β,σ) . (2.4)

In (2.4) the first term on the right hand side is the log-likelihood of the observations under
the model (2.1) and π is the penalization function. This term is usually added in order to
enforce a constraint by Lagrange multipliers.

In the high dimensional regime, the number of covariates p in the model is large and
proportional to the number of observations n, so that as n, p → ∞ the ratio ζ := p/n is fixed.
The true regression parameter vector β0 is assumed to have a finite modulus S0 := ∥β0∥
that does not depend on p nor n. A common choice for π(β,σ) is the so-called ridge penalty

πridge(β,σ|∆) = −1

2
∆β · β (2.5)

which forces the estimator β̂n to take values closer to the origin. The effect is more pro-
nounced for larger values of ∆. Ridge penalization is often employed to prevent overfitting,
and thereby improve the prediction performance of the fitted model [14]. Overfitting causes
the Maximum Likelihood (ML) estimator β̂ML

n of GLMs to lie typically in the same direction
of β0, but with modulus larger than that of β0 [5, 20], and ridge penalization counter-acts
this phenomenon. When the covariates are correlated, however, the effect of the penalty
(2.5) is to return an estimator that is both a shrunken and rotated version of the ML estima-
tor: β̂n differs on average both in magnitude and in direction from β0 [5, 26]. In fact, ridge
penalization was originally introduced for the purpose of obtaining a lower variance of β̂n by
“trading” variance for bias [15]. While the amount of rotation induced by the penalization
is in principle predictable [5, 26], computing the latter is in practice hard to do, because it
requires the computation of averages over the spectrum of the population covariance matrix
A0, which is unknown and not easy to estimate [16, 10]. Furthermore, while the Mean
Squared Error of the estimator might be lower than the Maximum Likelihood one, it is ev-
ident that one would still report a value of β̂n that is on average not even in the direction
of β0. This represents a major problem in inference if one wants to use penalization as a
remedy against overfitting. These considerations leads us to look for a generalization of the
ridge penalty such that the resulting estimator: 1) is geometrically unbiased, that is, it lies
typically in the direction of β0, and 2) has an amplitude tuned by a penalization parameter,
so that by selecting the proper value of the latter we can make β̂n unbiased.

2.2.2 Covariant penalties

In absence of the ridge penalization (i.e. in ML regression) one can formally map the problem
for correlated covariates to one where the transformed covariates are uncorrelated. This is
possible because the ML estimator

β̂ML
n

(
β0, {Ti,Xi}ni=1

)
:= argmax

β

(
max
σ

{ n∑
i=1

log p(Ti|Xi · β,σ)
})

(2.6)
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has the following covariant property: if we rotate and rescale our covariates according to the
linear transformation X i := M−1Xi, then β̂ML

n satisfies

β̂ML
n

(
β0, {Ti,Xi}ni=1

)
:= M−1β̂ML

n

(
Mβ0, {Ti,X i}ni=1

)
(2.7)

The ML estimator β̂ML
n transforms under rotation and rescaling of the covariates in the

exact opposite way, so that the scalar product Xi · β̂n does not change. Because the quantity
β0 that we want to estimate is a fixed vector in Rp, a linear transformation executed on the
underlying basis will change its components, hence we must have Mβ0 in the right hand side.
Upon transforming X i := A

−1/2
0 Xi, where A0 the covariance matrix of Xi, the transformed

covariates will be uncorrelated, X i ∼ N (0, I), and

β̂ML
n

(
β0, {Ti,Xi}ni=1

)
d
= A

−1/2
0 β̂ML

n

(
A

1/2
0 β0, {Ti,X i}ni=1

)
. (2.8)

Since (2.7) does not hold in general for the ridge penalized estimator (only under rotations),
the correlations cannot be “transformed out” as in (2.8). This motivates our interest in
covariant generalizations of ridge penalization, such that the resulting estimator β̂n would
satisfy (2.7). For simplicity and analytical tractability, we consider quadratic penalties. A
first candidate is

πO(β|η,A0) = −1

2
ηβ ·A0β (2.9)

which we call “oracle” penalty, as it requires the knowledge of the population covariance
matrix A0. For uncorrelated covariates, (2.9) reduces to the ridge penalty. For correlated
covariates, (2.9) shrinks differently in different directions, depending on the covariate corre-
lations. While in some cases the population under investigation is sufficiently well charac-
terized, in most cases the matrix A0 is not known. A possible “quick and dirty” alternative
is to use the empirical correlation matrix as an estimate of A0, giving

πE(β,σ|τ) = −1

2
τβ ·

( 1
n

n∑
i=1

XiXi

)
β . (2.10)

We refer to (2.10) as the “empirical” penalty. We know from Random Matrix Theory (RMT)
that the sample covariance matrix is not a good estimator of the population covariance ma-
trix in the high dimensional regime [17], so there we have no guarantee that the estimators
obtained using (2.9) and (2.10) will have similar properties. Furthermore, the sample co-
variance matrix develops eigenvalues approaching zero [17, 9] as ζ → 1, and (2.10) will not
define a well posed optimization problem. On the other hand, if A0 is non-singular, the
oracle penalty defines a well posed optimization problem for all ζ > 0.

2.2.3 Previous work

The idea of biasing an estimator to decrease its Mean Squared Error, i.e. shrinking, goes
back to [27]. Ridge penalization is the simplest implementation of this idea, equivalent to
a constrained optimization where the length of the maximizer is fixed [15]. Our goal here
differs from the original application of shrinking in that we seek to make β̂n unbiased. The
geometrical properties of the objective function play a role in determining the distribution
of the estimator β̂n. We will show that our penalization functions (2.9,2.10) give shrunken
and geometrically unbiased estimators. Their origin can be traced back to the Bayesian
interpretation of uniform shrinkage [6, 7]; here we provide another interpretation of uniform
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shrinkage priors. We will show that the asymptotic properties of the resulting estimators
can be computed analytically, under simple assumptions about the data generating process,
for arbitrary generalized linear models (GLM). The covariant penalties (2.9,2.10) provide a
natural route to asymptotically unbiased estimators in GLM inference, together with our
asymptotic analytical results to select an appropriate value of the penalization parameter,
even when the sample size is modest.

Several papers in literature deal with the asymptotic behaviour of M-estimators, i.e. those
derived by optimizing a sample average of an objective function (see [12, 5, 31, 18]). While the
techniques used vary, e.g. Random Matrix Theory, Cavity Method and Replica Method, the
conclusions are always expressed via self consistent equations that give the bias and variance
of the estimators for the regression parameters. The replica approach [5, 4, 26, 19] appears
the most flexible, as it does not assume any specific form of the utility function and (unlike
other approaches) allows one to find also the asymptotic expected estimators of nuisance
parameters. On the other hand, the replica approach tends to obscure some assumptions
needed for its results to hold. We show in 2.6.3 that the Replica Symmetric (RS) equations
can be obtained also via another method inspired by the statistical physics analogy with
optimization [22]: the cavity method [23, 21]. We extend the results obtained with the
replica method [5] to incorporate the penalties (2.9,2.10), and identify the key assumptions
needed to reach the result obtained using replicas. Our results confirm again that the cavity
method is complementary to the replica method [21]. However, “it is always easier to descend
a mountain than to climb it”, and the replica method is always our first step. Alternative
heuristic approaches, based on Random Matrix Theory, already appeared in the statistical
literature too [12]. Several rigorous proofs have also been carried out. In [19], the authors
proved rigorous results for robust linear M- estimators. In [20] the asymptotic behaviour
of the estimators in a linear model with normally distributed errors and fixed variance was
established. Most notably in [18] the authors have rigorously established the validity of the
RS equations for non-linear models that depend on the linear predictor, but do not involve
nuisance parameters. Their work is general enough to allow for a general penalization and
indirectly includes the case where the nuisance parameters are taken to be fixed and known.
With this in mind our argument in 2.6.3 might prove useful in establishing a future proof
of these results when also the nuisance parameters are inferred. Ultimately, all methods
(including ours) rely on the concentration of measure phenomenon, i.e. that specific random
variables fluctuate with very low probability around a deterministic value [30, 11, 1, 3], and
hence we support our assumptions with simulations.

2.2.4 Aim and structure of the paper

In this paper we study the asymptotic properties of the Penalized Maximum Likelihood
(PML) estimator, mathematically equivalent to the Maximum A Posteriori (MAP) estima-
tor, obtained by maximizing the objective function

ln(β,σ|η′, τ ′,A0) =
n∑

i=1

log p(Ti|Xi · β,σ) +

− 1

2
pβ ·

(
τ ′
1

n

n∑
i=1

XiXi + η′A0

)
β . (2.11)

The penalization combines (2.9) and (2.10), with re-scaled penalization parameters η = pη′

and τ = pτ ′ such that penalization and log-likelihood scale in the same manner with n in
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the high dimensional asymptotic limit [26]. We aim to compare the asymptotic properties
of the estimators derived by using the two different penalizations (2.9, 2.10), so we will only
be interested in the cases where either η or τ equal zero. In particular we want to answer
the following questions: do the covariant penalizations (2.9, 2.10) lead to a geometrically
unbiased PML estimator for β0, what are the properties of the PML estimator in the high
dimensional regime, and how do these depend on the penalization parameters?

The article is divided in four sections. In section 2.3 we present our results concerning
the asymptotic properties of the estimator in the high dimensional regime, and show that
the PML estimator β̂n is typically oriented in the same direction as β0. In section 2.4
we compare our theoretical predictions with simulated data for two prototypical models:
the Logit regression model for binary data, and the Weibull Proportional Hazard model
for skewed data. We conclude in section 2.5 with a discussion of our results and their
applicability, and we identify future directions of investigation.

2.3 The Covariantly Penalized Maximum Likelihood es-
timator

In this section we give an explicit expression for the PML/MAP estimator, and derive its
properties in the high dimensional limit n, p → ∞, with fixed ratio p/n = ζ > 0.

2.3.1 Representation of β̂n

The estimator β̂n obtained by maximizing (2.11) satisfies (2.7) and (2.8). Hence we can
simply study the properties of the following estimator, because the PML/MAP estimator
with correlated covariates is simply a rotated and re-scaled version of it:

β̂∼
n := β̂n(β

∼
0 , {Ti,X i}) with X i ∼ N (0, I), β∼

0 := A
1/2
0 β0 . (2.12)

Following a similar strategy as in [12], we argue in 2.6.1 that this estimator admits the
following representation

β̂∼
n

d
= Knβ

∼
0 + VnU (2.13)

where

Kn := (β∼
0 · β̂∼

n )/∥β∼
0 ∥2 (2.14)

V 2
n := β̂∼

n · β̂∼
n −K2

n (2.15)

with U independent from Kn and Vn, uniformly distributed on the unit sphere in the p− 1
dimensional subspace of Rp that is orthogonal to β∼

0 . Using (2.8) and (2.13) we have

β̂n
d
= Knβ0 + VnA

−1/2
0 U . (2.16)

The PML/MAP estimator consists of two geometrically independent contributions: a signal
component in the direction of β0, and an error component which is independent from and
orthogonal to the former. The expected value of the error component over the possible data-
sets is zero. Representation (2.16) shows explicitly that the covariance matrix A0 multiplies
the error term U and enters otherwise in the factor ∥β∼

0 ∥ := ∥A1/2
0 β0∥ only. Furthermore,

(2.16) tells us that the distribution of the PML/MAP estimator is fully determined by Kn

and Vn. These determine the amplitude of the two independent components of β̂n: Kn
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gives the (random) inflation factor with respect to the true value, and Vn is the (random)
factor controlling the size of the error term. In the statistical physics of disordered systems
[23, 25, 22] Kn and Vn are called “overlaps”. It is appealing that these quantities, familiar
from replica calculations, also have a geometric interpretation for finite n.

With (2.16) we can compute and understand the expected properties of the estimator
β̂n. For instance, the Mean Square Error (MSE) of the estimator β̂n takes the form

E
[
∥β̂n − β0∥2

]
= E

[
∥β̂n − E[β̂n]∥2

]
+ ∥E[β̂n]− β0∥2 . (2.17)

Where we used E[] to indicate the expectation with respect to the data generating distribu-
tion. As everybody knows it consists of two distinct terms, namely the squared bias

∥E[β̂n]− β0∥2 = (E[Kn]− 1)2∥β0∥2 (2.18)

and the variance

E
[
∥β̂n − E[β̂n]∥2

]
=

(
E[K2

n]− E[Kn]
2
)
∥β0∥2 + E[V 2

n ]E[A2
p] (2.19)

where we defined
A2

p := U ·A−1
0 U (2.20)

and used the fact that U is orthogonal to β0 and independent of Vn (see 2.6.1). According
to (2.19), the moments of the generalized overlaps Kn, Vn weigh the contribution of the true
signal strength ∥β0∥ and of the fluctuations E[A2

p] to the MSE.

2.3.2 The PML/MAP estimator in the high dimensional limit

The next step is to assume that Kn, Vn and the estimators for the nuisance parameters σ̂n

(as well as Ap), should concentrate, as n, p → ∞ with ζ := p/n fixed, around deterministic
values. These latter values are expected to satisfy a set of self consistent equations. In
this section we display these self-consistent asymptotic equations. The derivation based on
cavity arguments is presented in 2.6.3. We introduce some variations of the standard cavity
argument, leading to a faster derivation and allowing us to tackle also non-linear objective
functions and nuisance parameters, thus we believe this derivation to be of interest on its
own. We have obtained the same results by means of the replica method, as an independent
verification.

Result 1 (Replica Symmetric (RS) equations). Suppose we are given n i.i.d. observations
{(Ti,Xi)}ni=1, generated as Xi ∼ N (0,A0) and Ti|Xi ∼ p(Ti|Xi · β0,σ0). Under regularity
conditions1over the objective function (2.11) as n, p → ∞ with fixed ratio ζ = p/n, the
random variables Kn, Vn and σ̂n concentrate around deterministic values. The latter, which
we indicate with w⋆/S, v⋆ and σ⋆ respectively, are obtained, together with u⋆, by solving the
so-called Replica Symmetric (RS) equations

ζv2 = ET,Q,Z0

[(
ξ − vQ− wZ0

)2] (2.21)

v
(
1 + ζ(u2η′ − 1)

)
= ET,Q,Z0

[ ∂

∂Q
ξ
]

(2.22)

wζ = ET,Q,Z0

[
ξ

∂

∂Z0

log p(T |SZ0,σ0)
]

(2.23)

0 = ET,Q,Z0

[
∇σρ(T |ξ,σ)

]
(2.24)
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In the equations above S2 := limp→∞ β0 · A0β0 = limp→∞ ∥β∼
0 ∥2, Z0, Q ∼ N (0, 1), with

Z0 ⊥ Q2and T |Z0 ∼ p(.|SZ0,σ0). We also used the short hand ξ := ξ(vQ+ wZ0, u,σ, T, τ
′)

to denote the quantity

ξ(x, u,σ, T, τ ′) := argmin
y

{1

2

(y − x

u

)2

− ρ(T |y,σ)
}

(2.25)

known as the proximal mapping of the function −uρ(T |.,σ), where

ρ(T |y,σ) := log p(T |y,σ)− 1

2
ζτ ′y2 . (2.26)

As a consequence of the above result, the asymptotic properties of the estimators β̂n and
σ̂n depend on the RS order parameters v⋆, w⋆,σ⋆. For instance, the asymptotic squared bias
of β̂n reads

lim
n,p→∞ p/n=ζ

∥E[β̂n]− β0∥2 = (w⋆/S − 1)2S2
0 (2.27)

where we have defined S2
0 := limp→∞ ∥β0∥2. The variability of β̂n around its expected value

takes asymptotically the following simple form:

lim
n,p→∞ p/n=ζ

E
[
∥β̂n − E[β̂n]∥2

]
= lim

n,p→∞ p/n=ζ
E[V 2

n ]E[A2
p] = v2⋆α

2 (2.28)

where
α2 := lim

p→∞
E[A2

p] = lim
p→∞

1

p
Tr(A−1

0 ) . (2.29)

The derivation of (2.29) in found in 2.6.2. One observes that the fluctuations of β̂n are
asymptotically controlled only by the trace of the inverse of the covariance matrix. Further-
more, equation (2.28) gives the statistical meaning of the order parameter v⋆. The latter is
zero in the low-dimensional regime, i.e. for ζ = 0, where the number of components of β
is finite and the scale of the fluctuations of each component is

√
n by standard asymptotic

theory [31]. In the high dimensional regime ζ > 0 this is no longer true [12, 5, 4, 19, 26].
Combining (2.27) with (2.28), we obtain an expression for the (asymptotic) MSE of β̂n

lim
n,p→∞ p/n=ζ

E
[
∥β̂n − β0∥2

]
=

= lim
n,p→∞ p/n=ζ

E
[
∥β̂n − E[β̂n]∥2

]
+ ∥E[β̂n]− β0∥2

v2⋆α
2 + S2

0

(
w⋆/S − 1

)2
. (2.30)

It is important to note that the data set enters only in three scalar quantities, namely α, S
and S0, but only S determines the solution of the RS equations.

Since (u⋆, v⋆, w⋆,σ⋆) depend implicitly on the regularization parameters τ ′ and η′, this
is also true for the asymptotic bias and variance (and thus the MSE) of β̂n, and for the
asymptotic properties of the nuisance parameter estimators σ̂n. One can therefore, in prin-
ciple, define the optimal value of the regularization parameters by imposing an additional
condition. In inference the focus is usually on obtaining an unbiased estimator for the re-
gression parameters β̂n, possibly with minimum variance. In this case one can require that
the asymptotic bias be zero, or equivalently that w⋆/S = 1 and solve for the value of the
penalization parameter that satisfies this condition.

1We do not provide a rigorous proof, but our heuristic derivation relies on Laplace integration and assumes
that the overlaps concentrate or equivalently are self averaging. We refer to 2.6.3 for more details.

2With A ⊥ B we indicate that A is statistically independent of B.
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2.4 Application to selected regression models

In this section we compare the solution of the RS equations against simulated data for
two popular regression models, namely the Logit regression model for binary data and the
Weibull proportional hazard model for time to event data. This confirms that asymptotically
the overlaps fluctuate increasingly tightly around the values predicted by the theory. We also
show that the theory describes accurately how the properties of the PML/MAP estimator
depend on the regularization parameters, and that the RS equations can be used to select
the parameter values that gives unbiased estimators.

2.4.1 Simulation protocol

The data used in this section were generated with the open source programming language
R [2]. The covariates in the simulations are always taken to be X ∼ N (0,A0). In each
simulation, with given p, the covariance matrix A0 is generated randomly as follows. First
we generate a random orthogonal matrix O in Rp×p with the R-package pracma [2]. We
then sample the p eigenvalues of A0 from a uniform distribution with support in [0.1, 10.0]
and store them in a diagonal matrix Λ0. Finally A0 = O · Λ0O. The true value of the
regression parameters β0 is fixed to β0 = e1, the first basis vector of Rp, for simplicity. All
elements of the covariance matrix A0 are rescaled by a common factor in order to enforce
that S = ∥A1/2

0 β0∥ = 1. The present definitions clearly differ from the simpler orthonormal
design case X = N (0, I). We assume that there is no model mis-specification, so the
responses are generated according to the same regression model that is used to construct the
likelihood. The generalized overlaps are computed from their definitions. For Kn we build
on (2.16), so that asymptotically

Kn = β̂n · β0/∥β0∥2 (2.31)

We compute Vn approximately using (2.28)

Vn = β̂n

(
I− β0β0

∥β0∥2
)
· β̂n/α . (2.32)

Where β̂n is the maximizer of the objective function (2.11). Although the theory was derived
in the asymptotic limit, we carried out our simulations at the rather modest sample size of
n = 200. This is done on purpose, in order to show that the high dimensional asymptotic
theory is suitable in practice to understand even the typical properties of estimators obtained
from small sample size datasets.

40



0.0 0.2 0.4 0.6 0.8 1.0

ζ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

K

n

Oracle penalization η

′

=0.5 n=200

theory

simulated data

(a)

0.0 0.2 0.4 0.6 0.8 1.0

ζ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

K

n

Empirical penalization τ

′

=0.5 n=200

theory

simulated data

(b)

0.0 0.2 0.4 0.6 0.8 1.0

ζ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V

n

Oracle penalization η

′

=0.5 n=200

theory

simulated data

(c)

0.0 0.2 0.4 0.6 0.8 1.0

ζ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V

n

Empirical penalization τ

′

=0.5 n=200

theory

simulated data

(d)

Figure 2.1: Simulated data for the Logit regression model, tested against the solution of the
RS equations (n = 200, S = 1.0). The crosses represent sample averages, and the error bars
represent the first and third sample quartiles based on 500 realizations of the PML/MAP
estimator. Dashed curves: solution of the RS equations. Left: results for the covariant
‘oracle’ regularizer. Right: results for the covariant ‘empirical’ regularizer.

2.4.2 Logit regression model

The Logit regression model for a binary response T ∈ {−1, 1} is defined as

p(T |X · β) = eT (X·β)

2 cosh(X · β)
. (2.33)

It is the simplest non-linear regression model p(T |X · β,σ) that cannot be rewritten in the
form p(T −X · β), and probably the most widely used model in applications.

It is known that for the model (2.33) the MLE is biased for ζ > 0. Furthermore, this
bias diverges at a critical value of ζ, as was shown in previous studies, with a sharp phase
transition [5, 26, 29] beyond which the MLE does not exist. Figure 2.1 shows that in PML
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regression for both covariant regularizers (2.9) (oracle) and (2.10) (empirical) the overlaps
fluctuate around average values that are correctly predicted by the theory. The theoretical
curves represented by dashed lines are the solution of the RS equations (see 2.6.4 for the
derivation), reading

ζν2

(1− τµ2)2
= µ4 ET,Q,Z0

[(
T − τ

νQ+ ωZ0

1− τµ2
− tanh(x⋆)

)2
]

(2.34)

ζ
(
1− µ2η′

1− τ ′ζµ2

)
= 1− (1− τ ′ζµ2)ET,Q,Z0

[
cosh2(x⋆)

u2 + cosh2(x⋆)

]
(2.35)

ζω/S = (1− τµ2)ET,Q,Z0

[
x
(
T − tanh(SZ0)

)]
(2.36)

where Z0, Q ∼ N (0, 1), Q ⊥ Z0, T |Z0 ∼ exp( TSZ0)/
(
2 cosh(SZ0)

)
and where x⋆ is the

solution of the transcendental equation x = a− b tanh(x), in which

a = νQ+ ωZ0 + µ2T, b = µ2 (2.37)
µ2 = u2/(1+τ ′ζu2), ν = v/(1+τ ′ζu2), ω = w/(1+τ ′ζu2) . (2.38)

The above coupled equations can be solved numerically by fixed point iteration, once S and
the regularization parameter (τ ′ or η′) are specified.

For ζ close to one, the sample covariance matrix becomes singular and the empirical
penalization fails to regularize the optimization problem, leading to discrepancy between
theory and simulated data (Figure 1d). The estimator obtained with the oracle penalization
is slightly more biased than the one obtained with the empirical penalization, but has a
smaller (and bounded) variance. Note that, away from ζ = 1, the fluctuations of the estima-
tors obtained with the empirical penalty (Figure 1d) are of the same order as those found
with oracle penalization (Figure 1c).

42



��� ��� ��4 ��6 ��8 1��

ζ

��6

��8

1��

1��

1�4

K

n

Oracle penalization η

⋆

⋆ζ) n0���

theory

simulated data

(a)

��� ��� ��4 ��6 ��8 1��

ζ

��6

��8

1��

1��

1�4

K

n

Empirical penalization τ

⋆

⋆ζ) n0���

theory

simulated data

(b)

��� ��� ��4 ��6 ��8 1��

ζ

�

1

�

3

4

5

V

n

Oracle penalization η

⋆

⋆ζ) n0���

theory

simulated data

(c)

��� ��� ��4 ��6 ��8 1��

ζ

�

1

�

3

4

5

V

n

Empirical penalization τ

⋆

⋆ζ) n0���

theory

simulated data

(d)

Figure 2.2: Simulation data for the Logit regression model along the zero bias line (for
n=200, S = 1), with optimal oracle (left) or empirical (right) covariant penalization. The
penalization parameters now depend on ζ in such a way that the asymptotic bias is zero,
i.e. w⋆/S = 1.0. This is confirmed in Figures 2a and 2b. The estimator fluctuations are
shown in Figures 2c and 2d. The error bars represent the first and third sample quartiles.
Dashed lines give the theoretical predictions (solutions of the RS equations). In this case the
asymptotic MSE as given in (2.30) will be equal to v2α2, as w⋆/S = 1, where α2 is defined
in (2.29).

The special values of η′ and τ ′ that would make the estimator β̂n strictly unbiased in both
direction and amplitude, which we will denote by η⋆ and τ ⋆, can be computed as a function of
ζ and S by solving the RS equations, subject to the condition w/S = ω/S(1− τ ′ζµ2)−1 = 1.
This constraint gives

ζ = ET,Q,Z0

[
x(T − tanh(SZ0))

]
. (2.39)

Equation (2.35) can then be used to compute τ ′ or η′. For η′ = 0 one obtains

τ ⋆ =
ζ − χ

1− χ

1

µ2ζ
with χ = ET,Q,Z0

[ u2

u2 + cosh2(x⋆)

]
. (2.40)
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Whilst for τ ′ = 0 one finds the prescription

η⋆ = (ζ − χ)/µ2ζ . (2.41)

Equations (2.40,2.41) are added to the RS equations in place of (2.36), upon which the
combined system is once more solved by fixed point iteration. The surfaces τ ⋆(S, ζ) (empirical
covariant regularization) or η⋆(S, ζ) (oracle covariant regularization) define the values of the
regularization parameters that should be used to obtain an unbiased estimator (that is, given
S).
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Figure 2.3: Contour plots of the surfaces τ ⋆(S, ζ) and η⋆(S, ζ). These are the regularizion
parameter values of the covariant penalizations that make the estimator β̂n unbiased. Left:
oracle penalization. Right: empirical penalization. Both values are seen to decrease with
increasing S and ζ.

In Figure 2.2 we show the result of carrying out regression following the latter protocols
and compare the values computed from simulations with the theoretical curves. We observe
satisfactory agreement, with the simulation averages almost identical to the theoretical pre-
dictions. The improvements over ML estimator are clear: the estimator is unbiased (for
known S), and has a finite variance. It is also clear that Vn, measuring the typical fluctu-
ations around the average, gets larger as ζ increases, especially for the estimator obtained
with the empirical penalization (Figure 2d). Nevertheless, it is remarkable and of practical
relevance that, according to Figures 2c and 2d, for sufficiently small values of ζ (e.g. ζ < 0.4)
the sample to sample fluctuations of the estimator obtained with empirical penalization is
comparable to the one obtained with oracle penalization. This implies that for such ζ values,
in absence of A0 one can safely use empirical penalization. In fact in the un-biased case the
MSE (2.17) is given by the variance (2.19) which is equal to α2v2 asymptotically (2.28),
where α (2.29) is a constant that is fixed for a particular data set. Hence one can deduce
the asymptotic performance of β̂n, in terms of MSE directly from Figure 2d and conclude
accordingly as above.
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Figure 2.4: Simulation data for the Weibull proportional hazards model (with n=200, S = 1),
with oracle (left) or empirical (right) covariant penalization. The error bars represent the
first and third sample quartiles, while the dashed line is the curve obtained by solving the
RS equations. Dashed lines give the theoretical predictions.

It is interesting to inspect the dependence on the global parameters S and ζ of the special
values for τ ⋆(S, ζ) and η⋆(S, ζ) that lead to unbiased β̂n. These values are shown as contour
plots in the (S, ζ) plane in Figure 2.3. We see that the de-biasing regularization parameters
decrease with both S and ζ. Whilst the decrease with S is intuitive (it is easier to estimate
a powerful signal than a weak one, hence there is less need for correction), the decrease with
ζ is not. On the other hand, our theory predicts that β̂n · A0β̂n and

∑n
i=1 β̂n · XiXiβ̂n/n

both increase with ζ. It is hence not unreasonable that the optimal penalization parameter
gets smaller for larger ζ, to prevent penalization from contributing the leading term in the
objective function (which would force β̂n excessively towards the origin). One would expect
to find that η⋆ or τ ⋆ goes to zero with ζ. This is actually not needed as the penalization
parameters are multiplied by p (see 2.11), hence when ζ “goes” to zero, the same is true for
p = ζn. In (2.11) the amount of penalization is then tuned by ζτ ′ (or ζη′) and the penalty
amounts to a small contribution in the objective function, no matter what finite value of τ ′
or η′, which are indeed found to be non vanishing, but finite. Notice finally, that while it is
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possible to make the estimator β̂n strictly unbiased, this may not always be meaningful. It
is well known that in some cases a biased estimator with lower variance might outperform
an unbiased one; for an unbiased estimator with excessive variance the signal may get lost
in a sea of fluctuations. Once v⋆ and α are estimated, one has access to the variance of β̂n

(2.28). Alternative one can control the bias-variance trade-off manually via the solution of
the RS equations.

2.4.3 The Weibull proportional hazards model

In Proportional hazards models, the conditional density of the response T ≥ 0, given the
covariates, is of the form

p(T |X · β,σ) = h(T |σ)eX·β−H(T |σ) exp(X·β) (2.42)

where h(.|.) is the base hazard function, and H(T |σ) :=
∫ T

0
dt′ h(t′|σ) is the integrated

base hazard rate. A widely employed parametric survival model is the Weibull proportional
hazards model, for which the integrated base hazard rate has the form3

H(T |ϕ, σ) = eϕ/σT 1/σ (2.43)

In 2.6.5 we show that for this model the RS equations can be written in the form

ν2ζ

(1− τ ′ζµ2)2
= EZ,Q,Z0

[(
µ2 −W

(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)
+

− τ ′ζµ2

1− τ ′ζµ2
(νQ+ ωZ0)

)2]
(2.44)

1

1−τ ′ζµ2

(
1−ζ

(
1− µ2η′

1− τ ′ζµ2

))
= (2.45)

1− EZ,Q,Z0

[
W

(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)

1+W
(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)
]

ω

S
=

(
1− τ ′µ2 − η′µ2

1− τ ′µ2ζ

)σ0

σ
(2.46)

µ2 = EZ,Q,Z0

[
W

(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)]
(2.47)

σ

σ0

= (2.48)

EZ,Q,Z0

[(
logZ − SZ0

)(W
(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)

µ2
− 1

)]

where W (x) is Lambert’s W -function, Z ∼ Exp(1), Q,Z0 ∼ N (0, 1) with Q ⊥ Z0 and µ, ω, ν
are related to u, w, v as in (2.38). The above equations can be again solved by fixed point
iteration. Similar to the Logit model, we see in Figure 2.4 that the overlaps fluctuate closely
around the theoretical prediction (i.e. the solution of the RS equations, displayed as a dashed
line). The estimator obtained with oracle penalization is again more biased with respect to
the one obtained with the empirical penalization, but fluctuates less from sample to sample.

3This is not the usual parametrization of the Weibull base hazard rate, which can be recovered by setting
λ = exp(ϕ) and ρ = 1/σ.
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These fluctuations of the two penalization formulae are of the same order of magnitude for
sufficiently small ζ.
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Figure 2.5: Simulation data for the Weibull proportional hazards model along the zero bias
line (for n=200, S = 1), with optimal oracle (left) or empirical (right) covariant penalization.
The penalization parameters now depend on ζ in such a way that the asymptotic bias is zero,
i.e. w⋆/S = 1.0. This is confirmed in Figures 5a and 5b. The estimator fluctuations are
shown in Figures 6c and 6d. The error bars represent the first and third sample quartiles.
Dashed lines give the theoretical predictions. In this case the asymptotic MSE as given in
(2.30) will be equal to v2α2, as w⋆/S = 1, where α2 is defined in (2.29).

To obtain unbiased estimators we impose the condition w/S = ω/S(1 − τζµ2)−1 = 1,
which leads to an equation either for τ ⋆ or for η⋆, to be substituted for (2.46). Setting η′ = 0
we obtain

τ ⋆ =
1− σ/σ0

1− ζσ/σ0

(2.49)

while setting τ ′ = 0 we obtain
η⋆ = µ−2(1− σ/σ0) . (2.50)
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We show the result of using the protocols τ ⋆(ζ, S) and η⋆(ζ, S), at fixed S = 1, in Figure
2.5. We see that Kn now fluctuates around the value one, as desired, indicating unbiased
inference.
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Figure 2.6: Simulated data for the Weibull proportional hazards model (n=200, S = 1).
The error bars represents the first and third sample quartiles, while the dashed line is the
curve obtained by solving the RS equations. The penalization parameters are obtained by
solving the RS equations, upon requiring β̂n be unbiased. It is evident that the nuisance
parameters are biased and that the quantities displayed fluctuate closely around the solution
of RS equations.

As we already argued for the Logit model, the performance of the estimator β̂n obtained
with the empirical penalization at τ ⋆ can be deduce directly from Figure 5d because the
asymptotic MSE is directly proportional to v via a constant α that depends only on the
correlations between covariates.
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Figure 2.7: Simulated data for the Weibull proportional hazards model (n = 200, S = 1) after
application of regularization parameters computed with the RS equations upon demanding
unbiased nuisance parameter estimators. Error bars represent the first and third sample
quartiles, while the dashed line is the theoretical prediction. Figures 8a and 8c show that
(ϕ̂c

n − ϕ0)/σ̂0 fluctuates around zero, while Figures 8c and 8d show that σ̂c
n/σ0 fluctuates

around one. Hence the estimators ϕ̂c
n and σ̂c

n are indeed unbiased.

In contrast to the Logit model, the Weibull model has further nuisance parameters,
namely ϕ and σ. It should be emphasised that, while β̂n is unbiased, the nuisance parameters
estimators are not, as one can see in Figure 2.6. While in inference the focus is usually on
the regression parameters, it might also be of interest to have unbiased estimators for the
nuisance parameters; for instance in probabilistic prediction. We could in principle use our
equations to predict for which τ ′ or η′ the nuisance parameters estimators will be unbiased,
but a more efficient and general alternative is to use the solution of the RS equation to
compute a de-biasing factor, similar to the one employed in [19]. In the present case the RS
equations can be rewritten in terms of (ϕ− ϕ0)/σ0 and σ/σ0. The latter combinations turn
out to depend only on ζ, τ ′ or η′, and S. Since the value of the estimator will be close to
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the solution of the RS equations, we may write

ϕ̂n − ϕ0

σ0

= h(ζ, S) + on(1),
σ̂n

σ0

= g(ζ, S) + on(1) (2.51)

where h(., .) and g(., .) are expressions obtained by solving the RS equations. One subse-
quently solves these two equations for ϕ0 and σ0, leading to new unbiased estimators ϕ̂c

n, σ̂
c
n.

In Figure 2.7 it can be observed that this procedure indeed leads to estimators for the
nuisance parameters that are unbiased.

2.5 Discussion and conclusion

Ridge regression, a popular inference approach in the high dimensional regime where ζ = p/n
is finite and fixed, leads in generalized linear models typically to rotated estimators of the
association parameters β ∈ Rp. This prompted us to search for generalizations of the ridge
penalty, for which the corresponding estimator will be unbiased. We focused on two elliptical
generalizations, of the form β ·Aβ. An ‘oracle’ penalization, defined by A = A0, uses the
population covariance matrix A0 of the covariates (information that is not always available).
An ‘empirical’ penalization uses instead the sample covariance matrix A =

∑n
i=1 XiXi/n.

Both are covariant under linear transformations of the covariates. We derive an explicit
expression for the distribution of the PML/MAP estimator β̂n, obtained by optimizing
the corresponding objective functions, under the assumption of Gaussian covariates. This
estimator is for both covariant priors shown to be typically aligned with the true parameter
vector β0, and its distribution depends solely on two scalar quantities Kn and Vn, and
on A0. The quantities Kn and Vn are finite n equivalents of the replica symmetric (RS)
order parameters of [19, 5, 4]. In the high dimensional regime they fluctuate weakly around
deterministic values. Under the assumption that they are asymptotically self-averaging, we
show how their values can be computed from a small system of self-consistent equations, the
RS equations. Deriving the RS equations alternatively via the cavity method clarifies the
relevant underlying assumptions. The RS equations enable one to control the bias-variance
trade-off; one can select the value of the regularization parameter by fixing the value of bias
that is deemed to be acceptable for the problem at hand, and compute the RS curves to
predict the associated variance. Our equations can also be used to give explicit expressions
for covariant regularization parameters such that not only the direction but also the length
of the estimator is correct, i.e. such that the estimators will be strictly unbiased.

We tested our theoretical results against the parameter statistics computed from infer-
ences with simulated data, and found excellent agreement. We worked out the theory for two
popular generalized linear models: the Logit model for binary classification, and the Weibull
proportional hazards model for survival analysis. For both applications, the solution of the
RS equations correctly predicts the behaviour of the estimators obtained from simulated
data, even for relatively small sample sizes. The PML/MAP estimators obtained with the
oracle penalization achieve a lower variance than the ones computed using the empirical
penalty, which can be explained in terms of the bias-variance trade-off. When ζ is close
to one, i.e where the number of covariates is almost equal to the number of samples, the
sample covariance matrix may develop zero eigenvalues, leading to pathological estimators.
Sufficiently below ζ = 1 zero eigenvalues will not occur, and the empirical penalization is an
effective, practical and easy to implement method for achieving unbiased estimators. Oracle
penalization obviously does not have this problem, and can be used even for ζ > 1 (provided
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A0 has full rank). This also suggests an alternative third route, where one estimates the
population covariance matrix based on previous data, with methods such as [16], to be used
as a proxy for A0 in the oracle penalization (a possible subject of future investigation).

While the RS equations can be solved for any given value of S = |A1/2
0 β0|, in practice

one does not know this value. For a significant class of models S is in fact found to drop out
of the RS equations, and for those models where this does not happen there are transparent
approaches to estimate S. Still this is a subject hat warrants further research. It might
also be interesting to analyse what happens when the covariant regularizers are used in a
model mis-match setting (see e.g. [1]), which in principle can be addressed in the present
formulation.

Our results are derived under the assumption of Gaussian distributed covariates. The
results concerning the first two moments of the estimator β̂n should however hold more
generally, as suggested by the work of e.g. [11, 4, 26, 5, 19]. The underlying reason is that
even for non-Gaussian covariates, the quantities X · β may asymptotically have Gaussian
statistics due to the Central Limit Theorem (under certain conditions). See also [13, 28, 18].
The universality of the asymptotic behaviour of the objective function has been proven for
the machine learning setting in [24]. It would be interesting to study whether in arbitrary
generalized linear models this universality would extend to the asymptotic properties of the
estimators, at least concerning the first two moments.

To conclude, we present covariant generalizations of ridge penalization in high-dimensional
regression, such that the parameter estimators no longer exhibit the undesirable rotation that
plagues conventional ridge regularization (especially for correlated data). For arbitrary gen-
eralized linear models the corresponding inference process is described accurately by an RS
theory (derived alternatively via the cavity method), even for modest sample sizes. This
theory can be used e.g. to tune the bias-variance trade-off, or to predict which values of the
covariant regularization parameters should be used in practice to obtain strictly unbiased
estimators.
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2.6 Appendix

2.6.1 Representation of the PML/MAP estimator

The PML/MAP estimator for the regression parameters is defined by the following opti-
mization problem

β̂∼
n = (2.52)

= argmax
β

(
max
σ

{ n∑
i=1

log p(Ti|X i · β,σ)−
p

2
β ·

(
τ ′
1

n

n∑
i=1

X iX i + η′I
)
β
})

where
Ti|X i ∼ p(Ti|X i · β∼

0 ,σ0) (2.53)

Now consider any rotation R0 in Rp around β0. From property (2.7) in the main text and
the fact that the conditional distribution of the response Ti depends only on the projection
X i · β∼

0 ,
Ti|X i = Ti|X i · β∼

0 (2.54)
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we obtain

β̂∼
n = β̂n({Ti,X i},β∼

0 ) = R0β̂n({Ti,R0X i},β∼
0 )

d
= R0β̂n({Ti,X i},β∼

0 ) (2.55)

where we have denoted equality in distribution with d
=. The first equality follows because

β∼
0 = R0β

∼
0 , and the last equality follows because OX i has the same distribution as X i for

any rotation O since X i ∼ N (0, I) (hence also for any R0). To understand the implica-
tions of (2.55), note that we can always decompose β̂∼

n into a component along β∼
0 and a

component in the subspace of Rp orthogonal to β∼
0

β̂∼
n = β̂∼

n,∥ + β̂∼
n,⊥ β̂∼

n,∥ · β̂∼
n,⊥ = 0 (2.56)

with
β̂∼
n,∥ := β∼

0 (β
∼
0 · β̂∼

n )/∥β∼
0 ∥2 β̂∼

n,⊥ :=
(
I − β∼

0 β
∼
0 /∥β∼

0 ∥2
)
β̂∼
n . (2.57)

Then equation (2.55) implies that

R0β̂
∼
n,⊥

d
= β̂∼

n,⊥ (2.58)

because β̂∼
n,∥ is not affected by any R0 as it is parallel to β∼

0 . Hence all the values of β̂∼
n,⊥

that have the same length, i.e. that lie on a sphere in the subspace of Rp orthogonal to
β∼
0 , must have the same probability density. In turn this means that the length of β̂∼

n,⊥
must be independent from its direction: conditional on the length, the direction is uniformly
distributed over a sphere in the above mentioned subspace. This means that, conditional on
β̂∼
n,∥, we have the following representation for β̂∼

n,⊥

β̂∼
n,⊥ = ∥β̂∼

n,⊥∥
β̂∼
n,⊥

∥β̂∼
n,⊥∥

= ∥β̂∼
n,⊥∥U (2.59)

with U uniformly distributed on the unit sphere in the p− 1 dimensional subspace Sp−2 of
Rp that is orthogonal to β∼

0 . Now note that

∥β̂∼
n,⊥∥ =

√
∥β̂∼

n ∥2 − ∥β̂∼
n,∥∥2 =

√
∥β̂∼

n ∥2 − (β∼
0 · β̂∼

n )
2/∥β∼

0 ∥2 . (2.60)

So finally we obtain the representation

β̂∼
n =

β∼
0 · β̂∼

n

∥β∼
0 ∥2

β∼
0 +

√
∥β̂∼

n ∥2 −
(β∼

0 · β̂∼
n )

2

∥β∼
0 ∥2

U . (2.61)

2.6.2 The value of α2

To compute the limit defining α2 in (2.29), we note that

E[A2
p] = E

[
U ·A−1

0 U
]
= E

[Z ·PA−1
0 PZ

Z ·PZ

]
=

=
1

p− 1

(
Tr(A−1

0 )− β∼
0 ·A−1

0 β∼
0

∥β∼
0 ∥2

)
+ on(1) . (2.62)

In (2.62), to obtain the third equality we used the fact that

U
d
=

PZ

∥PZ∥
Z ∼ N (0, I), P := I − β∼

0 β
∼
0 ·

∥β∼
0 ∥2

. (2.63)
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For the last equality we used the fact that quadratic forms like Z ·MZ/p concentrate around
their expected value Tr(M) in the asymptotic high dimensional limit [12, 3]

Z ·MZ/p = Tr(M)/p+ on(1) . (2.64)

At this point we see that by definition of β∼
0 := A

1/2
0 β0

β∼
0 ·A−1

0 β∼
0

∥β∼
0 ∥2

=
β0 · β0

β0 ·A0β0

(2.65)

and
λ−1
max(A0) ≤

β0 · β0

β0 ·A0β0

≤ λ−1
min(A0) (2.66)

thus
λ−1
max(A0)/(p− 1) ≤

∣∣∣α2
p − Tr(A−1

0 )
/
(p− 1)

∣∣∣ ≤ λ−1
min(A0)/(p− 1) . (2.67)

If λmin(A0) = O(pα), with α > −1, then limp→∞ λ−1
min(A0)/(p − 1) = 0. Hence we conclude

that
α2 := lim

p→∞
E[A2

p] = lim
p→∞

1

p
Tr(A−1

0 ) . (2.68)

2.6.3 Derivation of the RS equations with the Cavity method

In this section we derive the Replica symmetric equations (2.21, 2.22, 2.23, 2.24). We first
establish the asymptotic properties of the PML/MAP estimator of the regression parameters
β̂n for a fixed value of the nuisance parameters σ. We subsequently show that, given our
assumptions and approximations, this is sufficient to establish also the asymptotic behaviour
of σ̂n. We will use several times the notation on(1) to indicate a reminder that goes to zero
as n diverges.

Analysis via statistical physics

We exploit the analogy between optimization and statistical physics, whereby variables over
which an optimization is carried out are interpreted as degrees of freedom of particles, with
a Hamiltonian that is minus the objective function to be optimized. The solution of the
optimization problem then equals the ground state of the Hamiltonian. Here we aim to
understand the properties of the PML/MAP estimator obtained with {Ti,X i}ni=1 where
X i ∼ N (0, I), Ti|X i ∼ p(Ti|X i ·β∼

0 ,σ0) and β∼
0 := A

1/2
0 β0. So we consider the Hamiltonian

Hn(β,σ) := −ln(β,σ) =
1

2
η∥β∥2 −

n∑
i=1

ρ(Ti|X i · β,σ) . (2.69)

Where
ρ(T |X i · β,σ) := log p(T |X i · β,σ)−

1

2
ζτ ′(X i · β)2 (2.70)

The statistical properties of the physical system at temperature 1/γ follow from the Gibbs
measure

β|{Ti,X i}ni=1 ∼ p(β) = e−γHn(β,σ)/Zn(γ) (2.71)

where the partition function ensures the normalization, i.e.

Zn(γ) =

∫
dβ e−γHn(β,σ) . (2.72)
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Under regularity conditions on the Hamiltonian function, and for a well behaved functions
f , the Laplace argument implies that

f(β̂∼
n ) = lim

γ→∞

∫
dβ f(β)

e−γHn(β,σ)

Zn(γ)
= lim

γ→∞
⟨f(β)⟩ (2.73)

where
β̂∼
n := argmin

β

{
Hn(β,σ)

}
= argmax

β

{
ln(β,σ)

}
. (2.74)

We are interested in the typical properties of (functions of) the PML estimator, hence we
study averages over all possible realizations of the data-set:

E
[
f(β̂∼

n )
]
= lim

γ→∞
E
[
⟨f(β)⟩

]
. (2.75)

We switched the limit and the expectation over the data-set, which is valid under regularity
conditions on f . The right hand side of (2.75) has the structure of the computation of a
disorder-average observable f in a spin glass model [23, 21, 25], with the role of disorder
played by the data set {Ti,X i}ni=1. This enables the use of tools from the physics of disordered
systems.

Application of the Cavity method

We next use the cavity method to derive the asymptotic properties of the PML/MAP es-
timator. Consider a sufficiently well behaved function f that depends only on the linear
predictor X i · β, the response Ti of the ith observation and the (for now fixed) nuisance
parameters σ. By noting that

Hn,p(β,σ) := H(i),p(β,σ)− ρ(Ti|X i · β,σ) . (2.76)

We can write

⟨f(Ti|X i · β,σ)⟩ =
∫
dβ f(Ti|X i · β,σ)eγρ(Ti|X i·β,σ)−γH(i)(β,σ)

∫
dβ eγρ(Ti|X i·β,σ)−γH(i)(β,σ)

=

〈
f(Ti|X i · β,σ) exp

{
γρ(Ti|X i · β,σ)

}〉
(i)〈

exp
{
γρ(Ti|X i · β,σ)

}〉
(i)

. (2.77)

Here ⟨⟩(i) refers to an average under the Gibbs measure with Hamiltonian H(i),p(β,σ). The
computation of (2.77) is difficult because we need the distribution of the linear predictor
Yi := X i · β under the cavity measure. The first two moments of Yi are

⟨Yi⟩ = X i · ⟨β⟩(i), ⟨Y 2
i ⟩ = X i · ⟨ββ⟩(i)X i . (2.78)

Now standard results in the theory of concentration of measure [12, 3] tell us that

U2
(i) = ⟨Y 2

i ⟩ − ⟨Yi⟩2 = X i ·
(
⟨ββ⟩(i) − ⟨β⟩(i)⟨β⟩(i)

)
X i =

= Tr
(
⟨ββ⟩(i) − ⟨β⟩(i)⟨β⟩(i)

)
+ on(1) =

= ⟨β · β⟩(i) − ⟨β⟩(i) · ⟨β⟩(i) + on(1) . (2.79)
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We note that U2
(i) is exactly the nonlinear susceptibility under the cavity Gibbs measure. We

assume that the cavity distribution of Yi is Gaussian, so

Yi = X i · ⟨β⟩(i) + U(i)Zi, Zi ∼ N (0, 1) (2.80)

with Zi ⊥ Ti,X i. Remembering that Ti|X i ∼ p(Ti|X T
i β

∼
0 ,σ0), so the distribution of the

disorder depends on X i · β∼
0 which is correlated with X i · ⟨β⟩(i), it is possible to separate

X i · ⟨β⟩(i) into two independent contributions

X i · ⟨β⟩(i) = X i ·
(
I − β∼

0 β
∼
0

∥β∼
0 ∥2

)
⟨β⟩(i) +

X i · β∼
0

∥β∼
0 ∥

β∼
0 · ⟨β⟩(i)
∥β∼

0 ∥
=

V(i)Qi +W(i)Z0,i, Qi ⊥ Z0,i, Qi, Z0,i ∼ N (0, 1) (2.81)

involving the generalized overlaps under the leave i-th out measure

W(i) :=
β∼
0 · ⟨β⟩(i)
∥β∼

0 ∥
(2.82)

V(i) :=
∥∥∥
(
I − β∼

0 β
∼
0

∥β∼
0 ∥2

)
⟨β⟩(i)∥2 = ∥⟨β⟩(i)∥2 −W 2

(i) . (2.83)

These are independent of Ti,X i, hence

Yi = W(i)Z0,i + V(i)Qi + U(i)Zi (2.84)

and

⟨f(Ti|X i · β,σ)⟩ =

EZi

[
f(Ti|W(i)Z0,i + V(i)Qi + U(i)Zi,σ)e

γρ(Ti|W(i)Z0,i+V(i)Qi+U(i)Zi,σ)
]

EZi

[
eγρ(Ti|W(i)Z0,i+V(i)Qi+U(i)Zi,σ)

] .

(2.85)

Where we indicated with EZi
[] the expectation over the Gaussian random variable Zi. This

can be rewritten via a simple change of variable, ξ := W(i)Z0,i + V(i)Qi + U(i)Zi, as

⟨f(Ti|X i · β,σ)⟩ = Eξi

[
f(Ti, ξi,σ)

]
=

=

∫
dξ f(Ti, ξ,σ) exp

{
− 1

2

(
ξ−W(i)Z0,i+V(i)Qi

U(i)

)2

+ γρ(Ti, ξ,σ)
}

∫
dξ exp

{
− 1

2

(
ξ−W(i)Z0,i+V(i)Qi

U(i)

)2

+ γρ(Ti, ξ,σ)
}

(2.86)

The disorder is now contained only in the leave-one-out generalized overlaps W(i), V(i),U(i).
It seems reasonable to approximate the overlaps computed under the full Gibbs measure by
their leave-one-out approximations for each i,

Wn :=
β∼
0 · ⟨β⟩
∥β∼

0 ∥
= W(i) + on(1) (2.87)

Vn :=
∥∥∥
(
I − β∼

0 β
∼
0

∥β∼
0 ∥2

)
⟨β⟩

∥∥∥
2

= V(i) + on(1) (2.88)

Un := ⟨β · β⟩ − ⟨β⟩ · ⟨β⟩ = U(i) + on(1) (2.89)

57



because, in the limit of large n, disregarding one data point should not influence the inference
results. This, in turn, means that one can alternatively use the approximation

Wn :=
1

n

n∑
i=1

W(i) + on(1), Vn :=
1

n

n∑
i=1

V(i) + on(1) (2.90)

Un :=
1

n

n∑
i=1

U(i) + on(1) . (2.91)

Which shows that it is plausible that Wn, Vn and Un concentrate around deterministic values,
or are self averaging in physical jargon, which can be stated as

Wn := w + on(1), Vn := v + on(1), Un := ũ+ on(1) . (2.92)

The remaining task is to determine the values (w, v, ũ), which according to the above argu-
ments should satisfy a set of coupled self-consistency equations.

Self-consistent equations for the overlaps

Given the Gibbs measure

β|{Ti,X i} ∼ 1

Zn

eγ
(∑n

i=1 ρ(Ti|X i·β,σ)− 1
2
η∥β∥2

)
(2.93)

it is easy to derive the following equation via integration by parts in β:

γη⟨β⟩ = γ

n∑
i=1

X i⟨φ(Ti|X i · β,σ)⟩ (2.94)

By taking the scalar product with β∼
0 and dividing by ∥β∼

0 ∥ = S, we get

γηβ∼
0 · ⟨β⟩/∥β∼

0 ∥ = γ
n∑

i=1

β∼
0 ·X i/∥β∼

0 ∥⟨φ(Ti|X i · β,σ)⟩ . (2.95)

Using the concentration/self averaging hypothesis (2.92) and taking the expectation over the
disorder (i.e the data-set), we then obtain a self consistent equation for w

w = E
[
β∼
0 · ⟨β⟩

]
/S + on(1)

=
1

η

n∑
i=1

E
[
⟨X i · β∼

0 φ(Ti|X i · β,σ)⟩
]
/S + on(1)

=
n

η
E
[
Z0Eξ[φ(T |ξ,σ)]

]
+ on(1) (2.96)

with

Eξ

[
f(ξ)

]
:=

∫
dξ e−

1
2

(
ξ−vQ−wZ0

ũ

)2

+γρ(T |ξ,σ)f(ξ)
∫
dξ e−

1
2

(
ξ−vQ−wZ0

ũ

)2

+γρ(T |ξ,σ)

. (2.97)

We will now drop the reminders on(1) to ease the notation, bearing in mind that these will be
negligible as n diverges, so long as the overlaps concentrate, or are self averaging in physical
jargon. We see that

γEξ

[
φ(T |ξ,σ)

]
= Eξ

[(ξ − vQ− wZ0

ũ2

)]
. (2.98)
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This implies

w =
n

γηũ2

(
E
[
Z0Eξ[ξ]

]
− w

)
(2.99)

and thus
w(1 + γũ2η/n) = E

[
Z0Eξ[ξ]

]
. (2.100)

Similarly

γη(v2 + w2 + ũ2) = γηE
[
⟨β · β⟩

]
= γ

n∑
i=1

E
[
⟨β ·X iφ(Ti|X i · β,σ)⟩

]
+ γp

= γp+ γnE
[
Eξ[ξφ(T |ξ,σ)]

]

= γ(p− n) + nE
[
Eξ[ξ(ξ − vQ− wZ0)]

]
/ũ2 (2.101)

where we have used

γE
[
Eξ[ξφ(T |ξ,σ)]

]
= E

[
Eξ[ξ(ξ − vQ− wZ0)]

]
/ũ2 − 1 . (2.102)

Also

γη(v2 + w2) = γηE
[
⟨β⟩ · ⟨β⟩

]
= γη(v2 + w2)

= γ
n∑

i=1

E
[
⟨X i · β⟩⟨⟨φ(Ti|X i · β,σ)⟩

]
= γnE

[
Eξ[ξ]Eξ[φ(T |ξ,σ)]

]

=
n

ũ2
E
[
Eξ[ξ]Eξ[ξ − vQ− wZ0]

]
. (2.103)

Now take the difference of (2.101) and (2.103) to find

γηũ2 = p− n+ nE
[
Eξ[ξ

2]− Eξ[ξ]
2
]
/ũ2 = p− n+ nE

[
QEξ[ξ]

]
/v (2.104)

dividing by n and rearranging the terms gives

v(1− ζ) + vγũ2η/n = E
[
QEξ[ξ]

]
. (2.105)

We obtain another self consistent equation by substitution

ηũ2γ(v2 + w2)/n = E
[
Eξ[ξ]

2
]
− vE

[
QEξ[ξ]

]
− wE

[
Z0Eξ[ξ]

]

= E
[
Eξ[ξ

2]
]
− v2

(
1− ζ +

γũ2η

n

)
− w2(1 +

γũ2η

n
) . (2.106)

Rearranging terms leads to

E
[
Eξ[ξ]

2
]
= v2(1− ζ) + w2 + 2ũ2γ(v2 + w2)η/n . (2.107)

In summary we have obtained the following approximate equations

E
[
Eξ[ξ]

2
]

= v2(1− ζ) + w2 + 2ũ2γ(v2 + w2)η′ζ (2.108)

v(1− ζ) + vγũ2η′ζ = E
[
QEξ[ξ]

]
(2.109)

w(1 + γũ2η′ζ) = E
[
Z0Eξ[ξ]

]
(2.110)

where we used the scaling η = η′p as in the main text. These equations are valid under
our stated assumptions and approximations, and apply so far to any inverse temperature γ.
Their solution gives us the values ũ⋆, v⋆, w⋆ as functions of γ, σ, S and ζ. The value of σ
though, is generally unknown and must be estimated from the data.
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Equations for the nuisance parameters

Following a strategy similar to the one followed so far, we assume also the estimator σ̂n

for the nuisance parameters to assume deterministic values in the asymptotic limit n, p →
∞ p/n = ζ. Under the assumption of concentration of the overlaps (2.92), we expect that
the internal energy per data point

Fn(σ) =
〈 1

n

n∑
i=1

ρ(Ti|X i · β,σ)−
1

2
η′ζ∥β∥2

〉
(2.111)

will be self averaging. i.e. concentrate on a deterministic function f(σ):

Fn(σ) = f(σ) + on(1) . (2.112)

Using (2.86) for the cavity average, together with (2.92) for the overlap values, gives

Fn(σ) =
1

n

n∑
i=1

Eξ

[
ρ(Ti|ξ,σ)

]
− 1

2
η(w2 + v2 + ũ2) + on(1) . (2.113)

By the law of large numbers we expect that also this quantity will concentrate on

f(σ) = ET,Q,Z0

[
Eξ

[
ρ(T |ξ,σ)

]]
− 1

2
η(w2 + v2 + ũ2) . (2.114)

Hence the estimator for the nuisance parameter σ̂n, the value that maximizes Fn, will be
close to the deterministic value that maximizes f . The latter solves

d

dσ
f(σ) =

∂f(σ)

∂σ
+

∂f

∂w

∂w

∂σ
+

∂f

∂v

∂v

∂σ
+

∂f

∂ũ

∂ũ

∂σ
= 0 . (2.115)

It can be verified by direct calculation that ∂
∂w

f , ∂
∂v
f and ∂

∂ũ
f vanish at the solution of the

self consistent equations for the overlaps (as expected). Hence the deterministic value that
maximizes f at inverse temperature γ, is the solution of the following equation (where again
we dropped the reminder because negligible in the large n limit), which must be solved
simultaneously with the self consistent equations for the overlaps:

ET,Q,Z0

[
Eξ

[
∇σρ(T |ξ,σ)

]]
= 0 . (2.116)

The zero temperature limit

What remains is to take the limit γ → ∞ in our equations to recover the overlaps appearing
in the representation of the MAP/PML estimator ũ⋆, v⋆, w⋆ and the deterministic values of
the nuisance parameters estimator σ⋆. Since the distribution of the PML/MAP estimator
depends on

Kn = E
[β∼

0 · β̂∼
n

∥β∼
0 ∥2

]
+ on(1) V 2

n = E
[
β̂∼
n · β̂∼

n

]
−K2

n + on(1) (2.117)

where

E
[β∼

0 · β̂∼
n

∥β∼
0 ∥

]
= lim

γ→∞
E
[β∼

0 · ⟨β⟩
∥β∼

0 ∥

]
= lim

γ→∞
w (2.118)

E
[
β̂∼
n · β̂∼

n

]
= lim

γ→∞
E
[
⟨β · β⟩

]
= lim

γ→∞
(v2 + w2 + ũ2) (2.119)
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together with the value σ⋆ that minimizes the internal energy (2.114) at zero temperature,
we must compute the limit γ → ∞ of equations (2.108, 2.109, 2.110, 2.116).
To do so, we consider the general expression

lim
γ→∞

Eξ[f(ξ)] = lim
γ→∞

∫
dξ e−

1
2

(
ξ−vQ−wZ0

ũ

)2

+γρ(T |ξ,σ)f(ξ)
∫
dξ e−

1
2

(
ξ−vQ−wZ0

ũ

)2

+γρ(T |ξ,σ)

. (2.120)

We assume the scaling ũ2 = u2/γ suggested by equations (2.108,2.109,2.110), where ũ2

appears always multiplied by γ. We can now proceed via the Laplace argument:

lim
γ→∞

∫
dξ e−γ

(
1
2

(ξ−vQ−wZ0)
2

u2
−ρ(T |ξ,σ)

)
f(ξ)

∫
dξ e−γ

(
1
2

(ξ−vQ−wZ0)
2

u2
−ρ(T |ξ,σ)

) = f(ξ⋆) (2.121)

with ξ⋆ denoting the proximal mapping of the function ρ(T |.,σ), defined as

ξ⋆ = argmin
ξ

{1

2

(ξ − vQ− wZ0)
2

u2
− ρ(T |ξ,σ)

}
(2.122)

(as always under appropriate regularity conditions on f). It is now easy to take the limit in
equations (2.108, 2.109, 2.110, 2.116), obtaining

E
[
ξ2⋆

]
= v2(1− ζ) + w2 + 2u2(v2 + w2)η′ζ (2.123)

v(1− ζ) + vu2η′ζ = E
[
Qξ⋆

]
(2.124)

w(1 + u2η′ζ) = E
[
Z0ξ⋆

]
(2.125)

∇σρ(T |ξ⋆,σ) = 0 (2.126)

Some additional algebraic steps then result in equations (2.21, 2.22, 2.23) in the main text.

2.6.4 Logit regression model

Working out the RS equations

The Logit regression model is defined by

T |X ∼ eT (X·β)

2 cosh(X · β)
(2.127)

where T ∈ {−1,+1}. The log-likelihood is log p(T |X ·β) = T (X ·β)− log[2 cosh(X ·β)], so
the first RS equation (2.34) follows by substitution into inside formula (2.21) of

ξ⋆ = νQ+ ωZ0 + µ2T − µ2 tanh(x) (2.128)

This gives
ν2ζ

(1− τ ′ζµ2)2
= µ4 EY,Q,Z0

[(
T − τ

νQ+ ωZ0

1− τµ2
− tanh(x⋆)

)2]
. (2.129)

For equation (2.35) we need the derivative ∂ξ⋆/∂Q = ∂x⋆/∂Q, which is obtained by differ-
entiating the equation that defines x⋆:

∂ξ⋆
∂Q

= ν − µ2

cosh2(x⋆)

∂ξ⋆
∂Q

(2.130)
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with solution
∂ξ⋆
∂Q

=
ν cosh2(x⋆)

µ2 + cosh2(x⋆)
. (2.131)

Substitution into (2.22), followed by division by the common factor ν, leads after some simple
rewriting to

ζ
(
1− η′µ2/(1− τ ′ζµ2)

)
= ET,Q,Z0

[ u2

u2 + cosh2(x⋆)

]
. (2.132)

Next we compute
∂

∂Z0

log p(T |SZ0) = S
(
T − tanh(SZ0)

)
(2.133)

and insert the result into

ζω

1− τ ′ζµ2
= ET,Q,Z0

[
ξ⋆

∂

∂Z0

log p(T |SZ0)
]

(2.134)

to give
ζω/Sζ = (1− τ ′ζµ2)ET,Q,Z0

[
(x− ϕ)

(
T − tanh(SZ0)

)]
. (2.135)

We note that
ET,Q,Z0 [T ] = ET,Z0 [tanh(SZ0)] (2.136)

so
ζω/Sζ = (1− τ ′ζµ2)ET,Q,Z0

[
x
(
T − tanh(SZ0)

)]
. (2.137)

Numerical solution of the RS equations

The numerical solution of the RS equations is obtained by means of fixed point iteration.
The system (2.34,2.35,2.36) can be seen as a dynamical mapping for x = (ζ, ν, ω):

xt = f(xt−1;µ
2, S) . (2.138)

The solution of (2.34,2.35,2.36) corresponds to a fixed point of the dynamical system, which
is found by iterating the mapping above until some convergence criterion is met. In our case
we chose to set the tolerance at ∥xt − xt−1∥ ≤ 1 · 10−10. We see that

ET,Q,Z0

[
g(T,Q, Z0)

]
= EQ,Z0

[ ∑
t=−1,1

p(t|SZ0)g(t, Q, Z0)
]

(2.139)

so we just need to compute two Gaussian integrals. We computed the mapping f via Gauss-
Hermite quadratures, at order 40 to achieve a reasonably high accuracy (since the functions
appearing inside the integrals are not simple polynomials of a fixed degree).

2.6.5 Weibull Proportional Hazards model

Working out the RS equations

We first derive the RS equations for an arbitrary parametric Proportional Hazards model,
for which the conditional response density given the covariates is

p(t|X · β,σ) = h(t|σ)eXTβe−H(t|σ)eX
T β

(2.140)
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with t ≥ 0 and H(t|σ) =
∫ t

0
dt′ h(t′|σ). Equation (2.25) new reads

µ−2(ξ⋆ − νQ− ωZ0) = 1−H(T |σ)eξ⋆ (2.141)

with the following solution, involving Lambert’s W -function [8]:

ξ⋆ = νQ+ ωZ0 + µ2 −W
(
H(T |σ)µ2eµ

2+νQ+ωZ0
)

(2.142)

By substituting (2.142) into (2.21) and writing (u, v, w) in terms of (µ, ν, ω) one obtains

ζν2

(1− τµ2)2
= (2.143)

= ET,Q,Z0

[(
µ2 −W

(
H(T |σ)µ2eµ

2+νQ+ωZ0

)
− τµ2

1− τµ2
(νQ+ ωZ0)

)2]
.

To obtain equation (2.22) we need ∂ξ⋆/∂Q. This is computed by the inverse function rule

∂ξ⋆
∂Q

= ν

(
1−

W
(
H(T |σ)µ2eµ

2+νQ+ωZ0
)

1 +W
(
H(T |σ)µ2eµ2+νQ+ωZ0

)
)

. (2.144)

After substituting and dividing for the common factor ν we obtain

1

1− τ ′ζµ2

(
1− ζ

(
1− µ2η′

1− τ ′ζµ2

))

= 1− ET,Q,Z0

[ W
(
H(T |σ)µ2eµ

2+νQ+ωZ0
)

1 +W
(
H(T |σ)µ2eµ2+νQ+ωZ0

)
]
. (2.145)

For the third RS equation (2.23) we need to compute

∂

∂Z0

log p(T |Z0, ϕ0, σ0) = S − SH(T |SZ0, ϕ0, σ0)e
SZ0 . (2.146)

Substitution into (2.23) gives

ωζ

1− τµ2
= (2.147)

S ET,Q,Z0

[
W

(
H(T |σ)µ2eµ

2+νQ+ωZ0
)(

H(T |SZ0, ϕ0, σ0)e
SZ0 − 1

)]
.

Note that the distribution (2.140) of T |Z0 has the property that upon changing to the
new variable

Z = H(T |σ0)e
SZ0 (2.148)

one will have Z ∼ Exp(1), T = H−1(Ze−SZ0 |σ0) and

H(T |σ) = H(H−1(Ze−SZ0 |σ0)|σ) . (2.149)
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Hence the first three RS equations derived above (2.143,2.145,2.147) can be rewritten as

ζν2

(1− τζµ2)2
=

EZ,Q,Z0

[(
µ2 −W

(
µ2H(H−1(Ze−SZ0 |σ0)|σ)eµ

2+νQ+ωZ0
))2]

(2.150)

1

1− τ ′ζµ2

(
1− ζ

(
1− µ2η′

1− τζµ2

))
=

1− ET,Q,Z0

[
W

(
µ2H(H−1(Ze−SZ0 |σ0)|σ)eµ

2+νQ+ωZ0
)

1 +W
(
µ2H(H−1(Ze−SZ0 |σ0)|σ)eµ2+νQ+ωZ0

)
]

(2.151)

ω

1− τζµ2
ζ =

SET,Q,Z0

[
W

(
µ2H(H−1(Ze−SZ0 |σ0)|σ)eµ

2+νQ+ωZ0

))
(Z − 1)

]
. (2.152)

To work out the RS equations for the nuisance parameters (2.24) we must choose an
explicit parametric form for the base hazard rate. Upon assuming the integrated base hazard
to have the Weibull parametrization,

H(T |ϕ, σ) = T 1/σeϕ/σ (2.153)

we obtain
H(H−1(Ze−SZ0 |ϕ0, σ0)|ϕ, σ) = Zσ0/σe−SZ0σ0/σ+(ϕ−ϕ0)/σ . (2.154)

Substituting (2.154) into (2.143, 2.145) then directly leads to equations (2.44, 2.45) in the
main text. We simplify (2.147) via integration by parts, use (2.145), and after some minor
algebraic simplifications obtain (2.46). For the remaining equations one has to compute

∂

∂ϕ
log p(T |ξ∗, ϕ, σ) =

− 1

σ
− 1

σµ2
W

(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)
(2.155)

∂

∂σ
log p(T |ξ∗, ϕ, σ) =

− 1

σ
− 1

σ

(ϕ− ϕ0

σ
+

σ0

σ
logZ − σ0

σ
SZ0

)

×
(

1

µ2
W

(
Zσ0/σµ2eµ

2+(ω−S
σ0
σ
)Z0+νQ+(ϕ−ϕ0)/σ

)
− 1

)
. (2.156)

Upon taking the expectation and setting the previous two derivatives to zero we obtain the
remaining RS equations (2.47, 2.48)

µ2 = EZ,Q,Z0

[
W

(
µ2eµ

2

Zσ0/σe(ω−S
σ0
σ
)Z0+νQe(ϕ−ϕ0)/σ

)]
(2.157)

σ

σ0

= (2.158)

EZ,Q,Z0

[(
logZ−SZ0

)( 1

µ2
W

(
µ2eµ

2

Zσ0/σe(ω−S
σ0
σ
)Z0+νQe(ϕ−ϕ0)/σ

)
− 1

)]
.
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Numerical solution of the RS equations

The numerical solution of the RS equations is again obtained via fixed point iteration. The
system (2.44,2.45,2.46,2.47,2.48) is interpreted as the fixed-point condition of a dynamical
mapping of x = (ζ, ν, ω, µ, σ/σ0):

xt = f(xt−1; (ϕ− ϕ0)/σ, S) . (2.159)

The mapping is iterated until some convergence criterion is met, here chosen to be ∥xt −
xt−1∥ ≤ 1 · 10−10. We see that all the RS equations involve terms of the form

EZ,Q,Z0

[
g(Z,Q, Z0)

]
(2.160)

involving two Gaussian and one exponential integral. We computed these via Gauss-Hermite
and Gauss-Laguerre quadratures, to order 40 to achieve sufficient accuracy.
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Chapter 3

Replica analysis of overfitting in
regression models for time to event data:
the impact of censoring

This chapter is published in Journal of Physics A : Mathematical and Theoretical, https:
//iopscience.iop.org/article/10.1088/1751-8121/ad2e40/meta. The notation in this
chapter is different from the notation in the introduction. The dot product between two
vectors a,v ∈ Rd is indicated with a ·, i.e a · v =

∑d
k=1 ak vk, instead of ′. Furthermore the

covariates are indicated with the bold letter z, instead of X.

3.1 Abstract

We use statistical mechanics techniques, viz. the replica method, to model the effect of cen-
soring on overfitting in Cox’s proportional hazards model, the dominant regression method
for time-to-event data. In the overfitting regime, Maximum Likelihood (ML) parameter
estimators are known to be biased already for small values of the ratio of the number of
covariates over the number of samples. The inclusion of censoring was avoided in previous
overfitting analyses for mathematical convenience, but is vital to make any theory applica-
ble to real-world medical data, where censoring is ubiquitous. Upon constructing efficient
algorithms for solving the new (and more complex) Replica Symmetric (RS) equations and
comparing the solutions with numerical simulation data, we find excellent agreement, even
for large censoring rates. We then address the practical problem of using the theory to cor-
rect the biased ML estimators without knowledge of the data-generating distribution. This
is achieved via a novel numerical algorithm that self-consistently approximates all relevant
parameters of the data generating distribution while simultaneously solving the RS equa-
tions. We investigate numerically the statistics of the corrected estimators, and show that
the proposed new algorithm indeed succeeds in removing the bias of the ML estimators, for
both the association parameters and for the cumulative hazard.

3.2 Introduction

Inference relies on the foundations provided by classical statistical theory, which was devel-
oped for use in settings where the number p of covariates is small compared to the number n of
observations [21, 10]. The standard Maximum Likelihood (ML) method for estimating model
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parameters indeed fails in the high-dimensional regime where p = O(n) [7, 6, 2, 18, 19, 11],
due to overfitting. Overfitting is the phenomenon that data noise is misinterpreted as sig-
nal, leading to biased parameter estimators with large sample to sample fluctuations. An
overfitting model will predict outcomes for training examples well, but will fail in predicting
outcomes for new data. Early strategies to mitigate overfitting include leaving out covari-
ates (with the risk of overlooking relevant predictive information), penalization (equivalent
to adding a parameter prior in Bayesian language), and shrinking parameter estimates after
model fitting. The penalization weight or shrinking factor are typically estimated via boot-
strapping or cross-validation, which forces one to sacrifice some of the training data; this
makes the overfitting even worse. Moreover, penalization and shrinking may at best repair
the overfitting-induced bias in the length of the parameter vector, but not the bias in its
direction (which will appear as soon as the covariates are correlated [3]).

In order to use existing regression models also in the overfitting regime, it is vital to
correctly quantify and undo the effects of overfitting, both for inference and for prediction
purposes. As a consequence, in recent years we have seen increased research efforts aimed
at extending the classical inference theory to the so-called proportional asymptotic regime,
characterized by taking the limit n → ∞ while keeping the ratio ζ = p/n fixed. Several
mathematical methods from the domains of the statistical physics of disordered system
[2, 11, 3, 13], computer science [19, 22] and statistics [7, 6, 18], have by now been applied
successfully in this latter regime to model the statistics of ML and Maximum A Posteriori
Probability (MAP) estimators.

The condition p ≪ n for ML/MAP inference to be used safely is especially problematic
in post-genome medicine: we can now routinely measure very many variables per patient
and want to use these to develop personalized therapies, but overfitting prevents us from
doing so. For time-to-event data, the most common type in medicine, the main regression
tools are variations on the model of Cox [5]. Overfitting in this model was analysed in [3, 16]
as a statistical mechanics problem, via the replica method [15]. A later study [22] used the
Convex Gaussian Min-max theorem [20], with the logarithm of Cox’s partial likelihood as
utility function, to study overfitting in the association parameters. The latter route avoids
the use of replicas, but unlike [2, 16], cannot model overfitting in the base hazard rate.

Unlike some applied statistical studies on the subject, see e.g. [14, 1], all theoretical
studies of overfitting based on the replica or cavity approach have so far assumed for sim-
plicity that the data were not subject to censoring. Censoring means that samples are lost to
observation prior to events occurring. It is ubiquitous in medicine, since medical studies are
always of finite duration and also since patients often fail to return to hospital appointments
for unknown reasons. Before the modern overfitting analysis methods for the proportional
asymptotic regime, and their corresponding overfitting bias decontamination formulae, can
be applied in the real world, it is hence vital that the theory of [2, 16] is extended to include
censoring. That is the first aim of this paper.

We generalise the theory of[2, 16] by allowing for arbitrary types of non-informative
censoring, carry out a replica analysis in the regime p, n → ∞ with fixed ζ = p/N , and
derive the extended RS equations. Methodologically we also improve upon the approach
in [2, 16] by: (i) using an more compact form of the replica approach, (ii) avoiding the
variational approximation for the base hazard rate, and (iii) constructing novel and more
powerful numerical algorithms for solving and inverting the RS equations, including in cases
where one does not know anything about the data generating distribution, resulting in precise
algorithms for decontaminating estimators of association parameters and the integrated base
hazard for overfitting-induced bias.
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This paper is organized as follows. In Section 3.3 we define our notation and describe
briefly the Cox model. We explain the results obtained via the replica method (whose
derivation is relegated to an Appendix) and the physical interpretation of the RS order
parameters in Section 3.4, and show in Section 3.5 how this interpretation inspires an efficient
numerical method for solving the RS equations. In Section 3.6 we test the predictions of
the theory against numerical simulations, and find perfect agreement. We construct in
Section 3.7 a new algorithm for simultaneously inferring relevant characteristics of the data
generating distribution and solving the RS equations, leading to a realistic and practical tool
for correcting the biased ML estimates of association parameters and the nuisance parameters
(i.e. the integrated base hazard) in the overfitting regime, even in the presence of censoring.
We conclude in Section 3.8 with a discussion of our results and future research.

3.3 Definitions

In time to event data, each observation ideally reports the time T at which the subject
experiences the event under investigation and the covariate vector z = (z1, . . . , zp) ∈ Rp,
i.e. the list of characteristics of the subject measured at time zero. All covariate vectors
are assumed to have been drawn independently from some distribution p(z). Since any non-
zero average will drop out of our formulae, we can always take p(z) to have average zero.
However, in virtually all real-world time-to-event data sets observations are censored, i.e. for
some subjects we have a missing or partial observation of their event times. For instance,
we might only know that an event occurred after or before a certain time point, or within a
specific interval (called right, left and interval censoring, respectively). In what follows we
focus on right censoring, the most common form of censoring in medical applications. In
practice this amounts to assuming that when collecting data we actually observe

t = min{T,C}. (3.1)

The random variable C models the censoring time, drawn randomly from an a priori unknown
distribution pc(x), and we are given a binary variable that indicates whether the subject has
at time t experienced the event (∆ = 1) or has been censored (∆ = 0):

∆ =

{
1 if T < C

0 otherwise
(3.2)

Note that we can always write pc(x) = λc(x)e
−Λc(x), where λc(x) is the censoring rate and

Λc(x) =
∫ x

0
dx′ λc(x

′). The Cox semi-parametric model [5] assumes that the time at which a
subject experiences the event is distributed according to

pT (x|z) = λ0(x)e
β0·z−Λ0(x) exp(β0·z), (3.3)

where β0 ∈ Rp, λ0(x) is the true (non-negative) hazard rate, and Λ0(x) =
∫ x

0
dx′ λ0(x

′) is
the true cumulative hazard. The censoring times C and the event times T are assumed to
be statistically independent, i.e. censoring time is said to be non-informative, and the joint
distribution of observed times t ≥ 0 and event type indicators ∆ ∈ {0, 1}, given covariates
z, can then be written as

p(t,∆|β0 ·z) =
(
λ0(t)e

β0·z
)∆(

λc(t)
)1−∆

e−Λ0(t) exp(β0·z)−Λc(t) . (3.4)
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The parameters one seeks to infer are the true vector β0 and the true function λ0(t). It follows
from (3.4) upon computing the log-likelihood density for a data-set of i.i.d. observations
D = {(ti,∆i, zi)}ni=1, that ML inference will give the estimators

(β̂, λ̂)n = argmaxβ,λ Ln

(
β, λ|D

)
(3.5)

Ln

(
β, λ|D

)
=

n∑
i=1

{
∆i

(
log λ(ti) + β · zi

)
− Λ(ti)e

β·zi
}
. (3.6)

The problem (3.5) can be reduced by first maximizing over the hazard rate. Setting the
functional derivative with respect to λ to zero gives an equation that can be solved for λ(t),
leading to the so-called Breslow estimator [5]:

λ̂n(t|β) =
1

n

n∑
k=1

∆kδ(t− tk)

n−1
∑n

j=1 θ(tj − tk)eβ·zj
, (3.7)

where θ(x) denotes the step-function (θ(x > 0) = 1 and θ(x < 0) = 0). Substituting (3.7)
into (3.6) and disregarding terms that are independ of β we obtain

β̂n = argmaxβ Ln(β|D) (3.8)

Ln(β|D) =
n∑

i=1

∆i

{
β · zi − log

( 1
n

n∑
j=1

θ(tj − ti)e
β·zj

)}
. (3.9)

The right-hand side of (3.9) is the logarithm of the famous Cox partial likelihood [5].

3.4 Typical behaviour of the Maximum (Partial) Likeli-
hood estimator

Computing the estimator β̂ML in (3.8) is equivalent to finding the ground state of a fictitious
physical system with Hamiltonian Hn(β|D) = −Ln(β|D), in which the association parame-
ters β act as the degrees of freedom, and the data-set D plays the role of quenched disorder.
Statistical physics thus allows us to compute the average over the disorder (i.e. the data
D) of the log-partial likelihood, giving the typical behaviour of the ML estimator, in the
proportional asymptotic regime as

lim
n,p→∞, ζ=p/n

〈 1

n
Ln(β̂ML|D)

〉
D
= − lim

n,p→∞ ζ=p/n

1

n

〈
minβ Hn(β|D)

〉
D

= lim
n,p→∞, ζ=p/n

lim
γ→∞

1

nγ

〈
log

∫
dβ e−γHn(β|T,z)

〉
D
. (3.10)

In fact, for reasons that will become clear, we insert a constant regularization factor (whose
impact will be zero due to the limit γ → ∞), and replace (3.10) by

lim
n,p→∞, ζ=p/n

〈 1

n
Ln(β̂ML|D)

〉
D
=

lim
n,p→∞, ζ=p/n

lim
γ→∞

1

nγ

〈
log

∫
dβ e

1
2
p log p−γHn(β|T,z)

〉
D
. (3.11)

The standard procedure to carry out the disorder average in parametric regression models via
the replica method (which goes back to [9]) builds on the assumption that the log-likelihood
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is a sum of n independent terms, each depending on a single observation (ti,∆i, zi). For
the present Hamiltonian Hn(β|D) this is not the case, so we need an intermediate step. We
introduce the empirical distribution

Pn(t,∆, h|β,D) =
1

n

n∑
i=1

δ(t− ti)δ∆,∆i
δ(h− β · zi) (3.12)

and observe that we can write the Hamiltonian (i.e. minus the log-partial likelihood) as the
following functional:

H
[
Pn(.|β,D)

]
= nE

[
Pn(.|β,D)

]
, (3.13)

E
[
P (.)

]
= (3.14)

∫
dtdh P (t, 1, h)

[
log

∑
∆′

∫
dh′dt′ θ(t′ − t)eh

′
P (t′,∆′, h′)− h

]
.

We can now write (3.11) in a form where the disorder average effectively is computed over
the density of states associated with (3.12). Upon introducing suitable delta-functionals one
then achieves factorisation of the disorder average over the samples i in the data set D. The
full replica derivation is given in 3.9.1 for completeness, and gives upon making the so-called
replica-symmetric (RS) ansatz:

lim
n,p→∞ ζ=p/n

〈 1

n
Hn(β̂ML|D)

〉
D
= extr

u,v,w
F(u, v, w) = F(u⋆, v⋆, w⋆) (3.15)

with

F(u⋆, v⋆, w⋆) =

=

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
Λ(t)eξ⋆(t,∆,y,z) −∆ξ⋆(t,∆, y, z)

]
, (3.16)

p(t,∆|Sy) =
(
eSyλ0(t)

)∆
λ1−∆
c (t)e−Λ0(t) exp(Sy)−Λc(t), (3.17)

ξ(t,∆, y, z) = wy + vz + u2∆−W
(
u2eu

2∆+wy+vzΛ(t)
)
, (3.18)

and

Λ(s) =

∫
Dy

∑
∆∈{0,1}

×

×
∫
dt p(t,∆|Sy)

[
∆θ(s− t)∫

Dy′Dz′
∑

∆′

∫∞
t
dt′ p(t′,∆′|Sy′)eξ⋆(t′,∆′,y′,z′)

]
.

Here we used the standard short-hand Dy = (2π)−
1
2 e−

1
2
y2dy, and W (x) is the Lambert W -

function [4], defined by the equation W (x) exp[W (x)] = x for all x. The only condition on
p(z) needed in the derivation of the above RS equations is that for p → ∞ the true and
inferred linear predictors β ·z acquire Gaussian statistics1. The extremum (u⋆, v⋆, w⋆) in

1This will be trivially true if the covariate distribution p(z) is itself Gaussian, but also if the conditions
for the central limit theorem to hold apply (i.e. if the components of z not too strongly correlated, and the
components of β are not too dissimilar in their scaling with n; see [8]).
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(3.15) is found to satisfy the so-called RS equations:

ζv =

∫
DyDz z

∑
∆

∫
dt p(t,∆|Sy) W (u2Λ(t)e∆u2+vz+wy), (3.19)

0 =

∫
DyDz y

∑
∆

∫
dt p(t,∆|Sy)

[
W (u2Λ(t)e∆u2+vz+wy)−∆u2

]
, (3.20)

ζv2 =

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
W (u2Λ(t)e∆u2+vz+wy)−∆u2

]2
. (3.21)

These can be written in alternative forms, for instance by using identities such as
W (u2Λ(t)e∆u2+vz+wy) = u2Λ(t)eξ(t,∆,y,z) = ∆u2+vz+wy − ξ(t,∆, y, z), W ′(x) = W (x)/x[1+
W (x)], and via integration by parts over z in (3.19), giving

ζv2 =

∫
DyDz

∑
∆

∫
dt p(t,∆|y)

[
ξ(t,∆, y, z)−vz−wy

]2
, (3.22)

1− ζ =

∫
DyDz

∑
∆

∫
dt p(t,∆|y)

[ 1

1 + u2Λ(t)eξ(t,∆,y,z)

]
, (3.23)

w =

∫
DyDz

∑
∆

∫
dt p(t,∆|y) yξ(t,∆, y, z). (3.24)

For the distribution P(t,∆, h) and the functions Λ(t) and S(t) we find in RS ansatz the
following expressions (see 3.9.1):

P(t,∆, h) =

∫
DyDz p(t,∆|Sy) δ

[
h− ξ(t,∆, y, z)

]
, (3.25)

Λ(t) =

∫
dt′dh′ θ(t− t′)P(t′, 1, h′)

S(t′)
, (3.26)

S(t) =
∑
∆′

∫
dt′dh′ θ(t′ − t)eh

′P(t′,∆′, h′). (3.27)

We note that an alternative way to derive equations (3.19,3.20,3.21) (and a corresponding
equation for Λ(t)) would have been to make appropriate choices such as y → (t,∆) and
θ → {λ0(t), λC(t)} in the RS formulae of [3]. However, that alternative route would not have
generated the powerful expression (3.25) found with the present approach. By retracing its
derivation and making simple adaptations, (3.25) can be generalized to

P(t,∆, h0, h) =
e−

1
2
h2
0/S

2

S
√
2π

p(t,∆|h0)

∫
Dz δ

[
h− ξ(t,∆, y, z)

]
, (3.28)

where

P(t,∆, h0, h) = lim
n→∞

1

n

n∑
i=1

〈
δ(t− ti)δ∆,∆i

δ(h0−β0 · zi)δ(h−β · zi)
〉
D

(3.29)

(with the standard convention that ζ = p/n is kept fixed in the limits n, p → ∞). This
result shows very transparently the impact of overfitting on the inferred risk factors β · zi,
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relative to their true values β0 · zi.

At this point it is helpful to write w = Sκ. The interpretation of the values (κ⋆, v⋆) as
solved from the RS equations above can be inferred directly from the results in [3]:

κ⋆ = lim
p,n→∞

〈
κ̂n

〉
D, κ̂n =

β0 ·Aβ̂n

β0 ·Aβ0

(3.30)

v2⋆ = lim
p,n→∞

〈
v̂2n
〉
D, v̂2n = β̂n ·Aβ̂n−κ̂2

nβ0 ·Aβ0 (3.31)

with p/n = ζ fixed as p, n → ∞. The importance of (κ⋆, v⋆) derives from the facts that
(asymptotically) the asymptotic distribution of β̂n depends only these two quantities [13],
and that the overfitting induced inference bias and noise can be expressed in terms of κ⋆ and
v⋆, respectively. The function Λ(t) has the following interpretation:

Λ(t) = lim
p,n→∞

∫ t

0

dt′
〈
λ̂ML(t

′)
〉
D

(3.32)

with p/n = ζ fixed, and with the Breslow estimator as given in (3.7).

3.5 Numerical solution of RS equations

For fully parametric GLM models in the overfitting regime the RS equations can always
be solved numerically in a relatively straightforward iterative manner by evaluating the
relevant integrals via Gaussian quadratures. Here, for the Cox model with censoring, we
have the added complication of the functional order parameter Λ(t), which suggests we
take a different approach inspired by population dynamics algorithms and our interpretation
(3.25,3.26,3.27). For any given values of the scalar order parameters (u, v, w), and given
values of S = |A1/2β0|, we can generate m ≫ 1 samples from the distribution

P(t,∆, y, z|u, v, w) = (2π)−1e−
1
2
(y2+z2)p(t,∆|Sy), (3.33)

resulting in {(tℓ,∆ℓ, yℓ, zℓ)}mℓ=1. We then define for each (u, v, w,Λ) the quantities ξℓ(u, v, w,Λ) =
ξ(tℓ,∆ℓ, yℓ, zℓ|u, v, w,Λ), computed via (3.18), and the estimator Λ̃m(t):

Λ̃m(t|u, v, w,Λ) =
m∑
ℓ=1

θ(t− tℓ)∆ℓ∑m
k=1 θ(tk − tℓ)eξk(u,v,w,Λ)

(3.34)

For sufficiently large population size m, the iterative algorithm defined by the mapping
Λ(.) → Λ′(.) = Λ̃m(.|u, v, w,Λ) will now by construction have as its fixed-point the solution
of (3.25,3.26,3.27). Furthermore, it is relatively easy to invert numerically equation (3.23)
and write u for fixed (v, w,Λ) as a function of ζ, for instance via Newton’s method, so that
ζ can always be chosen as the independent parameter of our RS equations (as it is always
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known). We can then solve the following surrogate set of RS equations:

ζv2m =
1

m

m∑
ℓ=1

(
ξℓ − vmzℓ − wmyℓ

)2
, (3.35)

1− ζ = =
1

m

m∑
ℓ=1

1

1 + u2
mΛ̃m(tℓ)eξℓ

, (3.36)

wm =
1

m

m∑
ℓ=1

yℓξℓ, (3.37)

Λ̃m(ti) =
m∑
ℓ=1

θ(ti − tℓ)∆ℓ∑m
j=1 θ(tj − tℓ)eξj

, (3.38)

where now
ξi = u2∆i + vmzi + wmyi −W

(
u2
mΛ̃m(ti)e

u2
m∆i+vmzi+wmyi

)
. (3.39)

(e.g. via damped fixed point iteration). When simulating the data, Λ0(.) is known and,
empirically, we find that substituting equation (3.37) with its equivalent version, obtained
by Gaussian integration by parts of (3.24),

wm = S
1

m

m∑
ℓ=1

(
u2
m∆ℓ −W (u2

mΛ̃m(tℓ)e
∆ℓu

2
m+vmz+wmy)

)(
∆ℓ − Λ0(tℓ)e

Syℓ
)
/ζ (3.40)

leads to much faster convergence with smaller population size and hence the latter is adopted
instead of (3.37).

3.6 Simulations tests of RS theory
When some observations are censored, it is known that in the proportional asymptotic regime
the ML estimator β̂ML does not always exists [17], and a recent paper [22] established that,
asymptotically and under the assumption of Gaussian covariates, β̂n undergoes a sharp
phase transition at some critical value ζc. Here we focus on the region ζ < ζc where the
ML estimator does exist. Since one obviously cannot solve the RS equations for all possible
choices of the hazard function λ0(.), the censoring rate λc(.) and the true association am-
plitude S = |A1/2β0|, we have in our simulations chosen a censoring distribution pc(t) that
is uniform between 0 and tmax, reflecting the realistic scenario of a clinical trial of duration
tmax where patients are recruited at constant rate for the trial duration. Different choices
of S, tmax and true hazard rate λ0(.) will lead to different expected fractions ⟨∆⟩ of true
(non-censored) events:

⟨∆⟩ =

∫
Dy

∫ ∞

0

dt p(t, 1|Sy) = −
∫
Dy

∫ ∞

0

dt e−Λc(t)
d

dt
e−Λ0(t) exp(Sy)

= 1−
∫ tmax

0

dt

tmax

∫
Dy e−Λ0(t) exp(Sy) (3.41)

To test the predictions of our RS equations we generated 500 survival data-sets D of
size n = |D| = 400, with uniformly distributed censoring on the interval [0, tmax], using
cumulative hazards of the Log-logistic Λ0(t) = log(1+ t2) and Weibull Λ0(t) =

1
2
t2 form. We

used uncorrelated unit-variance Gaussian covariates, and true association vector β0 = ê1 (i.e.
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the first unit vector), hence S = 1. We then applied Cox’s ML regression protocol to infer
the associations and the cumulative hazard (via Breslow’s formula), giving the estimators β̂n

and Λ̂n(.). From β̂n we subsequently computed the overfitting markers (κ̂n, v̂n) in (3.30,3.31).
Below we show results obtained when tmax = 4, corresponding to ⟨∆⟩ ≈ 0.6, implying

that around 40% of the events are censored, for both choices of Λ0(.). This relatively large
censored fraction was deliberately chosen to confirm that the new theory is capable of pre-
dicting the behaviour of the various estimators, despite the complication posed by censoring.
Further evidence in the form of additional simulations for different values of tmax and hence
of ⟨∆⟩ is presented in 3.9.3. There we considered tmax = 2 and tmax = 6, corresponding to
⟨∆⟩ ≈ 40% and 70%, respectively. In real medical data sets the fraction of censored events
depends heavily on the kind of risk under study and on the duration of the clinical study.
For example, a fast acting risk will lead to small numbers of censored individuals, since most
will experience the primary event before the end of the study.

In Figure 3.1 we plot the inferred cumulative hazards Λ̂n(.) versus the true cumulative
hazards Λ0(.), which can be done unambiguously since both are always non-decreasing func-
tions of time. By the nature of the Breslow estimator (3.7), these curves take the form of
‘staircase’ functions. We also show in the same panels the RS prediction of the relation be-
tween the two quantities, as red dashed lines. We conclude from Figure 1 that in all cases the
solution of the RS equations correctly predict the typical values of Λ̂n(.). In Figure 3.2 we
compare the replica predictions (κ⋆, v⋆) (solid lines) with the corresponding measurements
(κ̂n, v̂n) (markers with error bars), for different values of ζ = p/n ∈ [0, 0.5]. Markers give
the averages over the 500 data set realizations; error bars indicate the standard deviations.
Again we observe excellent agreement between the RS theory and the simulations, in spite
of the relatively small sample size n = 400. The latter feature is important for applications
of the theory, since real data sets in survival analysis indeed often have sizes of that order.

3.7 De-biasing protocols for overfitted ML estimators

Given the agreement between theory and simulations, we now explore the potential of using
our theory as a systematic tool with which to decontaminate ML estimators and build
asymptotically unbiased estimators β̃n and Λ̃n(.). Two obstacles appear initially to hinder
direct application of our RS equations for bias decontamination. First, our equations involve
the amplitude S (which is not directly accessible), Second, bias decontamination requires
inverting the complex relation between the inferred and true integrated hazards. We have
already constructed an algorithm for computing Λ̂n(.) in terms of Λ0(.), but now we need
to compute Λ0(.) given Λ̂n(.). In this section we remove both obstacles, and show that the
RS theory can indeed be used for creating accurate unbiased estimators in the overfitting
regime.

3.7.1 Derivation of a practical algorithm for de-biasing

Given the assumptions of our theory, we may write the marginal outcome probability
p(t,∆) =

∫
dz p(z)p(t,∆|β0 ·z) as

p(t,∆) = λ∆
0 (t)λ

1−∆
c (t)e−Λc(t)

∫
Dy e∆Sy−Λ0(t) exp(Sy). (3.42)
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Hence the log-marginal likelihood density for n i.i.d. observations {(ti,∆i)} reads

ℓn(S, λ, λc) = (3.43)
1

n

n∑
i=1

{
∆i log λ(ti) + (1−∆i) log λc(ti)− Λc(ti) + log ϕ∆i

(
Λ(ti), S

)}
,

where we introduced the function

ϕ∆(x, s) =

∫
Dy e∆sy−x exp(sy). (3.44)

We next compute the ML estimators for (λ, λc) by maximization of (3.43). Taking the
functional derivative with respect to λ(.) gives, after standard manipulations, the following
estimator for the hazard rate:

λ̃(t|S) =
n∑

i=1

∆iδ(t− ti)∑n
j=1 θ(tj − ti)

[
ϕ∆j+1(Λ(tj), S)/ϕ∆j

(Λ(tj), S)
] . (3.45)

Upon integrating both sides over t, and replacing in the right-hand side the (as yet un-
known) value of Λ(ti) by the estimator Λ̃n(t|S) =

∫ t

0
dt′ λ̃n(t

′|S) one then finds the following
simple fixed-point equation for Λ̃n(.|S), that does not involve any parameter that could be
susceptible to overfitting:

Λ̃(t|S) =
n∑

i=1

∆iθ(t− ti)∑n
j=1 θ(tj − ti)

[
ϕ∆j+1(Λ̃(tj), S)/ϕ∆j

(Λ̃(tj), S)
] . (3.46)

The result of solving this fixed-point equation by (damped) iteration is remarkably accurate,
as will be shown below. Repeating the same steps for the censoring rate λc(.) gives the
unbiased ML estimator

Λ̃c(t) =
n∑

i=1

(1−∆i)θ(t− ti)∑n
j=1 θ(tj − ti)

. (3.47)

One could in principle attempt to determine S in the same way: extremize (3.43) with
respect to S, and solve the resulting equation simultaneously with (3.46) for Λ̃(.|S) and
S. Unfortunately, the resulting equations admit the trivial solution S = 0, describing the
trivial situation where the outcomes (t,∆) are independent of the covariates. Thus we need
an independent extra equation to determine the value of S, which must be added to and
solved simultaneously with the RS order parameter equations and (3.46). We first note that
(3.30,3.31) imply

S2 =
1

κ2
⋆

(
lim

n,p→∞

〈
β̂n ·Aβ̂n

〉
D − v2⋆

)
(3.48)

with p/n = ζ fixed as p, n → ∞. If the covariate correlation matrix A is known, the above
could serve as the desired extra equation. If the covariate correlation matrix is not known,
as would generally be the case, we can use the following result, which exploits the fact that
in regression the n quantities β̂ML ·zi are always observable:

lim
n→∞

1

n

n∑
i=1

(β̂ML ·zi)2 = (1−ζ)v2⋆ + w2
⋆. (3.49)

76



This identity is derived in 3.9.2. It uses explicitly the alternative form of the replica calcula-
tion followed in the present paper, from which followed equation (3.25) (a result that could
have been but was not derived in earlier papers). In contrast to (3.48), (3.49) can always be
used as a additional equation with which to determine S.

The final result is the following algorithm, that seeks to combine optimally the RS theory
with the available data D and the biased ML estimators. After measuring the left-hand side
of (3.49), one solves numerically the four scalar equations (3.22,3.23,3.24,3.49) simultaneously
for (u, v, w, S), e.g. via (damped) fixed-point iteration, with the short-hands (3.18) for the
function ξ(t,∆, y, z) and (3.17) for p(t,∆|Sy). The censoring rate λc(t) in (3.17) is estimated
by the time derivative of (3.47), and for each value of S, the base hazard λ0(t) by the time
derive of the result of iterating (3.46) to a fixed-point. The various Gaussian integrals can
be done via Gauss-Hermite quadrature. The resulting new and unbiased estimator for the
association parameters is according to (3.30) then given by β̃ = β̂ML/κ⋆, where κ⋆ = w⋆/S.

3.7.2 Simulation tests of the proposed new estimators

In Figure 3.3 we plot both the uncorrected and the de-biased estimator for the cumulative
hazard, for simulations of survival data with n = 400 and around 40% of censoring events.
These data show convincingly that the ML estimator Λ̂n(.) (shown in black) is quite biased,
with average values as predicted by the RS theory (dashed yellow line), but that the corrected
estimator Λ̃(.) (shown in blue) when plotted against the true cumulative hazard is centered
around the red dashed line (the diagonal, corresponding to unbiased estimation). This is
remarkable, given that our de-biasing algorithm does not require any knowledge of the data
generating process, apart from assuming the form of a semi-parametric proportional hazard
model (3.4). As expected, the corrected estimator exhibits a larger variance than the ML
estimator (reflecting the general and well-known bias-variance trade-off in inference). The
increasing variance of both estimators at large times is simply a finite size effect: already
at t = 2.5 the survival probability is below 0.1, so only few subjects are still alive and
able to generate events that may contribute to hazard rate inference. Similarly we show in
Figures 3.4, 3.5, and 3.6 the differences between the ML estimators and the new de-biased
estimators for the amplitude S (the ‘signal strength’ of the true associations), the nonzero
and zero components of the true association vector respectively. Additional simulations for
different values of the censoring rate have been carried out, and the corresponding results
can be found in 3.9.3.

Our simulations support the conclusion that the new decontamination algorithm pro-
posed above indeed leads to virtually unbiased estimators for Λ0(.), S , and β0, even for
relatively small data sets and in the presence of significant levels of censoring. This is a
nontrivial result, since we have only required that there is no model mismatch, i.e. that
the data were generated from a Cox model, and that the distribution of the risk factors
β0 ·zi will asymptotically be Gaussian. In particular, the algorithm does not require a priori
knowledge of any of the parameters of the data generating process.
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(a) (b)

(c) (d)

Figure 3.1: Comparison of theoretical predictions and simulation data, for Cox’s survival analysis
model with uniform censoring on the interval [0, 4], giving around 40% censoring events, and data
set size n = 400. Top row: p = 100 (so ζ = 0.25); bottom row: p = 200 (so ζ = 0.5). Panels (a,c):
cumulative hazard Λ0(t) = log(1+t2). Panels (b,d): cumulative hazard Λ0(t) =

1
2 t

2. In all panels
we plot with black lines the Breslow estimator Λ̂n(.) versus the true cumulative hazard Λ0(.), for
500 independent simulations with distinct data realizations. Yellow curves show the predictions of
the RS theory (solved with populations of size m = 105), and red curves indicate the diagonal (that
would have been found for perfect regression). Further details are given in the main text.
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(a) (b)

(c) (d)

Figure 3.2: Comparison of theoretical predictions and simulation data, for Cox’s survival analysis
model with uniform censoring on the interval [0, 4], giving around 40% censoring events, and data set
size n = 400. Top row: overfitting-induced bias factor κ̂n versus ζ; bottom row: overfitting-induced
noise amplitude v̂n versus ζ. Panels (a,c): data for cumulative hazard Λ0(t) = log(1 + t2). Panels
(b,d): data for cumulative hazard Λ0(t) =

1
2 t

2. In all panels we plot with markers and error bars
the simulation results, averaged over 500 independent simulations with distinct data realizations,
and with solid lines the predictions κ⋆ and v⋆ of the RS theory (solved with populations of size
m = 105).
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(a) (b)

(c) (d)

Figure 3.3: Comparison of uncorrected and corrected integrated hazard rate estimators derived from
simulation data, for Cox’s survival analysis model with uniform censoring on the interval [0, 4], giving around
40% censoring events, and data set size n = 400. In all cases β0 = ê1, so S = 1. Top row: p = 120 (so
ζ = 0.3); bottom row: p = 200 (so ζ = 0.4). Panels (a,c): cumulative hazard Λ0(t) = log(1+t2). Panels
(b,d): cumulative hazard Λ0(t) = 1

2 t
2. In all panels we plot with black lines the Breslow estimator Λ̂n(.)

versus the true cumulative hazard Λ0(.), for 500 independent simulations with distinct data realizations.
Yellow curves show the predictions of the RS theory (solved with populations of size m = 105), and red
curves indicate the diagonal (that would have been found for perfect regression). We also show in blue the
de-biased estimator Λ̃(.) for the cumulative hazard versus the true cumulative hazard Λ0(.), for the same 500

simulations.
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(a) (b)

(c) (d)

Figure 3.4: Distributions of the values of the effective signal strength S = |A1/2β0| inferred
by our de-biasing algorithm, for the same data as those used in Figure 3. In all panels the
maximum of the histogram corresponds to the true value S = 1, in spite of the relatively
modest data set size (around 240 non-censored events).
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(a) (b)

(c) (d)

Figure 3.5: Distributions of the values of the non-zero component ê1 ·β of the association
vector, both for the standard ML Cox regression estimator (dark grey) and for the new
estimator inferred by our de-biasing algorithm (light grey), for the same data as those used
in Figure 3. We also show as a vertical dashed line the location of the true value ê1·β0 = 1,
and as a solid curve the predicted Gaussian asymptotic distribution of the new estimator,
with average 1 and variance v2⋆/κ

2
⋆p. We observe that the new estimator indeed removed

successfully the overfitting-induced bias of the ML one, while its distribution exhibits finite
size effects.
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(a) (b)

(c) (d)

Figure 3.6: Distributions of the values of the zero component ê2·β of the association vector,
both for the standard ML Cox regression estimator (dark grey) and for the new estimator
inferred by our de-biasing algorithm (light grey), for the same data as those used in Figure 3.
We also show as a vertical dashed line the location of the true value ê2·β0 = 0, and as a solid
curve the predicted Gaussian asymptotic distribution of the new estimator, here with zero
average and variance v2⋆/κ

2
⋆p. Here, as expected, already the ML estimator was unbiased,

since the theory predicts the overfitting-induced bias to take the form of a multiplicative
factor κ⋆ (which would here just multiply the number zero).
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3.8 Conclusion

In this paper we have extended previous analytical studies on overfitting in high dimensional
Cox regression for time-to-event data [2, 3, 16], by including censoring. Censoring is a
necessary ingredient for any survival analysis theory if its results are to be applied to real
medical data (the main application area of survival analysis). While still using the replica
method as our main tool, in addition to the inclusion of censoring we have here also chosen
a different route to carry out the analysis compared to [2, 3, 16], which enabled us to
derive an explicit formula for the inferred distribution of risk factors. This latter formula,
in turn, paved the way for the creation of new algorithms for applications of the replica-
symmetric (RS) theory, that previously required additional knowledge and/or additional
approximations. All our new theoretical results and predictions are validated using numerical
simulations.

We consider the main deliverables of the present paper to be the following three. First,
we now have an accurate theory with which to understand quantitatively the impact of cen-
soring on overfitting phenomena in the Cox model, so that replica-based overfitting analysis
can now be applied to realistic real-world problems in medicine (i.e. to data from clinical
studies of finite as opposed to infinite duration). Second, we are now able to solve directly
and accurately the RS equations for the inferred cumulative hazard, instead of using the
variational approximations proposed in [2, 3, 16]. Thirdly, we have been able to construct
from the present theory a practical and accurate algorithm with which to decontaminate
inferences for overfitting-induced bias, that does not require knowledge of any of the pa-
rameters of the true data generating distribution. The latter algorithm combines in a very
effective way the RS equations with those quantities that are measurable in ML regression,
and infers the effective signal strength S = |A1/2β0| as a by-product.

The results presented here thus have not only a theoretical but also a very practical value.
The availability of tools for de-biasing the important estimators of the Cox model implies that
one can now achieve significantly improved outcome predictions in realistic clinical scenarios,
compared to what would have been achievable with ML regression alone, either by using more
covariates for prediction (i.e. increasing ζ = p/n by increasing p), or by using fewer patients
to do so (i.e. increasing ζ = p/n by decreasing n), or by allowing for increased levels of
censoring without detrimental consequences. To the best of our knowledge, the presently
proposed bias decontamination algorithm, that corrects both association parameters and
nuisance parameters (i.e. the cumulative hazard in the Cox model), is the first of its kind.

We envisage future work to involve application of the new estimator decontamination
algorithm to real (partially censored) survival data, finding an expression or equation for the
transition point ζc of the Cox model in the presence of censoring(via the statistical mechanics
route), and working out the RS theory upon including ridge penalization in the Cox formulae
for survival analysis with censoring. We also envisage generalizing the new decontamination
algorithm to more general GLM regression models, where the efficient computation of the
signal strength S, or other possible parameters of the true data generating model, and of
the nuisance parameters, have in the past always required unwelcome approximations that
we expect will now no longer be necessary.
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3.9 Appendix

3.9.1 Replica derivation

We start from formulae (3.12,3.13,3.14) for the Hamiltonian, being minus the partial log-
likelihood of the Cox model. The relevant information on the typical estimators (β̂, λ̂)ML

follows from the asymptotic disorder-averaged free energy density in the γ → ∞ limit, viz.
from f = limγ→∞ f(γ), where

f(γ) = − lim
n→∞

1

nγ

〈
logZn(γ,D)

〉
D
, (3.50)

Zn(γ,D) =

∫
dβ e

1
2
p log p−γH[Pn(.|β,D)]. (3.51)

To compute the average of the logarithm we use the replica method, giving

f(γ) = − lim
n→∞

lim
r→0

1

nγr
log

〈
[Zn(γ,D)]r

〉
D
. (3.52)

The replicated free energy density

In order to compute
〈
[Zn(γ,D)]r

〉
D we first write Zn(γ,D) in a more convenient form. We

introduce the functional delta distribution

δ
[
P(.)−Pn(.|β,D)

]
=

∫
DP̂ ein

∑
∆

∫
dtdh P̂(t,∆,h)

[
P(t,∆,h)−Pn(t,∆,h|β,D)

]
(3.53)

86



in which DP̂ and DP are normalized such that
∫
DP δ

[
P(.)

]
= 1. We can now write

Zn(γ,D) =

∫
DP̂DP en

{
i
∑

∆

∫
dtdh P̂(t,∆,h)P(t,∆,h)−γE[P(.)]

}

×
∫
dβ e

1
2
p log p−i

∑n
i=1 P̂(ti,∆i,β·zi). (3.54)

For integer r we can next do the average over the data D:
〈
[Zn(γ,D)]r

〉
D = (3.55)

∫ [ r∏
α=1

DP̂αDPα

]
en

∑r
α=1

{
i
∑

∆

∫
dtdh P̂α(t,∆,t)Pα(t,∆,t)−γE[Pα(.)]

}

×
∫ [ r∏

α=1

dβα

]
e

1
2
rp log p

[∑
∆

∫
dzdt p(t,∆|β0 ·z)p(z)e−i

∑r
α=1 P̂α(t,∆,βα·z)

]n

=

∫ [ r∏
α=1

DP̂αDPα

]
en

∑r
α=1

{
i
∑

∆

∫
dtdh P̂α(t,∆,h)Pα(t,∆,h)−γE[Pα(.)]

}

×
∫ [ r∏

α=1

dβα

]
e

1
2
rp log p

[∑
∆

∫
dtdx W (x|{β})p(t,∆|x0)e

−i
∑

α P̂α(t,∆,xα)
]n

(3.56)

in which x = (x0, . . . , xr) ∈ Rr+1, p(z) is the distribution from which the n covariate vectors
zi were drawn, p(t,∆|β0 ·z) is defined in (3.4), and

W (x|{β}) =

∫
dz p(z)

r∏
α=0

δ
[
xα − βα ·z

]
(3.57)

The integrand in the last line of (3.56) depends on the vectors βα only via the linear predictors
xα = βα·z. We assume that the distribution W (x|{β}) of these predictors is Gaussian, either
because p(z) is Gaussian, or because for p → ∞ the central limit theorem will apply. Since∫
dz p(z)z = 0, we may now write, with C = {Cαρ}:

W (x|{β}) =
[
(2π)r+1detC[{β}]

]− 1
2 e−

1
2
x·C−1

[{β}]x (3.58)

∀α, ρ = 0 . . . r : Cαρ[{β}] =
∫
dz p(z)(βα ·z)(βρ ·z) = βα ·Aβρ (3.59)

To describe the generation or explanation of finite event times, the linear predictors will
always have to remain finite. Hence for realistic data sets the matrix elements Cαρ must
remain of order O(1) even in the limit p → ∞2. If we now also insert the integral 1 =∫
dC δ[C −C[{β}]], and write the δ-function in integral form, we find:

〈
[Zn(γ,D)]r

〉
D =

∫
dCdĈ

[ r∏
α=1

DP̂αDPα

]
e−nrΨ

[
{Pα,P̂α},C ,

ˆC
]
+O(logn) (3.60)

2In earlier papers [2, 3, 16, 13] the definition (3.57) involved βα·z/
√
p instead of βα·z, so the components of

βα would typically be of order O(1). The present choice links more directly to the standard ML algorithms,
but is the reason why in (3.11) the regularizer constant 1

2p log p was required.
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where, using p = ζn,

−rΨ
[
{Pα, P̂α},C, Ĉ] = iζTr(ĈC) + φ[C, {P̂α}] + ζϕ[Ĉ]

+i
r∑

α=1

∑
∆

∫
dtdh P̂α(t,∆, h)Pα(t,∆, h)− γ

r∑
α=1

E [Pα(.)] (3.61)

with

φ[C, {P̂α}] = log

[∑
∆

∫
dtdx p(t,∆|x0)

e−
1
2
x·C−1

x−i
∑

α P̂α(t,∆,xα)

[
(2π)r+1detC

] 1
2

]
(3.62)

ϕ[Ĉ] =
1

p
log

∫ [ r∏
α=1

dβα

]
e

1
2
rp log p−ip

∑r
αρ=0 Ĉαρβα·Aβρ (3.63)

It now follows, after exchanging the limits n → ∞ and r → 0, that the asymptotic disorder-
average free energy density (3.52) can be computed via steepest descent:

f(γ) =
1

γ
lim
r→0

extr
{Pα,P̂α},C ,

ˆC
Ψ
[
{Pα, P̂α},C, Ĉ]. (3.64)

Saddle point integration

We first derive the stationary conditions for (3.61) with respect to the functions P̂α and Pα,
via functional differentiation and using (3.14). This gives, respectively,

Pα(t,∆, h) =

∫
dx δ[h− xα]p(t,∆|x0)e

− 1
2
x·C−1

x−i
∑r

ρ=1 P̂ρ(t,∆,xρ)

∑
∆′

∫
dt′dx p(t′,∆′|x0)e

− 1
2
x·C−1

x−i
∑r

ρ=1 P̂ρ(t′,∆′,xρ)
(3.65)

iP̂α(t,∆, h) = γ∆

[
log

(∑
∆′

∫
dt′dh′ θ(t′ − t)eh

′Pα(t
′,∆′, h′)

)
− h

]

+γeh
∫
dt′dh′

(
θ(t− t′)Pα(t

′, 1, h′)∑
∆′′

∫
dt′′dh′′ θ(t′′ − t′)eh′′Pα(t′′,∆′′, h′′)

)
. (3.66)

Combination of (3.7) with (3.12) enables us to recognize in (3.66) the replicated cumulative
hazard function,

Λα(t) =

∫
dt′dh′ θ(t− t′)Pα(t

′, 1, h′)

Sα(t′)
(3.67)

Sα(t) =
∑
∆′

∫
dt′dh′ θ(t′ − t)eh

′Pα(t
′,∆′, h′) (3.68)

with which we may write (3.66) more compactly as

iP̂α(t,∆, h) = γ
(
∆[logSα(t)− h] + ehΛα(t)

)
. (3.69)

Insertion into (3.65) then simplifies the latter to

Pα(t,∆, h) = (3.70)
∫
dx δ[h−xα]p(t,∆|x0)e

− 1
2
x·C−1

x−γ
∑r

ρ=1

(
∆[log Sρ(t)−xρ]+exp(xρ)Λρ(t)

)

∑
∆′

∫
dt′dx p(t′,∆′|x0)e

− 1
2
x·C−1

x−γ
∑r

ρ=1

(
∆′[log Sρ(t′)−xρ]+exp(xρ)Λρ(t′)

)
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Upon using also a modest amount of foresight we transform iĈ = 1
2
D. We then find that

our saddle point problem (3.64) can be written as follows:

f(γ) =
1

γ
lim
r→0

extrC ,D,{Pα} Ψ̃[C,D, {Pα}], (3.71)

where

−rΨ̃[. . .] =
1

2
ζTr(DC) + φ̃[C] + ζϕ̃[D]− 1

2
log detC − 1

2
(r+1) log(2π)

+γ
r∑

α=1

{∑
∆

∫
dtdh Pα(t,∆, h)

(
∆[logSα(t)− h] + ehΛα(t)

)
− E [Pα(.)]

}

with

ϕ̃[D] = lim
p→∞

1

p
log

∫ [ r∏
α=1

dβα

]
e

1
2
rp log p− 1

2
p
∑r

αρ=0 Dαρβα·Aβρ (3.72)

φ̃[C] = (3.73)

log

[∑
∆

∫
dtdx p(t,∆|x0)e

− 1
2
x·C−1

x−γ
∑r

α=1

(
∆[log Sα(t)−xα]+exp(xα)Λα(t)

)]

We have not used (3.70) to derive (3.72), only (3.69). Hence in (3.71) the functions {Pα}
indeed still have the status of independent variational parameters, and functional differenti-
ation of (3.72) with respect to Pα must therefore reproduce (3.70).

The replica symmetry (RS) ansatz

We now make the so-called replica symmetric (RS) ansatz. Replica symmetry should affect
only the nonzero replica labels α = 1 . . . r, so for the present order parameters C and D the
RS ansatz takes the following form, ∀α ∈ {1, . . . , r} :

Cα0 = C0α = c0, Cαν = Cνα = c+ (C − c)δαν (3.74)
Dα0 = D0α = m̂, Dαν = Dνα = −q̂ + (ρ̂+ q̂)δαν (3.75)
Pα(t,∆, h) = P(t,∆, h), Λα(t) = Λ(t), Sα(t) = S(t) (3.76)

The RS form of C implies the same for its inverse, where we define (C−1)00 = µ̃ and
∀α ∈ {1, . . . , r}

(C−1)α0 = (C−1)0α = m̃, (3.77)
(C−1)αν = (C−1)να = q̃ + (ρ̃− q̃)δαν (3.78)

After some algebra one then finds that

µ̃ =
C + c(r − 1)

C00(C + c(r − 1))− rc20
(3.79)

m̃ =
c0

rc20 − C00(C + c(r − 1))
(3.80)

q̃ =
1

C − c

c20 − cC00

C00(C + c(r − 1))− rc20
(3.81)

ρ̃ =
1

C − c
+ q̃ . (3.82)
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With the RS ansatz we can simplify the functions (3.72,3.73). We start with ϕ̃[D], using
the short-hand S2 = C00 = β0 ·Aβ0:

ϕ̃RS[D] =

lim
p→∞

{
1

2
rp log p− 1

2
D00β0 ·Aβ0 −

r

2p
log DetA

+
1

p
log

∫ [ r∏
α=1

dβα

]
e−pm̂

∑r
α=1 β0·A

1
2 βα+

1
2
pq̂[

∑r
α=1 βα]2− 1

2
p(ρ̂+q̂)

∑r
α=1(βα)2

}

= lim
p→∞

{
1

2
rp log p− 1

2
D00β0 ·Aβ0 −

r

2p
log DetA

+
1

p
log

∫ [ p∏
µ=1

Dxµ

][ p∏
µ=1

∫
dβ eβ[xµ

√
pq̂−pm̂(A

1
2 β0)µ]− 1

2
p(ρ̂+q̂)β2

]r}

= −1

2
D00S

2 +
1

2
r
(m̂2S2+q̂

q̂+ρ̂
− 1

p
log DetA− log(ρ̂+q̂)− log(2π)

)
+O(r2)

(3.83)

Next we apply the RS ansatz to φ̃[C]:

eφ̃RS[C ] =∑
∆∈{0,1}

∫
dtdx p(t,∆|x0)e

∆γ
∑r

α=1 xα−γΛ(t)
∑r

α=1 exp(xα)−rγ∆ logS(t)

×e−
1
2
µ̃x2

0−m̃x0
∑r

α=1 xα− 1
2
q̃[
∑r

α=1 xα]2− 1
2
(ρ̃−q̃)

∑r
α=1 x

2
α

=
∑

∆∈{0,1}

∫
Dz

∫
dtdx0 e−

1
2
µ̃x2

0p(t,∆|x0)e
−rγ∆ logS(t)

×
[ ∫

dx ex(∆γ+iz
√
q̃−m̃x0)−γΛ(t) exp(x)− 1

2
(ρ̃−q̃)x2

]r

=
(2π
µ̃

)1
2

{
1− rγ

∫
Dy0

∫
dt p(t, 1| y0√

µ̃
) logS(t) + 1

2
r log

( 2π

ρ̃− q̃

)
+O(r2)

+r
∑

∆∈{0,1}

∫
Dy0Dz

∫
dt p(t,∆| y0√

µ̃
)

× log

∫
Dx ex[∆γ+iz

√
q̃−(m̃/

√
µ̃)y0]/

√
ρ̃−q̃−γΛ(t) exp(x/

√
ρ̃−q̃) (3.84)

Hence

φ̃RS[C] =
1

2
log

(2π
µ̃

)
+

−rγ

∫
Dy0

∫
dt p(t, 1| y0√

µ̃
) logS(t) + 1

2
r log

( 2π

ρ̃− q̃

)
+O(r2)

+r
∑

∆∈{0,1}

∫
Dy0Dz

∫
dt p(t,∆| y0√

µ̃
)

× log

∫
Dx ex[∆γ+iz

√
q̃−(m̃/

√
µ̃)y0]/

√
ρ̃−q̃−γΛ(t) exp(x/

√
ρ̃−q̃) (3.85)
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We then find, using identities such as Tr(DC) = D00S
2+r(2c0m̂+cq̂+Cρ̂)+O(r2), log DetC =

logS2 + r[log(C−c) + (c−c20/S
2)/(C−c)] + O(r2) (obtained by diagonalizing the RS form

of C), as well as µ̃S2 = 1 + rc20/S
2(C − c) + O(r2), m̃ = −c0/S

2(C − c) + O(r), q̃ =
(c20/S

2−c)/(C−c)2 + O(r), and ρ̃ − q̃ = (C−c)−1 + O(r), that the RS ansatz implies the
following for expression (3.72) (modulo irrelevant constants):

− lim
r→0

Ψ̃RS[. . .] =

−1

2

c

C−c
+

1

2
ζ
(
2m̂c0+q̂c+ρ̂C +

m̂2S2+q̂

q̂+ρ̂
− log(ρ̂+q̂)

)

+
∑
∆

∫
Dy0Dz

∫
dt p(t,∆|Sy0)×

× log

∫
Dx e

[
∆γ

√
C−c+z

√
c−c20/S

2

√
C−c

+
y0c0

S
√
C−c

]
x−γΛ(t) exp(x

√
C−c)

+γ

{ ∑
∆∈{0,1}

∫
dtdh P(t,∆, h)

(
∆[logS(t)− h] + ehΛ(t)

)
− E [P(.)]

−
∫
Dy0

∫
dt p(t, 1|Sy0) logS(t)

}
. (3.86)

We can now extremize ΨRS[. . .] over (m̂, q̂, ρ̂), as demanded by (3.71), giving

m̂ = − c0
S2(C−c)

, q̂ =
c−c20/S

2

(C−c)2
, ρ̂+q̂ =

1

C−c
(3.87)

Our various formulae takes more compact forms upon introducing the three short-hands
u =

√
γ(C−c), v =

√
c−c20/S

2 and w = c0/S, which we know from earlier studies to have
finite γ → ∞ limits. We may then write

m̂ = − γw

Su2
, q̂ =

γ2v2

u4
, ρ̂+q̂ =

γ

u2
(3.88)

and

− lim
γ→∞

1

γ
lim
r→0

Ψ̃RS[. . .] = − 1

2u2
[w2+(1−ζ)v2] +

∑
∆

∫
Dy0Dzdt p(t,∆|Sy0)×

× lim
γ→∞

1

γ
log

∫
dx e

γ

[
− 1

2
u2x2+[∆u2+vz+wy0]x−Λ(t) exp(xu2)

]

+
∑

∆∈{0,1}

∫
dtdh P(t,∆, h)

(
∆[logS(t)− h] + ehΛ(t)

)
− E [P(.)]

−
∫
Dy0

∫
dt p(t, 1|Sy0) logS(t) . (3.89)
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We may hence now write fRS = limγ→∞ fRS(γ) as follows:

fRS = extru,v,w,P

{
1

2u2
[w2+(1−ζ)v2]−

∑
∆∈{0,1}

∫
DyDzdt p(t,∆|Sy)×

× maxx

[
− 1

2
u2x2 + (∆u2+vz+wy)x− Λ(t)exu

2
]
+

−
∑

∆∈{0,1}

∫
dtdh P(t,∆, h)

(
∆[logS(t)− h] + ehΛ(t)

)
− E [P(.)]

+

∫
Dy

∫
dt p(t, 1|Sy) logS(t)

}
(3.90)

with E [P(.)] as defined by (3.14), and

Λ(t) =

∫
dt′dh′ θ(t− t′)P(t′, 1, h′)

S(t′)
(3.91)

S(t) =
∑
∆′

∫
dt′dh′ θ(t′ − t)eh

′P(t′,∆′, h′) (3.92)

The maximization over x in (3.90) is achieved for x = u−2ξ(t,∆, y, z), where

ξ(t,∆, y, z) = ∆u2+vz+wy −W
(
u2Λ(t)e∆u2+vz+wy

)
(3.93)

with Lambert’s function W (z), the inverse of the function g(x) = xex. Note that expression
(3.93) can be interpreted in terms of a Moreau envelope, and is in other approaches to
overfitting indeed often found via that route [11]. Hence we now arrive at

fRS = extru,v,w,P

{
1

2u2
[w2+(1−ζ)v2] +

1

u2

∑
∆∈{0,1}

∫
DyDzdt p(t,∆|Sy)×

[
1

2
ξ2(t,∆, y, z)− (∆u2+vz+wy)ξ(t,∆, y, z) + u2Λ(t)eξ(t,∆,y,z)

]

−
∑

∆∈{0,1}

∫
dtdh P(t,∆, h)

(
∆[logS(t)− h] + ehΛ(t)

)
− E [P(.)]

+

∫
Dy

∫
dt p(t, 1|Sy) logS(t)

}
, (3.94)

which can be written in alternative ways, using identities such as ze−W (z) = W (z).
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Replica symmetric order parameter equations

We next work out the RS form of equation (3.70) in the limit r → 0, using the same
manipulations as in working out the previous function φ̃RS[C], giving

P(t,∆, h) lim
r→0

[∫
DyDz p(t,∆| y√

µ̃
)e−rγ∆ logS(t)

√
ρ̃− q̃√
2π

e−
1
2
(ρ̃−q̃)h2

×e
[∆γ+iz

√
q̃− m̃y√

µ̃
]h−γΛ(t) exp(h)

(∫
Dx e

[∆γ+iz
√
q̃− m̃y√

µ̃
] x√

ρ̃−q̃
−γΛ(t) exp( x√

ρ̃−q̃
)
)r−1

]

×

[ ∑
∆′∈{0,1}

∫
dt′

∫
DyDz p(t′,∆′| y√

µ̃
)e−rγ∆′ log S(t′)

×
(∫

Dx e
[∆′γ+iz

√
q̃− m̃y√

µ̃
] x√

ρ̃−q̃
−γΛ(t′) exp( x√

ρ̃−q̃
)
)r
]−1

= lim
r→0

∫
DyDz p(t,∆| y√

µ̃
)

√
ρ̃−q̃√
2π

e
− 1

2
(ρ̃−q̃)h2+[∆γ+iz

√
q̃− m̃y√

µ̃
]h−γΛ(t) exp(h)

∫
Dx e

[∆γ+iz
√
q̃− m̃y√

µ̃
] x√

ρ̃−q̃
−γΛ(t) exp( x√

ρ̃−q̃
)

]

=

∫
DyDz p(t,∆|Sy) e

γ

u2

[
− 1

2
h2+(∆u2+vz+wy)h−u2Λ(t)eh

]

∫
dh′ e

γ

u2

[
− 1

2
h′2+(∆u2+vz+wy)h′−u2Λ(t)eh′

] (3.95)

Upon taking the limit γ → ∞ we then find the following remarkably simple result, in which
the function ξ(. . .) is as given by equation (3.93):

lim
γ→∞

P(t,∆, h) =

∫
DyDz p(t,∆|Sy) δ

[
h− ξ(t,∆, y, z)

]
. (3.96)

From this one then obtains the RS expressions of Λ(t) and S(t), via (3.91, 3.92).

Finally we need to work out the scalar order parameter equations for the trio (u, v, w), by
executing the extremization demanded in expression (3.94) for the free energy density. These
equations are seen to take the form ∂F(u, v, w)/∂u = ∂F(u, v, w)/∂v = ∂F(u, v, w)/∂w = 0,
with ξ(. . .) as given in (3.93), where

F(u, v, w) =
1

2u2
[w2+(1−ζ)v2] +

1

u2

∑
∆∈{0,1}

∫
DyDzdt p(t,∆|Sy)×

×
[1
2
ξ2(t,∆, y, z)− (∆u2+vz+wy)ξ(t,∆, y, z) + u2Λ(t)eξ(t,∆,y,z)

]
(3.97)

By using identities such as W (x) exp[W (x)] = x, one finds that
u2Λ(t) exp[ξ(t,∆, y, z)] = W (u2Λ(t)e∆u2+vz+wy), which enables us to simplify F(u, v, w) to

F(u, v, w) =
1

u2

{
1

2
[w2+(1−ζ)v2] +

∑
∆

∫
DyDzdt p(t,∆|Sy)× (3.98)

[1
2
W 2(u2Λ(t)e∆u2+vz+wy) +W (u2Λ(t)e∆u2+vz+wy)− 1

2
(∆u2+vz+wy)2

]}
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From this expression one then derives directly the final order parameter equations for
(u, v, w), in which only the equation for u involves some further manipulations:

∂F
∂v

= 0:

ζv =

∫
DyDz z

∑
∆

∫
dt p(t,∆|Sy) W (u2Λ(t)e∆u2+vz+wy) (3.99)

∂F
∂w

= 0:

0 =

∫
DyDz y

∑
∆

∫
dt p(t,∆|Sy)

[
W (u2Λ(t)e∆u2+vz+wy)−∆u2

]
(3.100)

∂F
∂u

= 0:

ζv2=

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
W (u2Λ(t)e∆u2+vz+wy)−∆u2

]2
(3.101)

F(u⋆, v⋆, w⋆) =

=

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
Λ(t)eξ⋆(t,∆,y,z) −∆ξ⋆(t,∆, y, z)

]
. (3.102)

3.9.2 Variance of inferred risk factors

In this Appendix we derive equation (3.49) for the variance of the inferred risk factors β̂ML·zi,
which is an important tool with which to remove the need for knowing the amplitude S in
the construction of unbiased estimators. It exploits our result (3.25) for the asymptotic form
of the distribution (3.12) (which is the type of quantity that within the replica theory is
assumed to be self-averaging3):

lim
n→∞

1

n

n∑
i=1

(β̂ML ·zi)2 = lim
n→∞

∑
∆∈{0,1}

∫
dtdh

〈
Pn(t,∆, h|β̂ML,D)

〉
Dh

2

=
∑

∆∈{0,1}

∫
dtdh P(t,∆, h)h2

=
∑

∆∈{0,1}

∫
DyDzdt p(t,∆|Sy)ξ2(t,∆, y, z). (3.103)

3This assumption is validated by the accuracy of the predictions of the RS equations, as confirmed
repeatedly in previous studies [2, 3, 13, 12], and also again in our present numerical simulations.
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Upon using (3.18) we can thus write

lim
n→∞

1

n

n∑
i=1

(β̂ML ·zi)2 =

∑
∆

∫
DyDzdt p(t,∆|Sy)

[
wy+vz+u2∆−W

(
u2eu

2∆+wy+vzΛ(t)
)]2

= v2+ w2+

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
u2∆−W

(
u2eu

2∆+wy+vzΛ(t)
)]2

−2w

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy)

[
yW

(
u2eu

2∆+wy+vzΛ(t)
)
−∆u2y

]

−2v

∫
DyDz

∑
∆

∫
dt p(t,∆|Sy) zW

(
u2eu

2∆+wy+vzΛ(t)
)
. (3.104)

Upon using the order parameter equations (3.19,3.20,3.21) we can now simplify the right-
hand side of the latter expression, and find the remarkably simple but powerful result

lim
n→∞

1

n

n∑
i=1

(β̂ML ·zi)2 = (1−ζ)v2⋆ + w2
⋆ . (3.105)

3.9.3 Additional simulations

This Appendix describes tests of the theory against simulations for further choices of the
censoring rate, i.e. for different values of for different values of ⟨∆⟩. In 3.9.3 we compare
the measurements in additional simulations with the solutions of the RS equations, as in
section 3.6. In 3.9.3 we apply the algorithm of section 3.7 for different values of ⟨∆⟩, to
investigate the robustness of the proposed algorithm. The data are generated as explained
in the main text, i.e. the cumulative hazard is either of the Weibull form Λ0(t) = 1

2
t2 or

of the Log-logistic form Λ0(t) = log(1 + t2), the true signal strength is |β0| = 1, and the
censoring is uniformly distributed in the interval [0, tmax]. In order to vary the fraction of
censored individuals we tune the end-of-trial time tmax. In particular, we consider the values
tmax = 2 and tmax = 6.

In all cases it can be seen that the RS theory predicts the typical values of the estimators
very accurately (even for n = 400).

Comparison of theory and simulations

In Figures 3.7 and 3.8 we compare the predicted values of the overlaps (κ⋆, v⋆), obtained by
solving the RS equations, against the values (κ̂n, v̂n) in simulations, for different values of ζ
and for tmax ∈ {2, 6} (corresponding to ⟨∆⟩ ≈ 40% and 70%, respectively). We also show
in (3.9) the comparison between the Breslow estimator Λ̂n(.) (solid black lines) against the
solution of the RS equations (yellow solid line) when ζ = 0.3 at tmax = 2.0 (top row) and
when ζ = 0.4 at tmax = 6 (bottom row). As a reference we plot the identity line (solid red),
which corresponds to perfect recovery.
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(a) (b)

(c) (d)

Figure 3.7: Comparison of theoretical predictions and simulation data, for Cox’s survival analysis model
with uniform censoring on the interval [0, 2] (⟨∆⟩ ≈ 40%) and data set size n = 400. Top row: overfitting-
induced bias factor κ̂n versus ζ; bottom row: overfitting-induced noise amplitude v̂n versus ζ. Panels (a,c):
data for cumulative hazard Λ0(t) = log(1 + t2) . Panels (b,d): data for cumulative hazard Λ0(t) = 1

2 t
2.

In all panels we plot with markers and error bars the simulation results, averaged over 500 independent
simulations with distinct data realizations, and with solid lines the predictions κ⋆ and v⋆ of the RS theory
(solved with populations of size m = 105).
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(a) (b)

(c) (d)

Figure 3.8: Comparison of theoretical predictions and simulation data, for Cox’s survival
analysis model with uniform censoring on the interval [0, 6] (⟨∆⟩ ≈ 70%) and data set size
n = 400. Top row: overfitting-induced bias factor κ̂n versus ζ; bottom row: overfitting-
induced noise amplitude v̂n versus ζ. Panels (a,c): data for cumulative hazard Λ0(t) =
log(1+ t2) (⟨∆⟩ ≈ 50%). Panels (b,d): data for cumulative hazard Λ0(t) =

1
2
t2 (⟨∆⟩ ≈ 40%).

In all panels we plot with markers and error bars the simulation results, averaged over 500
independent simulations with distinct data realizations, and with solid lines the predictions
κ⋆ and v⋆ of the RS theory (solved with populations of size m = 105).
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(a) (b)

(c) (d)

Figure 3.9: Comparison of theoretical predictions and simulation data, for Cox’s survival
analysis model with uniform censoring on the interval [0, tmax] and data set size n = 400.
Top row: p = 120 (ζ = 0.3), tmax = 2.0 (⟨∆⟩ ≈ 40%); bottom row : p = 160 (ζ = 0.4),
tmax = 6.0 (⟨∆⟩ ≈ 70%). Panels (a,c): cumulative hazard Λ0(t) = log(1+ t2) . Panels
(b,d): cumulative hazard Λ0(t) = 1

2
t2. In all panels we plot with black lines the Breslow

estimator Λ̂n(.) versus the true cumulative hazard Λ0(.), for 500 independent simulations
with distinct data realizations. Yellow curves show the predictions of the RS theory (solved
with populations of size m = 105), and red curves indicate the diagonal (that would have
been found for perfect regression).

Simulations test for the proposed decontamination algorithm

In Figure 3.10 we compare the Breslow estimator Λ̂n(.) (solid black lines) with its decon-
tamined version Λ̃n(.) (blue solid lines), when ζ = 0.3 at tmax = 2 (top row) and when
ζ = 0.4 at tmax = 6 (bottom row). As a reference we also plot the diagonal (solid red),
which corresponds to perfect estimation. We also show in Figure 3.11 the histograms of the
estimator Sn for S, as obtained via the decontamination algorithm, together with Λ̃n(.), κ̃n,
and ṽn. The true value S = 1 is plotted as dashed vertical line in black. Finally we compare
the histograms of the ML estimators e1 · β̂n and e2 · β̂n against their corrected values e1 · β̃n
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and e2 · β̃n, with β̃n = β̂n/κn, and we superimpose the normal density with mean zero and
variance v2⋆/κ

2
⋆ (the prediction of the RS theory). Since here β0 = e1, the true values are

e1 · β0 = 1 and e2 · β0 = 0.

(a) (b)

(c) (d)

Figure 3.10: Comparison of uncorrected and corrected integrated hazard rate estimators derived
from simulation data, for Cox’s survival analysis model with uniform censoring on the interval
[0, tmax]and data set size n = 400. In all cases β0 = ê1, so S = 1. Top row: p = 120 (so ζ = 0.3),
tmax = 2.0; bottom row: p = 160 (so ζ = 0.4), tmax = 6.0 . Panels (a,c): cumulative hazard
Λ0(t) = log(1+t2). Panels (b,d): cumulative hazard Λ0(t) =

1
2 t

2. In all panels we plot with black
lines the Breslow estimator Λ̂n(.) versus the true cumulative hazard Λ0(.), for 500 independent
simulations with distinct data realizations. Yellow curves show the predictions of the RS theory
(solved with populations of size m = 105), and red curves indicate the diagonal (that would have
been found for perfect regression). We also show in blue the de-biased estimator Λ̃(.) for the
cumulative hazard versus the true cumulative hazard Λ0(.), for the same 500 simulations.
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(a) (b)

(c) (d)

Figure 3.11: Distributions of the values of the effective signal strength S = |A1/2β0| inferred
by our de-biasing algorithm, for the same data as those used in Figure (3.10,3.12,3.13). Top
row: p = 120 (so ζ = 0.3), tmax = 2.0; bottom row: p = 160 (so ζ = 0.4), tmax = 6.0. In all
panels the maximum of the histogram corresponds to the true value S = 1, in spite of the
relatively modest data set size (around 240 non-censored events).
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(a) (b)

(c) (d)

Figure 3.12: Distributions of the values of the non-zero component ê1 ·β of the association
vector, both for the standard ML Cox regression estimator (dark grey) and for the new
estimator inferred by our de-biasing algorithm (light grey), for the same data as those used
in Figure (3.10,3.11,3.13). Top row: p = 120 (so ζ = 0.3), tmax = 2.0; bottom row: p = 160
(so ζ = 0.4), tmax = 6.0. We also show as a vertical dashed line the location of the true
value ê1 ·β0 = 1, and as a solid curve the predicted Gaussian asymptotic distribution of
the new estimator, with average 1 and variance v2⋆/κ

2
⋆p. We observe that the new estimator

indeed removed successfully the overfitting-induced bias of the ML one, while its distribution
exhibits finite size effects.

In all cases we see that the proposed algorithm succeeds in correcting for the overfitting
bias: in Figure 3.10 the blue lines are distributed around lies around the (red) diagonal, and
in Figure 3.11 the modes of the histograms of Sn, e1 · β̃n and e2 · β̃n reproduce the true values
S = 1, e1 · β0 = 1 and e2 · β0 = 0.

In order for our algorithm to converge, it is necessary that the ML estimator actually
exists. Hence we expect that the algorithm will converge when ζ = p/n is sufficiently far
from the critical value that marks the censoring equivalent of the phase transition derived in
[22]. In a finite size simulation that transition is not sharp, and there will therefore be data
instances even below the phase transition line for which the ML estimator does not exist.
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The (future) inclusion of a ridge penalization should cure these pathologies, which are due
to the use of ML regression, rather than to the algorithm itself. Nevertheless, estimating
correctly the hazard rate of the event under study will always be more difficult when only a
few primary events are observed in a sample. This implies that any algorithm must inevitably
become less reliable as ⟨∆⟩ decreases toward zero.
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(a) (b)

(c) (d)

Figure 3.13: Distributions of the values of the zero component ê2·β of the association vector,
both for the standard ML Cox regression estimator (dark grey) and for the new estimator
inferred by our de-biasing algorithm (light grey), for the same data as those used in Figure
(3.10,3.11,3.12). Top row: p = 120 (so ζ = 0.3), tmax = 2.0; bottom row: p = 160 (so
ζ = 0.4), tmax = 6.0.We also show as a vertical dashed line the location of the true value
ê2 ·β0 = 0, and as a solid curve the predicted Gaussian asymptotic distribution of the new
estimator, here with zero average and variance v2⋆/κ

2
⋆p. Here, as expected, already the ML

estimator was unbiased, since the theory predicts the overfitting-induced bias to take the
form of a multiplicative factor κ⋆ (which would here just multiply the number zero).
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Chapter 4

Proportional asymptotics of piecewise
exponential proportional hazards models

This chapter is accepted for publication in the proceeding of the 15th Workshop on Stochastic
Models, Statistics and Their Applications (2024). An updated version of this chapter is
available on ArXiv https://arxiv.org/abs/2501.18995

4.1 Abstract

We study the flexible piece-wise exponential model in a high dimensional setting where the
number of covariates p grows proportionally to the number of observations n and under the
hypothesis of random uncorrelated Gaussian designs. We prove rigorously that the optimal
ridge penalized log-likelihood of the model converges in probability to the saddle point of
a surrogate objective function. The technique of proof is the Convex Gaussian Min-Max
theorem of Thrampoulidis, Oymak and Hassibi. An important consequence of this result, is
that we can study the impact of the ridge regularization on the estimates of the parameter of
the model and the prediction error as a function of the ratio p/n. Furthermore these results
represents a first step toward rigorously proving the (conjectured) correctedness of several
results obtained with the heuristic replica method for the Cox semi-parametric model.

4.2 Introduction

In medicine and healthcare, survival analysis is extensively used to assess the impact of
medical interventions, predict patient outcomes, and estimate disease prognosis [21, 20, 29, 6].
Survival data are often analysed in the framework of the Cox model [8], which has several
desirable properties in the classical regime where number of covariates (p) is assumed to
be small compared to the number of subjects (n) available in a study [1, 38]. However,
modern applications p is often comparable or larger than n. In this regime the maximum
partial likelihood estimator might not even exist, and when it does is frequently biased and
exhibits a large variance [7, 26], making it an unreliable tool for statistical inference and
prediction. Such undesirable properties are unavoidable and have been known since the 60’
in the statistical community, starting from the works of Kolmogorov and Huber [43, 11].

In the last two decades a vast amount of theory on sparse regression in high dimensional
generalized linear models [40], and the Cox model [2, 31], has been established. This line of
research builds on the assumption that the underlying “true” model is sparse and guarantees
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consistency of estimators obtained by a penalized maximum likelihood approach when: i) the
regularizer is cleverly chosen, i.e. lasso and variants of the latter[37], and ii) the regularization
strength is appropriately tuned [5]. The theoretical machinery of this line of work, i.e. the
theory of empirical processes [41, 42, 39], imposes only minor conditions over the distribution
of the covariates and the results are often expressed as bounds on performance metrics, with
precise probabilistic guarantees [39, 43, 24, 5, 31].

An alternative “average case” approach to the same subject, starting with the pioneer-
ing work [13], which used statistical physics methodology (i.e. the replica method), focuses
instead on the study of the average values of performance metrics in the proportional asymp-
totic regime where the number of covariates p = pn = ζn grows linearly with the number of
observations n → ∞, so that the limn→∞ pn/n = ζ ∈ R. This approach has been recently
rigorous using different techniques such as Leave One Out method [10, 34], Approximate
Message Passing [9] and the Convex Gaussian Min max Theorem (CGMT)[36, 35, 27]. The
price to pay for this alternative and “sharper” description is more assumptions on the data
generating process. In particular a standard, mathematically convenient (albeit often ideal)
assumption is usually undertaken, namely that the covariates follow a standard multivariate
normal distribution.

In this manuscript, we study the asymptotic behaviour of the ridge penalized maximum
likelihood estimator for the piece-wise exponential proportional hazards model via a rigorous
formulation of the typical case approach mentioned above. The piece-wise exponential pro-
portional hazards model is a parametric proportional hazards model where the base hazard
rate function is postulated to be piece-wise constant, throughout a set of user defined inter-
vals [12, 19]. By applying the CGMT, we prove rigorously that the optimal ridge penalized
log-likelihood of the model converges in probability to the saddle point of a surrogate objec-
tive function. Furthermore we show that the expected (typical) value of several prediction
metrics, and some training metrics, can be computed precisely by computing the location of
this saddle point. In principle, the Cox semi-parametric model can be recovered by an ap-
propriate data dependent choice of the time intervals, i.e. by assuming the base hazard rate
to be constant between un-censored observations [3, 4]. However, the proof presented in this
manuscript is not directly applicable since it hinges on the fact the number of parameters
describing the base hazard rate is finite as n → ∞ (which is not the case for the Cox model).

The manuscript is structured as follows. In section 4.3 we introduce the model under
study and the related notation; the main theoretical results are presented in section 4.4,
whilst a brief sketch of the proof can be found in section 4.5 referring to the appendices for
the technical details. We illustrate the agreement of theory and simulations in section 4.6 via
numerical experiments where we quantify the prediction error by means of the concordance-
index and an oracle version of the integrated brier score. Concluding remarks are in section
4.7.

4.3 Setting
We assume that the time at which a subject fails (i.e. experiences the event) is generated as

Y |X ∼ f0(.|X′β0), X ∼ N (0, Ip) (4.1)

We focus on right censoring, being the most common in applications. In this scenario, instead
of observing the actual response Y directly, we observe the event time T and the censoring
indicator ∆ defined as follows

T = min{Y, C}, ∆ = 1
[
T < C

]
(4.2)
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where C is the censoring time, i.e. the time at which the subject drops out of the study. We
shall further assume that censoring is uninformative, i.e. Y ⊥ C|X, and that the censoring is
at random and not dependent on the subject’s covariates C ⊥ X. Given the data generated
according to (4.1) and (4.2), the statistician assumes a proportional hazards model

∆, T |X ∼
(
λ(T |ω)eX

′β
)∆

e−Λ(T |ω) exp (X′β) × fC(T )
1−∆SC(T )

∆ , (4.3)

with
λ(.|ω) :=

d

dt
Λ(t|ω) , (4.4)

where C ∼ fC and SC(x) =
∫ +∞
x

fc(y)dy are, respectively, the density and cumulative
distribution function of the censoring risk, Λ(.|ω) : R+ → R+ is the cumulative hazard
for the primary risk and λ(.|ω) is the corresponding hazard. The piece-wise exponential
proportional hazards model postulates that λ is a linear combination of piece-wise functions,
i.e. zero-th order spline function, with user specified knots τ1, . . . , τℓ+1 [12, 19] as follows

λ(t|ω) :=
ℓ∑

k=1

ψk(t) exp(ωk) = ψ(t)′ exp(ω) (4.5)

with
ψ(t) =

(
ψ0(t), . . . , ψℓ−1(t)

)′
, ψk(t) := I[τk < t < τk+1], k = 1, . . . , ℓ . (4.6)

The parametric form of the cumulative hazard can be obtained via integration and reads

Λ(t|ω) := Ψ(t)′ exp(ω) (4.7)

where

Ψ(t) =
(
Ψ0(t), . . . ,Ψℓ−1(t)

)′
, Ψk(t) := I[t > τk] min{t− τk, τk+1 − τk} . (4.8)

We notice that this is a special case of a B-spline parameterization of the baseline hazard
function. The model is, in principle, arbitrary flexible in the sense that increasing the
number of intervals allows to fit more and more precisely the shape of the “true” (unknown)
baseline hazard rate. It has been noticed in literature [16] that the locations of the knots
do not generally impact on the quality of the fit, but the number of knots is crucial. In this
manuscript we take a penalized splines (P-spline) approach, use several equi-spaced knots
and penalize the respective coefficients via a ridge-like regularizer. To keep the setting simple
we consider a simple uniform ridge regularization (although smoothness penalties based on
finite differences might be easily considered in the present setting), i.e. the model is fitted
to the data by minimizing the following objective function

Ln(ω,β) =
1

n

n∑
i=1

g(X′
iβ,ω, Ti,∆i)−

1

p

n∑
i=1

∆i log λ(ti|ω) +
1

2
η∥β∥2 + 1

2
α∥ω∥2 (4.9)

with the function g, defined as

g(x,ω, T,∆) = Λ(T |ω)ex −∆x . (4.10)

The piece-wise exponential model lets us control the “complexity” of the parametrization of
the base hazard rate h via the number of intervals ℓ+ 1 (user specified) in which the latter
is assumed to be constant. This is very convenient when the sample size n is large (as we
shall assume): in this case the number of parameters definingthe survival function is only ℓ
numbers, and not n as for Cox model [23, 22]. The ridge penalization is often introduced
in practice to improve numerical stability by enforcing strong convexity of Ln(ω,β) in its
arguments and the minimizer always exists unique.
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4.4 Technical Results
We need to introduce some definitions from convex analysis. In particular we will need the
following.

Definition 1 (Moreau envelope and proximal operator). Given a convex function f : R → R
the Moreau envelope function evaluated at x with parameter α, is defined as

Mf(.)(x, ν) := min
y

{ 1

2ν
(y − x)2 + f(y)

}
. (4.11)

The point at which the minimum is attained is called the proximal operator of f

proxf(.)(x, ν) := argmin
y

{ 1

2ν
(y − x)2 + f(y)

}
. (4.12)

These functions are frequently encountered in convex analysis problems as they posses
several desirable properties, e.g. Mf(.)(., ν > 0) is “smooth” irrespective of the smoothness of
f and the set of minimizers of Mf(.)(., ν > 0), ∀ν > 0 coincides with that of the minimizers
of f(.) [30].

The main technical results of the manuscript are established in the following theorems and
corollaries. In short the asymptotic value of several quantities of interest derived from the
Penalized Maximum Likelihood estimator can be obtained by studying an asymptotically
equivalent problem, which is low dimensional and hence quickly and easily solvable (in
particular for large values of p), instead of studying directly the original high dimensional
problem (4.9).

Theorem 1 (Asymptotically equivalent scalar optimization problem). Let ζ = limn→∞ p(n)/n
and assume that the data are generated as in (4.1, 4.2). Then

min
ω,β

Ln(ω,β)
P−−−→

n→∞
min
ω,w,v

max
ϕ≥0

inf
τ>0

L(ω, w, v, ϕ, τ) (4.13)

where

L(ω, w, v, ϕ, τ) := ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, τ/ϕ

)
−∆ log λ(T |ω)

]
+

+ ϕ
(
τ/2− v

√
ζ
)
+

1

2
η(v2 + w2) +

1

2
α∥ω∥2 (4.14)

with Z0, Q ∼ N (0, 1), Z0 ⊥ Q.

The convergence in probability of the optimum value of the objective function implies
the following.

Theorem 2 (Replica Symmetric equations). Let β̂n, ω̂n be the (unique) minimizer of Ln as
defined in (4.9), then

ŵn :=
β′
0β̂n

∥β0∥
P−−−→

n→∞
w⋆ (4.15)

v̂n :=
∥∥P⊥β0β̂n

∥∥ =
∥∥∥
(
I − β0β

′
0

∥β0∥2
)
β̂n

∥∥∥ P−−−→
n→∞

v⋆ (4.16)

ω̂n
P−−−→

n→∞
ω⋆ . (4.17)
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The values ω⋆, w⋆, v⋆, τ⋆, ϕ⋆ identify the saddle point of L and solve the following set of self
consistent equations

v2ζ = ET,Z0,Q

[∥∥ξ̂ − wZ0 − vQ
∥∥2
]

(4.18)

w(1 + ητ/ϕ) = ET,Z0,Q

[
Z0ξ̂

]
(4.19)

v(1− ζ + ητ/ϕ) = ET,Z0,Q

[
Qξ̂

]
(4.20)

τ = v
√
ζ (4.21)

ωk =
1

ηρ
E
[
∆ψk(T )

]
+ (4.22)

−W0

(
1

ηρ
E
[
eξ̂ψk(T )

]
exp

{ 1

ηρ
E
[
∆Ψk(T )

]})
, k = 1, . . . , ℓ, (4.23)

where

ξ̂(Z0, Q, T ) := proxg(.,ω,∆,T )(wZ0 + vQ, τ/ϕ) =

= wZ0 + vQ+∆τ/ϕ−W0

(
τΛ(T |ω)e∆τ/ϕ+wZ0+vQ

)
. (4.24)

The theorems (1,2) above are a generalization of previous results [35, 25] to the piece-wise
exponential model. We briefly sketch the proof ideas in the next section and we delegate the
details to the supplementary material 4.8.2,4.8.3,4.8.4. The assumption that the covariate
are uncorrelated is because we want to focus mostly on the part of the proof that depends
on the model (which is a novel application). When the covariates are correlated, the proof
is complicated by additional terms that depend on the spectrum of the covariates and the
regularization function, see for instance [25]. A consequence of the theorem above is the
following.

Corollary 1 (Surrogate for out sample linear predictor). Let f : R1+l → R and X̃ a newly
generated covariate vector

f(X̃′β̂n, ω̂n)
d−−−→

n→∞
f
(
w⋆Z0 + v⋆Q,ω⋆

)
(4.25)

Proof. By Slutsky’s Lemma [42] we have that for a “fresh” covariate vector X̃ ∼ N (0, Ip)

X̃′β̂n =
X̃′β0

∥β0∥
β′
0β̂n

∥β0∥
+ X̃′(Ip −

β0β
′
0

∥β0∥2
)β̂n

d
= Z̃0wn + Q̃vn

d−−−→
n→∞

Z̃0w⋆ + Q̃v⋆, (4.26)

with
Z̃0, Q̃ ∼ N (0, 1) , (4.27)

because of the convergence in probability of wn, vn (4.15,4.16). The conclusion follows by
the continuous mapping theorem [42] (page 7 theorem 2.3).

The corollary above allows to precisely compute prediction metrics like the ones that we
study in section (4.6).
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4.5 Proof sketch
Introducing Lagrange multipliers ϕ, one can equivalently re-write the minimization problem
as a saddle point problem as follows

ℓn(X,T, η) = min
ω,β,ξ

sup
ϕ

{ 1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|ω) +

−ϕ′(ξ −Xβ
)
+

1

2
η∥β∥2 + 1

2
α∥ω∥2

}
. (4.28)

Notice that Xβ = XPβ0β +XP⊥β0β
d
= Z0β∥ + X̃β⊥, where d

= indicates equality in distri-
bution with β∥ :=

β′
0β

∥β0∥ , β⊥ := P⊥β0β = (I − β0β
′
0/∥β0∥2)β, Z0 := Xβ0/∥β0∥ ∼ N (0, In)

and X̃ := XPβ0 (X̃)i,j ∼ N (0, 1) and X̃ ⊥ T. Using this fact, we have reduced the original
problem into the form

ℓn(X,T, η)
d
= min

ω,β,ξ
sup
ϕ

{
1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|ω) +

−ϕ′(ξ − Z0β∥ − X̃β⊥
)
+

1

2
η∥β∥2 + 1

2
α∥ω∥2

}
(4.29)

that can be attacked with the Convex Gaussian Min-Max theorem (CGMT), first introduced
in [36] as a generalization of Gordon’s Gaussian comparison inequalities [14]. The CGMT is
reported without proof below for the reader’s convenience. We refer to [36, 35] for a detailed
proof.

Theorem 3 (Convex Gaussian Min Max Theorem). Let Sy ⊂ Rn, Sz ⊂ Rp be compact and
convex sets, ψ be continuous and convex-concave on Sz×Sy, and X ∈ Rn×p,Q ∈ Rn,G ∈ Rp

all have entries iid standard normal

Φ(X) := min
y∈Sy

max
z∈Sz

{
y′Xz+ ψ(z,y)

}

ϕ(G,Q) := min
y∈Sy

max
z∈Sz

{
∥y∥G′z+ ∥z∥Q′y + ψ(z,y)

}

Then
∀µ ∈ R, t ∈ R+, P

[∣∣∣Φ(X)− µ
∣∣∣ > t

]
≤ 2P

[∣∣∣Φ(G,Q)− µ
∣∣∣ ≥ t

]
. (4.30)

Furthermore, let S ⊂ Sy an open subset and Sc := Sy \ S. Denote ϕSc(G,Q) the optimal
cost of the surrogate process, when the minimization is now constrained over Sc. If there
exist constants ϕ̄ < ϕ̄Sc, such that ϕ(G,Q)

P−−−→
n→∞

ϕ̄, ϕSc(G,Q)
P−−−→

n→∞
ϕ̄Sc, then, denoting

with ŷ the value of y at the saddle point, we have

lim
n→∞

P
[
ŷ ∈ S

]
= 1 . (4.31)

Theorem (3) above tells us that if one is able to prove that ϕ converges in probability
to some deterministic value, then the same is true for Φ. The CGMT applies to min-max
problems over compact, convex sets. Hence we “artificially” restrict the saddle point problem
(4.29) onto compact, convex sets. Intuition suggests that if a saddle point exists and the set
is sufficiently large, then there is not going to be any difference between the bounded and
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unbounded problem. Hence from now on the min over β, ξ and the max over ϕ operations
are understood over convex, compact sets (so that they actually exist). Following Theorem
(3), we consider an auxiliary optimization problem

ℓ̃n(Q,G,T) = min
ω,β,ξ

max
ϕ

{
1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|) +

+β′
⊥G∥ϕ∥ − ϕ′(ξ − β∥Z0 − ∥β⊥∥Q

)
+

1

2
η∥β∥2 + 1

2
α∥ω∥2

}

with G ∼ N (0, I(p−1)) and Q ∼ N (0, In), G ⊥ Q and G,Q ⊥ T,Z0. We can optimize over
the direction of ϕ at fixed length ∥ϕ∥ = ϕ

ℓ̃n(Q,G,T) = min
ω,β,ξ

max
ϕ≥0

{
1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|ω)

+ϕ
∥∥ξ − β∥Z0 − ∥β⊥∥Q

∥∥+ β′
⊥Gϕ−∆i log λ(Ti|ω) +

1

2
η∥β∥2 + 1

2
α∥ω∥2

}
.

The problem above depends on β⊥ via ∥β⊥∥ and cos θ, with θ the angle between β⊥ and G.
Hence it is not guaranteed to be convex-concave (as cos is not convex on the whole interval
[0, 2π]), but it has been shown in [35] (page 22 point 6) that (4.32) can be used in place of
(4.32) in the CGMT as n → ∞, i.e. the min-max order can be “swapped” asymptotically.
At this points, the minimization over the direction of β⊥ at fixed ∥β⊥∥ = v yields

ℓ̃n(Q,G,T) = min
ω,w,v

max
ϕ

min
ξ

{
1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|ω) +

+ϕ
∥∥ξ − wZ0 − vQ

∥∥− vϕ∥G∥+ 1

2
η(v2 + w2) +

1

2
α∥ω∥2

}
(4.32)

where we also defined w := β∥. Following [35], we use the variational representation ∥y∥ =

inf
τ≥0

{
1
2

(
τ∥y∥2 + 1

τ

)}
for the norm. Then

ℓ̃n(Q,G,T) = min
ω,w,v

max
ϕ

inf
ξ,τ

{
1

n

n∑
i=1

g(ξi,ω,∆i, Ti)−∆i log λ(Ti|ω) +

+
1

2τ

∥∥ξ − wZ0 − vQ
∥∥2

+ ϕ(τ/2− v∥G∥) + 1

2
η(v2 + w2) +

1

2
α∥ω∥2

}
.

Taking the re-scaling τ →
√
nτ, ϕ → ϕ/

√
n we recognize the (averaged) Moreau envelope

(as defined in the main previous section)

1

n

n∑
i=1

Mg(.,ω,∆i,Ti)

(
wZ0,i + vQi, τ/ϕ

)
=

1

n
min
ξ

{ n∑
i=1

g(ξi,ω,∆i, Ti) +
ϕ

2τ

∥∥ξ − wZ0 − vQ
∥∥2
}
. (4.33)

Hence, we are finally left with the saddle point problem

ℓ̃n(Q,G,T) = min
ω,w,v

max
ϕ

inf
τ

Ln(ω, w, v, ϕ, τ) (4.34)
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where

Ln(ω, w, v, ϕ, τ) =
1

n

n∑
i=1

Mg(.,ω,∆i,Ti)

(
wZ0,i + vQi, τ/ϕ

)
−∆i log λ(Ti|ω) +

+ϕ
(
τ/2− v∥G∥/

√
n
)
+

1

2
η(v2 + w2) +

1

2
α∥ω∥2 .

The weak law of large numbers and a concentration argument for ∥G∥ imply, see appendix
4.8.2, that

Ln(ω, w, v, ϕ, τ)
P−−−→

n→∞
L(ω, w, v, ϕ, τ) (4.35)

pointwise for ∥ω∥ ≤ Cω, 0 ≤ w ≤ Cβ, 0 ≤ v ≤ Cβ, ϕ ≥ 0 and τ > 0, where

L(ω, w, v, ϕ, τ) := ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, τ/ϕ

)
−∆ log λ(T |ω)

]
+

+ ϕ
(
τ/2− v

√
ζ
)
+

1

2
η(v2 + w2) +

1

2
α∥ω∥2 . (4.36)

The pointwise convergence in probability above, together with the fact that the functions
Ln,L are concave in ϕ and convex in ω, w, v, ξ, τ imply, see appendix 4.8.3, that

min
ω,w,v

max
ϕ>0

inf
τ>0

Ln(ω, w, v, ϕ, τ)
P−−−→

n→∞
min
w,v

max
ϕ>0

inf
τ>0

L(ω, w, v, ϕ, τ) . (4.37)

By the CGMT, we then have that

min
β,ω

{ 1

n

n∑
i=1

g(X′
iβ, Ti) +

1

2
η∥β∥2

}
P−−−→

n→∞
min
ω,w,v

max
ϕ>0

min
τ>0

L(w, v, ϕ, τ) . (4.38)

Furthermore the pointwise convergence (4.35) and the strict convexity of L in w, v,ω implies
the convergence in probability of the minimizer (4.15,4.16,4.17 ) via (4.31) see appendix 4.8.4.

4.6 Numerical experiments
In the following we simulate the model under study and compare various quantities, such as
goodness of fit and prediction metrics, against the theory for different values of the regularizer
η which controls the amount of ridge shrinking on β̂n. The data simulations are carried out
as follows. We take the sample size n = 400 fixed and vary the number of covariates p via
ζ as p = ζn. The latent survival time are generated from a Log-logistic proportional hazard
model

Yi|Xi ∼ − d

dt
S0(t|Xi), (4.39)

S0(t|Xi) = exp{−Λ0(.) exp(X
′
iβ0)}, Λ0(t) := log

(
1 + t2/2

)
(4.40)

where Xi ∼ N (0, Ip) and β0 = e1. With these choices the expected fraction of censored
events is 40%, i.e. only 60% of the n subjects experiences the event on average. We also take
β0 ∼ Sp−1, the true associations are drawn at random from the unit sphere in Rp. Notice
that our choice of β0 does not imply any loss in generality since the distribution of X and
the ridge penalty are rotationally invariant, hence any β0 with the same length will yield
the same statistics for the population of Yi.
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For each value of ζ (or equivalently p) we simulated 50 datasets and computed the
penalized maximum likelihood estimator β̂n, ω̂n by numerical minimization of (4.9) along a
regularization path for η at fixed α = 0.01. We used a variant of the algorithm proposed
in [32]. In all the plots that follow the markers are empirical averages, while the errorbars
are empirical standard deviations computed over these realizations. We chose to use 11
time points τ ℓk=1 equi-spaced between 0 and 3 (the end of the study) as the knots of the
piece-wise parametrization of the hazard rate, this allows for a flexible approximation of the
hazard rate. For the solution of the RS equations, we computed numerically the solution via
fixed point iteration, to a tolerance of 1.0−8. The expectations in (4.18,4.19,4.20,4.22) are
approximated as population averages, with a population size m = 2 · 103.

Before proceeding to the examine the results of the numerical experiments, we first need
to introduce which metrics were employed to score the predictive ability of the model. The
following subsection deals with this.

4.6.1 Evaluation metrics for Survival Predictions

In order to evaluate prediction accuracy in survival analysis, it is generally advised to always
consider at least two metrics: one for the calibration and another for the discrimination abil-
ity of the model. Calibration, quoting from [33], “refers to the agreement between observed
outcome and predictions”. Discrimination is the ability of the model to separate individuals
with different risks scores. The rationale being that a good model should assign shorter
survival times to subjects with higher risk score. To evaluate the discriminative ability of
the model, we used Harrell’s c index [17, 16]

HCn =

∑n
i=1 ∆i

∑n
j=1 Θ(Tj − Ti)1

[
f(Xj) > f(Xi)

]
∑n

i=1 ∆i

∑n
j=1 Θ(Tj − Ti)

. (4.41)

This quantity is close to one if the model has perfect discrimination ability. Random guessing
would give a c-index of 0.5. Instead of evaluating the calibration of the model directly via
the Brier Score, we compute the following

IBSideal = EX

[ ∫ (
Ŝ(t|X)− S0(t|X)

)2

dt

]
. (4.42)

This quantity measures the integrated Mean Squared Error of the estimated survival function
with respect to the true one. The “ideal” in underscore is due to the fact that the quantity
above is what any estimator of the Integrated Brier Score (IBS) aims ideally to estimate.
The ideal IBS (4.42) can only be computed for simulated data because in that case we know
the S0(.|X) used to generate the data. Notice that (4.42) can only be used to score the
model relative to another one, hence we prefer to use the ratio

RIBS =

EX

[ ∫ (
Ŝ(t|X)− S0(t|X)

)2

dt

]

EX

[ ∫ (
Ŝnull(t)− S0(t|X)

)2

dt

] (4.43)

where Ŝnull is the estimated survival function when no covariates are included in the model.
Thanks to corollary (1) we can easily compute the metrics above for the test set via the
solution of the RS equations (see theorem 2).
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4.6.2 Comparison of theory and simulations

Figures (4.1,4.2) show the comparison between the theoretical values obtained by solving the
Replica Symmetric equations (i.e. the non-linear system in corollary 2) as solid lines and the
results obtained by the simulations as markers with errorbars. As expected, because of the
convergence in probability established in (2), the solid line describe accurately the position
of the markers for different values of the ratio ζ.

(a) (b)

Figure 4.1: Simulated data (markers and errorbars) against the theory (solid lines). Figures
(4.1a,4.1b) show the value of ŵn and v̂n defined in (4.15, 4.16) along a regularization path
for η ∈ (0.1, 6) with α = 0.01.

(a) (b)

Figure 4.2: Simulated data (markers and errorbars) against the theory (solid lines): (left)
the Test c-index; (right) RIBS as defined in (4.43), along a regularization path for η ∈ (0.1, 6)
with α = 0.01. The errorbars for the figure (4.2a) have been removed to aid visualization.

We notice that the test c-index is virtually independent from the penalization strength
as one can see in (4.2a) and its maximal value decreases with ζ. Whilst from figure (4.2b)
we deduce that as ζ increases, the minimum of RIBS is attained at a larger value of η, i.e.
more regularization is needed just to do slightly better than the null model.
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4.7 Conclusion

In conclusion, we have applied the Gaussian Convex Min Max theorem to a flexible para-
metric model for survival data, i.e. the piece-wise exponential model. With the theoretical
guarantees obtained, we investigated the effect of the ridge penalization onto the predictive
ability of the model. This represents a first step into the full formalization of a set of previous
results obtained for the Cox model [7, 26], in the sense that our final goal will be to gener-
alize the present proof to the Cox semi parametric model. The proof technique used here
relies completely on the assumption of Gaussian covariates, since it hinges on the Convex
Gaussian Min Max theorem [36]. This approach allows us to rigorously prove heuristic (but,
in the end, exact) results obtained via the Replica Method of statistical physics [7], when
the parametrization of the base hazard rate is finite dimensional. Further work is required to
rigorously establish more recent results for the semi-parametric case [26]. What is interesting
is that the heuristic way actually requires only that the linear predictor follows (asymptot-
ically) a Normal law. So we expect that these results holds in more general scenarios that
the limited one studied here. It would be ideal to be able to put these several conjectures
on a firm theoretical basis and indeed recent investigations seek to do this, at least in some
specific settings [15, 18, 28].

Supporting Information

Additional simulations, together with the routines used to compute the estimators, solve the
Replica Symmetric equations and plot the figures of the paper are available in GitHub at
https://github.com/EmanueleMassa/SMSA_2024.
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4.8 Appendix

4.8.1 Properties of the Moreau envelope for the Piece-wise expo-
nential model

In the following we assume that ∥ω∥ ≤ Cbomega, w, v ≤ Cβ and τ > 0, furthermore τ1 < τ2 <
· · · < τℓ+1 < ∞.

Proposition 1 (Integrability). The random function
ω, w, v, τ → Mg(.,ω,∆,T )(wZ0 + vQ, τ)−∆ log λ(T |ω) is absolutely integrable.

Proof. By definition

Mg(.,ω,∆,T )(wZ0 + vQ, τ) ≤ 1

2τ

∥∥wZ0 + vQ
∥∥2

+ g(0,ω,∆, T ) . (4.44)

hence

min
x

g(x,ω,∆, T ) ≤ Mg(.,ω,∆,T )(wZ0 + vQ, τ) ≤ (4.45)

λ

2τ

∥∥wZ0 + vQ
∥∥2

+ g(0,ω,∆, T ) . (4.46)

This implies that
∣∣∣Mg(.,ω,∆,T )(wZ0 + vQ, τ)

∣∣∣ ≤

max
{ λ

2τ

∥∥wZ0 + vQ
∥∥2

+
∣∣g(0,ω,∆, T )

∣∣, ∣∣min
x

g(x,ω,∆, T )
∣∣}

≤ λ

2τ

∥∥wZ0 + vQ
∥∥2

+
∣∣g(0,ω,∆, T )

∣∣+ ∣∣min
x

g(x,ω,∆, T )
∣∣ . (4.47)

Now we show that the expectation of the right hand side exists finite. For the first term we
have E

[∥∥wZ0 + vQ
∥∥2
]
≤ w2 + v2, which is bounded by hypothesis. For the second term, we

notice that

Λ(T |ω) :=
ℓ∑

k=1

exp(ωk)Ψk(T ) ≤
ℓ∑

k=1

exp(ωk)(τk+1 − τk) (4.48)
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hence, via Cauchy Swartz inequality

E
[∣∣g(0,ω,∆, T )

∣∣] = E
[∣∣∣∆Λ(T |ω)

∣∣∣
]
≤

ℓ∑
k=1

exp(ωk)(τk+1 − τk) ≤

≤

√√√√ ℓ∑
k=1

exp(2ωk)

√√√√ ℓ∑
k=1

(τk+1 − τk)2 (4.49)

which is bounded by a finite constant by assumption that ω is in a compact set and τℓ+1 is
finite. Then

∣∣∆ log λ(T |ω)
∣∣ ≤

ℓ∑
k=1

ψk(T )
∣∣ωk

∣∣ (4.50)

which has a finite expectation value, since ψk(T ) is an indicator function over the interval
[τk, τk+1]. Finally we have

min
x

g(x,ω,∆, T ) = ∆
(
1− log(∆) + log Λ(T |ω)

)
(4.51)

and we see that
∣∣∣∆(

1− log∆ + log Λ(T |ω)
)∣∣∣ ≤ 1 +

∣∣∣ log Λ(T |ω)
∣∣∣ ≤

1 +
∣∣∣ log

l∑
k=1

exp(ωk)(τk+1 − τk)
∣∣∣ < ∞ . (4.52)

Since ∥ω∥ is bounded by a large constant by assumption.

Proposition 2 (Finite variance). The random function
ω, w, v, τ → Mg(.,ω,∆,T )(wZ0 + vQ, τ)−∆ log λ(T |ω) has a finite variance.

Proof. We compute the second moment, as we have already shown that the expectation
exists finite. Using (4.47) we have

(
Mg(.,ω,∆,T )(wZ0 + vQ, τ)−∆ log λ(T |ω)

)2

≤ (4.53)
( λ

2τ

∥∥wZ0 + vQ
∥∥2

+
∣∣g(0,ω,∆, T )

∣∣+ ∣∣min
x

g(x,ω,∆, T )
∣∣)2

(4.54)

Computing the square we see that:
1) E

[∥∥wZ0 + vQ
∥∥4
]
= w4E

[
Z4

0

]
+ v4E

[
Q4

]
is finite,

2) E
[∣∣g(0,ω,∆, T )

∣∣2] ≤
(∑ℓ

k=1 exp(ωk)(τk+1 − τk)
)2 ≤(∑ℓ

k=1 exp(2ωk)
)(∑ℓ

k=1(τk+1 − τk)
2
)

which is finite,
3) the term min

x
g(x,ω,∆, T ) is bounded by a deterministic constant (4.52),and hence so it is

its square. The cross terms can be similarly bounded via the Cauchy-Schwartz inequality.

Proposition 3 (Finite variance of the derivative). The random function
ω, w, v, τ → ġ(.,ω,∆, T )(wZ0 + vQ, τ) has a finite variance.
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Proof. Using (4.48)∣∣∣ġ(.,ω,∆, T )(wZ0 + vQ, τ)
∣∣∣ =

∣∣∣Λ(T |ω)ewZ0+vQ −∆
∣∣∣ =

≤ 1 + ewZ0+vQ

√√√√ ℓ∑
k=1

exp(2ωk)

√√√√ ℓ∑
k=1

(τk+1 − τk)2 (4.55)

which has a finite expectation. We then show that the second moment exists finite. Just
notice that ∣∣∣ġ(.,ω,∆, T )(wZ0 + vQ, τ)

∣∣∣
2

≤

1 + 2ewZ0+vQ
( l∑

k=1

exp(2ωk)
)1/2( ℓ∑

k=1

(τk+1 − τk)
2
)1/2

+

+e2(wZ0+vQ)

ℓ∑
k=1

exp(2ωk)
ℓ∑

k=1

(τk+1 − τk)
2 (4.56)

has a finite expectation

Proposition 4 (Limits of the Moreau envelope).

lim
τ→∞

Mg(.,ω,∆,T )(x, τ) = ∆
(
1− log(∆) + log Λ(T |ω)

)
(4.57)

lim
τ→0

Mg(.,ω,∆,T )(x, τ) = Λ(T |ω)ex −∆x . (4.58)

Proof. For (4.58), observe that

Mg(.,ω,∆,T )

(
x, α

)
:= min

ξ

{ 1

2α
(ξ − x)2 + g(ξ, T )

}
=

min
ϕ

{1

2
ϕ2 + g(x+

√
αϕ,ω,∆, T )

}
(4.59)

with ϕ̂ = argmin
ϕ

{
1
2
ϕ2+g(x+

√
αϕ,ω,∆, T )

}
= −

√
αġ(x+

√
αϕ̂,ω,∆, T ). Sending α → 0+

we get (4.58). For (4.57), notice that

∂

∂α
Mg(.,ω,∆,T )

(
x, α

)
= − 1

2α2

(
proxg(.,ω,∆,T )(x, α)− x

)2 ≤ 0 . (4.60)

Then

lim
α→∞

Mg(.,ω,∆,T )

(
x, α

)
= inf

α>0
Mg(.,ω,∆,T )

(
x, α

)
= (4.61)

min
ξ

inf
α>0

{ 1

2α
(ξ − x)2 + g(ξ,ω,∆, T )

}
= min

ξ
g(ξ,ω,∆, T ) .

Proposition 5 (Limits of the Expected Moreau envelope).

lim
α→∞

ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, α

)]
=

ET

[
∆
(
1− log∆ + log Λ(T |ω)

)]
(4.62)

lim
α→0+

ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, α

)]
=

ET,Z0,Q

[
g
(
wZ0 + vQ, T

)]
. (4.63)
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Proof. For the limit of the expectation we use the Dominated Convergence theorem. The
Moreau envelope is integrable (proposition 1) and its limits exist (proposition 4). Hence it
suffices to show that the limits are themselves integrable. First for (4.62) we see that

E
[∣∣∣∆(

1− log∆ + log Λ(T |ω)
)∣∣∣
]
≤ 1 + E

[∣∣∣ log Λ(T |ω)
∣∣∣
]
≤

1 +
∣∣∣ log

ℓ∑
k=1

exp(ων)(τk+1 − τk)
∣∣∣ < ∞ . (4.64)

For (4.63), notice that

E
[∣∣∣Λ(T |ω)ewZ0+vQ −∆(wZ0 + vQ)

∣∣∣
]
≤

E
[∣∣∣Λ(T |ω)ewZ0+vQ

∣∣∣
]
+ E

[∣∣∣∆(wZ0 + vQ)
∣∣∣
]

(4.65)

and

E
[∣∣∣Λ(T |ω)ewZ0+vQ

∣∣∣
]
≤

ℓ∑
k=1

exp(ων)(τk+1 − τk)e
2(w2+v2) < ∞ (4.66)

E
[∣∣∣∆(wZ0 + vQ)

∣∣∣
]
≤ E

[∣∣∣wZ0 + vQ
∣∣∣
]
≤

√
2/π

√
w2 + v2 < ∞ (4.67)

which implies the desiderata.

Proposition 6 (Derivatives of the Moreau envelope 1).

∂

∂x
Mg(.,ω,∆,T )(x, τ) =

1

τ

(
x− proxg(.,ω,∆,T )(x, τ)

)
=

∆− 1

τ
W0

(
τΛ(T |ω)e∆τ+x

)
(4.68)

∂

∂τ
Mg(.,ω,∆,T )(x, τ) = − 1

2τ 2
(
x− proxg(.,ω,∆,T )(x, τ)

)2
=

−1

2

(
∆− 1

τ
W0

(
τΛ(T |ω)e∆τ+x

))2

. (4.69)

Proof. The proposition follows from differentiation and definition of proximal mapping.

Proposition 7 (Derivatives of the expected Moreau envelope 1).

∂

∂w
E
[
Mg(.,ω,∆,T )(wZ0 + vQ, τ)

]
=

1

τ
E
[
Z0

(
∆τ −W0

(
τΛ(T |ω)e∆τ+x

))]
(4.70)

∂

∂v
E
[
Mg(.,ω,∆,T )(wZ0 + vQ, τ)

]
=

1

τ
E
[
Q
(
∆τ −W0

(
τΛ(T |ω)e∆τ+x

))]
(4.71)

∂

∂τ
E
[
Mg(.,ω,∆,T )(wZ0 + vQ, τ)

]
=

− 1

2τ 2
E
[(

∆τ −W0

(
τΛ(T |ω)e∆τ+x

))2]
. (4.72)
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Proof. We show that the conditions of the Dominated converge theorem of Lebesgue are
satisfied simultaneously for all derivatives. Via proposition 6 we see that

E
[∣∣∣ ∂

∂w
Mg(.,T )(wZ0 + vQ, τ)

∣∣∣
]
≤

1

τ
E
[
Z2

0

]1/2
E
[
(∆τ −W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)2]1/2
(4.73)

E
[∣∣∣ ∂
∂v

Mg(.,T )(wZ0 + vQ, τ)
∣∣∣
]
≤

1

τ
E
[
Q2

]1/2
E
[
(∆τ −W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)2]1/2
(4.74)

E
[∣∣∣ ∂
∂τ

Mg(.,T )(wZ0 + vQ, τ)
∣∣∣
]
=

1

2τ 2
E
[
(∆τ −W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)2]
. (4.75)

Thus it is sufficient to show that the last term is bounded to show integrability of all the
first derivatives.
Since τ > 0 and for x ≥ 0 it holds W0(x) ≥ 0, we have that

(
∆τ −W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

))2

≤ τ 2 +W 2
0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)
. (4.76)

We now use the bound W0(x) ≤ log(x+ 1) ≤ x which is valid for x ≥ 0, obtaining

1

τ 2
E

[(
∆τ −W0

(
τΛ(T )e∆τ+wZ0+vQ

))2
]
≤

1 + 1E
[
Λ2(T |ω)e2(∆τ+wZ0+vQ)

]
. (4.77)

which can be shown to be finite using( 4.48), since ∥ω∥, w, v are bounded by a constant,
τ > 0 and τℓ is finite by hypothesis.

Proposition 8 (Partial derivatives of the expected Moreau envelope 2).

∂

∂ωk

E

[
Mg(.,ω,∆,T )(wZ0 + vQ, τ)

]
=

E
[
Ψk(T )e

proxg(.,ω,∆,T )(wZ0+vQ,τ) exp(ωk)
]

(4.78)

∂

∂ωk

E
[
∆ log λ(T |ω)

]
=

E
[
∆ψk(T )

]
(4.79)

Proof. We show that the conditions of the dominated convergence theorem are satisfied.
First we compute

∂

∂ωk

Mg(.,ω,∆,T )(wZ0 + vQ, τ) = Ψk(T ) exp(ωk)
W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)

τΛ(T |ω)

∂

∂ωk

∆ log λ(T |ω) = ∆ψk(T ) (4.80)
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where we used that

exp
{
proxg(.,T )(wZ0 + vQ, τ)

}
=

= exp
{
wZ0 + vQ+∆τ −W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)}
=

W0

(
τΛ(T |ω)e∆τ+x

)

τΛ(T |ω)
.

Notice that

E

[
Ψk(T ) exp(ωk)

W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)

τΛ(T |ω)

]
≤

(τk+1 − τk)EZ0,Q

[
W0

(
τΛ(T |ω)e∆τ+wZ0+vQ

)

τΛ(T |ω)

]

≤ (τk+1 − τk)EZ0,Q

[
e∆τ+wZ0+vQ

]
, (4.81)

where for the last inequality we used that W0(x) ≤ log(x + 1) ≤ x, for x ≥ 0. This implies
that the above exists finite. Furthermore

E
[
∆ψk(T )

]
≤ E

[
ψk(T )

]
(4.82)

which is finite since ψk is the indicator function of the interval (τk, τk+1).

4.8.2 Pointwise convergence of Ln to L
Proposition 9. Let

Ln(ω, w, v, ϕ, τ) :=
1

n

n∑
i=1

Mg(.,ω,∆i,Ti)

(
wZ0,i + vQi, τ/ϕ

)
−∆i log λ(Ti|ω) +

+ϕ
(
τ/2− v∥G∥/

√
n
)
+

1

2
η(v2 + w2) +

1

2
α∥ω∥2 (4.83)

and

L(ω, w, v, ϕ, τ) := ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, τ/ϕ

)]
− E

[
∆ log λ(T |ω)

]
+

+ϕ
(
τ/2− v

√
ζ
)
+

1

2
η(v2 + w2) +

1

2
α∥ω∥2 . (4.84)

Then Ln(w, v,ω, ϕ, τ)
P−−−→

n→∞
L(w, v,ω, ϕ, τ) pointwise in w, v, τ,ω, ϕ.

Proof. Since ∥G∥ follows a chi distribution with p− 1 degrees of freedom

E
[
∥G∥

]
=

√
2

Γ(p
2
)

Γ(p−1
2
)
=

√
p− 2 + op(1), (4.85)

V
[
∥G∥2

]
= p− 1− E

[
∥G∥

]2
= 1 + op(1), (4.86)
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hence we conclude ∥G∥/
√
n

P−−−→
n→∞

√
ζ ( e.g. via Chebishev inequality). Furthermore, by the

weak law of large numbers, given proposition (2), we have that

1

n

n∑
i=1

Mg(.,ω,∆i,Ti)

(
wZ0,i + vQi, τ/ϕ

)
−∆i log λ(Ti|ω)

P−−−→
n→∞

(4.87)

E
[
Mg(.,ω,∆,T )

(
wZ0 + vQ, τ/ϕ

)
−∆ log λ(T |ω)

]
. (4.88)

4.8.3 Asymptotic convergence of the saddle point of the AO

In this section we show that

min
ω,w,v≥0

max
0≤ϕ≤λmax

min
τ>0

Ln(ω, w, v, ϕ, τ)
P−−−−→

n,p→∞
min

ω,w,v≥0
(4.89)

max
0≤ϕ≤λmax

min
τ>0

L(ω, w, v, ϕ, τ) (4.90)

The idea is to use the so-called convexity lemma, this guarantees that point-wise convergence
of convex functions over compact sets implies uniform convergence over the latter.

Lemma 1 (Convexity lemma). Let E ⊂ Rd be open, convex and Fn a sequence of proper,
convex functions and f a deterministic function, both defined on E, such that

Fn(x)
P−→ f(x), ∀ x ∈ E . (4.91)

Then Fn converges uniformly to f over all compact subsects of E, i.e.

sup
x∈A

∣∣∣Fn(x)− f(x)
∣∣∣ P−→ 0 . (4.92)

The proof can be found in [1] (page 1116 theorem 2.1). In particular we will use the
following lemma, which is a consequence of the former.

Lemma 2 (Min-convergence – Open Sets). Consider a sequence of proper, convex stochastic
functions Fn : (0,∞) → R, and, a deterministic function f : (0,∞) → R, such that:

(a) Fn(x)
P−→ f(x), ∀ x > 0,

(b) ∃z > 0 : f(x) > inf
x>0

f(x), ∀x ≥ z ⇐⇒ limx→∞ f(x) = +∞.

Then
inf
x>0

Fn(x)
P−→ inf

x>0
f(x) . (4.93)

The proof can be found in [35] (lemma A6 page 29). The assumption (b) of lemma
2 above, is known as level-bounded condition. The following lemma, gives an equivalent
characterization of a level bounded convex function.

Lemma 3 (Level bounded convex functions). Let f : (0,∞) → Rbe convex, then the follow-
ing statements are equivalent:

(a) ∃z > 0 : f(x) > inf
x>0

f(x), ∀x ≥ z,

(b) limx→∞ f(x) = +∞.

The proof can be found in [35] (lemma A7 page 29). We will proceed sequentially from
the innermost operation to the outermost.
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Minimization over τ

Fix ω, w, v, ϕ ≥ 0 and let us denote Lω,w,v,ϕ
n (τ) := Ln(ω, w, v, ϕ, τ) and Lω,w,v,ϕ(τ) :=

L(ω, w, v, ϕ, τ).

Proposition 10.
inf
τ≥0

Lω,w,v,ϕ
n (τ)

P−→ inf
τ>0

Lω,w,v,ϕ(τ) . (4.94)

Proof. Since Lω,w,v,ϕ
n (.) is convex, and Lω,w,v,ϕ

n (.)
P−→ Lω,w,v,ϕ(.) on (0,∞), also Lω,w,v,ϕ(.) is

convex. If ϕ > 0, then limτ→∞ Lω,w,v,ϕ(τ) = +∞, since ϕτ → ∞ (ϕ > 0). Hence via lemma
(3), we see that the conditions of lemma (2) are satisfied and the conclusion follows. If ϕ = 0,
then

inf
τ≥0

Lω,w,v,ϕ=0
n (τ) = lim

α→∞

1

n

n∑
i=1

Mg(.,ω,∆,T )

(
wZ0,i + vQi, α

)
−∆i log λ(Ti|ω) =

=
1

n

n∑
i=1

min
ξ

g(ξ,ω,∆i, Ti)−∆i log λ(Ti|ω) . (4.95)

Under our assumptions also

inf
τ≥0

Lω,w,v,ϕ=0(τ) = lim
α→∞

ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0 + vQ, α

)
−∆ log λ(T |ω)

]
=

= ET

[
min
ξ

g(ξ,ω,∆, T )−∆ log λ(T |ω)
]

(4.96)

and via the weak law of large numbers we obtain the claim.

Maximization over ϕ

Fix ω, w, v, let us denote Lω,w,v
n (ϕ) := inf

τ>0
Ln(ω, w, v, ϕ, τ) and Lω,w,v(ϕ) := inf

τ>0
L(ω, w, v, ϕ, τ).

Proposition 11.
sup
ϕ≥0

Lω,w,v
n (ϕ)

P−→ sup
ϕ≥0

Lω,w,v(ϕ) . (4.97)

Proof. Notice that Lω,w,v
n (ϕ) is concave, as the pointwise minima of concave functions. The

same is true for Lω,w,v(ϕ) because Lω,w,v
n (.)

P−→ Lω,w,v
n (.) point wise.

If ϕ = 0, then Lω,w,v>0
n (0)

P−→ Lω,w,v>0(0) for any v, as shown before. Else ϕ > 0. We
want to use again lemma (2): if we show that limϕ→∞ Lω,w,v

n (ϕ) = −∞, then we are done,
as the function is concave and level bounded. It holds by definition that

Lω,w,v(ϕ) ≤ lim
τ→0+

L(ω, w, v, ϕ, τ) (4.98)

where

lim
τ→0+

L(ω, w, v, ϕ, τ) =

lim
τ→0+

E
[
Mg(.,ω,∆,T )

(
wZ0 + vQ, τ/ϕ

)
−∆ log λ(T |ω)

]
− ϕv

√
ζ =

E
[
g
(
wZ0 + vQ,ω,∆, T

)
−∆ log λ(T |ω)

]
− ϕv

√
ζ . (4.99)
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If v > 0, then limϕ→∞ Lω,w,v(ϕ) = −∞, since the expectation of g exists finite for fixed
ω, w, v, and lemma (2) gives

sup
ϕ≥0

Lω,w,v
n (ϕ)

P−→ sup
ϕ≥0

Lω,w,v(ϕ) . (4.100)

On the other hand if v = 0, it is not straightforward to conclude the desiderata. Observe
that

lim
ϕ→∞

inf
τ>0

L(ω, w, 0, ϕ, τ) ≤ sup
ϕ≥0

inf
τ>0

L(ω, w, 0, ϕ, τ)

≤ sup
ϕ≥0

lim
τ→0+

L(ω, w, 0, ϕ, τ) (4.101)

and

lim
ϕ→∞

inf
τ>0

Ln(ω, w, 0, ϕ, τ) ≤ sup
ϕ≥0

inf
τ>0

Ln(ω, w, 0, ϕ, τ) ≤

sup
ϕ≥0

lim
τ→0+

Ln(ω, w, 0, ϕ, τ) . (4.102)

We now show that

lim
ϕ→∞

inf
τ>0

Ln(ω, w, 0, ϕ, τ)
P−→ lim

ϕ→∞
inf
τ>0

L(ω, w, 0, ϕ, τ)

lim
τ→0+

Ln(ω, w, 0, ϕ, τ)
P−→ lim

τ→0+
L(ω, w, 0, ϕ, τ) . (4.103)

Which implies
sup
ϕ≥0

inf
τ>0

Ln(ω, w, 0, ϕ, τ)
P−→ sup

ϕ≥0
inf
τ>0

L(ω, w, 0, ϕ, τ) (4.104)

and as a consequence the desired. By the weak law of large numbers, we have that

lim
τ→0+

Ln(ω, w, v = 0, ϕ, τ) =
1

n

n∑
i=1

g
(
wZ0,ω,∆, T

)
−∆i log λ(Ti|ω)

P−→ E∆,T,Z0,Q

[
g
(
wZ0,ω,∆, T

)
−∆ log λ(T |ω)

]
=

lim
τ→0+

L(ω, w, v = 0, ϕ, τ) . (4.105)

The “other side” requires more work. Notice that

lim
ϕ→∞

inf
τ>0

Ln(ω, w, v = 0, ϕ, τ) =

lim
ϕ→∞

inf
κ>0

1

n

n∑
i=1

Mg(.,ω,∆i,Ti)

(
wZ0,i, κ

)
−∆i log λ(Ti|ω) + ϕ2κ/2

The sequence of functions
fω,w,ϕ
n (κ) := 1

n

∑n
i=1 Mg(.,ω,∆i,Ti)

(
wZ0,i, κ

)
−∆i log λ(Ti|ω) + ϕ2κ/2 :

• are convex in κ,

• f ′
n(0

+) > 0, for ϕ, n sufficiently large, since V
[
Mg(.,ω,∆,T )

(
wZ0, κ

)
−∆ log λ(T |ω)

]
< ∞

• limκ→∞ fω,w,ϕ
n (κ) = ∞ .
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Because of convexity of fω,w,ϕ
n , these imply that the infimum is at κ = 0, for sufficiently large

n, ϕ. Hence

lim
ϕ→∞

inf
τ>0

Ln(ω, w, 0, ϕ, τ)
P−→ ET,Z0,Q

[
g
(
wZ0,ω,∆, T

)
−∆ log λ(T |ω)

]
. (4.106)

Similarly

lim
ϕ→∞

inf
τ>0

L(ω, w, 0, ϕ, τ) =

lim
ϕ→∞

inf
κ>0

ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0, κ

)
−∆ log λ(T |ω)

]
+ ϕ2κ/2 . (4.107)

The function
fω,w,ϕ(κ) := ET,Z0,Q

[
Mg(.,ω,∆,T )

(
wZ0, κ

)
−∆ log λ(T |ω)

]
+ ϕ2κ/2 :

• is convex in κ,

• f ′(0+) > 0, for ϕ sufficiently large,

• limκ→∞ fω,w,ϕ(κ) = ∞ .

Because of convexity of fω,w,ϕ, these imply that the infimum is at κ = 0. Hence

lim
ϕ→∞

inf
κ>0

L(ω, w, 0, ϕ, τ) = ET,Z0,Q

[
g
(
wZ0,ω,∆, T

)
−∆ log λ(T |ω)

]
(4.108)

and we have shown

lim
ϕ→∞

inf
τ>0

Ln(ω, w, 0, ϕ, τ) =
1

n

n∑
i=1

g
(
wZ0,ω,∆, T

)

P−→ ET,Z0,Q

[
g
(
wZ0,ω,∆, T

)
−∆ log λ(T |ω)

]
=

lim
ϕ→∞

inf
κ>0

L(ω, w, 0, ϕ, τ) .

Minimization over (w, v)

Let us denote Ln(ω, w, v) := sup
ϕ≥0

Lω,w,v>0
n (ϕ) and L(ω, w, v) := sup

ϕ≥0
Lω,w,v(ϕ).

Proposition 12. The function L(ω, w, v) admits a unique minimizer for ω ∈ Sω, w ∈
[0, Cβ] and v ∈ [0, Cβ] and

min
(ω,w,v)

Ln(ω, w, v)
P−−−→

n→∞
min

(ω,w,v)
L(ω, w, v) . (4.109)

Proof. The functions Ln are convex in their arguments, as the pointwise maxima of convex
functions. The same is true for L, furthermore Ln

P−→ L point wise. Let us denote Sω,w,v =
Sω × [0, Cβ]× [0, Cβ]. The function L(ω, w, v) is strongly convex in w, v and strictly convex
in ω (it is sufficient to compute the second derivative, which is always non negative on Sω).
In particular L(ω, w, v) is strongly convex in its arguments if we insist that ∀µ, P [tµ < T <
tµ+1] ≥ δ > 0 and hence admits a unique minimizer. If ω⋆, w⋆, v⋆ is in the interior of Sω,w,v,
then we can readily conclude via the convexity lemma (1), that

min
(ω,w,v)

Ln(ω, w, v)
P−−−→

n→∞
min

(ω,w,v)
L(ω, w, v) . (4.110)
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4.8.4 Convergence in probability of the minimizer(s)

In order to prove (4.15,4.16,4.17), we want to use Theorem 3 an in particular implication
(4.31). To do so, let us define

Sϵ :=
{
(β,ω) ∈ Sβ × Sω :

∣∣wn − w⋆

∣∣ < ϵ,
∣∣vn − v⋆

∣∣ < ϵ,
∣∣ω − ω⋆

∣∣ < ϵ
}

(4.111)

with Sβ,Sω two compact subset of Rp and Rd, respectively, and wn, vn defined as

wn :=
β′
0β

∥β0∥
, vn :=

∥∥P⊥β0β
∥∥ =

∥∥∥
(
I − β0β

′
0

∥β0∥2
)
β
∥∥∥ . (4.112)

By the convexity lemma we have uniform convergence Ln(ω, w, v)
P−−−→

n→∞
L(ω, w, v) for

(ω, w, v) ∈ B ⊂ Sβ × Sω, with B compact. As a consequence, since Sc
ϵ := Sβ × Sω \ Sϵ

is compact, we have that

min
(ω,w,v)∈Sc

ϵ

Ln(ω, w, v)
P−−−→

n→∞
min

(ω,w,v)∈Sc
ϵ

L(ω, w, v) . (4.113)

The function L above is strongly convex in its arguments, hence it has a unique minimizer
(w⋆, v⋆,ω⋆) as defined in (4.15,4.16,4.17) respectively. In this case it must hold that

min
(ω,w,v)∈Sc

ϵ

L(ω, w, v) > min
(ω,w,v)

L(ω, w, v) . (4.114)

Via Theorem 3 implication (4.31) this implies that

lim
n→∞

P
[
(β̂n, ω̂n) ∈ Sϵ

]
= 1 (4.115)

which is the desired.
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Chapter 5

Observable asymptotics of regularized
Cox regression models with standard
Gaussian designs: a statistical mechanics
approach

An updated version of this chapter is published as: Massa, E and Coolen, A C C, Observable
asymptotics of regularized Cox regression models with standard Gaussian designs: a statistical
mechanics approach, Journal of Physics A: Mathematical and Theoretical, 58, 105001, 2025.
https://dx.doi.org/10.1088/1751-8121/adb8ad

5.1 Abstract

We study the asymptotic behaviour of Regularized Maximum Partial Likelihood Estimator
(RMPLE) in the proportional limit, considering an arbitrary regularizer and assuming that
the covariates Xi ∈ Rp follow a multivariate Gaussian law with covariance Ip/p for each
i = 1, . . . , n. In order to efficiently compute the estimator under investigation, we propose
a modified Approximate Message Passing (AMP) algorithm, that we name COX-AMP, and
compare its performance with the Coordinate-wise Descent (CD) algorithm, which is taken
as reference. By means of the Replica method, we derive a set of six Replica Symmetric
equations that we show to correctly describe the average behaviour of the estimators when the
sample size and the number of covariates is large and commensurate. These equations cannot
be solved in practice, since the data generating process (that we are trying to estimate) is
not known. However, the update equations of COX-AMP suggest the construction of a local
field that can in turn be used to accurately estimate all the RS order parameters of the
theory without actually solving the RS equations. We emphasize that this approach can be
applied when the estimator is computed via any method and is not restricted to COX-AMP.

5.2 Introduction

When the number of features is a sufficiently large fraction of the number of observations, the
estimator obtained by maximization of the Cox partial likelihood is not well defined. Hence
the necessity of adding a regularization term in order to “fit” the model, i.e. define a well
posed optimization problem. Sparsity inducing regularizations are widely adopted in this
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context when the goal of the analysis is to obtain a more “parsimonious” model. By shrinking
some of the coefficient exactly to zero, these are capable of performing variable selection.
Because of this appealing characteristic, these regularizations, e.g. Lasso, Elastic Net, MCP,
SCAD to name a few, have been investigated in the statistical literature for Generalized
Linear Models [24, 4], but also for the Cox model [2, 14]. In particular, [2] showed that, with
the Lasso and folded convex regularizations, the Regularized Maximum Partial Likelihood
Estimator (RMPLE) is equal to a (biased) oracle estimator which knows the underlying
true model, with overwhelming probability as the sample size n diverges. Besides some mild
assumptions on the data generating process, their results require that the number of true
active component s (the number of covariates that are effectively associated with the survival
time) does not grow linearly with the number of observations n, i.e. s = O(nα) for α ∈ (0, 1).

Here we characterize the behaviour of the RMPLE under the assumption that Xi ∼
N (0, Ip/p) for all subjects i = 1, . . . , n and in the proportional regime, where the number of
observation n, the number of covariates p and, importantly, the number of active covariates
s, diverge proportionally, i.e. p = ζn, s = νp. This is achieved by means of the replica
method from statistical physics [10, 6, 15], which has already been applied in the recent
past to study the behaviour of sparse linear regression [12, 23, 18]. The replica method,
under the Replica Symmetric (RS) ansatze, leads to six coupled non-linear equations, whose
solution grants access to virtually any metric of interest, e.g. the mean squared error for
the estimator of the association and of the survival function, but also the fraction of false
positive and negatives in support recovery (as originally noted in [22] for logistic regression).
We show that the prediction of the theory agree perfectly with the result of simulations.

We propose and test a generalization of the Approximate Message Passing algorithm
for the Cox model, which we refer to as COX-AMP, in order to compute the RMPLE. We
show by numerical simulations that the resulting algorithm leads to estimators that are
very close (in L2 distance) to the estimators obtained via the Coordinate-wise Descent (CD)
algorithm [25], which is taken as a reference. The update equations of COX - AMP suggest
the construction of a “local field”, that we use to estimate the order parameters of the theory
from the data, i.e. without the need of actually solving the RS equations. We show via
numerical simulations, that these estimators, obtained without the knowledge of the data
generating process, perform extremely well, i.e. they are very close to the numerical solution
of the RS equations, which conversely requires the knowledge of the data generating process.
Always by numerical simulations, we show that the “local field” might be computed directly
also from the estimator obtained by the CD algorithm. Our approach is a generalization of
what is done in [23] by means of the Expectation Consistent or Adaptive TAP method [19],
which, however, cannot be directly applied here.

We highlight that estimating the RS order parameter from the data is preferable to the
direct solution of the RS equations, since the knowledge of the data generating process is
not required. This paves the road to applications, where the only available quantities are
the data and the estimators (computed from the data).

5.3 Setting and notation
Focusing on the case of right censored data, time to event data comprise observations re-
porting: i) the event indicator ∆i, equal to 1 if the subject experienced the event and 0
otherwise, ii) the observed time to event Ti if ∆i = 1, or the censoring time else,and iii)
the covariate vector Xi = (X1, . . . , Xp) ∈ Rp, i.e. the list of characteristics of the subject.
The most widely adopted model to deal with time to event data is the Cox semi-parametric
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proportional hazards model [13, 11, 7]. If censoring is non-informative, then the likelihood
density of the event ∆ in the time interval [t, t + dt) given covariates Xi and under the
proportional hazards assumption reads

p(∆, t|X′
iβ) = f(t|X′

iβ)
∆SC(t)

∆ × S(t|X′
iβ)

1−∆fc(t)
1−∆ , (5.1)

where we indicated with ′ the dot product, i.e. for a,v ∈ Rd, we have a′v =
∑d

k=1 akvk.
Above, fc and SC(x) =

∫∞
x

fc(x)dx are , respectively,the density and survival functions for
the censoring risk, while

S(t|X′
iβ) := exp{−Λ(t) exp(X′β)}, (5.2)

f(t|X′
iβ) := − d

dt
S(t|X′

iβ) = λ(t) exp{X′
iβ − Λ(t) exp(X′

iβ)}, (5.3)

are the survival (5.2) and density (5.3) functions for the primary risk (the risk under in-
vestigation). The latter’ are parametrized by: i) the association parameters β ∈ Rp, ii)
the cumulative hazard function Λ . The minus log-likelihood for a data-set of i.i.d censored
observations {(∆i, Ti,Xi)}ni=1, reads

Ln

(
β, λ

)
=

n∑
i=1

{
Λ(Ti)e

X′
iβ −∆i

(
log λ(Ti) +X′

iβ
)}

(5.4)

=
n∑

i=1

{
g
(
X′

iβ,Λ(Ti),∆i

)
−∆i

(
log λ(Ti)

}
, (5.5)

where we introduced
g(x, y, z) := exp(x)y − zx , (5.6)

in order to highlight the part of the likelihoof function that depends on the linear predictors
X′

iβ. By first minimizing with respect to λ one obtains the so-called Breslow estimator [3, 9]:

λ̂n(t,β) =
n∑

k=1

∆kδ(t− tk)∑n
j=1 Θ(tj − tk)e

X′
jβ

, (5.7)

where Θ(x) denotes the Heaviside step-function, equal to one if x ≥ 0 and zero else, and
δ(x) the Dirac’s delta distribution. Substituting in (5.4) and disregarding terms which do
not depend on β it is possible to obtain the logarithm of the Cox partial likelihood

PLn(β) =
n∑

i=1

∆i

{
log

( 1
n

n∑
j=1

Θ(Tj − Ti)e
X′

jβ
)
−X′

iβ
}
. (5.8)

Optimizing the Cox partial likelihood one obtains an estimator β̂n and, consequently, an
estimator for the cumulative hazard function of the primary risk via the Nelson-Aalen esti-
mator

Λ̂n(t) :=
n∑

i=1

∆iΘ(t− Ti)∑n
j=1 Θ(Tj − Ti)e

X′
j β̂n

(5.9)

which is obtained via integration of (5.7) with respect to t. In the following, we assume
that a convex regularizer r is added to (5.8), i.e. we are interested in the properties of the
estimator that minimizes

PLn(β) =
n∑

i=1

∆i

{
log

( 1
n

n∑
j=1

Θ(Tj − Ti)e
X′

jβ
)
−X′

iβ
}
+ r(β) . (5.10)
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5.4 Computing the Regularized Maximum Partial Like-
lihood Estimator (RMPLE)

The RMPLE can be computed in different manners, depending on the regularization r. A
widely applicable strategy is Coordinate Wise descent. This algorithm is easy to implement
and has the advantage of being applicable also when the regularization is not differentiable,
e.g. for the Lasso. We denote

NA(Ti,Xβ̂n) :=
n∑

l=1

∆iΘ(Ti − Tl)∑n
j=1 Θ(Tj − Tl)e

X′
j β̂n

, (5.11)

and
NA(T,Xβ̂n) =

(
NA(T1,X

′
1β̂n), . . . ,NA(Tn,X

′
nβ̂n)

)
. (5.12)

A variant of the coordinate wise descent algorithm of [25] can be summarized as in Algorithm
1. We give a brief derivation in 5.10.5.

Algorithm 1 Coordinate wise path solution for Cox model
1: β0 ← 0p

2: Λ0 ← NA(T,0n)
3: α ← αmax

4: for α in path do
5: err ← 1
6: while err ≥ tol do
7: s(βt,Λt) ←

{
Λt(T)eXβt −∆

}
X

8: M(βt,Λt) ← X′
{
Λt(T)eXβt

}
X

9: φt ← βt

10: for 1 ≤ k ≤ p do
11: ψk ←

{
e′kM(βt,Λt)

{
βt − (I − eke

′
k)φ

t
}
− sk(β

t,Λt)
}
/e′kM(βt,Λt)ek

12: 1/τ̂k ← e′kM(βt,Λt)ek
13: φt

k ← proxr(.)
(
ψk, τk

)
14: end for
15: βt+1 ← φt

16: Λ(T)t+1 ← NA(T,Xβt+1)
17: err ←

√
∥βt+1 − βt∥2 + ∥Λt+1(T)− Λt(T)∥2

18: end while
19: end for

When the covariates are not correlated and gaussian with mean zero, a variant of the
Approximate Message Passing (AMP) algorithm [8] has been proposed to compute the Max-
imum A Posteriori estimator for Generalized Linear Models [20]. Here we propose the use a
modification of the Generalized-AMP, in order to compute the Penalized Partial Likelihood
estimator. We call the resulting algorithm COX-AMP, see Algorithm 2, we give a derivation
in 5.10.6.

Numerical experiments with the elastic net regularization,

r(β) := α∥β∥1 + η
1

2
∥β∥22 , α = ρλ, η = ρ(1− λ) , (5.13)
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Algorithm 2 COX-AMP algorithm for MAP in Cox regression
Require: β̂0 ← 0p, ζ ← p/n tol ← 1.0e− 8, max epochs ← 300

1: τ 0 = 0, τ̂ 0 = 0, ξ0 = Xβ̂0

2: flag = True, err = ∞, t = 0
3: while err ≥ tol and flag do
4: t ← t+ 1
5: Λ̂t

n(T) ← NA(T, proxg(.,Λ̂t−1(T),∆)(ξ
t−1, τ t−1))

6: err ← err + ∥Λ̂t
n(T)− Λ̂t−1(T)∥22

7: ξt ← Xβ̂t−1 + τ t−1Ṁg(.,Λ̂t(T),∆)(ξ
t−1, τ t−1)

8: err ← err + ∥ξt − ξt−1∥22
9: τ̂ t ← ζ/

〈
M̈g(.,Λ̂t(T),∆)(ξ

t, τ t−1)
〉

10: err ← err + (τ̂ t − τ̂ t−1)2

11: ψt ← β̂t−1 − τ̂ tX′Ṁg(.,Λ̂t(T),∆)(ξ
t, τ t−1)

12: β̂t ← proxr(.)(ψ
t, τ̂ t)

13: err ← err + ∥β̂t − β̂t−1∥22
14: τ t ← τ̂ t

〈
prox′r(.)(ψ

t, τ̂ t)
〉

15: err ← err + (τ t − τ t−1)2

16: err ←
√
err

17: if t ≥ max epochs then
18: flag = False
19: end if
20: end while

show, see figures (5.1), that the estimator computed via Cox - AMP is very close (in L2
norm) to the estimator computed via Coordinate-wise Descent. However, we noticed that
CD always converge, whilst Cox - AMP might not always converge and generally requires
a damped update, especially when the regularization strength is “small” and ζ “large”. To
be more precise, it is well known that the Maximum Partial Likelihood estimator does not
exist (with probability approaching one in the asymptotic limit) past a critical threshold ζc
which depends on the data generating process. Hence we think that the instability of Cox
AMP algorithm at small regularization strength is due to the explosion of the variance of
the estimator in the limit of vanishing regularization for ζ sufficiently large.
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Figure 5.1: Elbow plot of β̂n(α) computed via Cox-AMP in red and Cox-CD in blue. The
data are generated from a Log-logistic proportional hazards model Λ0(t) = log(1+t2/2) with
uniform censoring between τ1 = 1.0 and τ2 = 2.0. The associations β0 are sampled as from
a Gauss-Bernoulli distribution Pβ0(x) = (1− ν)δ(x)+ ν exp{−x2/2σ2}/

√
2πσ, with sparsity

ν = 0.01 and σ adjusted to have ∥β0∥22/p = θ20 = 1.0. The L1 ratio λ = 0.95. The L2 relative
distance between β̂n(α) computed via Cox-AMP and Cox-CD is always less than 0.05 in all
our simulations.

5.5 Typical behaviour of the RMPLE
In the statistical physics approach to optimization, the optimal value of the objective function
(5.10) is equivalent to minus the zero temperature free energy density of a fictitious physical
system, i.e.

lim
n→∞

ED

[ 1
n
PLn(β̂n)

]
= lim

n→∞
lim
γ→∞

1

nγ
ED

[
− log

∫
e−γHn(β|D)dβ

]
, (5.14)

with Hamiltonian equal to the minus penalized partial likelihood

Hn(β|D) =
n∑

i=1

∆i

[
log

( 1
n

n∑
j=1

Θ(Tj − Ti)e
X′

iβ
)
−X′

iβ
]
+ r(β) (5.15)

where we indicated with D the data-set, i.e. the set of tuples {∆j, Tj,Xj}nj=1. The βs are
the degrees of freedom of the system and the data-set D = {∆j, Tj,Xj}nj=1 plays the role of
the quenched disorder.

We compute the right hand side of (5.14) via the replica method under the following as-
sumptions over the data generating process: the event indicator and event time are generated
as

∆i = Θ(Ci − Yi), Ti = min{Yi, Ci} (5.16)
where C ∼ fC is the (latent) random variable censoring time and

Yi|Xi ∼ f0(.|X′
iβ0), Xi ∼ N (0,

1

p
Ip) (5.17)
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is the (latent) censoring time. This implies that the true (unknown) generative model is

f(∆, t|X′β0) = f0(t|X′β0)
∆SC(t)

∆ × S0(t|X′β0)
1−∆fc(t)

1−∆ . (5.18)

Notice that we do not require that the model is correctly specified, i.e. we do not assume
that the data are generated from a proportional hazard model. The scaling of the covariates
is a standard assumption in virtually any previous study of high dimensional regression. The
full replica derivation is included in 5.10.1 and gives

lim
n→∞

ED

[ 1
n
PLn(β̂n)

]
= extr

w,v,τ,ŵ,v̂,τ̂
F(w, v, τ, ŵ, v̂, τ̂) . (5.19)

We now introduce some useful definition that will recur throughout the manuscript and in
particular to define F . For a convex function b : Rd → R, according to [21], we introduce:

• the Moureau envelope Mb(.)

Mb(.)(x, α) = min
z∈Rd

{ 1

2α
∥z− x∥2 + b(z)

}
, (5.20)

• the proximal mapping operator proxb(.)

proxb(.)(x, α) = argmin
z∈Rd

{ 1

2α
∥z− x∥2 + b(z)

}
. (5.21)

Furthermore it is handy to define the limit of the empirical distribution of the entries of β0

as

Pβ0(x) := lim
p→∞

1

p

p∑
µ=1

δ(x− e′µβ0) , (5.22)

so that a component of β0 can be seen as a draw from the distribution (5.22) above. The
zero temperature (disordered averaged) free energy in the Replica Symmetric ansatze reads

F(w, v, τ, ŵ, v̂, τ̂) = − ζ

2τ̂

(
(w − ŵ)2 + v2 + v̂2(1− τ/τ̂)

)

+ ζEZ,β0

[
Mr(.)

(
ŵ
β0

θ0
+ v̂Z, τ̂

)]

+ E∆,T,Z0,Q

[
Mg(.,Λ(T ),∆)

(
wZ0 + vQ, τ

)]
+ const (5.23)

where Z0, Q ∼ N (0, 1), Z0 ⊥ Q,

∆, T |Z0 ∼ f(∆, t|θ0Z0), θ0 := ∥β0∥/
√
p, Z0, Q ∼ N (0, 1), Z0 ⊥ Q , (5.24)

and the function Λ is defined at w, v, τ as the self consistent solution of

Λ(t) = E∆,T,Z0,Q

[
∆Θ(t− T )

S(T )

]
, (5.25)

S(t) = E∆,T,Z0,Q

[
Θ(T − t)ewZ0+vQ+τ∆−W0

(
τeτ∆+wZ0+vQΛ(T )

)]
, (5.26)

with W0(.) the ( real branch of ) Lambert W-function, i.e the solution of W0(x) expW0(x) =
x, x > −1/e.
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The point of extremum in (5.19) satisfies the replica symmetric (RS) equations

w = EZ,β0

[
β0φ

]
/θ0 (5.27)

v̂
τ

τ̂
= EZ,β0

[
Zφ

]
(5.28)

(w2 + v2) = EZ,β0

[
φ2

]
(5.29)

ŵ = w − τ̂

ζτ

(
w − E∆,T,Z0,Q

[
Z0ξ

])
(5.30)

ζτ/τ̂ = E∆,T,Z0,Q

[
Qξ

]
(5.31)

ζv̂2 =
τ̂ 2

τ 2
E∆,T,Z0,Q

[
(ξ − wZ0 − vQ)2

]
(5.32)

where

ξ := proxg(.,Λ(T ),∆)(wZ0 + vQ, τ) = (5.33)

wZ0 + vQ+ τ∆−W0

(
τeτ∆+wZ0+vQΛ(T )

)

φ := proxr(.)(ŵβ0/θ0 + v̂Z, τ̂) . (5.34)

5.5.1 Interpretation

We show in 5.10.4 that

P(∆, t, h) := lim
n→∞

ED

[ 1
n

n∑
i=1

δ(t− Ti)δ∆,∆i
δ(x−X′

iβ̂)
]

(5.35)

Pφ(x) := lim
n→∞

ED

[1
p

p∑
k=1

δ(x− e′kβ̂)
]
. (5.36)

admit the following expressions in the Replica Symmetric ansatze

Pξ(∆, t, h) = E∆′,T ′,Z′
0,Q

′

[
δ(t− T ′)δ∆,∆′δ

(
h− ξ⋆

)]
(5.37)

Pφ(x) = Eβ0,Z

[
δ
(
x− φ⋆

)]
(5.38)

where ξ⋆, φ⋆ are as in (5.33,5.34), computed at the fixed point of the RS equations, i.e. at
w⋆, v⋆, τ⋆, ŵ⋆, v̂⋆, τ̂⋆ and Λ⋆(.) is the function solving (5.25, 5.26) evaluated at the fixed point.
Hence in the proportional regime and for Xi ∼ N (0, 1

p
Ip), we have

lim
n→∞

ED

[ 1
n

n∑
i=1

ℓ1(X
′
iβ̂n, Λ̂n(Ti),∆i, Ti)

]
=

∑
∆∈{1,0}

∫
Pξ(∆, t, h)ℓ1(h,Λ⋆(t),∆, t)dtdh, (5.39)

lim
p→∞

ED

[1
p

p∑
µ=1

ℓ2(e
′
µβ̂n)

]
=

∫
Pφ(x)ℓ2(x) dx , (5.40)
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for any “reasonable” functions ℓ1, ℓ2. This can be compactly re-written as

ξ := proxg(.,Λ(T ),∆)(wZ0 + vQ, τ)
d
≈

n→∞
Xβ̂n (5.41)

φ := proxr(.)(ŵβ0/θ0 + v̂Z, τ̂)
d
≈

n→∞
β̂n , (5.42)

where
d
≈

n→∞
means approximately equal in distribution in the limit and Z0 = (Z0,1, . . . , Z0,n),

Q = (Q1, . . . , Qn) , Z = (Z1, . . . , Zn) and the proximal operators act component-wise. In
turn (5.40) or (5.42) provides the following interpretation of the values w⋆, v⋆

ŵn :=
β′
0β̂n√
β′
0β0

≈
n→∞

w⋆, v̂2n := β̂′
nβ̂n − w2

n ≈
n→∞

v2⋆ . (5.43)

Similarly (5.39) or (5.41) implies that the Replica Symmetric functional order parameter Λ(.)
is equivalent to the Nelson-Aalen estimator computed over a large (ideally infinite) data-set,
i.e.

Λ̂n(.) ≈
n→∞

Λ⋆(.) . (5.44)

5.6 Numerical solution of the RS equations with known
data-generating process

In this section we compare the solution of the RS equations (5.25, 5.26, 5.27, 5.28, 5.29,
5.30, 5.31, 5.32) with the finite sample size metrics computed from synthetic data when the
data generating process is perfectly known. This is done to benchmark the prediction of the
Replica Symmetric theory.

We first detail on the simulation protocol. In all the simulations of this section the true
associations are generated as follows

β0 =
(
θ0

√
p Us,0p−s

)
, Us ∼ Unif(Ss−1) . (5.45)

When p, s → ∞ we have that

Pβ0(x) = ν
1√
2πσ

e−
1
2
x2/σ2

+ (1− ν)δ(x), ν = s/p ∈ [0, 1], σ = θ0/
√
ν . (5.46)

where Pβ0 is the limiting empirical distribution of the entries of β0, defined in (5.22). The
sparsity of the signal is controlled by ν which is the fraction of “active” covariates that
is actually correlated with the outcome. Under this assumption, and with the elastic net
regularization (5.13), the replica symmetric equations can be simplified further, see 5.10.3,
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to a somewhat simpler form

w = 2
1

1 + ητ̂
ŵΦ(χ1) (5.47)

τ = 2
1

1 + ητ̂
τ̂
{
νΦ(χ1) + (1− ν)Φ(χ0)

}
(5.48)

1

2
(v2 + w2) =

1

(1 + ητ̂)2

{
ν
(
(1 + 1/χ2

1)Φ(χ1)− ϕ(χ1)
)
+

+ (1− ν)
(
(1 + 1/χ2

0)Φ(χ0)− ϕ(χ0)
)}

(5.49)

ŵ = w − τ̂

ζτ

(
w − E∆,T,Z0,Q

[
Z0ξ

])
(5.50)

v(1− ζτ/τ̂) = E∆,T,Z0,Q

[
Qξ

]
(5.51)

ζv̂2 =
τ̂ 2

τ 2
E∆,T,Z0,Q

[
(ξ − wZ0 − vQ)2

]
(5.52)

where ξ is defined in (5.33),

χ0 :=
ατ̂

v̂
, χ1 :=

ατ̂√
v̂2 + ŵ2/ν

, (5.53)

and we indicated with ϕ(x) := exp{−1
2
x2}/

√
2π the density function and with Φ(x) :=∫ +∞

x
ϕ(t)dt the complementary distribution function of a standard normal random variable.

The numerical solution of these self -consistent equations is obtained via fixed point iteration.
The integral are approximated as averages of populations of size 5 · 103. The latent survival
data are generated from a Log-logistic proportional hazard model

Y |X ∼ − d

dt
S0(t|X),

S0(t|X) = exp{−Λ0(t) exp(X
′β0)}, Λ0(t) := log

(
1 + eϕ0 t

ρ0
)
, (5.54)

and the latent censoring time is sampled uniformly in the interval [τ1, τ2], i.e.

C ∼ Unif[τ1, τ2] . (5.55)

The observations ∆, T are then generated according to

∆ = 1[Y < C], Y = min{Y, C} . (5.56)

To make the setting above concrete, we choose: θ0 = 1, ϕ0 = − log 2, ρ0 = 2 and τ1 = 1.0, τ2 =
2.0, with ρ = 0.75 and ν = 0.05. The quantities computed from simulations are always
displayed as dots, indicating the averages over 50 repetitions (optimization with Coordinate-
wise Descent), with errorbars, the corresponding finite sample standard deviations.
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Figure 5.2: Comparison between the numerical solution of the RS equations against their

finite sample counter part wn := (β̂′
nβ0/∥β0∥)/

√
p, vn :=

√
∥β̂2

n/p− w2
n∥. Notice that here

we use the knowledge of β0 to compute wn, vn. Here ζ = 2.0 and p = 2000, i.e. n = 1000.

We have seen that the prediction of the RS theory are indeed correct. However, the
RS equations cannot be used in practice, since they require perfect knowledge of the data-
generating process. To overcome this limitation we need to relate the order parameters to
practically observable quantities, i.e. quantities that can be computed without knowing the
data generating process, i.e. β0 and Λ0(.). We show that this is indeed possible, and in a
quite straightforward manner, when the RMPLE is obtained via the Cox - AMP Algorithm
2.

5.7 Inferring the RS order parameters via Cox-AMP with-
out solving the RS equations

The COX-AMP algorithm returns τn and τ̂n, which we interpret as finite sample size realiza-
tions of τ⋆ and τ̂⋆. This means that v̂ can be estimated as vn from the data, by approximating

ζv̂2 = τ̂ 2ET,Z0,Q

[
ġ
(
ξ,Λ(T ),∆

)2]
, (5.57)

with
v̂2n =

〈
g̈(Xβ̂n, Λ̂n,T)

〉
τ̂ 2n/ζ , (5.58)

via (5.41), since ζ is known. Above we have indicated with ⟨⟩ the empirical average operator,
i.e. ⟨a⟩ =

∑d
k=1 ak/d for a vector a ∈ Rd. The functions g, ġ, g̈, Λ̂ are taken to act component

wise.
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Since the large n behaviour of Cox-AMP is predicted by the RS equations, we see that
at the fixed point, the local field

ψ⋆ := β̂ − τ̂⋆X
′Ṁg(.,Λ̂n(T),∆)(ξ, τ⋆) , (5.59)

has a Gaussian distribution

ψ⋆
d
= ŵ⋆β0/θ0 + v̂⋆Z, Z ∼ N (0p, Ip) . (5.60)

As the local field has an explicit expression in the Cox-AMP algorithm, we deduce, by
matching the variance, the following equation

1

p

∥∥β̂ − τ̂⋆X
′Ṁg(.,Λ̂n(T),∆)(Xβ̂n, τ⋆)

∥∥2

2
= ŵ2

n + v̂2n . (5.61)

From which we infer ŵn. We now address the slightly more complicated issue of estimating
w⋆ and v⋆ from the data. It can be seen that, by definition of proximal operator for ξ, we
have

ζv̂2τ 2/τ̂ 2 = τ 2E∆,T,Z0,Q

[
ġ(ξ, T )2

]
= E∆,T,Z0,Q

[(
ξ − wZ0 − vQ

)2]
=

= E∆,T,Z0,Q

[
ξ2
]
− 2wE∆,T,Z0,Q

[
Z0ξ

]
− 2vE∆,T,Z0,Q

[
Qξ

]
+ w2 + v2 =

= E∆,T,Z0,Q

[
ξ2
]
+ 2wζ

τ

τ̂
(w − ŵ) + 2v2ζ

τ

τ̂
− w2 − v2 =

= E∆,T,Z0,Q

[
ξ2
]
− (w2 + v2)(1− 2ζ

τ

τ̂
)− 2wŵζ

τ

τ̂
. (5.62)

The above implies

E∆,T,Z0,Q

[
ξ2
]
= ζv̂2τ 2/τ̂ 2 + (w2 + v2)(1− 2ζ

τ

τ̂
) + 2wŵζ

τ

τ̂
. (5.63)

On the other hand, the relationship

E∆,T,Z0,Q

[(
ξ + τ ġ(ξ,Λ(T ),∆)

)2]
= w2 + v2 , (5.64)

can be deduced by the definition of proximal operator. Hence

wŵζ
τ

τ̂
=

1

2
E∆,T,Z0,Q

[
ξ2
]
− 1

2
ζv̂2τ 2/τ̂ 2 − 1

2
(w2 + v2)(1− 2ζτ/τ̂) . (5.65)

The finite sample counterpart of the previous equations read

1

n
∥Xβ̂n + τnġ(Xβ̂n, Λ̂n(T),∆)∥22 = w2

n + v2n (5.66)

wnŵnζ
τn
τ̂n

=
1

2n
∥Xβ̂n∥22 −

1

2
ζv̂2nτ

2
n/τ̂

2
n − 1

2
(w2

n + v2n)(1− 2ζτn/τ̂n) . (5.67)

From which one can solve for vn and wn. The remarkable performance of the estima-
tors obtained as described above in estimating the replica symmetric order parameters
w⋆, v⋆, τ⋆, ŵ⋆, v̂⋆, τ̂⋆ can be appreciated in figure(5.3). There we show the estimators sum-
marized as errorbar plots, computed over 50 realizations, when ζ = 2.0 and p = 2000, for
the elastic net regularization (5.13) when the L1 ratio is λ = 0.75.
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Figure 5.3: Cox-AMP with elastic net regularization The estimators of
ŵ⋆, v̂⋆, τ̂⋆, w⋆, v⋆, τ⋆ summarized by a black errorbar plot against the true values in red, along
a regularization path (different values of α). The data are generated from a Log-logistic
proportional hazards model Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0
and τ2 = 2.0. The associations β0 are sampled as from a Gauss-Bernoulli distribution
Pβ0(x) = (1 − ν)δ(x) + ν exp{−x2/2σ2}/

√
2πσ, with sparsity ν = 0.01 and σ adjusted to

have ∥β0∥22/p = θ20 = 1.0. The L1 ratio is λ = 0.75.

We have shown that the RS order parameter can be easily estimated from the estimators
β̂n and Λ̂n as computed from the COX-AMP algorithm. The key property of the AMP
algorithm is that it estimates also τ̂ and τ (which are not available in other optimization
methods), which in turn allows to estimate the local field ψ⋆ from the data. It seems natural
to wonder if a similar construction is available when β̂n is computed via another method,
e.g. Coordinate-wise Descent. We show in the next section how this can be done.

5.8 Inferring the RS order parameters via Cox-CD with-
out solving the RS equations

Within the Coordinate-wise Descent algorithm, we do not infer the value of τ , nor the value
of τ̂ . Hence we cannot directly observe v̂n and solve the chain of equations that we have
derived in the previous section. However, in some cases it seems possible to infer τ̂ and τ
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nevertheless. Noticing that

v̂
τ

τ̂
= EZ,β0

[
Zφ

]
=

= v̂EZ,β0

[
prox′r(.)

(
ŵβ0/θ0 + v̂Z, τ̂

)]
, (5.68)

where we used integration by parts, also known as Stein’s lemma, we obtain an alternative
form of (5.28)

τ

τ̂
= EZ,β0

[
prox′r(.)

(
ŵβ0/θ0 + v̂Z, τ̂

)]
. (5.69)

For the elastic net regression for instance, we have

proxr(.)
(
ŵβ0/θ0 + v̂Z, τ̂

)
=

1

1 + ητ̂
st
(
ŵβ0/θ0 + v̂Z, ατ̂

)
(5.70)

and

prox′r(.)
(
ŵβ0/θ0 + v̂Z, τ̂

)
=

1

1 + ητ̂
st′

(
ŵβ0/θ0 + v̂Z, ατ̂

)

=
1

1 + ητ̂
Θ(|φ|) , (5.71)

where in the last expression we used the fact that

st′
(
ŵβ0/θ0 + v̂Z, ατ̂

)
= Θ

(
|ŵβ0/θ0 + v̂Z| − ατ̂

)
= Θ(|φ|) . (5.72)

So
τ

τ̂
=

1

1 + ητ̂
EZ,β0

[
Θ(|φ|)

]
, (5.73)

which might be solved simultaneously with (5.31) for τ̂ , τ . Their finite sample counter-parts
read

τn
τ̂n

=
1

1 + ητ̂n
∥β̂n∥0 (5.74)

ζτn/τ̂n =
〈 τng̈(Xβ̂n, Λ̂n(T),∆)

1 + τng̈(Xβ̂n, Λ̂n(T),∆)

〉
, (5.75)

where we indicated with ∥x∥0 the zero “norm” of x, i.e. the number of non-null entries of x.
The system above can easily be solved by first solving (5.74) for τ̂n as a function of τn, i.e.

τ̂n =
τn

∥β̂n∥0 − ητn
(5.76)

which gives by substitution

ζ
(
∥β̂n∥0 − ητn

)
=

〈 τng̈(Xβ̂n, Λ̂n(T),∆)

1 + τng̈(Xβ̂n, Λ̂n(T),∆)

〉
, (5.77)

which can be solved numerically for τn, by Newton method for instance. We see in figure(5.4)
that the resulting estimators, summarized as black error bar plots, are close to the quantity
to be estimated (i.e. the fixed point solution of the RS equations in red). It is indeed difficult
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to see differences between the estimators obtained via the CD algorithm (5.4) and the ones
obtained via the AMP algorithm (5.3), as it should.

Figure 5.4: Cox-CD with elastic net regularization The estimators of ŵ⋆, v̂⋆, τ̂⋆ (Left)
and w⋆, v⋆, τ⋆ (Right) summarized by a black errorbar plot against the true values in red,
along a regularization path (different values of α). The data are generated from a Log-logistic
proportional hazards model Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0
and τ2 = 2.0. The associations β0 are sampled as from a Gauss-Bernoulli distribution
Pβ0(x) = (1 − ν)δ(x) + ν exp{−x2/2σ2}/

√
2πσ, with sparsity ν = 0.01 and σ adjusted to

have ∥β0∥22/p = θ20 = 1.0. The L1 ratio is λ = 0.75.

We conclude that the Cox-AMP is not the unique mean to estimate the values of the
RS order parameters, i.e. it is not strictly needed. However, the additional equation (5.61),
which is necessary to close the estimating equations, is derived via the insight provided by the
AMP algorithm and its statistical physics interpretation. This is in agreement with recent
results [1], which are however, obtained via an alternative route. From a numerical perspec-
tive the non-necessity of using Cox-AMP is reassuring, since we have already remarked that
the CD algorithm is more stable.

5.9 Conclusion
We showed via simulations that the Replica Symmetric theory is capable of correctly pre-
dicting the behaviour of the Regularized Maximum Partial Likelihood Estimator in the
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proportional regime when the number of covariates p, the number of samples n and the
number of active covariates s diverge proportionally. When the data generating model is
perfectly known, the theory gives the values of several observables of interest, such as the
Bias and the Mean Squared Error, as a function of six order parameters w⋆, v⋆, τ⋆, ŵ⋆, v̂⋆, τ̂⋆
and θ0 := ∥Σ1/2

0 β0∥2. However, the data generating process is not available in applications.
We show here that one can estimate the RS order parameters solely from the data, without
the knowledge of the data generating process.
We proposed an AMP algorithm tailored to the Cox model in section 5.4 and note that this
suggests the construction of a local field

ψ⋆ := β̂ − τ̂⋆X
′Ṁg(.,Λ̂n(T),∆)(ξ, τ⋆) , (5.78)

which is predicted to have a Gaussian distribution by comparison with the RS equations,
i.e.

ψ⋆
d
= ŵ⋆β0/θ0 + v̂⋆Z, Z ∼ N (0p, Ip) . (5.79)

This identification allows to estimate all the RS order parameters directly from the data,
when the RMPLE β̂n is obtained from the COX-AMP algorithm since in that case τ̂ is
observed, as explained in sections 5.7. Afterwards, we noticed that, in some cases, it is
possible to estimate the local field ψ also from the RMPLE obtained by any other method,
e.g. Coordinate Wise Descent, i.e. without the need of explicitly using the AMP algorithm,
in section 5.8. The methodology is widely applicable and not only limited to the Cox
regression model.

Although we focused on the idealized setting where the covariates are i.i.d. standard
Gaussian, estimating the RS order parameters from the data paves the road to future ap-
plications with real data. It is clear that a more robust theory would account also for
correlations between the covariates. In that case it is not clear how one can estimate the
order parameters solely from the data, this will be subject of future investigations.

Data availability statement The python scripts for generating the data, solving the RS
equations, fitting the elastic net Cox model and computing the RS order parameters from
the data can be found at https://github.com/EmanueleMassa/Regularized_Cox_model .

Bibliography
[1] PC Bellec. Observable adjustments in single-index models for regularized m-estimators,

2024.

[2] J Bradic, J Fan, and J Jiang. Regularization for cox’s proportional hazards model with
np-dimensionality. The Annals of Statistics, 39(6):3092–3120, 2011.

[3] NE Breslow. Discussion on professor cox’s paper. Journal of the Royal Statistical
Society: Series B (Methodological), 34(2):202–220, 1972.

[4] P Bühlmann and S van de Geer. Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer Series in Statistics. Springer Berlin Heidelberg, 2011.

[5] ACC Coolen, JE Barrett, V Paga, and C J Perez-Vicente. Replica analysis of overfitting
in regression models for time-to-event data. Journal of Physics A: Mathematical and
Theoretical, 50(37):375001, 2017.

144



[6] ACC Coolen, M Sheikh, A Mozeika, F Aguirre-Lopez, and F Antenucci. Replica analysis
of overfitting in generalized linear regression models. Journal of Physics A: Mathematical
and Theoretical, 53(36):365001, 2020.

[7] DR Cox. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220, 1972.

[8] DL Donoho, A Maleki, and A Montanari. Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

[9] M Friedman. Piecewise Exponential Models for Survival Data with Covariates. The
Annals of Statistics, 10(1):101 – 113, 1982.

[10] E Gardner and B Derrida. Optimal storage properties of neural network models. Journal
of Physics A: Mathematical and General, 21(1):271, 1988.

[11] FE Harrell. Regression Modeling Strategies: With Applications to Linear Models, Lo-
gistic Regression, and Survival Analysis. Graduate Texts in Mathematics. Springer,
2001.

[12] Y Kabashima, T Wadayama, and T Tanaka. A typical reconstruction limit for com-
pressed sensing based on lp-norm minimization. Journal of Statistical Mechanics: The-
ory and Experiment, 2009(09):L09003, 2009.

[13] JD Kalbfleisch and RL Prentice. The Statistical Analysis of Failure Time Data. Wiley
Series in Probability and Statistics. Wiley, 2011.

[14] S Kong and B Nan. Non-asymptotic oracle inequalities for the high-dimensional cox
regression via lasso. Statistica Sinica, 24(1):25, 2014.

[15] B Loureiro, C Gerbelot, H Cui, S Goldt, F Krzakala, M Mézard, and L Zdeborová.
Learning curves of generic features maps for realistic datasets with a teacher-student
model*. Journal of Statistical Mechanics: Theory and Experiment, 2022(11):114001,
2022.

[16] A Maleki and A Montanari. Analysis of approximate message passing algorithm. In
2010 44th Annual Conference on Information Sciences and Systems (CISS), pages 1–7.
IEEE, 2010.

[17] E Massa, A Mozeika, and A C C Coolen. Replica analysis of overfitting in regres-
sion models for time to event data: the impact of censoring. Journal of Physics A:
Mathematical and Theoretical, 57(12):125003, 2024.

[18] K Okajima, X Meng, T Takahashi, and Y Kabashima. Average case analysis of lasso
under ultra-sparse conditions. In International Conference on Artificial Intelligence and
Statistics, 2023.

[19] M Opper, O Winther, and MJ Jordan. Expectation consistent approximate inference.
Journal of Machine Learning Research, 6(12), 2005.

[20] S Rangan. Generalized approximate message passing for estimation with random linear
mixing. 2011 IEEE International Symposium on Information Theory Proceedings, pages
2168–2172, 2010.

145



[21] RT Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics.
Princeton University Press, 1997.

[22] F Salehi, E Abbasi, and B Hassibi. The impact of regularization on high-dimensional
logistic regression. Curran Associates Inc., Red Hook, NY, USA, 2019.

[23] T Takahashi and Y Kabashima. A statistical mechanics approach to de-biasing and
uncertainty estimation in lasso for random measurements. Journal of Statistical Me-
chanics: Theory and Experiment, 2018(7):073405, 2018.

[24] SA van de Geer. High-dimensional generalized linear models and the lasso. The Annals
of Statistics, 36(2):614 – 645, 2008.

[25] H Zou and T Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301–320, 2005.

5.10 Appendix

5.10.1 Replica derivation

The penalized Cox model is defined by the following energy function

Hn(β|D) =
n∑

i=1

∆i

[
log

( 1
n

n∑
j=1

Θ(Tj − Ti)e
X′

iβ
)
−X′

iβ
]
+ r(β) (5.80)

where we indicate with r the elastic net penalization

r(β) =
1

2
η∥β∥2 + α|β| . (5.81)

Equivalently we can regard the energy as a functional of the empirical distribution

Pn(∆, t, h|β,D) =
1

n

n∑
i=1

δ(t− Ti)δ∆,∆i
δ(h−X′

iβ) (5.82)

where we indicated with D the data-set, i.e. the set of couples {Tj,Xj}nj=1, which plays here
the role of the disorder. Explicitly

H
[
Pn(.|β,D)

]
= nE

[
Pn(.|β,D)

]
+ r(β), (5.83)

E
[
Pn(.|β,D)

]
=

∑
∆=±1

∫
∆
(
logSn(t|β, D)− h

)
Pn(∆, t, h|β,D)dhdt, (5.84)

Sn(t|β,D) =
∑

∆′=±1

∫
Θ(t− t′)eh

′
Pn(∆

′, t,′ h′|β,D)dh′dt′ . (5.85)

It is well known that the information content of inference is quantified by the free energy

f(γ) := − lim
n→∞

1

nγ
ED

[
logZn(γ,D)

]
, Zn(γ) :=

∫
e−γH[Pn(.|β,D)]dβ (5.86)

To compute the average of the logarithm we use the replica trick

f(γ) = lim
n→∞

lim
r→0

f (r)
n (γ), f (r)

n (γ) := − 1

nr
logED

[
Zr

n(γ,D)
]
. (5.87)

We refer to f
(r)
n (γ) as the replicated free energy. We now compute this quantity.
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The replicated free energy

In order to compute

ED

[
Zr

n(γ,D)
]

=

∫
e−γ

∑r
α=1 H[Pn(.|βα,D)]

r∏
α=1

dβα , (5.88)

We first write Zn(γ,D) in a more convenient form. Let us introduce the functional delta
measure

δ
[
P(.)− Pn(.|βα,D)

]
∝

∫
ein

{∑
∆=±1

∫
P̂(∆,t,h)

[
P(∆,t,h)−Pn(∆,t,h|β,D)

]
dtdh

}
DP̂

=

∫
ein

{∑
∆=±1

∫
P̂(∆,t,h)P(∆,t,h)dtdh

}
−i

∑n
i=1 P̂(∆i,Ti,X

′
iβα)DP̂ (5.89)

obtaining

Zn(γ,D) =

∫
e
n

{
i
∑

∆=±1

∫
P̂(∆,t,h)P(∆,t,h)dtdh−γE

[
P(.)

]}
×

×
{∫

e−i
∑n

i=1 P̂(∆i,Ti,X
′
iβ)−γr(β/

√
p)dβ

}
DP̂ DP . (5.90)

For integer r we then have

Zr
n(γ,D) =

∫
e
n
∑r

α=1

{
i
∑

∆=±1

∫
P̂α(∆,t,h,γ)Pα(∆,t,h,γ)dtdh−γE

[
Pα(.)

]}
×

×
{∫ r∏

α=1

e−i
∑n

i=1 P̂α(∆i,Ti,X
′
iβα)−γr(βα)dβα

} r∏
α=1

DP̂α DPα . (5.91)

Taking the expectation with respect to the data-set

ED

[
Zr

n(γ,D)
]
=

∫
en

∑r
α=1 A

[
P̂α,Pα

]
W

[{
P̂α

}] r∏
α=1

DP̂α DPα (5.92)

where
A
[
γ, P̂α,Pα

]
= i

∑
∆=±1

∫
P̂α(∆, t, h)Pα(∆, t, h)dtdh− γE

[
Pα(.)

]
(5.93)

and

W
[
γ,

{
P̂α

}]
=

∫ (
E∆,T,X

[
e−i

∑r
α=1 P̂α(∆,T,X′βα)

])n

e−γr(βα)

r∏
α=1

dβα . (5.94)

We notice that the expression above depends on βα only via the linear predictors X′
iβα.

Since X ∼ N (0, 1
p
Ip×p), we have that

Y = (Y0, Y1, . . . , Yr) ∼ N
(
0,C({βα})

)
, Yα := X′βα (5.95)

with

C({βα})
)
=

(
θ20 M′

M R

)
(5.96)

147



where

θ20 = ∥β0∥2/p (5.97)
M = (Mα)

r
α=1, Mα := β′

0βα/p (5.98)
R = (Rα,ρ)

r
α,ρ=1, Rα,ρ := β′

αβρ/p = Rρ,α . (5.99)

Then, introducing a matrix delta function, we can write

W
[{
P̂α

}]
=

∫
eipTr(ĈC)+pϕ(Ĉ)+nφ(γ,C) dĈdC (5.100)

with

φ[γ,C, {P̂α(.)}rα=1] = logEC
∆,T,Y

[
e−i

∑r
α=1 P̂α(∆,T,Yα)

]
(5.101)

ϕ(γ, Ĉ) =
1

p
log

∫
e−ipTr(ĈC({βα}))−γ 1

2
r(βα)

r∏
α=1

dβα . (5.102)

Putting everything together, we have obtained a so-called “saddle point” (functional) integral

ED

[
Zr

n(γ,D)
]
=

∫
e−nψ

[
{Pα,P̂α}rα=1,Ĉ,C

] r∏
α=1

DP̂α DPαdCdĈ (5.103)

where

−ψ
[
{Pα, P̂α}rα=1, Ĉ,C

]
=

r∑
α=1

A
[
P̂α,Pα

]
+ φ[γ,C, {P̂α(.)}rα=1] +

+ iζTr(ĈC) + ζϕ(γ, Ĉ) . (5.104)

Saddle point integration

The idea is now to evaluate the integral via the saddle point method by interchanging the
limits n → ∞ and r → 0, as customary in these calculations [5, 6, 15, 17]. We first derive
the stationary conditions with respect to the functions Pα and P̂α, which are obtained via
functional differentiation

Pα(∆, t, h, γ) =
EC

Y

[
f(∆, t|Y0)δ(h− Yα)e

−i
∑r

α=1 P̂α(∆,t,Yα,γ)
]

EC
∆,T,Y

[
e−i

∑r
α=1 P̂α(∆,T,Yα,γ)

] (5.105)

iP̂α(∆, t, h, γ) = γ∆
[
logSα(t, γ)− h

]
+ γehΛα(t, γ) . (5.106)

where

Sα(t, γ) =
∑

∆′=±1

∫
Θ(t− t′)eh

′Pα(∆
′, t,′ h′)dh′dt′ (5.107)

Λα(t, γ) :=
∑

∆′=±1

∫
∆′Θ(t− t′)Pα(∆

′, t′, h′, γ)

Sα(t′, γ)
dt′dh′ . (5.108)

148



Equivalently

Pα(∆, t, h, γ) =

EC
Y


f(∆, t|Y0)δ(h− Yα)e

−
∑r

α=1 γ
�
∆ logSα(t,γ)+exp(Yα)Λα(t,γ)−∆Yα



EC
∆,T,Y


e−

∑r
α=1 γ

�
∆ logSα(T,γ)+exp(Yα)Λα(T,γ)−∆Yα

 . (5.109)

Furthermore at the saddle point we have

φ[γ,C, {P̂α(.)}rα=1] =

φ(γ,C) = logEC
∆,T,Y


e−

∑r
α=1 γ

�
∆ logSα(T,γ)+exp(Yα)Λα(T,γ)−∆Yα



and hence

−ψ̃(γ, Ĉ,C) := − extr
{Pα,P̂α}

ψ = iζTr(ĈC) + ζϕ(γ, Ĉ) + φ(γ,C) +

+ γ

∆=±1


eh

r
α=1

Λα(t, γ)Pα(∆, t, h, γ)dtdh (5.110)

With a modest amount of foresight we take the following change of variables

iĈ =
1

2
D (5.111)

which is expected from previous similar calculations and aids the book-keeping. In principle
we could now derive the saddle point equations for the elements of the matrices C nor D
and then take the limit r → 0. In practice we will assume the replica symmetric ansatze

C =




θ20 m . . . . . . m
m ρ q . . . q
... q ρ

. . . ...
...

... . . . . . . q
m q . . . q ρ




D =




0 m̂ . . . . . . m̂
m̂ ρ̂ −q̂ . . . −q̂
... −q̂ ρ̂

. . . ...
...

... . . . . . . −q̂
m̂ −q̂ . . . −q̂ ρ̂




(5.112)

directly from now on. Note that this directly implies that

C−1 =




µ̃r m̃r . . . . . . m̃r

m̃r ρ̃r q̃r . . . q̃r
... q̃r ρ̃r

. . . ...
...

... . . . . . . q̃r
m̃r q̃r . . . q̃v ρ̃r




. (5.113)

After some algebra one obtains that

µ̃r =
ρ+ q(r − 1)

θ20(ρ+ q(r − 1))− rm2
(5.114)

m̃r =
m

rm2 − θ20(ρ+ q(r − 1))
(5.115)

q̃r =
1

ρ− q

m2 − qθ20
θ20(ρ+ q(r − 1))− rm2

(5.116)

ρ̃r =
1

ρ− q


1 +

m2 − qθ20
θ20(ρ+ q(r − 1))− rm2


. (5.117)

We are now in position to compute the “limit” r → 0, i.e. to obtain the replica symmetric
symmetric free energy.
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Simplification of ϕ within RS ansatz

Let’s remind the definition of the potential ϕ

ϕ(γ,D) =
1

p
log

∫
e−

1
2
pTr(DC({βα}))−γr(βα)

r∏
α=1

dβα . (5.118)

Using the replica symmetric ansatz we get

1

2
pTr(DC({βα})) =

r∑
ρ=1

(
m̂β′

0βρ +
1

2
ρ̂β′

ρβρ

)
−

r∑
ρ,α̸=ρ

q̂βρβα

=
r∑

ρ=1

(
m̂β′

0βρ +
1

2
(ρ̂+ q̂)∥βρ∥2

)
− 1

2
q̂
∥∥

r∑
ρ=1

βρ

∥∥2

and via Gaussian linearization

ϕ
(r)
RS(γ, m̂, q̂, ρ̂) =

1

p
logEZ

[(∫
e−

1
2
(ρ̂+q̂)∥x∥2−(m̂β0+

√
q̂Z)′x−γr(x)dx

)r]
.

Since we are finally interested in taking the limit r → 0 it is convenient to expand the
integrand for small r, thus obtaining

ϕ
(r)
RS(γ, m̂, q̂, ρ̂) = r

1

p
EZ

[
log

∫
e−

1
2
(ρ̂+q̂)∥x∥2−(m̂β0+

√
q̂Z)′x−γr(x)dx

]
+O(r2) .

Since the integrand in the expression above factorizes over the components of x and Z, this
can be further re-written in terms of the distribution of the entries of β0

ϕ
(r)
RS(γ, m̂, q̂, ρ̂) = rEβ0,Z

[
log

∫
e−

1
2
(ρ̂+q̂)x2−(m̂β0+

√
q̂Z)x−γr(x)dx

]
+O(r2) .

Simplification of φ within RS ansatz

Inserting the replica symmetric ansatze, we obtain

f(y0, y1, . . . , yr) ∝ exp
{
−
(1
2
µ̃y20 +

r∑
ρ=1

(
m̃y0yρ +

1

2
(ρ̃− q̃)y2ρ

)
+

1

2
q̃
( r∑

ρ=1

yρ
)2)} (5.119)

and via Gaussian linearization

f(y0, y1, . . . , yr) ∝ EQ

[
exp

{
− 1

2
µ̃y20 −

r∑
ρ=1

[1
2
(ρ̃− q̃)y2ρ +

(
m̃y0 + i

√
q̃Q

)
yρ
]}]

(5.120)

with Q ∼ N (0, 1). Upon setting
√
µ̃y0 = z0 we obtain

φ
(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r)

= log

E∆,T,Z0,Q

[(∫
e−

1
2
(ρ̃−q̃)x2−

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x−γg(x,Λ(r)(T,γ),∆) dx√

2π

)r
]

E∆,T,Z0,Q

[(∫
e−

1
2
(ρ̃−q̃)x2−

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x

)r
] .

with Z0 ∼ N (0, 1), Z0 ⊥ Q and where we have defined

g(x, y, z) = exp(x)y − zx . (5.121)
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Replica symmetric functional equation

Let us introduce, for notational convenience, the random variable ξ̃, with density

f
(r)

ξ̃
(x|Z0, Q, T ) :=

e
−
{

1
2
(ρ̃−q̃)x2+

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x+γg(x,Λ(r)(T,γ),∆)

}

Z(γ,∆, T, Z0, Q)
, (5.122)

where the normalization is

Z(γ,∆, T, Z0, Q) =

∫
e
−γ

{
1
2

(ρ̃−q̃)
γ

x2+ 1
γ

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x+γg(x,Λ(r)(T,γ),∆)

}
dx .

Using (5.120) we obtain

P (r)(∆, t, h, γ) =

(
E∆,T,Z0,Q

[
Zr(γ,∆, T, Z0, Q)

])−1

×

×EZ0,Q

[
f(∆, t|Z0/

√
µ̃)Eξ̃|Z0,Q,T

[
δ(h− ξ̃)

]
Zr(γ,∆, T, Z0, Q)

]
. (5.123)

Let us stop and recall what we have achieved so far. By assuming the RS ansatz we have
obtained

− lim
n→∞

1

n
logED

[
Zr

n(γ,D)
]
= extr

m,q,ρ,µ̂,m̂,q̂,ρ̂
ψ̃

(r)
RS(m, q, ρ, m̂, q̂, ρ̂) (5.124)

with

−ψ̃
(r)
RS(. . . ) = ζ(µµ̂+ rmm̂+ r(ρρ̂− qq̂) + r2qq̂

)
+

ζϕ
(r)
RS(γ, m̂, q̂, ρ̂) + φ

(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r) +

γrE∆,T,Z0,Q

[
Λ(r)(t, γ)Eξ̃|Z0,Q,T

[
exp(ξ̃)

]
Zr(γ,∆, T, Z0, Q)

]
, (5.125)

where now

S(r)(t′, γ) = E∆,T,Z0,Q

[
Θ(T − t′)Eξ̃|Z0,Q,T

[
exp(ξ̃)

]
Zr(γ,∆, T, Z0, Q)

]

Λ(r)(t, γ) :=
∑

∆′=±1

∫
∆′Θ(t− t′)

S(t′, γ)
P(r)(∆′, t′, h′, γ)dt′dh′ .

The limit r → 0

Taking the limit r → 0, we get the replica symmetric free energy

fRS(γ) = extr
µ,m,q,ρ,m̂,q̂,ρ̂

f̃RS(γ, µ,m, q, ρ, m̂, q̂, ρ̂) (5.126)

with
f̃RS(γ,m, q, ρ, m̂, q̂, ρ̂) := lim

r→0

1

γr
ψ̃

(r)
RS(γ,m, q, ρ, m̂, q̂, ρ̂) . (5.127)
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where

−f̃RS(. . . ) = ζ(mm̂+ r(ρρ̂− qq̂)
)
+ ζϕ̃RS(γ, m̂, q̂, ρ̂) + φ̃RS(γ,m, q, ρ) +

E∆,T,Z0,Q

[
Λ(t, γ)Eξ̃|Z0,Q,T

[
exp(ξ̃)

]]
, (5.128)

and the random variable ξ̃ has the density

fξ̃(x|Z0, Q, T ) :=
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
−γg(x,Λ(t,γ),∆)

∫
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
−γg(x,Λ(t,γ),∆)

dx

. (5.129)

Above, we introduced the following definitions

ϕ̃RS(γ, m̂, q̂, ρ̂) = lim
r→0

1

γr
ϕ
(r)
RS(γ, m̂, q̂, ρ̂)

= Eβ0,Z

[
log

∫
e−

1
2
(ρ̂+q̂)x2−(m̂β0+

√
q̂Z)x−γr(x)dx

]

φ̃RS(γ,m, q, ρ) = lim
r→0

1

γr
φ
(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r)

= E∆,T,Z0,Q

[
log

∫
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
−γg(x,Λ(t,γ),∆)

dx

∫
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
dx

]

and we have used that

µ̃ = lim
r→0

µ̃r = 1/θ20 (5.130)

m̃ = lim
r→0

m̃r = − m

θ20(ρ− q)
(5.131)

q̃ = lim
r→0

q̃r =
1

ρ− q

m2 − qθ20
θ20(ρ− q)

(5.132)

ρ̃− q̃ = lim
r→0

ρ̃r − q̃r =
1

ρ− q
. (5.133)

Assuming the following scaling

τ = γ/(ρ̃− q̃) = γ(ρ− q) (5.134)

we obtain

φ̃RS(γ,m, q, ρ) =

= E∆,T,Z0,Q

[
1

γ
log

∫
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ+g
(
x,Λ(T,γ),∆

)}
dx

∫
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ

}
dx

]
.

Similarly, taking the additional rescaling

1/τ̂ = (ρ̂+ q̂)/γ, m̂ = γm̂, q̂ = γ2q̂ (5.135)
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we have

ϕ̃RS(γ, m̂, q̂, ρ̂) = Eβ0,Z

[
1

γ
log

∫
e
−γ

{
1
2τ̂

x2+(m̂β0+
√
q̂Z)x+r(x)

}
dx

]
=

=
1

2
τ̂
(
m̂2θ20 + q̂

)
+ Eβ0,Z

[
1

γ
log

∫
e
−γ

{
1
2

1
τ̂

{
x̃+τ̂(m̂β0+

√
q̂Z)

}2

+r(x̃)

}
dx̃

]
+ const

Furthermore, in the limit r → 0, the functional equation reads

P(∆, t, h, γ) = EZ0,Q

[
f(∆, t|Z0/

√
µ̃)Eξ̃|Z0,Q,T

[
δ(h− ξ̃)

]]

where

S(t′, γ) = E∆,T,Z0,Q

[
Θ(T − t′)Eξ̃|Z0,Q,T

[
exp(ξ̃)

]]

Λ(t, γ) := E∆′,T ′

[
∆′Θ(t− T ′)

S(T ′, γ)

]
,

with

fξ̃(x|Z0, Q, T ) :=
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ+g
(
x,Λ(T,γ),∆

)}

∫
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ+g
(
x,Λ(T,γ),∆

)}
dx

, (5.136)

and ∫
P(∆, t, h, γ)dh = f(∆, t|Z0/

√
µ̃) . (5.137)

The limit γ → ∞

Via Laplace integration we see that

− lim
γ→∞

1

γ
log

∫
e
−γ

{
1
2α

(z−x)2+b(z)

}
dz = Mb(.)(x, α) (5.138)

where Mb(.) is the Moureau envelope of a convex function b : R → R, which is defined as

Mb(.)(x, α) = min
z

{ 1

2α
(z − x)2 + b(z)

}
. (5.139)

Using the “Laplace-Moureau” identity above (5.138), we obtain

lim
γ→∞

ϕ̃RS(γ, m̂, q̂, ρ̂) =

1

2
τ̂
(
m̂2θ20 + q̂

)
− EZ,β0

[
Mr(.)

(
m̂β0 +

√
q̂Z, τ̂

)]

lim
γ→∞

φ̃RS(γ,m, q, ρ) =

−E∆,T,Z0,Q

[
Mτg(.,Λ(T ),∆)

(
m/θ0Z0 +

√
q − (m/θ0)2Q, τ

)]
.
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In the limit γ → ∞, the functional equation (5.136) reads

P(∆, t, h) = EZ0,Z

[
f(∆, t|Z0)δ

(
h− ξ(T, Z0, Z)

)]
(5.140)

ξ(T, Z0, Z) := proxg(.,Λ(T ),∆)

(
(m/θ0)Z0 +

√
q − (m/θ0)2Z, τ

)
, (5.141)

where we used the Laplace integration method to conclude that for any “well behaved”
function a : Rd → R

a
(
proxb(.)(x, α)

)
= lim

γ→∞
log

∫
e
−γ

{
1
2α

(z−x)2+b(z)

}
a(z)dz

∫
e
−γ

{
1
2α

(z−x)2+b(z)

}
dz

(5.142)

with proxb(.) the proximal mapping of the convex function b defined as

proxb(.)(x, α) = argmin
z

{ 1

2α
(z − x)2 + b(z)

}
. (5.143)

We also have

S(t) = E∆,T,Z0,Z

[
Θ(t− T )eξ

]

Λ(t) := E∆′,T ′

[
∆′Θ(t− T ′)

S(T ′)

]

where ξ is defined in (5.141). Furthermore

lim
γ→∞

E∆,T,Z0,Z

[
Λ(t, γ)Eξ|Z0,Q,T

[
exp(ξ)

]]

= E∆,T

[
∆E∆′′,T ′′,Y ′′

0 ,Z′′

[
Θ(T ′′ − T )eξ

′′
]

E∆′,T ′,Y ′
0 ,Z

′

[
Θ(T ′ − T )eξ′

]
]
= E

[
∆
]
= const.

Putting all together (for the last time), we have obtained that

lim
γ→∞

f̃RS(γ,m, q, ρ, m̂, q̂, ρ̂) =

F(m, q, τ, m̂, q̂, τ̂) = lim
n→∞

ED

[ 1
n
PLn(β̂n)

]
(5.144)

with

F(m, q, τ, m̂, q̂, τ̂) = −ζ(mm̂+
1

2
q/τ̂ − 1

2
τ q̂

)
+

1

2
τ̂ ζ

(
m̂2θ20 + q̂

)
+

ζEZ,β0

[
Mr(.)

(
m̂β0 +

√
q̂Z, τ̂

)]
+

E∆,T,Z0,Q

[
Mg(.,Λ(T ),∆)

(
m/θ0Z0 +

√
q − (m/θ0)2Q, τ

)]
+ const

It is now convenient to take additional change of variables in order to obtain “neater” for-
mulae. Let us define

w = m/θ0, v = q −m2/θ20, ŵ = −τ̂ m̂θ0, v̂ = τ̂
√
q̂ (5.145)
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then (abusing the notation yet again)

F(w, v, τ, ŵ, v̂, τ̂) = − ζ

2τ̂

(
(w − ŵ)2 + v2 + v̂2(1− τ/τ̂)

)
+

ζEZ,β0

[
Mr(.)

(
ŵ
β0

θ0
+ v̂Z, τ̂

)]
+

E∆,T,Z0,Q

[
Mg(.,Λ(T ),∆)

(
wZ0 + vQ, τ

)]
+ const (5.146)

5.10.2 Replica symmetric equations

It is convenient to define

φ(β0, Z) := proxr(.)

(
ŵ
β0

θ0
+ v̂Z, τ̂

)
(5.147)

ξ := proxg(.,Λ(T ),∆)(wZ0 + vQ, τ) (5.148)

then

∂

∂ŵ
F =

ζ

τ̂
w
ζ

τ̂
EZ,β0

[
β0φ

]
/θ0 → w = EZ,β0

[
β0φ

]
/θ0 (5.149)

∂

∂v̂
F =

ζ

τ̂
v̂
τ

τ̂

ζ

τ̂
EZ,β0

[
Zφ

]
→ v̂

τ

τ̂
= EZ,β0

[
Zφ

]
(5.150)

∂

∂τ̂
F =

ζ

2τ̂ 2

(
(w − ŵ)2 + v2 + v̂2(1− 2

τ

τ̂
)
)
+

− ζ

2τ̂ 2
EZ,β0

[(
φ− ŵβ0 − v̂Z

)2]
=

=
ζ

2τ̂ 2

(
w2 + v2

)
− ζ

2τ̂ 2
EZ,β0

[
φ2

]
(5.151)

∂

∂w
F = −ζ(w − ŵ)/τ̂ +

1

τ

(
w − E∆,T,Z0,Q

[
Z0ξ

])
(5.152)

∂

∂v
F = −ζv/τ̂ +

1

τ

(
v − E∆,T,Z0,Q

[
Qξ

])
(5.153)

∂

∂τ
F = ζ

v̂2

τ̂ 2
− 1

τ 2
E∆,T,Z0,Q

[
(ξ − wZ0 − vQ)2

]
. (5.154)

Hence

w = EZ,β0

[
β0φ

]
/θ0 (5.155)

v̂
τ

τ̂
= EZ,β0

[
Zφ

]
(5.156)

(w2 + v2) = EZ,β0

[
φ2

]
(5.157)

ŵ = w − τ̂

ζτ

(
w − E∆,T,Z0,Q

[
Z0ξ

])
(5.158)

v(1− ζτ/τ̂) = E∆,T,Z0,Q

[
Qξ

]
(5.159)

ζv̂2 =
τ̂ 2

τ 2
E∆,T,Z0,Q

[
(ξ − wZ0 − vQ)2

]
(5.160)
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5.10.3 Explicit computation for the lasso regularization

Here we assume that
e′µβ0 ∼ N (0, θ20/ν), ν := s/p . (5.161)

For the Lasso regularization

proxr(.)(x, τ̂) = st(x, ατ̂), (5.162)
st(x, α) := relu(x− α)− relu(−x− α) (5.163)

with
relu(x) = xΘ(x) . (5.164)

Before proceeding, let us remember some useful fact

EZ

[
Θ(σZ + µ− α)

]
= Φ

(α− µ

σ

)
(5.165)

EZ

[
ZΘ(σZ + µ− α)

]
=

e−
1
2

(
α−µ
σ

)2

√
2π

(5.166)

EZ

[
Z2Θ(σZ + µ− α)

]
= Φ

(α− µ

σ

)
+

α− µ

σ

e−
1
2

(
α−µ
σ

)2

√
2π

(5.167)

where

Φ(x) :=

∫ +∞

x

1√
2π

e−
1
2
x2

dx (5.168)

The identities above imply

EZ [Zrelu(σZ + µ− α)] = σΦ
(α− µ

σ

)
(5.169)

and hence
EZ [Zst(σZ, α)] = σΦ

(α− µ

σ

)
+ σΦ

(α + µ

σ

)
. (5.170)

This implies that

EZ,β0

[
β0φ

]
= ŵEZ

[
Φ
(√

ν
ατ̂ − v̂Z

ŵ

)
+ Φ

(√
ν
ατ̂ + v̂Z

ŵ

)]

= 2ŵEZ

[
Φ
(√

ν
ατ̂ + v̂Z

ŵ

)]
. (5.171)

and also

EZ,β0

[
Zφ

]
= v̂Eβ0

[
Φ
(ατ̂ − ŵβ0/θ0

v̂

)
+ Φ

(ατ̂ + ŵβ0/θ0
v̂

)]

= 2v̂Eβ0

[
Φ
(ατ̂ + ŵβ0/θ0

v̂

)]
. (5.172)

Next we use that
EX

[
Φ(aX + b)

]
= Φ

( b√
1 + a2

)
(5.173)

and get that

EZ

[
Φ
(√

ν
ατ̂ + v̂Z

ŵ

)]
= Φ

( ατ̂√
ŵ2/ν + v̂2

)
(5.174)
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and
Eβ0

[
Φ
(ατ̂ + ŵβ0/θ0

v̂

)]
= νΦ

( ατ̂√
ŵ2/ν + v̂2

)
+ (1− ν)Φ

(ατ̂
v̂

)
. (5.175)

Finally we use that

EZ [relu
2(σZ + µ− α)] = Φ

(α− µ

σ

)(
σ2 + (µ− α)2

)
− σ(α− µ)

e−
1
2

(
α−µ
σ

)2

√
2π

(5.176)

hence

1

2
EZ,β0

[
φ2

]
= ν

{
Φ
( ατ̂√

v̂2 + ŵ2/ν

)(
v̂2 + ŵ2/ν + α2τ̂ 2

)
+

−
√

v̂2 + ŵ2/νατ̂
e
− 1

2

(
ατ̂√

v̂2+ŵ2/ν

)2

√
2π

}
+

+ (1− ν)

{
Φ
(ατ̂
v̂

)(
v̂2 + α2τ̂ 2

)
− v̂ατ̂

e−
1
2

(
ατ̂
v̂

)2

√
2π

}
. (5.177)

If we introduce the short-hands

χ0 :=
ατ̂

v̂
, χ1 :=

ατ̂√
v̂2 + ŵ2/ν

(5.178)

then the first three RS equations take the more compact form

w = 2ŵΦ(χ1) (5.179)

τ = 2τ̂
{
νΦ(χ1) + (1− ν)Φ(χ0)

}
(5.180)

1

2
(v2 + w2) = ν{(1 + 1/χ2

1)Φ(χ1)−G(χ1)}+

+ (1− ν){(1 + 1/χ2
0)Φ(χ0)−G(χ0)} (5.181)

Explicit computation for the elastic net regularization

For the Elastic net regularization

proxr(.)(x, τ̂) =
1

1 + ητ̂
st(x, ατ̂) (5.182)

hence the replica symmetric equations of the main section can be easily recovered.

5.10.4 Distributions

Here we show that the distributions

Pξ(∆, t, h) := lim
n→∞

ED

[ 1
n

n∑
i=1

δ∆,∆i
δ(t− Ti)δ(h−X′

iβ̂)
]
, (5.183)

Pφ(x) := lim
n→∞

ED

[1
p

p∑
k=1

δ(x− e′kβ̂)
]

(5.184)
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indeed satisfy

Pξ(∆, t, h) = E∆′,T ′,Z′
0,Q

′

[
δ(t− T ′)δ∆,∆′δ

(
h− ξ⋆

)]
(5.185)

Pφ(x) = Eβ0,Z

[
δ
(
x− φ⋆

)]
, (5.186)

as stated in the main text (5.37, 5.38). For the identity (5.185), observe that Pξ(∆, t, h) is
the functional order parameter of the replica theory (5.82), hence, at the replica symmetric
saddle point we have (5.123) and after taking the limit r → 0 and γ → ∞ we obtain (5.140),
which coincides with (5.185) as

Pξ(∆, t, h) = EZ0,Z

[
f(∆, t|Z0)δ

(
h− ξ⋆

)]
=

= E∆′,T ′,Z′
0,Z

′

[
δ∆,∆′δ(t− T ′)δ

(
h− ξ⋆

)]
. (5.187)

The identity (5.186) requires more care. Via Laplace integration we may write

1

p

p∑
k=1

δ(x− e′kβ̂) = lim
γ→∞

1

p

p∑
i=1

p∑
k=1

∫
e−γH(β) δ(x− e′µβ) dβ∫

e−γH(β) dβ
. (5.188)

To compute the expectation over the data-set we use the following alternative replica identity

Pφ(x) = lim
r→0

lim
γ→∞

lim
p→∞

1

r p

p∑
k=1

ED

[ ∫
e−γ

∑r
α=1 H(βα|D) δ(x− e′kβ1)

r∏
α=1

dβα

]
. (5.189)

Inserting the functional delta measure as in (5.89) and taking the expectation over D, i.e.
the data-set, we obtain

Pφ(x) =

∫
e−nψ

[
{Pα,P̂α}rα=1,Ĉ,C

]
J (γ, Ĉ)

r∏
α=1

DP̂α DPαdCdĈ (5.190)

where ψ is defined as in (5.104) and

J (γ, Ĉ) :=
1

p

p∑
k=1

∫
e−ipTr(ĈC({βα}))−γr(βα)δ(x− e′kβ1)

∏r
α=1 dβα∫

e−ipTr(ĈC({βα}))−γr(βα)
∏r

α=1 dβα

. (5.191)

Now taking iĈ = 1
2
D, and replica symmetry, we notice that the expression above can be

simplified, at the saddle point, because the regularizer is separable, i.e. r(x) =
∑p

l=1 r(xl),

J (r)
RS (γ, m̂, q̂, ρ̂) =

1

p

p∑
k=1

∫
e−

∑r
ρ=1

(
m̂β0,kβρ,k+

1
2
(ρ̂+q̂)β2

ρ,k

)
+ 1

2
q̂
(∑r

ρ=1 βρ,k

)2

−γr(βα,k)δ(x− β1,k)
∏r

α=1 dβα,k

∫
e−

∑r
ρ=1

(
m̂β0,kβρ,k+

1
2
(ρ̂+q̂)β2

ρ,k

)
+ 1

2
q̂
(∑r

ρ=1 βρ,k

)2

−γr(βα,k)
∏r

α=1 dβα,k

.

At this point Gaussian linearization gives

J (r)
RS (γ, m̂, q̂, ρ̂) = Eβ0

[
EZ

[ ∫
e−
(
{m̂β0+

√
q̂Z}β+ 1

2
(ρ̂+q̂)β2

)
−γr(β)δ(x− β)dβ ×

×
(∫

e−
(
{m̂β0,k+

√
q̂Z}β+ 1

2
(ρ̂+q̂)β2

)
−γr(β)dβ

)r−1]
×

×EZ

[(∫
e−
(
{m̂β0+

√
q̂Z}β+ 1

2
(ρ̂+q̂)β2

)
−γr(β)dβ

)r]−1]
. (5.192)
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Hence, after taking the limit r → 0, we get

JRS(γ, m̂, q̂, ρ̂) := EZ,β0

[∫
e−
(
{m̂β0+

√
q̂Z}β+ 1

2
(ρ̂+q̂)β2

)
−γr(β)δ(x− β)dβ

∫
e−
(
{m̂β0,+

√
q̂Z}β+ 1

2
(ρ̂+q̂)β2

)
−γr(β)dβ

]
.

After taking the rescaling

1/τ̂ = (ρ̂+ q̂)/γ, m̂ = γm̂, q̂ = γ2q̂ (5.193)

and the limit γ → ∞, we get

Pφ(x) = EZ, β0

[
δ
(
x− proxr(.)

(
m̂⋆β0 +

√
q̂⋆Z, τ̂⋆

))]
. (5.194)

The expression above reduces to (5.186) after the change of variables

ŵ = −τ̂ m̂θ0, v̂ = τ̂
√
q̂, (5.195)

and using the definition (5.34).

5.10.5 Coordinate Wise Minimization algorithm for pathwise solu-
tion

Consider the function

g(β, λ) :=
1

n

n∑
i=1

{
Λ(Ti)e

X′
iβ −∆iX

′
iβ −∆i log λ(Ti)

}
(5.196)

Suppose we want to minimize the objective function

f(β, λ) := g(β, λ) + r(β) (5.197)

with r a separable convex regularization function. In our case we will be interested in

r(β) := α|β|+ 1

2
η∥β∥2 . (5.198)

This can be done via coordinate descent. First we minimize over λ, obtaining the Nelson-
Aalen estimator

Λ̂n(t) = NA({Tj,X
′
jβ}) :=

n∑
i=1

∆iΘ(t− Ti)∑n
j=1 Θ(Tj − Ti)e

X′
jβ

. (5.199)

Then we minimize over β and so on an so forth, until a fixed point, i.e. the updated values
for βt+1 and Λt+1(T1), . . . ,Λ

t+1(Tn) are within a user defined tolerance from their previous
value. To compute the minimizer in β at fixed Λ, we use the algorithm proposed in [25].
The idea is to reduce the problem to an iterative regularized least squared regression. Let
us define

ℓ(β,Λ) :=
1

n

n∑
i=1

{
Λ(Ti)e

X′
iβ −∆iX

′
iβ
}
. (5.200)
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A second order expansion in ξ around ϕ gives the following approximation for ℓ

ℓ̃(β,Λ,ϕ) = ℓ(ϕ,Λ) + s(ϕ,Λ)′(β − ϕ) +
1

2
(β − ϕ)′H(ϕ,Λ)(β − ϕ) (5.201)

where

s(ϕ,Λ) =
1

n

n∑
i=1

{
Λ(Ti)e

X′
iϕ −∆i

}
Xi =

1

n
(W − diag(∆)X (5.202)

M(ϕ,Λ) =
1

n

n∑
i=1

Λ(Ti)e
X′

iϕXiX
′
i =

1

n
X′WX (5.203)

with W := diag
(
Λ(Ti) exp{X′

iϕ}
)
. At this points we use a coordinate descent strategy to

solve the regularized least square problem

βt+1 = argmin
φ

{
f(φ)

}
, f(φ) = ℓ̃(φ,Λt,βt) + r(φ), (5.204)

i.e. we minimize along each component keeping the remaining components fixed

∂

∂φk

f(φ) = (5.205)

sk(β
t,Λt) + φk e′kM(βt,Λt)ek + e′kM(βt,Λt)

{
(I − eke

′
k)φ− βt

}
+ r′(φk) = 0

which is solved by

φt+1
k = (5.206)

proxr(.)

(e′kM(βt,Λt)
{
βt − (I − eke

′
k)φ

t
}
− sk(β

t,Λt)

e′kM(βt,Λt)ek
,

1

e′kM(βt,Λt)ek

)
.

Notice that in the case of the elastic net penalization we get

φt+1
k =

1

1 + ητk
st
(
ψk, ατk

)
(5.207)

where

ψk :=
{
e′kM(βt,Λt)

{
βt − (I − eke

′
k)φ

t
}
− sk(β

t,Λt)
}
/e′kM(βt,Λt)ek

1/τk := e′kM(βt,Λt)ek

and st is the soft thresholding operator.

5.10.6 Derivation of GAMP via Belief Propagation

Consider the following optimization problem

β̂ = argmin
β

{ n∑
i=1

g
(
X′

iβ, Yi

)
+

p∑
µ=1

r(βµ)
}

(5.208)

where Xi ∼ N
(
0, 1

p
1
)

and Yi|Xi ∼ f(.|X′
iβ0). Define the Gibbs measure

fγ(β|{Yi,Xi}) =
e−γ

{∑n
i=1 g(X

′
iβ,Yi)+λ

∑p
µ=1 r(βµ)

}

Zγ({Yi,Xi})
. (5.209)
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Such a distribution corresponds to a fully connected bypartite factor graph, with p variable
nodes and n factor nodes. The (loopy) belief propagation equations read

mµ→i(βµ) ∝ e−γr(βµ)
∏
j ̸=i

mj→µ(βµ) (5.210)

mi→µ(βµ) ∝
∫

e−γg(X′
iβ,Yi)

∏
α̸=µ

mα→i(βα)dβα . (5.211)

The tempered Moreau envelope and proximal operator

Let us introduce the tempered Moreau envelope as

Mf(.)(x, α, γ) := −1

γ
log

∫
e−γ

{
1
2

(z−x)2

α
+f(z)

}
dz . (5.212)

Notice that

Ṁf(.)(x, α, γ) =
1

α

(
x− Eγ[Z]

)
(5.213)

M̈f(.)(x, α, γ) =
1

α
− γ

α2
Vγ[Z] . (5.214)

In analogy with the proximal operator, we define

proxf(.)(x, α, γ) := Eγ[Z] =

∫
ze−γ

{
1
2

(z−x)2

α
+f(z)

}
dz

∫
e−γ

{
1
2

(z−x)2

α
+f(z)

}
dz

= x− αṀf(.)(x, α, γ) . (5.215)

Based on the previously derived relationships we notice that

prox′f(.)(x, α, γ) = Vγ[Z]γ/α . (5.216)

In the limit γ → ∞ we have

lim
γ→∞

Mf(.)(x, α, γ) := Mf(.)(x, α) (5.217)

furthermore

lim
γ→∞

Ṁf(.)(x, α, γ) =
1

α

(
x− proxf(.)(x, α)

)
= ḟ

(
proxf(.)(x, α)

)
(5.218)

lim
γ→∞

M̈f(.)(x, α, γ) =
f̈
(
proxf(.)(x, α)

)

1 + αf̈
(
proxf(.)(x, α)

) . (5.219)

The last identity is obtained by differentiating ḟ
(
proxf(.)(x, α)

)
with respect to x. Notice

that this implies

lim
γ→∞

γVγ[Z] = α
1

1 + αf̈
(
proxf(.)(x, α)

) . (5.220)
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Approximation of the messages

We start by re-writing the self consistent condition of the messages as

mi→µ(βµ) ∝
∫

e−γg
(
Xi,µβµ+

∑
α̸=µ Xi,αβα,Yi

) ∏
α̸=µ

dmα→i(βα)

∝
∫

eiξ̂
(
ξ−Xi,µβµ

)
−
∑

α̸=µ ψβα (iξ̂Xi,α)−γg(ξ,Yi) dξdξ̂ (5.221)

where
ψX(q) := logEX

[
eqX

]
(5.222)

is the cumulant generating function. Taking a quadratic approximation of ψβα gives

mi→µ(βµ) ≈
∫

eiξ̂
(
ξ−Xi,µβµ−

∑
α̸=µ Xi,αβ̂α→i

)
−γg(ξ,Yi)− 1

2
1
γ

(∑
α̸=µ να→iX

2
i,α

)
ξ̂2 dξdξ̂ =

∝
∫

e
−γ

{
1
2

(
ξ−Xi,µβµ−

∑
α̸=µ Xi,αβ̂α→i

)2

∑
α̸=µ να→iX

2
i,α

+g(ξ,Yi)

}
dξ , (5.223)

where β̂α→i, τα→i are respectively the mean and the variance (rescaled by the inverse tem-
perature γ) of the belief mα→i. We notice that

mi→µ(βµ) ≈ e−γṀf(.)(Xi,µ(βµ−β̂µ→i)+ξ̂i,τi−νµ→iX
2
i,µ,γ) (5.224)

where

ξi =
∑
α

Xi,αβ̂α→i (5.225)

τi =
∑
α

να→iX
2
i,α . (5.226)

Assuming Xi,µ(βµ − β̂µ→i) to be small, we take a quadratic approximation of Mg(.,Ti)(., τi −
νµ→iX

2
i,µ, γ) around ξi obtaining

Mg(.,Ti)(Xi,µ(βµ − β̂µ→i) + ξi, τi − νµ→iX
2
i,µ, γ) ≈

Mg(.,Ti)(ξ, τi − νµ→iX
2
i,µ, γ) +

ϕ̇i→µXi,µ(βµ − β̂µ→i) +
1

2
ϕ̈i→µX

2
i,µ(βµ − β̂µ→i)

2 (5.227)

where

ϕ̇i→µ = Ṁg(.,Ti)(ξi, τi − νµ→iX
2
i,µ, γ) (5.228)

ϕ̈i→µ = M̈g(.,Ti)(ξi, τi − νµ→iX
2
i,µ, γ) . (5.229)

Then
mi→µ(βµ) ≈ exp

{
− γ

(1
2
τ̂i→µβ

2
µ − si→µβµ

)}
. (5.230)

where

si→µ = −(ϕ̇i→µXi,µ − ϕ̈i→µX
2
i,µβ̂µ→i) (5.231)

1/τ̂i→µ = ϕ̈i→µX
2
i,µ . (5.232)
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As a consequence

mµ→i(βµ) ≈ exp
{
− γ

(
r(βµ) +

1

2
β2
µ/τ̂µ→i − sµ→iβµ

)}
. (5.233)

where

sµ→i =
∑
j ̸=i

sj→µ (5.234)

1/τ̂µ→i =
∑
j ̸=i

τ̂−1
j→µ . (5.235)

Finally

β̂µ→i = τ̂µ→isµ→i − τ̂µ→iṀr(.)

(
sµ→iτ̂µ→i, τ̂µ→i, γ

)
(5.236)

νµ→i = τ̂µ→i

{
1− τ̂µ→iM̈r(.)

(
sµ→iτ̂µ→i, τ̂µ→i, γ

)}
, (5.237)

and as a consequence

β̂µ→i = proxr(.)
(
sµ→iτ̂µ→i, τ̂µ→i, γ

)
= proxr(.)

(
ψµ→i, τ̂µ→i, γ

)
(5.238)

νµ→i = τ̂µ→iprox
′
r(.)

(
sµ→iτ̂µ→i, τ̂µ→i, γ

)
= τ̂µ→iprox

′
r(.)

(
ψµ→i, τ̂µ→i, γ

)
, (5.239)

where
ψµ→i := sµ→iτ̂µ→i = β̂µ→i − τ̂µ→iXi,µϕ̇i→µ . (5.240)

TAP approximation

First of all we neglect all the corrections νµ→iX
2
i,µ so that

ϕ̇i→µ ≈ ϕ̇i = Ṁg(.,Ti)(ξi, τi, γ) (5.241)

ϕ̈i→µ ≈ ϕ̈i = M̈g(.,Ti)(ξi, τi, γ) . (5.242)

Then

si→µ ≈ −(ϕ̇iXi,µ − ϕ̈iX
2
i,µβ̂µ→i) (5.243)

τ̂i→µ ≈ ϕ̈iX
2
i,µ . (5.244)

Notice that

sµ→i =
∑
j

sj→µ − si→µ = sµ − si→µ (5.245)

1/τ̂µ→i =
∑
j

1/(τ̂j→µ − τ̂i→µ) ≈ 1/τ̂µ , (5.246)

hence

β̂µ→i ≈ proxr(.)
(
ψµ, τ̂µ, γ

)
− prox′r(.)

(
ψµ, τ̂µ, γ

)
si→µτ̂µ = β̂µ − νµsi→µ (5.247)

νµ→i ≈ νµ = prox′r(.)
(
ψµ, τ̂µ, γ

)
τ̂µ , (5.248)

where
ψµ := sµτ̂µ = β̂µ − τ̂µXi,µϕ̇i (5.249)
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and
β̂µ = proxr(.)

(
ψµ, τ̂µ, γ

)
. (5.250)

Finally

τi ≈
∑
α

ναX
2
i,α

ξi ≈
∑
α

Xi,αβ̂α +
∑
α

X2
i,αναϕ̇i (5.251)
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TAP algorithm for GLMs

The TAP algorithm can be schematized as follows

Algorithm 3 TAP algorithm for Bayes Estimator in GLMs

Require: β̂0 ← 0p, tol ← 1.0e− 8, max epochs ← 300

τ 0 = 0n, τ̂ 0 = 0p, ξ
0 = Xβ̂0

flag = True, err = ∞, t = 0
while err ≥ tol and flag do

t ← t+ 1
ξti ← X′

iβ̂
t−1 + τiṀg(.,T )(ξ

t−1, τ t−1
i , γ), ∀i

1/τ̂ tµ ←
∑n

i=1 X
2
i,µM̈g(.,T )(ξ

t
i , τ

t−1
i , γ), ∀µ

ψt
µ ← β̂t−1

µ − τ̂ tµ
∑n

i=1 Ṁg(.,T )(ξ
t
i , τ

t−1
i , γ)Xi,µ, ∀µ

β̂t
µ ← proxr(.)(ψ

t
µ, τ̂

t
µ, γ), ∀µ

τ ti ←
∑p

α=1 τ̂
t
α prox′r(.)(ψ

t
α, τ̂

t
α)X

2
i,α, ∀i

err ←
√
∥β̂t − β̂t−1∥22 + ∥τ t − τ t−1∥22 + ∥ξt − ξt−1∥22 + ∥τ̂ t − τ̂ t−1∥22

if t ≥ max epochs then
flag = False

end if
end while

The algorithm above is, in general, difficult to implement, since it requires to compute
M̈g(.,T )(., a, γ), Ṁg(.,T )(., a, γ), proxr(.)(., a, γ), prox′r(.)(., a, γ) at finite γ < ∞. These quan-
tities are not directly available (an exception is the linear model with ridge regularization)
and must be approximated via a Montecarlo scheme, or by numerical integration. In the
zero temperature limit, however, the algorithm simplify to

Algorithm 4 TAP algorithm for MAP in GLMs

Require: β̂0 ← 0p, tol ← 1.0e− 8, max epochs ← 300

τ 0 = 0n, τ̂ 0 = 0p, ξ
0 = Xβ̂0

flag = True, err = ∞, t = 0
while err ≥ tol and flag do

t ← t+ 1
ξti ← X′

iβ̂
t−1 + τiṀg(.,T )(ξ

t−1, τ t−1
i ), ∀i

1/τ̂ tµ ←
∑n

i=1 X
2
i,µM̈g(.,T )(ξ

t
i , τ

t−1
i ), ∀µ

ψt
µ ← β̂t−1

µ − τ̂ tµ
∑n

i=1 Ṁg(.,T )(ξ
t
i , τ

t−1
i )Xi,µ, ∀µ

β̂t
µ ← proxr(.)(ψ

t
µ, τ̂

t
µ), ∀µ

τ ti ←
∑p

α=1 τ̂
t
α prox′r(.)(ψ

t
α, τ̂

t
α)X

2
i,α, ∀i

err ←
√
∥β̂t − β̂t−1∥22 + ∥τ t − τ t−1∥22 + ∥ξt − ξt−1∥22 + ∥τ̂ t − τ̂ t−1∥22

if t ≥ max epochs then
flag = False

end if
end while

This can be efficiently implemented. It is advised to damp the AMP iteration to improve
numerical stability and we notice empirically that this is the case also here.
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Approximate Message Passing for i.i.d. Gaussian covariates

When
X ∼ N (0p, Ip/p) , (5.252)

one can further simplify the algorithm and obtain the Approximate Message Passing algo-
rithm originally proposed to solve the Lasso optimization problem [16] and then extended to
generalized linear models in [20]. The algorithm can be stated elegantly in vector notation,
which provides also a more compact formulation. To this end it is useful to introduce the
average operator⟨⟩, which for a vector x ∈ Rl reads

⟨x⟩ = 1

l

l∑
k=1

xk . (5.253)

Algorithm 5 AMP algorithm for MAP in GLMs (vector notation)

Require: β̂0 ← 0p, tol ← 1.0e− 8, max epochs ← 300

τ 0 = 0, τ̂ 0 = 0, ξ0 = Xβ̂0

flag = True, err = ∞, t = 0
while err ≥ tol and flag do

t ← t+ 1
ξt ← Xβ̂t−1 + τṀg(.,T )(ξ

t−1, τ t−1)

τ̂ t ← ζ/
〈
M̈g(.,T )(ξ

t, τ t−1)
〉

ψt ← β̂t−1 − τ̂ tX′Ṁg(.,T )(ξ
t, τ t−1)

β̂t ← proxr(.)(ψ
t, τ̂ t)

τ t ← τ̂ t
〈
prox′r(.)(ψ

t, τ̂ t)
〉

err ←
√
∥β̂t − β̂t−1∥22 + (τ t − τ t−1)2 + ∥ξt − ξt−1∥22 + (τ̂ t − τ̂ t−1)2

if t ≥ max epochs then
flag = False

end if
end while

166



5.10.7 COX-AMP : an AMP algorithm for the Cox model

The optimization of the Cox Partial Likelihood can be regarded as an alternating minimiza-
tion, as we have already argued in the derivation of the Coordinate-wise Descent algorithm,
see 5.10.5. At the fixed point we must have that

ġ(Xβ̂n, Λ̂n(T),∆) = 0 (5.254)
Λ̂n(Ti) = NA(Ti,Xβ̂n) . (5.255)

The idea now is to do a step with Generalized - AMP in β at fixed Λ and then update Λ
with the Nelson Aalen estimator (5.199) as

Λ̂t
n(T) ← NA

(
T, proxg(.Λ̂t−1

n (T),∆)(ξ
t, τ t−1)

)
(5.256)

since at the fixed point of the Generalized -AMP algorithm, we must have that

proxg(.Λ̂t
n(T),∆)(ξ, τ) = Xβ̂n . (5.257)

The algorithm is schematized in the main text, see Algorithm 2.
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Chapter 6

Practical debiasing with the Covariant
Prior in the proportional regime when
p < n

This chapter is submitted to Journal of Physics : Communications.

6.1 Abstract
We show that the Covariant Prior can be used to effectively de-bias the resulting MAP
estimator in the proportional regime, where the number of covariates p grows proportionally
to n, the number of samples, with p < n. The asymptotics of the resulting MAP estimator
can be studied via the statistical physics approach. It is known that the Replica method leads
to three equations for three scalar order parameters. Knowledge of the order parameters and
of the true signal strength, allows the computation of the asymptotic bias. Here we show
that all these quantities might be estimated from the data alone, without actually solving the
equations of the theory (which require the knowledge of the data generating process). Once
this is done, a de-biased estimator can be computed easily allowing for eventual testing. We
emphasize that the proposed methodology does not require to estimate the true covariance
matrix, and can be (easily) applied whenever the latter is positive definite.

6.2 Introduction and motivation
When given a data - set of n observations comprising responses T1, . . . , Tn, Ti ∈ T ⊂ R
and covariates X1, . . . ,Xn, Xi ∈ Rp, and a postulated (or assumed) model that relates the
responses to the covariates, the task of the user is to estimate the parameter of the model.
We consider here the case where the responses are generated according to an un-known
model of the form

Ti|Xi ∼ f0(.|X′
iβ0) (6.1)

for some distribution f0(.|X′
iβ0), with unknown parameters β0 ∈ Rp. The estimator for β0 is

computed via Bayesian’s Maximum A Posteriori, or equivalently the frequentist’s Penalized
Maximum Likelihood: i.e it is the solution of an optimization problem

β̂n := argmin
β

{ n∑
i=1

ℓ(X′
iβ, Ti) + r(β)

}
(6.2)
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where r is a regularization, or penalty function (this is equivalent to minus the logarithm of
the prior in Bayesian language), and ℓ(x, t) := − log f(t|x) is the loss associated with the
density f of a chosen Generalized Linear Model (GLM), when viewed as a function of the
linear predictor X′

iβ, with Xi the covariate vector of the i-th subject, and the response Ti.
The examples we have in mind are the linear regression

ℓ(X′
iβ, Ti) :=

1

2
(Ti −X′

iβ)
2, (6.3)

the logistic regression model (where instead of a density we have a probability mass function)

ℓ(X′
iβ, Ti) := log cosh(X′

iβ)− TiX
′
iβ + log 2, (6.4)

or the Cox regression model

ℓ(X′
iβ, λ, Ti) := Λ(Ti) exp(X

′
iβ)−∆ log λ(Ti) + const , (6.5)

where Λ(t) :=
∫ t

0
λ(s)ds is the integrated cumulative hazard and λ : R+ → R+ is the base

hazard rate.
We are interested in the proportional regime where p = ζn for ζ ∈ R+ where the consis-

tency of the MAP estimator is, in general, lost. That is, we cannot estimate with asymptot-
ically vanishing error all the components of β0, even when f0 is postulated correctly 1. Since
consistency is a key step in the “classical” (p ≪ n) asymptotics [4, 5], highly ideal assumptions
are needed to set up an asymptotic theory in the proportional regime. These assumptions
are mainly adopted for mathematical convenience. A standard one (see [6, 7, 8, 9]) is to
consider that the covariates are “sampled” from a correlated Gaussian distribution with a
positive definite covariance matrix Σ0 ≻ 0, mathematically

Xi ∼ N
(
0,Σ0

)
. (6.6)

We shall make this assumption in the rest of the manuscript.
In the scaling regime considered in this paper, it is well known that the Maximum Likeli-

hood Estimator (MLE) might not be well defined. The classical example being the Logistic
regression model, for which the MLE does not exist already when p is a not too large frac-
tion of n, see [10]. Under the additional assumption of standard gaussian covariates, i.e.
X ∼ N (0, Ip) it has been even proven that the Maximum Likelihood does not exists with
probability one past a critical value of p/n, depending on the true signal strength ∥β0∥2 and
the true intercept ϕ0 of the data generating model (assumed to be correctly specified) [11].
In a previous paper [12] we showed for p = ζn with ζ < 1, the simple covariant regularization

r(β) =
1

2
αβ′X′Xβ , (6.7)

might be used in order to guarantee the existence of β̂n past the critical threshold, and,
when properly tuned, it has also a debiasing effect (besides the beneficial shrinking effect,
which reduces the variance of the estimator). However, in order to properly tune α, one must
estimate θ0 := ∥Σ1/2

0 β0∥2. Here we introduce a very simple (easy-to-implement) and fast
1If further assumptions on the data generating process are made and a clever choice of the regularization

is made, consistency can be restored. This is the case for instance when using the Lasso regularization and
assuming that the underlying β0 is very sparse, i.e. that the number of non-null components of β0 does not
scale proportionally with the sample size n [1, 2, 3].
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procedure to estimate θ0. This methodology builds upon recent developments [9] and seems
to be widely applicable, beyond our principal objective here. Overall, the Replica Symmetric
(RS) equations are used as a guiding tool, but the procedure does not require solving any of
the resulting RS equations at all. In fact it involves only observable quantities, i.e. quantities
that can be computed from the data alone, without any knowledge of the data generating
process, besides what the user is already assuming during the analysis. Once θ0 is estimated,
the construction of unbiased estimates of β0 is “but a hop away”. In fact we do not even
need to compute the value α⋆(θ0) which makes the estimator (asymptotically) unbiased, as
was proposed originally in [12]. But rather we can directly estimate the bias and correct
for it by dividing the resulting estimator by a factor which is determined solely from the
data. We show via simulations that the resulting estimator β̂(d)

n is effectively un-biased and
(approximately) normally distributed around β0, with a variance that can be easily estimated
from the data. An advantage of the covariant prior is that none of the various quantities
that are computed from the data requires the knowledge of the true covariance matrix Σ0,
which is conversely needed for other approaches to de-biasing with other regularizers like
Lasso [7, 8, 9]. These methods, however, allow for de-biasing also when p > n, whilst the
methodology proposed here requires p < n 2.

6.3 Background on the covariant prior / regularization
in the proportional regime

The theoretical analysis of the asymptotics of the estimator β̂n obtained as (6.2) has been
derived in several papers with different notations [13, 14, 15, 16] and using different methods
like the Convex Gaussian Min Max (CGMT) theorem, see [17, 18], or as the State Evolution
equations for the Approximate Message Passing algorithm [19, 20, 21]. For a derivation
tailored to the peculiar features of the covariant prior via the Cavity Method we refer to
[12]. The result is that, asymptotically in n, we have the approximate representation

β̂n ≈ w⋆

θ0
β0 +

1
√
p
v⋆Σ

−1/2
0 Z , Z ∼ N (0p, Ip) (6.8)

where θ0 := ∥Σ1/2
0 β0∥2, ζ := p/n and w⋆, v⋆, τ⋆ satisfy a set of self consistent equations

which were originally derived using the Replica Method and are hence called the Replica
Symmetric (RS) equations. These read

w =
θ0
ζ
E∆,T,Z0,Q

[
τ ġ

(
ξ, T

)
ġ0(θ0Z0, T )

]
(6.9)

ζ = E∆,T,Z0,Q

[
τ g̈

(
ξ, T

)
1 + τ g̈(ξ, T )

]
(6.10)

ζv2 = τ 2E∆,T,Z0,Q

[
ġ(ξ, T )2

]
, (6.11)

where
g(x, t) := ℓ(x, t) + α

1

2
x2 , (6.12)

2Otherwise the regularizer is not guaranteed to be strictly convex and so also the whole objective function
to be minimized. In this case multiple minima might exists or no minimum might exist at all.

171



and

ξ(wZ0 + vQ, T,∆) = proxg(.,T )(wZ0 + vQ, τ) (6.13)

; = argmin
z

{ 1

2τ
(ξ − wZ0 − vQ)2 + g(T, z)

}

= proxℓ(.,T )

(wZ0 + vQ

1 + ατ
,

τ

1 + ατ

)
. (6.14)

The RS equations are restated here in a different notation when compared to [12]. The
advantage of this equivalent formulation is the explicit dependence on the model, i.e. on g
and its derivatives. For completeness, a short derivation is provided in 6.11.1 via the Replica
Method. It has been shown [18, 16] that for the class of problems defined by the Generalized
Linear Models and under assumptions on the function g (which are satisfied in our case when
ζ < 1), we have

wn :=
β′
0Σ0β̂n

∥Σ1/2
0 β0∥2

P→ w⋆ (6.15)

v2n := ∥β̂n∥22 −
(β′

0Σ0β̂n)
2

∥Σ1/2
0 β0∥22

P→ v2⋆ . (6.16)

In 6.11.2, we report the main ideas behind the proof of these results for GLMs, and refer to
the relevant papers for the technical details.

From (6.8), we deduced that β̂n is geometrically unbiased when using the covariant
regularization, i.e. on average it has the same direction of β0, but it is shrunk by a factor
w⋆/θ0 (which is effectively less than 1 for sufficiently large α, depending on ζ = p/n). In a
recent paper [9] the author has shown that it is possible to compute w⋆, v⋆, τ⋆ from the data
only in a very simple manner, without the need to solve the RS equations at all. We show
here that his results, can also be derived directly from the RS equations. This alternative
derivation leads us to circumvent an important limitation of [9], namely the estimation of
the signal strength θ0 in non-linear models. It is clear from (6.8) that the knowledge of θ0 is
essential to de-bias the estimator β̂n. In fact the asymptotic bias is a function of the ratio
w⋆/θ0 , i.e.

Biasn(ζ, θ0) =
∥∥E[β̂n]− β0

∥∥
2
→ |w⋆/θ0 − 1|∥β0∥2 . (6.17)

We show that the solution of very simple equation leads to a good estimate of θ0. Besides
the Bias, also the Mean Squared Error can be estimated once an estimate of θ0 is obtained,
and this might be used as an alternative criterion for the selection of α.

6.4 Approximating the cross validation loss without re-
fitting

Because of (6.15, 6.16), we have that for a fresh sample x̃ ∼ N (0p,Σ0),

x̃′β̂n
d
= w⋆Z0 + v⋆Q , (6.18)

with Z0, Q ∼ N (0, 1), independent of each other, and of the training data set. The prediction
loss is then given by

ET,x̃

[
ℓ(x̃′β̂n, T )

]
= ET,Z0,Q

[
ℓ(w⋆Z0 + v⋆Q, T )

]
, (6.19)
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for T |x̃′β0 ∼ f0(.|x̃′β0). From the replica theory, we know that at the saddle point

ξ = w⋆Z0 + v⋆Q− τ ġ(ξ, T ) , (6.20)

hence, based on the identification ξ
d
≈ X′β̂n, we can approximate the predicted linear pre-

dictor as

ξlooi := X′
iβ̂n + τnġ(X

′
iβ̂n, Ti) . (6.21)

This gives an approximation for the prediction loss as

ℓlooapproxn =
1

n

n∑
i=1

ℓ(ξlooi , Ti) , (6.22)

which resembles the leave one out cross validation loss

ℓloocvn =
1

n

n∑
i=1

ℓ(X′
iβ̂(i), Ti) , (6.23)

where β̂(i) is the leave one out MAP estimator that solves the optimization problem

β̂(i) := argmin
β

{∑
j ̸=i

− log f(Tj|X′
jβ) + r(β)

}
. (6.24)

It can be seen in Figure (6.1) that the agreement between the approximated leave one
out loss (6.22) and its exact counterpart (6.23) is virtually perfect. Indeed the connection
between the leave one out linear predictor X′

iβ̂(i) and the actual linear predictor Xiβ̂n has
been investigated in the literature. In [22] the authors propose a cavity like argument
to approximate Xiβ̂n as a function of X′

iβ̂(i). The correctness of this approach is then
proved in [23], albeit only for linear models. To be more precise, for models that depend
only on the linear residuals, i.e f(Ti|X′

iβ) = f̃(Ti − Xiβ)). In [24] a rigorous theory of
approximate leave one out is developed along these lines for regularized GLMS. More recently
[14] investigated similar questions through the statistical mechanics approach to inference,
in particular focusing on the use of Generalize Approximate Message Passing (GAMP) [21].
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(a) (b)

Figure 6.1: Logit regression. Observed values of leave one out cross validated logistic
loss (red line with crosses as markers) against the approximation (6.21) inspired by the RS
equations (black line with dot as markers). We also plot the generalization error (blue line
with triangle markers) as a reference. Left (a) ζ = 0.3, Right (b) ζ = 0.7. In both cases
θ0 = 1.0 and n = 200. In both cases θ0 = 1.0.

6.5 Estimation of the RS order parameters without solv-
ing the RS equations

In order to use the RS equations we need to relate the order parameters to practically observ-
able quantities. This idea has been originally proposed in [9], but there a different strategy
is used to derive the relationship between the RS order parameters and their observable
counterparts.

Based again on the identification ξ
d
≈ X′β̂n we have

E∆,T,Z0,Q

[
τ g̈

(
ξ, T

)
1 + τ g̈(ξ, T )

]
≈

〈 τ g̈
(
Xβ̂n,T

)

1 + τ g̈(Xβ̂n,T)

〉
(6.25)

E∆,T,Z0,Q

[
ġ(ξ, T )2

]
≈ τ 2

〈
ġ
(
Xβ̂n,T

)2〉
, (6.26)

where we have introduced the empirical average symbol, which for a vector y ∈ Rl is defined
as

⟨y⟩ = 1

l

l∑
k=1

yk, (6.27)

and the functions ġ, g̈ act componentwise. Hence we can compute an estimate τn of τ⋆ by
solving

ζ =
〈 τng̈

(
Xβ̂n,T

)

1 + τng̈(Xβ̂n,T)

〉
, (6.28)

since ζ is known. Once this is done, a estimate vn of v⋆ might be obtained as

v2n =
1

ζ
τ 2n

〈
ġ
(
Xβ̂n,T

)2〉
. (6.29)

174



It remains to estimate w⋆. In the previous section we have seen that

ξlooi := X′
iβ̂n + τnġ(X

′
iβ̂n, Ti) , (6.30)

is the finite sample (observable) version of the field w⋆Z0+v⋆Q appearing in the RS equations.
Based on this, we have the identification

1

n
∥X′β̂n + τnġ(X

′β̂n,T)∥22 = w2
n + v2n (6.31)

from which we get an estimate of wn as

w2
n =

1

n
∥X′β̂n + τnġ(X

′β̂n,T)∥22 − v2n . (6.32)

The procedure is easy to implement and leads to very precise estimation of w⋆, v⋆, τ⋆ as one
can observe in Figure (6.2). There we display the order parameters w, v, τ as obtained by
solving the RS equations. The component of Σ0 are fixed as

(Σ0)j,k(ϵ, l) = δj,k + 1[|j − k| < l]ϵ|j−k| (6.33)

with ϵ = 0.5 and l = 7. This guarantees that our simulations are carried out in a setting
that is not close to the uncorrelated one. The data are generated from a Logit model with

β0 ∼ ν0Unif(Sp) , (6.34)

where Sp is the unit sphere in Rp, and ν0 is fixed to have θ0 = ∥Σ1/2
0 β0∥2/

√
p.

(a) (b)

Figure 6.2: Logit regression. The estimated values wn, vn, τn of the order parameters
w⋆, v⋆, τ⋆. The solution of the RS equations are depicted as red lines. The values of the
wn, vn, τn are shown as black error bar plots. Left (a) ζ = 0.3, Right (b) ζ = 0.7. In
both cases θ0 = 1.0 and n = 500. The data are generated from a Logit model, with Σ0

set according to (6.33) and by sampling β0 as in (6.34). These information is not used to
compute the RS order parameters which are inferred solely from the data.
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6.6 Our contribution : estimation of the signal strength
for arbitrary GLMS

Ideally one would like to have an equation involving only measurable quantities and θ0. We
now show that such an equation can be easily obtained by computing the correlation between
the linear predictor X′

iβ̂n and the response Ti. In fact

E
[ 1
n
T′Xβ̂n

]
= E

[
Tξ

]
= E

[
T (wZ0 + vQ− τ ġ(ξ, T ))

]
=

= wE
[
Z0T

]
− τE

[
T ġ(ξ, T )

]
(6.35)

and hence
E
[
T
{
ξ + τ ġ(ξ, T )

}]
= wE

[
Z0T

]
(6.36)

which implies that

χn :=
1

n
T′{Xβ̂n + τnġ(Xβ̂n) ≈ E

[ 1
n
T′{Xβ̂n + τnġ(Xβ̂n)

}]
=

= wE
[
Z0T

]
= wE

[
Z0E[T |Z0]

]
= wE

[
Z0µ(θ0Z0)

]
= wθ0E

[
µ̇(θ0Z0)

]
, (6.37)

where µ(θ0Z0) := E[T |Z0]. Notice that this equation is computable for any GLM and can
be solved both via numerical solution or by means of a grid search. For the Logit regression
model we have the simple equation

χn/wn = E
[
Z0 tanh(θ0Z0)

]
= θ0E

[
1− tanh2(θ0Z0)

]
. (6.38)

(a) (b)

Figure 6.3: Logit regression. Observed values of γn, χn against their theoretical values.The
solution of the RS equations are depicted as red lines. The values of the γn := ∥Xβ̂n∥22/n
and χn := T′{Xβ̂n + τnġ(Xβ̂n)

}
/n are shown as black error bar plots. Left (a) ζ = 0.3,

Right (b) ζ = 0.7. In both cases θ0 = 1.0 and n = 500. The data are generated from a Logit
model, with Σ0 set according to (6.33) and by sampling β0 as in (6.34). This information
is not used to compute the estimator for θ0 which is computed solely from the data.
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Other cases can be easily worked out. For the exponential model, for instance, we have

E
[
Z0 log T

]
= θ0 , (6.39)

since

− log T |Z0 = θ0Z0 +G, G ∼ Gumbell . (6.40)

For the linear model it is easy to verify via direct calculation that

E
[
Z0T

]
= θ0 . (6.41)

These very simple examples show that θ0 might be estimated directly from: i)the data and
ii) the estimator β̂n (at a fixed α), once a model is postulated. The implicit assumption here
is that the model is correctly postulated, which might be violated in practice. If the model
is not correctly specified, however, the estimated bias bears no meaning in the first place.
Nevertheless, we emphasise that the procedure proposed above might be used to check if
there is any (linear) correlation at all between the response and the covariates.

When the model includes nuisance parameters, the situation is slightly more complicated,
but the idea remains the same. As done for the method of moments, we just need to match
some chosen theoretical statistics with their empirical counterparts computed from the data.
For instance, if in linear regression we have an intercept, then this can be estimated via

E
[
T
]
= ϕ , (6.42)

as

ϕ ≈ 1′T/n . (6.43)

Similarly, the variance of the noise might be estimated via

V
[
T
]
= θ20 + σ2

0 . (6.44)

As a slightly more involved example, consider the Logit regression model with an intercept

T |Z0 ∼ Bernoulli(p), p :=
eθ0Z0+ϕ0

2 cosh(θ0Z0 + ϕ0)
. (6.45)

In this case one imposes the constraints

E
[
T
]

= E
[
tanh

(
θ0Z0 + ϕ0

)]
≈ ⟨T⟩ (6.46)

E
[
Z0T

]
= E

[
Z0 tanh

(
θ0Z0 + ϕ0

)]
≈ 1

n
T′(Xβ̂n + τnġ(Xβ̂n)

)
, (6.47)

from which ϕ0 and θ0 can be easily estimated, for instance via Newton method.
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(a) (b)

Figure 6.4: Logit regression. The histogram of m = 1000 realization of the estimator θ̂n
obtained by solving the equation (6.37) when n = 1000. Left (a) ζ = 0.3, Right (b) ζ = 0.7.
In both cases θ0 = 1.0. The value of the regularization parameter α is selected to minimize
the leave one out cross validated minus log-likelihood. We notice that the variance of the
estimator increases with the ratio ζ. This is consistent with the larger variance of χn. The
data are generated from a Logit model, with Σ0 set according to (6.33) and by sampling β0

as in (6.34).

6.7 Estimation of the component-wise variance for con-
fidence intervals

Via the approximate representation

β̂n ≈ w⋆

θ0
β0 +

1
√
p
v⋆Σ

−1/2
0 Z, Z ∼ N (0p, Ip), (6.48)

we have that

e′jβ̂n =
w⋆

θ0
e′jβ0 + v⋆e

′
jΣ

−1/2
0 Z

d
=

w⋆

θ0
e′jβ0 + ϵ, ϵ ∼ N

(
0, v2⋆∥Σ

−1/2
0 ej∥22/p

)
.

In order to determine an approximate confidence interval, we need to estimate the shrinking
factor w⋆/θ0 in order to center the components of β̂n and the variance to compute the width
of the interval. Since we showed in section 6.6 that θ0 can be estimated, and in section
6.5 that w can be estimated, it remains to estimate ∥Σ−1/2

0 ej∥22. The estimation of all the
components of the covariance matrix is not possible via the empirical covariance matrix, since
it is not a consistent estimator (for all its elements) in the proportional limit. An alternative,
proposed originally in [9], is to estimate directly ∥Σ−1/2

0 ej∥22 = ejΣ
−1
0 ej as follows .

Consider regressing Xej onto X(j) := XP⊥j = X(I − eje
′
j). It is easy to check (by

matching variance and covariance) that Xej admits the conditional representation

Xej = X(j)γj + ϵ, ϵ ∼ N (0, ω2
j ) , (6.49)

where

γj =
(
P⊥jΣ0P⊥j

)−1
P⊥jΣ0ej (6.50)

ω2
j = e′jΣ0ej − e′jΣ0P⊥j

(
P⊥jΣ0P⊥j

)−1
P⊥jΣ0ej . (6.51)
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Since
(

A B
C D

)−1

= (6.52)
( (

A−BD−1C
)−1 −

(
A−BD−1C

)
BD−1

D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

)
,

provided D and A are invertible, we have that

e′jΣ
−1
0 ej = 1/ω2

j . (6.53)

The Least Squares estimator for γj reads

γ̂j =
(
X′

(j)X(j)

)−1
X′

(j)Xej = γj +
(
X′

(j)X(j)

)−1
X′

(j)ϵ , (6.54)

with prediction error given by

En =
1

n
∥Xej −X(j)γ̂j∥22 =

1

n
∥
(
I −X(j)

(
X′

(j)X(j)

)−1
X′

(j)

)
ϵ∥22 . (6.55)

Noting that the expected prediction error is

E
[
En
]

= ω2
j

1

n
Tr

(
I −X(j)

(
X′

(j)X(j)

)−1
X′

(j)

)
=

= ω2
j (1− (p− 1)/n) ≈ ω2

j (1− ζ) , (6.56)

we might estimate ω2
j by

ω̂2
j :=

1

n
∥Xej −X(j)γ̂j∥22

1

1− ζ
. (6.57)

6.8 Putting it all together : practical application of the
RS theory

The results above can be easily used in practice. Once β̂n is obtained for some value of α, we
can compute the estimates wn, vn, τn as detailed in section 6.5 and an estimate θn (although
we notice in practice that the resulting estimate is, as it should, independent of α) of θ0. At
this point the debiased estimator is obtained as

β̂(d) = β̂nθn/wn , (6.58)

the per-component variance can be estimate as explained in section 6.7. The per-component
residuals

R
(d)
j :=

√
pω̂j

e′j
(
β̂

(d)
n − β0

)

vn
(6.59)

should be approximately Gaussian with unit variance and zero mean, i.e.

R
(d)
j

d
≈ N (0, 1) . (6.60)

A QQ-plot can be used to assess the validity of this claim : it requires to compute the
empirical quantiles of R(d) and plot them against the theoretical quantiles. If these are
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close to each other, i.e if the plot is approximately a line at 45 degrees, then the residuals
are approximately gaussian with variance one and mean zero. The quantile function of the
Normal distribution is

Q(t) =

∫ t

−∞

1√
2π

e−
1
2
x2

dx . (6.61)

If we indicate with R
(d)
(1) the lowest value in R

(d)
1 , . . . , R

(d)
n , with R

(d)
(2) the second lowest value

and so on, then the QQ plot is obtained by displaying Q(R
(d)
(1)),Q(R

(d)
(2)), . . . ,Q(R

(d)
(n)) against

(1/n, 2/n, . . . , 1) . We show in Figure (6.5) the QQ-plot for two realizations, on the left
ζ = 0.3 and on th eright ζ = 0.7 of the per-component residuals R

(d)
j s defined in (6.59).

These show convincingly that the per-component residuals R(d) of the debiased estimator
(black dots) are effectively distributed according to a standard normal. In order to select a
value of α in a data-driven manner we compute a solution path β̂n(α) for a list of values of
α and select the value of α that minimizes the leave one out cross validation loss. Instead of
computing the actual leave one out loss, we use the approximation explained in section 6.4.
Another possible criterion might be to select the value of α that maximizes wn(α)/vn(α),
i.e. it maximizes the inferred signal and simultaneously minimizes the noise.

(a) (b)

Figure 6.5: Logit regression. QQ plots of the residuals of the de-biased estimator in black,
i.e. R̂(d)

j s defined in (6.59). In red the identity line. The value of the regularization parameter
α is selected to minimize the leave one out cross validated minus log-likelihood. Left (a)
ζ = 0.3 and right (b) ζ = 0.7, in both cases θ0 = 1.0 and n = 1000. The data are generated
from a Logit model, with Σ0 set according to (6.33) and by sampling β0 as in (6.34).

6.9 Applying the previous ideas to the Cox semiparamet-
ric regression model

The approach described above might be applied, in principle, also to models that do not
strictly fall under the umbrella of the GLM class, but with density depending solely on the
linear predictor. An example is the Cox semiparametric regression model, which assumes

f(∆i, Ti|X′
iβ, λ) =

e−Λ0(Ti) exp(X
′
iβ)−ΛC(Ti)

(
λ0(Ti) exp(X

′
iβ)

)∆

λc(Ti)
1−∆i , (6.62)
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where Λ0,Λc are the cumulative hazard rate functions of the primary risk and censoring
respectively. These satisfy Λ0(t) =

∫∞
0

λ0(s)ds and Λc(t) =
∫∞
0

λc(s)ds, with λ0, λc : R+ →
R+.

The model is semi-parametric since the shape of the cumulative hazard rate is not con-
strained to be in any known parametric family of functions, but is inferred non-parametrically
via the Nelson Aalen estimator

Λ̂n(t) =
n∑

k=1

∆kΘ(t− Tk)∑n
j=1 Θ(Tj − Tk)e

X′
j β̂n

. (6.63)

Where β̂n is computed by minimizing the sum of minus partial likelihood

PLn(β) =
n∑

i=1

∆i

{
log

( n∑
j=1

Θ(Tj − Ti)e
X′

jβ
)
−X′

iβ
}

(6.64)

and covariant regularization (6.7)

(a) (b)

Figure 6.6: Cox regression. The estimated values wn, vn, τn of the order parameters
w⋆, v⋆, τ⋆. The solution of the RS equations are depicted as red lines. The values of the
wn, vn, τn are shown as black error bar plots. The value of the regularization parameter α
is selected to maximize the ratio wn(α)/vn(α). Left (a) ζ = 0.3, Right (b) ζ = 0.7. In
both cases θ0 = 1.0 and n = 500..These information is not used to compute the RS order
parameters which are inferred solely from the data.

We recently carried out the asymptotic analysis for this model in the proportional regime
in [25]. The result is that the estimator β̂n obtained by maximizing (6.64) admits the
representation (6.8), with the RS order parameters w⋆, v⋆, τ⋆ solving

w =
θ0
ζ
E∆,T,Z0,Q

[
τ ġ

(
ξ,Λ(T ),∆

)
ġ0(θ0Z0,Λ0(T ),∆)

]
(6.65)

ζ = E∆,T,Z0,Q

[
τ g̈

(
ξ,Λ(T ),∆

)
1 + τ g̈(ξ,Λ(T ),∆)

]
(6.66)

ζv2 = τ 2E∆,T,Z0,Q

[
ġ(ξ,Λ(T ),∆)2

]
, (6.67)
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where

g(x,Λ(T ),∆) := ℓ(x,Λ(T ),∆) + α
1

2
x2 , (6.68)

ℓ(x,Λ(T ),∆) := Λ(T )ex −∆x , (6.69)

and

ξ(wZ0 + vQ, T,∆) = proxg(.,Λ(T ),∆)(wZ0 + vQ, τ) :=

= argmin
z

{ 1

2τ
(ξ − wZ0 − vQ)2 + g(T, z)

}
=

= proxℓ(.,Λ(T ),∆)

(wZ0 + vQ

1 + ατ
,

τ

1 + ατ

)
=

=
w⋆Z0 + v⋆Q+ τ∆

1 + ατ
−W0

(τΛ(T )e τ∆+w⋆Z0+v⋆Q
1+ατ

1 + ατ

)
, (6.70)

with

Λ(t) = E∆,T,Z0,Q

[
∆Θ(t− T )

E∆′,T ′,Z′
0,Q

′

[
Θ(T ′ − T )eξ′⋆

]
]
. (6.71)

At the saddle point, the last equations above relates the inferred cumulative hazard rate Λ̂n

to the true one Λ0, through the identification Λ̂n ≈ Λ⋆.
As a consequence we can estimate the order parameters of the theory from the data, by

using the same reasoning as in the previous sections, i.e. by solving

ζ =
〈 τng̈

(
Xβ̂n, Λ̂n(T),∆

)

1 + τng̈Xβ̂n, Λ̂n(T),∆)

〉
(6.72)

ζv2n = τ 2n

〈{
ġ(Xβ̂n, Λ̂n(T),∆)

}2
〉

(6.73)

w2
n =

1

n

∥∥Xβ̂n + τnġ(Xβ̂n, Λ̂n(T),∆)
∥∥2

2
− v2n . (6.74)

Where the functions inside the empirical average operator are taken to act component-wise.
In [25], we proposed an iterative method that allows to solve the RS equations without

the need of knowing the (parameters of the) data generating process. The idea is to infer Λc

by the Breslow estimator

Λ̂c(t) =
n∑

k=1

(1−∆k)Θ(t− Tk)∑n
j=1 Θ(Tj − Tk)

, (6.75)

and Λ0 at fixed θ0 by solving

Λ̃(t, θ) =
n∑

i=1

∆i1[Ti < t]
∑n

j=1 1[Tj > Ti]EZ|Tj

[
eθZ

] . (6.76)

Then, always at fixed θ0, the Gaussian latent variables Q,Z0 used to compute the expecta-
tions in the RS equations are drawn independently as follows

Q|T = Q ∼ N (0, 1) (6.77)

Z0|T,∆ ∼
(
λ0(t) exp(θ0Z0)

)∆
λc(t)

1−∆e−Λ0(t) exp(θ0Z0)−Λc(t)

EZ0

[(
λ0(t) exp(θ0Z0)

)∆
λc(t)1−∆e−Λ0(t) exp(θ0Z0)−Λc(t)

] =

=
e∆θ0Z0−Λ0(t) exp(θ0Z0)

EZ0

[
e∆θ0Z0−Λ0(t) exp(θ0Z0)

] . (6.78)
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Originally we solved for all the order parameters, i.e. w, v, τ (with the approximation Λ̂n ≈ Λ
in the RS equations) while simultaneously enforcing the approximate constraint

w2 + v2(1− ζ) ≈ ∥Xβ̂n∥22/n , (6.79)

since

ζv2 = τ 2E∆,T,Z0,Q

[
ġ(ξ, T )2

]
= E∆,T,Z0,Q

[(
ξ − wZ0 − vQ

)2]
=

= E∆,T,Z0,Q

[
ξ2
]
− 2wE∆,T,Z0,Q

[
Z0ξ

]
− 2vE∆,T,Z0,Q

[
Qξ

]
+ w2 + v2 =

= E∆,T,Z0,Q

[
ξ2
]
+ 2v2ζ − w2 − v2 = E∆,T,Z0,Q

[
ξ2
]
− v2(1− 2ζ)− w2 , (6.80)

implies

E∆,T,Z0,Q

[
ξ2
]
= w2 + v2(1− ζ) . (6.81)

At convergence we have an estimate θn of θ0 and an estimate Λ̃ of Λ0. However, this procedure
is relatively slow, since we need to iterate the RS equations until convergence and at each step
we need to infer Λ0 at the updated value of θn. In this manuscript, we realize that solving all
the RS equations simultaneously by iterative mapping is not necessary. Since wn, vn, τn can
be inferred from the data only (as detailed in section 6.5), as shown convincingly in Figure
(6.6), we can easily compute

ξ|Z0, Q, T = proxg(.,Λ̂n(T ),∆)(wnZ0 + vnQ, τn) (6.82)

and directly compute all the RS observables (at fixed θ0). At this point we just need to
match the computed value with the observed value in order to infer θ0. For instance once w̃
is computed from

w̃(θ, ζ) =
θ0
ζ

n∑
i=1

EZ0,Q|Ti,∆i,θ

[
τ ġ

(
ξ, Ti

)
ġ0(θ0Z0, Ti)

]
, (6.83)

on a grid of values θ = (θ1, . . . , θl) for θ0, the best value is selected by matching to wn which
is measured as explained in the section 6.5 from the data, i.e.

θ̂n = argmin
θ∈θ

{ ∣∣wn − w̃(ζ, θ)
∣∣ } . (6.84)

We show the histogram based on m = 500 realizations of θ̂n for n = 500 in Figure (6.7)
for ζ = 0.3, 0.7. The data are generated from a Log-logistic proportional hazards model
Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0 and τ2 = 2. The Σ0 equal to
(6.33). We notice that as ζ increases so does the variance of the estimate, similarly as for
the estimates for the GLMs in Figure (6.4).
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(a) (b)

Figure 6.7: Cox regression. Histograms of m = 500 realization of the estimator θ̂n for
n = 500 defined in (6.84). In red the true value θ0 = 1.0. Left (a) ζ = 0.3 and right (b) ζ =
0.7. The value of the regularization parameter α is selected to minimize an approximation
of the Vervweij - Van Houwelingen cross validation loss (6.87). The data are generated
from a Log-logistic proportional hazards model Λ0(t) = log(1+ t2/2) with uniform censoring
between τ1 = 1.0 and τ2 = 2. The true covariance matrix Σ0 is equal to (6.33) and the true
associations β0 are sampled as in (6.34).

It is clear that the grid search is a slower (and far less elegant) solution compared to
the very simple algorithm proposed for GLMs. On the other hand we empirically observe
that using the same strategy as for the GLM does not work for the Cox model. We suspect
that this is due to some form of collinearity with the equations used to construct (6.76),
but this is a mere speculation. In any case we find that the algorithm proposed returns
an approximately de-bias estimator β̂

(d)
n and is much faster than the previously proposed

method. Furthermore the covariant regularization “cancels” the phase transition for the
existence of β̂n, hence the algorithm is more stable and can be applied for ζ < 1 as one can
observe in Figures (6.8, 6.9).
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(a) (b)

Figure 6.8: Cox regression. QQ plots of two realization of the residuals of the de-biased
estimator in black, i.e. R̂

(d)
j s defined in (6.59). In red the identity line. Left (a) ζ = 0.3

and right (b) ζ = 0.7, in both cases θ0 = 1.0 and n = 1000. The value of the regularization
parameter α is selected to minimize an approximation of the Vervweij - Van Houwelingen
cross validation loss (6.87). The data are generated from a Log-logistic proportional hazards
model Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0 and τ2 = 2. The true
covariance matrix Σ0 is equal to (6.33) and the true associations β0 are sampled as in (6.34).

(a) (b)

Figure 6.9: Cox regression. Scatter plots of two realizations of the inferred cumulative
hazard rate for the Breslow estimator Λ̂n in (6.63) as black staircase line, and for the de-
biased estimator Λ̃n as blue staircase line. In red the identity line. Left (a) ζ = 0.3 and right
(b) ζ = 0.7, in both cases θ0 = 1.0 and n = 1000. The value of the regularization parameter
α is selected to minimize an approximation (6.87) of the Vervweij - Van Houwelingen cross
validation loss (6.86). The data are generated from a Log-logistic proportional hazards
model Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0 and τ2 = 2. The true
covariance matrix Σ0 is equal to (6.33) and the true associations β0 are sampled as in (6.34).

In the discussion above, there remains an ambiguity over which value of α should be
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chosen to compute the debiased estimator for the Cox model. Leave one out cross validation
as explained for GLMs is not applicable in this case. There exists however a generalization
specifically devised for the Cox partial likelihood [26]. Defining the leave one out partial
likelihood

PL(i)(β) :=
n∑

k=1̸=i

∆k

{
log

( n∑
j=1̸=i

Θ(Tj − Tk)e
X′

jβ
)
−X′

kβ
}

(6.85)

and denoting β̂(i)(α) the minimizer of PL(i)(β) plus the covariant regularization (6.7), the
(rescaled) Vervweij - Van Houwelingen cross validation loss can be defined as

cvloss(α) :=
1

n

n∑
i=1

PLn

(
β̂(i)(α)

)
− PL(i)

(
β̂(i)(α)

)
. (6.86)

This requires re-fitting the Cox model n times (each time for several values of α), as for the
leave one out cross validation. For small ζ this operation can be nowadays done quickly by
parallelization, however as ζ increases this strategy is bounded to be become slower. For
this reason we propose to minimize approximate metric to select α. This is constructed in a
similar fashion as to what is done in section 6.4,

cvlossapprox(α) :=
1

n

n∑
i=1

Λ̂n(Ti)e
ξlooi −∆i(ξ

loo
i + log λ̂n(Ti)) (6.87)

where

ξlooi := X′
iβ̂n + τnΛ̂n(Ti)e

X′
iβ̂n , (6.88)

and

λ̂n(Ti) := Λ̂n(Ti)− Λ̂n(Ti−1) i = 2, . . . , n, Λ̂(T1) = 0 (6.89)

is the Breslow estimate of the baseline hazard rate [26]. The main advantage of the approx-
imate cross validation loss (6.87) over its exact counterpart (6.86) is that the former does
not require any resampling and can be calculated directly during the construction of the
solution path in an easy manner. Numerical experiments show that this approximation is
quite satisfactory, see Figure (6.10), at least in the setting studied here.
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(a) (b)

Figure 6.10: Cox regression. Observed values of the Vervweij - Van Houwelingen cross
validation loss (red line with crosses as markers) against the approximation (6.87) inspired
by the RS equations (black line with dot as markers). Left (a) ζ = 0.3, Right (b) ζ = 0.7. In
both cases θ0 = 1.0 and n = 400. The data are generated from a Log-logistic proportional
hazards model Λ0(t) = log(1 + t2/2) with uniform censoring between τ1 = 1.0 and τ2 = 2.
The true associations β0 are sampled as in (6.34) and Σ0 is set according to (6.33). The
constraint θ0 := ∥Σ1/2

0 β0∥2 = 1.0 is enforced by rescaling β0.

6.10 Conclusion

Thanks to the insight provided by the RS equations and the recent advancement in [9], the
RS order parameters w, v, τ can be estimated as wn, vn, τn computed solely from the data,
without the need of solving the RS equations. This is possible for the case of MAP estimation
with a regularization term like the covariant prior [12] even for covariates that are correlated
with an unknown Σ0 ≻ 0. Importantly, the use of the covariant prior allows to compute
all the necessary unknowns without the knowledge of Σ0, which is needed when adopting
lasso or ridge [9, 8]. This is an important development for high dimensional statistics in the
proportional regime, when ζ < 1, since we no more require knowledge of the parameters of
the data generating process. We showed that the simple equation

E
[
Z0µ(θnZ0)

]
=

1

n
T′(Xβ̂n + τ ġ(Xβ̂n,T)

)
/wn (6.90)

where µ(θ0) = E[T |θ0Z0], can be effectively used to estimate θ0 := ∥Σ1/2
0 β0∥2 from the data,

by computing θn for Generalized Linear Models. For the Cox model, we propose and test
a new, faster, strategy to estimate θ, building on our previous study in [25]. Besides being
a simpler strategy , the improvement is in the running time as we do not need to iterate
the RS equations to fixed point, but we only need to solve a single scalar equation. This
automatically gives also acces to a de-biased Breslow estimator as Λ̃(., θn), see the definition
(6.76). Once an estimate θn of θ0 is obtained, we compute the de-biased estimator

β̂(d)
n := β̂nθn/wn . (6.91)
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The replica theory gives the representation

β̂n ≈ w⋆

θ0
β0 +

1
√
p
v⋆Σ

−1/2
0 Z , Z ∼ N (0p, Ip) (6.92)

and because of this, we expect that our debiased estimator should satisfy

β̂(d)
n − β0 ≈

1
√
p
v⋆Σ

−1/2
0 Z , (6.93)

which we showed to be solid, through numerical experiments. In conclusion we have shown
that not only for GLMs, but also for the Cox model, the covariant prior is a regularization
that allows practical de-biasing, without requiring knowledge of Σ0 when ζ < 1. For the
regime where p > n, we still envisage using (6.90) to complement the estimation of the RS
order parameters from the data when different regularizations others than the one studied
here are used. The problematic in this case is that the knowledge of Σ0 seems to be required
to estimate the RS order parameters. This will be subject of future investigations.

Data availability statement The python scripts for generating the data, solving the RS
equations, fitting the models and computing the RS order parameters from the data can be
found at https://github.com/EmanueleMassa/Practical_debiasing .
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6.11 Appendix

6.11.1 Replica Calculation for the Generalized Linear Model

Notice that

β̂n(X,T) := argmax
β

{ n∑
i=1

g(Xiβ, Ti)
}
=

d
= Σ

−1/2
0 β̂n(X̃, T̃) , (6.94)

with
T̃i|X̃′

iβ̃0 = f0(.|X̃′
iβ̃0) , X̃i ∼ N (0, Ip/p) , (6.95)

and β̃0 := Σ
1/2
0 β0

√
p. So, in order to get rid of Σ0 in the derivation, we take the additional

change of variables
β̃ = Σ

1/2
0 β

√
p , (6.96)

where the scaling in p is to obtain neater mathematical formulae. We emphasize that the
calculation might be carried out without the latter, but at the price of introducing at hoc
constants, see [25]. It is well known that the information content of inference is quantified
by the free energy

f(γ) := − lim
n→∞

1

nγ
ED

[
logZn(γ|D)

]
, Zn(γ|D) :=

∫
e−γHn(β̃|D)dβ̃ (6.97)

where the data-set is indicated with D := {(T̃1, X̃1), . . . , (T̃n, X̃n)}, and the Hamiltonian of
the problem is defined as

Hn(β̃|D) = g(X̃′
iβ̃, T̃i) (6.98)

To compute the average of the logarithm we use the replica trick

f(γ) = lim
n→∞

lim
r→0

f (r)
n (γ), f (r)

n (γ) := − 1

nr
logED

[
Zr

n(γ|D)
]
. (6.99)

We refer to f
(r)
n (γ) as the replicated free energy. We now compute this quantity.
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The replicated free energy

For integer r we then have

Zr
n(γ|D) =

∫
e−γ

∑r
α=1 Hn(β̃α|D)

r∏
α=1

dβ̃α . (6.100)

Taking the expectation with respect to the data-set

ED

[
Zr

n(γ|D)
]
=

∫ (
EX̃,T

[
e−γ

∑r
α=1 g(X̃

′β̃α,T )
])n

r∏
α=1

dβ̃α . (6.101)

We notice that the expression above depends on β̃α only via the linear predictors X̃′β̃α.
Since X̃ ∼ N (0p, Ip/p), we have that

Y = (Y0, Y1, . . . , Yr) ∼ N
(
0,C({β̃α})

)
, Yα := X̃′β̃α (6.102)

with

C({β̃α})
)
=

(
θ20 M′

M R

)
(6.103)

where

θ20 = ∥β̃0∥2/p (6.104)
M = (Mα)

r
α=1, Mα := β̃′

0β̃α/p (6.105)
R = (Rα,ρ)

r
α,ρ=1, Rα,ρ := β̃′

αβ̃ρ/p = Rρ,α . (6.106)

It is convenient to introduce

φ
(
γ,C

)
= logEC

T,Y

[
e−γ

∑r
α=1 g(Yα,T )

]
(6.107)

ϕ(γ, Ĉ) =
1

p
log

∫
e−ipTr(ĈC({β̃α}))

r∏
α=1

dβ̃α . (6.108)

Putting everything together, we have obtained a so-called “saddle point” integral

ED

[
Zr

n(γ,D)
]
=

∫
e−nψ

(
γ,Ĉ,C

)
dCdĈ (6.109)

where
−ψ

(
γ, Ĉ,C

)
= φ

(
γ,C

)
+ iζ

1

r
Tr(ĈC) + ζϕ(γ, Ĉ) .

Replica symmetric ansatze

The idea is now to evaluate the integral via the saddle point method by interchanging the
limits n → ∞ and r → 0, as customary in these calculations [13]. With a modest amount
of foresight we take the following change of variables

iĈ =
1

2
D (6.110)

191



which is expected from previous similar calculations and aids the book-keeping. In principle
we could now derive the saddle point equations for the elements of the matrices C nor D
and then take the limit r → 0. In practice we will assume the replica symmetric ansatze

C =




θ20 m . . . . . . m
m ρ q . . . q
... q ρ

. . . ...
...

... . . . . . . q
m q . . . q ρ




D =




0 m̂ . . . . . . m̂
m̂ ρ̂ −q̂ . . . −q̂
... −q̂ ρ̂

. . . ...
...

... . . . . . . −q̂
m̂ −q̂ . . . −q̂ ρ̂




(6.111)

directly from now on. Note that this directly implies that

C−1 =




µ̃r m̃r . . . . . . m̃r

m̃r ρ̃r q̃r . . . q̃r
... q̃r ρ̃r

. . . ...
...

... . . . . . . q̃r
m̃r q̃r . . . q̃v ρ̃r




. (6.112)

After some algebra one obtains that

µ̃r =
ρ+ q(r − 1)

θ20(ρ+ q(r − 1))− rm2
(6.113)

m̃r =
m

rm2 − θ20(ρ+ q(r − 1))
(6.114)

q̃r =
1

ρ− q

m2 − qθ20
θ20(ρ+ q(r − 1))− rm2

(6.115)

ρ̃r =
1

ρ− q


1 +

m2 − qθ20
θ20(ρ+ q(r − 1))− rm2


. (6.116)

Simplification of ϕ within RS ansatz

Let’s remind the definition of the potential ϕ

ϕ(γ, Ĉ) =
1

p
log


e−

1
2
pTr(DC({β̃α}))

r
α=1

dβ̃α . (6.117)

Using the Replica Symmetric ansatz we get

1

2
pTr(DC({β̃α})) =

r
ρ=1

�
m̂β̃′

0β̃ρ +
1

2
ρ̂β̃′

ρβ̃ρ


−

r
ρ,α̸=ρ

q̂β̃′
ρβ̃α =

=
r

ρ=1

�
m̂β̃′

0β̃ρ +
1

2
(ρ̂+ q̂)∥β̃ρ∥2


− 1

2
q̂


r
ρ=1

β̃ρ

2
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Then via Gaussian linearization, we get

ϕ
(r)
RS(γ, m̂, q̂, ρ̂) =

=
1

p
logEZ

[(∫
e−
{

1
2
(ρ̂+q̂)∥x∥2−(m̂β̃0+

√
q̂/pZ)′x

}
dx

)r]

=
1

p

p∑
µ=1

logEZ

[(∫
e−
{

1
2
(ρ̂+q̂)y2−(m̂e′µβ̃0+

√
q̂/pZ)y

}
dy

)r]
+ const =

= r
m̂2θ20 + q̂

ρ̂+ q̂
+

r

2
log(ρ̂+ q̂) . (6.118)

Simplification of φ within RS ansatz

Inserting the replica symmetric ansatze, we obtain

f(y0, y1, . . . , yr) ∝

exp
{
−
(1
2
µ̃y20 +

r∑
ρ=1

(
m̃y0yρ +

1

2
(ρ̃− q̃)y2ρ

)
+

1

2
q̃
( r∑

ρ=1

yρ
)2)} (6.119)

and via Gaussian linearization

f(y0, y1, . . . , yr) ∝

EQ

[
exp

{
− 1

2
µ̃y20 −

r∑
ρ=1

[1
2
(ρ̃− q̃)y2ρ +

(
m̃y0 + i

√
q̃Q

)
yρ
]}]

, (6.120)

with Q ∼ N (0, 1). Upon setting
√
µ̃y0 = z0, we obtain

φ
(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r) =

log

ET,Z0,Q

[(∫
e−

1
2
(ρ̃−q̃)x2−

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x−γg(x,T ) dx√

2π

)r
]

ET,Z0,Q

[(∫
e−

1
2
(ρ̃−q̃)x2−

(
m̃/

√
µ̃Z0+i

√
q̃Q
)
x

)r
]

with Z0 ∼ N (0, 1), Z0 ⊥ Q.

Replica Symmetric free energy

Let us stop and recall what we have achieved so far. By assuming the RS ansatz we have
obtained

γf(γ) = − lim
n→∞

1

n
logED

[
Zr

n(γ,D)
]
= extr

m,q,ρ,µ̂,m̂,q̂,ρ̂
ψ̃

(r)
RS(m, q, ρ, m̂, q̂, ρ̂) (6.121)

with

−ψ
(r)
RS(. . . ) = rζ(mm̂+ (ρρ̂− qq̂) + rqq̂

)
+

ζϕ
(r)
RS(γ, m̂, q̂, ρ̂) + φ

(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r) . (6.122)
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The limit r → 0

Taking the limit r → 0, we get the replica symmetric free energy

fRS(γ) = extr
m,q,ρ,m̂,q̂,ρ̂

f̃RS(γ, µ,m, q, ρ, m̂, q̂, ρ̂) (6.123)

with

f̃RS(γ,m, q, ρ, m̂, q̂, ρ̂) := lim
r→0

1

γr
ψ

(r)
RS(γ,m, q, ρ, m̂, q̂, ρ̂)

ζ(mm̂+ (ρρ̂− qq̂)
)
+ ζϕ̃RS(γ, m̂, q̂, ρ̂) + φ̃RS(γ,m, q, ρ) .

Above, we introduced the following definitions

ϕ̃RS(γ, m̂, q̂, ρ̂) = lim
r→0

1

γr
ϕ
(r)
RS(γ, m̂, q̂, ρ̂)

=
1

2γ

m̂2θ20 + q̂

(ρ̂+ q̂)
+

1

2γ
log(ρ̂+ q̂)

φ̃RS(γ,m, q, ρ) = lim
r→0

1

γr
φ
(r)
RS(γ, µ̃r, m̃r, q̃r, ρ̃r) =

= ET,Z0,Q

[
log

∫
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
−γg(x,T )

dx

∫
e
− 1

ρ−q

{
1
2
x2−

(
(m/θ0)Z0+

√
q−(m/θ0)2Q

)
x

}
dx

]

and we have used that

µ̃ = lim
r→0

µ̃r = 1/θ20 (6.124)

m̃ = lim
r→0

m̃r = − m

θ20(ρ− q)
(6.125)

q̃ = lim
r→0

q̃r =
1

ρ− q

m2 − qθ20
θ20(ρ− q)

(6.126)

ρ̃− q̃ = lim
r→0

ρ̃r − q̃r =
1

ρ− q
. (6.127)

Assuming the following scaling

τ = γ/(ρ̃− q̃) = γ(ρ− q) (6.128)

we obtain

φ̃RS(γ,m, q, ρ) =

ET,Z0,Q

[
1

γ
log

∫
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ+g
(
x,T

)}
dx

∫
e
−γ

{
1
2

(
x−((m/θ0)Z0+

√
q−(m/θ0)2Q)

)2

/τ

}
dx

]
.

Similarly, taking the additional rescaling

1/τ̂ = (ρ̂+ q̂)/γ, m̂ = γm̂, q̂ = γ2q̂ , (6.129)

we get

ϕ̃RS(γ, m̂, q̂, τ̂) =
1

2τ̂

(
m̂2θ20 + q̂

)
+

1

2γ
log(γτ̂) . (6.130)
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The limit γ → ∞

Taking the limit γ → ∞ of the disorder averaged free energy, we obtain the (disorder
averaged) internal energy per particle as

lim
n→∞

ED

[ 1
n
Hn(β̃|D)

]
= extr

m,q,τ,m̂,q̂,τ̂
F(m, q, τ, m̂, q̂, τ̂)

F(m, q, τ, m̂, q̂, τ̂) = lim
γ→∞

f̃RS(γ,m, q, τ, m̂, q̂, τ̂) . (6.131)

Via Laplace integration we see that

− lim
γ→∞

1

γ
log

∫
e
−γ

{
1
2α

∥z−x∥2+b(z)

}
dz = Mb(.)(x, α) (6.132)

where Mb(.) is the Moureau envelope of a convex function b : R → R, which is defined as

Mb(.)(x, α) = min
z

{ 1

2α
∥z− x∥2 + b(z)

}
. (6.133)

Using the “Laplace-Moureau” identity above (6.132), we obtain

lim
γ→∞

φ̃RS(γ,m, q, ρ) = −1

τ
ET,Z0,Q

[
Mg(.,T )

(
m/θ0Z0 +

√
q − (m/θ0)2Q, τ

)]
.

Furthermore
lim
γ→∞

ϕ̃RS(γ, m̂, q̂, ρ̂) =
1

2τ̂

(
m̂2θ20 + q̂

)

We have obtained the following

F(m, q, τ, m̂, q̂, τ̂) = −ζ(mm̂+
1

2
τ̂ q − 1

2
τ q̂

)
− 1

2τ̂
ζ
(
m̂2θ20 + q̂

)
+

+ET,Z0,Q

[
Mg(.,T )

(
m/θ0Z0 +

√
q − (m/θ0)2Q, τ

)]
+ const

It is now easy to see that we can easily “extremize” over the “hat” variables. Taking derivatives
we get

∂

∂m̂
F = ζ

(
m+ m̂θ20/τ̂

)
= 0 → m̂ = −mτ̂/θ20 (6.134)

∂

∂q̂
F =

ζ

2

(
τ − 1/τ̂

)
= 0 → τ̂ = 1/τ (6.135)

∂

∂τ̂
F =

ζ

2

(
q − (m̂2θ20 − q̂)/τ̂ 2

)
= 0 → q̂ =

(
q −m2/θ20

)
/τ 2 . (6.136)

Substituting these identities into F gives another function which, with abuse of notation,
we keep referring to as F

F(m, q, τ) = ET,Z0,Q

[
Mg(.,T )

(
m/θ0Z0 +

√
q − (m/θ0)2Q, τ

)]
+

− ζ

2τ

(
q −m2/θ20

)
+ const (6.137)

At this point it is convenient to take the (invertible) change of variables

w = m/θ0, v = q −m2/θ20 (6.138)

so that, again with abuse of notation, we obtain

F(w, v, τ) = ET,Z0,Q

[
Mg(.,T )

(
wZ0 + vQ, τ

)]
− ζ

2τ
v2 + const . (6.139)
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Replica Symmetric equations

In view of the next steps we remember some known fact about the Moureau envelop that
will come in handy to compute the derivatives

∂

∂x
Mg(.,T )(x, τ) =

1

τ

(
x− proxτg(.,T )(x)

)
= ġ(proxτg(.,T )(x), T ) (6.140)

∂

∂τ
Mg(.,T )(x, τ) = − 1

2τ 2
(
proxτg(.,T )(x)− x

)2
=

− 1

2τ 2
{
ġ(proxτg(.,T )(x), T )

}2
. (6.141)

Taking derivatives with respect to v, we get

∂

∂v
F = −ζv/τ + ET,Z0,Q

[
Q
(
wZ0 + vQ− proxg(.,T )(wZ0 + vQ, τ)

)]
/τ

= (1− ζ)v/τ − ET,Z0,Q

[
prox′g(.,T )(wZ0 + vQ, τ)

]
v/τ = 0 (6.142)

so
1− ζ = ET,Z0,Q

[
prox′τg(.,T )(wZ0 + vQ)

]
. (6.143)

Taking derivatives with respect to w, we get

∂

∂w
F = θ0ET,Z0,Q

[
Z0

(
wZ0 + vQ− proxg(.,T )(wZ0 + vQ, τ)

)]
/τ = 0 (6.144)

which implies
w = ET,Z0,Q

[
Z0proxg(.,T )(wZ0 + vQ, τ)

]
. (6.145)

Finally derivation with respect to τ returns

∂

∂τ
F =

1

2
ζv2/τ 2 − ET,Z0,Q

[(
proxτg(.,T )(kθ0Z0 + vQ)− wZ0 + vQ

)2]
= 0 (6.146)

which gives

ζv2 = ET,Z0,Q

[(
proxτg(.,T )(kθ0Z0 + vQ)− wZ0 + vQ

)2]
. (6.147)

To sum up, introducing the shorthand

ξ = proxτg(.,T )

(
wZ0 + vQ

)
(6.148)

which satisfies by definition

ξ = wZ0 + vQ− τ ġ(ξ, T ) , (6.149)

we have obtained the following RS equations

ζv2 = ET,Z0,Q

[(
ġ(ξ, T )

)2]
(6.150)

1− ζ = ET,Z0,Q

[ 1

1 + τ g̈(ξ, T )

]
(6.151)

w = ET,Z0,Q

[
Z0ξ

]
. (6.152)
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The last two equations can be simplified further to obtain the equations that appear in the
main text

ζv2 = ET,Z0,Q

[(
ġ(ξ, T )

)2]
(6.153)

ζ = ET,Z0,Q

[ τ g̈(ξ, T )

1 + τ g̈(ξ, T )

]
(6.154)

ζw = θ0ET,Z0,Q

[
ġ(ξ, T )ġ0(θ0Z0, T )

]
. (6.155)

Notice that the Replica Method attributes the following interpretation to the scalars w⋆, v⋆
that solve the above equations:

w⋆ ≈
1
√
p

β̃′
0β̂n(X̃, T̃)

∥β̃0∥2
d
=

1
√
p

β′
0Σ0β̂n(X,T)

∥Σ1/2
0 β0∥2

(6.156)

v2⋆ ≈ 1

p

(
∥β̂n(X̃, T̃)∥2 − {β̃′

0β̂n(X̃, T̃)}2

∥β̃0∥22

)
(6.157)

d
= ∥β̂n(X,T)∥22 −

(β′
0Σ0β̂n(X,T))2

∥Σ1/2
0 β0∥22

. (6.158)

This can be made fully rigorous in for GLMs, via the Convex Gaussian Min Max Theorem
[17, 18, 16]. We briefly explain how in the next section, referring to the relevant articles for
the technical details.

6.11.2 Proof sketch of the replica results for GLMs via the CGMT

Here we consider uncorrelated covariates for convenience, i.e. when Xi ∼ N (0p, Ip/p),
the result can be mapped back to the correlated case as done for the Replica Calculation.
Introducing Lagrange multipliers ϕ, one can equivalently re-write the minimization problem
as a saddle point problem as follows

Ψn(X,T) = min
β,ξ

sup
ϕ

{〈
g(ξ,T)

〉
− ϕ′(ξ −Xβ

)}
, (6.159)

where
〈
g(ξ,T)

〉
:=

1

n

n∑
i=1

g(ξi, Ti) , (6.160)

for notational convenience. Notice that Xβ = XPβ0β + XP⊥β0β
d
= Z0β∥ + X̃β⊥, where

d
= indicates equality in distribution with β∥ :=

β′
0β

∥β0∥ , β⊥ := P⊥β0β = (I − β0β
′
0/∥β0∥2)β,

Z0 := Xβ0/∥β0∥ ∼ N (0, In) and X⊥ := XPβ0 (X⊥)i,j ∼ N (0, 1) and X⊥ ⊥ T. Using this
fact, we have reduced the original problem into the form

Ψn(X,T)
d
= min

β,ξ
sup
ϕ

{〈
g(ξ,T)

〉
− ϕ′(ξ − Z0β∥ −X⊥β⊥

)}
(6.161)

that can be attacked with the Convex Gaussian Min-Max theorem (CGMT), first introduced
in [17] as a generalization of Gordon’s Gaussian comparison inequalities [27]. The CGMT is
reported without proof below for the reader’s convenience. We refer to [17, 18] for a detailed
proof.
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Theorem 4 (Convex Gaussian Min Max Theorem). Let Sy ⊂ Rn, Sz ⊂ Rp be compact and
convex sets, ψ be continuous and convex-concave on Sz×Sy, and X ∈ Rn×p,Q ∈ Rn,G ∈ Rp

all have entries iid standard normal

Φ(X) := min
y∈Sy

max
z∈Sz

{
y′Xz+ ψ(z,y)

}

ϕ(G,Q) := min
y∈Sy

max
z∈Sz

{
∥y∥G′z+ ∥z∥Q′y + ψ(z,y)

}

Then
∀µ ∈ R, t ∈ R+, P

[∣∣∣Φ(X)− µ
∣∣∣ > t

]
≤ 2P

[∣∣∣Φ(G,Q)− µ
∣∣∣ ≥ t

]
. (6.162)

Furthermore, let S ⊂ Sy an open subset and Sc := Sy \ S. Denote ϕSc(G,Q) the optimal
cost of the surrogate process, when the minimization is now constrained over Sc. If there
exist constants ϕ̄ < ϕ̄Sc, such that ϕ(G,Q)

P→ ϕ̄, ϕSc(G,Q)
P→ ϕ̄Sc, then, denoting with ŷ

the value of y at the saddle point, we have

lim
n→∞

P
[
ŷ ∈ S

]
= 1 . (6.163)

Theorem (4) above tells us that if one is able to prove that ϕ converges in probability
to some deterministic value, then the same is true for Φ. The CGMT applies to min-max
problems over compact, convex sets. Hence we “artificially” restrict the saddle point problem
(6.161) onto compact, convex sets. Intuition suggests that if a saddle point exists and the
set is sufficiently large, then there is not going to be any difference between the bounded and
unbounded problem. Hence from now on the min over β, ξ and the max over ϕ operations
are understood over convex, compact sets (so that they actually exist). Following Theorem
(4), we consider an auxiliary optimization problem

Ψ̃n(Q,G,T) = (6.164)

min
β,ξ

max
ϕ

{〈
g(ξ,T)

〉
− ϕ′(ξ − β∥Z0 − ∥β⊥∥Q

)
+ β′

⊥G∥ϕ∥
}

with G ∼ N (0, I(p−1)) and Q ∼ N (0, In), G ⊥ Q and G,Q ⊥ T,Z0. We can optimize over
the direction of ϕ at fixed length ∥ϕ∥ = ϕ

Ψ̃n(Q,G,T) = (6.165)

min
β,ξ

max
ϕ≥0

{〈
g(ξ,T)

〉
+ ϕ

∥∥ξ − β∥Z0 − ∥β⊥∥Q
∥∥+ β′

⊥Gϕ

}
.

The problem above depends on β⊥ via ∥β⊥∥ and cos θ, with θ the angle between β⊥ and G.
Hence it is not guaranteed to be convex-concave (as cos is not convex on the whole interval
[0, 2π]), but it has been shown in [18] (page 22 point 6) that (6.165) can be used in place of
(6.164) in the CGMT as n → ∞, i.e. the min-max order can be “swapped” asymptotically.
At this points, the minimization over the direction of β⊥ at fixed ∥β⊥∥ = v yields

Ψ̃n(Q,G,T) = (6.166)

min
w,v

max
ϕ

min
ξ

{〈
g(ξ,T)

〉
+ ϕ

∥∥ξ − wZ0 − vQ
∥∥− vϕ∥G∥

}
(6.167)

where we also defined w := β∥. Following [18], we use the variational representation ∥y∥ =

inf
α≥0

{
1
2

(
α∥y∥2 + 1

α

)}
for the norm. Then

Ψ̃n(Q,G,T) = min
w,v

max
ϕ

inf
ξ,α

{〈
g(ξ,T) +

1

2α

∥∥ξ − wZ0 − vQ
∥∥2
}

. (6.168)
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Taking the re-scaling α →
√
nα, ϕ → ϕ/

√
n we recognize the (averaged) Moreau envelope

(as defined in the main previous section)

1

n

n∑
i=1

Mg(.,Ti)

(
wZ0,i + vQi, α/ϕ

)
=

1

n
min
ξ

{ n∑
i=1

g(ξi, Ti) +
ϕ

2α

n∑
i=1

(ξ − wZ0,i − vQi

)2}
. (6.169)

Hence, we are finally left with the saddle point problem

Ψ̃n(Q,G,T) = min
w,v

max
ϕ

inf
α

Ln(w, v, ϕ, α) (6.170)

where

Ln(w, v, ϕ, α) =

1

n

n∑
i=1

Mg(.,Ti)

(
wZ0,i + vQi, α/ϕ

)
+ ϕ

(
α/2− v∥G∥/

√
n
)
. (6.171)

Since ∥G∥ follows a chi distribution with p− 1 degrees of freedom

E
[
∥G∥

]
=

√
2

Γ(p
2
)

Γ(p−1
2
)
=

√
p− 2 + op(1), (6.172)

V
[
∥G∥2

]
= p− 1− E

[
∥G∥

]2
= 1 + op(1), (6.173)

hence we conclude ∥G∥/
√
n

P→
√
ζ ( e.g. via Chebishev inequality). Furthermore, provided

VT,Z0,Q

[
Mg(.,T )

(
wZ0 + vQ, α/ϕ

)]
< ∞ , (6.174)

we have that

1

n

n∑
i=1

Mg(.,Ti)

(
wZ0,i + vQi, α/ϕ

) P→ (6.175)

E
[
Mg(.,T )

(
wZ0 + vQ, α/ϕ

)]
, (6.176)

by the weak law of large numbers . Hence

Ln(w, v, ϕ, α)
P→ L(w, v, ϕ, α) (6.177)

pointwise for 0 ≤ w, v ≤ Cβ, ϕ ≥ 0 and α > 0, where

L(w, v, ϕ, α) := ET,Z0,Q

[
Mg(.,T )

(
wZ0 + vQ, α/ϕ

)]
+ ϕ

(
α/2− v

√
ζ
)
. (6.178)

The pointwise convergence in probability above, together with the fact that the functions
Ln is concave in ϕ and convex in w, v, ξ, α imply, see [18, 16], that

min
w,v

max
ϕ>0

inf
α>0

Ln(w, v, ϕ, α)
P→ min

w,v
max
ϕ>0

inf
α>0

L(w, v, ϕ, α) . (6.179)
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By the CGMT, we then have that

min
β

{〈
g(Xβ,T)

〉} P→ min
w,v

max
ϕ>0

min
α>0

L(w, v, ϕ, α) . (6.180)

The convergence above can be translated into the statements

ŵn :=
β′
0β̂n

∥β0∥
P→ w⋆ (6.181)

v̂n :=
∥∥P⊥β0β̂n

∥∥ =
∥∥∥
(
I − β0β

′
0

∥β0∥2
)
β̂n

∥∥∥ P→ v⋆ . (6.182)

via Corollary 6.163.
In the next section we show the validity of the RS equations and the match with the

optimality conditions of (6.178).

6.11.3 Replica symmetric equations

The optimality conditions can be obtained by differentiation of L.

Proposition 13 (Derivatives of the Expected Moreau envelope). If

E
[∣∣∣ ∂
∂α

Mg(.,T )(wZ0 + vQ, α/ϕ)
∣∣∣
]
< ∞ (6.183)

then, defining
ξ := proxg(.,T )

(
wZ0 + vQ, α/ϕ) , (6.184)

we have

∂

∂w
ET,Z0,Q

[
Mg(.,T )(wZ0 + vQ, α/ϕ)

]
= ET,Z0,Q

[
ġ(ξ, T )Z0

]

∂

∂v
ET,Z0,Q

[
Mg(.,T )(wZ0 + vQ, α/ϕ)

]
= ET,Z0,Q

[
ġ(ξ, T )Q

]

∂

∂α
ET,Z0,Q

[
Mg(.,T )(wZ0 + vQ, α/ϕ)

]
= − 1

2ϕ
ET,Z0,Q

[{
ġ(ξ, T )

}2
]
.

Proof. Since

∂

∂x
Mg(.,T )(x, τ) =

1

τ

(
x− proxg(.,T )(x, τ)

)
= ġ

(
proxg(.,T )(x, τ), T

)
(6.185)

∂

∂τ
Mg(.,T )(x, τ) = − 1

2τ 2
(
x− proxg(.,T )(x, τ)

)2
=

−1

2

{
ġ
(
proxg(.,T )(x, τ), T

)}2

, (6.186)

we have

∂

∂w
Mg(.,T )(wZ0 + vQ, α/ϕ) = ġ(ξ, T )Z0 (6.187)

∂

∂v
Mg(.,T )(wZ0 + vQ, α/ϕ) = ġ(ξ, T )Q (6.188)

∂

∂α
Mg(.,T )(wZ0 + vQ, α/ϕ) = − 1

2ϕ

{
ġ(ξ, T )

}2
. (6.189)
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Notice that

E
[∣∣∣ ∂

∂w
Mg(.,T )(wZ0 + vQ, α/ϕ)

∣∣∣
]
≤ E

[{
ġ(ξ, T )

}2
]
=

= 2ϕE
[∣∣∣ ∂
∂α

Mg(.,T )(wZ0 + vQ, α/ϕ)
∣∣∣
]
. (6.190)

Hence, if

E
[∣∣∣ ∂
∂α

Mg(.,T )(wZ0 + vQ, α/ϕ)
∣∣∣
]
< ∞ (6.191)

all the first derivatives are integrable and via the Dominated Convergence theorem we have
shown that expectation and derivatives can be interchanged.

Taking derivatives of (6.178), and using integration by parts to simplify the expressions,
we get

ϕ2 = ET,Z0,Q

[{
ġ(ξ, T )

}2
]

(6.192)

wζ =
α

ϕ
θ0ET,Z0,Q

[
ġ(ξ, T )ġ0(θ0, T )

]
(6.193)

ϕ
√

ζ = vET,Z0,Q

[ g̈(ξ, T )

1 + α
ϕ
g̈(ξ, T )

]
(6.194)

α = v
√

ζ . (6.195)

Taking α/ϕ = τ , we obtain the RS equations

v2ζ = τ 2ET,Z0,Q

[{
ġ(ξ, T )

}2
]

(6.196)

wζ = τθ0ET,Z0,Q

[
ġ(ξ, T )ġ0(θ0, T )

]
(6.197)

ζ = ET,Z0,Q

[ τ g̈(ξ, T )

1 + τ g̈(ξ, T )

]
(6.198)

τϕ = v
√
ζ . (6.199)
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Chapter 7

Conclusion and outlook

The main aim of this thesis was to extend the theoretical framework of previous studies
on the subject of Survival Analysis with high dimensional data in the proportional regime,
where estimators are known to be inconsistent, and eventually generate new methodology
to improve inference and/ or prediction.

Asymptotic theory for the Cox model through the lens of statistical physics The
first achievement of this thesis is the extension of the asymptotic theory for the Cox regression
model in the proportional regime [7, 27, 8], alias “theory of overfitting”, by : i) allowing
for censored observations, ii) avoiding the use of the variational approximation to solve
the Replica Symmetric equations of the theory, iii) allowing for an arbitrary regularization
(not only ridge as done in [27, 8]) and iv) showing that, at least in some cases, all the
parameters of the theory can be measured, and the theory can be used in practice (this was
not the case in [7, 27, 8] which assumed the parameters of the data generating process to
be known). These points have been achieved in different stages of my studies. In chapter 3,
in collaboration with the co-authors, we introduced a slightly different analytical approach
that inspired an efficient strategy to solve the Replica Symmetric equations that arise from
the asymptotic theory of Cox regression. Solving these equations requires the knowledge of
the data generating process, which is not available in applications with real data (where we
actually want to estimate the data generating model). Thus, we proposed, and numerically
tested, a self-consistent algorithm that approximates the data generating process in order to
solve the RS equations starting from the data. We concluded that the proposed estimator
is effectively unbiased. This approach has the drawback of being very slow. An improved
version of this idea can be found in chapter 6. There we showed that, when ζ < 1 and the
covariant regularization (see chapter 2) is used, all the RS order parameters of the theory
can be estimated from the data directly, i.e. without the need of solving the RS equations of
the theory. We stress that previous papers already suggested [30, 3] strategies to estimate
the RS order parameters solely from the data. Our original contribution here is to propose
a much simpler numerical strategy that can be used to estimate the signal strength directly
from the data, by solving a single scalar equation. Chapter 5 dealt with the asymptotic
theory of regularized Cox regression, with an arbitrary separable regularization. In order to
carry out the replica derivation neatly, we require the covariates to be uncorrelated. This
is a highly ideal, but standard assumption in several asymptotic studies in the proportional
regime [26, 29, 10]. Under these hypotheses, we introduce a variant of the Approximate
Message Passing algorithm adapted to the Cox regression model, that we named COX-
AMP, to compute efficiently the regularized maximum partial likelihood estimator. We
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notice that the update equations of COX-AMP suggest the construction of a quantity that
can be used in turn to estimate all the RS order parameters directly from the data, without
the need of solving the (six) RS equations of the theory (which require the knowledge of the
data generating process). The knowledge of the RS order parameters, can then be used to
estimate the signal strength, or estimate the generalization error.

These findings, however, leave a number of open questions. A first one is “can we rigor-
ously justify the results obtained via the replica method for the Cox regression model?” In
this direction, I studied in chapter 4 the asymptotics of the Piece-Wise Exponential model
(with ridge regularization to guarantee strong convexity), which can be regarded as a flex-
ible parametric alternative to the Cox model. Technically, the main achievement of this
chapter is to show that the Convex Gaussian Min-max Theorem of [31] is applicable to this
model, when the number of knots used in the parametrization of the base hazard is finite
as n → ∞. As a consequence, I prove that the solution of the Replica Symmetric equations
correctly describe the limit in probability of the overlaps of the Replica Symmetric theory.
An interesting problem for the future is to extend the present proof to incorporate also the
semi-parametric Cox model, to which the present proof does not apply.
Another point of practical relevance is to obtain a generalization of the results of chapter
5 when the covariates are correlated. For the Linear Model (LM), this has been studied
rigorously in [6, 17]. For Generalized Linear Models, this has been recently investigated [3].
However, when the covariates are correlated, all these results require the knowledge of the
population precision matrix (the inverse of the population covariance matrix). This might
be, in principle, problematic in the proportional regime, as we already pointed out that con-
sistent estimation of the population precision matrix is impossible without imposing sparsity
constraints on the latter. Hence, another interesting open question is “can we estimate the
order parameters of the Replica Symmetric theory without estimating the (population) pre-
cision matrix when ζ ≥ 1”?

Covariant prior as a practical de-biasing procedure The second achievement of this
thesis is having shown that the covariant prior is an easy-to-implement regularization that
can be used to obtain well-defined (and potentially unbiased) estimators for all ζ < 1 in
the proportional regime where p = ζn. This is interesting when the Maximum Likelihood
estimator or the Maximum Partial Likelihood estimator does not exist past a critical value
ζc < 1, e.g. for the Logit and the Cox regression models.
In chapter 2 we showed that the resulting estimator is, on average, aligned with the true
vector of parameters (β0). This is not true, in general, for shrinkage priors as e.g. ridge or
lasso. Thus, by appropriately tuning the regularization parameter of the covariant prior, one
can obtain an unbiased MAP estimator. However, such value of the regularization strength
depends on : i) the true signal strength θ0 := ∥Σ1/2

0 β0∥2 (with Σ
1/2
0 the population covari-

ance matrix), and ii) other nuisance parameters (when present), e.g. the true intercept in
Logit regression for instance. These values are clearly unknown and must be estimated. In
chapter 6, we showed that all the Replica Symmetric order parameters of the theory can
be easily estimated solely from the data, i.e. for GLMs θ0 and the nuisance parameters
can be estimated by solving a set of simple moment matching conditions. For the Cox
regression model, a slightly more involved procedure must be adopted since the model is
semi-parametric, however this “boils down” to solve a single moment matching condition.
The knowledge of the RS order parameters and of θ0 allows one to de-bias the Maximum A
Posteriori estimator for any value of the regularization strength and of the covariance matrix.
This simplifies the procedure proposed in chapter 3 since we can just choose the value of the
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regularization strength that minimizes, for instance, an estimate of the generalization error,
as normally done in cross validation. Fortunately, once the RS order parameters are esti-
mated, one can readily obtain an estimate of the leave one out cross validated generalization
error and thus select a value of the regularization strength in an efficient and data driven
manner. Although the de-biased estimator β̂n remains inconsistent (for the whole vector
β0), it is needed for testing the components of β0, i.e. establish if a component is non-zero
with a certain confidence level. Whilst other de-biasing methods exist, see [6, 17], and allow
for ζ ≥ 1, these require the estimation of the whole population precision matrix (the inverse
of the population covariance matrix). There exist strategies to achieve this under sparsity
constraints, see [17]. However, this is generally impossible in the proportional regime without
prior assumptions, as the covariance matrix is an inconsistent estimator in the proportional
regime. In contrast, the de-biased estimator obtained with the covariant prior only requires
the estimation of the diagonal of the precision matrix, which can be easily achieved as we
explained. It would be interesting to see how the power of the approximate test procedure
obtained by this representation compares with the power of the test of the de-biased lasso
procedure [6, 17, 16]. A naive direct comparison might be, however, misleading, due to the
fact that when using the covariant prior we are not implicitly assuming that the underlying
structure of the signal is sparse, as done when using a Lasso regularization. Hence, one
should compare the power over all hypotheses, and not only the sparse ones.

Practical applications of the theory It seems now natural to ask “what can be done
in practice” with the new knowledge developed in this thesis. The first natural application
is de-biasing. In the proportional regime and when p < n, we now have the methodology
(derived from the Replica Symmetric equations) to estimate both the associations β0 and
the cumulative risk function Λ0 in an unbiased manner. However, in order to draw correct
conclusions from the data, it is vital to understand under which conditions the theory (de-
rived for Gaussian covariates) holds irrespective of the actual distribution of the covariates.
This has been studied in the literature [21], but under conditions which do not include the
Cox regression model. A future study might aim at establishing if similar results hold for
a more general class of models, including the semiparametric model studied in this thesis.
De-biasing is a very particular application which is useful for inference and testing purposes,
but not necessarily for prediction ones. Indeed, it is well known that a biased estimator
may finally “beat” an unbiased one, in terms of prediction error. Probably the most famous
examples of this are the James Stein [28] and Ridge [15] estimators. This leads to the second
practical consequence of this thesis. Namely, we are now able to estimate the leave one out
cross validation error in a computationally fast and accurate manner, even for the Cox model
as shown in chapter 6. Leave one out cross validation aims at estimating the prediction error
and is generally used to select the “best” value of one or more regularization parameters (also
called hyperparameters), e.g. the strength of the ridge or lasso regularization. However, it
requires to fit the model n times, which is computationally slow in the proportional regime,
already for not too large values of ζ. For this reason, fast approximations of the leave one
out method are needed in the modern high dimensional regime. Several alternatives have
been proposed, see for instance [33, 23, 1]. As argued in chapter 6, the asymptotic theory in
the proportional regime suggests a very fast approximation of the leave one out cross valida-
tion loss that can be easily implemented in practice. It is an interesting point left to future
studies to establish if a generalization of this procedure might be applied when an arbitrary
regularization is adopted and if this procedure is competitive (in terms of execution time)
with recently proposed alternatives.
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Future perspectives Besides establishing the rigorous validity of the conjectures in this
thesis, other questions remain open for future investigations. Recently, the asymptotics of
Generalized Linear Models with non-convex regularization [34, 11, 12] have been established
heuristically in [25, 24]. A generalization for the Cox regression studied in this thesis seems
to be a natural sequel for the research present here. The use of a non-convex regularization
implies that the Replica Symmetric ansatz might not be valid for all the values of the
regularization strength, since the objective might not have a single minimum depending on
the value of the latter [2]. This would entail generalizing the current theory to include the
family of Replica Symmetric Breaking ansatzes [19]. When the optimization problem related
to model fitting is non-convex, the dynamics of the algorithm used to perform optimization
might also be of interest. There exists statistical physics methodology to address this kind
of problems, namely Dynamical Mean Field Theory. This has been successfully applied to
investigate different algorithms in toy models of neural networks [20, 13, 5]. It would be
interesting to see how this method might be applied to the Cox model studied in this thesis.
Another interesting direction is to extend the results of this thesis to allow for covariates
sampled from a mixture of Gaussians, as done in several recent studies for Generalized Linear
Models [18, 22]. Since any distribution can be approximated arbitrary well by a mixture of
(sufficiently many) Gaussians [14], one expects that these results should be more “universal”.
Indeed, results in this direction have been proven [9, 22].

Although more complex models like the one discussed above might be, in principle,
considered and worked out, there is an important issue that arises when one wants to apply
the theory in practice: we need to make the theory observable. Let me explain what I mean
by observable. In the statistical physics of disordered systems the term “theory” generally
refers to a set of self-consistent equations (which, however, must be solved numerically
in many cases) linking some control parameters to a set of so-called observables. In this
thesis, for instance, we have seen that the RS equations predict the value of the order
parameters w, v, τ, ŵ, v̂, τ̂ as a function of : 1) the population covariance matrix Σ0, 2) the
distribution of (the entries of) β0, 3) the remaining true parameters of the model, e.g. the
true cumulative hazard Λ0 in the case of the Cox model or, more compactly said, the true
conditional distribution of the response T , given the covariates X. The point is that within
the Replica theory these “observables” (the order parameters) are actually not observable :
they are defined in terms of quantities that are not known in practice. To give an example,
w = β̂′

nΣ0β0/∥Σ0β0∥2. In applications, both Σ0 and β0 are not known (β0 is precisely
what we want to estimate!). In statistics, conversely, a “theory” must be closed in terms
of measurable quantities only. This is why the consistency of β̂n is so important : if one
shows that β̂n is (asymptotically) consistent for β0 than one might correctly approximate
β0 with β̂n. This is used, for instance, to compute the asymptotic variance of the Maximum
Likelihood estimator in the “classical” regime p ≪ n [4, 32]. The observability issue is
irrelevant when the data (response and/or covariates) are generated by the theoretician,
since the unknowns are actually known in this case. The order parameters can be measured,
and one can verify a posteriori that if the covariance matrix is such, the β0 is such and
the remaining parameters are such, then the theory correctly describes the output of the
regression. However, in practice one does not know these quantities, and one might question
the use of the theory then, since it seems to be in-applicable. Indeed, one of the main
challenges that we tried to overcome in this thesis has been to circumvent this problem.
Thanks to the insight generated in [3] and chapter 6, we think that this problem is by now
solved when p < n and the data are extracted from a correlated Gaussian distribution. On
the other hand, it is unclear if all the order parameter are observable when p > n and/or
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the covariates are pulled from a Gaussian mixture. This opens up new interesting questions
for the future.

Bibliography

[1] A Auddy, H Zou, K Rahnamarad, and A Maleki. Approximate leave-one-out cross
validation for regression with ℓ1 regularizers. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li, editors, Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research,
pages 2377–2385. PMLR, 02–04 May 2024.

[2] J Barbier, D Panchenko, and M Sáenz. Strong replica symmetry for high-dimensional
disordered log-concave gibbs measures. Information and Inference: A Journal of the
IMA, 11(3):1079–1108, 12 2021.

[3] PC Bellec. Observable adjustments in single-index models for regularized m-estimators,
2024.

[4] F Bijma, MA Jonker, and AW van der Vaart. An Introduction to Mathematical Statis-
tics. Amsterdam University Press, 2017.

[5] T Bonnaire, D Ghio, K Krishnamurthy, F Mignacco, A Yamamura, and G Biroli. High-
dimensional non-convex landscapes and gradient descent dynamics. Journal of Statis-
tical Mechanics: Theory and Experiment, 2024(10):104004, oct 2024.

[6] M Celentano, A Montanari, and Y Wei. The Lasso with general Gaussian designs with
applications to hypothesis testing. The Annals of Statistics, 51(5):2194 – 2220, 2023.

[7] ACC Coolen, JE Barrett, P Paga, and CJ Perez-Vicente. Replica analysis of overfitting
in regression models for time-to-event data. Journal of Physics A: Mathematical and
Theoretical, 50(37):375001, aug 2017.

[8] ACC Coolen, M Sheikh, A Mozeika, F Aguirre-Lopez, and F Antenucci. Replica analysis
of overfitting in generalized linear regression models. Journal of Physics A: Mathematical
and Theoretical, 53(36):365001, aug 2020.

[9] Y Dandi, L Stephan, F Krzakala, B Loureiro, and L Zdeborová. Universality laws for
gaussian mixtures in generalized linear models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 54754–54768. Curran Associates, Inc., 2023.

[10] D Donoho and A Montanari. High dimensional robust m-estimation: asymptotic vari-
ance via approximate message passing. Probability Theory and Related Fields, 166:935–
969, 2013.

[11] J Fan and R Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[12] LE Frank and JH Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

207



[13] C Gerbelot, E Troiani, F Mignacco, and L Krzakala, Fand Zdeborová. Rigorous dy-
namical mean-field theory for stochastic gradient descent methods. SIAM Journal on
Mathematics of Data Science, 6(2):400–427, 2024.

[14] I Goodfellow, Y Bengio, and A Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[15] AE Hoerl and RW Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[16] A Javanmard and A Montanari. Hypothesis testing in high-dimensional regression
under the gaussian random design model: Asymptotic theory. IEEE Transactions on
Information Theory, 60(10):6522–6554, 2014.

[17] A Javanmard and A Montanari. Debiasing the lasso: Optimal sample size for Gaussian
designs. The Annals of Statistics, 46(6A):2593 – 2622, 2018.

[18] B Loureiro, G Sicuro, C Gerbelot, F Pacco, Aand Krzakala, and L Zdeborová. Learn-
ing gaussian mixtures with generalized linear models: Precise asymptotics in high-
dimensions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
10144–10157. Curran Associates, Inc., 2021.

[19] M Mezard, G Parisi, and M Virasoro. Spin Glass Theory and Beyond. WORLD SCI-
ENTIFIC, 1986.

[20] F Mignacco, F Krzakala, P Urbani, and L Zdeborová. Dynamical mean-field theory for
stochastic gradient descent in gaussian mixture classification. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 9540–9550. Curran Associates, Inc., 2020.

[21] A Montanari and BN Saeed. Universality of empirical risk minimization. In Conference
on Learning Theory, pages 4310–4312. PMLR, 2022.

[22] L Pesce, F Krzakala, B Loureiro, and L Stephan. Are Gaussian data all you need? The
extents and limits of universality in high-dimensional generalized linear estimation. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
27680–27708. PMLR, 23–29 Jul 2023.

[23] K R Rad and A Maleki. A scalable estimate of the out-of-sample prediction error
via approximate leave-one-out cross-validation. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 82(4):965–996, 06 2020.

[24] A Sakata. Prediction errors for penalized regressions based on generalized approximate
message passing. 56(4):043001, feb 2023.

[25] A Sakata and Y Xu. Approximate message passing for nonconvex sparse regularization
with stability and asymptotic analysis. Journal of Statistical Mechanics: Theory and
Experiment, 2018(3):033404, mar 2018.

208



[26] F Salehi, E Abbasi, and B Hassibi. The impact of regularization on high-dimensional
logistic regression. ArXiv, abs/1906.03761, 2019.

[27] M Sheikh and ACC Coolen. Analysis of overfitting in the regularized cox model. Journal
of Physics A: Mathematical and Theoretical, 52(38):384002, aug 2019.

[28] C Stein. Inadmissibility of the usual estimator for the mean of a multivariate distribu-
tion: Berkeley. volume 1. edited by: Neyman j, 1956.

[29] P Sur and EJ Candès. A modern maximum-likelihood theory for high-dimensional
logistic regression. Proceedings of the National Academy of Sciences, 116(29):14516–
14525, 2019.

[30] T Takahashi and Y Kabashima. A statistical mechanics approach to de-biasing and
uncertainty estimation in lasso for random measurements. Journal of Statistical Me-
chanics: Theory and Experiment, 2018(7):073405, 2018.

[31] C Thrampoulidis, S Oymak, and B Hassibi. The gaussian min-max theorem in the
presence of convexity, 2015.

[32] AW van der Vaart. Asymptotic Statistics. Asymptotic Statistics. Cambridge University
Press, 2000.

[33] S Wang, W Zhou, H Lu, A Maleki, and V Mirrokni. Approximate leave-one-out for
fast parameter tuning in high dimensions. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5228–5237. PMLR, 10–15 Jul 2018.

[34] CH Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894 – 942, 2010.

209



210



Chapter 8

Closing chapter

8.1 Samenvatting

Tegenwoordig zijn veel datasets hoogdimensionaal, dat wil zeggen dat het aantal gereg-
istreerde kenmerken vergelijkbaar is met, of groter is dan, het aantal waarnemingen. Om
een asymptotische theorie te ontwikkelen, moeten aannamen worden gemaakt. Een belangri-
jke is de schaling van het aantal kenmerken (p) in een statistisch regressiemodel ten opzichte
van het aantal waarnemingen (n). Het proportionele regime, waarbij p evenredig is met n,
is extreem uitdagend omdat de consistentie van de gehele Maximale A Posteriori schatters
verloren gaat. Dit betekent dat de gelijktijdige schatting van alle modelparameters niet
mogelijk is, zelfs niet met een divergerend aantal waarnemingen en met een goed afgestelde
regularisatie. Inconsistentie bemoeilijkt de studie van het asymptotisch gedrag van MAP-
schatters door middel van traditionele wiskundige benaderingen, zoals die gebruikt worden in
het “classical” regime, waar p constant blojft ten opzichte van n, of modernere benaderingen,
gebruikt in de studie van geregulariseerde schatters in het ultrahoogdimensionale regime,
waar p exponentieel mag groeien met n.

In dit proefschrift hebben we de statistische natuurkundige benadering van optimal-
isatie toegepast om een verbeterde asymptotische theorie te verkrijgen voor de (geregu-
lariseerde) Maximum Partial Likelihood schatter in het proportionele regime, door middel
van de Replica methode. Hoofdstuk 2 behandelt de Maximum Partial Likelihood Estimator
(MPLE), die wordt verkregen door optimalisatie van de Cox Partiële Likelihood. Het is
bekend dat de MPLE mogelijk niet bestaat voor voldoende grote p, afhankelijk van n. De
theorie wordt afgeleid (en gevalideerd door numerieke simulaties) onder de aanname dat de
Maximum Partial Likelihood Estimator bestaat. In hoofdstuk 4 breiden we de theorie uit
naar het gereguleerde geval. De geregulariseerde MPLE (RMPLE), verkregen door optimal-
isatie van de som van de (min)logaritme van de partiële waarschijnlijkheid van Cox en een
convexe regularisatie term, bestaat gegarandeerd voor elke p. We richten ons in het bijzonder
op sparsity inducerende regularisaties, zoals de Lasso en het Elastic Net (een geregulariseerde
versie van de Lasso).

De Replica methode vindt zijn oorsprong in de statistische fysica van wanordelijke syste-
men. Tot op heden is deze methode echter theuristisch: ze bestaat uit een reeks algebraïsche
stappen die tot een eindresultaat leiden. Hoewel de fysische intuïtie achter de stappen
in de Replica methode duidelijk is, zijn deze niet altijd gerechtvaardigd vanuit een streng
wiskundig oogpunt. Daarom heb ik ook een deel van mijn promotieonderzoek gewijd aan
het begrijpen van de bewijzen achter sommige resultaten die verkregen zijn met de Replica
methode. In hoofdstuk 3 kon ik bewijzen dat de Replica methode tot het juiste resultaat
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leidt voor een flexibele parametrische versie van het proportionele hazardmodel, genaamd
Piece-Wise Exponential (PWE). De bewijsmethode is de Convex Gaussian Min Max stelling,
die in het recente verleden naar voren is gekomen als een wiskundig rigoureuze methode om
hoogdimensionale convexe optimalisatieproblemen aan te pakken. Aangezien het Cox-model
een limiet geval is van het PWE-model (waarvoor het huidige bewijs echter niet geldt),
hebben we het vertrouwen in de resultaten van Replica verbeterd.

Op verschillende punten in het proefschrift heen hebben we algoritmen voorgesteld (en
getest) om de volgende drie belangrijke problemen aan te pakken: i) snelle optimalisatie van
de Regularized Cox Partial Likelihood, ii) schattingen van onbekenden grootheden die nodig
zijn om de theorie praktisch toepasbaar te maken en iii) de-biasing.

Wat punt i) betreft: de statistische natuurkundige benadering van optimalisatie maakt
het mogelijk om efficiënte optimalisatiealgoritmen af te leiden. Het meest prominente voor-
beeld is de klasse van Approximate Message Passing-algoritmen. Uitgaande van de General-
ized - AMP, die wordt gebruikt om geregulariseerde Generalized Linear Models (GLM’s)
te fitten, hebben we in hoofdstuk 5 het COX-AMP algoritme voorgesteld. Dit is een
AMP-algoritme dat specifiek is afgestemd op de bijzondere kenmerken van het Cox semi-
parametrische model.

Over punt ii): de asymptotische theorie verkregen door de Replica methode hangt af van
verschillende onbekende parameters van het datagenererende proces. In simulaties zijn deze
grootheden bekend en kan de juistheid van de theorie numeriek gecontroleerd worden. Dit
is wat in eerdere studies is gedaan. Om de theorie echter toepasbaar te maken in de praktijk
met echte data, moeten deze onbekenden geschat worden. Hiertoe introduceerden we in
hoofdstuk 3 een zelfconsistent algoritme, dat enigzins lijkt op verwachtingsmaximalisatie, en
dat gericht is op het schatten van de signaalsterkte (L2 norm van de ware associatievector)
en de cumulatieve hazard rate. Daarna, in hoofdstuk 5, stelden we vast dat men eigenlijk alle
ordeparameters kan schatten zonder de RS-vergelijkingen te moeten oplossen, maar eerder
door ze als leidraad te gebruiken. Tenslotte laten we, gebruikmakend van de ideeën uit
hoofdstuken 5 en 3, in hoofdstuk 6 zien dat ook de signaalsterkte geschat kan worden op
een veel eenvoudigere manier waarbij geen ingewikkelde zelfconsistente set vergelijkingen
opgelost hoeft te worden, maar eerder de wortel van een (impliciete) functie gevonden kan
worden.

Wat betreft iii): we hebben in hoofdstuk 1 laten zien dat een eenvoudige veralgemening
van de nokregularisatie kan worden gebruikt om onbevooroordeelde, zij het inconsistente,
schattingen van de parameters van een Generalized Linear Model (GLM) te verkrijgen. We
noemden de prior die overeenkomt met een dergelijke regularisatie “covariant”, omdat de
resulterende schatter gemiddeld dezelfde richting heeft als de Maximum Likelihood en niet
geometrisch bevooroordeeld is zoals in het geval van een nulgemiddelde Gaussische prior
(Nokregularisatie). Als de signaalsterkte eenmaal is geschat zoals uitgelegd in hoofdstuk
6, kan de covariante prior effectief worden gebruikt om een debiaschatter (voor GLM’s) te
verkrijgen door de regularisatiesterkte goed af te stellen. In hoofdstuk 6 hebben we echter
opgemerkt dat deze niet zo eenvoudige strategie volledig omzeild kan worden en dat men
eenvoudig de debiasingfactoren kan berekenen en een asymptotisch onvertekende schatter
kan verkrijgen. Deze alternatieve, en veel eenvoudigere, procedure bouwt voort op de ideeën
ontwikkeld in hoofdstuk 5.

Een meer gedetailleerd overzicht van de bijdrage van elk hoofdstuk is te vinden in hoofd-
stuk 7. Daar bespreken we ook de beperkingen van de resultaten in dit proefschrift en kijken
we naar mogelijke toekomstige onderzoeksrichtingen.
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8.2 Summary

Nowadays, many data-sets are “high dimensional”, that is the number of recorded features is
comparable to, or larger than, the number of observations. In order to develop an asymptotic
theory, assumptions must be undertaken. A key one is the scaling of number of features (p)
included in a statistical regression model with respect to the number of observations (n).
The proportional regime, where p is proportional to n, is extremely challenging because
consistency of the whole Maximum A Posteriori estimators is lost. This means that the
simultaneous estimation of all the model’s parameters is not possible, even with a diverging
number of observations and with a properly tuned regularization. Inconsistency hinders the
study of the asymptotical behaviour of MAP estimators by means of traditional mathemati-
cal approaches, like those used in the “classical” regime, where p is small with respect to n, or
more modern ones, used in the study of regularized estimators in the ultra high dimensional
regime, where p is allowed to grow exponentially with n.

In this thesis, we adopted the statistical physics approach to optimization in order to
obtain an improved asymptotic theory for the (Regularized) Maximum Partial Likelihood
estimator in the proportional regime, by means of the Replica method. Chapter 3 deals with
the Maximum Partial Likelihood Estimator (MPLE), which is obtained by optimization of
the Cox Partial Likelihood. In chapter 5, we extend the theory to the regularized case.
The Regularized MPLE (RMPLE), obtained by optimization of the objective given by the
sum of the (minus) logarithm of the Cox partial likelihood and a convex regularization, is
guaranteed to exists for any p. We focus in particular on sparsity inducing regularizations,
such as the Lasso and the Elastic Net (a regularized version of the Lasso).

Whilst the physical intuition behind the steps undertaken in the Replica method is clear,
these are not always justified from a rigorous mathematical point of view. For this reason, I
also dedicated part of my PhD studies to understand the proofs behind some of the results
obtained by the Replica method. In chapter (4), I was able to prove that the Replica method
leads to the correct result for a flexible parametric version of the proportional hazards model,
called Piece-Wise Exponential (PWE). The method of proof is the Convex Gaussian Min
Max theorem, which is emerged in the recent past as a mathematically rigorous method to
tackle high dimensional convex optimization problems. Since the Cox model is a limiting
case of the PWE model (for which , however, the present proof does not apply), we have
improved “confidence” in the Replica results.

Throughout the thesis, we have proposed (and tested) algorithms to address three key
issues : i) fast optimization of the Regularized Cox Partial Likelihood, ii) estimations of
unknowns needed to make the theory practically applicable and iii) de-biasing.

Concerning point i) : the statistical physics approach to optimization allows to derive
efficient optimization algorithms. The most prominent example being the class of Approxi-
mate Message Passing algorithms. Starting from the Generalized - AMP, which is used to
fit regularized Generalized Linear Models (GLMs), we proposed in 5 the COX-AMP algo-
rithm. This is an AMP algorithm specifically tailored to the peculiar features of the Cox
semi-parametric model.

About point ii) : the asymptotic theory obtained by the Replica method depends on
several unknown parameters of the data generating process. In simulations, these quantities
are known, and the correctness of the theory can be numerically checked. This is what has
been done in previous studies. However, in order to make the theory applicable in practice
with real data, these unknowns must be estimated. To this aim, we introduced in chapter
3 a self consistent algorithm, loosely resembling the expectation maximization one, which
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aims at estimating the signal strength (L2 norm of the true association vector) and the
cumulative hazard rate. Afterwards, in chapter 5, we noticed that one can actually estimate
all the order parameters without needing to solve the RS equations, but rather using them
as a guiding tool. Finally, using ideas of chapter 5 and 3, we show in chapter 6 that also
the signal strength can be estimated in a much easier manner which does not require solving
a complicated self consistent set of equations, but rather finding the root of an (implicit)
function.

For what concerns iii) : we showed in chapter 2 that a simple generalization of the
ridge regularization, can be used to obtain unbiased, albeit inconsistent, estimates of the
parameters of a Generalized Linear Model (GLM). We referred to the prior corresponding
to such regularization as “covariant”, since the resulting estimator has, on average, the same
direction as the Maximum Likelihood one, and is not geometrically biased as in the case of
a zero mean Gaussian prior (Ridge regularization). Once the signal strength is estimated
as explained in chapter 6, one can effectively use the covariant prior to obtain a debias
estimator(for GLMs), by appropriately tuning the regularization strength. However, we
noticed in chapter 6, that this not-so-straightforward strategy can be completely by-passed,
and one can easily compute the debiasing factors and obtain an asymptotically unbiased
estimator. This alternative, and much easier, procedure build on the ideas developed in
chapter 5.

A more detailed overview of the contribution of each chapter can be found in the chapter
7. There we also discuss the limitations of the results in this thesis, and look at possible
future directions of investigation.
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8.3 Research Data Management

Ethics

In this thesis, we used simulated data-sets, in order to correctly test the theoretical results
under the hypothetical scenario where the assumptions of the theory are satisfied. In each
chapter, we have explained how the simulations were carried out and provided extensive de-
tails about the numerical methods used to solve the non-linear Replica Symmetric equations,
fit the regression models and generate the data sets.

Findable Accessible

In chapter 2, we provided a detailed explanation of the methodology used to carry out the
simulations. We performed the relevant numerical solution, data generation and model fitting
in the C language. The C files are available upon request (contact massaemanuele.95@gmail.com,
ton.coolen@ru.nl).
In chapter 3, we provided detailed explanation of the methodology used to carry out the
simulations. The implementation of the methodology that is there proposed and tested is
in the Python language. The Python scripts used in this chapter are available upon request
(contact massaemanuele.95@gmail.com, ton.coolen@ru.nl).
In chapter 4, we provided the code used to run the simulations in Github at https:
//github.com/EmanueleMassa/SMSA_2024.
In chapter 5, we provided the code used to run the simulations in Github at https:
//github.com/EmanueleMassa/Regularized_Cox_model.
In chapter 5, we provided the code used to run the simulations in Github at https:
//github.com/EmanueleMassa/Practical_debiasing.
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talented national and international PhD candidates, with over 500 PhD candidates enrolled.
Their backgrounds cover a wide range of disciplines, from physics to psychology, medicine
to psycholinguistics, and biology to artificial intelligence. Similarly, their interdisciplinary
research covers genetic, molecular, and cellular processes at one end and computational,
system-level neuroscience with cognitive and behavioural analysis at the other end. We ask
all PhD candidates within the Donders Graduate School to publish their PhD thesis in de
Donders Thesis Series. This series currently includes over 700 PhD theses from our PhD
graduates and thereby provides a comprehensive overview of the diverse types of research
performed at the Donders Institute. A complete overview of the Donders Thesis Series can
be found on our website: https://www.ru.nl/donders/donders-series
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plete overview see https://www.ru.nl/donders/destination-our-former-phd. A large
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ical positions, sometimes combining it with academic research. Clinical positions can be
divided into medical doctors, for instance, in genetics, geriatrics, psychiatry, or neurology,
and in psychologists, for instance as healthcare psychologist, clinical neuropsychologist, or
clinical psychologist. Furthermore, there are PhD graduates who continue to work as re-
searchers outside academia, for instance at non-profit or government organizations, or in
pharmaceutical companies. There are also PhD graduates who work in education, such as
teachers in high school, or as lecturers in higher education. Others continue in a wide range
of positions, such as policy advisors, project managers, consultants, data scientists, web- or
software developers, business owners, regulatory affairs specialists, engineers, managers, or
IT architects. As such, the career paths of Donders PhD graduates span a broad range of
sectors and professions, but the common factor is that they almost all have become successful
professionals.

For more information on the Donders Graduate School, as well as past and upcoming
defences please visit: http://www.ru.nl/donders/graduate-school/phd/
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