

XIN ZHOU

Xin Zhou

Radboud Dissertation Series

ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS Postbus 9100, 6500 HA Nijmegen, The Netherlands www.radbouduniversitypress.nl

Design: Proefschrift AIO | Guus Gijben

Cover: Xin Zhou

Printing: DPN Rikken/Pumbo

ISBN: 9789465151908

DOI: 10.54195/9789465151908

Free download at: https://doi.org/10.54195/9789465151908

© 2025 Xin Zhou

RADBOUD UNIVERSITY PRESS

This is an Open Access book published under the terms of Creative Commons Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

Proefschrift ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,

volgens besluit van het college voor promoties

in het openbaar te verdedigen op

donderdag 20 november 2025

om 14.30 uur precies

door

Xin Zhou

geboren op 25 november 1993 te Anhui, China

Promotor:

Prof. dr. P.E. Verweij

Copromotoren:

Prof. dr. G.S. de Hoog

Dr. P. Feng (The Third Affiliated Hospital of Sun Yat-sen University, China)

Manuscriptcommissie:

Prof. dr. R.J.M. Brüggemann

Dr. A. Alastruey Izquierdo (Instituto de Salud Carlos III, Spanje)

Prof. dr. W. Meyer (Curtin University, Australië)

Dissertation to obtain the degree of doctor

from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,

according to the decision of the Doctorate Board

to be defended in public on

Thursday, November 20, 2025

at 2:30 pm

by

Xin Zhou

born on November 25, 1993

in Anhui, China

PhD supervisor:

Prof. dr. P.E. Verweij

PhD co-supervisors:

Prof. dr. G.S. de Hoog

Dr. P. Feng (The Third Affiliated Hospital of Sun Yat-sen University, China)

Manuscript Committee:

Prof. dr. R.J.M. Brüggemann

Dr. A. Alastruey Izquierdo (Instituto de Salud Carlos III, Spain)

Prof. dr. W. Meyer (Curtin University, Australia)

Table of Contents

CHAPTER 1	GENERAL INTRODUCTION, AIM, UNRESOLVED QUESTIONS, AND OUTLINE OF THE THESIS	11
CHAPTER 2	THE DUAL ROLES OF FUNGI: ALLERGENS AND PATHOGENS	29
CHAPTER 3	EXPLORING THE CLINICAL FEATURES AND RISK FACTORS FOR CHILDREN IN TINEA CAPITIS COMPLICATED WITH ALLERGIC DISEASES	69
CHAPTER 4	AETIOLOGY OF TINEA OF VELLUS HAIR AND SUBSTRATE SPECIFICITY IN <i>MICROSPORUM</i> SPECIES	87
CHAPTER 5	HUMAN ADAPTATION AND DIVERSIFICATION IN MICROSPORUM CANIS COMPLEX	111
CHAPTER 6	DERMATOPHTES ADAPTATION TO THE HUMAN HOST EXEMPLIFIED BY <i>MICROSPORUM CANIS</i>	151
CHAPTER 7	DYNAMIC GENE EXPRESSION AND FUNCTIONAL NETWORKS UNDERLYING SPORE GERMINATION IN MICROSPORUM CANIS	193
CHAPTER 8	SUMMARY	217
CHAPTER 9	NEDERLANDSE SAMENVATTING	225
CHAPTER 10	GENERAL DICUSSION	235
CHAPTER 11	ABBREVIATIONS REFERENCES RESEARCH DATA MANAGEMENT PHD PORTFOLIO LIST OF PUBLICATIONS CURRICULUM VITAE	
	DANKWOORD (ACKNOWLEDGMENTS)	249

CHAPTER 1

GENERAL INTRODUCTION, AIM, UNRESOLVED QUESTIONS, AND OUTLINE OF THE THESIS

Dermatophyte Infections

Dermatophytes, belonging to the Ascomycota phylum, Eurotiomycetes class, Onygenales order, and Arthrodermataceae family, are a group of filamentous fungi that infect the skin, nails, and hair. Currently, seven genera of dermatophytes are recognized: Trichophyton, Epidermophyton, Nannizzia, Paraphyton, Lophophyton, Microsporum, and Arthroderma. Among these, Trichophyton spp., Epidermophyton spp., and Microsporum spp. are most frequently associated with human dermatophytosis [1].

Dermatophytes causes 30% of the most common fungal skin infections in pets and domestic animals, and as a zoonotic disease, dermatophyte infections affect approximately 20-25% of the global population [2]. In 2022, fungal skin infections were the most prevalent dermatological diseases in Europe, accounting for 8.9% of all skin conditions [3, 4]. Dermatophytes thrive in warm and humid environments, which contributes to the rising incidence of infections in tropical and developing countries. Furthermore, colonization, migration, and sports tourism have accelerated the global dissemination of dermatophyte pathogens [5]. The clinical manifestations of dermatophytoses vary widely depending on the causative dermatophyte species and the anatomical site affected. Factors such as overcrowding, shared living spaces, and urbanization have further contributed to the increasing prevalence of dermatophytosis. Additionally, age, sex, and geographical location play significant roles in the epidemiology of these infections [6, 7].

The global distribution of dermatophyte species has evolved over the past decades, influenced by changes in lifestyle, antifungal use, and pathogen adaptation. In the mid-20th century, species such as Trichophyton interdigitale, Microsporum audouinii, and T. soudanense were dominant in Europe, while T. verrucosum, Epidermophyton floccosum, T. mentagrophytes, and M. canis prevailed in parts of Asia [4]. However, over the past 50 years, T. rubrum has emerged as the globally dominant dermatophyte, likely due to its anthropophilic nature and persistence in urban environments. In India, the increasing prevalence of T. indotineae has been linked to widespread overuse of topical corticosteroid-antifungal combinations, poor treatment compliance, and close-contact community living [8]. In contrast, M. canis remains the leading zoonotic dermatophyte across Eurasia, particularly due to rising pet ownership and frequent human-animal interactions. Meanwhile, T. tonsurans, once limited to Southeast Asia and Australia, has become the main cause of tinea capitis in North America. These patterns reflect the impact of

socioeconomic development, shifts in urban-rural dynamics, and the remarkable adaptability of dermatophytes to both environmental and host-related pressures [4].

Dermatophyte infections typically remain confined to the keratinized layers of the epidermis and hair shafts. However, in immunocompromised individuals with congenital or acquired immune deficiencies, dermatophytes can invade the dermis and deeper tissues, leading to systemic infections. Based on the affected site, dermatophytoses are classified into: Hair infections (tinea capitis, tinea barbae, tinea of vellus hair), Nail infections (onychomycosis), Glabrous skin infections (tinea corporis, tinea cruris, tinea pedis). The epidemiology and dominant causative species of dermatophyte infections vary according to the site of infection: tinea capitis and tinea barbae: Most commonly caused by M. canis, T. mentagrophytes, and T. verrucosum. Tinea corporis is frequently associated with T. rubrum, T. mentagrophytes complex, and M. canis. Tinea pedis primarily caused by T. rubrum, T. mentagrophytes, and E. floccosum. Tinea cruris is most caused by T. rubrum worldwide. However, in India, T. mentagrophytes is the leading pathogen, followed by T. rubrum and T. interdigitale. Onychomycosis predominantly caused by T. rubrum and T. mentagrophytes.

Hair Dermatophytosis

Hair originates from matrix cells in the lower part of the hair bulb and is classified into two types: terminal hair and vellus hair. Terminal hair is thick, pigmented, and contains a medulla, whereas vellus hair is fine, lightly pigmented, lacks a medulla, and is predominantly found on the trunk. Among dermatophyte infections affecting terminal hair, tinea capitis is the most common, representing one of the primary contagious fungal diseases in prepubescent children worldwide, often leading to outbreaks in schools and households. In certain regions, the prevalence of tinea capitis in children can reach up to 91.2%, with an average age of onset around six years and a higher incidence in males [9]. In adults, the prevalence ranges from 1.7% to 15%, with female predominance [10, 11].

Over the past 10 to 20 years, rapid economic development, increased human migration, and a rise in domestic pet ownership, alongside a decline in direct contact with stray animals and livestock, have contributed to significant shifts in the etiological spectrum of tinea capitis in certain regions. The emergence of M. canis as a dominant pathogen in Eurasia is a notable example [12] . Between 2019 and 2020, M. canis was identified as the most common causative agent of tinea capitis in China, responsible for 65.2% (n=354) of cases [13]. Between 1989

and 2018, M. canis was the most frequently isolated dermatophyte in South Korea, accounting for 73.16% of cases [14]. In Japan, anthropophilic dermatophytes had traditionally been the predominant causative agents. However, since the early 1990s, M. canis has been increasingly isolated among dermatophyte infections, rising from 2.6% between 1991 and 1995 to 10.2% between 2011 and 2015 [15]. Over the past 30 years, M. canis has remained the leading cause of dermatophyte infections in most Central and Southern European countries and Mediterranean regions, with prevalence rates ranging from 37.1% to 98.7% [9].

Another dermatophyte infection affecting human hair is tinea of vellus hair. Eby and Jett first reported a case in 1971, describing a three-year-old girl with a facial vellus hair infection caused by Nannizzia incurvate [16]. Tinea of vellus hair results from dermatophyte infection of vellus hair, with or without concurrent glabrous skin involvement. Direct mycological examination of affected hairs often reveals fungal hyphae and/or spores, both endothrix and ectothrix [17]. Despite its existence, few epidemiological studies and treatment reports on tinea of vellus hair have been published. Several factors may contribute to its underdiagnosis, including its rarity, frequent washing, scratching, or topical corticosteroid use which may alter the typical clinical presentation—and inadequate sampling during direct mycological examination, such as failure to collect vellus hairs for testing [18, 19] . These factors may lead to misdiagnosis as tinea corporis or other superficial dermatophytoses. A report from Spain identified Nannizzia gypsea as the most common causative agent of tinea of vellus hair, followed by the T. mentagrophytes complex and M. canis [20] . In Eastern China, the T. mentagrophytes complex was the predominant causative agent, followed by M. canis and N. gypsea [21]. In Taiwan, the most frequently isolated pathogen was T. rubrum, accounting for 43.75% of cases, followed by M. canis at 37.50% [22].

Host Specificity of Dermatophyte Infections

Dermatophytes are traditionally classified into anthropophilic, zoophilic, and geophilic species based on their ecological niches and clinical parameters. However, these three categories exhibit overlapping characteristics and variable pleomorphism, which may reflect an evolutionary trend from geophilic species, through adaptation to animal hosts, ultimately leading to specialization in human hosts.

Geophilic dermatophytes are considered ancestral species that primarily inhabit soil, particularly in caves and areas rich in keratinous debris shed by animals. Some studies have reported their prevalence in rodent populations; however, they rarely cause infections in humans or domesticated animals [23, 24] . The most common geophilic species associated with human and animal infections is Nannizzia gypsea, which causes tinea corporis and tinea capitis in humans. Notably, infections with geophilic dermatophytes tend to elicit the most intense inflammatory responses. Geophilic species maintain both mating types and can undergo sexual reproduction under moist soil conditions.

Zoophilic dermatophytes primarily colonize the fur of mammals and may be carried asymptomatically or cause overt infections [25] . Cats serve as the principal reservoir for M. canis, while T. equinum predominantly infects horses. Trichophyton mentagrophytes is commonly associated with rodents [26], and T. verrucosum is frequently found in cattle and other livestock [27]. These animal-associated species pose a high risk of zoonotic transmission to humans through direct contact [28]. When zoonotic infections occur in humans, they often trigger moderate to severe inflammatory responses [1]. Similar to geophilic species, zoophilic dermatophytes maintain two mating types and can undergo sexual reproduction under specific conditions. However, many zoophilic species exhibit highly imbalanced mating-type ratios, with some strains lacking one of the mating types entirely. The loss of a compatible mating partner is believed to be a key evolutionary driver in these species, leading to the dominance of a single genotype. In these cases, asexual reproduction becomes the primary mode of propagation, allowing the retained genotype to outcompete others and persist in the environment [29].

Anthropophilic dermatophytes represent the most evolutionarily advanced group, having adapted to the human immune system. These species generally induce low inflammatory responses, resulting in mild clinical manifestations and chronic infections that can persist for months or even years. Transmission occurs through direct contact in households, schools, and communal settings. However, in individuals with underlying conditions, immune dysregulation, corticosteroid treatment, or genetic CARD9 deficiencies, infections can be severe and prolonged. Trichophyton rubrum and T. interdigitale are the primary causative agents of tinea corporis and tinea pedis [30], while T. tonsurans, T. violaceum, and M. audouinii are commonly implicated in tinea capitis in children [31] . Each anthropophilic dermatophyte species identified to date possesses only one mating type, suggesting a complete reliance on asexual reproduction for transmission and persistence in human populations.

Virulence and Pathogenicity of Dermatophytes

The virulence mechanisms of dermatophytes involve multiple factors, including adhesion molecules, cell wall components, keratin-degrading enzymes, pH adaptability, and heat shock proteins (HSPs). These factors work synergistically to enable dermatophytes to bypass host defence mechanisms and establish infections [32]. The first step in dermatophyte infection is adhesion to keratinized host tissues, such as skin, hair, and nails, as adhesion efficiency directly influences the success of infection [33]. Studies have shown that T. rubrum adheres to host keratinocytes through carbohydrate-specific adhesion molecules (CSA) on its microconidia, which bind to mannose and galactose residues on the host cell surface, enhancing attachment. Trichophyton mentagrophytes, in contrast, extends filamentous projections during adhesion, increasing its contact interface with host tissues [33]. Additionally, dipeptidyl peptidase IV (DppIV) plays an essential role in T. rubrum adhesion [34]. The mannan component of the dermatophyte cell wall also acts as a crucial adhesion factor, inhibiting keratinocyte proliferation, thereby facilitating infection persistence. Trichophyton rubrum produces significantly more mannan than M. canis, which may explain its greater ability to establish chronic infections [35].

The survival of dermatophytes depends on their ability to degrade keratin. These fungi use sulfite efflux pumps (Ssu1) and cysteine dioxygenases (Cdol) to release sulfites, which break disulfide bonds in keratin, disrupting its stable threedimensional structure [36]. This process creates an entry point for subsequent enzymatic degradation by proteases. Dermatophytes secrete various enzymes to further degrade keratin, including: (i) Keratinases, which specifically degrade keratin into oligopeptides and amino acids [37, 38]; (ii) Serine proteases (Subfamily), such as Sub3 and Sub6, degrade specific peptide bonds in keratin and are highly expressed during early infection [39]; (iii) Metalloproteases (Mep family), such as Mep1-Mep5, which promote keratin degradation in later infection stages and may influence host immune responses [40, 41]; (iv) Leucine aminopeptidases (Lap1, Lap2) and dipeptidyl peptidases (DppIV, DppV), which participate in the final stages of keratin degradation by breaking down peptides into free amino acids for fungal absorption [42].

Dermatophytes can sense and adapt to host tissue pH fluctuations, allowing them to thrive in different environments. While normal skin and nail pH is slightly acidic, keratin degradation releases amino acids, causing a local pH shift toward alkalinity [43]. Studies have demonstrated that dermatophytes regulate pH adaptation through the PacC/Pal signaling pathway, which modulates keratinase and other

virulence factor expression [44, 45]. PacC is a key transcription factor that becomes activated in alkaline conditions, enhancing fungal secretion of more potent degradative enzymes, thereby accelerating infection progression [46]. Furthermore. dermatophytes can alkalinize their microenvironment, creating favorable conditions for their own survival within host tissues.

The dermatophyte cell wall plays a structural role in infection and modulates host immune responses. The cell wall is primarily composed of mannan, beta-glucans, and chitin, among which mannan is closely linked to fungal pathogenicity. Studies have shown that T. rubrum contains higher mannan levels than M. canis, contributing to its enhanced persistence in chronic infections [35, 47]. Mannan also interferes with keratinocyte proliferation, slowing down skin turnover and aiding fungal colonization while weakening host defenses. Additionally, dermatophytes can manipulate immune recognition by regulating the exposure of beta-glucans, helping them evade immune attacks.

During infection, dermatophytes must adapt to host temperature and other environmental stresses. Heat shock proteins (HSPs) function as molecular chaperones that stabilize fungal proteins under stress and regulate virulence gene expression [48]. Research indicates that Hsp30, Hsp60, Hsp70, and Hsp90 are significantly upregulated in dermatophytes during infection, enhancing fungal resistance to elevated temperatures, oxidative stress, and antifungal agents [49, 50]. Moreover, HSPs may influence fungal growth rates, providing dermatophytes with a competitive advantage in host tissues.

Microsporum canis

The genus Microsporum includes one zoophilic species, M. canis, and two anthropophilic species, M. audouinii and M. ferrugineum, which are the primary causative agents of tinea capitis in prepubescent children. Additionally, M. canis is frequently implicated in tinea corporis. Microsporum canis is carried asymptomatically or symptomatically on the fur of animals, primarily cats and dogs, whereas in humans, it often induces a highly inflammatory reaction on the scalp. In contrast, M. audouinii and M. ferrugineum are primarily transmitted from human to human, causing mild infections. However, M. audouinii has also been isolated from animals, soil, and environmental sources, and cases of intense immune reactions triggered by M. audouinii have been reported [51].

Since the 1950s, the epidemiological spectrum of tinea capitis has undergone significant changes, shifting from T. schoenleinii and M. audouinii to M. canis and

T. tonsurans. Today, M. canis is the dominant pathogen responsible for tinea capitis in most regions of Europe and Asia, often leading to small-scale outbreaks in schools with animal contact [52]. These outbreaks contribute to zoonotic transmission cycles between animals and humans, as well as human-to-human transmission. In the early 19th century, M. audouinii was highly prevalent in Europe and the Americas but later declined, becoming largely confined to Africa [53]. Similarly, M. ferrugineum has historically been restricted to China, Iran, and parts of North Africa [54]. However, recent reports indicate a resurgence of these two anthropophilic species in European countries, with new outbreaks being documented [31, 51, 55]. This suggests that the M. canis complex, consisting of M. canis, M. audouinii, and M. ferrugineum, spans multiple continents and remains a major causative agent of tinea capitis today [12].

Molecular Advances in Microsporum canis

Despite the distinct phenotypic and ecological differences among the three species within this complex, their close genetic relationship is supported by evidence of sexual reproduction. In 1975, fertile cleistothecia were first observed in mating experiments [56], leading to the classification of the teleomorphic (sexual) state of M. canis as Arthroderma otae (also referred to as Nannizzia otae or M. canis MAT+). Monoascospore culture studies further revealed that this fungus is heterothallic, whereas M. audouinii and M. ferrugineum are considered clonally reproducing species. Since then, an imbalance in Mat locus distribution has been observed in M. canis, with MAT (-) strains predominantly found in nature. Several researchers, including A. Kaszubiak [57] and Vanbreuseghem [58], have hypothesized that the early evolution of the M. canis complex may have occurred in Africa, with wild felines such as lions serving as hosts for the ancestral mating population. The anthropophilic species M. audouinii and M. ferrugineum likely originated from unknown sexual counterparts of A. otae, which may have since become extinct. Microsporum ferrugineum remains geographically restricted to certain regions in Asia and Africa, with no evidence of significant genetic variation over time. This suggests that clonal lineages emerged within a single species while sexual recombination events diminished in nature, leading to a substantial reduction or complete cessation of genetic recombination. In the 1970s and 1980s, Hironaga [59], Padhye [59], Weitzman [60], Kubo [61] et al. isolated fertile mating strains of Arthroderma otae from Japan, producing viable F1 progeny. The isolates VUT-77054 (=CBS495.96, MAT1-2) and VUT-77055 (=CBS496.96, MAT1-1) were among these fertile strains. VUT-77054 is currently classified as M. audouinii. Since these studies, there have been few documented reports of fertile A. otae, suggesting that mating

locus imbalances have persisted for a long time, likely restricting sexual reproduction within the M. canis complex.

The increasing prevalence of *M. canis* appears to be a sign of its adaptive evolution toward human hosts. Within the phylogenetic framework of the *M. canis* complex. multi-locus sequencing (ITS, LSU, TUB, and 60S L10) has proven insufficient in clearly distinguishing the three species. Multi-locus sequence typing (MLST) provides higher resolution, but its correlation with symptoms and host sources remains inconsistent [62]. Zoophilic dermatophytes generally induce more severe inflammatory responses in human infections. However, Mariana et al. [37] compared the virulence and thermotolerance-associated enzyme expression profiles of M. canis strains isolated from dogs, cats, and humans and found no significant differences in pathogenic effects among these hosts. Additionally, no observable differences were found between symptomatic and asymptomatic feline isolates. Fernanda et al. [63] conducted a microsatellite analysis (McGT-13 and McGT-17 markers) to investigate the genetic variability of M. canis isolates from different animal species. Their study found no correlation between multi-locus genotypes and clinical or epidemiological factors, including host species. symptoms, clinical presentation, breed, age, sex, living conditions, and geographic origin. Shigeo et al. [64] demonstrated that M. canis strains from commercial breeding facilities and pet shops exhibit distinct MLMT genotypes compared to those isolated from outdoor environments, suggesting that MLMT typing may be useful for tracking M. canis transmission and dispersal patterns in Japan. These findings indicate that, despite the ancestral high virulence of dermatophytes, pathogenicity has gradually diminished over evolutionary time, allowing for enhanced coexistence with animal and human hosts [65].

Pathogenicity of Microsporum

Tinea capitis presents in three clinical forms: severe inflammatory - kerion, moderate inflammatory - black dot, and non-inflammatory - gray patch [66]. The zoophilic species M. canis is commonly associated with kerion and black dot tinea, while the anthropophilic species M. audouinii and M. ferrugineum typically cause gray patch tinea. Kerion is characterized by a severe inflammatory reaction, most often triggered by zoophilic M. canis species. Clinically, kerion represents a delayed-type hypersensitivity reaction to pathogenic dermatophytes. Children with kerion are more likely to develop regional lymphadenopathy and dermatophytid reactions. A study by Filiz et al. [67] found that 68% of patients with kerion celsi exhibited dermatophytid reactions. These dermatophytid lesions present with pruritic, diffuse papules predominantly on the trunk and, in some cases, may

extend to the limbs, neck, and face. Due to their atypical presentation, these lesions are often misdiagnosed as impetigo, contact dermatitis. atopic dermatitis.

Like other dermatophytes, a range of virulence factors contribute to the ability of M. canis to infect human hosts. In M. canis, the most critical proteases involved in host invasion are keratinases, fungal proteases, and subtilisins, each exhibiting different levels of activity and secretion. These three enzyme classes have been the most extensively studied in M. canis and other dermatophytes, likely due to their high secretion levels and strong activity against skin, hair, and nail components [68]. Studies by Ramos et al. [37] and Viani et al. [69] reported that M. canis isolates from symptomatic cats exhibited significantly higher keratinase production and/or activity compared to those from asymptomatic cats. Subtilisins are among the most important keratinolytic enzymes in M. canis [70]. In this species, Sub1 and Sub2 subtilisins have been identified as virulence factors due to their ability to bind to host surfaces via conformational changes at the amino-terminal domain [71]. Sub3 plays a key role in adhesion and is essential for tissue invasion. It is expressed in both conidia and hyphae in vitro, as well as in vivo in infected cats and guinea pigs [68]. Additionally, these subtilisins appear to be associated with delayed-type hypersensitivity reactions, which may influence host susceptibility and pathogen persistence, thereby leading to chronic infections.

The relationship between hypersensitivity reactions and Microsporum infections, as well as the associated risk factors, remains poorly understood. In 1930, Wise and Sulzberger [72] first described the connection between dermatophyte infections and allergic diseases. Since 1973, the association between atopic dermatitis and dermatophytosis has become increasingly recognized, with studies showing that patients with atopic dermatitis are more susceptible to chronic dermatophyte infections. It is estimated that 40% of individuals with chronic dermatophytosis also have atopic conditions such as atopic dermatitis or asthma [73]. Acute dermatophyte infections may act as triggers for atopic dermatitis exacerbations, and antifungal treatment has been shown to improve atopic dermatitis symptoms in affected patients [74-76]. Furthermore, dermatophyte infections can exacerbate asthma symptoms, particularly through immediate hypersensitivity responses to dermatophyte antigens. Oral antifungal therapy has been shown to significantly improve allergic symptoms, indicating a strong link between dermatophytosis and allergic diseases such as asthma, rhinitis, and dermatitis [77, 78]. A study published in 2023 conducted in northern Odisha, India, involving 78,028 patients with dermatophytosis, identified atopic diathesis as a major comorbidity, with a

prevalence of 9.94% [79]. Additionally, 27% of the cases had a family history of dermatophytosis.

Unresolved Questions

Despite some research on the epidemiology, pathogenic mechanisms, and interactions between dermatophytes and the host immune system, several critical questions remain unanswered. One of the most pressing gaps concerns the dual role of dermatophytes as both pathogens and allergens. While studies have shown that dermatophyte infections can induce allergic responses such as atopic dermatitis, allergic rhinitis, and asthma, the specific fungal antigens responsible for these reactions remain poorly characterized. Additionally, the mechanisms by which these antigens modulate host immune responses are still unclear. Crossreactivity between different dermatophyte species may lead to misdiagnosis, but the lack of standardized fungal allergen extracts complicates accurate diagnosis and clinical management of dermatophyte-related allergies.

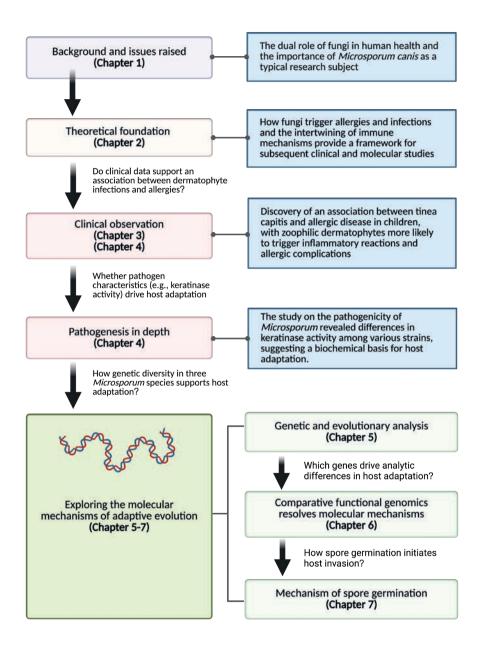
Another unresolved issue is the association between pediatric tinea capitis and allergic diseases. Some studies suggest that dermatophyte infections may exacerbate host allergic responses, and children with atopic predisposition appear more susceptible to dermatophyte infections. However, long-term cohort studies are lacking, making it difficult to establish a causal relationship or identify the underlying molecular mechanisms. Additionally, the epidemiology of tinea capitis has shifted significantly over the past few decades, with variations in dominant causative species across different regions. The driving factors behind these changes, including the influence of host genetics, environmental shifts, and social behaviors, remain poorly understood.

Regarding the etiology of tinea of vellus hair, current epidemiological data are limited. Further studies are needed to clarify the causative dermatophyte species, clinical presentation, and misdiagnosis rates associated with this condition. Moreover, the differential keratin degradation capabilities of dermatophyte species on various keratin substrates have not been comprehensively investigated. This knowledge is crucial for understanding host adaptation and interspecies transmission dynamics.

The adaptive evolution of Microsporum species, particularly Microsporum canis, M. audouinii, and M. ferrugineum, remains a major unresolved topic. While phylogenetic studies have demonstrated the close genetic relationship between these three species, the molecular mechanisms underlying the shift from a zoophilic to an anthropophilic lifestyle remain unclear. The adaptation of Microsporum species from animal to human hosts is influenced by multiple evolutionary pressures, including microenvironmental differences, immune selection, and changes in transmission dynamics. Human skin has a lower pH (4.5-5.5) compared to the fur of cats and dogs (6.0-7.5) and possesses a more complex lipid composition. The human immune system is also more adept at recognizing zoonotic pathogens, compelling dermatophytes to develop immune evasion strategies. Additionally, the shift from pet-to-human to human-to-human transmission requires adaptation to a lower transmissibility ecological niche. These selective pressures likely drive genome evolution in dermatophytes, yet the specific gene mutations or expression changes responsible for these adaptations remain unknown. It is also unclear whether key host-adaptive enzymes, such as keratinases, have undergone functional modifications. Furthermore, how dermatophytes regulate gene expression in different host environments to accommodate varying immune responses and ecological conditions remains an open question. In summary, how M. canis evolves to shift from animal to human hosts while maintaining its dual role as both a pathogen and an allergen requires further investigation.

The molecular mechanisms underlying dermatophyte adaptation to human hosts also remain a critical area of research. Comparative genomics has identified significant differences between zoophilic and anthropophilic dermatophytes in certain protein families, such as zinc finger transcription factors and transmembrane transporters. However, the role of these genes in dermatophyte virulence and host specificity is not yet fully understood. Additionally, the ability of regulate their growth and dermatophytes to invasion microenvironments, such as skin, scalp, and nail plates, requires further study.

Finally, the molecular regulation of spore germination remains a significant knowledge gap in dermatophyte pathogenesis. Spore germination is the initial step in host infection and determines colonization and invasion capacity. Previous studies suggest that certain proteases, such as Sub3 and PacC, along with specific signaling pathways and environmental factors, play a role in germination regulation. However, a comprehensive analysis of gene expression changes during different stages of germination is still lacking. It is also unclear how dermatophytes modulate spore dormancy, germination, and invasion in response to host immune defenses, skin barrier integrity, and environmental factors such as pH and temperature.


Aim of Thesis

The central research question of this study is how *M. canis* adapts from animal to human hosts through genetic, biochemical, and immunological mechanisms while balancing its pathogenicity and allergenicity.

Specific research objectives include:

- Clinical correlation studies: Investigate the epidemiological association a. between M. canis infections, such as pediatric tinea capitis, and allergic diseases, as well as identifying risk factors.
- b. Pathogen characterization: Analyze the relationship between keratinase activity, DNase activity, and host adaptation in different *M. canis* strains.
- c. Evolutionary tracking: Use multi-gene phylogenetics and population genetics to trace the evolutionary shift of *M. canis* across hosts.
- d. Molecular mechanism identification: Identify key genes driving host adaptation, including proteases, transport proteins, and transcription factors.
- e. Intervention strategies: Develop novel diagnostic and therapeutic targets based on spore germination mechanisms and immune evasion pathways in M. canis.

Outline of the Chapters

This dissertation is structured into seven chapters, using M. canis as a model to investigate its evolutionary shift from animal hosts (such as cats and dogs) to human hosts and its dual role in infection and allergy. Each chapter explores a

distinct aspect of M. canis infection, including its function as both a pathogen and an allergen, its epidemiology, host adaptation, molecular mechanisms of virulence, and spore germination.

In Chapter 2, the discussion begins with how fungi act as both infectious agents and allergens. This chapter reviews immune responses triggered by fungal infections and hypersensitivity reactions induced by fungal exposure, emphasizing the molecular mechanisms underlying fungal antigenicity and cross-reactivity. The challenges in diagnosing fungal-induced allergic diseases are also discussed. Based on existing literature, the epidemiological associations between dermatophyte infections (such as tinea corporis, tinea pedis, and tinea capitis) and allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma, are examined. These studies suggest that fungi may exacerbate allergic diseases through dual mechanisms. However, an unresolved question remains: do current clinical data support a definitive link between dermatophyte infections and allergic diseases? To address this, Chapter 3 presents an epidemiological study investigating the correlation between pediatric tinea capitis and allergic diseases. This study analyzes the clinical presentation, risk factors, and temporal trends of dermatophyte infections over 15 years. The findings indicate that zoophilic strains, such as M. canis and T. mentagrophytes, are more likely to induce inflammatory responses and allergic complications. Additionally, patients with kerion exhibit immune dysregulation, particularly Th2-skewed immune responses, which may contribute to their allergic phenotype.

A key question arising from these findings is whether specific characteristics of zoophilic pathogens, such as keratinase activity, drive host adaptation and immune polarization. Chapter 4 explores the epidemiology and pathogenesis of dermatophyte infections affecting vellus hair. This study analyzes three Microsporum species and their keratinase activity when exposed to various keratin substrates, including feline fur, human scalp hair, vellus hair, and nail keratin. The results reveal significant differences in keratin affinity between zoophilic and anthropophilic Microsporum species. But how does genetic diversity within Microsporum support human host adaptation? In Chapter 5, the evolutionary relationships between zoophilic M. canis and anthropophilic M. audouinii and M. ferrugineum are examined at the molecular level. Through phylogenetic analysis, population genetics, and mating experiments, this chapter explores the shift from zoophilic to anthropophilic lifestyles and the genetic changes associated with host specificity. These findings provide novel insights into dermatophyte adaptation and the potential for zoonotic transmission.

To further elucidate the key genes driving host adaptation and environmental fitness in M. canis, Chapter 6 focuses on the molecular basis of dermatophyte adaptation to human hosts, using M. canis as a model. This chapter presents a functional genomic analysis to identify and characterize genes associated with keratin degradation, immune evasion, and environmental adaptation. Comparative studies between zoophilic and anthropophilic species reveal potential mechanisms underlying host shift. Chapter 7 investigates the molecular regulation of spore germination in *M. canis*. By integrating transcriptomic data, this study identifies key signaling pathways controlling spore dormancy, activation, and germination. The impact of environmental factors such as pH, temperature, and nutrient availability on spore viability is also analyzed.

This dissertation integrates epidemiological, molecular, and genomic approaches to advance our understanding of M. canis, providing valuable insights into its pathogenic mechanisms, host adaptation, and clinical management.

CHAPTER 2

THE DUAL ROLES OF FUNGI: ALLERGENS AND PATHOGENS

Xin Zhou, Yu Quan, Sarah A. Ahmed, Macit Ilkit, Wentao Liu, Xiaoya Zhang, Peiying Feng

One Health Mycology, 1(2), 54-78 (2024)

ABSTRACT

Fungal infections and fungal hypersensitivity represent the host immune system's distinct yet interconnected responses. While fungal infections primarily activate innate immune pathways to combat pathogens, fungal hypersensitivity arises from exaggerated immune responses to fungal allergens. This duality highlights the complex balance between immune defence against infection and the risk of hypersensitivity to fungal antigens. Fungal allergens can elicit allergic reactions within the respiratory, skin, and gastrointestinal tract. Inhalation of airborne spores from fungi such as Aspergillus, Alternaria, and Penicillium frequently leads to respiratory disorders like allergic rhinitis, allergic fungal rhinosinusitis, allergic asthma, allergic bronchopulmonary aspergillosis/mycosis. Cutaneous exposure to fungal allergens such as Trichophyton can provoke Id reactions, Malassezia and Candida, exacerbate atopic dermatitis or induce urticaria. Furthermore, fungal antigens may interact with the gut-associated immune system, potentially allergies. Antibody- and T-cell-mediated aggravating food hypersensitivity responses are central to these pathophysiological processes, with environmental influences and genetic predispositions modulating the intensity of allergic manifestations, especially in predisposed individuals. Despite the high prevalence of fungal-induced allergic diseases, precise diagnosis remains challenging due to the vast heterogeneity of fungal species and antigenic crossreactivity. Conventional diagnostic tools, such as skin prick tests and serum total and specific IgE assays, are limited by the lack of standardized fungal extracts and variability in antigenic specificity. This dual role of fungal exposure in infection and hypersensitivity underscores the need to deepen our understanding of the immunopathological mechanisms underlying fungal sensitization, identify specific fungal allergens, and elucidate the molecular pathways involved. These areas are essential for enhancing diagnostic accuracy and developing standardized fungal allergen extracts, thereby facilitating the management and treatment of fungalinduced allergic conditions.

INTRODUCTION

Fungi represent a diverse group of eukaryotic organisms, encompassing micro- and macroorganisms which include yeasts, moulds and mushrooms. They are among the most widely distributed organisms on Earth. While an estimated 1.5 million species of fungi exist, only approximately 60,000 have been formally described. Most fungi are beneficial to humans and play integral roles in everyday life, being extensively utilized in fermentation and pharmaceutical industries despite their potential for pathogenicity. During the last decades, the incidence of fungal diseases has increased. Approximately 800 fungal species have been reported to cause diseases in humans and animals, resulting in a spectrum of clinical presentations that range from asymptomatic colonization and allergic reactions to superficial and life-threatening invasive infections.

The public health impact of fungal-related diseases needs to be adequately addressed. With changes in the living environment and human lifestyles, the World Allergy Organization estimates that allergic diseases impact 30-40% of the global population and have been categorized as experiencing a health concern, imposing a substantial burden on healthcare resources [80]. Fungi are one of the significant sources of sensitization involved in allergic diseases, with estimates of affecting approximately 3-10% of the global population, 20-30% of atopic individuals, and up to 80% of asthma patients [81, 82]. Meanwhile, emerging evidence suggests that fungal disease incidence and geographic distribution are expanding due to global warming and increased international travel and trade. It is estimated that nearly a billion people worldwide suffer from dermatomycoses (fungal infections of the skin, hair, and nails), and that over 300 million individuals of all ages experience serious fungal infections annually. Alarmingly, it is estimated that over 1.5 million of the latter patients succumb to their fungal diseases [83, 84]. In the late 2022s, the World Health Organization (WHO) published a first list of fungal priority pathogens, highlighted fungi of critical or high importance to human health, and called for improved surveillance, research and innovation and public-health interventions [85].

Hence, it is necessary to comprehend the dual roles of fungi in developing allergic diseases and infections. This review aims to elucidate the current understanding of the etiology and pathogenesis of these conditions, with a specific focus on allergic sensitization, fungal allergens, allergenic mechanisms, and their clinical relevance to respiratory and cutaneous allergic diseases. Additionally, it addresses the allergic cross-reactivity between fungi and food, highlighting the urgent need to enhance diagnostic precision and develop standardized fungal allergen extracts. Such advancements are crucial for the improved management and treatment of fungal-associated allergic conditions.

Hypersensitivity and infection

Fungi are ubiquitous, both in vivo and in vitro, and interact with humans through inhalation, ingestion, skin contact, and colonization daily. Exposure to high levels of fungi can pose a health threat to humans, leading to fungal hypersensitivity or infections, with certain fungi capable of causing both disorders simultaneously. Fungal infection is caused by the invasion and colonization of host tissues by fungi, where the fungi grow and reproduce within the host. Clearing the infection requires a direct immune response, and infections can become systemic, especially in immunocompromised individuals. Fungal allergy, not due to the invasion of host tissues but rather a response to fungal allergens, is an abnormal or exaggerated reaction to exogenous stimuli which involves various types of hypersensitivity reactions engaging antibodies, immune cell-mediated, tissue-driven, or metabolic mechanisms, and may result in the development of respiratory, skin, eye, gastrointestinal and other symptoms. Hypersensitivity is an undesirable, uncomfortable or damaging response arising from a tissue cell dysfunction or immune system overreaction [86]. According to the damage response framework theory [87], pathogenesis of microorganisms is considered the outcome of hostmicroorganism interactions. Disease arises when host damage disrupts homeostasis, and different immune states determine the occurrence and nature of the disease. The allergenic proteins of fungi can induce sensitization, giving rise to a broad spectrum of responses such as allergic respiratory disease, allergic rhinitis (AR), allergic fungal rhinosinusitis (AFRS), allergic asthma (AS), allergic bronchopulmonary mycoses (ABPM), hypersensitivity pneumonitis (HSP), cutaneous Id reaction, atopic dermatitis (AD), and urticaria. As fungi are complex eukaryotes, all forms of hypersensitivity reactions can lead to fungal allergies. A combination of different hypersensitivity reactions typically occurs, resulting in a mixed fungal allergy. A brief classification of the various types of hypersensitivity reactions in fungal sensitization and human allergic diseases is presented in Table 1.

2

Table 1. Types of hypersensitivity and relevant allergic diseases.

	Antibody-mediated reactions	d reactions		Cell-mediated reactions	tions		Tissue-driven mechanism
	Type I	Type II	Type III	Type IVa	Type IVb	Type IVc	Type V
Type of inflammatory response	Immediate response	Antibody- mediated cellular cytotoxicity reactions	Immune complex- mediated reactions	Th1 cell-mediated macrophage activation	Th2 cell-mediated eosinophilic inflammation	Cytotoxic T cell- mediated reactions	Barrier damage- mediated inflammation
Inflammation-	B-cell (IgE), ILC2, Inflammation- MCs, BAS, Th2	B-cell (IgM, IgG), NEU, M¢NK	B-cell (IgM, IgG), NEU, MφBAS, MCs, Platelets	МФ, ILC1, NK,Th1, Tc1	EOS, ILC2, MCs, BAS, NK-T, B-cell (IgE), Th2, Tc2	NEU, ILC3, Th17, Tc17	M¢, EOS, ILC, Th1, Th2, Th17
and factors	IL-4, IL-5, IL-9, IL-13	C-dependent cytotoxicity, ADCC	Immune complexes, complement	IFN-γ, TNF-α, granzyme B, perforines	IL-4, IL-5, IL-9, IL-13, IL-31, TSLP,	IL-17, IL-22, IL-23	TSLP, IL-25, IL-33
Fungal related allergic diseases	Fungal related AFRS, AS, ABPM, allergic Urticaria, FFAS, AR	Dermatophytid, ABPA	АВРМ, HSP	HSP, Dermatophytid	AFRS, KC, Dermatophytid	AD, Dermatophytid AFRS, AS, AD	AFRS, AS, AD

lymphocyte; BAS, basophil; EOS, eosinophil; IFN-y, interferon-gamma; Ig (E, G, M), immunoglobulin (type E, G, M); IL, interleukin; ILC1/2/3, innate lymphoid cells Allergic bronchopulmonary aspergillosis; FFAS, Fungal food allergy syndrome; AD, Atopic dermatitis; ADCC, antibody-dependent cellular cytotoxicity; B, Btype 1/2/3; Мф, macrophage; МСs, mast cells; NEU, neutrophil; NK, natural killer cell; NK-T, natural killer T-cell; Tc1/2/17, T-cytotoxic lymphocyte type 1/2/17; Th, AR, Allergic rhinitis; AFRS, Allergic fungal rhinosinusitis; AS, Allergic asthma; HSP, Hypersensitivity pneumonitis; ABPM, Allergic bronchopulmonary mycosis; ABPA, T-helper lymphocytes; TNF- α , tumour necrosis factor-alpha; KC, kerion celsi.

There is considerable uncertainty regarding the factors determining the relationship between fungal exposure and the development of hypersensitivity reactions or infection. In broad terms, fungi can be classified as either thermotolerant or non-thermotolerant. The latter, such as many species of *Alternaria* and *Cladosporium*, have an optimal growth temperature of 18–22°C and cannot grow at body temperature, thus rarely causing infection but often triggering allergic responses. Thermotolerant fungi, such as *Aspergillus*, *Candida*, and *Mucorales*, exhibit optimal growth within a temperature range of 20–50°C; this adaptability to both environmental and body temperatures supports their potential to colonize the respiratory system, increasing the risk of sensitization and infection [88].

To date, over 30 fungal genera have been identified as producers of allergens [82], primarily belonging to Ascomycota (e.g., Alternaria, Aspergillus, Candida, Penicillium, and Trichophyton), Basidiomycota (e.g., Malassezia, Trichosporon, Ustilago, and Rhodotorula), and Mucorales (e.g., Mucor and Rhizopus). Moreover, members of approximately 60 genera belonging to the above three phyla are implicated in developing fungal infections. Dermatophytes (including Trichophyton, Microsporum, and Epidermophyton) and Malassezia species primarily cause superficial infections. Notably, species such as Candida albicans, Can. auris, Can. glabrata, Can. krusei, Can. tropicalis, and Can. parapsilosis, Aspergillus fumigatus, Cryptococcus neoformans, C. gattii, and Pneumocystis jirovecii are responsible for more than 90% of reported deaths due to invasive fungal diseases, representing half of the fungi in the WHO fungal priority pathogens list [89, 90]. A typical example of patterns of fungus-host interaction can be observed in the thermotolerant fungus Asp. fumigatus (Figure 1). This fungus can cause allergic diseases of the upper and lower airways, chronic pulmonary aspergillosis, and Aspergillus bronchitis in non-immunocompromised individuals, as well as invasive infections in immunocompromised individuals [91]. However, another medically relevant species, Can. albicans, which is a thermotolerant commensal and a common cause of IgE sensitization, does not appear to induce the same disease pattern as Asp. fumigatus [92]. Malassezia, another skin-resident colonizer, is not thermotolerant but equally capable of causing superficial fungal disease and skin sensitization liberating allergens; the reasons for this discrepancy are unclear. Trichosporon asahii is a basidiomycetous yeast-like fungus that causes severe disseminated disease in patients with neoplastic disease. It is also the most common allergen-causing summer-type HSP in Japan (Walsh et al., 1986; Matsunaga et al., 2003).

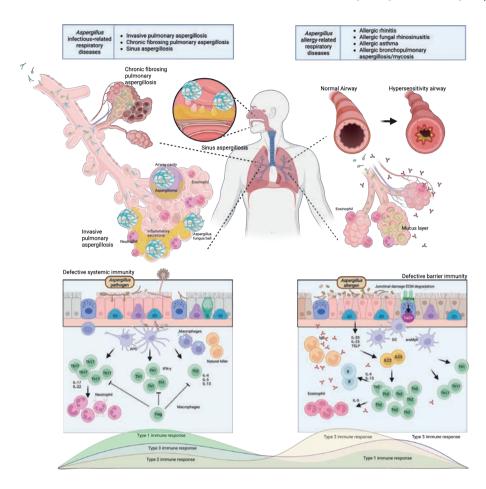


Figure 1. Example of fungus-host interactions involving inhaled Aspergillus in humans' hypersensitivity reactions and infections. Aspergillus-related respiratory diseases and immune responses. The left panel illustrates infection-related respiratory diseases (e.g., invasive pulmonary aspergillosis, chronic fibrosing pulmonary aspergillosis, and sinus aspergillosis) due to Aspergillus invasion. The right panel shows allergy-related respiratory diseases (e.g., allergic rhinitis, allergic fungal rhinosinusitis, allergic asthma, and allergic bronchopulmonary aspergillosis) triggered by Aspergillus allergens. The gradient at the bottom reflects the dominance of Type 1, Type 2, and Type 3 immune responses in various Aspergillus-related respiratory conditions.

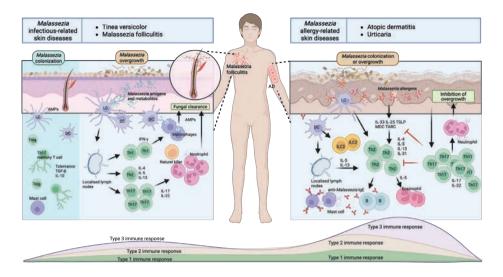


Figure 2. Example of fungus-host interactions with commensal cutaneous Malassezia involved in hypersensitivity reactions and infections in humans. Malassezia-related skin diseases and immune responses. The left panel represents infection-related skin diseases (e.g., pityriasis versicolor and Malassezia folliculitis) caused by Malassezia colonization or overgrowth. The right panel represents allergy-related skin diseases (e.g., atopic dermatitis and urticaria) characterized by Malassezia allergen-induced immune activation. At the bottom, the gradient indicates the relative activation of Type 1, Type 2, and Type 3 immune responses across different Malassezia-related skin disease scenarios.

Fungal allergens

Most allergens are proteins or glycoproteins with molecular weight ranging from 5,000 to 100,000 Da, although polysaccharides and low-molecular-weight substances may also exhibit allergenic properties. Fungi are considered complex sources of allergens, with their allergenic molecules located in spores and mycelia. The WHO and the International Union of Immunological Societies (WHO/IUIS) maintain the primary allergen database in the field of allergies, which currently contains 120 component allergens from 31 different fungal species (https:// allergen.org/). Among these, 95 belong to ascomycetous species, 23 to basidiomycetes, and two to Mucorales (Table 2). The order Eurotiales includes 55 allergens from Aspergillus (n = 38) and Penicillium (n = 17), and the order Pleosporales comprises 18 allergens from Alternaria (n = 12), Epicoccum (n = 1), Ulocladium (n = 1), and Curvularia (n = 4) species. The basidiomycetous yeast Malassezia accounts for 13 allergens, and the ascomycetous yeast Candida contains three allergens. Compared with the increased number of allergens from plant and animal sources, the number of fungal allergens has remained relatively static, except in 2009, when 23 new fungal allergens were added to the database [93].

Fungal allergens have historically received little attention, mainly due to their undetermined regional and seasonal distribution, which complicates establishing a clear association with disease exposure. Furthermore, the allergenic potential of sensitizing fungi is complex. Fungi inherently exhibit variability, and different strains, culture media, growth temperatures, and culture durations, and various extraction methods can influence the allergenicity of extracts. Furthermore, different antigenic determinant clusters may exist within the same fungal species, and cross-reactions of allergens can directly impact the accurate identification of the actual allergen. Moreover. fungi can induce diverse allergic reactions simultaneously.

Allergic cross-reactivity is widely observed among fungal species, stemming from structural similarities in exposed surface areas that form allergen epitopes. Generally, the closer the taxonomic affinities between species, the larger the degree of structural and immunological similarity between the allergens – although some allergens are specific to certain species, genera, or families. For example, the primary fungal allergen Asp f 2 of Aspergillus fumigatus, a cell wall-associated extracellular protein, is considered a genus-specific allergen, with homologous, cross-reactive molecules found in other species of the genus Aspergillus. Alt a 1 is a family-specific major allergen for the common outdoor mould Alternaria alternata, and more than 80% of Alternaria-allergic patients are sensitive to this allergen. Allergic cross-reactivity has been observed in closely related species, such as Stemphylium botryosum and Ulocladium chartarum, which belong to the same family Pleosporaceae. Allergens cross-reactive with Alt a 1 are absent from the more distantly related allergen sources, such as members of genera Cladosporium and Aspergillus. Interestingly, allergic cross-reactivity between Alt. alternata allergens and food allergens, such as with edible mushrooms and spinach, has been reported as Alternaria-spinach syndrome [94]. Selected fungal allergens and allergic cross-reactivity data are shown in Table 2.

 Table 2. Fungal allergens and cross-reactivity.

Species	Number allergens	Selected example of allergen	Protein type	Potential cross-reactive allergens	Relevant allergic diseases	Relevant infectious diseases	Major infectious virulence factors
Alt. alternata,		Alt a 1	Glutathione-S- transferase	Glutathione-S- Alt b 1 <i>Alt. brassicicola</i> transferase a.o.Ulo c 1 <i>Ul. chartarum</i>			
Alt. chrysanthemi,		Alta 3	HSP 70	Pen c 19 <i>P. citrinum</i> Mala s 10 <i>M. sympodialis</i>		Paranasal sinusitis (Didehdar et al.,	Tripeptidyl-peptidase 1,TSPc domain-
Alt. Alt. carotiincultae,	12	Alt a 8	Mannitol dehydrogenase	Cla h 8 <i>Cl. herbarum</i>	AR, AS	2021),Ocular infections (Colosi et al., 2023),	containing protein, thick cell wall, toxins,
Alt. oregonensis, Alt. sonchi, Alt. tenuissima		Alt a 15	Vacuolar serine protease	Curl 4 Cu. lunataCla h 9 Cl. Herbarum a.o.Pen o 18 P. oxalicum a.o.Tri r 2 T. rubrum (Abel-Fernandez et al., 2023)		(Jub) curamedus infections (Ando & Takatori, 1987)	proteases, enzymes, ROS (Strader et al., 2024)

Table 2. (continued)

Species	Number allergens	Selected example of allergen	Protein type	Potential cross-reactive allergens	Relevant allergic diseases	Relevant infectious diseases	Major infectious virulence factors
		Asp f 3	Peroxysomal protein	Mala f 3 M. furfurPen c 3 P. citrinum			
Asp. fumigatus,		Asp f 6	Mn superoxide dismutase	Mala s 11 M. sympodialisPsi c 2 P. cubensis		Pulmonary	Afmp1, Hydrophobic protein Rod A,
Asp. flavus, Asp. niger, Asp.	38	Asp f 8	Ribosomal protein P2	Cla h 5 <i>Cl. herbarum</i> Alt a 5 <i>Alt. alternata</i>	AR, ABPM, AS, HSP	aspergillosis (Seif et al., 2022)Sinusitis (Singh et	runiagiiiii, Gliotoxin,Helvolic acid, Fumigaclavin C,
ang control of the co		Asp f 22	Enolase	Pen c 22 <i>P. citrinum</i> Alt a 6 Alt. alternataCla h 6 Cl. herbarum(Abel-Fernandez et al, 2023; Strader et al., 2024)		dt, 2015 <i>)</i>	Asp-hemolysin (Gu et al., 2021)
Can. albicans, Can. boidinii	м	Cand a 3	Peroxysomal protein	Asp f 3 <i>Asp. fumigatus</i> Pen c 3 <i>P.citrinum</i> (Fukutomi & Taniguchi, 2015)	AD, AS	Candidiasis (Villar & Dongari-Bagtzoglou, 2021; Lu et al., 2023)	Hsp 90 (Robbins & Cowen, 2023)Adhesin and invasin in Als and Hwp1 families (Lopes & Lionakis, 2022)

Table 2. (continued)

Species	Number allergens	Selected example of allergen	Protein type	Potential cross-reactive allergens	Relevant allergic diseases	Relevant infectious diseases	Major infectious virulence factors
		Cla h 5	Acid ribosomal protein P2	Alt a 5 Alt. alternataAsp f 8 Asp. fumigatusFus c 1 F. culmorum			
Cl. herbarum, Cl. cladosporoides	10	Cla h 6	Enolase	Alt a 6 Alt. alternataAsp f 22 Asp. fumigatusCur l 3 Curvularia lunata	AD, AS, Urticaria, HSP	Keratitis(Pritchard & Muir, 1987)Cutaneous infection	,
		Cla h 12	Acid ribosomal protein P1	Alt a 12 Alt. alternata(Abel-Fernandez et al., 2023; Strader et al., 2024)			
		Cur l 2	Enolase	Alt a 6 Alt. alternata			
Cu. lunata	4	Cur l 3	Cytochrome C	Asp f 22 Asp. fumigatusPen c 22 P. citrinum(Abel-Fernandez et al., 2023; Strader et al., 2024)	AR, AS	Respiratory tract,cutaneous, corneal (Carter & Boudreaux, 2004)	_
E. purpurascens	-1	Epi p 1	Serine protease	Cur I 1 <i>Cu. lunata</i> (Simon- Nobbe et al., 2008)	HSP, AS	Cerebral (Charron et al., 2022)Sepsis after transplant(Suchitra et al., 2012)	,

Table 2. (continued)

Species	Number allergens	Selected example of allergen	Protein type	Potential cross-reactive allergens	Relevant allergic diseases	Relevant infectious diseases	Major infectious virulence factors
F. culmorum, F. solani	4	Fus c 2	Thioredoxin- like protein	Cop c 2 <i>Coprinus</i> <i>comatus</i> (Mari et al., 2009)	AS, FFAS	/	RodA protein, Homolog of ceruloplasmin, PacC/ Rim 1 (Abbondante et al., 2023)
P. citrinum, P. chrysogenum, P. oxalicum	17	Pen c 13	Alkaline serine protease HSP 70	Pen c 2 P. citrinumAsp f 13 Asp. fumigatus Alt a 3 Alt. alternataMala s 10 M. sympodialis(Abel- Fernandez et al., 2023; Strader et al., 2024)	AR, ABPA, AS	Urinary tract (Perry, 1964)Pulmonary (Zhao et al., 2020)Endophthalmitis (Garg et al., 2016)	
T. rubrum, T. mentagrophytes	4	Tri r 2 Tri t 4	Secreted alkaline protease Alp 1 Serine protease	Alt a 15 Alt. alternataCur I 4 Cu. Lunata Asp f 13 Asp. fumigatusCla c 9 Cl. cladosporioides (Mari et al., 2009; Abel-Fernandez et al., 2023; Strader et al., 2024)	AR, AS	Tinea corporisOnychomycosis (Deng et al., 2023)	Keratinolytic enzyme (Nenoff et al., 2014)

Table 2. (continued)

Species	Number allergens	Selected example of allergen	Protein type	Potential cross-reactive allergens	Relevant allergic diseases	Relevant infectious diseases	Major infectious virulence factors
7 · · · · · · · · · · · · · · · · · · ·		Mala f 3	Peroxysomal membrane protein	Asp f 3 Asp. fumigatusPen c 3 P. citrinum		4: 6: 27: 11: 6:	Aspartyl protease
sympodialis	13	Mala s 13	Thioredoxin	Asp f 28 Asp. fumigatusCop c 2 Coprinus comatus(Mari et al., 2009; Strader et al., 2024)	AD, Urticaria	FoliculityFryfiasis (Pedrosa et al., 2014)	(Gon et al., 2022) SMG1 (Guo et al., 2015)
Rhizopus oryzae	2	Rhi o 2	Cyclophilin	Mala s 6 <i>M.</i> sympodialisAsp f 27 Asp. fumigatus (Mari et al., 2009)	АВРМ	Mucormycosis (Ervens et al., 2014)	CotH2(lbrahim et al., 2012)CotH3 (Gebremariam et al., 2014)

a.o., and other members of the same genus; Alt., Alternaria; Asp., Aspergillus; Can., Candida; Cl., Cladosporium; Cu., Curvularia; E., Epicoccum; F., Fusarium; M. Malassezia; P., Penicillium; T., Trichophyton.

Fungal allergy and host immune mechanism

Fungal sensitization has been associated with hypersensitivity reactions, with variable levels of evidence available to link types of fungi with clinical conditions. The fungal cell wall is essential for growth and survival and is essential for cell viability, morphogenesis, and pathogenesis. The cell wall must be robust but flexible, protective and shielded yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Its composition must be highly regulated in response to environmental conditions and imposed stresses. The cell wall is mainly composed of polysaccharides (https://www.sciencedirect.com/topics/agriculturaland-biological-sciences/polysaccharide), such as glucans (β - and α -linked), chitin (h ttps://www.sciencedirect.com/topics/pharmacology-toxicology-and-

pharmaceutical-science/chitin), chitosan, mannan, and galactosaminogalactan [95, 96], which induce innate and adaptive immune responses. The impairment of host epithelial barrier function due to microbial dysbiosis, resulting in biodiversity loss, a reduction of symbiotic organisms, and the colonization by opportunistic pathogens, is a prerequisite for initiating epithelial immune responses [97]. The nature of these immune responses varies depending on the location (e.g., skin, airways, intestines). For example, airway biopsies from patients with asthma reveal patchy disruptions in tight junctions and decreased expression of epithelial markers such as zonula occludens-1 (ZO-1), E-cadherin, and α -catenin [98]. AR patients exhibit reduced transepithelial resistance, increased permeability to FITC-dextran 4 kDa, and decreased expression of claudin and ZO-1, both in vitro and in vivo. In AD patients, genetic and/or acquired epidermal barrier dysfunction plays a critical role in the pathogenesis. In the skin of patients with chronic urticaria, genes associated with terminal epidermal differentiation and barrier function are overexpressed compared to healthy control skin [99], where increased filaggrin expression reduces skin barrier formation through the activation of histamine receptor 1 [100]. These disruptions in skin barriers facilitate the penetration of microbial allergens into the skin and promote allergic sensitization. Fungal allergens, including proteases, protease activity receptors, glucans, and membrane receptors, chitosanases, glycosidases, ribosomes, mycotoxins, and volatile organic substances, can cause mainly type I, III, and IV allergic reactions [101-103]. Innate and adaptive immune responses can be categorized into three types based on the involvement of T-cells and innate lymphoid cells (ILCs). Type 2 immunity or allergic inflammation comprises innate and adaptive immune arms [104]. Adaptive type 2 immunity (Type IVb) is characterized by the induction of Thelper 2 (Th2) cells and B-cell class switch recombination towards IgE antibodies that bind to FceR1 on mast cells (MCs) and basophils (BAS), resulting in anaphylactic reactions upon secondary exposure to allergen.

Table 3 . The difference of inflammatory mechanism in different type 2 inflammatory diseases and the main targeted therapeutic drugs

Location of Involvement	Diseases	Key inflammation-related cells and factors	Major targeted biologics
Upper	AR	B cell (IgE), MCs, BAS, IL-4, IL-5, IL-9, IL-13	Dupilumab, Omalizumab (Wise et al., 2023; Zhang et al., 2022)
respiratory tract	AFRS	B cell (IgE), ILC2, MCs, BAS, Th2, IL-4, IL-5, IL-13	Benralizumab, Dupilumab,Omalizumab (Chua et al., 2023; Luong et al. 2022)
	AS	B cell (IgE), EOS, ILC2, EOS, Th2, IL-4, IL-5, IL-9, IL-13, TSLP, IL-25, IL-33,	Benralizumab, Etokimab, Omalizumab, Reslizumab, Tezepelumab, Tralokinumab (Breiteneder <i>et al.</i> , 2024; Caminati <i>et al.</i> , 2024)
Lower respiratory tract	ABPA / ABPM	B cell (IgM, IgG), MC, EOS, Mφ, NEU, BAS, NK, Th2, IL-4, IL-5, IL-9, IL-13, IL-31, TSLP	Benralizumab, Dupilumab, Mepolizumab, Omalizumab, Tezepelumab (Agarwal <i>et al.</i> , 2024)
	HSP	B cell (IgM, IgG, CD20+), NEU, MφBAS, MCs, Platelets, ILC1, NK,Th1, Tc1, IFN-γ, TNF-α	Rituximab (Morisset <i>et al.</i> , 2017; Ferreira <i>et al.</i> , 2020)
Chia	AD	Μφ, EOS, ILC2, Th1, Th2, Th17, IL-4, IL-5, IL-13, IL-33, IL-17, TSLP, IL-25, IL-33	Abrocitinib, Baricitinib, Dupilumab, Etokimab, Ligelizumab, Nemolizumab, Tralokinumab, Upadacitinib(Müller <i>et al.</i> , 2024)
Skin	Urticaria	B cell (IgE), MCs, Мф, BAS, Th2, IL-4, IL-17	Barzolvolimab, Dupilumab, Fenebrutinib, Ligelizumab, Omalizumab, Remibrutinib, Tezepelumab (Casale <i>et al.</i> 2022; Kolkhir <i>et al.</i> , 2022; Paller <i>et al.</i> , 2024)
Digestive tract	FFAS	Th2, IgE, IL-4, IL-13, IL-33	Acalabrutinib, Dupilumab, Etokimab, Omalizumab(Sindher <i>et al</i> . 2022)

Type 2 immunity is intricately linked to fungal sensitization and predominantly involves two signaling pathways [105]: (i) Following fungal exposure, antigen-presenting cells migrate to regional lymph nodes, process and present antigens to naive CD4⁺ T-cells, thereby initiating their activation and differentiation into Th2 cells, which subsequently secrete type 2 cytokines, including interleukin (IL)-4, IL-5, and IL-13; (ii) Fungal allergens stimulate epithelial cells to release IL-33, IL-25, and

thymic stromal lymphopoietin (TSLP), which activate ILC2, promoting Th2 cell differentiation and the secretion of type 2 cytokines. IL-4, IL-5, and IL-13 affect Bcells, EOS, BASs, MCs, and macrophages (M\u03c4s), resulting in eosinophilic inflammation, goblet cell hyperplasia, and airway remodeling, among other pathological alterations (Figure 1-2). Table 3 lists the difference of inflammatory mechanism in different type 2 inflammatory diseases and the main targeted therapeutic drugs.

Innate immune responses to fungal allergens

The innate immune system is critical for proper host defense against opportunistic pathogens. Innate cells, e.g., Mos, neutrophils (NEUs), dendritic cells (DCs), and eosinophils (EOS) are equipped with an intricate cell machinery to detect fungi and facilitate killing, to recruit additional immune cells, and to direct the adaptive immune responses [106, 107]. Additionally, the innate immune system is well equipped to recognize invaded fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). Several families of PRRs are grouped according to phylogeny, structure, and function. Toll-like receptors (TLRs), C-type lectins (CLRs), nod-like receptors (NLRs) and RIG-I-like receptors (RLRs) are the critical families involved in antifungal immunity. Innate immune cells recognize the different components of the fungal cell wall and release pro-inflammatory factors that vigorously promote Th2 cell-mediated reactions, thereby exacerbating hypersensitivity symptoms.

β-Glucan is an essential molecule for the recognition of fungi by the immune system. Evidence indicates that persistent exposure to β -(1,3)-glucan can lead to respiratory allergic symptoms and airway inflammation. Signaling through Dectin-1, the receptor for β -glucan, triggers a pathway that exists in a Sykindependent manner, and Raf-1 kinase activation leads to the activation of an alternative pathway of NF-κB through the NF-κB subunit RelB, which regulates cytokine production and Th differentiation characteristics (Gringhuis et al., 2009). NF-κB has been shown to attach to two enhancer sites in the IL-4 motif and to contact nuclear factor-activated T cells (NFAT) to stimulate their induction, in addition to being involved in the expression of GATA3, a significant regulator of Th2 differentiation. Zhang et al. [108] reported that fungal exposure enhanced allergendriven Th2 cell-mediated response, promoting severe AS, which was independent of fungal sensitization and could be reconstituted with β -glucan and abrogated by neutralization of IL-17A, especially in severe steroid-resistant asthma. β-(1,3)-glucan comprises a group of polysaccharides with a natural origin in fungi but also in plants, bacteria, algae, mites, etc. Recently, Kanno et al. [109] reported that plants containing β-(1,3)-D-glucan in Japanese cedar pollen could act as adjuvants for allergen-specific IgE production via Dectin-1. β-(1,3)-glucan is frequently detected in house dust mite (HDM) feces. Hadebe et al. [110] reported that highly purified βglucan exacerbated HDM-induced eosinophilic, Th2 cell-mediated airway responses by acting as an adjuvant, promoting activation, proliferation, and polarization of HDM-specific T-cells (1-Derβ T-cells). Oluwole et al. [111] examined the association between indoor endotoxin and β-(1,3)-D-glucan exposure and asthma severity in children. The authors reported that higher mattress endotoxin concentrations were associated with increased odds of moderate/severe asthma, whereas higher β -(1,3)-D-glucan loads in play areas were inversely associated with moderate/severe asthma. However, a higher β -(1,3)-D-glucan concentration was not associated with a lower forced vital capacity (FVC) or forced expiratory volume in 1 second (FEV1). The effects of different types of β -glucans, exposure routes and exposure times on allergies remain unclear and need further study.

Chitin is an essential cell wall component of all pathogenic fungi and affects protozoa, arthropods, and nematodes. Fungal chitin is a linear polymer composed of N-acetylglucosamine residues linked by β-(1,4)-glycosidic bonds. Chitin is known to act as a potential allergy-promoting pathogen-associated molecular pattern (PAMP) that elicits strong innate immune responses, as well as an immune adjuvant that enhances the adaptive immune response [112-114]. Previous studies have shown that the size of the chitin particles is important for the type of response elicited by the immune system. Particle sizes above 70 µm do not appear to be immunogenic, whereas large particles (>40-70 μm) have been reported to induce a classical Th2 'allergic' response. Chitin particles were shown to induce innate eosinophilic infiltration into the lungs of mice mediated by the release of epithelial cell-derived cytokines, such as TSLP, IL-25, and IL-33, with subsequent activation of innate ILC2s. Small particles (≤40 μm, especially 1-10 μm) induced protective Th1 and anti-inflammatory responses. Research has shown that intravenous administration of fractionated chitin particles (1–10 μm) into the lung activates alveolar M ϕ s to express cytokines such as IL-12, tumour necrosis factor (TNF)- α , and IL-18, leading to INF-γ production mainly by natural killer cell (NK) [115, 116]. Humans with AS sensitized to fungi often have more severe symptoms than those who are not sensitized. Cell wall chitin has been implicated as a pathogenic factor in AS. Ellis et al. [117] demonstrated that chronic exposure to fungal chitin alone cannot modulate lung function, even in the presence of differential lung chitinase activity. Chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in mice deficient in AMCase (Chia^{-/-}) and overexpressing AMCase (SPAM) is directly correlated with the level of chitinase activity during chronic fungal exposure [117]; however, chronic exposure of normal

mice to purified Asp. fumigatus chitin resulted in only moderate inflammatory changes in the lungs that were not sufficient to induce airway hyperreactivity (AHR). Moreover, despite dramatic differences in chitinase activity, chronic exposure of Chia^{-/-}and SPAM mice to purified Asp. fumigatus chitin likewise did not modulate AHR.

Proteolytic enzymes play roles in fungal physiology and development. Proteases such as extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. Research has shown that proteases act as pathogenic agents in fungal infection and in allergic disorders. Proteases from fungi induce inflammatory responses by altering the permeability of the epithelial barrier and by inducing proinflammatory cytokines through proteaseactivated receptors (PARs), which are components of the innate immune response that are modulated by proteolytic activity and are involved in potentiating Th2 responses. A recent study revealed that the fungal allergen Asp f 13 damaged airway epithelial tight junctions and E-cadherin [118]. In bronchiolar club cells, a distinct subset of epithelial cells, this junction injury triggered a calcium influx sensed by the mechano-sensor TRPV4, leading to allergic inflammation [119]. Fungal protease allergens can selectively promote the fibrinogen cleavage product-TLR4 axis [120]. Activated and/or damaged epithelium produces intracellular ROS, leading to the release of an extensive collection of proinflammatory cytokines (IL-6, GM-CSF, TSLP, and IL-25), Damage-associated molecular patterns (IL-1α, IL-33, Uric acid, and ATP) and chemokines (CCL2) which activate ILC2 and cDC2 cells. IL-4 produced by activated ILC2s initiates Th2 differentiation. The production of IL-4, IL-5, and IL-13 by Th2 cells and ILC2s induces the production of allergen-specific IgE, the associated sensitization/degranulation of BAS/MCs, and EOS recruitment. The contact of protease allergens with immune cells, facilitated by the epithelial barrier degradation, allows the cleavage of surface receptors on these target cells, optimizing the Th2-biased inflammatory response. Matrix metalloproteinases (MMP) are other protein hydrolases that play important roles in various physiological and pathological processes, regulating host barrier function, inflammatory cytokine and chemokine activity, and the production of chemokine gradients. Excessive activity of MMP-2 and MMP-9 may contribute to the bronchial wall in the late stages of allergic airway inflammation and abnormal tissue remodeling with adverse effects. MMP-2-deficient mice had significantly increased numbers of inflammatory cells in the lungs and higher levels of Th2 cytokine expression compared to allergic wildtype mice. Greenlee et al. found that MMP-2 cleaves and produces fragments of Th2 chemokines, including CCL7, CCL11, CCL17, MCP-3, eosinophil chemokine-1, and thymic and activation-regulated chemokines (TARC), which play critical roles in

inducing allergic inflammation under asthmatic conditions. In addition, matrix metalloproteinases affect macrophages' M1/M2 polarization.

In the list of allergens from the WHO/IUIS allergen database, more than 60 allergens are classified as proteases or peptidases based on their protein sequence/structural similarities with archetypal serine, cysteine, aspartic or metalloproteases. A limited number of allergenic sources contain protease allergens: HDMs, cockroaches, fungi, pollen, fruits, and bee venoms. Protease allergens, primary sensitizers with IgE binding frequencies higher than 50%, are usually stable and have abundant proteins in their allergenic sources. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system and the coagulation and fibrinolytic cascades [118, 121].

Adaptive immune responses to fungal allergens

At the beginning of the 21st century, the European Academy of Allergology and Clinical Immunology (EAACI), in an effort to standardize the nomenclature of provided a new classification of allergic and hypersensitivities, mediated by adaptive immune responses (allergen-specific antibodies or lymphocytes) and by other (innate) mechanisms, respectively [122]. The concepts have been continuously updated and are currently extended into nine types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII) [86]. In addition to innate immune responses, the adaptive immune mechanisms of fungal allergies include mainly type I (IgE-dependent reactions), type III (IgG/IgM-mediated hypersensitivity), type IV (T-cell-mediated), and type V (epithelial barrier defect) immune responses (Table 1), but a combination of different hypersensitivity reactions as a mixed type may appear in the clinical setting. Mould spores are among the classical allergens that initiate type I hypersensitivity, which may be responsible for allergic reactions in patients with AR, AS, AD, acute urticaria/angioedema, and food allergy. The IgEdependent allergies are Th2-driven. The Th2 branch of the adaptive immune system favors CD4⁺ Th2 cells, EOS, BAS, MCs, and type 2 innate lymphoid cells, as well as the production of cytokines such as IL-4, IL-5, IL-9, and IL-13 and humoral antibody responses of the IgE isotype [123]. Allergic reactions to ABPM and AFRS include types I, III and IV. The hallmark feature of both diseases is eosinophil infiltration into the airway mucosa caused by localized type 2 inflammation and concomitant viscid secretions in the airways. Patients may show a cutaneous hypersensitivity to specific allergens, specific IgE and IgG antibodies, and elevated total IgE levels.

Hypersensitivity pneumonitis is based on type III/IV allergic reactions to repeated inhalation of allergens and may lead to chronic disease with irreversible lung damage [124]. A type III hypersensitivity reaction involving immune complex deposition and subsequent inflammation, is suspected in the acute inflammatory phase. This is supported by increased serum IgG titers and lung NEUs on diagnostic testing. Chronic fibrosis, on the other hand, is thought to be due to a type IVcmediated immune response. Studies have indicated that the involvement of CD4⁺ cells, characterized by an increase in the CD4⁺/CD8⁺ ratio, plays a significant role in chronic fibrosis. Specifically, Th17 cells are implicated in this response, as the numbers seem to increase after antigen exposure. Genetic deletion and antibody depletion of IL-17 protects the lungs from fibrosis. Type IV (delayed-type) reactions involve interactions between memory T-lymphocytes, ILC, NK-T cells, EOS, and Mos. The classic clinical manifestation of the chronic phase of allergic pneumonitis in type IVa patients is mediated by memory Th1 and T-cytotoxic lymphocyte type cells (Tc1), leading to a type 1 (T1) response. Type IVb (type2, T2) reactions are mediated by Th2 cells, with the most typical presentation observable in AFRS, asthma, and AD, involving key players such as Th2, ILC2, Tc2, IgE, and effector cells. When IgE synthesis is triggered, type IVb and type I hypersensitivity reactions overlap in the final stages. Furthermore, type IVb and type V hypersensitivity reactions overlap in terms of epithelial cell activation, the disruption of the epithelial barrier, and the drainage of inflammation into the bronchial lumen. Type IVc (type 3, T3) reactions target extracellular fungi, characterized by Th17 cells producing cytokines from the IL-17 family, recruiting NEUs, and increasing the production of type 2 cytokines. In type IVc responses, Th17, Tc17, ILC3 and other IL-17A- and IL-17F-producing cells have been implicated in neutrophilic inflammation and the pathogenesis of AD, chronic rhinosinusitis with nasal polyposis and neutrophilic asthma. Approximately 50% of patients with AD have a dysregulated humoral response to Malassezia, characterized by elevated Malassezia-specific IgE. Sparber et al. [125] demonstrated that specific CD4⁺ T-cells against Malassezia in healthy human hosts belong predominantly to the Th17 subpopulation and that, in a mouse model of AD, Malassezia selective Th17 polarization of CD4⁺ T-cells specific for *Malassezia* controls cutaneous *Malassezia* over-proliferation and promotes an inflammatory response in barrier-damaged skin via the IL-23/IL-17 axis. In addition to IL-17- and IL-22-producing T cell subsets, an increase in type 2 responses was also observed. Type V hypersensitivity involves immune dysregulation due to epithelial barrier defects and microbial dysbiosis, including extensive activation of T1, T2, and T17 responses and the loss of regulatory T-cells (Tregs), regulatory B-cells, and innate lymphoid cells.

In the context of fungal infections, successful host clearance of fungi and restoration of tissue homeostasis involves both Th1/Th17 type responses, whereas lymphokines produced by Th2 cells are generally characterized by an inability to clear fungal pathogens, accompanied by deleterious allergic inflammation. The two preferential activation pathways, Th1 or Th2, are considered antagonistic. In fact, it has been suggested that the Th2 subset tends to be activated in hosts with allergic reactions, leading to strong B cell stimulation and inefficient Mos activation. Fungi are evident inducers of type 2 inflammation, but it is unclear why this immune response pattern occurs specifically against such microbes. The most extensively studied fungal proteases, mannose-binding lectin and chitin, are associated with the induction of type 2 inflammation.

The role of helminth infections in the development of allergic diseases is another controversial topic. Helminths are potent modulators of the host type 2 immune response, which increases the risk of allergy. Producing a strong type 2 response has a genetic-evolutionary advantage in preventing helminth infections, and conversely, chronic helminth infections may reduce the prevalence of allergic diseases [126, 127]. A meta-analysis of 99,967 participants showed that helminth infections may increase the risk of bronchial hypersensitivity in children and allergies in adults [126]. The use of biologic therapies targeting type 2 inflammation, like anti-IL-5R antibody increases the risk of parasitic infections, especially worms [128]. The dramatic increase in the prevalence of allergies over a short period may be explained by environmental factors in genetically susceptible patients or epigenetic events, which indicate the importance of environmental factors in abnormal immune responses. The environments in which parasitic infections may occur, and unhygienic living conditions may also expose populations to a wide range of microorganisms such as fungi, which are abundant in the environment and may contribute to the regulation of inflammatory responses [129, 130]. This regulatory action may have an inhibitory effect on fungal-induced allergic diseases. For example, intestinal helminth infections may reduce the severity and incidence of fungal allergy by reducing the response to specific fungal allergens through the action of regulatory T-cells.

Fungal allergy-related respiratory diseases

Allergic rhinitis

Allergic rhinitis (AR) is a chronic inflammation of the nasal mucosa caused by IgEmediated reactions to aeroallergens. It is characterized by sneezing, a running nose, nasal congestion, and itching. The prevalence of AR has been steadily increasing for decades, and AR currently affects approximately 500 million individuals worldwide, significantly impairing the quality of life across all age groups and imposing a substantial socioeconomic burden [131]. The etiology of AR is not fully understood and is believed to be linked to genetic factors, lifestyle, climate change, and environmental exposures, with mould exposure being identified as one of the primary triggers [132]. Sensitization to fungal allergens is commonly observed in individuals with AR, particularly those with concurrent asthma, and is especially prevalent in perennial AR patients, with seasonal exacerbations peaking between April and November. This seasonal variation may play a crucial role in fungal sensitization to diseases, as fungi typically thrive in hot and humid environments during the summer and fall.

Multiple meta-analyses have indicated a significant association between fungal allergen exposure and the development and exacerbation of AR. Caillaud et al. [133] combined data from 11 meta-analyses, longitudinal studies, and birth cohorts and revealed a substantial relationship between mould exposure and AR, with an odds ratio generally exceeding 1.35. Ma et al. [134] conducted a cross-sectional study in northern China and identified mould allergy as an independent risk factor for adult AR and AR combined with asthma. Additionally, a comprehensive review categorized exposure to indoor mould as a class II environmental risk factor for AR, with highly suggestive evidence that was upgraded to convincing evidence in the children subgroup. Sio et al. found a significant association between sensitization to Curvularia lunata allergen and the risk of AR in a cohort of Singapore / Malaysia Chinese adults [135]. Sensitization to Aspergillus species was the most common fungal sensitization, with increasing specific-IgE (sIgE) titers against this allergen correlating with an elevated risk of AR and related symptoms. Studies in Türkiye and elsewhere have also reported associations between mould sensitization and the severity of AR, although other studies reported contradictory conclusions [136, 137]. Further research involving larger participant cohorts and comprehensive factors is necessary to conclusively establish the role of fungal allergens in AR and rhinitis severity.

The epithelial barrier disruption, which allows allergens to penetrate and initiate a type 2 inflammatory response, is a significant pathogenic factor in AR [131]. Alternaria, likely the most prevalent fungal allergen in AR, can induce or exacerbate AR by impacting the barrier function of nasal epithelial cells through the interaction of serine proteases or by increasing the production of reactive oxygen species [138]. Daines et al. [139] demonstrated that the activation of the epidermal growth factor receptor (EGFR) induced by Alternaria was responsible for epithelial inflammation. Furthermore, a systematic review revealed that several cellular

mechanisms, including PAR2, EGFR, ATP and IL-33 signaling, as well as oxidative stress, drive the allergic inflammatory response to fungal allergens in the respiratory epithelium [140].

Allergic fungal rhinosinusitis

Fungal rhinosinusitis encompasses a spectrum of diseases rather than a single distinct entity related to host immune status and is clinically categorized into non-invasive or invasive types [141]. Allergic fungal rhinosinusitis (AFRS) is diagnosed when the criteria defined by Bent and Khun are met [142, 143]. This disorder is considered a subset of non-invasive fungal rhinosinusitis and chronic rhinosinusitis with nasal polyps (CRSwNP) characterized by antifungal IgE sensitivity, eosinophil-rich mucus, and characteristic computed tomographic and magnetic resonance imaging findings of paranasal sinuses. It is estimated that 5–15% of chronic rhinosinusitis cases are related to fungal allergens, and AFRS accounts for 6–9% of fungal rhinosinusitis cases [144].

Predisposing factors for AFRS include host genetic diversity, structural abnormalities, geographic residence, and lower socioeconomic status [145]. HLA-DQB1*03 and HLA-DQB1*0302 have been identified as risk factors for AFRS and hypertrophic sinus disease [146]. Notably, bony erosion is a characteristic finding in AFRS, with a prevalence ranging from 20-56%, likely attributed to pressure from nasal polyps and eosinophilic mucin [147]. AFRS is frequently observed among individuals residing in arid and tropical regions with warm temperatures and high humidity, with a relatively high prevalence in the Americas, southern Asia, the Middle East, and Sudan. The causative fungi responsible for AFRS display substantial variation across different geographic regions. For example, Aspergillus species account for up to 96% of all AFRS cases in India, while dematiaceous fungi such as Alternaria, Bipolaris, Cladosporium, and Curvularia are more prevalent in the U.S.A. [148]. In Egypt, Aspergillus was detected in 42 out of 68 patients (61.7%) with AFRS, whereas Alternaria was isolated from only a single sample [149]. Interestingly, reports of AFRS in Japan have indicated that the basidiomycetous fungus Schizophyllum commune is one of the most common species (Inoue et al., 2019). Furthermore, a study in the U.S.A. revealed a significant difference in the prevalence of asthma between CRSwNP and AFRS, with 48.3% of CRSwNP patients and 23.6% of AFRS patients having AS symptoms confirmed by pulmonary function testing [150].

Although the exact pathogenic mechanisms of AFRS are not fully understood, the role of type I and type II hypersensitivity reactions to fungal antigens is

highlighted, being induced by multiple factors such as barrier dysfunction of nasal epithelial cells, congenital immune deficiency, fungal co-colonization, and bacterial superantigens. Fungi within the sinus cavities can upregulate type 2 immune responses, leading to the characteristic type I hypersensitivity, eosinophilic inflammation, and type 2 cytokine profiles associated with AFRS. Sun et al. [151] demonstrated that AFRS patients exhibit a defect in STAT3 activation, specifically limited to IL-6-dependent STAT3 phosphorylation, which is crucial for Th17/Th22 differentiation. This defect results in a local insufficiency of IL-17/IL-22 cytokines and deficient AMP expression within the diseased sinus mucosa of AFRS patients [151]. Furthermore, patients with AFRS display type I IgE hypersensitivity to fungi as well as other aeroallergens. Recent studies have reported that Alternaria alternata is a widespread fungal species in airway discharge, and the pathogenic hypersensitivity and inflammatory reactions correspond to the development of chronic rhinosinusitis, bronchial asthma, and AR [152]. The surfactant protein D is a natural defense peptide in the human nasal mucosa, which may have an essential role in fungal allergen-induced inflammation [153]. Alternaria allergens increase the secretion of surfactant protein by respiratory epithelial cells in patients with CRSwNP. Additionally, Dutre et al. [154] reported that Staphylococcus aureus coexisted with Aspergillus species within the sinuses of patients with AFRS, and nearly all subjects had serum IgE to Staphylococcus aureus enterotoxin superantigens, with levels correlating with total serum IgE levels. They hypothesized that Staphylococcus aureus might play a crucial role in AFRS by synergizing with or using of Aspergillus species to create a Th2 tissue signature.

Allergic asthma

Asthma is a prevalent, chronic inflammatory airway disease characterized by bronchial hyperresponsiveness, inflammation, and reversible airflow obstruction. Symptoms include recurrent wheezing, dyspnea, chest tightness, and cough. The condition is influenced by genetics, family history, socioeconomic status, infections, and various environmental factors [155]. Allergic fungal airway disease (AFAD) is a broad term encompassing allergic airway diseases caused or worsened by fungi [156]. Fungal AS can range from mild to severe, with extensive lung damage characterized by bronchiectasis. This includes various allergic fungal syndromes complicating asthma, such as asthma associated with fungal sensitization (AAFS), Aspergillus fumigatus-associated asthma (AFAA), severe asthma with fungal sensitization (SAFS), thunderstorm asthma, ABPA, and ABPM. Fungal sensitization is now recognized as an asthma attack trigger, which occurs in 3-10% of the healthy population and 7-20% of asthmatics, with prevalence rates as high as 35-75% in patients with severe asthma [157, 158]. Important allergenic fungi associated with asthma include Alternaria alternata, Cladosporium herbarum, Aspergillus fumigatus, and Penicillium and Trichophyton species [159].

Fungal sensitization rates may vary due to different exposure levels related to the local biome and climate. For example, an outdoor airborne fungal survey in Japan revealed that Cladosporium and Alternaria were the predominant genera, followed by Epicoccum, Aureobasidium, Curvularia, and Ulocladium. Indoor airborne fungal isolates in Japan were predominantly Cladosporium, Penicillium, Aspergillus section Restricti, and A. versicolor [160]. A multicenter study in seven European countries revealed that sensitization rates to Alt. alternata and Cladosporium herbarum varied between 3% and 20% in children and adults (n = 877) with asthma and / or rhinitis, with approximately 9.5% being skin prick positive to at least one or both fungal species [81]. A study from the U.S.A. found that 22% of patients were positive for at least one fungal allergen, with 13.7% positive for more than two fungal allergens [161]. Specific positivity rates were highest for Candida albicans, Alt. alternata, Stemphylium herbarum, and Asp. fumigatus. In another study, Agarwal et al. [157] estimated the prevalence of Aspergillus sensitization in adults with bronchial asthma from systematically reviewed literature. They reported that the prevalence of Aspergillus sensitization in asthma patients ranged from 1.6% to 73%, with a pooled prevalence of 25.1%. Studies from Sweden and Japan have shown varying rates of fungal sensitization in patients with severe asthma, with Aspergillus being a common sensitizing species [162, 163]. Additionally, atmospheric mould may also contribute to asthma exacerbations. Exposure of sufficient intensity and duration to moulds has been linked to the development of asthma and the worsening of pre-existing asthma [164, 165]. Additionally, Trichophyton, known as the causal pathogen of dermatophytosis, has been associated with more severe asthma in some studies, although its significance in asthma remains controversial [166, 167].

Thunderstorm asthma is defined as a sudden surge in acute asthma cases affecting a large population following a thunderstorm, attributed to elevated levels of airborne allergens [168]. Numerous studies have documented increased morbidity and emergency hospital visits for asthma following exposure to fungal spores during such events. Targonski et al. [169] demonstrated that asthma-related mortality in Chicago more than doubled on days with spore counts reaching 1,000 per cubic meter. A systematic review revealed that several studies reported a rise in the concentration of fungal aeroallergens during thunderstorm asthma outbreaks, suggesting that fungal spores are potential triggers [170]. Sensitivity to Alternaria has been identified as a risk factor for severe asthma attacks and epidemic asthma [169]. A study in England indicated that sensitivity to Alt. alternata was associated

with and could serve as a predictor of thunderstorm asthma [171]. Additionally, a recent study in Iran revealed that the genus Curvularia was significantly correlated with thunderstorm asthma outbreaks [172].

Fungal exposure has been strongly linked to the initiation, persistence, and exacerbation of asthma, although the underlying mechanisms have not been fully elucidated. Broadly speaking, three different mechanisms contribute to the worsening of asthma caused by mould exposure. (i) A mechanism involving nonthermotolerant fungi, such as Alt. alternata and Cladosporium species, whose spores or hyphal products act as allergens in atopic patients. Research by Liu et al. [173] demonstrated that treatment with rAlt a 1 alleviated asthma progression and regulated Th and Breg cells in an Alternaria-induced asthmatic mouse model. (ii) A second mechanism is associated with thermotolerant fungi such as Asp. fumigatus and Penicillium species, which can trigger a persistent IgE-driven eosinophilic inflammatory response leading to severe asthma. Fungal proteinases involved in SAFS can lead to the predominant activation of type 2 cells and subsequent synthesis of IL-4, IL-13, and IL-5. A phase 3 study (Liberty Asthma Quest) established the efficacy of dupilumab monotherapy in treating uncontrolled, moderate-tosevere asthma with fungal sensitization [174]. (iii) A third mechanism is associated with skin fungal infections, such as dermatophytosis caused by Trichophyton species, which can worsen asthma control through allergic cross-reactive T-cells. Limited evidence exists for this mechanism, although allergenic proteins from the genus Trichophyton have been identified to elicit immediate and delayed-type hypersensitivity skin reactions in different individuals [160].

Allergic bronchopulmonary aspergillosis / mycosis

Allergic bronchopulmonary mycoses (ABPM) are complex pulmonary disorders caused primarily by type I, III, and IV hypersensitivity reactions to fungi, which colonize the airways of patients with chronic lung diseases, particularly asthma or cystic fibrosis [175]. The term allergic bronchopulmonary aspergillosis (ABPA) is used when Aspergillus is the causative agent. In addition to Aspergillus, the most common fungi responsible for ABPM include Schizophyllum commune, and Bipolaris and Curvularia species [176, 177], with occasional cases involving Candida albicans [178] and Alternaria alternata [179].

Recently, the International Society for Human and Animal Mycology (ISHAM) published the revised diagnostic criteria for ABPA/ABPM [177], which require consideration in patients with predisposing conditions or a compatible clinicalradiological presentation. Essential components include documenting sensitization to the implicated fungus (using fungus sIgE) and demonstrating immunological activity (elevated serum total IgE). Additional features such as fungal-specific IgG, peripheral blood eosinophilia, and consistent imaging confirm the diagnosis. The Japan ABPM Research Program also proposed a new 10-component diagnostic criterion for ABPA/ABPM [175], demonstrating improved sensitivity and specificity compared to existing criteria. Sensitivity rates for pathological ABPM using different criteria were 25.3%, 77.2%, and 96.2% for Rosenberg-Patterson, ISHAM, and the new criteria, respectively. For physician-diagnosed ABPA/ABPM, the sensitivity rates were 49.2%, 82.7%, and 94.4%, and for culture-positive non-Aspergillus fungi ABPM cases, the rates were 13.0%, 47.8%, and 91.3%, respectively.

The etiology of ABPA/ABPM is multifaceted and remains speculative. The initial step in developing of ABPA/ABPM involves the germination of inhaled fungal conidia in the lower airway lumen. For conidia to germinate in the bronchi, the fungi must be thermotolerant, and their conidia must be small enough to reach the lower airways. Proteases and pathogen-associated molecular patterns of fungi subsequently induce various immune responses. Specific genetic factors related to innate and adaptive immunity, including surfactant protein A2, TLR9, TLR10, human leukocyte antigen HLA-DQ, HLA-DR, IL-10, and IL-4 receptor alpha, are associated with ABPA [180]. Recent studies have indicated that EOS and Th2 cells may play a crucial role in the pathogenesis. Murine models have demonstrated that Th2 cells and IL-4 are essential for eosinophilic infiltration, whereas flow cytometry has shown skewing towards Th2 cells in ABPA patients [181]. Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians and is characterized by frequent respiratory infections and progressive lung disease. Hong et al. (2018) found that 1541 (9.6%) subjects developed persistent Aspergillus colonization in 16,095 CF patients (median age 16.4 years) followed up for 7 years, and this rate may be higher in older patients. These CF patients present with specific IgE or IgG sensitization to Aspergillus fumigatus, total IgE and eosinophilia, 8% (median 6-10%) of patients eventually develop ABPA. The innate defenses of mucosal cilia clearance are impaired in CF patients. Aspergillus spores penetrate and adhere to collagen and fibronectin fibers in the basement membrane, thus contributing to their persistence in the airway. The fungal metabolite gliotoxin has also been shown to down-regulate vitamin D receptor expression in macrophages and airway epithelial cells in CF patients and to increase IL-5 and IL-13 levels (Wiesner et al., 2017). A phase one open-label study demonstrates that daily supplementation with 4,000 IU of vitamin D reduces IL-13-mediated Th2 responses and Aspergillus-specific IgE levels in 12-year-old CF children with ABPA.

Hypersensitivity pneumonitis

Hypersensitivity pneumonitis (HSP, also known as extrinsic allergic alveolitis) is based on type III/IV allergic reactions to repeated inhalation of allergens and may lead to a chronic disease with irreversible lung damage. This condition can occur in association with specific environmental exposures, such as mouldy hay (farmer's lung), bird proteins (bird fancier's lung), mouldy wood (woodworker's lung), or mould-contaminated air systems [182]. In salami/sardine workers, air conditioning exposures, or contaminated water sources, Aspergillus, Clostridium and Penicillium are the primary causative fungi; on mouldy wood, Bacillus subtilis and species of Alternaria, Mucor, and Rhizopus are the main allergenic organisms. Diagnosing HSP requires a combined evaluation of exposure, high-resolution computed tomography and, if necessary, analysis of histopathological material. Serum IgG-specific antibodies can be used for an additional antigen test for diagnosing HSP, with a sensitivity of 93 % and specificity of 100% when compared with controls without a history of exposure [183].

HSP pathophysiology results from complex antigen exposure pathways, aberrant immune mechanisms, and genetic susceptibility. Common and rare genetic variants have been found to occur more frequently in HSP, such as HLA-DRB1, HLA-A, -B and -C, MUC5B loci, and TNF-gene promotor, which increase the susceptibility of patients to HSP [184, 185]. Fungal spores or mycelial fragments (<3 μm) are repeatedly inhaled into distal bronchioles, and alveolar Mos and DCs are stimulated to initiate innate immune responses by TLR2, 6, 9 and Dectin-1. Inhaled fungal antigens also bind to IgG antibodies, which initiate the complement cascade and produce by-products, including C5, further stimulating Mφs. Mφs fuse with multinucleated giant cells and epithelioid cells to form granulomas mediated by Th1 cytokine production. Granuloma production of chemokines enhanced Th2 to Th1 responses, diminished regulatory T-cell responses, CD8+ T-cell production and Th17 differentiation (induced in part by CD103⁺ on DCs) promote fibroblast proliferation [186].

Fungal allergy-related skin diseases

Cutaneous Id reaction

Cutaneous Id reaction is an autosensitization dermatitis characterized by pruritic, erythematous, maculopapular, and papulovesicular lesions appearing at sites distant from the primary inflammatory infection and has been linked to various fungal, bacterial, viral, and parasitic skin infections. Ilkit et al. [187] published a comprehensive review of the clinical manifestations, epidemiology, etiology, and management of cutaneous Id reactions. A literature review revealed that Id reactions secondary to cutaneous fungal infections are most associated with superficial infections, particularly dermatophytosis. Apart from these, other deep fungal infections, such as histoplasmosis [188], coccidioidomycosis, sporotrichosis [187], and candidiasis [189], can also induce Id reactions, often presenting as erythema nodosum and erythema multiforme [190].

The Id reaction associated with dermatophytosis, known as the dermatophytid reaction, is most linked to zoophilic and geophilic dermatophytes. The estimated incidence of dermatophytid reactions ranges from 0.7% to 17% [187]. The occurrence of dermatophytid reactions is influenced by factors such as the degree of local infection inflammation, the causative agent, and the host's immune response, resulting in variable manifestations. Based on clinical symptoms and histopathological changes, the disease can be categorized into four clinical types: (i) epidermal type, (ii) dermal type, (iii) subcutaneous type, and (iv) vascular type. Tinea pedis and kerion celsi (KC) are common dermatophyte infections that induce dermatophytid reactions, with the former often associated with eczematous-type dermatophytids and the latter frequently observed in children, presenting as acute disseminated and nodular erythema multiforme-like dermatophytid. Veien et al. [191] reported that 37 out of 213 patients (17%) diagnosed with tinea pedis developed dermatophytids on their hands, and the authors described Id reactions in 27 (34.6%), seven (5.5%), and one (16.7%) case of *T. mentagrophytes* (n = 78), *T.* rubrum (n = 128), and Epidermophyton floccosum (n = 6) foot lesions, respectively. In a recent prospective study of dermatophytid reactions in KC, 68% of 19 pediatric patients experienced dermatophytid reactions prior to treatment initiation [67]. Among these patients, 36.8% presented with eczematous patches or plaques, 15.8% presented with papules, 10.5% exhibited eczematous lesions, papules, and pustules, and 5.3% showed signs of an angioedema-like reaction. In a recent retrospective study involving 127 children with tinea capitis, M. canis and T. mentagrophytes were the most common pathogens, with 26.8% of cases complicated by allergic diseases [192]. Among these cases, 26.5% of children presented with dermatophytid reactions, all occurring in the context of KC. The intense immune responses triggered by zoophilic dermatophytes are thought to play a significant role in the pathogenesis of KC [193]. Notably, an increasing number of cases of KC caused by M. canis with dermatophytid reactions have been reported [194-196]. The epidemiological and clinical patterns of fungal infections due to M. canis have undergone significant changes in recent years. It is important

to raise awareness of this issue to establish an accurate diagnosis and implement successful treatment strategies.

The mechanism of Id reaction remains unclear. The epidermal type with eczematous eruptions is triggered by a type IVa hypersensitivity reaction involving the secretion of large amounts of IFN-v and TNF- α , which activates M ϕ s. The subcutaneous type with erythema nodosum lesions is a hypersensitivity reaction triggered by multiple factors involving type I, II, and IV reactions [187]. Subtilisins are important virulence factors for dermatophytes, particularly when invading the host's epidermal barrier. Shi et al. [197] reported that Sub6 triggers both IgEdependent reactions and delayed-type hypersensitivity reactions. Vermout et al. [198] used a crude exoantigen from M. canis to induce a strong delayed-type hypersensitivity response in a guinea pig model characterized by significant erythema and skin swelling.

Atopic dermatitis

Atopic dermatitis (AD) is a chronic, inflammatory skin disease affecting approximately 15-20% of children and 1-3% of adults. It is considered a systemic disease due to its association with an increased risk of comorbidities, including food allergies, asthma, AR, and mental health disorders. The complex pathophysiology involves genetic predisposition, skin barrier dysfunction, T-cell driven inflammation, allergen sensitization, and microbial interactions [199]. Increasing evidence suggests the presence of fungal infections in the eczematous lesions of AD patients, with reports indicating that Malassezia, Candida, and dermatophytes can impact the symptoms of AD and that even aeroallergens can act as triggers for cutaneous reactions in AD [161, 200].

Although lipophilic Malassezia yeasts constitute the primary commensal fungal microbiota of healthy human skin, they have been implicated in the development and persistence of AD. A significant proportion of AD patients exhibit a positive reaction to Malassezia allergens. In Korea, Han et al. [201] reported that Malassezia qlobosa and Malassezia restricta were prevalent in healthy individuals and AD groups, whereas Malassezia slooffiae and Malassezia dermatis are characteristics of AD. In another study [75], Malassezia species were identified in 20.9% (44/211) of AD patients, while only 8.7% (2/23) of healthy individuals presented positive results. A study utilized the ALEX 2-Allergy Explorer to assess the relationship between sensitization to molecular components of yeasts and moulds and the severity of AD. The results indicated that sensitization to Mala s 6, Mala s 11, Sac c, Asp f 6, Cla h 6, and Cla h 8 correlates with AD severity. In severe AD patients, a

high level of specific IgE to Mala s 11 (36%) and Asp f 6 (12%) was observed [202]. Sensitization to Malassezia is more relevant in adults than in children, with serum Malassezia-specific IgE present in 30% of children with AD and 70% of adult patients, particularly those with head and neck lesions [203]. Malassezia has enhanced adaptation in barrier-damaged and metabolically dysregulated skin, which is associated with lipid dependence, potentially explaining the higher susceptibility rates in adults than in children having incomplete development of sebaceous glands. Furthermore, a recent prospective cohort study found a significant positive correlation between baseline Malassezia-specific IgE levels and the incidence of dupilumab-associated head and neck dermatitis (DAHND). The authors suggested that baseline Malassezia-specific IgE could be a biomarker to predict DAHND before dupilumab treatment [204].

Candida albicans is a frequent commensal colonizer of human mucocutaneous surfaces that functions as an opportunistic pathogen and contributes to AD exacerbation. Savolainen et al. reported a significant correlation between Can. albicans sensitization and AD symptoms in patients, although there was no correlation between Can. albicans-specific IgE and AD severity in patients without gastrointestinal colonization [205]. Similarly, Javad et al. [206] found that Candida species, particularly Can. albicans, were isolated from the skin and oral cavity of 31% of 100 AD patients and 12% of 50 healthy individuals. PCR analysis of 211 AD patients revealed that 10.9% (23/211) had Candida species, with Can.albicans (5.2%) and Can. parapsilosis (3.79%) being the most frequently detected species [75]. Ren et al. [207] found increased skin infections in emergency department visits of adult and pediatric AD patients. Pediatric and adult AD was associated with significantly higher odds of candidiasis, dermatophytosis of the skin/nails, and vulvo/urogenital and other skin infections. Moreover, studies have linked dermatophyte infections to allergic disorders and increased sensitivity to dermatophytes in AD patients. In a cross-sectional study comparing the prevalence of tinea pedis in AD patients, a relatively high prevalence of tinea pedis was observed in both groups. Trichophyton rubrum was the most common species in both AD and psoriasis patients. Recently, we reported that in children with tinea capitis, AD/eczema and AR were the most common allergic diseases [208], and male gender, KC, zoophilic pathogens, and animal contact history as risk factors for tinea capitis with allergic complications. Another nationwide multicenter study by Deng et al. revealed that AD, animal contact, endothrix infection, and geophilic pathogens were associated with KC.

The pathogenetic mechanisms and relationships between the AD-associated fungal genera and immune defense remain unclear despite evidence of their contributions to AD development. Malassezia may trigger AD development through IgEdependent, IgE-independent, and T-cell-independent mechanisms. For example, Malassezia sympodialis allergens Mala s1, 5, 6, and 9 can stimulate IgE-mediated mast cell degranulation via the TLR2/MyD88 signaling pathway [209, 210]. Additionally, patients with AD have shown hypersensitivity to MGL_1304 and its homologs produced by Malassezia globosa, which have been identified as major histamine-releasing antigens in human sweat [211]. Malassezia species interact with keratinocytes, altering cytokine release profiles and survival when keratinocytes absorb them. Additionally, Malassezia sympodialis secretes nanovesicles that activate dermal MCs and cutaneous DCs, releasing cytokines that worsen the condition [212]. Recent research has demonstrated that Malassezia selectively induces IL-17 and related cytokines, which play crucial roles in preventing fungal overgrowth on the skin. Under conditions of impaired skin integrity, resembling a characteristic feature of AD, the presence of Malassezia significantly exacerbates cutaneous inflammation, which is dependent on IL-23 and IL-17.

Urticaria

Urticaria, a common inflammatory skin disorder characterized by wheals and / or angioedema, has a global lifetime prevalence of up to 20%, imposing a significant burden on individuals and society [213, 214]. The etiology of urticaria is complex and involves transient exogenous and persistent endogenous factors. Common fungus-related factors include mushroom food, respiratory mould allergens, and superficial fungal infections [215].

Aeroallergens are well-established triggers of asthma and AR, and recent studies have highlighted their significant role in cutaneous reactions such as chronic urticaria and AD [216]. A review of hypersensitivity reactions to fungal aeroallergens in Iran revealed that sensitization to Aspergillus fumigatus and Alternaria alternata was the most common allergic sensitization among patients with allergic disorders. Sensitization to Asp. fumigatus was particularly prevalent in patients with urticaria and AD [217]. A retrospective study in China estimated the clinical data of patients with various allergic diseases, revealing that 266 out of 1367 patients had mixed fungal antigen positivity. The positive rate of fungal aeroallergens was 13.4% among 404 urticaria patients [218]. In India, a survey of fungal sensitivity among 100 urticaria patients revealed a 3% prevalence of skin prick test (SPT) reactivity to Asp. flavus and to Fusarium species [219].

Latent infections have long been considered a potential cause of chronic urticaria. In the 1930s, Wise et al. (1930) first reported hypersensitivity to Trichophyton in urticaria, hay fever, and asthma, suggesting widespread ringworm infections might contribute. Palma-Carlos et al. [220] reported that 57 out of 89 dermatophytosis patients also had chronic urticaria or angioedema, with a high percentage testing positive for trichophytin and increased *Trichophyton*-specific IgE levels. Interestingly, 18 of these patients were cured after antifungal treatment. Similarly, Godse et al. [221] reported four cases of chronic urticaria in patients with dermatophytosis and noted that antihistamine treatment was ineffective but that the urticaria resolved after antifungal treatment. Zhang et al. [222] observed a high positivity rate for fungal antigens in patients with chronic urticaria and onychomycosis, suggesting a potential link between fungal infection and Trichophyton hypersensitivity, Zawar et al. [223] reported improvement in chronic spontaneous urticaria patients after antifungal and antihistamine treatment for Malassezia infections. Additionally, recent studies have shown a potential association between Malassezia and cholinergic urticaria, with specific components of Malassezia triggering histamine release. The etiology of chronic urticaria is multifaceted, with some patients having concomitant allergies to other allergens and exogenous fungal allergens. While antifungal therapy may not be effective for all chronic urticaria patients with fungal-specific IgE, determining fungal-specific antibodies may offer insights into the etiology and new avenues for clinical treatment.

Allergic cross-reactivity between fungi and foods

Fungal food allergy syndrome (FFAS) is induced by cross-reactivity between consumed fungi (or fungal fermented foods) and fungal allergens from exposome, involving one or more target organs, including oral mucosa, skin, gastrointestinal tract, and respiratory tract. There are many studies on pollen food allergy syndrome (PFAS), but FFAS is still largely neglected in basic research as well as in clinical practice [103].

Alternaria alternata is a ubiquitous soil-borne fungus capable of causing diseases in various plants and occasionally in humans. It is also one of the most common moulds associated with allergic diseases, and Alternaria contamination is also documented to trigger food allergies. The Alternaria-spinach syndrome is one of the typical examples of FFAS and is characterized by mould-sensitized patients with food allergic reactions after mushroom (Agaricus bisporus) or spinach ingestion [224, 225]. Gabriel et al. [226] reported a case of severe urticaria and shock after consumption of Agaricus bisporus in a patient who was SPT-positive for airborne

moulds, such as Alternaria, Cladosporium, and Aspergillus species, and the authors identified a high degree of homology of MnSOD and MtDH proteins from Asp. bisporus and Asp f 6, Alt a 14, Alt a 8 and Cla h 8 of the mould as highly homologous. A 30 kD protein in spinach and mushroom extracts has a molecular weight and structure similar to those of Alt a 1 of Alternaria and Cla h 1 of Cladosporium. Alternaria contamination is also known to trigger food allergies. Researchers have shown that the co-sensitization phenomenon between Alt a 1 and Act d 2, a major allergen and PR5 of kiwifruit, is caused by the consumption of kiwifruits infected with Alternaria but apparently in good condition [227].

Accordingly, food contamination with fungal spores may be the cause of some adverse reactions in patients, who were apparently not sensitized in the past and obtained negative results in previous SPT for the diagnosis of a food allergy. It was reported that 17.8% of patients who consumed meat substitutes made with the Fusarium venenatum protein source may have suffered tachyphylactic hypersensitivity reactions, including urticaria and gastrointestinal symptoms [228]. The authors emphasize that sensitization to mould allergens by the respiratory tract and subsequent oral ingestion of cross-reactive proteins may lead to severe food-allergic reactions. Thus, the presence of 60S acidic ribosomal protein P2 of Fusarium venenatum is likely the reason for the described severe hypersensitivity reactions of the patient to Quorn-mycoprotein, because of its potential crossreactivity with the Fusarium culmorum allergen Fus c 1. There have been many case reports of allergies in patients presenting with aggregated respiratory IgE allergies after ingestion of beer, red wine, cheese, and sauces containing crossover substances, and relative fungi including Aspergillus fumigatus, Cladosporium herbarum, Alt. alternata, Penicillium notatum, Penicillium chrysogenum and Saccharomyces cerevisiae [229, 230].

To date, a total of seventeen proteins are characterized as allergens in Alt. alternata (http://www.allergen.org/). Most of them have homologues in the other three relevant mould genera involved in allergies: Cladosporium, Penicillium, and Aspergillus, with the exceptions of Alt a 1 and Alt a 13, the most relevant allergens. The main mechanism leading to cross-allergy to various fungi and foods is the breakdown of the immune system and clinical tolerance of the body to the food ingested, resulting in IgE-mediated reactions or non-IgE-mediated diseases. Sensitization to food allergens occurs by fungi through the gastrointestinal tract, skin, and respiratory tract. The default response to food antigens is often immune tolerance. This response is mediated by antigen presentation by CD103⁺ DCs in the gastrointestinal tract, CD11b+ dermal DCs, and Langerhans cells in the skin. These antigen-presenting cells travel to the regional and mesenteric lymph nodes, where

they stimulate the production of T cells. Food allergy sufferers are thought to have impaired Treg cell induction, which is replaced by the production of distinct antigen specific Th2 cells that promote IgE class switching and the growth of allergic effector cells [231].

Component resolved diagnosis of fungal allergies

Accurate clinical history forms the basis for the diagnosis of fungal allergies. Allergen testing focuses on IgE-mediated type I hypersensitivity and T-cell-mediated type IV hypersensitivity. Allergen tests are divided into two categories: (i) in vivo allergen tests, including SPT, intradermal test, patch test, and provocation test; and (ii) in vitro allergen tests, including serum allergen sIgE, total IgE, and BAS activation test. To date, crude fungal allergen extracts remain the primary diagnostic tools for in vivo allergen tests used in clinical practice. However, the number of available molecular fungal allergen tests is limited, and the clinical implementation of these methods varies significantly, lacking standardized protocols.

The SPT is currently the preferred in vivo allergen test recommended by the International Organisation of Allergy and Reactions (IOAR) and is characterized by minimal skin damage, low levels of prick fluid, a high degree of safety, fewer side effects, and suitability for use in infants and young children, with a negative predictive value of 95% and a positive predictive value of 50-60% [232]. Skin prick test of patients with chronic rhinitis has revealed differences in the clinical history and the severity of symptoms [233]. The SPT is also an important tool in the diagnosis of chronic idiopathic urticaria and AD [233]. Kits for SPT are mainly based on traditional crude protein extracts, but they show extensive cross-reactivity with unrelated fungal allergens. There are almost no specialized SPT kits on the market, and component-resolved diagnosis (CRD) based SPT kits are rarely available. In recent years, Stallergenes Greer and ALK-Abelló manufacturers have also begun to use standardized, high-purity allergen extracts for SPT that are more purified than traditional crude extracts, which reduces cross-reactivity. Although they do not reach the molecular level of CRD, they improve diagnostic specificity to some extent. Additionally, the accuracy and reliability of both in vivo and in vitro tests are highly dependent on the quality of the materials used. Significant variability exists in SPT results when using antigens from different manufacturers are used. This issue is particularly prominent in fungal allergy diagnostics, where the lack of standardized, high-quality extracts poses a significant challenge. Several studies have reported that SPT sensitivity and reproducibility are lower than those of automated IgE tests, and the shortage of commercially available fungal extracts

further impedes the development of component-resolved diagnosis fungal allergies.

Serum tests for fungal allergen specific IgE and IgG are used to detect type I hypersensitivity reactions and type II/III reactions, respectively, often serving as a supplementary diagnostic tool to skin tests. Molecular allergy diagnostics [234], or CRD, represents a method that uses purified natural or recombinant allergenic molecules to replace crude allergen extracts in allergy diagnostics [235]. Currently, commercially available recombinant fungal proteins are classified as 'markers' or 'cross-reactive components', which are used to distinguish proper sensitization. However, only few allergens have been developed thus far. The greatest challenges in developing diagnostic and therapeutic tools based on fungal recombinant allergens are estimating the size of the library required to replace allergen extracts and elucidating the role of cross-reactive structures to reduce the number of allergens required to achieve a universal allergy diagnosis. Recombinant or naturally purified allergenic components can be used for CRD, and sigE can be measured using single or multiple platforms. Multiplex CRD methods should be used in complex cases of multiple allergen sensitization and in patients with severe allergic reactions. The multiplex platform is capable of simultaneous IgE testing of small amounts of serum (100 µL) components from more than 200 allergens but is not sufficiently sensitive compared to single testing. Several Aspergillus fumigatus specific antigens (Asp f 1, f 2, f 3, f 4, and f 6) can be obtained through recombinant techniques [236]. Recombinant Asp. fumiqatus (rAsp) antigens can be used to identify true Asp. fumigatus sensitization [237, 238]. Two independent studies have demonstrated that IgE specific to rAsp antigens (Asp f 1, f 2, and f 4) is highly specific for ABPA [239, 240]. Li et al. [241] reported that IgE specific to rAsp f 6 is helpful for diagnosing ABPA, but it lacks specificity and may result in false-positive results in patients with AD, potentially due to cross-reactivity with Malassezia species. In a study by Tanimoto et al. [240] among 53 patients meeting the diagnostic criteria for ABPA, 11 had negative serum IgE results for both Asp f 1 and f 2. Based on molecular allergy diagnostic principles, IgE reactivity to Asp f 1 and f 2 is thought to result from exposure to airway-secreted Asp. fumigatus allergens. In contrast, patients who meet the diagnostic criteria for ABPA but have negative IgE results for Asp f 1 and f 2 may indicate that positive IgE reactivity to crude Asp. fumigatus extracts is due to sensitization to other fungal allergens and that the true allergenic fungus may be something else than Asp. fumigatus. These labeled allergens enable a highly specific diagnosis of fungal allergies, but although they represent the major allergens of a single species or genus, they do not achieve the sensitivity to fungal extracts because they are only recognized by 60-90% of all allergens that are sensitized to the corresponding fungi. Here, microarrays

containing all major species- or genus-specific fungal allergens supplemented with known cross-reactive structures may meet or exceed the in vitro diagnostic specificity of fungal extracts [242].

Conclusions and perspectives

Fungi have a distinctive propensity for inducing allergic reactions in the host, driven by a multifactorial interplay involving the species of fungi, the route of exposure, host genetic factors, immune status, and potential evolutionary selection. Both thermotolerant and non-thermotolerant fungi are potent inducers of type 2 immune responses, with innate and adaptive immunity playing critical roles in this process. Despite advancements in identifying and diagnosing fungal allergens, current research continues to face significant limitations:

- i. Insufficient epidemiological data: current studies predominantly target specific regions or populations, and they need more extensive epidemiological data across diverse geographic areas and demographics. This insufficiency hampers a comprehensive understanding of the global prevalence and distribution of fungal allergy.
- ii. Complex immune response mechanisms: fungal allergies involve intricate immune responses encompassing innate and adaptive immunity. The specific mechanisms underlying these responses have not yet been fully elucidated, limiting the development of targeted therapeutic interventions.
- iii. Challenges in specific antigen detection: the vast diversity of fungal species, each presenting a wide array of antigens, significantly complicates detecting and identifying specific allergens. This diversity makes accurate diagnosis of fungal allergies particularly challenging.
- iv. Cross-reactivity issues: the significant cross-reactivity among fungal allergens and between fungal and other environmental allergens increases diagnostic complexity. This often leads to misdiagnosis or undiagnosed cases. complicating effective management and treatment strategies.
- Lack of standardization: the absence of globally recognized standards for v. fungal allergen detection results in variability and inconsistency in clinical diagnoses and research findings. This lack of uniformity affects the reliability and comparability of results across different studies and clinical settings.
- Environmental control and prevention: there is a critical need to control vi. fungal exposure in both living and working environments. Reducing

allergen exposure and increasing public awareness about fungal allergies and preventive measures are essential in mitigating these conditions' impact.

Acknowledgements

We thank Professor David W Denning from the University of Manchester for his advice and help with the manuscript. The Figures in the manuscript were created in BioRender. Xin, W. (2024) https://BioRender.com/g73j871, and obtain confirmation of publication and licensing rights (agreement number: NQ27JW9V8X, VM27JWB0WY).

Author contributions

XZ: conceptualisation; writing, original draft preparation; writing, review and editing. PYF: conceptualisation; writing, review and editing. YQ: resources, reference collection and collation. SAA: writing, original draft preparation; writing, review and editing. MI: writing, original draft preparation; writing, review and editing, WTL: writing, original draft preparation; table and editing, XYZ: writing, original draft preparation; writing, review and editing.

Funding

This project was supported by the Natural Science Foundation of Guangdong Province of China (No. 2020A1515011183). Xin Zhou has received research support from the China Scholarship Council (No. 202006380049).

Competing interests

None

CHAPTER 3

EXPLORING THE CLINICAL FEATURES AND RISK FACTORS FOR CHILDREN IN TINEA CAPITIS COMPLICATED WITH ALLERGIC DISEASES

Xin Zhou, Wentao Liu, Sulian Yang, Angela Wu, Peiran Chen, Songchao Yin, Sybren de Hoog, Meirong Li, Peiying Feng

Mycoses, 66(4): 338-345 (2022)

ABSTRACT

Tinea capitis, atopic dermatitis, and allergic rhinitis are the most common disorders endured by prepubescent children. Dermatophyte infections have been linked to allergic disorders, such as increased sensitivity to dermatophytes in patients with atopic dermatitis, and, conversely, more difficult management of allergic asthma in patients with chronic dermatophyte infections. To explore the correlation between tinea capitis and allergic diseases in children and to analyse their risk factors. This study monitored epidemiological changes in childhood tinea capitis and risk factors for whom with allergic disease in a single centre in three consecutive five-year intervals by reviewing clinical data and multivariate logistic data analysis. Between 2007 and 2022, there were 127 pediatric patients with tinea capitis, and the mean age was 4.83 years, the male-to-female ratio was 1.76:1. Zoophilic Microsporum canis and Trichophyton mentagrophytes were the most prevalent pathogens and the proportions remained relatively constant every five years. There were 34 (26.8%) children with tinea capitis complicated with allergic disease, among them 14 children with atopic dermatitis/eczema, 13 with allergic rhinitis, 8 urticaria, 6 food allergies and 1 allergic asthma. Male, kerion, zoophilic species infections and animal contact history were prevalent features in allergic disease combined with tinea capitis. Patients with tinea capitis plus allergic disease mostly had a family history with similar complications. Microsporum canis and T. mentagrophytes were the most prevalent pathogens of tinea capitis in the last 15 years; atopic dermatitis/eczema and allergic rhinitis are the most complicated allergic diseases for which males, kerion, zoophilic pathogens and animal contact history are risk factors.

INTRODUCTION

Tinea capitis is the most common dermatophyte infection of the scalp affecting mainly preadolescent children. This remains an important public health concern. The epidemiology of tinea capitis varies across different geographical areas and has changed over time. Although Microsporum and Trichophyton dermatophytes are the major etiological agents of tinea capitis, there is a gradual shift from anthropophilic pathogens to zoophilic pathogens enhanced by increased domestic pet keeping. Recently, a multicentre prospective study of tinea capitis in China showed that the zoophilic species M. canis was the most common pathogen (65.2%), only in central China was the antropophilic T. violaceum (69.0%) predominant [13].

Kerion is a severe inflammatory subtype of tinea capitis, and generally caused by zoophilic and geophilic fungi. Children with kerion are more likely to develop dermatophytid reactions (Id reaction) maily characterized by disseminated pruritic eczematous eruptions [67, 187, 243]. A recent prospective study from Turkey revealed that 13 of 19 patients (68%) with kerion developed Id reactions. The main clinical manifestations of these reactions are eczematous eruptions (36.8%), pruritic papules (15.8%), excoriated papules and pustules (10.5%) and angioedemalike reactions (5.3%) [67].

A wealth of evidence supports the association between dermatophytosis and allergic diseases such as atopic dermatitis (AD), urticaria, allergic rhinitis (AR) and allergic asthma (AS). Many cases reported positive immediate response to species of Trichophyton and Microsporum [78, 220, 221, 244-247]. AD is associated with altered skin barrier, changed microbiome, and immune dysregulation which increases the risk of having higher odds of multiple bacterial, viral, and fungal skin infections [207]. In a 13.7-year study of underage AD patients, a significantly higher rate of infection with dermatophytosis was found compared to non-AD patients, the fungal infections were more severe and more difficult to eradicate in AD patients. George et al. [78] reported 12 patients with allergic respiratory disease who had a positive immediate reaction to Trichophyton, were 10 of them gave immediate bronchial reactions to an extract of T. tonsurans. Patients with chronic urticaria complicated by tinea unguium had a significantly higher positive rate of dermatophytes antigen prick tests than other fungal controls [248].

Dermatophytes are pathogenic fungi as well as important allergens, which is one of the crucial risk factors for atopic allergic disease development or exacerbation. However, only a few papers reported an association between tinea capitis and

allergic disease, which suggests that this combination may have been overlooked. The aim of this study was to analyse the clinical features and risk factors of children with tinea capitis complicated with allergic diseases and to contribute to accurate clinical management and prevention.

PATIENTS AND METHODS

Study population

We conducted a retrospective study at the Department of Dermatology and Department of Allergy, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China from August 2007 to August 2022. This study included tinea capitis patients (< 14 years old), who had a clinical presentation of tinea capitis and confirmed by mycological tests, including direct microscopic examination and fungal culture from scalp hair specimens. Causative fungal species were identified based on the morphological characteristics of colonies on Sabouraud dextrose agar, and PCR using primers targeting internal transcribed spacer regions for species with uncertain phenotypic identification.

Return survey

One hundred fifty-one pediatric patients with tinea capitis were seen between 2007 and 2022. The process of returning information is illustrated in figure 1. A questionnaire survey was conducted on all patients and 127 responded. Questions mainly included demographic details, characteristics of tinea capitis, exposure to animals, personal history, family history of tinea, treatment, and outcome. For respondents with an allergic history, a structured questionnaire with follow-up questions according to international guidelines on atopic dermatitis [249, 250], allergic rhinitis [251], asthma [252], urticaria [253] and food allergy was sent.

Children with tinea capitis and accompanying allergic diseases that did not reach a conclusive diagnosis were excluded. Informed consent was obtained from all participants. This study complied with the ethical policies required by the journal and was approved by the ethics committee of the Third Affiliated Hospital, Sun Yat-Sen University (approval number 2019-01-578-01).

Statistical analysis

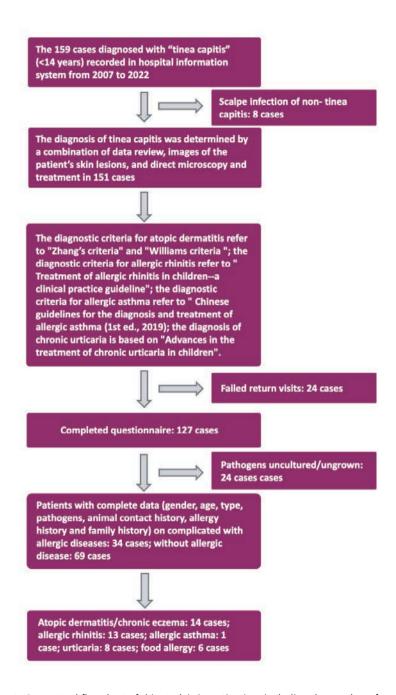


Figure 1. Conceptual flowchart of this study's investigation, including the number of cases included in the study at each step and the reasons for exclusion.

All data were statistically analysed in SPSS Statistics v27.0. The chi-square test was used to compare the differences in risk factors between groups, and multivariate logistic analysis was used to analyse the risk factors for tinea capitis combined with allergic disease. *P*<0.05 was considered statistically significant.

RESULTS

Epidemiological survey of tinea capitis

There were 127 patients with tinea capitis, of which 81 (63.8%) were male, with a male-to-female ratio of 1.76:1. The mean age was 4.83 years, with 2-7 years (74%) being the common age of our patients, age 5 (18.1%) being the highest incidence, and with 5 patients (3.9%) older than 11 years (Figure 2). Grey patch was the most common type of pediatric tinea capitis (56.7%, 72/127), followed by kerion (33.9%, 43/127) and black dot (9.4%, 12/127).

From 2007 to 2022, the number of tinea capitis were 56, 33, 38 per five-year period, respectively, and the mean age were 5.3 years, 4.43 years, 4.96 years, respectively. The children with tinea capitis were mainly boys, counting for 62.5%, 54.5%, 73.7% per five-year period. There were 17 tinea capitis cases that were caused by M. canis between 2007 and 2011, follow by T. mentagrophyte (n = 7), T. violaceum (n = 6), M. ferrugineum (n = 2), N. gypsea (n = 2), T. tonsurans (n = 2) and T. rubrum (n = 1), and 19 cases were without culture results. Between 2012 and 2016, there were M. canis (n = 16), T. mentagrophytes (n = 6), T. violaceum (n = 4), T. rubrum (n = 1), and N. gypsea (n = 1), and 5 cases without culture results. Between 2017 and 2022, there were M. canis (n = 18), T. mentagrophyte (n = 10), T. violaceum (n = 4), M. ferrugineum (n = 3), N. gypsea (n = 2) and T. tonsurans (n = 1) (Figure 3). Zoophilic M. canis and T. mentagrophytes have been the most prevalent infections over the previous 15 years and the proportions remained relatively constant every five years, with 45.9% of M. canis and 18.9% of T. mentagrophytes in 2007-2011, 57.1% M. canis and 21.4% T. mentagrophytes in 2012-2016, and 47.4% M. canis and 26.3% T. mentagrophytes in 2017-2022.

Comparison of tinea capitis with and without complication by allergic disease

There were 34 (26.8%) children with infections complicated with allergic disease (Table 1). Their mean age was 5.23 years and the male-to-female ratio 2.78:1. There were 14 children with AD or eczema, 13 children with AR, 8 children with urticaria,

6 children with food allergy and 1 child with AS (Figure 4). Parents or family members of 7 children with tinea capitis also had a history of allergic diseases, 5 of whom had AD or eczema, 5 had AR, 2 had food allergies and 1 had AS (Table 1). Of these 34 children, 44.1% had grey patch tinea capitis (n = 15), 41.2% had kerion (n = 14) and 14.7% had black dot (n = 4). 55.9% of the patients had a history of animal contact. In 9 (26.5%) children, Id reactions developed during tinea capitis infection, and all of these occurred in kerion. The causative agents were isolated in 17 cases of M. canis, 10 of T. mentagrophytes, 5 of T. violaceum and 2 of M. ferrugineum. Zoophilic species accounted for 79.4% of patients complicated with allergic diseases. The mean age of the 69 children in tinea capitis without allergic disease was 4.24 years and 43 were males, the male-to-female ratio was 1.65:1. Among these patients, 60.9% (n = 42) of tinea capitis was gray patch, 29% (n = 20) was kerion and 8.7% (n = 7) was black dot. 26% of the patients had a history of animal contact, of which 2 were human-to-human infections. 15.9% of patients were found to have Id reaction during the infection. The pathogenic species were M. canis in 34 cases, follow by T. mentagrophytes (n = 13), T. violaceum (n = 9), N. gypsea (n = 5), M. ferrugineum (n = 3), T. tonsurans (n = 3) and T. rubrum (n = 2). Zoophilic M. canis and T. mentagrophytes together accounted for 68.1% of patients without allergic diseases.

Table 1. Clinical features of tinea capitis complicated with allergic disease

No	Gender	Age (year)	Type of tinea capitis	Pathogen	Contact with animals	ld reactions	Allergy history	Family history
1	М	12	Kerion	M. canis	Cat	Yes	Eczema	
2	F	5	Gray patch	M. canis	Cat	No	FA	Mother had mango allergy
3	М	4.2	Kerion	M. canis	Cat/dog	Yes	Urticaria	Elder brother had oat allergy and mother had AR
4	М	5.8	Kerion	M. canis	Cat	No	AR	
5	М	2	Gray patch	M. canis		No	AD, AS, AR and FA	Mother had AD
6	F	3	Black dot	T. violaceum	Cat/dog	No	AR, FA	Both grandmother and father had AD and tinea capitis history
7	М	8	Gray patch	T. mentagrophytes	Cat	No	Eczema and AR	Father had AR and neurodermatitis
8	М	5	Kerion	M. canis		No	Urticaria	
9	М	11	Gray patch	M. canis	Cat/dog	No	AR	

Table 1 . (continued)

No	Gender	Age (year)	Type of tinea capitis	Pathogen	Contact with animals	Id reactions	Allergy history	Family history
10	М	4	Black dot	T. violaceum		No	FA	Father had AR
11	М	7	Gray patch	M. canis	Cat/dog	No	AR	Two elder brothers had AS and eczema respectively
12	М	6	Gray patch	T. mentagrophytes	Cat/dog	No	Urticaria	
13	F	6	Kerion	T. mentagrophytes		No	Urticaria	Mother had tinea pedis
14	М	6	Kerion	M. canis	Cat	Yes	AD	
15	М	3	Black dot	T. violaceum	Cat/dog	No	AD	
16	М	4	Kerion	T. mentagrophytes	Cat	Yes	AD, AR	
17	М	6	Kerion	T. mentagrophytes		No	AR	
18	F	4	Gray patch	T. mentagrophytes		No	AR	
19	М	3	Gray patch	M. ferrugineum	Dog	No	AD	Cousin had tinea capitis
20	М	4	Gray patch	M. canis		No	Urticaria	
21	F	3	Kerion	M. canis		Yes	Eczema	
22	F	5	Kerion	T. mentagrophytes		Yes	AR, FA	
23	F	6	Gray patch	T. mentagrophytes		No	Urticaria	
24	М	6	Gray patch	M. canis	Cat	No	AD, AR	
25	М	6	Kerion	M. canis		No	Eczema	
26	М	2	Gray patch	M. ferrugineum	Dog	No	AR, AD, AS	Father had AR
27	М	6	Kerion	M. canis	Cat	Yes	AD	Mother had tinea capitis
28	М	8	Black dot	T. violaceum		No	Urticaria	
29	M	7	Kerion	M. canis	Cat/dog	Yes	AD, AR	Mother had AD
30	М	5	Kerion	T. mentagrophytes	Cat	No	AR	

Table 1 . (continued)

No	Gender	Age (year)	Type of tinea capitis	Pathogen	Contact with animals	Id reactions	Allergy history	Family history
31	F	5	Black dot	T. violaceum		No	Eczema	
32	М	1	Gray patch	M. canis		No	Urticaria	
33	М	3	Gray patch	T. mentagrophytes	Rabbit	No	AD	
34	F	6	Gray patch	M. canis		No	FA	

M, male; F, female; AD, atopic dermatitis; AR, allergic rhinitis; AS, allergic asthma; FA, food allergy

Risk factor assessment in tinea capitis complicated with allergic disease

The complete data of 103 patients included 34 cases with tinea capitis complicated with allergic disease and 69 patients without allergic disease. We compared the clinical characteristics of children with tinea capitis complicated with allergic disease with those without allergic disease (Table 2). The effect of these risk factors on tinea capitis was initially analysed using tinea capitis combined with allergic disease as the dependent variable and age, gender, type of tinea capitis infection, history of animal contact, type of pathogens and family history of allergic disease as independent variables. Among children with combined allergic diseases, the proportion of males, kerion and black dot, history of animal contact, family history of allergic disease and zoophilic species infection was higher than in children with normal tinea capitis (Table 2). An exploratory multivariate logistic analysis using gender, type of tinea capitis, history of animal contact and type of pathogens was conducted to investigate the impact of these clinical characteristics on disease. In our study, cases with a family history of allergic disease were only present in the group of patients complicated with allergic disease, and to avoid complete separation in the logistic analysis, we excluded this indicator. The results showed that the area under the ROC curve was 0.67 (P=0.0059), the Pseudo R squared was 0.11, the Hosmer-Lemeshow hypothesis test P=0.8, indicates that the model was recognized for its predictive accuracy. In this model, the risk factors being assessed were male (OR = 2.338, 95% CI 0.8233 to 7.355), kerion type (OR = 1.462, 95% CI 0.4783 to 4.403), zoophilic pathogens (OR = 1.513, 95% CI 0.4713 to 5.455), history of animal contact (OR = 3.113, 95% CI 1.166 to 8.698). Of these 4 indicators, the history of animal exposure was significantly different between patients with and without allergic disease (P=0.0084) (Figure 5).

Table 2. Comparison of epidemiological factors for tinea capitis with and without allergic disease

		With alle disease (-	Without a	-	P-value chi- square test	P-value Logistic regression
Epidemiologica	l factors	n	%	n	%		
Age (year)		5.23		4.24		0.4807	
Gender	Male	25	73.5	43	62.3	0.2586	0.3987
Gender	Female	9	36.5	26	37.7		
	Kerion	14	41.2	20	29	0.216	0.8765
Type	Gary patch	15	44.1	42	60.9	0.1078	
	Black dot	4	14.7	7	8.7	0.8024	
Id reaction		9	26.5	11	15.9	0.204	
Animal contact		19	55.9	18	26	0.003	0.0084
Family history	Tinea	4	11.8	2	2.9	0.0708	
railing mistory	Allergic history	9	26.5	0	0	<0.0001	
	Zoophilic	27	79.4	47	68.1	0.1067	0.4238
Pathogens	Anthropophilic	7	0.20588	17	24.6	0.3622	
	Geophilic	0	0	5	7.2	0.1076	

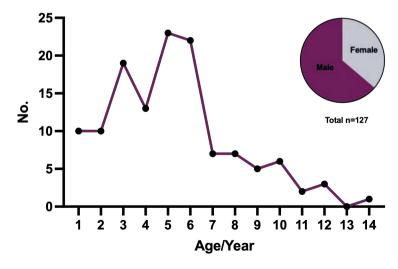


Figure 2. Gender and age distribution of patients with tinea capitis

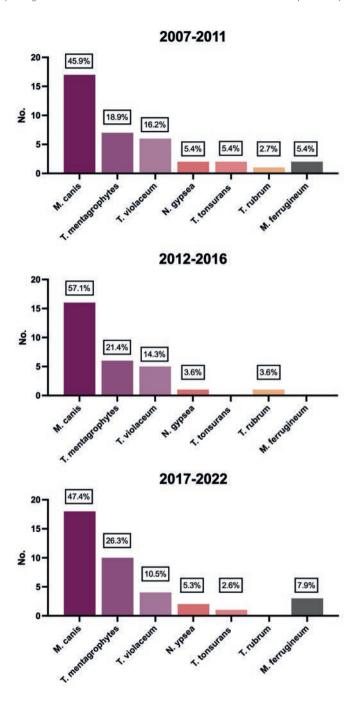


Figure 3. Proportion of change in tinea capitis pathogen spectrum per five-year period from 2007 to 2022

Types of allergic diseases

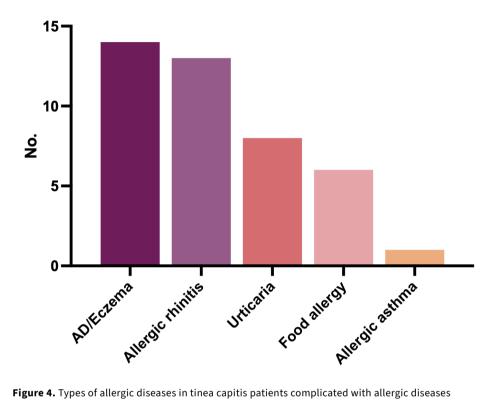


Figure 4. Types of allergic diseases in tinea capitis patients complicated with allergic diseases

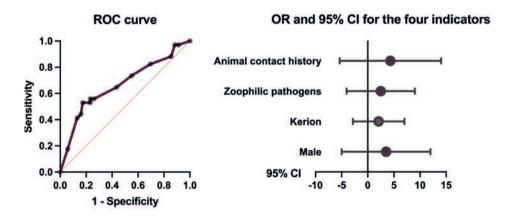


Figure 5. ROC curves and ORs for the four risk factors

DISCUSSION

In this study, we first retrospectively studied the epidemiological characteristics and pathogen spectrum of children with tinea capitis over the past 15 years. We observed that the average age of children with tinea capitis in our hospital was 4.83 years, which is consistent with the recent a retrospective study tinea capitis in China that most patients were prepubertal children aged approximately 5 years [254]. From 2007 to 2011, the proportion of patients with tinea capitis aged 2 to 5 years old was 39.3% (22/56), compared to 51.5% (17/33) in 2012-2016 and 68.4% (26/38) in 2017-2022. Of the 127 children with tinea capitis in this study, 81 (63.8%) were male and 46 (36.2%) were female, with a male-to-female ratio of 1.76:1. This is higher than the ratio of 1.28:1 found in a previous study from China, where the percentage of female patients was 43.8% [13]. Gender plays an important role in immune responses, including susceptibility to fungal infections, possibly due to sex-specific genetic architecture, sex-differentiated responses to disease susceptibility may be caused by direct and indirect effects of sex hormones as well as non-hormonally biased effects of the X and Y chromosomes [255].

Kerion caused zoophilic pathogens are reported more common in children than in adults [256], Wang et al. reported that the incidence of kerion in childhood was 13.9% (10/72), which was significantly higher than that in adults (3.8%, 4/104) [256]. In our study, gray patch (59%, 75/127) was the most common, followed by kerion (36.2%, 46/127) and black dot (9.4%, 12/127). Though the annual incidence of tinea capitis varied over the survey period, with 56 patients in 2007-2011, 33 patients in 2012-2016, and 38 patients in 2017-2022, the percentage of the main pathogen M. canis every five years remained relatively stable, i.e., 45.9%, 57.1%, and 47.4%, respectively. The predominant pathogens were the zoophilic species M. canis (49.5%, 51/103) and T. mentagrophytes (22.3%, 23/103), accounting for more than 70% of cases, with T. violaceum (13.5%,14/103) predominating among the anthropophilic species. Animal contact history was associated with zoophilic pathogen infection, and the percentage of children with a history of animal contact was 35.9% (32/103) in this study, M. canis 59.4% (19/32) and T. mentagrophytes 18.8% (6/32) being the main pathogens in this patient cohort, which is consistent with previous studies [13, 254, 257].

The frequency of allergic diseases has increased over the last century. Allergic diseases including AD, AR, AS, and food allergy affect about 20% to 35% of all children, and many of these conditions share similar risk factors. In our study, the prevalence of tinea capitis in children with allergic disease was 26.8%, which was similar with the worldwide report [258]. The results of the logistic analysis suggest that male, kerion, animal contact history and zoophilic dermatophyte infection are risk factors. The male-to-female ratio in tinea capitis in the allergic disease group is 2.78:1, which is much higher than that of the group without allergic diseases (1.65:1). Although the reason for sex disparity in many diseases remains unclear, sex has been identified as an important factor influencing the clinical presentation of infection in allergic diseases. Male children have been reported to be more susceptible to childhood wheezing [259], asthma [260], AD [261] and food allergy [262]. Epidemiological findings indicated that tinea capitis caused by *M. canis* is more common in males, while there is no major gender difference in tinea capitis caused by *T. violaceum* [263, 264]. With the rise of the pet ownership boom, cases of tinea capitis caused by zoophilic species are rapidly increasing, animal fur and dander may act as dual risk factors for both tinea capitis and allergic diseases.

Kerion is a severe inflammatory subtype of tinea capitis, caused by a hypersensitivity reaction of the host to dermatophyte antigens [265]. Outside of the primary lesion site, the Id reaction has also been shown to generate a secondary inflammatory response to dermatophytosis, caused by an immediate, cytotoxic, immune complex or delayed-type hypersensitivity reaction mediated by host T lymphocytes. Dermatophytids that accompany tinea capitis are characterized by diffuse pruritic papules located mainly on the trunk, which are mainly caused by a Th2 cell-mediated delayed immune response of type IVb. There have been consistent reports associating allergic diseases with dermatophyte infection. In our results, AD/chronic eczema and allergic rhinitis were the most common combined allergic diseases in children with tinea capitis. Interactions among genetic, skin barrier dysfunction [266] and reduced production of epidermal antimicrobial peptides [267] in AD patients have been suggested to predispose to susceptibility factors leading to skin infections. It has been suggested that superficial fungal infections induce a Th2 response that exacerbates atopy, Th1/Th2 immune dysregulation may further lead to persistent infection [268]. Th2 cytokines induce B cell recruitment of eosinophils and IgE class switching, leading to a worsening of atopic conditions, from rhinitis and asthma to atopic dermatitis [269]. The use of M. canis to construct a mouse model of skin infection revealed that IL-17 controls M. canis infection and downregulates the Th1 inflammatory response [270], and that the downregulation of the Th1 immune response may further cause the imbalance towards Th1/Th2 response [271, 272]. In addition, there is cross-reactivity between fungal allergens of different genera/species, e.g., a patient allergic to airborne moulds can also have a hypersensitivity reaction when exposed to dermatophytes [273-278]. The possible cause of the pathogenic role of dermatophytes in allergic rhinitis or asthma is the long-term colonisation of atopic individuals by the fungus. Systemic exposure to allergens may promote the binding of allergens to antigenpresenting cells (APC) in the blood, which preferentially localise at the site of allergic inflammation and induce the production of Th2 cytokines by naive T cells [279], and the properties of dermatophyte antigens may also promote the migration of T cells to the site of infection, leading to allergic disease [268]. In addition, there is cross-reactivity between fungal allergens of different genera/ species, e.g., a patient allergic to airborne moulds can also have a hypersensitivity reaction when exposed to dermatophytes [273-278]. Zoophilic dermatophytes are responsible for inflammatory reactions probably due to their poor adaptation to the human host. There has been little investigation on the immune responses of hosts infected with zoophilic and anthropophilic dermatophytes, but it is now evident that they differ significantly in genotype, capacity to adhere to and break down host keratin, and virulence [280].

In conclusion, M. canis and T. mentagrophytes have been the predominant tinea capitis pathogens in our hospital for the past 15 years, with 5 years being the age of high incidence, and the male-to-female ratio 1.76:1. Male gender, inflammation, zoophilic species, and history of animal contact were features prevalently observed in patients with allergic disease and tinea capitis. Although there has been much literature supporting the association between dermatophyte infection and allergic disease, this is the first study to analyse this topic systematically, which can provide a reference for improvement of clinical management and prevention. Timely analysis of the possible progression of the disease upon the patient's initial visit, particularly in children with a history of allergic disease, is essential to consider a combination of antifungal and anti-allergic treatment to reduce the risk of causing irreversible damage. For some refractory allergic diseases, clinicians also need to consider the potential risks associated with fungal infection. Future prospective studies with larger sample sizes are needed to further confirm this relationship, focusing on the measurement of atopic indicators in tinea capitis patients and the therapeutic implications of this diagnosis.

Acknowledgements

Not applicable.

Funding

This project was supported by the Natural Science Foundation of Guangdong Province of China (No.2020A1515011183). Xin Zhou has received research support from China Scholarship Council (No.202006380049).

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Author Contributions

XZ: conceptualisation; methodology; Writing, original draft preparation; writing, review and editing. WTL: return survey and investigation. Sulian Yang: data collection. AW: return survey and investigation. PRC: return survey and investigation. SCY: conceptualisation. SDH: writing, review and editing; supervision. MRL: methodology; data collection. PYF: conceptualisation; funding acquisition; supervision; writing—review and editing.

Ethics approval

This study complied with the ethical policies required by the journal and was conducted in compliance with the protocol approved by the ethics committee of the 3rd affiliated hospital of Sun Yat-sen University (approval number 2019-02-578-01). Written informed consent was obtained from the patients (for patients aged >8 years) and their guardians (for patients aged <18 years) before enrollment.

Consent to participate

Informed consent was obtained from all individual participants and their parents participants included in the study.

Consent to publish

No other individual person's data was used in this manuscript.

CHAPTER 4

AETIOLOGY OF TINEA OF VELLUS HAIR AND SUBSTRATE SPECIFICITY IN MICROSPORUM SPECIES

Xin Zhou, Wentao Liu, Meirong Li, Rong Wu, Angela Wu, Peiran Chen, Shitong Qin, Huanting Li, Ling Wei, Guoxing Zhu, Sybren de Hoog, Peiying Feng

Mycoses, 67(2), e13698 (2024)

ABSTRACT

Tinea of vellus hair is a dermatophyte infection with or without localised infection of adjacent skin. The epidemiology and pathogenesis of this disorder have insufficiently been established. To gain insight into the epidemiology and analysis dissection of patterns of vellus hair infection. A comprehensive examination of our series of cases and existing literature, clinical information was performed. Microsporum species were assayed for levels of keratinase and SUB1-3 level after different keratin-induced cultures. The infection affects both children and adults, with a male-to-female ratio of 1:1.3. The most afflicted areas are the face, neck, and upper limbs. Both typical (ringworm-like) and atypical (tinea incognito) tinea lesions can be observed. The disorder is caused primarily by the zoophilic species Microsporum canis (40.39%). Topical antifungal drugs alone are ineffective; mycological cure is achieved in combination with systemic antifungal therapy for 4-8 weeks. In vitro, M. canis exhibited significantly elevated levels of secreted protease and SUB1 and SUB3 transcripts in cat hair cultures. Conversely, the findings of anthropophilic dermatophytes M. audouinii and M. ferrugineum demonstrated the opposite trend, suggesting that there are associations between keratinase activity and expression of SUB1 and SUB3 induced by different keratin substrates among M. canis complex members. The epidemiological characteristics of tinea of vellus hair help us to understand its transmission patterns and develop effective prevention strategies. There are associations between keratinase activity and expression of SUB1-3 induced by different substrates, which may explain the host shift and adaptation from pet animals to particular micro-habitats on the human host.

INTRODUCTION

Dermatophytosis is a disease of worldwide importance and a major public health problem, being one of the most common fungal infections among contagious patients [281]. The dermatophytes compose a unique group of fungi, able to infect keratinous tissues and invade hair, skin, and nails of humans and other mammals. Dermatophytosis is usually classified according to the site of infection. Tinea capitis refers to dermatophyte infection of the scalp and hair shafts (https:// www.osmosis.org/learn/Development of the integumentary system), while agents of tinea barbae affect facial hair follicles of bearded individuals. Both tinea capitis and tinea barbae are infections of terminal hairs. These hairs can be recognized by their coarse and hard structure and intense coloration. In contrast, vellus hair is fine and soft, with light pigmentation. Vellus hair is predominantly distributed over the glabrous skin, such as face, trunk, and limbs [282-284]. In case of tinea of vellus hair, the hairs are affected by hypha and/or spores internally and on the outside, and concomitant localised skin infection can be observed. Despite the widespread presence of vellus hair on the human body, limited data is available regarding the epidemiology of vellus hair infection, compared to that of the more pronounced presence of tinea capitis; tinea of vellus hair has therefore long been regarded as a rarely encountered clinical entity.

A variety of reasons can lead to underdiagnosis and misdiagnosis of the disorder. Frequent washing and application of topical steroids tend to lead to loss of its typical features of the tinea. Inappropriate recognition of vellus hair infection may result in misdiagnosis as tinea faciei, tinea corporis, or other forms of glabrous skin dermatophytosis. The first case of tinea of vellus hair was reported in 1971 in a 3year-old girl who with an inflammatory facial infection caused by Nannizzia incurvata [16]. Later, series cases were reported from Italy [17], Spain [18, 285], China [20, 21], and Thailand [286]. Gómez-Moyano et al. [18] prospectively analysed 13 cases of tinea of vellus hair infection and noted poor resolution after topical antifungal treatment, but all cases healed properly after oral antifungal treatment, with no recurrence. The authors suggested that systemic antifungal therapy is necessary for patients with vellus hair infection, whereas topical antifungal therapy is sufficient for glabrous skin infections that only invade the stratum corneum.

Subtilisins (SUBs) are extracellular serine endopeptidases which play crucial roles in the virulence and adhesion capabilities of dermatophytes. Earlier studies have provided evidence of a noteworthy association between the level of keratinase activity and both the clinical presentation and prognosis of infections by Microsporum canis and relatives [287]. Strains exhibiting elevated in vitro keratinase activity have been observed to induce acute infections in experimental animals. In M. canis, the Subtilisin family is known to be encoded by SUB1, SUB2 and SUB3. These proteases are produced by *M. canis* during invasion of keratinized structures, but it has not been possible to directly link the SUBs keratinase activity of the fungus [39].

The present study aims to provide an overview of tinea of vellus hair with a series of 23 cases, to review the literature, to evaluate the clinical presentation and the spectrum of fungi implicated in causing the infection. Subsequently, the keratinase activity of SUB1-3 and the effect of different substrates on the M. canis complex keratinase production in various hair types and nail were analysed, to reveal the peculiarities of tinea of vellus hair.

PATIENTS AND METHODS

Case series and literature review

Patients from outpatient clinics of the Department of Dermatology & Allergy, third Affiliated Hospital, Sun Yat-Sen University, who were diagnosed with tinea of vellus hair from September 2021 to October 2023, were enrolled. Upon the first visit to our department, patients were subjected to dermoscopic (Dermosopy-II, Beijing), the skin flakes were scraped and vellus hair was plucked for direct microscopic examination in potassium hydroxide (KOH) and fluorescence (Shuokang, Beijing). Isolates were incubated in Potato Dextrose Agar (PDA, Oxoid, Germany) at 28°C for 14 days and identified by sequencing using the ITS1/ITS4 rDNA region [192]. Patients with vellus hair infection were treated with oral itraconazole for 4-8 weeks and topical antifungal medication for 4 weeks. Clinical information including demographic details, characteristics of tinea of vellus hair, exposure to animals, personal history, family history of tinea, treatment and outcome were also collected.

Published literature on tinea of vellus hair was reviewed in the China Academic Journal Network Publishing Database (CNKI), PubMed and the Web of Science from 2000 until September 2023, using search terms "tinea of vellus hair" OR "tinea vellus hair infection". Articles describing tinea of vellus hair but without fungal microscopic or histopathological findings were excluded. The resulting literature was manually analysed, and demographic details, characteristices of tinea of vellus hair, history of animal exposure, and family history of tinea were extracted from the literature.

Strains and keratin-induced fermentation culture

Strains of Microsporum canis, M. audouinii and M. ferrugineum were obtained from the Radboud University Medical Center mycological collection. Cat hair, children's scalp hair, vellus hair and nail were ground into keratin powder and lyophilised, which was later used in keratinase-inducing medium (KH₂PO₄ 2 g, MgSO₄·7H₂O 1 g, peptone 5 g, glucose 20 g, keratin powder 2.5 g, dissolved in 1000 mL distilled water); keratin powder was omitted from the control group. Each 20 mL fermentation medium was dispensed separately into 50 mL triangular flasks and autoclaved. Microsporum canis, M. audouinii and M. ferrugineum were grown on PDA for 14 days. Conidia/mycelial fragments were eluted from culture plates with sterilized saline and suspensions at concentrations of $(0.5-1) \times 10^7$ CFU/mL were prepared using the modified EUCAST broken mycelium inoculation method [288]. Four isolates of each species were selected, inoculated separately into three triangular flasks, then 1 mL of suspension was added to each flask, and cultures were incubated for 4 days at 28°C at 130 r.p.m.

Keratinase activity assay

After incubation, flasks were centrifuged at 3000 r.p.m. for 15 min and the supernatant was aspirated and filtered through a 0.22 μm filter; 1 mL of filtrate was collected and added to 1.5 mL of keratin buffer (Keratin Azure 830 mg, 1 M Tris-HCl 5 mL, CaCl₂ 1.11 g, pH 8.0, dissolved in 100 mL distilled water) [289]. The mixture was incubated at 180 r.p.m. for 72 h at 37°C. The reaction was terminated after 5 min, centrifuged at 3000 r.p.m. for 10 min and the absorbance of the supernatant was measured at λ 595 nm (UV-Vis Spectrophotometers, Thermo Scientific, U.S.A.).

RNA extraction and quantitative real-time PCR

The keratinase medium was centrifuged at 3000 r.p.m. for 10 min to remove excess supernatant, and mycelia were dried at 75°C for 24 h. Mycelia were quickly ground to powder under liquid nitrogen, and ground mycelia powder was added to in 1 mL of TRIzol (Invitrogen, U.S.A.) and vortexed vigorously for 1 min. After incubation at room temperature for 5 min, 200 µL chloroform was added to extract the total RNA, shaken vigorously for 15 s, and incubated again at room temperature for 3 min. After centrifugation at 12,000 r.p.m. for 15 min at 4°C, the supernatant was aspirated into a new tube, and 200 μ L of chloroform was added to perform a second extraction. To the new supernatant, 600 µL of isopropanol was added, followed by incubation at -20°C overnight. Subsequently, the pellet was centrifuged at 12,000 r.p.m. for 15 min at 4°C, the supernatant discarded, and 1 mL 70% EtOH was added to wash the RNA pellet. Subsequently, the pellet was centrifuged at 7,500 r.p.m. for 5 min at 4°C discarding the supernatant, and airdried under the hood for 15 min. Finally, the RNA pellet was suspended in 50 μ L of enzyme-free water and incubated in a water bath at 65°C for 5 min until the RNA pellet was completely dissolved. cDNA synthesis was retrotranscribed with RNA and Transcriptor Universal cDNA Master mix (Roche, Mannheim, Germany). RT-qPCR transcription reactions were performed with the *SUB1-3* primers [290] and LC 480 SYBR Green I Master (Roche, Mannheim, Germany).

Statistical analysis

Statistical significance was conducted using SPSS Statistics v26. The two-way ANOVA with Tukey corrected multiple comparison test was used to compare the expression differences among the keratin-induced culture groups. The resultant graphs are produced using GraphPad Prism 9.0. Samples from each group are presented using mean \pm SEM. The value of P < 0.05 was considered statistically significant.

RESULTS

Clinical manifestations

The 23 patients under study (Table 1, Figure 1), included 11 children and 12 adults, with a mean age of 24.13 years and a male-to-female ratio of 1:1.3. The duration of the lesions ranged from 10 days to 1 year, of which 17 within 1 year and 6 more than 1 year. The presentation of lesions was dominated by pruritic scaly erythema with scattered small papules. In 17 (73.91%) patients, the lesions formed erythematous and desquamative plaques with well-defined or relatively welldefined borders. In 2 (8.69%) of the cases, the erythema covered with yellow scales, and in 2 (8.69%) cases, hypopigmented spots and mild atrophy were present. Nineteen patients (82.60%) had used topical steroids, and 10 (43.47%) had used topical antifungal agents before consultation, of which 7 (30.43%) had previously been diagnosed with 'tinea faciei' or 'tinea corporis'. The face and neck were the most frequent single site of involvement (n=16, 69.56%). Notably, all children's lesions appeared on the face (n=11, 47.82%), followed by the upper extremities (n=5, 21.73%) and anterior chest (n=5, 21.7%), only a single patient having lesions on the lower extremities. Fifteen (65.21%) patients had a single lesion, 4 (17.39%) patients had more than 2 sites involved, 4 (17.39%) patients had primary tinea corporis/cruris, and then new-onset tinea of vellus hair appeared on the facial area.

Figure 1. (A-E) Typical tinea faciei-like rash; (F-J) atypical lesions, (G) yellow scabs on erythema, (H) rosacea-like lesions with ill-defined erythema, (I) eczematous lesion, (J) hypopigmented spots.

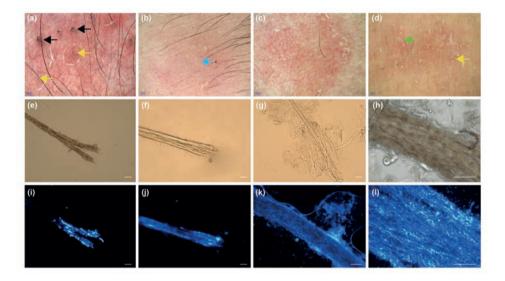


Figure 2. (A-D) Dermoscopy examination. (A) scaly plaque, scales encircling the root area and reticular blood vessels; (B, C) scaly plaques and punctate blood vessels; (D) absence of vellus hair and small pustules around hair follicles. Black arrow: spiral hair; yellow arrow: black spot sign; blue arrow: absence of vellus hair; green arrow: small pustules around hair follicles. (E-H) KOH examination. (E, F, H) Endothrix infection of vellus hair, hair shaft structure is loose, broken and split; (G) ectothrix infection of vellus hair, keratinocytes and mycelium around hair shafts. (I-L) fluorescence examination. (I-J, L) endothrix infection; (K) ectothrix infection.

Diagnosis and treatment

Under dermoscopy, we observed scaly erythema (93.63%), scales encircling the hair root (62.52%), broken hair (81.25%), spiral hair (6.25%), absence of vellus hair (50.11%), morse code hair (37.56%), reticular blood vessels (25.23%), striated blood vessels (31.25%), punctate blood vessels (31.25%), and pustules (18.75%). No hyphae or spores were found in the dander of 5 (21.73%) patients under the microscope, but vellus hair infection was involved in all of them. Ectothrix and endothrix infections were present in most of the cases (Table 1, Figure 2).

Fourteen (60.86%) patients of tinea of vellus hair were infected by *M. canis*, 7 (30.43%) by *Trichophyton mentagrophytes* complex and 2 (8.69%) by *T. rubrum*. Fifteen cases (65.21%) had a definite history of animal contact, mainly cats. The two patients (8.69%) with *T. rubrum* infection were all over 60 years of age.

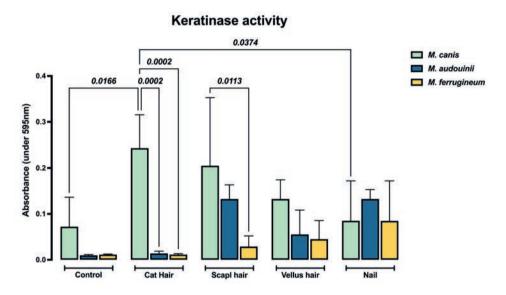
Patients with tinea of vellus hair were administered oral itraconazole 3-5 mg/kg/d (children) or 100-200 mg/d (adults) for 4-8 weeks, combined with topical antifungal medication. Regular phone follow-ups were performed on all patients, and none of the reported cases have developed new eruptions at the site of the primary lesion.

Review of the literature

A comprehensive review of 21 publications included 141 cases (Table 2). There were 114 (80.85%) cases in children and 27 (19.15) cases in adults. The male-to-female ratio was 1/1.53. The duration of lesions in patients ranged from 4 days to 10 years; 103 (73.05%) patients had received treatment with topical steroids after the onset of the disease, forty-four (31.21%) patients were treated with topical antifungal therapy for a period ranging from 4 weeks to 6 months without cure or providing mild relief of symptoms at most, followed by relapse. Typical tinea of vellus hair rash is clinically similar to tinea corporis, with ring-shaped lesion edges which are reddish and slightly elevated; the tinea has a tendency to self-healing in the centre. Sometimes the infection comprises a variety of lesions: unclear borders, edematous erythema, hypopigmented patches, folliculitis, papules, and pustules. The face and neck (n=118, 83.69%) and upper arms (n=16, 11.35%) were the most frequently affected sites, followed by the trunk (n=9, 6.38%), lower limbs (n=7, 4.96%) and buttocks (n=3, 2.13%), 8 (5.67%) cases with unclear reported sites. Eighty-nine (63.12%) had a definite animal contact history, and one had a history of family contact with a patient with tinea corporis; anamnesis was not mentioned in 18 (12.77%) cases.

The causative agent of infection was reported in 129 cases. *Trichophyton mentagrophytes* complex was the most common (n=49, 37.98%), followed by *M. canis* (n=47, 36.43%), *T. rubrum* (n=8, 6.20%), *N. gypsea* (n=17, 13.18%), *T. tonsurans* (n=4, 3.10%), *T. violaceum* (n=3, 2.33%) and *T. schoenleinii* (n=1, 0.78%).

Keratinase activity and transcript level of SUB1-3


We examined the keratinase activity and the transcript levels of SUB1-3 of the zoophilic species M. canis and its anthropophilic siblings M. audouinii and M. ferrugineum upon incubation in different keratin substrates. The highest absorbance of protease secreted by M. canis was found in cat hair-induced culture, followed by scalp hair and vellus hair-induced culture, and the lowest value in the nail-induced culture (P < 0.05). The anthropophilic species M. audouinii and M. ferrugineum showed obvious activity with scalp hair-induced culture; only very low levels of absorbance were detected in the cat hair-induced culture. Keratinase activity levels in both anthropophilic species were slightly higher in scalp hairinduced culture than in vellus hair-induced culture; however, differences between scalp hair, vellus hair and nail-induced culture were statistically insignificant (Figure 3).

In cat hair and scalp hair-induced culture, the SUB1 transcript level of M. canis was significantly higher than that of vellus hair and nail-induced culture. The SUB1 transcript levels of M. audouinii and M. ferrugineum were lower in the cat hairinduced culture, consistent with the absorbance level of keratinase activity. For M. audouinii, SUB1 transcript levels were higher in both scalp hair and vellus hairinduced culture than in cat hair-induced culture. We did not find statistically significant differences in SUB2 transcript levels across keratin-induced cultures and between species. In the anthropophilic species M. audouinii and M. ferrugineum, SUB3 transcript levels were significantly higher in scalp hair, vellus hair and nailinduced culture than in cat hair-induced culture (Figure 4).

DISCUSSIONS

Tinea of vellus hair is considered a rare form of dermatophytosis, in which hyphae and spores can be found not only in the stratum corneum but also within the vellus hair. In clinical practice, the appearance of this entity can be misleading. Most cases receive correct treatment only with delay and with low response to topical antifungal treatment. In this study, we present 23 cases of tinea of vellus hair, which is the second-largest documented case series to date (Table 1). We observed that tinea of vellus hair involved children, adolescents, and adults at more or less equal frequency (47.82% children, 52.18% adults), with the total patient cohort having a mean age of 24.13 years. Earlier reports from Spain and Italy [17-19, 285] showed a preponderance of children under 10 years, while in Taiwan, most reported cases were from adults [22]. Females were slightly more affected than

males, with a male-to-female ratio of 1: 1.3. Our results indicate that the sex distribution differed between children and adults, tinea of vellus hair mainly appearing in boys aged under 18 years and women aged over 18 years, which is consistent with that of tinea capitis [256]. The predominance of females among adults may be related to the degeneration of sebaceous glands due to hormonal changes and decreasing blood estrogen levels [291].

Figure 1. Absorbance level at λ 595 nm demonstrates the keratinase activity. Keratin activities of zoophilic and anthropophilic *M. canis* species were compared under different keratin substrate-induced cultures, respectively. Values are expressed as the means \pm SEM deviation. n=3-4 strains per group. Significantly different *P*-values between or within groups are shown in the figures.

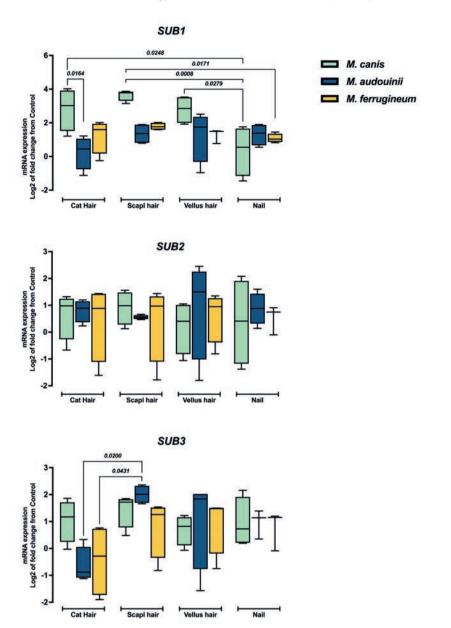


Figure 2. Relative messenger RNA (mRNA) expression (log2 fold change from Control group) of SUB1-3 in response to different keratin substrate-induced cultures. Values are expressed as the means \pm SEM deviation. n=3-4 strains per group. Significantly different *P*-values between or within groups are shown in the figures.

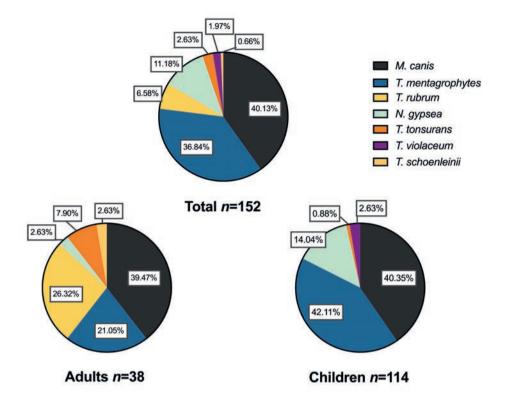


Figure 3. Distribution of tinea of vellus hairs pathogen spectrum in adults and children.

The clinical manifestations of tinea of vellus hair were quite variable. Most cases presented as typical tinea corporis or tinea faciei, having one or more round or oval erythematous scaly plaques. Other types of lesions, such as poorly demarcated erythematous plaques, telangiectasia or follicular micropustules, were also noted in some patients, presenting as tinea incognita or eczematous dermatitis; these lesions were frequently observed in patients with preceding topical steroid treatment. The use of corticosteroids may cause a local immunosuppression facilitating hair infection. As known in tinea capitis, dermoscopy proved to be a useful bedside assessment tool that helps clinicians diagnose tinea of vellus hair by the observation of broken hairs, black dots, corkscrew hair, translucent hairs, and morse code hair [292]. Short broken hairs were the most frequent dermoscopic feature, and is usually followed by black dots [293]. In addition, the use of topical antifungal medication results in a high percentage of patients (61.53-74.00%) where no fungal elements could be seen in the scales, the pathogen being limited to the hair [18, 294]. In this study and reviewed cases, 39.13% (9/23) and 30.71% (43/140) of patients, respectively, had used topical antifungal treatment prior to consultation, but the lesions continued to relapse. The duration of our cases

ranged from 10 days to 2 years, and in some published cases even as long as 10 years [22]. Therefore, it is necessary to examine both the scales and vellus hairs with direct microscopy and combined with dermoscopy. Calcofluor fluorescence microscopy served as a highly efficient and precise diagnostic tool. Gómez-Moyano & Crespo-Erchiga 9 suggested that the presence of affected vellus hairs upon direct examination in lesions of tinea of the glabrous skin would be indicative for systemic antifungal therapy. Consequently, the recommended treatment strategy for tinea of vellus hair is like that of tinea capitis [18, 286, 295].

Combining the literature review and our report, pathogens were listed in 152 cases (Table 1-2, Figure 5). Zoophilic M. canis (61, 40.13%) was the primary causative agent, followed by T. mentagrophytes complex (56, 36.84%), Geophilic Nannizzia gypsea (17, 11.18%) was also common, while anthropophilic species such as T. rubrum, T. tonsurans and T. violaceum were less common. However, there were geographic and age differences in the distribution of the dominant pathogens. Among the patients in our hospital, the predominant pathogens were the zoophilic species M. canis (14/23) and T. mentagrophytes complex (7/23), accounting for more than 90% of the cases, with only two cases caused by the anthropophilic species T. rubrum. In Spain, the main pathogen is N. gypsea followed by T. mentagrophytes complex and M. canis [18, 19, 285], while in eastern China [294], T. mentagrophytes complex predominates, followed by M. canis and N. gypsea. Trichophyton rubrum is the most common agent in Taiwan, where it was found to be the causative agent in 43.75% of the cases, closely followed by *M. canis* (37.50%) [22]. There were also differences in the distribution of pathogen spectrum in adults and children. In children, zoophilic and geophilic species of dermatophyte infections accounted for more than 96% of the cases; however, in adults, in addition to 60.52% of patients being infected with zoophilic species, infections with anthropophilic species accounted for 36.85% (Figure 5). This distribution is somewhat similar to that of the tinea capitis pathogen spectrum in adults and children [256], though zoophilic species are the dominant pathogens at all ages of tinea capitis. This proportion is significantly higher in children than in adults, where infection by the anthropophilic species T. violaceum, T. rubrum, and T. tonsurans is more common [296].

Tinea of vellus hair is a contagious fungal skin infection, which often spreads by direct skin-to-skin contact with an infected animal, or person or even by autoinoculation. Our results and literature review suggest that patients present with lesions on different body parts, with the most involved sites being the face and neck, followed by the upper extremities and trunk area. In pediatric patients, the lesions were mostly solitary on the face and neck. Multiple sites are often involved in adults, and although pet contact is also a common source of infection,

self-inoculation from pre-existing tinea cruris/tinea corporis may also be a common route. Interestingly, none of our cases or reported cases had a combination of vellus and scalp hair (tinea capitis) infections. It remains unclear whether the affinity of zoophilic dermatophytes varies for different kinds of hairs. The percentage of a history of animal contact was over 65.21% (15/23) in our study, and thus pet holding is an obvious risk factor for zoophilic pathogen infection [208]. In Italy, 46 cases of tinea faciei due to *M. canis* were reviewed, 39.13% (18/46) of the cases involving the vellus hair follicle. Among these patients, 91.30% (42/46) of the children had a contact history of domestic animals such as cats and dogs, while four cases resulted from contact with children exhibiting tinea capitis due to *M. canis* [17]. In general, the pathogen spectrum of tinea of vellus hair is similar to that of tinea capitis, and the zoophilic agents *M. canis* and *T. mentagrophytes* complex are among the predominant dermatophytes.

Keratinase, including proteases and peptidases, are important virulence factors and allergens of dermatophytes [42] and are essential for their ability to infect keratinous tissues [287]. The difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism [297]. Keratinase activity of M. canis isolated from symptomatic dogs and cats was significantly higher than that of samples isolated from asymptomatic animals [69]. Experimental infection in guinea pig model showed that strains of M. canis with high in vitro keratinase activity often cause acute, severe infections characterized by erythema, desquamation, and alopecia, whereas strains of *M. canis* with low in vitro keratinase activity were associated with less severe skin lesions but with longer duration of inflammation [287]. The relationship between keratinase and hair type remains to be determined. Zhou et al. [192] revealed an evolutionary adaptation of strains of M. canis from cat to humans, leading to a host shift with M. ferrugineum as derived anthropophilic sister species. The closely related and genomically similar species provide an excellent model for study of dermatophyte evolution that leads to adaptation to niches on the human body. Our results revealed differences in keratinolytic activity between M. canis showing intense keratinase production on cat hair versus much lower amounts produced by the anthropophilic counterparts M. audouinii and M. ferrugineum. Although lacking statistical support, a difference in the intensity of keratinase production between the species was observed with vellus hair. Possibly, preference for hair compared to glabrous skin or nail [30] is an ancestral condition in the dermatophytes.

Subtilisins are a group of serine proteases which are encoded by gene members of the *SUB* family and play an important role in dermatophytosis by decomposing keratinous structures. *SUB1-3* have been identified in *M. canis* [287] and in its sister

anthropophilic species, M. audouinii and M. ferrugineum. They are likely to play a crucial role in the anthropophilic evolution in *Microsporum*. We revealed the presence of SUB1-3 amplicons in all strains of M. canis and its siblings, with significant differences in expression when different keratin substrates were offered. When cat hair was used as a substrate, the expression levels of SUB1 and SUB3 in M. canis strains were higher than those in M. audouinii and M. ferruaineum. The most derived anthropophilic species M. ferrugineum showed lowest expression levels for all SUB genes; adaptation to the human host seems to be associated with loss of keratinase activity. In experimentally infected guinea pigs, high keratinase activity was associated with increased severity of M. canis infections, and mRNA expression of SUB3 was detected in the hair of the animal model, indicating a role in initial phases of M. canis hair infection [298]. The adherence of M. canis to repaired interfollicular cat epidermis was found to be greatly reduced in the presence of a serine protease inhibitor and a monoclonal antibody targeting SUB3, suggesting SUB3 plays a crucial role in the adhesion process [298]. There were no significant differences in the expression of SUB2 among different species and substrates. Ordinal level phylogenetic analysis of SUBs of dermatophyte species reveal a possible ancestral lineage that includes SUB2 immediate homologs and Aspergillus ALP1, whereas other coding SUBs, such as SUB1 and SUB3, are dermatophyte-specific and have emerged only through recent sequential gene duplication events [71, 299, 300].

Our study shows that tinea of vellus hair is probably an underdiagnosed entity. The epidemiological characteristics of the disease help us to understand its transmission patterns and develop effective prevention strategies. Pets are likely to be the most important infectious sources in pediatric patients, while autoinoculation might be more common in adults. Dermoscopy and Calcofluor fluorescence microscopy are useful bedside assessment tools that helps clinicians to diagnose tinea of vellus hair precisely and efficiently and may help in therapeutic management. There are associations between keratinase activity and expression of SUB1-3 induced by different substrates among M. canis and its anthropophilic relatives, which may explain the host shift and adaptation from pet animals to micro-habitats on the human host.

Funding information

This project was supported by the Natural Science Foundation of Guangdong Province of China (No. 2020A1515011183). Xin Zhou has received research support from the China Scholarship Council (No. 202006380049).

Author Contributions

XZ: conceptualisation; methodology; writing, original draft preparation; writing, review and editing. WTL: methodology; writing, review and editing. MRL, LW and GXZ: data collection. RW and AW: return survey and investigation. PRC: conceptualisation. STQ and HTL: methodology; data collection. SDH: writing, review and editing; supervision. PYF: conceptualisation; funding acquisition; supervision; writing, review and editing.

Ethics Statement

The authors confirm the ethical policies of the journal, as noted on the journal's author guidelines page; this study complied with the ethical policies required by the journal and was approved by the ethics committee of the Third Affiliated Hospital, Sun Yat-Sen University (approval number II2023-025-03).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

No other individual person's data was used in this manuscript.

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Xin Zhou https://orcid.org/0000-0003-2094-7288

Wentao Liu https://orcid.org/0000-0001-8840-6475

Sybren de Hoog https://orcid.org/0000-0002-5344-257X

Peiying Feng https://orcid.org/0000-0002-7284-2034

Table 1. Summary of 23 cases with tinea of vellus hair

Pathogen	M. canis	M. canis	M. canis	M. canis	M. canis
Pa	M.	W	Σ.	Ä.	W.
Family exposure Microscopy history	Endothrix & ectothrix	Endothrix & ectothrix	Endothrix & ectothrix	Endothrix & ectothrix	Endothrix & ectothrix
Family exposure history	0 Z	ON N	Father has tinea pedis	0 Z	o Z
Concurrent dermatophytosis	O N	O N	O N	O N	O Z
Animal contact history	Cat	o _N	O Z	Cat	Cat
Previous treatment with topical	Yes	ON.	Yes	Yes	O Z
Previous treatment with topical steroids	Yes	Yes	o Z	Yes	Yes
Pruritus	Yes	Yes	Yes	Yes	Yes
Manifestations Pruritus	Irregular erythema with scattered papules	Papules, erythema, well- defined borders	Erythematous and finely scaly with relatively clear borders	Erythematous and finely scaly with relatively clear borders	Well-defined hypopigmented spots, mild atrophy, dark spot sign
Lesion duration	1 y	2 w	8 8	4 E	E K
Sites	Bilateral 24 y/M upper limbs	Nose bridge	Right cheek	Right cheek	Bilateral 19 y/F upper limbs
Age/ sex	24 y/M	2 y/F	2 y/M	6 y/F	19 y/F

Age/ sex	Sites	Lesion duration	Manifestations Pruritus	Pruritus	Previous treatment with topical steroids	Previous treatment with topical antifungals	Animal contact history	Concurrent dermatophytosis	Family exposure history	Family exposure Microscopy history	Pathogen
50 y/F	60 y/F Face, neck	5 E	Diffuse irregular erythema, papules with fine scales	Yes	Yes	Yes	9 2	N O	Grandson with tinea capitis	Endothrix & ectothrix	T. mentagrophytes complex
4 y/M F	Right cheek	3 3	Pale erythema, papules with hypopigmented margins	Yes	Yes	o Z	Cat	O N	O Z	Endothrix & ectothrix	M. canis
2 y/M	Left 2 y/M corner of mouth, left eyelid	10 d	Well-defined erythema, papules	Yes	Yes	Yes	Cat	O Z	O Z	Endothrix & ectothrix	M. canis
37 y/F	Left shoulder, right 37 y/F lumbar region, lower limbs	2 3	Well-defined pale red/brown spots with fine scales	Yes	Kes	o Z	Cat	O Z	O Z	Ectothrix	M. canis

:			
	i		
	:		
•	į		
	į		
	•		
•			
	(1	
:	ć		
	•	١	
•			

Pathogen	M. canis	T. mentagrophytes complex	T. rubrum	M. canis
Path	M. c	mentag	T. ru	М.
Family exposure Microscopy history	Endothrix & ectothrix	Endothrix & ectothrix	Endothrix & ectothrix	Endothrix & ectothrix
Family exposure history	o Z	o Z	o Z	O N
Concurrent dermatophytosis	O _N	O Z	O N	O Z
Animal contact history	Cat	Cat	o Z	Cat
Previous treatment with topical antifungals	o Z	o Z	Yes	Yes
Previous treatment with topical steroids	Yes	o Z	Yes	Yes
Pruritus	Yes	Yes	Yes	Yes
Manifestations Pruritus	Rounded erythematous plaques with profuse yellow scales	Rounded, scaly erythematous plaques with elevated margins and black spot signs	Erythematous and finely scaly with relatively clear borders	Rounded erythematous plaques with profuse yellow scales
Lesion duration	≥ m	1 8	2 y	E E
Sites	Face, neck, anterior chest, right upper	Nose bridge	62 y/M Face, neck	Face, upper limb
Age/ sex	24 y/F	19 y/F	62 y/M	8 y/F

Table 1 . (continued)

Age/ sex	Sites	Lesion duration	Manifestations Pruritus	Pruritus	Previous treatment with topical steroids	Previous treatment with topical antifungals	Animal contact history	Concurrent dermatophytosis	Family exposure history	Family exposure Microscopy history	Pathogen
6 y/F	6 y/F Face	2 m	Erythematous and finely scaly with relatively clear borders	Yes	Yes	o N	Rabbit	o Z	o N	Endothrix & ectothrix	T. mentagrophytes complex
52 y/M	Hand, 52 y/M upper limb	≫ 8	Diffuse irregular erythema, papules with fine scales	Yes	Yes	o Z	Dog	o Z	o Z	Endothrix & ectothrix	T. mentagrophytes complex
5 y/M	Face	2 w	Erythematous and finely scaly with relatively clear borders	Yes	Yes	O Z	Cat	o Z	o Z	Endothrix & ectothrix	M. canis
2 y/M	Face	1 w	Erythematous and finely scaly with relatively clear borders	Yes	Yes	o Z	Cat	o Z	o Z	Endothrix & ectothrix	T. mentagrophytes complex
24 y/F	24 y/F Face, neck	1 w	Rounded erythematous plaques with profuse yellow scales	Yes	Yes	o Z	Cat	o Z	o Z	Endothrix & ectothrix	M. canis

mentagrophytes Pathogen T. rubrum complex M. canis M. canis Endothrix & exposure Microscopy Endothrix & Endothrix & Endothrix & ectothrix ectothrix ectothrix ectothrix Family history õ õ ŝ ŝ dermatophytosis Tinea corporis Concurrent Tinea cruris Tinea cruris ŝ contact history Animal Rabbit Yes å å antifungals treatment treatment Previous topical with Yes Yes å å Previous topical steroids with Yes Yes Yes Yes Manifestations Pruritus Yes Yes Yes Yes Diffuse irregular scaly erythema, scaly erythema Well-defined papules with patches with Well-defined boundaries fine scales erythema, Dark red papules clear duration Lesion 2 ∨ 1 y2 y $_{1}$ y 67 y/F abdomen, abdomen, buttocks Sites Left ear, vulva, Face, groin Face, 19 y/M chest, groin Face 5 y/F 78 y/F Age/ Sex

Table 1. (continued)

Pathogen	T. mentagrophytes complex
Microscopy	Ectothrix
Family exposure I history	ON N
Concurrent dermatophytosis	Tinea pedis, tinea cruris
Animal contact history	ON N
Previous Previous treatment with with topical topical steroids antifungals	o N
Previous treatment with topical steroids a	o Z
Pruritus	Yes
Manifestations Pruritus	Well-defined rounded, arcuate scaly dark red rash; plantar erythematous blisters
Lesion duration	2 y
Sites	Face, groin, feet
Age/ sex	15 y/M

M, male; F, female; y, years old; m, month; d, day; w, week

Table 2. A comprehensive review of 19 publications on tinea of vellus hair

Year	Area	Patient number	Species	Author
2001	China	1	T. tonsurans	Li JB, et al. [301]
2008	China	1	T. mentagrophytes	Zhang RF, et al.
2010	Spain	13	N. gypsea (5), M. canis (3), T. mentagrophytes (5)	Gómez Moyano E, <i>et al.</i> [18]
2012	Italy	18	M. canis (18)	Atzori L, et al. [17]
2015	Spain	1	M. canis	Knopfel N, et al. [285]
2016	Spain	1	T. rubrum	Moyano EG, et al. [302]
2016	Spain	6	M. canis (2), T. tonsurans (2), N. gypsea (1), T. mentagrophytes (1)	Gómez-Moyano E, et al. [292]
2018	Thailand	1	T. mentagrophytes	Eksomtramage T, <i>et al.</i> [286]
2018	Taiwan, China	16	T. rubrum (7), M. canis (6) and T. mentagrophytes (3)	Sun PL, <i>et al.</i> [22]
2019	Uruguay	1	T. rubrum	Turra N, et al. [303]
2019	Japan	1	T. schoenleinii	Iwasa K, et al. [304]
2020	China	1	M. canis	Wei F, <i>et al.</i> [20]
2020	China	1	N. gypsea	Tang J, <i>et al.</i> [305]
2020	China	73	T. mentagrophytes (38), M. canis (12), N. gypsea (10) and T. violaceum (2)	Yan W, et al.
2021	Spain	1	T. tonsurans	Lopez Riquelme I, <i>et al.</i> [19]
2022	China	1	M. cains	Zhi HL, et al. [295]
2022	China	1	M. canis	Hu W, et al. [21]
2022	China	1	M. canis	Xu X, et al. [215]
2022	China	1	M. canis	Liu ZH, <i>et al.</i> [306]
2022	China	1	T. violaceum	Ge S, <i>et al.</i>

CHAPTER 5

HUMAN ADAPTATION AND DIVERSIFICATION IN MICROSPORUM CANIS COMPLEX

Xin Zhou, Sarah A. Ahmed, Chao Tang, Maria Eduarda Grisolia, José Francisco Ghignatti Warth, Kristen Webster, Andrea Peano, Silke Uhrlass, Claudia Cafarchia, Marie Pierre Hayette, Rosalie Sacheli, Tadeja Matos, Yingqian Kang, G. Sybren de Hoog and Peiying Feng

IMA Fungus 14, 14 (2023)

ABSTRACT

The Microsporum canis complex consists of one zoophilic species, M. canis, and two anthropophilic species, M. audouinii and M. ferrugineum. These species are the most widespread zoonotic pathogens causing dermatophytosis in cats and humans worldwide. To clarify the evolutionary relationship between the three species and explore the potential host shift process, this study used phylogenetic analysis, population structure analysis, multispecies coalescent analyses, determination of MAT idiomorph distribution, sexual crosses, and macromorphology and physicochemical features to address the above questions. The complex of Microsporum canis, M. audouinii and M. ferrugineum comprises 12 genotypes. MAT1-1 was present only in M. canis, while the anthropophilic entities contained MAT1-2. The pseudocleistothecia were yielded by the mating behaviour of M. canis and M. audouinii. Growth rates and lipase, keratinolysis and urea hydrolytic capacities of zoophilic M. canis isolates were all higher than those of anthropophilic strains; DNase activity of M. ferrugineum exceeded that of M. canis. The optimum growth temperature was 28°C, but 22°C favoured the development of macroconidia. Molecular data, physicochemical properties and phenotypes suggest the adaptation of zoophilic M. canis to anthropophilic M. ferrugineum, with M. audouinii in an intermediate position.

INTRODUCTION

The dermatophytes comprise one of the most prevalent groups of zoonotic fungal pathogens [6, 307]. Infections are typically superficial, involving keratinized structures such as skin, nails, and hair. Currently, seven genera of dermatophytes are accepted, of which members of Trichophyton, Epidermophyton, and Microsporum are commonly associated with human dermatophytosis [308]. From an ecological and clinical perspective, three approximate groups are distinguished, i.e., geophilic, zoophilic, and anthropophilic species. Classically, it has been supposed that the evolution from geo- to anthropophilic lifestyles has taken thousands of years. This refers to the evolution from geophily in Arthroderma to anthropophily in Trichophyton. However, Tang et al. [26] suggested that this may also occur at a smaller scale within single species complexes. For example, Trichophyton mentagrophytes represents an interbreeding cloud of genotypes with a preponderantly zoophilic lifestyle, while T. indotineae and T. interdigitale are anthropophilic clonal offshoots [26]. Similar taxonomic structures can be observed in the prevalently zoonotic *T. benhamiae* species complex [309].

The zoophilic species Microsporum canis is flanked by anthropophilic clones, M. audouinii and M. ferruqineum. The group is phylogenetically remote from all other dermatophytes. Microsporum canis is prevalent in cats and dogs, and when transmitted to humans, causes tinea capitis, tinea faciei and tinea corporis. Tinea capitis may show an often-severe inflammatory host response, presenting pruritic, scaly areas of alopecia. In contrast, the anthropophilic species M. audouinii and M. ferrugineum are generally transmitted from human to human, causing tinea capitis, mainly presenting with limited inflammation and minimal symptoms. Microsporum audouinii has occasionally been detected in animals and in the environment [310-313], while also some cases of severe inflammation have been reported [314-316]. From the early 1930s to the fifties, M. audouinii pandemics were a major cause of tinea capitis in Europe and the U.S.A. [54]. With the tinea capitis eradication campaign in the 1950s, M. audouinii decreased significantly and was eventually confined to Africa [317]. However, pet ownership grew in popularity from the 1990s, the zoophilic M. canis became the predominant agent of tinea capitis in Europe and Asia, and during the last decades, M. audouinii reemerged in school children [318-321]. Microsporum ferrugineum is considered endemic between the Balkan, East Asia and Nigeria [322] and has been reported in Europe and the Americas with the flow of migrants [323]. It is worth mentioning that M. equinum, an obsolete name for M. canis strains causing horse tinea, has been reported from several locations during the last century [324-326]. The identity of M. equinum remains controversial, as it differs morphologically and physicochemically

from *M. canis*, but molecularly it is an infraspecific taxon and was synonymised with *M. canis* [327]. Kano *et al.* (2001) reported that in the chitin synthase 1 gene, *M. equinum* was close to *Arthroderma otae*. Still, when crossed with tester strains of *A. otae*, *M. equinum* failed to produce ascomata [326].

Significant phenotypic and ecological variation exists between the three members of the *M. canis* complex, but evidence of sexual reproduction underlines a strong connection between the species. Fertile gymnothecia have been observed in mating experiments [56], and by nomenclatural rules of that time, the sexual state was described as *Arthroderma otae* (= *Nannizzia otae*). Monoascospore cultures were demonstrated to be heterothallic [56]. Since then, an imbalance of the *MAT* idiomorph was shown in *M. canis*, with the predominance of *MAT* (-). *Microsporum audouinii* and *M. ferrugineum* were considered to be strictly clonal.

Whether the above anthropophilic and zoophilic species should be considered members of a single biological species represented by the sexual state 'Arthroderma otae' is still an open question. To better delineate species identities in the *M. canis* complex and to understand the shift process from animal to human hosts, the present study combines multiple approaches, including molecular phylogenetic and population genetic analysis, using a global set of isolates with a focus on human strains. We screened the variability of phenotypic, physiological, and genetic properties of the three taxonomic entities and determined the distribution of *MAT* idiomorphs.

MATERIAL AND METHODS

Strains

Microsporum canis, M. audouinii, and M. ferrugineum were isolated from patient tinea capitis, tinea corporis, and animal dermatophytosis. The 183 strains obtained from the collection conservation of the Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University (n=20); Clinical Microbiology, University of Liège, Belgium (n=15); Faculty of Medicine, University of Ljubljana (n=28); Department of Dermatology, UH Cleveland Medical Center (n=37); Labor für Medizinische Mikrobiologie - Partnerschaft (n=30); Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná (n=13); Department of Veterinary Medicine, University of Bari Aldo Moro (n=28); and Department of Veterinary Sciences, University of Turin (n=12). The Westerdijk Fungal Biodiversity (Utrecht, The Netherlands) provided the tester strains CBS 495.86 and CBS 496.86. Detailed information on the strains' origin is listed in Additional table 1.

Molecular studies

A rapid DNA extraction method was used to extract DNA from 185 strains. The strains were incubated in Potato Dextrose Agar (PDA, Oxoid, U.K.) at 28°C for 14 days. Conidia or hyphae were picked from colonies and dissolved in 300 µL Breaking buffer (containing 2.14% w/v Triton X-100, 1% w/v SDS, 0.585% w/v NaCl, 0.1575% w/v Tris-HCL, 0.0292% w/v EDTA). Samples were shaken at 1,400 rpm for 45 minutes at 60°C incubation. After adding 250 μL 25:24:1 phenol-chloroformisoamyl alcohol (Sigma, U.S.A.), the mixture was centrifuged at 13,000 rpm for 10 min at room temperature and the supernatant was collected. The rapid DNA extraction method bypassed the detection of DNA concentration and went directly to thermal cycling.

ITS1/ITS4 or ITS1F/NL4 [328] were used to amplify the ITS (ITS1-5.8S-ITS2) rDNA region. The partial β -tubulin II (tub2) was amplified using the primers BT-2a/T2 [329]. EF-DermF/EF-DermR [330] amplification of translation elongation factor 1 (tef-1a) was done. DNA topoisomerase I (topI) and II (topII) were amplified using the TOP1 501-F/TOP1 501-R [331], TOPII-F1/TOPII-Mic [332] primer sets, respectively. The 60S L10 (L1) region was amplified using 60S-908R/60S-506F [331].

The 25 µL PCR reaction system contained 0.25 µL high-fidelity DNA polymerase (Thermo Fisher Scientific, U.S.A.), 0.5 µL DNA, 0.5 µL dNTPs, 1 µL forward and reverse primers, 5 μL HF buffer and 17.75 μL nuclease-free water. DNA purification was carried out according to the instructions of the QIAquick gel Extraction Kit (QIAquick, Germany).

Phylogenetic analyses

The harvested DNA forward and reverse sequences were assembled in SnapGene v6.0.2 [333], and multiple sequence alignments were performed using Clustal Omega. The maximum likelihood (ML) method was used to construct phylogenetic trees for a single locus and six loci concatenation with Lophophyton gallinae CBS 300.52 as the root in MEGA v10.2. The concatenated multi-locus sequences totaled 3299 bp in length. For tub2, ITS, topl, tef-1α, topll, 60S L10 (L1) and tandem sequences, the best substitution models were K2, HKP+G, JC, K2, K2, JC, and K2+I, respectively. The first 25% of trees were discarded as burn-in after 1000 bootstrap replicates. The evolutionary tree was further edited and annotated in iTtol (https:// itol.embl.de/) and Adobe Illustrator 2020.

The R (v4.0.2) package phylogram/dendextend was used to visualize each locus evolutionary tree relative to the others. Matching taxa were connected using auxiliary lines to minimize the number of reticulations in any biconnected network components.

Analyses of nuclear haplotypes

Nucleotide polymorphism analysis of concatenated multilocus sequences was performed in DNASP v6.12.03 [334]. Population expansion was analyzed using Tajima's D and Fu's Fs neutrality tests. Populations of 185 sequences (without outgroups) were grouped by species type, origin, and *MAT* type in Arlequin (v3.5.2.2). Visualization of haploid networks was achieved in PopART v1.7 [335] using the TCS network method.

Multispecies coalescent analyses

Based on the haplotype results, the corresponding numbered strains were selected as representatives in each grouping. The Beast (v2.6.7 StarBeast3) [336] template was used to accomplish efficient multi-species joint inference using parallel gene tree operators. The dataset was partitioned by the 6 genes. HKY for substitution Model, Strict Clock molecular clock model, and Empirical for Frequencies were applied. The Yule model was used to set the tree species prior, and the clock rate priors for all loci were set to Exponential with a mean of 1.0. The chain length was set to 5,000,000, the tree was sampled every 5,000 steps, the tracelog was set to 5,000, and the screenlog was adjusted to 10,000. After running Beast v2.6.7, the results were analyzed with Tracer v1.7 [337] to assess the convergence of the model parameters. The burn-in percentage was set to 10, and the posterior probability (PP) was limited to 0.75 in TreeAnnotator v1.10 and the PP support for the specified branches was displayed in the DensiTree v2.6.7.

Phenotypic and physiological studies

The 185 strains were grown on Potato dextrose agar (PDA, Oxoid) at 28°C for 14–21 days. Colony morphology was described with reference to the Atlas of Clinical Fungi, 4th edition (de Hoog *et al.* 2020), using a hexadecimal color code to indicate the colour of the colony (https://coolors.co/).

For the preparation of the Tween-80 agar (1% w/v Bacto Peptone, 0.5% w/v NaCl, 0.01% w/v CaCl₂, 1.5% w/v agar and 0.5% w/v Tween-80) Petri dish is referred to [26], the diameter of the halo around the colony was recorded after incubation at

28°C for 15 days. The Deoxyribonuclease (DNase) test was performed by first inoculating the isolates on DNase Test Agar (Oxoid, U.S.A.) and cultured at 28°C for 15 days, after which 18.25% w/v HCL was poured on the surface of the medium and the diameter of the ring-clear zone was measured after 10 minutes [338]. The protocol of the keratin azure test was based on [339]. Each tube contained 5.5 ml of medium, which was divided into two lavers, with the lower laver of 5 ml consisting of 2.5% w/v agar, 0.05% w/v MgSO₄·7H₂O, 0.05% w/v KCl, 0.05% w/v K₂HPO₄, 0.01%w/v ZnSO₄·7H₂O, 0.01% w/v FeSO₄·7H₂O, 0.003 % w/v CuSO₄, and the upper layer of 0.5 ml consisting of 1% w/v agar, 0.05% w/v MgSO₄·7H₂O, 0.05% w/v KCl, 0.05% w/v K₂HPO₄, 0.01% w/v ZnSO₄·7H₂O, 0.01% w/v FeSO₄·7H₂O, 0.003% w/v CuSO₄, 0.4% w/v keratin azure. Mycelia were transferred to the upper medium and grown at 28°C for 4 weeks, then the degree of blue of the lower layer represented the strength of the keratin decomposition. The urea hydrolysis tests were performed using Urea Agar Base (Oxoid, Hampshire, U.K.) and incubated at 28°C for three days, after which the colour change of the medium was observed. The results of keratinase activity and urea hydrolysis Tween opacity test were given a score ranging from 5 (strongly positive) through 4 (positive), 3 (weak), 2 (weak/negative) and 1 (negative). The effect of M. canis complex on hair was studied by culturing the strain in distilled water containing 0.06% w/v yeast extract solution (BD, Bacto, U.S.A.) and blond children's hair. After 6 weeks of culturing at 28°C, structural alterations in the hairs were observed under the microscope (Zeiss, Germany).

The strains were inoculated in triplicate on Sabouraud Dextrose Agar (SDA; Oxoid), PDA, and Malt Extract Agar (MEA; Oxoid) and cultured at 22, 28, and 37°C for 14 days. Colony diameters were measured to assess temperature tolerance. Three angles were chosen for each colony to measure the diameter to take the average. At least three slides per Petri dish were made to record the spore abundance, septa number, length, and width of macroconidia under the microscope. Principal component analysis of morphological characteristics was constructed in GraphPad Prism 9.0.

MAT idiomorph determination

To detect the presence of MAT1-1 or MAT1-2 regions in M. canis, the primer pairs Mc alpha F/Mc alpha R and Ab HMG F/Ab HMG R were used, respectively, while the primer pair HMG for 1/HMG rev 1 [340] was used to amplify the MAT1-2 region in M. audouinii and M. ferrugineum. Thermal cycling procedure and conditions are shown in the above molecular studies. The mating type of 183 strains was identified using the reference strains CBS 495.86 (MAT1-2) and CBS 496.86 (MAT1-1). On agarose gel plates, the results of the bands were determined, and numerous bands for each

species were chosen for sequencing to verify the correctness of the amplified sequences.

Sexual crosses

Sexual crosses were performed on Niger Seed agar (5% w/v niger seed, 0.1% w/v glucose, 0.1% w/v yeast extract, 0.05% w/v MgSO4·7H2O, 0.1% w/v KH2PO4, 2% w/v agar) and Oatmeal Agar (2% w/v Oatmeal, 0.1% w/v yeast extract, 0.1% w/v NaNO3, 0.1% w/v MgSO4·7H2O, 0.05% w/v KH2PO4, 1% w/v agar). Based on MAT idiomorphs determination, each isolate was tested for heterothallic crosses with CBS 495.86 (MAT1-2) or CBS 496.86 (MAT1-1), respectively. Small pieces of fresh, vigorously growing cultures were cut from the colonies and placed approximately 5 mm apart in the centre of the Petri dish. All crosses were incubated in the dark at 23–25°C for 4–6 weeks and were periodically checked for cleistothecia or pseudocleistothecia.

Statistics

Statistical significance was conducted using SPSS Statistics v26. Tween-80 opacity, keratin azure, urea hydrolysis and tests were performed using the Kruskal-Wallis test with Dunn's multiple comparisons tests. The growth rate and characteristics of macroconidia were conducted using two-way nonparametric, Scheirer-Ray-Hare test. The resultant graphs were produced using GraphPad Prism 9.0. Each dot in the figure represents a sample, and each group's standard error of the mean (SEM) is displayed. The value of P<0.05 was considered statistically significant. The significance layout appears as follows: *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.

RESULTS

Phylogeny of Microsporum canis complex

Phylogenetic analysis of the *M. canis* complex was performed by reconstructing an evolutionary tree combining six loci. Genealogical concordance of single strains in the different loci was visualized using a tanglegram (Figure 1), showing consistency in the topology of sequences in supported clades. Clades containing the type strains of *Microsporum canis*, *M. audouinii* or *M. ferrugineum*, respectively, were identified in the *tef-1a* and *topII* datasets. Each clade was supported by bootstrap (bs) >70%, except for CBS 495.86, which remained separate from *M. audouinii* and *M. ferrugineum* only based on the *tub2* region. CBS 496.86 had significant sequence

identity with the major genotype known as M. canis in the topl and $tef-1\alpha$ regions but had multiple nucleotide substitutions at all four other loci compared to the remaining strains. In topl. CBS 495.86 and CBS 496.86 shared the same nucleotide sequence and were classified in the M. canis group. Linkage lines are drawn (Figure 1) relative to the phylogeny of the tub2 gene fragment in the tanglegram. The relationships between the three groups were consistent across the six loci of bssupported groupings, but some isolates deviated. In tub2, 60S L10 (L1), tef-1a, top/I and topl, M. audouinii and M. ferrugineum clustered in the same group, whereas in the ITS region, M. canis and M. ferrugineum belonged to the same group. Both CBS 495.86 and CBS 496.86 were assigned to the M. canis group in the topl area, while the M. audouinii strain 204 was a member of the M. ferrugineum cluster.

Phylogenetic analysis of the above six concatenated loci revealed three supported main groups (Figure 2). Microsporum canis emerged as a separate clade (99% bs), and the paraphyletic clades M. audouinii and M. ferrugineum each had >90% bs support. CBS 495.86 deviated, being intermediate between M. canis and M. audouinii (65% bs). CBS 496.86 was individualized and affiliated with the M. canis clade (>80% bs).

Genetic diversity and population structure of the Microsporum canis complex

Nucleic acid diversity and population structure based on DNA sequences were used to determine the genotypic and evolutionary relationships of groups within the complex. The six DNA makers were concatenated to multiple sequence alignments of 3322 bp, which included 76 variable sites, 14 singleton variable sites, 62 parsimony informative sites, and 11 indel events.

The haplotype network comprised 12 multilocus genotypes (Figure 3, Hap1-12), of which Hap1-7 genotypes belonged to M. canis, Hap8-11 to M. audouinii, and Hap12 to M. ferrugineum. Hap1 was the predominant genotype in M. canis. Compared to Hap1, Hap2 and Hap3 isolates had single nucleotide site substitutions in the top// and ITS sections, Hap4 exhibited a single substitution in the top1 region, a single substitution of Hap5 was found in the topII area, and the ITS region of Hap6 included five extra substitutions. Hap7 (CBS 496.86) was genetically distinct from the remaining genotypes. Eight base substitutions occurred between CBS 496.86 and Hap1. Hap9 was the predominant genotype of M. audouinii, with one site substitution in top// being Hap10 and three nucleotide substitutions producing Hap11. Hap8 (CBS 495.86) was situated in the middle of the network diagram and had greater variability with Hap1 and Hap9. *Microsporum ferrugineum* had only one (Hap12) genotype and no intragroup variation.

Analysis of nucleotide diversity and population genetic differentiation indicated that the complex has evolved stably over a long period (Pi = 0.00513, Hd = 0.571). Hap1 was a shared haplotype and an interior clade haplotype, implying that Hap1 might be the ancestral genotype within the entire complex. The complex has yet to undergo significant population expansion or experience a bottleneck event (Tajima's D = 0.781, Fu's Fs = 0.11943). The minimum recombination event Rm was 5. There has been significant genetic divergence (Fst > 0.25) between the three clades within the complex (Additional table 2).

Coalescence analysis

The species limits of the M. canis complex were re-examined by multi-species coalescence (MSC) analysis. StarBeast3 is a template for efficient Bayesian inference under the MSC model using the Markov chain Monte Carlo algorithm. The difference with the phylogenetic analysis of multiple sequence motifs is that MSC does not perform concatenation of the loci and proceeds directly to the analysis. Based on the 12 haplotypes, we selected representative sequences from each Hap group: Hap1 included M. canis 10, 50, 65, 68 and 228, Hap2 included M. canis 138 and 244, Hap3 was M. canis 3, Hap4 included M. canis 9, 12 and 21, Hap5 was M. canis 73, Hap6 included M. canis 167, 168, 213 and 224, Hap7 was CBS 496.86, Hap8 was CBS 495.86, Hap9 was M. audouinii 178, Hap10 included M. audouinii 88, 93 and 99, Hap11 was M. audouinii 204, and Hap12 included M. ferrugineum 19 and 190. Trimming the sequences to equal length resulted in a total of 25 individuals with complex genotypes. Lophophyton gallinae was included as the root. Figure 4A shows the tree for 1000 random calculations, and Figure 4B displays the tree with the highest posterior probability product of nodes. Posterior probability (PP) support greater than 0.7 was shown next to the branches. In the MSC tree, M. ferrugineum is a separate taxonomic entity and M. canis and M. audouinii are delimited in the same branch. Strain CBS 495.86 and remaining M. audouinii strains are considered to be paraphyletic (PP=1). Both Hap9 and Hap10 are monophyletic (PP=1) strain sequences that are reciprocal to one another. The Hap6 and Hap7 genotypes and the Hap1-5 genotypes constitute branches that are parallel to each other (PP=1). Of the Hap1-5 genotypes, Hap2 differs from the other four (PP=1) and the remaining typing is not supported by sufficient PP (Figure 4).

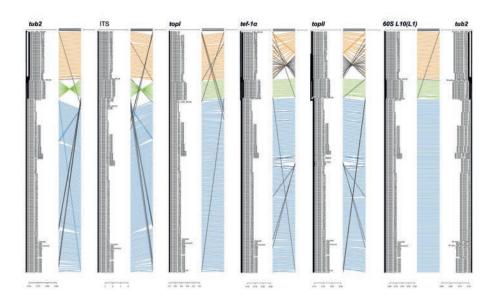
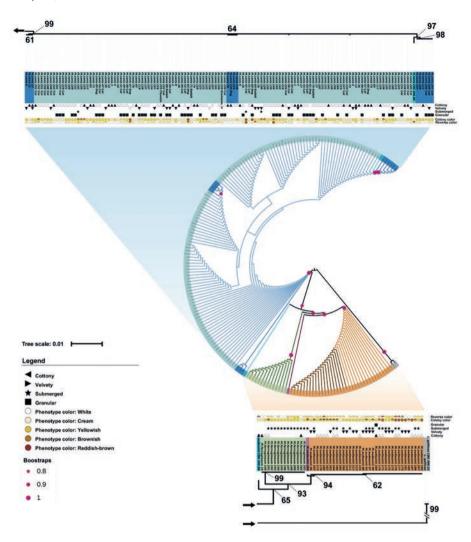



Figure 1. Tanglegram of six DNA regions. The diagram shows the evolutionary tree of each locus about the others. Matching taxa are connected using auxiliary lines of the same colour, the blue line for M. canis, the green line for M. ferrugineum and the orange line for M. audouinii. The grey line connects incongruent strains

Figure 2. Multilocus phylogeny of *M. canis* complex. A maximum likelihood tree was constructed using tub2, ITS, topI, tef- 1α , topII, 60S L10 (L1) concatenated loci to analyse the multilocus phylogeny of the *M. canis* complex. The tree is annotated with the morphology, colony colour and reverse colour of 185 strains

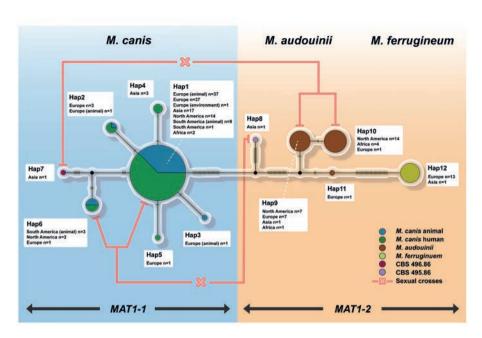


Figure 3. Haplotype network analysis based on multilocus data. The haplotype network map of the diferent species and host sources, the relationship between geographical origin and genotype, and the distribution of MAT idiotypes and sex crosses are shown. Strains of animal origin are marked in the haplotype network; the rest are strains of human origin

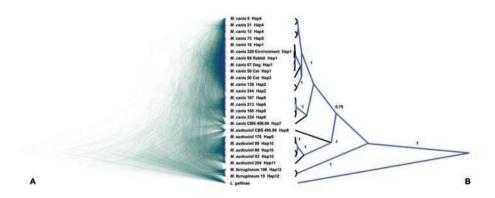


Figure 4. Multispecies coalescent tree constructed from six loci. Posterior probability support of >75% is shown next to the node

Geography and host origin

We further analyzed the geographic and host origins of the different Hap genotypes to understand the distribution and prevalence of members of the M. canis complex (Figure 3). Hap1 (n=118) included isolates from Belgium, Brazil, China, Germany,

Guinee, Italy, Slovenia, and the U.S.A. Of these strains, 47 were from animals (both symptomatic and asymptomatic), and the remaining strains (n=71) were from humans. In Hap1, concerning the animal origins, 35 isolates were from cats, 6 from dogs, 1 from a cheetah kept in captivity and 1 from the environment; of the humanderived isolates, 10 strains were isolated from smooth skin, and 51 from the scalp, while for some isolates no data were available. Hap2 (n=4) originated from Europe (Belgium, Germany, Italy, Slovenia), Hap3 (n=1) and Hap4 (n=1) were from Italy and Belgium, respectively, and Hap4 was only found in China. Hap6 (n=6) was mainly from Brazil, followed by the U.S.A. and Germany. The animal isolates in Hap2 were from dogs, and those in Hap3 and Hap6 were all from cats. Thirty-six strains of *M. audouinii* and 14 strains of *M. ferrugineum* were isolated from humans. Hap9 (n=16) was from the U.S.A., Germany, and Senegal; Hap10 (n=19) was mainly isolated in the U.S.A., followed by African countries (Congo, Cameroun, Guinee). Hap12, *M. ferrugineum*, originated in China and Germany.

Physiology

For these tests, we divided the main groups defined above into six groups for comparison, viz. *Microsporum canis* cat (cat-derived *M. canis* isolates), *M. canis* dog (dog-derived *M. canis* isolates), *M. canis* rabbit (rabbit-derived *M. canis* isolates), *M. canis* human (human-derived isolates), *M. audouinii* and *M. ferruqineum* groups.

Compared to isolates of human origin, all three animal groups showed higher lipolytic capacity, especially in the M. canis cat group (P<0.001), but there were no statistically significant differences among the cat, dog and rabbit origins. The M. audouinii and M. canis human groups had similar lipase catabolic abilities, with 72.7% and 75.3% positivity, respectively. Only 14.2% of M. ferrugineum strains were positive in the Tween-80 opacity test. The keratinolytic capacity of the four M. canis groups was higher than that of both the M. audouinii and M. ferrugineum groups (P<0.05), and no difference was observed in M. canis from human and animal origin. The M. canis rabbit group showed the highest scores in keratinase activity and urea hydrolysis tests compared to M. ferrugineum (P<0.05). Urea catabolic capacity did not differ between the M. canis animal, M. canis human, and M. audouinii groups, but all were stronger than in M. ferrugineum. The DNase activity of M. ferrugineum was the strongest among the six groups, higher than that of M. canis (P<0.01) (Figure 5A).

Hair perforations perpendicular to the hair shaft were not observed. All three species caused ectothrix, but hairs in the *M. canis* group showed different levels of damage at 4–6 weeks, which appeared after 8–10 weeks in *M. audouinii* and *M.*

ferrugineum cultures. The hairs showed mild damage of brush-like changes in cuticle scaling, moderate damage in the form of continuous or interrupted medullae, and finally severe hair breakage (Additional figure 2). In all M. canis animal groups, 56.5% of the hairs showed severe damage to the hair structure with breakage, 30.4% were dominated by mild hair damage, and 13% were unchanged. In the M. canis rabbit, cat, and dog groups, 75%, 42.9%, and 28.5% of the strains showed severe hair breakage, respectively. This manifestation was followed by 40.9%, 50% and 9% in the M. canis human group. In the M. audouinii and M. ferrugineum groups, 20% and 10.5% of the hairs were broken, 40% and 42.1%, respectively of the hairs remained structurally normal, and the others showed only mild damage.

The fastest growth was observed at 28°C, followed by 22°C (Figure 6A). At 37°C, only a few M. canis strains (n=7) could grow. Microsporum audouinii and M. ferrugineum did not grow at 37°C. Microsporum canis showed the fastest expansion, with no difference between strains of animal and human origin, followed by M. audouinii, while M. ferrugineum grew very slowly. Growth rates were not statistically correlated with haplotypes of M. canis. Microsporum audouinii of Hap9 grew faster than M. audouinii of Hap10 (P<0.05). Hap11 and Hap12 had the lowest growth rates under all conditions (P<0.01).

We further compared the state of development of macroconidia on PDA at three temperatures, including the length, width, and septa of macroconidia. These indicators showed significant differences at 22°C of cultivation in the animal/ human-derived M. canis isolates and M. audouinii isolates (Figure 6B). At 22°C, the length, width, and the septa number of macroconidia of M. canis were much higher than at 28°C, especially in the animal-derived *M. canis* isolates (Figure 6B). Microsporum ferrugineum 191 strain was observed to have very few macroconidia which were small and without septa, upon incubation at 22°C, while all other strains of this species were entire without conidia. Principal component analysis (PCA) made use of a mixed model of growth rate, macroconidia abundance, length, width, and septation (Figure 6C). The results of PCA confirmed the above differences and the principal component 1 extended X-axis distribution could separate M. canis and M. audouinii micromorphologically at 22°C incubation, but not at 28°C.

Macromorphology

The clusters were grouped according to haplotype diversity, and no significant morphological differences within the groups were found, but differences between groups were observed (Additional figure 1). When strains were cultured on PDA at 28°C for 14–21 days, *M. canis* colonies showed white to cream, cottony to velvety, raised, radially furrowed, and granular morphology. Fifty-two isolates of *M. canis* on PDA had a granular-powdered surface; 26 were of animal origin. The reverse was white to cream in 73.68% of the human-derived *M. canis* isolates and 48.72% of the animal-derived isolates (Figure 2). The isolates *M. canis* 13, 18, 60, 67, 69, 150, 156 and 248 showed dysgonic colony. The dysgonic type colony is like that of *M. ferrugineum*, filamentous or heaped brown thallus. Macroconidia were usually absent, but microconidia were still visible.

Colonies of *M. ferrugineum* were white to yellow, filamentous, flat, with hyphae appressed to and submerged in the medium; two strains (2/14) had a cottony surface. The reverse colour of *M. ferrugineum* was predominantly yellow (78.57%) (Figure 2).

CBS 495.86 showed a white, velvety-like colony, with cream-coloured reverse, and produced numerous macroconidia and densely associated microconidia (Figure 2). Colonies of *M. audouinii* were white to brown, being predominantly downy to densely suede-like; in 17/36 strains the colonies were white in the centre, raised and downy, with the edges extending into the medium, and the hyphae were white to brown. The reverse colour was yellow to brown (96.3%), white and cream colours being uncommon.

Mating behaviour

We examined the distribution of *MAT* idiomorphs in the complex to examine the selection of *MAT* gametes on different hosts. Of the Hap1–7 genotypes of *M. canis*, which originated from different countries and different hosts, mating types are all *MAT1-1* idiomorph. In contrast, Hap8–11 of *M. audouinii* and Hap12 of *M. ferrugineum*, from human tinea capitis, are *MAT1-2* idiotypes (Figure 3).

After 8 weeks in culture, positive responses were noted in Hap1 \times Hap8, Hap6 \times Hap8, Hap9 \times Hap7 and Hap10 \times Hap7 in a total of 11 isolates (Figure 3), i.e., in *M. canis* 44, 74, 112, 156, 213, 246, *M. audouinii* 99, 169, 177, 186 and 211, respectively. A small amount of white powdery thallus was visible at the junction on the plates. Microscopically, sterile cleistothecia were observed, globose and light brown. The peridium of *M. audouinii* 177 included the peridial hyphae, and the peridium borders of the other strains were clear. However, no mature ascospores were observed in these crosses (Figure 7).

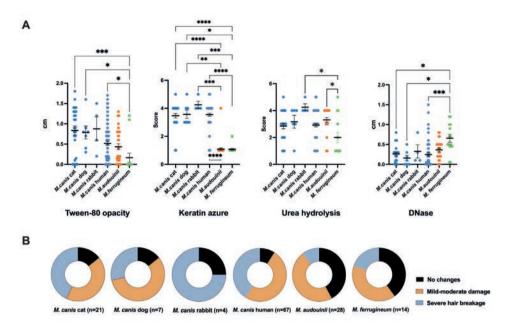
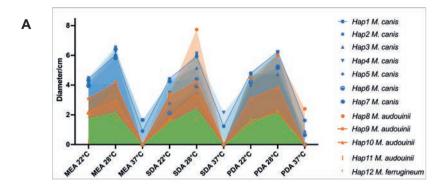
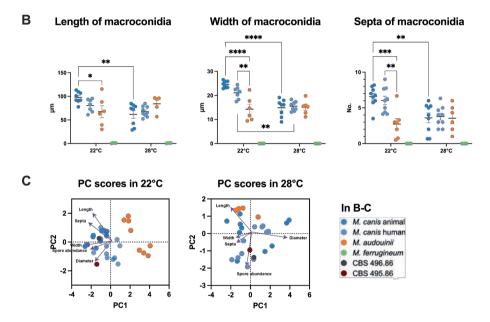




Figure 5. Physiological characteristics of M. canis complex. A Results of scores for the Tween-80 opacity test, keratin azure test, urea hydrolysis tests and in the M. canis animal group, M. canis human group, M. audouinii and M. ferrugineum group; B Hair changes in four groups. The mean+SEM of each group is indicated. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001

Figure 6. Morphological characteristics of *M. canis* complex at diferent temperatures. A Growth rate of isolates within the whole complex based on 12 genotypes, with the area shaded below the fold line indicating the magnitude of the rate; B Length, width and septa number of macroconidia in *M. canis* and *M. audouinii* under incubation at 22 and 28 °C; C Principal component analysis of morphological characteristics at 22 °C and 28 °C of incubation, including growth rate, macroconidia abundance, length, width and the septa number of macroconidia. The mean+SEM of each group is indicated. *P<0.05, **p<0.01, ***p<0.001, ****p<0.001

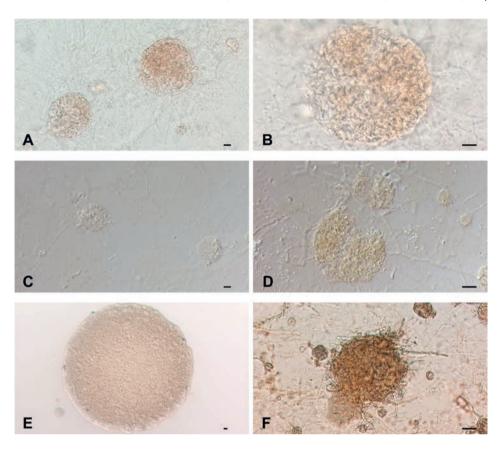


Figure 7. Cleistothecia production of M. canis complex. A-B Cleistothecia were yielded by M. canis 74 (Hap1)×CBS 495.86; C-D Cleistothecia were yielded by M. canis 213 (Hap6)×CBS 495.86; E Cleistothecia were yielded by M. audouinii 186 (Hap9)×CBS 496.86; F Cleistothecia were yielded by M. audouinii 177 (Hap10)×CBS 496.86 with irregular peridial hyphae visible of the peridium. Scale bars=10 μm

DISCUSSION

The variability of phenotypic and clinical parameters in the Microsporum canis complex urges critical determination of species identity and barcoding markers and investigate the transition from animal to human hosts. Based on the molecular overview of dermatophytes by [308], we analysed ITS, tub2 and 60S L10 (L1) supplemented with $tef-1\alpha$, topI and topII molecular markers. In our results, the $tef-1\alpha$ and top II proved to be optimal to distinguish the three species, and the ITS and topII offered the greatest nucleotide diversity. Ciesielska et al. [341] proposed velB as a marker to differentiate M. canis from other dermatophytes, but M. ferrugineum was not mentioned. Rezaei-Matehkolaei et al. [330] suggested that $tef-1\alpha$ may be used for rapidly screening of Iranian M. ferrugineum isolates. The

novel *topI* gene showed great promise for ascomycetes through the Pfam approach [331] and has not been explored previously in *M. canis*. Shamsizadeh *et al.* [332] found that the number of polymorphic sites in the *topII* region of dermatophytes was similar to that of ITS.

The topology of the phylogenetic tree suggested an evolutionary trajectory from zoophilic to anthropophilic species. The haplotype network combined with species origin analysis and multispecies coalescence analysis was applied to define the genetic structure of the complex further. A total of 12 haplotypes were recognized, Hap1-7 being M. canis, 8-11 being M. audouinii and 12 being M. ferrugineum. This demonstrates that the observed phenotypic differences are more than just a matter of expression. Hap1 is the prevalent M. canis genotype, and it is widely dispersed on four continents: Europe, Asia, America, and Africa. Hap2, 3, and 5 are all native to Europe, while Hap4 is found only in Asia. However, the position of Hap2-4 in the multilocus evolutionary tree lacks sufficient bs (70%) to support a separate subgroup. Hap6 has two subgroups (bs>90%), primarily containing North and South American isolates. Within the *M. canis* group, there appears to be no correlation between host origin and genotype. The human isolates in Hap1 most likely concern recent direct infections from animals. Microsporum canis is known to cause small, self-limiting epidemics, e.g., in school children [342-344], indicating that zoophilic strains can reside on human hosts, at least temporarily. It may be surmised that host adaption in these strains remains inadequate [62].

Subgroups Hap9 and 10 were supported by 65% bs in the phylogenetic tree. European isolates mainly have the Hap9 genotype, while African isolates predominantly Hap10. North American strains are present in but are more prevalent in Hap10; possibly, North American strains may result from recent African immigration. During the last 20 years, an increase in the prevalence of M. audouinii infections has been reported worldwide on all continents, particularly in Belgium, France and Switzerland, and there in cities heavily populated by immigrants from African countries [54, 345]. Microsporum ferrugineum, the most derived clonal entity that lacks intraspecific diversity and has only a single genotype, Hap12, is limited geographically. A study by Zhan et al. [322] on 60 years of change in tinea capitis in China showed that M. ferrugineum remained highly endemic in Xinjiang and Yunnan in an era of great epidemiological change in tinea capitis. Both mating tester strains, CBS 496.86 and CBS 495.86, diverge from all other isolates in the haplotype network. CBS 496.86 and CBS 495.86 derived from the F1 progeny of two feline isolates (VUT 73015 × VUT 74001). As offspring of crosses, sexual reproduction always leads to higher population diversity; they acquire different genotypes from

process of genetic recombination, thus causing parents in the positional deviations.

Microsporum canis was MAT1-1 in all our strains, while M. audouinii and M. ferrugineum were all MAT1-2 idiomorph. Mating is still possible in the complex, but it is challenging to produce fertile offspring. The distribution of the MAT idiomorphs also indicated the possibility of animal-to-human host shift. Anthropophilic and zoophilic strains have opposite sex distributions, with the MAT1-2 gamete apparently being better adapted to humans. Although clonal reproduction facilitates the spread of the fungus, without the adaptability and plasticity achieved through genetic recombination, the organism would not be able to cope with longterm changes in host resistance or other natural or anthropogenic environmental changes [346]. The extinction of a MAT gamete in dermatophyte populations may be caused by the preferential transmission of strains exhibiting favourable combinations of alleles associated with higher virulence/transmission potential [347]. Loss of mating ability may be triggered by epigenetic factors, but the underlying mechanism is unknown. An association of different MAT idiomorphs and reproducing sexually with virulence, ecology and pathogenicity has been demonstrated in a variety of dermatophytes and non-dermatophytes [348-350]. Only a single MAT idiomorph was identified per isolate, but thus far, sexual reproduction with fertile gymnothecia has been observed exclusively in the tester strains, which are molecular mavericks. The sexual MAT1-1 and MAT1-2 M. canis strains may be the ancestors of the entire complex, with M. ferrugineum as the most recent, still invariant human-adapted clone. Gradually, two distinct anthropophilic species evolved because of the human host adaptation of one sexual type (MAT1-2), with MAT1-1 remaining prevalent in the cat.

Phylogeny, population structure analyses and mating idiomorph distributions reveal a transition in the *M. canis* complex from zoophilic to anthropophilic lifestyles. The host shift is reflected in differences in physicochemical capabilities, resulting in reduced virulence in the anthropophilic species. The statistical significance in ecologically relevant parameters suggests gradual host adaptation, which is more than just phenotypic in nature. The non-sporulating phenotype of M. ferrugineum occurs occasionally in cat-derived M. canis and is then known as 'dysgonic'; it seems that this phenotype is more suitable for infection of the human host and thus might be selected during evolution. Animal-derived M. canis isolates caused more direct hair damage than the isolates derived from humans and compared to M. canis, M. audouinii and M. ferrugineum caused structural damage to the hair of blond children twice as slowly and with lesser symptoms. Viani et al. [351] showed that M. canis from symptomatic dogs and cats exhibited statistically higher keratinase activity than those isolated from asymptomatic dogs and cats and caused acute inflammatory responses in guinea pigs. Interestingly, Cafarchia et al. [338] reported that M. canis isolated from healthy rabbits had higher keratinase activity than isolates from rabbits with skin lesions, whereas the latter had greater lipase activity. In our results, the lipolytic capacity of M. canis isolated from animals was higher than that of those isolated from humans. Lipase catabolism and keratinolytic capability of M. ferrugineum and M. audouinii were significantly lower than those of M. canis, matching with hair decomposition in fur by the latter species. The urease activity of dermatophytes was highly variable, as proven by the similar urea hydrolysis ability of M. audouinii and M. canis. Notably, we found that the keratinolytic and ureolytic capacities of M. canis isolated from rabbits may be stronger than those of strains isolated from cats and dogs. Microsporum ferrugineum scored the lowest of all four groups regarding lipase and keratolytic and urea hydrolytic capacities. The low virulence of M. ferrugineum may result in persistence provoking mild inflammatory response, leading to a peaceful coexistence of the anthropophilic fungus with its host, like T. rubrum [352]. DNase activity has been shown to facilitate the evasion of the innate immune system by Paracoccidioides [353], Cryptococcus [354] and Trichosporon [355]. It may have a similar role in M. ferrugineum.

DNA hydrolysis has been observed in other anthropophilic dermatophytes. López-Martínez et al. [356] showed that all 47 analyzed *T. rubrum* strains produced DNase. The function of DNAse in *M. canis* is unknown; it does not vary across symptomatic and asymptomatic animal strains [356]. The composition of the host's skin may impact the pathogenic effect of each dermatophyte in a given host [338]. The optimal temperature for in vitro growth rate of the M. canis complex was 28°C, but at 22°C, sporulation and macroconidial size of animal-derived M. canis were greater than those of *M. canis* and *M. audouinii* of human origin; at 28°C, no difference was observed. It is unclear why temperature changes affect the formation of macroconidia, which may be related to changes in virulence and the shift of energy to the host during infection. A lower temperature may also indicate a distance to the host's body increasing the need for dispersal by conidia. For example, Song et al. (pers. comm.) identified changes in gene expression that accompany the shift from aerobic residence in cat fur to invasion of hairless human skin by analyzing the genome of M. canis strains that cause deep invasion. In summary, in terms of physicochemical properties, the characteristics accompanying the animal to human shift are loss of sporulation in human tissue compared to the residence in fur, higher pigment (xanthomegnin) production, lower keratinolysis, and lower lipolysis.

There are some limitations in the present study, including that the animal-derived M. canis strains were mostly isolated from cats and dogs and were restricted to Europe and South America. Additionally, the study did not include any M. canis from horses, we cannot ignore the possibility that this is a transitional genetic event in the complex similar to cat-to-human adaptation. Consequently, the host shift from animal fur to naked human skin in the M. canis complex shows that the dysgonic phenotype is more suitable for human infection, but the question of whether this is an evolution requires a more in-depth study of wild and domesticated animals. To further explore the selective role and virulence differences between M. canis evolution in animals and humans, a more diverse panel of animal isolates is required.

CONCLUSIONS

Phylogeny, population genetics and multispecies coalescent analyses clearly distinguished the three species, not only phenotypically but also genetically. Combined with physicochemical properties and MAT idiomorph distribution analysis, we could reconstruct the host shift to the human within the M. canis complex. Microsporum canis (MAT1-1) was by far the most dominant population, still maintaining high virulence and not adapted to humans; M. audouinii (MAT1-2) and M. ferrugineum (MAT1-2) are widespread in humans, with slow growth, progressive loss of conidia, weak lipolytic and keratolytic capacity, but increased DNA hydrolysis. Mating still occurs in the complex, exemplified by MAT1-1 and MAT1-2 tester strains. Microsporum audouinii appears to be intermediate in all respects, while M. ferrugineum is the most invariable compared with M. canis.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All sequence data generated for this study (Additional table 1) can be accessed via GenBank: https://www.ncbi.nlm.nih.gov/genbank/.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was supported by the Natural Science Foundation of Guangdong Province of China (No.2020A1515011183). XZ was supported by China Scholarship Council (No.202006380049). MEG was supported by CAPES-PrInt (No.88887.311835/2018-00). The funders had no role in study design, data collection and analysis, publication decision, or manuscript preparation.

Authors' contributions

Study conceptualization and design of experiments, XZ; molecular sequencing, XZ, CT and MEG; data analysis, KW and AP; morphological description and microscopy, SAA and FGW; technical and methodological support, TM and YQK; original manuscript preparation, XZ, PYF and SDH, comments and corrections, SU, CC, MPH and RS; supervision, PYF and SDH. All authors read and approved the final manuscript.

Acknowledgements

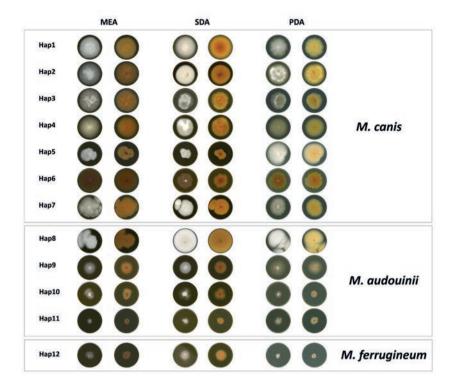
We are particularly grateful to Hein van der Lee and Marlou Tehupeiory-Kooreman for their technical assistance.

SUPPLEMENT INFORMATION

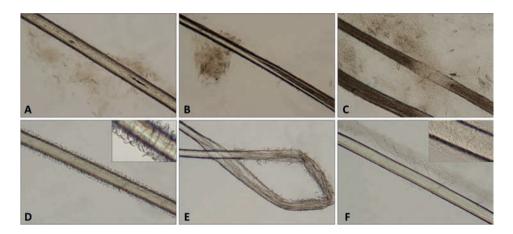
Additional table 2. Genetic differentiation among populations with mutiloucus

Assei	mblages	HS	KS	Кху	Gst	DeltaSt	GammaSt	Nst	Fst	Dxy	Da
L. gallinae	M. audouinii	0.563	2.074	898.054	0.192	0.027	0.977	0.999	0.999	0.280	0.279
L. gallinae	M. canis	0.223	0.669	887.291	0.192	0.008	0.975	0.999	0.999	0.276	0.276
L. gallinae	M. ferrugineum	0.000	0.000	891.000	1.00	0.060	1.00	1.00	1.00	0.278	0.278
M. audouinii	M. canis	0.293	1.000	37.782	0.410	0.003	0.925	0.962	0.962	0.011	0.013
M. audouinii	M. ferrugineum	0.419	1.586	27.540	0.413	0.003	0.872	0.960	0.960	0.008	0.008
M. canis	M. ferrugineum	0.204	0.614	40.350	0.434	0.002	0.918	0.991	0.991	0.012	0.012

Hs: haplotype-based statistic;


Ks: statistic based on nucleotide sequences;

Kxy: average proportion of nucleotide differences between populations;


Gst: genetic differentiation index based on the frequency of haplotypes;

Dxy: average number of nucleotide substitutions per site between populations;

Da: net nucleotide substitutions per site between populations.

Additional figure 1. Morphological performance after 14 days of incubation on three media at 28 °C

Additional figure 2. Hair alteration after 4-6 weeks of co-culture with the strain.

(A-E) Hair alteration cultured with *M. canis*; (A-B) Continuous or interrupted medullae parallel to the hair shaft; (C) Entire structural damage and breakage; (D) The hair cuticle were damaged and the hair shaft shows brush-like changes; (E) Softened hairs, easily broken; (F) Ectothrix hyphae and no structural changes of hair.

Additional table 1.

Specie	Specimen		1	1	Haplo			GenBank ac	GenBank accession numbers		
name	QI	nguo	Host	Sites	type	ITS	BUT2	TEF-1α	торі	тори	605 L10 (L1)
				Dept of Derm	natology,	3rd Affiliated Ho	Dept of Dermatology, 3rd Affiliated Hospital, Sun Yat-Sen University	Sen University			
М. с	1	China	Human	Tinea capitis	1	0Q160236	00160088	00159533	0Q159718	00159903	00159348
М. с	2	China	Human	Tinea capitis	П	0Q160237	00160089	0Q159534	0Q159719	0Q159904	0Q159349
М. с	ю	China	Human	Tinea capitis	1	0Q160238	00160090	00159535	0Q159720	00159905	00159350
М. с	4	China	Human	Tinea capitis	П	0Q160239	00160091	0Q159536	0Q159721	00159906	0Q159351
М. с	2	China	Human	Tinea capitis	П	0Q160240	0Q160092	0Q159537	0Q159722	0Q159907	0Q159352
М. с	9	China	Human	Tinea capitis	П	0Q160241	00160093	0Q159538	0Q159723	00159908	0Q159353
М. с	7	China	Human	Tinea capitis	П	0Q160242	00160094	0Q159539	0Q159724	00159909	0Q159354
М. с	œ	China	Human	Tinea capitis	П	0Q160243	00160095	0Q159540	0Q159725	00159910	0Q159355
М. с	6	China	Human	Tinea capitis	4	0Q160244	00160096	0Q159541	0Q159726	0Q159911	0Q159356
М. с	10	China	Human	Tinea capitis	п	0Q160245	00160097	0Q159542	0Q159727	0Q159912	0Q159357
М. с	12	China	Human	Tinea capitis	4	0Q160246	00160098	0Q159543	0Q159728	0Q159913	0Q159358
М. с	13	China	Human	Tinea capitis	П	0Q160247	00160099	0Q159544	0Q159729	0Q159914	0Q159359
М. с	14	China	Human	Tinea capitis	П	0Q160248	00160100	0Q159545	0Q159730	0Q159915	00159360
М. с	16	China	Human	Tinea capitis	П	0Q160249	00160101	0Q159546	0Q159731	0Q159916	0Q159361
М. с	17	China	Human	Tinea capitis	П	0Q160250	0Q160102	0Q159547	0Q159732	0Q159917	0Q159362
M. f	19	China	Human	Tinea capitis	12	0Q160251	0Q160222	0Q159667	0Q159852	0Q160037	0Q159482
М. с	20	China	Human	Tinea capitis	1	0Q160252	00160103	0Q159548	0Q159733	0Q159918	0Q159363

Additional table 1. (continued)

Specie	Specie Specimen		1	2413	Haplo			GenBank ac	GenBank accession numbers		
name	<u> </u>		1601	Salic	type	ITS	BUT2	TEF-1α	торі	TOPII	(17) 017 809
М. с	21	China	Human	Tinea capitis	4	0Q160253	00160104	0Q159549	0Q159734	00159919	0Q159364
М. с	35	China	Human	Tinea capitis	1	0Q160254	00160105	0Q159550	0Q159735	0Q159920	0Q159365
М. с	36	China	Human	Tinea capitis	1	0Q160255	00160106	0Q159551	0Q159736	0Q159921	00159366
				Department	t of Veteri	nary Medicine,	Department of Veterinary Medicine, University of Bari Aldo Moro	ri Aldo Moro			
М. с	41	Italy	Cat	Cutaneous lesions	1	0Q160256	00160107	0Q159552	0Q159737	0Q159922	0Q159367
М. с	42	Italy	Cat	Cutaneous lesions	1	0Q160257	00160108	0Q159553	0Q159738	0Q159923	0Q159368
М. с	43	Italy	Cat	Cutaneous lesions	п	0Q160258	00160109	0Q159554	0Q159739	0Q159924	00159369
М. с	44	Italy	Cat	Cutaneous lesions	1	0Q160259	00160110	0Q159555	0Q159740	0Q159925	0Q159370
М. с	47	Italy	Cat	Cutaneous lesions	п	00160260	0Q160111	0Q159556	0Q159741	0Q159926	0Q159371
М. с	48	Italy	Cat	Cutaneous lesions	п	0Q160261	0Q160112	00159557	0Q159742	0Q159927	0Q159372
М. с	49	Italy	Cat	Cutaneous lesions	н	0Q160262	0Q160113	0Q159558	0Q159743	0Q159928	0Q159373
М. с	20	Italy	Cat	Cutaneous lesions	п	0Q160263	0Q160114	0Q159559	0Q159744	0Q159929	0Q159374

Additional table 1. (continued)

Specie	Specimen				Haplo			GenBank acc	GenBank accession numbers		
name		Orign	Host	Sites	type	ITS	BUT2	TEF-1α	TOPI	ТОРІІ	(11) (11)
М. с	51	Italy	Cat	Cutaneous lesions	1	0Q160264	0Q160115	00159560	00159745	00159930	00159375
М. с	52	Italy	Cat	No symptoms	п	0Q160265	0Q160116	0Q159561	0Q159746	0Q159931	0Q159376
М. с	53	Italy	Cat	No symptoms	п	00160266	0Q160117	0Q159562	0Q159747	0Q159932	0Q159377
М. с	54	Italy	Cat	No symptoms	п	0Q160267	0Q160118	0Q159563	0Q159748	0Q159933	0Q159378
М. с	55	Italy	Cat	No symptoms	п	0Q160268	00160119	0Q159564	0Q159749	0Q159934	0Q159379
М. с	26	Italy	Cat	No symptoms	က	00160269	0Q160120	0Q159565	00159750	0Q159935	00159380
М. с	57	Italy	Cat	No symptoms	п	0Q160270	0Q160121	0Q159566	0Q159751	0Q159936	0Q159381
М. с	28	Italy	Cat	No symptoms	П	0Q160271	0Q160122	0Q159567	0Q159752	0Q159937	0Q159382
M. C	09	Italy	Dog	Cutaneous lesions	1	0Q160272	0Q160123	0Q159568	0Q159753	0Q159938	0Q159383
М. С	61	Italy	Dog	Cutaneous lesions	П	0Q160273	0Q160124	0Q159569	0Q159754	0Q159939	00159384
М. С	62	Italy	Dog	Cutaneous lesions	п	0Q160274	0Q160125	0Q159570	0Q159755	0Q159940	00159385
М. С	65	Italy	Dog	Cutaneous lesions	п	0Q160275	0Q160126	0Q159571	0Q159756	0Q159941	00159386
М. С	99	Italy	Dog	Cutaneous lesions	н	0Q160276	0Q160127	0Q159572	00159757	0Q159942	00159387
М. с	29	Italy	Dog	No symptoms	П	0Q160277	0Q160128	0Q159573	0Q159758	0Q159943	0Q159388

Specie	Specie Specimen		100	5413	Haplo			GenBank ac	GenBank accession numbers		
name	<u>o</u>	ا ا ا ا	ноя	Sites	type	ITS	BUT2	TEF-1a	T0P/	TOPII	(11) (11)
М. с	89	Italy	Rabbit	Cutaneous lesions	1	0Q160278	0Q160129	0Q159574	0Q159759	0Q159944	0Q159389
М. с	69	Italy	Rabbit	Cutaneous lesions	п	0Q160279	0Q160130	0Q159575	00159760	0Q159945	00159390
М. с	7.0	Italy	Rabbit	No symptoms	1	00160280	0Q160131	00159576	00159761	00159946	0Q159391
М. с	7.1	Italy	Rabbit	No symptoms	1	0Q160281	0Q160132	00159577	0Q159762	0Q159947	0Q159392
М. с	72	Italy	Human	Cutaneous lesions	п	0Q160282	0Q160133	0Q159578	0Q159763	0Q159948	0Q159393
М. с	73	Italy	Human	Cutaneous lesions	2	0Q160283	0Q160134	0Q159579	0Q159764	0Q159949	0Q159394
			Belg	Belgian National Reference Center, Clinical Microbiology, University Hospital of Liege	rence Cer	ıter, Clinical Mi	crobiology, Univ	ersity Hospital o	fLiege		
М. с	74	Belgium	Human	Hair	1	0Q160284	00160135	00159580	00159765	00159950	00159395
М. с	75	Belgium	Human	Scalp	П	0Q160285	00160136	0Q159581	00159766	0Q159951	00159396
М. с	92	Belgium	Human	Scalp	п	0Q160286	0Q160137	0Q159582	0Q159767	0Q159952	0Q159397
М. с	77	Guinea	Human	Scalp	7	0Q160287	0Q160138	0Q159583	0Q159768	0Q159953	00159398
М. с	78	Belgium	Human	Scalp	П	0Q160288	0Q160139	0Q159584	00159769	0Q159954	00159399
М. с	79	Belgium	Human	Scalp	п	0Q160289	00160140	0Q159585	00159770	0Q159955	00159400
М. с	83	Romania	Human	Scalp	П	00160290	0Q160141	0Q159586	0Q159771	0Q159956	0Q159401
М. с	85	Belgium	Human	Scalp	П	0Q160291	0Q160142	0Q159587	0Q159772	0Q159957	0Q159402

Additional table 1. (continued)

Specie	Specie Specimen		1	50413	Haplo			GenBank ac	GenBank accession numbers	. <u>.</u>	
name	<u>Q</u>	= 20 20 20 20 20 20 20 20 20 20 20 20 20	1600	Salic	type	ITS	BUT2	TEF-1α	T0PI	TOPII	(11) 017 509
М. С	87	Belgium	Human	Scalp	1	0Q160292	0Q160143	0Q159588	0Q159773	0Q159958	00159403
М. а	88	Republic of the Congo	Human	Scalp	10	0Q160293	0Q160051	0Q159496	0Q159681	0Q159866	0Q159311
М. а	93	Cameroon	Human	Hair/Scalp	10	0Q160294	0Q160052	0Q159497	0Q159682	0Q159867	0Q159312
М. а	96	Turkey	Human	Scalp	6	0Q160295	0Q160053	0Q159498	0Q159683	0Q159868	0Q159313
М. а	26	Cameroon	Human	Scalp	10	0Q160296	0Q160054	0Q159499	0Q159684	0Q159869	0Q159314
М. а	66	Guinea	Human	Scalp	10	0Q160297	0Q160055	00159500	0Q159685	0Q159870	0Q159315
М. а	102	Senegal	Human	Hair/Scalp	თ	0Q160298	00160056	00159501	0Q159686	0Q159871	0Q159316

Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana

					6	, ((8))	, (, , , , , , , , , , , , , , , , , ,				
М. с	106	Slovenia	Human	Scalp scraping	1	0Q160299	0Q160144	0Q159589	00159774	0Q159959	0Q159404
М. с	107	Slovenia	Human	Skin scraping	п	00160300	0Q160145	00159590	00159775	00159960	0Q159405
М. с	110	Slovenia	Human	Skin scraping	п	0Q160301	0Q160146	0Q159591	00159776	0Q159961	0Q159406
М. с	112	Slovenia	Human	Skin scraping - arms and torso	н	0Q160302	0Q160147	0Q159592	0Q159777	0Q159962	0Q159407
М. с	117	Slovenia	Human	Skin scraping	п	0Q160303	0Q160148	0Q159593	0Q159778	0Q159963	0Q159408
М. с	119	Slovenia	Human	Skin scraping - face and chest	П	0Q160304	0Q160149	0Q159594	0Q159779	0Q159964	0Q159409
М. с	120	Slovenia	Human	Skin scraping	1	00160305	00160150	0Q159595	00159780	00159965	0Q159410

Additional table 1. (continued)

Specie	Specimen		1	1	Haplo			GenBank ac	GenBank accession numbers		
name	Ω		ноя	Sites	type	ITS	BUT2	TEF-1α	T0P/	TOPII	(17) (17)
М. с	121	Slovenia	Human	Skin scraping	1	00160306	0Q160151	0Q159596	0Q159781	0Q159966	0Q159411
М. с	123	Slovenia	Human	Skin scraping	1	0Q160307	0Q160152	0Q159597	0Q159782	0Q159967	0Q159412
М. с	124	Slovenia	Human	Skin scraping	1	0Q160308	0Q160153	0Q159598	00159783	0Q159968	0Q159413
М. с	126	Slovenia	Human	Skin scraping	1	00160309	0Q160154	0Q159599	0Q159784	0Q159969	0Q159414
М. с	128	Slovenia	Human	Skin scraping	1	00160310	0Q160155	00159600	0Q159785	0Q159970	0Q159415
М. с	130	Slovenia	Human	Skin scraping	1	0Q160311	00160156	0Q159601	0Q159786	0Q159971	0Q159416
М. с	131	Slovenia	Human	Skin scraping	1	0Q160312	0Q160157	0Q159602	0Q159787	0Q159972	0Q159417
М. с	133	Slovenia	Human	Skin scraping	1	0Q160313	0Q160158	0Q159603	0Q159788	0Q159973	0Q159418
М. с	135	Slovenia	Human	Skin scraping - arms and torso	н	0Q160314	0Q160159	0Q159604	0Q159789	0Q159974	0Q159419
М. с	136	Slovenia	Human	Skin scraping	1	0Q160315	00160160	00159605	00159790	0Q159975	0Q159420
М. с	137	Slovenia	Human	Skin scraping	1	0Q160316	0Q160161	00159606	00159791	0Q159976	0Q159421
М. с	138	Slovenia	Human	Skin scraping - arms and legs	2	0Q160317	0Q160162	00159607	0Q159792	00159977	0Q159422
М. с	139	Slovenia	Human	Skin scraping	1	0Q160318	00160163	00159608	0Q159793	0Q159978	0Q159423
М. с	141	Slovenia	Human	Skin scraping	1	0Q160319	0Q160164	00159609	0Q159794	0Q159979	0Q159424
М. с	142	Slovenia	Human	Skin scraping	1	0Q160320	0Q160165	00159610	0Q159795	00159980	0Q159425
М. с	143	Slovenia	Human	Skin scraping	П	0Q160321	00160166	0Q159611	0Q159796	0Q159981	0Q159426
М. с	145	Slovenia	Human	Skin scraping	1	0Q160322	00160167	0Q159612	0Q159797	00159982	00159427

מים כו	Specimen		1		Haplo			GenBank ac	GenBank accession numbers		
name	<u>Q</u>		ноя	Sites	type	ITS	BUT2	TEF-1α	торі	TOPII	(11) 017 509
М. с	147	Slovenia	Human	Skin scraping	1	0Q160323	00160168	0Q159613	0Q159798	0Q159983	0Q159428
М. с	148	Slovenia	Human	Skin scraping - groins	п	0Q160324	00160169	0Q159614	0Q159799	0Q159984	0Q159429
М. с	149	Slovenia	Human	Skin scraping - neck	1	0Q160325	00160170	0Q159615	00159800	00159985	0Q159430
М. с	150	Slovenia	Human	Skin scraping - torso	п	0Q160326	0Q160171	0Q159616	0Q159801	0Q159986	0Q159431
				Departm	ent of Dei	rmatology, UH	Department of Dermatology, UH Cleveland Medical Center	cal Center			
М. с	152	USA	Human	Hair/Scalp	1	0Q160327	0Q160172	0Q159617	0Q159802	00159987	0Q159432
М. с	153	USA	Human	Hair/Scalp	1	0Q160328	00160173	0Q159618	0Q159803	0Q159988	0Q159433
М. с	154	USA	Human	Hair/Scalp	1	0Q160329	0Q160174	00159619	0Q159804	0Q159989	0Q159434
М. с	155	USA	Human	Hair/Scalp	1	0Q160330	00160175	00159620	00159805	00159990	0Q159435
М. с	156	NSA	Human	Hair/Scalp	1	0Q160331	00160176	0Q159621	00159806	0Q159991	0Q159436
М. с	157	USA	Human	Hair/Scalp	1	0Q160332	00160177	0Q159622	0Q159807	0Q159992	0Q159437
М. с	159	NSA	Human	Hair/Scalp	1	0Q160333	00160178	0Q159623	00159808	00159993	0Q159438
М. с	160	NSA	Human	Hair/Scalp	1	0Q160334	00160179	0Q159624	00159809	0Q159994	0Q159439
М. с	161	USA	Human	Hair/Scalp	П	0Q160335	00160180	0Q159625	00159810	0Q159995	0Q159440
М. с	163	USA	Human	Hair/Scalp	1	0Q160336	0Q160181	0Q159626	0Q159811	00159996	0Q159441
М. с	164	NSA	Human	Skin-Body	1	0Q160337	0Q160182	0Q159627	0Q159812	0Q159997	0Q159442

Specie	Specimen	5	to	30413	Haplo			GenBank acc	GenBank accession numbers	2	
name	٩	E 60	1696	Salle	type	ITS	BUT2	TEF-1α	TOPI	TOPII	(17) 017 509
М. с	165	USA	Human	Hair/Scalp	1	0Q160338	0Q160183	0Q159628	0Q159813	0Q159998	0Q159443
М. с	166	NSA	Human	Hair/Scalp	1	0Q160339	0Q160184	0Q159629	0Q159814	0Q159999	0Q159444
М. с	167	NSA	Human	Skin-Body	9	0Q160340	0Q160185	00159630	00159815	00160000	0Q159445
М. с	168	NSA	Human	Skin-Body	9	0Q160341	00160186	0Q159631	00159816	00160001	0Q159446
М. а	169	NSA	Human	Hair/Scalp	10	0Q160342	0Q160057	0Q159502	0Q159687	0Q159872	0Q159317
М. а	170	NSA	Human	Hair/Scalp	10	0Q160343	0Q160058	00159503	00159688	0Q159873	0Q159318
М. а	171	NSA	Human	Hair/Scalp	10	0Q160344	00160059	00159504	00159689	0Q159874	0Q159319
М. а	172	NSA	Human	Hair/Scalp	10	0Q160345	00160060	00159505	00159690	0Q159875	0Q159320
М. а	173	NSA	Human	Hair/Scalp	6	0Q160346	0Q160061	00159506	0Q159691	0Q159876	0Q159321
М. α	174	NSA	Human	Hair/Scalp	10	0Q160347	0Q160062	00159507	0Q159692	0Q159877	0Q159322
М. а	175	NSA	Human	Hair/Scalp	10	0Q160348	0Q160063	00159508	00159693	0Q159878	0Q159323
М. а	176	USA	Human	Hair/Scalp	10	0Q160349	0Q160064	00159509	0Q159694	0Q159879	0Q159324
М. а	177	NSA	Human	Hair/Scalp	10	00160350	00160065	00159510	00159695	00159880	0Q159325
М. α	178	USA	Human	Hair/Scalp	თ	0Q160351	00160066	00159511	00159696	0Q159881	0Q159326
М. α	179	NSA	Human	Hair/Scalp	10	0Q160352	00160067	0Q159512	0Q159697	0Q159882	0Q159327
М. α	180	NSA	Human	Hair/Scalp	თ	0Q160353	0Q160068	0Q159513	00159698	0Q159883	0Q159328
М. α	181	USA	Human	Hair/Scalp	10	0Q160354	00160069	0Q159514	00159699	0Q159884	0Q159329
М. α	182	USA	Human	Hair/Scalp	თ	0Q160355	00160070	0Q159515	00159700	0Q159885	00159330

Additional table 1. (continued)

Specie	Specimen				Haplo			GenBank ac	GenBank accession numbers		
name	Q	Orign	Host	Sites	type	ITS	BUT2	TEF-1α	TOPI	TOPII	605 L10 (L1)
М. а	183	USA	Human	Hair/Scalp	6	00160356	0Q160071	0Q159516	00159701	0Q159886	0Q159331
М. α	184	NSA	Human	Hair/Scalp	6	0Q160357	0Q160072	0Q159517	0Q159702	0Q159887	0Q159332
М. а	185	NSA	Human	Hair/Scalp	10	00160358	0Q160073	0Q159518	0Q159703	0Q159888	0Q159333
М. а	186	USA	Human	Hair/Scalp	6	0Q160359	0Q160074	0Q159519	0Q159704	0Q159889	0Q159334
М. а	187	NSA	Human	Hair/Scalp	10	00160360	0Q160075	0Q159520	00159705	00159890	0Q159335
М. а	188	NSA	Human	Hair/Scalp	10	0Q160361	00160076	0Q159521	00159706	0Q159891	00159336
М. а	189	NSA	Human	Hair/Scalp	10	0Q160362	0Q160077	0Q159522	00159707	0Q159892	0Q159337
М. α	235	NSA	Human	Hair/Scalp	6	0Q160363	0Q160223	00159668	00159853	0Q160038	0Q159483
				Labor für	Medizinis	sche Mikrobiolo	Labor für Medizinische Mikrobiologie Nenoff / Krüger, Mölbis	çer, Mölbis			
M. f	190	Germany	Human		12	0Q160364	0Q160224	00159669	00159854	0Q160039	0Q159484
M. f	191	Germany	Human		12	0Q160365	0Q160225	00159670	0Q159855	0Q160040	0Q159485
M. f	192	Germany	Human		12	0Q160366	0Q160226	0Q159671	0Q159856	0Q160041	0Q159486
M. f	193	Germany	Human		12	0Q160367	0Q160227	0Q159672	0Q159857	0Q160042	0Q159487
M. f	194	Germany	Human		12	0Q160368	0Q160228	0Q159673	0Q159858	0Q160043	0Q159488
M. f	195	Germany	Human		12	00160369	0Q160229	0Q159674	0Q159859	0Q160044	0Q159489
M. f	196	Germany	Human		12	00160370	0Q160230	0Q159675	00159860	0Q160045	0Q159490
M. f	197	Germany	Human		12	0Q160371	0Q160231	0Q159676	00159861	0Q160046	0Q159491
M. f	198	Germany	Human		12	0Q160372	0Q160232	00159677	0Q159862	0Q160047	0Q159492

Additional table 1. (continued)

Specie	Specimen			Haplo			GenBank ac	GenBank accession numbers		
name	Q	= 20 20 20 20 20 20 20 20 20 20 20 20 20	salic lsou	type	ITS	BUT2	TEF-1a	T0P/	тори	(11) 017 809
M. f	200	Germany	Human	12	0Q160373	0Q160233	00159678	0Q159863	0Q160048	0Q159493
M. f	201	Germany	Human	12	0Q160374	0Q160234	00159679	00159864	00160049	0Q159494
M. f	202	Germany	Human	12	0Q160375	0Q160235	00159680	0Q159865	00160050	0Q159495
M. f	203	Germany	Human	12	0Q160376	00160079	0Q159524	00159709	0Q159894	0Q159339
М. а	204	Germany	Human	11	0Q160377	00160080	0Q159525	00159710	0Q159895	0Q159340
М. а	205	Germany	Human	6	0Q160378	0Q160081	0Q159526	0Q159711	0Q159896	0Q159341
М. а	206	Germany	Human	6	0Q160379	0Q160082	0Q159527	0Q159712	0Q159897	0Q159342
М. а	207	Germany	Human	10	00160380	0Q160083	0Q159528	0Q159713	0Q159898	0Q159343
М. а	210	Germany	Human	6	0Q160381	0Q160084	0Q159529	00159714	0Q159899	0Q159344
М. а	211	Germany	Human	6	0Q160382	0Q160085	00159530	0Q159715	00159900	0Q159345
М. а	212	Germany	Human	6	0Q160383	0Q160187	0Q159632	0Q159817	00160002	0Q159447
М. а	215	Germany	Human	6	0Q160384	0Q160188	00159633	0Q159818	00160003	0Q159448
М. с	213	Germany	Human	9	0Q160385	00160086	00159531	0Q159716	0Q159901	0Q159346
М. с	215	Germany	Human	1	0Q160386	0Q160189	00159634	0Q159819	00160004	0Q159449
М. с	216	Germany	Human	1	0Q160387	00160190	00159635	0Q159820	00160005	0Q159450
М. С	218	Germany	Human	П	0Q160388	0Q160191	00159636	0Q159821	00160006	0Q159451
М. с	219	Germany	Human	П	0Q160389	0Q160192	00159637	0Q159822	00160007	0Q159452
М. с	220	Germany	Human	1	00160390	0Q160193	00159638	00159823	00160008	0Q159453

Additional table 1. (continued)

Specie	Specimen		1 1	1	Haplo			GenBank ac	GenBank accession numbers		
name	Q	ng D	НОЗТ	Sites	type	ITS	BUT2	TEF-1a	T0P/	TOPII	605 L10 (L1)
М. с	221	Germany	Human		1	0Q160391	0Q160194	0Q159639	0Q159824	00160009	0Q159454
М. с	222	Germany	Human		П	0Q160392	0Q160195	0Q159640	0Q159825	00160010	0Q159455
М. с	224	Germany	Human		2	0Q160393	00160196	0Q159641	0Q159826	0Q160011	0Q159456
				Depar	tment of \	eterinary Scien	Department of Veterinary Sciences, University of Turin	of Turin			
М. с	225	Italy	Cheetah (zoological garden)		п	0Q160394	0Q160197	0Q159642	0Q159827	0Q160012	0Q159457
М. с	226	Italy	Cat		П	0Q160395	0Q160198	0Q159643	0Q159828	0Q160013	0Q159458
М. с	227	Italy	Cat		П	00160396	00160199	0Q159644	0Q159829	0Q160014	0Q159459
М. с	228	Italy	Environment		1	0Q160397	00160200	0Q159645	00159830	0Q160015	00159460
М. с	229	Italy	Cat		1	0Q160398	0Q160201	0Q159646	0Q159831	00160016	0Q159461
М. с	230	Italy	gop		7	0Q160399	0Q160202	0Q159647	0Q159832	0Q160017	0Q159462
М. с	231	Italy	Cat (cattery)		1	00160400	0Q160203	0Q159648	0Q159833	0Q160018	0Q159463
М. с	232	Italy	Cat (cattery)		П	00160401	0Q160204	0Q159649	0Q159834	00160019	0Q159464
М. с	233	Italy	Cat (outbreak in a household)		1	0Q160402	0Q160078	0Q159523	0Q159708	0Q159893	0Q159338
М. с	236	Italy	Cat		1	00160403	0Q160205	00159650	0Q159835	0Q160020	00159465
М. с	237	Italy	Cat		1	00160404	00160206	0Q159651	0Q159836	0Q160021	0Q159466

Additional table 1. (continued)

Specie	Specimen	1		Haplo			GenBank acc	GenBank accession numbers		
name	٥	18 E	HOST	Sites type	STI	BUT2	TEF-1α	TOPI	TOPII	605 L10 (L1)
М. с	238	Italy	Cat	1	00160405	0Q160207	0Q159652	0Q159837	0Q160022	0Q159467
			Microbiology,	Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná	Pathology Gradua	te Program, Fede	ral University of	f Paraná		
М. с	241	Brazil	Human	1	00160406	00160208	0Q159653	0Q159838	0Q160023	00159468
М. с	242	Brazil	Cat	1	00160407	00160209	0Q159654	0Q159839	0Q160024	0Q159469
М. с	243	Brazil	Cat	1	00160408	00160210	0Q159655	0Q159840	0Q160025	0Q159470
М. с	244	Brazil	Cat	9	00160409	0Q160211	00159656	0Q159841	0Q160026	0Q159471
М. с	245	Brazil	Cat	1	00160410	0Q160212	0Q159657	0Q159842	0Q160027	0Q159472
М. с	246	Brazil	Cat	1	0Q160411	0Q160213	0Q159658	0Q159843	0Q160028	0Q159473
М. с	247	Brazil	Cat	9	0Q160412	0Q160214	00159659	0Q159844	0Q160029	0Q159474
М. с	248	Brazil	Cat	1	0Q160413	0Q160215	00159660	0Q159845	00160030	0Q159475
М. с	249	Brazil	Cat	9	00160414	0Q160216	0Q159661	0Q159846	0Q160031	0Q159476
М. с	250	Brazil	Cat	1	0Q160415	0Q160217	0Q159662	0Q159847	0Q160032	0Q159477
М. с	251	Brazil	Cat	1	0Q160416	0Q160218	00159663	0Q159848	0Q160033	0Q159478
М. с	252	Brazil	Cat	1	0Q160417	0Q160219	0Q159664	0Q159849	0Q160034	0Q159479
М. с	253	Brazil	Cat	1	0Q160418	0Q160220	0Q159665	00159850	0Q160035	00159480
				The	The Westerdijk Fungal Biodiversity	l Biodiversity				
M. C	CBS 496.86	Japan	Hybrids	7	0Q160419	0Q160221	0Q159666	0Q159851	0Q160036	0Q159481

Additional table 1. (continued)

Specie	Specimen		t		Haplo			GenBank acc	senBank accession numbers		
name	<u> </u>	= 8 1 0	160	Selec	type	ITS	BUT2	TEF-1α	торі	тори	(17) 017 509
М. а	CBS 495.86	Japan	Hybrids		8	00160420	0Q160087	0Q159532	0Q159717	0Q159902	0Q159347

M.c, Microsporum canis; M. a, Microsporum audouinii; M. f, Microsporum ferrugineum.

CHAPTER 6

DERMATOPHTES ADAPTATION TO THE HUMAN HOST EXEMPLIFIED BY MICROSPORUM CANIS

Xin Zhou, Ricardo Belmonte, Tang Chao, Vania Aparecida Vicente, Sybren de Hoog, Peiying Feng

Mycology An International Journal on Fungal Biology, 1–16 (2025)

ABSTRACT

Dermatophytes are a taxonomic group of keratinophilic fungi that engender cutaneous infections across human and animal populations. The zoophilic species Microsporum canis, which exhibits a widespread distribution, predominantly affects domesticated felines and canines and has recently been associated with an increased risk of human adaptation. This study conducted a comparative genome analysis, validating the adaptive expression of 12 relevant genes through neutrality tests and selection pressure analyses, with a particular focus on the evolutionary mechanisms underlying the shift from zoophilic to anthropophilic Microsporum. The results demonstrated a high degree of consistency in the nuclear and mitochondrial genomes among the three Microsporum species, while significant differences were observed in protein domains. Notably, the anthropophilic species M. audouinii and M. ferrugineum exhibited more gene duplication events and expansions in domains such as MFS and Zn2Cys6 transcription factors. Among the 138 identified genes, specific protease subfamilies (e.g., S08A, M77, S53) and CAZy subfamilies (e.g., GH18, AA1, AA3) showed strong ecological correlations with either zoophilic or anthropophilic lifestyles. The key functions of these genes from these subfamilies focus on modulating sporulation, endoproteases, lipolysis, pH regulatory adaptability, chitinase, and conidial pigment biosynthesis. Microenvironmental factors such as pH, lipid concentration, and osmolarity significantly influenced the expression of these key genes. Anthropophilic strains demonstrated higher tolerance to acidic pH and enhanced keratinase activity in lipid-rich environments, with M. ferrugineum exhibiting the strongest osmotic tolerance. These findings highlight the inherent evolutionary dynamics and adaptive mechanisms of dermatophytes, providing valuable insights into the pathogenicity of *Microsporum*.

INTRODUCTION

Dermatophytes represent a group of highly infectious fungi that cause superficial cutaneous infections in keratinized tissues in humans and animals, occasionally causing invasive infections. Global prevalence data of dermatophytosis from the World Health Organization indicate a rate of 20-25% [6], underscoring the public health problem and substantial economic burden associated with this disorder's high prevalence, recurrence and recalcitrance [357]. Throughout history, our close association with domesticated animals has played a pivotal role in the epidemiology of dermatophytosis, as evidenced by the fact that more than half of individuals exposed to infected asymptomatic animals may develop symptomatic infections [358]. The wide array of agricultural and companion animal sources of infection has driven repeated evolutionary adaptations of these fungi to the human host. Notably, humans harbour six anthropophilic dermatophytes, a stark contrast to most other mammal species, which typically host only a single or a few species, primarily shared among their phylogenetic relatives [359].

Zoophilic Microsporum canis is a worldwide diffused dermatophyte that mainly affects pet cats and dogs, and other mammals such as rodents and riding horses, being carried asymptomatically in the fur [310]. The fungus can be transmitted from animals to human hosts through close contact, leading to clinical symptoms such as tinea capitis and ringworm, sometimes leading to local outbreaks [360]. In most cases, human infections by zoophilic dermatophytes tend to be highly inflammatory, while anthropophiles usually cause mild symptoms in the affected host [208, 361]. However, clinically M. canis mainly cause non-inflammatory grey patch suggesting this species is undergoing an ecological transition, which is recently revealed by phylogenetic analyses of host shift of zoophilic entity (M. canis) to two sister anthropophiles (M. audouinii and M. ferrugineum) [192]. Additionally, introduction to new areas and/or adaptation to a new host is probably a unique event in the evolution of different host adaptive dermatophytes, the loss of opposite mating-type partners was an important driver of their evolution, and the successful genotypes that are retained may be significantly dominant in conditions with almost exclusive asexual transmission [362]. Extinction of MAT1-2 mating-type strains is observed in M. canis, but the relatives M. audouinii and M. ferrugineum were both MAT1-2, suggesting adaptation of MAT1-2 to human hosts [192]. Host shifts have occurred repeatedly during the domestication of agricultural and companion animals and are likely to persist as novel human-animal interactions emerge. Understanding the mechanisms of dermatophyte adaptation is crucial for public health [362-365]. The events within the phylogenetically distinct

Microsporum group serve as an excellent model and can be utilized as a reference for the broader evolution of dermatophytes.

In this study, we conducted comparative genome analysis and transcript-level validation of *Microsporum* in five hosts (horse, rabbit, cat, dog, and humans) and tester strains from various geographic locations, characterizing nuclear and mitochondrial genome evolution processes. We compared zoophilic and anthropophilic lineages and performed neutrality tests on 12 potentially relevant orthologous gene sequences. We analyzed the adaptive expression of three genes encoding subtilisins in response to microenvironmental changes. Our findings provide important insights into understanding the evolutionary dynamics and the mechanisms of adaptation inherent to *Microsporum*.

MATERIAL AND METHODS

Strains

A total of 13 strains of *Microsporum* species were included in the analysis, with ten strains having undergone genome sequencing and three reference genomes obtained from the NCBI GenBank. The sequenced strains were acquired from the Westerdijk Fungal Biodiversity Institute in Utrecht, Netherlands; the Department of Veterinary Medicine at the University of Bari Aldo Moro in Italy; and the Belgian National Reference Center for Clinical Microbiology at the University Hospital of Liege, Belgium. These strains are maintained at the Center of Expertise in Mycology at RadboudUMC in Nijmegen, Netherlands. Five isolates of *M. canis* were sourced from horses, cats, rabbits, and humans. A pair of sexually reactive tester strains, *M. canis* CBS 496.86 [=VUT 77055 (MT- = *MAT1-1*)] and *M. audouinii* CBS 495.86 [=VUT-77054 (MT+ = *MAT1-2*)] derived from the F1 progeny of two feline isolates (VUT73015 × VUT74001) [59, 366], were included in this study. The remaining three isolates of *M. audouinii* and three isolates of *M. ferrugineum* were sourced from human hosts.

DNA extraction, PCR, and sequencing

DNA was extracted after the strain was incubated in Sabouraud's Glucose Broth [SGB; 2% (w/v) glucose, 1% (w/v) peptone)] at 28°C, 150 rpm for 3 days. DNA purification was carried out using the QIAquick gel Extraction Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Genome sequencing was performed using high-quality DNA samples (OD 260/280 = 1.8-2.0, > 10 μ g) on the

Illumina Hiseg platforms (Novogene, Milton, England). PCR amplification of proteases and CAZy genes was performed simultaneously on the extracted DNA. Amplicons were verified on 1% agarose.

Genome assembly, annotation and prediction

The raw reads from the whole genome sequencing (WGS) of ten sequencing samples underwent quality control using FastQC and were subsequently trimmed with Trimmomatic [367]. Following the quality control process, the genomes were de novo assembled using SPAdes v3.15.4, as well as gap closing and assembly polishing with GapCloser v1.12 [368]. The resulting genomes were annotated using the Funannotate v1.5.3 pipeline (https://doi.org/10.5281/zenodo.2604804). Gene prediction was carried out using multiple ab-initio gene predictors, including Augustus v3.5, SNAP v2006-07-28, and Glimme, trained using the fungi orthologous database v10 [369] and conserved gene models identified by BUSCO v2 [370]. Additionally, GeneMark-ES v4.71 was employed for self-training, and Augustus v3.5 was utilized to generate a set of high-quality predictions. The prediction sets were employed for gene structure annotation using EvidenceModeler v1.1.1. The tRNAs were predicted using tRNAscan-SE v2.0.11 [371]. The gene predictions obtained from EvidenceModeler were annotated using several databases, with hidden Markov model searches PFAM v35.0 and dbCAN v11.0 with hmmersearch v3.2.2 [372], DIAMOND [373] blastp searches of UniProt DB v2023_02 and MEROPS v12.0, eggNOG-mapper v2.1.11 [374] searches in diamond mode of the eggNOG 5.0 database[375]. BUSCO protein searches of the Onygenales were done in odb10 with transmembrane and signal peptides being predicted from the proteins using Phobius v1.01 and SignalP v6.0 [376]. Antibiotics and secondary metabolite annotation applied antiSMASH v6 [377], protein annotation InterProScan5 v5.63-95.0 [378], with UniProt/EggNog gene and product names being combined using Gene2Product v1.88. The same gene prediction and annotation procedure was performed for the NCBI reference genomes of Microsporum canis (GCF_000151145.1), audouinii (GCA_022344085.1), М. and М. ferrugineum (GCA_030015455.1).

Mitochondrial genome assembly and annotation

The mitochondrial genomes of the sequenced samples were assembled from the trimmed short reads with GetOrganelle v1.7.7.0 [379] using the mitochondrial "fungi_mt 0.0.1" database for read recruitment, with up to 15 recruiting rounds, and multiple kmer values (21,45,65,85,105) used for the assembly of the recruited

reads with SPAdes. The obtained genomes were then annotated using Mfannot [380].

Gene orthology and phylogenetic analysis

We utilized OrthoFinder2 [381] to identify sets of orthologous genes among the analyzed strains, employing default settings for DNA sequence analysis. Homology searches were conducted using DIAMOND, gene tree estimation was performed with DendroBLAST [382], species tree estimation was carried out using STAG [383], and tree rooting was accomplished using STRIDE. The resulting orthogroups were subsequently employed to investigate differences in specific groups of genes.

Analysis of genetic diversity and selection analysis

Isolation of all orthogroup gene sequences from the proteases and CAZy families differentially enriched in 13 genomes, these orthogroup sequences were aligned using MACSE v2.07 to accommodate frameshifts and stop codons [384], and then trimmed with TrimAl. Using R v4.3.2, the aligned gene sequences were analyzed with the Pegas library v3.1 to determine the average proportion of paired nucleotide differences (π) (excluding insertions/deletions) using the nuc.div function. Nei-Gojobori analyses were performed using the CODEML program of the PAML packageto estimate the synonymous and nonsynonymous rates (dS and dN), dN/dS < 1 for purified selection/negative selection, dN/dS = 1 for neutral evolution, and dN/dS > 1 for positive selection. Tajima's D measures departures from neutral expectations and selection. Tajima's D neutrality tests using the tajima.test function. For the HKA test, the input information for each locus for the calculation of the HKA test is obtained through SITES, and then the HKA is used to compare the difference between the reference locus and the locus to be detected, and the simulated construction of the distribution gives the statistically significant value of the test (http://genfaculty.rutgers.edu/hey/software). Fst values were estimated using the function 'genetic.dist' from the Hierfstat library v0.5-11, with ploidy set to haploid. High Fst values close to 1 indicate strong genetic differentiation between populations, while low Fst values close to 0 indicate homogeneity. Isolation by distance was examined via the Mantel test implemented in Adegenet [385] in R v.3.5.3, the simulated P=0.01. After identification and confirmation of main effect genomic variants contributing to target traits, DNA markers were developed for molecular assisted selection, within loci linkage-disequilibrium was calculated using the LD function of the genetics package v1.3.8.1.3 (https://CRAN.Rproject.org/package=genetics)

Microenvironmental effects

We examined the effects of microenvironmental changes on the transcript levels of SUBs in Microsporum species. Four factors including lipophilicity, osmolarity, thermotolerance, and pH dependence were assessed. Lipophilicity was evaluated using 0.1%, 0.5%, and 1% Tween80 in SGB; osmolarity with 3%, 6%, and 9% NaCl in SDB. To assess the growth under acidic and alkaline conditions, SGB was buffered to pH 4.5, pH 6.5, and pH 8.5 with sodium citrate or Tris-HCl. Microsporum canis, M. audouinii and M. ferruqineum were first grown on BLA [SGB; 2% (w/v) glucose, 1% (w/v) peptone)] for 10 days, after which conidia/mycelial fragments were eluted from Petri dish with sterilized saline and suspensions at concentrations of $(0.5-1) \times$ 10⁷ CFU/mL were prepared using the modified EUCAST broken mycelium inoculation method [386], with four replicates using the above media, three replicates for each strain, and then incubated at 28°C at 150 rpm for 3 days. Thermotolerance was assessed in SGB at 22°C, 28°C, and 37°C, respectively, shaken at 150 rpm for 3 days.

Real-time quantitative PCR

Real-time quantitative PCR (RT-qPCR) was applied to evaluate the transcript levels of 12 key genes found in this study. Total RNA was extracted using TRIzol (Invitrogen, Waltham, MA, U.S.A.) [387], and first-strand cDNA synthesis was performed using RNA and Transcriptor Universal cDNA Master mix (Roche. Mannheim, Germany). RT-qPCR transcription reactions were performed with the gene primers and LC 480 SYBR Green I Master (Roche).

Statistics and visualization

The data plots generated from the analyses conducted in this study were processed and filtered using the R packages dplyr, ggplot2, GGally, or omicstudio [388], they were refined using Adobe Illustrator v25.3.1. Mitochondrial annotation and comparison were visualized using Genious Prime v2023.2.1. Statistical analysis and plot generation were performed using SPSS v26 and GraphPad Prism v9.0. The twoway ANOVA with Tukey's multiple comparison test was employed to assess the expression differences.

RESULTS

High similarity in nuclear and mitochondrial genomes of *Microsporum* species

The reasonable draft genome quality with totally 13 Microsporum strains genomes assembled into fewer than 500 scaffolds (Figure 1a). Genome sizes and gene numbers in animal- and human-derived M. canis, as well as in human-derived M. audouinii, were comparable and notably greater than those in M. ferrugineum. GC percentages were similar in all genomes, ranging from 46.92% to 48.13%. The total numbers of predicted proteins, unique proteins and tRNAs were similar in three Microsporum species. The Benchmarking Universal Single-Copy Orthologs (BUSCO) coverage of all genomes exceeded 98%. Genomic similarity and homozygosity showed a high degree of colinearity, interrupted by a small number of inversions, and a high percentage of identity at the amino acid level (94.11% M. canis vs. Microsporum ferrugineum; 96.23% M. audouinii vs. Microsporum ferrugineum; 97.46% M. canis vs. Microsporum audouinii) (Additional figure 1). The species tree inferred by STAG showed that the Microsporum species was distant from the outgroup (Figure 1b), which was consistent with our previous evolutionary results on conserved sequences, evolutionary change from zoophilic to anthropophilic is observed within Microsporum.

The mitochondrial genomes (mtDNAs) of *M. canis* (Figure 1c), *M. audouinii* and *M. ferrugineum* were circular with sequence lengths of 23,943 bp, 23,986 bp and 23,840 bp, respectively, which maintained a high degree of covariance with short intergenic regions and no detectable GC rearrangements (Figure 1d). Similar to other dermatophytes, each *Microsporum* genome encoded 15 core protein-coding genes (*RPS3*, cox1, atp9, cox2, nad4, nad5, nad2, cob, nad3, nad1, nad4, atp6, nad6, cox3 and atp8) and two rRNA genes (rnl and rns). The anthropophilic *M. audouinii* and *M. ferrugineum* encoded 26 tRNAs, encoding an additional trnG (acc) tRNA over *M. canis* (25 tRNAs); these tRNAs were divided into three clusters flanked by *RPS3*-cox1, cox1-atp9, and atp8-rnl. The ribozyme gene (rnpB) was found downstream of the atp6 gene in *M. canis* and *M. audouinii*, which was lost in *M. ferrugineum*.

Decreasing number of orthologs from animal- to human-derived **Microsporum**

The proportion of genes assigned to the orthologous group exceeded 93% for all 13 genomic samples. The ortholog genes were genes derived from species formation events, as opposed to paralogs genes derived from gene duplication events. Based on Heatmap of orthologues statistics for each species pair, the number of orthologs among animal-derived M. canis (n = 7759-7894) was slightly higher than that of human-derived M. canis CBS 113480 (n = 7692-7743), followed by M. audouinii (n = 7485-7710), and *M. ferrugineum* (n =7439-7653) (Figure 1e). Among the 13 genomes, only two species-specific orthogroups were found in M. audouinii CBS495.86 and M. ferrugineum M1a, respectively, and the gene products within these orthologous clusters were all hypothetical proteins. In the species tree inferred by STAG, the number of gene duplication events (support>=50%) on the branch of anthropophilic M. audouinii and M. ferrugineum (n = 183) were significantly higher than that in M. can branch (n = 19), suggesting that these strains may have adapted to the host-specific environment through continuous gene duplication (Figure 1e).

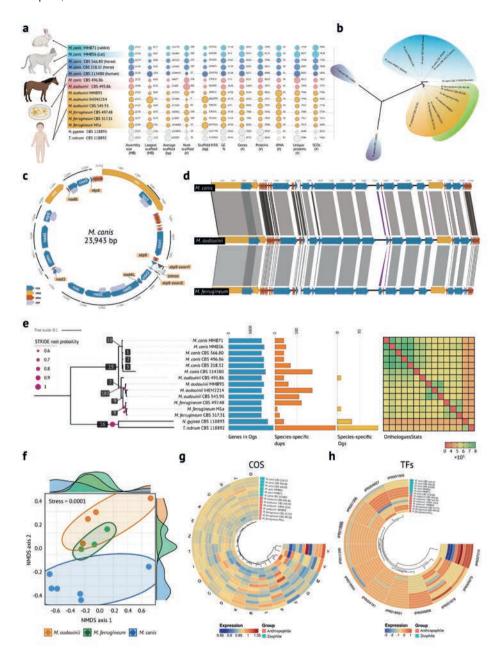


Figure 1. Genome characteristics, phylogenetic orthology inference and homologous protein family analysis. (a) Host origin and genome summary stats for all samples, and bubble plots illustrate the quality parameters of genome sequences. Bubble sizes are not comparable between panels (columns). (b) Unrooted phylogenetic tree inferred by STAG and rooted by STRIDE, the blue, green, and yellow branches represent Microsporum canis, M. audouinii, and M. ferrugineum, respectively. (c) Circular representations of the M. canis mitochondrial genomes. (d) Pairwise linear genome comparisons of M. canis, M. audouinii, and M. ferrugineum mtDNAs. Grey parallelograms indicate the locations of homologous genomic regions in adjacent genome pairs. Nine PCGs had length variations among the three Microsporum species, with M. audouinii having a 12-base extra insertion in the nad6 gene compared to M. canis and M. ferrugineum, while M. audouinii and M. ferrugineum had a 135 bp extra insertion in the nad3 gene compared to M. canis. (e) Summary of OrthoFinder analysis of Microsporum species (including outgroups N. gypsea and T. rubrum): species tree inferred by STAG and rooted by STRIDE, number of gene duplication events tagged on each node of the species tree; number of genes assigned to orthologous groups for each genome; number of gene duplication events on each terminal branch of the species tree; number of species-specific orthologous groups; heatmap of orthologues per species stats. OG = orthogroup; dups = gene duplication events. (f) NMDS analysis of InterProscan functional predictions for 13 genomes. The vertical coordinate analysis is based on the Bray-Curtis distance matrix. Graph plots and ellipses were generated from the ggplot2 R package implemented using the stat ellipse function. Each dot represents a genome. (g-h) Differences between clusters of orthologous groups (COGs) and fungal transcription factors (TFs) per genome. The plotted values were standardized with normal distribution, distance calculation based on Euclidean, and complete hierarchical clustering. Detailed functions and

descriptions of each subcluster are shown in Tables 1-2.

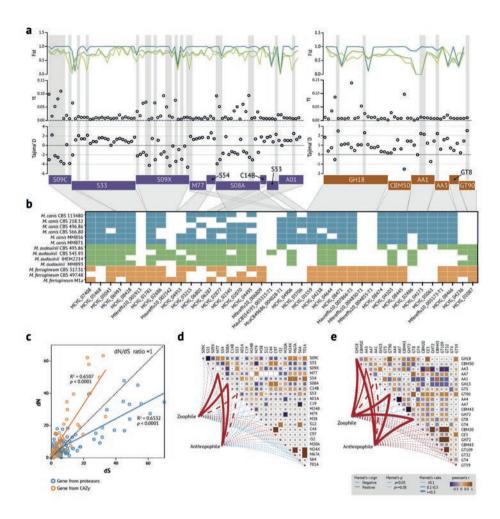


Figure 2. Gene selection for protease and CAZy. (a) A total of 138 genes were isolated from the differential gene families of CAZy and protease and CAZy, showing values of nucleotide diversity, Tajima's D neutrality test, and Fst statistics for the genetic differentiation between populations in Microsporum species. Each black circle represents a gene, Tajima'D and HKA neutrality tests values for genes within the grey rectangle were statistically significant (P < 0.05). (b) The Heatmap showing gene loss in samples from different isolation sources. Mfereffu10_001913 (S33, function unknown) and Mfereffu10_006809 (S08A, posttranslational modification) appeared only in M. ferrugineum, while MCYG_05468 (S33, function unknown) and MCYG_06801 (M77, coenzyme metabolism) were lost in M. ferrugineum. McaCBS49686_004028-T1 (S53, coenzyme metabolism) was present only in animal-derived M. canis. Of the CAZy carbohydrates, OG0007899 (AA1, function unknown) and OG0008108 (AA3, secondary metabolites) were only found in M. canis, while MCYG_04173 (GT8, carbohydrate metabolism) and MCYG_05061 (GT90, function unknown) are specific to M. audouinii and M. ferrugineum. (c) Plot of dN/dS ratios for protease and CAZy, each circle represents a gene. (de) Correlations between gene families within protease/CAZy and zoophilic or anthropophilic Microsporum species were calculated using mantel's test. Zoophilic for M. canis, anthropophilic for M. audouinii and M. ferrugineum. Mantel's r statistics is indicated by line width; solid/dashed lines indicate statistical significance, and line colour indicates mantel's sign.

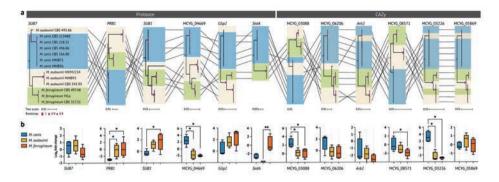
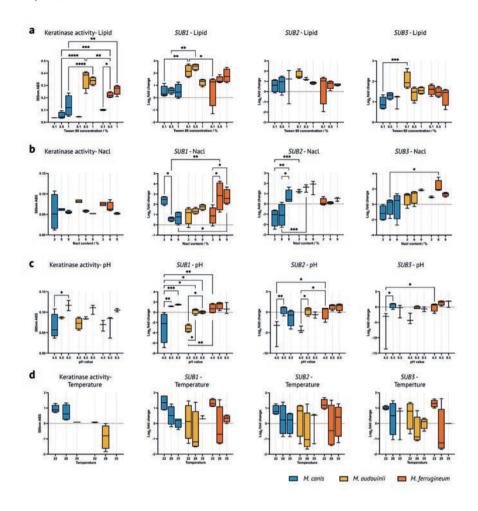



Figure 3. Comparative phylogenetic analysis and key gene expression of protease and CAZy in Microsporum species. (a) It shows the tanglegram between the 12 selected genes from protease and CAZy. The black lines connect corresponding parts of the gene tree. Branch lengths are scaled, and pink nodes indicate high-confidence bootstrap values. (b) Boxplots showing the log2 fold changes in the expression of the same genes across the three Microsporum species. 5-6 replicates per group and samples from each group are presented using mean ± SEM. Significance was annotated as follows: $^*P < 0.05; \, ^{**}P < 0.01; \, ^{***}P < 0.001; \, ^{****}P < 0.0001.$

Figure 4. Effects of lipid, osmolality, pH, and temperature on SUB1–3 transcript levels. Samples from each group are presented using mean \pm SEM. The value of P < 0.05 was considered statistically significant. Significance was annotated as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Variant virulence factors are common in Microsporum genomes

We used the SnpEff spacer forest method to compare and annotate genome variants. Human-derived *M. canis* CBS 113480 was used as a reference sequence to predict the nucleotide variants between different *Microsporum* species. The most common variant type was single nucleotide polymorphism (SNP), followed by insertion (INS) and deletion (DEL) in all *Microsporum* genomes. The mating strain *M. audouinii* CBS 495.86 (*MAT1-2*) showed an extremely large variant rate, with one variant every 71 amino acid steps, which was a much higher variant number than

that of other strains. Among the animal-derived M. canis strain, horse-derived M. canis CBS 566.80 showed the highest variant rate, with one variant every 2.955 amino acid steps, followed by rabbit-derived M. canis MMB71 (one variant every 3,606 amino acid steps) and cat-derived M. canis MMB56 (one variant every 5,739 amino acid steps). The variant rates of all anthropophilic Microsporum strains were higer than that of *M. canis* strains, varying from one variant every 1,127 to 1,392 amino acid steps.

We predicted and annotated the top 10 genes in terms of number of variants according to the missense mutation, splice site, frameshift INS/DEL, infram INS/DEL and intron mutation. There were several shared or specific pathways between human-derived M. canis and animal-derived M. canis, and two anthropophilic Microsporum species (Additional figure 2). Two variant virulence factors relating to signal transduction mechanisms and RNA processing were found between humanvs. animal-derived M. canis. When comparing human-derived M. canis vs. M. ferrugineum and M. audouinii, the number of potential virulence factors was five and four, respectively. The former functions mainly relate to secondary metabolites, signal transduction, transcription, and intracellular trafficking, while the latter functions relate to cytoskeleton, translation and cell cycle control (Additional table 1).

Differences in domain function suggest separation of zoophile and anthropophile

The InterPro, the Gene Ontology (GO), EggNOG, Pfam, and Clusters of Orthologous Groups (COS) database annotations revealed 7,756 (InterPro, 94.85% of gene number), 5,040 (GO, 61.63%), 4976 (EggNOG, 60.85%) and 3,803 (Pfam, 46.51%) function gene predictions, respectively. Non-metric multidimensional scaling (NMDS) ordinations confirmed that zoophilic and anthropophilic Microsporum species differed in the distribution characteristics of protein domains (Figure 1f). Zoophile and anthropophile were clearly segregated in composition, with anthropophilic M. audouinii and M. ferrugineum partially overlapping. There was no segregation between animal- and human-derived M. canis strains.

We compared the InterPro category counts of zoophilic vs. anthropophilic Microsporum genomes. Of the top 10 differential domains, seven were expanded in anthropophilic Microsporum species, with three of them possessing the major facilitator superfamily structural (MFS) (IPR020846, IPR011701, IPR036259), two possessing Zn2Cys6 fungal-type DNA-binding (IPR036864, IPR001138), and two possessing protein kinase (IPR011009, IPR00719). The remaining three were

expanded in zoophilic *Microsporum*, carrying P-loop NTPase (IPR027417), WD40-repeat domain (IPR036322) and cytochrome P450 (CPY) (IPR001128) (Additional figure 3). Comparison of COGs (Figure 1g, Table 2) there were 25 categorized clusters, the major intraspecific differences were centred on (1) carbohydrate transport and metabolism, lipid transport and metabolism, secondary metabolites, and (2) transcription, replication, recombination and repair.

We further identified transcription factors (TFs), secondary metabolism, secreted proteins, and membrane proteins in *Microsporum* species using the Fungal Transcription Factor Database, antiSMASH 7.0, and Phobius v1.01. The TFs of *Microsporum* species were mainly enriched in the Zn2Cys6 transcription factor (IPR007219), Myb (IPR001005) and basic-leucine zipper (IPR004827), but the differences in the number of TFs among three *Microsporum* species were minimal (Figure 1h, Table 3). There were six secondary metabolite classes involved in the *Microsporum* synthesis: non-ribosomal peptide synthetases (NRPS), T1 polyketide synthases (T1PKS), NRPS-like genes, PKS/NRPS hybrid genes, dimethylallyl transferase, and terpene cyclase. No statistically difference were found on the distributions of secreted protein and membrane proteins in zoophilic and anthrophilic *Microsporum* species.

Specific proteases and carbohydrate-active enzymes (CAZy) may be involved in *Microsporum* microevolution

Based on the above significant intraspecific differences of predicted protein functions in carbohydrate transport and metabolism, we further annotated specific proteases and CAZy among *Microsporum* species using enrichment analysis. Totally, we identified 138 Candidate genes which were enriched in 9 protease and 6 CAZy subfamilies (Figure 2a). However, some of the genes were lost in Microsporum species of different origins, e.g., in protease, 4 genes were lost in M. canis, 5 genes in S08A, S53 and M77 were lost in M. ferrugineum; while in CAZy, 10 genes were lost in M. audouinii (Figure 2b). We quantified the selection pressures by comparing the dN/dS ratio between zoophilic and anthrophilic Microsporum species. In general, most protease subfamily genes belonged to negative selection (dN/dS < 1), while most CAZy positive selection (dN/dS > 1) (Figure 2c). We then computed the genetic differentiation fixation index (Fst), nucleotide diversity (π), Tajima's D and Hudson-Kreitman-Aguade (HKA) value. Total 31 selected genes (Tajima's D value >2 / < -2 and HKA test P value < 0.05), including 25 protease and 6 CAZy, were detected. The average Fst between M. canis vs. Microsporum audouinii, M. audouinii vs. Microsporum ferrugineum, and M. canis vs. Microsporum ferrugineum was 0.7361 (range: 0.16667-1), 0.6567(range: 0.0204-1), 0.9105(range: 0.11222-1), respectively, which implying the subdivision among three Microsporum species (Table S5).

Subsequently, we analyzed the above 31 selected genes using the mantel test to evaluate the ecological microevolution between zoophilic and anthrophilic Microsporum species. (Figure 2d-e). The results showed significant positive correlations were found in three protease subfamilies (M77, S08A and S53) and five CAZy subfamilies (GH18, AA3, GT90, GT8 and AA1), which contain 12 selected genes (Table 3). In protease subfamilies, the selected genes were SUB1, SUB7, PRB1, Glip2, SedA, and MCYG 04669, in the CAZy subfamilies, the genes were MCYG 03088, MCYG_06206, Arb2, MCYG_08571, MCYG_03226, MCYG_05869.

Potential functions and expression of selected genes in Microsporum

We performed phylogenetic analyses of the 12 selected genes, and tanglegram plot connected the positional changes of each Microsporum species on different gene trees (Figure 3a). The position of the hybrid strain CBS 495.86 in each gene tree was unstable, which might relate to its high rate of nucleotide variation. Proteases genes SUB1, PRB1, SUB7, and MCYG_04669 showed high genetic differentiation for three Microsporum species (bootstrap > 90%), while CAZy genes could not distinguish zoophilic M. canis from the anthropophilic species. We further analysed the distribution of genetic variants and mutations at SNP sites using the above 12 selected genes. Linkage disequilibrium (LD) analysis revealed highly interlinked blocks for these genes in Microsporum species (Additional figure 4), where the high LD blocks were interrupted by low LD regions, appearing similar to mosaicism in the genome. Notably, a greater number of high LD blocks were detected within genes encoding CAZys, such as MCYG_06206, Arb2, and MCYG_08571, and these high local LD could indicate the allele that has recently increased to high frequency under strong selection. We analyzed the relationship between SNP sites within each high LD block and phenotype, unique SNPs within Block 1 of SUB1, MCYG_03226, and MCYG_04669 were exclusive to M. ferrugineum. Similarly, specific SNPs in Block 2 of MCYG_04669, as well as Blocks 1, 2, and 3 of PRB1, were solely identified in M. audouinii. In contrast, no unique LD blocks were discernible among the different animal-derived M. canis strains.

RT-qPCR analysis revealed significant differences in the expression of 12 key genes among the Microsporum (Figure 3b). PRB1 and SUB1 were significantly upregulated in anthropophilic M. audouinii and M. ferruqineum (P < 0.05), while SUB7 exhibited no significant expression differences among the three species. sedA was significantly upregulated in M. ferrugineum (P < 0.05), whereas its expression was almost absent in *M. audouinii* and lower in *M. canis*. MCYG_04669 exhibited significantly higher expression in *M. canis* compared to two anthropophilic species (P < 0.05). For the CAZy genes, the zoophilic expression levels were higher than those of the anthropophilic species. MCYG_03088, MCYG_08571, and MCYG_03226 were significantly downregulated in *M. audouinii* and *M. ferrugineum* compared to *M. canis* (P < 0.05). MCYG_06206 and *Arb2* also show the same decreasing trend in the anthropophilic species but without significant statistically differences.

We further analyzed the conserved domains of the protein sequences encoded by these genes and analyzed their potential role in Microsporum. SUB1, SUB7, PRB1, Glip2, SedA, and MCYG_04669 whose functions are related to keratolysis, sporulation, lipase, and secreted tripeptidyl peptidase (Table 3). We further analysed the conserved domains of the protein sequences encoded by these genes. In Glip2, the anthropophilic M. audouinii and M. ferrugineum each encode an additional pp-binding conserved domain, with M. ferrugineum also possessing an extra PRK0483 domain compared to the other two species. Additionally, the SedA gene was lost in the M. audouinii, while the other protease genes were largely conserved across all species. In the CAZy subfamilies, MCYG_06206 and MCYG 03088 are known to encode chitinase in dermatophytes. MCYG 06206 consists of two LysM binding, one chitin-binding 1 and one chitin binding domain of the GH18 chitinase family in tandem. MCYG_03088 consists of one LysM binding and one GH18 chitin binding domain. The LysM binding was lost in MCYG 03088 in the rabbit-derived strain M. canis MMB71. The Arb2 and MCYG_08571 genes encode conidial pigment biosynthesis oxidase, with Arb2 also influencing filamentous growth and spore formation in yeast cells. Laccase 1, encoded by MCYG_08571 gene, is involved in fungal pigmentation and acts as a virulence factor.

Microenvironmental effects on SUB1-SUB3 transcript levels

Subs were core endoproteases for keratin colonization and infection by dermatophytes. Studies on the pathogenicity of *Microsporum* had proposed that *SUB1-SUB3* were associated with adhesion, keratolysis, and infection of different host hair/keratin proteins. Our previous study of the keratolytic capacity of dermatophytes on 42 species of mammal fur (including wildlife, domestic animals, and companion animals) and phylogenetic analysis revealed that *SUB1-SUB3* genes provide a reasonably correct reflection of the evolution of the *Microsporum* species (Additional figure 5).

Corresponding to the ecological microevolution, we further evaluated the microenvironmental adaptation of *Microsporum* species using different

concentrations of lipophily, osmolarity, pH and temperature tolerance factors. As lipid concentrations increased from 0.1%, 0.5% to 1%, the keratinase activity of the three Microsporum species gradually increased, most notably in M. audouinii, followed by M. ferrugineum (P<0.05). At 0.1% and 0.5% lipid concentrations, the expression level of SUB1 and SUB3 transcripts of M. audouinii were higher than in the other two species (Figure 4a).

We perceived that M. ferrugineum strains growing faster than M. canis and M. audouinii at a high NaCl concentrations of 9%, which suggesting that M. ferrugineum is more osmolarity tolerant. No significant difference was observed within Microsporum species in the effect of changing osmolarity on keratinase activity, but the SUB1-SUB3 transcript levels of M. audouinii and M. ferruaineum were higher than those of *M. canis* at 6% and 9% NaCl (*P*<0.05) (Figure 4b).

In M. canis, the expression levels of genes SUB1-SUB3 were found to be the lowest at pH 4.5, these levels exhibited a gradual increase for SUB1 across a pH range of 4.5 to 8.5. In contrast, the expression levels of SUB2 and SUB3 reached their peak at a pH of 6.5 (P<0.05) (Figure 4c). In anthropophilic M. audouinii and M. ferrugineum, an increased tolerance to acidic environments was observed, particularly in M. ferrugineum, which displayed a marked increase in the expression levels of SUB1-SUB3 genes at pH 4.5 when compared to M. canis (P<0.05).

Alterations in temperature exerted minimal impact on the keratinolytic capabilities and the expression levels of the SUB1-SUB3 genes across all Microsporum strains evaluated. Statistical analysis revealed no significant differences in these parameters among the various temperature conditions tested 22°C, 28°C, and 35°C (Figure 4d).

DISCUSSION

Dermatophytes (family Arthrodermataceae) are a group of fungi in the order Onygenales which have evolved relatively recently, almost exclusively with mammal hosts [389]. The ecological subdivision in geophilic, zoophilic, and anthropophilic species broadly reflects their course of evolution, although the molecular mechanisms and evolutionary dynamics driving host shift are still not well understood. Homo sapiens is phylogenetically the most recent host, despite dermatophyte genomes usually show strong colinearity and low inversion [390, 391]. In Trichophyton genomes, the closely related siblings Trichophyton rubrum (anthropophilic, preferences nail/skin) and *T. violaceum* (anthropophilic, scalp) have high degrees of genome identity (99.83%), while with marked differences of phenotypic and clinical features, which possibly due to the functional differences in specific proteins involved ATP transferase activity, calcium binding and lipid transport [352]. Martinez et al. [392] demonstrated that anthropophilic species (T. tonsurans and T. rubrum) were enriched in kinases and transcription factors compared to zoophilic species (T. verrucosum, T. equinum, M. canis, and T. benhamige). In Microsporum genomes, zoophilic M. canis and anthropophilic M. audouinii and M. ferrugineum exhibit a high percentage of amino acid identity and show minimal variation in both nuclear and mitochondrial genomes. However, through our phylogenetic inference of orthologous groups on pairwise relationships of the three species, NMDS analyses based on protein domain, and population Fst results, all suggest that M. canis, M. audouinii and M. ferrugineum have diverged significantly in terms of protein function, anthropophilic Microsporum species display an expansion of major facilitator superfamily (MFS) and kinase-like domains, while protein families affecting ATPase post-translational modification, signalling mechanisms, and energy production and conversion are contracted, presumably linked to the low inflammatory response to human dermatomycosis caused by anthropophilic Microsporum species. Notably, an enrichment of CPY in M. canis is observed for the first time. In the newly indentified dermatophyte species T. inotineae, the overexpression of TinCYP51B resulting from additional copies of this gene is responsible for the reduced sensitivity of T. indotineae strains to azole compounds [393]. It is reported that 25-40% of M. canis infection patients had recurrence and treatment failure. The role of CYP in the azole resistance of M. canis requires further verification.

The ability of microorganisms to sense and adapt to changes in the environment is essential to their survival. Dermatophytes are a highly specialized group of keratinophilic and keratinolytic filamentous fungi. Anthropophilic zoophilic dermatophytes adapt to different mammalian body surface microenvironments such as temperature, pressure, salinity and pH by developing molecular mechanisms which stabilizes their proteins, cell membranes, lipids, and nucleic acids. The secreted proteolytic and lipolytic enzymes enable nutrient acquisition from the host, leading to variation in host specificity, immunogenicity, and virulence. Transcription factors such as PacC and Hfs1, as well as heat shock proteins, are involved in sensing and adapting to the acidic pH of the skin in the early stages of fungal host interaction [50, 394]. Dermatophytes adhere to keratinocyte surfaces in a pH-dependent manner, and the acidic pH of the human skin surface is associated with specific fatty acids derived from skin lipids. Keratin is the only source of carbon for dermatophyte infections, and the keratolytic is accompanied by a change in extracellular pH from acidic to alkaline, an environment in which most of the known proteases exhibit optimal activity,

ultimately leading to the establishment and maintenance of the infection [395]. In our study, we found that subtilisins (SUB1, SUB7, PRB1), lipases (Glip2), and tripeptidyl peptidase (SedA) were associated with host selection preferences in Microsporum species, the latter two genes maintained high activity at acidic pH. Likewise, putative GDSL lipase (Glip), subtilisins (SUB3 & SUB7), and tripeptidyl peptidase SedC were also observed in the secretomes of T. benhamiae, T. rubrum, and T. violaceum after incubation with keratinocytes [396]. According to the MEROPS peptidase classification, subtilases were divided into two clans: S08A (subtilisins) and S53 (sedolisins) [300]. SedA (from S53 subfamily) was absent in M. audouinii. In Onygenales, the lack of certain lineages encoding S53 family genes is thought to be more specific, may play an important role in interactions with the environment [300]. Subtillisins are essential proteases in keratin assimilation. and subtilisin-like protease SUB1, SUB3-SUB7 are specific for dermatophytes, although the expression of SUBs gene is not uniform for all species [39, 68]. In this study, different keratinase activity and expression of SUB1-SUB3 in response to microenvironmental changes were observed, which was comparable with our previous study [387]. The presence of lipids in the environment significantly impacted the keratinase activity of anthropophilic species. Human scalp pH (4.5-5.5) is more acidic than skin pH (6.5-8.5) in pet cats and dogs; high SUB1-SUB3 transcript levels of M. ferrugineum at acidic pH suggests adaptation of the anthropophilic to human hosts. PRB1 is a subtilisin-like protease essential for virulence and phenotypical traits in many fungi. Its elevated expression in M. ferrugineum and M. audouinii may enhance colonization and persistence in human hosts. Interestingly, sedA (MCYG_01559), a tripeptidyl peptidase from the S53 subfamily that degrades proteins at acidic pH, is nearly absent in M. audouinii but significantly upregulated in M. ferrugineum, indicating lineage-specific adaptation to acidic skin environments in M. ferrugineum.

We observed an expansion of carbohydrate metabolism-related superfamily in the anthropophilic Microsporum, from which we isolated four subfamilies associated with the adaptive evolution of CAZy: GH18, AA1, AA3, and GT90, some of which encode unknown functional domains. Within the GH18 family, we identified MCYG_03088 and MCYG_06206, which encode chitin-binding and LysM-binding, respectively. The LysM domain is a highly conserved carbohydrate-binding module. Compared to other non-dermatophytes in *Onygenales*, the LysM protein family of dermatophytes appears to have undergone a gene expansion, ranging from 7 in E. floccosum, 12 in T. rubrum, and 31 in M. canis [46, 392]. Studies have shown that the dermatophyte LysM proteins bind to and mask chitin to protect the fungal cell from the host immune system, allowing latent colonization by the dermatophyte [397, 398]. In the Onygenales phylogenetic tree of all proteins containing LysM

domains [392], MCYG 03088 and MCYG 06206 of M. canis were clustered in two distinct branches, and further studies should be conducted on the expression and determination of their putative roles in the infection process. The conidial pigment biosynthesis oxidase encoded by Arb2 and laccase 1, encoded by MCYG 08571 from the AA1 family, are structurally homologous, both containing three copperoxidoreductase domains. They have been shown to be key regulatory genes for pigment biosynthesis in Aspergillus fumigatus and Blastomyces dermatitidis, which are involved in cell wall formation and help the fungi resist various environmental stressors [399]. In the human host, Asp. fumigatus conidial pigments modulate the host's pro-inflammatory cytokine response by physically masking fungal pathogen-associated molecular patterns (PAMPs) from recognition by the immune system [400]. Our RT-qPCR results showed that MCYG 03088. Arb2. MCYG 08571 and MCYG 03226 were significantly downregulated in anthropophilic Microsporum compared to the zoophilic M. canis. Further investigation is required to determine whether these genes serve similar functions as above mentioned in Microsporum species. Furthermore, M. ferrugineum exhibited greater osmotic stress tolerance compared to the other two species and maintained consistent transcript levels of SUB1 and SUB3 even at high NaCl concentrations. This suggests that Arb2 and MCYG 08571 genes may play an important role in exerting the adaptive evolution of anthropophilic species to human hosts.

CONCLUSION

This study represents the inaugural comprehensive genomic sequencing analysis of the different host-derived Microsporum species, which, as a phylogenetic group, are clearly individualized [1] and show a host shift from animal to human. Carbohydrate metabolism, signal transduction regulation and post-translational modifications were implicated in the microevolutionary processes that underpin host specificity. Notably, there is an expansion of the MFS, Zn2Cys6 DNA-binding, and protein kinases within the anthropophilic Microsporum species, with less variation among different animal-derived Microsporum species. Specific subfamilies of proteases (M77, S08A, and S53) and carbohydrate-active enzymes (GH18, AA3, GT90, GT8, and AA1) display positive correlations with ecological parameters to anthropophilic and zoophilic lifestyles. We have pinpointed 12 genes within these subfamilies that are pivotal for attributes such as phenotype, sporulation, endoproteases, lipases and those involved in pH-adaptive regulation. The study further reveals the keratinolytic potential and the expression levels of SUB1-SUB3 genes are modifiable by lipid, pH levels, and osmolarity in microenvironment. In addition, we identified highly interlocked Block regions in coding protease and CAZy genes and analyzed the relationship between SNP site mutations and

haplotype, which provides a basis for efficient identification of Microsporum species and accelerate mining of functional genes.

 Table 1. Clusters of orthologous groups (COG) functional category distribution among Microsporum.

900	std	M. audouinii CBS495.96	M. audouinii CBS545.93	M. audouinii IHEM2214 (ncbi GCA_ 022344085.1)	M. audouinii Mau93	M. canis CBS113480 (ncbi GCF_ 000151145.1)	M. canis CBS218.32		M. canis M. canis CBS496.86 CBS566.80	M. canis Mca56	M.canis Mca71	M. ferrugineum CBS317.31	M. ferrugineum CBS497.48	M. ferrugineum M1a (ncbi GCA_ 030015455.1)
S:(S) Function unknown	20.35172	1930	1919	1894	1944	1930	1948	1944	1945	1971	1922	1912	1918	1910
G:(G) Carbohydrate transport and metabolism	5.706497	342	348	345	351	343	345	348	341	347	339	352	357	357
K:(K) Transcription	5.662517	301	298	294	297	306	304	306	305	305	297	292	289	297
Q:(Q) Secondary metabolites biosynthesis, transport and catabolism	5.410105	303	310	314	305	305	311	309	301	310	306	295	298	304
I:(I) Lipid transport and metabolism	4.97687	282	297	293	293	287	292	291	292	291	285	282	284	295
L:(L) Replication, recombination and repair	4.530523	221	227	221	227	219	222	227	221	223	216	213	217	216
J:(J) Translation, ribosomal structure and biogenesis	3.727926	361	368	359	363	361	364	363	361	370	365	359	358	358

Table 1. (continued)

900	std	M. audouinii CBS495.96	M. audouinii CBS545.93	M. audouinii IHEM2214 (ncbi GCA_ 022344085.1)	M. audouinii Mau93	M. canis CBS113480 (ncbi GCF_ 000151145.1)	M. canis CBS218.32	M. canis M. canis M. canis CBS218.32 CBS496.86 CBS566.80	M. canis CBS566.80	M. cαnis Mca56	M.canis Mca71	M. ferrugineum CBS317.31	M. ferrugineum CBS497.48	M. ferrugineum M1a (ncbi GCA_ 030015455.1)
O:(O) Posttranslational modification, protein turnover, chaperones	3.617975	532	539	529	534	528	532	531	532	537	530	527	527	530
C:(C) Energy production and conversion	3.526457	237	239	241	242	236	237	238	239	241	240	239	229	243
T:(T) Signal transduction mechanisms	3.454837	345	347	351	355	349	353	355	352	355	348	356	351	353
F:(F) Nucleotide transport and metabolism	3.301126	100	105	100	103	95	96	66	95	86	76	76	95	100
P:(P) Inorganic ion transport and metabolism	3.202563	168	162	164	159	159	165	167	161	169	164	162	161	163
H:(H) Coenzyme transport and metabolism	3.172397	244	247	244	248	247	242	248	246	249	242	244	238	242
D:(D) Cell cycle control, cell division, chromosome partitioning	2.665064	168	168	164	167	167	168	167	167	166	162	162	160	165

M. audouinii CBS495.96
2.662657 360 355 355
2.614065 449 448 446
2,534379 293 291 292
2.454718 87 84 84
2.267383 115 118 113
1.463224 30 28 29
1.182132 33 34 34
1.115164 120 120 118

	M canic
	M audoninii
Table 1. (continued)	
Table 1.	

M. M. ferrugineum ferrugineum ferrugineum terrugineum Gersain.31 CBS497.48 GCA_ 030015455.1)	88
M.can Mca71	7
M. canis M. 5 CBS566.80 Mcari	80
M. canis M. canis M. canis CBS218.32 CBS496.86 CBS566.80 Mca56	7
M. canis CBS113480 (ncbi GCF_ 000151145.1)	& 6
M. audouinii M. IHEM214 audouinii (ncbi GCA_ Mau93	7
M. audouinii CBS545.93	6
M. d audouinii CBS495.96	0.759555
COG std	W:(W) Extracellular

 Table 2. Transcription factors (TFs) functional category distribution among Microsporum.

M. ferrugineum ferrugineum ferrugineum (BS317.31 CBS497.48 (ncbi GCA_ 030015455.1)	99	17 18	- 7	3 22	4	0		5	in w
M. ferrugineum CBS317.31	99	17	7	23	4	0		4	4 9
M.canis Mca71	89	18	Ŋ	23	4	1		4	4 0
M. canis Mca56	69	18	7	23	4	1		4	
M. canis M. canis CBS496.86 CBS566.80	9 67	18	9	2 23	4				
	89	, 17	9	2 22	4	-	4		
M. canis CBS218.32	89	17	∞	22	2	1	ιΩ		
M. canis CBS113480 (ncbi GCF_ 000151145.1)	89	16	9	22	4	1	4		φ
M. audouinii Mau93	63	17	9	22	4	0	5		9
M. audouinii IHEM2214 (ncbi GCA_ 022344085.1)	63	15	5	21	4	0	S		w
M. audouinii CBS545.93	49	18	7	22	4	0	Ŋ		9
M. audouinii CBS495.96	19	18	9	23	4	0	4		9
std	1.980676	0.926809	0.85485	0.650444	0.5547	0.518875	0.50637		0.375534
InterPro descriptions std	Transcription factor domain, fungi	Basic- leucine zipper domain	Zinc finger, CCHC-type	SANT/Myb domain	KilA/APSES- IPR018004 type HTH, DNA-binding	Mating-type protein MAT alpha 1, HMG-box	Zinc finger, GATA-type	2	Homeobox
InterPro	IPR007219	IPR004827	IPR001878	IPR001005	IPR018004	IPR006856	IPR000679		IPR001356

Table 2. (continued)

InterPro	nterPro descriptions std	std	M. audouinii CBS495.96	M. audouinii CBS545.93	M. audouinii IHEM2214 (ncbi GCA_ 022344085.1)	M. audouinii Mau93	M. canis CBS113480 (ncbi GCF_ 000151145.1)	M. canis CBS218.32	M. canis M. canis M. canis M. CBS218.32 CBS496.86 CBS566.80 Mca56	M. canis CBS566.80	M. canis Mca56	M.canis Mca71	M. ferrugineum CBS317.31	M. M. ferrugineum ferrugineum ferrugineum CBS317.31 CBS497.48 (ncbi GCA_ 030015455.3	M. ferrugineum M1a (ncbi GCA_ 030015455.1)
IPR010666	IPR010666 Zinc finger, GRF-type	0.27735	ю	ю	ю	м	к	2	ю	ю	м	м	ю	к	8
IPR011598	Myc-type, basic helix- IPR011598 toop-helix (bHLH) domain	0.27735	∞	∞	∞	∞	ω	٢	ω	∞	∞	∞	∞	ω	ω
IPR018501	IPR018501 DDT domain 0.27735	0.27735	П	н	1	П	1	н	н	П	н	П	П	0	н

Table 3. Description and annotation of 12 selected genes of proteases and CAZy.

Gene family	Orthogroup	Locus tag	g/	mRNA/ product	Annotation	Function in fungi
	OG0003381	MCYG_04495	SUB1	Subtilisin- likeprotease 1	Peptidase S8 propeptide/ proteinase inhibitor I9	Genes encoding endoproteases of dermatophytes, highly distributed in Microsporum canis and Trichophyton benhamiae
S08A	OG0004069	MCYG_02345	SUB7	Subtilisin-like protease 7	Peptidase S8 propeptide/ proteinase inhibitor I9	Sub7 is the major protease secreted by Trichophyton species
	OG0000856	MCYG_02070	PRB1	Vacuolar proteinase B	Peptidase S8 propeptide/ proteinase inhibitor I9	The Aprb1 mutants showed reduced aerial hyphae, lower level of sporulation, and a significant reduction in virulence
	OG0006456	MCYG_04669	\	Intracellular serine protease	Peptidase S8, subtilisin- related	Unknown
M77	OG0003906	MCYG_08676	Glip2	GDSL esterase/ lipase 2	Phosphopan- tetheine binding ACP domain	Lip2 lipase maintains high activity at low pH in <i>Yarrowia</i> <i>lipolytica</i>
S53	OG0007757	MCYG_01559	sedA	Tripeptidyl peptidase sedA/ Sedolisins	Peptidase S53, activation domain	Secreted tripeptidyl peptidase which degrades proteins at acidic pHs and is involved in virulence
GH18	OG0001063	MCYG_03088	\	Chitinas	Chitin- binding, type 1	Unknown
	OG0005920	MCYG_06206	\	Chitinas	LysM domain	Unknown

Table 3. (continued)

Gene family	Orthogroup	Locus tag/	mRNA/ product	Annotation	Function in fungi
	OG0003850	MCYG_08539 <i>Arb2</i>	Conidial pigment biosynthesis oxidase	Multicopper oxidase-like, N-terminal	Melanin Synthesis Pathway in Aspergillus fumigatus Conidia
AA1	OG0003865	MCYG_08571 \	Laccase 1	Multicopper oxidase	Laccase is commonly recognized as the causative agent of opportunistic fungal pathogens
AA3	OG0001123	MCYG_03226 \	Choline dehydrogenase	FAD/NAD(P)- binding domain superfamily	Unknown
GT90	OG0005453	MCYG_05869	DUF821 domain	Glycosyl transferase CAP10 domain	Unknown

Declarations

Ethics approval and consent to participate

Not applicable.

Adherence to national and international regulations

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All new genomes published in the study have been deposited in GenBank under the following BioProject accession number PRJNA1102285. All software used were from publicly available sources.

Competing interests

The authors report there are no competing interests to declare.

Funding

This project was supported by the Natural Science Foundation of Guangdong Province of China (No. 2020A1515011183) and the Brazilian National Council for Scientific and Technological Development (CNPq 402509/2022-6). Xin Zhou has received research support from the China Scholarship Council (No. 202006380049). Ricardo Belmonte has received research support from the Brazilian National Council for Scientific and Technological Development (CNPq 200025/2023-6).

Authors' contributions

Study conceptualization and design of experiments, XZ, PYF and SDH; methodology, XZ and RB; formal analysis and investigation, RB and TC; original manuscript preparation, XZ and PYF; writing - review and editing, VAV and SDH; supervision: SDH and VAV. All authors read and approved the final manuscript.

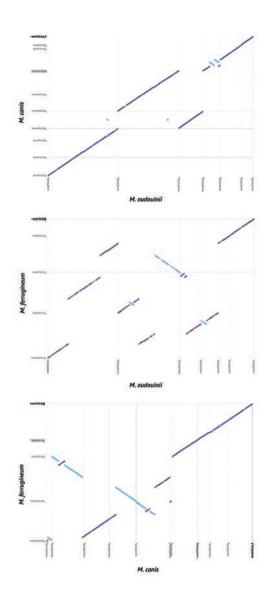
Acknowledgements

We thank Sarah A. Ahmed for her invaluable assistance with strain collection and Johanna Rhodes for her essential role for guidance on data analysis.

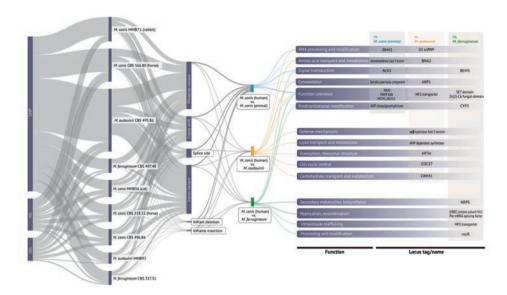
Author information

Xin Zhou https://orcid.org/0000-0003-2094-7288

Ricardo Belmonte https://orcid.org/0000-0002-3122-0271

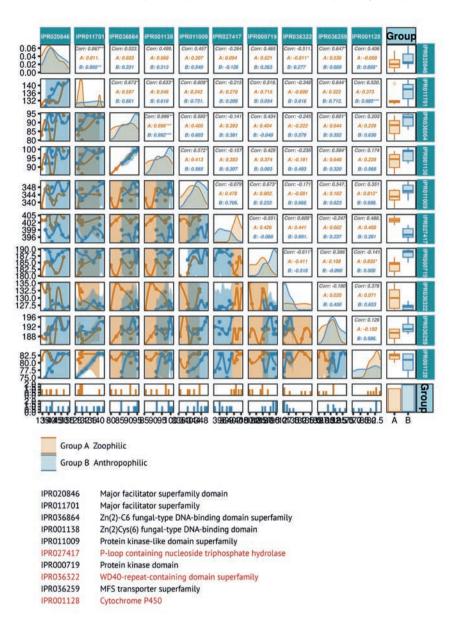

Tang Chao https://orcid.org/0000-0002-5516-872X

Vania Aparecida Vicente https://orcid.org/0000-0002-2953-4861

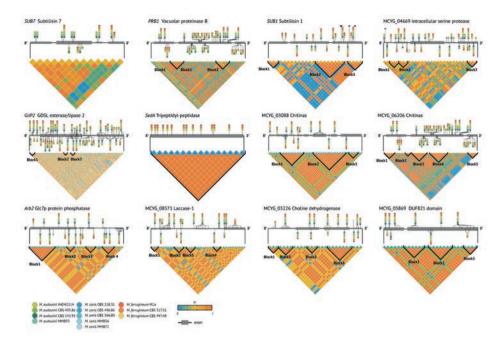

Sybren de Hoog https://orcid.org/0000-0002-5344-257X

Peiying Feng http://orcid.org/0000-0002-7284-2034

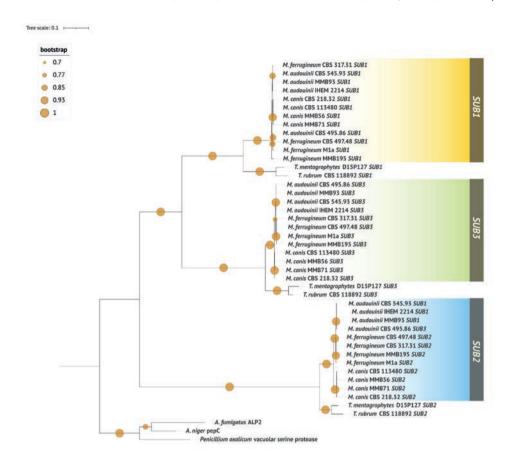
SUPPLEMENT INFORMATION



Additional figure 1. Alignment of three Microsporum species genome using MUMmer4.0 beta. The dotplot of all the MUMs between two sequences can reveal their macroscopic similarity. Purple lines/dots represent an undisturbed segment of conservation between the two sequence, blue lines/ dots represent an inverted segment of conservation. The closer a plot is to a line f(x) = x (or -x), the fewer macroscopic differences exist between the two sequences.


Additional figure 2. Genetic variant annotation and functional effect prediction.

To analyze the variation within species, strain data were mapped to the NCBI reference genomes with BWA using the MEM algorithm [401]. Using GATK v4.4.0.0, these were screened for duplicates with MarkDuplicates default settings, and used for haplotype calling with the HaplotypeCaller, with the following non-default parameters: "-pair-hmm-gap-continuation-penalty 10, -stand-call-conf 30 --sample-ploidy 1". The resulting vcf files and the reference genomes were used to annotate and predict variant effects using SnpEff v5.1d [402]. The top ten genes in terms of variation frequency were annotated and the genes of the target species and their corresponding functional annotations were compared with the DFVF: Fungal Virulence Factor database Sankey plots of genomic variants were created using SankeyMATIC (https://sankeymatic.com/). The width of the grey mobility lines between panels represents differences in the number of variants. Based on the classification and number of variants, the genes with the greatest mutational differences between the three species were compared, and their functions were annotated. Locus tag/name is based on the annotation of the *Microsporum canis* CBS 113480 reference genome.


Additional figure 3. Data characteristics and correlations matrix between major differential protein domains in anthropophilic and zoophilic Microsporum species.

Complex correlation matrix plots are drawn using the R package GGally. Using Kendall for correlation analysis style, the top diagonal plot area shows the correlation coefficient and p value, the * represents the significance level. The diagonal plot area shows the density map corresponding to each domain, and the X-axis position where the peak appears indicates that the data of the domain is mostly concentrated in this range. The lower diagonal plot area shows the scatter plot between two domains, and the curve is smoothed using loess.

Additional figure 4. Linkage disequilibrium analysis.

Additional figure 4 is a visualization of the LD blocks for each of the variant loci of these genes. The colors represent R2 values, with 0 to 1 overriding from blue to orange. Gene models are shown at the top of the figure, with lines representing genomes, gray rectangles representing exons, and different colored circles representing strain variants occurring at the SNP locus. Color-bonded LD blocks are located at the bottom. Strongly linkage Block regions are marked by thick black triangles.

Additional figure 5. Phylogenetic tree constructed from SUB1-SUB3 genes. Aspergillusfumigatus, Asp. niger, and Penicillium oxalicum as outgroups.

Additional table 1. Functional annotation and virulence factors of differential genes in human- and animal-derived Microsporum Species.

Locus tag/name	Product/mRNA	Function	Interpro	Pfam	Virulence factors in fungal pathogens (DFVD) http://sysbio.unl.edu/DFVF/
		human-derive	human-derived <i>M. canis</i> vs animal-derived <i>M. canis</i>	1. canis	
MCYG_04733	RfeD	S:(S) Function unknown			
AKL1	Ark- serine/threonine protein kinase	T:(T) Signal transduction mechanisms	IPR011009	PF00069;PF07714	Protein serine/threonine kinase activity
PRPF38B	pre-mRNA-splicing factor 38B	S:(S) Function unknown			
MCYG_02976	dienelactone hydrolase family protein	Q:(Q) Secondary metabolites biosynthesis, transport and catabolism	IPR002925	PF01738	
MCYG_02989	Ribonucloprotein	A:(A) RNA processing and modification	IPR004038	PF01248	
MCYG_04286	Aminotransferase class V domain-containing protein	E:(E) Amino acid transport and metabolism	IPR015421		
MCYG_07233	ADP-ribosylglycohydrolase	O:(O) Posttranslational modification, protein turnover, chaperones	IPR005502	PF03747	
MCYG_01602	Spindle pole body component	Z:(Z) Cytoskeleton/gamma- tubulin complex component GCP5	IPR041470	PF04130;PF17681	
MCYG_00211	uncharacterized protein				
рнн1	DExD/H-box ATP-dependent RNA helicase dhh1	A:(A) RNA processing and modification	IPR014001	PF00271	Belongs to the DEAD box helicase family, DDX6/ DHH1 subfamily, involved in virulence.
				:	

human-derived M. canis vs M. audouinii

AMP-binding		
PF00501;PF00550;PF00668		
IPR000873 AMP-dependent	synthetase/ligase domain	
Q:(Q) Secondary metabolites	biosynthesis, transport and	catabolism
NRPS		
Mfereffu10_007044		

Additional table 1. (continued)

Locus tag/name	Product/mRNA	Function	Interpro	Pfam	Virulence factors in fungal pathogens (DFVD) http://sysbio.unl.edu/DFVF/
ВЕМЗ	Rho GTPase activating protein	T:(T) Signal transduction mechanisms	IPR000198 Rho GTPase- activating protein domain	PF00169;PF00620	Required for establishment of the axial budding pattern in yeast cells. May be involved in the selection of future sites of septation in hyphal cells. Contributes to morphogenesis and is important for induction of hyphal growth. Also plays a role in epithelial adherence, and is involved in intestinal colonization and systemic infection. The role in adhesion is probably minor compared with its role in morphogenesis.
CVP3	Peptidyl-prolyl cis-trans isomerase H	O:(O) Posttranslational modification, protein turnover, chaperones	IPR002130 Cyclophilin-type peptidyl-prolyl cis-trans isomerase domain	PF00160	Pro_isomerase, PPlases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity).
Mfereffu10_001584	SHREC complex subunit Mit1	K:(K) Transcription;L:(L) Replication, recombination and repair	IPR000330 SNF2, N-terminal	PF00176;PF00271;PF04851;P F11496;PF15446;PF18585	Mannosyltransferase activity, pathogenesis
Mfereffu10_002528	NRPS	Q:(Q) Secondary metabolites biosynthesis, transport and catabolism	IPR000873 AMP-dependent synthetase/ligase domain	PF00501;PF00550;PF00668	
Mfereffu10_004851	Major facilitator superfamily (MFS) profile domain- containing protein	U:(U) Intracellular trafficking, secretion, and vesicular transport	IPR011701 Major facilitator superfamily	PF07690	MFS_1, integral to membrane, hexose transport, response to drug
Mfereffu10_000280	Pre-mRNA-splicing factor	L:(L) Replication, recombination and repair	IPR026300 CWF11 family	PF13086;PF13087;PF16399	
Mfereffu10_002474	SET domain-containing protein	S:(S) Function unknown	IPR046341 SET domain superfamily		
Mfereffu10_002729	C6 finger domain transcription factor nscR	A:(A) RNA processing and modification	IPR001138 Zn(2)Cys(6) fungal-type DNA-binding domain	PF00172;PF04082	

Additional table 1. (continued)

Locus tag/name	Product/mRNA	Function	Interpro	Pfam	Virulence factors in fungal pathogens (DFVD) http://sysbio.unl.edu/DFVF/
Mfereffu10_002939	Zn(2)-C6 fungal-type domain-containing protein	S:(S) Function unknown	IPR001138 Zn(2)Cys(6) fungal-type DNA-binding domain	PF00172	
		human-de	human-derived M. canis vs M. ferrugineum	E	
Maureffu10_000442	MFS transporter	S:(S) Function unknown	IPR011701 Major facilitator superfamily		
Maud_002122	Alpha/beta hydrolase fold-3 domain-containing protein	V:(V) Defense mechanisms	IPR013094 Alpha/beta hydrolase fold-3		
Maud_004477	U1 snRNP-associated protein	A:(A) RNA processing and modification	IPR000504 RNA recognition motif domain		
MYO1_3	class II myosin/myosin I heavy chain	Z:(Z) Cytoskeleton	IPR001452 SH3 domain	PF00018;PF00063;PF06017	Fungal-type cell wall organization, hyphal growth
Maud_006902	AMP-dependent synthetase/ ligase(NCBI)	I:(I) Lipid transport and metabolism	IPR042099 ANL, N-terminal domain		
e1F3a	eukaryotic translation initiation factor 3 subunit A/ translation initiation factor eIF3a	J:(J) Translation, ribosomal structure and biogenesis	IPR000717 Proteasome component (PCI) domain	PF01399	Eukaryotic translation initiation factor 3 complex
ARP5	Actin-related protein 5	Z:(Z) Cytoskeleton	IPR004000 Actin family	PF00022	Fungal-type cell wall organization, hyphal growth, modulation by symbiont of host inflammatory response
BNA2	Indoleamine 2,3- dioxygenase	E:(E) Amino acid transport and metabolism	IPR000898 Indoleamine 2,3- dioxygenase	PF01231	
CDC27	anaphase-promoting complex subunit cdc27	D:(D) Cell cycle control, division, chromosome partitioning	IPR001440 Tetratricopeptide repeat 1	PF00515;PF07719;PF12895;P F13176;PF13181;PF13414;PF 13432;PF14559	Hyphal growth, negative regulation of transcription from RNA polymerase II promoter

Additional table 1. (continued)

Locus tag/name	Product/mRNA	Function	Interpro	Pfam	Virulence factors in fungal pathogens (DFVD) http://sysbio.unl.edu/DFVF/
CWH41	Processing alpha glucosidase I	G:(G) Carbohydrate transport IPR004888 Glycoside and metabolism hydrolase family 63	IPR004888 Glycoside hydrolase family 63	PF03200;PF16923	

CHAPTER 7

DYNAMIC GENE EXPRESSION AND FUNCTIONAL NETWORKS UNDERLYING SPORE GERMINATION IN *MICROSPORUM CANIS*

Xin Zhou, Wentao Liu, Marlou tehupeiory-kooreman, Na Li, Sybren de Hoog, Peiying Feng

in preparation

ABSTRACT

Microsporum canis are zoonotic fungi that cause superficial fungal infections via spore transmission. However, the molecular mechanisms underlying spore germination remain incompletely understood. In this study, transcriptome sequencing was employed to systematically analyze the dynamic gene expression and functional networks during M. canis spore germination (mycelium phase, dormant spores and germinating spores). qPCR validation confirmed the expression of key genes. The results revealed that the transition from dormant spores (Spore 0h) to germinating spores (Spore 4h) was accompanied by significant metabolic reprogramming. Genes associated with DNA replication (e.g., MCM complex, POL, RFC) and oxidative phosphorylation (e.g., ATP synthase, succinate dehydrogenase, cytochrome complex) were significantly upregulated, whereas peroxisomal function (POT, PEX family genes) and fatty acid β-oxidation pathways were suppressed. This suggests a metabolic shift from lipid utilization to glycolysis and mitochondrial energy production. Gene expression clustering analysis identified eight temporally regulated gene clusters. Alternative splicing events (SE and MXE) played key roles in regulating genes related to methylation, energy metabolism, and cytoskeletal organization. Notably, MCYG_04013 (methyltransferase) was upregulated during early spore formation, whereas MCYG_06030 (isocitrate dehydrogenase) exhibited increased expression during germination. The protein-protein interaction (PPI) network further identified key regulatory genes, including SLP1, MEC1, UBI4, and RPS16, whose dynamic expression was closely linked to cell cycle regulation, stress response, and signal transduction (Ras-GTP/cAMP-PKA and MAPK pathways). Additionally, the study uncovered both conserved and unique germination strategies in *M. canis* compared to other filamentous fungi, such as dependence on oxidative phosphorylation (conserved) and ribosome storage strategy with low expression of HSP-related genes (unique). This study provides the first insights into the molecular mechanisms of M. canis spore germination, offering a theoretical foundation for antifungal strategies targeting the spore formation stage.

INTRODUCTION

Dermatophytosis is a disease that affects keratinized tissues, including the epidermis, hair, and nails. It is caused by dermatophytes, which can spread via arthroconidia shed along with the host's keratinous material, leading to infections in both animals and humans. Dermatophytes belong to the family Arthrodermataceae within the order Onygenales and are systematically classified into seven genera based on broader evolutionary trends: Arthroderma, Lophophyton, Paraphyton, as well as the clinically relevant Epidermophyton, Microsporum, Trichophyton, and Nannizzia [1]. The morphological structures of dermatophytes primarily include hyphae, conidia, and other specialized formations, complex sexual states are produced in the environment. The hyphae are septate and hyaline, capable of forming invasive structures within host tissues. These invasive hyphae secrete keratinases, which degrade the host's keratin layer and facilitate fungal penetration. In contrast to active hyphae, spores are dormant, unicellular structures [29]. Dermatophytes produce two main types of asexual spores: aleurioconidia (including microconidia and macroconidia) arthroconidia. Aleurioconidia are formed by lateral or terminal budding from hyphae and are typically generated under nutrient-rich in vitro culture conditions. Arthroconidia, on the other hand, are produced through hyphal fragmentation at septal junctions and are formed during infection in host tissues [403].

Compared to hyphae, conidia possess a thicker cell wall and exhibit greater mechanical resistance, enabling their survival and dispersal under harsh environmental conditions. Upon encountering favorable environmental cues, dormant conidia can reactivate and germinate into new hyphae. In the infection cycle of dermatophytes, once arthroconidia adhere to suitable tissues of a permissive host, they undergo rehydration and swell in size. When the cytoplasmic volume reaches a critical threshold, nuclear division occurs [71]. By 4 hours postcontact, conidia begin to germinate and form germ tubes [278], which subsequently develop into segmented hyphae [404]. Within 24 hours to 3 days after adherence, arthroconidia initiate penetration of the stratum corneum, facilitated by the production of specific hydrolytic enzymes and the extension of hyphae through intercellular spaces and keratinocyte interiors [405]. The germination phase of conidia represents a critical transition point, marking the shift from environmental persistence to active pathogenicity. This process is accompanied by disruption of the epidermal barrier and phase-specific inflammatory responses, which collectively determine the outcome of infection.

Among dermatophytes, zoophilic species are particularly notable for their capacity to infect animals and cross species barriers to infect humans. These species, including Microsporum canis, often show strong environmental survival and induce more pronounced inflammatory responses during zoonotic transmission. Microsporum canis is a widely distributed zoonotic dermatophyte primarily infecting cats and dogs, with frequent spillover to humans, especially children [192]. Its dual adaptation to animal reservoirs and human skin, along with its high transmissibility and spore persistence in the environment, makes it an ideal model for studying early-stage dermatophyte infection [406]. The adhesion of M. canis to hair and skin is at least associated with a well-characterized spore protein, subtilisin 3. In contrast, the invasion process—both in *M. canis* and in dermatophytes more broadly-remains poorly understood [33]. Although the correlation between morphological differentiation and adherence and invasion mechanisms in dermatophytes has been investigated, the conidial germination process and its association with mechanisms of cutaneous infection remain largely unexplored [406]. Previous studies have shown that during the conidial germination process, significant alterations occur in the conidial wall thickness and composition, facilitating environmental adaptation and potentially influencing pathogenicity. Our preliminary research on M. canis adaptive evolution identified PRB1, a gene associated with hyphal/conidial morphology, which is highly expressed during human infection [407]. However, the dynamic gene expression patterns and regulatory networks involved in M. canis conidial germination remain unclear. Given that conidial germination is a critical early event in host infection, elucidating the dynamic gene expression profiles and functional networks during this process could provide deeper insights into the pathogenic mechanisms of M. canis.

Therefore, this study aims to investigate the gene expression dynamics at different stages of *M. canis* conidial germination using transcriptomic sequencing. By elucidating the key regulatory networks governing the transition from conidia to hyphae, this research will not only advance our understanding of *M. canis* conidial germination at the molecular level but also provide new perspectives on dermatophyte pathogenicity, ultimately contributing to the rational development of new preventive and therapeutic strategies.

METHODS

Strains and culture conditions

The strain of Microsporum canis used in this study was obtained from the Radboudumc Laboratory Center for Mycology. The strain was maintained on Sabouraud dextrose agar (SDA; 40 g/L glucose, 10 g/L peptone, 15 g/L agar) at 28°C in darkness. To induce sporulation, mycelial plugs (5 mm diameter) from actively growing colonies were transferred to Borelli's lactritmel agar [408] plates (20g/L wheat flour, 7 g/L skimmed milk powder, honey 1g/L, 20 g/L agar) and incubated at 28°C under alternating light/dark cycles (12 h/12 h) for 14 days. Spores were harvested by gently scraping the colony surface with sterile PBS (pH 7.4) containing 0.01% Tween 20. The suspension was filtered through three layers of sterile Miracloth (Merck) to remove hyphal debris and centrifuged at 3,000 × g for 10 min. Spore pellets were resuspended in PBS, and concentrations were adjusted to 1×10^{-5} 10⁷ spores/mL using a hemocytometer (Neubauer chamber). Spore viability was confirmed by plating serihal dilutions on SDA and counting colony-forming units (CFU) after 48 h.

RNA extraction and sequencing

Total RNA was extracted from three biological replicates of M. canis mycelium (vegetative growth phase, cultured in Sabouraud broth for 72 h), freshly harvested spores (Spore 0h), and spores incubated in germination-inducing medium (brand or REF) at 28°C for 4 h (Spore 4h). Samples were homogenized in TRIzol reagent (Invitrogen) using MagNa lyser (Roche) with zirconium beads (0.5 mm diameter, 3 cycles of 20 sec at 6,500 rpm). RNA was purified using the RNeasy Mini Kit (Qiagen) with on-column DNase I digestion (RNase-Free DNase Set, Qiagen). RNA integrity was assessed via Agilent Bioanalyzer 2100 (RNA Integrity Number [RIN] ≥ 8.0), and purity $(A260/A280 \ge 1.9, A260/A230 \ge 2.0)$ was confirmed using a NanoDrop ND-1000 spectrophotometer.

Strand-specific mRNA libraries were prepared using the NEBNext Ultra II RNA Library Prep Kit (New England Biolabs) with poly-A selection and rRNA depletion (Ribo-Zero rRNA Removal Kit, Illumina). Library quality was verified via Bioanalyzer (average fragment size: 350 bp), and quantification was performed using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Libraries were sequenced on an Illumina NovaSeq 6000 platform (150 bp paired end reads; 40 million reads per sample) at Novogene Co., Ltd.

Bioinformatic analysis

Read preprocessing and quality control

Raw sequencing reads were processed using Trimmomatic (v0.39) to remove adapters and low-quality bases (SLIDINGWINDOW:4:20, MINLEN:50). FastQC (v0.11.9) and MultiQC (v1.11) were used to generate quality reports. High-quality reads were aligned to the *M. canis* reference genome (GenBank assembly accession: GCA_000151145.1) using HISAT2 (v2.2.1) with default parameters. Alignment rates averaged 92.5% (range: 89.3–94.8%).

Transcript quantification and differential expression

Read counts per gene were generated using featureCounts (v2.0.1) with the genome annotation file (GTF format). Normalization and differential expression analysis were performed in DESeq2 (v1.30.1) using a negative binomial model. Genes with $|\log 2(\text{fold change})| \geq 1$ and adjusted P-value (Benjamini-Hochberg) < 0.05 were classified as differentially expressed genes (DEGs). Batch effects were assessed via principal component analysis (PCA) and corrected using the limma package (v3.48.3) when necessary.

Functional enrichment and pathway analysis

Functional enrichment analysis was performed using clusterProfiler (v4.0.5). GO term enrichment was conducted with the enrichGO function, and redundant GO terms were simplified using semantic similarity (cutoff = 0.7). Pathway enrichment was performed using the enrichKEGG function, with M. canis-specific KEGG Orthology (KO) annotations. Pathways with FDR < 0.05 were retained. Predefined gene sets from MSigDB (v7.4, C2: curated pathways) were ranked by log2 (fold change) and tested using the GSEA algorithm (1,000 permutations, weighted enrichment statistic). Gene sets with FDR < 0.25 and normalized enrichment score (NES) > 1.5 were considered significant. For gene set enrichment analysis (GSEA), genes were ranked by log2 fold change and tested using the clusterProfiler:GSEA() function with 1,000 permutations and weighted enrichment statistic. Gene sets with FDR < 0.25 and normalized enrichment score (NES) > 1.5 were considered significant.

Alternative splicing detection

Alternative splicing events were identified using rMATS (v4.1.2) with the following parameters: read length = 150 bp, paired-end mode, and FDR < 0.05. Splicing types

included skipped exons (SE), mutually exclusive exons (MXE), retained introns (RI), alternative 5' splice sites (A5SS), and alternative 3' splice sites (A3SS). Events with a minimum inclusion level difference (ΔPSI) ≥ 10% were retained. Splicing events were linked to DEGs using the rmats2sashimiplot tool to visualize isoformspecific expression.

Gene co-expression clustering

Expression profiles of DEGs were clustered using the k-means algorithm (stats package in R, v4.1.0) with Euclidean distance. The optimal cluster number (k = 8) was determined via the Elbow method and silhouette analysis. Enriched pathways in each cluster were identified using Fisher's exact test (FDR < 0.05).

Protein-protein interaction (PPI) network construction

PPI networks were built using the STRING database (v11.5) with a confidence score cutoff ≥ 0.7. Networks were visualized in Cytoscape (v3.8.2), and hub genes were identified based on betweenness centrality (CytoHubba plugin). Functional modules were detected using the MCODE algorithm (score ≥ 5, node score cutoff = 0.2).

qPCR validation

Twelve DEGs (RPS16, MEC1, ALD2, SLP1, POL1, PEX5, CYS3, POT1, PEX14, MCYG 01436, RPL22 and RPS3) were selected for validation. cDNA was synthesized from 1 µg total RNA using the PrimeScript RT Reagent Kit (Takara Bio) with oligo(dT) primers. qPCR primers were designed using Primer-BLAST (NCBI) to span exon-exon junctions and avoid secondary structures. Reactions were performed in triplicate on a QuantStudio 5 Real-Time PCR System (Applied Biosystems) using SYBR Green Master Mix (Roche). Thermal cycling conditions: 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Melt curve analysis confirmed primer specificity. Relative expression was calculated using the $2-\Delta\Delta Ct$ method, with β-tubulin as the endogenous control.

Statistical analysis

Data are presented as mean ± standard deviation (SD) of three biological replicates. Statistical significance was determined via one-way ANOVA with Tukey's post-hoc test (P < 0.05) in GraphPad Prism (v9.0). For RNA-seq data, adjusted P-values (FDR) were reported.

Data availability

Raw sequencing data are available in the NCBI Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra/docs/).

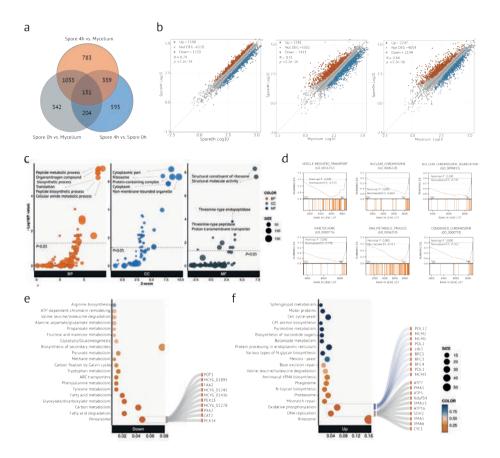
RESULTS

Differential gene expression in sporulation

In the pairwise comparisons of the three groups, differentially expressed genes (DEGs) were identified between Spore 0h vs. Mycelium, Spore 4h vs. Mycelium, and Spore 4h vs. Spore 0h. Among them, 151 DEGs common to the three groups, 342 DEGs specific to spore 0h and mycelium were included, 783 DEGs unique to Spore 4h vs. Mycelium, and 593 DEGs specific to Spore 4h vs. Spore 0h (Figure 1a). A scatter plot of log10 transformed expression values highlighted the correlation of gene expression profiles between developmental stages (Figure 1b). In the comparison of Spore 0h vs. Mycelium, 2247 genes were upregulated, and 2194 genes were downregulated (R = 0.48). In the comparison of Spore 4h vs. Mycelium, 2581 genes were upregulated, and 2411 genes were downregulated (R = 0.51), with increased transcriptional differentiation. The highest correlation (R = 0.79) was observed between Spore 0h and Spore 4h, indicating stable transcriptional activity in the late stages of sporulation, with 1108 genes upregulated and 1220 genes downregulated.

Gene Ontology (GO) enrichment analysis of DEGs between Spore 4h and Spore 0h revealed that the most enriched biological processes were related to peptide metabolic processes, translation, and cell amide metabolic processes. The cellular components were predominantly ribosomal structures, cytoplasmic components, and non-membrane-bounded organelles. The molecular functions associated with the differences mainly involved ribosome-rich structural components and structural molecule activity, followed by threonine-type peptidase activity. Under the molecular function category, the most significantly enriched entries were structural constituent of ribosome and structural molecule activity. Gene Set Enrichment Analysis (GSEA) further highlighted enriched pathways in vesicle-mediated transport, nuclear chromosome separation, kinetochore assembly, DNA metabolic processes, and chromatin condensation. Compared to Spore 0h, 343 out of 464 gene sets were upregulated in Spore 4h, with 14 gene sets showing significant enrichment (FDR < 25%), including functions related to vesicle-mediated transport, nuclear chromosome separation, kinetochore assembly, DNA metabolic processes,

and chromatin condensation. The GO 0000228 (RNA polymerase complex) gene set exhibited significant enrichment with an FDR-adjusted P-value < 0.5.


KEGG pathway-specific enrichment analysis revealed significant metabolic changes. During the 0-4h sporulation process, ribosomal biogenesis was significantly enriched in both Spore 0h and Spore 4h, but after comparison, DNA replication and oxidative phosphorvlation were significantly upregulated in Spore 4h (P < 0.5). The top 10 genes in these pathways, including various DNA polymerase subunits, MCM complexes, and ATP synthase subunits, are listed in Figure 1f. In contrast, the Peroxisome pathway (P < 0.5) was significantly downregulated in Spore 4h compared to Spore 0h (Figure 1e), with key genes such as POT1, PEX13, PEX14, and CAT2, associated with peroxisome function and fatty acid β -oxidation metabolism.

Complex regulatory mechanisms of gene expression in sporulation

During sporulation in M. canis, two main types of alternative splicing events were identified (Figure 2a-b): Exon Skipping (SE) (Figure 2c) and Mutually Exclusive Exons (MXE) (Figure 2d). SE events highlighted the importance of genes involved in methylation, carbohydrate metabolism, energy production, and membrane function at various stages of sporulation. For example, MCYG_04013 (methyltransferase) and MCYG_01597 (protein containing DUF255 domain) were upregulated in the early stages (Spore 0h vs. Mycelium and Spore 4h vs. Mycelium), indicating that active metabolic and regulatory processes are required for early spore development. However, their downregulation in the later stages (Spore 4h vs. Spore 0h) reflects a shift in cellular priorities as the spores mature and prepare for dormancy or germination. Energy metabolism genes, such as MCYG_06030 (isocitrate dehydrogenase [NADP]), were downregulated in the early stages but were significantly upregulated after Spore 4h compared to Spore 0h.

MXE events mainly involved genes related to translation mechanisms, structural organization, and energy production. In the comparisons of Spore 4h vs. Mycelium and Spore 4h vs. Spore 0h, MCYG_05260 (large ribosomal subunit protein eL28) and MCYG 04657 (phosphotransferase) were persistently upregulated. Cytoskeletonassociated genes, such as MCYG_07441 (α -tubulin), were upregulated in Spore 4h vs. Mycelium but showed reduced expression in Spore 4h vs. Spore 0h.

Moreover, the observed patterns also indicated that selective splicing plays a critical role in fine-tuning protein function and cellular processes at specific stages. MCYG_00199 (40S ribosomal protein S16) was upregulated in Spore 4h vs. Mycelium but downregulated in Spore 4h vs. Spore 0h, suggesting a transient requirement for enhanced ribosomal activity. The dynamic regulation of MCYG_01896 (integral membrane protein) across different stages further emphasizes the significance of splicing in regulating membrane-associated functions during sporulation.

Figure 1. Overview of differential gene expression and enrichment analysis (a) Venn diagram showing the overlap of differentially expressed genes (DEGs) among three comparisons: Spore 0h vs. Mycelium, Spore 4h vs. Mycelium, and Spore 4h vs. Spore 0h. Shared DEGs are highlighted in the central region. (b) Volcano plots displaying upregulated (orange) and downregulated (blue) genes for each comparison. (c) GO enrichment analysis of DEGs between Spore 4h and Spore 0h, highlighting the top 5 significant terms in Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories. (d) GSEA results for Spore 4h vs. Spore 0h, showing 343/464 gene sets upregulated in Spore 4h. Only one gene set (GO_0000228) remained significant after FDR correction (P < 0.5). (e-f) KEGG pathway enrichment analysis comparing Spore 4h and Spore 0h. The most enriched downregulated pathway is Peroxisome (P < 0.05), while the top upregulated pathways include DNA replication and Oxidative phosphorylation (P < 0.05).

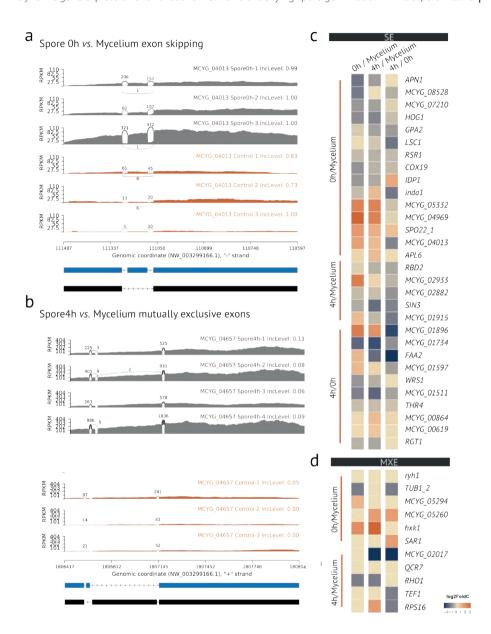
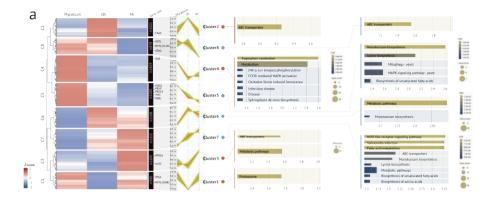



Figure 2. Alternative splicing analysis of DEGs (a-b) Visualization of exon skipping and mutually exclusive exon events in Spore 0h vs. Mycelium and Spore 4h vs. Mycelium, respectively. (c-d) Heatmaps of DEGs exhibiting exon skipping (top) and mutually exclusive exons (bottom), with log2 fold change values represented by the color gradient. Gene names are annotated on the right.

Figure 3. Fuzzy clustering of DEGs based on temporal expression profiles across Mycelium, Spore 0h, and Spore 4h stages.

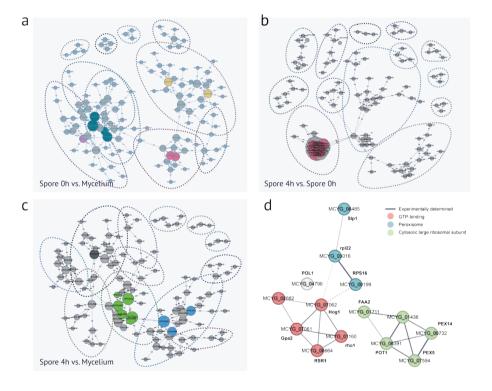


Figure 4. Protein-protein interaction (PPI) networks of DEGs.

(a-c) PPI networks of significant DEGs in three comparisons: Spore 0h vs. Mycelium, Spore 4h vs. Mycelium, and Spore 4h vs. Spore 0h. Nodes represent proteins, and edges represent interactions. Node size reflects degree centrality, with larger nodes indicating more central proteins. (d) Interaction network of 14 selected key proteins, emphasizing their central roles in biological processes.

Cluster analysis of gene expression data

Clustering analysis of gene expression data revealed eight distinct clusters (C1-C8), reflecting the temporal dynamics of transcriptional regulation from the mycelium stage to spore 0h and spore 4h (Figure 3). Each cluster represents a group of genes with similar expression patterns and is associated with specific enriched pathways. We annotated the genes within each cluster and analyzed the functional roles of the top 100 highly expressed genes. C1 (n=903) consists of genes that are highly expressed in the mycelium but downregulated at spore 0h. Pathway enrichment analysis indicates a significant association of these genes with the proteasome pathway. C2 (n=1021) and C8 (n=878) are grouped within the same clade and include genes that are upregulated at spore 0h but downregulated at spore 4h. The enrichment of ABC transporters highlights the role of these genes in metabolite transport and environmental adaptation. C3 (n=1105) consists of genes that remain stably expressed in both the mycelium and spore 0h stages but show a significant increase in expression at spore 4h. These genes are primarily enriched in metabolic pathways and monocyclic amide biosynthesis. C4 (n=1429) and C5 (n=1260) exhibit high expression in the mycelium but are significantly downregulated during spore formation. These genes are associated with tryptophan degradation, MAPK signaling, fatty acid metabolism, and the NOD-like receptor signaling pathway. In contrast, C6 (n=1108) and C7 (n=1111) show low expression in the mycelium but are significantly upregulated during spore formation. The enriched pathways include metabolic pathways, monocyclic amide biosynthesis, unsaturated fatty acid metabolism, fatty acid metabolism, and the NOD-like receptor signaling pathway.

Protein-protein interaction networks at different stages of spore development

During the spore germination process of M. canis, the top 10 key core genes identified based on the PPI results exhibited significant expression changes at different stages. In the transition from mycelium to dormant spores (Spore 0h), multiple genes associated with the cell cycle and metabolism exhibited differential expression. MCYG_04796 (POL1) and MCYG_06485 (SLP1) were significantly downregulated in Spore 0h, encoding the catalytic subunit of DNA polymerase α and a WD-repeat protein involved in cell cycle regulation, respectively, indicating that DNA replication pathways were suppressed during spore formation. Furthermore, metabolic genes such as MCYG_04572 (PGI1, glucose-6-phosphate isomerase) and MCYG_07687 (CYS3, cysteine biosynthesis-related protein) were significantly downregulated in Spore 0h, while MCYG_02667 (ALD2, mitochondrial aldehyde dehydrogenase) and MCYG_08368 (STR2, cysteine metabolism enzyme) were upregulated, suggesting that regulatory shifts in carbohydrate and sulfur

metabolism occurred during spore formation to support dormancy. During the transition from dormant spores (Spore 0h) to germinating spores (Spore 4h), substantial changes in the expression of energy metabolism-related genes were observed. Several peroxisome-related genes were significantly downregulated in Spore 4h, including MCYG 07594 (PEX5), MCYG 00732 (PEX14), MCYG 06391 (POT1), MCYG_03880 (PEX12), and MCYG_00409 (PEX7), indicating a decline in peroxisomal β-oxidation activity during spore germination. Additionally, MCYG 06464 (UBI4, ubiquitin) was downregulated in Spore 4h, suggesting that the ubiquitin-mediated protein degradation system was suppressed during germination. In contrast, MCYG 02808 (MEC1, serine/threonine-protein kinase) was significantly upregulated in Spore 4h, potentially playing a role in signal transduction and cell cycle regulation. At the germinating spore (Spore 4h) stage, compared to dormant spores (Spore 0h), multiple ribosomal genes were significantly upregulated, including MCYG_00912 (RPS3), MCYG_02475 (RPS11), MCYG_08067 (RPS4), MCYG_01924 (RPS1), MCYG 00199 (RPS16), MCYG 00201 (RPS14), MCYG 00291 (RPL19), and MCYG 00564 (RPL24), indicating increased ribosome biogenesis and protein translation activity to meet the demands of cellular growth (Figure 4).

qPCR validation of key genes

Through transcriptome analysis, we identified the role of DNA replication and repair, redox metabolism, protein synthesis, and peroxisome function in spore germination in Microsporum, and to further validate the expression of key genes in these cellular processes. We further examined the expression profiles of 12 genes (SLP, POL1, MEC1, ALD2, CYS3, PEX5, PEX14, MCYG_01436, POT1, RPS16, RPL22, and RPS3) during the process of hyphae to spore germination in Microsporum canis (0h, 2h, 4h, and 8h) (Figure 5). The expression levels of MEC1 (associated with DNA damage repair or cell-cycle regulation) and ALD2 (involved in energy metabolism or oxidation-reduction processes) gradually increased during spore germination, peaking at 8 hours. In contrast, the expression levels of CYS3, PEX14, POT1, and RPS16 exhibited a clear downward trend throughout spore germination. Notably, the expression levels of CYS3, PEX14, and POT1 were already lower at the initial germination stage (Spore 0h) compared to the mycelium phase and continued to decline significantly over time, with POT1 reaching its lowest expression level at 8h, indicating strict suppression during late spore development. These genes are primarily involved in peroxisome-associated metabolism (PEX14 and POT1) and sulfur-containing amino acid metabolism (CYS3). The marked reduction in RPS16 expression, particularly at later stages, suggests a potential shift in protein synthesis patterns, possibly involving significant suppression or selective regulation of protein synthesis activity during late germination. Additionally, genes such as

SLP and POL1, which are closely linked to early germination events including cellwall remodeling, DNA synthesis, and replication activities, as well as PEX5, a peroxisomal targeting signal receptor, showed significantly increased expression levels during early germination (Spore 0h-4h), reaching their peaks before substantially declining in the later stages (Spore 4h-8h). Similarly, the ribosomal genes RPL22 and RPS3 exhibited clear expression peaks, especially pronounced at 2-4 hours, indicating a highly active protein synthesis phase in early germination.

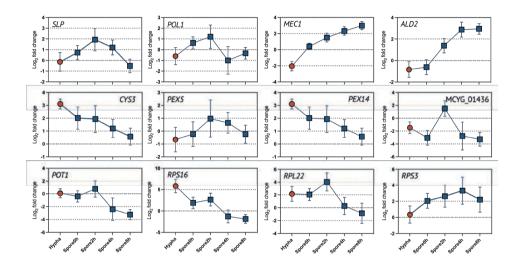
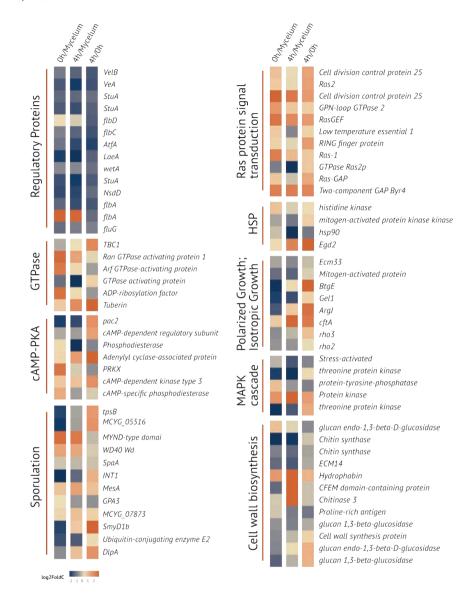


Figure 5. qPCR validation of 12 key DEGs Expression levels of 12 selected genes (log2 fold change) validated by qPCR across Mycelium, Spore 0h, Spore 2h, Spore 4h, and Spore 8h stages. Data are presented as mean ± standard deviation (SEM) from biological replicates. Overall trends are consistent with transcriptomic analysis, with specific dynamic changes highlighted.


DISCUSSION

The regulatory mechanisms governing M. canis spore germination exhibit highly dynamic metabolic and signaling pathways, aligning with findings in other filamentous fungi [409]. The transition from spore formation to germination involves extensive metabolic reprogramming and shifts in energy production pathways. During the dormant spore phase of M. canis, DNA replication and glycolysis are broadly suppressed, with metabolism shifting towards alternative pathways involving CDC6, RNR1, and POL1, allowing spores to exit the active cell cycle and halt DNA synthesis and replication [410]. POL1 encodes the catalytic subunit of DNA polymerase α , a key component of the DNA replication machinery, while SLP1 is a WD-repeat protein involved in cytoskeletal remodeling. This suppression of DNA replication is a hallmark of fungal spore dormancy, ensuring

that spores remain metabolically quiescent until external cues trigger germination. This strategy mirrors those observed in Aspergillus fumigatus and Fusarium araminearum [411], where spores remain in long-term dormancy by restricting cell division until favorable environmental conditions arise [412]. Similarly, the repression of PGI1 (glucose-6-phosphate isomerase) suggests a reduction in glycolytic flux, a mechanism also observed in Neurospora crassa and Magnaporthe oryzae, where spores minimize glucose utilization and shift towards stored carbon reserves to maintain energy homeostasis [413]. The upregulation of ALD2 (mitochondrial aldehyde dehydrogenase) suggests a metabolic transition from carbohydrate metabolism to alternative energy sources, a strategy also seen in Asp. nidulans, where spore dormancy is maintained through the oxidation of alternative substrates, such as amino acids or lipids instead of glucose. The differential regulation of sulfur metabolism, with downregulation of CYS3 and upregulation of STR2, indicates that spores reduce de novo sulfur assimilation while relying on stored sulfur-containing compounds. Additionally, compared to the mycelial phase, significant upregulation of MEC1 (serine/threonine-protein kinase) was observed in both dormant and germinating spores. MEC1 is primarily associated with DNA replication and damage repair, but studies suggest that in filamentous fungi, it may also influence MAPK cascade signaling, particularly the HOG1 (high-osmolarity glycerol) MAPK pathway, to respond to environmental stress [414]. Overall, these findings suggest that M. canis spores, like other filamentous fungi, adopt a conserved dormancy strategy by suppressing replication and glycolysis, shifting energy metabolism, modulating sulfur assimilation, and enhancing stress resilience to ensure long-term survival and environmental adaptability [410].

During the spore germination phase (Spore 0h to Spore 4h), this study observed downregulation of peroxisomal function and fatty acid metabolism. The significant reduction in the expression of peroxisome-associated genes, including *POT1*, *FAA2*, *PEX13*, and *PXA2*, indicates that *M. canis* no longer relies on fatty acid β-oxidation during germination but instead adopts a strategy similar to *Aspergillus* and *Fusarium*, where glycolysis and mitochondrial oxidative phosphorylation are enhanced to meet the ATP demands of rapid cell growth [415, 416]. The marked upregulation of genes associated with POL (DNA polymerase subunits), MCM (Mini-Chromosome Maintenance complex), ATP synthase subunits, cytochrome c, and NADH dehydrogenase complex suggests that spores enter the DNA replication phase during germination, shifting their energy metabolism towards mitochondrial oxidative phosphorylation and the TCA cycle to generate ATP. The increased activity of the mitochondrial electron transport chain aligns with GO enrichment analysis [412], which shows significant enrichment of oxidative phosphorylation and TCA cycle pathways, indicating that metabolic reprogramming occurs during

germination, redirecting energy sources from fatty acid β-oxidation to glycolysis and mitochondrial ATP generation [417]. Lamarre et al. [412] suggested that breaking dormancy is characterized by a transition from fermentative to respiratory metabolism and the immediate activation of protein synthesis. In terms of DNA replication and cell cycle activation [410], this study found significant upregulation of multiple MCM complex genes (MCM2, MCM5) and ATP-dependent DNA replicationrelated genes (ATP7, PMA1, VMA13, NdufS4) during germination (Spore 4h). This pattern aligns with findings in Alternaria alternata, Fusarium, and Aspergillus, where activation of the MCM complex is a prerequisite for early DNA replication and cell cycle progression during spore germination. Gene Set Enrichment Analysis (GSEA) further supports this observation, revealing increased activity of nuclear chromosome segregation and kinetochore assembly pathways in Spore 4h compared to Spore 0h. This suggests that as spores transition from dormancy to an active state, DNA replication and chromatin remodeling pathways are reactivated, potentially preparing cells for mitotic division. The enrichment of GO 0000228 (RNA polymerase complex) in Spore 4h further indicates increased transcriptional activity, supporting rapid cell growth during early germination.

Figure 6. Functional categorization of DEGs associated with sporulation. Heatmaps of transcriptional levels of DEGs, categorized based on their functional roles in sporulation, including regulatory proteins, signal transduction pathways, cell wall biosynthesis, and other key biological processes. Color gradients represent log2 fold change values, with functional group labels on the left and gene names on the right.

The upregulation of ribosomal proteins during spore germination has been a variable phenomenon across different filamentous fungi. In *Aspergillus* and *Coprinopsis cinerea*, spore germination is typically accompanied by robust

activation of ribosomal proteins to meet the demand for de novo protein synthesis [418, 419]. In this study, a series of ribosomal component genes, such as RPS3 (40S ribosomal protein S3), RPS16 (40S ribosomal protein S16), and RPL19 (60S ribosomal protein L19), were upregulated during germination, supporting protein translation and facilitating the metabolic transition from dormancy to an active state. However, overall expression levels did not show significant changes between the two stages. We hypothesize that M. canis dormant spores may already store sufficient ribosomes, thereby avoiding excessive dependence on transcriptional regulation during early germination. In contrast, in Candida albicans [420] and Aspergillus [421], activation of ribosome biogenesis typically occurs in the early stages of germination, possibly due to a higher initial demand for protein synthesis. In M. canis, the strategy may rely on post-transcriptional regulation or later-stage signaling triggers to ensure precise control of protein translation.

In the study of filamentous fungi, alternative splicing (AS) is considered a crucial mechanism for regulating gene expression and facilitating environmental adaptation, particularly in spore formation, germination, and stress responses. For instance, in studies on Asp. Oryzae and Fusarium species [418], exon skipping (SE), and mutually exclusive exons (MXE) have been found to regulate the expression of metabolic enzymes, signal transduction proteins, and cell wall-associated genes, enabling adaptation to environmental changes. Cao et al. [422] analyzed circRNA AS events in Neurospora crassa and found that 91 out of 101 circ-AS events occurred in conidia, whereas only 7 out of 101 were specific to hyphae. In this study, SE events were identified during the sporulation of M. canis, primarily affecting genes related to methylation, carbohydrate metabolism, energy production, and membrane function. For example, MCYG_04013 (methyltransferase) and MCYG_01597 (DUF255 domain protein) were upregulated during the early stages of spore formation (0h and 4h) but downregulated after spore maturation, suggesting their roles in chromatin modification, membrane component synthesis, and metabolic pathway regulation to ensure structural integrity and initial survival of spores. However, after 4h, the downregulation of these genes might indicate a reduction in metabolic activity, preparing the spores for dormancy. This observation aligns with studies on Asp. niger, where genes involved in carbohydrate metabolism and lipid biosynthesis are upregulated during early spore formation but downregulated at the maturation stage, minimizing energy consumption to enhance spore resilience in adverse environments. Additionally, this study identified the energy metabolism gene MCYG_06030 (isocitrate dehydrogenase [NADP]), which exhibited low expression at 0h but was significantly upregulated at 4h. A similar trend has been observed in Fusarium oxysporum, where genes associated with the TCA cycle are markedly upregulated during early spore

germination to meet the energy demands for cellular proliferation and structural biosynthesis [423]. Regarding MXE events in M. canis, they predominantly regulate cytoskeletal proteins, signal transduction proteins, and mitochondrial metabolismrelated genes. For example, $TUB1\ 2$ (α -tubulin) was upregulated at 0h but downregulated at 4h, suggesting that microtubule network remodeling is essential for spore maturation, while cytoskeletal regulation may shift during germination. In Coprinopsis cinerea, different splicing isoforms of TUB1 have been reported to exhibit distinct expression patterns between hyphae and spores, indicating a conserved role in fungal morphological transitions [424]. Furthermore, this study found that RHO1 (Ras-related GTPase) and OCR7 (cytochrome bc1 complex subunit) were downregulated during spore germination, implying that germinating spores may rely on metabolic and signaling pathways distinct from those in dormant spores. In Candida albicans, RHO1 has been associated with cell wall stress responses and polarized growth, with its splicing regulation potentially affecting hyphal formation and invasive capability [425]. Thus, SE and MXE events in M. canis may not only optimize energy metabolism and cell wall homeostasis during spore formation but also influence spore germination potential through the regulation of GTPases and mitochondrial functions.

The spore germination process of *M. canis* involves multiple signaling pathways and metabolic regulations, exhibiting significant similarities with filamentous fungi, particularly Asp. nidulans and Asp. fumigatus [426], while also displaying distinct species-specific characteristics. We reviewed genes and pathways associated with spore germination in previous filamentous fungi, but these genes are only partially expressed in dermatophytes, and several undefined and unnamed genes we determined by homologous sequence differential search to determine whether they are present in M. canis and to compare changes in their expression in spore germination (Figure 6). In Aspergillus species, spore germination is typically driven by Ras-GTP/cAMP-PKA-mediated metabolic activation [427, 428], MAPK-regulated environmental adaptation, and cell wall remodeling [427]. These mechanisms are also evident in the germination process of M. canis. In this study, Ras2 and GTPaserelated proteins, and cAMP-PKA signaling were found to be significantly upregulated during *M. canis* germination, suggesting that the restoration of energy metabolism follows a similar pattern to Aspergillus, where the Ras-GTP cascade promotes glucose metabolism activation. Additionally, key regulators in the MAPK pathway, including HOG1 [427] and RSR1 [420], were identified as critical nodes, indicating that this pathway plays a conserved role in spore germination, consistent with findings in Fusarium, Aspergillus, and the basidiomycete Coprinopsis cinerea. Through osmotic stress adaptation and cell cycle regulation, this pathway likely contributes to maintaining environmental adaptability and polarized growth during

germination. However, regarding heat shock protein (hsp) regulation, this study found that HSP90 expression in M. canis did not show significant upregulation. differing from Asperaillus model fungi, where HSP90 is actively involved in protein folding and stress responses during spore germination [429, 430]. This finding suggests that M. canis may maintain a relatively stable protein homeostasis at the early stage of germination, without relying on hsp90-mediated protein folding repair. On the other hand, genes involved in cell wall biosynthesis, such as chitin synthase, glucan 1,3-beta, CFEM domain proteins, and hydrophobin, were significantly upregulated during germination, highlighting the critical role of conidial cell wall remodeling in the germination process. This observation aligns with the pattern seen in Aspergillus species, where cell wall remodeling is linked to spore virulence and may contribute to enhanced host adaptability in M. canis [431] [432]. Despite the reliance on conserved filamentous fungal regulatory pathways such as Ras-GTP/cAMP-PKA for germination initiation, MAPK for environmental adaptation, and cell wall remodeling for germination facilitation—M. canis exhibits notable differences from Aspergillus model species. For example, transcription factors such as VelB, StuA, and LaeA, which are crucial for spore germination in Aspergillus [433-435], were not significantly upregulated in M. canis. Moreover, peroxisome-related genes (POT1, PEX13, PXA2) were markedly downregulated during germination, whereas genes associated with oxidative phosphorylation (CYC1, SDH2) were upregulated. This suggests that M. canis may rely more on mitochondrial oxidative phosphorylation for energy supply during germination rather than utilizing fatty acid β -oxidation, as seen in Aspergillus. Overall, these findings indicate that while M. canis retains the fundamental mechanisms of filamentous fungal spore development, it has also evolved a distinct metabolic and transcriptional regulatory system that may be shaped by its unique ecological niche and host-parasitic adaptations, differentiating it from Aspergillus model fungi.

By integrating gene expression clustering, GO enrichment analysis, PPI analysis, and previous studies on filamentous fungi, this study further elucidates the core metabolic model of *M. canis* spore germination. Compared to hyphae, spore germination is characterized by the early initiation of DNA replication, a metabolic shift from peroxisome-dependent lipid metabolism to oxidative phosphorylation, MAPK-mediated environmental adaptation, and a potential ribosome reserve strategy. This metabolic model shares common features with filamentous fungi such as Fusarium, Alternaria, and Aspergillus, while also exhibiting species-specific regulatory characteristics in M. canis. These include a relatively static state of ribosomal protein synthesis, rapid suppression of fatty acid β-oxidation, and the pivotal role of MAPK-mediated signaling in spore germination.

Declarations

Ethics approval and consent to participate

Not applicable.

Adherence to national and international regulations

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All new genomes published in the study have been deposited in GenBank. All software used were from publicly available sources.

Competing interests

The authors report there are no competing interests to declare.

Acknowledgements

Not applicable.

CHAPTER 8

SUMMARY

The intricate relationship between pathogens and their hosts has long fascinated scientists, particularly when studying organisms that not only invade but also manipulate host immunity. Dermatophytes, a group of filamentous fungi specialized in surviving within keratinized tissues, play a dual role as both invaders and modulators of host immune responses. Among them, *Microsporum canis* stands out not only for its ability to degrade keratin but also for its complex interactions with the host immune system, which result in both infection and hypersensitivity reactions. This study unravels the evolutionary trajectory of *M. canis* from animal to human hosts, details its molecular mechanisms of pathogenicity and allergenicity, and highlights the clinical and therapeutic implications of its adaptive strategies.

Microsporum canis is primarily considered a zoophilic dermatophyte, thriving on the fur of animals such as cats and dogs, where it finds an abundant supply of keratin—a resilient fibrous protein that forms the structural framework of hair, nails, and skin. Its pathogenicity is largely driven by its ability to secrete a suite of keratin-degrading enzymes, particularly keratinases from the subtilisin-like protease family, along with lipases that facilitate penetration of the lipid-rich epidermal layer. This enzymatic repertoire enables the fungus to effectively colonize host tissues, leading to superficial infections such as tinea capitis and tinea corporis. However, M. canis is more than a mere tissue invader. Its cell wall components-β-glucans and chitin-serve as pathogen-associated molecular patterns (PAMPs) recognized by host pattern recognition receptors (PRRs), including Dectin-1 and Toll-like receptors (TLRs). This recognition triggers immune responses that are often skewed toward a Th2 phenotype, characterized by increased IgE production and heightened sensitivity to allergic reactions. Clinical observations support this link, as approximately 30% of chronic tinea capitis patients exhibit elevated serum specific IgE levels, suggesting a strong connection between fungal infection and allergic sensitization.

Understanding the complex interplay between fungal pathogens and their hosts necessitates an examination of the dual immune responses elicited by these microorganisms (In Chapter 2). These responses extend beyond direct host-pathogen confrontations to include hypersensitivity reactions that exacerbate host pathology. Fungal allergens, including proteases, β -glucans, and chitin, play crucial roles in triggering both innate and adaptive immune responses. Upon exposure, the host immune system—particularly Th2 cells—recognizes these components, leading to IgE production and the release of key cytokines such as IL-4, IL-5, and IL-13, hallmark mediators of allergic inflammation. This Th2-skewed response underpins numerous hypersensitivity disorders associated with fungal exposure, including

asthma, rhinitis, atopic dermatitis, and urticaria. The ability of fungi to induce either primary allergic reactions or deep tissue infections often hinges on their thermotolerance. Fungi that lack thermotolerance, such as *Alternaria*, are unable to grow at body temperature and are thus more likely to act as allergens rather than invasive pathogens. In contrast, thermotolerant fungi such as *Aspergillus* and *Candida* can withstand elevated temperatures, enabling them to invade and colonize deeper tissues, leading to more aggressive infections. Further complicating this issue is the phenomenon of cross-reactivity, wherein fungal allergens share epitopes with certain food proteins. *Alternaria*-spinach syndrome exemplifies this phenomenon, where individuals allergic to *Alternaria* also react to spinach due to shared allergenic determinants. This cross-reactivity poses significant diagnostic and management challenges, often leading to misdiagnosis or the underestimation of fungal components in allergic reactions.

In *M. canis*, this dual functionality is particularly pronounced. While actively invading keratinized tissues through its enzymatic arsenal, *M. canis* simultaneously exposes the host immune system to potent allergens. Its cell wall components and secreted enzymes not only facilitate tissue invasion but also act as strong immunogens that skew immune responses, resulting in complex clinical manifestations in infected individuals. The intricate interplay between direct pathogenic effects and immune-mediated hypersensitivity underscores the necessity of a holistic approach when studying fungal diseases—one that considers both the invasive potential and allergenic properties of the pathogen.

The evolutionary adaptation of *M. canis* from animal to human hosts is a process driven by multifaceted selection pressures. In its natural environment—the fur of cats and dogs—this fungus thrives under neutral to slightly alkaline pH conditions (6.0–7.5) with a relatively simple lipid composition, providing an optimal niche for growth. However, human skin presents a far more challenging environment. The acidic pH (4.5–5.5) of human skin, combined with its complex lipid matrix and robust immune defences, poses significant barriers that *M. canis* must overcome for successful colonization. Genetic and physiological adaptations have been crucial in this transition. A notable adaptation is the development of immune evasion strategies. The human immune system is adept at recognizing zoonotic pathogens, exerting evolutionary pressure on *M. canis* to evolve mechanisms that dampen innate immune responses. One such adaptation is the secretion of Dnases, which degrade neutrophil extracellular traps (NETs)—web-like structures composed of DNA and antimicrobial proteins used to trap and kill pathogens—thus allowing the fungus to evade neutrophil-mediated killing and persist in the host.

As *M. canis* adapts to human hosts, its transmission dynamics also shift. Initially, zoonotic transmission predominated, with infections primarily resulting from direct contact with infected animals. However, as the fungus adapted to the human skin microenvironment, cases of human-to-human transmission became increasingly frequent. This shift introduced new selection pressures, as human-to-human transmission necessitates fungal survival in an environment with lower infection rates and limited contact opportunities. Genomic studies reveal significant evolutionary changes accompanying this transition. Phylogenetic analyses have identified specific evolutionary lineages of *M. canis* that are more adept at infecting humans. A key finding is the dominance of the *MAT1-2* mating type in human-adapted strains, which correlates with enhanced growth in acidic environments similar to human skin.

Clinical observations further enrich our understanding of *M. canis* adaptation. A retrospective study involving 127 pediatric patients with tinea capitis underscored the clinical burden of M. canis infections (Chapter 3). The study found that zoophilic M. canis (49.5%) and Trichophyton mentagrophytes (22.3%) were the predominant pathogens, with incidence rates remaining stable over the past 15 years. Notably, 26.8% of these patients also had allergic conditions, such as atopic dermatitis, allergic rhinitis, and urticaria, emphasizing the dual role of fungi as both pathogens and allergens. Risk factor analysis identified male gender, the presence of inflammatory kerion lesions, and a history of animal exposure as significant predictors of allergic complications. These findings highlight the intricate interplay between fungal pathogenicity and host immune responses, wherein fungi not only cause superficial infections but also exacerbate or trigger allergic diseases. And Chapter 4 examines the clinical features of another hair infection, tinea of vellus hair, a rare dermatophytosis affecting fine, non-pigmented hairs. The results show that children and adults are equally affected, face/neck are common sites. Microsporum canis (40.4%) and T. mentagrophytes (36.8%) are predominant pathogens.

In Chapter 5, through phylogenetic, population genetic, and multispecies coalescent analyses, we have revealed the adaptive mechanisms of *M. canis* not only at the phenotypic level but also from a genetic perspective. By integrating physicochemical properties and mating-type (*MAT*) distribution analyses, we reconstructed the host transition process within the *M. canis* complex. *Microsporum canis* (*MAT1-1*) remains the predominant population, maintaining high virulence and exhibiting limited adaptation to humans. In contrast, *M. audouinii* (*MAT1-2*) and *M. ferrugineum* (*MAT1-2*) are widely distributed in human populations, characterized by slow growth, progressive loss of conidia, reduced lipid and keratin degradation

capacities, but enhanced DNA hydrolysis ability. Mating still occurs within the complex, as evidenced by experimental strains carrying *MAT1-1* and *MAT1-2*. *Microsporum audouinii* appears to occupy an intermediate state in all aspects, whereas *M. ferrugineum* demonstrates the highest instability compared to *M. canis*. Our study also identified that zoophilic strains (e.g., isolates from cats and dogs) exhibit high keratinase activity, particularly when cultured on cat hair substrates. This enzymatic activity correlates with the upregulation of *SUB1* and *SUB3*, which encode key keratinases. In contrast, human-adapted strains exhibit reduced keratinase activity but increased Dnase activity, enhancing their ability to evade human immune defenses. This trade-off between enzymatic degradation and immune evasion underscores the adaptive flexibility of *M. canis* during host transition between zoophilic and anthropophilic lifestyles.

Comparative functional genomics has elucidated the genetic basis underlying these adaptations. In Chapter 6, we validated the adaptive expression of 12 key genes through neutrality tests and selective pressure analyses, focusing on the evolutionary mechanisms driving the transition from zoophilic to anthropophilic Microsporum species. Microevolutionary processes supporting host specificity were linked to carbohydrate metabolism, signal transduction regulation, and posttranslational modifications. Notably, anthropophilic species exhibited an increased number of MFS transporters, Zn2Cys6 DNA-binding proteins, and protein kinases, whereas genetic differences among various zoophilic species were comparatively minor. Specific protease subfamilies (M77, S08A, and S53) and carbohydrate-active enzymes (GH18, AA3, GT90, GT8, and AA1) were positively correlated with the ecological parameters distinguishing anthropophilic and zoophilic lifestyles. We identified 12 key genes within these subfamilies that are essential for phenotypic traits such as sporulation, intracellular protease and lipase activity, and pH adaptation regulation. Further investigation revealed that keratin degradation potential and SUB1-SUB3 expression levels are influenced by microenvironmental factors, including lipid composition, pH, and osmotic pressure. Notably, anthropophilic strains demonstrated higher tolerance to acidic pH conditions and exhibited enhanced keratinase activity in lipid-rich environments, with M. ferrugineum displaying the strongest osmotic stress tolerance. Moreover, we identified highly linked block regions within protease- and CAZy-encoding genes and analyzed the relationship between SNP mutations and haplotypes, providing a basis for efficient species identification and functional gene exploration in Microsporum species.

We also delved into a key aspect of the *M. canis* life cycle – spore germination. Spore germination is the initial step in fungal colonization and infection. It is a

tightly regulated process that responds to specific environmental cues. In Chapter 7, we used transcriptome sequencing to analyze the dynamic gene expression and regulatory networks during spore germination at three developmental stages: mycelium, dormant spores (Spore 0h), and germinating spores (Spore 4h). Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. Protein-protein interaction (PPI) networks were constructed, and key regulatory genes were validated via qPCR. The transition from dormant to germinating spores involved significant metabolic reprogramming. Genes involved in DNA replication (e.g., MCM complex, POL, RFC) and oxidative phosphorylation (e.g., ATP synthase, succinate dehydrogenase, cytochrome complex) were significantly upregulated, indicating an energy shift from lipid β-oxidation to glycolysis and mitochondrial respiration. Conversely, genes related to peroxisomal function (POT1, PEX family genes) and fatty acid β-oxidation were downregulated. Alternative splicing events, including exon skipping (SE) and mutually exclusive exons (MXE), played essential roles in regulating methylation, energy metabolism, and cytoskeletal organization. The PPI network identified key regulatory genes (SLP1, MEC1, POT1, RPS16...), which were dynamically expressed and associated with cell cycle control, stress response, and signaling pathways (Ras-GTP/cAMP-PKA, MAPK). The germination strategy of M. canis displayed both conserved and unique features compared to other filamentous fungi. Similar to Aspergillus and Fusarium species, oxidative phosphorylation and DNA replication were activated during germination. However, M. canis exhibited a distinct ribosome storage strategy, with low expression of heat shock protein genes, suggesting a unique adaptation mechanism.

These research findings have contributed to the development of a comprehensive model elucidating the host adaptation mechanisms of *M. canis*. This model integrates evolutionary biology, molecular genetics, and clinical epidemiology to describe how the fungus transitions from a zoophilic to an anthropophilic lifestyle. It highlights genetic innovations and physiological adaptations that enable *M. canis* to successfully colonize human hosts, evade immune defenses, and become a potent allergen.

Understanding the adaptive evolution of *M. canis* has profound clinical and therapeutic implications. It facilitates the development of targeted diagnostic methods to distinguish between zoophilic and anthropophilic strains, allowing for more precise treatment strategies. In terms of therapy, identifying key adaptive pathways, provides new avenues for antifungal drug development. Furthermore, insights gained from this study emphasize the importance of a "One Health" approach in managing dermatophytosis. Recognizing the interconnectedness of

human, animal, and environmental health is crucial for controlling zoonotic disease transmission and reducing the overall burden of fungal infections.

Educational campaigns promoting responsible pet ownership and regular veterinary care can significantly lower the risk of zoonotic transmission. Additionally, public health strategies focusing on early detection and effective treatment of dermatophytosis in both animals and humans can help curb the spread of these infections.

In conclusion, the evolutionary transition of *M. canis* from animal fur to human skin represents a fascinating story of adaptation and survival. Through genetic innovations, biochemical adaptations, and strategic immune evasion, this dermatophyte has successfully navigated the challenges posed by diverse host environments. Its story not only deepens our understanding of fungal pathogenicity but also provides valuable insights for the development of more effective diagnostic, therapeutic, and preventive strategies, ultimately improving patient outcomes against these persistent and often underestimated pathogens.

CHAPTER 9

NEDERLANDSE SAMENVATTING

De complexe interactie tussen pathogene micro-organismen en hun gastheren is reeds lange tijd een onderwerp van grote wetenschappelijke belangstelling, vooral wanneer het gaat om organismen die niet enkel binnendringen, maar ook actief het immuunsysteem van de gastheer moduleren. Dermatofyten, een groep filamenteuze schimmels gespecialiseerd in het koloniseren van verhoornde weefsels, vervullen een dubbele rol als zowel invasieve pathogenen als immunomodulatoren. *Microsporum canis* onderscheidt zich in het bijzonder door zijn capaciteit om keratine efficiënt af te breken én door zijn vermogen om complexe immuuninteracties te initiëren die zowel infectieuze als allergische reacties kunnen veroorzaken. Deze studie onderzoekt het evolutionaire traject van *M. canis* van dierlijke naar menselijke gastheren, ontrafelt de onderliggende moleculaire mechanismen van pathogeniteit en allergeniciteit, en bespreekt de klinische en therapeutische implicaties van de aanpassingsstrategieën die deze schimmel in de loop der tijd heeft ontwikkeld.

Microsporum canis wordt overwegend beschouwd als een zoöfiele dermatofyt die optimaal groeit op de vacht van dieren zoals katten en honden, waar het toegang heeft tot een overvloedige bron van keratine - een structureel eiwit dat essentieel is voor de opbouw van haren, nagels en de huid. De virulentie van deze schimmel is grotendeels toe te schrijven aan zijn vermogen om keratine-afbrekende enzymen, met name subtilisine-achtige keratinasen, en lipasen te produceren, die gezamenlijk het binnendringen in de lipidenrijke epidermis vergemakkelijken. Deze enzymatische eigenschappen stellen M. canis in staat tot effectieve kolonisatie van gastheerweefsels en leiden tot oppervlakkige mycosen zoals tinea capitis en tinea corporis. Naast zijn invasieve vermogen, fungeert M. canis ook als een krachtige immunogene stimulus: zijn celwandcomponenten – zoals β-glucanen en chitine – worden herkend door patroonherkenningsreceptoren (PRR's), waaronder Dectin-1 en Toll-like receptoren (TLR's), wat immuunreacties uitlokt die vaak een Th2-gerichte signatuur vertonen. Deze reacties worden gekarakteriseerd door een verhoogde productie van IgE en een verhoogde gevoeligheid voor allergische aandoeningen. Klinische gegevens tonen aan dat ongeveer 30% van de patiënten met chronische tinea capitis verhoogde serumspiegels van specifieke IgE vertonen, hetgeen een duidelijk verband suggereert tussen dermatofytinfecties en allergische sensibilisatie.

Om de complexe wisselwerking tussen schimmelpathogenen en hun gastheren te begrijpen, moeten de dubbele immuunreacties die door deze micro-organismen worden opgewekt, worden onderzocht (zie **hoofdstuk 2**). Deze reacties gaan verder dan de directe confrontatie tussen gastheer en ziekteverwekker en omvatten

overgevoeligheidsreacties die de pathologie van de gastheer verergeren. Schimmelallergenen, waaronder proteasen, β-glucanen en chitine, spelen een cruciale rol bii het opwekken van zowel aangeboren als adaptieve immuunreacties. Na blootstelling herkent het immuunsysteem van de gastheer – in het bijzonder Th2 cellen – deze componenten, wat leidt tot de productie van IgE en het vrijkomen van belangrijke cytokines zoals IL-4, IL-5 en IL-13, kenmerkende mediatoren van allergische ontsteking. Deze Th2-gerichte respons ligt ten grondslag aan talrijke overgevoeligheidsstoornissen die in verband worden gebracht met blootstelling aan schimmels, waaronder astma, rhinitis, atopische dermatitis en urticaria. Het vermogen van schimmels om ofwel primaire allergische reacties of diepe weefselinfecties te induceren hangt vaak af van hun thermotolerantie. Schimmels die geen thermotolerantie hebben, zoals Alternaria, zijn niet in staat om te groeien bij lichaamstemperatuur en zijn dus eerder allergeen dan invasief pathogeen. Daarentegen kunnen thermotolerante schimmels zoals Aspergillus en Candida wel hoge temperaturen verdragen, waardoor ze dieper gelegen weefsels kunnen binnendringen en koloniseren, wat leidt tot agressievere infecties. Dit probleem wordt verder gecompliceerd door het fenomeen van kruisreactiviteit, waarbij schimmelallergenen epitopen bepaalde delen met Het Alternaria-spinaziesyndroom is een voorbeeld van dit fenomeen, waarbij personen die allergisch zijn voor Alternaria ook reageren op spinazie vanwege gedeelde allergene determinanten. Deze kruisreactiviteit zorgt voor aanzienlijke uitdagingen op het gebied van diagnose en beheer, wat vaak leidt tot een verkeerde diagnose of onderschatting van de schimmelcomponenten in allergische reacties.

Bij M. canis is deze dubbele functionaliteit bijzonder uitgesproken. Terwijl M. canis actief verhoornde weefsels binnendringt met zijn enzymatisch arsenaal, stelt het tegelijkertijd het immuunsysteem van de gastheer bloot aan krachtige allergenen. De celwandcomponenten en afgescheiden enzymen vergemakkelijken niet alleen de weefselinvasie, maar werken ook als sterke immunogenen die immuunresponsen verstoren, wat resulteert in complexe klinische manifestaties bij geïnfecteerde personen. De ingewikkelde wisselwerking tussen directe pathogene effecten en immuungemedieerde overgevoeligheid onderstreept de noodzaak van een holistische benadering bij het bestuderen van schimmelziekten - een benadering die zowel het invasieve potentieel als de allergene eigenschappen van de ziekteverwekker in beschouwing neemt.

De evolutionaire aanpassing van M. canis van dierlijke naar menselijke gastheren is een proces dat gedreven wordt door veelzijdige selectiedruk. In zijn natuurlijke omgeving - de vacht van katten en honden - gedijt deze schimmel onder neutrale

tot licht alkalische pH-omstandigheden (6,0-7,5) met een relatief eenvoudige lipidensamenstelling, rinace optimale niche voor groei biedt. De menselijke huid vormt echter een veel lastiger milieu. De zure pH (4,5-5,5) van de menselijke huid, gecombineerd met de complexe lipidematrix en robuuste immuunafweer, vormt een belangrijke barrière die M. canis moet overwinnen voor een succesvolle kolonisatie. Genetische en fysiologische aanpassingen zijn cruciaal geweest bij deze is de overgang. Een opmerkelijke aanpassing ontwikkeling immuunontwijkingsstrategieën. Het menselijke immuunsysteem is bedreven in het herkennen van zoönotische pathogenen, wat evolutionaire druk uitoefent op M. canis om mechanismen te ontwikkelen die aangeboren immuunreacties temperen. Eén zo'n aanpassing is de afscheiding van Dnases, die de extracellulaire NET's (neutrophil extracellular traps) afbreken – webachtige structuren die bestaan uit Kann en antimicrobiële eiwitten die worden gebruikt om ziekteverwekkers te vangen en te dod-n - waardoor de schimmel de neutrofiel-gemedieerde dodikannkan omzeilen en in de gaskanner kan overleven.

Naarmate *M. canis* zich aanpast aan menselijke gastheren, verschuift ook de transmissiedynamiek. Aanvankelijk overheerste zoönotische transmissie, waarbij infecties voornamelijk het gevolg waren van direct contact met geïnfecteerde dieren. Naarmate de schimmel zich echter aanpaste aan de menselijke huidmicroomgeving, kwamen gevallen van overdracht van mens op mens steeds vaker voor. Deze verschuiving introduceerde nieuwe selectiedruk, omdat overdracht van mens op mens vereist dat de schimmel overleeft in een omgeving met lagere infectiesnelheden en beperkte contactmogelijkheden. Genomische studies onthullen belangrijke evolutionaire veranderingen die gepaard gingen met deze overgang. Fylogenetische analyses hebben specifieke evolutionaire lijnen van *M. canis* geïdentificeerd die beter in staat zijn om mensen te infecteren. Een belangrijke bevinding is de dominantie van het *MAT1-2* paringstype in stammen die zich hebben aangepast aan de mens, wat correleert met een verhoogde groei in zure omgevingen zoals de menselijke huid.

Klinische observaties verrijken ons begrip van de aanpassing van *M. canis* verder. Een retrospectief onderzoek bij 127 pediatrische patiënten met tinea capitis onderstreept de klinische last van *M. canis*-infecties (**hoofdstuk 3**). Uit het onderzoek bleek dat zoöfiele *M. canis* (49,5%) en *Trichophyton mentagrophytes* (22,3%) de belangrijkste verwekkers waren, waarbij de incidentie stabiel bleef in de afgelopen 15 jaar. Opmerkelijk was dat 26,8% van deze patiënten ook allergische aandoeningen had, zoals atopische dermatitis, allergische rhinitis en urticaria, wat de dubbele rol van schimmels als pathogenen en allergenen benadrukt. Risicofactoranalyse identificeerde mannelijk geslacht, de aanwezigheid van

inflammatoire kerionlaesies en een geschiedenis van blootstelling aan dieren als significante voorspellers van allergische complicaties. Deze bevindingen benadrukken de ingewikkelde wisselwerking tussen pathogeniteit van schimmels en de immuunreacties van de gastheer, waarbij schimmels niet alleen oppervlakkige infecties veroorzaken, maar ook allergische aandoeningen verergeren of uitlokken. Hoofdstuk 4 onderzoekt de klinische kenmerken van een andere haarinfectie, tinea van vellushaar, een zeldzame dermatofytose die fijne, niet-gepigmenteerde haren aantast. De resultaten laten zien dat kinderen en volwassenen in gelijke mate getroffen worden en dat gezicht/nek vaak voorkomt. (40,4%)Т. Microsporum canis en mentagrophytes (36.8%)zijn belangrijkste verwekkers.

In **hoofdstuk 5** hebben we door middel van fylogenetische, populatiegenetische en multispecies coalescent analyses de adaptieve mechanismen van M. canis onthuld, niet alleen op fenotypisch niveau maar ook vanuit een genetisch perspectief. Door fysisch-chemische eigenschappen en mating-type (MAT) distributieanalyses te integreren, reconstrinacen we het gastheerovergangsproces binnen het M. canis complex. Microsporum canis (MAT1-1) blijft de overheersende populatie, die een hoge virulentie behoudt en zich beperkt aanpast aan de mens. Daarentegen zijn M. audouinii (MAT1-2) en M. ferrugineum (MAT1-2) wijdverspreid in humane populaties, gekenmerkt door langzame groei, progressief verlies van conidia, verminderde afbraakcapaciteiten voor lipiden en keratine, maar een verbeterd vermkannn tot DNA-hydrolyse. Paring vindt nog steeds plaats binnen het complex, zoals blijkt uit experimentele stammen die MAT1-1 en MAT1-2 dragen. Microsporum audouinii lijkt in alle aspecten een tussenskann in te nemen, terwijl M. ferrugineum de hoogste instabiliteit vertoont in vergelijking met M. canis. Onze studie identificeerde ook dat zoöfiele stammen (bijv. isolaten van katten en honden) een hoge keratinaseactiviteit vertonen, vooral wanneer ze gekweekt worden op substraten van kattenhaar. Deze enzymactiviteit correleert met de upregulatie van SUB1 en SUB3, die coderen voor belangrijke keratinases. Menselijk aangepaste stammen vertonen daarentegen een verminderde keratinaseactiviteit maar een verhoogde DNaseactiviteit, waardoor ze beter in staat zijn om de menselijke immuunafweer te omzeilen. Deze afweging tussen enzymatische afbraak en immuunontwijking onderstreept de aanpassingsflexibiliteit van M. canis tijdens de overgang van de gastheer tussen een zoöfiele en antropofiele levensstijl.

Vergelijkende functionele genomica heeft de genetische basis blootgelegd die aan deze aanpassingen ten grondslag ligt. In hoofdstuk 6 valideerden we de adaptieve expressie van 12 sleutelgenen door middel van neutraliteitstesten en selectieve drukanalyses, waarbij we ons richtten op de evolutionaire mechanismen die de

overgang van zoöfiele naar antropofiele Microsporum-soorten sturen. Microevolutionaire processen die gastheerspecificiteit ondersteunen werden gekoppeld aan koolhydraatmetabolisme, signaaltransductieregulatie en post-translationele modificaties. Met name antropofiele soorten vertoonden een verhoogd aantal MFStranskannters, Zn2Cvs6 DNA-bindende eiwitten en eiwitkinases, terwiil genetische verschillen tussen verschillende zoöfiele soorten relatief klein waren. Specifieke protease subfamilies (M77, S08A en S53) en koolhydraat-actieve enzymen (GH18, AA3, GT90, GT8 en AA1) waren positief gecorreleerd met de ecologische parameters die antropofiele en zoöfiele levensstijlen onderscheiden. We identificeerden 12 sleutelgenen binnen deze subfamilies die essentieel zijn voor fenotypische eigenschappen zoals sporulatie, intracellulaire protease- en lipaseactiviteit en regulatie van de pH-aanpassing. Verder onderzoek toonde aan dat het keratineafbraakpotentieel en SUB1-SUB3 expressieniveaus beïnvloed worden door micro-omgevingsfactoren, waaronder lipidensamenstelling, pH en osmotische druk. Met name antropofiele stammen toonden een hogere tolerantie voor zure pHomstandigheden en vertoonden een verhoogde keratinase activiteit in lipidenrijke omgevingen, waarbij M. ferrugineum de sterkste osmotische stresstolerantie vertoonde. Bovendien identificeerden we sterk 'ekoppelde blokregio's binnen protease- en CAZy-coderende genen en analyseerden we de relatie tussen SNPmutarinace haplotypen, wat een basis biedt voor efficiënte soortidentificatie en functionele genexploratie bij Mirinaceid-soorten.

We hebben ons ook verdiept in een belangrijk aspect van de levenscyclus v-n M. canis - de kieming van sporen. Sporeontkieming is de eerste stap in schimmelkolonisatie en -infectie. Het is eerinacek gereguleerd proces dat reageert omgevingsfactoren. In hoofdstuk specifieke 7 gebruikten transcriptoomsequencing om de dynamische genexpressie en regulatorische netwerken te analyseren tijdens het ontkiemen van sporen in ontwikkelingsstadia: mycelium, slapende sporen (Spore 0u) en ontkiemende sporen (Spore 4u). Differentieel ui'gedrukte genen (DEG's) werden gekanntificeerd en er werd een functionele verrijkingsanalyse uitgevoerd. Er werden eiwit-eiwit interactienetwerken (PPI) opgebouwd en belangrijke regulerende genen werden gevalideerd via qPCR. De overgang van slapende naar ontkiemende sporen ging gepaard met een aanzienlijke metabole herprogrammering. Genenkanne betrokken zijn bij DNA replicatie (bijv. MCM complex, POL, RFC) en oxidatieve fosforylering (bijv. ATP synthase, succinaat dehydrogenase, cytochroom complex) werden significant geüpreguleerd, wat duidt op een energieverschuiving van lipide β-oxidatie naar glycolyse en mitochondriale ademhaling. Omgekeerd werden genen gerelateerd aan de peroxisomale functie (POT1, PEX-familie genen) en vetzuur β-oxidatie gedownreguleerd. Alternatieve splicing events, waaronder exon skipping

(SE) en mutually exclusive exons (MXE), speelden een essentiële rol in de regulatie van methylering, energiemetabolisme en cytoskelet organisatie. Het PPI-netwerk identificeerde belangrijke regulerende genkann(SLP1, MEC1, POT1, RPS16...), die dynamisch tot expressie kwamen en geassocieerd werden met celcycluscontrole. stressrespons en signaalroutes (Ras-GTP/cAMP-PKA, MAPK). De kiemstrategie van M. canis vertoonde zowel geconserveerde als unieke kenmerken in vergelijking met andere draadvormige schimmels. Net als bij Aspergillus werdekannxidatieve fosforylering en DNA-replicatie geactiveerd tijdens de kieming. Microsporum canis vertoonde echter een aparte opslagstrategie voor ribosomen, met een lage expre'sie van heat shock proteins (HSP's), wat wijst op een uniek aanpassingsmechanisme.

Deze onderzoeksresultaten hebben bijgedragen aan de ontwikkeling van een uitgebreid model dat de gastheer-adaptatiemechanismen van M. canis opheldert. Dit model integreert evolutionaire biologie, moleculaire genetica en klinische epidemiologie om te beschrijven hoe de schimmel overgaat van een zoöfiele naar een antropofiele levensstijl. Het belicht genetische innovaties en fysiologische aanpassingen die M. canis in staat stellen om succesvol menselijke gastheren te koloniseren, immuunafweer te omzeilen en een krachtig allergeen te worden.

Inzicht in de adaptieve evolutie van M. canis heeft diepgaande klinische en therapeutische implicaties. Het vergemakkelijkt de ontwikkeling van gerichte diagnostische methoden om onderscheid te maken tussen zoöfiele en antropofiele stammen, waardoor nauwkeurigere behandelingsstrategieën mogelijk worden. Op therapeutisch gebied biedt de identificatie van belangrijke adaptieve pathways nieuwe mogelijkheden voor de ontwikkeling van antischimmelmedicijnen. Verder benadrukken de inzichten uit "it onderzo"k het belang van een "One Health"benadering bij de behandeling van dermatofytose. Het erkennen van de onderlinge verbondenheid van de gezondheid van mens, dier en omgeving is cruciaal voor het beheersen van de overdracht van zoönotische ziekten en het verminderen van de algemene last van schimmelinfecties.

Educatieve campagnes verantwoord huisdierbezit regelmatige die en diergeneeskundige zorg promoten, kunnen het risico op zoönotische overdracht aanzienlijk verkleinen. Daarnaast kunnen volksgezondheidsstrategieën gericht op vroegtijdige opsporing en effectieve behandeling van dermatofytose bij zowel dieren als mensen helpen om de verspreiding van deze infekannes te beperken.

Concluderend kan gesteld worden dat de evolutionaire overgang van M. canis van dierenvacht naar mensenhuid een fascinerend verhaal is van aanpassing en overleving. Door genetische innovaties, biochemische aanpassingen en strategische immuunontwijking heeft deze dermatofyt met succes de uitdagingen van de diverse gastheeromgevingen aangegaan. Zijn verhaal verdiept niet alleen ons begrip van schimmelpathogeniteit, maar biedt ook waardevolle inzichten voor de ontwikkeling van effectievere diagnostische, therapeutische en preventieve strategieën, waardoor uiteindelijk de resultaten voor patiënten tegen deze hardnekkige en vaak onderschatte ziekteverwekkers verbeteren.

CHAPTER 10

GENERAL DICUSSION

Evolutionary Trajectories of Dermatophytes: Host shift from Animals to Humans

Dermatophytes have undergone a prolonged evolutionary process to become keratinophilic filamentous fungi. Phylogenetic studies indicate a progressive adaptation of dermatophytes to their hosts, transitioning from geophilic species to zoophilic forms, then to facultative fungi capable of infecting both animals and humans, and finally evolving into strictly anthropophilic species. The ancestral geophilic genera Guarromyces, Ctenomyces, and Arthroderma primarily inhabit keratinous animal debris or exist within rodent populations, with limited ability to infect human hosts [24]. Zoophilic dermatophytes are distributed among the genera Microsporum, Lophophyton, Paraphyton, Nannizzia, and Trichophyton. However, anthropophilic species are primarily found in Microsporum and Trichophyton. For instance, Trichophyton mentagrophytes and its closely related anthropophilic and zoophilic species likely originated as a geophilic species. In animal-associated strains, homothallism is relatively common. Under domesticated conditions, with the adoption of new hosts such as guinea pigs, South American cavies, cats, and dogs, the soil-based transmission cycle was interrupted, and reproduction became predominantly clonal. Trichophyton mentagrophytes is currently undergoing adaptation to human hosts, giving rise to several clonal populations with higher human adaptation, including T. interdigitale and T. indotineae [26]. The T. benhamiae complex currently comprises six species: T. benhamiarinaceidllosum, T. concentricum, T. erinacei, T. eriotrephon, and T. verrucosum. Most of these species are predominantly zoophilic, except for the anthropophilic *T. concentricum*, which causes tinea imbricata in tropical regions. Similarly, the anthropophilic dermatophyte T. tonsurans is phylogenetically closely related to its zoophilic counterpart, T. equinum [436]. Multilocus sequencing of ITS, partial large ribosomal DNA subunit (LSU), β-tubulin (TUB), 60S ribosomal protein (RPB), translation elongation factor 3 (TEF3), and mating-type (MAT) loci revealed that T. tonsurans and T. equinum have diverged relatively recently from a common lineage, with the primary genetic distinction between the two species being their mating-type genes, MAT1-1 and MAT1-2. The T. rubrum complex includes three anthropophilic species: T. rubrum, T. soudanense, and T. violaceum [30]. Similarly, Microsporum canis comprises three species: the zoophilic M. canis and two anthropophilic species, M. ferrugineum and M. audouinii. Genotypic analyses have revealed that M. canis has undergone gradual microsatellite variations over time (from 1974 to 2022) and across different regions (U.S. states), suggesting ongoing microevolution [437]. In our Chapter 5 study, we assessed the genotypic and

evolutionary relationships within the genus *Microsporum* using nucleotide diversity, population structure based on DNA sequences, and MAT haplotypes. The results showed that the zoophilic M. canis predominantly carries the MAT1-1 locus, with Hap1 as its dominant genotype, exhibiting multiple variants within the group. Isolates from both human and animal sources were primarily of Hap1, Hap2, and Hap6 genotypes. In contrast, the anthropophilic species M. audouinii and M. ferrugineum mainly carry the MAT1-2 locus, with the former predominantly exhibiting Hap9 and Hap10, while the latter has a single Hap12 genotype. In terms of topological structure and genetic evolution, the Hap1 genotype of M. canis forms an internal branching lineage, suggesting that it may be the ancestral genotype of all variants. This finding implies a potential adaptive evolution of *M. canis* from an animal to a human host [192].

Evidently, different dermatophytes are following similar evolutionary trajectories. They originate from ancestral geophilic species, undergo an intermediate shift stage where facultative species emerge (such as T. mentagrophytes and M. canis), and gradually adapt to human hosts through host expansion (e.g., via guinea pigs, cats, and dogs), leading to the formation of near-clonal populations (such as T. interdigitale and T. indotineae). Ultimately, these fungi differentiate into strictly anthropophilic species, such as members of the T. rubrum complex (T. rubrum, T. soudanense, and T. violaceum) and the anthropophilic Microsporum species (M. ferrugineum and M. audouinii). During this evolutionary shift from geophilic to zoophilic and ultimately to anthropophilic dermatophytes, what environmental or host-associated pressures—such as differences in host immune responses or keratin layer structures—may have driven this adaptive shift? Furthermore, what are the molecular mechanisms underlying species differentiation and host shift?

Evolutionary Driving Forces: A Multi-Level Analysis of Gene-Environment Interactions

The ecological niche shift of *M. canis* represents a complex evolutionary process, primarily driven by hierarchical adaptations resulting from gene-environment interactions. Traditionally, this fungus has been regarded as a strictly zoophilic pathogen, primarily infecting cats, dogs, rabbits, and other animals. However, in modern society, increasing human-pet interactions and environmental changes driven by human activities have facilitated its shift from animal-specific pathogen to a "zoonotic" species. This shift has been shaped by the interplay between genetic adaptations and environmental pressures, enabling M. canis to expand its host range. Here, we attempt to dissect the evolutionary mechanisms underlying

this shift from multiple perspectives, including genetic adaptation, host microenvironment regulation, and the impact of human activities.

Genetic Adaptations as the Core Driving Force of Host shift

At the genomic level, host shift is primarily driven by mutations, gene expansions, and horizontal gene transfer, which enable pathogens to survive in new environments and successfully infect novel hosts. Previous studies have shown significant differences in gene composition among dermatophyte species occupying distinct ecological niches. Compared to zoophilic species such as *T. verrucosum*, *T. equinum*, and *M. canis*, the genomes of anthropophilic *T. rubrum* and *T. tonsurans* are enriched in kinases and transcription factors, particularly serine/threonine protein kinases and tyrosine kinases involved in signal transduction [392]. This suggests that adaptive modifications in signaling pathways may play a critical role in host shift. In *M. canis*, the expansion of certain functional gene families, such as major facilitator superfamily (MFS) transporters, Zn(2)Cys(6) fungal-type transcription factors, and P-loop-containing nucleotide hydrolases, may provide a genetic foundation for its adaptation to different host skin microenvironments.

The divergent evolution of protease families and carbohydrate-active enzymes (CAZymes) has also played a crucial role in facilitating keratin layer degradation and adapting to diverse host skin barriers [392]. In our study on Microsporum species, we identified 12 CAZyme and protease genes associated with zoophilic and anthropophilic niches based on neutral selection tests. These protease-encoding genes are primarily involved in phenotypic modulation, sporulation (PRB1, Glc7p), intracellular proteolysis (SUB1, SUB7), pH adaptation (SedA), and lipid metabolism (Glip2). The role of carbohydrate metabolism in dermatophyte host adaptation remains largely unexplored. Our study is the first to propose the involvement of CAZymes in Microsporum evolution. In filamentous fungi, the GH18 family participates in cell wall remodeling processes such as spore germination, hyphal branching, and fungal parasitism. Notably, prior research has reported significant expansion of LysM domain-containing genes in fungal pathogens of animals, providing protection against host immune responses in a manner similar to plant pathogens [392]. Additionally, we identified laccase enzymes among CAZymes, which are primarily known from Ascomycota species and are associated with melanin-like polymers on spore surfaces and fungal cell walls, potentially contributing to fungal defense mechanisms [438].

Among the protease families, the S08A subtilisin-like serine endopeptidases have been extensively studied. Subtilisins, characterized by a conserved Asp/Ser/His

catalytic triad, are widespread in both prokaryotes and eukaryotes, playing diverse roles in microbial growth, sporulation, autophagy, lipid metabolism, and virulence. Our previous studies demonstrated significant differences in subtilisin gene expression between zoophilic M. canis and anthropophilic M. ferrugineum and M. audouinii. The presence of SUB1-3 genes vary among M. canis isolates from different hosts, and their expression levels are influenced by distinct physicochemical microenvironments. Despite evidence from multiple studies confirming the functional diversity of SUB genes in dermatophyte host adaptation, the functional divergence of SUB1-3 across M. canis strains from different hosts and their molecular interactions with the host immune system remain unclear. To date, only three SUB genes—SUB1, SUB2, and SUB3—have been identified in M. canis, with SUB1 and SUB3 exhibiting high levels of sequence variation, making them useful molecular markers for phylogenetic and evolutionary analyses [359]. Wholegenome sequencing of *M. canis* isolates from various animals (cats, rabbits, horses) and humans, along with M. ferrugineum and M. audouinii, revealed significant differences in the expression of S08A subtilisin proteases between zoophilic and anthropophilic Microsporum species. In response to different keratin substrates, zoophilic and anthropophilic Microsporum species exhibited variations in keratinase activity and SUB1 and SUB3 expression levels. Specifically, M. canis grown in cat hair-induced cultures exhibited significantly higher keratinase activity and SUB1/SUB3 expression than anthropophilic species. Notably, M. canis could still produce Sub3 protein in keratin-free media, suggesting a potential role of Sub3 in fungal metabolism beyond keratin degradation [290]. Furthermore, SUB1 and SUB3 were detected at high frequencies (70% and 96.7%, respectively), while SUB2 was much less common (10%), implying that SUB genes play a crucial role in M. canis infections and can dynamically regulate their expression based on host physiology and immune status. Our previous research found that M. canis exhibits superior keratin solubilization, urea hydrolysis, and lipid degradation capabilities compared to M. ferrugineum and M. audouinii. Additionally, M. canis demonstrates higher tolerance to changes in lipid composition, osmotic pressure, and pH. Interestingly, M. canis is particularly sensitive to pH fluctuations, with SUB1 and SUB3 expression significantly decreasing at pH <4.5. Moreover, isolates from cats, dogs, and rabbits displayed higher lipid degradation capacities and greater hair degradation efficiency than human isolates. These findings suggest that M. canis has evolved a capacity to modulate its pathogenic mechanisms in response to host environments and infection types. However, the molecular regulatory mechanisms governing SUB1-3 gene expression in M. canis during human host interactions remain poorly understood.

The Role of Host Microenvironment in Pathogen Evolution

Beyond genetic adaptations, host microenvironmental factors, including physicochemical properties and immune system pressures, also play a crucial role in strain selection and evolution [439]. The ecological niche shift of M. canis from animal to human hosts requires not only genomic plasticity but also precise metabolic adjustments. The interplay of host skin temperature, pH, lipid composition, osmotic pressure, keratin structure, and immune responses collectively determines fungal colonization and infection potential. From an animal host perspective, zoophilic M. canis is typically adapted to fur-rich, sebaceous gland-abundant feline and canine skin. During adaptation to human hosts, its metabolic pathways likely underwent modifications to accommodate the higher skin pH and lower lipid secretion levels in humans. While feline and canine skin temperatures range between 38-39°C, human skin temperatures average around 33-35°C. Many zoophilic dermatophytes exhibit enhanced growth at higher temperatures, whereas anthropophilic species often prefer lower temperatures. Genes related to heat shock responses, such as HSP70 and HSP90, are upregulated under elevated temperatures, potentially assisting fungal stress tolerance and protein homeostasis [430]. pH is another key factor influencing fungal growth and metabolism [440]. The skin pH of animal hosts (e.g., cats, dogs) is generally neutral to slightly alkaline (6.0-7.5), whereas human skin pH is lower (4.5-5.5). This difference likely affects M. canis survival and adaptation. Studies suggest that the PacC/PalH regulatory pathway governs fungal responses to acidic environments, modulating genes associated with acid tolerance to facilitate adaptation to human skin conditions [441]. Additionally, pH variations influence fungal secretion of keratinases (SUB family) and lipases (LIP family), further affecting host adaptation. Keratin composition also plays a role in fungal colonization and degradation. While feline and canine keratin is primarily composed of hard keratin with high sulfur content and strong cross-linking, human skin contains softer keratin types. These compositional differences may impact the expression of SUB genes, such as SUB1, SUB3, and SUB6, which function differentially in keratin degradation. Zoophilic dermatophytes may have evolved stronger keratin-degrading capabilities to suit their hosts, whereas anthropophilic species may secrete enzymes better suited for human keratin degradation.

Dermatophyte Spore Germination: Environmental Sensing and Metabolic Adaptation

The germination of fungal spores is not merely a simple growth initiation event but represents a crucial evolutionary strategy that enables pathogenic fungi to adapt to

host environments [442, 443]. To establish a successful infection, arthroconidia must germinate rapidly and the hyphae must penetrate the body surface, or desquamation of the epithelium will eliminate them [395]. This process consists of three sequential stages, initially, arthroconidia attach to the epidermis via surfaceassociated adhesion proteins and secreted proteases, including subtilisin 3 (sub3). In the subsequent germination phase, the spores sense a favorable environment, triggering metabolic reactivation and the development of hyphae. This is followed by the invasion stage, during which the emerging hyphae penetrate the stratum corneum while degrading keratin into peptides and amino acids. Ultimately, the hyphae generate new arthroconidia, which are disseminated to adjacent body regions or other hosts [405]. This process is regulated by multiple external signals, including host temperature, pH, nutrient availability, and immune pressure. To ensure survival and infection under optimal conditions, fungi have evolved complex signal transduction and metabolic adaptation mechanisms. For example, Aspergillus fumigatus spores can germinate under hypoxic and iron-limited conditions in the lungs. The activation of the MAPK-HOG1 and TOR signaling pathways facilitates metabolic reprogramming, allowing spores to survive under extreme conditions [444]. During the germination of T. rubrum conidia, glycolytic enzymes play a central regulatory role in the shift between growth stages. Additionally, genes involved in small GTPase signaling, cAMP-dependent pathways, and MAPK regulatory cascades are induced in response to the dynamic growth of T. rubrum [445]. Additionally, the spore surface of Asp. fumigatus is coated with RodA protein, which enables immune evasion by preventing recognition by the host innate immune system, thereby reducing inflammation and increasing infection success. Similarly, thermal dimorphism across various fungal species supports morphological switches that promote dissemination or tissue penetration, often accompanied by cell wall remodeling [446]. As a dermatophyte, Microsporum canis perceives environmental cues such as temperature, humidity, and keratin availability on the host skin. Our research revealed that during spore germination, the downregulation of peroxisomal function and fatty acid metabolism is observed, while the reliance on mitochondrial oxidative phosphorylation and the TCA cycle increases to meet the high energy demand of germination. The activation of the Ras-GTP/cAMP-PKA and MAPK pathways further promotes spore germination. This rapid response mechanism confers an evolutionary advantage, facilitating M. canis adaptation to host skin environments. Additionally, this process involves metabolic reprogramming, enabling M. canis to utilize short-chain fatty acids present in the skin as a carbon source, allowing sustained growth under low-glucose conditions and promoting long-term survival on the host.

Human Influence on the Ecological Shift of Microsporum canis

Human activities and medical interventions play a significant role in shaping the ecological shift of *M. canis*, driving both host shifts and antifungal resistance evolution. The increasing prevalence of pet ownership and frequent human-animal interactions have markedly elevated the transmission risk of *M. canis* across different hosts. In urban environments, multi-pet households, pet boarding facilities, veterinary clinics, and grooming salons create high-contact environments that facilitate pathogen transmission. Furthermore, human care practices such as frequent bathing, the use of pet skincare products, and relocation may alter the host skin microenvironment, influencing the adaptive evolution of *M. canis*. Globalization and human mobility further contribute to the geographic spread of *M. canis*. The expansion of the international pet trade, cross-border adoptions, and pet travel have led to the circulation of *M. canis* strains across different regions. Strains that were previously rare in certain countries may now be introduced through pet trade routes or travel, allowing their establishment in new host populations.

Antifungal Drug Use and Resistance Evolution

The prolonged use of antifungal drugs not only drives the evolution of antifungal resistance in M. canis but also impacts host skin microbiota, indirectly promoting pathogen colonization and transmission [447]. Commonly used antifungal agents in both veterinary and human medicine, such as azoles (fluconazole, itraconazole), allylamines (terbinafine), and pyrroles (ciclopirox), exert selective pressure that favors the survival and dissemination of resistant strains. For instance, mutations in the CYP51B gene [448], which encodes sterol 14α -demethylase—the target of azole antifungal drugs-have been identified in resistant strains. These mutations alter the enzyme structure, reducing drug-binding affinity and enabling fungal survival under drug pressure. Additionally, the overexpression of multidrug resistance (MDR) transporters enhances the tolerance of M. canis to multiple antifungal agents, providing resistant strains with a competitive advantage, allowing them to persist in treated hosts and their surrounding environments [449]. The ecological transition of M. canis is driven by a combination of genetic adaptations, host microenvironmental factors, and human interventions. Genomic variation provides the foundational genetic plasticity, while host skin physicochemical conditions and immune pressures shape strain selection. Human activities further accelerate fungal evolution by imposing selective pressures that alter microbial community structures. Understanding these hierarchical evolutionary forces not only elucidates

the adaptive evolution of M. canis but also informs strategies for zoonotic disease prevention and control.

Future research should integrate multi-omics approaches to develop a comprehensive gene-environment interaction model, providing insights into the adaptive evolution of M. canis within human hosts.

Host-Pathogen Interactions: Molecular Mechanisms and **Immune Dynamics**

Microsporum canis exhibits strong cross-host adaptability, enabling transmission between animals and humans. Its pathogenicity is not solely attributed to direct tissue invasion but also involves complex mechanisms that modulate host immune responses. During infection, the host immune system employs both innate and adaptive immunity to counteract the pathogen. In certain atopic individuals, however, antigens from M. canis may also trigger hypersensitivity reactions, leading to allergic immune dysregulation. This intertwined process of infection and hypersensitivity plays a critical role in determining host pathology.

Upon infecting the host skin, M. canis must first overcome the natural barrier of the stratum corneum, which is rich in keratin. The pathogen secretes keratinases, such as subtilisin-like proteases (Sub) and metalloproteases (Mep), to degrade host keratin, facilitating fungal adhesion and growth. Additionally, fungal cell wall components, including β-glucans and mannans, are recognized by pattern recognition receptor involves C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) on myeloid cells and keratinocytes. Microsporum canis hyphae induce IL-1β production in human THP-1 monocytes and murine dendritic cells via an NLRP3dependent mechanism [450, 451]. The Dectin-1-Syk-CARD9 signaling pathway is essential for M. canis-induced pro-IL-1β transcription, suggesting that CLR-mediated recognition of dermatophyte glucans provides the initial signal for NLRP3 activation and IL-1β synthesis. Notably, M. canis infection in wild-type (WT) mice triggers IL-1β production in vivo, whereas NLRP3- or ASC-deficient mice exhibit a complete loss of IL-1β release. Studies have shown that the second signal for NLRP3 activation and IL-1β release in response to M. canis or T. schoenleinii depends on cathepsin B activity, potassium efflux, and reactive oxygen species (ROS) production. Furthermore, in vitro studies on feline neutrophils revealed that exposure to both live and heat-killed M. canis arthroconidia increases TLR2 and TLR4 mRNA expression [452]. An epidermal infection model using M. canis demonstrated that fungal burden in TLR2-deficient mice was lower than in WT mice, further

supporting the role of *TLR2* in fungal pathogenesis.s (PRRs) on keratinocytes and dendritic cells.

In the adaptive immune response, Th1 and Th17 cells work synergistically to control M. canis infection. In a M. canis infection model, WT mice did not show significant expansion of antigen-specific IFN- γ -producing T cells in skin-draining lymph nodes. However, IL-17-deficient mice exhibited a compensatory shift toward a Th1-mediated immune response, where IFN- γ played a key role in suppressing M. canis infection [270]. Despite this, neutralization of IFN- γ in IL-17RA knockout mice (on days 3 and 6 post-infection) significantly increased the production of Th17-associated cytokines (IL-22, IL-17, IL-1 β , IL-6) in the skin, effectively inhibiting fungal growth. Clinical studies further support these findings, showing that kerion patients have a significantly higher proportion of Th17 cells in peripheral blood mononuclear cells compared to healthy controls [453]. Additionally, IL-17A-positive cells are markedly increased in kerion lesions. However, in some hosts, Th2-skewed immune responses may predominate, leading to IL-4 and IL-10 overexpression, which suppresses Th1/Th17-mediated immunity. This weakens fungal clearance, allowing the pathogen to persist within the host.

Notably, *M. canis* infection can trigger not only antifungal immune responses but also hypersensitivity reactions in atopic individuals. These reactions manifest as IgE-mediated immediate hypersensitivity (Type I hypersensitivity) or T cell-mediated delayed-type hypersensitivity (Type IV hypersensitivity). Tinea capitis is frequently associated with atopic dermatitis and other allergic disorders. In these patients, excessive Th2 activation not only inhibits Th1-mediated protective immunity, impairing fungal clearance but also promotes B cell-mediated IgE production and eosinophilic infiltration, exacerbating inflammatory episodes. Thus, an imbalanced Th2 response may underlie the comorbidity of tinea capitis and allergic diseases. Interestingly, in a murine skin infection model, IL-17 enhanced neutrophil function, helping to control *M. canis* infection. However, IL-17's inhibitory effect on Th1 responses may further exacerbate Th1/Th2 imbalance, suggesting that Th17 responses play a dual regulatory role in the interplay between tinea capitis and allergic diseases.

Overall, the immunological impact of *M. canis* on the host exhibits a high degree of duality. On one hand, infection triggers innate and adaptive immune responses, establishing a Th1/Th17-dominated antifungal defense mechanism. On the other hand, in atopic individuals or those with immune dysregulation, fungal antigens may induce hypersensitivity reactions or autoimmune abnormalities, leading to more complex pathological manifestations. The coexistence of infection and

hypersensitivity responses highlights the unique immunological role of M. canis in the host and provides new perspectives for disease prevention and treatment strategies. Future research should further explore the immunomodulatory mechanisms of *M. canis* across different host backgrounds, particularly in relation to immune evasion strategies, allergenicity, and interactions with the host microbiome. These investigations will be crucial for developing more precise intervention strategies.

Limitations and Future Directions

Despite the in-depth exploration of the adaptive evolution of *M. canis* in this study, several limitations remain. Specifically, further research is needed in cross-species comparative studies, host-pathogen interaction models, and clinical translational applications to fully elucidate the adaptive mechanisms of M. canis and provide a more precise theoretical foundation for antifungal strategies.

Current research primarily focuses on the M. canis complex; however, dermatophytes may exhibit broader evolutionary trends in host adaptation. For example, while M. canis predominantly infects canines, it can also cross species barriers to infect cats and humans. Differences in spore germination rates, metabolic strategies, and immune evasion mechanisms across hosts remain largely unexplored. Due to the lack of systematic comparative data between M. canis and other dermatophytes, such as Epidermophyton floccosum, it remains unclear which adaptive traits are unique to M. canis and which represent common dermatophyte evolutionary strategies. Future studies should integrate multi-omics data (genomics, transcriptomics, and proteomics) from a broader range of dermatophytes to construct a global evolutionary map of host adaptation. Comparative analyses of keratinase and immune evasion factor expression patterns across species or investigations into the adaptive modifications of cell wall components in different hosts could provide insights into the mechanisms of crosshost infection in M. canis.

The pathogenicity and host interaction mechanisms of M. canis remain largely understudied. To bridge this gap, future research should focus on: Developing skin organoid models: Using 3D skin culture systems to reconstruct host skin structures and investigate M. canis spore colonization and invasion mechanisms. Establishing transgenic animal models: Creating Dectin-1-knockout mice (deficient in β-glucan recognition) or mice with compromised keratin barriers (to simulate skin barrier dysfunction) to study M. canis germination and infection dynamics under different host conditions. Exploring the impact of the skin microbiome: Given that M. canis colonization and inf'ction may be influenced by the host's skin microbiota (e.g., *Propionibacterium* may inhibit fungal growth through antimicrobial peptide production), integrating 16S rRNA sequencing of the skin microbiome could help determine how microbial interactions affect *M. canis* adaptation and evolution.

Understanding the spore germination and infection mechanisms of *M. canis* offers valuable insights for developing new antifungal strategies. For instance, subtilisin-like proteases (Sub family) play a critical role in host tissue invasion, making them potential drug targets. However, designing inhibitors against Sub or other germination-regulating pathways remains challenging. Differences in skin barrier composition and immune responses between human and animal hosts may impact drug efficacy and safety.

Future research could draw inspiration from the development of squalene epoxidase inhibitors to design host-specific antifungal agents with improved therapeutic selectivity. Targeting *M. canis*-specific virulence factors while minimizing off-target effects on the host microbiome and immune system will be crucial for developing effective and safe antifungal treatments.

CHAPTER 11

ABBREVIATIONS
REFERENCES
RESEARCH DATA MANAGEMENT
PHD PORTFOLIO
LIST OF PUBLICATIONS
CURRICULUM VITAE
DANKWOORD (ACKNOWLEDGMENTS)

ABBREVIATIONS

60S L10 (L1)	60S ribosomal protein L10
А.	Arthroderma
ABPA	Allergic bronchopulmonary aspergillosis
АВРМ	Allergic bronchopulmonary mycosis
AD	Atopic dermatitis
ADCC	Antibody-dependent cellular cytotoxicity
AFRS	Allergic fungal rhinosinusitis
AIT	Allergen-specific immunotherapy
Alt.	Alternaria
AR	Allergic rhinitis
Asp.	Aspergillus
В	B-lymphocyte
BAS	Basophil
bp	Base pairs
bs	Bootstrap
BUSCO	Benchmarking Universal Single-Copy Orthologs
c.	Cryptococcus
Can.	Candida
CAZy	Carbohydrate-active enzymes
CF	Cystic fibrosis
CI.	Cladosporium
cos	Clusters of orthologous groups
CotH	Coat protein homolog
Cu.	Curvularia
DC	Dendritic cell
DNase	Deoxyribonuclease
dNTP	Desoxy nucleoside triphosphate
E.	Epicoccum
EOS	Eosinophil
F.	Fusarium

FFAS	Fungal food allergy syndrome
Fst	Fixation index
GO	the Gene Ontology
Нар	Haplotype
Hd	Haplotype diversity
HDM	House dust mite
НКА	Hudson-Kreitman-Aguade
НМG	High-mobility group
HSP	Hypersensitivity pneumonitis
Hsp70/90	Heat shock protein 70/90
IFN-γ	Interferon-gamma
IL	Interleukin
ILC1/2/3	Innate lymphoid cell type 1/2/3
ITS	Internal transcribed spacer
LD	Linkage disequilibrium
М.	Microsporum
MAT	Mating-type
MCs	Mast cell
MEA	Malt Extract Agar
MFS	Major facilitator superfamily
MSC	Multi-species coalescence
Мφѕ	Macrophage
NEUs	Neutrophil
NK	Natural killer cell
NMDS	Non-metric multidimensional scaling
P.	Penicillium
PCA	Principal component analysis
PDA	Potato Dextrose Agar
Pi	Nucleotide diversity
PP	Posterior probability
Rm	Recombination
ROS	Reactive oxygen species
SDA	Sabouraud Dextrose Agar

SGB	Sabouraud's Glucose Broth
sIgE	Allergen-specific IgE
SMG1	Malassezia globosa LIP1
SPT	Skin prick test
STAG	Species Tree inference from All Genes
SUBs	Subtilisins (gene)
Subs	Subtilisins (protein)
т.	Trichophyton
T1/T2/T3	Type 1/2/3 immune response
Tc1/2/17	T-cytotoxic lymphocyte type 1/2/17
tef-1α	Translation elongation factor 1
TFs	Transcription factors
Th	T-helper lymphocyte
Th1/2/9/17/22	T-helper lymphocyte type 1/2/9/17/22
TLSP	Thymic stromal lymphopoietin
TNF-α	Tumour necrosis factor-alpha
topi	DNA topoisomerase I
topII	DNA topoisomerase II
TSPc	Thrombospondin type-1 repeat-containing protein
tub2	Partial β-tubulin II

REFERENCES

- de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Goker M et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017, 182(1-2):5-31. https://doi.org/10.1007/s11046-016-0073-9
- Chanyachailert P, Leeyaphan C, Bunyaratavej S. Cutaneous fungal infections caused by dermatophytes and non-dermatophytes: an updated comprehensive review of epidemiology, clinical presentations, and diagnostic testing. *J Fungi (Basel)* 2023, 9(6). https://doi.org/ 10.3390/jof9060669
- 3. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, Marks R, Naldi L, Weinstock MA, Wulf SK *et al.* The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. *J Invest Dermatol* 2014, 134(6):1527-1534. https://doi.org/10.1038/jid.2013.446
- Barac A, Stjepanovic M, Krajisnik S, Stevanovic G, Paglietti B, Milosevic B. Dermatophytes: update on clinical epidemiology and treatment. Mycopathologia 2024, 189(6):101. https://doi.org/10.1007/s11046-024-00909-3
- Brito SCP, Pinto MR, Alcantara LM, Reis NF, Duraes TL, Bittar CTM, de Oliveira JC, da Rocha E, Dantas Machado RL, Souza EGRJP, Baptista ARS. Spatio-temporal six-year retrospective study on dermatophytosis in Rio de Janeiro, Southeast Brazil: A tropical tourist locality tale. PLoS Negl Trop Dis 2023, 17(4):e0010865. https://doi.org/10.1371/journal.pntd.0010865
- Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51 Suppl 4:2-15. https://doi.org/10.1111/j.1439-0507.2008.01606.x
- 7. Bitew A. Dermatophytosis: Prevalence of dermatophytes and non-dermatophyte fungi from patients attending arsho advanced medical laboratory, addis ababa, ethiopia. *Dermatol Res Pract* 2018, 2018:8164757. https://doi.org/10.1155/2018/8164757
- 8. Uhrlass S, Verma SB, Graser Y, Rezaei-Matehkolaei A, Hatami M, Schaller M, Nenoff P. Trichophyton indotineae-an emerging pathogen causing recalcitrant dermatophytoses in India and worldwide-a multidimensional perspective. *J Fungi (Basel)* 2022, 8(7). https://doi.org/10.3390/jof8070757
- 9. Rodriguez-Cerdeira C, Martinez-Herrera E, Szepietowski JC, Pinto-Almazan R, Frias-De-Leon MG, Espinosa-Hernandez VM, Chavez-Gutierrez E, Garcia-Salazar E, Vega-Sanchez DC, Arenas R et al. A systematic review of worldwide data on tinea capitis: analysis of the last 20 years. *J Eur Acad Dermatol Venereol* 2021, 35(4):844-883. https://doi.org/10.1111/jdv.16951
- El-Khalawany M, Shaaban D, Hassan H, Abdalsalam F, Eassa B, Abdel Kader A, Shaheen I. A
 multicenter clinicomycological study evaluating the spectrum of adult tinea capitis in
 Egypt. Acta Dermatovenerol Alp Pannonica Adriat 2013, 22(4):77-82. https://doi.org/10.2478/
 v10162-012-0040-1
- Lee HJ, Kim JY, Park KD, Jang YH, Lee SJ, Bang YJ, Jun JB, Lee WJ. Analysis of adult patients with tinea capitis in southeastern Korea. Ann Dermatol 2020, 32(2):109-114. https://doi.org/ 10.5021/ad.2020.32.2.109
- Hay RJ. Tinea Capitis: Current status. Mycopathologia 2017, 182(1-2):87-93. https://doi.org/ 10.1007/s11046-016-0058-8

- Chen XQ, Zheng DY, Xiao YY, Dong BL, Cao CW, Ma L, Tong ZS, Zhu M, Liu ZH, Xi LY et al. Aetiology of tinea capitis in China: a multicentre prospective study. Br J Dermatol 2022, 186(4):705-712. https://doi.org/10.1111/bjd.20875
- Son JH, Doh JY, Han K, Kim YH, Han JH, Bang CH, Park YM, Lee JH. Risk factors of dermatophytosis among Korean adults. Sci Rep 2022, 12(1):13444. https://doi.org/10.1038/ s41598-022-17744-5
- Takenaka M, Murota H, Nishimoto K. Epidemiological survey of 42 403 dermatophytosis cases examined at Nagasaki University Hospital from 1966 to 2015. J Dermatol 2020, 47(6):615-621. https://doi.org/10.1111/1346-8138.15340
- Eby CS, Jetton RL. Nannizzia incurvata infection of vellus hair. Br J Dermatol 1971, 85(6):582-584. https://doi.org/10.1111/j.1365-2133.1971.tb14087.x
- 17. Atzori L, Aste N, Aste N, Pau M. Tinea faciei due to *Microsporum canis* in children: a survey of 46 cases in the district of Cagliari (Italy). *Pediatric Dermatology* 2012, 29(4):409-413. https://doi.org/10.1111/j.1525-1470.2011.01595.x
- Gomez-Moyano E, Crespo-Erchiga V. Tinea of vellus hair: an indication for systemic antifungal therapy. Br J Dermatol 2010, 163(3):603-606. https://doi.org/10.1111/j.1365-2133.2010.09811.x
- 19. Lopez Riquelme I, Gomez Moyano E. Tinea faciei incognito with invasion of vellus hair. *J Cutan Med Surg* 2021, 25(4):444. https://doi.org/10.1177/1203475420936657
- Wei F, Liang G, Liu W, Wang X, Sun J. Erythema multiforme associated with tinea of vellus hair caused by Microsporum canis. Mycopathologia 2020, 185(1):201-203. https://doi.org/10.1007/ s11046-019-00409-9
- 21. Hu W, Bian K, Xu AE. Tinea of vellus hair: shining under the Wood's lamp. Clin Exp Dermatol 2022, 47(10):1893-1894. https://doi.org/10.1111/ced.15218
- Sun PL, Lin YC, Wu YH, Kao PH, Ju YM, Fan YC. Tinea folliculorum complicating tinea of the glabrous skin: an important yet neglected entity. Med Mycol 2018, 56(5):521-530. https:// doi.org/10.1093/mmy/myx086
- 23. Moskaluk AE, VandeWoude S. Current topics in dermatophyte classification and clinical diagnosis. *Pathogens* 2022, 11(9). https://doi.org/10.3390/pathogens11090957
- Moulikova S, Kolarik M, Lorch JM, Kolarczykova D, Hubka V, Cmokova A. Wild rodents harbour high diversity of Arthroderma. Persoonia 2023, 50:27-47. https://doi.org/10.3767/ persoonia.2023.50.02
- Seyedmousavi S, Guillot J, Tolooe A, Verweij PE, de Hoog GS. Neglected fungal zoonoses: hidden threats to man and animals. Clin Microbiol Infect 2015, 21(5):416-425. https://doi.org/ 10.1016/j.cmi.2015.02.031
- Tang C, Kong X, Ahmed SA, Thakur R, Chowdhary A, Nenoff P, Uhrlass S, Verma SB, Meis JF, Kandemir H et al. Taxonomy of the *Trichophyton mentagrophytes/T. interdigitale* species complex harboring the highly virulent, multiresistant genotype *T. indotineae. Mycopathologia* 2 021, 186(3):315-326. https://doi.org/10.1007/s11046-021-00544-2

- 27. Dalis JS, Kazeem HM, Kwaga JKP, Kwanashie CN, Yakubu B, Owolodun OA, Jambol AR. Molecular characterization of dermatophytes isolated from cattle in Plateau State, Nigeria. Vet Microbiol 2018, 219:212-218. https://doi.org/10.1016/j.vetmic.2018.04.022
- Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia 2008, 166(5-6):335-352, https://doi.org/10.1007/s11046-008-9100-9
- 29. Metin B, Heitman J. Sexual reproduction in dermatophytes. Mycopathologia 2017, 182(1-2):45-55. https://doi.org/10.1007/s11046-016-0072-x
- 30. Su H, Packeu A, Ahmed SA, Al-Hatmi AMS, Blechert O, Ilkit M, Hagen F, Graser Y, Liu W, Deng S et al. Species distinction in the Trichophyton rubrum complex. J Clin Microbiol 2019, 57(9). https:// doi.org/10.1128/JCM.00352-19
- 31. Donghi D, Hauser V, Bosshard PP. Microsporum audouinii tinea capitis in a Swiss school: assessment and management of patients and asymptomatic carriers. Med Mycol 2011, 49(3):324-328. https://doi.org/10.3109/13693786.2010.522602
- 32. Deng R, Wang X, Li R. Dermatophyte infection: from fungal pathogenicity to host immune responses. Front Immunol 2023, 14:1285887. https://doi.org/10.3389/fimmu.2023.1285887
- Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, Defaweux V, Symoens F, Antoine N, Mignon B. Mechanisms of skin adherence and invasion by dermatophytes. Mycoses 2012, 55(3):218-223. https://doi.org/10.1111/j.1439-0507.2011.02081.x
- 34. Monod M, Lechenne B, Jousson O, Grand D, Zaugg C, Stocklin R, Grouzmann E. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology (Reading) 2005, 151(Pt 1):145-155. https://doi.org/10.1099/mic.0.27484-0
- 35. Peres NT, Maranhao FC, Rossi A, Martinez-Rossi NM. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 2010, 85(5):657-667. https://doi.org/10.1590/ s0365-05962010000500009
- Kasperova A, Kunert J, Raska M. The possible role of dermatophyte cysteine dioxygenase in keratin degradation.Med Mycol 2013, 51(5):449-454. https://doi.org/ 10.3109/13693786.2013.794310
- Ramos MLM, Coelho RA, Brito-Santos F, Guimaraes D, Premazzi M, Zancope-Oliveira RM, Pereira SA, Gremiao IDF, Orofino-Costa R, Figueiredo-Carvalho MHG, Almeida-Paes R. Comparative analysis of putative virulence-associated factors of Microsporum canis isolates from human and animal patients. Mycopathologia 2020, 185(4):665-673. https://doi.org/10.1007/ s11046-020-00470-9
- 38. Gnat S, Lagowski D, Nowakiewicz A, Zieba P. Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J Appl Microbiol 2018, 125(3):700-709. https://doi.org/10.1111/jam.13921
- 39. Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. Isolation of aMicrosporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol 2002, 119(4):830-835. https://doi.org/10.1046/j.1523-1747.2002.01784.x

- 40. Brouta F, Descamps F, Vermout S, Monod M, Losson B, Mignon B. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med Mycol 2003, 41(6):495-501. https://doi.org/ 10.1080/13693780310001615385
- 41. Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun 2002, 70(10):5676-5683. https://doi.org/ 10.1128/IAI.70.10.5676-5683.2002
- Monod Μ. Secreted proteases from dermatophytes. Mycopathologia 2008, 166(5-6):285-294. https://doi.org/10.1007/s11046-008-9105-4
- 43. Wertz PW, de Szalay S. Innate antimicrobial defense of skin and oral mucosa. Antibiotics (Basel) 2020, 9(4). https://doi.org/10.3390/antibiotics9040159
- 44. Peres NT, Sanches PR, Falcao JP, Silveira HC, Paiao FG, Maranhao FC, Gras DE, Segato F, Cazzaniga RA, Mazucato M et al. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 2010, 10:39. https://doi.org/10.1186/1471-2180-10-39
- 45. Martinez-Rossi NM, Persinoti GF, Peres NT, Rossi A. Role of pH in the pathogenesis of dermatophytoses. Mycoses 2012, 55(5):381-387. https://doi.org/10.1111/ j.1439-0507.2011.02162.x
- 46. Persinoti GF, Martinez DA, Li W, Dogen A, Billmyre RB, Averette A, Goldberg JM, Shea T, Young S, Zeng Q et al. Whole-genome analysis illustrates global clonal population structure of the dermatophyte pathogen Trichophyton rubrum. Genetics 2018, 208(4):1657-1669. https://doi.org/10.1534/genetics.117.300573
- 47. Sardana K, Gupta A, Mathachan SR. Immunopathogenesis of dermatophytoses and factors leading to recalcitrant infections. Indian Dermatol Online J 2021, 12(3):389-399. https://doi.org/ 10.4103/idoj.IDOJ 503 20
- Neves-da-Rocha J, Bitencourt TA, Oliveira VM, Sanches PR, Rossi A, Martinez-Rossi NM. Alternative splicing in heat shock protein transcripts as a mechanism of cell adaptation in Trichophyton rubrum. Cells 2019, 8(10). https://doi.org/10.3390/cells8101206
- Jacob TR, Peres NT, Martins MP, Lang EA, Sanches PR, Rossi A, Martinez-Rossi NM. Heat shock protein 90 (hsp90) as a molecular target for the development of novel drugs against the dermatophyte Trichophyton rubrum. Front Microbiol 2015, 6:1241. https://doi.org/10.3389/ fmicb.2015.01241
- Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NT, Lang EA, Martins MP, Rossi A. Heat shock proteins in dermatophytes: current advances and perspectives. Curr Genomics 2016, 17(2):99-111. https://doi.org/10.2174/1389202917666151116212437
- 51. Calander S, Saunte DML, Polesie S. Tinea capitis caused by Microsporum audouinii: lessons from a swedish community outbreak. Acta Derm Venereol 2021, 101(9):adv00551. https://doi.org/ 10.2340/00015555-3909
- 52. Chen XQ, Yu J. Global demographic characteristics and pathogen spectrum of tinea capitis. Mycopathologia 2023, 188(5):433-447. https://doi.org/10.1007/s11046-023-00710-8

- 53. Elewski BE. Tinea capitis: a current perspective. *J Am Acad Dermatol* 2000, 42(1 Pt 1):1-20; quiz 21-24. https://doi.org/10.1016/s0190-9622(00)90001-x
- 54. Brito-Santos F, Figueiredo-Carvalho MHG, Coelho RA, Sales A, Almeida-Paes R. Tinea capitis by *Microsporum audouinii*: case reports and review of published global literature 2000-2016. *Mycopathologia* 2017, 182(11-12):1053-1060. https://doi.org/10.1007/s11046-017-0181-1
- 55. Gangneux JP, Miossec C, Machouart M, Gits-Muselli M, Benderdouche M, Ranque S, Botterel F, Brun S, group STcs. Epidemiology and management of tinea capitis in France: A 6-year nationwide retrospective survey. *Med Mycol* 2024, 62(7). https://doi.org/10.1093/mmy/myae047
- 56. Hasegawa A, Usui K. The perfect state of Microsporum canis. Nihon Juigaku Zasshi 1974, 36(5):447-449. https://doi.org/10.1292/jvms1939.36.447
- 57. Vanbreuseghem R. [Contribution to the study of dermatophytes of Belgian Congo: Sabouraudites (*Microsporum*) langeroni n. sp]. *Ann Parasitol Hum Comp* 1950, 25(5-6):509-517. https://doi.org/10.1051/parasite/1950255509
- 58. Kaszubiak A, Klein S, de Hoog GS, Graser Y. Population structure and evolutionary origins of *Microsporum canis*, *M. ferrugineum* and *M. audouinii. Infect Genet Evol* 2004, 4(3):179-186. https://doi.org/10.1016/j.meegid.2003.12.004
- Hironaga M, Nozaki K, Watanabe S. Ascocarp production by Nannizzia otae on keratinous and non-keratinous agar media and mating behavior of N. otae and 123 Japanese isolates of Microsporum canis. Mycopathologia 1980, 72(3):135-141. https://doi.org/10.1007/BF00572655
- 60. Weitzman I, Padhye AA. Mating behaviour of *Nannizzia otae* (=*Microsporum canis*). *Mycopathologia* 1978, 64(1):17-22. https://doi.org/10.1007/BF00443083
- 61. Kubo H. [Survey of keratinophilic fungi from soils and mating behaviour of *Microsporum canis* from human ringworm cases in Hokkaido Prefecture in Japan]. *Hokkaido Igaku Zasshi* 1988, 63(2):250-258. https://doi.org/
- 62. Sharma R, de Hoog S, Presber W, Graser Y. A virulent genotype of *Microsporum canis* is responsible for the majority of human infections. *J Med Microbiol* 2007, 56(Pt 10):1377-1385. https://doi.org/10.1099/jmm.0.47136-0
- 63. da Costa FV, Farias MR, Bier D, de Andrade CP, de Castro LA, da Silva SC, Ferreiro L. Genetic variability in *Microsporum canis* isolated from cats, dogs and humans in Brazil. *Mycoses* 2013, 56(5):582-588. https://doi.org/10.1111/myc.12078
- 64. Yamada S, Anzawa K, Mochizuki T. Molecular epidemiology of *Microsporum canis* isolated from japanese cats and dogs, and from pet owners by multilocus microsatellite typing fragment analysis. *Jpn J Infect Dis* 2022, 75(2):105-113. https://doi.org/10.7883/yoken.JJID.2020.809
- 65. Zheng H, Blechert O, Mei H, Ge L, Liu J, Tao Y, Li D, de Hoog GS, Liu W. Assembly and analysis of the whole genome of *Arthroderma uncinatum* strain T10, compared with *Microsporum canis* and *Trichophyton rubrum*. *Mycoses* 2020, 63(7):683-693. https://doi.org/10.1111/myc.13079
- 66. Mayser P, Nenoff P, Reinel D, Abeck D, Brasch J, Daeschlein G, Effendy I, Ginter-Hanselmayer G, Graser Y, Hipler UC et al. S1 guidelines: Tinea capitis. J Dtsch Dermatol Ges 2020, 18(2):161-179. https://doi.org/10.1111/ddg.14026

- 67. Topaloglu Demir F, Karadag AS. Are dermatophytid reactions in patients with kerion celsi much more common than previously thought? A prospective study. Pediatr Dermatol 2015, 32(5):635-640. https://doi.org/10.1111/pde.12515
- 68. Vite-Garin T, Estrada-Cruz NA, Hernandez-Castro R, Fuentes-Venado CE, Zarate-Segura PB, Frias-De-Leon MG. Martinez-Castillo M. Martinez-Herrera E. Pinto-Almazan R. Remarkable phenotypic virulence factors of Microsporum canis and their associated genes: a systematic review. Int J Mol Sci 2024, 25(5). https://doi.org/10.3390/ijms25052533
- 69. Viani FC, Cazares Viani PR, Gutierrez Rivera IN, Goncalves da Silva E, Rodrigues Paula C, Gambale W. Extracellular proteolytic activity and molecular analysis of Microsporum canis strains isolated from symptomatic and asymptomatic cats. Rev Iberoam Micol 2007, 24(1):19-23. https://doi.org/10.1016/s1130-1406(07)70004-9
- 70. Mathy A, Baldo A, Schoofs L, Cambier L, Defaweux V, Tabart J, Marechal F, Symoens F, Mignon B. Fungalysin and dipeptidyl-peptidase gene transcription in Microsporum canis strains isolated from symptomatic and asymptomatic cats. Vet Microbiol 2010, 146(1-2):179-182. https:// doi.org/10.1016/j.vetmic.2010.04.019
- Baldo A, Tabart J, Vermout S, Mathy A, Collard A, Losson B, Mignon B. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes. J Med Microbiol 2008, 57(Pt 9):1152-1156. https://doi.org/10.1099/jmm.0.47827-0
- Sulzberger MB, Wise F. Ringworm and Trichophytin: newer developments, including practical and theoretical considerations. Journal of the American Medical Association 1932, 99(21):1759-1764. https://doi.org/10.1001/jama.1932.02740730023007
- 73. Jones HE, Reinhardt JH, Rinaldi MG. A clinical, mycological, and immunological survey for dermatophytosis. Arch Dermatol 1973, 108(1):61-65.
- Si H, Li Y, Huang Z, Cui Y, Li S. Erythroderma combined with deeper dermal dermatophytosis due to Trichophyton rubrum in a patient with myasthenia gravis: first case report and literature review. BMC Infect Dis 2023, 23(1):789. https://doi.org/10.1186/s12879-023-08752-5
- 75. Choi Y, Park KY, Han HS, Lee MK, Seo SJ. Comparative analysis of cutaneous fungi in atopic dermatitis patients and healthy individuals. Ann Dermatol 2022, 34(2):118-124. https://doi.org/ 10.5021/ad.2022.34.2.118
- 76. Klein PA, Clark RA, Nicol NH. Acute infection with Trichophyton rubrum associated with flares of atopic dermatitis. Cutis 1999, 63(3):171-172. https://doi.org/
- 77. Hurlimann A, Fah J. Asthma, rhinitis and dermatitis triggered by fungal infection: therapeutic effects of terbinafine. Dermatology 2001, 202(4):330-332. https://doi.org/10.1159/000051668
- 78. Ward GW, Jr., Karlsson G, Rose G, Platts-Mills TA. Trichophyton asthma: sensitisation of bronchi and upper airways to dermatophyte antigen. Lancet 1989, 1(8643):859-862. https://doi.org/ 10.1016/s0140-6736(89)92863-8
- Dalei SR, Nayak D, Bhue PK, Das NR, Behera B. Current status of dermatophytosis: a hospitalbased study in northern Odisha, India. Cureus 2023, 15(11):e48664. https://doi.org/10.7759/ cureus.48664

- Treadwell S, Green M, Gowda G, Levetin E, Carlson JC. Fungal sensitization and human allergic disease. Curr Allergy Asthma Rep 2024, 24(5):281-288. https://doi.org/10.1007/ s11882-024-01144-y
- 81. Twaroch TE, Curin M, Valenta R, Swoboda I. Mold allergens in respiratory allergy: from structure to therapy. *Asthma Immunol Res* 2015, 7(3):205-220. https://doi.org/10.4168/aair.2015.7.3.205
- 82. Abel-Fernandez E, Fernandez-Caldas E. Allergy to fungi: Advances in the understanding of fungal allergens. *Mol Immunol* 2023, 163:216-223. https://doi.org/10.1016/j.molimm.2023.09.017
- 83. Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl Trop Dis 2020, 14(2):e0007964. https://doi.org/10.1371/journal.pntd.0007964
- 84. Urban K, Chu S, Scheufele C, Giesey RL, Mehrmal S, Uppal P, Delost GR. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. *JAAD Int* 2021, 2:22-27. https://doi.org/10.1016/j.jdin.2020.10.003
- 85. Fisher MC, Denning DW. The WHO fungal priority pathogens list as a game-changer. Nat Rev Microbiol 2023, 21(4):211-212. https://doi.org/10.1038/s41579-023-00861-x
- 86. Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S, Gajdanowicz P, Gracia IE, Klimek L, Lauerma A *et al.* Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. *Allergy* 2023, 78(11):2851-2874. https://doi.org/10.1111/all.15889
- 87. Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. *Nat Rev Microbiol* 2003, 1(1):17-24. https://doi.org/10.1038/nrmicro732
- 88. Money NP. Fungal thermotolerance revisited and why climate change is unlikely to be supercharging pathogenic fungi (yet). *Fungal Biol* 2024, 128(1):1638-1641. https://doi.org/10.1016/j.funbio.2024.01.005
- 89. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024, 24(7):e428-e438. https://doi.org/10.1016/s1473-3099(23)00692-8
- 90. Casalini G, Giacomelli A, Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. *Lancet Microbe* 2024, 5(7):717-724. https://doi.org/10.1016/s2666-5247(24)00042-9
- 91. Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment. *Eur Respir Rev* 2022, 31(166). https://doi.org/10.1183/16000617.0114-2022
- 92. Scurek M, Pokojova E, Doubkova M, Brat K. Allergic bronchopulmonary candidiasis: A review of the literature and a case report. *BMC Pulm Med* 2022, 22(1):132. https://doi.org/10.1186/s12890-022-01921-3
- 93. Sudharson S, Kalic T, Hafner C, Breiteneder H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019-03/2021. *Allergy* 2021, 76(11):3359-3373. https://doi.org/10.1111/all.15021

- 94. Abel-Fernandez E, Martinez MJ, Galan T, Pineda F. Going over fungal allergy: Alternaria alternata and its allergens. J Fungi (Basel) 2023, 9(5). https://doi.org/10.3390/jof9050582
- 95. Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol 2019, 10:2993. https://doi.org/10.3389/ fmicb.2019.02993
- 96. Briard B, Fontaine T, Kanneganti TD, Gow NAR, Papon N. Fungal cell wall components modulate our immune system. Cell Surf 2021, 7:100067. https://doi.org/10.1016/j.tcsw.2021.100067
- Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S et al. The epithelial barrier theory and its associated diseases. Allergy 2024. https://doi.org/10.1111/ all.16318
- Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D, Bedke N et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol 2011, 128(3):549-556 e541-512. https://doi.org/10.1016/j.jaci.2011.05.038
- Gimenez-Arnau A, Curto-Barredo L, Nonell L, Puigdecanet E, Yelamos J, Gimeno R, Ruberg S, Santamaria-Babi L, Pujol RM. Transcriptome analysis of severely active chronic spontaneous urticaria shows an overall immunological skin involvement. Allergy 2017, 72(11):1778-1790. https://doi.org/10.1111/all.13183
- 100. Gschwandtner M, Mildner M, Mlitz V, Gruber F, Eckhart L, Werfel T, Gutzmer R, Elias PM, Tschachler E. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy 2013, 68(1):37-47. https://doi.org/10.1111/ all.12051
- 101. Crameri R, Garbani M, Rhyner C, Huitema C. Fungi: the neglected allergenic sources. Allergy 201 4, 69(2):176-185. https://doi.org/10.1111/all.12325
- 102. Esch RE, Codina R. Fungal raw materials used to produce allergen extracts. Ann Allergy Asthma Immunol 2017, 118(4):399-405. https://doi.org/10.1016/j.anai.2016.05.012
- 103. Xing H, Wang J, Sun Y, Wang H. Recent advances in the allergic cross-reactivity between fungi and foods. J Immunol Res 2022, 2022:7583400. https://doi.org/10.1155/2022/7583400
- 104. Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2 023, 56(4):704-722. https://doi.org/10.1016/j.immuni.2023.03.014
- 105. Zheng Y, Dang EV. Novel mechanistic insights underlying fungal allergic inflammation. PLoS Pathog 2023, 19(9):e1011623. https://doi.org/10.1371/journal.ppat.1011623
- 106. Ward RA, Vyas JM. The first line of defense: effector pathways of anti-fungal innate immunity. Curr Opin Microbiol 2020, 58:160-165. https://doi.org/10.1016/j.mib.2020.10.003
- 107. Kirkland TN, Fierer J. Innate immune receptors and defense against primary pathogenic fungi. Vaccines (Basel) 2020, 8(2). https://doi.org/10.3390/vaccines8020303
- 108. Zhang Z, Biagini Myers JM, Brandt EB, Ryan PH, Lindsey M, Mintz-Cole RA, Reponen T, Vesper SJ, Forde F, Ruff B et al. beta-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant T(H)2/T(H)17 responses. J Allergy Clin Immunol 20 17, 139(1):54-65 e58. https://doi.org/10.1016/j.jaci.2016.02.031

- 109. Kanno T, Adachi Y, Ohashi-Doi K, Matsuhara H, Hiratsuka R, Ishibashi KI, Yamanaka D, Ohno N. Latent 1,3-beta-D-glucan acts as an adjuvant for allergen-specific IgE production induced by Japanese cedar pollen exposure. Allergol Int 2021, 70(1):105-113. https://doi.org/10.1016/ j.alit.2020.08.004
- 110. Hadebe S, Kirstein F, Fierens K, Redelinghuys P, Murray GI, Williams DL, Lambrecht BN, Brombacher F, Brown GD. beta-Glucan exacerbates allergic airway responses to house dust mite allergen. Respir Res 2016, 17:35. https://doi.org/10.1186/s12931-016-0352-5
- 111. Oluwole O, Rennie DC, Senthilselvan A, Dyck R, Afanasieva A, Kirychuk S, Katselis G, Lawson JA. The association between endotoxin and beta- $(1 \rightarrow 3)$ -D-glucan in house dust with asthma severity among schoolchildren. Respir Med 2018, 138:38-46. https://doi.org/10.1016/ j.rmed.2018.03.015
- 112. Romani L. Immunity to fungal infections. Nat Rev Immunol 2011, 11(4):275-288. https://doi.org/ 10.1038/nri2939
- 113. Arae K, Morita H, Unno H, Motomura K, Toyama S, Okada N, Ohno T, Tamari M, Orimo K, Mishima Y et al. Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1beta production by DCs. Sci Rep 2018, 8(1):11721. https:// doi.org/10.1038/s41598-018-30259-2
- 114. Elieh Ali Komi D, Sharma L, Dela Cruz CS. Chitin and its effects on inflammatory and immune responses.Clin Rev Allergy Immunol 2018, 54(2):213-223. https://doi.org/10.1007/ s12016-017-8600-0
- 115. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 2009, 182(6):3573-3582. https:// doi.org/10.4049/jimmunol.0802113
- 116. Shibata Y, Metzger WJ, Myrvik QN. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol 1997, 159(5):2462-2467. https://doi.org/
- 117. Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024, 327(3):L293-l303. https://doi.org/10.1152/ajplung.00041.2024
- 118. Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME, Sokol CL, Robinson C, Jacquet A. Protease allergens as initiators-regulators of allergic inflammation. Allergy 2023, 78(5):1148-1168. https://doi.org/10.1111/all.15678
- 119. Wiesner DL, Merkhofer RM, Ober C, Kujoth GC, Niu M, Keller NP, Gern JE, Brockman-Schneider RA, Evans MD, Jackson DJ et al. Club cell trpv4 serves as a damage sensor driving lung allergic inflammation. Cell Host Microbe 2020, 27(4):614-628.e616. https://doi.org/10.1016/ j.chom.2020.02.006
- 120. Landers CT, Tung HY, Knight JM, Madison MC, Wu Y, Zeng Z, Porter PC, Rodriguez A, Flick MJ, Kheradmand F, Corry DB. Selective cleavage of fibrinogen by diverse proteinases initiates allergic and antifungal immunity through CD11b.J Biol Chem 2019, 294(22):8834-8847. https://doi.org/10.1074/jbc.RA118.006724
- 121. Yike I. Fungal proteases and their pathophysiological effects. Mycopathologia 2011, 171(5):299-323. https://doi.org/10.1007/s11046-010-9386-2

- 122. Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, Kowalski ML, Mygind N, Ring J, van Cauwenberge P et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Alleray 2001. 56(9):813-824. https://doi.org/10.1034/j.1398-9995.2001.t01-1-00001.x
- 123. Vitte J. Vibhushan S. Bratti M. Montero-Hernandez JE. Blank U. Allergy, anaphylaxis, and nonallergic hypersensitivity: ige, mast cells, and beyond. Med Princ Pract 2022, 31(6):501-515. https://doi.org/10.1159/000527481
- 124. Spagnolo P, Rossi G, Cavazza A, Bonifazi M, Paladini I, Bonella F, Sverzellati N, Costabel U. Hypersensitivity pneumonitis: a comprehensive review. J Investiq Allergol Clin Immunol 2015, 25(4):237-250; quiz follow 250. https://doi.org/
- 125. Sparber F, De Gregorio C, Steckholzer S, Ferreira FM, Dolowschiak T, Ruchti F, Kirchner FR, Mertens S, Prinz I, Joller N et al. The skin commensal yeast malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe 2019, 25(3):389-403.e386. https://doi.org/10.1016/j.chom.2019.02.002
- 126. Arrais M, Maricoto T, Nwaru BI, Cooper PJ, Gama JMR, Brito M, Taborda-Barata L. Helminth infections and allergic diseases: Systematic review and meta-analysis of the global literature. J Alleray Clin Immunol 2022, 149(6):2139-2152. https://doi.org/10.1016/j.jaci.2021.12.777
- 127. Cruz AA, Cooper PJ, Figueiredo CA, Alcantara-Neves NM, Rodrigues LC, Barreto ML. Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017, 140(5):1217-1228. https://doi.org/10.1016/j.jaci.2017.09.005
- 128. Lifar P, Montastruc F, Reber LL, Magnaval JF, Guilleminault L. Parasitic infections and biological therapies targeting type 2 inflammation: a vigibase study. Am J Respir Crit Care Med 2023, 207(9):1253-1255. https://doi.org/10.1164/rccm.202210-1898LE
- 129. Caraballo L, Zakzuk J, Lee BW, Acevedo N, Soh JY, Sanchez-Borges M, Hossny E, Garcia E, Rosario N, Ansotegui I et al. Particularities of allergy in the Tropics. World Allergy Organ J 2016, 9:20. https://doi.org/10.1186/s40413-016-0110-7
- 130. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012, 109(21):8334-8339. https://doi.org/10.1073/ pnas.1205624109
- 131. Bernstein JA, Bernstein JS, Makol R, Ward S. Allergic Rhinitis: A Review. JAMA 2024, 331(10):866-877. https://doi.org/10.1001/jama.2024.0530
- 132. Xu X, Liu X, Li J, Deng X, Dai T, Ji Q, Xiong D, Xie H. Environmental risk factors, protective factors, and biomarkers for allergic rhinitis: a systematic umbrella review of the evidence. Clin Rev Allergy Immunol 2023, 65(2):188-205. https://doi.org/10.1007/s12016-023-08964-2
- 133. Caillaud D, Leynaert B, Keirsbulck M, Nadif R, mould Awg. Indoor mould exposure, asthma and rhinitis: findings from systematic reviews and recent longitudinal studies. Eur Respir Rev 2018, 27(148). https://doi.org/10.1183/16000617.0137-2017
- 134. Ma T, Chen Y, Pang Y, Wang X, Dai D, Zhuang Y, Shi H, Zheng M, Zhang R, Jin W et al. Prevalence and risk factors of allergic rhinitis and asthma in the southern edge of the plateau grassland region of northern China: A cross-sectional study. World Allergy Organ J 2021, 14(7):100537. https://doi.org/10.1016/j.waojou.2021.100537

- 135. Sio YY, Pang SL, Say YH, Teh KF, Wong YR, Shah SMR, Reginald K, Chew FT. Sensitization to airborne fungal allergens associates with asthma and allergic rhinitis presentation and severity in the singaporean/malaysian population. Mycopathologia 2021, 186(5):583-588. https:// doi.org/10.1007/s11046-021-00532-6
- 136. Kava Akca Ü, Maslak İ C, Uygun D, Bingöl A, The asthma risk is increased in children with severe rhinitis.Turk Arch Pediatr 2022, 57(4):391-397. https://doi.org/10.5152/ TurkArchPediatr.2022.21269
- 137. Larenas-Linnemann D, Michels A, Dinger H, Shah-Hosseini K, Mosges R, Arias-Cruz A, Ambriz-Moreno M, Barajas MB, Javier RC, de la Luz Cid Del Prado M et al. Allergen sensitization linked to climate and age, not to intermittent-persistent rhinitis in a cross-sectional cohort study in the (sub)tropics. Clin Transl Allergy 2014, 4:20. https://doi.org/10.1186/2045-7022-4-20
- 138. Shin SH, Ye MK, Lee DW, Che MH. Alternaria-induced barrier dysfunction of nasal epithelial cells: role of serine protease and reactive oxygen species. Int Forum Allergy Rhinol 2019, 9(5):514-521. https://doi.org/10.1002/alr.22266
- 139. Daines M, Zhu L, Pereira R, Zhou X, Bondy C, Pryor BM, Zhou J, Chen Y. Alternaria induces airway epithelial cytokine expression independent of protease-activated receptor. Respirology 2020, 25(5):502-510. https://doi.org/10.1111/resp.13675
- 140. Goode EJ, Marczylo E. A scoping review: What are the cellular mechanisms that drive the allergic inflammatory response to fungal allergens in the lung epithelium? Clin Transl Allergy 20 23, 13(6):e12252. https://doi.org/10.1002/clt2.12252
- 141. Deutsch PG, Whittaker J, Prasad S. Invasive and non-invasive fungal rhinosinusitis-a review and update of the evidence. Medicina (Kaunas) 2019, 55(7). https://doi.org/10.3390/ medicina55070319
- 142. Bent JP, 3rd, Kuhn FA. Diagnosis of allergic fungal sinusitis. Otolaryngol Head Neck Surg 1994, 111(5):580-588. https://doi.org/10.1177/019459989411100508
- 143. Barac A, Stevanovic G, Pekmezovic M, Rakocevic Z, Stosovic R, Erovic B, Tomic Spiric V. Study toward resolving the controversy over the definition of allergic fungal rhinosinusitis. Med Mycol 2018, 56(2):162-171. https://doi.org/10.1093/mmy/myx032
- 144. Dykewicz MS, Rodrigues JM, Slavin RG. Allergic fungal rhinosinusitis. J Allergy Clin Immunol 201 8, 142(2):341-351. https://doi.org/10.1016/j.jaci.2018.06.023
- 145. Nakayama T, Miyata J, Inoue N, Ueki S. Allergic fungal rhinosinusitis: What we can learn from allergic bronchopulmonary mycosis. Allergol Int 2023, 72(4):521-529. https://doi.org/10.1016/ j.alit.2023.06.005
- 146. Schubert MS, Hutcheson PS, Graff RJ, Santiago L, Slavin RG. HLA-DQB1 *03 in allergic fungal sinusitis and other chronic hypertrophic rhinosinusitis disorders. J Allergy Clin Immunol 2004, 114(6):1376-1383. https://doi.org/10.1016/j.jaci.2004.08.029
- 147. Nussenbaum B, Marple BF, Schwade ND. Characteristics of bony erosion in allergic fungal rhinosinusitis. Otolaryngol Head Neck Surg 2001, 124(2):150-154. https://doi.org/10.1067/ mhn.2001.112573

- 148. Didehdar M, Khoshbayan A, Vesal S, Darban-Sarokhalil D, Razavi S, Chegini Z, Shariati A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb Pathoq 2021, 155:104905. https://doi.org/10.1016/ j.micpath.2021.104905
- 149. El-Morsy SM, Khafagy YW, El-Naggar MM, Beih AA. Allergic fungal rhinosinusitis: detection of fungal DNA in sinus aspirate using polymerase chain reaction. J Laryngol Otol 2010, 124(2):152-160. https://doi.org/10.1017/S0022215109991204
- 150. Promsopa C, Kansara S, Citardi MJ, Fakhri S, Porter P, Luong A. Prevalence of confirmed asthma varies in chronic rhinosinusitis subtypes. Int Forum Allergy Rhinol 2016, 6(4):373-377. https:// doi.org/10.1002/alr.21674
- 151. Sun H, Knight JM, Li YD, Ashoori F, Citardi MJ, Yao WC, Corry DB, Luong AU. Allergic fungal rhinosinusitis linked to other hyper-IgE syndromes through defective T(H)17 responses.J Allergy Clin Immunol 2024. https://doi.org/10.1016/j.jaci.2024.06.022
- 152. Kanemitsu Y, Fukumitsu K, Kurokawa R, Takeda N, Ozawa Y, Masaki A, Ono J, Izuhara K, Yap JM, Nishiyama H et al. Moulds and Staphylococcus aureus enterotoxins are relevant allergens to affect Type 2 inflammation and clinical outcomes in chronic rhinosinusitis patients. ERJ Open Res 2020, 6(4). https://doi.org/10.1183/23120541.00265-2020
- 153. Ooi EH, Wormald PJ, Carney AS, James CL, Tan LW. Surfactant protein d expression in chronic rhinosinusitis patients and immune responses in vitro to Aspergillus and Alternaria in a nasal model. 2007, 117(1):51-57. https://doi.org/ Laryngoscope 10.1097/01.mlg.0000243196.75418.6f
- 154. Dutre T, Al Dousary S, Zhang N, Bachert C. Allergic fungal rhinosinusitis-more than a fungal disease? J Allergy Clin Immunol 2013, 132(2):487-489 e481. https://doi.org/10.1016/ j.jaci.2013.02.040
- 155. Porsbjerg C, Melén E, Lehtimäki L, Shaw D. Asthma. Lancet 2023, 401(10379):858-873. https:// doi.org/10.1016/s0140-6736(22)02125-0
- 156. Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New perspectives in the diagnosis and management of allergic fungal airway disease. J Asthma Allergy 2021, 14:557-573. https://doi.org/10.2147/jaa.S251709
- 157. Agarwal R, Muthu V, Sehgal IS. Relationship between Aspergillus and asthma. Allergol Int 2023, 72(4):507-520. https://doi.org/10.1016/j.alit.2023.08.004
- 158. Forkel S, Beutner C, Schroder SS, Bader O, Gupta S, Fuchs T, Schon MP, Geier J, Buhl T. Sensitization against fungi in patients with airway allergies over 20 years in Germany. Int Arch Allergy Immunol 2021, 182(6):515-523. https://doi.org/10.1159/000512230
- 159. Hadebe S, Brombacher F. Environment and host-genetic determinants in early development of allergic asthma: contribution of fungi. Front Immunol 2019, 10:2696. https://doi.org/10.3389/ fimmu.2019.02696
- 160. Fukutomi Y, Taniguchi M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol Int 2015, 64(4):321-331. https://doi.org/10.1016/j.alit.2015.05.007

- 161. Kwong K, Robinson M, Sullivan A, Letovsky S, Liu AH, Valcour A. Fungal allergen sensitization: Prevalence, risk factors, and geographic variation in the United States. J Allergy Clin Immunol 20 23, 152(6):1658-1668. https://doi.org/10.1016/j.jaci.2023.09.010
- 162. Backman H, Jansson SA, Stridsman C, Eriksson B, Hedman L, Eklund BM, Sandstrom T, Lindberg A. Lundback B. Ronmark E. Severe asthma-A population study perspective. Clin Exp. Allergy 2019, 49(6):819-828. https://doi.org/10.1111/cea.13378
- 163. Masaki K, Fukunaga K, Matsusaka M, Kabata H, Tanosaki T, Mochimaru T, Kamatani T, Ohtsuka K, Baba R, Ueda S et al. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol 2017, 119(3):253-257. https://doi.org/10.1016/j.anai.2017.07.008
- 164. D'Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, Haahtela T, Galan C, Pawankar R, Murrieta-Aguttes M et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. 75(9):2219-2228. https://doi.org/10.1111/all.14476
- 165. Scevkova J, Dusicka J, Tropekova M, Kovac J. Summer storms and their effects on the spectrum and quantity of airborne bioparticles in Bratislava, Central Europe. Environ Monit Assess 2020, 192(8):537. https://doi.org/10.1007/s10661-020-08497-7
- 166. Platts-Mills TAE, Woodfolk JA. Trichophyton asthma. Chest 2009, 135(4):887-888. https://doi.org/ 10.1378/chest.09-0114
- 167. Matsuoka H, Niimi A, Matsumoto H, Ueda T, Takemura M, Yamaguchi M, Jinnai M, Otsuka K, Oguma T, Takeda T et al. Specific IgE response to Trichophyton and asthma severity. Chest 2009, 135(4):898-903. https://doi.org/10.1378/chest.08-1783
- 168. Beggs PJ. Thunderstorm Asthma and Climate Change. JAMA 2024, 331(10):878-879. https:// doi.org/10.1001/jama.2023.26649
- 169. Targonski PV, Persky VW, Ramekrishnan V. Effect of environmental molds on risk of death from asthma during the pollen season. J Allergy Clin Immunol 1995, 95(5 Pt 1):955-961. https:// doi.org/10.1016/s0091-6749(95)70095-1
- 170. Idrose NS, Dharmage SC, Lowe AJ, Lambert KA, Lodge CJ, Abramson MJ, Douglass JA, Newbigin EJ, Erbas B. A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environ Res 2020, 181:108911. https://doi.org/10.1016/j.envres.2019.108911
- 171. Pulimood TB, Corden JM, Bryden C, Sharples L, Nasser SM. Epidemic asthma and the role of the fungal moldAlternaria alternata. J Allergy Clin Immunol 2007, 120(3):610-617. https:// doi.org/10.1016/j.jaci.2007.04.045
- 172. Rad HD, Maleki H, Goudarzi G, Assarehzadegan M-A, Idani I, Babaei AA, Neisi A, Jahantab S, Parishani MR, Dinarvand M et al. Investigating airborne pollen grains and fungal spores that might be related to thunderstorm asthma attacks. Int Journal of Environmental Research 2023, 17(2):28. https://doi.org/10.1007/s41742-023-00515-z
- 173. Liu J, Yin J. Immunotherapy with recombinant alt a 1 suppresses allergic asthma and influences t follicular cells and regulatory b cells in mice. Front Immunol 2021, 12:747730. https://doi.org/10.3389/fimmu.2021.747730

- 174. Corren J, Hanania NA, Busse WW, Sher LD, Altincatal A, Hardin M, Mannent LP, Amin N, Lederer DJ, Soler X et al. Efficacy of dupilumab in patients with uncontrolled, moderate-to-severe asthma with fungal sensitization. Clin Exp Allergy 2023, 53(10):1020-1030. https://doi.org/ 10.1111/cea.14389
- 175. Asano K, Hebisawa A, Ishiguro T, Takayanagi N, Nakamura Y, Suzuki J, Okada N, Tanaka J, Fukutomi Y, Ueki S et al. New clinical diagnostic criteria for allergic bronchopulmonary aspergillosis/mycosis and its validation. J Allergy Clin Immunol 2021, 147(4):1261-1268 e1265. https://doi.org/10.1016/j.jaci.2020.08.029
- 176. Asano K, Kamei K, Hebisawa A. Allergic bronchopulmonary mycosis pathophysiology, histology, diagnosis, and treatment. Asia Pac Allergy 2018, 8(3):e24. https://doi.org/10.5415/ apallergy.2018.8.e24
- 177. Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D et al. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024, 63(4). https://doi.org/10.1183/13993003.00061-2024
- 178. Chowdhary A, Agarwal K, Kathuria S, Gaur SN, Randhawa HS, Meis JF. Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 2014, 40(1):30-48. https://doi.org/10.3109/1040841X.2012.754401
- 179. Jo MJ, Yeo Y, Min KW, Chung SJ, Park TS, Lee H, Park DW, Moon JY, Sohn JW, Kim SH et al. A case report of allergic bronchopulmonary mycosis caused by Alternaria alternata in colonization of Aspergillus. Asian Pac J Allergy Immunol 2021. https://doi.org/10.12932/AP-101020-0981
- 180. Kanaujia R, Arora A, Chakrabarti A, Rudramurthy SM, Agarwal R. Polymorphisms in innate and adaptive immune genes in subjects with allergic bronchopulmonary aspergillosis complicating asthma. Mycopathologia 2024, 189(2):23. https://doi.org/10.1007/s11046-024-00834-5
- 181. Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y et al. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2 024, 63(5). https://doi.org/10.1183/13993003.00386-2024
- 182. Barnes H, Lu J, Glaspole I, Collard HR, Johannson KA. Exposures and associations with clinical phenotypes in hypersensitivity pneumonitis: A scoping review. Respir Med 2021, 184:106444. https://doi.org/10.1016/j.rmed.2021.106444
- 183. Millerick-May ML, Mulks MH, Gerlach J, Flaherty KR, Schmidt SL, Martinez FJ, LeVeque RM, Rosenman KD. Hypersensitivity pneumonitis and antigen identification--An alternate approach. Respir Med 2016, 112:97-105. https://doi.org/10.1016/j.rmed.2015.09.001
- 184. Falfan-Valencia R, Camarena A, Pineda CL, Montano M, Juarez A, Buendia-Roldan I, Perez-Rubio G, Resendiz-Hernandez JM, Paramo I, Vega A et al. Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLA-DRB1*04 bearing HLA haplotypes. Respir Med 2014, 108(1):211-217. https:// doi.org/10.1016/j.rmed.2013.11.004
- 185. Ley B, Newton CA, Arnould I, Elicker BM, Henry TS, Vittinghoff E, Golden JA, Jones KD, Batra K, Torrealba J et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med 2017, 5(8):639-647. https://doi.org/10.1016/S2213-2600(17)30216-3

- 186. Barnes H, Troy L, Lee CT, Sperling A, Strek M, Glaspole I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diagnosis, and treatment. Allergy 2022, 77(2):442-453. https://doi.org/10.1111/all.15017
- Ilkit M, Durdu M, Karakas M. Cutaneous id reactions: a comprehensive review of clinical manifestations, epidemiology, etiology, and management. Crit Rev Microbiol 2012, 38(3):191-202. https://doi.org/10.3109/1040841X.2011.645520
- 188. Crum N, Hardaway C, Graham B. Development of an idlike reaction during treatment for acute pulmonary histoplasmosis: a new cutaneous manifestation in histoplasmosis. *J Am Acad Dermatol* 2003, 48(2 Suppl):S5-6. https://doi.org/10.1067/mjd.2003.110
- Chirac A, Brzezinski P, Chiriac AE, Foia L, Pinteala T. Autosensitisation (Autoeczematisation) reactions in a case of diaper dermatitis candidiasis. Niger Med J 2014, 55(3):274-275. https://doi.org/10.4103/0300-1652.132070
- 190. Bertoli MJ, Schwartz RA, Janniger CK. Autoeczematization: A Strange Id Reaction of the Skin. *Cutis* 2021, 108(3):163-166. https://doi.org/10.12788/cutis.0342
- 191. Veien NK, Hattel T, Laurberg G. Plantar*Trichophyton rubrum* infections may cause dermatophytids on the hands. *Acta Derm Venereol* 1994, 74(5):403-404. https://doi.org/10.2340/0001555574403404
- 192. Zhou X, Ahmed SA, Tang C, Grisolia ME, Warth JFG, Webster K, Peano A, Uhrlass S, Cafarchia C, Hayette MP *et al.* Human adaptation and diversification in the *Microsporum canis* complex. *IMA Fungus* 2023, 14(1):14. https://doi.org/10.1186/s43008-023-00120-x
- 193. Deng R, Chen X, Zheng D, Xiao Y, Dong B, Cao C, Ma L, Tong Z, Zhu M, Liu Z *et al*. Epidemiologic features and therapeutic strategies of kerion: A nationwide multicentre study. *Mycoses* 2024, 67(6):e13751. https://doi.org/10.1111/myc.13751
- 194. Bakayoko A, Heath CR. Papulosquamous dermatophytid reaction in a child with tinea capitis. *Cutis* 2024, 113(3):E20-E21. https://doi.org/10.12788/cutis.0984
- 195. El Imene Ouni N, Aounallah A, Ghariani N, Mokni S, Belajouza C, Denguezli M. Tinea capitis by *Microsporum canis* in a 3-year-old girl with palmoplantar pustular dermatophytid reaction. *Clin Exp Dermatol* 2022, 47(3):596-597. https://doi.org/10.1111/ced.14991
- 196. Gorgievska-Sukarovska B, Skerlev M, Žele-Starčević L, Husar K, Halasz M. Kerion celsi due to Microsporum canis with a dermatophytid reaction. Acta Dermatovenerol Croat 2017, 25(2):151-154. https://doi.org/
- 197. Shi Y, Niu Q, Yu X, Jia X, Wang J, Lin D, Jin Y. Assessment of the function of SUB6 in the pathogenic dermatophyte *Trichophyton mentagrophytes*. *Med Mycol* 2016, 54(1):59-71. https://doi.org/10.1093/mmy/myv071
- 198. Vermout S, Baldo A, Tabart J, Losson B, Mignon B. Secreted dipeptidyl peptidases as potential virulence factors for Microsporum canis. FEMS Immunol Med Microbiol 2008, 54(3):299-308. https://doi.org/10.1111/j.1574-695X.2008.00479.x
- 199. Tham EH, Chia M, Riggioni C, Nagarajan N, Common JEA, Kong HH. The skin microbiome in pediatric atopic dermatitis and food allergy. Allergy 2024, 79(6):1470-1484. https://doi.org/ 10.1111/all.16044

- 200. Amin MM, Elkady HM. Prevalence of common sensitizing aeroallergens in patients with atopic dermatitis. Cytokine 2023, 162:156087. https://doi.org/10.1016/j.cyto.2022.156087
- 201. Han SH, Cheon HI, Hur MS, Kim MJ, Jung WH, Lee YW, Choe YB, Ahn KJ. Analysis of the skin mycobiome in adult patients with atopic dermatitis. Exp Dermatol 2018, 27(4):366-373. https:// doi.org/10.1111/exd.13500
- 202. Celakovska J, Vankova R, Bukac J, Cermakova E, Andrys C, Krejsek J. Atopic dermatitis and sensitisation to molecular components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia-results of allergy explorer alex 2. J Fungi (Basel) 2021, 7(3). https://doi.org/10.3390/ jof7030183
- 203. Navarro-Triviño FJ, Ayén-Rodríguez Á. Study of hypersensitivity to Malassezia furfur in patients with atopic dermatitis with head and neck pattern: is it useful as a biomarker and therapeutic indicator in these patients? Life (Basel) 2022, 12(2). https://doi.org/10.3390/life12020299
- 204. Kozera E, Stewart T, Gill K, De La Vega MA, Frew JW. Dupilumab-associated head and neck dermatitis is associated with elevated pretreatment serum Malassezia-specific IgE: a multicentre, prospective cohort study. Br J Dermatol 2022, 186(6):1050-1052. https://doi.org/ 10.1111/bjd.21019
- 205. Savolainen J, Lammintausta K, Kalimo K, Viander M. Candida albicans and atopic dermatitis. Clin Exp Allergy 1993, 23(4):332-339. https://doi.org/10.1111/j.1365-2222.1993.tb00331.x
- 206. Javad G, Taheri Sarvtin M, Hedayati MT, Hajheydari Z, Yazdani J, Shokohi T. Evaluation ofcandida colonization and specific humoral responses against candida albicans in patients with atopic dermatitis. Biomed Res Int 2015, 2015:849206. https://doi.org/10.1155/2015/849206
- 207. Ren Z, Silverberg JI. Association of atopic dermatitis with bacterial, fungal, viral, and sexually transmitted skin infections. Dermatitis 2020, 31(2):157-164. https://doi.org/10.1097/ DER.0000000000000526
- 208. Zhou X, Liu W, Yang S, Wu A, Chen P, Yin S, de Hoog S, Li M, Feng P. Exploring the clinical features and risk factors for children tinea capitis complicated with allergic diseases. Mycoses 2 023, 66(4):338-345. https://doi.org/10.1111/myc.13558
- 209. Selander C, Engblom C, Nilsson G, Scheynius A, Andersson CL. TLR2/MyD88-dependent and -independent activation of mast cell IgE responses by the skin commensal yeast Malassezia sympodialis. *J Immunol* 2009, 182(7):4208-4216. https://doi.org/10.4049/jimmunol.0800885
- 210. Mittermann I, Wikberg G, Johansson C, Lupinek C, Lundeberg L, Crameri R, Valenta R, Scheynius A. IgE sensitization profiles differ between adult patients with severe and moderate atopic dermatitis.PLoS One 2016, 11(5):e0156077. https://doi.org/10.1371/ journal.pone.0156077
- 211. Fukunaga A, Oda Y, Imamura S, Mizuno M, Fukumoto T, Washio K. Cholinergic urticaria: subtype classification and clinical approach. Am J Clin Dermatol 2023, 24(1):41-54. https://doi.org/ 10.1007/s40257-022-00728-6
- 212. Thammahong A, Kiatsurayanon C, Edwards SW, Rerknimitr P, Chiewchengchol D. The clinical significance of fungi in atopic dermatitis. Int J Dermatol 2020, 59(8):926-935. https://doi.org/ 10.1111/ijd.14941

- 213. Kolkhir P, Gimenez-Arnau AM, Kulthanan K, Peter J, Metz M, Maurer M. Urticaria. Nat Rev Dis Primers 2022, 8(1):61. https://doi.org/10.1038/s41572-022-00389-z
- 214. Pu Y, He L, Wang X, Zhang Y, Zhao S, Fan J. Global, regional, and national levels and trends in burden of urticaria: A systematic analysis for the Global Burden of Disease study 2019. J Glob Health 2024, 14:04095, https://doi.org/10.7189/jogh.14.04095
- 215. Xu X, Pradhan S, Zhang C, Ran Y. A case of infantile tinea of vellus hair confirmed by dermoscopy and scanning electron microscopy and detection of infected source. J Dermatol 20 22, 49(12):1325-1329. https://doi.org/10.1111/1346-8138.16540
- 216. Chong AC, Chwa WJ, Ong PY. Aeroallergens in atopic dermatitis and chronic urticaria. Curr Allergy Asthma Rep 2022, 22(7):67-75. https://doi.org/10.1007/s11882-022-01033-2
- 217. Nazari Z, Ghaffari J, Ghaffari N, Ahangarkani F. A review on hypersensitivity reactions to fungal aeroallergens in patients with allergic disorders in Iran. Curr Med Mycol 2019, 5(1):42-47. https:// doi.org/10.18502/cmm.5.1.537
- 218. Xu-De Z, Bei-Bei G, Xi-Juan W, Hai-Bo L, Li-Li Z, Feng-Xia L. Serum ige predicts difference of population and allergens in allergic diseases: data from weifang city, China. Mediators Inflamm 2021, 2021:6627087. https://doi.org/10.1155/2021/6627087
- 219. Lote S, Gupta SB, Poulose D, Deora MS, Mahajan A, Gogineni JM, Saxena S, Chaklader B. Role of the skin prick test in urticaria patients. Cureus 2022, 14(2):e21818. https://doi.org/10.7759/ cureus.21818
- 220. Palma-Carlos AG, Palma-Carlos ML. Trichophyton allergy: review of 89 cases. Eur Ann Allergy Clin Immunol 2006, 38(6):177-181. https://doi.org/
- 221. Godse KV, Zawar V. Chronic urticaria associated with tinea infection and success with antifungal therapy--a report of four cases. Int J Infect Dis 2010, 14 Suppl 3:e364-365. https:// doi.org/10.1016/j.ijid.2009.12.005
- 222. Zhang M, Liu F, Liu H, Shen Y, Kong Q, Sang H. Sensitization and cross-reactions of dermatophyte and Candida albicans allergens in patients with chronic urticaria. Int J Dermatol 2016, 55(10):1138-1142. https://doi.org/10.1111/ijd.13162
- 223. Zawar V, Pawar M, Kumavat S.Malassezia infection associated with chronic spontaneous urticaria without angioedema: a report on five cases. Acta Dermatovenerol Alp Pannonica Adriat 2018, 27(2):65-69. https://doi.org/
- 224. Popescu FD. Cross-reactivity between aeroallergens and food allergens. World J Methodol 2015, 5(2):31-50. https://doi.org/10.5662/wjm.v5.i2.31
- 225. Herrera I, Moneo I, Caballero ML, de Paz S, Perez Pimiento A, Rebollo S. Food allergy to spinach and mushroom. Allergy 2002, 57(3):261-262. https://doi.org/10.1034/j.1398-9995.2002.1n3547.x
- 226. Gabriel MF, Gonzalez-Delgado P, Postigo I, Fernandez J, Soriano V, Cueva B, Martinez J. From respiratory sensitization to food allergy: Anaphylactic reaction after ingestion of mushrooms (Agaricus bisporus). Med Mycol Case Rep 2015, 8:14-16. https://doi.org/10.1016/ j.mmcr.2015.02.003

- 227. Gomez-Casado C, Murua-Garcia A, Garrido-Arandia M, Gonzalez-Melendi P, Sanchez-Monge R, Barber D, Pacios LF, Diaz-Perales A. Alt a 1 from Alternaria interacts with PR5 thau matin-like proteins. FEBS Lett 2014, 588(9):1501-1508. https://doi.org/10.1016/j.febslet.2014.02.044
- 228. Hoff M, Trueb RM, Ballmer-Weber BK, Vieths S, Wuethrich B. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Ouorn) in a patient allergic to molds caused by acidic ribosomal protein P2.J Allergy Clin Immunol 2003, 111(5):1106-1110. https://doi.org/10.1067/ mai.2003.1339
- 229. Sidari R, Tofalo R. Dual role of yeasts and filamentous fungi in fermented sausages. Foods 2024, 13(16). https://doi.org/10.3390/foods13162547
- 230. Gonzalez-de-Olano D, Gandolfo-Cano M, Gonzalez-Mancebo E, Melendez-Baltanas A, Juarez-Guerrero R, Bartolome B. Different patterns of sensitization in allergy to dry fermented sausage. J Investig Allergol Clin Immunol 2012, 22(2):152-153.
- 231. Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 2018, 141(1):41-58. https:// doi.org/10.1016/j.jaci.2017.11.003
- 232. Rodrigues J, Caruthers C, Azmeh R, Dykewicz MS, Slavin RG, Knutsen AP. The spectrum of allergic fungal diseases of the upper and lower airways. Expert Rev Clin Immunol 2016, 12(5):531-550. https://doi.org/10.1586/1744666X.2016.1142874
- 233. Yuen AP, Cheung S, Tang KC, Ho WK, Wong BY, Cheung AC, Ho AC. The skin prick test results of 977 patients suffering from chronic rhinitis in Hong Kong. Hong Kong Med J 2007, 13(2):131-136. https://doi.org/
- 234. Steering Committee A, Review Panel M. A WAO ARIA GA(2)LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J 2020, 13(2):100091. https://doi.org/10.1016/j.waojou.2019.100091
- 235. Lidholm J, Ballmer-Weber BK, Mari A, Vieths S. Component-resolved diagnostics in food allergy.Curr Opin Allergy Clin Immunol 2006, 6(3):234-240. https://doi.org/ 10.1097/01.all.0000225166.90768.d6
- 236. Muthu V, Sehgal IS, Dhooria S, Aggarwal AN, Agarwal R. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: A systematic review and diagnostic test accuracy meta-analysis. Clin Exp Allergy 2018, 48(9):1107-1136. https://doi.org/10.1111/cea.13216
- 237. Fukutomi Y, Tanimoto H, Yasueda H, Taniguchi M. Serological diagnosis of allergic bronchopulmonary mycosis: Progress and challenges. Allergol Int 2016, 65(1):30-36. https:// doi.org/10.1016/j.alit.2015.08.004
- 238. Muthu V, Singh P, Choudhary H, Dhooria S, Sehgal IS, Prasad KT, Aggarwal AN, Garg M, Chakrabarti A, Agarwal R. Role of recombinant Aspergillus fumigatus antigens in diagnosing Aspergillus sensitisation among asthmatics. Mycoses 2020, 63(9):928-936. https://doi.org/ 10.1111/myc.13124
- 239. Muthu V, Singh P, Choudhary H, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN, Garg M, Chakrabarti A, Agarwal R. Diagnostic cutoffs and clinical utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary Aspergillosis. J Allergy Clin Immunol Pract 2020, 8(2):579-587. https://doi.org/10.1016/j.jaip.2019.08.041

- 240. Tanimoto H, Fukutomi Y, Yasueda H, Takeuchi Y, Saito A, Watai K, Sekiya K, Tsuburai T, Asano K, Taniguchi M, Akiyama K. Molecular-based allergy diagnosis of allergic bronchopulmonary aspergillosis in Aspergillus fumigatus-sensitized Japanese patients. Clin Exp Allergy 2015, 45(12):1790-1800. https://doi.org/10.1111/cea.12590
- 241. Li BCM, Huh SM, Prieto MD, Hong G, Schwarz C, Moss RB, Quon BS. Biomarkers for the diagnosis of allergic bronchopulmonary Aspergillosis in cystic fibrosis: a systematic review and meta-analysis. *J Allergy Clin Immunol Pract* 2021, 9(5):1909-1930 e1904. https://doi.org/10.1016/j.jaip.2020.12.064
- 242. Crameri R. The problem of cross-reactivity in the diagnosis of fungal allergy. *Clin Exp Allergy* 201 1, 41(3):302-304. https://doi.org/10.1111/j.1365-2222.2011.03703.x
- 243. Gómez-Moyano E, Fernández-Sánchez AM, Crespo-Erchiga V, Martínez-Pilar L. Kerion Celsi caused by *Trichophyton tonsurans* with dermatophytid reaction. *Revista iberoamericana de micologia* 2021, 38(3):151-152. https://doi.org/10.1016/j.riam.2020.12.002
- 244. Platts-Mills TA, Fiocco GP, Pollart S, Hayden ML, Jackson S, Wilkins SR. *Trichophyton* allergy in a 24-year-old man with "intrinsic" asthma. *Annals of allergy* 1986, 56(6):454-455, 470-451.
- 245. Jones HE, Reinhardt JH, Rinaldi MG. Immunologic susceptibility to chronic dermatophytosis. *Archives of dermatology* 1974, 110(2):213-220.
- 246. Wilson BB, Deuell B, Mills TA. Atopic dermatitis associated with dermatophyte infection and *Trichophyton* hypersensitivity. *Cutis* 1993, 51(3):191-192.
- 247. Gumowski P, Lech B, Chaves I, Girard JP. Chronic asthma and rhinitis due to *Candida albicans*, epidermophyton, and *Trichophyton*. *Annals of allergy* 1987, 59(1):48-51.
- 248. Liu Fang, Wang Xuelian, Shen Yongnian, Wang Le, Kong Qingtao, Wang Gaofeng, Sang Hong. Study on sensitization and cross-reactivity of dermatophyte and *Candida Albicans* antigens in patients with chronic urticaria. *Journal of Clinical Dermatology* 2013, 42(05):270-273.
- 249. Ständer S. Atopic Dermatitis. *The New England journal of medicine* 2021, 384(12):1136-1143. https://doi.org/10.1056/NEJMra2023911
- 250. Pediatric dermatology group, dermatology and venereology branch, chinese medical association. Chinese consensus on diagnosis and treatment of atopic dermatitis in children (2017 Edition). Chinese Journal of Dermatology. 2017;50(11):784-789.
- 251. Diagnosis and treatment of allergic rhinitis in children—clinical practice guidelines journal of practical pediatrics in China. Journal of Clinical Dermatology 2019, 34(03):169-175. https://doi.org/10.19538/j.ek2019030601
- 252. Respiratory allergy working group, chinese society of allergy; asthma working group, chinese respiratory society. Chinese guidelines for the diagnosis and treatment of allergic asthma (First Edition, 2019). Chinese Journal of Internal Medicine 2019, 58(09):636-655.
- 253. Zhang Xiaoyan, Qian Hua. Advances in diagnosis and treatment of chronic urticaria in children. *Bulletin of Dermatology* 2022, 39(02):110-114+113.
- 254. Xiao YY, Zhou YB, Chao JJ, Ma L. Epidemiology of tinea capitis in children in beijing and adjacent regions, China: a 15-year retrospective study. Mycopathologia 2022. https://doi.org/ 10.1007/s11046-022-00649-2

- 255. Lipoldová M, Demant P. Gene-specific sex effects on susceptibility to infectious diseases. Frontiers in immunology 2021, 12:712688. https://doi.org/10.3389/fimmu.2021.712688
- 256. Wang HN, Shang CS, Yang SJ, Shih IH, Hui CR, Yang CY, Lu CW, Sun PL. Clinical and epidemiological characteristics of tinea capitis in northern Taiwan during 2014-2019: An unusual bimodal distribution of patients and comparison of paediatric and adult cases. *Mycoses* 2021, 64(5):484-494. https://doi.org/10.1111/myc.13234
- 257. Zhu M, Li L, Wang J, Zhang C, Kang K, Zhang Q. Tinea capitis in Southeastern China: a 16-year survey. Mycopathologia 2010, 169(4):235-239. https://doi.org/10.1007/s11046-009-9260-2
- 258. Pols DH, Wartna JB, Moed H, van Alphen EI, Bohnen AM, Bindels PJ. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scandinavian journal of primary health care 2016, 34(2):143-150. https://doi.org/10.3109/02813432.2016.1160629
- 259. Melén E, Kere J, Pershagen G, Svartengren M, Wickman M. Influence of male sex and parental allergic disease on childhood wheezing: role of interactions. *Clinical and experimental allergy:* journal of the British Society for Allergy and Clinical Immunology 2004, 34(6):839-844. https://doi.org/10.1111/j.1365-2222.2004.01957.x
- 260. Becklake MR, Kauffmann F. Gender differences in airway behaviour over the human life span. *Thorax* 1999, 54(12):1119-1138. https://doi.org/10.1136/thx.54.12.1119
- Bylund S, Kobyletzki LB, Svalstedt M, Svensson Å. Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta dermato-venereologica 2020, 100(12):adv00160. https://doi.org/10.2340/00015555-3510
- Sicherer SH, Sampson HA. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. The Journal of allergy and clinical immunology 2014, 133(2):291-307; quiz 308. https://doi.org/10.1016/j.jaci.2013.11.020
- 263. del Boz J, Crespo V, Rivas-Ruiz F, de Troya M. A 30-year survey of paediatric tinea capitis in southern Spain. *Journal of the European Academy of Dermatology and Venereology: JEADV* 2011, 25(2):170-174. https://doi.org/10.1111/j.1468-3083.2010.03733.x
- 264. Ginter-Hanselmayer G, Weger W, Ilkit M, Smolle J. Epidemiology of tinea capitis in Europe: current state and changing patterns. Mycoses 2007, 50 Suppl 2:6-13. https://doi.org/10.1111/j.1439-0507.2007.01424.x
- 265. Ang CC, Tay YK. Inflammatory tinea capitis: non-healing plaque on the occiput of a 4-year-old child. *Annals of the Academy of Medicine, Singapore* 2010, 39(5):412-414.
- 266. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, Guy RH, Macgowan AL, Tazi-Ahnini R, Ward SJ. Epidermal barrier dysfunction in atopic dermatitis. *J Invest Dermatol* 20 09, 129(8):1892-1908. https://doi.org/10.1038/jid.2009.133
- 267. Hata TR, Gallo RL. Antimicrobial peptides, skin infections, and atopic dermatitis. Semin Cutan Med Surg 2008, 27(2):144-150. https://doi.org/10.1016/j.sder.2008.04.002.
- Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev 2005, 18(1):30-43. https://doi.org/ 10.1128/CMR.18.1.30-43.2005

- 269. Al Hasan M, Fitzgerald SM, Saoudian M, Krishnaswamy G. Dermatology for the practicing allergist: Tinea pedis and its complications. *Clinical and molecular allergy: CMA* 2004, 2(1):5. https://doi.org/10.1186/1476-7961-2-5
- 270. Burstein VL, Guasconi L, Beccacece I, Theumer MG, Mena C, Prinz I, Cervi L, Herrero M, Masih DT, Chiapello LS. IL-17-Mediated Immunity Controls Skin Infection and T Helper 1 Response during Experimental Microsporum canis Dermatophytosis. J Invest Dermatol 2018, 138(8):1744-1753. https://doi.org/10.1016/j.jid.2018.02.042
- 271. Kobrynski LJ, Tanimune L, Kilpatrick L, Campbell DE, Douglas SD. Production of T-helper cell subsets and cytokines by lymphocytes from patients with chronic mucocutaneous candidiasis. *Clinical and diagnostic laboratory immunology* 1996, 3(6):740-745. https://doi.org/10.1128/cdli.3.6.740-745.1996
- 272. Butcher MJ, Zhu J. Recent advances in understanding the Th1/Th2 effector choice. *Faculty reviews* 2021, 10:30. https://doi.org/10.12703/r/10-30
- 273. Rajka G, Barlinn C. On the significance of the trichophytin reactivity in atopic dermatitis. *Acta dermato-venereologica* 1979, 59(1):45-47.
- 274. Faergemann J. Atopic dermatitis and fungi. *Clinical microbiology reviews* 2002, 15(4):545-563. https://doi.org/10.1128/cmr.15.4.545-563.2002
- 275. Wang J, Zhao Z, Zhang Y, Li B, Huang C, Zhang X, Deng Q, Lu C, Qian H, Yang X et al. Asthma, allergic rhinitis and eczema among parents of preschool children in relation to climate, and dampness and mold in dwellings in China. Environment Int 2019, 130:104910. https://doi.org/10.1016/j.envint.2019.104910
- 276. Hoyt AE, Borish L, Gurrola J, Payne S. Allergic Fungal Rhinosinusitis. *The journal of allergy and clinical immunology In practice* 2016, 4(4):599-604. https://doi.org/10.1016/j.jaip.2016.03.010
- 277. Bansal M, Kaur K, Gupta A, Goyal D, Girdhar N, Chopra V, Bhagat S, Goel AD. Prevalence of Aspergillus skin hypersensitivity in allergic rhinitis. Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace 2021, 91(3). https://doi.org/10.4081/monaldi.2021.1416
- 278. Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of *Trichophyton mentagrophytes* to human corneocytes as an early event in the pathogenesis of dermatophytosis. *Clin Exp Dermatol* 1993, 18(3):231-235. https://doi.org/10.1111/j.1365-2230.1993.tb02176.x
- 279. Jahnsen FL, Lund-Johansen F, Dunne JF, Farkas L, Haye R, Brandtzaeg P. Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. *J Immunol* 2000, 165(7):4062-4068. https://doi.org/10.4049/jimmunol.165.7.4062
- 280. Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E *et al.* Comparative genome analysis of *Trichophyton rubrum* and related dermatophytes reveals *Candida*te genes involved in infection. *mBio* 2012, 3(5):e00259-00212. https://doi.org/10.1128/mBio.00259-12
- 281. Gnat S, Lagowski D, Nowakiewicz A. Genetic Predisposition and its Heredity in the Context of Increased Prevalence of Dermatophytoses. Mycopathologia 2021, 186(2):163-176. https://doi.org/10.1007/s11046-021-00529-1

- 282. Thakur R, Kalsi AS. Updates on Genital Dermatophytosis. Clin Cosmet Investig Dermatol 2020, 13:743-750. https://doi.org/10.2147/CCID.S262704
- 283. Molenberg D, Deleuran M, Sommerlund M. Connubial tinea gladiatorum due to. Mycoses 2010, 53(6):533-534. https://doi.org/10.1111/j.1439-0507.2009.01734.x
- 284. Wendrock-Shiga G, Mechtel D, Uhrlaß S, Koch D, Krüger C, Nenoff P. [Tinea barbae profunda due to Trichophyton mentagrophytes after journey to Thailand: Case report and review]. Hautarzt 2017, 68(8):639-648. https://doi.org/10.1007/s00105-017-4008-2
- 285. Knopfel N, del Pozo LJ, Escudero Mdel M, Martin-Santiago A. Dermoscopic visualization of vellus hair involvement in tinea corporis: a criterion for systemic antifungal therapy? Pediatr Dermatol 2015, 32(5):e226-227. https://doi.org/10.1111/pde.12648
- 286. Eksomtramage T, Aiempanakit K. Tinea of vellus hair: a diagnostic and therapeutic challenge. BMJ Case Rep 2018, 2018. https://doi.org/10.1136/bcr-2017-223678
- 287. Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by and their role in its virulence. Med Mycol 2001, 39(5):463-468. https://doi.org/ Doi 10.1080/714031047
- 288. Risslegger B, Lass-Flörl C, Blum G, Lackner M. Evaluation of a modified EUCAST Fragmentedmycelium inoculum method for susceptibility testing of dermatophytes and the activity of novel antifungal agents. Antimicrob Agents Ch 2015, 59(6):3675-3682. https://doi.org/10.1128/ Aac.04381-14
- 289. Mignon BR, Nikkels AF, Pierard GE, Losson BJ. The in vitro and in vivo production of a 31.5-kD keratinolytic subtilase from and the clinical status in naturally infected cats. Dermatology 1998, 196(4):438-441. https://doi.org/Doi 10.1159/000017943
- 290. Kaplan E, Gonca S, Kandemir H, Dogen A, Hilmioglu-Polat S, Ilkit M, Tanaka R, Yaguchi T, Uhrlabeta S, Nenoff P. Genes encoding proteolytic enzymes fungalysin and subtilisin in dermatophytes of human and animal origin: a comparative study. Mycopathologia 2020, 185(1):137-144. https://doi.org/10.1007/s11046-019-00367-2
- 291. Toksoz L, Guzel AB, Ilkit M, Akar T, Saracli MA. Scalp dermatophyte carriage in pregnant, pre-, and postmenopausal women: a comparative study using the hairbrush and cytobrush methods of sample collection. Mycopathologia 2011, 171(5):339-344. https://doi.org/10.1007/ s11046-010-9377-3
- 292. Gomez-Moyano E, Crespo Erchiga V, Martinez Pilar L, Martinez Garcia S, Martin Gonzalez T, Godoy Diaz DJ, Vera Casano A. Using dermoscopy to detect tinea of vellus hair. Br J Dermatol 20 16, 174(3):636-638. https://doi.org/10.1111/bjd.14085
- 293. El-Taweel AE, El-Esawy F, Abdel-Salam O. Different trichoscopic features of tinea capitis and alopecia areata in pediatric patients. Dermatol Res Pract 2014, 2014:848763. https://doi.org/ 10.1155/2014/848763
- 294. Yan Wei, Fu Meihua, Mei Qian, Chen Wei, Liu Weida. Analysis of pathogens in 73 cases of pediculosis follicularis in children. Chinese Journal of Leprosy and Skin Diseases 2020, 36(12):722-725.

- 295. Zhi HL, Xia XJ, Liu ZH. Combination dermoscopy for initiation and monitoring of systemic antifungal therapy for paediatric tinea faciei with invasion of vellus hair owing to Microsporum canis. Clin Exp Dermatol 2023, 48(3):249-250. https://doi.org/10.1093/ced/llac087
- 296. Liang G, Zheng X, Song G, Zhang M, Liu J, Zang X, Fu M, Liu W. Adult tinea capitis in China: A retrospective analysis from 2000 to 2019. Mycoses 2020, 63(8):876-888, https://doi.org/10.1111/ myc.13102
- 297. Sharma A, Chandra S, Sharma M. Difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism. Mycoses 2012, 55(5):410-415. https://doi.org/10.1111/j.1439-0507.2011.02133.x
- 298. Baldo A, Chevigne A, Dumez ME, Mathy A, Power P, Tabart J, Cambier L, Galleni M, Mignon B. Inhibition of the keratinolytic subtilisin protease Sub3 from Microsporum canis by its propeptide (proSub3) and evaluation of the capacity of proSub3 to inhibit fungal adherence to feline epidermis. Vet Microbiol 2012, 159(3-4):479-484. https://doi.org/10.1016/j.vetmic.2012.04.041
- 299. Jousson O, Lechenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum. Gene 2004, 339:79-88. https://doi.org/ 10.1016/j.gene.2004.06.024
- 300. Muszewska A, Taylor JW, Szczesny P, Grynberg M. Independent subtilases expansions in fungi associated with animals. Mol Biol Evol 2011, 28(12):3395-3404. https://doi.org/10.1093/molbev/ msr176
- 301. Li Jingbo, Gao Yihong, Wang Jiajun. A case of tinea faciei in a female with trichophyton infection of the vellus hair. Chinese Journal of Dermatology 2001, (05):23.
- 302. Moyano EG, Erchiga VC, Pilar LM, García SM. Correlation between dermoscopy and direct microscopy of morse code hairs in tinea incognito. J Am Acad Dermatol 2016, 74(1):E7-E8. https://doi.org/10.1016/j.jaad.2015.09.019
- 303. Turra N, Navarrete J, Magliano J, Bazzano C. Follicular: the perfect simulator. An Bras Dermatol 2019, 94(3):372-374. https://doi.org/10.1590/abd1806-4841.20197892
- 304. Iwasa K, Ogawa K, Azukizawa H, Tanabe H, Iwanaga T, Anzawa K, Mochizuki T, Asada H. Revival of favus in Japan caused by. Journal of Dermatology 2019, 46(4):347-350. https://doi.org/ 10.1111/1346-8138.14804
- 305. Tang J, Ran Y. Polarized and ultraviolet dermoscopy for the diagnosis of dermatophytosis of vellus hair. Indian J Dermatol Venereol Leprol 2020, 86(5):607. https://doi.org/10.4103/ ijdvl.IJDVL_65_19
- 306. Liu ZH, Zhi HL, Xia XJ. Combination dermoscopy highlights fungal invasion of vellus hair in tinea vellus. Clin Exp Dermatol 2022, 47(1):138-139. https://doi.org/10.1111/ced.14839
- 307. Chermette R, Ferreiro L, Guillot J. Dermatophytoses in animals. Mycopathologia 2008, 166(5-6):385-405. https://doi.org/10.1007/s11046-008-9102-7
- 308. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017, 182(1-2):5-31. https://doi.org/10.1007/s11046-016-0073-9

- 309. Sabou M, Denis J, Boulanger N, Forouzanfar F, Glatz I, Lipsker D, Poirier P, Candolfi E, Letscher-Bru V. Molecular identification of Trichophyton benhamiae in Strasbourg, France: a 9-year retrospective study. Medical mycology 2018, 56(6):723-734. https://doi.org/10.1093/mmy/ myx100
- 310. Chah KF, Majiagbe KA, Kazeem HM, Ezeanyika O, Agbo IC. Dermatophytes from skin lesions of domestic animals in Nsukka, Enugu State, Nigeria. Vet Dermatol 2012, 23(6):522-e104. https:// doi.org/10.1111/j.1365-3164.2012.01089.x
- 311. Jain N, Sharma M. Biodiversity of keratinophilic fungal flora in university campus, jaipur, India. Iranian journal of public health 2012, 41(11):27-33.
- 312. Brasch J, Müller S, Gräser Y. Unusual strains of Microsporum audouinii causing tinea in Europe. Mycoses 2015, 58(10):573-577. https://doi.org/10.1111/myc.12358
- 313. Jain N, Sharma M. Distribution of dermatophytes and other related fungi in Jaipur city, with particular reference to soil pH.Mycoses 2011, 54(1):52-58. https://doi.org/10.1111/ j.1439-0507.2009.01751.x
- 314. Fernandes S, Amaro C, da Luz Martins M, Inácio J, Araújo T, Vieira R, Silvestre MJ, Cardoso J. Kerion caused by Microsporum audouinii in a child. Medical mycology case reports 2013, 2:52-54. https://doi.org/10.1016/j.mmcr.2013.02.002
- 315. Smith KJ, Neafie RC, Skelton HG, 3rd, Barrett TL, Graham JH, Lupton GP. Majocchi's granuloma. Journal of cutaneous pathology 1991, 18(1):28-35. https://doi.org/10.1111/ j.1600-0560.1991.tb00598.x
- 316. West BC. Five-year follow-up of a man with subcutaneous mycetomas caused by Microsporum audouinii. American journal of clinical pathology 1982, 77(6):767-769. https://doi.org/10.1093/ ajcp/77.6.767
- 317. Oke OO, Onayemi O, Olasode OA, Omisore AG, Oninla OA. The prevalence and pattern of superficial fungal infections among school children in ile-ife, south-western Nigeria. Dermatology research and practice 2014, 2014:842917. https://doi.org/ 10.1155/2014/842917
- 318. Viguié-Vallanet C, Serre M, Masliah L, Tourte-Schaefer C. [Epidemic of Trichophyton tonsurans tinea capitis in a nursery school in the Southern suburbs of Paris]. Annales de dermatologie et de venereologie 2005, 132(5):432-438. https://doi.org/10.1016/s0151-9638(05)79304-2
- 319. Kolivras A, Lateur N, De Maubeuge J, Scheers C, Wiame L, Song M. Tinea capitis in Brussels: epidemiology and new management strategy. Dermatology (Basel, Switzerland) 2003, 206(4):384-387. https://doi.org/10.1159/000069964
- 320. Leeming JG, Elliott TS. The emergence of Trichophyton tonsurans tinea capitis in Birmingham, U.K. The British journal of dermatology 1995, 133(6):929-931. https://doi.org/10.1111/ j.1365-2133.1995.tb06928.x
- 321. Kieliger S, Glatz M, Cozzio A, Bosshard PP. Tinea capitis and tinea faciei in the Zurich area an 8-year survey of trends in the epidemiology and treatment patterns. Journal of the European Academy of Dermatology and Venereology: JEADV 2015, 29(8):1524-1529. https://doi.org/ 10.1111/jdv.12908

11

- 322. Zhan P, Li D, Wang C, Sun J, Geng C, Xiong Z, Seyedmousavi S, Liu W, de Hoog GS. Epidemiological changes in tinea capitis over the sixty years of economic growth in China. *Medical mycology* 2015, 53(7):691-698. https://doi.org/10.1093/mmy/myv057
- 323. Nenoff P, Gebhardt M, Klonowski E, Koch D, Krüger C, Uhrlaß S. [Microsporum ferrugineum-an anthropophilic dermatophyte in Germany: Case report and review of the literature]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 2020, 71(9):705-710. https://doi.org/10.1007/s00105-020-04601-7
- 324. Aho R. Mycological studies on *Microsporum* equinum isolated in Finland, Sweden and Norway. Journal of medical and veterinary mycology: bi-monthly publication of the Int Society for Human and Animal Mycology 1987, 25(4):255-260. https://doi.org/
- 325. Kane J, Padhye AA, Ajello L.*Microsporum equinum* in North America. *Journal of clinical microbiology* 1982, 16(5):943-947. https://doi.org/10.1128/jcm.16.5.943-947.1982
- 326. Takatori K, Hasegawa A. Mating experiment of *Microsporum canis* and *M. equinum* isolated from animals with *Nannizzia otae*. *Mycopathologia* 1985, 90(1):59-63. https://doi.org/10.1007/BF00437278
- 327. Gräser Y, Kuijpers AF, El Fari M, Presber W, de Hoog GS. Molecular and conventional taxonomy of the *Microsporum canis* complex. *Medical mycology* 2000, 38(2):143-153. https://doi.org/10.1080/mmy.38.2.143.153
- 328. Aneke CI, Čmoková A, Hubka V, Rhimi W, Otranto D, Cafarchia C. Subtyping options for *Microsporum canis* using microsatellites and mlst: a case study from southern Italy. *Pathogens (Basel, Switzerland)* 2021, 11(1). https://doi.org/10.3390/pathogens11010004
- 329. Choi JS, Gräser Y, Walther G, Peano A, Symoens F, de Hoog S. *Microsporum mirabile* and its teleomorph *Arthroderma mirabile*, a new dermatophyte species in the *M. cookei* clade. *Medical mycology* 2012, 50(2):161-169. https://doi.org/10.3109/13693786.2011.594456
- 330. Rezaei-Matehkolaei A, Makimura K, de Hoog GS, Shidfar MR, Satoh K, Najafzadeh MJ, Mirhendi H. Multilocus differentiation of the related dermatophytes *Microsporum canis*, *Microsporum ferrugineum* and *Microsporum audouinii*. *Journal of medical microbiology* 2012, 61(Pt 1):57-63. https://doi.org/10.1099/jmm.0.036541-0
- 331. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJ, Groenewald M, Chaduli D et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35:242-263. https://doi.org/10.3767/003158515x689135
- 332. Shamsizadeh F, Pchelin IM, Makimura K, Alshahni MM, Satoh K, Katiraee F, Ahmadi B, Rezaei-Matehhkolaei A. DNA topoisomerase 2 gene polymorphism in dermatophytes. *Mycoses* 2020, 63(7):694-703. https://doi.org/10.1111/myc.13086
- 333. Evans BA, Pickerill ES, Vyas VK, Bernstein DA. CRISPR-mediated genome editing of the human fungal pathogen*Candida albicans*. *Journal of visualized experiments*: *JoVE* 2018, (141). https://doi.org/10.3791/58764
- 334. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA Sequence polymorphism analysis of large data sets. *Molecular biology and evolution* 2017, 34(12):3299-3302. https://doi.org/10.1093/molbev/msx248

- 335. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 2015, 6(9):1110-1116. https://doi.org/10.1111/2041-210X.12410
- 336. Douglas J, Jiménez-Silva CL, Bouckaert R, StarBeast3: Adaptive parallelized bayesian inference under the multispecies coalescent. Systematic biology 2022, 71(4):901-916. https://doi.org/ 10.1093/sysbio/syac010
- 337. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Systematic biology 2018, 67(5):901-904. https://doi.org/10.1093/ sysbio/syy032
- 338. Cafarchia C, Figueredo LA, Coccioli C, Camarda A, Otranto D. Enzymatic activity of Microsporum canis and Trichophyton mentagrophytes from breeding rabbits with and without skin lesions. Mycoses 2012, 55(1):45-49. https://doi.org/10.1111/j.1439-0507.2010.01997.x
- 339. Scott JA, Untereiner WA. Determination of keratin degradation by fungi using keratin azure. Medical mycology 2004, 42(3):239-246. https://doi.org/10.1080/13693780310001644680
- 340. Kosanke S, Hamann L, Kupsch C, Moreno Garcia S, Chopra A, Gräser Y. Unequal distribution of the mating type (MAT) locus idiomorphs in dermatophyte species. Fungal genetics and biology: FG & B 2018, 118:45-53. https://doi.org/10.1016/j.fgb.2018.07.003
- 341. Ciesielska A, Stączek P. A new molecular marker for species-specific identification of Microsporum canis. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology] 2020, 51(4):1505-1508. https://doi.org/10.1007/s42770-020-00340-y
- 342. Subelj M, Marinko JS, Učakar V. An outbreak of Microsporum canis in two elementary schools in a rural area around the capital city of Slovenia, 2012. Epidemiology and infection 2014, 142(12):2662-2666. https://doi.org/10.1017/s0950268814000120
- 343. Brosh-Nissimov T, Ben-Ami R, Astman N, Malin A, Baruch Y, Galor I. An Outbreak of Microsporum canis infection at a military base associated with stray cat exposure and person-to-person transmission. Mycoses 2018, 61(7):472-476. https://doi.org/10.1111/myc.12771
- 344. Hermoso de Mendoza M, Hermoso de Mendoza J, Alonso JM, Rey JM, Sanchez S, Martin R, Bermejo F, Cortes M, Benitez JM, Garcia WL, Garcia-Sanchez A. A zoonotic ringworm outbreak caused by a dysgonic strain of Microsporum canis from stray cats. Revista iberoamericana de micologia 2010, 27(2):62-65. https://doi.org/10.1016/j.riam.2009.12.007
- 345. Sacheli R, Cuypers L, Seidel L, Darfouf R, Adjetey C, Lagrou K, Hayette MP. Epidemiology of dermatophytes in belgium: a 5 years' survey. Mycopathologia 2021, 186(3):399-409. https:// doi.org/10.1007/s11046-021-00542-4
- 346. Drenth A, McTaggart AR, Wingfield BD. Fungal clones win the battle, but recombination wins the war.IMA fungus 2019, 10:18. https://doi.org/10.1186/s43008-019-0020-8
- 347. Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: a perspective from the fungal kingdom. Microbiology and molecular biology reviews: MMBR 2010, 74(2):298-340. https:// doi.org/10.1128/mmbr.00005-10
- 348. Persinoti GF, Martinez DA, Li W, Döğen A, Billmyre RB, Averette A, Goldberg JM, Shea T, Young S, Zeng Q et al. Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics 2018, 208(4):1657-1669. https://doi.org/10.1534/genetics.117.300573

- 349. Cerikçioğlu N. [Mating types, sexual reproduction and ploidy in fungi: effects on virulence]. *Mikrobiyoloji bulteni* 2009, 43(3):507-513.
- 350. Nielsen K, Heitman J. Sex and virulence of human pathogenic fungi. *Advances in genetics* 2007, 57:143-173. https://doi.org/10.1016/s0065-2660(06)57004-x
- 351. Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by *Microsporum canis* and their role in its virulence. *Medical mycology* 2001, 39(5):463-468. https://doi.org/10.1080/mmy.39.5.463.468
- 352. Zhan P, Dukik K, Li D, Sun J, Stielow JB, Gerrits van den Ende B, Brankovics B, Menken SBJ, Mei H, Bao W *et al.* Phylogeny of dermatophytes with genomic character evaluation of clinically distinct *Trichophyton rubrum* and *T. violaceum. Stud Mycol* 2018, 89:153-175. https://doi.org/10.1016/j.simyco.2018.02.004
- 353. Zonta YR, Dezen ALO, Della Coletta AM, Yu KST, Carvalho L, Dos Santos LA, Deprá IC, Kratofil RM, Willson ME, Zbytnuik L et al. Paracoccidioides brasiliensis releases a dnase-like protein that degrades nets and allows for fungal escape. Frontiers in cellular and infection microbiology 2020, 10:592022. https://doi.org/10.3389/fcimb.2020.592022
- 354. Sánchez M, Colom F. Extracellular DNase activity of *Cryptococcus neoformans* and *Cryptococcus gattii*. Revista iberoamericana de micologia 2010, 27(1):10-13. https://doi.org/10.1016/j.riam.2009.11.004
- 355. Bentubo HD, Gompertz OF. Effects of temperature and incubation time on the *in vitro* expression of proteases, phospholipases, lipases and DNases by different species of *Trichosporon. SpringerPlus* 2014, 3:377. https://doi.org/10.1186/2193-1801-3-377
- 356. López-Martínez R, Manzano-Gayosso P, Mier T, Méndez-Tovar LJ, Hernández-Hernández F. [Exoenzymes of dermatophytes isolated from acute and chronic tinea]. *Revista latinoamericana de microbiologia* 1994, 36(1):17-20.
- 357. Kruithoff C, Gamal A, McCormick TS, Ghannoum MA. Dermatophyte infections worldwide: increase in incidence and associated antifungal resistance. *Life (Basel)* 2023, 14(1). https://doi.org/10.3390/life14010001
- 358. Moriello KA, Coyner K, Paterson S, Mignon B. Diagnosis and treatment of dermatophytosis in dogs and cats.: Clinical consensus guidelines of the world association for veterinary dermatology. *Vet Dermatol* 2017, 28(3):266-e268. https://doi.org/10.1111/vde.12440
- 359. Tang C, Zhou X, Guillot J, Wibbelt G, Deng S, Kandemir H, Gräser Y, Feng P, Kang Y, de Hoog GS. Dermatophytes and mammalian hair: aspects of the evolution of *Arthroderma* taceae. *Fungal Diversity* 2023. https://doi.org/10.1007/s13225-023-00526-3
- 360. Ferguson L, Fuller LC. Spectrum and burden of dermatophytes in children. *J Infect* 2017, 74 Suppl 1:S54-S60. https://doi.org/10.1016/S0163-4453(17)30192-5
- 361. Wang R, Liu W, Liu X, Wan Z, Sybren de Hoog G, Li R, Song Y. Comparative analysis of whole genomes and transcriptomes of Microsporum canis from invasive dermatophytosis and tinea capitis. Emerg Microbes Infect 2023, 12(1):2219346. https://doi.org/10.1080/22221751.2023.2219346

- 362. Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Diversity 2020, 104(1):333-387. https://doi.org/ 10.1007/s13225-020-00465-3
- 363. Fumeaux J, Mock M, Ninet B, Jan I, Bontems O, Lechenne B, Lew D, Panizzon RG, Jousson O, Monod M. First report of Arthroderma benhamiae in Switzerland. Dermatology 2004, 208(3):244-250. https://doi.org/10.1159/000077311
- 364. Bartosch T, Frank A, Gunther C, Uhrlass S, Heydel T, Nenoff P, Baums CG, Schrodl W. Trichophyton benhamiae and T. mentagrophytes target guinea pigs in a mixed small animal stock. Med Mycol Case Rep 2019, 23:37-42. https://doi.org/10.1016/j.mmcr.2018.11.005
- 365. Contet-Audonneau N, Leyer C. Émergence d'un dermatophyte transmis par le cochon d'Inde et proche de Trichophyton mentagrophytes var. erinacei: T. mentagrophytes var. porcellae. Journal de Mycologie Médicale 2010, 20(4):321-325. https://doi.org/10.1016/j.mycmed.2010.08.001 (htt ps://doi.org/10.1016/j.mycmed.2010.08.001)
- 366. Kubo H, Iizuka H, Shibaki H. Mating behaviour of Microsporum canis from human ringworm cases in Hokkaido prefecture in Japan. J Dermatol 1987, 14(3):241-243. https://doi.org/ 10.1111/j.1346-8138.1987.tb03568.x
- 367. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30(15):2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- 368. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1(1):18. https://doi.org/10.1186/2047-217X-1-18
- 369. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simao FA, Zdobnov EM. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 2019, 47(D1):D807-D811. https://doi.org/10.1093/nar/gky1053
- 370. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31(19):3210-3212. https://doi.org/10.1093/bioinformatics/btv351
- 371. Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021, 49(16):9077-9096. https://doi.org/ 10.1093/nar/gkab688
- 372. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013, 41(12):e121. https://doi.org/ 10.1093/nar/gkt263
- 373. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods 2021, 18(4):366-368. https://doi.org/10.1038/s41592-021-01101-x
- 374. Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021, 38(12):5825-5829. https://doi.org/10.1093/molbev/msab293

- 375. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 201 9, 47(D1):D309-D314. https://doi.org/10.1093/nar/gky1085
- 376. Teufel F. Almagro Armenteros JJ. Johansen AR. Gislason MH. Pihl SI. Tsirigos KD. Winther O. Brunak S, von Heijne G, Nielsen H. Signal P6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022, 40(7):1023-1025. https://doi.org/10.1038/ s41587-021-01156-3
- 377. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021 , 49(W1):W29-W35. https://doi.org/10.1093/nar/gkab335
- 378. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014, 30(9):1236-1240. https://doi.org/10.1093/bioinformatics/btu031
- 379. Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 2020, 21(1):241. https://doi.org/10.1186/s13059-020-02154-5
- 380. Lang BF, Beck N, Prince S, Sarrasin M, Rioux P, Burger G. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front Plant Sci 20 23, 14:1222186. https://doi.org/10.3389/fpls.2023.1222186
- 381. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019, 20(1):238. https://doi.org/10.1186/s13059-019-1832-y
- 382. Kelly S, Maini PK. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.PLoS One 2013, 8(3):e58537. https://doi.org/10.1371/ journal.pone.0058537
- 383. Emms DM, Kelly S. STAG: Species tree inference from all genes. bioRxiv 2018:267914. https:// doi.org/10.1101/267914
- 384. Ranwez V, Harispe S, Delsuc F, Douzery EJ. MACSE: Multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS One 2011, 6(9):e22594. https://doi.org/ 10.1371/journal.pone.0022594
- 385. Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27(21):3070-3071. https://doi.org/10.1093/bioinformatics/btr521
- 386. Risslegger B, Lass-Florl C, Blum G, Lackner M. Evaluation of a modified EUCAST fragmentedmycelium inoculum method for in vitro susceptibility testing of dermatophytes and the activity of novel antifungal agents. Antimicrob Agents Chemother 2015, 59(6):3675-3682. https:// doi.org/10.1128/AAC.04381-14
- 387. Zhou X, Liu W, Li M, Wu R, Wu A, Chen P, Qin S, Li H, Wei L, Zhu G et al. Aetiology of tinea of vellus hair and substrate specificity in Microsporum species. Mycoses 67(2):e13698. https://doi.org/10.1111/myc.13698 (https://doi.org/10.1111/myc.13698)

- 388. Lyu F, Han F, Ge C, Mao W, Chen L, Hu H, Chen G, Lang Q, Fang C. OmicStudio: A composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication.iMeta 2023, 2(1):e85. https://doi.org/10.1002/imt2.85 (https://doi.org/10.1002/ imt2.85)
- 389. Kandemir H, Dukik K, de Melo Teixeira M, Stielow JB, Delma FZ, Al-Hatmi AMS, Ahmed SA, Ilkit M, de Hoog GS. Phylogenetic and ecological reevaluation of the order Onygenales. Fungal Diversity 2022, 115(1):1-72. https://doi.org/10.1007/s13225-022-00506-z
- 390. Kabtani J, Rangue S. A Comparative description of dermatophyte genomes: a state-of-the-art review. Mycopathologia 2023, 188(6):1007-1025. https://doi.org/10.1007/s11046-023-00802-5
- 391. de Hoog S, Tang C, Kong X, Kandemir H, Jiang Y: Introduction to dermatophytes. in: dermatophytes and dermatophytoses. Edited by Bouchara J-P, Nenoff P, Gupta AK, Chaturvedi V. Cham: Springer Int Publishing; 2021: 3-12.
- 392. Martinez DA, Oliver BG, Graser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals Candidate genes involved in infection. 3(5):e00259-00212. https://doi.org/10.1128/mBio.00259-12
- 393. Yamada T, Yaguchi T, Maeda M, Alshahni MM, Salamin K, Guenova E, Feuermann M, Monod M. Gene Amplification of CYP51B: a New mechanism of resistance to azole compounds inTrichophyton indotineae. Antimicrob Agents Chemother 2022, 66(6):e0005922. https://doi.org/ 10.1128/aac.00059-22
- 394. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 2006, 44(7):641-645. https://doi.org/10.1080/13693780600876553
- 395. Martinez-Rossi NM, Peres NT, Rossi A. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia 2017, 182(1-2):215-227. https://doi.org/10.1007/s11046-016-0057-9
- 396. Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S, Staib P, Heidel A, Felder M, Petzold A, Szafranski K et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology 2011, 12(1):R7. https://doi.org/10.1186/ gb-2011-12-1-r7
- 397. Kombrink A, Thomma BP. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog 2013, 9(12):e1003769. https://doi.org/10.1371/journal.ppat.1003769
- 398. Kar B, Patel P, Free SJ. Trichophyton rubrum LysM proteins bind to fungal cell wall chitin and to the N-linked oligosaccharides present on human skin glycoproteins. PLoS One 2019, 14(4):e0215034. https://doi.org/10.1371/journal.pone.0215034
- 399. Chang PK, Cary JW, Lebar MD. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 2020, 104(6):2277-2286. https://doi.org/10.1007/ s00253-020-10347-y
- 400. Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal melanin and the mammalian immune system. J Fungi (Basel) 2021, 7(4). https://doi.org/10.3390/jof7040264
- 401. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics 2013.

- 402. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.Fly (Austin) 2012, 6(2):80-92. https://doi.org/10.4161/fly.19695
- 403. Rashid A. Arthroconidia as vectors of dermatophytosis. Cutis 2001, 67(5 Suppl):23.
- 404. Esquenazi D, de Souza W, Alviano CS, Rozental S. The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immunol Med Microbiol 2003, 35(2):113-123. https://doi.org/10.1016/S0928-8244(03)00007-5
- 405. Faway E, Lambert de Rouvroit C, Poumay Y.In vitro models of dermatophyte infection to investigate epidermal barrier alterations. Exp Dermatol 2018, 27(8):915-922. https://doi.org/ 10.1111/exd.13726
- 406. Gräser Y, Scott J, Summerbell R. The new species concept in dermatophytes-a polyphasic approach. Mycopathologia 2008, 166(5-6):239-256. https://doi.org/10.1007/s11046-008-9099-y
- 407. Zhou X, Ricardo B, Chao T, Aparecida VV, Sybren dH, and Feng P. Dermatophytes adaptation to the human host exemplified by Microsporum canis. Mycology 2025:1-16. https://doi.org/ 10.1080/21501203.2025.2461720
- 408. Ilkit M, Gümral R, Döğen A. Borelli's lactritmel agar induces conidiation in rare-macroconidia producing dermatophytic fungi. Med Mycol 2012, 50(7):735-739. https://doi.org/ 10.3109/13693786.2012.680506
- 409. Dijksterhuis J. Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol 2019, 81:2-11. https://doi.org/10.1016/j.fm.2018.11.006
- 410. Osherov N, May GS. The molecular mechanisms of conidial germination. FEMS Microbiol Lett 200 1, 199(2):153-160. https://doi.org/10.1111/j.1574-6968.2001.tb10667.x
- 411. Dörter I, Momany M. Fungal Cell Cycle: A Unicellular versus multicellular comparison. Microbiol Spectr 2016, 4(6). https://doi.org/10.1128/microbiolspec.FUNK-0025-2016
- 412. Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C, Glaser P, Coppée JY, François JM, Latgé JP. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics 2008, 9:417. https://doi.org/10.1186/1471-2164-9-417
- 413. Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016, 57:93-99. https://doi.org/10.1016/j.semcdb.2016.03.017
- 414. Zeinoun B, Teixeira MT, Barascu A. Hog1 acts in a Mec1-independent manner to counteract oxidative stress following telomerase inactivation in Saccharomyces cerevisiae. Commun Biol 20 24, 7(1):761. https://doi.org/10.1038/s42003-024-06464-3
- 415. Novodvorska M, Stratford M, Blythe MJ, Wilson R, Beniston RG, Archer DB. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth. Fungal Genet Biol 2016, 94:23-31. https://doi.org/10.1016/j.fgb.2016.07.002
- 416. Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022, 79(6):333. https://doi.org/10.1007/s00018-022-04353-8

- 417. Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB. Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNAsequencing. BMC Genomics 2013, 14:246. https://doi.org/10.1186/1471-2164-14-246
- 418. Li C, Jia S, Rajput SA, Qi D, Wang S. Transcriptional stages of conidia germination and associated genes in Aspergillus flavus: An essential role for redox genes. Toxins (Basel) 2022, 14(8). https://doi.org/10.3390/toxins14080560
- 419. Lau AYT, Xie Y, Cheung MK, Cheung PCK, Kwan HS. Genome-wide mRNA and miRNA analysis in the early stages of germ tube outgrowth in Coprinopsis cinerea. Fungal Genet Biol 2020, 142:103416. https://doi.org/10.1016/j.fgb.2020.103416
- 420. Hoppen J, Dietz M, Warsow G, Rohde R, Schüller HJ. Ribosomal protein genes in the yeastCandida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae. Mol Genet Genomics 2007, 278(3):317-330. https://doi.org/10.1007/ s00438-007-0253-x
- 421. Cagas SE, Jain MR, Li H, Perlin DS. The proteomic signature of Aspergillus fumigatus during early development. Mol Cell Proteomics 2011, 10(11):M111.010108. https://doi.org/10.1074/ mcp.M111.010108
- 422. Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q. Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 2022, 23(1):21. https://doi.org/10.1186/s12864-021-08184-y
- 423. Deng GM, Yang QS, He WD, Li CY, Yang J, Zuo CW, Gao J, Sheng O, Lu SY, Zhang S, Yi GJ. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Appl Microbiol Biotechnol 2015, 99(17):7189-7207. https://doi.org/10.1007/s00253-015-6768-x
- 424. Xie Y, Chan PL, Kwan HS, Chang J. The genome-wide characterization of alternative splicing and rna editing in the development of Coprinopsis cinerea. J Fungi (Basel) 2023, 9(9). https:// doi.org/10.3390/jof9090915
- 425. Pang LM, Zeng G, Chow EWL, Xu X, Li N, Kok YJ, Chong SC, Bi X, Gao J, Seneviratne CJ, Wang Y. Sdd3 regulates the biofilm formation of Candida albicans via the Rho1-PKC-MAPK pathway. mBio 2025, 16(2):e0328324. https://doi.org/10.1128/mbio.03283-24
- 426. Baltussen TJH, Zoll J, Verweij PE, Melchers WJG. Molecular mechanisms of conidial germination inAspergillus spp. Microbiol Mol Biol Rev 2020, 84(1). https://doi.org/10.1128/mmbr.00049-19
- 427. Liu Y, Yang K, Qin Q, Lin G, Hu T, Xu Z, Wang S. G Protein α subunit gpab is required for asexual development, aflatoxin biosynthesis and pathogenicity by regulating camp signaling inAspergillus flavus. Toxins (Basel) 2018, 10(3). https://doi.org/10.3390/toxins10030117
- 428. Fillinger S, Chaveroche MK, Shimizu K, Keller N, d'Enfert C. cAMP and ras signalling independently control spore germination in the filamentous fungusAspergillus nidulans. Mol Microbiol 2002, 44(4):1001-1016. https://doi.org/10.1046/j.1365-2958.2002.02933.x
- 429. Bui DC, Lee Y, Lim JY, Fu M, Kim JC, Choi GJ, Son H, Lee YW. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum. Sci Rep 2016, 6:28154. https://doi.org/10.1038/srep28154

- 430. Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015, 2015:132635. https://doi.org/10.1155/2015/132635
- 431. Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA et al. Deletion of the α -(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Asperaillus fumigatus. PLoS Pathog 2013, 9(11):e1003716. https://doi.org/10.1371/journal.ppat.1003716
- 432. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. Aspergillus fumiqatus morphology and dynamic host interactions. Nat Rev Microbiol 2017, 15(11):661-674. https:// doi.org/10.1038/nrmicro.2017.90
- 433. Park HS, Ni M, Jeong KC, Kim YH, Yu JH. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 2012, 7(9):e45935. https://doi.org/10.1371/ journal.pone.0045935
- 434. Park HS, Yu JH. Developmental regulators in Aspergillus fumigatus. J Microbiol 2016, 54(3):223-231. https://doi.org/10.1007/s12275-016-5619-5
- 435. Wu MY, Mead ME, Lee MK, Ostrem Loss EM, Kim SC, Rokas A, Yu JH. Systematic dissection of the evolutionarily conserved weta developmental regulator across a genus of filamentous fungi.mBio 2018, 9(4). https://doi.org/10.1128/mBio.01130-18
- 436. Kandemir H, Dukik K, Hagen F, Ilkit M, Graser Y, de Hoog GS. Polyphasic discrimination of Trichophyton tonsurans and T. equinum from humans and horses. Mycopathologia 2020, 185(1):113-122. https://doi.org/10.1007/s11046-019-00344-9
- 437. Moskaluk A, Darlington L, Kuhn S, Behzadi E, Gagne RB, Kozakiewicz CP, VandeWoude S. Genetic characterization of Microsporum canis Clinical isolates in the United States. J Fungi (Basel) 2022, 8(7). https://doi.org/10.3390/jof8070676
- 438. Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 2004, 5(1):1-10. https://doi.org/10.1016/j.femsyr.2004.04.004
- 439. Bliven KA, Maurelli AT. Evolution of bacterial pathogens within the human host. Microbiol Spectr 2016, 4(1). https://doi.org/10.1128/microbiolspec.VMBF-0017-2015
- 440. Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 2017, 13(2):e1006149. https://doi.org/10.1371/journal.ppat.1006149
- 441. da Silva LG, Martins MP, Sanches PR, Peres NTA, Martinez-Rossi NM, Rossi A. Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale. Braz J Microbiol 2020, 51(4):1585-1591. https:// doi.org/10.1007/s42770-020-00313-1
- 442. Thomson DD, Wehmeier S, Byfield FJ, Janmey PA, Caballero-Lima D, Crossley A, Brand AC. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae. Cell Microbiol 2015, 17(3):342-354. https://doi.org/10.1111/cmi.12369
- 443. Westman J, Moran G, Mogavero S, Hube B, Grinstein S. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio 2018, 9(5). https:// doi.org/10.1128/mBio.01226-18

- 444. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latge JP. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 2017, 15(11):661-674. https:// doi.org/10.1038/nrmicro.2017.90
- 445. Xu X, Liu T, Leng W, Dong J, Xue Y, Yang H, Jin Q. Global gene expression profiles for the growth phases of Trichophyton rubrum. Sci China Life Sci 2011, 54(7):675-682. https://doi.org/10.1007/ s11427-011-4187-5
- 446. Beaussart A, Brandhorst T, Dufrene YF, Klein BS. Blastomyces virulence adhesin-1 protein binding to glycosaminoglycans is enhanced by protein disulfide isomerase. mBio 2015, 6(5):e01403-01415. https://doi.org/10.1128/mBio.01403-15
- 447. Logan A, Wolfe A, Williamson JC. Antifungal resistance and the role of new therapeutic agents.Curr Infect Dis Rep 2022, 24(9):105-116. https://doi.org/10.1007/s11908-022-00782-5
- 448. Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R, Alcazar-Fuoli L, Mellado E. A Cyp51B mutation contributes to azole resistance in Aspergillus fumigatus. J Fungi (Basel) 2020, 6(4). https://doi.org/10.3390/jof6040315
- 449. Kano R, Hsiao YH, Han HS, Chen C, Hasegawa A, Kamata H. Resistance mechanism in a terbinafine-resistant strain of Microsporum canis. Mycopathologia 2018, 183(3):623-627. https:// doi.org/10.1007/s11046-018-0242-0
- 450. Li H, Wu S, Mao L, Lei G, Zhang L, Lu A, An L, Yang G, Abliz P, Meng G. Human pathogenic fungus Trichophyton schoenleinii activates the NLRP3 inflammasome. Protein Cell 2013, 4(7):529-538. https://doi.org/10.1007/s13238-013-2127-9
- 451. Mao L, Zhang L, Li H, Chen W, Wang H, Wu S, Guo C, Lu A, Yang G, An L et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun 2014, 82(2):882-892. https://doi.org/10.1128/IAI.01097-13
- 452. Cambier LC, Heinen MP, Bagut ET, Antoine NA, Mignon BR. Overexpression of TLR-2 and TLR-4 mRNA in feline polymorphonuclear neutrophils exposed to Microsporum canis. Vet Dermatol 201 6, 27(2):78-81e22. https://doi.org/10.1111/vde.12295
- 453. Hay RJ, Calderon RA, Collins MJ. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol 1983, 81(3):270-274. https://doi.org/10.1111/1523-1747.ep12518292

RESEARCH DATA MANAGEMENT

The data collected throughout my PhD program at Radboud University Medical Center has been archived following the FAIR principles (Findable, Accessible, Interoperable, and Reusable). The raw and analyzed in vitro data have been saved on local servers managed by the Department of Medical Microbiology, which are backed up daily on the Radboudumc servers.

All fungal isolates used in this thesis are stored in the Radboudumc fungal strain collection. The raw and analyzed data from this research have been or are part of published papers and can be made available upon request to the corresponding author.

PHD PORTFOLIO

Name PhD Candidate:	Xin Zhou	PhD period:	23.07.2021 - 01.07.2025
Department:	Medical microbiology	Promotors:	Prof. Paul Verweij
Graduate School:	Radboudumc	Copromotoren:	Prof. Sybren de Hoog
			Prof. Peiying Feng

Table. (continued)

	Years	Hours
TRAINING ACTIVITIES		
a) Courses & Workshops		
Radboudumc - Introduction day	2021	6.00
Radboudumc - In the lead - Radboudumc introduction for PhD candidates	2021	12.00
Radboudumc - eBROK course	2021	42.00
RU - Analysing longitudinal and multilevel data using R	2021	96.00
RU - Effective Writing Strategies	2022	75.00
RU - Essential skills to manage your PhD project	2022	24.00
RU - Design and Illustration	2022	26.00
RU - Projectmanagement for PhD candidates	2022	52.00
RU - Presenting and Poster Pitching	2022	51.00
RU - Writing a Review Article	2022	28.00
Radboudumc - e-learning Human-related scientific research in Radboudumc	2022	2.00
RU - Presentation Skills	2022	42.00
RU - Open Science for PhD candidates	2023	20.00
Radboudumc - Scientific integrity	2023	20.00
RU - Analytic Storytelling	2023	20.00
RU - Achieving your Goals and performing more successfully in your PhD	2024	28.00
RU - Een PhD en dan? Solliciteren, netwerken en je loopbaan onder de loep	2024	20.00

Table. (continued)

	Years	Hours			
TRAINING ACTIVITIES					
b) Seminars & lectures					
Transition of Research Theme Infectious Diseases & Global Health into new Research Programs	2021	6.00			
Models and methods for infectious diseases	2021	12.00			
Leveraging Implementation Science to Improve Antibiotic Stewardship in the Emergency Department and Outpatient Setting	2022	6.00			
Fungal genomics: what brings sequencing to light regarding resistance, disease and spread?	2022	6.00			
CD8 T cell imaging in covid patients	2023	28.00			
Advantages in the diagnosis and treatment of invasive aspergillosis	2024	6.00			
Webinar to present case study of regional production of health products	2024	6.00			
Health on a Plate: Immune Benefits of Traditional African Diets	2025	6.00			
S. aureus bacteaemia – an international collaboration to find the best treatment	2025	12.00			

Table. (continued)

	Years	Hours
TRAINING ACTIVITIES		
c) Symposia & congresses		
21nd ISHAM Congress, 16-20 Sep, New Delhi (Poster)	2022	42.00
57th Scientific Conference of the German Mycological Society (DMykG), 27-29 Sep, Frankfurt (Poster)	2022	28.00
Netherlands Society for Medical Mycology (NVMy) Fungal Update meeting, 26 May, Utrecht, the Netherlands (Oral presentati	2023	28.00
PhD retreat 's-Hertogenbosch (Oral presentation)	2023	42.00
Netherlands Society for Medical Mycology (NVMy) Fall Meeting, 16 Oct, Utrecht, the Netherlands (Oral presentation)	2023	28.00
11th Trends in Medical Mycology (TIMM-11), 20-23 Oct, Athens, Greece (Oral presentation)	2023	42.00
PhD retreat Eindhoven	2024	28.00
Back to the Future in Infectious Diseases	2024	28.00
Radboudumc Community for Infectious Diseases (RCI) Science Day (Oral presentation)	2024	28.00
12th International Mycological Congress (IMC12), 11-15 Aug, Maastricht (Oral presentation)	2024	28.00
59. Wissenschaftlichen Tagung der Deutschsprachigen Mykologischen Gesellschaft e. V. (Oral presentation)	2025	28.00
d) Other		
Radboudumc - General Radboudumc introduction for research personnel Weekly: apartment Meeting (2 presentations/year)	2021-2025	9.00 100.00
	Years	Hours
TEACHING ACTIVITIES		
e) Lecturing		
2nd FDLC/ATLAS Course in Clinical Fungi, 23–28 Sep, Mayo Clinic, Rochester, Minnesota, USA (Guest Faculty)	2024	42.00
International course medical mycology, 5-10 Feb, Nijmegen, the Netherlands (Guest Faculty)	2024	42.00
Workshop in dermatophytes (Guest Faculty)	2024	12.00
Total 1,249.00		

LIST OF PUBLICATIONS

- 1. Zhou X, Belmonte R, Tang C, Vicente VA, de Hoog S, Feng P. Dermatophytes adaptation to the human host exemplified by Microsporum canis. Mycology. 2025 Feb 16;16(3):1357-1372. doi: 10.1080/21501203.2025.2461720.
- Zhou X, Cheng Z, Yang O, Ma H, Xie Y, Xu Z, Xia J, Chen J, Lu C, Feng P. Effects of Malassezia globosa on the Expression of Thymic Stromal Lymphopoietin and Differentiation of T Helper Cells in MC903-Induced Atopic Dermatitis Mouse Model. Int J Microbiol. 2025 Apr 22; 2025:3586621. doi: 10.1155/ijm/3586621.
- Li M. Wu L. Wu R. **Zhou X**. Liu W. Yin S. Feng P. Black Grain Eumycetoma due to *Emarellia arisea* Acquired in China. J Dermatol. 2025 Jul;52(7): e644-e645. doi: 10.1111/1346-8138.17775. Epub 2025 May 7.
- Quan Y, **Zhou X**, Belmonte-Lopes R, Li N, Wahyuningsih R, Chowdhary A, Hawksworth DL, Stielow JB, Walsh TJ, Zhang S, Teixeira MM, Matute D, de Hoog S, Wu D. Potential predictive value of phylogenetic novelties in clinical fungi, illustrated by Histoplasma. IMA Fungus. 2025 May 23;16: e145658. doi: 10.3897/imafungus.16.145658.
- Ahmed SA, Alkanzo EM, Li QR, Abuzeid N, Zhou X, Feng PY, Garcia-Hermoso D, Sybren dH. The other black fungi: exploring the opportunists in the order *Pleosporales*. One Health Mycology, 2025; 2(1): 11-41. doi: 10.63049/OHM.25.21.2.
- Tang C, Kong X, Jansen J, Vossgroene K, Vu TL, Oberheitmann B, Tehupeiory-Kooreman M, Zhou S, Zhou X, Tsui CK, Liu W, Kang Y, Ahmed SA, de Hoog S. Utility of MALDI-ToF MS for Recognition and Antifungal Susceptibility of Nannizzia, an Underestimated Group of Dermatophytes. Mycoses. 2025 Sep;68(9): e70117. doi: 10.1111/myc.70117.
- Zhou X, Quan Y, Ahmed SA, Ilkit M, Liu WT, Zhang XY, Feng PY. The dual roles of fungi: allergens and pathogens. One Health Mycology, 2024. 1(2): 54-71. doi.org/10.63049/OHM.24.12.2
- 8. Zhou X, Liu W, Li M, Wu R, Wu A, Chen P, Qin S, Li H, Wei L, Zhu G, de Hoog S, Feng P. Aetiology of tinea of vellus hair and substrate specificity in Microsporum species. Mycoses. 2024;67(2): e13698. doi.org/10.1111/myc.13698.
- 9. de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev. 2024 Sep 18;48(5): fuae022. doi: 10.1093/femsre/fuae022.
- 10. **Zhou X**, Ahmed SA, Tang C, Grisolia ME, Warth JFG, Webster K, Peano A, Uhrlass S, Cafarchia C, Hayette MP, Sacheli R, Matos T, Kang Y, de Hoog GS, Feng P. Human adaptation and diversification in the Microsporum canis complex. IMA Fungus. 2023 Jul 24;14(1):14. doi: 10.1186/s43008-023-00120-x.
- 11. Tang C, **Zhou X**, Guillot J, Wibbelt G, Deng S, Kandemir H, Gräser Y, Feng P, Kang Y, de Hoog GS. Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae. Fungal Diversity. 2024;125,139–156. doi.org/10.1007/s13225-023-00526-3
- **Zhou X**, Liu W, Yang S, Wu A, Chen P, Yin S, de Hoog S, Li M, Feng P. Exploring the clinical features and risk factors for children tinea capitis complicated with allergic diseases. Mycoses. 2023 Apr;66(4):338-345. doi: 10.1111/myc.13558. Epub 2022 Dec 27.

13. **Zhou X**, Sybren DH, Feng P. Ten cases of tinea incognito due to *Trichophyton rubrum*, and literature review on the pathogenic characteristics. Med Mycol. 2022 Sep 20;60(Suppl 1): myac072P320. doi: 10.1093/mmy/myac072.P320.

CURRICULUM VITAE

Xin Zhou was born in November 1993 in Anhui Province, China. She obtained her bachelor's degree in clinical medicine from Anhui Medical University (Hefei, Anhui, China), and later received her master's degree in Dermatology from Sun Yat-sen University (Guangzhou, Guangdong, China). Under the supervision of Professor Peiying Feng, she developed a strong interest in medical mycology, which led her to pursue a PhD in Medical Mycology at Radboud University Medical Center in the Netherlands, under the guidance of Professors Sybren de Hoog and Paul Verweij. Her doctoral research focuses on the adaptive evolution and immunological interactions of dermatophytes, integrating approaches from epidemiology, molecular biology, genomics, transcriptomics, and immunology, with particular emphasis on Microsporum canis.

During her PhD, Xin Zhou actively collaborated with colleagues from China, the Netherlands, Brazil, the United States, and other countries, engaging in interdisciplinary teamwork that spanned clinical research. experimentation, and bioinformatics analysis. These international collaborations not only enhanced the depth and breadth of her projects but also fostered a strong network of academic exchange and mutual learning. Her research has been published in several high-impact journals, including Funqal Diversity, FEMS Microbiology Reviews, Mycoses, and IMA Fungus. Her work explores phylogenetic novelties, pathogenic mechanisms of human adapted Microsporum canis, spore germination, and fungal immune modulation. She has been involved in several multicenter research projects supported by national and provincial funding bodies, contributing to experimental design, establishing animal models, and performing immunological analyses. In September 2025, her research titled "Dermatophytes adaptation to the human host exemplified by Microsporum canis" was awarded the Scientific Prize by the DMykG Foundation (Deutschsprachigen Mykologischen Gesellschaft).

Xin Zhou has presented her findings at numerous international conferences, including the ISHAM Congress, TIMM Congress, the IMC Congress, and IUMS et al. She serves as a member of Yong ISHAM and ECMM, acts as the guest lecturer for the International Clinical Mycology Course. In addition to her research, she regularly reviews manuscripts for journals such as Mycoses, Mycopathologia, and Frontiers in Fungal Biology. She has supervised undergraduate and graduate students, assisting them in project planning, experimental protocols, and academic writing. Her experimental expertise includes fungal culture, quantitative PCR, genome and transcriptome sequencing, spatial transcriptomics, fluorescence situ

hybridization (FISH), scanning and transmission electron microscopy (SEM/TEM), flow cytometry, *in vivo* infection models, and immunohistochemistry, encompassing a broad range of techniques in cell and molecular biology.

DANKWOORD (ACKNOWLEDGEMENTS)

This dissertation marks the end of a transformative journey that would not have been possible without the support, encouragement, wisdom, and warmth of the many people who accompanied me along the way. As I look back over these years, I am deeply grateful not only for the academic knowledge gained, but even more so for the friendships formed, the mentorship received, and the countless moments of kindness that carried me through.

First and foremost, I would like to express my sincere gratitude to my supervisors. Professor **Sybren de Hoog**, thank you for opening the door to the fascinating world of medical mycology and for your patient, visionary guidance throughout my doctoral journey. Your vast knowledge and quiet encouragement have been an anchor to me in both research and personal growth. I am also deeply thankful to Professor Paul Verweij, whose insight, academic rigor, and support created the foundation for many of the ideas in this work. It has been a privilege to learn from both of you.

To Professor **Peiying Feng** at the Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, thank you for your enduring support, mentorship, and for being my strongest bridge between clinical medicine and fungal research. Your inspiration continues to guide my future career.

A very special thanks goes to my daily supervisor, Dr. Sarah A. Ahmed. Sarah, your tireless dedication, kindness, and patience have meant the world to me. You were not only a mentor in science but also a source of calm, humor, and strength during some of the most challenging moments of this journey. Thank you for believing in me and always showing up with care and clarity.

Among the people who made this experience so meaningful, I am especially indebted to my colleagues and friends in the lab. Quan Yu, thank you for being like a big sister to me—always taking care of me, worrying for me, encouraging me, and sharing so much warmth. Tang Chao, thank you for picking me up from the train station on my first day in the Netherlands. That small gesture made me feel welcomed and gave me courage.

To Niu Xueke, Zhou Shaoqin, and Li Na, thank you for sharing your expertise, your kindness, and your company-through experiments, coffee breaks, and heart-tohearts. You were never just colleagues; you were part of my family abroad.

To my wonderful Brazilian friends, **Maria Eduarda Grisolia**, **Bruno Lustosa**, and **Bruna Jacomel**—what a blessing to have met you! Thank you for the endless memories of working late in the lab, celebrating birthdays, eating hotpot, and sharing culture and laughter. You brought sunshine to even the grayest Dutch days.

A special thanks to **Ricardo Belmonte-Lopes**, the most patient, talented, and generous bioinformatics analyst I have had the fortune to work with. Your help with genome analysis and your ability to troubleshoot just about any code saved this project more times than I can count. I truly admire your professionalism and humility.

To the amazing colleagues in the Department of Medical Microbiology at Radboudumc, thank you for creating such a supportive, inspiring, and intellectually vibrant environment. I am grateful to **Tehupeiory-Kooreman**, **Johanna Rhodes**, **Bart van den Bosch**, **Jochem Berend Buil**, and **Fatima Delma** for your assistance, your warmth, and the wonderful working atmosphere.

My sincere appreciation also goes to my fellow dermatology researchers at the Third Affiliated Hospital of Sun Yat-sen University—Wentao Liu, Peiran Chen, Jiayi Wu, Shitong Qin, Huanting Li, and Ruizhao Tan. Thank you for your continued support and encouragement, and for sharing the passion for translational dermatology and medical mycology.

To all those I may not have named here but who have supported me in ways big and small, thank you from the bottom of my heart. Your impact on this journey is lasting.

Lastly, to my family—thank you for loving me unconditionally, for being my roots and wings. Your faith in me has carried me farther than I ever imagined.

This thesis is not just the result of experiments and analyses; it is a collective story of kindness, collaboration, and resilience. I carry with me not only a degree but also profound gratitude to all of you who walked this path with me.

