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Preface

Autism (Autism Spectrum Disorder) is one of the most common neurodevelopmental
conditions. Yet, there is much that remains unknown about its underlying
mechanisms in the brain, how it develops, and the various expressions of autism
across individuals. This thesis presents a series of studies on the excitation/
inhibition (E/l) imbalance theory of autism, aiming to disentangle some of the
heterogeneities by linking genetic underpinnings of glutamatergic (excitation)
and GABAergic (inhibition) functions, neuroimaging measures and behavioral
autism characteristics.
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The definition of what we today call Autism Spectrum Disorder, or autism, has
changed a lot since it was first described 80 years ago (1). Today, it is defined
as a collection of clinical characteristics that include differences in social-
communicative behaviors and interactions, repetitive behaviors and differences
in sensory processing (2,3). The experiences and lives of autistic people vary
widely; as is indicated in its name, it is a spectrum where autism characteristics
present in different ways across individuals. For example, repetitive behaviors
refer to many kinds of behaviors, including making repeated body movements or
sounds (often referred to as stimming), preoccupations with certain topics and
having special or circumscribed interests, or repeating words and phrases. Some
autistic people are nonverbal, while some are incredibly talkative. The estimated
prevalence of autism varies widely, especially across countries and continents, but
typically ranges between 0.5 - 2% (4,5). While autism is one of the most prevalent
neurodevelopmental conditions, we know little about its causes, development, and
varying phenotypic expressions.

We do know that autism is highly heritable, and that genes associated with autism
consistently include, among others, genes involved in excitatory and inhibitory
functions in the brain (6-8). We also know that both rare genes with strong effects
and the combined effects of multiple common genetic variations, each of small
effect size, can give rise to autism (7,9).

Many efforts have been made to disentangle the neurobiology of autism; various
neuroimaging methods have been used to link differences in brain structure and
function to behavioral phenotypes of autism, albeit often with contradictory
findings and across several brain regions (10,11). These varying results likely reflect
etiological and biological heterogeneities of autism, and approaches that have been
used so far have often failed to consider these heterogeneities (i.e. focusing on case
control approaches (12)), which this thesis aim to disentangle. In this chapter, | will
first introduce the clinical heterogeneity of autism, introduce the excitatory and
inhibitory (E/I) imbalance theory and how it relates to autism, followed by ways to
investigate this theory. Finally, | will summarize the aims and outline of this thesis.

Clinical heterogeneity

One primary reason for the lack of understanding of the etiology of autism stems
from the broad differences in experiences and behaviors between autistic people.
Previously, in the fourth edition of the Diagnostic and Statistical Manual of mental
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disorders (DSM-IV-TR) published in 1994 (13), what is now known as autism was
then separated into several labels with overlapping characteristics including
Autistic disorder, Asperger’s disorder and Pervasive Developmental Disorder Not
Otherwise Specified (PDD-NOS). In the current fifth edition from 2013 these were
all grouped together as Autism Spectrum Disorder (2). To be diagnosed with autism,
one needs to express a combination of the symptoms associated with it, within
the domains of social communication, stereotyped and repetitive behaviors and
sensory processing differences, reaching over a threshold score (what this threshold
is depends on the diagnostic tool used). Due to this categorical diagnostic system,
individuals who receive an autism diagnosis may express very different symptom
combinations within these dimensions.

Dimensionality

The categorical diagnostic classification creates an arbitrary boundary between
autistic and neurotypical individuals, which does not reflect clinical, biological
nor etiological heterogeneities of autism. Research aiming to understand the
etiology of autism has mainly followed this categorical approach, dividing people
into autistic vs neurotypical groups and comparing them, effectively clumping
all autistic individuals together and only looking at group-level differences (12).
This omits differences between autistic individuals and has proven to be a rather
fruitless approach. A more informative way to unravel the different causes of
heterogeneous autism experiences and behaviors is to use a dimensional approach,
looking at distinct behavioral traits and how they are mediated in the brain. A
dimensional approach considers the quantitative differences both between autistic
people, and between autistic and neurotypical people, along dimensions of the
characteristics of autism. Understanding these differences is particularly important
as there are currently limited support- and treatment options available and most
of the care given to autistic people is mainly for things autistic individuals may
struggle with that co-occur with their autism, such as anxiety, depression, attention
deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD) and/or
intellectual disability (ID), rather than the experiences and needs that arise from
autism itself. It is therefore crucial to understand biological underpinnings of the
heterogeneous expressions of autism, to be able to identify objective measures
that can define subgroups of autistic people, potentially with distinct alterations
of E/I. Taking a dimensional approach to understand the underlying mechanisms
of autism is therefore a more suitable approach to unravel the complex etiologies
of autism. Multiple causal pathways may lead to the same clinical behavioral
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trait, where individuals may have various E/l imbalances that lead to the same or
similar behaviors, which | discuss further in the following section. Understanding
these differences will allow for predicting who may benefit the most from certain
treatment- and support options.

Neural heterogeneity

We have yet to answer how the behavioral manifestations of autism arise, and
unraveling the heterogeneities within autism is particularly challenging due to
the sheer complexity of the E/I system in the brain. However, despite not having a
complete answer, there is research pointing us in promising directions.

A highly influential conceptual framework to explain the underlying biology of autism
is the excitatory/inhibitory (E/I) imbalance theory that poses that autism emerges due
to an imbalance between excitation and inhibition in the brain (14,15). Excitation
and inhibition, and the balance between them, are fundamental properties
of how the brain functions. There is a large body of work supporting the E/I
imbalance theory, although findings have been inconsistent in terms of how the
scale of this imbalance may be tipped. Initially, the E/I imbalance framework was
presented as increased excitation (15), which would explain the higher prevalence
of epilepsy in autism, as well as the reduced GABA signaling (y-aminobutyric acid,
the most abundant inhibitory neurotransmitter) that has been observed (14,15).
In more recent work, studies have supported this notion by showing evidence of
increased glutamate signaling (the main excitatory neurotransmitter) (10,11), and
decreased GABA signaling (11,16). In contrast, there is also evidence for increased
inhibition, indicated by both decreased glutamate concentrations and increased
GABA concentrations, even in the same brain regions where other studies found
increased glutamate concentrations (10,11,17-26). Both excitatory and inhibitory
metabolite concentrations have been linked to different behavioral characteristics
of autism (21,27,28), and both similar and contradictory findings have been made
in animal and genetic studies (28-36). These inconsistent findings highlight that
the E/l imbalance framework, while influential, has had limited utility in explaining
what in the brain is underlying the different representations of autism. This is
probably not due to its invalidity, given the large amount of research supporting
the theory, but rather the lack of dimensional approaches investigating these
relationships, ultimately failing to consider autism heterogeneity (see Figure 1).
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Figure 1: Unidimensional and multidimensional views of E/l imbalance

The top graph shows a unidimensional view of E/I imbalance in the brain, where alterations in the
balance would be expressed at a higher overall circuit level. The bottom graph shows a visualization of
a multidimensional view of several factors within the E/I system being affected, e.g. genetic variants,
gene expression, or compensatory homeostatic mechanisms affecting excitatory and inhibitory
circuits in the brain, ultimately underlying various autism traits. Image from (14).



18

| Chapter 1

E/l balance is a useful umbrella concept, but there are many mechanisms involved
in excitatory and inhibitory function that make up complex, and adaptable,
communication pathways across the brain (15,37-40). Many mechanisms are
involved in excitatory and inhibitory functions, for example the amount of
neurotransmitters within neurons, encapsulation and release of neurotransmitters,
receptors on receiving neurons, and re-uptake by transporters to the transmitting
neuron (10) to name a few. These are all excitatory and inhibitory functions,
depending on the properties of different types of neural mechanisms. All of these
are affected by genetics, where some genetic alterations may have strong individual
effects on one of these functions, but many common genetic factors could also
affect some or several in a combined fashion, resulting in an overall change in the
E/I balance (37). A visual representation of some of these functions can be seen in
Figure 2 below.

These mechanisms are not independent but make up a homeostatic system
that regulates and fluctuates during cortical activity (38,39). This becomes
particularly apparent when there are disruptions to the system, which is followed
by compensatory mechanisms adjusting the balance between excitation and
inhibition back to regular functioning (38). Compensatory mechanisms include
neurons adapting their gain; integration of incoming excitatory and inhibitory
signals, ultimately altering excitability. Neurons may also adjust receptor densities,
and the number of synapses can be increased or decreased. These kinds of
mechanisms make up a homeostatic system, where several functions both within
neurons and across communication pathways adjust to maintain balance between
excitation and inhibition. However, these homeostatic corrective mechanisms could
themselves be affected in autism, further leading to maladaptive responses (37).
Consequently, there are numerous potential changes leading to imbalances and
maladaptive responses, generating various alterations across communication
pathways in autism that may even be specific to certain brain regions (37). This can
potentially explain and integrate the opposing results that we have seen in autism
research so far, as the system could be adapting in various ways across autistic
individuals (14,37).

Ways to assess excitation and inhibition

Essentially all aspects of the brain and its functioning pertains to excitatory
and inhibitory mechanisms in some way - the structure of the brain reflects
communication pathways and their functions, brain activity is the output of
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excitatory and inhibitory mechanisms, and metabolite concentrations largely
consist of neurotransmitters and functions surrounding them. The methods
available for investigating excitation and inhibition capture distinct aspects of
brain functioning that together provide different but informative insights into what
may be altered in autism.

Figure 2: Neuronal communication mechanisms

The process of neuronal communication consists of many complex mechanisms both in a transmitting
neuron, a receiving neuron, in the extracellular space between neurons and the supporting cells
that surround them. Communication also varies between different types of neurons. For example,
neurons require the production of neurotransmitters (e.g. GABA on the left or glutamate on the right),
encapsulation into vesicles which are then taken to the membrane of the neuron at the synapse and
releasing the neurotransmitters into the synaptic cleft. The membrane of receiving neurons contains
receptors that capture these neurotransmitters. Inhibitory neurons tend to suppress postsynaptic
neurons, whereas excitatory neurons increase the chances of an action potential. Transporters allow
for reuptake of some of the neurotransmitters, to be released for recycling or breakdown. The image
illustrates several of these mechanisms, and how they differ between excitatory and inhibitory neurons.
All these steps are part of the excitatory and inhibitory mechanisms in the brain, which may be altered
in autism (10). These functions are all intrinsically linked and part of a complex system of homeostatic
mechanisms that allows for adaptation and habituation, maintaining the balance between excitation
and inhibition, and are also affected by genetics (37,38). These compensatory mechanisms may also
be affected in autism, leading to maladaptive alterations of the E/I systems. vGlut and vGAT in the
presynaptic neurons are vesicular transporters; GAT and EAAT are transporters of neurotransmitters;
GABA-A, GABA-B, AMPA, NMDA, mGluR are receptors of their respective neurotransmitters. Image is an
adapted version from original image created by Duanghathai Pasanta.

19




20

| Chapter 1

We know that excitatory and inhibitory mechanisms are greatly determined by
genetic factors. The heterogeneity of autism could be explained, at least partially,
by variations in genetic underpinnings affecting E/I processes (6,37). Investigating
selections of genes involved in functions we are interested in can provide a better
understanding of how the functions of those genes link to other brain and behavior
differences in autism. To understand excitatory and inhibitory mechanisms,
a good place to start is to look at the most common excitatory neurotransmitter,
glutamate, and the most common inhibitory neurotransmitter, y-aminobutyric acid
(GABA) (38,40,41).

Many factors may influence the path between our genes and our behaviors, and so
an intermediate step is to look at the brain and its different functions to examine
how genetic differences affect brain functioning, ultimately leading to behavioral
autism characteristics. Understanding these relationships is further complicated
as they are not static but change throughout development, which are captured
by changes e.g. in brain structure and function and the effects of genes, while
behavioral characteristics of autism often change within individuals throughout
development as well.

Neuroimaging methods are incredibly useful to disentangle the differences in
autism manifestations and changes throughout development, and here | focus on
magnetic resonance imaging (MRI). Other methods such as EEG, pharmacological
approaches and animal models also provide useful insights, but are beyond the
scope of this thesis (for more details on EEG measures of E/I balance see (10,42),
for pharmacological studies (10,11) and (29) for animal models). With MRl we can
capture brain structure, functional brain activity, as well as estimate metabolite
concentrations of glutamate and GABA. Box 1 contains more details on how these
MR methods work.

Structural MRI captures tissue types involved in several functions of the brain,
particularly excitation and inhibition. Neurons are present and reach across the
whole brain in pathways, although, communication between neurons mainly
happen in gray matter which is estimated with cortical thickness measures from
structural MRI. Differences in cortical thickness likely indicate differences in
how neurons connect and communicate. Alterations in cortical thickness have
consistently been found in autism, both in childhood and through development
into adulthood (43,44) reflecting alterations in neuronal pathways ultimately
affected by differences in excitation and inhibition.
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Hydrogen-Magnetic Resonance Spectroscopy (‘*H-MRS) quantifies in vivo concentrations
of metabolites in the brain based on hydrogen protons. Metabolites include glutamate
and GABA, whose signals are predominantly from their presence in neurons (40). This is
a unique and incredibly useful method as it is the only way we can capture estimated
concentrations of metabolites, in vivo, in living humans in selected regions of interest.

We can estimate brain activity using functional MRI, reflecting output of temporary
alterations between excitation and inhibition which is particularly relevant when
aiming to understand how brain functioning may differ in autism. For instance, we
can capture brain activity while people perform tasks that require behaviors and
abilities often affected in autism, such as inhibitory control, related to the repetitive
behavior domain of autism traits (45-47).

These measures are all pieces of the puzzle we need to disentangle how differences
in the brain ultimately leads to the various behaviors and experiences of autistic
people (10). Fortunately, there are now large datasets available that allow us to
look at these things together, such as genetic markers of excitation and inhibition,
neuroimaging methods capturing excitation and inhibition and factors affected by
it, with behaviors typical to autism. Combining several of these measures within the
same individuals, in large datasets, give us a unique opportunity to start to unravel
what underlies the heterogeneous spectrum of autism.

Thesis aims and outline

In this thesis, each chapter aims to unravel the complex associations between brain
and behavior relating to autism using multimodal measures and analysis methods.
We take advantage of large multicenter datasets with both autistic and neurotypical
individuals ranging from childhood into adulthood that have been deeply
phenotyped by a plethora of behavioral and cognitive measures, combined with
multimodal neuroimaging measures as well as genetics. Chapters 2 and 4 report
on data from the COMPULS study (48), part of the TACTICS consortium, comprising
of longitudinal data from participants between 8-16 years old. This cohort includes
autistic participants and participants with OCD, aiming to disentangle overlapping
phenotypes between the two conditions. Chapters 3, 4 and 5 report on data from
the LEAP study (12), part of the AIMS-2-TRIALS consortium, the largest autism
dataset of its kind that includes deeply genotyped and phenotyped autistic
and neurotypical participants, combined with neuroimaging data. This too is a
longitudinal cohort, including participants between 6-30 years old. These cohorts,
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together with openly available datasets of neuroimaging and/or genetics in autistic
individuals that are used for replication where possible (the Autism Brain Imaging
Data Exchange (ABIDE (49)), the Allen Human Brain Atlas (AHBA, (50)), and the
Simon Simplex Collection (SSC (51)), constitute a massive amount of data from both
autistic and neurotypical participants. This allows us to finally investigate brain,
behavior and genetic links of autism simultaneously, and doing so covering a broad
age range from childhood well into adulthood, all of which has currently rarely
been looked at together. An overview of all measures that will be used throughout
this thesis is outlined in Figure 3 below.

Chapter 2 looks at longitudinal changes in glutamate concentrations in the brain,
functional activity during inhibitory control and behavioral differences particularly
in the repetitive behavior domain of autism, also looking at these associations in
OCD. We focus on repetitive behaviors as they are amongst the most common
and impactful autistic traits, and for its presence across the autistic and OCD
participants. Using linear mixed effects models we investigate whether changes in
glutamate concentrations are associated with repetitive behaviors, and whether
such associations differ between autistic adolescents, those with OCD, or those
with typical development.

Chapter 3 introduces genetic markers of glutamate and GABA, reflecting excitation
and inhibition respectively, combined with structural MRl and behavioral measures of
autism characteristics. Here, we start to bridge the links between genetics, brain and
behavior domains using competitive gene-set analysis and gene expression analysis.

Chapter 4 builds on the findings of previous chapters using Bayesian Constraint-
based Causal Discovery algorithms (BCCD), combining genetic markers of
glutamate and GABA, functional activity during inhibitory control, and behavioral
measures of autism characteristics. This method estimates causal relationships
between these measures across the datasets from Chapters 2 and 3.

Chapter 5 combines both genetic and in vivo '"H-MRS measures of glutamate and
GABA. Using competitive gene-set analysis to link genetic variation and 'H-MRS
measures of glutamate and GABA, as well as using linear models, we investigate the
relationships between these markers and their combined associations to behavioral
traits of autism.
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In the final chapter, Chapter 6, we discuss the overarching aim of this thesis and
how the findings fit in a broader perspective of future challenges and opportunities

to understanding autism.

Figure 3. Levels of domains and their measurements included across all chapters

From the top, genetic measures included of selected gene-sets of glutamate and GABA communication
pathways genes. AHBA, Allen Human Brain Atlas. '"H-MRS, Proton Magnetic Resonance Spectroscopy,
including measures of glutamate and GABA metabolite concentrations in thalamus, striatum and
ACC. Structural MRI including T1-weighted data of cortical thickness differences between autistic
and neurotypical participants. Task fMRI, fMRI contrasts of successful and failed inhibitory control.
Behavioral measures were, from the left; ADI-R, Autism Diagnostic Interview-Revised; ADOS-2, Autism
Diagnostic Observation Schedule-2; SRS-2, Social Responsiveness Scale Second Edition; RBS-R,
Repetitive Behavior Scale-Revised; SSP, Short Sensory Profile.
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BOX 1: Magnetic Resonance Imaging and Spectroscopy

Magnetic Resonance Imaging (MRI) is based on nuclear magnetic resonance (NMR),
utilizing the magnetic behavior of hydrogen present in chemicals and tissues
in the brain. Hydrogen protons act like little magnets, and outside of an MR
scanner environment these spin along random directions. The MR scanner is a
very strong magnet, making the magnetic spin of the hydrogen protons align
along the direction of the magnetic field of the scanner. By applying various
kinds of radio frequency (RF) pulses, flipping around and altering this magnetic
spin within the brain in different ways, we can measure how these spins then
relax back towards the main magnetic field of the scanner. This relaxation of
spins vary across different tissue types, metabolites, and change due to blood
flow, allowing us to capture these using different sequence types designed
with different combinations of RF pulses. This is how we capture the anatomy,
metabolism, and brain activity using MR sequences.

Structural MRI

In structural brain imaging we utilize the different signatures of hydrogen
protons in water and fat to the magnetic field, giving different signal intensities.
This means that once certain RF pulses are applied, the magnetization spins in
different types of tissues relax back at different speeds to the main magnetic
field of the scanner, giving us distinct signal intensities. In T1-weighted
structural imaging this is disentangled into three tissue types: white matter,
gray matter, and cerebrospinal fluid (CSF). These are easy to visually distinguish
in a T1 structural image of the brain, where tissues with more fat appear
brighter (white matter), and tissues with more water appear darker (gray
matter) and CSF which contains even more water appear black. In this thesis we
are mainly interested in gray matter, extracted in what we call estimations of
cortical thickness, as this is where neurons connect and communicate.

Example of T1-weighted structural MRl image.
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'H-MR Spectroscopy (or 'H-MRS) somewhat differs from other MR modalities.
While structural and functional imaging rely on hydrogen protons in water,
'H-MRS allows us to investigate other hydrogen containing molecules.
'H-MRS captures the chemical shift of hydrogen protons, whose reaction to
the magnetization of RF pulses varies between chemicals that contains them
depending on their chemical environment. 'H-MRS utilizes the differences in
resonance frequency between chemicals, capturing metabolites present within
cells in the brain. Due to their chemical structure, metabolites differentially
affect the relaxation of the spins back to the magnetic field of the scanner,
creating different resonance frequencies. Thus, different metabolites will have
peaks at distinct resonant frequencies on a‘chemical shift’ axis, where the area
under the peak for each metabolite is proportional to its concentration. The
chemical shift is measured in parts per million and metabolite concentrations
are expressed relative to a reference compound, typically water or creatine.
This makes 'H-MRS a quantitative measure (52).

Water and fat have an about 10 000 times stronger signal than the metabolites
we are interested in 'TH-MRS. Compared to T1 imaging, which utilizes the strong
differences in signal from water and fat, we here need to remove those signals
to reliably capture the metabolites in. Water is removed by suppressing the
water signal. To avoid lipid contamination in the signal due to fat tissue, we
avoid placing the voxel of measurement close to tissues outside the brain.

The 'H-MRS signal is averaged across the whole area where acquisition was
made, meaning that we do not get regional specificity across the brain using
many small voxels, as in structural or functional MRI, but instead use one larger
voxel, typically around 8-30 ml in total volume, which is placed over a region
of interest (52). In 'H-MRS, an acquisition is typically repeated many times and
then averaged to increase signal-to-noise.

In this thesis we use two types of 'H-MRS sequences: edited and unedited.
While 'H-MRS allows for detecting different metabolites, there is significant
overlap between metabolites (e.g. two metabolites that both contain the same
amino group will have overlapping signals). This complicates measurement of
low concentration metabolites which are often masked by larger concentration
molecules. Edited sequences are designed to capture signals from these low
concentration metabolites by selectively affecting the metabolite of interest
and cancelling frequencies that are not of interest. An example where this is
very useful is when we want to measure GABA concentrations (53) where we

25
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Functional MRI

Functional MRI (fMRI) captures changes in blood flow in the brain, which reflects
brain activity. When regions in the brain are more active the cells in that region
requires more oxygen, which is delivered via the blood stream. Oxygenated
blood (meaning blood coming from your heart) contains oxyhemoglobin, which
is slightly more magnetic than deoxygenated blood (blood going towards your
heart), making the relaxation times of oxygenated blood slightly longer. This
means that increased brain activity increases the signal captured in fMRI, which
is how we can measure brain activity. After processing the fMRI data, which
is often done comparing for example brain activity while performing a task
compared to when a person is not performing a task, we get contrast images
showing where there is increased or decreased brain activity while performing
the task, compared to when not performing the task.

Example of task-based fMRI contrast of brain activity during an inhibitory control task. Red and
blue colors indicate regions with different levels of brain activity during failed inhibition of a
button press compared to a successful button press during the task.
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Abstract

Autism spectrum disorder (autism) and obsessive compulsive disorder (OCD) show
overlapping symptomatology and difficulties in inhibitory control, which are associated
with altered functioning and glutamatergic signaling in fronto-striatal circuitry. These
parameters have never been examined together. The purpose of this study was to
investigate functioning during inhibitory control and its association with fronto-striatal
glutamate concentrations across these conditions using a multicenter, longitudinal
approach. Adolescents were either autistic (n=24), had OCD (n=15) or neurotypical
(n=35) and underwent two magnetic resonance imaging (MRI) sessions with a one-
year interval. This included proton magnetic resonance spectroscopy ('H-MRS;
n=74) and functional MRI during an inhibitory control task (n=53). We investigated
'H-MRS data and fMRI data separately as well as integrated in a multimodal analysis
using linear models focusing on diagnosis and continuous measures of overlapping
compulsivity symptoms. ACC glutamate was reduced over time in the autism group
compared with the neurotypical group, while striatal glutamate decreased over time
independent of diagnosis. Increased compulsive behavior seemed to be associated
with increased striatal activity during failed inhibitory control. The integrated analyses
showed differential involvement of increased striatal glutamate during failed but
decreased striatal glutamate during successful inhibitory control in the OCD group
compared to the neurotypical and autism groups, suggesting different underlying
mechanisms for OCD compared to autism.
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Introduction

Although autism spectrum disorder (autism) and obsessive compulsive disorder
(OCD) are two separate neurodevelopmental conditions with distinct diagnostic
characteristics (1), they are highly co-occurring and a comparison of symptoms has
suggested more similarities than differences between the two (2-4). However, not
much is known about underlying mechanisms of the behaviors common among
those with these conditions; restricted and repetitive patterns of behavior and/or
compulsivity. The latter is defined as a repetitive, irresistible urge to perform certain
behaviors or thoughts, and diminished control over this urge (5). Repetitive and
compulsive behaviors are associated with difficulties in inhibitory control in tasks such
as the stop-signal task (3,6). Fronto-striatal areas are known to be involved in inhibitory
control and are regulated by the excitatory neurotransmitter glutamate (7-9). Within
fronto-striatal circuity, the striatum is thought to be involved in driving the repetitive
and compulsive behaviors, while frontal regions, such as the anterior cingulate cortex
(ACC) is responsible for exerting inhibitory control (7,10-15). Imaging studies focusing
on autism and/or OCD have shown altered fronto-striatal structure and function as
well as altered glutamate conentrations, suggesting a possible shared underlying
mechanism affecting repetitive and compulsive behaviors (10,11,16). Here, we
investigated this by using a multicenter, longitudinal approach looking at associations
of fronto-striatal glutamate and repetitive and compulsive behaviors on neural activity
during inhibitory control in a childhood/adolescent cross-condition population.

In studies using the stop-signal task in autism and OCD, there have been
inconsistent results. Some studies found no behavioral differences in autism and
OCD compared with neurotypical participants (17-19), while others have found
worse performance in participants with OCD (5,6,20-23), demonstrating difficulties
ininhibitory control. However, these differences are more commonly found in adults
with OCD than children and adolescents (24). Altered activity in fronto-striatal areas
during inhibitory control has been found in both conditions as well (18,23,25-27),
showing reduced activity during inhibition in ACC. Additionally, in autism increased
activation has been found in left striatum compared to neurotypical participants,
while this was decreased in OCD (27). Contrarily, some studies found altered
functional activity despite not finding behavioral differences in response inhibition
compared to neurotypical participants (28,29). In a previous study using a partly
overlapping sample of the current study, no behavioral or neural alterations were
found during inhibitory control in autistic and OCD participants (19).
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The excitatory neurotransmitter glutamate is highly relevant for fronto-striatal
functioning and inhibitory control. Altered concentrations of glutamate,
investigated using Proton Magnetic Resonance Spectroscopy ('H-MRS), have
been linked to repetitive behaviors and compulsivity (7,30), which seem to
differ in individuals with autism and OCD compared to neurotypical participants
across development. A meta-analysis of 'H-MRS studies investigating fronto-
striatal glutamate in autism, OCD and attention-deficit/hyperactivity disorder
(ADHD) reported that increased glutamate concentrations in striatum seems to
be present across these conditions (7). In the ACC, on the other hand, glutamate
concentrations were often higher in children and adolescents with these conditions
while in adults the opposite pattern was found, with lower concentrations
compared to neurotypical participants, suggesting a developmental shift (7). In
a study investigating glutamate concentrations and neural functioning during
inhibitory control, increased ACC glutamate was associated with decreased activity
in striatum, but this was unrelated to any clinical diagnosis (9).

Evidence from these previous studies strongly suggests that investigating the
interplay between glutamate and functional activity during inhibitory control is
an important step for understanding the mechanistic underpinnings of behaviors
across neurodevelopmental conditions. In a study including the first time of
measure of the participants in this study, increased ACC glutamate was found in
both autism and OCD groups, and a positive association between ACC glutamate
and compulsive behaviors was found, while there were no group differences
in striatal glutamate nor any association with behavior (8). In the current study
we followed up this sample with a second timepoint of measurements using a
multimodal, multicenter study design. With this developmental data we aimed
to investigate whether changes in fronto-striatal glutamatergic alterations and
functioning during inhibitory control differed across (atypical) neurodevelopment
and whether there were any changes over time. Based on previous findings, we
expected increased glutamate concentrations in fronto-striatal brain regions in
the autism and OCD groups, especially in the ACC. As repetitive and compulsive
behaviors likely decrease over time, we expected inhibitory control to be associated
with these behaviors differently over time. In addition, we expected a differential
role for glutamate here, which may affect functioning differently in autism and
OCD as compared to the control group. These were exploratory analyses as the link
between fronto-striatal functioning and neurochemistry has not been investigated
in these groups before.
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Methods and Materials

Participants

We included 74 participants (autistic = 24, OCD = 15, neurotypical = 35) for the 'H-MRS
analysis, between 8 and 16 years old at time-point 1 (T1), and between 9 and 17 years
at timepoint 2 (T2). A previous manuscript describing the spectroscopy results of
T1 included a total amount of n=133 participants (8). Reasons for drop-out for this
longitudinal study were loss of interest by the participants and quality restrictions
regarding the spectra. For the combined 'H-MRS and fMRI analysis we included
53 participants. The participants were recruited at three different locations across
Europe (Radboud University Medical Center and the Donders Institute for Brain,
Cognition and Behavior, Nijmegen, The Netherlands (N = 38), Kings College London,
London, United Kingdom (N = 17), Central Institute of Mental Health, Mannheim,
Germany (N = 19)) in the multicenter study COMPULS, part of the TACTICS
consortium (https://cordis.europa.eu/project/id/278948/reporting). Another site was
excluded due to too few participants surviving quality control (N=3). The inclusion
criteria were 1Q > 70, ability to speak and comprehend the native language of the
location of recruitment and being of Caucasian descent (for further details, see (8)).
To confirm DSM-IV-TR (31) diagnoses of autism and OCD, we used the Autism
Diagnostic Interview-Revised (ADI-R) (32) and Children’s Yale Brown Obsessive
Compulsive Scale (CYBOCS) (33) for autism and OCD respectively. Participants in the
autism and OCD groups were not allowed to have a diagnosis of the other condition
of interest. Neurotypical participants were confirmed to not score in the clinical range
for any DSM IV axis | diagnoses using the Child Behavior Checklist (CBCL) and the
Teacher Report Form (TRF) (34), assessment of ADHD symptoms were measured
using the Conners Parent Rating Scale (CPRS-R, (35). Repetitive and compulsive
behaviors were measured using the Repetitive Behavior Scale — Revised (RBS-R) (36).
Information on medication use was collected on the measurement days via parental
report. Participants were asked to abstain from stimulant medication 48 hours before
scanning. None of the participants received non-pharmacological treatment during
the study. Ethical approval for the study was obtained for all centers separately and
participants and their parents gave written informed consent for participation.

Stop-Signal Task

To measure inhibitory control, participants completed a modified visual version of
the stop-signal task (SST) (37) during an fMRI session. For details of the design of
the task see Figure S1 in the supplement. To ensure consistency across sites, task
instructions were given according to a standard operating procedure (SOP).
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Neuroimaging

Imaging Acquisition

Participants were familiarized with the MRI settings and practiced the SST using a
dummy scanner at T1. At T2, the task was practiced again if needed. The data were
acquired from the three study locations, all using 3 Tesla scanners (Siemens Trio
and Siemens Prisma, Siemens, Erlangen, Germany; Philips Achieva, Philips Medical
Systems, Best, The Netherlands; General Electric MR750, GE Medical Systems,
Milwaukee, Wi, USA). Structural T1-weighted scans were acquired based on the
ADNI GO protocols (38,39), which were used for registration of the functional scans
and voxel placement for the "H-MRS.

Spectra were acquired using a point resolved spectroscopy sequence (PRESS) with
a chemically selective water suppression (CHESS) (40) from the midline pregenual
ACC and the left dorsal striatum covering caudate and putamen with an 8 cm?
voxel size (2x2x2). Voxel locations were adjusted to maximize the amount of gray
matter (GM) and minimize the cerebrospinal fluid (CSF) content to keep the quality
of the data as high as possible. The locations of all voxel placements are shown in
the supplement (Figure S2 and S3). Details on the structural, functional and '"H-MRS
scan parameters can be found in Table S1 in the supplement.

Imaging Analysis

fMRI. From the 74 participants included in analysis based on available 'H-MRS
data, 53 had available fMRI data included in analysis (ACC: autistic= 15, OCD=11,
neurotypical= 27; Striatum: autistic=13, OCD=9, neurotypical= 24). Preprocessing
of the fMRI data was performed using FSL (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/). The
first five volumes from each scan were removed to account for equilibration effects.
Head movement correction was performed by realigning to the middle volume
(MCFLIRT; (41)). A Gaussian kernel with full width at half maximum (FWHM) of
6 mm was used for grand mean scaling and spatial smoothing. ICA-AROMA (42,43)
was then used to remove signal components related to secondary-head motion
artefacts, subsequently followed by nuisance regression to remove signal from
CSF and white matter (WM), and high-pass filtering (100 sec). These images were
co-registered to each participants’ anatomical scan using boundary-based
registration within FSL-FLIRT (44). The anatomical scans were spatially normalized
using a 12-parameter affine registration to MNI152 standard space, which was
refined by non-linear registration FSL-FNIRT (45). The images were then brought
into standard space by applying the resulting warp fields to the concatenated
functional image. Neural activation during inhibitory control was analyzed using
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SPM12 (Statistical Parametric Mapping release 12, https://www.fil.ion.ucl.ac.uk/spm/).
For the whole-brain analysis during the stop-task, the first level models included
two contrasts of interest; (1) failed stop — successful go, to isolate failed inhibitory
control and (2) successful stop — failed stop, to isolate successful inhibitory control.
For the second level analyses regarding differences across groups and times of
measure, we used a full-factorial design where t-contrasts were applied to the
first level contrast maps. To investigate the association between our spectral data
and the fMRI data we extracted the mean beta weights during both failed and
successful inhibitory control from the ACC and dorsal striatum regions of interest
as extracted from the "H-MRS voxels. This was done using the MarsBar toolbox (46).

'H-MRS. Glutamate concentrations were estimated using Linear Combination
Model (LCModel), using water as reference (47,48). Example fitted spectra for ACC
and striatum can be seen in Figure 1. As different tissues contain different amounts
of water, correction for tissue percentage and partial volume effects was calculated
using the formula:

(43300 X fsy +35880 X fyu + 55556 X fCSF))X ( 1 )

Metabolite .y recteqa = Metabolitegg,, X ( 35880 A= foor)

where 43 300 is the water concentration in millimolar for GM, 35 880 for WM and
55 556 for CSF, as described in the LCModel manual (47).

Criteria for quality control were the signal-to-noise ratio being > 15, Cramér-
Rao lower bounds < 20%, and FWHM < 0.1 parts per million. This resulted in
74 participants included in the analysis of ACC glutamate (autistic = 24, OCD = 15,
neurotypical = 35), and 55 participants included for striatal glutamate
(autistic = 18, OCD = 11, neurotypical = 26). To check for possible influences of
glutamine we performed quality controls of glutamine concentrations, which only
survived quality control measures for one participant for the ACC voxel and ten
participants for the striatum voxel. We therefore do not report Glx (glutamate +
glutamine) measures and report only glutamate. The raw glutamate levels can be
found in Table S3 in the supplement.

Statistical analyses
Statistical analyses were performed using the R-software package (49), unless
otherwise stated.

We first investigated changes in fronto-striatal glutamate concentrations, neural
activation and behavioral responses during inhibitory control over time separately.
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Changes in these scores over time were calculated by subtracting glutamate levels,
or neural responses, in the spectral regions of interest and measures of compulsivity
and inhibitory control at T1 from T2. These are reported as change-scores (A).
Diagnosis, ARBS-R total and ARBS-R compulsivity scores were used as predictors in
separate models. Age, sex and scan-site were included as covariates of non-interest
in all analyses. Because age and sex did not affect the results nor influenced the
model(s), they were removed from further analyses. To test general effects of time we
used linear mixed effects models, where participant was added as a random factor to
account for within subject variability across time (Ime4 package (50)). Additionally,
we investigated whether ADHD characteristics was associated with glutamate
concentrations by including the CPRS-R scores in separate models. As there were
no associations of ADHD characteristics, CPRS-R scores were not included in
subsequent models in analyses.

Secondly, we combined spectral and functional analyses into a multimodal model
investigating whether changes over time in one modality were associated with
changes over time in the other modality using the 'H-MRS voxels as regions of
interest. Specifically, we investigated whether changes in glutamate concentrations
in either region (AGIUACC/Str) were associated with changes in neural activation
(AbetaACC/Str) in the same region and whether this was different across groups
and continuous measures of repetitive behavior. This resulted in twenty-four
models listed in Table S2 in the supplement.

All reported p-values in all statistical tests are corrected for multiple comparisons
by the false discovery rate (FDR, g <0.05), unless otherwise stated. Effect sizes are
indicated as r.

Results

Demographics

No differences were found between groups in age, 1Q or sex. Table 1 shows an
overview of the demographics and clinical variables of the largest subsample used.
For the repetitive and compulsive behaviors we used the RBS-R total scores and the
compulsivity subscale scores at T1, T2 as well as the change over time (A). Although
there was no general effect of time on these measures, there were significant
differences between autistic, OCD, and neurotypical participants at all time-points.
See Figure 2 for a summary of these results.
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Figure 1: 'H-MRS voxel placement

A: Superposition on the MNI152 template of all individual voxel placements in ACC and striatum, for
autism (red), OCD (blue) and neurotypical (yellow) groups. The placements were consistent across
diagnoses, as seen by the large overlap of voxels. For voxel placements across sites, see supplement. B:
Example spectra of a 3T proton magnetic resonance spectroscopy ("H-MRS) Linear Combination (LC)
Model spectral fit in ACC and striatum from one of the control participants. The top of the images
represents the residuals. The black line represents frequency-domain data, the red line is the LCModel
fit. The right images show the fits for glutamate only. For examples of LCModel spectral fits and
glutamate fits for each site, see Figure S5 in the supplement.

Figure 2: Repetitive and compulsive behaviors

Group differences in RBS-R compulsivity (upper panel) and RBS-R total scores (lower panel) at T1,
T2 and over time. The OCD (N=15) group showed higher compulsivity than both autism (ASC) (N=24)
and neurotypical (NT)(N=35) groups at both time-points without any differences in changes. Total
RBS-R scores were highest in the autism group at both time-points while this group simultaneously
showed the largest decrease in these symptoms between T2 and T1. * p <0.05, **p <0.01, *** p <0.001.
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Table 1: Demographic characteristics (based on the largest subsample group in analysis)

Autism ocb Neurotypical
Sex, m/f 17/7 9/6 21/14

Mean SD Mean SD Mean SD
Age 1 11.38 1.64 11.95 249 10.70 1.38
Age 2 12.92 1.62 13.38 2.51 12.20 1.46
1Q* 109.38 15.07 109.89 15.56 111.84 11.05
RBS 1
Total 24.86 24.46 15.67 19.09 0.80 2.14
Stereotype 2.79 3.27 2.00 2.80 0.06 0.24
Self-harm 1.38 2.06 1.40 2.77 0.06 0.34
Compulsivity 3.46 5.74 4.73 5.00 0.20 0.63
Ritualistic 5.17 6.03 373 4.30 0.08 0.28
Insist on sameness 9.71 8.61 2.87 5.89 0.26 0.92
Limited interests 2.46 2.78 0.93 1.16 0.14 0.36
RBS 2
Total 20.61 19.48 11.86 9.71 0.46 1.06
Stereotype 2.26 2.25 1.71 1.69 0.03 0.17
Self-harm 1.96 3.62 0.71 1.69 0.00 0.00
Compulsivity 243 3.46 3.71 3.73 0.06 0.24
Ritualistic 3.83 4.31 2.29 2.91 0.12 033
Insist on sameness 7.63 6.34 2.07 2.62 0.18 0.53
Limited interests 2.30 2.75 1.36 145 0.06 0.24
MEDICATION®
Stimulant 2 0 0
Antipsychotic 0 1 0
Antidepressant 1 5 0

Autism, Autism Spectrum Disorder; OCD, Obsessive Compulsive Disorder; NT, neurotypical;
SD, standard deviation; RBS, Repetitive Behavior Scale (36). KWy2, Kruskal-Wallis Chi-Square. Post
hoc tests were Bonferroni corrected. The number of participants per group is the largest subsample
available across analyses. A: IQ was collected during the first time of measure. B: Medication use is
indicated from first time of measure, changes in the second measure can be found in the supplement.
1 and 2 in the left column indicate first (T1) and second (T2) point of measure.
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Test statistic p-value Post-hoc
KWx2=0.81 0.667

KWyx2=5.61 0.061
KWyx2=5.27 0.072

KWx2=0.50 0.781

KW x2=49.75 <0.001 OCD & ASD > NT
KWyx2=31.44 <0.001 OCD & ASD > NT
KWyx2=20.18 <0.001 OCD & ASD > NT
KWyx2=29.12 <0.001 OCD & ASD > NT
KWyx2=40.04 <0.001 OCD & ASD > NT
KWy2=42.22 <0.001 ASD > OCD &NT
KW y2=20.42 <0.001 ASD & OCD > NT
KWyx2=44.26 <0.001 OCD & ASD > NT
KWx2=31.99 <0.001 OCD & ASD > NT
KWyx2=16.68 <0.001 ASD > OCD &NT
KW x2=30.08 <0.001 OCD & ASD > NT
KWyx2=20.17 <0.001 OCD & ASD > NT
KWyx2=37.76 <0.001 OCD > ASD > NT

KW x2=24.63 <0.001 OCD &ASD > NT
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Spectral quality

Groups did not differ in mean voxel percentage GM, WM or CSF in both voxels (all
p-values > 0.05). Percentage GM in striatum, however, was lower the second time
of measure compared to the first one ((b=-0.07, b= 2.97, p= 0.004), independent
of diagnosis. Voxel placement during T1 and T2 and across scan-sites can be seen
in the supplement in Figures S2 and S3. No differences were found between
diagnostic groups or time-points for any of the measures. The autistic group
showed, compared to the neurotypical group, an increase in glutamate Cramér-
Rao lower bound (CRLB) over time (b=0.009, t(71):2.49, p=0.015), although with
the highest CRLB of 14%, guaranteeing sufficient quality of these spectra at both

timepoints (51).

Fronto-striatal glutamate

There was a negative association between diagnosis and AGIUACC (b=-1.55,
t:(oﬁa):-z.z& p=0.026, r= 1.00), which indicated a larger decrease in ACC glutamate
in the autistic group over time compared with the neurotypical group, but not
OCD (p > 0.05; Figure 3A). In addition, the RBS-R total score was associated with
ACC glutamate as well, where an increase over time in repetitive behaviors was
related to a decrease over time in ACC glutamate (b=-0.12, t 2.330, p=0.026,

r=1.00; Figure 3B).

(0.05)=

There was no effect of diagnostic status or any of the continuous measures on
AgluStr (all p-values > 0.05). However, striatal glutamate decreased significantly

over time, independent of group (b=-0.65, t, = -2.77, p=0.023, r=0.36).

52)
Stop-Signal Task

All groups showed common patterns of brain activation during failed as well
as successful inhibitory control, where there was activation in areas typically
associated with inhibitory control, such as ACC and striatum (Figure S4). No
significant differences in neural activation between groups were found at any
time-point in any of our contrasts (all p-values > 0.05). However, using continuous
measures of compulsivity and our fronto-striatal regions of interest, we found an
0sy=3-70, p=0.002, r= 0.98)
during failed inhibitory control, where an increase in compulsivity over time was

effect of Acompulsivity on Astriatal activity (b=1.88, t,

associated with an increased striatal activation, reflecting higher activity at T2,
compared to T1. Behavioral results regarding the SST are described further in
the supplement.
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Figure 3: ACC glutamate

A: Glutamate concentrations, shown in institutional units (i.u.), decreased over time in the autism
(ASC) (N=24) group (blue) compared with the neurotypical group (NT) (N=35) (gray). Plot was created
using ggplot2 (52) and in-house adapted violin plots (53). * p <0.05. B: Effects of changes of changes
in RBS-R total score on changes in ACC glutamate (in i.u.). The linear regression line shows a negative
association of A RBS-R total score with changes A ACC glutamate, independent of group. The shaded
area represents the 95% confidence interval. Dots on the vertical dashed line represent participants
that did not change in RBS-R total scores. Note: this figure shows raw data-points, not model estimates.

Association between fronto-striatal glutamate and functioning

Failed inhibitory control

During failed inhibitory control there was a negative interaction between diagnosis
and AgluStr on AbetaStr. This interaction showed that in the OCD group, an increase
in striatal glutamate over time was associated with a decrease over time in activity
219="3-412, p= 0.003,
(2'30)=3.36, p= 0.003, r= 0.91); see Figure 4A.
There was no significant difference between the autism and neurotypical groups

in the same region compared to the neurotypical (b=-7.46, t,
r=0.92), and autism groups (b=7.73, t

(all p-values > 0.05). No associations were found regarding the ACC or any interactions
between glutamatergic changes and continuous measures of compulsivity
(all p-values > 0.05).

Successful inhibitory control
During successful inhibitory control, there was a positive interaction between
diagnosis and gluStr on AbetaStr. This time, again in OCD, an increase in striatal
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glutamate over time was associated with an increase in striatal activity control
04n=2-33, p=0.025, r= 0.96), and the autism
=2.40, p= 0.025, r= 0.96) groups, see Figure 4B. There was again no

compared to the neurotypical (b=0.96, t
(b=1.04, t, .
significant difference between autism and neurotypical groups (all p-values
> 0.05) nor any other significant associations for the ACC or continuous measures of
compulsivity (all p-values > 0.05).

Figure 4: Failed and Successful inhibitory control

A: During failed inhibitory control, an increase in striatal glutamate (i.u.) was associated with a
decrease in striatal BOLD signal in the OCD (N=9) group (salmon) compared to the neurotypical group
(NT) (N=24) (gray) and autism (ASC) (N=13) (blue) groups. B: During successful inhibitory control, an
increase in striatal glutamate (i.u.) was associated with an increase in striatal BOLD in the OCD group
compared to neurotypical and autism groups. Brain activity is shown on the axial slice for both failed
and successful inhibitory control outlining the striatal voxel as an overlay. Activity is presented at
p <0.01 (uncorrected) for visualization purposes. The shaded areas represent the 95% confidence
intervals. Note: This figure shows raw data-points, not model estimates

Discussion

This is the first study that used a multicenter, longitudinal, transdiagnostic
approach to investigate the associations of repetitive behaviors and compulsivity
with fronto-striatal glutamate concentrations and functioning during inhibitory
control in a childhood/adolescent cross-condition population.

Our 'H-MRS only results showed that over time there was a reduction in ACC
glutamate in autistic compared with neurotypical participants, while an increase
in repetitive behaviors over time was associated with decreased glutamate in the
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same region. Previous studies investigating autistic children have shown higher
glutamate concentrations in ACC (54-56), while studies looking at autistic adults
have found both lower and higher glutamate concentrations in ACC compared
to neurotypical participants (7,57). Our finding may therefore reflect changes
in development in autism being different from neurotypical development. We
found no such differences in the OCD group, although they did not significantly
differ from the autism group either, and previous studies with OCD have shown
inconsistent results (7). This may be due to a larger heterogeneity in the disorder,
and future studies considering possible subtypes of OCD may successfully
disentangle such differing results. However, the previous study investigating an
overlapping sample (however, larger) at T1 found increased ACC glutamate in
both autism and OCD (8). In the striatum we found that glutamate decreased over
time independent of diagnosis. This is in line with the study that found no group
differences in striatal glutamate during the first time of measure (8), which is also
reflected at T2. Alterations in metabolite concentrations are also known to occur in
neurotypical development (58), and our finding may reflect such development in
striatum, independent of a clinical diagnosis.

Regarding neural activation, we did not find any group differences, time effects nor
effects of our continuous measures in our whole brain analyses for neither failed nor
successful inhibitory control. This was in line with the findings of T1 by Gooskens
et al. (19). However, other studies with similar behavioral results still found altered
brain activation during inhibitory control (17,23,26,27,29). Although we were
not able to find any whole-brain differences, looking at our region of interest we
found that an increase in compulsivity over time was associated with increased
striatal activation over time, but only during failed inhibitory control. Increased
compulsivity may thus be associated with more difficulties with inhibition, resulting
in more striatal activity, reflecting an increased cognitive demand. Our longitudinal
TACTICS study on inhibitory control in autism and OCD found improvements in
SSRT over time, regardless of group (19). In our partly overlapping subsample in this
study, as shown in the supplement, we do not replicate this finding but show that
males performed better than females. That we did not find a general improvement
may, however, be due to a lack of power and/or a larger proportion of males in
this subsample.

Integrating all these analyses for the first time in a multimodal fashion, investigating
the association between developmental changes in glutamate concentrations as
well as fronto-striatal functioning, resulted in differential findings across failed and
successful inhibitory control. While during failed inhibitory control, OCD participants
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showed decreased striatal activity with an increase in striatal glutamate over time,
the reverse was found for successful inhibitory control; increased concentrations
were associated with increased activity, again in the OCD group. Both these findings
were significant compared with neurotypical and autistic participants. These results
suggest differential involvement of striatal glutamate in neural activation patterns
in OCD compared with neurotypical and autistic participants during different
aspects of inhibitory control. To successfully inhibit responses, more glutamate
resulted in more activity, suggesting a compensatory mechanism to fulfill the
cognitive demands of the task, even though behaviorally there were no differences
in performance. As these results show significant changes over time in our ~1 year
time window between measurements, our results also suggest there may be critical
differences in neural measurements in childhood/adolescent neurodevelopmental
populations. This needs further investigation but may explain inconsistent results
in neuroimaging results with child/adolescent populations in these conditions.

Considering that the OCD group showed higher compulsivity scores compared
to the neurotypical and autism groups without any changes over time (Figure 2),
associations of both changes of glutamate in OCD and compulsivity on striatal
activity during failed inhibitory control may point towards the same mechanistic
differences for achieving the same neural activation. A recent study using a network
analysis has suggested that compulsivity as seen in OCD and repetitive behaviors
as seen in autism represent distinct features of these conditions (59), rather than
symptom overlap between the two, which has also been suggested (60,61). Our OCD
and autism results do not overlap, but were found within the different regions of
the fronto-striatal circuit (OCD findings in the striatum, autism findings in the ACC).
This indeed suggests that compulsivity in OCD and repetitive behaviors in
autism have distinct mechanistic underpinnings that are regionally specific and
differently regulated by glutamate, despite the seemingly similar behavioral
phenotypes. Considering the very limited research on these measures during
adolescence, even more so in OCD than in autism, these results are an important
step towards increasing understanding of underlying mechanisms of development
in compulsivity-related disorders. Further studies should confirm this initial finding,
but this may contribute to targeted glutamate altering interventions in OCD.

Strengths of the current study were combining categorical and dimensional analyses,
with a longitudinal approach to investigate the relationship between repetitive and
compulsive behaviors, fronto-striatal glutamate as well as functioning. There were
also some limitations. Firstly, the OCD group was smaller than the autism group,
which may have led to less power and the possibility of false negatives. However,
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we still found significant associations with changes in glutamate concentrations
affecting changes in functional activity in OCD. Furthermore, the percentage GM in
striatum decreased over time, suggesting worse voxel placement. However, these
changes were not different across diagnostic groups and therefore probably did
not affect our main findings. As ability to speak their native language and 1Q > 70
were inclusion criteria in this study, this may have resulted in excluding autistic
participants with higher support needs. Therefore, our autism specific results may
not be generalizable to the entire population of autistic individuals. There are also
difficulties performing multicenter studies, where data quality may differ across
sites. However, we did manage to control for these effects in our models and our
results were likely not affected by left-over site effects. Future studies should use
a true longitudinal model with a longer time-period in between and preferably a
larger sample size to increase the understanding of these integrated mechanisms
underlying autism and OCD. To further investigate similarities and differences
between these conditions regarding compulsivity and repetitive behaviors we also
suggest using a larger battery of measures of compulsivity and repetitive behaviors,
to disentangle what variations of these features differ between these diagnostic
groups, and what their underlying mechanisms are.

In conclusion we found, over time, significant associations in OCD of increased
glutamate concentrations in striatum with decreased functional activity in
striatum during failed inhibitory control, and an opposite effect of increased
striatal glutamate concentrations with increased striatal activity during successful
inhibitory control. Increased compulsivity was also associated with increased
striatal activity during failed inhibitory control. While glutamatergic alterations
were differently involved during neural activation in OCD, there were no general
changes in glutamate in the OCD group over time compared with neurotypical
participants. In the autism group on the other hand, we found ACC glutamate to
decrease more over time compared with neurotypical participants. These results
should be replicated in an independent sample, but this study has given new
insights into the alterations of glutamate in autism and OCD during development
in adolescence, and its role in functional activity.
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Supplement

Figure S1: Stop-signal task

Arrows were presented on a screen; the task was to press a button indicating the direction the arrow
was pointing at. In 20% of trials the arrow was followed by a stop cue of an arrow pointing upwards,
instructing to withhold a response. The stop-signal delay (SSD) between stimulus onset and stop-
signal was adaptive, where the SSD after successful inhibition increased with 50 ms while after failed
inhibition it decreased with 50 ms. This ensured participants success to inhibit in approximately 50% of
the stop-trials. The inter-trial interval (ITl), the time between the trials, was randomly jittered between
1.6 and 2.0 seconds.

Figure S2: Voxel overlays across timepoints

Superposition on the MNI152 template of all individual voxel placements in ACC (left) and striatum
(right), across times (First time of measure, blue; Second time of measure, red). The placements are
consistent across times of measures.
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Figure S3: Voxel overlays across sites

Superposition on the MNI152 template of all individual voxel placements in ACC and striatum, for all
sites (London, blue; Mannheim, yellow; Nijmegen, pink). The placements are consistent across and
within sites. For more detail across-site acquisition, see (1) and (2).
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Figure S4: Task activation contrasts

Task activation across all groups during (A) failed inhibitory control (failed stop - successful go) and
(B) successful inhibitory control (successful stop - failed stop), which showed common patterns of
activation. The colors reflect uncorrected activation, voxels with a black line around the color reflect
survived correction at p_,. = 0.05 showing fronto-striatal activation during cognitive control. The
numbers below the color bars reflect beta-values. Neuroimaging data are plotted using a procedure
introduced by (3) and implemented by (4).
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Figure S5: Example spectra

Example spectra of a 3T from proton magnetic resonance spectroscopy ('"H-MRS) Linear Combination
(LC) Model spectral fit in ACC and striatum across all sites from separate participants. The top of the
images represents the residuals. The black line represents frequency-domain data, the red line is the
LCModel fit. The right images show the fits for glutamate only.
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Details multimodal analysis

Linear models were used for our multimodal statistical analyses using the Im function
available in the base package in R (RStudio Team, 2016). Our integrated analyses of
the "H-MRS and fMRI data resulted in twenty-four models: Abeta in ACC or striatum
during failed or successful inhibitory control were dependent variables (4), and
our (continuous) predictors of interest were AGIUACC or AGluStr (2), together with
diagnostic status, ARBS compulsivity or ARBS total (3); 4 x 2 x 3 = 24 models. Site
was added as a predictor of non-interest to all models, to account for site-effects on
our measures. All models are listed in Table S2. These models test associations of the
predictors (right side of Table S2) on neural activity in our regions of interest during
inhibitory control (left side of Table S2).

For analyses of glutamate concentrations in ACC and striatum associated with time
and diagnosis independently, linear mixed effects models were used using the
Ime4 package (Bates et al., 2014). The Imer function was used to fit linear mixed-

effects models:

GIuACC ~ Diagnosis * Time + Site + (1|Participant)
GluStr ~ Diagnosis * Time + Site + (1|Participant)

For analysis of SSRT group comparison over time the following model was used:
SSRT ~ Diagnosis * Time + Site + (1|Participant)

The linear mixed effects models account for within subject variability over time by
adding participant as a random factor.
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Table S2: Linear regression models of multimodal analyses

Failed inhibitory control

AbetaACC  ~ AGIUACC * Diagnosis + Site
AbetaACC  ~ AGIUACC * A RBS Total score + Site
AbetaACC  ~ AGIUACC * A RBS Compulsivity + Site
AbetaACC ~ AGluStr * Diagnosis + Site
AbetaACC ~ AGluStr * A RBS Total score + Site
AbetaACC ~ AGluStr * A RBS Compulsivity + Site
AbetaStr ~ AGIUACC * Diagnosis + Site
AbetaStr  ~ AGIUACC * A RBS Total score + Site

AbetaStr ~ AGIUACC * A RBS Compulsivity + Site
AbetaStr  ~ AGluStr * Diagnosis + Site

AbetaStr  ~ AGluStr * A RBS Total score + Site
AbetaStr  ~ AGluStr * A RBS Compulsivity + Site

Successful inhibitory control
AbetaACC ~ AGIUACC * Diagnosis + Site
AbetaACC  ~ AGIUACC * A RBS Total score + Site
AbetaACC  ~ AGIUACC * A RBS Compulsivity + Site
AbetaACC ~ AGluStr * Diagnosis + Site
AbetaACC  ~ AGluStr * A RBS Total score + Site

AbetaACC  ~ AGluStr * A RBS Compulsivity + Site
AbetaStr ~ AGIUACC * Diagnosis + Site
AbetaStr ~ AGIUACC * A RBS Total score + Site
AbetaStr ~ AGIUACC * A RBS Compulsivity + Site
AbetaStr  ~ AGluStr * Diagnosis + Site
AbetaStr  ~ AGluStr * A RBS Total score + Site
AbetaStr  ~ AGluStr * A RBS Compulsivity + Site

AbetaACC/ AbetaStr: Changes in neural activation in ACC/striatum between time-point
1 (T1) and time-point 2 (T2), during failed or successful inhibitory control. AGIUACC/
AGluAStr: Changes in glutamate concentration in ACC/striatum between T1 and T2. “~"
indicates that the variables on the right side are associated with the dependent variable
on the left hand side. The “*” between the variables of interest indicates that the model
assesses these variables both independently and their interaction effects.
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Table S3: Raw glutamate levels at T1 and T2

Diagnosis ACCT1 ACCT2 STRT1 STRT2
Autism 10.46646461 8.496578355 NA NA

Autism 9.502124709 9.887580258 8.247075833 6.352032402
Autism 10.45382499 8.428490578 NA NA

Autism 9.808432659 9.344632423 6.673729796 6.263571408
Autism 9.03451682 9.839876294 6.941402246 6.487048865
Autism 8.459706588 8.431155876 6.536547776 4.619588719
Autism 10.12216162 10.4795116 4.877940024 7.320578073
Autism 12.28622171 7.932510748 4.56654398 5.242980373
Autism 9.528864663 9.623110444 5.694679044 6.126748945
Autism 8.762677237 7.701688908 7.093335165 6.294975144
Autism 8.678187241 9.172212197 NA NA

Autism 15.74052401 1549530981 9.466125109 9.237021295
Autism 22.9679727 13.85815441 9.251698141 11.4537308
Autism 16.79127614 14.39287469 8.051919207 9.004611253
Autism 14.73175341 16.9883202 9.28496324 9.112406219
Autism 13.63378153 16.26286471 9.060665591 7.549782644
Autism 14.17480125 12.66238483 9.056145735 7.362930309
Autism 12.12576328 11.93199961 NA NA

Autism 9.161339697 9.192108149 NA NA

Autism 10.09289446 8.424581493 NA NA

Autism 10.61616663 10.41175931 6.46558221 7.254520547
Autism 10.9101927 8.294028346 6.704347808 5.705254053
Autism 20.07059274 15.04236284 6.313574257 6.402479415
Autism 17.61304837 8.295779564 6.927463488 6.594419822
Neurotypical 9.099615118 8.483204361 7.037234954 5.448861084
Neurotypical 11.90266353 10.1138775 8.379938904 7.000655466
Neurotypical 9.703567829 9.071750281 7.80662892 6.190655013
Neurotypical 9.390472411 9.032679628 6.445081954 6.760872956
Neurotypical 9.688986736 8.583364547 NA NA
Neurotypical 11.67860923 14.28663776 NA NA
Neurotypical 12.75080489 9.575479647 6.614020154 6.303383585
Neurotypical 7.664403144 7.655782073 8.646897829 5.834470139
Neurotypical 9.424915728 9.03764206 6.412028842 7.0184551
Neurotypical 11.35464345 9.890793357 7.099357725 7.158730934
Neurotypical 14.18055305 10.30268859 6.500372186 6.313729084
Neurotypical 8.3599096 9.949890644 6.344679076 6.160679051
Neurotypical 9.675412031 9.555373079 NA NA
Neurotypical 9.532707858 8.17309906 5.971965993 6.647455325
Neurotypical 9.554553965 10.11461868 6.188594005 5.432526183
Neurotypical 8.349128716 9.130057346 NA NA
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Table S3: Continued

Diagnosis ACCT1 ACCT2 STRT1 STRT2
Neurotypical 8.845944014 9417837617 6.252027577 5.607146096
Neurotypical 9.468649279 9.049949317 4.859555094 5479611342
Neurotypical 14.53116037 11.055685 9.642807214 9.761815574
Neurotypical 11.92673935 15.96033783 11.03101319 7.788142954
Neurotypical 15.70143114 18.91421894 7.214572233 6.967431191
Neurotypical 15.02416225 13.30618856 8520991737 8.595460476
Neurotypical 13.61447189 14.73748597 9.814362703 5.817394356
Neurotypical 10.8603263 10.68386152 NA NA
Neurotypical 10.38257723 10.58082587 NA NA
Neurotypical 11.79813299 13.02120024 NA NA
Neurotypical 14.25759296 18.65058519 7.763861404 8.162968401
Neurotypical 9.722633896 10.94151912 7.176305053 7.359308648
Neurotypical 10.54027896 11.11133059 7462122855 6.350588479
Neurotypical 9.969426778 10.08564778 7.538577217 5.966455811
Neurotypical 9.988677383 10.25062889 7.257006015 8.034547418
Neurotypical 10.55478596 10.94177261 NA NA
Neurotypical 9.578996296 9.882392411 NA NA
Neurotypical 13.57801178 11.51251984 7.014844338 6.712492963
Neurotypical 10.50094717 11.10952951 6.496388591 5.760879882
oCch 13.53502686 9.430361242 5592711434 4.605072501
oCD 9.947264788 10.54916246 7.556859004 5.955580429
och 10.08391323 10.7309773 6.900305508 7.096163611
OoCD 10.67196045 13.28778394 7.404535854 6.701631818
ocDh 14.57241252 10.94868352 6.65173351 6.705290913
oCD 9.625646412 9.238435885 5.329838352 5.325569179
ocD 9.316942712 10.35378667 5431188384 6.662102284
ocD 10.74705388 8.375389987 NA NA

ocD 8.194909742 11.80746102 6.14599681 6.142299143
OoCD 17.78596703 13.89954418 10.13001278 11.80747576
OoCD 23.88093187 17.86656965 NA NA

OoCD 12.65959818 14.95887336 NA NA

OoCD 14.9685669 17.69010235 7.334637431 7.923531508
OoCD 13.88118108 15.47390753 NA NA

OoCD 10.6982443 9.595557239 6.996366196 6.843144398
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Medication use over time

During the first time of measure, in the autism group two people used stimulants,
and one anti-depressants. In the OCD group five people used antidepressants and
one anti-psychotics. In the second time of measure, one of the participants using
stimulants and the participant using anti-depressants now also used antipsychotics.
An additional participant used antidepressants, and one antipsychotics and
stimulants. In the OCD group two were no longer on antidepressants, the one using
antipsychotics in the first time of measure now also used antidepressants, and one
participant had started using stimulants. None of the neurotypical participants
used medication at any time of measure.

Stop-Signal task (behavioral)

Analysis

The behavioral measure of interest on the SST was the stop-signal reaction time
(SSRT), which was calculated using the integration method (5,6), where the
reaction time (RT) of correct go trials was rank ordered, then the nth go-RT was
selected, where n was derived by multiplying the number of correct go-trials by
the probability that the participant respond to a stop signal. The SSRT was then
estimated by subtracting the mean SSD from the nth go-RT (7). Participants
were excluded from analysis for excessive motion or when they showed an SSRT
< 50 ms as it is indicative of not performing the task properly, for example by
constantly pressing buttons without paying attention to cues which results in
atypically short response times on correct go-trials. This resulted in 41 participants
included for stop-task analysis (autistic = 12, OCD = 8, neurotypical = 21). Data
from T1 and T2 were initially analyzed separately allowing investigation of group
differences without the possible influence of time. Shapiro-Wilk normality tests
showed that there was no normal distribution in either time of measure, and
therefore Fligner-Killeen tests of homogeneity of variance were used, which
showed that there was equal variance between diagnosis groups in both T1 and
T2. Consequently, Kruskal-Wallis tests were used to analyze differences in SSRT
between groups (autistic, OCD or neurotypical) for T1 and T2 independently. To
investigate behavioral differences between groups on the stop-task measured by
the SSRT, Kruskal-Wallis tests were used to compare groups, and a mixed effects
model was used to analyze changes between groups over time of measure,
including the same covariates as described before.
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Results

There were no group differences in SSRT at T1 (c? = 2.84, p > 0.1) or T2(c? ,=2.64,
p > 0.1), showing similar performance across groups. Across T1 and T2 a significant
effect of sex was found (b = -101.34, to,,="2.21 p=0.03,r= 0.35), indicating an
improvement in stop-task performance in males, but not in females. There were

also no significant group differences in task performance across T1 and T2.
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Abstract

The excitatory/inhibitory (E/I) imbalance hypothesis posits that imbalance between
excitatory (glutamatergic) and inhibitory (GABAergic) mechanisms underlies the
behavioral characteristics of autism. However, how E/I imbalance arises and how it
may differ across autism symptomatology and brain regions is not well understood.
We combined competitive gene-set analysis and gene-expression profiles in relation
to cortical thickness (CT) to investigate relationships between genetic variance,
brain structure and autism symptomatology of participants from the AIMS-2-TRIALS
LEAP cohort (autistic = 359, male/female = 258/101; neurotypical = 279, male/
female = 178/101) aged 6 to 30 years. Using competitive gene-set analyses we
investigated whether aggregated genetic variation in glutamate and GABA gene-
sets could be associated with behavioral measures of autism symptoms and brain
structural variation. Further, using the same gene-sets, we corelated expression
profiles throughout the cortex with differences in CT between autistic and
neurotypical participants, as well as in separate sensory subgroups. The glutamate
gene-set was associated with all autism symptom severity scores on the Autism
Diagnostic Observation Schedule-2 (ADOS-2) and the Autism Diagnostic Interview-
Revised (ADI-R) within the autistic group. In adolescents and adults, brain regions
with greater gene-expression of glutamate and GABA genes showed greater
differences in CT between autistic and neurotypical control participants although in
opposing directions. Additionally, the gene expression profiles were associated with
CT profiles in separate sensory subgroups. Our results suggest complex relationships
between E/I related genetics and autism symptom profiles as well as brain structure
alterations, where there may be differential roles for glutamate and GABA.
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Introduction

Autism spectrum disorder (autism) is a neurodevelopmental condition characterized
by challenges in social interaction and communication, restricted and repetitive
patterns of behavior and/or atypical sensory processing (1). One influential hypothesis
regarding its underlying mechanisms is the excitatory/inhibitory (E/I) imbalance
hypothesis, which suggests that an imbalance between excitatory (predominantly
glutamatergic) and inhibitory (predominantly GABAergic (y-aminobutyric acid))
mechanisms in the brain underlies symptomatology (2). Causal links have been
suggested, but so far with suggestions for both overexcitation and overinhibition (2-6).
However, understanding the mechanisms of how E/l imbalance is underlying autism
symptomatology is complex. The heterogeneity and polygenic nature of autism,
and previous opposing findings of E/I imbalance, may be evidence of differential
involvement across autism characteristics or brain regions.

Mechanisms of E/limbalance may have genetic underpinnings. Autism is a polygenic
condition where several genetic variants together give rise to the expression of
the phenotype. Progress in identifying common genetic variants associated with
autism have included genes encoding proteins involved in glutamate and GABA
receptors and transporters (7-10). De novo mutations are also known to underlie
a significant portion of the prevalence of autism, where additional links between
genes involved in excitatory and inhibitory signaling have been found (11). Several
studies have suggested glutamatergic and GABAergic genetic links to behavioral
autism phenotypes (3,4,12-14). These phenotypes have been linked to changes in
glutamate and GABA concentrations in the brain as well (4,15).

Genetic and behavioral changes in autistic individuals can additionally be linked to
brain structure, where a role for E/l imbalance seems plausible. Differences in cortical
thickness (CT) have consistently been found in autism and have been shown to
differ throughout development as well (16,17). More specifically, both increased and
decreased cortical thickness has been found in autism mainly in fronto-temporal,
fronto-parietal, limbic areas and fronto-striatal circuits (16-22). However, we do
not yet have a clear understanding of what is causing these differences, although
there is strong evidence that genetic factors play a role (21). Cell-type specific gene-
expression has been shown to be associated with differences in cortical thickness in
several neurodevelopmental disorders, among which autism (23,24). Some genes
within these cell-type specific gene-sets relate to cellular E/I function, but a similar
relation has not yet been investigated focusing specifically on genetic pathways
involved in excitatory and inhibitory signaling. Although not yet investigated
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directly, it is plausible that alterations in glutamate and GABA functioning relate to
morphological differences such as CT. For instance, glutamate and GABA receptors
play a role in dendritic growth, a process with genetic underpinnings found to be
altered in autism (25-27). Dendrite growth is also linked to cortical thickness (23,28).
Altered dendritic growth, and associated genes, have been linked to autism
symptomatology, especially repetitive behaviors (25,29,30). To understand
mechanistic underpinnings of morphological differences in autism it is important
to get a better understanding of these links between E/I imbalance and how it may
relate to structural differences. This has the potential to increase understanding of
the links between molecular and genetic mechanisms of autism and macroscopic
measures such as cortical thickness, aiding in the development of markers for
subtyping and targeted treatment options in autism (19).

In the current study we wanted to integrate parts of the E/I puzzle by taking a
multimodal approach focusing on aggregated (common) genetic variation, different
autism phenotypes and their association with brain structure. One relatively
understudied part of the autism phenotype comprises sensory symptoms. These
are especially interesting as they have been suggested promising to unscramble the
autism heterogeneity (31) as well as for their shown link with E/I imbalance using
Proton-Magnetic Resonance Spectroscopy ('H-MRS ) (32). Additionally, previous
investigations within this dataset have shown differences in CT between those with
severe and low sensory processing difficulties in brain regions enriched for genes
that are expressed in excitatory neurons in the developing cortex (19).

Here we used a competitive gene-set approach (33-35), investigating the role of
aggregated genetic variation in glutamate and GABA gene-sets in behavioral autism
phenotypes and cortical thickness. By considering several (common) genetic variants
in the same analysis, the power of the study in explaining phenotypic variance
is increased. In short, this tests whether genes in the gene-set are more strongly
correlated with the phenotype of interest than other genes (33). This method has
shown utility in other neurodevelopmental disorders showing aggregated genetic
effects rather than using single candidate-gene associations (29,36,37). Additionally,
using the same gene-sets, we investigated whether their expression profiles across
the cortex could be associated with differences in cortical thickness between
autistic and neurotypical participants. Building on the previous findings focusing
on sensory symptoms (18,31), we further extended these analyses linking this E/I
related gene-expression to cortical thickness profiles in separate sensory subgroups.
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By integrating these approaches, we can deepen our understanding of the links
between aggregated genetic variation in glutamate and GABA pathway signaling
sets and different behavioral autism phenotypes as well as brain structure. Based
on previous findings regarding excitatory or inhibitory alterations in autism, we
expected to find differential involvement of the glutamate and GABA genes across
the autism phenotypes, reflected in the competitive gene-set analysis. We also
attempted to further confirm such differences with the exploratory analyses using
gene-expression in association with structural brain differences in both the autism
versus neurotypical groups as well as in the sensory symptom subgroups.

Methods

Participants

We included participants from the Longitudinal European Autism Project (LEAP),
part of the AIMS-2-TRIALS clinical research programme (https://www.aims-2-
trials.eu/) (38-40). Our sample consisted of 638 participants (autistic = 359,
neurotypical = 279) for whom structural MRI data was available that passed quality
control (19). Phenotypic, genetic and brain imaging data were collected at six study
centers across Europe: Institute of Psychiatry, Psychology and Neuroscience, King’s
College London (loPPN/KCL, UK), Autism Research Centre, University of Cambridge
(UCAM, UK), University Medical Centre Utrecht (UMCU, Netherlands), Radboud
University Medical Centre (RUMC, Netherlands), Central Institute of Mental Health
(CIMH, Germany), and the University Campus Bio-Medico (UCBM) in Rome, Italy.

Inclusion criteria for the autism group were an existing diagnosis of autism and an
age-range between 6 and 30 years. Symptoms were additionally assessed using the
Autism Diagnostic Observation Schedule Second Edition (ADOS-2; (41)) and the
Autism Diagnostic Interview-Revised (ADI-R; (42)). For the neurotypical participants,
exclusion criterion comprised of parent- or self-report of any psychiatric
disorder. Individuals who had a normative T-score of 70 or higher on the Social
Responsiveness Scale Second Edition (SRS-2) were excluded. Some individuals in
the autism and neurotypical groups had intellectual disability (ID) (autistic=53,
neurotypical=25), defined as an IQ score between 40 and 74. Ethical approval was
obtained through ethics committees at each study site. All participants or legal
guardian (where applicable) provided written informed consent. For further details
of the recruitment of participants in this study see (19,38,39).
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Phenotypic measures

The phenotypic measures used were part of a larger test battery (see (39)). Here we
included three questionnaires focusing on the core autism symptoms: the Social
Responsiveness Scale-Revised (SRS-2) (43), the Repetitive Behavior Scale-Revised
(RBS-R) (44), and the Short Sensory Profile (SSP) (45). For these questionnaires,
we used self- or parent-report ratings, depending on age and diagnostic group.
We additionally made use of sensory symptom subgroups used in this sample
previously, created based on the SSP scores and factor mixture modelling (19,31).

Genotyping

Genotyping was performed at the Centre National de Recherche en Génomique
Humaine (CNRGH) using the Infinium OmniExpress-24v1 BeadChip lllumina. Sample
quality controls such as sex check (based on the X chromosome homozygosity rate
or the median of the Log R ratio of the X and Y chromosomes), Mendelian errors
(transmission errors within full trios) and Identity By State were performed using
PLINK 1.90. Imputation of 17 million SNPs was performed using the 700k genotyped
SNPs on the Michigan Imputation Server (46). The HRC r1.1 2016 reference panel
for a European population was used, as most individuals in the LEAP cohort were
from European ancestry. Only autosomes were imputed. Linkage disequilibrium-
based SNP pruning was done for SNPs with a MAF>1% and SNPs with an R2 < 0.1 in
windows of 500kb were selected. This resulted in 546 participants with genotypic
data (autistic= 304, neurotypical= 242).

Selection of the glutamate (n=72 genes) and GABA (n=124 genes) gene-sets was
based on Ingenuity Pathway Analysis software (http://www.ingenuity.com), a
frequently updated database for genetic pathway analysis. Supplement Tables S1
and S2 show an overview of the included genes. In case of any significant
associations between the aggregated genetic variation in the gene-sets and the
phenotypes of interest, we explored smaller gene-sets containing genes encoding
glutamate/GABA receptors and transporters specifically because of their more
direct role in neurotransmitter signaling (47). Those are referred to as glu-RT (n=32)
and GABA-RT (n=26) and are defined in the supplement Tables ST and S2.

Neuroimaging

Structural brain images were acquired on 3T MRI scanners at all sites, with
T1-weighted MPRAGE sequence (TR=2300ms, TE=2.93ms, T1=900ms, voxels
size=1.1x1.1x1.2mm, flip angle=9°, matrix size=256x256, FOV=270mm, 176 slices).
Forasummary of scanner details and acquisition parameters at each site, see Table S3
in the supplement. The processing of all neuroimaging data was conducted at
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one site for all available data. For each image a model of the cortical surface was
computed using FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), using a fully
automated and validated procedure (48-51). Subsequently, each reconstructed
surface went through strict quality assessments, described in detail in (19).
This quality assessment included visual inspection of reconstruction errors by
independent raters, manual editing where needed, and examination of the Euler
number of each FreeSurfer surface reconstruction resulting in the conclusion that
there were no differences in the complexity of the reconstructed cortical surface
between participant groups. This resulted in parcellated regional CT measures for
all the 638 participants included in our study, with 34 regions in each hemisphere
using the Desikan-Killiany atlas (52). A more detailed description of the processing
of the cortical thickness data can be found in a previous publication (see (19)).

Gene-expression data

Gene-expression data were acquired from post-mortem human brains from the
Allen Human Brain Atlas (AHBA) (53), using data from six donors (aged 24-57 years,
one female) of the left hemisphere only. These whole-brain gene-expression data
are open source and can be downloaded from the Allen Institute for Brain Science;
http://www.brain-map.org. For more details on how these data were obtained, see (53).

Using previously described procedures (23,24,54), these gene-expression data
were mapped onto the 34 cortical regions defined by FreeSurfer's Desikan-Killiany
Atlas (52). These gene-expression profiles were then used in the two-step procedure
described by (55) to select the most consistent profiles for inclusion in our analyses.
First, the correlations of gene-expressions to the median expression values across
donors were calculated, and the genes showing consistent correlation profiles were
selected (donor-to-median correlation rho >0.446). Secondly, we used data from
the BrainSpan Atlas, where gene-expression data in a wide age-range of donors
are available (www.brainspan.org). Donors were selected within the age range

of our LEAP dataset (6-30 years), which gave us 9 donors (male/female = 5/4).
We calculated correlations to the median expression values in the 11 cortical
regions in the AHBA-to-FreeSurfer data that were also included in the BrainSpan
Atlas, using methods as described by (24). We then selected genes that correlated
between the profiles of the two atlases higher than r=0.52 (one-sided test p < 0.05),
which resulted in 2293 genes available in total. The overlap with the gene-sets left
29 genes in our glutamate pathway gene-set, and 42 genes in our GABA pathway
gene-set. The median expression profiles across regions for these genes constitute
the interregional gene-expression profiles used in our analyses.
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Analyses

All analyses included the linear effects of age, sex, IQ and site as covariates. All
tests were corrected using the false discovery rate (FDR; g < 0.05 was considered
significant) unless otherwise described.

Gene-set analysis

To investigate associations between aggregated genetic variation within the
glutamate and GABA gene-sets and the autism phenotypes of interest (SRS-2
total score, RBS-R total score, SSP total score, and ADOS-2 and ADI-R (the last two
for the autism group only)) and cortical thickness, we performed competitive
gene-set analysis using MAGMA (Multi-marker Analysis of GenoMic Annotation)
software (version 1.10, (33)). This analysis is performed in two steps. First, gene-
based p-values are calculated for each gene (excluding genes located on the
X-chromosome, see supplement Tables S1 and S2) on our phenotypes of interest,
using a multiple linear principal components regression using F-tests. Secondly,
the association of the set is tested, aggregating the gene-based p-values using
competitive analysis. This gene-set analysis is done with an intercept-only linear
regression model for the gene-set, which tests whether the aggregated genetic
variation of the genes in a gene-set is more strongly associated with the phenotype
of interest than all other genes in the genome (33).

Cortical thickness and clinical phenotypes

To test associations between cortical thickness (CT) and our phenotypes of interest
(SRS-2 total score, RBS-R total score, SSP total score, ADOS-2 and ADI-R), we used
linear regression models in the R-software package (56). This was done in the left
hemisphere only, due to the expression profile analysis being performed only in the
left hemisphere. In addition to age, sex, IQ and site we added quadratic age effects
and total mean cortical thickness as covariates as well, as described previously
in (19).

Expression profiles

To investigate associations between expression profiles of the glutamate and
GABA gene-sets and brain structure we used correlation across interregional
profiles of CT with interregional profiles of gene-expression (23,24,57). Profiles
of CT were created by subtracting the average CT per region in the neurotypical
group from the average CT in the autism group, as has been done previously (54).
In order to rule out effects being caused by heterogeneity in the sample, the groups
were matched for age, sex and 1Q using Matchlt (58) in R-software (56) performing
nearest neighbor matching, resulting in n=279 participants in each group. As
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cortical thickness is strongly associated with age (59), we additionally decided to do
these profile correlation analyses for children, adolescents and adults separately. To
verify any of these associations analyses were replicated using structural imaging
data of CT from the multi-site open-source ABIDE database (60). We included
participants in the same age range as our own sample (6-30 years), which resulted
in data from 874 participants matched for age, sex and 1Q (n =437 in both groups).
Details on these analyses and results can be found in the supplement and Figure S1.
Building upon previous results from our group (19,31) and to parse some of the
autism heterogeneity, we additionally performed these gene-expression analyses
with interregional CT profiles in separate sensory subgroups (low, n=375; moderate,
n=37; severe, n=37). These subgroups were defined previously (31).

The interregional expression profiles of the genes in our glutamate and GABA
pathway gene-sets were then correlated with the CT-difference interregional
profiles (autism minus neurotypical across different age-groups and CT-average
interregional profiles in sensory subgroups), which provided a distribution of
correlation coefficients per gene-set. The distributions of correlation coefficients
between the gene-expression and CT-difference interregional profiles were then
tested for significance using a resampling approach of 10,000 random samples,
as described in (23,24). In this approach, a random set of genes of the same size
as the set being tested is selected (from the 2293 available) 10,000 times with
the average correlation each time being used to create a null distribution. A
two-tailed significance test was used to test the gene-set of interest against the
null distribution.

Results

Demographics

Demographic and clinical characteristics are shown in Table 1. No differences were
found between the autism and neurotypical groups in age. The autism group
had a higher female-to-male ratio compared to the neurotypical group and the
neurotypical group had a higher I1Q than the autism group. As expected, the autism
group had significantly higher scores on the SRS-2 and RBS-R and scored lower in
the SSP (where lower scores indicate higher sensory sensitivity). Information on
medication use can be found in Table S4 in the supplement.
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Table 1: Demographic and clinical characteristics

NT Autism Test statistic p-value

(N=279) (N=359)
Sex, m/f 178/101 258/101 KWy2=4.71 0.03

N Mean sD Mean SD df

Age 17.33 591 1750 5.52 t=0.38 57691 0.70
1Q 104.79 19.72 98.88 18.25 t=-3.92 617.31  <0.001
SRS-2 555 28.88 2336 88.99 3079 t=26.15 551.34 <0.001
RBS-R 436  2.59 839 1634 13.94 t=1283 42349 <0.001
SSP 325 176.66 15.74 139.43 2727 t=-15.60 32222 <0.001
ADI-R
Social 345 - - 16.70 6.68 - = -
Communication 345 - - 13.24 5.63 - - -
Restricted repetitive 345 - - 430 2.66 - - -
ADOS-2
Calibrated severity 353 - - 5.40 2.76 - - -
Social affect 351 - - 6.02 2.63 - - -
Restrictive repetitive 351 - - 4.62 2.71 - - -

NT, Neurotypical; autism, Autism Spectrum Disorder; SD, standard deviation; df, degrees of freedom;
SRS-2, Social Responsiveness Scale 2nd edition; RBS-R, Repetitive Behavior Scale - Revised; SSP,
Short Sensory Profile; ADI-R, Autism Diagnostic Interview-Revised; Restricted repetitive, Restrictive
Repetitive Behaviors domain; Communication, ADI Communication domain; Social, ADI Social domain;
ADOS-2, Autism Diagnostic Observation Schedule 2nd edition; Calibrated severity, ADOS-2 Calibrated
Severity Score; Social affect, ADOS-2 Social Affect. KWy2, Kruskal-Wallis Chi-Square. Post hoc tests
were Bonferroni corrected (alpha lower than 0.05).

Gene-set analysis

Aggregated genetic variation within the glutamate gene-set (n=72 genes) was
associated with autism symptoms as defined by significant associations with
all the ADI-R and ADOS-2 subscales (all g < 0.05, see Table 2). Repeating these
analyses in the smaller glu-RT gene-set did not give the same significant results.
No associations were found for any of the questionnaire scores. Genetic variation
within the GABA gene-set (n=124 genes) was nominally significantly associated
with sensory processing (SSP total scores; g = 0.07) after FDR correction. Repeating
these analyses in the smaller, more specific GABA-RT set gave a similar result
(g =0.06), see Table 2. To investigate these trend associations further, we performed
similar post-hoc association analyses with all the SSP subscales. None of these were
significantly associated with the genetic variation within the GABA gene-set (all
g-values > 0.05). For more details see Table S5 in the supplement. Repeating the
gene-set analyses with the questionnaires in the autism group separately did not
result in any significant associations.
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We additionally investigated gene-set associations with CT in the FreeSurfer cortical
regions in the left hemisphere. There were some nominally significant (uncorrected
p-values <0.05) associations, although none survived FDR-correction. The details of
these results can be seen in supplement Tables S6 and S7.

Table 2: Glutamate and GABA and phenotypes competitive gene-set analysis results

Glutamate: Pathway gene-set (N=72) BETA P P.: SE
SRS 0.075 0.247 0.247 0.109
RBS-R 0.111 0.144 0.162 0.104
SSP 0.108 0.143 0.162 0.101
Diagnosis 0.171 0.048 - 0.103
ADI communication domain 0.197 0.028 0.042 0.103
ADlrestricted and repetitive behaviors domain 0.197 0.028 0.042 0.103
ADI social domain 0.197 0.028 0.042 0.103
ADOS restricted and repetitive behaviors 0.225 0.014 0.042 0.103
ADOS social affect 0.225 0.014 0.042 0.103
ADOS total score 0.225 0.015 0.042 0.103

Glutamate: Receptors/transporters gene-set (N=31)

SRS -0.016 0.538 0.559 0.170
RBS-R -0.024 0.559 0.559 0.163
SSP 0.188 0.116 0.278 0.157
Diagnosis 0.075 0319 - 0.161
ADI communication domain 0.077 0.315 0.406 0.160
ADl restricted and repetitive behaviors domain 0.077 0.315 0.406 0.160
ADI social domain 0.077 0.315 0.406 0.160
ADOS restricted and repetitive behaviors 0.186 0.124 0.278 0.160
ADOS social affect 0.186 0.123 0.278 0.160
ADOS total score 0.186 0.124 0.278 0.160
GABA: Pathway gene-set (N=124) BETA P P.x SE

SRS -0.050 0.721 0.728 0.085
RBS-R -0.013 0.562 0.632 0.081
SSP 0.151 0.028 0.248 0.079
Diagnosis 0.040 0.311 - 0.081
ADI communication domain 0.048 0.274 0.413 0.080
ADl restricted and repetitive behaviors domain 0.048 0.275 0413 0.080
ADlI social domain 0.048 0.274 0.413 0.080
ADOS restricted and repetitive behaviors 0.037 0.321 0413 0.080
ADOS social affect 0.037 0.321 0413 0.080

ADOS total score 0.037 0.321 0.413 0.080
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Table 2: Continued

GABA: Receptors/transporters gene-set (N=23)

SRS 0.102 0.318 0.358 0.215
RBS-R -0.329 0.946 0.946 0.205
SSP 0.340 0.022 0.198 0.198
Diagnosis 0.133 0.256 - 0.202
ADI communication domain 0.117 0.281 0.358 0.202
ADI restricted and repetitive behaviors domain 0.117 0.281 0.358 0.202
ADI social domain 0.117 0.281 0.358 0.202
ADOS restricted and repetitive behaviors 0.105 0.302 0.358 0.202
ADOS social affect 0.105 0.301 0.358 0.202
ADOS total score 0.105 0.301 0.358 0.202

N, number of genes in analysis. Diagnosis was indicated as a binary variable. SRS-2, Social
Responsiveness Scale, Second Edition;; RBS-R, Repetitive Behavior Scale-Revised; SSP, Short Sensory
Profile; ADI, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule-2
edition; PFDR p-value corrected using False discovery rate (FDR); SE, standard error of the regression
coefficient. Significant results (pFDR<0.05) marked in bold.

Cortical thickness and phenotypes

Our group previously showed vertex-wise group differences in cortical thickness
between autism and neurotypical participants in the current sample (19). Here we
did not repeat these analyses but instead focused on the continuous measures of
autism symptoms using the ADI-R and ADOS-2 in the autism group and the SRS-2,
RBS-R and SSP questionnaires in the entire sample.

Cortical thickness in the frontal pole was positively associated with restricted
and repetitive behaviors as reflected by the RBS-R total score (b = 0.05, t = 3.33,
g = 0.03). No other results survived multiple comparisons corrections, although
nominally significant negative associations were found between all ADI-R subscales
and precuneus CT (communication g=0.26, social g= 0.19, restricted and repetitive
behaviors g=0.05) as well as a nominally significant positive relation between the
ADOS-2 total score and the social affect subscale and CT in the insula (g=0.16,
g=0.13, respectively).

Gene-expression profiles

While the interregional profiles of group differences in cortical thickness (autism
minus neurotypical) were not significantly associated with gene-expression
profiles across our glutamate and GABA gene-sets in the full sample (all g-values
>0.05), splitting into groups of children, adolescents and adults gave some
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opposing results. In adolescents (autistic = 101, neurotypical = 100), the interregional
profile of group differences in cortical thickness was positively associated
with interregional variation in expression of both glutamate (t=2.25, =0.030,
Cohen's d= 0.70) and GABA genes (t=3.28, g=0.005, Cohen's d=1.24). In adults,
on the other hand (autistic = 124, neurotypical = 115), the group difference profile
was negatively associated with expression, again for both gene-sets (glutamate:
t=-2.99, g=0.005, d=-0.93; GABA: t=-3.17, g=0.005, d=-0.93), reflecting differences
in CT between autistic participants and NT changing with age. In children, no
such associations were found. See Figure 1 for the distributions of the correlation
coefficients and Figure 2 for CT differences and example genes for each gene-set.

These results were replicated in the independent ABIDE cohort for adolescents.
In adults, however, positive associations between the expression profiles and CT
differences were found, as opposed to the negative associations found in our LEAP
sample (see supplement and Figure S1).

Investigating the interregional profiles of CT in sensory subgroups separately
gave positive associations with the interregional profiles of gene-expression in
all groups (LOW: glutamate: t=3.02, g=0.004, Cohen's d = 0.94; GABA: t=3.19,
g=0.004, Cohen's d=1.21; MODERATE: glutamate: t=3.18, g=0.003, Cohen's d = 0.99;
GABA: t=3.30, g=0.003, Cohen's d=1.25; SEVERE: glutamate: t=3.03, g=0.004, Cohen's
d =0.95; GABA: t=3.18, g=0.004, Cohen's d=1.20), see also Figure S2. To investigate
possible differences between the sensory subgroups we calculated interregional
CT-difference profiles between groups as well, however this gave no significant
associations. These results could not be replicated in ABIDE due to unavailability of
the SSP questionnaire in that sample.
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Figure 1: Distributions of correlation coefficients between cortical thickness difference
and gene-expression

Distributions of the inter-regional correlation coefficients between differences in cortical thickness
(CT) and profiles of gene-expression in adults (A) and adolescents (B). The CT-difference profiles were
obtained from our LEAP data, and the expression profiles from the Allen Human Brian Atlas (AHBA),
in our glutamate-pathway and GABA-pathway gene-sets. The x-axes show the correlation coefficient
between CT-difference and expression profile for all genes in the gene-set; the y-axes show the
estimated probability density for the correlation coefficients; the vertical dashed-lines indicates the
average expression-CT difference correlation coefficient across all the genes in a gene-set; and the
edges of the gray boxes indicates the 2.5% and 97.5%-critical values obtained from the empirical null
distribution of the average expression-thickness correlation coefficient. If a vertical line sits outside the
gray box, it implies that there is a significant association between gene-set and differences in CT at the
unadjusted 5% significance level.
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Figure 2: Gene-expression and cortical thickness difference from highest correlating genes

Lateral and medial views of differences in cortical thickness (CT) between autistic and neurotypical
control participants in adults (A) and adolescents (B), and gene-expression levels of the genes from
the glutamate and GABA (pathway) gene-sets with highest (negative in adults, positive in adolescents)
correlation. Plots on the bottom row of each panel show standardized profiles of CT-differences
between autistic and neurotypical control participants (dotted lines) in each age group and the gene-
expression (solid lines) for the most strongly correlated gene in each respective gene-set. FreeSurfer
regions on the x-axes are ordered from low to high thickness. Figures were created using ggplot2
(Ginestet, 2011) and ggseg (Mowinckel & Vidal-Pifieiro, 2020).
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Discussion

We took a multimodal approach to investigate the role of E/I imbalance associated
gene-sets in relation to behavioral phenotypes and brain structure in autism. The
most important takeaway of our results is that the glutamate and GABA gene-
sets were differently associated with autism symptoms, and that the expression
profiles of these genes throughout the cortex were associated with differences in
cortical thickness between autistic and neurotypical participants, depending on
age. Aggregated genetic variation in the glutamate gene-set was associated with
autism symptom severity on all core symptom subscales of the ADI-R and ADOS-2
(in autistic participants), while variation in the GABA gene-set showed association
with sensory symptoms in the entire group, although this did not survive strict
multiple comparisons correction. In adolescents and adults, but not in children,
regions with greater gene-expression of glutamatergic and GABAergic genes
showed greater differences in CT between autism and neurotypical groups, but
in opposite directions. In adolescents, this association was positive, suggesting
overall higher cortical thickness in the autism group than in the neurotypical group,
while in adults this was negative, indicating an overall higher CT in neurotypical
as opposed to autistic participants. These results provide a better understanding
of the mechanistic underpinnings of the E/I imbalance hypothesis of autism,
by supporting the notion that E/I imbalance varies across behavioral autism
characteristics and differences in CT between autistic and neurotypical groups.

The findings of associations between genetic variation in the glutamate gene-
set and ADI-R and ADQOS-2 subscale scores, and the trend associations of these
subscale scores with cortical thickness in the precuneus and insula, areas known
to be involved in somatosensory and visuospatial processing, interoception and
self-reflection (61,62), suggest that glutamate genes linked to broader autism
characteristics. Additionally, the trend associations of GABA gene-sets on SSP total
score and the association with cortical thickness profiles in the sensory symptom
subgroups suggest a particular role for GABAergic genes in sensory processing,
which supports previous findings of links between brain GABA concentrations and
sensory processing differences (32,63,64).

The lack of significant associations between aggregated variation in the glutamate
and GABA gene-sets with repetitive behaviors and social responsiveness (RBS-R and
SRS-2) may be considered surprising as previous studies have found links between
glutamate and GABA concentrations in several brain regions and/or metabolite
altering drugs with these behaviors (65-70). However, studies investigating in vivo
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measures of alterations of glutamate and GABA in autism have had inconsistent
results that could be due to several factors; the heterogeneity of autism, differences
in study populations and brain regions investigated, or differences in processing
pipelines during analysis. Furthermore, here we focused on behavioral autism
characteristics and genetic information, not in vivo brain concentrations of
glutamate and GABA. We did however find links between repetitive behaviors
(RBS-R) and CT in the frontal pole, where increased RBS-R scores were associated
with increased CT. Measures from the ADI-R and ADOS-2 diagnostic tools (in the
autism group) were differently associated with CT in the precuneus and insula,
although this was only at trend-level.

We did not find direct associations of CT with SSP scores, although previous work on
this dataset did find associations of differences in CT between sensory subgroups
in right premotor cortex and supplementary motor areas, regions enriched for
genes expressed in excitatory neurons in developing cortex (19). In support of this,
we found that regions with greater expression of genes from both gene-sets also
showed greater CT in all sensory subgroups, although there were no significant
differences between sensory subgroups. This show that there are likely associations
of glutamatergic and GABAergic gene-expression to alterations in sensory
processing but that differences may be too subtle between groups to show any
differences. These associations, combined with the trend significant associations of
aggregated genetic variance of the GABA gene-set are in line with previous work
indicating that alterations of GABA are associated with altered sensory processing in
autism (32,71,72). It is also possible that we did not see significant associations with
CT-difference scores between these groups due to lower number of participants on
the moderate and severe groups (n=37, n=18 respectively).

Interregional variation in expression of glutamatergic and GABAergic genes was
associated with the group differences in CT in adolescents and adults, but not
in children, nor in the overall sample. Regions with greater expression of both
glutamate and GABA genes showed greater differences in CT between autistic and
neurotypical participants. These results taken together suggests possible genetic
underpinnings of excitation/inhibition imbalance affecting autism symptoms.
Furthermore, it suggests that there may be important differences in trajectories
across development which may be mediated through altered cortical thickness.
This is in line with previous work on this cohort finding differences in CT in regions
enriched for genes involved in autism, where degree of deviance in CT from the
neurotypical range correlated with increased polygenic scores for autism and
symptom severity (19). This needs to be investigated further, and future studies
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should preferably include measures of metabolite concentrations to draw further
conclusions about these relationships.

Our results need to be interpreted with caution, as the presence of glutamate
and GABA protein encoding genes does not directly translate to metabolite
concentrations, and genetic alterations might not translate to a common
phenotype across individuals (12). Additionally, genes differ in coding for loss-
or gain-of function, leading to reduced or increased protein function, further
complicating any interpretation of direction of glutamate and GABA involvement in
autism symptoms. However, our results strongly indicate critical roles of glutamate
and GABA genes in these specific phenotypes and that the link between these
measures needs to be investigated in more detail to increase our understanding of
the mechanisms connecting genetics, glutamate and GABA neurotransmitters and
autism symptomatology. More direct investigations of the E/l imbalance hypothesis
are needed to investigate excitation and inhibition in vivo in relation to brain
functioning. Promising new techniques combining different imaging methods,
causal discovery analysis, and pharmacological interventions and longitudinal
studies, will allow us to do this in the future through which we hope to further
increase our understanding of how chemical imbalance in the brain is associated
with functioning. Ultimately, E/I balance may be manipulated using glutamate-
and/or GABA- influencing pharmacological treatments. One study already showed
decreased glutamate and GABA concentrations after bumetanide treatment to be
positively associated with autism symptom improvement (71).

Strengths of this study were the combination of genetic, structural and phenotypic
data from the same cohort, which gave us the opportunity to for the first time
analyze these data together. Another strength was the relatively large number of
participants available giving us more confidence in our results. There were also
some limitations. Firstly, there were fewer females than males included in this study,
a common problem in autism research. Furthermore, the gene-expression data
were only used in the left hemisphere. However, the gene-expression data used
in the expression profile analyses was robust and only included if the interregional
profiles were similar across another dataset (BrainSpan), increasing the confidence
in the robustness of these profiles. Another limitation is that the AHBA donors
were all neurotypical adults, and we do not know whether genes are expressed
differently in autism. Additionally, there were differences in ages of participants
recruited at different sites, which has been investigated in an initial analysis of the
LEAP cohort (38). We also did not fully replicate our gene-expression profile results
in the independent ABIDE cohort (see the supplement and Figure S1). However,
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the results were largely overlapping showing similar effects, although in opposite
direction in the adult group compared to the adults in our LEAP sample. This
shows that heterogeneity of the autistic and neurotypical participants have a large
influence on the results.

In conclusion, we found that glutamate genes are associated with core behavioral
autism characteristics and GABA genes may be associated with sensory processing,
and that increased expression of glutamate and GABA genes are associated
with larger differences in CT between autistic and neurotypical participants, in
adolescents and adults but not in children. This support the hypothesis that the
influence of E/I imbalance varies across autism phenotypes and brain regions,
suggesting that glutamate and GABA genes play different roles underlying different
autism phenotypes and that this may change during development. We also showed
the importance of linking structural brain measures, genetic and behavioral
phenotype data together to gain a deeper understanding of possible E/I imbalance
mechanisms in autism.
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Supplement

Table S1: Summary table of all genes in the glutamate gene-set.
Gene name Entrez Chromosome Start End position  strand NSNPS

genelD position

ABAT 18 16 8768444 8878432 + 1013
ALDH5A1 7915 6 24495197 24537435 + 297
CALM1 801 14 90863327 90874619 + 47
CALML5 51806 10 5540658 5541533 - 6
CAMK4* 814 5 110559947 110830584 + 1538
DLG4 1742 17 7093209 7123369 - 102
GAD1 2571 2 171673200 171717661 + 172
GAD2 2572 10 26505236 26593491 + 579
GLS 2744 2 191745547 191830278 + 290
GLUD1 2746 10 88809959 88854776 - 186
GLUD2 2747 X 120181462 120183796 +
GLUL 2752 1 182350839 182361341 - 55
GNB1 2782 1 1716725 1822552 - 250
GNBTL 54584 22 19775932 19842462 - 369
GNB2* 2783 7 100271363 100276792 + 19
GNB3* 2784 12 6949375 6956564 + 34
GNB5* 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 + 50
GNG11 2791 7 93551016 93555826 + 32
GNG12* 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2* 54331 14 52327022 52436518 + 794
GNG3 2785 1 62475066 62476678 + 5
GNG4* 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
GOT1* 2805 10 101156627 101190530 - 146
GOT1L1 137362 8 37791799 37797664 - 17
GOT2 2806 16 58741035 58768246 - 229
GRIAT* 2890 152870084 153193429 + 1819
GRIA2 2891 158141736 158287227 + 425
GRIA3* 2892 122317996 122624766 +
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Table S1: Continued

Gene name Entrez Chromosome Start End position  strand NSNPS
gene D position
GRIA4 2893 11 105480800 105852819 + 1505
GRID1 2894 10 87359312 88126250 - 4622
GRID2* 2895 4 93225453 94695707 + 7119
GRIK1 2897 21 30909254 31312282 - 2258
GRIK2* 2898 6 101841584 102517958 + 3720
GRIK3 2899 1 37261128 37499844 - 963
GRIK4* 2900 1 120382465 120859514 + 2775
GRIK5* 2901 19 42502468 42574278 - 138
GRIN1 2902 9 140033609 140063214 + 86
GRIN2A* 2903 16 9847265 10276611 B 3419
GRIN2B* 2904 12 13713684 14133022 - 2569
GRIN2C 2905 17 72838162 72856966 - 93
GRIN2D 2906 19 48898132 48948188 + 222
GRIN3A* 116443 9 104331634 104500862 - 942
GRIN3B 116444 19 1000437 1009723 + 108
GRINA 2907 8 145064226 145067596 + 9
GRIP1 23426 12 66741178 67463014 - 4124
GRM1* 2911 6 146286032 146758782 + 2121
GRM2* 2912 3 51741081 51752629 + 16
GRM3* 2913 7 86273230 86494193 + 1110
GRM4* 2914 6 33989623 34123399 - 1020
GRM5* 2915 11 88237256 88796846 - 3817
GRMé6 2916 5 178405328 178422124 - 141
GRM7* 2917 3 6902802 7783218 + 5656
GRM8* 2918 7 126078652 126892428 - 4521
HOMERT1 9456 5 78669647 78809659 - 705
HOMER2 9455 15 83517729 83654905 - 736
HOMER3 9454 19 19040010 19052041 - 42
PICK1* 9463 22 38453262 38471708 + 92
SLC17A1 6568 6 25783125 25832287 - 297
SLC17A2 10246 6 25912982 25930954 - 109
SLC17A6* 57084 11 22359667 22401049 + 208
SLC17A7* 57030 19 49932655 49945617 - 39
SLC17A8* 246213 12 100750857 100815837 + 347
SLC1A1 6505 9 4490427 4587469 + 544
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Gene name Entrez Chromosome Start End position  strand NSNPS
gene D position

SLC1A2 6506 11 35272752 35441610 - 1155
SLC1A3 6507 5 36606457 36688436 + 420
SLCTA4* 6509 2 65215579 65250999 + 145
SLC1A6 6511 19 15060845 15121455 - 503
SLC1A7 6512 1 53552855 53608304 - 472
SLC38A1 81539 12 46576838 46663208 - 441
SUCLG2 8801 3 67410884 67705038 - 1963

All genes in table were included in the glutamate pathway gene-set. Genes marked in bold are the
genes that were included in the reduced glutamate receptors/transporters gene-set (n=32). NSNPS,
number of single nucleotide polymorphisms (SNPs). Two genes were excluded from the gene-set
analyses (GLUD2, GRIA3) due to the position on the X-chromosome, resulting in n=72 genes. Genes
marked with an asterisk (*) were included in the gene-expression analyses (n= 23).

Table S2: Summary table of all genes in the GABA gene-set.

Gene name Entrez Chromosome  Start position End position strand NSNPS
gene ID
ABAT 18 16 8768444 8878432 + 1013
ADCY1* 107 7 45614125 45762715 + 760
ADCY10 55811 1 167778357 167883608 - 659
ADCY2* 108 5 7396343 7830194 + 2563
ADCY3 109 2 25042038 25142602 - 694
ADCY4 196883 14 24787555 24804277 - 81
ADCY5 111 3 123001143 123167924 - 858
ADCY6 112 12 49159975 49182820 - 81
ADCY7* 113 16 50278830 50352046 + 333
ADCY8* 114 8 131792546 132053012 - 1901
ADCY9* 115 16 4012650 4166186 - 1082
ALDH5A1 7915 6 24495197 24537435 + 297
ALDH9A1* 223 1 165631449 165667900 - 239
AP1B1 162 22 29723669 29784754 - 255
AP1G2 8906 14 24028777 24038754 - 14
AP2A1 160 19 50270180 50310369 + 165
AP2A2 161 11 925809 1012245 + 487
AP2B1* 163 17 33913918 34053436 + 746
AP2M1 1173 3 183892634 183901879 + 53
AP2S1 1175 19 47341423 47354203 - 35
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Table S2: Continued

Gene name Entrez Chromosome  Start position End position  strand NSNPS
gene D
CACNA1TA 773 19 13317256 13617274 - 1465
CACNA1B 774 9 140772241 141019076 + 880
CACNA1C* 775 12 2079952 2807115 + 3692
CACNA1D* 776 3 53529076 53847179 + 1844
CACNA1TE* 777 1 181452447 181775920 + 1671
CACNATF* 778 X 49061523 49089833 -
CACNA1G* 8913 17 48638429 48704835 + 310
CACNATH* 8912 16 1203241 1271772 + 422
CACNAT1I 8911 22 39966758 40085740 + 591
CACNA1S 779 1 201008635 201081694 - 505
CACNA2D1 781 7 81575760 82073031 - 3150
CACNA2D2* 9254 3 50400230 50540892 - 656
CACNA2D3 55799 3 54156620 55108584 + 5930
CACNA2D4 93589 12 1901123 2027870 - 775
CACNB1 782 17 37329709 37353956 - 89
CACNB2* 783 10 18429373 18830688 + 2968
CACNB3 784 12 49208215 49222726 + 46
CACNB4* 785 2 152689285 152955593 - 1246
CACNG1 786 17 65040652 65052913 + 56
CACNG2* 10369 22 36956916 37098690 - 720
CACNG3* 10368 16 24266874 24373737 + 675
CACNG4 27092 17 64960980 65029518 + 432
CACNG5 27091 17 64831235 64881941 + 373
CACNG6 59285 19 54494403 54515920 + 115
CACNG7 59284 19 54412704 54447195 + 105
CACNG8 59283 19 54466290 54493469 + 111
CATSPER1 117144 1 65784223 65793988 - 45
CATSPER2 117155 15 43922772 43941039 - 63
CATSPER3 347732 5 134303596 134347397 + 207
CATSPER4 378807 1 26517119 26529033 + 107
DNM1 1759 9 130965634 131017528 + 223
GABARAP 11337 17 7143738 7145753 - 5
GABBR1* 2550 6 29570005 29600962 - 219
GABBR2 9568 9 101050364 101471479 - 2637

GABRA1 2554 5 161274197 161326965 + 283
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Genename Entrez Chromosome  Start position End position  strand NSNPS
gene ID
GABRA2* 2555 4 46246470 46392056 - 727
GABRA3* 2556 151334706 151619831 -
GABRA4 2557 46920917 46996424 - 406
GABRA5* 2558 15 27111866 27194357 + 158
GABRA6 2559 161112658 161129598 + 81
GABRB1* 2560 4 47033295 47432801 + 2058
GABRB2 2561 160715426 160975130 - 1268
GABRB3* 2562 15 26788693 27018935 - 1332
GABRD* 2563 1 1950768 1962192 + 10
GABRE* 2564 X 151121596 151143156 -
GABRG1* 2565 4 46037786 46126082 - 496
GABRG2 2566 5 161494648 161582545 + 435
GABRG3 2567 15 27216429 27778373 + 2556
GABRP 2568 5 170210723 170241051 + 193
GABRQ* 55879 X 151806637 151821825 +
GABRR1 2569 6 89887223 89941007 - 344
GABRR2 2570 6 89966840 90025018 - 405
GABRR3 200959 3 97705527 97754148 - 264
GAD1 2571 2 171673200 171717661 + 172
GAD2 2572 10 26505236 26593491 + 579
GNA11 2767 19 3094408 3121468 + 144
GNA12 2768 7 2767739 2883963 - 883
GNA13 10672 17 63005407 63052920 - 84
GNA14* 9630 9 80037995 80263232 - 1496
GNA15 2769 19 3136191 3163766 + 201
GNAIN 2770 7 79764140 79848725 + 383
GNAI2* 2771 3 50264120 50296786 + 114
GNAI3 2773 1 110091186 110138465 + 181
GNAL* 2774 18 11689014 11885684 + 1003
GNAO1* 2775 16 56225251 56391356 + 866
GNAQ 2776 9 80335189 80646219 - 1344
GNAS 2778 20 57414756 57486250 + 323
GNAT1 2779 3 50229043 50235129 + 12
GNAT2 2780 1 110145889 110155705 - 45
GNAZ 2781 22 23412669 23467224 + 256
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Table S2: Continued

Gene name Entrez Chromosome  Start position End position  strand NSNPS
gene D
GNB1 2782 1 1716725 1822552 - 250
GNB1L 54584 22 19775932 19842462 - 369
GNB2* 2783 7 100271363 100276792 + 19
GNB3* 2784 12 6949375 6956564 + 34
GNB4* 59345 3 179113876 179169371 - 290
GNB5* 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 + 50
GNG11 2791 7 93551016 93555826 + 32
GNG12* 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2* 54331 14 52327022 52436518 + 794
GNG3 2785 1 62475066 62476678 + 5
GNG4* 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
GPHN 10243 14 66974125 67648525 + 3011
GPR37 2861 7 124385655 124406079 - 81
KCNH2 3757 7 150642044 150675402 - 179
KCNNT1 3780 19 18062111 18110133 + 207
KCNN2* 3781 5 113698016 113832197 + 840
KCNN3* 3782 1 154669938 154842754 - 925
KCNN4 3783 19 44270685 44286269 - 72
KCNQ2 3785 20 62031561 62103993 - 607
KCNQ3 3786 8 133133105 133493004 - 2095
MRAS* 22808 3 138066490 138124377 + 307
NSF 4905 17 44668035 44834830 + 108
OPN1SW 611 7 128412543 128415844 - 20
RPS27A 6233 2 55459039 55462989 + 27
SLC32A1 140679 20 37353105 37358015 + 20
SLC6A1 6529 3 11034420 11080935 + 267
SLC6A11 6538 3 10857917 10980146 + 739
SLC6A12 6539 12 299243 323740 - 169
SLC6A13 6540 12 329787 372039 - 322
UBA52 7311 19 18674576 18688270 + 83
UBB 7314 17 16284367 16286059 + 7
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Table S2: Continued

Gene name Entrez Chromosome  Start position End position  strand NSNPS
gene ID

UBC 7316 12 125396192 125399587 - 23

UBD 10537 6 29523389 29527702 - 42

UBQLN1 29979 9 86274878 86323168 - 265

All genes in table were included in the GABA pathway gene-set. Genes marked in bold are the genes
that were included in the reduced GABA receptors/transporters gene-set (n=26). NSNPS, number of
single nucleotide polymorphisms (SNPs). Four genes were excluded from gene-set analyses (CACNATF,
GABRA3, GABRE, GABRQ)) due to the position on the X-chromosome, resulting in n=128 genes. Genes
marked with an asterisk (*) were included in the gene-expression analyses (n= 39).

Cortical thickness data processing and quality assessments

All data was processed using the default FreeSurfer v6.0.0 software (http://surfer.
nmr.mgh.harvard.edu/). The surface reconstructions were then visually inspected
for reconstruction errors and rated by three independent raters, blind to group
membership. After manual editing the (310) images were (re)preprocessed and
visually (re)assessed. To assess the influence of the data quality on subsequent
results, a previous study (1) examined the Euler number of each FreeSurfer surface
reconstructions following manual editing. As the Euler number is calculated in each
hemisphere, the sum of values across hemispheres were computed, creating one
value per subject. They found no significant differences in the total Euler number
between groups, indicating that the diagnostic groups have matching surface
reconstruction quality. Additionally, covarying for the total Euler number in their
initial analyses did not significantly affect the results. This shows that results are
largely unaffected by the quality of surface reconstruction.
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Table S4: Medication information

Autistic Neurotypical
N 122 20
Antidepressants 34 6
SSRIs 29 5
Tetracyclic (TeCA) 2 1
Tricyclic (TCA) 3 0
Antiepileptics 11 2
Antimigraine preparations 4 0
Antipsychotics 28 1
Aripiprazole 6 0
Clozapine 1 0
Pipamperone 2 0
Quetiapine 1 0
Risperidone 18 1
Anxiolytics 2 1
Drugs used in Addictive Disorder 0 1
Hypnotics & Sedatives 40 2
Hyoscine butylbromide 1 0
Melatonin 38 2
Niaprazine 1 0
Other Analgesics & Antipyretics 4 4
Opioids 1 0
Others 3 4
Psychostimulants & Other drugs 47 9
used to treat ADHD 3 2
Atomoxetine 1 0
Dexamfetamine 43 7

Methylphenidate hydrochloride

Note: Participants may have taken up to 3 different types of medication across the listed categories
during study participation.
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Table S5: Glutamate and GABA and SSP subscale competitive gene-set analysis results

Glutamate: Pathway gene-set (N=72) BETA P P SE
SSP Auditory filtering 0.008 0.469 0.729 0.101
SSP Low energy/weak 0.115 0.129 0.362 0.101
SSP Movement sensitivity -0.082 0.789 0.850 0.102
SSP Tactile sensitivity -0.021 0.581 0.772 0.104
SSP Taste/smell sensitivity -0.112 0.867 0.867 0.100
SSP Underresponsive/seeks attention 0.1585 0.061 0.212 0.102
SSP Visual/auditory sensitivity -0.028 0.606 0.772 0.102
Glutamate: Receptors/transporters gene-set (N=31)

SSP Auditory filtering 0.096 0.270 0.541 0.156
SSP Low energy/weak 0.355 0.012 0.152 0.156
SSP Movement sensitivity 0.104 0.254 0.541 0.158
SSP Tactile sensitivity 0.273 0.045 0.208 0.161
SSP Taste/smell sensitivity 0.023 0.442 0.729 0.155
SSP Underresponsive/seeks attention 0318 0.0218 0.152 0.158
SSP Visual/auditory sensitivity -0.092 0.719 0.839 0.158
GABA: Pathway gene-set (N=124)

SSP Auditory filtering -0.004 0.522 0.905 0.080
SSP Low energy/weak 0.022 0.391 0.905 0.080
SSP Movement sensitivity -0.029 0.640 0.905 0.081
SSP Tactile sensitivity -0.076 0.825 0.905 0.082
SSP Taste/smell sensitivity -0.104 0.905 0.905 0.080
SSP Underresponsive/seeks attention 0.117 0.075 0.526 0.081
SSP Visual/auditory sensitivity -0.049 0.726 0.905 0.081
GABA: Receptors/transporters gene-set (N=23)

SSP Auditory filtering 0.061 0.383 0.836 0.206
SSP Low energy/weak -0.201 0.836 0.836 0.206
SSP Movement sensitivity 0.211 0.153 0.537 0.207
SSP Tactile sensitivity -0.172 0.793 0.836 0.212
SSP Taste/smell sensitivity -0.083 0.657 0.836 0.205
SSP Underresponsive/seeks attention 0.228 0.137 0.537 0.208
SSP Visual/auditory sensitivity -0.176 0.801 0.836 0.208

N, number of genes in analysis. Diagnosis was indicated as a binary variable. SSP, Short Sensory Profile;
P.or P-value corrected using False discovery rate (FDR); SE, standard error of the regression coefficient.

Significant results (pFDR<0.05) marked in bold.
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Competitive gene-set analysis on cortical thickness

Table S6: Glutamate - left hemisphere competitive gene-set analysis

FreeSurfer region NGENES BETA P Peor

Banks of superior temporal sulcus 72 -0.028 0.603 0.967
Caudal anterior cingulate cortex 72 0.182 0.042 0.776
Caudal middle frontal gyrus 72 -0.047 0.671 0.967
Cuneus 72 -0.090 0.809 0.967
Entorhinal cortex 72 0.010 0.461 0.967
Frontal pole 72 0.030 0.388 0.967
Fusiform gyrus 72 -0.045 0.669 0.967
Inferior parietal cortex 72 -0.090 0.801 0.967
Inferior temporal gyrus 72 -0.115 0.867 0.967
Insula 72 0.030 0.387 0.967
Isthmus-cingulate cortex 72 -0.125 0.883 0.967
Lateral occipital gyrus 72 -0.107 0.851 0.967
Lateral orbital frontal cortex 72 0.164 0.064 0.776
Lingual gyrus 72 0.105 0.157 0.967
Medial orbital frontal cortex 72 0.075 0.244 0.967
Middle temporal gyrus 72 -0.056 0.698 0.967
Paracentral lobule 72 0.046 0.330 0.967
Parahippocampal gyrus 72 -0.030 0.611 0.967
Pars opercularis 72 -0.077 0.765 0.967
Pars orbitalis 72 0.157 0.068 0.776
Pars triangularis 72 -0.054 0.694 0.967
Pericalcarine cortex 72 -0.001 0.503 0.967
Postcentral gyrus 72 -0.200 0.971 0.971
Posterior cingulate cortex 72 -0.088 0.792 0.967
Precentral gyrus 72 -0.045 0.664 0.967
Precuneus cortex 72 -0.012 0.548 0.967
Rostral anterior cingulate cortex 72 -0.130 0.888 0.967
Rostral middle frontal gyrus 72 -0.038 0.640 0.967
Superior frontal gyrus 72 -0.057 0.702 0.967
Superior parietal cortex 72 -0.051 0.686 0.967
Superior temporal gyrus 72 -0.160 0.936 0.967
Supramarginal gyrus 72 -0.166 0.939 0.967
Temporal pole 72 -0.047 0.667 0.967
Transverse temporal cortex 72 -0.106 0.846 0.967

NGENES, number of genes in analysis. Significant associations are marked in bold.
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Table S7: GABA - left hemisphere competitive gene-set analysis

FreeSurfer region NGENES BETA P P.ox

Caudal anterior cingulate cortex 124 -0.021 0.599 0.956
Caudal middle frontal gyrus 124 0.086 0.150 0.555
Cuneus 124 0.066 0.211 0.652
Entorhinal cortex 124 -0.090 0.867 0.956
Frontal pole 124 0.084 0.154 0.555
Fusiform gyrus 124 0.119 0.074 0.458
Inferior parietal cortex 124 -0.046 0.716 0.956
Inferior temporal gyrus 124 -0.079 0.829 0.956
Insula 124 0.017 0.415 0.940
Isthmus-cingulate cortex 124 -0.101 0.894 0.956
Lateral occipital gyrus 124 0.036 0.331 0.812
Lateral orbital frontal cortex 124 -0.070 0.806 0.956
Lingual gyrus 124 0.082 0.163 0.555
Medial orbital frontal cortex 124 -0.078 0.829 0.956
Middle temporal gyrus 124 0.227 0.004 0.127
Paracentral lobule 124 -0.145 0.956 0.956
Parahippocampal gyrus 124 -0.004 0.519 0.956
Pars opercularis 124 -0.047 0.715 0.956
Pars orbitalis 124 0.094 0.129 0.555
Pars triangularis 124 0.116 0.081 0.458
Pericalcarine cortex 124 0.172 0.020 0.347
Postcentral gyrus 124 -0.073 0.813 0.956
Posterior cingulate cortex 124 -0.057 0.755 0.956
Precentral gyrus 124 0.004 0.482 0.956
Precuneus cortex 124 -0.078 0.825 0.956
Rostral anterior cingulate cortex 124 -0.030 0.643 0.956
Rostral middle frontal gyrus 124 0.118 0.080 0.458
Superior frontal gyrus 124 0.155 0.031 0.352
Superior parietal cortex 124 0.036 0.335 0.812
Superior temporal gyrus 124 -0.054 0.746 0.956
Caudal anterior cingulate cortex 124 -0.114 0.918 0.956
Supramarginal gyrus 124 -0.129 0.937 0.956
Temporal pole 124 0.049 0.280 0.793
Transverse temporal cortex 124 -0.094 0.875 0.956

NGENES, number of genes in analysis. Significant associations are marked in bold.
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Replicating gene-expression analysis using ABIDE data

The ABIDE cortical thickness (CT) data was acquired from the open source data base
(http://fcon_1000.projects.nitrc.org/indi/abide/) (2), where we selected participants
within the same age-range (6-30 years) as our LEAP sample, matched for age,
sex and 1Q (autistic =437, male/female = 385/52, neurotypical =437, male/
female = 349/88). To replicate the analysis performed in our LEAP sample, we
calculated CT-difference scores between the autism and neurotypical groups as
described in the manuscript.

Gene expression analysis using the ABIDE CT-difference interregional profiles
showed no significant associations in the whole sample. However, separating
the participants into age groups (children, adolescents and adults, see also main
manuscript), showed similar results to our findings in LEAP, especially for the
adolescents (autistic = 188, neurotypical = 181), where the same positive association
between CT differences and both glutamate and GABA expression profiles were
found (glutamate: t=1.94, g=0.059, Cohen's d=0.61; GABA: t=3.56, g=0.003, Cohen's
d=1.34), although only nominally significant for glutamate. As opposed to the LEAP
sample, also in adults (autistic = 104, neurotypical = 125) a positive association was
found between the interregional profile of differences in CT (autistic-neurotypical)
and profiles of glutamate and GABA gene expression (t=2.38, g=0.023, d=0.74
and t=2.51, g=0.023, d=0.95, respectively). No significant associations were found
in children.
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Figure S1: Correlation coefficients in ABIDE

Distributions of the inter-regional correlation coefficients between differences in cortical thickness
(CT) and profiles of gene-expression in adults (A) and adolescents (B). The CT-difference profile was
obtained from the ABIDE data, and the expression profiles from the Allen Human Brian Atlas (AHBA),
in our glutamate- and GABA-pathway gene-sets. The x-axes show the correlation coefficient between
CT-difference and expression profile for all genes in the gene-set; the y-axes show the estimated
probability density for the correlation coefficients; the vertical dashed-lines indicates the average
expression-CT difference correlation coefficient across all the genes in a gene-set; and the edges of the
gray boxes indicates the 2.5% and 97.5%-critical values obtained from the empirical null distribution
of the average expression-thickness correlation coefficient. If a vertical line sits outside the gray box, it
implies that there is a significant association between gene-set and differences in CT at the unadjusted
5% significance level.

Sensory processing subgroups

The LEAP data was separated into low, moderate or severe sensory processing
subgroups (3). Interregional CT profiles were calculated by taking the average
CT across participants in each brain region, in each sensory subgroup separately.
Interregional CT profiles were significantly associated with both glutamate
and GABA pathway gene expression in all sensory processing subgroups (LOW:
glutamate: t=3.02, g=0.004, Cohen's d = 0.94; GABA: t=3.19, g=0.004, Cohen's
d=1.21; MODERATE: glutamate: t=3.18, ¢=0.003, Cohen's d = 0.99; GABA:
t=3.30, g=0.003, Cohen's d=1.25; SEVERE: glutamate: t=3.03, g=0.004, Cohen's
d = 0.95; GABA: t=3.18, g=0.004, Cohen's d=1.20), see Figure S2. Regions with
increased expression of glutamate and GABA genes showed greater CT across all
sensory subgroups.
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Figure S2: Correlation coefficients in sensory subgroups

Distributions of the inter-regional correlation coefficients between interregional profiles cortical
thickness (CT) and profiles of gene-expression in separate sensory subgroups (A - sensory low, B —
sensory moderate, C - sensory severe). The CT-difference profiles were obtained from our LEAP data,
and the expression profiles from the Allen Human Brian Atlas (AHBA), in our glutamate-pathway and
GABA-pathway gene-sets. The x-axes show the correlation coefficient between CT and expression
profile for all genes in the gene-set; the y-axes show the estimated probability density for the
correlation coefficients; the vertical dashed-lines indicates the average expression-CT correlation
coefficient across all the marker genes in a gene-set; and the edges of the gray boxes indicates the
2.5% and 97.5%-critical values obtained from the empirical null distribution of the average expression-
thickness correlation coefficient. If a vertical line sits outside the gray box, it implies that there is a
significant association between gene-set and CT profiles at the unadjusted 5% significance level.
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Abstract

The excitatory/inhibitory (E/I) imbalance theory suggests that an imbalance
between excitation and inhibition underlies autism characteristics. The nature of
this suggested imbalance, how it is mediated in the brain or leads to the behavioral
characteristics of autism, is unclear. We aimed to address this by building causal
models to estimate relationships between autism polygenic scores in excitation
(glutamate) and inhibition (GABA) communication pathway genes and behavioral
measures of core clinical behavioral characteristics of autism. Particular attention was
put on the restricted-repetitive behavioral domain, as it is one of the most common
autism traits, and may be reflected by functional activity (fMRI) measures during
inhibitory control. We used Bayesian Constraint-based Causal Discovery (BCCD)
algorithms to build causal models of the relationships between these data modalities
in a discovery sample (LEAP cohort: n = 596, autistic = 343, neurotypical = 253) and
two generalization cohorts with partially overlapping measures (TACTICS: n = 160,
autistic = 60, neurotypical = 100; Simon Simplex Collection (SSC): n, autistic = 2756).
While we did not find links between functional activity during the inhibitory control
task and the other gene and behavior measures, we found causal links between
genetics and behavior. Glutamate polygenic scores were estimated to causally
underlie autism characteristics captured by the Autism Diagnostic Interview (ADI-R)
in autistic participants. This was not replicated in another cohort, likely due to clinical
and genetic differences between the LEAP and SSC cohorts, as indicated by post-
hoc tests. In a generalization cohort including in vivo "H-MRS measures of glutamate,
we also identified a causal link between GABA polygenic scores with ACC glutamate
concentrations. Conclusively, glutamate and GABA genes seem to play different roles
relating to behavioral autism traits, and these relationships differ between autistic
and neurotypical individuals.
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Introduction

Autism spectrum disorder (autism) is a heterogeneous neurodevelopmental
condition characterized by difficulties in social interaction and communication,
restricted repetitive behaviors and altered sensory processing (1). Autism is highly
heritable and affected both by rare genetic variants and common genes, but its
etiology is not yet well understood (2,3). One of the most influential theories of its
underlying mechanisms is the excitatory/inhibitory (E/l) imbalance theory, which
suggests that a chemical imbalance between excitatory (predominantly glutamate)
and inhibitory (predominantly GABA (y-aminobutyric acid)) neurotransmission

underlies autism symptomatology (4). However, we do not know how alterations
in excitation and inhibition may give rise to autism characteristics, and studies
investigating glutamatergic and GABAergic functions in the brain have had
inconsistent results. This is likely due to several factors, including the different
aspects of E/Il mechanisms studied across animal models, post-mortem and in vivo
approaches, differences across study populations, and the possibility that various
alterations in the brain may lead to similar clinical characteristics (5,6).

To date most studies have focused on either excitatory or inhibitory measures, rather
than investigating both simultaneously, which ignores the complex interactions
that may play a part in developing behavioral autistic characteristics. Thus, E/I
imbalance(s) can arise in various ways, which in turn, underlie different expressions
of autism characteristics (7). Excitation and inhibition are fundamental aspects of
brain functioning, and E/I mechanisms exist and interact on a cellular level within
individual neurons, between neurons within brain regions, and across the whole
brain in communication networks. Genetic associations between glutamate
and GABA communication pathways and behavioral autism characteristics have
previously been found in both animal and human studies (8-11). Here we aimed to
assess potential causal associations across several domains by combining genetic
approximations of glutamate and GABA and core clinical characteristics of autism.
As we also had access to functional activity during an inhibitory control task we put
particular focus on the restricted-repetitive behavior domain.

Restricted-repetitive behaviors are amongst the most common and impactful
autistic traits. A feature of repetitive behaviors is inhibitory control difficulties, where
increased repetitive behaviors contribute to increased inhibitory control difficulties
in autistic individuals (12-14). Inhibitory control can be captured in cognitive
tasks such as flanker and stop-signal tasks. Fronto-striatal circuits are known to
be involved in regulating inhibitory control, and in vivo measures of alterations
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in glutamate concentrations have been associated with differences in inhibitory
control performance in the anterior cingulate cortex (ACC) and striatum (15-17).
Yet, studies investigating inhibitory control in autism have had inconsistent results,
where some studies have found differences in performance, or functional brain
activation, between autistic and neurotypical participants (12-14) while others
have not (18-20). Some studies have found differences in functional activity during
inhibitory control using functional magnetic resonance imaging (fMRI) despite an
absence of behavioral differences (19,21,22). These inconsistencies could be due
to several factors, including heterogeneity across autistic individuals, differences
across study populations, and varying impact of E/l imbalance on inhibitory control
performance and functional brain activity. Gaining a deeper understanding of how
E/l imbalance relates to behavioral characteristics of autism, and the functional
brain activity of such behaviors, will be beneficial for disentangling the etiologies
of various autism traits.

All in all, links across genetic contributions, functional activity and behavioral
characteristics in autism are not well understood. Findings to date have had
inconsistent approaches, study populations, and results. Here we aimed to address
this by using causal discovery models to evaluate links between these measures to
identify the most likely causal relationships between genetics, brain, and behavior.
This is a data driven approach that estimates the most likely causal structure
between the data, which has the potential to direct future investigations more
effectively. We also included the possibility that other commonly co-occurring
traits such as ADHD, anxiety, age and sex affect these relationships.

More specifically, we used Bayesian Constraint-based Causal Discovery (BCCD), a
state-of-the-art algorithm that learns causes and effects from observational data
and detects whether the dependency between variables is direct or mediated
through other variables (23). Genetic variation within glutamate and/or GABA
pathways was estimated using gene-set autism polygenic scores, to aggregate
the various contributions of these genes. These polygenic scores were evaluated
for causal relationships with core behavioral characteristics of autism, and brain
activity in selected regions of interest during inhibitory control. We used a large
sample (n = 596, autistic = 343, neurotypical = 253) as our discovery sample, and
two generalization samples (first sample: n = 160, autistic = 60, neurotypical =
100, second sample: n, autistic = 2756). These additional cohorts did not provide
the same measures and age ranges as the discovery sample, but were used for
generalization analyses. The first generalization sample additionally included
Proton Magnetic Resonance Spectroscopy ("H-MRS) measures of in vivo glutamate
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concentrations in the ACC and striatum, which allowed for inclusion of another
level of E/I proxies to be evaluated with the genetic and fMRI based measures.

BCCD differs from commonly used regression analyses as it disentangles causal
structures, while regression analyses test strengths of presupposed associations
under the assumption that such relationships are true. By identifying the most
plausible structures between data modalities, we could identify which relationships
are most likely useful to focus on in further investigations.

Methods

Participants

Data from three separate cohorts were used, one as a discovery sample and two
others as generalization samples. Our discovery sample was the Longitudinal
European Autism Project (LEAP) cohort, part of the AIMS-2-TRIALS research
programme  (https://www.aims-2-trials.eu/) (24-26). We wused data from

596 participants (autistic = 343, neurotypical = 253) aged 6-30 years, collected at
six centers across europe (Institute of Psychiatry, Psychology and Neuroscience,
King’s College London (IoPPN/KCL, UK), Autism Research Centre, University of
Cambridge (UCAM, UK), University Medical Centre Utrecht (UMCU, Netherlands),
Radboud University Medical Centre (RUMC, Netherlands), Central Institute of
Mental Health (CIMH, Germany), and the University Campus Bio-Medico (UCBM) in
Rome, Italy).

The first generalization sample was from the European Union funded
TACTICS cohort (27)(www.tactics-project.eu), where we included data from of
160 participants (autistic = 60, neurotypical = 100), aged 8-13 years old, collected
from three centers across Europe (Radboud University Medical Centre, Nijmegen,
The Netherlands; King's College London, London, United Kingdom; and Central
Institute of Mental Health, Mannheim, Germany). Details regarding inclusion and
exclusion criteria for both cohorts can be found in the supplement.

The second generalization sample included genetic and behavioral measures
from the Simons Simplex Collection (SSC), where we used data from 2756 autistic
participants between 4-18 years old, collected in the USA (28).
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Phenotypic measures

The phenotypic measures in the LEAP cohort were part of a larger test battery
(see (24)). We included three questionnaires capturing the core autism characteristics;
social behaviors (Social Responsiveness Scale-Revised (SRS-2; (29)), repetitive
behaviors (Repetitive Behavior Scale-Revised (RBS-R; (30) and sensory processing
(Short Sensory Profile (SSP; (31)). In the autistic participants the autism scores
on the Autism Diagnostic Observation Schedule Second Edition (ADOS-2, (32))
and Autism Diagnostic Interview - Revised (ADI-R, (33)) were available. The RBS-R
and ADI-R were also available in the TACTICS cohort. Additionally, the Children’s
Social Behavior Questionnaire (CSBQ; (34)) in the TACTICS sample, similar to the
SRS-2 used in LEAP, was included as a similar measure of social communicative
behaviors. These questionnaires were either parent or self-report depending on
age and diagnostic group. In the SSC cohort the SRS-2, RBS-R, ADOS-2 and ADI-R
were available. An overview of what measures were used in which cohort can be
found in supplementary Table S1.

We included measures of the most common co-occurring conditions to account
for potential confounding or mediating effects between our measures of interest;
ADHD (which also consistently show differences on inhibitory control tasks) (DSM-5
ADHD-Rating Scale), anxiety (Beck Anxiety Inventory (BAI; (35)) and depression
(Beck Depression Inventory-Il; (36)) in the LEAP cohort. In the TACTICS cohort,
ADHD measures from a different rating scale were also available (Conners’ Parent
Rating Scale (CPRS-R; (37).

Genetics

Genotyping

Genotyping of the LEAP cohort was performed at the Centre National de Recherche
en Génomique Humaine (CNRGH) using the Infinium OmniExpress-24v1 BeadChip
Illumina. Genotyping of the TACTICS cohort was performed using the PsychChip_
v1-1_15073391 platform in Bonn. For details on how these were performed, see
the supplement.

Gene-set selection

The glutamate (n = 72) and GABA (n = 124) gene-sets have been used in several
studies previously (9,38,39), and consist of genes encoding proteins involved in
glutamatergic and GABAergic pathways in the brain. The gene selection was based
on Ingenuity Pathway Analysis software (http://www.ingenuity.com), a database

for genetic pathway analysis based on evidence from scientific literature and other
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sources such as gene expression and annotation databases, assigning genes to
groups and categories of functionally related genes. The complete lists of genes in
each gene-set can be found in supplementary Tables S2 and S3.

Gene-set polygenic scores

We derived gene-set based polygenic scores (PGS) for our glutamate and GABA
gene-sets using the PRSet function in PRSice-2 (40,41) with the summary statistics
of the PGC ASD GWAS (Genome wide association study) (42). SNPs were clumped
based on LD using PRSice default settings (bidirectional 250Kb-window and
R2-threshold of 0.1), resulting in 103.045 LD-clumped SNPs in the LEAP cohort,
103.043 LD-clumped SNPs in the TACTICS cohort, and 174.617 LD-clumped SNPs
in the SSC cohort. Glutamate and GABA gene-set PGS were calculated at a p-value

threshold of 1, to include the whole gene-set in the PGS.
Neuroimaging

fMRI acquisition

In both the LEAP and TACTICS cohorts, all sites acquired data on 3T Magnetic
Resonance (MR) scanners, obtaining functional MRI during an inhibitory control
task (see below for details). Additional Proton Magnetic Resonance Spectroscopy
("H-MRS) data were acquired in the TACTICS cohort to measure glutamate
concentrations in the ACC and striatum. The scanner and sequence details for both
cohorts, as well as the processing details for the 'H-MRS data, can be seen in the
supplement and Tables S4-S5.

fMRI preprocessing

The data from both cohorts have been processed and analyzed previously, and
were reused here for consistency with prior work. Task processing was performed
identically in both cohorts (see below for further information). The LEAP data
were preprocessed using the Statistical Parametric Mapping software (SPM12;
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Acquisition time correction
was followed by two-step realignment procedure to the mean functional image,
coregistration of the functional data to the individual anatomical scan, followed
by unified segmentation and normalization to standard stereotactic space as
defined by the Montreal Neurological Institute (MNI), and smoothing with a 8mm
full-width-at-half-maximum Gaussian Kernel. For a subset of participants from
Mannheim, preprocessing additionally included bias correction of the mean image
during coregistration, to adjust for measurements performed without prescan
normalize option.
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The TACTICS data were preprocessed using FSL (https://fsl.fmrib.ox.ac.uk/fsl/). Head
movement was corrected by realigning to the middle volume (MCFLIRT; (43). Grand
mean scaling and spatial smoothing was done with a Gaussian kernel at FWHM
of 6mm. ICA-AROMA was used to remove secondary-head motion, followed by
nuisance regression to remove CSF and white matter signal, and high-pass filtering
(100 s). The fMRI data was coregistered to each participant's anatomical scan using
boundary-based registration by non-linear registration FSL-FNIRT (44). Lastly,
coregistration to the MNI template was done using a 6 mm FWHM.

fMRI inhibitory control tasks

In the LEAP cohort the inhibitory control task was a modified version of a combined
flanker-go/no-go task (45), where participants were asked to press a left or right
button depending on the direction of an arrow presented at the center of the screen.
This arrow was flanked by arrows pointing either in the same direction (congruent),
opposite direction (incongruent) or flanked by x’s (neutral) to the centrally presented
arrow. If the arrow was flanked by x’s the participant was asked to withhold a response
(no-go). In the TACTICS cohort the inhibitory control task consisted of a stop-signal
task (46), where one arrow was presented on a screen and participants were asked to
press a left or right button depending on the direction of the arrow presented on the
screen. In 20% of trials the arrow was followed by a stop cue (arrow pointing upwards)
and the participant was asked to withhold a response. The time between the stimulus
and stop-signal (stop-signal delay) was adaptive depending on the participants
performance, ensuring successful inhibition in approximately 50% of stop-trials.

To allow comparisons between the two inhibitory control tasks across the LEAP
and TACTICS cohorts, contrasts reflecting successful and failed inhibitory control
were modified from standard contrasts as follows, in SPM12 (Statistical Parametric
Mapping release 12, https://www.fil.ion.ucl.ac.uk/spm/). In the LEAP cohort, successful
inhibitory control was defined as no-go trials - failed trials, failed inhibitory control was
defined as failed trials - congruent or neutral trials. Note that failed trials comprised
all committed errors including omission errors in no-go trials, interference errors to
incongruent trials, and omission errors to congruent, incongruent and neutral trials. In
the TACTICS cohort successful inhibitory control was defined as successful stop trials
- failed stop, and failed inhibitory control was defined as failed stop - successful go
trials. The second level analyses of these contrasts used full-factorial designs where
t-contrasts were applied to the first level contrast maps. These contrasts were created
to capture inhibitory control mechanisms as similarly as possible across the cohorts.
For more details on these processing pipelines, see the supplement.
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We extracted the mean beta weights, which were the estimated changes in BOLD
activity during our inhibitory control contrasts, from the ACC and dorsal striatum.
These regions were our task-relevant regions of interest for the inhibitory control
task, and additionally had 'H-MRS measures of glutamate from ACC and striatum
in the TACTICS cohort. Registration between fMRI and 'H-MRS was done with
the MarsBar toolbox (47), using the voxel placement of the 'H-MRS measures as
the ROI in both cohorts. This resulted in four estimations of mean beta weight of
functional activity for each participant; for each contrast (successful and failed
inhibitory control), and in each brain region (ACC and striatum). The LEAP cohort
has fMRI data available from 354 participants. The TACTICS cohort had fMRI data
available from 44 participants who additionally had "H-MRS measures of glutamate

concentrations in ACC and striatum.
Statistical analysis

BCCD analysis

We used the Bayesian constraint-based causal discovery (BCCD) algorithm to find
direct and indirect (mediated by other variables) interactions (23). The benefits
of the BCCD algorithm are its ability to handle a combination of continuous and
discrete variables, while also handling missing data, which is dealt with when
estimating the correlation matrix using expectation maximization algorithms (48).
This method combines the strengths of constraint-based methods giving strong
and clear causal relationships, and of score-based methods estimating confidence
measures of inferred causal relationships. BCCD gives us reliable estimated causal
relationships between variables, with an estimation of the likelihood of these
relationships. It has been evaluated and confirmed to be an effective method in
this context, and has been used on similar types of datasets investigating other
neurodevelopmental conditions such as ADHD, and psychopathologies (49-53).

BCCD is a hypothesis free approach, based on a set of assumptions including the
absence of cyclic dependencies (for more details, see (23,52)), and can therefore
validate previously found associations between data modalities. It also provides
additional information compared to regression-based approaches for casual
interpretation: regression analysis assumes predefined relationships between
variables, and is based on the decomposition of variance in the dependent
variables. BCCD is very different as it explores evidence for causal probabilities
between variables, and generates a causal model that best explains the observed
structure between the data. The observational data fed into the BCCD is mapped
onto a correlation matrix through a Gaussian transformation (23). This is followed
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by an efficient search to obtain Bayesian reliability scores, resulting in weighted
independence constraints. Lastly, the logical independence constraints are used
with initially defined background knowledge (behavioral measures cannot cause
polygenic scores, sex, or age) and creates an output model. Estimated causal links
with a reliability of 60% or higher are considered robust, which are presented in
Figures 1-5. BCCD does not provide effect sizes, unlike regression models which
assume pre-defined relationships between variables and estimate the effect of those
relationships. Instead, it provides likelihood estimations of the identified relationships,
which can be found across all models in the supplementary Tables S9-S18.
To investigate whether there are differences between autistic and neurotypical
participants, we created separate models with autistic and neurotypical LEAP
participants, and additionally created a model with all participants combined. As
the SSC cohort only consist of autistic participants, separating by diagnostic group
also allowed for a more direct comparison between the cohorts.

For each model (autism, neurotypical, and whole cohort), participants with >50% of
the data missing were excluded to reduce the risk of unwanted imputation effects,
resulting in 596 LEAP participants (autistic = 343, neurotypical = 253) and 2756 SSC
participants. In the TACTICS cohort a large part of participants had >50% missing
data, we therefore included participants with up to 60% missing data, resulting in
160 included participants (autistic = 60, neurotypical = 100). This did not affect the
estimated causal structure in the model, but provided increased power for more
accurate model estimation. For an overview of which measures were included in
what cohort, see Table S1 in the supplement.

Comparing cohorts
Post-hoc tests were performed to compare gene-set PGS and ADI-R scores between
the LEAP and SSC cohorts using standard two-sided t-tests in base R software (54).

Results

Demographics

Demographic and clinical characteristics of all cohorts are shown in Tables S6-S8
in the supplement. In the LEAP cohort, no differences were found between the
diagnostic groups in age or sex, the autism group had a lower IQ compared to
neurotypical participants (details can be seen in Table S6). In the TACTICS cohort
there were no group differences in age, female-to-male ratio, or Q. The SSC cohort
only include autistic participants, therefore no group comparisons were performed.
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Bayesian constraint-based causal discovery

The models output by the BCCD algorithm can be seen in the figures below, where
variables of interest (nodes) are connected via lines (edges), representing an
estimated causal relationship. The figures show edges with a causal link reliability
of >= 60%. Exact values of all edges and estimated correlations between variables
can be seen in supplementary Tables $9-518.

LEAP
Starting with LEAP, Figure 1 shows the autism group, Figure 2 the neurotypical group
and Figure 3 the whole cohort. Only Figure 1 includes the measures of ADOS-2

and ADI-R, as these were only measured in the autistic participants.

In the autism group (Figure 1), we observed a direct causal link of 95% reliability
(Table S9) between the glutamate PGS and the ADI-R communication domain.
Additionally, there were indirect links continuing to the ADI-R social and repetitive
domains as well. The glutamate and GABA PGS were causally linked to each other
with 97% reliability in the autism group, which was not present in the neurotypical
group (Figure 2). As the glutamate and GABA PGS are both genetic scores we
cannot infer directionality between them.

Across the whole cohort (Figure 3), as well as in the separate groups (Figures 1 and 2),
we observed causal links between RBS-R, SRS-2 and SSP scores. These results
show that what are typically referred to as the core clinical behaviors for autism
(repetitive behaviors, social-communicative behaviors and sensory processing)
are not just related within autistic individuals but that these behaviors affect each
other across participants irrespective of diagnosis. In the autism group (Figure 1)
we also observed links between SRS-2 and the ADI-R social domain, and between
RBS-R and the ADI-R repetitive behavior domain, confirming that the SRS-2 and
RBS-R questionnaires capture similar behavioral traits as the ADI-R social and
repetitive domains.

The BOLD contrast measures of functional activity during successful and failed
inhibitory control in the ACC and striatum were causally connected with at least
97% reliability, but were separate from the other measures in the models, both
across the whole cohort and in the separate groups (Figures 1-3, Tables S9, S11, S13).
In the neurotypical group however, there was a causal link of 93% reliability
(Table S11) between IQ and failed inhibitory control BOLD activity in striatum,
which was not present in the autism group. This link was also seen across the whole
sample (Figure 3).
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TACTICS

We did not have enough data to divide into diagnostic groups due to too much
missingness, and therefore only used the whole sample (Figure 4). We did however
replicate some of the causal relationships between the behavioral measures that
overlapintheLEAP cohort.Firstly, the CSBQ, an equivalent measure to the SRS in LEAP,
showed causal links to RBS and ADHD scores similar to the LEAP cohort (Figure 3),
indicating that the causal links between social and repetitive behaviors captured
by these questionnaires are robust. Secondly, we replicated the link between
BOLD signal in striatum during failed inhibitory control and IQ as seen in the LEAP
cohort, particularly in the neurotypical group. The BOLD activity during failed and
successful inhibitory control was not causally linked in the same way as in the LEAP
cohort, however, there was a mediating effect by age between successful inhibitory
control in ACC and striatum which potentially point towards the differences in age
ranges across the TACTICS and LEAP cohorts.

The addition of 'H-MRS glutamate concentrations in this model showed that
striatal glutamate concentrations had a causal link to striatal BOLD activity during
successful inhibitory control with 96% reliability (Table S15). GABA PGS showed a
causal link with 99% reliability to ACC glutamate (Table S15). To exclude that these
results were introduced due to imputation effects, as we included participants with
up to 60% missing data in this cohort, we confirmed that these patterns were also
present in a model without imputation.

As the sample size in TACTICS was relatively small we wanted to attempt to replicate,
or generalize, our findings in another cohort, specifically focusing on the gene-
set PGS links to behavioral measures in the autism group in the LEAP sample. For
this, we used the SSC; the demographic information of which is available in the
supplementary Table S8.

SsC

Figure 5 shows causal links between the SRS-2 and ADI-R social domain, and with the
RBS-R and ADI-R repetitive domain, replicating the behavioral links between these
in the LEAP cohort. However, the in LEAP reported causal link between glutamate
PGS to ADI-R domains were not captured here, and glutamate and GABA PGS were
also not causally linked to each other, while they were in the autism group in the
LEAP cohort.
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Comparing cohorts

To disentangle why some estimated causal links did not generalize across cohorts,
we compared behavioral and genetic profiles between the LEAP and SSC cohorts
using t-tests between the autistic samples on the glutamate and GABA PGS and
ADI-R domains. These tests showed that the overall cohorts differ from each other
in their glutamate and GABA PGS, and the ADI-R measures (all p-values <0.001),
indicating a difference in the genetic and clinical profile of the SSC cohort compared
to our European LEAP cohort. These results can be seen in the supplementary
Table S19, and individual data points can be seen in supplementary Figures $2-S5.

Figure 1: BCCD LEAP Autistic participants

Output causal model representing causal relationships between the genetic, task-based functional
MRI and behavioral measures. Reliability estimates for edges shown here are depicted as ranges of
percentages as defined in the figure. Glu-PGS, Glutamate polygenic score for autism; GABA-PGS, GABA
polygenic score for autism; SRS-2, Social Responsiveness Scale-Revised; RBS-R, Repetitive Behavior
Scale-Revised; SSP, Short Sensory Profile; ADI-social, Autism Diagnostic Interview-Revised Social
domain; ADI-communication, Autism Diagnostic Interview-Revised Communication domain; ADI-
repetitive, Autism Diagnostic Interview-Revised Restricted and Repetitive Behaviors domain; ADOS
social, Autism Diagnostic Observation Schedule Second Edition Social affect; ADOS repetitive, Autism
Diagnostic Observation Schedule Second Edition Restricted and Repetitive Behaviors; ADOS-total,
Autism Diagnostic Observation Schedule Second Edition Total score; Anxiety, Beck Anxiety Inventory;
Depression, Beck Depression Inventory; ADHD, DSM-V ADHD Rating Scale; ACC-success, BOLD signal in
ACC during successful inhibitory control; Striatum-success, BOLD signal in striatum during successful
inhibitory control; ACC-fail, BOLD signal in ACC during failed inhibitory control; Striatum-fail, BOLD
signal in striatum during failed inhibitory control.
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Figure 2: BCCD LEAP Neurotypical participants

Output causal model representing causal relationships between the genetic, task-based functional
MRI and behavioral measures. Reliability estimates for edges shown here are depicted as ranges of
percentages as defined in the figure. Glu-PGS, Glutamate polygenic score for autism; GABA-PGS, GABA
polygenic score for autism; SRS-2, Social Responsiveness Scale-Revised; RBS-R, Repetitive Behavior
Scale-Revised; SSP, Short Sensory Profile; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression
Inventory; ADHD, DSM-V ADHD Rating Scale; ACC-success, BOLD signal in ACC during successful
inhibitory control; Striatum-success, BOLD signal in striatum during successful inhibitory control; ACC-
fail, BOLD signal in ACC during failed inhibitory control; Striatum-fail, BOLD signal in striatum during
failed inhibitory control.
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Figure 3: BCCD LEAP All participants

Output causal model representing causal relationships between the genetic, task-based functional
MRI and behavioral measures. Reliability estimates for edges shown here are depicted as ranges of
percentages as defined in the figure. Glu-PGS, Glutamate polygenic score for autism; GABA-PGS,
GABA polygenic score for autism; SRS-2, Social Responsiveness Scale-Revised; RBS-R, Repetitive
Behavior Scale-Revised; SSP, Short Sensory Profile; ADI-social, Autism Diagnostic Interview-Revised
Social domain; ADI-communication, Autism Diagnostic Interview-Revised Communication domain;
ADl-repetitive, Autism Diagnostic Interview-Revised Restricted and Repetitive Behaviors domain;
ADHD, DSM-V ADHD Rating Scale; ACC-success, BOLD signal in ACC during successful inhibitory
control; Striatum-success, BOLD signal in striatum during successful inhibitory control; ACC-fail, BOLD
signal in ACC during failed inhibitory control; Striatum-fail, BOLD signal in striatum during failed
inhibitory control.
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Figure 4: BCCD TACTICS All participants

Output causal model representing causal relationships between the genetic, task-based functional MR,
"H-MRS glutamate, and behavioral measures. Reliability estimates for edges shown here are depicted
as ranges of percentages as defined in the figure. Glu-PGS, Glutamate polygenic score for autism;
GABA-PGS, GABA polygenic score for autism; CSBQ, Children’s Social Behavior Questionnaire; RBS-R,
Repetitive Behavior Scale-Revised; SSP, Short Sensory Profile; ADI-social, Autism Diagnostic Interview-
Revised Social domain; ADI-communication, Autism Diagnostic Interview-Revised Communication
domain; ADI-repetitive, Autism Diagnostic Interview-Revised Restricted and Repetitive Behaviors
domain; ADHD, Conners’ Parent Rating Scale; ACC-success, BOLD signal in ACC during successful
inhibitory control; Striatum-success, BOLD signal in striatum during successful inhibitory control; ACC-
fail, BOLD signal in ACC during failed inhibitory control; Striatum-fail, BOLD signal in striatum during
failed inhibitory control.
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Figure 5: BCCD SSC Autistic participants

Output causal model representing causal relationships between the genetic and behavioral measures.
Reliability estimates for edges shown here are depicted as ranges of percentages as defined in
the figure. Glu-PGS, Glutamate polygenic score for autism; GABA-PGS, GABA polygenic score for
autism; SRS-2, Social Responsiveness Scale-Revised; RBS-R, Repetitive Behavior Scale-Revised;
ADl-social, Autism Diagnostic Interview-Revised Social domain; ADI-communication, Autism
Diagnostic Interview-Revised Communication domain; ADI-repetitive, Autism Diagnostic Interview-
Revised Restricted and Repetitive Behaviors domain; ADOS social, Autism Diagnostic Observation
Schedule Second Edition Social affect; ADOS repetitive, Autism Diagnostic Observation Schedule
Second Edition Restricted and Repetitive Behaviors; ADOS-total, Autism Diagnostic Observation
Schedule Second Edition Total score.
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Discussion

We used BCCD to identify probable causal relationships between glutamate and
GABA polygenic scores (PGS), behavioral measures of autism traits and functional MR,
in one discovery cohort and two generalization cohorts with partially overlapping
measures. We did not observe links between functional activity during inhibitory
control with genetic or behavioral measures, but we did identify plausible causal
relationships between genetic and behavioral measures. We observed strong
indications for a causal connection between glutamate (autism) PGS and ADI-R
domains in the autism group of LEAP, which showed that there are shared genetics
between autism polygenic scores and autism traits captured by the ADI-R. These
findings confirm previously found associations between the glutamate system and
the ADI-R using LEAP, then looking at aggregated genetic variation rather than
PGS (9). Additionally, we found a causal link between the GABA (autism) PGS and
ACC glutamate in TACTICS, which also serves as confirmation of earlier work on the
TACTICS cohort that observed a larger decrease in ACC glutamate in the autistic
participants (15). The causal links estimated between these measures and cohorts
show that glutamate and GABA genes causally underlie autism traits in distinct
ways, and is informative for future work to disentangle regional specificity in the
brain, identify more specific biological underpinnings of these causal relationships,
and stratify individual differences.

In the autism LEAP sample, glutamate and GABA PGS were causally linked. These
links may reflect interactions between glutamate and GABA communication
pathways affecting autism likelihood in autistic individuals. However, these
findings were absent in the SSC which is discussed below. Glutamate and GABA are
metabolically closely related and interact as part of neuronal functioning (55,56).
Causal interactions between glutamate and GABA in the autism group specifically
may therefore reflect compensatory mechanisms of excitatory and inhibitory
functions attempting to maintain balance between them (5). Although the
diagnostic groups are not compared directly, this suggests different relationships
between the autism polygenic scores in these glutamate and GABA gene-sets
between autistic and neurotypical participants.

The estimated causal links between genetic and behavioral measures found here
are novel and important for understanding the etiology of autism. That said,
they are relatively far removed from the mechanisms in the brain that we try to
disentangle, as we do not pick up on e.g. ratios between excitation and inhibition
or have regional specificity of where in the brain differences are expressed. In
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future work it would be beneficial to include additional measures, such as 'H-MRS
concentrations of glutamate and GABA combined, to investigate how ratios
between these excitatory/inhibitory measures may indicate (im)balances and how
they relate to other brain, gene and behavior measures.

We started to bridge this gap by including glutamate 'H-MRS measures in the
TACTICS cohort, although we did not observe links mediating the relationships
between genes and behavior, or to brain activity during inhibitory control. There
were however links between the successful and failed inhibitory control contrasts.
The BOLD contrast measures in the ACC and striatum during inhibitory control
had strong links across both LEAP and TACTICS, although the structure of links
between failed and successful inhibitory control were not identical across the
cohorts. This is possibly due to LEAP and TACTICS using different inhibitory control
tasks. While the contrasts of successful and failed inhibitory control were created

to be as identical across the cohorts as possible, the potential differences across
the tasks and contrasts constitute a limitation for attempted replication and
generalization across the cohorts. Further, the ACC and striatum BOLD signals
were relatively separate from the other measures (Figures 3-4) which suggests
that autism predictors such as the gene-set autism PGS do not strongly influence
these functional activity contrasts, at least in these brain regions. It should also
be noted that the associations of glutamate genes could indicate both increased
glutamate function (increasing excitability) and decreased function (decreasing
excitability), but broadly shows that genetic disposition towards differences in
glutamate impacts development of autistic traits and thus, that differences in
glutamate function are causally driving autism characteristics. This is consistent
with prior work showing that altered concentrations of both glutamate and GABA
are associated with autism, although these neurotransmitters have rarely been
investigated simultaneously (10,15,16,57-64).

Across behavioral measures, we found robust and consistent causal relationships
between several behavioral measures that generalize across the LEAP, TACTICS
and SSC cohorts. In particular, the SRS-2 had a strong causal relationship with the
ADI-R social score, and the RBS-R with the ADI-R repetitive score in both LEAP and
SSC. These findings confirm that these measures capture similar aspects of social
and repetitive autism traits, reinforcing associations established previously (24)
and validating them using a hypothesis-free, data driven approach. Identifying
these relationships across the three cohorts also gave us strong confidence that
the models themselves are robust and that other findings throughout this chapter
could be considered reliable.
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It is important to highlight that the glutamate PGS to ADI-R relationships were not
replicated in the SSC cohort. Genetics, including polygenic scores, cannot fully
explain complex behaviors as they aggregate the small effects of common genetic
variants. They therefore do not capture all potential factors where genetics may
affect autism likelihood or expression of specific traits. The glutamate PGS to ADI-R
relationships may still exist in the SSC cohort, but be operationalized differently
and mediated by factors not included in the model, such as epigenetic or
environmental factors. The varying results may also be due to differences in genetic
and clinical profiles of autism traits in the SSC compared to LEAP. Our post-hoc tests
showed differences in the glutamate and GABA PGS. While the GWAS used to create
the PGS is the largest available to date, it is based on a European cohort, which
may be less accurate for the USA SSC data (65). Furthermore, the PRSet tool used
to calculate the PGS is better powered in larger target sample sizes (40). SSC also
differ in its clinical profile, as seen in the higher ADI-R scores. This is likely due to
more stringent inclusion criteria in the SSC cohort, where ADI-R and ADOS-2 cutoff
for diagnosis were used as inclusion criteria. The LEAP and TACTICS cohorts instead
relied on prior clinical diagnosis, and used diagnostic scores for ADOS-2 and ADI-R
as an additional validation rather than inclusion criterion, which potentially lead
to subtle differences in recruitment of participants. However, we do replicate
the causal relationships between the behavioral measures in the SSC cohort. The
differences across these cohorts are relevant and warrant further investigation. They
also highlight the need for caution when generalizing findings beyond datasets
like these, particularly outside Europe and the USA, where additional cultural and
clinical variations may exist. Such nuances, even between large cohorts like LEAP
and SSC can have important impacts on results. It is clear that we cannot solely rely
on large sample sizes to combat this.

In conclusion, we found reliable causal relationships between glutamate PGS for
autism with behavioral autism traits as captured by the ADI-R, which were not seen
with the GABA PGS. In another cohort (TACTICS), we identified a likely causal link
between GABA PGS for autism with ACC glutamate concentrations. Glutamate and
GABA genes show different roles underlying behavioral autistic characteristics,
which is informative for future research disentangling more specific biological
underpinnings of these relationships and how it underlies the behaviors and
experiences of autistic individuals.
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Supplement

Inclusion and exclusion criteria LEAP

Inclusion criteria for the autism group were a clinical diagnosis of autism and age
between 6 and 30 years. Autism characteristics were assessed using the Autism
Diagnostic Observation Schedule Second Edition (ADOS-2; (1)) and the Autism
Diagnostic Interview-Revised (ADI-R; (2)). For the neurotypical participants exclusion
criterion consisted of parent- or self-report of any psychiatric disorder. Individuals
who had a normative T-score of 70 or higher on the Social Responsiveness Scale
Second Edition (SRS-2; (3)) were excluded. Some individuals in the autism and
neurotypical groups had intellectual disability (ID) (autism=53, neurotypical=25),
defined as an 1Q score between 40 and 74. For further details of the recruitment of
participants in this cohort see (4,5).

Inclusion and exclusion criteria TACTICS

The inclusion criteria across groups were IQ > 70, ability to speak and comprehend
the native language of the location of recruitment and being of Caucasian descent.
To confirm a diagnosis in the autistic participants the ADI-R was used. Neurotypical
participants were confirmed to not score in the clinical range for any DSM-IV axis |
diagnoses using the Child Behavior Checklist (CBCL) and the Teacher Report Form
(TRF) (6). For further details of the recruitment of participants in this cohort, see (7).

Genotyping

LEAP

Sample quality controls such as sex check (based on the X chromosome
homozygosity rate or the median of the Log R ratio of the X and Y chromosomes),
Mendelian errors (transmission errors within full trios) and Identity By State were
performed using PLINK 1.90. Imputation of 17 million SNPs was performed using
the 700k genotyped SNPs on the Michigan Imputation Server (8). The HRC r1.1 2016
reference panel for a European population was used, as the majority of individuals
in the LEAP cohort were from European ancestry. Only autosomes were imputed.
Linkage disequilibrium-based SNP pruning was done for SNPs with a MAF > 1%
and SNPs with an R2 < 0.1 in windows of 500kb were selected. This resulted in
546 participants with genotypic data (n = 304 autistic, n = 242 neurotypical).
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TACTICS

Standard GWAS quality control procedures (including filtering based on minor
allele frequency (MAF), Hardy-Weinberg equilibrium (p-value > 1x10e-6), single
nucleotide polymorphism (SNP) call rate (> 95%), subject call rate (> 90%), principal
component analysis) and imputation (1000 Genomes reference panel) were
performed based on RICOPILI (9). The imputed data underwent additional quality
control, in which SNPs with an imputation information score (INFO) lower than 0.8
and MAF lower than 0.05 were excluded. After this step, 5.139.250 SNPs across the
autosomal genome were retained (no X-chromosome data available). This resulted
in 106 participants with genotypic data (n = 31 autistic, n = 75 neurotypical).

Table S1: Overview of available measures in all three cohorts

LEAP TACTICS SSC Parent/self

report
Glutamate PGS X X X
GABA PGS X X
ADI X X Parent
ADOS X X Self
RBS X X X Parent/self
SRS X CSBQ used as X Parent/self

equivalent

SSP X Parent/self
ADHD X X Parent/self
Depression X Parent/self
Anxiety X Parent/self
MRS glutamate (ACC, Striatum)
fMRI successful inhibitory control X
(ACC, Striatum)
fMRI failed inhibitory control X X
(ACC, Striatum)

Glutamate PGS, Glutamate polygenic score for autism; GABA PGS, GABA polygenic score for autism;
ADl-social, Autism Diagnostic Interview-Revised Social domain; ADI-communication, Autism
Diagnostic Interview-Revised Communication domain; ADI-repetitive, Autism Diagnostic Interview-
Revised Restricted and Repetitive Behaviors domain; ADOS social, Autism Diagnostic Observation
Schedule Second Edition Social affect; ADOS repetitive, Autism Diagnostic Observation Schedule
Second Edition Restricted and Repetitive Behaviors; ADOS-total, Autism Diagnostic Observation
Schedule Second Edition Total score; RBS-R, Repetitive Behavior Scale-Revised; SRS-2, Social
Responsiveness Scale-Revised; CSBQ, Children’s Social Behavior Questionnaire; SSP, Short Sensory
Profile; ADHD, DSM-V ADHD Rating Scale; Depression, Beck Depression Inventory; Anxiety, Beck
Anxiety Inventory.
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Table S2: Summary table of all genes in the glutamate gene-set

Gene name Entrez Chromosome Start position  End strand NSNPS
gene ID position
ABAT 18 16 8768444 8878432 1013
ALDH5A1 7915 6 24495197 24537435 297
CALM1 801 14 90863327 90874619 + 47
CALML5 51806 10 5540658 5541533 - 6
CAMK4 814 5 110559947 110830584 + 1538
DLG4 1742 17 7093209 7123369 - 102
GAD1 2571 2 171673200 171717661 172
GAD2 2572 10 26505236 26593491 579
GLS 2744 2 191745547 191830278 290
GLUD1 2746 10 88809959 88854776 - 186
GLUD2 2747 X 120181462 120183796 +
GLUL 2752 1 182350839 182361341 - 55
GNB1 2782 1 1716725 1822552 - 250
GNBI1L 54584 22 19775932 19842462 - 369
GNB2 2783 7 100271363 100276792 19
GNB3 2784 12 6949375 6956564 34
GNB5 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 50
GNG11 2791 7 93551016 93555826 32
GNG12 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2 54331 14 52327022 52436518 794
GNG3 2785 11 62475066 62476678 5
GNG4 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
GOT1 2805 10 101156627 101190530 - 146
GOT1L1 137362 8 37791799 37797664 - 17
GOT2 2806 16 58741035 58768246 - 229
GRIA1 2890 152870084 153193429 + 1819
GRIA2 2891 4 158141736 158287227 + 425
GRIA3 2892 122317996 122624766 +
GRIA4 2893 " 105480800 105852819 + 1505
GRID1 2894 10 87359312 88126250 - 4622
GRID2 2895 4 93225453 94695707 + 7119
GRIK1 2897 21 30909254 31312282 - 2258
GRIK2 2898 6 101841584 102517958 + 3720
GRIK3 2899 1 37261128 37499844 - 963
GRIK4 2900 11 120382465 120859514 + 2775
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Table S2: Continued

Gene name Entrez Chromosome Start position  End strand NSNPS
gene D position
GRIK5 2901 19 42502468 42574278 - 138
GRINT 2902 9 140033609 140063214 + 86
GRIN2A 2903 16 9847265 10276611 - 3419
GRIN2B 2904 12 13713684 14133022 - 2569
GRIN2C 2905 17 72838162 72856966 - 93
GRIN2D 2906 19 48898132 48948188 + 222
GRIN3A 116443 9 104331634 104500862 - 942
GRIN3B 116444 19 1000437 1009723 108
GRINA 2907 8 145064226 145067596 9
GRIP1 23426 12 66741178 67463014 = 4124
GRM1 2911 6 146286032 146758782 2121
GRM2 2912 3 51741081 51752629 16
GRM3 2913 86273230 86494193 1110
GRM4 2914 33989623 34123399 - 1020
GRM5 2915 1 88237256 88796846 - 3817
GRM6 2916 5 178405328 178422124 - 141
GRM7 2917 3 6902802 7783218 + 5656
GRM8* 2918 7 126078652 126892428 - 4521
HOMERT1 9456 5 78669647 78809659 - 705
HOMER2 9455 15 83517729 83654905 - 736
HOMER3 9454 19 19040010 19052041 - 42
PICK1 9463 22 38453262 38471708 + 92
SLC17A1 6568 25783125 25832287 - 297
SLC17A2 10246 6 25912982 25930954 - 109
SLC17A6 57084 1 22359667 22401049 + 208
SLC17A7 57030 19 49932655 49945617 - 39
SLC17A8 246213 12 100750857 100815837 + 347
SLCTA1 6505 9 4490427 4587469 + 544
SLCTA2 6506 1 35272752 35441610 = 1155
SLCTA3 6507 5 36606457 36688436 420
SLC1A4 6509 2 65215579 65250999 145
SLCTA6 6511 19 15060845 15121455 - 503
SLC1A7 6512 1 53552855 53608304 - 472
SLC38A1 81539 12 46576838 46663208 - 441
SUCLG2 8801 3 67410884 67705038 - 1963

All genes in the table were included in the glutamate pathway gene-set. NSNPS, number of single
nucleotide polymorphisms (SNPs).
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Table S3: Summary table of all genes in the GABA gene-set.

Gene name Entrez Chromosome  Start position End position  strand NSNPS
gene ID
ABAT 18 16 8768444 8878432 + 1013
ADCY1 107 7 45614125 45762715 + 760
ADCY10 55811 1 167778357 167883608 - 659
ADCY2 108 5 7396343 7830194 + 2563
ADCY3 109 2 25042038 25142602 - 694
ADCY4 196883 14 24787555 24804277 - 81
ADCY5 111 3 123001143 123167924 - 858
ADCY6 112 12 49159975 49182820 - 81
ADCY7 113 16 50278830 50352046 + 333
ADCY8 114 8 131792546 132053012 - 1901
ADCY9 115 16 4012650 4166186 - 1082
ALDH5A1 7915 6 24495197 24537435 + 297
ALDH9A1 223 1 165631449 165667900 - 239
AP1B1 162 22 29723669 29784754 - 255
AP1G2 8906 14 24028777 24038754 - 14
AP2A1 160 19 50270180 50310369 + 165
AP2A2 161 m 925809 1012245 + 487
AP2B1 163 17 33913918 34053436 + 746
AP2M1 1173 3 183892634 183901879 + 53
AP2S1 1175 19 47341423 47354203 - 35
CACNA1TA 773 19 13317256 13617274 - 1465
CACNA1B 774 9 140772241 141019076 + 880
CACNA1C 775 12 2079952 2807115 + 3692
CACNA1D 776 3 53529076 53847179 + 1844
CACNA1E 777 1 181452447 181775920 + 1671
CACNA1TF 778 X 49061523 49089833 -
CACNA1G 8913 17 48638429 48704835 + 310
CACNA1TH 8912 16 1203241 1271772 + 422
CACNAT1I 8911 22 39966758 40085740 + 591
CACNA1S 779 1 201008635 201081694 - 505
CACNA2D1 781 7 81575760 82073031 - 3150
CACNA2D2 9254 3 50400230 50540892 - 656
CACNA2D3 55799 3 54156620 55108584 + 5930
CACNA2D4 93589 12 1901123 2027870 - 775
CACNB1 782 17 37329709 37353956 - 89
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Table S3: Continued

Gene name Entrez Chromosome  Start position End position strand NSNPS
gene ID
CACNB2 783 10 18429373 18830688 + 2968
CACNB3 784 12 49208215 49222726 + 46
CACNB4 785 2 152689285 152955593 - 1246
CACNGT1 786 17 65040652 65052913 + 56
CACNG2 10369 22 36956916 37098690 - 720
CACNG3 10368 16 24266874 24373737 + 675
CACNG4 27092 17 64960980 65029518 + 432
CACNG5 27091 17 64831235 64881941 + 373
CACNG6 59285 19 54494403 54515920 + 115
CACNG7 59284 19 54412704 54447195 + 105
CACNGS8 59283 19 54466290 54493469 + 111
CATSPER1 117144 1 65784223 65793988 = 45
CATSPER2 117155 15 43922772 43941039 - 63
CATSPER3 347732 5 134303596 134347397 + 207
CATSPER4 378807 1 26517119 26529033 + 107
DNM1 1759 9 130965634 131017528 + 223
GABARAP 11337 17 7143738 7145753 - 5
GABBR1 2550 6 29570005 29600962 - 219
GABBR2 9568 9 101050364 101471479 - 2637
GABRA1 2554 5 161274197 161326965 + 283
GABRA2 2555 4 46246470 46392056 - 727
GABRA3 2556 X 151334706 151619831 -
GABRA4 2557 4 46920917 46996424 - 406
GABRA5 2558 15 27111866 27194357 + 158
GABRA6 2559 5 161112658 161129598 + 81
GABRB1 2560 4 47033295 47432801 + 2058
GABRB2 2561 5 160715426 160975130 - 1268
GABRB3 2562 15 26788693 27018935 - 1332
GABRD 2563 1 1950768 1962192 + 10
GABRE 2564 X 151121596 151143156 -
GABRG1 2565 4 46037786 46126082 - 496
GABRG2 2566 5 161494648 161582545 + 435
GABRG3 2567 15 27216429 27778373 + 2556
GABRP 2568 170210723 170241051 + 193
GABRQ 55879 X 151806637 151821825 +
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Table S3: Continued

Gene name Entrez Chromosome  Start position End position strand NSNPS
gene ID
GABRR1 2569 6 89887223 89941007 - 344
GABRR2 2570 6 89966840 90025018 - 405
GABRR3 200959 3 97705527 97754148 - 264
GAD1 2571 2 171673200 171717661 + 172
GAD2 2572 10 26505236 26593491 + 579
GNAT11 2767 19 3094408 3121468 + 144
GNA12 2768 7 2767739 2883963 - 883
GNA13 10672 17 63005407 63052920 - 84
GNA14 9630 9 80037995 80263232 - 1496
GNA15 2769 19 3136191 3163766 + 201
GNAI1 2770 7 79764140 79848725 + 383
GNAI2 2771 3 50264120 50296786 + 114
GNAI3 2773 1 110091186 110138465 + 181
GNAL 2774 18 11689014 11885684 + 1003
GNAO1 2775 16 56225251 56391356 + 866
GNAQ 2776 9 80335189 80646219 - 1344
GNAS 2778 20 57414756 57486250 + 323
GNAT1 2779 3 50229043 50235129 + 12
GNAT2 2780 1 110145889 110155705 - 45
GNAZ 2781 22 23412669 23467224 + 256
GNB1 2782 1 1716725 1822552 - 250
GNB1L 54584 22 19775932 19842462 - 369
GNB2 2783 7 100271363 100276792 + 19
GNB3 2784 12 6949375 6956564 + 34
GNB4 59345 3 179113876 179169371 - 290
GNB5 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 + 50
GNGT1 2791 7 93551016 93555826 + 32
GNG12 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2 54331 14 52327022 52436518 + 794
GNG3 2785 11 62475066 62476678 + 5
GNG4 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
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Table S3: Continued

Gene name Entrez Chromosome  Start position End position strand NSNPS
gene ID
GPHN 10243 14 66974125 67648525 + 3011
GPR37 2861 7 124385655 124406079 - 81
KCNH2 3757 7 150642044 150675402 - 179
KCNN1 3780 19 18062111 18110133 + 207
KCNN2 3781 5 113698016 113832197 + 840
KCNN3 3782 1 154669938 154842754 - 925
KCNN4 3783 19 44270685 44286269 - 72
KCNQ2 3785 20 62031561 62103993 - 607
KCNQ3 3786 8 133133105 133493004 - 2095
MRAS 22808 3 138066490 138124377 + 307
NSF 4905 17 44668035 44834830 + 108
OPN1SW 611 7 128412543 128415844 = 20
RPS27A 6233 2 55459039 55462989 + 27
SLC32A1 140679 20 37353105 37358015 + 20
SLC6A1 6529 3 11034420 11080935 + 267
SLC6A11 6538 3 10857917 10980146 + 739
SLC6A12 6539 12 299243 323740 - 169
SLC6A13 6540 12 329787 372039 - 322
UBA52 7311 19 18674576 18688270 + 83
UBB 7314 17 16284367 16286059 + 7
UBC 7316 12 125396192 125399587 - 23
UBD 10537 6 29523389 29527702 - 42
UBQLN1 29979 9 86274878 86323168 - 265

All genes in the table were included in the GABA pathway gene-set. NSNPS, number of single
nucleotide polymorphisms (SNPs).
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Neuroimaging

LEAP

Structural brain images were acquired on 3T MRI scanners at all sites, with
T1-weighted MPRAGE sequence, which were used for registration of the functional
scans. Details on the structural and functional scan parameters can be found in
Table S3.

TACTICS

Structural T1-weighted scans were acquired based on the ADNI GO protocols (10,11),
which were used for registration of the functional scans and voxel placement for
the 'H-MRS. Spectra were acquired using a point resolved spectroscopy sequence
(PRESS) with a chemically selective water suppression (CHESS) (12) from the midline
pregenual ACC and the left dorsal striatum covering caudate and putamen with an
8 cm? voxel size (2 x 2 x 2). Voxel locations were adjusted to maximize the amount
of gray matter (GM) and minimize the cerebrospinal fluid (CSF) content to keep
the quality of the data as high as possible. Details on the structural, functional and
'H-MRS scan parameters can be found in Table S4.

Proton Magnetic Resonance Spectroscopy. Glutamate concentrations were estimated
using Linear Combination Model (LCModel), with water as reference (13,14). Tissue
correction and partial volume effects was calculated using the formula:

where 3300 is the water concentration in millimolar for gray-matter, 35880 for
white-matter, and 55556 for cerebrospinal fluid (CSF), as described in the LCModel
manual (13). Quality control criteria were the signal-to-noise ratio of > 15, Cramér-
Rao lower bounds < 20% and FWHM < 0.1 parts per million. This resulted in data
available from 44 participants. Example spectra can be seen in Figure S1 and raw
glutamate levels can be found in Table S5.
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Figure S1. 'H-MRS voxel placement in TACTICS cohort

A: Superposition on the MNI152 template of all individual voxel placements in ACC and striatum, for
ASD (red), OCD (blue) and neurotypical (yellow). The placements were consistent across diagnoses, as
seen by the large overlap of voxels. B: Example spectra of a 3T proton magnetic resonance spectroscopy
("H-MRS) Linear Combination (LC) Model spectral fit in ACC and striatum from one of the control
participants. The top of the images represents the residuals. The black line represents frequency-
domain data, the red line is the LCModel fit. The right images show the fits for glutamate only.
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Table S6: LEAP demographics

Neurotypical Autism (N=343) Test df p-value

(N=253) statistic
Sex, m/f 163/90 244/99 t=-173 52571 0.08

N Mean sD Mean SD

Age 17.49 5.84 17.35 5.49 t=-0.31 52376  0.75
1Q 105.48 19.96 99.05 17.27 t=-4.21 679.04 <0.001
SRS-2 546  28.58 23.17  89.11 3081 t=2620 543.12 <0.001
RBS-R 432 2.53 843 16.36 13.96 t=1279 41678 <0.001
SSP 323 176.94 15.62 139.43 27.27 t=-1572 32046 <0.001
ADI-R
Social 335 - - 16.67 6.69 - - -
Communication 335 - - 13.27 5.59 - - -
Restricted repetitive 335 - - 4.27 2.65 - - -
ADOS-2
Social affect 336 - - 6.19 2.58 - - -
Restrictive repetitive 336 - - 4.65 2.69 - - -

SD, standard deviation; df, degrees of freedom; SRS-2, Social Responsiveness Scale 2nd edition;
RBS-R, Repetitive Behavior Scale - Revised; SSP, Short Sensory Profile; ADI-R, Autism Diagnostic
Interview-Revised; Restricted repetitive, Restrictive Repetitive Behaviors domain; Communication,
ADI-R Communication domain; Social, ADI-R Social domain; ADOS-2, Autism Diagnostic Observation
Schedule 2nd edition; Social affect, ADOS-2 Social Affect.

Table S7: TACTICS demographics

Neurotypical Autism (N=60) Test df p-value

(N=100) statistic
Sex, m/f 70/30 45/15 t1=0.69 129.63 049

N Mean SD Mean sD

Age 10.76 1.24 10.81 1.52 t=-0.20 10536 0.84
1Q 110.09 1147 10799 1512 t=-093  99.70 0.36
RBS-R 159 0.95 1.88 22.25 20.12 t=8.11 58.60 < 0.0001
ADI-R
Social 55 - - 18.24 5.33 - - -
Communication 56 - - 13.38 3.73 - - -
Restricted repetitive 55 - - 3.62 261 - - -

SD, standard deviation; df, degrees of freedom; RBS-R, Repetitive Behavior Scale - Revised; ADI-R,
Autism Diagnostic Interview-Revised; Restricted repetitive, Restrictive Repetitive Behaviors domain;
Communication, ADI-R Communication domain; Social, ADI-R Social domain.
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Table S$8: SSC demographics

Autism (N=2756)

Sex, m/f 2382/374

N Mean SD
Age 9.03 3.57
1Q 81.15 27.96
SRS-2 2747 98 27.01
RBS-R 2754 27.14 17.39
ADI-R
Social 2755 20.34 5.71
Communication 2422 16.5 4.26
Restricted repetitive 2755 6.52 2.50
ADOS-2
Social affect 2756 13.33 4.16
Restrictive repetitive 2756 3.96 2.06

SD, standard deviation; df, degrees of freedom; SRS-2, Social Responsiveness Scale 2nd edition; RBS-R,
Repetitive Behavior Scale - Revised; ADI-R, Autism Diagnostic Interview-Revised; Restricted repetitive,
Restrictive Repetitive Behaviors domain; Communication, ADI-R Communication domain; Social, ADI-R
Social domain; ADOS-2, Autism Diagnostic Observation Schedule 2nd edition; Social affect, ADOS-2
Social Affect.



146 | Chapter 4

Table S9: LEAP Autistic participants, all edges

Red colors indicate edges of 80% reliability and above, yellow colors indicate edges between
60-80% reliability, green colors indicate below 5% reliability. Note that numbers are rounded and
there may therefore be some threshold numbers with different colors. SRS, Social Responsiveness
Scale 2nd edition; RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised;
Glu PGS, Glutamate polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD,
DSM-5 ADHD-Rating Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-
Il; ACC successful, BOLD signal in ACC during successful inhibitory control; Striatum successful,
BOLD signal in striatum during successful inhibitory control; ACC failed, BOLD signal in ACC during
failed inhibitory control; Striatum failed, BOLD signal in striatum during failed inhibitory control; ADI
social, Autism Diagnostic Interview-Revised Social domain; ADI comm, Autism Diagnostic Interview-
Revised Communication domain; ADI repetitive, Autism Diagnostic Interview-Revised Restricted and
Repetitive Behaviors domain; ADOS social, Autism Diagnostic Observation Schedule Second Edition
Social affect; ADOS repetitive, Autism Diagnostic Observation Schedule Second Edition Restricted and
Repetitive Behaviors.
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Table S10: LEAP Autistic participants, all correlations

Red colors indicate correlations 0.5 and above, yellow colors indicate correlations between 0.3-0.49,
green colors indicate negative correlations from -0.3. SRS, Social Responsiveness Scale 2nd edition;
RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised; Glu PGS, Glutamate
polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD, DSM-5 ADHD-Rating
Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-II; ACC successful, BOLD
signal in ACC during successful inhibitory control; Striatum successful, BOLD signal in striatum during
successful inhibitory control; ACC failed, BOLD signal in ACC during failed inhibitory control; Striatum
failed, BOLD signal in striatum during failed inhibitory control; ADI social, Autism Diagnostic Interview-
Revised Social domain; ADI comm, Autism Diagnostic Interview-Revised Communication domain; ADI
repetitive, Autism Diagnostic Interview-Revised Restricted and Repetitive Behaviors domain; ADOS
social, Autism Diagnostic Observation Schedule Second Edition Social affect; ADOS repetitive, Autism
Diagnostic Observation Schedule Second Edition Restricted and Repetitive Behaviors.
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Table S11: LEAP Neurotypical participants, all edges

Red colors indicate edges of 80% reliability and above, yellow colors indicate edges between 60-80%
reliability, green colors indicate below 5% reliability. Note that numbers are rounded and there may
therefore be some threshold numbers with different colors. SRS, Social Responsiveness Scale 2nd
edition; RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised; Glu PGS,
Glutamate polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD, DSM-
5 ADHD-Rating Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-Il;
ACC successful, BOLD signal in ACC during successful inhibitory control; ACC failed, BOLD signal in
ACC during failed inhibitory control; Striatum successful, BOLD signal in striatum during successful
inhibitory control; Striatum failed, BOLD signal in striatum during failed inhibitory control.



Estimating differing causal roles of glutamate and GABA genes on brain and behavior in autism | 149

Table S12: LEAP Neurotypical participants, all correlations

Red colors indicate correlations 0.5 and above, yellow colors indicate correlations between 0.3-0.49,
green colors indicate negative correlations from -0.3. SRS, Social Responsiveness Scale 2nd edition;
RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised; Glu PGS, Glutamate
polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD, DSM-5 ADHD-Rating
Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-Il; ACC successful,
BOLD signal in ACC during successful inhibitory control; ACC failed, BOLD signal in ACC during failed
inhibitory control; Striatum successful, BOLD signal in striatum during successful inhibitory control;
Striatum failed, BOLD signal in striatum during failed inhibitory control.
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Table S13: LEAP All participants, all edges

Red colors indicate edges of 80% reliability and above, yellow colors indicate edges between 60-80%
reliability, green colors indicate below 5% reliability. Note that numbers are rounded and there may
therefore be some threshold numbers with different colors. SRS, Social Responsiveness Scale 2nd
edition; RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised; Glu PGS,
Glutamate polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD, DSM-
5 ADHD-Rating Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-Il;
ACC successful, BOLD signal in ACC during successful inhibitory control; ACC failed, BOLD signal in
ACC during failed inhibitory control; Striatum successful, BOLD signal in striatum during successful
inhibitory control; Striatum failed, BOLD signal in striatum during failed inhibitory control.
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Table S14: LEAP All participants, all correlations

Red colors indicate correlations 0.5 and above, yellow colors indicate correlations between 0.3-0.49,
green colors indicate negative correlations from -0.3. SRS, Social Responsiveness Scale 2nd edition;
RBS, Repetitive Behavior Scale - Revised; SSP, Social Responsiveness Scale-Revised; Glu PGS, Glutamate
polygenic score for autism; GABA PGS, GABA polygenic score for autism; ADHD, DSM-5 ADHD-Rating
Scale; Anxiety, Beck Anxiety Inventory; Depression, Beck Depression Inventory-Il; ACC successful,
BOLD signal in ACC during successful inhibitory control; ACC failed, BOLD signal in ACC during failed
inhibitory control; Striatum successful, BOLD signal in striatum during successful inhibitory control;
Striatum failed, BOLD signal in striatum during failed inhibitory control.
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Table S15: TACTICS All participants, all edges

Red colors indicate edges of 80% reliability and above, yellow colors indicate edges between 60-80%
reliability, green colors indicate below 5% reliability. Note that numbers are rounded and there may
therefore be some threshold numbers with different colors. RBS, Repetitive Behavior Scale - Revised;
Glu PGS, Glutamate polygenic score for autism, GABA PGS, GABA polygenic score for autism; ADHD,
Conners’ Parent Rating Scale; ACC failed, BOLD signal in ACC during failed inhibitory control; Striatum
failed, BOLD signal in striatum during failed inhibitory control; ACC successful, BOLD signal in ACC
during successful inhibitory control; Striatum successful, BOLD signal in striatum during successful
inhibitory control; Glutamate ACC, estimated glutamate concentrations in the ACC using water
reference; Glutamate Striatum, estimated glutamate concentrations in Striatum using water reference;
CSBQ, Children’s Social Behavior Questionnaire.
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Table S16: TACTICS All participants, all correlations

Red colors indicate correlations 0.5 and above, yellow colors indicate correlations between 0.3-0.49,
green colors indicate negative correlations from -0.3. RBS, Repetitive Behavior Scale - Revised; Glu PGS,
Glutamate polygenic score for autism, GABA PGS, GABA polygenic score for autism; ADHD, Conners'’
Parent Rating Scale; ACC failed, BOLD signal in ACC during failed inhibitory control; Striatum failed,
BOLD signal in striatum during failed inhibitory control; ACC successful, BOLD signal in ACC during
successful inhibitory control; Striatum successful, BOLD signal in striatum during successful inhibitory
control; Glutamate ACC, estimated glutamate concentrations in the ACC using water reference;
Glutamate Striatum; Estimated glutamate concentrations in Striatum using water reference; CSBQ,
Children’s Social Behavior Questionnaire.
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Table S17: SSC All (autistic) participants, all edges

Red colors indicate edges of 80% reliability and above, yellow colors indicate edges between 60-80%
reliability, green colors indicate below 5% reliability. Note that numbers are rounded and there
may therefore be some threshold numbers with different colors. ADI repetitive, Autism Diagnostic
Interview-Revised Restricted and Repetitive Behaviors domain; ADI comm, Autism Diagnostic
Interview-Revised Communication domain; ADI social, Autism Diagnostic Interview-Revised Social
domain; ADOS repetitive, Autism Diagnostic Observation Schedule Second Edition Restricted and
Repetitive Behaviors; ADOS social, Autism Diagnostic Observation Schedule Second Edition Social
affect; RBS, Repetitive Behavior Scale - Revised; SRS, Social Responsiveness Scale 2nd edition; Glu PGS,
Glutamate polygenic score for autism; GABA PGS, GABA polygenic score for autism.
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Table S18: SSC All (autistic) participants, all correlations

Red colors indicate correlations 0.5 and above, yellow colors indicate correlations between 0.3-0.49,
green colors indicate negative correlations from -0.3. ADI repetitive, Autism Diagnostic Interview-
Revised Restricted and Repetitive Behaviors domain; ADI comm, Autism Diagnostic Interview-
Revised Communication domain; ADI social, Autism Diagnostic Interview-Revised Social domain;
ADOS repetitive, Autism Diagnostic Observation Schedule Second Edition Restricted and Repetitive
Behaviors; ADOS social, Autism Diagnostic Observation Schedule Second Edition Social affect; RBS,
Repetitive Behavior Scale - Revised; SRS, Social Responsiveness Scale 2nd edition; Glu PGS, Glutamate
polygenic score for autism; GABA PGS, GABA polygenic score for autism.



156 | Chapter 4

Table S19: Post-hoc tests of differences between cohorts

Glutamate PGS GABA PGS ADI-R ADI-R ADI-R social
communication restricted
repetitive
LEAP-SSC t=-17.616 t=-7.1013 t=6.2974 t=-14.728df t=3.2538
df =382.02 df =375.56, df =62.366 =423.4 df =60.76
p<2.2e-16 p=6.229e-12 p=3.408e-08 p<22e-16 p=0.001862

t, t-score; df, degrees of freedom; Glutamate PGS, Glutamate polygenic score, GABA PGS, GABA
polygenic score, ADI-R, Autism Diagnostic Interview-Revised; Restricted repetitive, Restrictive
Repetitive Behaviors domain; Communication, ADI-R Communication domain; Social, ADI-R Social
domain. LEAP, Longitudinal European Autism Project cohort, SSC, Simons Simplex Collection cohort.
Significant results are marked in bold.
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Figure S2. Polygenic scores

Glutamate and GABA polygenic scores. SSC, Simons Simplex Collection (brown); LEAP, Longitudinal
European Autism Project (blue).

Figure S3. ADI-R Restricted Repetitive

ADI-R Restricted Repetitive domain scores. SSC, Simons Simplex Collection (brown); LEAP, Longitudinal
European Autism Project (blue).
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Figure S4. ADI-R Communication

ADI-R Communication domain scores. SSC, Simons Simplex Collection (brown); LEAP, Longitudinal
European Autism Project (blue).

Figure S5. ADI-R Social

ADI-R Social domain scores. SSC, Simons Simplex Collection (brown); LEAP, Longitudinal European
Autism Project (blue).
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Abstract

The excitatory/inhibitory (E/I) imbalance theory of autism suggests that an
imbalance between excitatory and inhibitory mechanisms in the brain is underlying
autism traits. Studies have mainly focused on either excitatory or inhibitory
measures separately, using various isolated modalities, leading to inconsistent
results. We attempted to bridge this gap by combining genetic and 'H-MRS
measures of glutamate and GABA, reflecting excitation and inhibition respectively,
to examine their interaction, and association with behavioral autism characteristics.
Participants were part of third wave of the AIMS-2-TRIALS LEAP cohort
(166 participants (autistic = 103, male/female = 79/24; neurotypical = 63, male/
female = 42/21), aged between 13-36 years. Using MAGMA for competitive gene-
set analysis, we investigated associations of aggregated genetic variation of
glutamate and GABA gene-sets with 'H-MRS measures of glutamate and GABA in
anterior cingulate cortex (ACC) and thalamus. We used linear models to associate
glutamate and GABA polygenic scores (PGS) for autism and glutamate and GABA
concentrations in the ACC and thalamus with core clinical autism traits. Genetic
variation of glutamate genes were associated with GABA concentrations in the
thalamus, and GABA genes with glutamate concentrations in the thalamus. ACC
glutamate interacted with glutamate PGS in influencing social-communicative and
sensory behaviors, and autism traits captured by Autism Diagnostic Observation
Schedule-2 (ADOS-2). Glutamate/GABA ratios in the thalamus with gene-set PGS
also had interaction effects on social-communicative behaviors and ADOS-2
scores. These results show that interactions of glutamate and GABA genes and
their estimated metabolite concentrations are related to several behavioral
autism characteristics. Genetic measures of glutamate and GABA may therefore
mechanistically influence autism behaviors by affecting glutamate and GABA
metabolites. These results also highlight the importance of investigating excitatory
and inhibitory measures together, using multimodal data, to truly capture variations
in E/l imbalance and how it may relate to autism characteristics.
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Introduction

Autism spectrum disorder (autism) is characterized by difficulties in social
communication and interactions, restricted and repetitive behaviors and
differences in sensory processing (1). It is a heterogeneous and highly heritable
neurodevelopmental condition that has been associated with many common
genetic variants, and most of these genes are involved in excitatory and inhibitory
functions in the brain (2,3). An influential theory about its underlying mechanisms
suggest an imbalance between excitatory and inhibitory mechanisms in the brain
leading to over/under excitation and/or over/under inhibition (4,5). However,
research aiming to disentangle the nature of this suggested imbalance has reported
inconsistent findings. This is likely due to clinical and biological heterogeneity of
autism and differences across brain regions and development, leading to either

increased or decreased ratios between excitation and inhibition. Studies have
historically focused on either excitation or inhibition and rarely investigated both
simultaneously. This combined with studies typically focusing on one measure
of excitation or inhibition ignores the complexity of excitatory and inhibitory
mechanisms in the brain. Here we took a multimodal approach along several
clinical symptom dimensions to address these inconsistencies by assessing both
genetic and in vivo markers of excitation and inhibition, and investigated how they
interact and relate to behavioral autism characteristics.

An excitatory/inhibitory (E/I) imbalance may be due to alterations in excitatory and/
or inhibitory neurotransmission, and previous work has found support for both (6-8).
Glutamate, the most abundant excitatory neurotransmitter, and GABA (y-aminobutyric
acid), the most abundant inhibitory neurotransmitter, can be quantified in vivo using
Proton Magnetic Resonance Spectroscopy ("H-MRS). A recent review and meta-analysis
of 'TH-MRS studies on autism found lower average concentrations of GABA in autistic
children, particularly in limbic regions including the ACC (9). The meta-analysis showed
limited evidence for glutamate differences. However, previous work using 'H-MRS,
post-mortem, pharmacological studies and animal model approaches to excitation and
inhibition has shown convincing links between both glutamate and GABA to brain and
behavior differences in autism (10-20). In contrast, other studies have found no group
differences in metabolites of neither glutamate nor GABA (21-23), and pharmacological
studies of interventions to alter glutamatergic or GABAergic mechanisms have reported
inconsistent results (11,24-29). These inconsistencies point towards different
alterations of glutamate and GABA, across brain regions but also across individuals
and ages, which in turn could explain autism heterogeneity (8,30).
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Given the fundamental roles of glutamate and GABA in excitation and inhibition
and the strong genetic links to both excitatory and inhibitory functions and autism,
we investigated the associations between genetic markers of glutamate and GABA
with in vivo "H-MRS measures in the ACC and thalamus. These regions were selected
based on their roles in functions crucial for traits associated with autism: thalamus
in particular for its role relaying sensory information, and ACC for its many roles
in higher cognitive functions and emotional control. Data were acquired in the
largest autism dataset available to date with these measures available, spanning
cross-sectionally from adolescence into adulthood. We applied competitive
gene-set analysis using MAGMA to associate aggregated genetic variation of
glutamate and GABA genes to in vivo glutamate and GABA concentrations in ACC
and thalamus. To link these E/I markers to behavioral characteristics of autism we
investigated the associations between glutamate and GABA polygenic scores for
autism and metabolite concentrations and behavioral characteristics of autism.
Based on previous findings we expected differential associations of glutamate and
GABA measures to behaviors, particularly that associations to sensory processing
may differ from associations to other autism characteristics. Given that there is no
previous work simultaneously investigating glutamate and GABA gene-sets with
'H-MRS markers of glutamate and GABA, let alone ratios between them, we did not
have a priori expectations for specific findings or their directions.

Methods

Participants

Participants were part of the Longitudinal European Autism Project (LEAP), within
the AIMS-2-TRIALS clinical research programme (www.aims-2-trials.eu/) (31-33). We
used data from the third, most recent, wave of data collection which consisted of
166 participants (autistic = 103, neurotypical = 63) aged between 13-36, where
'H-MRS data that passed quality control was available. Data were collected
across three study centers across Europe; Institute of Psychiatry, Psychology
and Neuroscience, King's College London (loPPN/KCL, UK), Radboud University
Medical Centre (RUMC, Netherlands), and Central Institute of Mental Health
(CIMH, Germany). For autistic participants, inclusion criteria at the first wave of
measurement (32) were an existing clinical diagnosis of autism, confirmed using
the Autism Diagnostic Observation Schedule Second Edition (ADOS-2, (34)) and
the Autism Diagnostic Interview - Revised (ADI-R, (34)), for more details see (31).
For the neurotypical participants, exclusion criteria were reports of any psychiatric
disorder. All participants or their legal guardian (where applicable) provided written
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informed consent. For further details of the recruitment of participants in the LEAP
study, see (32).

Phenotypic measures

The phenotypic measures used were selected from a larger test battery (see (31)).
We included three questionnaires that capture the core autism characteristics;
social communicative behaviors (Social Responsiveness Scale-Revised (SRS-2; (35)),
repetitive behaviors (Repetitive Behavior Scale-Revised (RBS-R; (36) and sensory
processing (Short Sensory Profile (SSP; (37)). These questionnaires use self- or
parent-report ratings depending on age and diagnostic group. For the autistic
participants scores on the ADOS-2 were also available.

Genetics

Genotyping

Genotyping was performed at the Centre National de Recherche en Génomique
Humaine (CNRGH) using the Infinium OmniExpress-24v1 BeadChip Illumina. Sample
quality controls such as sex check (based on the X chromosome homozygosity rate
or the median of the Log R ratio of the X and Y chromosomes), Mendelian errors
(transmission errors within full trios) and Identity By State were performed using
PLINK 1.90. Imputation of 17 million SNPs was performed using the 700k genotyped
SNPs on the Michigan Imputation Server (38). The HRC r1.1 2016 reference panel
for a European population was used, as the majority of individuals in the LEAP
cohort were from European ancestry. Only autosomes were imputed. Linkage
disequilibrium-based SNP pruning was done for SNPs with a MAF > 1% and SNPs
with an R2 < 0.1 in windows of 500 kb were selected.

Gene-set selection

The glutamate and GABA gene-sets have been used in several previous
studies (17,19,39) and was based on ingenuity pathway analysis software (www.
ingenuity.com), which is a database for genetic pathway analysis. The gene-sets
consist of genes encoding proteins involved in glutamatergic and GABAergic
communication pathways in the brain. Complete lists of genes in each gene-set can
be found in Tables S1-S2 in the supplement.

Polygenic scores

Gene-set polygenic scores (PGS) for the glutamate and GABA gene-sets were
calculated using the PRSet function in PRSice-2 (40,41), using the summary
statistics of the PGS ASD GWAS (genome wide association study) (2). SNPs were
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clumped based on LD using PRSice default settings (bidirectional 250Kb-window
and R2-threshold of 0.1), resulting in 103.045 LD-clumped SNPs. Glutamate and
GABA gene-set PGS are calculated at a p-value threshold of 1, to include the whole
gene-set in the PGS.

Neuroimaging

Imaging acquisition

Structural brain images were acquired on 3T MRI scanners at all sites, with
T1-weighted MPRAGE sequence. 'H-MRS was acquired using an unedited Point
Resolved Spectroscopy Sequence (PRESS), and an edited Hadamard Encoding and
Reconstruction of Mega-Edited Spectroscopy (HERMES). The thalamus voxel was
26x40x24 mm?3, and placed with thalamus bi-laterally centered on the midline, with
the superior edge of the voxel aligned with the third ventricle. The ACC voxel was
35x30x25 mm? at all sites (except the London site, where it was 30x35x25 mm?), and
was placed anteriorly, centered along the midline with the bottom of the voxel
aligning with the front of the corpus callosum. Voxel locations were adjusted
to maximize the amount of gray matter (GM) and minimize the amount of
cerebrospinal fluid (CSF). An overlay of all voxel placements is shown in Figure S1
in the supplement. For a summary of scanner details and acquisition parameters at
each site, see Table S3 in the supplement.

Imaging processing

'H-MRS data was processed and quantified using Osprey, (version 2.4.0 (42)),
an open source automated software tool for 'H-MRS analysis based in Matlab
(version 2022a). GABA was estimated from the HERMES scan (HERMES difference
spectrum was used (GABA-edit ON - GABA edit OFF)) and glutamate was estimated
from the PRESS scan. At 3T it is not possible to fully separate the glutamate signal
from the glutamine signal, as they are neurochemically very similar. The estimated
glutamate concentrations, while mostly consisting of glutamate, may therefore
partially include some glutamine. The GABA signal also contains co-edited
macromolecules, and this signal is therefore often referred to as a GABA+. Here, for
consistency across the genetic and in vivo measures, we refer to the GABA+ signal
as GABA throughout this chapter.

The PRESS water-unsuppressed transients were used for quantification whereas the
HERMES water-unsuppressed scans were used for eddy current correction as per
consensus recommendations (43). Following standard pre-processing and linear
combination modeling, the Osprey co-registration module (via SPM version 12)
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was used to register the "H-MRS data to the T1-weighted images acquired at the
scan and segment the voxel volume into gray matter fraction, white matter fraction
and cerebrospinal fluid (CSF) fraction. Segmented T1 images were used to obtain
tissue composition corrected water-scaled estimates of metabolite concentrations
(i.u), whereby metabolite concentrations are scaled according to the assumption
that metabolite concentrations in CSF are negligible (44,45). Metabolite T1 and T2
relaxation effects were also accounted for (tissue water and metabolite; (42,44,46)).
Finally, ‘alpha correction’ of GABA concentrations was performed in Osprey, with
the assumption that GABA concentrations are two times greater in GM compared
to WM (45,47). For HERMES, sub-spectra were aligned using residual water peaks or
the 2.01 ppm NAA peak before sub-spectra were misused or combined to calculate
the GABA DIFF (A + B -C-D) and SUM (A + B + C + D) spectra. Averaged PRESS and
HERMES spectra were modeled with a TE-specific simulated basis set and a flexible

spline baseline based on MRS vendor and scan sequence parameters (generated
in the MATLAB toolbox FID-A; (42,48). Basis sets for macromolecule and lipid
contributions were integrated as gaussian basis functions (42). All spectra were
modeled between 0.5 ppm and 4 ppm with linear baseline correction and a knot
spacing of 0.55 ppm according to the Osprey model algorithm (42). Modeling was
performed for 19 metabolites (ascorbic acid, aspartic acid, total Creatine, creatine
methylene, GABA, glycerophosphocholine, glutathione, glutamine, glutamate,
myo-inositol, lactate, total N-acetylaspartate, n-acetylaspartylglutamate, total
choline, phosphocholine, phosphocreatine, phosphatidylethanolamine, scyllo-
inositol, taurine), five macromolecules and three lipids (MM09, MM12, MM14,
MM17, MM20, Lip09, Lip13, Lip20) for all spectra. The Osprey co-registration module
(via SPM version 12) was used to register the MRS voxel to the T1-weighted images
acquired at the scan. Segmented T1 images were used to obtain tissue-corrected
water-scaled (molar) estimates of metabolite concentrations (i.u), whereby water-
reference-ratio metabolite concentrations are scaled according to the assumption
that metabolite concentrations in CSF are negligible (44,45). Further corrections for
tissue specific water concentrations (gray matter (GM), white matter (WM) and CSF),
and tissue specific water and metabolite longitudinal and transverse relaxation were
performed (44), as outlined in recent consensus papers. We focus on the estimated
concentrations relative to water (in institutional units, i.u.), as there are age
differences in creatine concentrations across the age span of our participants (9).
For transparency (43) all subsequent analyses were additionally performed with
creatine as reference which can be found in the supplement.

Spectra were visually inspected by an experienced 'H-MRS data user blind to
participant age and diagnosis. 'H-MRS spectra with significant artifacts due to
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motion and/or scanner drift and/or out of voxel echo and indistinguishable GABA
peaks at 3.02 ppm were excluded. As an additional quality metric, signal to noise
ratio (SNR) threshold of >5 was used to further validate the visually excluded data.
This led to 31 excluded datasets in the ACC glutamate measures, 45 in the ACC
GABA measures, 8 in the thalamus glutamate measures, and 38 in the thalamus
GABA measures, from the total of 166 included participants with at least one
'H-MRS measure available. Ratios between glutamate and GABA concentrations
in each region of interest were estimated by taking the glutamate concentrations
over the GABA concentrations.

Statistical analyses

Competitive gene-set analysis

To investigate associations between aggregated genetic variation of the glutamate
and GABA gene-sets with the '"H-MRS measures, MAGMA (multi-marker Analysis of
GenoMic Annotation) competitive gene-set analysis was used (version 1.10 (49)).
This tests whether the aggregated association of the genes in the gene-set with the
phenotype ("H-MRS measured glutamate or GABA) is stronger than all other genes
in the genome. This is done in two steps; first gene-based p-values are calculated
for all genes in the genome (excluding genes located on the X-chromosome, see
supplement Tables S1-S2) on the phenotypes of interest, which here is the 'TH-MRS
metabolite concentrations of glutamate or GABA in each region of interest (ACC or
thalamus), using a multiple linear principal components regression using F-tests.
The second step tests the association of the gene-set, aggregating the gene-
based p-values using competitive analysis. This gene-set analysis is done with an
intercept-only linear regression model for the gene-set, which tests whether the
aggregated genetic variation of the genes in a gene-set is more strongly associated
with the phenotype of interest than all other genes in the genome. Age, age’
(to account for non-linear effects of age), and site were added as covariates.

Linear models

We investigated linear effects of 'H-MRS concentrations and gene-set autism
polygenic scores (PGS) on behavioral measures using linear models in the base
R-software package (50). Sex, age, age?, and scan site were included as covariates
in all analyses. Each model investigated effects of one 'H-MRS concentration
(glutamate, GABA, or ratio between them) in one region of interest (ACC or
thalamus), combined with a gene-set PGS (glutamate or GABA) and the gene-
set PGS? to account for non-linear effects of the polygenic score. This resulted
in 48 models, which are listed in Table S4 in the supplement. Additionally, the
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same models were run with creatine referenced 'H-MRS data, which are found in
the supplement. Differences between autistic and neurotypical participants in
glutamate and GABA concentrations in ACC and thalamus, along with glutamate
and GABA PGS, were assessed using linear models with the diagnostic group as
dependent variable.

Results

Groups did not differ in gray matter, white matter nor cerebrospinal fluid
(CSF) composition.

Demographics
Demographic and clinical characteristics are shown in Table 1. No sex differences

were found between the autism and neurotypical groups, but the autism group
had a higher average age compared to the neurotypical group. As expected, the
groups differed in the SRS-2, RBS-R and SSP (where lower scores indicate higher
sensory sensitivity) scores.

Table 1: Demographic and clinical characteristics

NT Autism Test p-value

(N=63) (N=103) statistic
Sex, m/f 42/21 79/24 KW yx?=1.98 0.16

N Mean SD Mean sD df

Age 20.45 481 2226 5.28 t=-224 138.81 0.03
SRS-2 147 30.75 184 685 2777 t=-9.85 142.91 <0.001
RBS-R 87 1.0 33 112.71 11.70 t=-7.27 84.42 <0.001
SSP 73 184.81 5.55 152.71 27.44 t=8.19 66.86 <0.001
ADOS-2
total 95 - - 8.6 6.37 - - -

NT, neurotypical; autism, Autism Spectrum Disorder; SD, standard deviation; df, degrees of freedom;
SRS-2, Social Responsiveness Scale 2nd edition; RBS-R, Repetitive Behavior Scale - Revised; SSP,
Short Sensory Profile; ADOS-2, Autism Diagnostic Observation Schedule 2nd edition; KW x?, Kruskal-
Wallis Chi-Square.

Competitive gene-set analysis

Aggregated genetic variation within the glutamate gene-set (n=72 genes) was
associated with GABA concentrations in thalamus (3 = 0.19, SE = 0.1, p = 0.03), and
aggregated genetic variation within the GABA gene-set (n = 124) was associated
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with glutamate concentrations in thalamus ( = 0.23, SE = 0.12, p = 0.02), for more
details see Table 2. These associations did not survive FDR correction.

Aggregated genetic variation with the glutamate and GABA gene-sets using
creatine referenced 'H-MRS concentrations showed similar results with the GABA
genetic variation and thalamus glutamate concentrations, but did not show the
glutamate gene-set with GABA thalamus association, which can be seen in the
supplementary Table S5.

Table 2: Glutamate and GABA and "H-MRS competitive gene-set analysis results

Glutamate: Pathway gene-set (N=72)MRS BETA P P.ox SE
concentrations (i.u.):

GABA ACC -0.25965 0.99679 0.996790 0.095246
GABA Thalamus 0.19183 0.027735 0.110940 0.10016
Glutamate ACC 0.14876 0.077301 0.154602 0.1045
Glutamate Thalamus 0.17472 0.11679 0.155720 0.14667
GABA: Pathway gene-set (N=124)MRS BETA P P.x SE
concentrations (i.u.):

GABA ACC 0.01068 0.44465 0.5928667  0.076733
GABA Thalamus 0.0245 0.38 0.5928667 0.080197
Glutamate ACC -0.13136 0.94151 0.9415100 0.083794
Glutamate Thalamus 0.23309 0.023866  0.0954640 0.11773

N, number of genes in analysis. P_ . p-value corrected using False discovery rate (FDR) which was
performed for each gene-set; SE, standard error of the regression coefficient. Significant results
(p<0.05) are marked in bold.

Linear models

There were no significant associations between diagnostic group (autistic versus
neurotypical) and 'H-MRS glutamate or GABA concentrations, which can be seen
in Figure 1. In one model (Table S6) there was a main effect of glutamate PGS
on diagnostic group (B = -0.19, SE = 0.09, t = -2.09, p = 0.04), indicating that the
glutamate PGS were higher in the autism group. However, this link was assessed in
6 models but were only significant in one, and with a small effect size, indicating
that this may not be a reliable finding. No effects of GABA PGS, or any interactions
between these measures were found. All diagnostic group models can be seen in
Table S6 in the supplement.

There were several interaction effects between metabolite concentrations and
gene-set polygenic scores (PGS) on behavioral measures; all linear model outputs
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can be seen in supplementary Tables S7-S12. ACC glutamate concentrations and
glutamate PGS had interaction effects on SRS-2 (B = 0.28, SE = 0.11, t = 2.52,
p =0.01), SSP ( =-0.3, SE=0.14, t =-2.16, p = 0.04) and ADOS-2 scores (3 = 9.25,
SE=0.1,t=2.4, p=0.02), see Table S7.

Thalamus glutamate/GABA ratios and GABA PGS had interaction effects on SRS-2
(B=7.71,SE=3.66,t=2.11, p = 0.04) and ADOS-2 scores (3 =7.78, SE=3.12,t = 2.5,
p = 0.02) (Table S12), the latter which was also seen with the creatine referenced
'H-MRS data, see Table S18. Thalamus glutamate/GABA ratios and glutamate
PGS also showed an interaction effect on SRS-2 scores (B =13.89, SE=6.17,t = 2.25,
p = 0.03) (Table S9).

Additionally, in one model there was a main effect of age on ADOS-2 scores (Table S7),
and in another there were main effects of GABA PGS and GABA PGS? on ADQOS-2
scores as well (Table S11). These results, respectively, indicate lower ADOS-2 scores

in older (autistic) participants and both linear and non-linear negative effects of
GABA PGS on ADOS-2 scores. However, these associations were tested in several
models but were only significant in one, indicating that this may not be a reliable
finding. Sex was associated with ADOS-2 scores in almost all linear models (see
supplementary Tables S7-S12), where males had higher ADOS-2 scores than females.
Most of the findings were not replicated with the creatine referenced 'H-MRS data,
results of which can be seen in the supplementary Tables $S12-S18. ACC creatine
concentrations (i.u.) were trending toward significant differences between groups
(t =-1.91, df = 97.95, p = 0.06), and thalamus creatine concentrations (i.u.) were
significantly different between groups (t = -2.35, df = 120.07, p = 0.02), where the
autism group had lower creatine concentrations than the neurotypical group in
both regions.
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Figure 1: Group comparisons 'H-MRS glutamate and GABA concentrations

Glutamate and GABA concentrations in ACC and thalamus, shown in institutional units (i.u.). There
are no group-level differences between the autism and neurotypical groups in either metabolite in
any region.

Discussion

To the best of our knowledge, this is the first study to explore how these metabolites,
their ratios, and genetic markers of glutamate and GABA function together
may underpin clinical traits and behaviors in autism. We found that interactions
between genetic and metabolite measures of glutamate and GABA are associated
with various behavioral traits, suggesting that genetic variations in glutamate and
GABA pathways may modulate metabolite concentrations, ultimately affecting
these behaviors. Further, genetic variation of glutamate genes affected GABA
concentrations in thalamus, while genetic variation of GABA genes was associated
with glutamate concentrations in the same region. These results indicate that
glutamate/GABA ratios in the thalamus, a region highly involved in consolidation
of sensory processing, cognition, and learning, are affected by both glutamate
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and GABA genes. Our findings demonstrate the need to investigate glutamate and
GABA measures together to fully understand the complex underpinnings of autism.

Social responsiveness as measured by the SRS-2 was affected by interactions
of glutamate PGS with glutamate concentrations in ACC, glutamate PGS with
glutamate/GABA ratios in thalamus, as well as GABA PGS with glutamate/GABA ratios
in thalamus. Previous studies have found associations between glutamate and GABA,
then looking at GABA/creatine in the ACC and glutamate/GABA ratios in cerebellum,
with social behaviors (51,52). Our findings add to previous results by demonstrating
that interactions between these metabolites, and interactions between genetic
measures and metabolites, affect these behaviors in several brain regions. These
results improves our mechanistic understanding of how genetic factors may
affect differing social behaviors in autism, by altering glutamate/GABA metabolite

concentrations. This has implications for future work aiming to disentangle markers
for targeted therapeutic options, as targeting specific behavioral domains of autism
characteristics would be most effective by understanding what kind of E/I alterations,
where in the brain, affects which behaviors.

The ADOS-2 captures both social and restricted and repetitive behaviors, and
we observed significant interactions of the glutamate PGS with ACC glutamate
concentrations, as well as GABA PGS with glutamate/GABA ratios in thalamus.
Previous work using data from the same cohort showed associations between
aggregated genetic variation of these glutamate and GABA gene-sets and ADOS-2
scores (see Chapter 3, (17)). We also previously found links between glutamate PGS
and the autism diagnostic interview (ADI-R, (53)), which captures similar behaviors
to ADOS-2 but during childhood development (see Chapter 4). Collectively, these
findings indicate that polygenic scores of genes encoding for glutamate and GABA
functions in the brain interact with glutamate/GABA ratios in the thalamus to affect
autism behaviors, which suggests a crucial role for the thalamus in the expression
of autism traits. The MAGMA analyses further support this notion, as they showed
that both thalamic glutamatergic and GABAergic concentrations were affected
by genetic variations of the opposite metabolite, as seen in Table 2. These results
indicate that interacting alterations in glutamatergic and GABAergic metabolism
and neurotransmission occur in the thalamus, as captured by both gene-set PGS and
aggregated genetic variation analyses. The thalamus is involved in many important
functions including cognition, attention, and relaying sensory information to other
regions such as the ACC (54-58), and these findings suggest that E/| alterations have
downstream effects on these behaviors, which are relevant to autism. For example,
sensory processing differences in autism are often described as hyper- or hypo-
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sensitivity to certain stimuli, which can be attributed to increased noise surrounding
those incoming stimuli (59). Increased noise in sensory input will impair the signal-
to-noise ratio and make certain environments overwhelming (hypersensitivity), or
make it more difficult to disentangle relevant input (hyposensitivity). The behavioral
measure of sensory processing used here, the SSP, did not show interaction effects
of PGS and metabolite concentrations in the thalamus (but did in the ACC). This
may due to the role of thalamus in relaying initial sensory input, while the SSP
captures more integrated sensory experiences processed in downstream brain
regions such as the ACC. To increase the understanding of potential implications
of the important role of thalamus functioning on autism characteristics suggested
by our findings, future work should investigate whether similar or differing links are
present in other brain regions. The interplay between glutamate and GABA could
potentially explain not only the heterogeneous findings in previous studies, but
also heterogeneous expressions of autism traits.

The results in this study should be considered in the context of its limitations. Firstly,
there were more male than female participants. Although the ratios between them
did not differ between diagnostic groups, there should be caution when generalizing
results across sexes without having more equal distribution of data across the groups.
Secondly, we were not able to attempt replication analyses, as there is currently
no comparable dataset that combines glutamate and GABA 'H-MRS measures, as
well as genetic measures, particularly in both autistic and neurotypical individuals.
While replication is a crucial part of not only validating results, but also to allow
generalization across broader populations, we are confident that the results within
this study are reliable and there will be replication attempts in the future as more
large multimodal datasets become available. Another limitation pertains to the
genetic data, as participants in this study were all of European ancestry. This further
limits the ability to generalize results across diverse populations. Further, there
are intrinsic limitations of 'H-MRS measures. Glutamate concentrations measured
by ™H-MRS also contain some glutamine, while the signal captured by GABA also
contains some macromolecules (64). Additionally, glutamine is a precursor for
synthesis of both glutamate and GABA (65). This means that while our glutamate
and GABA measures capture some other molecules in their signals, their measures
are also not independent. It is important to keep in mind that "H-MRS measures do
not directly reflect neurotransmission but also capture metabolite concentrations
that, while involved in neuronal communication, also have other roles in the brain
and its metabolism. Thus, while '"H-MRS measures of glutamate and GABA are our
most readily available measures of in vivo concentrations of these metabolites, these
measures also reflect more general glutamate and GABA functions in the brain.
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Most of our results were not replicated using creatine ratios rather than water as
reference for the 'H-MRS data. This does not invalidate our results, as we found
group differences in creatine concentrations in these regions. Instead, it indicates
that using creatine ratios is less suitable when investigating clinical populations,
such as those with autism. Future work should also involve additional regions of
'H-MRS measurements and broader age ranges of participants. Further, multimodal
analysis including other co-occurring conditions in autism would be informative for
disentangling underlying mechanisms through the lens of E/l imbalance and how
they may lead to even more heterogeneous expressions of autism.

To summarize, we found that interactions between both 'H-MRS and genetic
markers, as well as ratios between glutamate and GABA concentrations in the
thalamus, affect autism behaviors. Ultimately, these findings highlight the complex

relationships between genes, brain and behavior, as genetic predispositions to
autism of glutamate and GABA genes may influence autistic behaviors, by altering
dynamics between glutamate and GABA metabolites in the brain. These findings
also emphasize the importance of investigating the interaction between glutamate
and GABA, in a multimodal fashion, to properly address how E/I imbalance may
affect autism.
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Supplement

Table S1: Summary table of all genes in the glutamate gene-set
Gene name Entrez Chromosome  Start End strand NSNPS

gene D position position

ABAT 18 16 8768444 8878432 1013
ALDH5A1 7915 6 24495197 24537435 297
CALM1 801 14 90863327 90874619 + 47
CALML5 51806 10 5540658 5541533 - 6
CAMK4 814 5 110559947 110830584 + 1538
DLG4 1742 17 7093209 7123369 - 102
GAD1 2571 2 171673200 171717661 172
GAD2 2572 10 26505236 26593491 579
GLS 2744 2 191745547 191830278 290
GLUD1 2746 10 88809959 88854776 - 186
GLUD2 2747 X 120181462 120183796 +
GLUL 2752 1 182350839 182361341 - 55
GNB1 2782 1 1716725 1822552 - 250
GNB1L 54584 22 19775932 19842462 - 369
GNB2 2783 7 100271363 100276792 19
GNB3 2784 12 6949375 6956564 34
GNB5 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 50
GNG11 2791 7 93551016 93555826 32
GNG12 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2 54331 14 52327022 52436518 794
GNG3 2785 11 62475066 62476678 5
GNG4 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
GOT1 2805 10 101156627 101190530 - 146
GOT1L1 137362 8 37791799 37797664 - 17
GOT2 2806 16 58741035 58768246 - 229
GRIA1 2890 5 152870084 153193429 + 1819
GRIA2 2891 4 158141736 158287227 + 425
GRIA3 2892 122317996 122624766 +
GRIA4 2893 11 105480800 105852819 + 1505
GRID1 2894 10 87359312 88126250 - 4622
GRID2 2895 4 93225453 94695707 + 7119
GRIK1 2897 21 30909254 31312282 - 2258
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Table S1: Continued

Gene name Entrez Chromosome Start End strand NSNPS
gene ID position position
GRIK2 2898 6 101841584 102517958 + 3720
GRIK3 2899 1 37261128 37499844 - 963
GRIK4 2900 11 120382465 120859514 + 2775
GRIK5 2901 19 42502468 42574278 - 138
GRIN1 2902 9 140033609 140063214 + 86
GRIN2A 2903 16 9847265 10276611 - 3419
GRIN2B 2904 12 13713684 14133022 - 2569
GRIN2C 2905 17 72838162 72856966 - 93
GRIN2D 2906 19 48898132 48948188 + 222
GRIN3A 116443 9 104331634 104500862 - 942
GRIN3B 116444 19 1000437 1009723 + 108
GRINA 2907 8 145064226 145067596 + 9
GRIP1 23426 12 66741178 67463014 - 4124
GRM1 2911 6 146286032 146758782 + 2121
GRM2 2912 3 51741081 51752629 + 16
GRM3 2913 7 86273230 86494193 + 1110
GRM4 2914 6 33989623 34123399 - 1020
GRM5 2915 11 88237256 88796846 - 3817
GRM6 2916 5 178405328 178422124 - 141
GRM7 2917 3 6902802 7783218 + 5656
GRM8* 2918 7 126078652 126892428 - 4521
HOMER1 9456 5 78669647 78809659 - 705
HOMER2 9455 15 83517729 83654905 - 736
HOMER3 9454 19 19040010 19052041 - 42
PICK1 9463 22 38453262 38471708 + 92
SLC17A1 6568 6 25783125 25832287 - 297
SLC17A2 10246 6 25912982 25930954 - 109
SLC17A6 57084 11 22359667 22401049 + 208
SLC17A7 57030 19 49932655 49945617 - 39
SLC17A8 246213 12 100750857 100815837 + 347
SLC1A1 6505 9 4490427 4587469 + 544
SLC1A2 6506 11 35272752 35441610 - 1155
SLC1A3 6507 5 36606457 36688436 + 420
SLC1A4 6509 2 65215579 65250999 + 145
SLC1A6 6511 19 15060845 15121455 - 503
SLC1A7 6512 1 53552855 53608304 - 472
SLC38A1 81539 12 46576838 46663208 - 441
SUCLG2 8801 3 67410884 67705038 - 1963

All genes in the table were included in the glutamate pathway gene-set. NSNPS, number of single
nucleotide polymorphisms (SNPs).



Table S2: Summary table of all genes in the GABA gene-set.

Exploring the E/I imbalance theory of autism by combining genetic scores | 183

Gene name Entrez Chromosome Start position End strand NSNPS
geneID position
ABAT 18 16 8768444 8878432 + 1013
ADCY1 107 7 45614125 45762715 + 760
ADCY10 55811 1 167778357 167883608 - 659
ADCY2 108 5 7396343 7830194 + 2563
ADCY3 109 2 25042038 25142602 - 694
ADCY4 196883 14 24787555 24804277 - 81
ADCY5 1 3 123001143 123167924 - 858
ADCY6 112 12 49159975 49182820 - 81
ADCY7 113 16 50278830 50352046 + 333
ADCY8 114 8 131792546 132053012 - 1901
ADCY9 115 16 4012650 4166186 - 1082
ALDH5A1 7915 6 24495197 24537435 + 297
ALDH9A1 223 1 165631449 165667900 - 239
AP1B1 162 22 29723669 29784754 - 255
AP1G2 8906 14 24028777 24038754 - 14
AP2A1 160 19 50270180 50310369 + 165
AP2A2 161 11 925809 1012245 + 487
AP2B1 163 17 33913918 34053436 + 746
AP2M1 1173 3 183892634 183901879 + 53
AP2S1 1175 19 47341423 47354203 - 35
CACNATA 773 19 13317256 13617274 - 1465
CACNA1B 774 9 140772241 141019076  + 880
CACNA1C 775 12 2079952 2807115 + 3692
CACNATD 776 3 53529076 53847179 + 1844
CACNATE 777 1 181452447 181775920 + 1671
CACNATF 778 X 49061523 49089833 -
CACNA1G 8913 17 48638429 48704835 + 310
CACNATH 8912 16 1203241 1271772 422
CACNATI 8911 22 39966758 40085740 591
CACNATS 779 1 201008635 201081694 - 505
CACNA2D1 781 7 81575760 82073031 - 3150
CACNA2D2 9254 3 50400230 50540892 - 656
CACNA2D3 55799 3 54156620 55108584 + 5930
CACNA2D4 93589 12 1901123 2027870 - 775
CACNB1 782 17 37329709 37353956 - 89
CACNB2 783 10 18429373 18830688 2968
CACNB3 784 12 49208215 49222726 46
CACNB4 785 2 152689285 152955593 - 1246
CACNGT1 786 17 65040652 65052913 + 56
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Table S2: Continued

Gene name Entrez Chromosome  Start position End strand NSNPS
gene ID position
CACNG2 10369 22 36956916 37098690 - 720
CACNG3 10368 16 24266874 24373737 + 675
CACNG4 27092 17 64960980 65029518 + 432
CACNG5 27091 17 64831235 64881941 + 373
CACNG6 59285 19 54494403 54515920 + 115
CACNG7 59284 19 54412704 54447195 + 105
CACNG8 59283 19 54466290 54493469 + 111
CATSPER1 117144 1 65784223 65793988 - 45
CATSPER2 117155 15 43922772 43941039 - 63
CATSPER3 347732 5 134303596 134347397 207
CATSPER4 378807 1 26517119 26529033 107
DNM1 1759 9 130965634 131017528 223
GABARAP 11337 17 7143738 7145753 - 5
GABBR1 2550 6 29570005 29600962 - 219
GABBR2 9568 9 101050364 101471479 - 2637
GABRAT1 2554 5 161274197 161326965 + 283
GABRA2 2555 4 46246470 46392056 - 727
GABRA3 2556 X 151334706 151619831 -
GABRA4 2557 4 46920917 46996424 - 406
GABRA5 2558 15 27111866 27194357 158
GABRA6 2559 5 161112658 161129598 81
GABRB1 2560 4 47033295 47432801 2058
GABRB2 2561 160715426 160975130 - 1268
GABRB3 2562 15 26788693 27018935 - 1332
GABRD 2563 1 1950768 1962192 + 10
GABRE 2564 X 151121596 151143156 -
GABRG1 2565 4 46037786 46126082 - 496
GABRG2 2566 5 161494648 161582545 + 435
GABRG3 2567 15 27216429 27778373 + 2556
GABRP 2568 5 170210723 170241051 + 193
GABRQ 55879 X 151806637 151821825  +
GABRR1 2569 6 89887223 89941007 - 344
GABRR2 2570 6 89966840 90025018 - 405
GABRR3 200959 3 97705527 97754148 - 264
GAD1 2571 2 171673200 171717661 172
GAD2 2572 10 26505236 26593491 + 579
GNAT1 2767 19 3094408 3121468 + 144
GNA12 2768 7 2767739 2883963 - 883
GNA13 10672 17 63005407 63052920 - 84
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Gene name Entrez Chromosome Start position End strand NSNPS
geneID position
GNA14 9630 9 80037995 80263232 - 1496
GNA15 2769 19 3136191 3163766 + 201
GNAIN 2770 7 79764140 79848725 + 383
GNAI2 2771 50264120 50296786 + 114
GNAI3 2773 1 110091186 110138465 + 181
GNAL 2774 18 11689014 11885684 + 1003
GNAO1 2775 16 56225251 56391356 + 866
GNAQ 2776 9 80335189 80646219 - 1344
GNAS 2778 20 57414756 57486250 + 323
GNAT1 2779 3 50229043 50235129 12
GNAT2 2780 1 110145889 110155705 - 45
GNAZ 2781 22 23412669 23467224 + 256
GNB1 2782 1 1716725 1822552 - 250
GNBITL 54584 22 19775932 19842462 - 369
GNB2 2783 7 100271363 100276792 19
GNB3 2784 12 6949375 6956564 34
GNB4 59345 3 179113876 179169371 - 290
GNB5 10681 15 52413123 52483565 - 486
GNG10 2790 9 114423851 114432526 50
GNG11 2791 93551016 93555826 32
GNG12 55970 1 68167149 68299436 - 702
GNG13 51764 16 848041 850733 - 33
GNG2 54331 14 52327022 52436518 794
GNG3 2785 1" 62475066 62476678 5
GNG4 2786 1 235710985 235814054 - 543
GNG5 2787 1 84964006 84972262 - 37
GNG7 2788 19 2511218 2702746 - 1041
GPHN 10243 14 66974125 67648525 + 3011
GPR37 2861 7 124385655 124406079 - 81
KCNH2 3757 7 150642044 150675402 - 179
KCNN1 3780 19 18062111 18110133 207
KCNN2 3781 5 113698016 113832197 840
KCNN3 3782 1 154669938 154842754 - 925
KCNN4 3783 19 44270685 44286269 - 72
KCNQ2 3785 20 62031561 62103993 - 607
KCNQ3 3786 8 133133105 133493004 - 2095
MRAS 22808 3 138066490 138124377 307
NSF 4905 17 44668035 44834830 108
OPN1SW 611 7 128412543 128415844 - 20
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Table S2: Continued

Gene name Entrez Chromosome  Start position End strand NSNPS
gene ID position
RPS27A 6233 2 55459039 55462989 + 27
SLC32A1 140679 20 37353105 37358015 + 20
SLC6A1 6529 3 11034420 11080935 + 267
SLC6A11 6538 3 10857917 10980146 + 739
SLC6AT12 6539 12 299243 323740 - 169
SLC6A13 6540 12 329787 372039 - 322
UBA52 7311 19 18674576 18688270 83
UBB 7314 17 16284367 16286059 7
UBC 7316 12 125396192 125399587 - 23
UBD 10537 6 29523389 29527702 - 42
UBQLN1 29979 9 86274878 86323168 - 265

All genes in the table were included in the GABA pathway

nucleotide polymorphisms (SNPs).

Figure S1: Voxel overlays across sites

gene-set. NSNPS, number of single

Superposition on the MNI152 template of voxel placements in the thalamus and anterior cingulate
cortex (ACC), for all sites (London, blue; Mannheim, yellow; Nijmegen, green). The placements are
consistent across and within sites.
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Table S3: Scanner parameters across sites

Sequence / Parameter KCL Mannheim Nijmegen
scanner details

Manufacturer GE Medical systems  Siemens Siemens
Model Discovery mr750 TrimTrio Skyra
Tiw TR/TE/TI (ms) 7.31/3.02/400 2300/2,95/900  2300/3/900
FOV(mm) 270 270
Base res (mm) 256x256 1.1x1.1 1.1x 1.1
Slice thickness 1.2/196 1.2/176 1.2/176
(mm)/number
Flip angle (degrees) 1 9 9
TA (minutes) 4:53 5:30 5:12
MRS Voxel dims (mm) 26 x40 x 24 26x40x24 26x40x 24
Thalamus 30x35x25 35x30x25 35x30x25
ACC
Flip angle (degrees) 90 90 90
PRESS TR/TE (ms) 3000/30 2000/35 2000/ 35
Averages sup/ 64 64/16 64/16
unsup
TA (minutes) sup/unsup  4:24 2:18/0:42
HERMES TR/TE (ms) 2000/80 2000/80 2000/ 80
Averages sup/ 240 240/16 240/16
unsup
TA (minutes) sup/unsup ~ 8:40 8:08/0:40 8:08 / 0:40

Abbreviations: FA, flip angle; FOV, field of view; TE, echo time; TR, repetition time.
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Table S4: All linear models

RBS-R ~ Glutamate ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SRS-2 ~ Glutamate ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SSP ~ Glutamate ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site

ADOS-2  ~ Glutamate ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site

RBS-R ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS?+ Age + Sex * Site
SRS-2 ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS?+ Age + Sex * Site
SSP ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS?+ Age + Sex * Site

ADOS-2  ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS?+ Age + Sex * Site

RBS-R ~ GABA ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SRS-2 ~ GABA ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SSP ~ GABA ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
ADOS-2  ~ GABA ACC * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
RBS-R ~ GABA Thalamus * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SRS-2 ~ GABA Thalamus * Glutamate PGS + Glutamate PGS?+ Age * Sex + Site
SSP ~ GABA Thalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site

ADOS-2  ~ GABAThalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site

RBS-R ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
SRS-2 ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
SSP ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
ADOS-2  ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
RBS-R ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
SRS-2 ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site
SSP ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site

ADOS-2  ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS2 + Age * Sex + Site

RBS-R ~ Glutamate ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
SRS-2 ~ Glutamate ACC * GABA PGS + GABA PGS2 + Age * Sex + Site

SSP ~ Glutamate ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
ADOS-2  ~ Glutamate ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
RBS-R ~ Glutamate Thalamus * GABA PGS + GABA PGS2 + Age + Sex * Site
SRS-2 ~ Glutamate Thalamus * GABA PGS + GABA PGS2 + Age + Sex * Site
SSP ~ Glutamate Thalamus * GABA PGS + GABA PGS2 + Age + Sex * Site
ADOS-2  ~ Glutamate Thalamus * GABA PGS + GABA PGS2 + Age + Sex * Site
RBS-R ~ GABA ACC * GABA PGS + GABA PGS2 + Age + Sex * Site

SRS-2 ~ GABA ACC * GABA PGS + GABA PGS2 + Age + Sex * Site

SSP ~ GABA ACC * GABA PGS + GABA PGS2 + Age + Sex * Site

ADOS-2  ~GABA ACC * GABA PGS + GABA PGS2 + Age + Sex * Site
RBS-R ~ GABA Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site
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Table S4: Continued

SRS-2 ~ GABA Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site

SSP ~ GABA Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site

ADOS ~ GABA Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site

RBS-R ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
SRS-2 ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS2 + Age * Sex + Site

SSP ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
ADOS-2  ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS2 + Age * Sex + Site
RBS-R ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site
SRS-2 ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site
SSP ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS2 + Age * Sex + Site

ADOS-2  ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS?+ Age * Sex + Site

RBS-R, Repetitive Behavior Scale-Revised; SRS-2, Social Responsiveness Scale, Second Edition; SSP,
Short Sensory Profile; ADOS-2, Autism Diagnostic Observation Schedule 2nd edition.”~" indicates that
the variables on the right side are associated with the dependent variable on the left hand side. The “*”
between the variables of interest indicates that the model assesses these variables both independently
and their interaction effects.

Table S5: Glutamate and GABA and 'H-MRS creatine-referenced competitive gene-set analysis results

Glutamate: Pathway gene-set (N=72) MRS BETA P Pox SE
concentrations (/creatine):

GABA ACC -0.093316  0.11011  0.80163 0.90869
GABA Thalamus -0.26942 0.20215 0.90869 0.90869
Glutamate ACC -0.11696 0.10413 0.86933 0.90869
Glutamate Thalamus -0.17781 0.2091 0.80243 0.90869
GABA: Pathway gene-set (N=124) BETA P PFDR SE

MRS concentrations (/creatine):

GABA ACC 0.13307 0.088684 0.066754 0.1335080
GABA Thalamus 0.045058  0.16186  0.39036 0.5204800
Glutamate ACC -0.17525 0.083488 0.98209 0.9820900
Glutamate Thalamus 0.44562 0.16782 0.0039647 0.0158588

N, number of genes in analysis. P, . p-value corrected using False discovery rate (FDR) which was
performed for each gene-set; SE, standard error of the regression coefficient. Significant results
(p<0.05) are marked in bold.
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Table S6: Diagnostic group linear models

GLUTAMATE PGS

Diagnosis ~ ACC Glutamate* Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 1.32077 0.34042 3.880 0.000186
Glu ACC -0.11147 0.12990 -0.858 0.392864
Glu PGS -0.18515 0.08898 -2.081 0.039983
Glu PGS? -0.12024 0.09155 -1.313 0.192026
Site2 0.17484 0.38721 0.452 0.652567
Site3 0.34211 0.34436 0.993 0.322862
Sex -0.03742 0.11336 -0.330 0.742038
Age -0.12476 0.17977 -0.694 0.489265
Glu ACC:Glu PGS 0.04783 0.06552 0.730 0.467042
Sex:Age 0.15274 0.14018 1.090 0.278508
Residual standard error 0.4946 (on 101 degrees of freedom)

Multiple R squared 0.09311

Adjusted R squared 0.0123

Diagnosis ~ Thalamus Glutamate* Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 1.82808 0.21467 8.516 6.55e-14
Glu Thalamus 0.06084 0.14917 0.408 0.6841
Glu PGS -0.10094 0.08096 -1.247 0.2150
Glu PGS? -0.06076 0.08385 -0.725 0.4701
Site2 -0.41078 0.23835 -1.723 0.0875
Site3 -0.26627 0.22203 -1.199 0.2329
Sex 0.00185 0.10033 0.018 0.9853
Age -0.15568 0.16205 -0.961 0.3387
Glu Thalamus:Glu PGS -0.04582 0.07013 -0.653 0.5148
Sex:Age 0.19453 0.12611 1.542 0.1257
Residual standard error 0.486 (on 117 degrees of freedom)

Multiple R squared 0.09465

Adjusted R squared 0.02501

Diagnosis ~ ACC GABA* Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 1.66175 0.24436 6.800 1.07e-09
GABA ACC 0.01095 0.10128 0.108 0.9141
Glu PGS -0.16151 0.09643 -1.675 0.0974
Glu PGS? -0.09930 0.09845 -1.009 0.3159

Site2 -0.25400 0.25787 -0.985 0.3272
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GABA PGS

Diagnosis ~ ACC Glutamate* GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.329189 0.340846 3.900 0.000174
Glu ACC -0.106270 0.133678 -0.795 0.428497
GABA PGS 0.232590 0.637112 0.365 0.715823
GABA PGS? 0.290952 0.628825 0.463 0.644581
Site2 0.073286 0.390458 0.188 0.851494
Site3 0.252188 0.341307 0.739 0.461688
Sex 0.026797 0.114538 0.234 0.815492
Age -0.126856 0.187542 -0.676 0.500325
Glu ACC:GABA PGS -0.001242 0.062595 -0.020 0.984203
Sex:Age 0.168903 0.147150 1.148 0.253750
Residual standard error 0.5031 (on 101 degrees of freedom)

Multiple R squared 0.06162

Adjusted R squared -0.022

Diagnosis ~ Thalamus Glutamate* GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 1.832899 0.217015 8.446 9.49e-14
Glu Thalamus 0.089210 0.149329 0.597 0.5514
GABA PGS 0.097052 0.516924 0.188 0.8514
GABA PGS? 0.132701 0.511615 0.259 0.7958
Site2 -0.451175 0.235730 -1.914 0.0581
Site3 -0.293932 0.223667 -1.314 0.1914
Sex 0.016102 0.101776 0.158 0.8746
Age -0.161376 0.166128 -0.971 0.3334
Glu Thalamus:GABA PGS -0.002641 0.058561 -0.045 0.9641
Sex:Age 0.199501 0.129571 1.540 0.1263
Residual standard error 0.489 (on 117 degrees of freedom)

Multiple R squared 0.08346

Adjusted R squared 0.01296

Diagnosis ~ ACC GABA* GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.61543 0.25033 6.453 5.21e-09
GABA ACC 0.03248 0.10080 0.322 0.748
GABA PGS -0.03474 0.66056 -0.053 0.958
GABA PGS? 0.02352 0.65482 0.036 0.971

Site2 -0.31885 0.26141 -1.220 0.226
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Table S6: Continued

Site3 -0.08842 0.21426 -0.413 0.6808
Sex 0.01232 0.11803 0.104 0.9171
Age -0.14375 0.18162 -0.791 0.4307
GABA ACC:Glu PGS 0.03619 0.09446 0.383 0.7025
Sex:Age 0.17278 0.14272 1.211 0.2292
Residual standard error 0.5 (on 91 degrees of freedom)

Multiple R squared 0.08386

Adjusted R squared -0.00675

Diagnosis ~ Thalamus GABA* Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 1.75336 0.19850 8.833 6.02e-14
GABA Thalamus -0.05712 0.09508 -0.601 0.5494
Glu PGS -0.12276 0.10064 -1.220 0.2256
Glu PGS? -0.07475 0.10548 -0.709 0.4803
Site2 -0.44355 0.20117 -2.205 0.0299
Site3 -0.24276 0.14316 -1.696 0.0933
Sex 0.08820 0.11004 0.802 0.4249
Age -0.20207 0.17241 -1.172 0.2442
GABA Thalamus:Glu PGS -0.09219 0.09303 -0.991 0.3243
Sex:Age 0.22476 0.13410 1.676 0.0971
Residual standard error 0.471 (on 93 degrees of freedom)

Multiple R squared 0.1397

Adjusted R squared 0.05643

Diagnosis ~ Glutamate/GABA ratio ACC* Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 1.64938 0.22474 7.339 7.58e-11
Glu/GABA ACC 0.14031 0.14165 0.990 0.3245
Glu PGS -0.16465 0.09595 -1.716 0.0895
Glu PGS? -0.07986 0.10287 -0.776 0.4395
Site2 -0.29263 0.24288 -1.205 0.2313
Site3 -0.03331 0.19155 -0.174 0.8623
Sex 0.01017 0.11442 0.089 0.9294
Age -0.07893 0.18132 -0.435 0.6644
Glu/GABA ACC:Glu PGS -0.10681 0.22005 -0.485 0.6285
Sex:Age 0.15075 0.13954 1.080 0.2827

Residual standard error 0.4857 (on 94 degrees of freedom)
Multiple R squared 0.1206
Adjusted R squared 0.03645




Exploring the E/I imbalance theory of autism by combining genetic scores | 193

Site3 -0.11550 0.21412 -0.539 0.591
Sex 0.07386 0.12075 0.612 0.542
Age -0.19230 0.19152 -1.004 0.318
GABA ACC: GABA PGS -0.02742 0.10079 -0.272 0.786
Sex:Age 0.22121 0.15149 1.460 0.148
Residual standard error 0.5068 (on 91 degrees of freedom)

Multiple R squared 0.05872

Adjusted R squared -0.03437

Diagnosis ~ Thalamus GABA* GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) 1.742892 0.202673 8.600 1.87e-13
GABA Thalamus -0.053396 0.096961 -0.551 0.583
GABA PGS -0.023101 0.596273 -0.039 0.969
GABA PGS? -0.003344 0.589672 -0.006 0.995
Site2 -0.435379 0.205706 -2.117 0.037
Site3 -0.235405 0.145890 -1.614 0.110
Sex 0.089604 0.115383 0.777 0.439
Age -0.176640 0.181878 -0.971 0.334
GABA Thalamus: GABA PGS 0.022983 0.093431 0.246 0.806
Sex:Age 0.205972 0.142792 1.442 0.153
Residual standard error 0.4786 (on 93 degrees of freedom)

Multiple R squared 0.1118

Adjusted R squared 0.02589

Diagnosis ~ Glutamate/GABA ratio ACC* GABA PGS + GABA PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 1.329966 0.292475 4.547 1.73e-05
Glu/GABA ACC 0.085878 0.801506 0.107 0.915
GABA PGS -0.158751 0.648100 -0.245 0.807
GABA PGS? -0.066698 0.641029 -0.104 0917
Site2 -0.158598 0.275715 -0.575 0.567
Site3 0.143154 0.238906 0.599 0.551
Sex 0.109052 0.118582 0.920 0.360
Age -0.109563 0.191058 -0.573 0.568
Glu/GABA ACC:GABA PGS 0.001527 0.602180 0.003 0.998
Sex:Age 0.197965 0.147611 1.341 0.183
Residual standard error 0.4963 (on 88 degrees of freedom)

Multiple R squared 0.1018

Adjusted R squared 0.00997
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Table S6: Continued

Diagnosis ~ Glutamate/GABA ratio Thalamus* Glutamate
PGS + Glutamate PGS2 + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 1.81291 0.16008 11.325 <2e-16
Glu/GABA Thalamus 0.52133 0.45518 1.145 0.2546
Glu PGS -0.04874 0.11046 -0.441 0.6599
Glu PGS? -0.09133 0.08231 -1.109 0.2697
Site2 -0.37087 0.18314 -2.025 0.0454
Site3 -0.22888 0.11064 -2.069 0.0410
Sex 0.05583 0.10214 0.547 0.5858
Age -0.19396 0.16389 -1.184 0.2393
Glu/GABA 0.85126 0.76120 1.118 0.2660
Thalamus:Glu PGS

Sex:Age 0.22837 0.12919 1.768 0.0800

Residual standard error 0.4695 (on 106 degrees of freedom)
Multiple R squared 0.1364
Adjusted R squared 0.0631

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, significant results (p<0.05) are marked in bold.

Table S7: Linear model outputs 'H-MRS glutamate and glutamate PGS

ACC GLUTAMATE & GLUTAMATE PGS

RBS ~ Glutamate ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.07444 0.13548 -0.549 0.585
Glu ACC -0.13762 0.26334 -0.523 0.604
Glu PGS -0.12131 0.20339 -0.596 0.554
Glu PGS? -0.13716 0.19478 -0.704 0.485
Site2 -0.53704 0.73159 -0.734 0.466
Site3 -0.20335 0.79424 -0.256 0.799
Sex -0.22186 0.25256 -0.878 0.384
Age -0.04667 0.13846 -0.337 0.737
Glu ACC:Glu PGS 0.04872 0.13165 0.370 0.713
Sex:Age 0.05459 0.29755 0.183 0.855
Residual standard error 0.7509 (on 51 degrees of freedom)

Multiple R squared 0.03638

Adjusted R squared -0.1337
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Diagnosis ~ Glutamate/GABA ratio Thalamus* GABA PGS + GABA PGS2 + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.84606 0.21545 8.569 9.18e-14
Glu/GABA Thalamus 0.96589 1.52230 0.634 0.5271
GABA PGS 0.02588 0.55423 0.047 0.9628
GABA PGS? -0.07093 0.52483 -0.135 0.8928
Site2 -0.41339 0.18406 -2.246 0.0268
Site3 -0.26347 0.11267 -2.338 0.0212
Sex 0.09045 0.10544 0.858 0.3929
Age -0.18117 0.17097 -1.060 0.2917
Glu/GABA 1.21822 1.95226 0.624 0.5340
Thalamus:GABA PGS

Sex:Age 0.21468 0.13418 1.600 0.1126
Residual standard error 0.4777 (on 106 degrees of freedom)

Multiple R squared 0.1062

Adjusted R squared 0.03027

THALAMUS GLUTAMATE & GLUTAMATE PGS

RBS ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02302 0.15997 -0.144 0.886
Glu Thalamus -0.08521 0.29636 -0.288 0.775
Glu PGS -0.07021 0.20453 -0.343 0.733
Glu PGS? -0.11150 0.19644 -0.568 0.572
Site2 -0.10348 0.43048 -0.240 0.811
Site3 -0.04130 0.85433 -0.048 0.962
Sex -0.26822 0.24742 -1.084 0.283
Age 0.10317 0.12948 0.797 0.429
Glu Thalamus:Glu PGS 0.12617 0.15573 0.810 0.421
Sex:Age -0.10972 0.28872 -0.380 0.705

Residual standard error 0.8192 (on 62 degrees of freedom)
Multiple R squared 0.05564
Adjusted R squared -0.08145
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Table S7: Continued

SRS ~ Glutamate ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.38775 0.10526 -3.684 0.000384
GluACC -0.66408 0.21226 -3.129 0.002339
Glu PGS -0.20440 0.14054 -1.454 0.149162
Glu PGS? -0.18675 0.14550 -1.284 0.202470
Site2 -1.71666 0.55914 -3.070 0.002797
Site3 0.08032 0.31539 0.255 0.799546
Sex 0.13109 0.18555 0.707 0.481615
Age -0.14264 0.10593 -1.347 0.181357
Glu ACC:Glu PGS 0.28107 0.11126 2.526 0.013198
Sex:Age 0.17845 0.22402 0.797 0.427702
Residual standard error 0.7755 (on 94 degrees of freedom)

Multiple R squared 0.1703

Adjusted R squared 0.09083

SSP ~ Glutamate ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.44058 0.16002 2.753 0.00891
Glutamate ACC 0.19096 0.28386 0.673 0.50510
Glutamate PGS 0.29607 0.36165 0.819 0.41795
Glu PGS? 0.09452 0.31440 0.301 0.76529
Site2 0.56087 0.79937 0.702 0.48707
Site3 -1.92418 0.82399 -2.335 0.02477
Sex 0.21431 0.27337 0.784 0.43781
Age 0.20986 0.18119 1.158 0.25383
Glu ACC:Glu PGS -0.30229 0.14002 -2.159 0.03707
Sex:Age -0.09319 0.33849 -0.275 0.78454
Residual standard error 0.7661 (on 39 degrees of freedom)

Multiple R squared 0.3236

Adjusted R squared 0.1675

ADOS ~ Glutamate ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.31841 0.12645 -2.518 0.01448
GluACC -0.68690 0.22210 -3.093 0.00301
Glu PGS 0.25466 0.38654 0.659 0.51253
Glu PGS? 0.34074 0.31902 1.068 0.28976
Site2 -1.39150 0.58305 -2.387 0.02017

Site3 0.83417 0.36928 2.259 0.02753
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SRS ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.43996 0.14526 -3.029 0.00308
GluThalamus -0.14442 0.28029 -0.515 0.60745
Glu PGS -0.10771 0.15068 -0.715 0.47626
Glu PGS? -0.07158 0.15904 -0.450 0.65354
Site2 0.23053 0.41775 0.552 0.58221
Site3 0.04058 0.36398 0.111 091144
Sex 0.10429 0.19618 0.532 0.59610
Age -0.01706 0.11070 -0.154 0.87783
Glu Thalamus:Glu PGS 0.06754 0.13809 0.489 0.62577
Sex:Age 0.19543 0.23994 0.814 041717
Residual standard error 0.895 (on 107 degrees of freedom)

Multiple R squared 0.05933

Adjusted R squared -0.01979

SSP ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.46542 0.21362 2179 0.0344
Glutamate Thalamus -0.21028 0.36128 -0.582 0.5633
Glutamate PGS -0.01316 0.31652 -0.042 0.9670
Glu PGS? -0.14477 0.28754 -0.503 0.6170
Site2 -0.50999 0.51472 -0.991 0.3269
Site3 -2.00970 0.93134 -2.158 0.0361
Sex 0.16594 0.28651 0.579 0.5652
Age 0.17115 0.18043 0.949 0.3477
Glu Thalamus:Glu PGS -0.05405 0.17764 -0.304 0.7623
Sex:Age -0.14276 0.35030 -0.408 0.6855
Residual standard error 0.8861 (on 47 degrees of freedom)

Multiple R squared 0.1683

Adjusted R squared 0.009009

ADOS ~ Glutamate Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.15933 0.17107 -0.931 0.35467
Glu Thalamus -0.55726 0.32931 -1.692 0.09475
Glu PGS 0.31398 0.22780 1.378 0.17220
Glu PGS? 0.39769 0.20889 1.904 0.06077
Site2 -0.17137 0.48708 -0.352 0.72595

Site3 0.65572 0.38880 1.687 0.09585
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Table S7: Continued

Sex -0.61907 0.20836 -2.971 0.00426
Age -0.26178 0.11812 -2.216 0.03048
Glu ACC:Glu PGS 0.24533 0.10217 2.401 0.01945
Sex:Age 0.06137 0.26212 0.234 0.81568
Residual standard error 0.7035 (on 60 degrees of freedom)

Multiple R squared 0.3917

Adjusted R squared 0.3004

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.

Table S8: Linear model outputs '"H-MRS GABA and glutamate PGS

ACC GABA & GLUTAMATE PGS

RBS ~ GABA ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.029093 0.138421 -0.210 0.834
GABA ACC -0.346640 0.233125 -1.487 0.144
Glu PGS 0.067405 0.341267 0.198 0.844
Glu PGS? 0.004802 0.311928 0.015 0.988
Site2 -0.474524 0.431677 -1.099 0.278
Site3 -0.401479 0.868891 -0.462 0.646
Sex -0.256229 0.266152 -0.963 0.341
Age 0.002045 0.130672 0.016 0.988
GABA ACC:Glu PGS 0.279099 0.256631 1.088 0.283
Sex:Age 0.037277 0.307486 0.121 0.904
Residual standard error 0.7745 (on 45 degrees of freedom)

Multiple R squared 0.09188

Adjusted R squared -0.08974

SRS ~ GABA ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.58210 0.10665 -5.458 4.78e-07
GABA ACC -0.08747 0.16458 -0.531 0.596
Glu PGS -0.21349 0.15627 -1.366 0.176
Glu PGS? -0.22931 0.16554 -1.385 0.170
Site2 -0.31205 0.35993 -0.867 0.388

Site3 0.12134 0.32148 0.377 0.707
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Sex -0.65407 0.18818 -3.476 0.00085
Age -0.07163 0.10592 -0.676 0.50091

Glu Thalamus:Glu PGS 0.24899 0.12834 1.940 0.05614
Sex:Age 0.05796 0.23825 0.243 0.80845

Residual standard error 0.7366 (on 75 degrees of freedom)

Multiple R squared 0.394

Adjusted R squared 0.3213

THALAMUS GABA & GLUTAMATE PGS

RBS ~ GABA Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.006169 0.177258 0.035 0.972
GABA Thalamus -0.167225 0.286289 -0.584 0.562
Glu PGS -0.114804 0.238096 -0.482 0.632
Glu PGS? -0.129849 0.250248 -0.519 0.606
Site2 -0.034824 0.394920 -0.088 0.930
Site3 -0.166152 0.996753 -0.167 0.868
Sex -0.257305 0.320106 -0.804 0.426
Age 0.082894 0.161179 0.514 0.609
GABA Thalamus:Glu PGS -0.007296 0.289922 -0.025 0.980
Sex:Age -0.036584 0.368032 -0.099 0.921
Residual standard error 0.9358 (on 47 degrees of freedom)

Multiple R squared 0.05345

Adjusted R squared -0.1278

SRS ~ GABA Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])

(Intercept) -0.46850 0.12550 -3.733 0.000343
GABA Thalamus 0.19653 0.19688 0.998 0.321027
Glu PGS -0.12683 0.19089 -0.664 0.508226
Glu PGS? -0.16087 0.20432 -0.787 0.433300
Site2 0.83145 0.29509 2.818 0.006031

Site3 0.03193 0.36158 0.088 0.929834
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Table S8: Continued

Sex 0.31967 0.19595 1.631 0.107
Age -0.02485 0.10479 -0.237 0.813
GABA ACC:Glu PGS -0.06408 0.15660 -0.409 0.683
Sex:Age 0.19827 0.23202 0.855 0.395
Residual standard error 0.7937 (on 84 degrees of freedom)

Multiple R squared 0.06961

Adjusted R squared -0.03008

SSP ~ GABA ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.44114 0.14999 2941 0.00603
GABA ACC 0.31094 0.24785 1.255 0.21872
Glu PGS 0.63494 0.45827 1.386 0.17548
Glu PGS? 0.51465 0.38362 1.342 0.18918
Site2 0.89725 0.49368 1.817 0.07852
Site3 -1.40250 0.80682 -1.738 0.09177
Sex 0.11901 0.25050 0.475 0.63794
Age 0.08271 0.14543 0.569 0.57350
GABA ACC:Glu PGS 0.25977 0.27190 0.955 0.34654
Sex:Age -0.21637 0.30262 -0.715 0.47979
Residual standard error 0.6676 (on 32 degrees of freedom)

Multiple R squared 0.3551

Adjusted R squared 0.1737

ADOS ~ GABA ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.58840 0.13435 -4.380 5.78e-05
GABA ACC -0.21996 0.18787 -1.171 0.2470
Glu PGS -0.22944 0.43697 -0.525 0.6018
Glu PGS? -0.02023 0.35263 -0.057 0.9545
Site2 0.17072 0.32963 0.518 0.6067
Site3 0.95413 0.38240 2.495 0.0158
Sex -0.45433 0.22124 -2.054 0.0451
Age -0.07514 0.11896 -0.632 0.5304
GABA ACC:Glu PGS 0.10263 0.22758 0.451 0.6539

Sex:Age -0.04512 0.27451 -0.164 0.8701
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Sex 0.13829 0.21750 0.636 0.526638
Age -0.10385 0.11834 -0.878 0.382700
GABA Thalamus:Glu PGS -0.20871 0.18619 -1.121 0.265511
Sex:Age 0.42116 0.26037 1.618 0.109511
Residual standard error 0.8801 (on 84 degrees of freedom)

Multiple R squared 0.1211

Adjusted R squared 0.0269

SSP ~ GABA Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.51085 0.16064 3.180 0.00308
GABA Thalamus 0.25444 0.25907 0.982 0.33277
Glu PGS 0.16454 0.24183 0.680 0.50072
Glu PGS? 0.06269 0.23965 0.262 0.79518
Site2 -0.32335 0.36110 -0.895 0.37665
Site3 -1.68911 0.78934 -2.140 0.03941
Sex -0.17159 0.26670 -0.643 0.52418
Age 0.22773 0.15797 1.442 0.15830
GABA Thalamus:Glu PGS~ 0.37811 0.26334 1.436 0.15992
Sex:Age -0.38886 0.31930 -1.218 0.23143
Residual standard error 0.7244 (on 35 degrees of freedom)

Multiple R squared 0.3364

Adjusted R squared 0.1657

ADOS ~ GABA Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.41867 0.13431 -3.117 0.002821
GABA Thalamus 0.11401 0.19881 0.573 0.568513
Glu PGS 0.18845 0.24292 0.776 0.440994
Glu PGS? 0.21579 0.22853 0.944 0.348909
Site2 0.91088 0.25517 3.570 0.000718
Site3 0.86535 0.40144 2.156 0.035206
Sex -0.53983 0.22448 -2.405 0.019340
Age -0.05454 0.11924 -0.457 0.649049
GABA Thalamus:Glu PGS 0.14561 0.19222 0.758 0.451754
Sex:Age 0.05878 0.27590 0.213 0.832028
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Table S8: Continued

Residual standard error 0.7172 (on 52 degrees of freedom)
Multiple R squared 0.2207
Adjusted R squared 0.08578

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.

Table S9: Linear model outputs "H-MRS glutamate/GABA ratios and glutamate PGS

ACC GLUTAMATE/GABA RATIO & GLUTAMATE PGS

RBS ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.039318 0.188815 0.208 0.836
Glu/GABA ACC 1.207007 1.209774 0.998 0.324
Glu PGS 0.010388 0.444461 0.023 0.981
Glu PGS? 0.018278 0416119 0.044 0.965
Site2 -0.033036 0.399497 -0.083 0.934
Site3 -9.625649 10.770084 -0.894 0.376
Sex -0.195345 0.265264 -0.736 0.465
Age -0.003943 0.136441 -0.029 0.977
Glu/GABA ACC:Glu PGS -0.587683 0.732280 -0.803 0.426
Sex:Age 0.012591 0.304155 0.041 0.967
Residual standard error 0.7758 (on 47 degrees of freedom)

Multiple R squared 0.04877

Adjusted R squared -0.1334

SRS ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.48906 0.11018 -4.439 2.64e-05
Glu/GABA ACC 0.21131 0.23607 0.895 0.373
Glu PGS -0.16816 0.16106 -1.044 0.299
Glu PGS? -0.13334 0.17454 -0.764 0.447
Site2 0.23797 0.33287 0.715 0.477
Site3 -0.26768 0.34725 -0.771 0.443
Sex 0.24750 0.19710 1.256 0.213
Age 0.01801 0.11442 0.157 0.875
Glu/GABA ACC:Glu PGS 0.01133 0.36609 0.031 0.975

Sex:Age 0.15901 0.23583 0.674 0.502
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Residual standard error 0.7593 (on 59 degrees of freedom)
Multiple R squared 0.3188
Adjusted R squared 0.2149

THALAMUS GLUTAMATE/GABA RATIO & GLUTAMATE PGS

RBS ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.10757 0.29752 -0.362 0.719
Glu/GABA Thalamus -0.65450 2.61072 -0.251 0.803
Glu PGS 0.77032 3.36012 0.229 0.820
Glu PGS? -0.11947 0.21787 -0.548 0.586
Site2 0.04308 0.25464 0.169 0.866
Site3 -0.03028 0.90191 -0.034 0.973
Sex -0.23693 0.28138 -0.842 0.403
Age 0.09219 0.14167 0.651 0.518
Glu/GABA Thalamus:Glu PGS 8.44856 32.45610 0.260 0.796
Sex:Age -0.03771 0.33895 -0.111 0.912
Residual standard error 0.8663 (on 56 degrees of freedom)

Multiple R squared 0.04116

Adjusted R squared -0.1129

SRS ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.7207 0.1727 -4.174 6.54e-05
Glu/GABA Thalamus -1.8730 1.1450 -1.636 0.10511
Glu PGS 1.2558 0.6423 1.955 0.05345
Glu PGS? -0.1441 0.1544 -0.934 0.35285
Site2 0.6087 0.2122 2.868 0.00507
Site3 0.2729 0.3697 0.738 0.46211
Sex 0.2187 0.1969 1.111 0.26950
Age -0.0488 0.1070 -0.456 0.64948
Glu/GABA Thalamus:Glu PGS  13.8936 6.1730 2.251 0.02666
Sex:Age 0.3272 0.2421 1.351 0.17973




204 | Chapter 5

Table S9: Continued

Residual standard error 0.8045 (on 87 degrees of freedom)

Multiple R squared 0.1135

Adjusted R squared 0.02178

SSP ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.109294 0.228851 0.478 0.6359
Glu/GABA ACC -3.183628 1.487154 -2.141 0.0393
Glu PGS 0.588080 0.590025 0.997 0.3257
Glu PGS? 0.065146 0.458355 0.142 0.8878
Site2 -0.515970 0.455171 -1.134 0.2647
Site3 14.249175 12.543825 1.136 0.2637
Sex 0.214775 0.285488 0.752 0.4569
Age -0.003405 0.175536 -0.019 0.9846
Glu/GABA ACC:Glu PGS 2.820044 2.195412 1.285 0.2074
Sex:Age 0.127080 0.342765 0.371 0.7131
Residual standard error 0.7876 (on 35 degrees of freedom)

Multiple R squared 0.3257

Adjusted R squared 0.1523

ADOS ~ Glutamate/GABA ratio ACC * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.4214 0.1529 -2.755 0.00789
Glu/GABA ACC 0.2535 0.6735 0.376 0.70805
Glu PGS 0.2759 0.4656 0.593 0.55588
Glu PGS? 0.4289 0.3735 1.148 0.25574
Site2 0.6786 0.3266 2.078 0.04233
Site3 0.8294 0.4706 1.762 0.08344
Sex -0.4765 0.2524 -1.888 0.06418
Age -0.1727 0.1410 -1.225 0.22565
Glu/GABA ACC:Glu PGS -0.4064 1.1205 -0.363 0.71817
Sex:Age 0.1115 0.3046 0.366 0.71567
Residual standard error 0.7593 (on 56 degrees of freedom)

Multiple R squared 0.2571

Adjusted R squared 0.1377

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.
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Residual standard error
Multiple R squared
Adjusted R squared

0.85 (on 97 degrees of freedom)
0.1412
0.0615

SSP ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.80807 0.30201 2.676 0.0106
Glu/GABA Thalamus 3.19982 2.52044 1.270 0.2112
Glu PGS -3.29060 3.23847 -1.016 03154
Glu PGS? 0.03253 0.27210 0.120 0.9054
Site2 -0.30610 0.26519 -1.154 0.2549
Site3 -1.88481 0.84731 -2.224 0.0315
Sex -0.12054 0.28523 -0.423 0.6747
Age 0.24595 0.16603 1.481 0.1460
Glu/GABA Thalamus:Glu PGS -33.81191 31.47737 -1.074 0.2889
Sex:Age -0.37247 0.35067 -1.062 0.2942

Residual standard error
Multiple R squared
Adjusted R squared

0.8042 (on 42 degrees of freedom)
0.2159
0.04783

ADOS ~ Glutamate/GABA ratio Thalamus * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.47915 0.15412 -3.109 0.002741
Glu/GABA Thalamus -0.16919 0.77221 -0.219 0.827233
Glu PGS 0.18786 0.27318 0.688 0.494007
Glu PGS? 0.27522 0.22307 1.234 0.221525
Site2 0.75048 0.20245 3.707 0.000424
Site3 0.84055 0.39262 2.141 0.035872
Sex -0.47245 0.20931 -2.257 0.027215
Age -0.02759 0.11538 -0.239 0.811730
Glu/GABA Thalamus:Glu PGS -0.32523 1.29112 -0.252 0.801881
Sex:Age 0.05436 0.27544 0.197 0.844137

Residual standard error
Multiple R squared
Adjusted R squared

0.7753 (on 68 degrees of freedom)
0.286
0.1915
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Table S10: Linear model outputs 'H-MRS glutamate and GABA PGS

ACC GLUTAMATE & GABA PGS

RBS ~ Glutamate ACC * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.098390 0.136365 -0.722 0.474
Glu ACC -0.084538 0.264648 -0.319 0.751
GABA PGS -0.851298 1.294867 -0.657 0.514
GABA PGS? -0.766796 1.274291 -0.602 0.550
Site2 -0.388186 0.710804 -0.546 0.587
Site3 -0.000955 0.802096 -0.001 0.999
Sex -0.138537 0.257109 -0.539 0.592
Age -0.053262 0.135763 -0.392 0.696
Glu ACC:GABA PGS 0.013057 0.117699 0.111 0.912
Sex:Age 0.135146 0.311645 0.434 0.666
Residual standard error 0.7484 (on 51 degrees of freedom)

Multiple R squared 0.0427

Adjusted R squared -0.1262

SRS ~ Glutamate ACC * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.417584 0.108730 -3.841 0.000223
GluACC -0.654562 0.222641 -2.940 0.004131
GABA PGS 0.141584 1.085383 0.130 0.896492
GABA PGS? 0.107461 1.078030 0.100 0.920808
Site2 -1.446589 0.574471 -2.518 0.013489
Site3 0.181102 0.327529 0.553 0.581621
Sex 0.209955 0.190610 1.101 0.273497
Age -0.088272 0.110478 -0.799 0.426307
Glu ACC:GABA PGS -0.007441 0.106956 -0.070 0.944680
Sex:Age 0.129032 0.241530 0.534 0.594445
Residual standard error 0.8077 (on 94 degrees of freedom)

Multiple R squared 0.0998

Adjusted R squared 0.01361

SSP ~ Glutamate ACC * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.43635 0.17180 2.540 0.0152
Glu ACC 0.03500 0.30367 0.115 0.9088
GABA PGS 262763 1.53340 1.714 0.0945
GABA PGS? 2.59053 1.52202 1.702 0.0967
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THALAMUS GLUTAMATE & GABA PGS

RBS ~ Glutamate Thalamus * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) -0.03951 0.15157 -0.261 0.795
Glu Thalamus -0.04780 0.27448 -0.174 0.862
GABA PGS 0.98425 1.06337 0.926 0.358
GABA PGS? 1.08873 1.05009 1.037 0.304
Site2 -0.13135 0.40052 -0.328 0.744
Site3 0.06754 0.81861 0.083 0.935
Sex -0.29695 0.24106 -1.232 0.223
Age 0.07684 0.12409 0.619 0.538
Glu Thalamus:GABA PGS 0.16801 0.11591 1.450 0.152
Sex:Age -0.17064 0.28059 -0.608 0.545
Residual standard error 0.7807 (on 62 degrees of freedom)

Multiple R squared 0.1424

Adjusted R squared 0.0179

SRS ~ Glutamate Thalamus * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.46266 0.14414 -3.210 0.00175
Glu Thalamus -0.09083 0.27529 -0.330 0.74209
GABA PGS 0.33391 1.00704 0.332 0.74086
GABA PGS? 0.38141 0.99881 0.382 0.70332
Site2 0.28557 0.41290 0.692 0.49067
Site3 0.10648 0.36055 0.295 0.76831
Sex 0.10555 0.19359 0.545 0.58674
Age -0.01714 0.11034 -0.155 0.87685
Glu Thalamus:GABA PGS 0.17196 0.11277 1.525 0.13024
Sex:Age 0.15074 0.24185 0.623 0.53442
Residual standard error 0.8842 (on 107 degrees of freedom)

Multiple R squared 0.08195

Adjusted R squared 0.004726

SSP ~ Glutamate Thalamus * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 0.43392 0.20567 2.110 0.0402
Glu Thalamus -0.15990 0.33768 -0.474 0.6380
GABA PGS 2.22057 140134 1.585 0.1198

GABA PGS? 2.08466 1.39629 1.493 0.1421
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Table S10: Continued

Site2 -0.26820 0.82379 -0.326 0.7465
Site3 -2.22855 0.88122 -2.529 0.0156
Sex 0.16613 0.29276 0.567 0.5737
Age 0.05270 0.18627 0.283 0.7787
Glu ACC:GABA PGS -0.02358 0.13582 -0.174 0.8631
Sex:Age -0.08257 0.37245 -0.222 0.8257
Residual standard error 0.8112 (on 39 degrees of freedom)

Multiple R squared 0.2416

Adjusted R squared 0.06662

ADOS ~ Glutamate ACC * GABA PGS + GABA PGS? + Age * Sex + Sit

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.38675 0.12714 -3.042 0.00348
Glu ACC -0.57421 0.23627 -2.430 0.01809
GABA PGS -1.77801 1.30859 -1.359 0.17932
GABA PGS? -1.67398 1.27914 -1.309 0.19563
Site2 -0.75214 0.59811 -1.258 0.21344
Site3 0.89217 0.39186 2.277 0.02638
Sex -0.57770 0.21806 -2.649 0.01030
Age -0.24937 0.12909 -1.932 0.05812
Glu ACC:GABA PGS 0.03329 0.10588 0.314 0.75431
Sex:Age 0.11067 0.28044 0.395 0.69452
Residual standard error 0.7592 (on 60 degrees of freedom)

Multiple R squared 0.2917

Adjusted R squared 0.1854

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.

Table S11: Linear model outputs '"H-MRS GABA and GABA PGS

ACC GABA & GABA PGS

RBS ~ GABA ACC * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.07171 0.13661 -0.525 0.602
GABA ACC -0.26120 0.22194 -1.177 0.245
GABA PGS -1.51624 1.37691 -1.101 0.277

GABA PGS? -1.47725 1.37746 -1.072 0.289
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Site2 -0.48447 0.49046 -0.988 0.3283
Site3 -2.15679 0.91122 -2.367 0.0221
Sex 0.07809 0.28351 0.275 0.7842
Age 0.18139 0.18055 1.005 0.3202
Glu Thalamus:GABA PGS -0.08492 0.16324 -0.520 0.6053
Sex:Age -0.30882 0.35953 -0.859 0.3947
Residual standard error 0.8626 (on 47 degrees of freedom)

Multiple R squared 0.2118

Adjusted R squared 0.06085

ADOS ~ Glutamate Thalamus * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.23279 0.17474 -1.332 0.1868
Glu Thalamus -0.55981 0.32866 -1.703 0.0926
GABA PGS -1.66283 1.02209 -1.627 0.1080
GABA PGS? -1.57836 1.00113 -1.577 0.1191
Site2 0.01959 0.49084 0.040 0.9683
Site3 0.56193 0.40822 1.377 0.1728
Sex -0.51587 0.19651 -2.625 0.0105
Age -0.08129 0.11122 -0.731 0.4671
Glu Thalamus:GABA PGS 0.01853 0.09996 0.185 0.8535
Sex:Age 0.20303 0.25059 0.810 0.4204
Residual standard error 0.7684 (on 75 degrees of freedom)

Multiple R squared 0.3406

Adjusted R squared 0.2615

THALAMUS GABA & GABA PGS

RBS ~ GABA Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.009470 0.161527 -0.059 0.953
GABA Thalamus 0.023150 0.269918 0.086 0.932
GABA PGS 1.812234 1.407928 1.287 0.204

GABA PGS? 2.068648 1.395329 1.483 0.145
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Table S11: Continued

Site2 -0.34791 0.41944 -0.829 0.411
Site3 0.14019 0.90866 0.154 0.878
Sex -0.26863 0.28476 -0.943 0.351
Age -0.04986 0.13459 -0.370 0.713
GABA ACC:GABA PGS 0.30200 0.21601 1.398 0.169
Sex:Age 0.06055 0.33034 0.183 0.855
Residual standard error 0.7688 (on 45 degrees of freedom)

Multiple R squared 0.1053

Adjusted R squared -0.07363

SRS ~ GABA ACC * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.58455 0.10564 -5.534 3.49e-07
GABA ACC -0.06688 0.16147 -0.414 0.6798
GABA PGS -0.20327 1.10578 -0.184 0.8546
GABA PGS? -0.20632 1.10365 -0.187 0.8522
Site2 -0.26275 0.36118 -0.727 0.4690
Site3 0.05620 0.32966 0.170 0.8651
Sex 0.36827 0.19725 1.867 0.0654
Age -0.01494 0.10700 -0.140 0.8893
GABA ACC:GABA PGS -0.16871 0.16073 -1.050 0.2969
Sex:Age 0.22644 0.24358 0.930 0.3552
Residual standard error 0.7974 (on 84 degrees of freedom)

Multiple R squared 0.06092

Adjusted R squared -0.0397

SSP ~ GABA ACC * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.43205 0.14955 2.889 0.00688
GABA ACC 0.25493 0.25906 0.984 0.33246
GABA PGS 0.94660 1.33527 0.709 0.48351
GABA PGS? 0.86835 1.35599 0.640 0.52649
Site2 0.80589 0.49470 1.629 0.11311
Site3 -1.28454 0.82009 -1.566 0.12711
Sex -0.07126 0.27471 -0.259 0.79700
Age 0.12453 0.15142 0.822 0.41693
GABA ACC:GABA PGS 0.28099 0.22781 1.233 0.22640
Sex:Age -0.39073 0.32043 -1.219 0.23160
Residual standard error 0.6638 (on 32 degrees of freedom)

Multiple R squared 0.3625

Adjusted R squared 0.1832
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Site2 0.075905 0.362251 0.210 0.835
Site3 0.208161 0.929305 0.224 0.824
Sex -0.348318 0.308975 -1.127 0.265
Age -0.005015 0.148857 -0.034 0.973
GABA Thalamus:GABA PGS 0.218094 0.226474 0.963 0.340
Sex:Age 0.009398 0.358028 0.026 0.979
Residual standard error 0.8551 (on 47 degrees of freedom)

Multiple R squared 0.2096

Adjusted R squared 0.0582

SRS ~ GABA Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) -0.46474 0.12669 -3.668 0.000428
GABA Thalamus 0.18295 0.19745 0.927 0.356803
GABA PGS 1.37568 1.19752 1.149 0.253910
GABA PGS? 1.42988 1.18862 1.203 0.232367
Site2 0.81919 0.29574 2.770 0.006899
Site3 0.12256 0.36210 0.338 0.735856
Sex 0.11380 0.22172 0.513 0.609124
Age -0.08294 0.11950 -0.694 0.489565
GABA Thalamus:GABA PGS -0.09513 0.18414 -0.517 0.606773
Sex:Age 0.31699 0.27031 1.173 0.244235
Residual standard error 0.882 (on 84 degrees of freedom)

Multiple R squared 0.1174

Adjusted R squared 0.02285

SSP ~ GABA Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.4831 0.1572 3.072 0.0041
GABA Thalamus 0.2729 0.2657 1.027 0.3115
GABA PGS 1.9949 1.5866 1.257 0.2170
GABA PGS? 1.7996 1.6252 1.107 0.2757
Site2 -0.3105 0.3519 -0.882 0.3836
Site3 -1.8762 0.7861 -2.387 0.0225
Sex -0.2263 0.2762 -0.819 0.4182
Age 0.3055 0.1558 1.961 0.0578
GABA Thalamus:GABA PGS 0.1227 0.2271 0.540 0.5926
Sex:Age -0.5671 0.3299 -1.719 0.0944
Residual standard error 0.7045 (on 35 degrees of freedom)

Multiple R squared 0.3723

Adjusted R squared 0.2109
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Table S11: Continued

ADOS ~ GABA ACC * GABA PGS + GABA PGS? + Age + Sex * Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.5528 0.1182 -4.678 2.7e-05
GABA ACC -0.3267 0.1907 -1.714 0.0925
GABA PGS -3.2619 1.3692 -2.382 0.0209
GABA PGS? -3.1424 1.3435 -2.339 0.0232
Site2 0.1532 0.3174 0.483 0.6313
Site3 0.8795 0.3723 2.362 0.0219
Sex -0.3968 0.2116 -1.875 0.0663
Age -0.1395 0.1165 -1.198 0.2364
GABA ACC:GABA PGS 0.1117 0.1821 0.614 0.5422
Sex:Age 0.1214 0.2631 0.462 0.6463
Residual standard error 0.6987 (on 52 degrees of freedom)

Multiple R squared 0.2604

Adjusted R squared 0.1324

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.

Table S12: Linear model outputs 'H-MRS glutamate/GABA ratios and GABA PGS

ACC GLUTAMATE/GABA RATIO & GABA PGS

RBS ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS? + Age * Sex + Sit

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.03956 0.14305 -0.277 0.783
Glu/GABA ACC 0.72397 0.75127 0.964 0.340
GABA PGS -0.93541 1.22195 -0.766 0.448
GABA PGS? -0.67031 1.20324 -0.557 0.580
Site2 -0.11978 0.37335 -0.321 0.750
Site3 16.56623 13.36896 1.239 0.221
Sex -0.14863 0.26772 -0.555 0.581
Age -0.03632 0.13581 -0.267 0.790
Glu/GABA ACC:GABA PGS  -1.65187 1.07699 -1.534 0.132
Sex:Age 0.09742 0.31748 0.307 0.760
Residual standard error 0.7607 (on 47 degrees of freedom)

Multiple R squared 0.08541

Adjusted R squared -0.08972
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ADOS ~ GABA Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.42827 0.13495 -3.174 0.002392
GABA Thalamus 0.11596 0.20129 0.576 0.566728
GABA PGS -0.59424 1.22462 -0.485 0.629299
GABA PGS? -0.54430 1.20453 -0.452 0.653014
Site2 0.93488 0.25841 3.618 0.000617
Site3 0.72000 0.39235 1.835 0.071534
Sex -0.49347 0.23937 -2.062 0.043662
Age -0.07199 0.12164 -0.592 0.556247
GABA Thalamus:GABA PGS 0.04527 0.17627 0.257 0.798202
Sex:Age 0.19514 0.27894 0.700 0.486949
Residual standard error 0.7671 (on 59 degrees of freedom)

Multiple R squared 0.3046

Adjusted R squared 0.1985

THALAMUS GLUTAMATE/GABA RATIO & GABA PGS

RBS ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.84531 2.81096 1.368 0.177
Glu/GABA Thalamus 37.51861 27.04164 1.387 0.171
GABA PGS 5.35030 3.26693 1.638 0.107
GABA PGS? 1.24381 1.17935 1.055 0.296
Site2 -0.14415 0.25317 -0.569 0.571
Site3 0.09539 0.86137 0.111 0.912
Sex -0.20847 0.27929 -0.746 0.459
Age 0.07455 0.13311 0.560 0.578
Glu/GABA Thalamus:GABA PGS 41.76261 30.03897 1.390 0.170
Sex:Age 0.06769 0.34760 0.195 0.846
Residual standard error 0.8218 (on 56 degrees of freedom)

Multiple R squared 0.1371

Adjusted R squared -0.001589
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Table S12: Continued

SRS ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS? + Age * Sex + Sit

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.39897 0.12606 -3.165 0.00214
Glu/GABA ACC 1.21406 0.77149 1.574 0.11920
GABA PGS -0.61496 1.04496 -0.589 0.55772
GABA PGS2 -0.52210 1.04128 -0.501 0.61735
Site2 0.29446 0.32605 0.903 0.36897
Site3 -0.22910 0.35048 -0.654 0.51505
Sex 0.30454 0.19653 1.550 0.12487
Age 0.02617 0.11411 0.229 0.81913
Glu/GABA ACC:GABAPGS  -0.75355 0.58098 -1.297 0.19805
Sex:Age 0.16410 0.24310 0.675 0.50144
Residual standard error 0.8004 (on 87 degrees of freedom)

Multiple R squared 0.1224

Adjusted R squared 0.03159

SSP ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS? + Age * Sex + Sit
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.04744 0.30755 -0.154 0.8783
Glu/GABA ACC -4.08870 2.30159 -1.776 0.0843
GABA PGS 1.44441 1.48887 0.970 0.3386
GABA PGS? 2.50158 1.30581 1.916 0.0636
Site2 -0.71157 0.43139 -1.649 0.1080
Site3 167.36629 122.00325 1.372 0.1789
Sex 0.13417 0.29445 0.456 0.6514
Age 0.02351 0.17397 0.135 0.8933
Glu/GABA ACC:GABA PGS -8.30356 6.61627 -1.255 0.2178
Sex:Age -0.07419 0.35420 -0.209 0.8353
Residual standard error 0.7702 (on 35 degrees of freedom)

Multiple R squared 0.3551

Adjusted R squared 0.1892

ADOS ~ Glutamate/GABA ratio ACC * GABA PGS + GABA PGS? + Age * Sex + Sit
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.4526 0.1511 -2.996 0.00407
Glu/GABA ACC 0.3673 0.8560 0.429 0.66950
GABA PGS -1.8126 1.4230 -1.274 0.20800
GABA PGS? -1.6717 1.3913 -1.202 0.23459
Site2 0.8188 0.3178 2.576 0.01265
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SRS ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.09895 0.34755 0.285 0.77647
Glu/GABA Thalamus 6.10516 3.29821 1.851 0.06720
GABA PGS 0.94465 1.05942 0.892 0.37478
GABA PGS? 0.22246 1.00572 0.221 0.82541
Site2 0.58605 0.21652 2.707 0.00803
Site3 0.29052 0.37015 0.785 0.43444
Sex 0.22718 0.19931 1.140 0.25715
Age -0.03939 0.10888 -0.362 0.71833
Glu/GABA Thalamus:GABA PGS  7.70866 3.65629 2.108 0.03758
Sex:Age 0.32869 0.24947 1.318 0.19075
Residual standard error 0.8555 (on 97 degrees of freedom)

Multiple R squared 0.1302

Adjusted R squared 0.04945

SSP ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2175 2.8751 -0.076 0.9401
Glu/GABA Thalamus -6.7052 275113 -0.244 0.8086
GABA PGS 1.7771 3.5383 0.502 0.6181
GABA PGS? 24712 1.3183 1.874 0.0678
Site2 -0.4027 0.2728 -1.476 0.1474
Site3 -2.1194 0.8133 -2.606 0.0126
Sex -0.2307 0.2771 -0.833 0.4097
Age 0.2745 0.1579 1.738 0.0895
Glu/GABA Thalamus:GABA PGS -8.4843 30.5389 -0.278 0.7825
Sex:Age -0.5504 0.3581 -1.537 0.1319
Residual standard error 0.7688 (on 42 degrees of freedom)

Multiple R squared 0.2834

Adjusted R squared 0.1298

ADOS ~ Glutamate/GABA ratio Thalamus * GABA PGS + GABA PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.08674 0.25577 0.339 0.7355
Glu/GABA Thalamus 6.07228 243215 2.497 0.0150
GABA PGS -1.04866 1.08286 -0.968 0.3363
GABA PGS? -1.75107 1.04729 -1.672 0.0991

Site2 0.88474 0.19533 4.529 2.45e-05
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Table S12: Continued

Site3 0.7795 0.4752 1.641 0.10649
Sex -0.4528 0.2485 -1.822 0.07381
Age -0.2060 0.1432 -1.438 0.15598
Glu/GABA ACC:GABAPGS  -0.2588 0.6429 -0.403 0.68875
Sex:Age 0.1820 0.3047 0.597 0.55272
Residual standard error 0.8045 (on 56 degrees of freedom)

Multiple R squared 0.2397

Adjusted R squared 0.1176

Glu, Glutamate; GABA, y-aminobutyric acid; ACC, anterior cingulate cortex; PGS, Polygenic score; Glu/
GABA, ratio of glutamate/GABA. “:" indicates the model estimation for interaction effects between
variables. Covariates are labeled in gray, results discussed in manuscript are labeled in blue, significant
results (p<0.05) are marked in bold.

Table S13: Linear model outputs creatine referenced 'H-MRS glutamate and glutamate PGS

ACC GLUTAMATE(cr) & GLUTAMATE PGS

RBS ~ Glutamate ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.37850 0.56091 -0.675 0.503
Glu ACC(cr) -1.59631 1.63133 -0.979 0.332
Glu PGS -0.21454 0.24939 -0.860 0.394
Glu PGS? -0.14332 0.19515 -0.734 0.466
Site2 0.35319 0.88410 0.399 0.691
Site3 0.40268 0.43395 0.928 0.358
Sex -0.22719 0.25146 -0.903 0.371
Age -0.06496 0.37514 -0.173 0.863
Glu ACC(cr):Glu PGS -0.78465 1.45421 -0.540 0.592
Sex:Age 0.01556 0.29445 0.053 0.958
Residual standard error 0.7467 (on 51 degrees of freedom)

Multiple R squared 0.04718

Adjusted R squared -0.121

SRS ~ Glutamate ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.94319 0.41300 -2.284 0.0246
Glu ACC(cr) -1.06995 1.23806 -0.864 0.3897
Glu PGS -0.06062 0.15740 -0.385 0.7010
Glu PGS? -0.18030 0.15843 -1.138 0.2580
Site2 0.26901 0.42258 0.637 0.5259

Site3 0.23265 031334 0.742 0.4596
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Site3 0.75960 0.37775 2.011 0.0483
Sex -0.30512 0.20230 -1.508 0.1361

Age -0.04120 0.11202 -0.368 0.7142
Glu/GABA Thalamus:GABA PGS 7.78175 3.12015 2.494 0.0151
Sex:Age 0.17523 0.26557 0.660 0.5116

Residual standard error 0.7428 (on 68 degrees of freedom)

Multiple R squared 0.3446

Adjusted R squared 0.2579

THALAMUS GLUTAMATE(cr) & GLUTAMATE PGS

RBS ~ Glutamate Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) -0.09407 0.44909 -0.209 0.835
Glu Thalamus(cr) -0.79827 0.70866 -1.126 0.264
Glu PGS -0.01741 0.20136 -0.086 0.931
Glu PGS? -0.07630 0.19157 -0.398 0.692
Site2 0.18057 0.85807 0.210 0.834
Site3 0.34509 0.33897 1.018 0.313
Sex -0.27365 0.24504 -1.117 0.268
Age 0.14277 0.36759 0.388 0.699
Glu Thalamus(cr):Glu PGS 0.77816 0.49316 1.578 0.120
Sex:Age -0.09802 0.28481 -0.344 0.732
Residual standard error 0.8007 (on 61 degrees of freedom)

Multiple R squared 0.1115

Adjusted R squared -0.01958

SRS ~ Glutamate Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.77829 0.35688 -2.181 0.03141
Glu Thalamus(cr) -1.74989 0.59742 -2.929 0.00416
Glu PGS -0.07968 0.14348 -0.555 0.57984
Glu PGS? -0.02080 0.15431 -0.135 0.89301
Site2 0.20394 0.41369 0.493 0.62306

Site3 0.28508 0.29832 0.956 0.34145
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Table S13: Continued

Sex 0.14831 0.19547 0.759 0.4499
Age -0.26155 0.30342 -0.862 0.3909
Glu ACC(cr):Glu PGS 2.20430 1.20619 1.827 0.0708
Sex:Age 0.17034 0.23616 0.721 0.4725
Residual standard error 0.8171 (on 94 degrees of freedom)

Multiple R squared 0.07872

Adjusted R squared -0.009488

SSP ~ Glutamate ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.05966 0.63131 0.094 0.9252
Glu ACC(cr) -0.26099 1.88059 -0.139 0.8903
Glu PGS 0.19477 0.42179 0.462 0.6468
Glu PGS? 0.09297 0.33259 0.280 0.7813
Site2 -1.89572 0.95929 -1.976 0.0552
Site3 0.13236 0.49100 0.270 0.7889
Sex 0.23877 0.28655 0.833 0.4098
Age 0.11618 0.47091 0.247 0.8064
Glu ACC(cr):Glu PGS -1.79385 1.66553 -1.077 0.2881
Sex:Age -0.01203 0.35024 -0.034 0.9728
Residual standard error 0.8014 (on 39 degrees of freedom)

Multiple R squared 0.2598

Adjusted R squared 0.08902

ADOS ~ Glutamate ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.37083 0.44208 0.839 0.4049
Glu ACC(cr) -0.61882 1.39568 -0.443 0.6591
Glu PGS 0.29788 0.43634 0.683 0.4974
Glu PGS? 0.30203 0.34422 0.877 0.3838
Site2 0.64027 0.49404 1.296 0.1999
Site3 -0.23308 0.33236 -0.701 0.4858
Sex -0.60214 0.22800 -2.641 0.0105
Age -0.20609 0.36283 -0.568 0.5722
Glu ACC(cr):Glu PGS 1.73441 1.29657 1.338 0.1860
Sex:Age 0.02818 0.28670 0.098 0.9220
Residual standard error 0.7686 (on 60 degrees of freedom)

Multiple R squared 0.274

Adjusted R squared 0.1651

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA. “:" indicates the model estimation
for interaction effects between variables. Covariates are labeled in gray, significant results (p<0.05) are
marked in bold.
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Sex 0.08772 0.18839 0.466 0.64243
Age -0.28321 0.29505 -0.960 0.33930
Glu Thalamus(cr):Glu PGS 0.44614 0.42487 1.050 0.29608
Sex:Age 0.18662 0.22913 0.814 0.41720
Residual standard error 0.8537 (on 106 degrees of freedom)

Multiple R squared 0.1389

Adjusted R squared 0.06576

SSP ~ Glutamate Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 0.59060 0.53155 1.111 0.2723
Glu Thalamus(cr) 1.93404 1.06402 1.818 0.0756
Glu PGS -0.05103 0.30489 -0.167 0.8678
Glu PGS? -0.24889 0.27704 -0.898 0.3737
Site2 -2.15766 0.93895 -2.298 0.0262
Site3 -0.46998 0.44036 -1.067 0.2914
Sex 0.17960 0.27612 0.650 0.5187
Age 0.25403 0.45276 0.561 0.5775
Glu Thalamus(cr):Glu PGS -0.45016 0.55483 -0.811 0.4213
Sex:Age -0.06079 0.33821 -0.180 0.8581
Residual standard error 0.8445 (on 46 degrees of freedom)

Multiple R squared 0.2504

Adjusted R squared 0.1038

ADOS ~ Glutamate Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.78937 0.36355 2171 0.033073
Glu Thalamus(cr) -0.19613 0.64591 -0.304 0.762237
Glu PGS 0.36939 0.23045 1.603 0.113164
Glu PGS? 0.35346 0.21142 1.672 0.098714
Site2 0.34829 0.41342 0.842 0.402215
Site3 -0.48190 0.30084 -1.602 0.113396
Sex -0.65538 0.18948 -3.459 0.000898
Age -0.09380 0.30280 -0.310 0.757597
Glu Thalamus(cr):Glu PGS 1.03568 0.42072 2.462 0.016128
Sex:Age 0.03253 0.24007 0.136 0.892570
Residual standard error 0.7392 (on 75 degrees of freedom)

Multiple R squared 0.3897

Adjusted R squared 0.3164
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Table S14: Linear model outputs creatine referenced 'H-MRS GABA and glutamate PGS

ACC GABA(cr) & GLUTAMATE PGS

RBS ~ GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.224017 0.562600 -0.398 0.692
GABA ACC(cr) -2.853016 2.010090 -1.419 0.163
Glu PGS 0.358887 0.526676 0.681 0.499
Glu PGS? 0.056390 0.321770 0.175 0.862
Site2 -0.064946 0.884146 -0.073 0.942
Site3 0.241335 0.395740 0.610 0.545
Sex -0.285854 0.268543 -1.064 0.293
Age 0.005929 0.382979 0.015 0.988
GABA ACC(cr):Glu PGS 2903374 2473108 1.174 0.247
Sex:Age 0.004651 0.310202 0.015 0.988
Residual standard error 0.775 (on 45 degrees of freedom)

Multiple R squared 0.09077

Adjusted R squared -0.09108

SRS ~ GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -1.2904 0.4272 -3.021 0.00334
GABA ACC(cr) -1.1863 1.5052 -0.788 0.43284
Glu PGS -0.2747 0.2078 -1.322 0.18982
Glu PGS? -0.2203 0.1603 -1.375 0.17286
Site2 0.3650 0.4416 0.827 0.41074
Site3 0.2775 0.3397 0.817 0.41632
Sex 0.3249 0.1954 1.663 0.10012
Age -0.2218 0.2931 -0.757 0.45146
GABA ACC(cr):Glu PGS -0.7711 1.3847 -0.557 0.57909
Sex:Age 0.2020 0.2310 0.874 0.38434
Residual standard error 0.7905 (on 84 degrees of freedom)

Multiple R squared 0.07709

Adjusted R squared -0.02179

SSP ~ GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4948 0.6297 2.374 0.02377
GABA ACC(cr) 3.3644 2.0650 1.629 0.11307
Glu PGS 0.8587 0.5379 1.596 0.12023
Glu PGS? 0.5411 0.3813 1.419 0.16558
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THALAMUS GABA(cr) & GLUTAMATE PGS

RBS ~ GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 0.317795 0.467677 0.680 0.500
GABA Thalamus(cr) -0.115270 0.328920 -0.350 0.728
Glu PGS -0.111892 0.223042 -0.502 0.618
Glu PGS? -0.109762 0.250783 -0.438 0.664
Site2 -0.126807 1.020568 -0.124 0.902
Site3 -0.079528 0.336476 -0.236 0.814
Sex -0.252051 0.320200 -0.787 0.435
Age 0.098442 0.470229 0.209 0.835
GABA Thalamus(cr):Glu PGS -0.176824 0.428474 -0.413 0.682
Sex:Age -0.009142 0.373715 -0.024 0.981
Residual standard error 0.9356 (on 47 degrees of freedom)

Multiple R squared 0.05372

Adjusted R squared -0.1275

SRS ~ GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.3020 0.3602 0.839 0.40405
GABA Thalamus(cr) 0.4714 0.2328 2.024 0.04611
Glu PGS -0.1714 0.1868 -0.918 0.36124
Glu PGS? -0.1691 0.2028 -0.834 0.40671
Site2 -0.8144 0.4167 -1.954 0.05398
Site3 -0.8191 0.2625 -3.121 0.00247
Sex 0.1182 0.2117 0.559 0.57798
Age -0.5449 0.3311 -1.645 0.10361
GABA Thalamus(cr):Glu PGS -0.2067 0.2679 -0.772 0.44244
Sex:Age 0.4355 0.2583 1.686 0.09554
Residual standard error 0.8698 (on 84 degrees of freedom)

Multiple R squared 0.1415

Adjusted R squared 0.04952

SSP ~ GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.08656 0.41675 0.208 0.8367
GABA Thalamus(cr) 0.05171 0.30543 0.169 0.8665
Glu PGS 0.19384 0.25174 0.770 0.4465

Glu PGS? 0.07795 0.25775 0.302 0.7641
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Table S14: Continued

Site2 -2.2622 0.7913 -2.859 0.00742
Site3 -0.8780 0.4599 -1.909 0.06526
Sex 0.1202 0.2518 0.477 0.63649
Age 0.3207 0.3920 0.818 0.41931
GABA ACC(cr):Glu PGS 2.0868 2.6072 0.800 0.42938
Sex:Age -0.2445 0.3050 -0.802 0.42862
Residual standard error 0.6582 (on 32 degrees of freedom)

Multiple R squared 0.3732

Adjusted R squared 0.1969

ADOS ~ GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.076676 0.412154 -0.186 0.853
GABA ACC(cr) -1.690662 1.694015 -0.998 0.323
Glu PGS -0.578992 0.539880 -1.072 0.288
Glu PGS? -0.144200 0.363196 -0.397 0.693
Site2 0.669041 0.449816 1.487 0.143
Site3 -0.273399 0.298662 -0.915 0.364
Sex -0.430556 0.222099 -1.939 0.058
Age 0.006721 0.347932 0.019 0.985
GABA ACC(cr):Glu PGS -2.417390 2.583862 -0.936 0.354
Sex:Age -0.048997 0.273519 -0.179 0.859
Residual standard error 0.7137 (on 52 degrees of freedom)

Multiple R squared 0.2283

Adjusted R squared 0.09475

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA. “:" indicates the model estimation
for interaction effects between variables. Covariates are labeled in gray, significant results (p<0.05) are

marked in bold.

Table S15: Linear model outputs creatine referenced 'H-MRS glutamate/GABA ratio and glutamate PGS

ACC GLUTAMATE/GABA(cr) RATIO & GLUTAMATE PGS

RBS ~ Glutamate/GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.362685 0.524121 0.692 0.492
Glu/GABA(cr) ACC 2.730957 1.648849 1.656 0.104
GIuPGS -0.117570 0.442853 -0.265 0.792
GluPGS? -0.060028 0.411685 -0.146 0.885
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Site2 -1.38973 0.84067 -1.653 0.1073
Site3 0.55782 0.31213 1.787 0.0826
Sex -0.07718 0.27696 -0.279 0.7821
Age 0.54834 0.44278 1.238 0.2238
GABA Thalamus(cr):Glu PGS -0.04614 0.38388 -0.120 0.9050
Sex:Age -0.30084 0.33485 -0.898 0.3751
Residual standard error 0.7531 (on 35 degrees of freedom)

Multiple R squared 0.2828

Adjusted R squared 0.09841

ADOS ~ GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 1.01657 0.33938 2.995 0.004002
GABA Thalamus(cr) 0.22677 0.21884 1.036 0.304321
Glu PGS 0.16238 0.24514 0.662 0.510309
Glu PGS? 0.21240 0.23660 0.898 0.372980
Site2 -0.24085 0.45612 -0.528 0.599457
Site3 -0.89753 0.22079 -4.065 0.000144
Sex -0.51467 0.21276 -2.419 0.018662
Age -0.17519 0.34759 -0.504 0.616126
GABA Thalamus(cr):Glu PGS 0.04532 0.25742 0.176 0.860858
Sex:Age 0.11520 0.27324 0.422 0.674844
Residual standard error 0.7574 (on 59 degrees of freedom)

Multiple R squared 0.3222

Adjusted R squared 0.2188

THALAMUS GLUTAMATE/GABA(cr) RATIO & GLUTAMATE PGS

RBS ~ Glutamate/GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.14338 0.76975 -0.186 0.853
Glu/GABA(cr) Thalamus -3.82837 6.42770 -0.596 0.554
GIuPGS 4.35605 7.41985 0.587 0.560

GluPGS? -0.09172 0.22302 -0.411 0.682
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Table S15: Continued

Site2 -24.274627 15.480602 -1.568 0.124
Site3 0.012403 0.393356 0.032 0.975
Sex -0.190874 0.259717 -0.735 0.466
Age 0.032100 0.377554 0.085 0.933
Glu/GABA(cr) ACC:Glu PGS -0.940686 0.808073 -1.164 0.250
Sex:Age -0.009745 0.299047 -0.033 0.974
Residual standard error 0.7622 (on 47 degrees of freedom)

Multiple R squared 0.08189

Adjusted R squared -0.09392

SRS ~ Glutamate/GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4824 0.3928 -1.228 0.223
Glu/GABA(cr) ACC 0.2340 0.2610 0.897 0.372
GIuPGS -0.1600 0.1602 -0.999 0.321
GluPGS? -0.1248 0.1745 -0.715 0.476
Site2 -0.5158 0.4586 -1.125 0.264
Site3 -0.2475 0.3334 -0.742 0.460
Sex 0.2454 0.1972 1.244 0.217
Age -0.1467 0.3065 -0.479 0.633
Glu/GABA(cr) ACC:Glu PGS -0.0300 0.4104 -0.073 0.942
Sex:Age 0.1621 0.2360 0.687 0.494
Residual standard error 0.8052 (on 87 degrees of freedom)

Multiple R squared 0.1118

Adjusted R squared 0.01987

SSP ~ Glutamate/GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.78202 0.64404 -1.214 0.233
Glu/GABA(cr) ACC -4.50219 2.77093 -1.625 0.113
GIuPGS 0.13955 0.71149 0.196 0.846
GluPGS? 0.06633 0.46463 0.143 0.887
Site2 54.31873 54.89255 0.990 0.329
Site3 0.51644 0.46147 1.119 0.271
Sex 0.23057 0.28783 0.801 0.429
Age -0.07201 0.46345 -0.155 0.877
Glu/GABA(cr) ACC:Glu PGS -0.82218 4.37532 -0.188 0.852
Sex:Age 0.08105 0.34887 0.232 0.818
Residual standard error 0.7956 (on 35 degrees of freedom)

Multiple R squared 0.3118

Adjusted R squared 0.1349
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Site2 -0.05568 0.92775 -0.060 0.952
Site3 -0.05225 0.25338 -0.206 0.837
Sex -0.19173 0.29695 -0.646 0.521
Age 0.10002 0.42520 0.235 0.815
Glu/GABA(cr) Thalamus:Glu PGS 49.78655 82.80662 0.601 0.550
Sex:Age -0.01182 0.34073 -0.035 0.972
Residual standard error 0.8717 (on 55 degrees of freedom)

Multiple R squared 0.04531

Adjusted R squared -0.1109

SRS ~ Glutamate/GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.3447 0.3230 -1.067 0.28859
Glu/GABA(cr) Thalamus -2.6203 1.3987 -1.873 0.06406
GluPGS 1.9144 0.9594 1.995 0.04883
GluPGS? -0.1304 0.1547 -0.843 0.40135
Site2 -0.3292 0.4031 -0.817 0.41615
Site3 -0.6055 0.2123 -2.853 0.00531
Sex 0.2043 0.1976 1.034 0.30367
Age -0.4069 0.3069 -1.326 0.18800
Glu/GABA(cr) Thalamus:Glu PGS  23.4559 10.7495 2.182 0.03155
Sex:Age 0.3396 0.2420 1.403 0.16380

Residual standard error
Multiple R squared
Adjusted R squared

0.848 (on 96 degrees of freedom)

0.1387
0.05792

SSP ~ Glutamate/GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.91548 0.78764 1.162 0.252
Glu/GABA(cr) Thalamus 6.93802 6.59623 1.052 0.299
GIuPGS -7.12096 7.59188 -0.938 0.354
GluPGS? -0.01324 0.27351 -0.048 0.962
Site2 -1.56277 0.86438 -1.808 0.078
Site3 0.32029 0.26074 1.228 0.226
Sex -0.14888 0.29854 -0.499 0.621
Age 0.67099 0.45392 1.478 0.147
Glu/GABA(cr) Thalamus:Glu PGS -81.71833 85.04074 -0.961 0.342
Sex:Age -0.39627 0.34678 -1.143 0.260

Residual standard error
Multiple R squared
Adjusted R squared

0.7995 (on 41 degrees of freedom)

0.2304
0.06142
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Table S15: Continued

ADOS ~ Glutamate/GABA ACC(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.7444 0.4184 1.779 0.0807
Glu/GABA(cr) ACC 0.3212 0.7056 0.455 0.6507
GIuPGS 0.2721 0.4647 0.585 0.5606
GluPGS? 0.4338 0.3735 1.162 0.2503

Site2 0.1439 0.5502 0.262 0.7946
Site3 -0.6875 0.3277 -2.098 0.0405
Sex -0.4744 0.2520 -1.883 0.0650
Age -0.2819 0.3901 -0.723 0.4728
Glu/GABA(cr) ACC:Glu PGS -0.5182 11722 -0.442 0.6601

Sex:Age 0.1104 0.3043 0.363 0.7181

Residual standard error 0.7948 (on 56 degrees of freedom)

Multiple R squared 0.2579

Adjusted R squared 0.1387

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA. “" indicates the model estimation
for interaction effects between variables. Covariates are labeled in gray, significant results (p<0.05) are
marked in bold.

Table S16: Linear model outputs creatine referenced 'H-MRS glutamate and GABA PGS

ACC GLUTAMATE(cr) & GABA PGS

RBS ~ Glutamate ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4088 0.5406 -0.756 0.453
Glu ACC(cr) -1.0073 1.4986 -0.672 0.505
GABA PGS -0.7567 1.2172 -0.622 0.537
GABA PGS? -0.6809 1.2159 -0.560 0.578
Site2 0.4020 0.8658 0.464 0.644
Site3 0.3764 0.4077 0.923 0.360
Sex -0.1441 0.2565 -0.562 0.577
Age -0.2026 0.3905 -0.519 0.606
Glu ACC(cr): GABA PGS 0.1255 1.2532 0.100 0.921
Sex:Age 0.1299 0.3111 0.418 0.678
Residual standard error 0.7456 (on 51 degrees of freedom)

Multiple R squared 0.04978

Adjusted R squared -0.1179
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ADOS ~ Glutamate/GABA Thalamus(cr) * Glutamate PGS + Glutamate PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.72524 0.30660 2.365 0.020868
Glu/GABA(cr) Thalamus -0.40344 0.86175 -0.468 0.641167
GIuPGS 0.15562 0.27427 0.567 0.572306
GluPGS? 0.27197 0.22290 1.220 0.226627
Site2 0.08396 0.41562 0.202 0.840518
Site3 -0.76044 0.20276 -3.751 0.000367
Sex -0.46573 0.20942 -2.224 0.029477
Age -0.06662 0.34158 -0.195 0.845942
Glu/GABA(cr) Thalamus:Glu PGS -0.71734 1.44076 -0.498 0.620170
Sex:Age 0.03844 0.27572 0.139 0.889530
Residual standard error 0.7743 (on 68 degrees of freedom)

Multiple R squared 0.2879

Adjusted R squared 0.1937

THALAMUS GLUTAMATE(cr) & GABA PGS

RBS ~ Glutamate Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.09877 0.42003 -0.235 0.8149
Glu Thalamus(cr) -0.59123 0.66997 -0.882 0.3810
GABA PGS 0.24168 1.06335 0.227 0.8210
GABA PGS? 0.28340 1.05771 0.268 0.7897
Site2 0.26782 0.80578 0.332 0.7407
Site3 0.30756 0.31085 0.989 0.3264
Sex -0.25235 0.23354 -1.081 0.2841
Age 0.10804 0.35006 0.309 0.7587
Glu Thalamus(cr):GABA PGS 0.78395 0.31230 2.510 0.0147
Sex:Age -0.10772 0.27072 -0.398 0.6921
Residual standard error 0.7485 (on 61 degrees of freedom)

Multiple R squared 0.2236

Adjusted R squared 0.1091
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Table S16: Continued

SRS ~ Glutamate ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -1.02638 0.42098 -2.438 0.0166
Glu ACC(cr) -1.58050 1.23242 -1.282 0.2028
GABA PGS -0.08211 1.09108 -0.075 0.9402
GABA PGS? -0.15033 1.09633 -0.137 0.8912
Site2 0.22805 0.42559 0.536 0.5933
Site3 0.16683 0.31366 0.532 0.5961
Sex 0.22280 0.19854 1.122 0.2646
Age -0.22416 0.32176 -0.697 0.4877
Glu ACC(cr): GABA PGS 0.62760 1.17454 0.534 0.5944
Sex:Age 0.15867 0.25291 0.627 0.5319
Residual standard error 0.8353 (on 94 degrees of freedom)

Multiple R squared 0.03725

Adjusted R squared -0.05492

SSP ~ Glutamate ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) -0.2231 0.6148 -0.363 0.7186
Glu ACC(cr) -0.8533 1.7653 -0.483 0.6315
GABA PGS 2.8205 1.4245 1.980 0.0548
GABA PGS? 2.8217 1.4358 1.965 0.0565
Site2 -1.7321 0.9461 -1.831 0.0748
Site3 0.4965 0.4749 1.046 0.3022
Sex 0.1347 0.2948 0.457 0.6502
Age 0.1357 0.4919 0.276 0.7842
Glu ACC(cr): GABA PGS -0.7615 1.4543 -0.524 0.6035
Sex:Age -0.1092 0.3729 -0.293 0.7712
Residual standard error 0.8073 (on 39 degrees of freedom)

Multiple R squared 0.2488

Adjusted R squared 0.07544

ADOS ~ Glutamate ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.54149 0.44982 1.204 0.2334
Glu ACC(cr) -0.55596 1.33226 -0.417 0.6779
GABA PGS -1.69609 1.36585 -1.242 0.2192
GABA PGS? -1.54133 1.33697 -1.153 0.2535

Site2 0.38445 0.49353 0.779 0.4390




Exploring the E/I imbalance theory of autism by combining genetic scores | 229

SRS ~ Glutamate Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.7667 0.3557 -2.156 0.0334
Glu Thalamus(cr) -1.5923 0.6062 -2.627 0.0099
GABA PGS -0.2106 0.9953 -0.212 0.8328
GABA PGS? -0.1685 0.9939 -0.170 0.8657
Site2 0.1803 0.4065 0.443 0.6583
Site3 0.2091 0.2971 0.704 0.4830
Sex 0.1345 0.1860 0.723 0.4712
Age -0.3335 0.2992 -1.115 0.2675
Glu Thalamus(cr):GABA PGS 0.4525 0.3074 1.472 0.1440
Sex:Age 0.2226 0.2308 0.964 0.3370
Residual standard error 0.8475 (on 106 degrees of freedom)

Multiple R squared 0.1513

Adjusted R squared 0.07924

SSP ~ Glutamate Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.77625 0.51104 1.519 0.1356
Glu Thalamus(cr) 2.41725 1.07434 2.250 0.0293
GABA PGS 2.96901 1.36519 2.175 0.0348
GABA PGS? 2.80962 1.37038 2.050 0.0461
Site2 -2.43109 0.91905 -2.645 0.0111
Site3 -0.56356 0.43407 -1.298 0.2006
Sex 0.05606 0.26941 0.208 0.8361
Age 0.45494 0.46629 0.976 0.3343
Glu Thalamus(cr):GABA PGS -0.55597 0.57479 -0.967 0.3385
Sex:Age -0.26594 0.34460 -0.772 0.4442
Residual standard error 0.8152 (on 46 degrees of freedom)

Multiple R squared 0.3016

Adjusted R squared 0.1649

ADOS ~ Glutamate Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.5978 0.3778 1.582 0.1178
Glu Thalamus(cr) -0.6595 0.6425 -1.026 0.3080
GABA PGS -1.8376 1.0533 -1.745 0.0852
GABA PGS? -1.7817 1.0377 -1.717 0.0901

Site2 0.1221 0.4284 0.285 0.7764
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Table S16: Continued

Site3 -0.50829 0.32720 -1.553 0.1256
Sex -0.54495 0.22854 -2.384 0.0203
Age -0.26610 0.38076 -0.699 0.4873
Glu ACC(cr): GABA PGS -0.47370 1.24176 -0.381 0.7042
Sex:Age 0.07941 0.30100 0.264 0.7928
Residual standard error 0.8052 (on 60 degrees of freedom)

Multiple R squared 0.2246

Adjusted R squared 0.1083

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA. “:" indicates the model estimation
for interaction effects between variables. Covariates are labeled in gray, significant results (p<0.05) are
marked in bold.

Table S17: Linear model outputs creatine referenced 'H-MRS GABA and GABA PGS

ACC GABA(cr) & GABA PGS

RBS ~ GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.13852 0.57307 -0.242 0.810
GABA ACC(cr) -2.21546 1.91522 -1.157 0.253
GABA PGS -1.02005 1.31691 -0.775 0.443
GABA PGS? -1.20181 1.33482 -0.900 0.373
Site2 0.32666 0.91172 0.358 0.722
Site3 0.13834 0.39571 0.350 0.728
Sex -0.27753 0.28527 -0.973 0.336
Age -0.05212 0.40998 -0.127 0.899
GABA ACC(cr): GABA PGS 2.71073 1.95484 1.387 0.172
Sex:Age 0.01513 0.33763 0.045 0.964
Residual standard error 0.7705 (on 45 degrees of freedom)

Multiple R squared 0.1012

Adjusted R squared -0.07852

SRS ~ GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.2850 0.4348 -2.955 0.00405
GABA ACC(cr) -1.1462 1.4959 -0.766 0.44567
GABA PGS -0.4017 1.0877 -0.369 0.71284
GABA PGS? -0.3247 1.0911 -0.298 0.76674
Site2 0.3125 0.4487 0.697 0.48796

Site3 0.2475 0.3447 0.718 0.47474
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Site3 -0.5361 0.3092 -1.734 0.0871

Sex -0.4936 0.2002 -2.465 0.0160
Age -0.2628 0.3208 -0.819 0.4152
Glu Thalamus(cr):GABA PGS 0.1308 0.2813 0.465 0.6433

Sex:Age 0.1819 0.2525 0.720 0.4736

Residual standard error 0.7758 (on 75 degrees of freedom)

Multiple R squared 0.3277

Adjusted R squared 0.2471

THALAMUS GABA(cr) & GABA PGS

RBS ~ GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.36379 0.44391 0.820 0.417
GABA Thalamus(cr) 0.04877 0.30544 0.160 0.874
GABA PGS 2.00828 141232 1422 0.162
GABA PGS? 2.29000 1.39701 1.639 0.108
Site2 -0.01179 0.94982 -0.012 0.990
Site3 -0.08263 0.30508 -0.271 0.788
Sex -0.27729 0.31604 -0.877 0.385
Age -0.04963 0.45365 -0.109 0.913
GABA Thalamus(cr):GABA PGS -0.01231 0.35650 -0.035 0.973
Sex:Age 0.04450 0.36240 0.123 0.903
Residual standard error 0.8633 (on 47 degrees of freedom)

Multiple R squared 0.1943

Adjusted R squared 0.04006

SRS ~ GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2807 0.3581 0.784 0.43530
GABA Thalamus(cr) 0.4459 0.2280 1.956 0.05383
GABA PGS 1.3625 1.1719 1.163 0.24828
GABA PGS? 1.4539 1.1630 1.250 0.21472
Site2 -0.7643 0.4146 -1.843 0.06881

Site3 -0.8109 0.2596 -3.124 0.00245
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Table S17: Continued

Sex 0.3564 0.1966 1.813 0.07347
Age -0.2333 0.3082 -0.757 0.45120
GABA ACC(cr): GABA PGS -1.0069 1.4744 -0.683 0.49654
Sex:Age 0.2176 0.2441 0.891 0.37523
Residual standard error 0.7976 (on 84 degrees of freedom)

Multiple R squared 0.06054

Adjusted R squared -0.04011

SSP ~ GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.61980 0.66402 2439 0.0204
GABA ACC(cr) 246323 2.19669 1.121 0.2705
GABA PGS 1.23732 1.25466 0.986 0.3314
GABA PGS? 0.93848 1.29046 0.727 0.4724
Site2 -2.13122 0.82099 -2.596 0.0141
Site3 -0.89971 0.48653 -1.849 0.0737
Sex -0.08258 0.28115 -0.294 0.7709
Age 0.57425 0.42630 1.347 0.1874
GABA ACC(cr): GABA PGS 2.70185 2.21834 1.218 0.2321
Sex:Age -0.44884 0.33208 -1.352 0.1860
Residual standard error 0.6573 (on 32 degrees of freedom)

Multiple R squared 0.375

Adjusted R squared 0.1992

ADOS ~ GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02681 0.40051 -0.067 0.9469
GABA ACC(cr) -2.34316 1.76643 -1.326 0.1905
GABA PGS -2.94274 1.36953 -2.149 0.0363
GABA PGS? -2.87843 1.33640 -2.154 0.0359
Site2 0.45921 0.44263 1.037 0.3043
Site3 -0.36691 0.29401 -1.248 0.2176
Sex -0.37774 0.21227 -1.779 0.0810
Age -0.27671 0.33961 -0.815 0.4189
GABA ACC(cr): GABA PGS 0.66551 1.70654 0.390 0.6981
Sex:Age 0.14073 0.26558 0.530 0.5984
Residual standard error 0.7069 (on 52 degrees of freedom)

Multiple R squared 0.2428

Adjusted R squared 0.1118

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA. “:" indicates the model estimation
for interaction effects between variables. Covariates are labeled in gray, significant results (p<0.05) are
marked in bold.
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Sex 0.1238 0.2149 0.576 0.56619
Age -0.4371 0.3386 -1.291 0.20028
GABA Thalamus(cr):GABA PGS -0.2308 0.2802 -0.824 0.41235
Sex:Age 0.3441 0.2653 1.297 0.19813
Residual standard error 0.865 (on 84 degrees of freedom)

Multiple R squared 0.151

Adjusted R squared 0.06001

SSP ~ GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.15835 0.41566 0.381 0.7055
GABA Thalamus(cr) 0.04432 0.29626 0.150 0.8819
GABA PGS 1.57488 1.62800 0.967 0.3400
GABA PGS? 1.31946 1.67991 0.785 0.4375
Site2 -1.61628 0.80121 -2.017 0.0514
Site3 0.54296 0.29046 1.869 0.0700
Sex -0.19449 0.27551 -0.706 0.4849
Age 0.84325 0.43465 1.940 0.0605
GABA Thalamus(cr):GABA PGS 0.22843 0.33857 0.675 0.5043
Sex:Age -0.54292 0.33014 -1.644 0.1090
Residual standard error 0.7118 (on 35 degrees of freedom)

Multiple R squared 0.3594

Adjusted R squared 0.1946

ADOS ~ GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.000537 0.338552 2.955 0.004483
GABA Thalamus(cr) 0.264098 0.227481 1.161 0.250331
GABA PGS -0.779533 1.228295 -0.635 0.528113
GABA PGS? -0.710971 1.210523 -0.587 0.559226
Site2 -0.353242 0.468762 -0.754 0.454109
Site3 -0.914000 0.228818 -3.994 0.000182
Sex -0.475388 0.226514 -2.099 0.040132
Age -0.315075 0.352677 -0.893 0.375282
GABA Thalamus(cr):GABA PGS 0.008064 0.229448 0.035 0.972084
Sex:Age 0.236483 0.277150 0.853 0.396964
Residual standard error 0.7604 (on 59 degrees of freedom)

Multiple R squared 0.3167

Adjusted R squared 0.2124




234 | Chapter 5

Table S18: Linear model outputs creatine referenced 'H-MRS glutamate/GABA ratio and GABA PGS

ACC GLUTAMATE/GABA(cr) RATIO & GABA PGS

RBS ~ Glutamate/GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.38352 0.48288 0.794 0.43105
Glu/GABA(cr) ACC 3.62940 1.23535 2.938 0.00511
GABA PGS -1.22347 1.12763 -1.085 0.28346
GABA PGS? -0.56309 1.10481 -0.510 0.61266
Site2 40.39689 15.55927 2.596 0.01254
Site3 0.02029 0.34519 0.059 0.95338
Sex -0.15676 0.24617 -0.637 0.52734
Age -0.04039 0.36799 -0.110 0.91308
Glu/GABA(cr) ACC:GABA PGS -5.41621 1.63167 -3.319 0.00175
Sex:Age 0.03273 0.29285 0.112 0.91150
Residual standard error 0.7005 (on 47 degrees of freedom)

Multiple R squared 0.2244

Adjusted R squared 0.07591

SRS ~ Glutamate/GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t])
(Intercept) -0.2595 0.4068 -0.638 0.5252
Glu/GABA(cr) ACC 2.4638 1.2639 1.949 0.0545
GABA PGS -0.7037 1.0360 -0.679 0.4988
GABA PGS? -0.5082 1.0314 -0.493 0.6234
Site2 -0.5341 0.4480 -1.192 0.2364
Site3 -0.3203 0.3239 -0.989 0.3254
Sex 0.3075 0.1948 1.578 0.1181
Age -0.1118 0.3118 -0.358 0.7209
Glu/GABA(cr) ACC:GABA PGS -1.6913 0.9495 -1.781 0.0784
Sex:Age 0.1497 0.2414 0.620 0.5370
Residual standard error 0.7943 (on 87 degrees of freedom)

Multiple R squared 0.1356

Adjusted R squared 0.0462

SSP ~ Glutamate/GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.98220 0.61866 -1.588 0.1214
Glu/GABA(cr) ACC -4.43341 2.23425 -1.984 0.0551
GABA PGS 1.59532 159216 1.002 0.3232

GABA PGS? 241421 1.31170 1.841 0.0742
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THALAMUS GLUTAMATE/GABA(cr) RATIO & GABA PGS

RBS ~ Glutamate/GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 5.83946 3.86408 1.511 0.136
Glu/GABA(cr) Thalamus 64.48703 43.86759 1.470 0.147
GABA PGS 7.59027 4.56958 1.661 0.102
GABA PGS? 1.35538 1.18611 1.143 0.258
Site2 0.27848 0.88560 0.314 0.754
Site3 0.07607 0.24554 0.310 0.758
Sex -0.19419 0.28302 -0.686 0.496
Age 0.01848 0.41974 0.044 0.965
Glu/GABA(cr) Thalamus:GABA PGS 71.95760 48.90423 1.471 0.147
Sex:Age 0.04716 0.34107 0.138 0.891
Residual standard error 0.8253 (on 55 degrees of freedom)

Multiple R squared 0.1441

Adjusted R squared 0.00409

SRS ~ Glutamate/GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.9009 0.5587 1.612 0.11017
Glu/GABA(cr) Thalamus 11.7094 5.5958 2.093 0.03903
GABA PGS 1.3700 1.1210 1.222 0.22467
GABA PGS? 0.2076 0.9972 0.208 0.83553
Site2 -0.3006 0.4035 -0.745 0.45815
Site3 -0.5837 0.2152 -2.712 0.00792
Sex 0.2154 0.1983 1.086 0.28003
Age -0.4292 0.3162 -1.357 0.17789
Glu/GABA(cr) Thalamus:GABA PGS 14.0061 6.2422 2.244 0.02714
Sex:Age 0.3623 0.2488 1.456 0.14857
Residual standard error 0.8485 (on 96 degrees of freedom)

Multiple R squared 0.1377

Adjusted R squared 0.05684

SSP ~ Glutamate/GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) -3.8224 3.7773 -1.012 0.3175
Glu/GABA(cr) Thalamus -46.1832 42.6246 -1.083 0.2849
GABA PGS -2.2408 4.6559 -0.481 0.6329
GABA PGS? 2.2153 1.2952 1.710 0.0948
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Table S18: Continued

Site2 148.43174 153.90075 0.964 0.3414
Site3 0.72613 0.43489 1.670 0.1039
Sex 0.18210 0.29704 0.613 0.5438
Age 0.06905 0.47595 0.145 0.8855
Glu/GABA(cr) ACC:GABA PGS -6.69848 9.55842 -0.701 0.4881
Sex:Age -0.05640 0.36263 -0.156 0.8773
Residual standard error 0.7672 (on 35 degrees of freedom)

Multiple R squared 0.3602

Adjusted R squared 0.1956

ADOS ~ Glutamate/GABA ACC(cr) * GABA PGS + GABA PGS? + Age * Sex + Site
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9506 0.4473 2.125 0.0380
Glu/GABA(cr) ACC 1.5604 1.5963 0.978 0.3325
GABA PGS -1.8364 1.4074 -1.305 0.1973
GABA PGS? -1.6018 13767 -1.163 0.2496
Site2 -0.0483 0.5395 -0.090 0.9290
Site3 -0.8409 0.3164 -2.658 0.0102
Sex -0.4431 0.2463 -1.799 0.0774
Age -0.3517 0.3910 -0.899 0.3723
Glu/GABA(cr) ACC:GABA PGS -1.1521 1.1967 -0.963 0.3398
Sex:Age 0.1635 0.3027 0.540 0.5911
Residual standard error 0.799 (on 56 degrees of freedom)

Multiple R squared 0.2501

Adjusted R squared 0.1296

Glu, Glutamate; GABA, y-aminobutyric acid; (cr), creatine referenced 'H-MRS; ACC, anterior cingulate
cortex; PGS, Polygenic score; Glu/GABA, ratio of glutamate/GABA.":" indicates the model estimation for
interaction effects between variables. Covariates are labeled in gray, results discussed in manuscript
are labeled in blue, significant results (p<0.05) are marked in bold.
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Site2 -1.7479 0.8140 -2.147 0.0377
Site3 0.3632 0.2522 1.440 0.1575
Sex -0.2355 0.2713 -0.868 0.3905
Age 1.0079 0.4429 2.276 0.0282
Glu/GABA(cr) Thalamus:GABA PGS -52.5662 47.5101 -1.106 0.2750
Sex:Age -0.6765 0.3402 -1.988 0.0535
Residual standard error 0.7463 (on 41 degrees of freedom)

Multiple R squared 0.3294

Adjusted R squared 0.1822

ADOS ~ Glutamate/GABA Thalamus(cr) * GABA PGS + GABA PGS? + Age * Sex + Site

Coefficients: Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 1.4877 0.4222 3.524 0.000766
Glu/GABA(cr) Thalamus 9.2548 3.7549 2.465 0.016243
GABA PGS -0.7887 1.1066 -0.713 0.478432
GABA PGS? -1.7492 1.0485 -1.668 0.099858
Site2 -0.1280 0.4033 -0.317 0.751871
Site3 -0.9005 0.1967 -4.577 2.06e-05
Sex -0.3015 0.2028 -1.487 0.141756
Age -0.1984 0.3348 -0.593 0.555388
Glu/GABA(cr) Thalamus:GABA PGS 11.8642 4.8173 2.463 0.016321
Sex:Age 0.1533 0.2665 0.575 0.566968

Residual standard error
Multiple R squared
Adjusted R squared

0.7436 (on 68 degrees of freedom)

0.3432
0.2563
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Summary

The aim of this thesis was to disentangle part of the complex relationships between
brain and behavior underlying autism using a dimensional and multimodal
approach. To do this, we took advantage of large multicenter cohorts with autistic
and neurotypical participants who were deeply phenotyped, genotyped and whose
brains were scanned using various neuroimaging modalities. The results showed
that there are differing alterations of excitation and inhibition that link to various
behavioral traits of autism, functional activity during inhibitory control, and brain
structure differences throughout development.

In Chapter 1 | introduced autism and the current state of understanding its
biological etiology, focusing on the excitatory/inhibitory (E/I) imbalance theory.
| showed that the heterogeneity within autism, combined with the so far mainly
inconsistent and categorical approaches that have been used for investigating
E/l imbalance in autism, has led to a lack of deeper understanding of underlying
mechanisms. | introduced the nuanced nature of E/I imbalance and argued for
the need of using dimensional and multimodal approaches to capture variations
in E/I imbalances to unravel the brain differences that may underlie different
autism characteristics.

In Chapter 2 | investigated longitudinal changes in glutamate concentrations in
ACC and striatum, and explored their associations with repetitive behaviors and
brain activity during inhibitory control in the TACTICS cohort (1). This chapter
included participants with OCD as well but given the focus of this thesis | will
here highlight the results regarding the autism group. | found a larger decrease of
ACC glutamate in autistic compared to neurotypical participants, while increased
repetitive behaviors were also associated with decreased ACC glutamate.
Additionally, increased compulsive behaviors were associated with increased
functional activity in striatum during failed inhibitory control. These results
show that through development, E/I mechanisms, here captured by glutamate
concentrations and functional brain activity, affect autistic adolescents and traits
associated with autism in distinct ways.

In Chapter 3 | introduced the LEAP cohort (2) and glutamate and GABA gene-
sets, consisting of genes encoding for proteins involved in glutamate and GABA
neurotransmitter communication pathways in the brain. Aggregated genetic
variation of glutamate genes was associated with all Autism Diagnostic Interview
(ADI-R, (3)) and Autism Diagnostic Observation Schedule-2 (ADOS-2, (4)) subscales,
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while the GABA genetic variation had a trend significant association with sensory
processing. This established a clear distinction between E/I mechanisms underlying
sensory processing differences in autism in contrast with social and restricted
and repetitive behaviors captured by the ADI-R and ADOS-2. | applied gene-
expression analysis utilizing gene expression data from the Allen Human Brain
Atlas (AHBA (5)) to correlate cortical thickness differences between autistic and
neurotypical participants with gene expression of the glutamate and GABA genes.
| found significant correlations between both gene-sets in adolescents and adults,
but in opposite directions. The gene-expression findings were replicated in the
independent ABIDE cohort (6), although the correlation in the adult group was in
the opposite direction compared to the LEAP cohort. This indicates differences in
cortical thickness alterations in the autistic and/or neurotypical groups across these
datasets, while still showing strong effects of glutamate and GABA gene expression
for these differences. These results suggest that glutamate and GABA genes have
underlying effects on cortical thickness differences in autism, but that the effects of
these may differ throughout development.

In Chapter 4 | built on the findings in Chapter 2 and 3 using the LEAP and TACTICS
datasets from both chapters, here applying Bayesian Constraint based Causal
Discovery (BCCD) to investigate causal relationships between functional activity
during inhibitory control, polygenic scores for autism in the glutamate and GABA
gene-sets and behavioral measures of autism traits. Additionally, here | was able to
capture the links between glutamate genes to behavioral traits measured by the
ADI-R in the LEAP cohort, this time using both a different analysis method and a
different genetic measure compared to chapter 3. We attempted to replicate this
gene to behavior result using a third independent dataset, the Simon Simplex
Collection (SSC (7)). However here we did not replicate these findings, which is
discussed in more detail below.

In Chapter 5 | combined genetic and in vivo estimates of glutamate and GABA in
the brain by combining glutamate and GABA gene markers and in vivo 'H-MRS
measures of glutamate and GABA concentrations simultaneously. The purpose
was to understand both how genetic and "H-MRS markers are associated with each
other, and how they together affect behavioral characteristics of autism. Aggregated
genetic variation of glutamate genes was associated with GABA concentrations
in the thalamus, and vice versa, genetic variation of GABA genes was associated
with glutamate concentrations in the same region. This shows that links between
neurotransmitter gene-sets and their measured 'H-MRS concentrations are not
direct, and that glutamate and GABA genetic mechanisms interact with metabolite
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concentrations. There were also interactions between thalamic glutamate/GABA
ratios and GABA PGS, which were associated with both social-communicative
behaviors (Social Responsiveness Scale-Revised, SRS-R (8)) and with core clinical
autism characteristics (ADOS-2). Thalamus glutamate/GABA ratios also showed
interaction effects with glutamate PGS and were associated with SRS-R scores.
Additionally, there were interactions between ACC glutamate concentrations and
glutamate PGS on social-communicative (SRS-2), sensory processing (Short Sensory
Profile, SSP (9)) and core clinical autism characteristics (ADOS-2). These findings
suggest that genetic and metabolic aspects of glutamatergic and GABAergic
processes in the brain interact to affect behavioral autism characteristics.

Collectively, ACC glutamate concentration differences in autism are associated with
repetitive behaviors (Chapter 2) and with variation in brain structure (Chapter 3).
Moreover, polygenic scores for glutamate appear to drive these differences in
ACC glutamate concentrations (Chapter 4), which links genetic information to
metabolite concentrations in autism for the first time. There are also complex
interplays between genetic and 'H-MRS markers of excitation and inhibition
that are linked to behavioral autism characteristics (Chapter 5). An overview of
the main findings that span across data modalities can be seen in Figure 1. What
emerges from these results is that sensory processing differences appears to have
differing underlying mechanisms compared to social and repetitive behaviors
(Chapters 3, 4 and 5). While these discoveries are not enough to clearly distinguish
specific alterations in E/l mechanisms that underlie specific behavioral characteristic
of autism, they are a valuable first step to investigate these associations in more
detail. These findings also show the importance of including both glutamate and
GABA measures in investigations of E/I mechanisms in a multimodal fashion, as
much of the behavior relies on the interplay between them. It is also important to
take age and developmental trajectories into account, as these seem to interact
and have strong effects on findings, which in turn will help explain heterogeneities
and developmental differences across autistic individuals. Ultimately, the findings
of this thesis argue for the urgent need of continuing to use dimensional and
multimodal approaches to really disentangle the biological etiologies of the
heterogeneities of autism.
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Figure 1. Overview of results

Significant associations across modalities, blue lines are associations with glutamate measures, orange
lines are associated with GABA measures, interaction effects are outlined in dotted lines for emphasis.
From top left to right, the results show associations between glutamate genes with behaviors
captured by ADI-R and ADOS-2 (Chapter 3). Glutamate genes are also associated with 'H-MRS
measured GABA concentrations in thalamus (Chapter 5). There are also interaction effects between
glutamate genes and glutamate/GABA ratios in the thalamus with social responsiveness behaviors
(Chapter 5). Glutamate genes also interact with ACC glutamate concentrations on sensory processing
and restricted & repetitive behaviors, and ADOS-2 (Chapter 5). GABA genes are associated with
'H-MRS glutamate concentrations in the thalamus (Chapter 5), and with sensory processing behaviors
(Chapter 3). GABA genes also interact with glutamate/GABA ratios in the thalamus affecting
ADOS-2 and social responsiveness behaviors (Chapter 5). Both glutamate and GABA genes affect
structural MRI captured cortical thickness differences between autistic and neurotypical participants
(Chapter 3). Decreased ACC glutamate is associated with increased repetitive behaviors (Chapter 2).
Behavioral measures were, from the left; ADI-R, autism diagnostic interview-revised; ADOS-2, autism
diagnostic observation schedule-2; social responsiveness, SRS-2; restricted & repetitive, RBS-R; sensory
processing, SSP. Note that the results in this thesis, as illustrated in this figure, do not cover every single
finding within this thesis, as only results spanning across data modalities are included here.
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So, what kind of imbalance?

As stated in Chapter 1, the E/I imbalance theory and previous work aiming to
disentangle the imbalances underlying autism have shown convincing evidence
for both overexcitation and overinhibition in autism (10,11). Here the aim was to
disentangle whether different measures of these imbalances underlie different
autism traits. This is indeed what the findings support, which is illustrated in the
overview in Figure 1.

Concluding that there are varying E/I imbalances underlying distinct autism traits
may beg the question of what the utility of the E/I framework really is as it can
be used to explain over/under excitation, over/under inhibition, and/or differences
between individuals and brain regions, to a degree where it starts to touch on the
problem of demarcation (12). The way the E/I imbalance theory is often discussed
in studies is not to try to test its validity or specificity but is rather arbitrarily
slapped on as an explanatory framework regardless of whether results were
expected or not, and regardless of directionality (10,11,13-15). | therefore believe
that the E/I imbalance theory should be regarded not so much as a theory, but
rather as a specific framework from which further, better testable hypotheses, can
be formulated.

The findings within this thesis show that different aspects of glutamatergic and
GABAergic mechanisms link to brain and behavior traits of autism in distinct
ways. Further, these findings are better understood through the lens of a
dimensional approach to the E/I imbalance theory (13). Understanding that there
are homeostatic mechanisms of E/I systems, and that initial imbalances may
have compensatory effects across the brain, is important for interpreting these
results. Additionally, knowing that genes that are associated with autism and
involved in excitatory and inhibitory mechanisms in the brain, also have differing
effects throughout development (16) further explains the findings in this thesis,
particularly in Chapters 2 and 4.

| would also argue that the E/I framework reinforces the importance of looking at
multiple metabolites at once, as focusing on just one is not conducive to truly
increase mechanistic insight or identifying useful biomarkers. One metabolite or
neurotransmitter will not be enough to explain E/I imbalance heterogeneity in
autism. For example, the glutamate genes to ADI-R associations (Chapters 3 and 4)
do not indicate that GABA is not involved in behavioral characteristics captured by
the ADI-R. Rather what this finding shows is that there is a shift in alterations of



Discussion | 245

glutamate mechanisms that relate to autism specifically, which is strongly associated
with these behaviors. In Chapter 5 | also identified several interactions between
ratios of glutamate/GABA and both glutamate and GABA PGS with behavioral
measures of autism traits, cementing that investigating these metabolites together
and using and multimodal data, really is necessary for disentangling E/I imbalances
in autism.

Strengths and limitations

The datasets used here are unique both in terms of the large number of
participants and the broad set of combined neuroimaging, genetic and behavioral
data collected. This large amount of data has allowed for applying multiple novel
analysis methods throughout this thesis and combining and investigating several
data modalities in ways that have not been done previously, especially in autism
cohorts. Both the LEAP and TACTICS cohorts are multicenter datasets, which while
beneficial in many ways, also come with its limitations. One major limitation is

site effects, where different researchers, recruitment strategies, MR scanners,
and sometimes also discrepancies in execution of protocols lead to data loss and
variations in data across sites. This has been addressed in the most appropriate
ways across the analyses performed throughout this thesis, such as including site
as covariates in analyses where possible and using standardized sequences.

It should also be noted that both glutamate and GABA 'H-MRS measures has
technical limitations, as the signals are noisy and reflect combined signals. The
estimated glutamate signal is not fully separated from the glutamine signal, and
the estimated glutamate concentrations likely therefore partially contain some
glutamine. The GABA signal also contains some co-edited macromolecules.
Additionally, glutamate and GABA are functions are not fully independent, much
like the interplay between excitatory and inhibitory functions in the brain as a
whole (14,17). These limitations implies that rather than looking at excitation and/
or inhibition in isolated measures, we are looking at metabolite systems.

Thanks to the openly available datasets used here (SSC, AHBA and ABIDE), it was
possible to perform some replication analyses. Nonetheless, considering especially
the LEAP cohort, there is currently no comparable dataset available that has similar
a number of participants with genetic, neuroimaging (especially 'H-MRS) and deeply
phenotyped data. This means the datasets in this thesis are not directly comparable,
which also becomes clear in the not so straightforward replication attempts.
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Replication, validation, and generalization
across cohorts

In any field of research, it is important that results are reliable, replicable, and can
be generalized across populations. This becomes particularly important when
conducting research on conditions such as autism, as the long-term goal is to
improve understanding of the condition to improve quality of life. Additionally,
participating in studies may be a more stressful experience for autistic participants,
and extra care should therefore be taken to make their contributions as valuable
as possible. That is why replication analyses were made where data were available,
particularly in Chapters 3 and 4. While some results were partially replicated, the
findings also highlighted that not only is replication not always straight forward,
but datasets are not always comparable.

Focusing first on Chapter 3, where we used the ABIDE dataset to replicate gene
expression (from the AHBA) with cortical thickness (CT) differences between
autistic and neurotypical participants. While the gene expression to CT correlations
were indeed replicated from LEAP to ABIDE, the direction of the correlations in
adults was different, which indicates that cortical thickness differences between
autistic and neurotypical participants vary across the LEAP and ABIDE datasets.
Inconsistencies between these cohorts in analyses using structural imaging data
have been found elsewhere (18), where a deeper dive into the ABIDE data, used as
part of the ENIGMA consortium (19), showed large differences across sites between
diagnostic groups. This can partially be attributed to the nature of the cohort,
as ABIDE is a legacy cohort where data was collated retrospectively only after
independent data collection at the different sites. In contrast, in LEAP and TACTICS
data was collected according to streamlined pre-defined protocols across sites.

In Chapter 4, the Simon Simplex Collection (SSC) cohort was used to replicate the
glutamate polygenic scores (PGS) to ADI-R causal relationships found in the LEAP
cohort. These findings were not replicated, which could be due to several factors.
Although SSC is also a pre-defined multicenter cohort, the inclusion criteria across
the LEAP and SSC cohorts were different, as SSC used diagnostic cut-off thresholds
of the ADI-R and ADOS-2 scores as inclusion criteria, while these were also measured
but not used as inclusion criteria in the LEAP cohort. Additionally, the gene-set PGS
differed across LEAP and SSC in post-hoc tests, indicating that the cohorts were
genetically different. However, the PGS could potentially be less reliable in the SSC
cohort as the GWAS used as reference is based on a European dataset (20). Of note
is also that the LEAP data was exclusively collected at European research centers.
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The SSC data was collected in the USA, while ABIDE consists of a combination of
majority USA sites, but with some European sites as well. It could be that there are
subtle clinical or cultural differences between European and North American datasets,
either due to data collection and access to participants, differences in access to care
across countries and continents, or other factors affecting either clinical expressions
of autism and/or application of diagnostic instruments and procedures.

One could argue that different cohorts can never actually be fully comparable,
as there will always be variation e.g. in recruitment of participants or differences
between measures and that is therefore not a matter of replication but rather of
validation, or generalization. | believe that there will indeed always be differences
across datasets and that this is not intrinsically negative, but | also insist that if we
can never claim to have performed replication analyses due to variations between
cohorts, such study designs lack ecological validity. It could also be argued that
variation induced in a legacy cohort such as ABIDE is beneficial rather than
undesirable, as results that persist and generalize in less homogenous datasets
could be considered more reliable. However, it is important to keep in mind that
large datasets, while increasing power for analyses, do not necessarily solve all
problems. Variation across data collection sites or cohorts may not reflect clinical
variation. While it is important to include heterogeneous expressions of autism
across individuals in data collection, differences between and within autism cohorts
do not necessarily represent differences between or within autistic individuals.
Issues with cohorts not being comparable, and variations introduced by large site
effects, may have stronger negative effects on findings than the potential benefit of
increased power (18,21).

Although LEAP, ABIDE and SSC are the largest autism datasets of their kinds, they
do not fully overlap in measures available, making complete replications difficult.
Using similar measures available across them and performing partial replication
analyses as done here, is useful as it provides some replication to potentially increase
confidence in results, but non-replications across these datasets do not necessarily
invalidate results. This highlights that there is a need for systematic investigations
into what really are the similarities and differences across them, and caution needs
to be taken both to interpret non-replications and replications. If findings may be
considered reliable e.g. in the LEAP cohort even if not fully replicated in another
dataset, it is not entirely clear what this means for generalization of results until
we really know why results were not replicated. | believe this will be one of the big
challenges moving forward as more large datasets become available, not just within
autism research, but in large openly available neuroimaging cohorts in general.



248 | Chapter 6

Clinical implications

How we understand and define autism since its original definition in the early
1900’s has shifted greatly thanks to the increased knowledge and redefinition
of the condition, including increased sensitivity to more subtle phenotypic
expressions in those with typical or higher IQ, or camouflaging and suppression of
symptoms. These factors have been affected by a greater understanding of what
is happening in the brain and how this relates to clinical characteristics. However,
diagnostic procedures and treatment evaluations are still exclusively based on
descriptive and behavioral outcomes. It is time to move beyond entirely behavior-
based assessments and incorporate knowledge of underlying mechanisms in the
brain to better predict what support and treatment options may be most beneficial
for whom. To make such a shift, we need to have a better understanding of what
these underlying mechanisms in the brain are, and a crucial step for doing so is to
disentangle the heterogeneous expressions of autism (10,13,22).

The work in this thesis has demonstrated that autism is mediated by several
alterations in the brain and established that these mechanisms can be best
understood when looking at several of these E/I markers together. While the results
presented here do not provide one to one mappings between biomarkers and
certain clinical traits, they provide us with greater understanding to now inform
more specific research questions. Sensory processing differences in autism seem to
be driven by different alterations of excitation and inhibition in the brain compared
to restricted-repetitive and social domains. Is this mediated in specific parts of the
brain, and does it differ for different sensory domains (e.g. auditory processing,
or sense of touch)? Understanding these relationships will help us find more
fine-tuned biomarkers, allowing us to better identify diagnostic markers, support
options, and facilitate subtyping, which can subsequently be followed by better
targeted therapeutic options and improved quality of life.

Moving forward

Multimodal dimensional analysis allows us to look at alterations across domains
to identify how these may influence each other, and ultimately influence clinical
characteristics of autism. Future work should leverage this in experimental
approaches, for example using medications that impact glutamate and/or GABA.
While pharmacological studies have been performed previously, they typically
use categorical approaches and several did not find significant group level effects,
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even though some participants may have had positive responses to medications
(23,24). The findings in this thesis demonstrate that variations in E/I imbalances
likely affect different behavioral domains, which needs to be considered in future
pharmacological trials.

In this thesis the focus was on core clinical traits; restricted and repetitive behaviors,
social interactions, and sensory processing differences. Autism also manifests
in various ways, often with co-occurring conditions such as anxiety, burnout,
depression or gastro-intestinal problems. These should be addressed as well to
provide an even more nuanced understanding of the underlying mechanisms
of autism. Further, the behavioral measures used here were based on interviews
and questionnaires, and using other measures of e.g. sensory processing or
cognition has the potential to provide more objective markers of behavioral autism
characteristics. More objective phenotyping across varying sensory domains are
needed to disentangle interindividual variations in sensory processing differences.
Examples of such measures are tasks involving sensory detection thresholds of e.g.

auditory or tactile stimulation, which provides measures independent from self- or
parent-reports. Such measures are also included in the third wave of the LEAP data
collection, and will be incorporated into future analyses.

There are several novel neuroimaging methods that approximate excitation and
inhibition in various ways, capturing distinct, but informative, aspects of neuronal
functioning and communication. For example, E/I ratios have been estimated both
using fMRI (25) and EEG (26) measures, which are based on various assumptions of
brain function and structure affecting excitatory and inhibitory mechanisms in the
brain. Other measures that aim to capture, or modulate, excitation and inhibition
are Positron Emission Tomography (PET) imaging and brain stimulation approaches,
where the latter has been suggested to have potential therapeutic benefits for
autism traits (27). Excitation and inhibition are fundamental properties of brain
functioning and exists on multiple levels; intracellularly, between local populations
of neurons in brain regions, and across brain regions in networks. The measures we
have available today, including the ones just mentioned and the in vivo 'H-MRS and
genetic methods used within this thesis, all capture different aspects of excitatory
and inhibitory mechanisms, in differing levels of spatial and temporal resolution,
and have the potential to unravel distinct, or converging, alterations of E/l in autism
and how they relate to different clinical characteristics.

As excitation and inhibition are properties of many layers of functioning in the
brain, and is affected by several mechanisms, we do not yet have a cohesive
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definition or measurement of excitation and inhibition, let alone their (im)balance
and the ratios between them. We need to systematically evaluate how these different
approximations of E/I mechanisms relate to each other to understand how they
can be useful for both understanding biological mechanisms and for identifying
biomarkers. This also includes defining what level of E/I functioning and development
you are investigating, as e.g. animal models, in vitro, or pharmacological studies are
measuring or altering individual mechanisms on a cellular level, while measures like
EEG or "H-MRS capture large scale networks and resting state levels of excitation and
inhibition (28). By doing so, we can also formulate specific testable hypotheses for
distinct alterations that may be affected in autism.

The results in this thesis emphasize differences in the brain across development,
however, we were mainly restricted to cross-sectional age ranges of the participants
included in our cohorts and more longitudinal analyses are necessary to investigate
individual developmental trajectories. Longitudinal data collection does come
with challenges, including changes and updates in equipment between waves of
measurement, different researchers performing the data collection, and participant
drop out, which all affect data collection and quality. It is however not impossible,
and in the LEAP cohort the third wave of data collection has just been completed,
spanning over 5 years since the first wave of data collection with three data
points available.

Additionally, all participants in the autism groups were already diagnosed prior to
participating and to find early diagnostic and biological markers even younger
participants should be included, potentially before diagnosis is typically given.
There are studies currently being undertaken with this in mind. For example, within
AIMS-2-TRIALS there is ongoing data collection of the Preschool Imaging Project
(PIP: https://www.aims-2-trials.eu/pip/), where autistic and typically developing
children (as well as those with ADHD and developmental delay) from three years
of age participate. Data collection matches the measures available in the LEAP
cohort and is acquired longitudinally. PIP also includes children that express autism
characteristics without yet having received a formal diagnosis. There are also
initiatives to capture autism predictors in infants in initiatives such as Eurosibs (29)
and The British Autism Study of Infant Siblings (BASIS; www.basisnetwork.org),
and those that test transdiagnostic differences in neurodivergence in childhood
(CANDY, https://www.candy-project.eu/).

There is a need for a shift in the field of autism research, not only moving away from
case-control analyses to focus more dimensional or subgroup analysis, but also
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initiatives to systematically assess how various neuroimaging measures interact
or capture distinct aspects of alterations of E/I and brain functioning, to truly
understand what is underlying the heterogeneous expressions of autism traits.
There are many novel and promising datasets and analysis methods becoming
available, which will be informative in the coming years to build on the findings in
this thesis.

Ethical and practical considerations

Research on autism, or any neurodevelopmental condition or disorder, should always
operate from the goal to improve quality of life of the group being studied. Not
that all studies must have immediate practical or clinical implications, but research
questions and long-term goals should be defined to do so. This may sound obvious,
but research on autistic individuals has historically also been harmful (30-32). Today,
there are discussions and tensions surrounding the topic of autism research, where
stakeholders with lived experience question how and whether all autism research
is beneficial or ethical (30-32). These are valid concerns, and continuing these
discussions are important to bridge mutual understandings between researchers
and stakeholders (32).

Genetic research

Genetic data is considered identifiable data, as everyone’s genome is unique.
This necessitates mindfulness when using genetic data in research, especially as
it is now possible to use genetic screening to identify e.g. likelihoods for certain
conditions or disorders. There is a growing concern that genetic research could
lead to identifying or singling out autistic individuals or those who have a high
genetic likelihood for autism, without their consent (33). In this thesis, all access
to genetic data and its analyses have been performed on data from participants
who gave informed consent to its collection and analysis approaches. The analyses
throughout this thesis which included genetics can in no way be used to develop
genetic markers for autism or autism traits. Genetic variations, polygenic scores, and
postmortem gene-expression data used here are measures selected exclusively to
understand glutamatergic and GABAergic mechanisms in the brain. These methods
are based on common genetic variance which is highly unlikely to ever be used as
diagnostic or predictive measures on an individual level.

Within the realm of genomics, there are several approaches that were not used
here. For example, investigations of rare genes and copy number variants (CNVs)
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with stronger effects, as well as epigenetics, are also known to affect to autism
characteristics and has great potential in increasing mechanistic understanding of
autism (34,35).

Pharmacological development

There is a clear connection between investigating glutamate and GABA functions
in the brain in autism and the development and testing of (new) pharmacological
interventions. For this reason, it is important to be clear that the use of
pharmacological alternatives to the difficulties expressed by autistic people should
always be optional, as is the case with medications for other neurodevelopmental
conditions such as ADHD. Previous pharmacological studies on autism have
had mixed results, likely due to the lack of stratification and precision medicine
approaches typically used in clinical trials. This has led to several promising
pharmacological approaches not surviving clinical trials, despite potentially having
positive effects for some individuals. Recent work aiming to stratify responders
and non-responders to e.g. bumetanide (15,36,37), will continue to be of great
importance for developing better targeted therapeutic options. This undertaking
will be much more effective by understanding what mechanisms may underlie
which experiences autistic individuals may want support with. For example, if
we can identify disturbances in specific circuits that relate to certain traits or
behavioral domains, we can select pharmacological trial designs more likely to
be effective for specific traits or individuals. An example of this is the GOAT trial,
part of the TACTICS consortium, which investigated the effects of memantine and
focused on compulsive and impulsive behaviors across OCD and autism, targeting
glutamate dense fronto-striatal circuits due to its involvement in these behavioral
domains (38,39).

It is also important to acknowledge that pharmacological options are not
necessarily the only, or most effective, alternative for all autistic individuals. It is
one of many routes that should be better investigated and understood as support
options for autistic individuals are improved.

Data acquisition with diagnostic groups

Keeping in mind that the end goal of research on diagnostic groups is to
contribute to improving of quality of life, there are also important considerations
regarding data acquisition involving autistic individuals. Firstly, the experience of
participating in research can be overwhelming for anyone and should be made
as accommodating as possible. This includes e.g. giving participants enough time
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to process and prepare for tasks, both before visiting the research center and
during testing.

It is also important that the participation in studies is made as valuable as possible.
This may initially sound contradictory to making the participant’s experience
as pleasant and accommodating as possible. However, having a stressed or
nervous participant often lead to more movement during e.g. MRI or EEG, which
leads to lower quality and loss of data, not completing all measurements, and
makes participants less likely to return for longitudinal studies. Other factors
that improve data quality, especially in multicenter studies, include continuously
checking the collected data across sites to make sure that protocols are executed
properly’, that there are no problems with equipment that would otherwise not
be detected until data processing, and making sure that all researchers involved
are well trained on the data acquisition techniques and have an understanding
of how to best accommodate participants. These are important steps to avoid
differences across diagnostic groups, sites, testers, and equipment. Discovering

at the end of a study that e.g. settings in an MR sequence were incorrect at one
site, rendering collected data unusable, is a waste of both funding and participants’
time and efforts, which becomes problematic when some participants may find
the experience of participating in research particularly stressful. This becomes
especially important when aiming to address the bias of studies on autism more
often recruiting participants with lower support needs, e.g. with verbal abilities or

without intellectual disability.

The need for considerations further extends to data management after data
collection, as this is an important step where data is checked and quality controlled
and potential errors may lead to even further, unnecessary, data loss. | believe that
it is unethical to lose data whenever avoidable, especially from participants in
diagnostic groups, due to errors that could be prevented had these factors been
considered from conception of the study to end of data acquisition, processing
and analysis. It is, after all, for them that we do this research, and their efforts and
contributions should be treated as carefully as we possibly can.

! | have been impressed to see just how many creative ways one can deviate from standard
operating procedures.
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Final conclusions

To conclude, in this thesis | have identified several associations across genetic,
various MR-based and behavioral modalities to increase understanding of how E/I
imbalances may be expressed in various ways in autism. This work also highlights
the urgent need for further multimodal approaches and datasets that includes
several measures of excitation and inhibition, genetic measures, and behavioral
measures that goes beyond questionnaires and interviews. Furthermore, it is
important to investigate glutamate and GABA together, as excitatory and inhibitory
proxies, as they are strongly related and interact to affect other brain and behavior
measures. As new approaches to capturing E/I dynamics are developed, and more
autism datasets become available, there are promising new ventures ahead which
| believe have the potential to finally increase our understanding of the various
expressions and support needs of autistic individuals. To do so, there needs to be a
more intentional approach to how we use the E/l framework to help define research
questions and interpret results, rather than using it as a catch-all explanatory
theory for all neuroimaging findings pertaining to autism.
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Data management

The research in this thesis is based on existing datasets from the LEAP
(https://www.aims-2-trials.eu/leap-front-page/) and TACTICS (https://cordis.europa.
eu/project/id/278948/reporting) studies.

Ethics and privacy

This thesis is based on the results of research involving existing data from studies
with human participants, which were conducted in accordance with relevant
national and international legislation and regulations, guidelines, codes of conduct
and Radboud UMC policy. The privacy of the participants was warranted by the
use of pseudonymized data. For the purpose of the research in this thesis, only the
pseudonymized data was shared, the keyfile was not shared with the data.

Data collection and storage
The data in chapters 2, 3, 4 and 5 have been analyzed and processed in project
folders at the DCCN: 3022035.04 (LEAP) and 3015043.01 (TACTICS).

Data sharing according to the FAIR principles

Data collected in LEAP are stored and curated at the central EU-AIMS database at
the Pasteur Institute in Paris. LEAP data is currently only accessible to consortium
members who get an analysis proposal approved, and it will be available for use to
the wider research public through open-access publication via a secure database
that will become available in the near future (https://elixir-luxembourg.org/).
TACTICS data will not be available for the wider research public, as per consortium
guidelines. All studies are or will be published open access.
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Nederlandse Samenvatting

Autisme (autisme spectrum stoornis) is een van de meest voorkomende
ontwikkelingsaandoeningen. Er is echter veel ontbrekende kennis van de
onderliggende mechanismen in de hersenen en over hoe autisme zich ontwikkelt
en de verschillende manieren waarop het tot uiting kan komen. In dit proefschrift
komen een aantal onderzoeken aan bod die zich richten op de populaire excitation/
inhibition (E/I) disbalanstheorie van autisme. Het doel van deze onderzoeken was
om meer inzicht te krijgen in de heterogeniteit van autisme door te kijken naar
genetische aspecten met betrekking tot glutamaat en GABA functies (respectievelijk
betrokken bij excitation en inhibition), maten vanuit magnetische beeldvorming
(MRI) en gedragskenmerken. De bevindingen bieden steun voor een centrale rol
van de neurotransmitters glutamaat en GABA, zowel fysiologisch als gedragsmatig,
in de onderliggende mechanismen van autisme. Verschillen in glutamaat in de
voorste cingulate hersenschors (afgekort ACC) zijn geassocieerd met repetitief
gedrag (Hoofdstuk 2), en met variaties in de hersenstructuur (Hoofdstuk 3).
Bovendien blijken polygene scores van glutamaat gecorreleerd met deze
verschillen in ACC concentraties van glutamaat (Hoofdstuk 5). Hoofdstuk vijf laat
hiermee voor het eerst een relatie tussen genetische informatie en concentraties

van glutamaat in de hersenen zien. Deze interactie is bovendien gerelateerd aan
verschillende gedragskenmerken van autisme, waaronder verschillen op sociaal
en sensorisch vlak. Ik vond hiernaast ook interacties tussen glutamaat en GABA
op genetisch en hersenniveau die op verschillende wijze betrokken waren bij
kenmerken van autisme (Hoofdstuk 5).

De bevindingen uit dit proefschrift onderschrijven onvoldoende welke veranderingen
in E/I mechanismen tot kenmerken van autisme leiden, maar fungeren des te meer
als een waardevolle eerste stap om dit verder te onderzoeken. Mijn onderzoek als
geheel pleit voor (1) het gelijktijdig onderzoeken van het glutamaat en GABA
neurotransmitter systeem in de hersenen, (2) het gebruik van verschillende
methoden als genetica en beeldvormend onderzoek, en (3) het onderzoeken van het
effect van leeftijd en ontwikkelingsfactoren. De interactie tussen deze verschillende
aspecten vormt de ingang voor meer inzicht en hopelijk een uiteindelijke verklaring
voor de heterogeniteit van autisme en de (individuele) verschillen gedurende
de ontwikkeling.
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behavior and brain”

Accepted conference talks

2023

Presentation at GABA MRS Symposium.
Title “Linking MRS glutamate with fMRI,
behavioral and genetic measures using
causal discovery analysis”
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Poster presentations

2024

2023

2022

2022

2020

Poster presentation at OHBM: “The causal
roles of glutamate and GABA genes on brain
and behavior in autism”

Poster presentation at AIMS-2-TRIALS
General Assembly. Title “Measuring MRS in
preschool children and adults — progress and
quality control from PIP and LEAP”

Poster presentation AIMS-2-TIRALS General
Assembly. Title “The role of glutamate
and GABA gene-sets in behavioral autism
characteristics and cortical brain structure”
Poster presentation at ECNP workshop. Title
“Glutamate and GABA gene-sets, cortical
thickness, and clinical characteristics of
autism: probes of causality”

Poster presentation at OHBM. Title “A virtual
histology and genetics approach investigating
excitatory/inhibitory imbalance in autism”

Training and courses

2024
2023
2023
2023
2022
2021
2020

2020
2020

Donders Career Event

Donders Discussions

Course: Analytic storytelling

Course: Design and Illustration
Course: Writing scientific articles
Course: Effective writing strategies
Training: Advanced (f)MRI toolkit,
Donders Institute

Training: MRS editing school

eBROK certification (re-certified 2023)
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Donders Graduate School for Cognitive Neuroscience

For a successful research Institute, it is vital to train the next generation of
scientists. To achieve this goal, the Donders Institute for Brain, Cognition and
Behaviour established the Donders Graduate School in 2009. The mission of the
Donders Graduate School is to guide our graduates to become skilled academics
who are equipped for a wide range of professions. To achieve this, we do our
utmost to ensure that our PhD candidates receive support and supervision of the
highest quality.

Since 2009, the Donders Graduate School has grown into a vibrant community
of highly talented national and international PhD candidates, with over 500 PhD
candidates enrolled. Their backgrounds cover a wide range of disciplines, from
physics to psychology, medicine to psycholinguistics, and biology to artificial
intelligence. Similarly, their interdisciplinary research covers genetic, molecular,
and cellular processes at one end and computational, system-level neuroscience
with cognitive and behavioural analysis at the other end. We ask all PhD candidates
within the Donders Graduate School to publish their PhD thesis in de Donders Thesis
Series. This series currently includes over 600 PhD theses from our PhD graduates
and thereby provides a comprehensive overview of the diverse types of research
performed at the Donders Institute. A complete overview of the Donders Thesis
Series can be found on our website: https://www.ru.nl/donders/donders-series

The Donders Graduate School tracks the careers of our PhD graduates carefully. In
general, the PhD graduates end up at high-quality positions in different sectors,
for a complete overview see https://www.ru.nl/donders/destination-our-former-
phd. A large proportion of our PhD alumni continue in academia (>50%). Most of
them first work as a postdoc before growing into more senior research positions.
They work at top institutes worldwide, such as University of Oxford, University of
Cambridge, Stanford University, Princeton University, UCL London, MPI Leipzig,
Karolinska Institute, UC Berkeley, EPFL Lausanne, and many others. In addition, a
large group of PhD graduates continue in clinical positions, sometimes combining
it with academic research. Clinical positions can be divided into medical doctors,
for instance, in genetics, geriatrics, psychiatry, or neurology, and in psychologists,
for instance as healthcare psychologist, clinical neuropsychologist, or clinical
psychologist. Furthermore, there are PhD graduates who continue to work
as researchers outside academia, for instance at non-profit or government
organizations, or in pharmaceutical companies. There are also PhD graduates
who work in education, such as teachers in high school, or as lecturers in higher
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education. Others continue in a wide range of positions, such as policy advisors,
project managers, consultants, data scientists, web- or software developers,
business owners, regulatory affairs specialists, engineers, managers, or IT architects.
As such, the career paths of Donders PhD graduates span a broad range of sectors
and professions, but the common factor is that they almost all have become
successful professionals.

For more information on the Donders Graduate School, as well as past and
upcoming defences please visit: http://www.ru.nl/donders/graduate-school/phd/
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