
Exploring Relations
and Graphs for
Information Retrieval

Chris Kamphuis

Radboud
Dissertation
Series

Institute for Computing
and Information Sciences

Exploring Relations and
Graphs for Information

Retrieval
Chris Frans Henri Kamphuis

This work is part of the research program Commit2Data with project number
628.011.001 (SQIREL-GRAPHS), which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO).

SIKS Dissertation Series No. 2025-37
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.

Exploring Relations and Graphs for Information Retrieval
Chris Frans Henri Kamphuis

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Chris Frans Henri Kamphuis
Cover: Proefschrift AIO | Guntra Laivacuma
Printing: DPN Rikken/Pumbo

ISBN: 9789465151298
DOI: 10.54195/9789465151298
Free download at: https://doi.org/10.54195/9789465151298

© 2025 Chris Frans Henri Kamphuis

This is an Open Access book published under the terms of Creative Commons Attribution-
Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license
allows reusers to copy and distribute the material in any medium or format in unadapted
form only, for noncommercial purposes only, and only so long as attribution is given to
the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

Exploring Relations and
Graphs for Information

Retrieval

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college van promoties

in het openbaar te verdedigen

op maandag 3 november 2025
om 16:30 uur precies

door

Chris Frans Henri Kamphuis
geboren op 22 maart 1993

te Oldenzaal

Promotor:
Prof. dr. ir. A.P. (Arjen) de Vries

Manuscriptcommissie:
Prof. dr. H.F. (Hannes) Mühleisen
Prof. dr. ir. D. (Djoerd) Hiemstra
Prof. dr. M.A. (Martha) Larson
Prof. C. (Craig) Macdonald (University of Glasgow, Verenigd Koninkrijk)
Prof. dr. S. (Suzan) Verberne (Universiteit Leiden)

Promotor:
Prof. dr. ir. A.P. (Arjen) de Vries

Manuscriptcommissie:
Prof. dr. H.F. (Hannes) Mühleisen
Prof. dr. ir. D. (Djoerd) Hiemstra
Prof. dr. M.A. (Martha) Larson
Prof. C. (Craig) Macdonald (University of Glasgow, Verenigd Koninkrijk)
Prof. dr. S. (Suzan) Verberne (Universiteit Leiden)

Contents

1 Introduction 1
1.1 Problem Description and Research Questions 2
1.2 Thesis Contributions and Structure 3
1.3 Other Publications . 5

2 Background 7
2.1 Introduction . 7
2.2 Information Retrieval . 8
2.3 Data Retrieval . 20
2.4 Graphs . 24
2.5 Reproducible Science . 29

3 IR using Relational Databases 33
3.1 Introduction . 34
3.2 Related work . 34
3.3 Prototype OldDog . 40
3.4 Variants of BM25 . 42
3.5 Experiments . 49
3.6 Results . 50
3.7 Conclusion . 52

4 From Tables to Graphs 53
4.1 Introduction . 54
4.2 Related work . 55
4.3 GeeseDB . 60
4.4 Experiments . 72
4.5 Conclusion . 76

5 Creation of the Entity Graph 77
5.1 Introduction . 78
5.2 Related Work . 79

iii

iv CONTENTS

5.3 REL . 80
5.4 From REL to REBL . 81
5.5 Effects on Execution . 84
5.6 Conclusion and Discussion 85

6 Using the Entity Graph 87
6.1 Introduction . 88
6.2 Background . 90
6.3 MMEAD . 93
6.4 How To Use . 95
6.5 Entity Expansion with MMEAD 99
6.6 Beyond Quantitative Results 104
6.7 Conclusion and Future Work 108

7 Conclusion 111
7.1 Contributions . 111
7.2 Future Work . 113

Bibliography 115

Summary 127

Samenvatting 129

Acknowledgements 131

Research Data Management 133

Curriculum Vitæ 135

SIKS Dissertations 137

iv CONTENTS

5.3 REL . 80
5.4 From REL to REBL . 81
5.5 Effects on Execution . 84
5.6 Conclusion and Discussion 85

6 Using the Entity Graph 87
6.1 Introduction . 88
6.2 Background . 90
6.3 MMEAD . 93
6.4 How To Use . 95
6.5 Entity Expansion with MMEAD 99
6.6 Beyond Quantitative Results 104
6.7 Conclusion and Future Work 108

7 Conclusion 111
7.1 Contributions . 111
7.2 Future Work . 113

Bibliography 115

Summary 127

Samenvatting 129

Acknowledgements 131

Research Data Management 133

Curriculum Vitæ 135

SIKS Dissertations 137

Chapter 1

Introduction

I propose to consider the
question, “Can machines
think?”

Alan Turing - 1950

Like Turing in the quote cited above, I too propose to consider the
question, “Can machines think?” Instead of approaching this through a
thought experiment as Turing did, nowadays, one can approach this question
by asking it to a search engine. When issuing this query to popular web
search systems, we get varying results: the first result on Google is a passage
generated from the article written by Turing, while the first result on Bing
is a passage from a website that concludes machines cannot think.1,2

When looking for information, we use systems that process queries every
single day. While Google and Bing are all-purpose web engines that mainly
focus on finding and retrieving information from the internet, people also use
specialized search systems in their day-to-day lives: Amazon and eBay when
we are looking for a product to buy, Scholar and ResearchGate for scientific
resources, YouTube and TikTok for videos, or Facebook and LinkedIn when
we are searching for people. It might even be possible that you are reading
this text after you found this document through search.

When searching for the query, “Can machines think?”, searching through
text documents might be sufficient for the person who searches. However,
more than only considering text can be needed when someone’s information

1However, if a machine cannot think, can we trust the result presented by this
algorithm?

2These results were retrieved in October of 2022

1

2 CHAPTER 1. INTRODUCTION

need is more complicated. For example, when one wants to buy a product
on Amazon, aspects other than text also need to be considered. Maybe you
want to buy an iPhone; information on the price, which edition is the most
recent, or which color it has are all essential to determine which one you
want. You may also want to consider the rating provided by people who
previously bought an iPhone.

If someone searches for people on LinkedIn, they might be more inter-
ested in persons they are connected to than strangers. If you are looking
for someone to do a job, it is ideal that a shared connection can vouch for
them. In this case, how people relate to each other in their network might
indicate relevance. Not only the structure of how people relate to each other
determines relevance; their experience, where they work, or reviews of their
previous work will also matter.

Although it might be possible to encode all this information as written
text, often, it is more convenient to save this information in a more structured
approach. Where information retrieval researchers research the retrieval of
“information” through text data, data management researchers research the
retrieval of structured data [van Rijsbergen, 1979]. This thesis considers
both methods simultaneously: systems that can work with structured and
unstructured information are investigated.

1.1 Problem Description and Research
Questions

Although information retrieval and data retrieval are research fields investi-
gated by different disciplines, they are closely related, and systems that use
both have been researched and developed in the past. Techniques developed
in one community might help the other, as things like storing and quickly
retrieving data are essential for both information and data retrieval.

Modern database system are often organized using the relational model.
In such databases the data is organized as a sets of tuples. In the past,
such databases have been used for information retrieval research. The
database community has shown an increased interest in graph databases
in recent years. In these databases the data is organized by modeling the
data as a graph. As these databases are becoming more popular for data
retrieval tasks where the data is highly interconnected, they might also
benefit similar tasks in the information retrieval field where data (especially
relevant results) is often highly interconnected. This thesis will investigate
how these databases, with dedicated graph query languages, can be used

2 CHAPTER 1. INTRODUCTION

need is more complicated. For example, when one wants to buy a product
on Amazon, aspects other than text also need to be considered. Maybe you
want to buy an iPhone; information on the price, which edition is the most
recent, or which color it has are all essential to determine which one you
want. You may also want to consider the rating provided by people who
previously bought an iPhone.

If someone searches for people on LinkedIn, they might be more inter-
ested in persons they are connected to than strangers. If you are looking
for someone to do a job, it is ideal that a shared connection can vouch for
them. In this case, how people relate to each other in their network might
indicate relevance. Not only the structure of how people relate to each other
determines relevance; their experience, where they work, or reviews of their
previous work will also matter.

Although it might be possible to encode all this information as written
text, often, it is more convenient to save this information in a more structured
approach. Where information retrieval researchers research the retrieval of
“information” through text data, data management researchers research the
retrieval of structured data [van Rijsbergen, 1979]. This thesis considers
both methods simultaneously: systems that can work with structured and
unstructured information are investigated.

1.1 Problem Description and Research
Questions

Although information retrieval and data retrieval are research fields investi-
gated by different disciplines, they are closely related, and systems that use
both have been researched and developed in the past. Techniques developed
in one community might help the other, as things like storing and quickly
retrieving data are essential for both information and data retrieval.

Modern database system are often organized using the relational model.
In such databases the data is organized as a sets of tuples. In the past,
such databases have been used for information retrieval research. The
database community has shown an increased interest in graph databases
in recent years. In these databases the data is organized by modeling the
data as a graph. As these databases are becoming more popular for data
retrieval tasks where the data is highly interconnected, they might also
benefit similar tasks in the information retrieval field where data (especially
relevant results) is often highly interconnected. This thesis will investigate
how these databases, with dedicated graph query languages, can be used

1.2. THESIS CONTRIBUTIONS AND STRUCTURE 3

for information retrieval tasks. This leads us to this thesis’s main research
question:

Research Question: How can information retrieval benefit from
graph databases and graph query languages?

Three sub-research questions are defined to guide us in answering the
main research question:

• Research Question 1: What are the benefits of using relational databases
for information retrieval?

• Research Question 2: Can we extend the benefits from using relational
databases for information retrieval to using graph databases while
being able to express graph-related problems easier?

• Research Question 3: When does information retrieval research benefit
from graph data?

Chapters 3, 4 and 6 will take these research questions and try to answer
them respectively. Chapter 5 will present work used in Chapter 6. Then
in Chapter 7, we will take the answers to these research questions and use
them to answer the main research question.

1.2 Thesis Contributions and Structure
• Chapter 2 describes the necessary background information to provide

context to the other chapters. The background that is described in this
chapter concerns the “general” background knowledge for this thesis.
Individual chapters also have related work sections that concern the
background knowledge in those chapters. The information described
in those related work sections contains overlapping information, i.e.,
the knowledge needed to understand the context of those chapters.
This is done to make it possible to understand a chapter without first
reading the chapters that come before it.

• Chapter 3 concerns information retrieval research using relational
databases. Although, traditionally, inverted indexes are used for
information retrieval, we show that by employing relational databases,
some advantages are gained. First, attempts to use relational databases
for information retrieval through the years will be described. One of
the latter attempts used a column-oriented relational database system
for information retrieval, achieving competitive efficiency compared

4 CHAPTER 1. INTRODUCTION

to a traditional system built using inverted indexes. This approach is
re-implemented as a prototype system, which is then used for a repro-
duction study. This chapter establishes the usefulness of relational
databases for information retrieval by demonstrating its benefits. The
content in this chapter is based on the following published works:

– C. Kamphuis and A. P. de Vries. The OldDog Docker Image for OSIRRC at
SIGIR 2019. In Proceedings of the Open-Source IR Replicability Challenge co-
located with 42nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25,
2019, pages 47–49, Aachen, 2019b. CEUR-WS.org. URL http://ceur-ws.org/
Vol-2409/docker07.pdf

– C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. Which BM25 Do You
Mean? A Large-Scale Reproducibility Study of Scoring Variants. In Advances in
Information Retrieval, ECIR ’20, pages 28–34, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-45442-5

• Chapter 4 takes the concept of employing relational databases for
information retrieval and extends the relational model to the graph
model. GeeseDB is introduced, a graph database prototype system
built on top of an embedded column-oriented relational engine. Using
the graph model makes it possible to express more complex infor-
mation retrieval problems than when the relational model is used.
These more complex models often use multi-stage retrieval approaches.
GeeseDB is built on top of an embedded database system, so moving
data between ranking stages can be done efficiently. The content of
this chapter has previously been described in the following published
works:

– C. Kamphuis and A. P. de Vries. Reproducible IR needs an (IR) (graph) query
language. In Proceedings of the Open-Source IR Replicability Challenge co-located
with 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019,
pages 17–20, Aachen, 2019a. CEUR-WS.org. URL http://ceur-ws.org/Vol-2409/
position03.pdf

– C. Kamphuis and A. P. de Vries. GeeseDB: A Python Graph Engine for Exploration
and Search. In Proceedings of the 2nd International Conference on Design of
Experimental Search & Information REtrieval Systems, DESIRES ’21, pages 10–
18, Aachen, 2021. CEUR-WS.org. URL http://ceur-ws.org/Vol-2950/paper-11.
pdf

• Chapter 5 introduces the concept of entity linking. Specifically, the
Radboud Entity Linker [van Hulst et al., 2020] system is discussed.
When trying to utilize REL to annotate a large corpus with entity
linking, issues were found that prohibited the annotations process to
such an extent that it was not possible to do within a reasonable time.
In order to be able to annotate the corpus, the REL toolkit internals

4 CHAPTER 1. INTRODUCTION

to a traditional system built using inverted indexes. This approach is
re-implemented as a prototype system, which is then used for a repro-
duction study. This chapter establishes the usefulness of relational
databases for information retrieval by demonstrating its benefits. The
content in this chapter is based on the following published works:

– C. Kamphuis and A. P. de Vries. The OldDog Docker Image for OSIRRC at
SIGIR 2019. In Proceedings of the Open-Source IR Replicability Challenge co-
located with 42nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25,
2019, pages 47–49, Aachen, 2019b. CEUR-WS.org. URL http://ceur-ws.org/
Vol-2409/docker07.pdf

– C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. Which BM25 Do You
Mean? A Large-Scale Reproducibility Study of Scoring Variants. In Advances in
Information Retrieval, ECIR ’20, pages 28–34, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-45442-5

• Chapter 4 takes the concept of employing relational databases for
information retrieval and extends the relational model to the graph
model. GeeseDB is introduced, a graph database prototype system
built on top of an embedded column-oriented relational engine. Using
the graph model makes it possible to express more complex infor-
mation retrieval problems than when the relational model is used.
These more complex models often use multi-stage retrieval approaches.
GeeseDB is built on top of an embedded database system, so moving
data between ranking stages can be done efficiently. The content of
this chapter has previously been described in the following published
works:

– C. Kamphuis and A. P. de Vries. Reproducible IR needs an (IR) (graph) query
language. In Proceedings of the Open-Source IR Replicability Challenge co-located
with 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019,
pages 17–20, Aachen, 2019a. CEUR-WS.org. URL http://ceur-ws.org/Vol-2409/
position03.pdf

– C. Kamphuis and A. P. de Vries. GeeseDB: A Python Graph Engine for Exploration
and Search. In Proceedings of the 2nd International Conference on Design of
Experimental Search & Information REtrieval Systems, DESIRES ’21, pages 10–
18, Aachen, 2021. CEUR-WS.org. URL http://ceur-ws.org/Vol-2950/paper-11.
pdf

• Chapter 5 introduces the concept of entity linking. Specifically, the
Radboud Entity Linker [van Hulst et al., 2020] system is discussed.
When trying to utilize REL to annotate a large corpus with entity
linking, issues were found that prohibited the annotations process to
such an extent that it was not possible to do within a reasonable time.
In order to be able to annotate the corpus, the REL toolkit internals

1.3. OTHER PUBLICATIONS 5

were upgraded, and a batch extension was developed. Altogether
this led to more efficient software such that REL can annotate larger
corpora. The content in this chapter has previously been described
in the following published work:

– C. Kamphuis, F. Hasibi, J. Lin, and A. P. de Vries. REBL: Entity Linking at Scale.
In Proceedings of the 3rd International Conference on Design of Experimental
Search & Information REtrieval Systems, DESIRES ’22, Aachen, 2022. CEUR-
WS.org. URL https://desires.dei.unipd.it/2022/papers/paper-08.pdf

• Chapter 6 employs the software of chapter 5 to annotate a large web
corpus. We developed a specification for sharing entity link annota-
tions. Following this specification, we made annotations for the MS
MARCO [Bajaj et al., 2016] corpora publicly available. Using these
annotations, we show that, through query expansion, we can increase
recall effectiveness for first-stage rankers on this dataset. Next, a
demonstration shows how entity links can also be used for geographi-
cal information applications. This content has been described in the
following published work:

– C. Kamphuis, A. Lin, S. Yang, J. Lin, A. P. de Vries, and F. Hasibi. MMEAD:
MS MARCO Entity Annotations and Disambiguations. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’23, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 978-1-4503-9408-6. doi: 10.1145/3539618.3591887

• Chapter 7 serves as a conclusion and summarizes the content discussed
in the thesis. We will reflect on the research questions that motivated
this dissertation, and discuss what future research is needed.

1.3 Other Publications
During the employment at Radboud University, the following work was also
published:

• C. Kamphuis, F. Hasibi, A. P. de Vries, and T. Crijns. Radboud University at TREC
2019. In NIST Special Publication 1250: The Twenty-Eighth Text REtrieval Conference
Proceedings (TREC 2019), TREC ’19, Gaithersburg, Maryland, 2019. [Sl]: NIST. URL
https://trec.nist.gov/pubs/trec28/papers/RUIR.N.C.pdf

• J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia, M. Siedlaczek, A. Trotman,
and A. P. de Vries. Supporting Interoperability Between Open-Source Search Engines
with the Common Index File Format. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20,
page 2149–2152, New York, NY, USA, 2020a. Association for Computing Machinery.
ISBN 9781450380164. doi: 10.1145/3397271.3401404

6 CHAPTER 1. INTRODUCTION

• P. Boers, C. Kamphuis, and A. P. de Vries. Radboud University at TREC 2020. In NIST
Special Publication 1266: The Twenty-Ninth Text REtrieval Conference Proceedings
(TREC 2020), TREC’20, Gaithersburg, Maryland, 2020. [Sl]: NIST. URL https://trec.
nist.gov/pubs/trec29/papers/RUIR.N.pdf

• T. Schoegje, C. Kamphuis, K. Dercksen, D. Hiemstra, T. Pieters, and A. P. de Vries.
Exploring task-based query expansion at the TREC-COVID track. CoRR, abs/2010.12674,
2020. URL https://arxiv.org/abs/2010.12674

• C. Kamphuis. Graph Databases for Information Retrieval. In Advances in Information
Retrieval, pages 608–612, Cham, 2020. Springer International Publishing. ISBN 978-3-
030-45442-5

• D. Hiemstra, G. Hendriksen, C. Kamphuis, and A. P. de Vries. Challenges of Index
Exchange for Search Engine Interoperability. In Proceedings of the 5th International
Open Search Sympositum, OSSYM23. Open Search Foundation, 2023

Although this work relates to the main subject of the thesis, it is not
used as source material for the work described in this thesis.

6 CHAPTER 1. INTRODUCTION

• P. Boers, C. Kamphuis, and A. P. de Vries. Radboud University at TREC 2020. In NIST
Special Publication 1266: The Twenty-Ninth Text REtrieval Conference Proceedings
(TREC 2020), TREC’20, Gaithersburg, Maryland, 2020. [Sl]: NIST. URL https://trec.
nist.gov/pubs/trec29/papers/RUIR.N.pdf

• T. Schoegje, C. Kamphuis, K. Dercksen, D. Hiemstra, T. Pieters, and A. P. de Vries.
Exploring task-based query expansion at the TREC-COVID track. CoRR, abs/2010.12674,
2020. URL https://arxiv.org/abs/2010.12674

• C. Kamphuis. Graph Databases for Information Retrieval. In Advances in Information
Retrieval, pages 608–612, Cham, 2020. Springer International Publishing. ISBN 978-3-
030-45442-5

• D. Hiemstra, G. Hendriksen, C. Kamphuis, and A. P. de Vries. Challenges of Index
Exchange for Search Engine Interoperability. In Proceedings of the 5th International
Open Search Sympositum, OSSYM23. Open Search Foundation, 2023

Although this work relates to the main subject of the thesis, it is not
used as source material for the work described in this thesis.

Chapter 2

Background

Machines take me by surprise
with great frequency.

Alan Turing - 1950

2.1 Introduction
This chapter aims to provide the context in which this work is written.
By introducing the related scientific fields, this chapter sketches a broader
context wherein this research exists.

First, the field of information retrieval is introduced. Within the field of
information retrieval, different approaches to retrieving information have
been used throughout the decades. These approaches will be introduced
such that the reader understands what kind of techniques are used to retrieve
information. The work described in this thesis would also be considered
information retrieval research.

Secondly, techniques from different research areas are also used for this
research. Specifically, the research described in this thesis extensively uses
techniques typically investigated by the data management community. This
field will also be introduced, where especially the techniques used for the
research described in this work are highlighted.

Then, the concept of graphs will be explained. Graphs themselves are
just mathematical structures that model the relations between objects. The
objects are modeled as nodes and relations between them as edges. Many
kinds of graphs exist; they are helpful for modeling problems that can be

7

8 CHAPTER 2. BACKGROUND

expressed formally through this framework. Different kinds of graphs will
be explained, and examples of how to use them will be provided.

Finally, we will describe the idea of reproducible science. In general,
scientific work must be reproducible. In our research, we spend additional
effort on reproducible science. What reproducibility exactly entails will be
introduced.

2.2 Information Retrieval
The research described in this thesis is information retrieval research. Col-
loquially, one can refer to information retrieval as the science of everything
relating to search engines. This field encompasses all aspects: from user
experiences of search systems to storage algorithms and fast retrieval of
the information items users search. Baeza-Yates et al. [1999] introduce
information retrieval as the following:

Information retrieval (IR) deals with the representation, stor-
age, organization of, and access to information items.

Following this description, an information retrieval system, i.e., a search
engine, is a system that allows users to access information items that they
are looking for. How this works internally is usually not interesting for the
user, they just want to find the information they need. Typically, and also
in this thesis, the term document refers to information items, even though
the item the user seeks is not necessarily a literal document.

Consider the following situation; someone wants to know whether it will
rain in the coming 30 minutes. They might query a web search engine with
the text weather. In this case, the user does not care how the search engine
works but only about the result. In order to satisfy the user’s information
need, the search engine needs to (1) present the correct weather forecast
and (2) do this quickly. The user will be dissatisfied if the search engine
presents the incorrect weather forecast or cannot do this in milliseconds.

In order to answer this inquiry for information correctly, the information
retrieval system needs more context. It can only correctly know the weather
if it is known where the user resides. When accessing search engines through
a mobile device or computer, this information is sent along with the query
as metadata. This way, the search engine can correctly answer even though
the user did not explicitly give this information.

When the user’s location is known, the search engine needs to find a
webpage that correctly provides the weather for that particular location.
As there are billions of web pages in the search engine’s index, correctly

8 CHAPTER 2. BACKGROUND

expressed formally through this framework. Different kinds of graphs will
be explained, and examples of how to use them will be provided.

Finally, we will describe the idea of reproducible science. In general,
scientific work must be reproducible. In our research, we spend additional
effort on reproducible science. What reproducibility exactly entails will be
introduced.

2.2 Information Retrieval
The research described in this thesis is information retrieval research. Col-
loquially, one can refer to information retrieval as the science of everything
relating to search engines. This field encompasses all aspects: from user
experiences of search systems to storage algorithms and fast retrieval of
the information items users search. Baeza-Yates et al. [1999] introduce
information retrieval as the following:

Information retrieval (IR) deals with the representation, stor-
age, organization of, and access to information items.

Following this description, an information retrieval system, i.e., a search
engine, is a system that allows users to access information items that they
are looking for. How this works internally is usually not interesting for the
user, they just want to find the information they need. Typically, and also
in this thesis, the term document refers to information items, even though
the item the user seeks is not necessarily a literal document.

Consider the following situation; someone wants to know whether it will
rain in the coming 30 minutes. They might query a web search engine with
the text weather. In this case, the user does not care how the search engine
works but only about the result. In order to satisfy the user’s information
need, the search engine needs to (1) present the correct weather forecast
and (2) do this quickly. The user will be dissatisfied if the search engine
presents the incorrect weather forecast or cannot do this in milliseconds.

In order to answer this inquiry for information correctly, the information
retrieval system needs more context. It can only correctly know the weather
if it is known where the user resides. When accessing search engines through
a mobile device or computer, this information is sent along with the query
as metadata. This way, the search engine can correctly answer even though
the user did not explicitly give this information.

When the user’s location is known, the search engine needs to find a
webpage that correctly provides the weather for that particular location.
As there are billions of web pages in the search engine’s index, correctly

2.2. INFORMATION RETRIEVAL 9

identifying which one contains information about the weather at that par-
ticular location and time and then retrieving it in milliseconds is the next
challenge.

2.2.1 Inverted Indexes
Search engines must organize the data because it is infeasible to iterate over
all web pages to check if the correct information is available. The most
common data structure used in search engines is the inverted index.

Inverted indexes have been used for decades in the field of information
retrieval. They are designed to access documents quickly. If a system
cannot provide the data quick enough, the user is likely to switch to a
different system. Documents are typically formed through words that
form sentences, which form paragraphs, and, eventually, stories. When
considering a document in its standard form, it is not trivial to determine
efficiently whether it contains a specific word. When searching for something,
it is paramount that the search engine knows what documents contain the
keywords in the query. To efficiently access this data, instead of storing
documents as is (a mapping from documents to words), search engines store
the inverted information (a mapping from words to documents). To provide
an example, consider the following three short documents:

1. Cats and dogs are animals.

2. Cats are smart animals.

3. Dogs are great at tricks.

Then the inverted index looks something like this:

animal: [1 2], cat: [1 2], dog: [1 3], great: 3, smart: 2, trick: 3

A couple of interesting observations can be made here. Not all words
appear in the inverted index. Typically words with little “meaning”, or
so-called stop words, are removed. These words tend to contain no semantic
information and can therefore be dropped. This process is called stopword
removal or stopping. Then, words are sometimes shortened to a stem. Let
us say we have a query only mentioning the word “dog”, so not plural,
then we still want to be able to find the documents that mention the plural
form. This shortening to the word’s stem is often called stemming. When
words are reduced to their dictionary form, this process is referred to as
lemmatization. In this case, the words are ordered alphabetically. When
the number of documents in a collection increases, the number of unique

10 CHAPTER 2. BACKGROUND

words also increases. By storing the words alphabetically, a computer can
find the entries for that particular word more efficiently.

When someone queries the search engine with the following query:
“dog tricks”, the search engine can directly find which documents contain
these words using the inverted index. It can then automatically discard
all documents that do not contain these words. For the keywords, the
search engine retrieves the lists associated with them. These lists are called
posting lists in information retrieval. Entries in such lists are referred to as
postings. In this case, the postings only contain the document identifiers as
data. Generally, however, information like how often a word appears in a
document or its location is also stored in the posting. In practice, posting
lists are compressed, and instead of storing the direct identifiers, the gaps
between them are stored such that the index becomes smaller. In literature,
these gaps are referred to as delta gaps [Moffat and Zobel, 1996].

In this case, the posting lists of the words “dog” and “trick” are retrieved:
[1 3] and [3]. Then some scoring method can process these lists and assign
a score to the documents present in these lists. As document 3 is the only
document containing both words, it makes sense to consider this document
the most relevant. However, assessing relevance ordering is more complicated
when multiple documents contain both words with different frequencies.
To create ranked lists of documents based on their estimated relevancy,
different models for scoring documents have been proposed in the past. In
the following sections, these models are presented.

2.2.2 Ranking Models
Boolean Retrieval

The Boolean retrieval model was used in the early days of information
retrieval [Lancaster and Fayen, 1973, Lancaster, 1979, van Rijsbergen, 1979].
Boolean retrieval can be formulated as the following; let,

T =
{

t1, t2, . . . , tn

}
(2.1)

be the set of all index terms that appear in the collection. Let,

D =
{

d1, d2, . . . , dm

}
(2.2)

be the set of all documents, where every document is a subset of T . Specifi-
cally, the terms that appear in that document. Then a query can be any
Boolean expression over T . All documents that adhere to the Boolean
expression formed by the query are considered relevant. To give an example,
consider the same three documents as before:

10 CHAPTER 2. BACKGROUND

words also increases. By storing the words alphabetically, a computer can
find the entries for that particular word more efficiently.

When someone queries the search engine with the following query:
“dog tricks”, the search engine can directly find which documents contain
these words using the inverted index. It can then automatically discard
all documents that do not contain these words. For the keywords, the
search engine retrieves the lists associated with them. These lists are called
posting lists in information retrieval. Entries in such lists are referred to as
postings. In this case, the postings only contain the document identifiers as
data. Generally, however, information like how often a word appears in a
document or its location is also stored in the posting. In practice, posting
lists are compressed, and instead of storing the direct identifiers, the gaps
between them are stored such that the index becomes smaller. In literature,
these gaps are referred to as delta gaps [Moffat and Zobel, 1996].

In this case, the posting lists of the words “dog” and “trick” are retrieved:
[1 3] and [3]. Then some scoring method can process these lists and assign
a score to the documents present in these lists. As document 3 is the only
document containing both words, it makes sense to consider this document
the most relevant. However, assessing relevance ordering is more complicated
when multiple documents contain both words with different frequencies.
To create ranked lists of documents based on their estimated relevancy,
different models for scoring documents have been proposed in the past. In
the following sections, these models are presented.

2.2.2 Ranking Models
Boolean Retrieval

The Boolean retrieval model was used in the early days of information
retrieval [Lancaster and Fayen, 1973, Lancaster, 1979, van Rijsbergen, 1979].
Boolean retrieval can be formulated as the following; let,

T =
{

t1, t2, . . . , tn

}
(2.1)

be the set of all index terms that appear in the collection. Let,

D =
{

d1, d2, . . . , dm

}
(2.2)

be the set of all documents, where every document is a subset of T . Specifi-
cally, the terms that appear in that document. Then a query can be any
Boolean expression over T . All documents that adhere to the Boolean
expression formed by the query are considered relevant. To give an example,
consider the same three documents as before:

2.2. INFORMATION RETRIEVAL 11

1. Cats and dogs are animals.

2. Cats are smart animals.

3. Dogs are great at tricks.

Then, D is formulated as { d1, d2, d3 } with,

d1 :
{

cat, dog, animal
}

(2.3)

d2 :
{

cat, smart, animal
}

(2.4)

d3 :
{

dog, great, trick
}

(2.5)

One could be interested in finding all documents that mention dogs but
not cats. Then we can formulate the following Boolean query:

Q = dog ∧ ¬cat (2.6)

If we find all subsets that adhere to the individual terms in this conjunc-
tion, we get the following set expression:

Q = {d1, d3} ∩ {d3} = {d3} (2.7)

This shows that document d3 is the only document that mentions dogs, but
not cats. Although it is possible to express complicated expressions with
Boolean logic, a document either satisfies the expression or does not. All
documents that satisfy the expression are considered of equal importance;
creating a ranking between them cannot be done with this approach alone.

Using Boolean retrieval, there is no apparent difference between data
retrieval and information retrieval; there is only one correct solution: all
documents that satisfy the restrictions imposed by the query.

Vector Space Models

In 1975, the vector space model was introduced by Salton et al. [1975]. The
idea behind the vector space model is to represent documents and queries as
vectors. Consider a collection that has t unique terms, then we can represent
a document d in the collection as a t dimensional vector d1:

d =
(
w0, · · · , wt

)
(2.8)

1We use bold text to distinguish between document d, and its vector represen-
tation d

12 CHAPTER 2. BACKGROUND

where wi represents the weight associated with the i-th term in the collection
for this document. These weights can be binary, or if one only wants to
consider the importance of the term in the document, they can be the term
frequency or any weight that considers the “general” term importance.

Then if we have a query q, we can represent it in the same way:

q =
(
q0, · · · , qt

)
(2.9)

where qi represents the weight of the i-th term in the collection. Most values
in these vectors will be zero.

Now it is possible to calculate a similarity score between the query and
every document. A widely used similarity metric is the cosine similarity
between two vectors, which between a document d and a query q is defined
as; the dot-product of vectors d and q divided by the product of their
ℓ2-norms:

cos (d, q) = d · q
||d|| ||q|| (2.10)

Calculating this for the documents in the collection gives an estimated
value of relevance for all of them. Ordering them based on this estimated
value then produces a ranked list where the highest ranked document is
presumed to be the most interesting for the user. As mentioned before, the
weights represented in the document vector do not necessarily have to be
binary. Salton et al. showed that the product of the term frequency with a
general measure of term importance is highly effective. The measure they
used for term importance was the inverse document frequency proposed by
Spärck Jones [1972] three years earlier.

Probabilistic Relevance Models

In 1976, Robertson and Spärck Jones developed the probabilistic ranking
framework. Within this framework, it is assumed that a document has a
certain probability of being relevant given a query. Then, a search system
that implements models within this framework ranks documents with the
highest probability of being relevant the highest.

Within this framework, making an assumption of binary independence,
which is nicely explained by Robertson and Zaragoza [2009], the so-called
Robertson-Spärck Jones weight can be derived. When assuming that no
relevance labels are available, this leads to an approximation of the classical
inverse document frequency.

By extending this function to include within-document term frequency
information and document length normalization, the well-known BM25

12 CHAPTER 2. BACKGROUND

where wi represents the weight associated with the i-th term in the collection
for this document. These weights can be binary, or if one only wants to
consider the importance of the term in the document, they can be the term
frequency or any weight that considers the “general” term importance.

Then if we have a query q, we can represent it in the same way:

q =
(
q0, · · · , qt

)
(2.9)

where qi represents the weight of the i-th term in the collection. Most values
in these vectors will be zero.

Now it is possible to calculate a similarity score between the query and
every document. A widely used similarity metric is the cosine similarity
between two vectors, which between a document d and a query q is defined
as; the dot-product of vectors d and q divided by the product of their
ℓ2-norms:

cos (d, q) = d · q
||d|| ||q|| (2.10)

Calculating this for the documents in the collection gives an estimated
value of relevance for all of them. Ordering them based on this estimated
value then produces a ranked list where the highest ranked document is
presumed to be the most interesting for the user. As mentioned before, the
weights represented in the document vector do not necessarily have to be
binary. Salton et al. showed that the product of the term frequency with a
general measure of term importance is highly effective. The measure they
used for term importance was the inverse document frequency proposed by
Spärck Jones [1972] three years earlier.

Probabilistic Relevance Models

In 1976, Robertson and Spärck Jones developed the probabilistic ranking
framework. Within this framework, it is assumed that a document has a
certain probability of being relevant given a query. Then, a search system
that implements models within this framework ranks documents with the
highest probability of being relevant the highest.

Within this framework, making an assumption of binary independence,
which is nicely explained by Robertson and Zaragoza [2009], the so-called
Robertson-Spärck Jones weight can be derived. When assuming that no
relevance labels are available, this leads to an approximation of the classical
inverse document frequency.

By extending this function to include within-document term frequency
information and document length normalization, the well-known BM25

2.2. INFORMATION RETRIEVAL 13

function can be derived. Chapter 3 will focus on this model, and additional
information explaining this model will be presented there.

Language Models

Later, language models were proposed [Song and Croft, 1999, Hiemstra,
2001, Zhai and Lafferty, 2002]. The idea behind language models is that
documents are considered samples of language, and queries are modelled
as the result of a generative process from these samples. This process
generates terms in the query by randomly selecting one of the words from
that sample. Let the probability of a document d, consisting of n different
terms, generating a term ti be:

P (ti|d) =
tf ti,d∑n

j=0 tf tj ,d

(2.11)

with tf ti,d being the term frequency of term ti in document d.
Then, if we have a query Q, it is possible to calculate the likelihood that

a document sample generated this query. We know for every term in the
query what the probability is that one of the document samples generated
that term, so with Bayes rule:

P (d|Q) =
P (d) × ∏

q∈Q P (q|d)
P (q) (2.12)

Assuming an uniform relevance prior for the documents, and the fact
that p(q) is constant for all documents we can determine the document with
maximum likelihood through:

P (d|Q) ∝
∏
q∈Q

P (q|d) (2.13)

There are some issues when we take the document with the maximum
likelihood. First, if a query contains multiple terms, a document can only
get a non-zero likelihood of generating that query if all query terms exist in
that document. If this is not the case, the probability of generating that
term would be zero. As we take the product of the individual probabilities
of the query terms, if one of them would be zero, the product would also be.
The second issue is that there is no term-independent specificity weighting.
Terms with a higher degree of specificity should increase the probability
of relevance more than “filler” words. The previously described inverse
document frequency took care of this in the vector space model.

Zhai and Lafferty [2004] show that a simple smoothing technique ad-
dresses both issues at once. Instead of only considering the samples formed

14 CHAPTER 2. BACKGROUND

by the documents, a collection-wide sample is being used, in a mixture model.
This collection-wide sample generates terms according to the frequency in
which the terms appear in the collection:

P (ti|C) = df (ti)∑N
j=0 df (tj)

(2.14)

With N being the number of terms in the collection, and df(ti) the document
frequency of term ti; i.e., the number of documents in the collection in
which term ti appears. Then, the probability estimated by the document
sample is interpolated by the probability based on the collection sample:

P (d|Q) ∝
∏
q∈Q

ω · P (q|d) + (1 − ω) · P (q|C) (2.15)

with ω being the smoothing factor, i.e., how much is the collection sample
weighted against the document sample?

This technique is also known as Jelinek-Mercer smoothing [Jelinek and
Mercer, 1980]. Smoothing the probability estimates like this, solves both
problems: As the collection sample contains all terms, it is no longer possible
for probabilities generated by a specific term to be zero, so the resulting
product will not be zero either. Words with a higher specificity also get a
boost; words with a high specificity have a low probability of being generated
by the collection sample, meaning that it is more important for a document
to contain that word to achieve a high probability of relevance. Words
with a low specificity have a smaller effect; the probability of them being
generated by the collection sample is already relatively high.

Learning-to-Rank

With the increase in compute power, learning-to-rank became a popular
approach to ranking. The methods described in the previous sections can
all be considered unsupervised learning methods if we look at them from a
machine learning perspective. Learning-to-rank models would be considered
supervised or reinforcement learning methods from that perspective. The
goal is to learn a model that, given a query, ranks documents relevant to
that query higher than those not relevant to that query. In general, there
are three ways to achieve this; for all these methods, relevance labels are
assumed to be available from which the function can be learned. Learning-
to-rank methods can be categorized into the following three categories [Liu,
2010]:

14 CHAPTER 2. BACKGROUND

by the documents, a collection-wide sample is being used, in a mixture model.
This collection-wide sample generates terms according to the frequency in
which the terms appear in the collection:

P (ti|C) = df (ti)∑N
j=0 df (tj)

(2.14)

With N being the number of terms in the collection, and df(ti) the document
frequency of term ti; i.e., the number of documents in the collection in
which term ti appears. Then, the probability estimated by the document
sample is interpolated by the probability based on the collection sample:

P (d|Q) ∝
∏
q∈Q

ω · P (q|d) + (1 − ω) · P (q|C) (2.15)

with ω being the smoothing factor, i.e., how much is the collection sample
weighted against the document sample?

This technique is also known as Jelinek-Mercer smoothing [Jelinek and
Mercer, 1980]. Smoothing the probability estimates like this, solves both
problems: As the collection sample contains all terms, it is no longer possible
for probabilities generated by a specific term to be zero, so the resulting
product will not be zero either. Words with a higher specificity also get a
boost; words with a high specificity have a low probability of being generated
by the collection sample, meaning that it is more important for a document
to contain that word to achieve a high probability of relevance. Words
with a low specificity have a smaller effect; the probability of them being
generated by the collection sample is already relatively high.

Learning-to-Rank

With the increase in compute power, learning-to-rank became a popular
approach to ranking. The methods described in the previous sections can
all be considered unsupervised learning methods if we look at them from a
machine learning perspective. Learning-to-rank models would be considered
supervised or reinforcement learning methods from that perspective. The
goal is to learn a model that, given a query, ranks documents relevant to
that query higher than those not relevant to that query. In general, there
are three ways to achieve this; for all these methods, relevance labels are
assumed to be available from which the function can be learned. Learning-
to-rank methods can be categorized into the following three categories [Liu,
2010]:

2.2. INFORMATION RETRIEVAL 15

Pointwise Pointwise methods are most comparable to standard regression
methods (e.g. linear regression). The idea is to learn a function that directly
estimates a document’s relevance label. Consider that we have n query-
document pairs for which relevance labels are available, with m independent
variables per pair. Such variables can be query dependent, e.g. the scores
produced by the models described in the previous sections, or they can be
query independent, e.g. a document importance measure like the PageRank
score [Page et al., 1999]. The relevance labels for these pairs can then be
expressed as a vector y, and the independent variables as a matrix X:

y =




y1
...

yn


 (2.16) X =




x1,1 · · · x1,m
...

xn,1 · · · xn,m


 (2.17)

The goal would be to learn a function ŷ = f(X) such that some distance
measure between L (ŷ, y) is minimized. Commonly used measures for this
are mean square error or mean absolute error. The pointwise learning
approach to ranking has some undesirable effects, however. Consider a
situation where we have three documents; [d1, d2, d3], with relevance labels
[1, 0, 0], i.e. document d1 is relevant and the other documents are not.
Then, two different ranking functions, a and b, might produce the following
relevance estimates: a = [1, 0.9, 0.8] and b = [0, 0.1, 0.2], which results in
the following respective rankings: [d1, d2, d3] and [d3, d2, d1]. The ranking
produced by system a is objectively better. It ranks the relevant document
as the most relevant. System b, however, ranks the relevant document as
the least relevant. If we evaluate the two systems with a loss function like
mean absolute error however, system b would seem the better one as the
mean absolute error to [1, 0, 0] is smaller.

Pairwise Pairwise ranking tries to deal with this problem by not directly
learning from the relevance labels but by looking at the relative preferences
between pairs of documents. The idea behind this is that it does not matter
what the actual ranking score value is, as long as it is higher for relevant
documents than for non-relevant ones.

Pairwise functions consider, given a query, two documents at a time.
The function tries to determine which one of the two documents is more
relevant than the other. If we consider the same set of relevance labels y
and independent variables X, then if we would take a pair of documents
xk and xl, with their corresponding relevance labels yk and yl, assuming

16 CHAPTER 2. BACKGROUND

yk ̸= yl, then we will learn the following function:

f(xk, xl) =
{

0 if yk < yl

1 if yk > yl

(2.18)

This function can be learned by any binary classification method. After the
method is learned, it can be used to determine an ordering of documents.
Pairwise methods tend to be more expensive than pointwise methods, as
the number of samples to train on for pointwise methods is n, with n being
the number of documents for which relevance assessments are available per
query. For pairwise methods, every document with a label can be compared
with every other document, creating n2 training samples per query.

A disadvantage of pairwise methods is that every pair is treated equally
when training a model. There is no difference when comparing the two
highest-ranked documents to comparing the two lowest-ranked documents,
even though users typically only consider documents at the top of the
ranking [Joachims et al., 2005].

Listwise Instead of looking at pairs of documents only, the listwise
approach considers the whole ranking. This way, the top of the ranking can
affect the function’s learning more than the bottom of the ranking. Generally,
when learning a listwise learning-to-rank method, the goal is to optimize
some ranking metric quality directly. For example, LambdaMart [Burges,
2010] calculates what the differences on ranking metrics are by virtually
swapping documents, these differences are used for determining gradients.
(The gradients can not be calculated directly as the evaluation metric is not
continuous with respect to the model parameters.) Examples of ranking
metrics will be introduced in Section 2.2.3.

Multistage Ranking In many cases, applying inference to all docu-
ments in the collection is prohibitively costly. To reduce computational
costs, multi-stage ranking is often used [Broder et al., 2003]. A non-learning-
to-rank approach is often used to create an initial ranking, under the
assumption that the top-k documents contain all relevant documents. The
learned method only reorders the top-k documents to present to the user.

In these cases, it can make sense to rank the top-k documents using an
inverted index, while the reranking is done with another ranking approach.

Vector Space Models revisited

With the rise of large language models after the introduction of BERT
by Devlin et al. [2019], the vector space model has become more popular

16 CHAPTER 2. BACKGROUND

yk ̸= yl, then we will learn the following function:

f(xk, xl) =
{

0 if yk < yl

1 if yk > yl

(2.18)

This function can be learned by any binary classification method. After the
method is learned, it can be used to determine an ordering of documents.
Pairwise methods tend to be more expensive than pointwise methods, as
the number of samples to train on for pointwise methods is n, with n being
the number of documents for which relevance assessments are available per
query. For pairwise methods, every document with a label can be compared
with every other document, creating n2 training samples per query.

A disadvantage of pairwise methods is that every pair is treated equally
when training a model. There is no difference when comparing the two
highest-ranked documents to comparing the two lowest-ranked documents,
even though users typically only consider documents at the top of the
ranking [Joachims et al., 2005].

Listwise Instead of looking at pairs of documents only, the listwise
approach considers the whole ranking. This way, the top of the ranking can
affect the function’s learning more than the bottom of the ranking. Generally,
when learning a listwise learning-to-rank method, the goal is to optimize
some ranking metric quality directly. For example, LambdaMart [Burges,
2010] calculates what the differences on ranking metrics are by virtually
swapping documents, these differences are used for determining gradients.
(The gradients can not be calculated directly as the evaluation metric is not
continuous with respect to the model parameters.) Examples of ranking
metrics will be introduced in Section 2.2.3.

Multistage Ranking In many cases, applying inference to all docu-
ments in the collection is prohibitively costly. To reduce computational
costs, multi-stage ranking is often used [Broder et al., 2003]. A non-learning-
to-rank approach is often used to create an initial ranking, under the
assumption that the top-k documents contain all relevant documents. The
learned method only reorders the top-k documents to present to the user.

In these cases, it can make sense to rank the top-k documents using an
inverted index, while the reranking is done with another ranking approach.

Vector Space Models revisited

With the rise of large language models after the introduction of BERT
by Devlin et al. [2019], the vector space model has become more popular

2.2. INFORMATION RETRIEVAL 17

again due to what is called dense retrieval.
The basic idea is to estimate the relevance of a document d for a query

q as follows:
rel(q, d) = ω (ϕ (q) , ψ (d)) (2.19)

Here, ψ and ϕ are learned functions that use large language models to map
the query and the document to vectors with relatively low dimensional-
ity [Lin, 2022].2 These functions map the query and the document to the
same space. When documents are relevant to the query, the resulting vectors
should be similar, while if the document is not relevant, they should be dis-
similar, as measured through a similarity function ω, often the dot-product
or the cosine similarity as shown in Equation (2.10).

Finding the vectors closest to a query vector then corresponds directly
to the nearest neighbor search problem. In the case of dense retrieval,
dedicated dense retrieval systems (e.g. FAISS [Johnson et al., 2019]) tend
to be used instead of an inverted index.

2.2.3 Evaluation
In the previous section, a variety of ranking approaches has been introduced.
When comparing different ranking methods to each other, we need to be
able to measure the quality of a result list for a given query. Many metrics
have been introduced in the literature. Here, we focus on the most common
evaluation metrics, including all the metrics used in this thesis.

The metrics are @k metrics, these only evaluate the documents ranked
up to rank k, i.e., if k = 30, we only consider the first 30 documents
produced by the system. The evaluation metrics that we describe are either
set metrics or ranking metrics, set metrics consider the first k documents,
but not the ranking within the first k documents, while ranking metrics
also consider the ranking of the first k documents retrieved.

Precision

A straightforward approach to evaluating a set of documents produced by
a system is through precision. The precision metric counts the number of
relevant documents found by the system, which is then divided by the total
number of documents found by the system:

P@k =
∑k

i=1 rel (di)
k

(2.20)

2102 - 103 instead of the 108 - 109 parameters of the LLM’s.

18 CHAPTER 2. BACKGROUND

In this case, rel(.) is a function that returns 1 if the document is relevant;
otherwise, 0. If k = 30, then only the first 30 documents are considered. If
ten of these documents are relevant, then P@30 = 10

30 = 1
3 . Precision can,

however, be somewhat limited in its use. In this example, the quality of
the found documents might not seem good, as only a third of the produced
documents are relevant. However, when only ten relevant documents are
present in the collection, the P@30 found is the maximum attainable.

Recall

Another approach to evaluate a set of documents would be to measure how
many relevant documents were retrieved compared to the total number of
relevant documents in the collection. This measure is called recall:

R@k =
∑k

i=1 rel (di)∑N
i=1 rel (di)

(2.21)

Here N is the number of documents in the collection. If, again, k = 30
and we found 10 relevant documents out of 15 known relevant documents
in the collection, then R@30 = 10

15 = 2
3 . The problem with recall is that it

does not distinguish well between systems if only few relevant documents
exist. Also, it is far from straightforward to determine the total number of
relevant documents for an arbitrary query.

Average Precision

Consider the situation where three documents are retrieved, and two systems
might produce rankings with the following relevance labels: [1, 0, 0] and
[0, 0, 1]. Both rankings achieve the same P@3 and R@3 scores. The
previously introduced metrics cannot distinguish between ranking quality in
this situation. It is, however, clear that the order of documents in the first
ranking should be preferred over the document-list in the second ranking.
Instead of measuring the precision only at rank k, the average precision
measure calculates it every time a relevant document is encountered. The
sum of these values is divided by the number of relevant documents found
up to k:

AP@k = 1∑N
i=1 rel (di)

k∑
i=1

P (i) · rel (di) (2.22)

Looking back at the two rankings, [1, 0, 0] and [0, 0, 1], the rankings produce
an AP@3 of 1 and 1

3 , respectively.

18 CHAPTER 2. BACKGROUND

In this case, rel(.) is a function that returns 1 if the document is relevant;
otherwise, 0. If k = 30, then only the first 30 documents are considered. If
ten of these documents are relevant, then P@30 = 10

30 = 1
3 . Precision can,

however, be somewhat limited in its use. In this example, the quality of
the found documents might not seem good, as only a third of the produced
documents are relevant. However, when only ten relevant documents are
present in the collection, the P@30 found is the maximum attainable.

Recall

Another approach to evaluate a set of documents would be to measure how
many relevant documents were retrieved compared to the total number of
relevant documents in the collection. This measure is called recall:

R@k =
∑k

i=1 rel (di)∑N
i=1 rel (di)

(2.21)

Here N is the number of documents in the collection. If, again, k = 30
and we found 10 relevant documents out of 15 known relevant documents
in the collection, then R@30 = 10

15 = 2
3 . The problem with recall is that it

does not distinguish well between systems if only few relevant documents
exist. Also, it is far from straightforward to determine the total number of
relevant documents for an arbitrary query.

Average Precision

Consider the situation where three documents are retrieved, and two systems
might produce rankings with the following relevance labels: [1, 0, 0] and
[0, 0, 1]. Both rankings achieve the same P@3 and R@3 scores. The
previously introduced metrics cannot distinguish between ranking quality in
this situation. It is, however, clear that the order of documents in the first
ranking should be preferred over the document-list in the second ranking.
Instead of measuring the precision only at rank k, the average precision
measure calculates it every time a relevant document is encountered. The
sum of these values is divided by the number of relevant documents found
up to k:

AP@k = 1∑N
i=1 rel (di)

k∑
i=1

P (i) · rel (di) (2.22)

Looking back at the two rankings, [1, 0, 0] and [0, 0, 1], the rankings produce
an AP@3 of 1 and 1

3 , respectively.

2.2. INFORMATION RETRIEVAL 19

(Normalized) Discounted Cumulative Gain

Discounted cumulative gain is an evaluation metric developed after the
observation that users often only look at the highest-ranked documents
and that documents might not have binary relevance labels (when we refer
to their labels as graded relevance assessments) [Järvelin and Kekäläinen,
2002]. If a document is ranked at, say, rank 5, it might be possible that it is
not considered by the user anymore, because they would rather reformulate
the query. Plus, the metrics described before would rank the following two
rankings to be of equal quality: [2, 1, 0] and [1, 2, 0] Discounted cumulative
gain was developed with the intention that there should be a discounted gain
every time a new relevant document is found, while non-binary relevance
labels can be taken into account. This discount is applied by dividing by
the logarithm of the rank plus one:

DCG@k =
k∑

i=1

rel(di)
log2(i + 1) (2.23)

In this case, rel(·) does not return a binary value but the actual relevance
assessment label value.

A disadvantage of DCG is that the scores produced by this metric can
vary greatly between rankings. If many highly relevant documents exist
for a query, the values DCG takes can be much higher than if only one
moderately relevant label is available. Normalized discounted cumulative
gain takes care of this by dividing by the highest possible DCG that can
be achieved. So normalized discounted cumulative gain is calculated by
dividing the DCG of the ranking, by the DCG of the ideal ranking:

NDCG@k = DCG@k

IDCG@k
(2.24)

with IDCG@k being the DCG@k for a perfect ranking.

Reciprocal Rank

The metrics described before score the whole ranking up to rank k. This
might be unnecessary, for example, in a question answering scenario. If a
document found is relevant, it may not matter anymore what the relevance
assessment of the remaining documents. After all, the user would already
have the answer, and likely stop looking for more information. The reciprocal
rank therefore takes only the first found relevant document into account.
Reciprocal rank [Voorhees and Tice, 2000] is the inverse of the index of the

20 CHAPTER 2. BACKGROUND

first found document:
RR@k = 1

rank(d) (2.25)

where only the first k documents are considered. Here, rank(d) refers to
the position of the first found relevant document. If the index of the first
relevant is greater than k, the resulting score is 0.

2.2.4 Significance Testing
Often, significance testing is used to evaluate if one approach is better
compared to another. First, it is assumed that the output scores of two
approaches, measured for example by one of the above metrics, to be sample
distributions. Then with some assumptions, it is possible to calculate the
probability that we would expect to see the difference observed to at least
be as extreme if they were sampled from the same population distribution.
If this probability is lower than, say for example 5%, one can assume that
the population distributions are not the same, and that the higher scoring
approach is better than the other; i.e. it is not likely that the observed
difference can be explained due to a sampling error alone.

However, some of the measures described above can still be problematic
when they are used to compare different ranking approaches. It is not always
entirely clear how to do significance testing on some metrics. For example,
Fuhr [2018] argues that in the case of reciprocal rank, the scores are not
on an interval scale, but an ordinal one. It is not possible to calculate a
mean score for an ordinal scale, which is however necessary for the many
common tests for significance, e.g. a t-test. Fuhr describes this, and other
mistakes made when evaluating IR systems, plus how to avoid them. There
are however some contrary views [Sakai, 2021] that do not necessarily agree
with these views. Specifically, Sakai argues that are cases where ordinal is
often averaged, and tested with parametric tests; for example in the case of
multi-point scale ratings in user studies. To Sakai it also not completely
clear if Reciprocal Rank cannot be considered as a interval scale.

2.3 Data Retrieval
In the case of information retrieval, the concept of relevance is critical. When
someone issues a query, it does not necessarily have to be the case that words
in the query must be present for the document to be relevant. Information
retrieval has to deal with the uncertainty inherent to the information seeking
process. Also, if only some relevant documents are found, this does not

20 CHAPTER 2. BACKGROUND

first found document:
RR@k = 1

rank(d) (2.25)

where only the first k documents are considered. Here, rank(d) refers to
the position of the first found relevant document. If the index of the first
relevant is greater than k, the resulting score is 0.

2.2.4 Significance Testing
Often, significance testing is used to evaluate if one approach is better
compared to another. First, it is assumed that the output scores of two
approaches, measured for example by one of the above metrics, to be sample
distributions. Then with some assumptions, it is possible to calculate the
probability that we would expect to see the difference observed to at least
be as extreme if they were sampled from the same population distribution.
If this probability is lower than, say for example 5%, one can assume that
the population distributions are not the same, and that the higher scoring
approach is better than the other; i.e. it is not likely that the observed
difference can be explained due to a sampling error alone.

However, some of the measures described above can still be problematic
when they are used to compare different ranking approaches. It is not always
entirely clear how to do significance testing on some metrics. For example,
Fuhr [2018] argues that in the case of reciprocal rank, the scores are not
on an interval scale, but an ordinal one. It is not possible to calculate a
mean score for an ordinal scale, which is however necessary for the many
common tests for significance, e.g. a t-test. Fuhr describes this, and other
mistakes made when evaluating IR systems, plus how to avoid them. There
are however some contrary views [Sakai, 2021] that do not necessarily agree
with these views. Specifically, Sakai argues that are cases where ordinal is
often averaged, and tested with parametric tests; for example in the case of
multi-point scale ratings in user studies. To Sakai it also not completely
clear if Reciprocal Rank cannot be considered as a interval scale.

2.3 Data Retrieval
In the case of information retrieval, the concept of relevance is critical. When
someone issues a query, it does not necessarily have to be the case that words
in the query must be present for the document to be relevant. Information
retrieval has to deal with the uncertainty inherent to the information seeking
process. Also, if only some relevant documents are found, this does not

2.3. DATA RETRIEVAL 21

necessarily have to be a problem, as long as the information need of the user
is satisfied. If we think about a search engine from a user’s perspective, a
document is only relevant if it contains the information they seek. In order
to find this information, the user has to express their information need in a
query, which the systems then have to interpret somehow in order to present
the user (hopefully) the correct information. It is however possible that two
different users issue the same query, e.g., the weather. Suppose one user is
interested in today’s weather, while the other is interested in tomorrow’s
weather. Different documents will be relevant for the user in these cases:
relevancy is also tied to the user’s expectations, that may not be known to
the system.

In the field of data retrieval, the notion of relevancy does not exist.
When we speak about data retrieval, we are interested in retrieving all
data that fulfills some predicate. A predicate is a function that takes some
input, i.e. the data, and it returns either true or false. In data retrieval we
are interested in the data for which such a predicate resolves to true. It
assumes that there is no ambiguity in the data and the request for data.
An example query could be; to provide a list of all dog breeds. In this case,
the system should return a list of all dog breeds known by the system. If
it would accidentally forget to return one dog breed or includes an answer
that is not correct, the system works incorrectly. The most commonly
used data retrieval systems are relational database management systems
(RDBMS) or relational databases. Relational databases represent tabular
data as relations, a concept of from relational algebra; where a relation is
defined as a set of tuples. In a relational database, a table corresponds to
the relation, a row is one of the tuples, and a column can be considered
an attribute in the tuple. Relational databases implement the operators as
defined by relational algebra, which means users can select columns from
a table (projection), filter rows that fulfill certain predicates (selection),
and combine tables into new ones (join). There are differences between the
theoretic framework of relational algebra and its wide-spread implementation
in relational databases. For example, in practice, it is often possible to have
duplicate rows in a relational database, which is inconsistent with a set.

In the 1970s, relational databases have standardized on the structured
query language (SQL). SQL is a declarative language; expressions specify
which data needs to be retrieved, but not how. Depending on what a user
expects from the program, choosing different database management systems
for different applications makes sense. In the case of storing employee
records for a company, it makes sense to store this data in a database suited
for online transaction processing (OLTP). Processing a transaction means

22 CHAPTER 2. BACKGROUND

that we update the data; e.g. adding new data to a table. When data
analysis for scientific studies is important, storing data in a database system
focused on online analytics processing (OLAP) makes more sense. With
analytics we mean queries that retrieve and process data, as opposed to
queries that update the data.

2.3.1 Physical vs. Logical models
As SQL is a declarative language, data management systems’ physical and
logical models are strongly separated. Although many dialects of SQL exist,
basic SQL queries are system agnostic and can run on different types of
SQL engines. The logical model of data management systems are the SQL
queries; what should be done. The physical model is how this should be
done. Depending on which system is used, things like join ordering, how the
data is processed, or how it is represented internally, can be very different.
The logical model does not “mind” how the query is resolved, as long as it
is done correctly.

In the case of information retrieval, the physical and logical models
are often more entangled. Model specification and query processing often
co-exist. When this is the case, it can be harder to detect why systems
differ when they implement the same models. Chapter 3 will highlight this
in more detail.

Lin [2022] discusses how information retrieval might benefit from sepa-
rating physical and logical models in the context of dense retrieval models.
Chapter 4 will discuss his proposal in more detail.

2.3.2 Columns vs. Rows
Earlier database management systems were row oriented. Row-oriented
means that when we look at how data is physically stored on the computer,
all data within a tuple is represented near each other in memory. This
orientation is especially well suited when a database needs to process many
transactions. In the past, some IR systems have been built on top of such
databases. However, these were much less efficient than when inverted in-
dexes were used. Later, column-oriented databases were developed Copeland
and Khoshafian [1985], Boncz [2002]. These databases are more suited for
analytical queries, at the cost of more expensive transaction processing. As
these databases are designed for efficient and scalable analytics, they are
also more suited for information retrieval systems. This practice is used
throughout this thesis.

22 CHAPTER 2. BACKGROUND

that we update the data; e.g. adding new data to a table. When data
analysis for scientific studies is important, storing data in a database system
focused on online analytics processing (OLAP) makes more sense. With
analytics we mean queries that retrieve and process data, as opposed to
queries that update the data.

2.3.1 Physical vs. Logical models
As SQL is a declarative language, data management systems’ physical and
logical models are strongly separated. Although many dialects of SQL exist,
basic SQL queries are system agnostic and can run on different types of
SQL engines. The logical model of data management systems are the SQL
queries; what should be done. The physical model is how this should be
done. Depending on which system is used, things like join ordering, how the
data is processed, or how it is represented internally, can be very different.
The logical model does not “mind” how the query is resolved, as long as it
is done correctly.

In the case of information retrieval, the physical and logical models
are often more entangled. Model specification and query processing often
co-exist. When this is the case, it can be harder to detect why systems
differ when they implement the same models. Chapter 3 will highlight this
in more detail.

Lin [2022] discusses how information retrieval might benefit from sepa-
rating physical and logical models in the context of dense retrieval models.
Chapter 4 will discuss his proposal in more detail.

2.3.2 Columns vs. Rows
Earlier database management systems were row oriented. Row-oriented
means that when we look at how data is physically stored on the computer,
all data within a tuple is represented near each other in memory. This
orientation is especially well suited when a database needs to process many
transactions. In the past, some IR systems have been built on top of such
databases. However, these were much less efficient than when inverted in-
dexes were used. Later, column-oriented databases were developed Copeland
and Khoshafian [1985], Boncz [2002]. These databases are more suited for
analytical queries, at the cost of more expensive transaction processing. As
these databases are designed for efficient and scalable analytics, they are
also more suited for information retrieval systems. This practice is used
throughout this thesis.

2.3. DATA RETRIEVAL 23

2.3.3 NoSQL and Graphs
In recent years there has been interest in database systems that approach
data retrieval differently than traditional relational database systems [Cat-
tell, 2011]. These systems approach data retrieval without relying on the
relational model. This could, for example, mean that joins are inefficient or
not even possible to express within the system. This might seem limiting,
but if certain operations are not supported, it might be possible to increase
the efficiency of other operations. A very efficient key-value store like
BigTable [Chang et al., 2006] is a good example to illustrate this trade-off.

In particular, graph database (e.g. Neo4J [Webber, 2012]) systems are a
type of NoSQL database management systems that have been of interest
in the database community in the last few years. The concept of graphs is
explained in Section 2.4. The research presented in Chapter 4 explores the
possible benefits of considering these databases from an IR point of view.

2.3.4 Embedded Databases
Database management systems usually run on dedicated database servers.
It is, however, also possible to use so-called embedded database systems.
These systems do not require a dedicated database server, but work within
the application process itself. An advantage of embedded databases is
that they share memory space with the application process. This makes
it possible to instantly move data from the database to a usable format
for the application process. For information retrieval applications, this
might be beneficial, especially in the case of multistage ranking approaches
as described in Section 2.2.2. However, embedded databases might not
be the best solution in every case. When a dedicated database server is
run, it is easier for multiple clients to read and write to the same database
simultaneously.

2.3.5 Databases for Information Retrieval
As databases are designed for the purpose of data retrieval, they are es-
pecially suited for information retrieval in the case of Boolean retrieval.
However, it is harder to express the models that capture relevancy using
a purely data retrieval approach. When expressing models that represent
uncertainty, i.e. model a likelihood measure of relevance, much data must be
processed efficiently—inverted indexes are used to select critical data quickly.
Older (row-based) database systems were not efficient enough to retrieve
all necessary data to create rankings and model uncertainty simultaneously.

24 CHAPTER 2. BACKGROUND

After columnar databases became prominent, it was possible to express
simple ranking models that consider uncertainty, with query plans that can
be executed in a reasonably efficient manner. In this thesis, we will use,
column oriented databases for information retrieval problems. Specifically,
MonetDB [Boncz, 2002], a non-embedded columnar database, is used for the
work presented in Chapter 3, and DuckDB [Raasveldt and Mühleisen, 2019],
an embedded column oriented database, is used for the work presented in
Chapters 4 and 6.

2.4 Graphs
As mentioned in Section 2.3.3, in this thesis, we present work where approach
information retrieval using graphs. In this section we describe what a graph
is and which kinds of graphs exist. The graphs definitions follow the
descriptions by Sakr et al. [2021] and Angles [2018].

Basic Graphs A graph is a structure consisting of a set of objects where
pairs of these objects can be related. Typically, these objects are called
nodes or vertices, and the relation between a pair of objects is referred to
as an edge. In this context, a relation means something different than a
relation in the context of relational algebra. In a RDBMS, a relation is
implemented through a table, so tuples are “related” if they exist in the
same table. In a graph, a relation describes a link between two objects.
These objects do not necessarily have to be presented in the same table
if we would use the relational model. We still use the word relation when
talking about graphs, as done in literature.

More formally, a graph G is a pair of vertices V and edges E;

G = (V, E) (2.26)

where V is the set of vertices in the graph, and E a set of pairs (sets with
two elements) of vertices:

E =
{

{v1, v2} | {v1, v2} ∈ V 2
}

(2.27)

Graphs can be depicted graphically illustrated as a set of circles, where
every circle represents a vertex. If an edge exists between two vertices, a
line is drawn between the two circles. Figure 2.1a, for example illustrates
a graph with V = {x1, x2, x3} and E = {{x1, x2} , {x2, x3}}. It does not
necessarily have to be the case that every vertex is included in at least one
edge.

24 CHAPTER 2. BACKGROUND

After columnar databases became prominent, it was possible to express
simple ranking models that consider uncertainty, with query plans that can
be executed in a reasonably efficient manner. In this thesis, we will use,
column oriented databases for information retrieval problems. Specifically,
MonetDB [Boncz, 2002], a non-embedded columnar database, is used for the
work presented in Chapter 3, and DuckDB [Raasveldt and Mühleisen, 2019],
an embedded column oriented database, is used for the work presented in
Chapters 4 and 6.

2.4 Graphs
As mentioned in Section 2.3.3, in this thesis, we present work where approach
information retrieval using graphs. In this section we describe what a graph
is and which kinds of graphs exist. The graphs definitions follow the
descriptions by Sakr et al. [2021] and Angles [2018].

Basic Graphs A graph is a structure consisting of a set of objects where
pairs of these objects can be related. Typically, these objects are called
nodes or vertices, and the relation between a pair of objects is referred to
as an edge. In this context, a relation means something different than a
relation in the context of relational algebra. In a RDBMS, a relation is
implemented through a table, so tuples are “related” if they exist in the
same table. In a graph, a relation describes a link between two objects.
These objects do not necessarily have to be presented in the same table
if we would use the relational model. We still use the word relation when
talking about graphs, as done in literature.

More formally, a graph G is a pair of vertices V and edges E;

G = (V, E) (2.26)

where V is the set of vertices in the graph, and E a set of pairs (sets with
two elements) of vertices:

E =
{

{v1, v2} | {v1, v2} ∈ V 2
}

(2.27)

Graphs can be depicted graphically illustrated as a set of circles, where
every circle represents a vertex. If an edge exists between two vertices, a
line is drawn between the two circles. Figure 2.1a, for example illustrates
a graph with V = {x1, x2, x3} and E = {{x1, x2} , {x2, x3}}. It does not
necessarily have to be the case that every vertex is included in at least one
edge.

2.4. GRAPHS 25

x1

x2

x3

(a) Basic Graph

x1

x2

x3

(b) Directed Graph

x1

x2

x3

(c) Mixed Graph

Figure 2.1: Example of (a) a simple graph, (b) a directed graph, and
(c) a mixed graph.

A graph is called bi-partite if it is possible to separate the set of vertices
in two disjoint subsets, such that all edges only connect vertices from the
two subsets with each other (there are no edges between vertices in the
same subset).

The graph’s structure can be used to analyze how things relate. Consid-
ering geographical maps, we can model countries as vertices and create an
edge between two countries if they are neighboring. Then, we can use the
graph structure to analyze the possible paths from one country to another
where only the fewest possible other countries are crossed, on a smaller
scale this is useful for navigation systems. For many use cases, however,
it is helpful to let graphs have less restrictive rules on how they might be
formed.

Directed Edges The most basic extension of graphs is that they are
allowed to have directed edges. This means an edge can exist from one
node to another, but this connection does not automatically also exist in
the opposite direction. In the case of countries and their neighbors, this
does not make sense; if one country borders another, the opposite is also
true. However, on the internet, one website might contain a hyperlink to
another, while the opposite does not have to be the case. We need directed
graphs to properly model the situation. Again, we can use this model to
see how many paths exist from one website to another, with the restriction
of visiting two other websites. In this case, E is a set of ordered pairs of
vertexes:

E =
{

(v1, v2) | (v1, v2) ∈ V 2
}

(2.28)

Figure 2.1b shows an illustration of the following directed graph: V =
{x1, x2, x3} and E = {(x1, x2) , (x2, x3)}

26 CHAPTER 2. BACKGROUND

x1 : 2

x2 : 2

x3 : 2

x4 : 1

(a) Data Graph

x1

x2

x3

3 2
4

(b) Weighted Graph

Figure 2.2: Example of (a) a data graph, and (b) a weighted graph.

Mixed Graphs Mixed graphs are graphs that accept both undirected
and directed edges. In that case, a graph is defined with two sets of edges,
where one set describes the undirected edges and the other the directed
edges:

G = {V, E1, E2} (2.29)

with E1 and E2 being defined as edges as presented in Equations (2.27)
and (2.28) respectively. Figure 2.1c shows the illustration of a mixed graph:
V = {x1, x2, x3}, E1 = {{x1, x2}}, and E2 = {(x2, x3)}. Mixed graphs are
sometimes used in applications where the direction of an edge is not known
but it is clear that a relation exists. Types of these graphs appear, for
example, in causality research.

2.4.1 Labeled Graphs
None of the types of graphs we described so far contain data themselves; we
can only reason about the structure of the graphs. Even though this already
has many practical applications, graphs are more useful for the applications
we are interested in when they are allowed to contain data. There are two
ways to add data to graphs; it is possible to add data to the vertices or the
edges.

Data Graph A data graph is a type of graph where vertices have data.
Figure 2.2a shows an example of a (directed) graph where every vertex is
labeled with a number. These graphs are, for example, used in the PageRank
algorithm [Page et al., 1999]. In this algorithm, every vertex represents
a webpage, and a directed edge exists between a node a to b if a link on
website a points to website b. Then by randomly walking over this graph or
visiting a new website randomly, it is possible to count how often a node
has been visited. The number of visits corresponds to the PageRank score.
Normalized PageRank scores correspond to the probabilities found in a
Markov process in equilibrium.

26 CHAPTER 2. BACKGROUND

x1 : 2

x2 : 2

x3 : 2

x4 : 1

(a) Data Graph

x1

x2

x3

3 2
4

(b) Weighted Graph

Figure 2.2: Example of (a) a data graph, and (b) a weighted graph.

Mixed Graphs Mixed graphs are graphs that accept both undirected
and directed edges. In that case, a graph is defined with two sets of edges,
where one set describes the undirected edges and the other the directed
edges:

G = {V, E1, E2} (2.29)

with E1 and E2 being defined as edges as presented in Equations (2.27)
and (2.28) respectively. Figure 2.1c shows the illustration of a mixed graph:
V = {x1, x2, x3}, E1 = {{x1, x2}}, and E2 = {(x2, x3)}. Mixed graphs are
sometimes used in applications where the direction of an edge is not known
but it is clear that a relation exists. Types of these graphs appear, for
example, in causality research.

2.4.1 Labeled Graphs
None of the types of graphs we described so far contain data themselves; we
can only reason about the structure of the graphs. Even though this already
has many practical applications, graphs are more useful for the applications
we are interested in when they are allowed to contain data. There are two
ways to add data to graphs; it is possible to add data to the vertices or the
edges.

Data Graph A data graph is a type of graph where vertices have data.
Figure 2.2a shows an example of a (directed) graph where every vertex is
labeled with a number. These graphs are, for example, used in the PageRank
algorithm [Page et al., 1999]. In this algorithm, every vertex represents
a webpage, and a directed edge exists between a node a to b if a link on
website a points to website b. Then by randomly walking over this graph or
visiting a new website randomly, it is possible to count how often a node
has been visited. The number of visits corresponds to the PageRank score.
Normalized PageRank scores correspond to the probabilities found in a
Markov process in equilibrium.

2.4. GRAPHS 27

Chris ArjenKamphuis
knows

learnsFrom

lastName

Figure 2.3: Example of a W3C RDF graph.

Weighted Graph A weighted graph is a type of graph where edges
contain data. Figure 2.2b shows an example of a (directed) graph where
every edge is labeled with a number. For example, these kinds of graphs
are used to calculate the shortest distance between nodes. They are, for
example, useful for navigation systems. There are two possible paths if we
need to travel from location x1 to location x3. The path from x1 directly
to x3 is shorter than going from x1 to x3 via x2. When graphs are larger,
algorithms like Dijkstra’s algorithm [Dijkstra, 1959] can efficiently find the
shortest path over weighted graphs.

Pregel/Giraph Graph An obvious extension of the data graph is, of
course, adding data to both the vertices and edges. In this context, we refer
to them as Pregel/Giraph graphs [Malewicz et al., 2010, Apache Software
Foundation, 2012], as these systems are widely used implementations of these
graphs. Some algorithms need graphs to have both edge and vertex data. An
example is the node2vec algorithm, which generates vector representations
of the vertices of the graph. These graphs are used for various machine
learning applications. Formally the data on the graph can be expressed by
a labeling function:

ρ : (V ∪ E) → w | w ∈ R+ (2.30)

In this case, we assume that the data are positive numbers, as often it
is a constraint imposed by algorithms. There are however no theoretical
restrictions from graph theory that impose this constraint. The data graph
and weighted graph can be expressed with the same labeling function, with
just the vertices or the edges as input for the labeling function.

2.4.2 RDF graphs
Research Description Framework (RDF) graphs are directed graphs where
edges have labels and where multiple edges may exist between a pair of nodes.
Graphs that allow multiple edges between a pair of nodes are also called
multi-graphs. They are a standard by the World Wide Web Consortium

28 CHAPTER 2. BACKGROUND

Chris
lastName: Kamphuis

born: 1993
Arjen

knows
since: 2014

learnsFrom

Figure 2.4: Example of a Property Graph.

(W3C). The idea behind RDF graphs is that they can be resolved by a
collection of so-called triples. These triples contain a subject, predicate,
and object. The predicate describes the relation (edge) between the subject
(node) and the object (node); a collection of triples forms a graph. RDF
graphs are widely used to represent knowledge graphs. These are widely
used to store information about named entities; things in the real world like
persons, locations, or organizations. As a rule of thumb, you could say that
everything that could have a Wikipedia entry can be considered a named
entity. Knowledge graphs have many applications in information retrieval.
It is, for example, possible to generate entity cards [Hasibi et al., 2017a] on
top of search engine result pages using knowledge graphs. Figure 2.3 shows
an example of a small RDF graph.

2.4.3 Property Graphs
The final type of graph we discuss is the property graph. Property graphs
allow everything we described before, while vertices can also have labels,
and vertices and edges can have property-value pairs (multiple values per
property are even allowed). A property-value represents some named data
for either a vertex or edge. For example, if a node represents a person,
the person’s age can be a property of the node. Depending on the type
of property graph, the graph might also contain multiple vertex or edge
labels. Figure 2.4 shows an example of a property graph. The node with
label Chris has last name and birth year properties. The edge with label
knows from the node Chris to the node Arjen has a timestamp as a property.
Property graphs have high expressive power, and have become the preferred
data model for graph databases.

Formally, to complement our previous definitions of vertices and edges,
we assume the existence of three infinite sets; L, P , and A. L is an infinite

28 CHAPTER 2. BACKGROUND

Chris
lastName: Kamphuis

born: 1993
Arjen

knows
since: 2014

learnsFrom

Figure 2.4: Example of a Property Graph.

(W3C). The idea behind RDF graphs is that they can be resolved by a
collection of so-called triples. These triples contain a subject, predicate,
and object. The predicate describes the relation (edge) between the subject
(node) and the object (node); a collection of triples forms a graph. RDF
graphs are widely used to represent knowledge graphs. These are widely
used to store information about named entities; things in the real world like
persons, locations, or organizations. As a rule of thumb, you could say that
everything that could have a Wikipedia entry can be considered a named
entity. Knowledge graphs have many applications in information retrieval.
It is, for example, possible to generate entity cards [Hasibi et al., 2017a] on
top of search engine result pages using knowledge graphs. Figure 2.3 shows
an example of a small RDF graph.

2.4.3 Property Graphs
The final type of graph we discuss is the property graph. Property graphs
allow everything we described before, while vertices can also have labels,
and vertices and edges can have property-value pairs (multiple values per
property are even allowed). A property-value represents some named data
for either a vertex or edge. For example, if a node represents a person,
the person’s age can be a property of the node. Depending on the type
of property graph, the graph might also contain multiple vertex or edge
labels. Figure 2.4 shows an example of a property graph. The node with
label Chris has last name and birth year properties. The edge with label
knows from the node Chris to the node Arjen has a timestamp as a property.
Property graphs have high expressive power, and have become the preferred
data model for graph databases.

Formally, to complement our previous definitions of vertices and edges,
we assume the existence of three infinite sets; L, P , and A. L is an infinite

2.5. REPRODUCIBLE SCIENCE 29

set containing vertex/edge labels, P is an infinite set containing property
names, and A is an infinite set of atomic values. Given a set X, SET+(X)
provides the set of all finite subsets of X. Using these definitions, we can
define the following two functions that assign labels, and property-value
pairs:

λ : (V ∪ E) → SET+(L) (2.31)

σ : (V ∪ E) × P → SET+(A) (2.32)

In Chapter 4, we built on this representation to explore graph databases
for IR.

2.5 Reproducible Science
In order to establish experimental results in science, it is essential that they
can independently be verified. Many fields have had problems where the
reproducibility of scientific studies fell short. In psychology, a large repro-
ducibility study was carried out [Open Science Collaboration, 2015], based
on a selection of 100 studies published in 2008. The goal was to reproduce
the findings of all these studies, to determinethe state of reproducibility
of the field. Of the original 100 studies, 97 presented significant results.
However, when trying to reproduce these results, only 35 out of 97 of these
studies succeeded to reproduce significant results.

It is unclear why that many scientific studies were not reproducible.
Nevertheless, many type II errors happened; failure to reject the null
hypothesis while it is false. Scientific misconduct could explain some of
these results, but it is unlikely that this is happening at such a large scale.
All studies this project tried to reproduce were published in just three
journals. These journals were peer-reviewed; only the scientific studies the
reviewers thought were good enough were published. This process, of course,
introduces a selection bias. Studies that show more impactful results have
a higher probability of being published. This bias favors papers with type
II errors, even when the scientific conduct was proper.

When a scientific study is published, people might interpret its results
as fact. However, one should consider experimental results only as evidence
of how the world might work. Then, whenever the results are reproduced,
more evidence is gathered to support the findings. By reproducing science,
our understanding of the world becomes more precise, and eventually, we
can assume with high certainty a hypothesis to be true.

In the field of information retrieval, reproducibility has also been a topic
of interest. Reproducibility is discussed several times in the dissertation,

30 CHAPTER 2. BACKGROUND

and only some observations on the topic of reproducibility in our field are
highlighted here. Before introducing these observations, it is important to
clearly define what is meant by reproducibility. Within the Association for
Computing Machinery (ACM), a distinction has been made between the
concepts of repeatability, replicability, and reproducibility3:

• Repeatability is verification of results produced by the same research
group, using the same resources. Confirming that when one reruns
their experiments, the same results are produced. This might seem
trivial, but when software is updated to some newer version, the
results that the software produces could differ slightly.

• Replicability is the verification of results produced by a different
research group, but using the same resources. This could, for example,
be done by running the publicly available code for a research project
and verifying its results. This is more tricky than it might look. Often,
for example in scientific papers, the exact parameter settings of the
software might be left out, making it hard to verify results correctly.

• Reproducibility is the verification of results produced by a different
research group that uses its own (different) resources. Typically, in
a reproduction study, the scientific study is done from scratch using
the instructions presented in a paper. As many details might be left
out, it is even harder to reproduce results exactly. However, if a
reproduction study can confirm the results of previous work, this is a
strong indication of the correctness of the results presented in that
work.

In Chapter 3, we present empirical results about the BM25 algorithm.
Many systems implement this algorithm, while the reported effectiveness
results as measured through established metrics (a subset of metrics de-
scribed in Section 2.2.3) vary substantially. How this can happen will be
discussed. BM25, however, is a ranking method often used as a baseline
method. When comparing newer algorithms to BM25, it makes quite a
difference if its implementation reports a relatively low score, or a high one.

Armstrong et al. [2009] showed that many improvements in ranking
algorithms presented throughout the years did not add up. Significant
improvements were presented in many cases, where these were compared
against weak baselines. Also, there was no upward trend of retrieval effec-
tiveness, which would be expected if we find repeated improvements. More

3https://www.acm.org/publications/policies/
artifact-review-badging, last accessed - September 2025

30 CHAPTER 2. BACKGROUND

and only some observations on the topic of reproducibility in our field are
highlighted here. Before introducing these observations, it is important to
clearly define what is meant by reproducibility. Within the Association for
Computing Machinery (ACM), a distinction has been made between the
concepts of repeatability, replicability, and reproducibility3:

• Repeatability is verification of results produced by the same research
group, using the same resources. Confirming that when one reruns
their experiments, the same results are produced. This might seem
trivial, but when software is updated to some newer version, the
results that the software produces could differ slightly.

• Replicability is the verification of results produced by a different
research group, but using the same resources. This could, for example,
be done by running the publicly available code for a research project
and verifying its results. This is more tricky than it might look. Often,
for example in scientific papers, the exact parameter settings of the
software might be left out, making it hard to verify results correctly.

• Reproducibility is the verification of results produced by a different
research group that uses its own (different) resources. Typically, in
a reproduction study, the scientific study is done from scratch using
the instructions presented in a paper. As many details might be left
out, it is even harder to reproduce results exactly. However, if a
reproduction study can confirm the results of previous work, this is a
strong indication of the correctness of the results presented in that
work.

In Chapter 3, we present empirical results about the BM25 algorithm.
Many systems implement this algorithm, while the reported effectiveness
results as measured through established metrics (a subset of metrics de-
scribed in Section 2.2.3) vary substantially. How this can happen will be
discussed. BM25, however, is a ranking method often used as a baseline
method. When comparing newer algorithms to BM25, it makes quite a
difference if its implementation reports a relatively low score, or a high one.

Armstrong et al. [2009] showed that many improvements in ranking
algorithms presented throughout the years did not add up. Significant
improvements were presented in many cases, where these were compared
against weak baselines. Also, there was no upward trend of retrieval effec-
tiveness, which would be expected if we find repeated improvements. More

3https://www.acm.org/publications/policies/
artifact-review-badging, last accessed - September 2025

2.5. REPRODUCIBLE SCIENCE 31

recently, Yang et al. [2019] showed new methods are still being compared
against implementations of BM25 that have non-optimal hyperparameter
settings. This leads to methods that are less effective than presented.

For this thesis, all software and data produced is publicly available and
released on Zenodo4 in order to facilitate reproducible science, following the
guidelines of the research data management policy of the Institute for Com-
puting and Information Science of the Radboud University.5 Additionally,
in some chapters, the importance of reproducibility will be highlighted and
discussed in more detail.

4https://zenodo.org, last accessed - September 2025
5https://www.ru.nl/rdm/, last accessed - September 2025

32 CHAPTER 2. BACKGROUND

32 CHAPTER 2. BACKGROUND

Chapter 3

IR using Relational
Databases

The Analytical Engine has no
pretensions whatever to
originate anything. It can do
whatever we know how to
order it to perform

Ada Lovelace - 1843

Abstract

Throughout the years, there have been many attempts to ex-
press information retrieval problems using relational databases.
This chapter will highlight one of the latter attempts that re-
vived the idea of expressing bag-of-words ranking functions
using SQL. A prototype system that uses these expressions is
presented, dubbed OldDog, after the work by Mühleisen et al.
(Old Dogs Are Great at New Tricks: Column Stores for IR Pro-
totyping). This system can be used for rapid IR prototyping and
is especially helpful in the context of reproducible information
retrieval research. Also, when researchers report that they used
BM25, it is not always clear which variant they mean. Many
tweaks to Robertson et al.’s original formulation have been pro-
posed. Does this ambiguity “matter”? We attempt to answer
this question with a large-scale reproducibility study of BM25,

33

34 CHAPTER 3. IR USING RELATIONAL DATABASES

considering eight variants implemented in the OldDog system.
Experiments on three newswire collections show no significant
effectiveness differences between them, not even for Lucene’s
(often maligned) approximation of document length.

3.1 Introduction
Where information retrieval researchers commonly use inverted indexes as
data structures, there is also a rich history of researchers using relational
databases to represent the data in information retrieval systems. Different
approaches in the literature present varying degrees of success. Given this
context, we arrive at the first research question:

• Research Question 1: What are the benefits of using relational databases
for information retrieval?

In order to answer this question, first, we review the history of using database
systems for IR. Then, one of the latter attempts of using a relational
database for information retrieval will be highlighted. Using this work, a
prototype system is built, dubbed “OldDog”. This system will be used in a
reproduction experiment, which compares several variants of BM25 with
each other. This reproduction study confirms and rebuts previous findings
from the literature and verifies that relational database systems are suited
for running IR experiments.

3.2 Related work
3.2.1 Boolean retrieval
Perhaps the earliest work on using relational databases for information
retrieval is the work by Schek and Pistor [1982]. In their work, the authors
recognized that the relational data model is widely accepted as an interface
to query structured data. However, it is inconvenient to use unstructured
data like text. They proposed extending the relational model by allowing
Non-First Normal-Form (NF2) relations. This extension allows for text
queries to be more easily expressed. The systems that can be built in this
language are still Boolean retrieval systems (as described in Section 2.2.2).
At the time, that worked well, but scoring was not a feature considered.
Similarly, Macleod [1991] compared the inverted index approach to using
the relational model. Macleod showed how queries of the IBM STAIRS

34 CHAPTER 3. IR USING RELATIONAL DATABASES

considering eight variants implemented in the OldDog system.
Experiments on three newswire collections show no significant
effectiveness differences between them, not even for Lucene’s
(often maligned) approximation of document length.

3.1 Introduction
Where information retrieval researchers commonly use inverted indexes as
data structures, there is also a rich history of researchers using relational
databases to represent the data in information retrieval systems. Different
approaches in the literature present varying degrees of success. Given this
context, we arrive at the first research question:

• Research Question 1: What are the benefits of using relational databases
for information retrieval?

In order to answer this question, first, we review the history of using database
systems for IR. Then, one of the latter attempts of using a relational
database for information retrieval will be highlighted. Using this work, a
prototype system is built, dubbed “OldDog”. This system will be used in a
reproduction experiment, which compares several variants of BM25 with
each other. This reproduction study confirms and rebuts previous findings
from the literature and verifies that relational database systems are suited
for running IR experiments.

3.2 Related work
3.2.1 Boolean retrieval
Perhaps the earliest work on using relational databases for information
retrieval is the work by Schek and Pistor [1982]. In their work, the authors
recognized that the relational data model is widely accepted as an interface
to query structured data. However, it is inconvenient to use unstructured
data like text. They proposed extending the relational model by allowing
Non-First Normal-Form (NF2) relations. This extension allows for text
queries to be more easily expressed. The systems that can be built in this
language are still Boolean retrieval systems (as described in Section 2.2.2).
At the time, that worked well, but scoring was not a feature considered.
Similarly, Macleod [1991] compared the inverted index approach to using
the relational model. Macleod showed how queries of the IBM STAIRS

3.2. RELATED WORK 35

system could be expressed using the relational model. These were, however,
still Boolean queries, so scoring using uncertainty was not considered.

3.2.2 Probabilistic Relational Algebra
Fuhr [1996] recognized that where databases contain structured/formatted
data, IR systems deal with unformatted data requiring uncertain inference.
They propose to express this uncertainty using a probabilistic relational
algebra (PRA) [Fuhr and Rölleke, 1997]. PRA can be considered an ex-
tension of standard relational algebra. The basic idea behind PRA is that
tuples are assigned weights; the weight represents the probability that the
tuple belongs to the relation. These probabilities give two advantages.
Uncertainty of information can be expressed explicitly, and tuples repre-
senting answers to queries can be ordered by the weights representing this
uncertainty. Tuples with high probabilities are ranked higher than those
with lower ones. Although these extensions give advantages over Boolean
retrieval, how to assign these probabilities to, for example, a document-term
pair remains a question.

3.2.3 IR on top of a database cluster
Grabs et al. [2004] have proposed PowerDB-IR, developed to run IR appli-
cations on a scalable infrastructure. It should also be able to update the
data quickly while retrieving up-to-date results. Grabs et al. achieve this
by assigning every document to a category, e.g., sports or news, in their
experiment. A dedicated node is created for every category, containing
documents, inverted lists, and statistics tables. The system supports both
single-category and multi-category searches. For a “single query” search,
the following ranking score value is calculated:

RSV(d, q) =
∑
t∈q

tf (t, d) · idf (t)2 · tf (t, q) (3.1)

Here tf (t, d) is the term frequency of term t in document d, idf (t) is the
inverted document frequency of term t (which is squared in this formula),
and tf (t, q) is the term frequency of term t in the query text. Calculating
this is straightforward: all statistics necessary are stored on the node decided
to that category. However, when one wants to search on multiple (or all)
categories, subscores need to be calculated for all relevant nodes before
they can be aggregated to a final score. This approach is quite costly, as
variances between executions times on the nodes are high, but this work
may have proposed the first real IR in SQL approach.

36 CHAPTER 3. IR USING RELATIONAL DATABASES

3.2.4 Integrating DB + IR
Chaudhuri et al. [2005] also identified the need for systems that integrate
database and IR functionalities. In their view, database systems need to be
more flexible for scoring and ranking, while IR systems cannot adequately
handle structured data and metadata. Chaudhuri et al. put together a list
of seven requirements that a DB + IR system should be able to support, of
which they identified the following three requirements as the most important:

1. Flexible scoring and ranking. It should be possible to customize the
ranking function for different applications; a news search system
probably needs different ranking functions and settings than a web
search system.

2. Optimizability. Following standard database approaches, queries in
a DB+IR system should have a query optimizer that considers the
workload and the data characteristics. For example, when only one
relevant result is sufficient, the system should be able to abort when
a relevant document is found.

3. Metadata and ontologies. Other than metadata that describes data
sources, metadata that is used for understanding information demands
might be needed. This metadata could be, for example, an ontology
or a lexicon used for more effective ranking strategies.1

To build a system that can support these requirements, the authors identified
four alternatives for designing a DB+IR system:

1. On-top-of-SQL. The IR functionalities are built on top of a SQL
engine. The disadvantage of this approach is that it is challenging to
customize efficient access for both IR and DB functionalities.

2. Middleware. In this approach, SQL and IR engines run simultaneously.
The two disadvantages of using this approach are that the API needs to
talk to two systems, which can have very different design philosophies,
and the data needs to be shared between systems, incurring a large
overhead and making it harder to combine both functionalities.

3. IR-via-ADTs. The third approach is building an IR system using
abstract data types (ADT). The authors argue that this approach
makes the system more customizable than the previous approaches.

1Latent representations generated by large language models would have been a
great example of this kind of metadata had their paper been written today.

36 CHAPTER 3. IR USING RELATIONAL DATABASES

3.2.4 Integrating DB + IR
Chaudhuri et al. [2005] also identified the need for systems that integrate
database and IR functionalities. In their view, database systems need to be
more flexible for scoring and ranking, while IR systems cannot adequately
handle structured data and metadata. Chaudhuri et al. put together a list
of seven requirements that a DB + IR system should be able to support, of
which they identified the following three requirements as the most important:

1. Flexible scoring and ranking. It should be possible to customize the
ranking function for different applications; a news search system
probably needs different ranking functions and settings than a web
search system.

2. Optimizability. Following standard database approaches, queries in
a DB+IR system should have a query optimizer that considers the
workload and the data characteristics. For example, when only one
relevant result is sufficient, the system should be able to abort when
a relevant document is found.

3. Metadata and ontologies. Other than metadata that describes data
sources, metadata that is used for understanding information demands
might be needed. This metadata could be, for example, an ontology
or a lexicon used for more effective ranking strategies.1

To build a system that can support these requirements, the authors identified
four alternatives for designing a DB+IR system:

1. On-top-of-SQL. The IR functionalities are built on top of a SQL
engine. The disadvantage of this approach is that it is challenging to
customize efficient access for both IR and DB functionalities.

2. Middleware. In this approach, SQL and IR engines run simultaneously.
The two disadvantages of using this approach are that the API needs to
talk to two systems, which can have very different design philosophies,
and the data needs to be shared between systems, incurring a large
overhead and making it harder to combine both functionalities.

3. IR-via-ADTs. The third approach is building an IR system using
abstract data types (ADT). The authors argue that this approach
makes the system more customizable than the previous approaches.

1Latent representations generated by large language models would have been a
great example of this kind of metadata had their paper been written today.

3.2. RELATED WORK 37

However, the authors also note that query optimization in the presence
of user defined functions is complicated. Also, when programmers
need to work with such a system, it has the full complexity of SQL
plus the complexity of working with ADTs.

4. RISC. The final approach is what the authors prefer; IR functionalities
build on top of a relational storage engine, as described in an earlier
work by them [Chaudhuri and Weikum, 2000]. The DB+IR systems
should then be built on top of this engine. The storage-level core
should be build “Reduced Instruction Set Computing” style (RISC).

Although the approaches described in this work are interesting, they do not
provide prototypes to compare them. (The goal of this paper was to present
a theoretical framework for tackling this problem.) Even though it is not the
preferred option of Chaudhuri et al., this PhD thesis research has focused
on the On-top-of-SQL approach, assuming that recent developments in
database system engineering have overcome the shortcomings with respect
to ranking efficiency.

3.2.5 Handwritten plans and Array Databases

Héman et al. [2006] participated in the TREC TeraByte track using the
relational engine MonetDB/X100 [Boncz et al., 2005]. They were able to
express ranking functions efficiently and effectively in this system. In their
participation, they used BM25 as a scoring function. In order to reduce
the amount of computation necessary for every document-term pair, the
BM25 score was precalculated. A shortcoming in this approach is that the
query plans were not generated from SQL, but handwritten (essentially the
RISC approach of above). Having to handwrite queries makes the system
challenging to use for IR researchers. Also, because all BM25 scores were
precalculated (albeit with some compression), more storage was needed
than when only the term frequencies would be saved.

The same research group [Cornacchia et al., 2008] also ran experiments
on the TREC TeraByte track using the array database SRAM (Sparse
Relational Array Mapping). SRAM automatically translates BM25 queries
to run them on a relational engine (specifically X100). However, SRAM is
quite an esoteric query language, only used by the researchers themselves,
and no publicly available (prototype) system offers support for this approach.

38 CHAPTER 3. IR USING RELATIONAL DATABASES

Table 3.1: Results presented by Mühleisen et al. [2014]. MAP and P@5
on the ClueWeb12 collection are reported for five different systems that
each claim to rank their documents using BM25. The table shows that
only the two database systems (MonetDB and Vectorwise) achieve the
same effectiveness score.

System MAP P@5

Indri [Strohman et al., 2005] 0.246 0.304
MonetDB [Boncz, 2002] 0.225 0.276

Vectorwise [Zukowski et al., 2012] 0.225 0.276
Lucene [Apache Software Foundation, 2013] 0.216 0.265

Terrier [Ounis et al., 2005] 0.215 0.272

3.2.6 Retrieval models only using SQL
In more recent work, Mühleisen et al. [2014] showed that the commonly
used BM25 ranking function could be expressed easily using SQL. This was
done similarly to Grabs et al. [2004]. In this work, the MonetDB [Boncz,
2002] and Vectorwise [Zukowski et al., 2012] systems were used, making
the runtime much faster than Grabs et al.’s original results. Mühleisen
et al. specifically focused on the retrieval efficiency of systems and compared
the efficiency of inverted indexes with systems built on top of relational
engines. They argued that instead of using a custom build IR system using
an inverted index, researchers could store their data representations in a
column-oriented relational database and formulate the ranking functions
using SQL. They showed that their implementation of BM25 in SQL is on
par in efficiency and effectiveness compared to systems that use an inverted
index.2

There was an interesting observation in the paper to highlight: All
the systems evaluated in this paper implement a ranking function they
refer to as BM25. However, there was a substantial difference between the
effectiveness scores produced by these systems, as shown in Table 3.1. The
only two systems that achieved the same effectiveness score were the two
database systems (MonetDB and Vectorwise).3

These results were surprising, as the authors took specific care to keep
document preprocessing identical for all systems. Still, the observed differ-

2This was especially the case for the Vectorwise system.
3Although the same research group developed these two systems, they were

completely separate projects.

38 CHAPTER 3. IR USING RELATIONAL DATABASES

Table 3.1: Results presented by Mühleisen et al. [2014]. MAP and P@5
on the ClueWeb12 collection are reported for five different systems that
each claim to rank their documents using BM25. The table shows that
only the two database systems (MonetDB and Vectorwise) achieve the
same effectiveness score.

System MAP P@5

Indri [Strohman et al., 2005] 0.246 0.304
MonetDB [Boncz, 2002] 0.225 0.276

Vectorwise [Zukowski et al., 2012] 0.225 0.276
Lucene [Apache Software Foundation, 2013] 0.216 0.265

Terrier [Ounis et al., 2005] 0.215 0.272

3.2.6 Retrieval models only using SQL
In more recent work, Mühleisen et al. [2014] showed that the commonly
used BM25 ranking function could be expressed easily using SQL. This was
done similarly to Grabs et al. [2004]. In this work, the MonetDB [Boncz,
2002] and Vectorwise [Zukowski et al., 2012] systems were used, making
the runtime much faster than Grabs et al.’s original results. Mühleisen
et al. specifically focused on the retrieval efficiency of systems and compared
the efficiency of inverted indexes with systems built on top of relational
engines. They argued that instead of using a custom build IR system using
an inverted index, researchers could store their data representations in a
column-oriented relational database and formulate the ranking functions
using SQL. They showed that their implementation of BM25 in SQL is on
par in efficiency and effectiveness compared to systems that use an inverted
index.2

There was an interesting observation in the paper to highlight: All
the systems evaluated in this paper implement a ranking function they
refer to as BM25. However, there was a substantial difference between the
effectiveness scores produced by these systems, as shown in Table 3.1. The
only two systems that achieved the same effectiveness score were the two
database systems (MonetDB and Vectorwise).3

These results were surprising, as the authors took specific care to keep
document preprocessing identical for all systems. Still, the observed differ-

2This was especially the case for the Vectorwise system.
3Although the same research group developed these two systems, they were

completely separate projects.

3.2. RELATED WORK 39

Table 3.2: Results from the RIGOR workshop [Arguello et al., 2016].
MAP@1000 on the .GOV2 collection is reported for four different systems
that run BM25. The table shows that all four implementations report
a different effectiveness score.

System MAP@1000

ATIRE [Trotman et al., 2012] 0.290
Lucene [Apache Software Foundation, 2013] 0.303

MG4J [Boldi and Vigna, 2005] 0.299
Terrier [Ounis et al., 2005] 0.270

Table 3.3: Results from the OSIRRC workshop [Clancy et al., 2019b].
AP, P@30, and NDCG@20 on the robust04 collection are reported for
seven different systems that run BM25. As shown in the table, all
implementations report (again) a different effectiveness score.

System AP P@30 NDCG@20

Anserini [Clancy et al., 2019a] 0.253 0.310 0.424
ATIRE [Trotman et al., 2012] 0.218 0.320 0.421
ielab [Scells and Zuccon, 2019] 0.183 0.261 0.348

Indri [Hauff, 2019] 0.239 0.300 0.404
OldDog [Kamphuis and de Vries, 2019b] 0.243 0.299 0.400

Pisa [Mallia et al., 2019] 0.253 0.312 0.422
Terrier [Câmara and Macdonald, 2019] 0.236 0.298 0.405

ence in MAP of 3% absolute was the largest deviation in the scores reported.

3.2.7 Reproducibility
The paper by Mühleisen et al. [2014] is not the only one that reports
differences in effectiveness scores for BM25. In the SIGIR 2015 Work-
shop on Reproducibility, Inexplicability, and Generalizability of Results
(RIGOR) [Arguello et al., 2016] and the Open-Source IR Replicability Chal-
lenge (OSIRRC) workshop [Clancy et al., 2019b] similar results can be
observed. See Tables 3.2 and 3.3, respectively.

It is unclear why the results between these systems differ this much; many

40 CHAPTER 3. IR USING RELATIONAL DATABASES

explanations are possible. Examples include; differences in preprocessing,4
different hyperparameter settings, differences in the definition of the inverse
document frequency (idf) used, or erroneous implementation of the ranking
function. Using, for example, non-optimized hyperparameter settings can
lead to considerable gaps in differences between effectiveness scores. Yang
et al. [2019] showed that in many cases, new ranking methods had been
proposed that compared the results of a newly proposed method to a non-
fine-tuned version of BM25, making the results look better than they are.
The choices for the BM25 hyperparameters are often left out of papers where
it is the baseline compared against. As BM25 is often used as a baseline, it
is crucial to understand why these differences exist and how they arise.

3.3 Prototype OldDog

As shown in Table 3.3, one of the workshop’s submissions was the prototype
system developed for this PhD thesis research [Kamphuis and de Vries,
2019b]. This prototype is a software project to replicate and extend the
database approach to information retrieval presented in Mühleisen et al.
[2014]. The prototype was based on their work, so we dubbed it OldDog.
OldDog uses column store database MonetDB [Boncz, 2002] for query
processing. Mühleisen et al. produced the database tables to represent
the data typically found in an inverted index, using a custom program run
on Hadoop. Instead, we created a Lucene index using the Anserini tool
suite developed by Yang et al. [2018a]. Anserini takes care of standard
document preprocessing. From Anserini’s Lucene index, we extracted the
data necessary to fill the tables. Three tables are constructed. One table
contains the data that represents the documents, another one that represents
the terms, and one that contains all data that relate terms to documents.
To illustrate, the results for a document named “doc1” with the text “I put
on my coat and green hat” shown in Table 3.4.

Using these tables, we can easily express bag-of-words ranking func-
tions in SQL queries. The default ranking function implemented in our
implementation of OldDog is the version of BM25 that had been proposed
by Robertson et al. [1994].

4But this cannot explain the differences reported in Mühleisen et al., as they
ensured preprocessing was the same for all systems.

40 CHAPTER 3. IR USING RELATIONAL DATABASES

explanations are possible. Examples include; differences in preprocessing,4
different hyperparameter settings, differences in the definition of the inverse
document frequency (idf) used, or erroneous implementation of the ranking
function. Using, for example, non-optimized hyperparameter settings can
lead to considerable gaps in differences between effectiveness scores. Yang
et al. [2019] showed that in many cases, new ranking methods had been
proposed that compared the results of a newly proposed method to a non-
fine-tuned version of BM25, making the results look better than they are.
The choices for the BM25 hyperparameters are often left out of papers where
it is the baseline compared against. As BM25 is often used as a baseline, it
is crucial to understand why these differences exist and how they arise.

3.3 Prototype OldDog

As shown in Table 3.3, one of the workshop’s submissions was the prototype
system developed for this PhD thesis research [Kamphuis and de Vries,
2019b]. This prototype is a software project to replicate and extend the
database approach to information retrieval presented in Mühleisen et al.
[2014]. The prototype was based on their work, so we dubbed it OldDog.
OldDog uses column store database MonetDB [Boncz, 2002] for query
processing. Mühleisen et al. produced the database tables to represent
the data typically found in an inverted index, using a custom program run
on Hadoop. Instead, we created a Lucene index using the Anserini tool
suite developed by Yang et al. [2018a]. Anserini takes care of standard
document preprocessing. From Anserini’s Lucene index, we extracted the
data necessary to fill the tables. Three tables are constructed. One table
contains the data that represents the documents, another one that represents
the terms, and one that contains all data that relate terms to documents.
To illustrate, the results for a document named “doc1” with the text “I put
on my coat and green hat” shown in Table 3.4.

Using these tables, we can easily express bag-of-words ranking func-
tions in SQL queries. The default ranking function implemented in our
implementation of OldDog is the version of BM25 that had been proposed
by Robertson et al. [1994].

4But this cannot explain the differences reported in Mühleisen et al., as they
ensured preprocessing was the same for all systems.

3.3. PROTOTYPE OLDDOG 41

Table 3.4: Example of tables representing the data in the OldDog
system, the dict tables contains all term specific data, the terms table
represents all the postings, and the docs table contains all document
specific data.

(a) dict

termid term df
1 put 1
2 coat 1
3 green 1
4 hat 1

(b) docs

docid name length
1 doc1 8

(c) terms

termid docid tf
1 1 1
2 1 1
3 1 1
4 1 1

3.3.1 Docker
For the submission to the OSIRRC workshop [Clancy et al., 2019b], we
created a docker image of OldDog5 [Kamphuis and de Vries, 2019b]. Müh-
leisen et al. implemented a conjunctive variant of BM25 (all query terms
have to be present in a document in order for a document to be considered
relevant). When creating the submission for the workshop, we noticed
that the effectiveness scores were substantially lower than those of other
submissions. The retrieval effectiveness degraded more than we expected,
considering the results in previous work. When removing the conjunctive
constraint, the effectiveness of the system increased. So our prototype
supports both conjunctive and disjunctive versions of BM25. Our entry
in Table 3.3 presents the effectiveness scores of the disjunctive variant. The
number of relevant documents per topic for this collection was likely low;
decreasing the effectiveness of the system when imposing a conjunctive
constraint.

3.3.2 Ease-of-Use
Having implemented BM25 in a database system enabled us to carry out
some experiments quite easily that are more complicated when using an
inverted index. Filtering out the terms with a large document frequency is
easy, as all document frequencies are stored in one table. We updated the
table removing the terms with large document frequency in only two lines

5https://hub.docker.com/r/osirrc2019/olddog, last accessed - September
2025

42 CHAPTER 3. IR USING RELATIONAL DATABASES

1 CREATE table dict AS SELECT * FROM odict WHERE df <= (
2 SELECT 0.1 * COUNT(*) FROM docs
3);

Figure 3.1: This code updates the docs table such that all terms with
a document frequency greater than a tenth of the collection size are
removed.

of SQL, as shown in Figure 3.1. This approach could be an automatic way
to remove stopwords from a collection. This filter was too strict to improve
retrieval effectiveness but can easily be fine-tuned. For example, we could
join against a table storing a traditional stopword list.

3.4 Variants of BM25
Having “OldDog” set up, we can run retrieval experiments using relational
databases. As mentioned in the previous section, it is still unclear why
the differences between implementations of BM25 of different systems were
this big. Also, many different variants of BM25 have been proposed in the
literature, that claim to be more effective than the original formulation. A
study by Trotman et al. [2014] compared several variants and found that
improvements presented in the literature cannot be reproduced. As we now
have a system in which the BM25 formula is written directly in SQL, we
can easily swap this version of BM25 with its proposed improvements: in
the query we only need to change definition of the ranking formula. By
using OldDog, we can ensure the data representation is the same when we
compare these variants; the results will only reflect what the effects are of
applying a different variant of BM25. This way, we can validate Trotman
et al.’s findings.

In the following section we will first describe the original formulation of
BM25, and then variants of BM25 proposed in the literature.

Robertson et al. [1994]

BM25 was developed within the probabilistic ranking framework 2.2.2. The
original formulation consists of two parts. The first part is derived from the
binary independence relevance model [Robertson and Zaragoza, 2009], which
results in an approximation of the classical inverse document frequency (idf)
for a query term t:

42 CHAPTER 3. IR USING RELATIONAL DATABASES

1 CREATE table dict AS SELECT * FROM odict WHERE df <= (
2 SELECT 0.1 * COUNT(*) FROM docs
3);

Figure 3.1: This code updates the docs table such that all terms with
a document frequency greater than a tenth of the collection size are
removed.

of SQL, as shown in Figure 3.1. This approach could be an automatic way
to remove stopwords from a collection. This filter was too strict to improve
retrieval effectiveness but can easily be fine-tuned. For example, we could
join against a table storing a traditional stopword list.

3.4 Variants of BM25
Having “OldDog” set up, we can run retrieval experiments using relational
databases. As mentioned in the previous section, it is still unclear why
the differences between implementations of BM25 of different systems were
this big. Also, many different variants of BM25 have been proposed in the
literature, that claim to be more effective than the original formulation. A
study by Trotman et al. [2014] compared several variants and found that
improvements presented in the literature cannot be reproduced. As we now
have a system in which the BM25 formula is written directly in SQL, we
can easily swap this version of BM25 with its proposed improvements: in
the query we only need to change definition of the ranking formula. By
using OldDog, we can ensure the data representation is the same when we
compare these variants; the results will only reflect what the effects are of
applying a different variant of BM25. This way, we can validate Trotman
et al.’s findings.

In the following section we will first describe the original formulation of
BM25, and then variants of BM25 proposed in the literature.

Robertson et al. [1994]

BM25 was developed within the probabilistic ranking framework 2.2.2. The
original formulation consists of two parts. The first part is derived from the
binary independence relevance model [Robertson and Zaragoza, 2009], which
results in an approximation of the classical inverse document frequency (idf)
for a query term t:

3.4. VARIANTS OF BM25 43

0 2,000 4,000 6,000 8,000 10,000

−5

0

5

df t

id
f

ln(10000−dft+0.5
dft+0.5)

Figure 3.2: Inverse document frequency as used by Robertson et al.
[1994]

wIDF
t = log

(
N − df t + 0.5

df t + 0.5

)
(3.2)

where N is the collection size, and dft are the number of collection documents
containing query term t.

There is, however, a negative consequence of using this formula for
weighting term importance. Assume a collection with 10, 000 documents;
then, it is possible to plot the idf for each term as shown in Figure 3.2.
The figure shows that the idf score becomes negative when df t > N

2 . This
happens for terms that appear in more than half of all documents, e.g.:
“the” or “a”. Many systems do not consider these terms when searching by
keeping a list of common words that can be ignored (stop words). However,
when these words are considered, a negative idf would decrease the relevance
scores of documents with the query term in the document – variations of
BM25 have been proposed to deal with this anomaly, that are discussed in
the following sections.

The second part of BM25 can be considered as a term frequency weight-
ing tf . The two parts are multiplied to get something like the traditional
term frequency-inverse document frequency weighting tf × wIDF

i . However,

44 CHAPTER 3. IR USING RELATIONAL DATABASES

the tf in BM25 is not just a linear factor; every additional term occurrence
increases the ranking score value less than the previous one. For example, a
term being present twice in a document versus once provides more informa-
tion than a term being present ten times versus nine. To achieve this effect
of “diminishing returns” of additional occurrences, the following formula
defines the tf component of the ranking:

tf
k + tf where k > 0 (3.3)

This approach ensures that the term frequency does not increase linearly.
In the final formulation of BM25, k is written as k1, because earlier versions
of this ranking formula also had k2 and k3 parameters.

Lastly, a second component is added to correct for variation in document
length. It is, however, unclear how one should deal with documents being
longer than others; the document’s author can be verbose, in which case
additional term occurrences do not provide extra information. On the other
hand, a document can be lengthy because more relevant information is
provided, and the document is more relevant than its shorter counterpart.
For these reasons, the following soft length normalization is introduced:

(1 − b) + b ×
(

Ld

Lavg

)
with 0 <= b <= 1 (3.4)

The value of b controls the degree of length normalization. Combin-
ing these parts, including the correction for term frequency and length
normalization, we get BM25 as initially proposed by Robertson et al. [1994]:

∑
t∈q

log
(

N − df t + 0.5
dft + 0.5

)
· tf td

k1 ·
(
1 − b + b ·

(
Ld

Lavg

))
+ tf td

(3.5)

Lucene (default)

Lucene is a widely used open source search engine software library [Apache
Software Foundation, 2013]. The variant of BM25 implemented in Lucene
(as of version 8) introduces two main differences. As mentioned, the idf
component of Robertson et al. [1994] is negative when df t > N

2 . To avoid
negative values in all possible cases, Lucene adds a constant value of one
before calculating the log value. Second, the document length used in the
scoring function is compressed (in a lossy manner) to a one-byte value,

44 CHAPTER 3. IR USING RELATIONAL DATABASES

the tf in BM25 is not just a linear factor; every additional term occurrence
increases the ranking score value less than the previous one. For example, a
term being present twice in a document versus once provides more informa-
tion than a term being present ten times versus nine. To achieve this effect
of “diminishing returns” of additional occurrences, the following formula
defines the tf component of the ranking:

tf
k + tf where k > 0 (3.3)

This approach ensures that the term frequency does not increase linearly.
In the final formulation of BM25, k is written as k1, because earlier versions
of this ranking formula also had k2 and k3 parameters.

Lastly, a second component is added to correct for variation in document
length. It is, however, unclear how one should deal with documents being
longer than others; the document’s author can be verbose, in which case
additional term occurrences do not provide extra information. On the other
hand, a document can be lengthy because more relevant information is
provided, and the document is more relevant than its shorter counterpart.
For these reasons, the following soft length normalization is introduced:

(1 − b) + b ×
(

Ld

Lavg

)
with 0 <= b <= 1 (3.4)

The value of b controls the degree of length normalization. Combin-
ing these parts, including the correction for term frequency and length
normalization, we get BM25 as initially proposed by Robertson et al. [1994]:

∑
t∈q

log
(

N − df t + 0.5
dft + 0.5

)
· tf td

k1 ·
(
1 − b + b ·

(
Ld

Lavg

))
+ tf td

(3.5)

Lucene (default)

Lucene is a widely used open source search engine software library [Apache
Software Foundation, 2013]. The variant of BM25 implemented in Lucene
(as of version 8) introduces two main differences. As mentioned, the idf
component of Robertson et al. [1994] is negative when df t > N

2 . To avoid
negative values in all possible cases, Lucene adds a constant value of one
before calculating the log value. Second, the document length used in the
scoring function is compressed (in a lossy manner) to a one-byte value,

3.4. VARIANTS OF BM25 45

denoted Ldlossy.6 With only 256 distinct document lengths, Lucene pre-
computes for each possible length the value of:

k1 ·
(

1 − b + b ·
(

Ldlossy
Lavg

))
(3.6)

This results in fewer computations at query time. Equation (3.7) de-
scribes BM25 as implemented in Lucene:

∑
t∈q

log
(

1 + N − df t + 0.5
df t + 0.5

)
· tf td

k1 ·
(
1 − b + b ·

(
Ldlossy

Lavg

))
+ tf td

(3.7)

Lucene (accurate)

Equation (3.8) represents our attempt to measure the impact of Lucene’s
lossy document length encoding. We implemented a variant that uses exact
document lengths but is otherwise identical to the Lucene default.

∑
t∈q

log
(

1 + N − df t + 0.5
df t + 0.5

)
· tf td

k1 ·
(
1 − b + b ·

(
Ld

Lavg

))
+ tf td

(3.8)

ATIRE [Trotman et al., 2012]

Equation (3.9) shows BM25 as implemented by ATIRE; it implements the
idf component of BM25 as log(N/df t), which also avoids negative values.
We will investigate the difference of this formulation with that of Lucene
later in Section 3.6. The TF component is multiplied by k1 + 1 to make it
look more like the classic RSJ weight [Robertson and Spärck Jones, 1976];
this does not affect the resulting ranked list, as all scores are scaled linearly
with this factor.

∑
t∈q

log
(

N

df t

)
· (k1 + 1) · tf td

k1 ·
(
1 − b + b ·

(
Ld

Lavg

))
+ tf td

(3.9)

BM25L [Lv and Zhai, 2011c]

BM25L builds on the observation that BM25 penalizes longer documents
too much when compared to shorter ones. The idf component differs to

6The lossy encoding is described in this ticket: https://issues.apache.org/
jira/browse/LUCENE-7730, last accessed - September 2025

46 CHAPTER 3. IR USING RELATIONAL DATABASES

avoid negative values. The TF component is reformulated as follows:

(k1 + 1) · ctd
k1 + ctd

(3.10)

with

ctd = tf td

1 − b + b ·


Ld
Lavg

 (3.11)

being a normalized tf using pivoted length normalization [Singhal et al.,
1996]. The ctd component is further modified by adding a constant δ,
boosting the score for longer documents. The authors report using δ = 0.5
for the highest effectiveness. Equation (3.12) presents the final formulation
of BM25L:


t∈q

log


N + 1
df t + 0.5


· (k1 + 1) · (ctd + δ)

k1 + (ctd + δ) (3.12)

BM25+ [Lv and Zhai, 2011a]

BM25+, as shown in Equation (3.13), encodes a general approach for dealing
with the issue that ranking functions unfairly prefer shorter documents over
longer ones. Lv and Zhai proposed adding a lower-bound bonus when a
term appears at least once in a document. The difference with BM25L is a
constant δ to the TF component. The idf component is again changed to a
variant that disallows negative values.


t∈q

log


N + 1
df t


·

 (k1 + 1) · tf td

k1 ·

(1 − b) + b ·


Ld

Lavg


+ tf td

+ δ


 (3.13)

BM25-adpt [Lv and Zhai, 2011b]

BM25-adpt is an approach that varies k1 per term (i.e., uses term specific
k1 values). In the original formulation of BM25, k1 can be considered a hy-
perparameter that regulates the increase of score for additional occurrences
of a term; k1 ensures that every additional occurrence gets discounted as it
provides less information than its previous. However, Lv and Zhai argued
that this does not necessarily have to be the case. If there are many fewer
documents with r + 1 occurrences versus r, it should provide more infor-
mation than when the number of documents is almost the same. In order

46 CHAPTER 3. IR USING RELATIONAL DATABASES

avoid negative values. The TF component is reformulated as follows:

(k1 + 1) · ctd
k1 + ctd

(3.10)

with

ctd = tf td

1 − b + b ·


Ld
Lavg

 (3.11)

being a normalized tf using pivoted length normalization [Singhal et al.,
1996]. The ctd component is further modified by adding a constant δ,
boosting the score for longer documents. The authors report using δ = 0.5
for the highest effectiveness. Equation (3.12) presents the final formulation
of BM25L:


t∈q

log


N + 1
df t + 0.5


· (k1 + 1) · (ctd + δ)

k1 + (ctd + δ) (3.12)

BM25+ [Lv and Zhai, 2011a]

BM25+, as shown in Equation (3.13), encodes a general approach for dealing
with the issue that ranking functions unfairly prefer shorter documents over
longer ones. Lv and Zhai proposed adding a lower-bound bonus when a
term appears at least once in a document. The difference with BM25L is a
constant δ to the TF component. The idf component is again changed to a
variant that disallows negative values.


t∈q

log


N + 1
df t


·

 (k1 + 1) · tf td

k1 ·

(1 − b) + b ·


Ld

Lavg


+ tf td

+ δ


 (3.13)

BM25-adpt [Lv and Zhai, 2011b]

BM25-adpt is an approach that varies k1 per term (i.e., uses term specific
k1 values). In the original formulation of BM25, k1 can be considered a hy-
perparameter that regulates the increase of score for additional occurrences
of a term; k1 ensures that every additional occurrence gets discounted as it
provides less information than its previous. However, Lv and Zhai argued
that this does not necessarily have to be the case. If there are many fewer
documents with r + 1 occurrences versus r, it should provide more infor-
mation than when the number of documents is almost the same. In order

3.4. VARIANTS OF BM25 47

to find the optimal term-specific k1 value, the authors want to maximize
the information gain for that particular query term. First, they identify
the probability of selecting a document randomly from the collection that
contains the term q at least once as:

p(1|0, q) = df r + 0.5
N + 1 (3.14)

The probability of a term occurring one more time is defined as:

p(r + 1|r, q) =
df r+1 + 0.5

df r + 1 (3.15)

In both these formulas, constants 1 and 0.5 are added for smoothing
to avoid zero probabilities. Then the information gain from r to r + 1
occurrences is computed by subtracting the initial probability:

Gr
q = log2

df r+1 + 0.5
df r + 1


− log2

df r + 0.5
N + 1


(3.16)

Here df r is not defined as a standard document frequency but based on
the length normalized term frequency:

dfr =




|Dt|ctd≥r−0.5| r > 1
dft r = 1
N r = 0

(3.17)

In this case df t is the “normal” document frequency, and ctd is the same
as in BM25L (using the pivoted method for length normalization introduced
by Singhal et al. [1996]):

ctd = tf td

1 − b + b ·


Ld
Lavg

 (3.18)

This implies that for r = 0 that df r is equal to the number of documents
in the collection, and for r = 1 it is equal to the “normal” document
frequency. Otherwise, it will be the number of documents with at least r
occurrences of the term (rounded up) using the pivoted method ctd .

Next, the information gain is calculated for t ∈ {0, · · · , T}, until Gt
q >

Gt+1
q . This threshold is chosen as a heuristic: When t becomes large,

the estimated information gain can be very noisy. So T is chosen as the
smallest value that breaks the worst burstiness rule [Church and Gale, 1995]

48 CHAPTER 3. IR USING RELATIONAL DATABASES

(the information gain starts decreasing). The optimal value for k1 is then
determined by finding the value for k1 that minimizes the following equation:

k′
1 = arg min

k1

T∑
t=0

(
Gt

q

G1
q

− (k1 + 1) · t

k1 + t

)2

(3.19)

Essentially, this gives a value for k1 that maximizes information gain for
that specific term; k1 and G1

q are then plugged into the BM25-adpt formula:

∑
t∈q

G1
q · (k′

1 + 1) · tf td

k′
1 ·

(
(1 − b) + b ·

(
Ld

Lavg

))
+ tf td

(3.20)

We found that the optimal value of k1 is not defined for about 90%
of the terms. A unique optimal value for k1 only exists when t > 1 while
calculating Gt

q. For many terms, especially those with a low df , Gt
q > Gt+1

q

occurs before t > 1. In these cases, picking different values for k1 has
virtually no effect on retrieval effectiveness. For undefined values, we set k1
to 0.001, the same as Trotman et al. [2014].

TF l ◦ δ ◦ p×IDF [Rousseau and Vazirgiannis, 2013]

Rousseau and Vazirgiannis observed that in different variants of BM25,
term frequency is normalized following several heuristics (i.e. non-linear
gain, document length normalization, lower-bounding). When composing a
ranking function, the order in which these heuristics are applied will change
the ranking function. Testing different compositions of these heuristics, they
found one composition that significantly outperformed traditional BM25:

TFl ◦ δ ◦ p×IDF, as shown in equation 3.23, models the non-linear gain
of a term occurring multiple times in a document as:

1 + log (1 + log (tf td)) (3.21)
To ensure terms occurring at least once in a document get boosted,

the approach adds a fixed component δ, following BM25+. These parts
are combined into the TF component using the pivoted method for length
normalization [Singhal et al., 1996]:

ctd = tf td

1 − b + b ·
(

Ld
Lavg

) (3.22)

The same IDF component used as in BM25+, which gives us TFl ◦ δ ◦
p×IDF:

∑
t∈q

log
(

N + 1
df t

)
· (1 + log (1 + log (ctd + δ))) (3.23)

48 CHAPTER 3. IR USING RELATIONAL DATABASES

(the information gain starts decreasing). The optimal value for k1 is then
determined by finding the value for k1 that minimizes the following equation:

k′
1 = arg min

k1

T∑
t=0

(
Gt

q

G1
q

− (k1 + 1) · t

k1 + t

)2

(3.19)

Essentially, this gives a value for k1 that maximizes information gain for
that specific term; k1 and G1

q are then plugged into the BM25-adpt formula:

∑
t∈q

G1
q · (k′

1 + 1) · tf td

k′
1 ·

(
(1 − b) + b ·

(
Ld

Lavg

))
+ tf td

(3.20)

We found that the optimal value of k1 is not defined for about 90%
of the terms. A unique optimal value for k1 only exists when t > 1 while
calculating Gt

q. For many terms, especially those with a low df , Gt
q > Gt+1

q

occurs before t > 1. In these cases, picking different values for k1 has
virtually no effect on retrieval effectiveness. For undefined values, we set k1
to 0.001, the same as Trotman et al. [2014].

TF l ◦ δ ◦ p×IDF [Rousseau and Vazirgiannis, 2013]

Rousseau and Vazirgiannis observed that in different variants of BM25,
term frequency is normalized following several heuristics (i.e. non-linear
gain, document length normalization, lower-bounding). When composing a
ranking function, the order in which these heuristics are applied will change
the ranking function. Testing different compositions of these heuristics, they
found one composition that significantly outperformed traditional BM25:

TFl ◦ δ ◦ p×IDF, as shown in equation 3.23, models the non-linear gain
of a term occurring multiple times in a document as:

1 + log (1 + log (tf td)) (3.21)
To ensure terms occurring at least once in a document get boosted,

the approach adds a fixed component δ, following BM25+. These parts
are combined into the TF component using the pivoted method for length
normalization [Singhal et al., 1996]:

ctd = tf td

1 − b + b ·
(

Ld
Lavg

) (3.22)

The same IDF component used as in BM25+, which gives us TFl ◦ δ ◦
p×IDF:

∑
t∈q

log
(

N + 1
df t

)
· (1 + log (1 + log (ctd + δ))) (3.23)

3.5. EXPERIMENTS 49

3.5 Experiments
This section presents an empirical evaluation of the impact of the different
choices of BM25 as described in Section 3.4. Our experiments were conducted
using Anserini (v0.6.0) on Java 11 to create an initial index, and subsequently
using relational databases for rapid prototyping, using “OldDog” [Kamphuis
and de Vries, 2019b] after Mühleisen et al. [2014]; following that work, we
use MonetDB as the column-oriented analytic database. Evaluations with
Lucene (default) and Lucene (accurate) were performed directly in Anserini;
the latter was based on previously-released code that we updated and
incorporated into Anserini.7 The inverted index was exported from Lucene to
OldDog, ensuring that all experiments share the same document processing
pipeline (e.g., tokenization, stemming, stopword removal). Specifically,
Anserni uses the Lucene implementation of the porter stemmer [Porter,
1980], and Lucene’s default stopword list for the English language. While
exporting the inverted index, we precalculate all k1 values for BM25-adpt
as suggested by Lv and Zhai [2011b]. As an additional verification step, we
implemented both Lucene (default) and Lucene (accurate) in OldDog and
compared the results to the output from Anserini. We can confirm that the
results are the same, setting aside unavoidable differences related to floating
point precision. All BM25 variants are then implemented in OldDog as
minor variations on the original SQL query provided in Mühleisen et al.
[2014]. The term-specific parameter optimization for the adpt variant was
already calculated during the index extraction stage, allowing us to upload
the optimal (t, k) pairs and directly use the term-specific k values in the
SQL query. The advantage of our experimental methodology is that we did
not need to implement a single new ranking function from scratch.

The experiments use three TREC newswire test collections: TREC
Disks 4 and 5, excluding Congressional Record, with topics and relevance
judgments from the TREC 2004 Robust Track (Robust04) (topics 301-
450 & 601-700); the New York Times Annotated Corpus, with topics and
relevance judgments from the TREC 2017 Common Core Track (Core17);
the TREC Washington Post Corpus, with topics and relevance judgments
from the TREC 2018 Common Core Track (Core18). Following standard
experimental practice, we assess ranked list output in terms of average
precision (AP) and precision at rank 30 (P@30). The parameters shared by
all models are set to k1 = 0.9 and b = 0.4, Anserini’s defaults, derived
from Trotman et al. [2012]. The parameter δ is set to the value reported as

7http://searchivarius.org/blog/accurate-bm25-similarity-lucene,
last accessed - September 2025

50 CHAPTER 3. IR USING RELATIONAL DATABASES

Table 3.5: Effectiveness scores different BM25 variants. All were
implemented as SQL queries, so the underlying data representations
are the same.

Robust04 Core17 Core18
AP P@30 AP P@30 AP P@30

Robertson et al. .2526 .3086 .2094 .4327 .2465 .3647
Lucene (default) .2531 .3102 .2087 .4293 .2495 .3567
Lucene (accurate) .2533 .3104 .2094 .4327 .2495 .3593
ATIRE .2533 .3104 .2094 .4327 .2495 .3593
BM25L .2542 .3092 .1975 .4253 .2501 .3607
BM25+ .2526 .3071 .1931 .4260 .2447 .3513
BM25-adpt .2571 .3135 .2112 .4133 .2480 .3533
TFl◦δ◦p × IDF .2516 .3084 .1932 .4340 .2465 .3647

best in the corresponding source publication.
All experiments were run on a Linux desktop (Fedora 30, Kernel 5.2.18,

SELinux enabled) with four cores (Intel Xeon CPU E3-1226 v3 @ 3.30 GHz)
and 16 GB of main memory; the MonetDB 11.33.11 server was compiled
from source using the –-enable-optimize flag.

3.6 Results
Table 3.5 shows the effectiveness scores of the different BM25 variants. The
observed differences in effectiveness are small and can be entirely attributed
to variations in the scoring function; our methodology fixes all other parts of
the indexing pipeline (e.g., tag cleanup, tokenization, and stopwords). Both
an ANOVA and Tukey’s HSD show no significant differences between any
variant on all test collections. These results confirm the findings of Trotman
et al. [2014]: effectiveness differences are unlikely an effect of the choice
of the BM25 variant. Across the IR literature, we find differences due to
seemingly less impactful settings (such as the choice of stopwords [Dolamic
and Savoy, 2010]) tend to be larger than the differences we observe here.
Although we find no significant improvements over the original [Robertson
et al., 1994] formulation, using a variant of BM25 that avoids negative
ranking scores might still be worthwhile.

You might have caught that the effectiveness scores of ATIRE and
Lucene (accurate) are the same. This is not a mistake. As explained, the

50 CHAPTER 3. IR USING RELATIONAL DATABASES

Table 3.5: Effectiveness scores different BM25 variants. All were
implemented as SQL queries, so the underlying data representations
are the same.

Robust04 Core17 Core18
AP P@30 AP P@30 AP P@30

Robertson et al. .2526 .3086 .2094 .4327 .2465 .3647
Lucene (default) .2531 .3102 .2087 .4293 .2495 .3567
Lucene (accurate) .2533 .3104 .2094 .4327 .2495 .3593
ATIRE .2533 .3104 .2094 .4327 .2495 .3593
BM25L .2542 .3092 .1975 .4253 .2501 .3607
BM25+ .2526 .3071 .1931 .4260 .2447 .3513
BM25-adpt .2571 .3135 .2112 .4133 .2480 .3533
TFl◦δ◦p × IDF .2516 .3084 .1932 .4340 .2465 .3647

best in the corresponding source publication.
All experiments were run on a Linux desktop (Fedora 30, Kernel 5.2.18,

SELinux enabled) with four cores (Intel Xeon CPU E3-1226 v3 @ 3.30 GHz)
and 16 GB of main memory; the MonetDB 11.33.11 server was compiled
from source using the –-enable-optimize flag.

3.6 Results
Table 3.5 shows the effectiveness scores of the different BM25 variants. The
observed differences in effectiveness are small and can be entirely attributed
to variations in the scoring function; our methodology fixes all other parts of
the indexing pipeline (e.g., tag cleanup, tokenization, and stopwords). Both
an ANOVA and Tukey’s HSD show no significant differences between any
variant on all test collections. These results confirm the findings of Trotman
et al. [2014]: effectiveness differences are unlikely an effect of the choice
of the BM25 variant. Across the IR literature, we find differences due to
seemingly less impactful settings (such as the choice of stopwords [Dolamic
and Savoy, 2010]) tend to be larger than the differences we observe here.
Although we find no significant improvements over the original [Robertson
et al., 1994] formulation, using a variant of BM25 that avoids negative
ranking scores might still be worthwhile.

You might have caught that the effectiveness scores of ATIRE and
Lucene (accurate) are the same. This is not a mistake. As explained, the

3.6. RESULTS 51

Table 3.6: Average retrieval time per query in ms: Anserini (top) and
OldDog (bottom)

Robust04 Core17 Core18
Lucene (default) 52 111 120
Lucene (accurate) 55 115 123
Robertson et al. 158 ± 25 703 ± 162 331 ± 96
Lucene (default) 157 ± 24 699 ± 154 326 ± 90
Lucene (accurate) 157 ± 24 701 ± 156 324 ± 88
ATIRE 157 ± 24 698 ± 159 331 ± 94
BM25L 158 ± 25 697 ± 160 333 ± 96
BM25+ 158 ± 25 700 ± 160 334 ± 96
BM25-adpt 158 ± 24 700 ± 157 330 ± 92
TFl◦δ◦p×IDF 158 ± 24 698 ± 158 331 ± 96

k1 + 1 in ATIRE scales the scores linearly and does not affect the ranking.
So the only difference that can change the effectiveness scores is the different
idf functions. However, these are practically the same, especially when a
collection has a large number of documents (N):

log
(

N

df t

)
= log

(
N − df t + df t

df t

)
(3.24)

= log
(

N − df t

df t

+ df t

df t

)
(3.25)

= log
(

N − df t

df t

+ 1
)

(3.26)

≈ log
(

N − df t + 0.5
df t + 0.5 + 1

)
(3.27)

Switching our attention from effectiveness to efficiency, Table 3.6 presents
the average retrieval time per query in milliseconds (without standard
deviation for Anserini, which does not report time per query). MonetDB
uses all cores for inter- and intra-query parallelism, while Anserini is single-
threaded.

Comparing Lucene (default) and Lucene (accurate), we find negligible
differences in effectiveness. However, the differences in retrieval time are
also negligible, which calls into question the motivation behind the original
length approximation. Currently, the similarity function and, thus, the

52 CHAPTER 3. IR USING RELATIONAL DATABASES

document length encoding are defined at index time. Storing exact document
lengths would allow for different ranking functions to be swapped at query
time more effortlessly, as no information would be discarded at index time.
Accurate document lengths might additionally benefit downstream modules
that depend on Lucene. We suggest that Lucene might benefit from storing
exact document lengths.

3.7 Conclusion
In summary, the previous sections describe a double reproducibility study.
The study methodologically validated the usefulness of databases for IR
prototyping and performed a large-scale study of BM25 to confirm the
findings of Trotman et al. [2014]. It does not seem to matter which of the
multitude of BM25 variants is used. Furthermore, to return to our research
question, we can conclude that using relational databases for information
retrieval is beneficial. Because data processing and storage are separated in
relational databases, comparing different ranking functions in a relational
system is much easier compared to a system that uses an inverted index.
The work by Mühleisen et al. [2014] also confirmed that relational databases
could be as efficient as inverted indexes in retrieval tasks. In short, databases
have use cases in which they are easier to work with, while it remains possible
to obtain efficient retrieval systems.

52 CHAPTER 3. IR USING RELATIONAL DATABASES

document length encoding are defined at index time. Storing exact document
lengths would allow for different ranking functions to be swapped at query
time more effortlessly, as no information would be discarded at index time.
Accurate document lengths might additionally benefit downstream modules
that depend on Lucene. We suggest that Lucene might benefit from storing
exact document lengths.

3.7 Conclusion
In summary, the previous sections describe a double reproducibility study.
The study methodologically validated the usefulness of databases for IR
prototyping and performed a large-scale study of BM25 to confirm the
findings of Trotman et al. [2014]. It does not seem to matter which of the
multitude of BM25 variants is used. Furthermore, to return to our research
question, we can conclude that using relational databases for information
retrieval is beneficial. Because data processing and storage are separated in
relational databases, comparing different ranking functions in a relational
system is much easier compared to a system that uses an inverted index.
The work by Mühleisen et al. [2014] also confirmed that relational databases
could be as efficient as inverted indexes in retrieval tasks. In short, databases
have use cases in which they are easier to work with, while it remains possible
to obtain efficient retrieval systems.

Chapter 4

From Tables to Graphs

Day by day, however, the
machines are gaining ground
upon us; day by day we are
becoming more subservient to
them

Samuel Butler - 1863

Abstract

This chapter introduces GeeseDB. GeeseDB is a Python toolkit
for solving information retrieval research problems, that lever-
ages graphs as data structures. It aims to simplify information
retrieval research by allowing researchers to formulate graph
queries through a graph query language. GeeseDB is built on
top of DuckDB, an embedded column-store relational database
for analytical workloads. GeeseDB is available as an easy-to-
install Python package. In only a few lines of code, users can
create a first-stage retrieval ranking using BM25. Queries read
and write Numpy arrays and Pandas dataframes at negligible
data transformation cost. Therefore, the results of a first-stage
ranker expressed in GeeseDB can be used in various stages in
the ranking process, enabling all the power of Python machine
learning libraries with minimal overhead.

53

54 CHAPTER 4. FROM TABLES TO GRAPHS

4.1 Introduction
In recent years there has been a lot of exciting new information retrieval
research that uses non-text data to improve the efficacy of search appli-
cations. Examples of these are learning-to-rank or ranking with the use
of knowledge graphs. All these research directions have improved search
systems’ effectiveness by using more diverse data. Although more diverse
data sources are considered, these systems are often implemented through a
coupled architecture: first-stage retrieval is often carried out with different
software than that used in later retrieval stages, where novel reranking
techniques tend to be used. In our view, researchers could benefit from a
system where retrieval stages are more tightly coupled, which facilitates the
exploration of how to use non-content data for ranking and serves the data
in a format suitable for reranking with, e.g., transformers [Gao et al., 2021,
Luan et al., 2021, Lin et al., 2020b], tree-based methods [Burges, 2010] or
graph-based methods [Page et al., 1999, Hasibi et al., 2016, Balog, 2018,
Dalton et al., 2014].

The previous chapter demonstrates how relational databases can be
used for information retrieval problems. Integrating alternative data sources
into search systems is easier when using a relational database instead of an
inverted index. In the case of information retrieval, graph data can often
be used to improve search effectiveness. One of the most famous examples
where graphs help information retrieval is the PageRank algorithm [Page
et al., 1999]. Although it might be possible to express ranking over graph
data in relational databases, they are not designed with graph structures in
mind.

The data management community has shown much interest in graph
databases in recent years. Graph databases are different from relational
databases in that graphs are the main representation for managing the
data, instead of the usual relations. Graphs can be considered a better
abstraction for real-world data than relations. Graphs focus much more on
concepts (nodes in a graph) and how they relate to each other (edges in a
graph), while in a relational database this information is implicit, requiring
knowledge of the schema. From the types of graphs discussed in Chapter 2,
we focus on using property graphs in this chapter. This type of graph
contains nodes and directed edges, which can be labeled; nodes and edges
can also have associated key-value pairs.

The research goal in this chapter is two-fold; firstly, we develop a system
that can search efficiently in information represented as graphs. In the
previous chapter, we showed that relational databases could search efficiently
and help reproducible research. However, these systems do not support

54 CHAPTER 4. FROM TABLES TO GRAPHS

4.1 Introduction
In recent years there has been a lot of exciting new information retrieval
research that uses non-text data to improve the efficacy of search appli-
cations. Examples of these are learning-to-rank or ranking with the use
of knowledge graphs. All these research directions have improved search
systems’ effectiveness by using more diverse data. Although more diverse
data sources are considered, these systems are often implemented through a
coupled architecture: first-stage retrieval is often carried out with different
software than that used in later retrieval stages, where novel reranking
techniques tend to be used. In our view, researchers could benefit from a
system where retrieval stages are more tightly coupled, which facilitates the
exploration of how to use non-content data for ranking and serves the data
in a format suitable for reranking with, e.g., transformers [Gao et al., 2021,
Luan et al., 2021, Lin et al., 2020b], tree-based methods [Burges, 2010] or
graph-based methods [Page et al., 1999, Hasibi et al., 2016, Balog, 2018,
Dalton et al., 2014].

The previous chapter demonstrates how relational databases can be
used for information retrieval problems. Integrating alternative data sources
into search systems is easier when using a relational database instead of an
inverted index. In the case of information retrieval, graph data can often
be used to improve search effectiveness. One of the most famous examples
where graphs help information retrieval is the PageRank algorithm [Page
et al., 1999]. Although it might be possible to express ranking over graph
data in relational databases, they are not designed with graph structures in
mind.

The data management community has shown much interest in graph
databases in recent years. Graph databases are different from relational
databases in that graphs are the main representation for managing the
data, instead of the usual relations. Graphs can be considered a better
abstraction for real-world data than relations. Graphs focus much more on
concepts (nodes in a graph) and how they relate to each other (edges in a
graph), while in a relational database this information is implicit, requiring
knowledge of the schema. From the types of graphs discussed in Chapter 2,
we focus on using property graphs in this chapter. This type of graph
contains nodes and directed edges, which can be labeled; nodes and edges
can also have associated key-value pairs.

The research goal in this chapter is two-fold; firstly, we develop a system
that can search efficiently in information represented as graphs. In the
previous chapter, we showed that relational databases could search efficiently
and help reproducible research. However, these systems do not support

4.2. RELATED WORK 55

graph data structures directly in their interface to the user (e.g., the query
language). Systems built on inverted indexes use coupled architectures,
which can introduce unnecessary overhead.

Secondly, we want to create a system where both first and second-stage
retrieval are directly supported. In IR research, multi-stage retrieval systems
contain components that are not run in the same ecosystem; introducing
overhead in retrieval efficiency. So in this chapter, the prototype system
GeeseDB (Graph Engine for Exploration and Search) is introduced; it tries
to leverage the same techniques for search as relational databases do while
also naturally being able to support graphs. This leads to the main research
question for this chapter:

• Research Question 2: Can we extend the benefits from using relational
databases for information retrieval to using graph databases while
being able to express graph-related problems easier?

In order to answer this research question, we will use our own prototype
system GeeseDB. Before introducing GeeseDB, we first look into work that
combine two systems for two-stage retrieval experiments.

4.2 Related work
In modern IR it is not uncommon to use coupled architectures. In many
situations a ranking model is used that is efficient, but only reasonably
effective. BM25 can be considered a model that can be calculated cheaply
providing a good score for a more advanced (but less efficient) retrieval
model that could achieve higher effectiveness. In such cases, BM25 can be
used to calculate an initial top-k ranking that contains (presumably) all
relevant documents. Then, a more expensive model only has to calculate
the final ranking scores over the top-k documents. k is orders of magnitude
smaller than the collection size.

In this section we start discussing methods that implement multi-stage
approaches, then systems that implement them are highlighted. In particular
there will be a focus on the coupled-architectures aspect of these systems.
Finally, some proposed methods will be discussed to deal with cons arising
from coupled architectures.

4.2.1 Learning To Rank
In learning-to-rank (LTR), multi-stage retrieval approaches are widely used;
LTR models are often not efficient enough to compute a relevance score

56 CHAPTER 4. FROM TABLES TO GRAPHS

value for all documents in the collection. In these cases, for example, a
decision tree based ensemble like LambdaMART [Burges, 2010] is used to
rerank only the top-k documents retrieved by BM25. Also, these models
take input that is usually not stored in an inverted index. So, in order to
use these models, the output from the inverted index needs to be combined
with other data.

Deveaud et al. [2014] showed that for the TREC Contextual Suggestion
track [Dean-Hall et al., 2014], reranking using user-based features signifi-
cantly improved retrieval effectiveness over a baseline language modeling
approach. These features show that data not present in the document’s
text can help the retrieval effectiveness of systems; metadata helps to rank.
Macdonald et al. [2012] showed examples of features that have been effective
for learning to rank, many of these features are non-textual. Some influential
features are: click count, click entropy, and the number of displayed results
in a session. Agichtein et al. [2006] showed that for web search, incorporating
user behavior features significantly improves retrieval effectiveness.

4.2.2 Dense Retrieval
Where traditionally, search was carried out using inverted indexes, neural
retrieval has become more prevalent in recent years. When neural retrieval
[Lin et al., 2022] is implemented as a vector search approach, it is referred
to as dense retrieval. Consider, for example, the work by Gao et al. [2021];
in their work, they proposed clear, a model that aims to complement
lexical models with a dense retrieval model. In their study, they use BM25
as the lexical model. The BM25 scores are calculated using an inverted
index (Anserini [Yang et al., 2018a]), while the dense retrieval model is a
fine-tuned BERT bi-encoder. This dense model calculates a score using a
different maximum inner-product search (MIPS) system (FAISS [Johnson
et al., 2019]) to calculate a similarity score for the query document pairs.
Then scores are weighted and summed to calculate a new ranking score
value.

In a similar study, Luan et al. [2021] compared several methods on the
MS MARCO document and passage datasets. In their work, one of the two
best models on the passage dataset was to combine a lexical model with a
BERT-based bi-encoder. The scores were combined by retrieving the top-k
documents for both the lexical model and the bi-encoder. In order to do
this, an inverted index (Anserini) is used to retrieve the documents for the
lexical model, while the bi-encoder uses a MIPS system (ScaNN [Guo et al.,
2020]).

A third example, is the study of Lin et al. [2020b] that experiments with

56 CHAPTER 4. FROM TABLES TO GRAPHS

value for all documents in the collection. In these cases, for example, a
decision tree based ensemble like LambdaMART [Burges, 2010] is used to
rerank only the top-k documents retrieved by BM25. Also, these models
take input that is usually not stored in an inverted index. So, in order to
use these models, the output from the inverted index needs to be combined
with other data.

Deveaud et al. [2014] showed that for the TREC Contextual Suggestion
track [Dean-Hall et al., 2014], reranking using user-based features signifi-
cantly improved retrieval effectiveness over a baseline language modeling
approach. These features show that data not present in the document’s
text can help the retrieval effectiveness of systems; metadata helps to rank.
Macdonald et al. [2012] showed examples of features that have been effective
for learning to rank, many of these features are non-textual. Some influential
features are: click count, click entropy, and the number of displayed results
in a session. Agichtein et al. [2006] showed that for web search, incorporating
user behavior features significantly improves retrieval effectiveness.

4.2.2 Dense Retrieval
Where traditionally, search was carried out using inverted indexes, neural
retrieval has become more prevalent in recent years. When neural retrieval
[Lin et al., 2022] is implemented as a vector search approach, it is referred
to as dense retrieval. Consider, for example, the work by Gao et al. [2021];
in their work, they proposed clear, a model that aims to complement
lexical models with a dense retrieval model. In their study, they use BM25
as the lexical model. The BM25 scores are calculated using an inverted
index (Anserini [Yang et al., 2018a]), while the dense retrieval model is a
fine-tuned BERT bi-encoder. This dense model calculates a score using a
different maximum inner-product search (MIPS) system (FAISS [Johnson
et al., 2019]) to calculate a similarity score for the query document pairs.
Then scores are weighted and summed to calculate a new ranking score
value.

In a similar study, Luan et al. [2021] compared several methods on the
MS MARCO document and passage datasets. In their work, one of the two
best models on the passage dataset was to combine a lexical model with a
BERT-based bi-encoder. The scores were combined by retrieving the top-k
documents for both the lexical model and the bi-encoder. In order to do
this, an inverted index (Anserini) is used to retrieve the documents for the
lexical model, while the bi-encoder uses a MIPS system (ScaNN [Guo et al.,
2020]).

A third example, is the study of Lin et al. [2020b] that experiments with

4.2. RELATED WORK 57

distilled dense representations. They do an extensive comparison study, and
in their work, the best results are reported by either multi-stage or hybrid
dense + sparse retrieval methods. The multi-stage retrieval method used
BM25 in combination with BERT-large. Although effective, it is a method
with a high latency and high energy cost because of the cross-encoder used.
A TCT-ColBERT (Tightly-Coupled Teacher - ColBERT) bi-encoder with
doc2query-T5 sparse retrieval was the best hybrid method. This sparse
retrieval method is a BM25 retrieval method that expands the documents
with T5 language model questions [Raffel et al., 2020]. These questions
were generated by letting the T5 language model generate questions that
the passage might answer. Sparse retrieval is carried out by Anserini, and
dense retrieval by FAISS.

4.2.3 Knowledge Graphs and Entities
Knowledge graphs have been used a lot as well in IR research. Hasibi
et al. [2016] proposed the Entity Linking incorporated Retrieval (ELR)
approach. The idea behind this concept is that when entity annotations
are available for queries and documents, they can be incorporated into
the ranking model. Their publication only focuses on entity retrieval, but
the method can generalize to ad-hoc document and passage retrieval. The
entities are incorporated by creating a dedicated index for entities on which
entity scores can be calculated. These are then merged by the document
scores calculated using the regular index. By incorporating entity scores,
ELR has been shown to increase effectiveness scores for multiple baseline
methods.

Dalton et al. [2014] used entity features for query expansion. One of the
features was calculated by tagging queries with an entity-linking system.
When entities were found, information from the knowledge base linked to
them was included in query expansion. Alternative names of the entity were
also included in the query expansion. Then, this expanded query provided
a score for all documents. Another feature they calculate is obtained by
ranking the entities in the knowledge base using the original query text.
Then the data (e.g., words in the descriptions) included in the knowledge
base can be included as terms for query expansion. Multiple other features
using entities were also calculated,

For additional background related to entities in search, we refer to
Balog [2018], an excellent book on entity-oriented search, that surveys many
methods that use entities for search.

Basically, in order to include entities, a knowledge graph needs to be
queried. This tends to be done by a different system than the system used

58 CHAPTER 4. FROM TABLES TO GRAPHS

for regular retrieval. If we could integrate IR in graph databases, a single
system would solve the complete process.

4.2.4 Current approaches
Recently, retrieval methods using neural networks have become state-of-
the-art, mainly using large language models. In this section the two most
commonly used research systems are described, highlighting how they with
neural approaches to IR. PyTerrier [Macdonald et al., 2021] and Pyserini [Lin
et al., 2021] are modern research systems that are widely used for information
retrieval research. These systems are built as inverted index systems, with
a separate component to handle neural retrieval models.

PyTerrier

PyTerrier by Macdonald et al. [2021], is a Python extension of Terrier [Ounis
et al., 2005]. Terrier is an open-source search engine system written in Java.
It implements state-of-the-art indexing and retrieval techniques on top of
an inverted index. It is a system suited for rapidly developing retrieval
experiments concerning document collections with many documents. The
PyTerrier extension was developed to express complex IR pipelines in
Python. Using overloaded Python operators (e.g. » for passing the output
of one retrieval building block to the input of another) directly, it is possible
to set up an IR pipeline using PyTerrier in only a few lines of code.

PyTerrier was expanded to support state-of-the-art large language model
reranking approaches and dense retrieval methods. As the PyTerrier frame-
work is developed for the Python ecosystem, other (re-)ranking methods that
are implemented in Python can readily work with PyTerrier. The PyTerrier
system is ideal for modern information retrieval research, that often concerns
reranking through learned methods, as they are often developed in Python.

Note, however, that PyTerrier uses a coupled architecture. First-stage
retrieval is carried out using Terrier in Java (e.g., a BM25 run), and then the
resulting top documents are reranked in Python. For this, some overhead is
introduced because of data transfer between processes.

Pyserini

Pyserini was developed by Lin et al. [2021], which is a Python extension of
Anserini [Yang et al., 2018a]. Pyserini and Anserini have a lot in common
with PyTerrier and Terrier. Just like Terrier, Anserini is developed in Java,
but on top of Apache Lucene. Anserini is developed as a system with solid

58 CHAPTER 4. FROM TABLES TO GRAPHS

for regular retrieval. If we could integrate IR in graph databases, a single
system would solve the complete process.

4.2.4 Current approaches
Recently, retrieval methods using neural networks have become state-of-
the-art, mainly using large language models. In this section the two most
commonly used research systems are described, highlighting how they with
neural approaches to IR. PyTerrier [Macdonald et al., 2021] and Pyserini [Lin
et al., 2021] are modern research systems that are widely used for information
retrieval research. These systems are built as inverted index systems, with
a separate component to handle neural retrieval models.

PyTerrier

PyTerrier by Macdonald et al. [2021], is a Python extension of Terrier [Ounis
et al., 2005]. Terrier is an open-source search engine system written in Java.
It implements state-of-the-art indexing and retrieval techniques on top of
an inverted index. It is a system suited for rapidly developing retrieval
experiments concerning document collections with many documents. The
PyTerrier extension was developed to express complex IR pipelines in
Python. Using overloaded Python operators (e.g. » for passing the output
of one retrieval building block to the input of another) directly, it is possible
to set up an IR pipeline using PyTerrier in only a few lines of code.

PyTerrier was expanded to support state-of-the-art large language model
reranking approaches and dense retrieval methods. As the PyTerrier frame-
work is developed for the Python ecosystem, other (re-)ranking methods that
are implemented in Python can readily work with PyTerrier. The PyTerrier
system is ideal for modern information retrieval research, that often concerns
reranking through learned methods, as they are often developed in Python.

Note, however, that PyTerrier uses a coupled architecture. First-stage
retrieval is carried out using Terrier in Java (e.g., a BM25 run), and then the
resulting top documents are reranked in Python. For this, some overhead is
introduced because of data transfer between processes.

Pyserini

Pyserini was developed by Lin et al. [2021], which is a Python extension of
Anserini [Yang et al., 2018a]. Pyserini and Anserini have a lot in common
with PyTerrier and Terrier. Just like Terrier, Anserini is developed in Java,
but on top of Apache Lucene. Anserini is developed as a system with solid

4.2. RELATED WORK 59

support for reproducible research. Anserini provides reproducible baselines
for many retrieval benchmarks that can be run with minimal investment of
resources.

Pyserini is developed as a Python wrapper around the Anserini retrieval
system. Within the Python ecosystem, it is possible to access the Anserini
internals and replicate the same experiments implemented in Anserini.
Similarly to PyTerrier, Pyserini also contains features that are not available
directly in Anserini; ranking methods that make use of large language
models, such as dense retrievers and BERT-based cross encoders. As these
methods are generally developed in Python, it is much easier to support
them with Pyserini compared to Anserini.

Anserini is included in Pyserini as a JAR file, so when using Pyserini
for first-stage retrieval, data needs to be retrieved from JAVA before it can
be materialized in Python. The setup is similar to that of Pyterrier.

4.2.5 Proposed approaches

Separation of the Logical and Physical Model

As shown in the previous sections, dense and sparse retrieval methods are
often implemented using different systems, which introduces the coupled
architecture. Lin [2022] recognizes that sparse retrieval models tend to
be implemented using inverted indexes and dense retrieval methods with
approximate nearest neighbor systems. Although these systems are different,
the input and the output are the same: the input is a query, and the output
is a ranked list of the top-k documents the ranking methods deem the most
relevant.

In order to be able to formalize these similarities and distinctions more
clearly, Lin proposes a distinction between the logical and physical retrieval
models. Logical models specify encoders that map documents and queries
to a representation, and a comparison function that defines how a ranking
score value can be computed from comparing these representations. Physical
models define how to create a top-k ranking from a large corpus given a
query. The most straightforward physical approach would simply apply the
logical model to every query-document pair, but through optimizations it
might not necessary to compare all documents to the query. For example,
dense retrieval methods often make use of the HNSW datastructure for
nearest neighbor search [Johnson et al., 2019] which uses a greedy search
method that might miss some relevant documents.

60 CHAPTER 4. FROM TABLES TO GRAPHS

A Graph Query Language for IR

It would be ideal for a system to encapture these different ways of ap-
proaching IR research natively; work with multiple stages in the ranking
process, but also reason about entities and knowledge graphs. Kamphuis
and de Vries [2019a] proposed to use a graph query language for information
retrieval problems. In the context of separating logical and physical models,
a graph query language can be interpreted as a logical model, while the
engine that implements the graph query language can be considered the
physical model.

If it is possible to express both first stage and second stage retrieval in
such a query language, both stages would be computed by the same physi-
cal model, automatically ensuring a coupled architecture is not necessary.
Having a graph query language available, ensures that more complicated
retrieval strategies can be expressed compared to when a relational query
language is used.

So ideally we develop a system with the following two capabilities; the
system supports first retrieval stage directly, and graph queries over the
output of this first stage retrieval can be processed without a coupled
architecture. In order to fulfill these needs, we developed GeeseDB in a
follow up study.

4.3 GeeseDB
GeeseDB1 is a prototype Python toolkit for information retrieval that
leverages graphs as data structures, allowing metadata and graph-oriented
data to be easily included in the ranking pipeline. The toolkit is designed
to quickly set up first-stage retrieval and make it easy for researchers to
explore new ranking models.

In short, GeeseDB aims to provide the following functionalities:

• GeeseDB is an easy-to-install, self-contained Python package available
through PyPI with as few as possible dependencies. It contains topics
and relevance judgments for several standard IR collections out-of-
the-box, allowing researchers to develop new ranking models quickly.

• First stage (sparse) retrieval is directly supported. In only a few lines
of code, it is possible to load documents and create BM25 rankings.

1https://github.com/informagi/geesedb, last accessed September 2025

60 CHAPTER 4. FROM TABLES TO GRAPHS

A Graph Query Language for IR

It would be ideal for a system to encapture these different ways of ap-
proaching IR research natively; work with multiple stages in the ranking
process, but also reason about entities and knowledge graphs. Kamphuis
and de Vries [2019a] proposed to use a graph query language for information
retrieval problems. In the context of separating logical and physical models,
a graph query language can be interpreted as a logical model, while the
engine that implements the graph query language can be considered the
physical model.

If it is possible to express both first stage and second stage retrieval in
such a query language, both stages would be computed by the same physi-
cal model, automatically ensuring a coupled architecture is not necessary.
Having a graph query language available, ensures that more complicated
retrieval strategies can be expressed compared to when a relational query
language is used.

So ideally we develop a system with the following two capabilities; the
system supports first retrieval stage directly, and graph queries over the
output of this first stage retrieval can be processed without a coupled
architecture. In order to fulfill these needs, we developed GeeseDB in a
follow up study.

4.3 GeeseDB
GeeseDB1 is a prototype Python toolkit for information retrieval that
leverages graphs as data structures, allowing metadata and graph-oriented
data to be easily included in the ranking pipeline. The toolkit is designed
to quickly set up first-stage retrieval and make it easy for researchers to
explore new ranking models.

In short, GeeseDB aims to provide the following functionalities:

• GeeseDB is an easy-to-install, self-contained Python package available
through PyPI with as few as possible dependencies. It contains topics
and relevance judgments for several standard IR collections out-of-
the-box, allowing researchers to develop new ranking models quickly.

• First stage (sparse) retrieval is directly supported. In only a few lines
of code, it is possible to load documents and create BM25 rankings.

1https://github.com/informagi/geesedb, last accessed September 2025

4.3. GEESEDB 61

Term Document

FK1 doc_id int NOT NULL

FK2 term_id int NOT NULL

term_frequency int NOT NULL

Documents

PK doc_id int NOT NULL

length int NOT NULL

collection_id varchar NOT NULL

Terms

PK term_id int NOT NULL

string VARCHAR NOT NULL

doc_frequency int NOT NULL

Figure 4.1: Database schema by Mühleisen et al. for full text search
in relational databases

• Data is served in a usable format for later retrieval stages. GeeseDB
allows directly running queries on Pandas data frames for efficient
data transfer to sequential reranking algorithms.

• Easy data exploration is supported through querying data with SQL,
but more interestingly, using a graph query language (based on the
Cypher query language), making exploring new research avenues
easier. This prototype supports a subset of the graph query language
Cypher, similar to the property graph database model query language
as described by Angles [2018].

4.3.1 Design
At the core of GeeseDB lies the full-text search design presented by Mühleisen
et al. [2014] as discussed already in Chapter 3. This work proposes a column-
store database for IR prototyping, which uses the database schema described
in Figure 4.1, consisting of three database tables. Using these three tables,
the authors show that BM25 can be easily expressed as a SQL query with
latencies on par with custom-built IR engines. In GeeseDB, we use the same
relational schema for full-text search. Instead of seeing the document data
and term data as tables that relate to each other through a many-to-many
join table, it is also possible to consider this schema as a bipartite graph. In
this graph, documents and terms are considered nodes connected through
edges. If a term occurs in a document, an edge exists between that term and
the document. GeeseDB uses the data model of property graphs labeled

62 CHAPTER 4. FROM TABLES TO GRAPHS

Documents

+collection_id: varchar
+length: int

Terms

+string: varchar
+document frequency: int

+ tf: int

Figure 4.2: Graph schema representing bipartite document-term graph

doc 1
collection id: "a"

len: 2

term 1
doc frequency: 1

string: "dog"

doc 2
collection id: "b"

len: 2

term 2
doc frequency: 2

string: "cat"

doc 3
collection id: "c"

len: 2

term 3
doc frequency: 5
string: "music"

TF: 1

TF: 1

TF: 1

TF: 1

TF: 2

TF: 3

Figure 4.3: Example term-document graph that maps to relational
database schema

multigraphs where both edges and nodes can have property-value pairs. The
database schema, as described in Figure 4.1, would then translate to the
property graph schema shown in Figure 4.2. A small example of a graph
represented by this schema is shown in Figure 4.3. Document nodes contain
document-specific information (i.e., document length and the collection
identifier), term nodes contain information relevant to the term (i.e., the
term string and the term’s document frequency), and the edges between
document and term nodes contain term frequency information (i.e., how
often is the term mentioned in the document represented the respective
nodes it connects).

If one wants to, for example, also store position data, this graph can
easily be extended to a graph where the edges store term positions. If a term
appears multiple times in a document, the property graph model will allow

62 CHAPTER 4. FROM TABLES TO GRAPHS

Documents

+collection_id: varchar
+length: int

Terms

+string: varchar
+document frequency: int

+ tf: int

Figure 4.2: Graph schema representing bipartite document-term graph

doc 1
collection id: "a"

len: 2

term 1
doc frequency: 1

string: "dog"

doc 2
collection id: "b"

len: 2

term 2
doc frequency: 2

string: "cat"

doc 3
collection id: "c"

len: 2

term 3
doc frequency: 5
string: "music"

TF: 1

TF: 1

TF: 1

TF: 1

TF: 2

TF: 3

Figure 4.3: Example term-document graph that maps to relational
database schema

multigraphs where both edges and nodes can have property-value pairs. The
database schema, as described in Figure 4.1, would then translate to the
property graph schema shown in Figure 4.2. A small example of a graph
represented by this schema is shown in Figure 4.3. Document nodes contain
document-specific information (i.e., document length and the collection
identifier), term nodes contain information relevant to the term (i.e., the
term string and the term’s document frequency), and the edges between
document and term nodes contain term frequency information (i.e., how
often is the term mentioned in the document represented the respective
nodes it connects).

If one wants to, for example, also store position data, this graph can
easily be extended to a graph where the edges store term positions. If a term
appears multiple times in a document, the property graph model will allow

4.3. GEESEDB 63

multiple edges between two nodes. The graph schema that we described
by Figure 4.2 maps one-to-one to the relational database schema described
by Figure 4.1, when we represent nodes by standard relational tables that
represent specific data units (terms, documents), while many-to-many join
tables represent the edges. So, even though we think of the data as graphs,
they are still represented as relational tables in the backend. When using
GeeseDB for search, we at least expect the document-term graph to be
present. New node types can be introduced to explore new search strategies.
In GeeseDB we assume one database per collection.

Backend

GeeseDB is built on top of DuckDB [Raasveldt and Mühleisen, 2019], an
in-process SQL OLAP (analytics optimized) database management system.
DuckDB is designed to support analytical query workloads. It aims explicitly
to process complex, long-running queries where a significant portion of the
data is accessed, conditions matching the case of IR research. DuckDB
has a client Python API which can be installed using pip.2 Afterward, it
can be used directly. DuckDB has a separate API built around NumPy3

and Pandas,4 providing NumPy/Pandas views over the same underlying
data representation without incurring data transfer (usually referred to
as “zero-copy” reading). Pandas DataFrames can be registered as virtual
tables, allowing to query the data in Pandas DataFrames directly. GeeseDB
inherits all these functionalities from DuckDB.

As DuckDB is a database management system, we can execute analytical
SQL queries on tables containing our data, including the BM25 rankings
described by Mühleisen et al. [2014]. By default, the BM25 implementation
provided with GeeseDB implements the disjunctive variant of BM25 instead
of the conjunctive variant they used. Although the conjunctive variant of
BM25 can be calculated more quickly, the differences between effectiveness
scores are noticeable on smaller collections. Also, disjunctive would mostly
likely better match the mental model of our IR researchers as GeeseDB
users. We only support the original formulation of BM25 by Robertson
et al. [1994]. However, supporting other versions of BM25 as described in
the previous chapter is trivial.

2https://duckdb.org/docs/installation/?version=stable&
environment=python, last accessed - September 2025

3https://numpy.org/, last accessed - September 2025
4https://pandas.pydata.org/, last accessed - September 2025

64 CHAPTER 4. FROM TABLES TO GRAPHS

1 MATCH (d:docs)-[]-(:authors)-[]-(d2:docs)
2 WHERE d.collection_id = "96ab542e"
3 RETURN DISTINCT d2.collection_id

Figure 4.4: An example cypher query that finds all documents that
were written by the same author that wrote the document with the
collecion_id “96ab542e”

1 SELECT DISTINCT d2.collection_id
2 FROM docs AS d2
3 JOIN doc_author AS da2 ON (d2.collection_id = da2.doc)
4 JOIN authors AS a2 ON (da2.author = a2.author)
5 JOIN doc_author AS da3 ON (a2.author = da3.author)
6 JOIN docs AS d ON (d.collection_id = da3.doc)
7 WHERE d.collection_id = '96ab542e'

Figure 4.5: SQL query that corresponds to the graph query described
in Figure 4.4.

4.3.2 Graph Query Language
GeeseDB distinguishes itself from alternatives, database-backed systems
(OldDog) [Kamphuis and de Vries, 2019b], or native systems (Anserini [Yang
et al., 2018a], Terrier [Ounis et al., 2005]) by offering a graph query language,
based on Cypher [Francis et al., 2018]. Where SQL queries start with what
will be returned, a Cypher queries ends with it in the return clause. In
Cypher the Match pattern is used to find specific graph patterns in the
data. This can, for example, be a specific node of a certain type, or a graph
pattern that describes a subgraph. GeeseDB implements Cypher’s basic
graph pattern-matching queries for retrieving data. An example of a graph
query supported by GeeseDB is presented in Figure 4.4. This co-authorship
query finds all documents written by the same authors as those who wrote
document “96ab542e”. For comparison, Figure 4.5 illustrates the same
query represented in SQL; much more complex than the Cypher version,
due to the join conditions that have to be made explicit. In order to connect
the “docs”-table with the “authors”-table two joins are needed; reconnecting
the “docs” table again introduces two more joins.

GeeseDB supports the following Cypher keywords: MATCH, RETURN,
WHERE, AND, DISTINCT, ORDER BY, SKIP, and LIMIT. Instead of using WHERE

64 CHAPTER 4. FROM TABLES TO GRAPHS

1 MATCH (d:docs)-[]-(:authors)-[]-(d2:docs)
2 WHERE d.collection_id = "96ab542e"
3 RETURN DISTINCT d2.collection_id

Figure 4.4: An example cypher query that finds all documents that
were written by the same author that wrote the document with the
collecion_id “96ab542e”

1 SELECT DISTINCT d2.collection_id
2 FROM docs AS d2
3 JOIN doc_author AS da2 ON (d2.collection_id = da2.doc)
4 JOIN authors AS a2 ON (da2.author = a2.author)
5 JOIN doc_author AS da3 ON (a2.author = da3.author)
6 JOIN docs AS d ON (d.collection_id = da3.doc)
7 WHERE d.collection_id = '96ab542e'

Figure 4.5: SQL query that corresponds to the graph query described
in Figure 4.4.

4.3.2 Graph Query Language
GeeseDB distinguishes itself from alternatives, database-backed systems
(OldDog) [Kamphuis and de Vries, 2019b], or native systems (Anserini [Yang
et al., 2018a], Terrier [Ounis et al., 2005]) by offering a graph query language,
based on Cypher [Francis et al., 2018]. Where SQL queries start with what
will be returned, a Cypher queries ends with it in the return clause. In
Cypher the Match pattern is used to find specific graph patterns in the
data. This can, for example, be a specific node of a certain type, or a graph
pattern that describes a subgraph. GeeseDB implements Cypher’s basic
graph pattern-matching queries for retrieving data. An example of a graph
query supported by GeeseDB is presented in Figure 4.4. This co-authorship
query finds all documents written by the same authors as those who wrote
document “96ab542e”. For comparison, Figure 4.5 illustrates the same
query represented in SQL; much more complex than the Cypher version,
due to the join conditions that have to be made explicit. In order to connect
the “docs”-table with the “authors”-table two joins are needed; reconnecting
the “docs” table again introduces two more joins.

GeeseDB supports the following Cypher keywords: MATCH, RETURN,
WHERE, AND, DISTINCT, ORDER BY, SKIP, and LIMIT. Instead of using WHERE

4.3. GEESEDB 65

1 MATCH (d:docs {d.collection_id: "96ab542e"})
2 RETURN d.len

Figure 4.6: Graph query where the length of document with
collection_id is returned.

to filter data, it is also possible to use graph matching patterns that include
filters; as shown in Figure 4.6; the query returns the length of document
“96ab542e”. Here the filter is defined between the curly braces. Everything
that is not directly supported yet by our implementation can, of course, still
be expressed in SQL, which is fully supported.5 In order to know how to
join nodes to each other if no edge information has been provided, GeeseDB
stores information on the graph schema. This way, GeeseDB knows how
nodes relate to each other through which edges.

4.3.3 Usage
GeeseDB comes as an easy-to-install Python package that can be installed
using pip, the standard package installer for Python:

$ pip install geesedb

After installing GeeseDB, we can immediately start using it. It is also
possible to install the latest commit by installing the latest version directly
from GitHub. As an example, we will show how to use GeeseDB for the
background linking task of the TREC News Track [Soboroff et al., 2019].
The goal of this task is: Given a news story, find other news articles that can
provide meaningful context or background information. These articles can
then be recommended to the reader to help them understand the context
in which these news articles occur. The collection used for this task is the
Washington Post V3 collection6 released for the 2020 edition of TREC. It
contains 671, 945 news articles published by the Washington Post between
2012 and 2020, and 50 topics with relevance assessments (topics correspond
to collection identifiers of documents for which relevant data has to be found).
The articles in this collection contain valuable metadata; in particular, we
will investigate how to best use the article authorship information. We
extracted 25, 703 unique article authors, where it is possible that multiple

5GeeseDB supports the graph queries by translating them to their corresponding
SQL queries. After all, both nodes and edges are just tables in the backend.

6https://trec.nist.gov/data/wapost/, last accessed - September 2025

66 CHAPTER 4. FROM TABLES TO GRAPHS

authors co-wrote a news article. We also annotate documents with entity
information which was obtained by using the Radboud Entity Linker [van
Hulst et al., 2020]. In total 31, 622, 419 references to 541, 729 unique entities
were found. The links also contain mention and location information, as
well as the entity type (ner_tag) found by the linker’s entity recognition
module (the entity type is part of a link, as the entity linker can assign
different tags to the same entity.) Figure 4.7 illustrates the data schema
that we use for the background linking task.

4.3.4 Indexing and Search
In order to start, a database containing at least the document and term
information needs to be created. Figure 4.8 shows how the data can be
easily loaded using CSV files.

Instead of loading the data from CSV files, it is also possible to load
the text data directly using the CIFF format for information retrieval data
exchange [Lin et al., 2020a]. GeeseDB also has functionalities to create
CSV files from the CIFF format. Authorship information and entity links
are loaded similarly. After loading the data, we can easily create a BM25
ranking for ad hoc search in the Washington Post collection, as shown
in Figure 4.9.

For the background linking task, however, we do not have regular
topics; we only have the document identifiers of the documents for which
we need to find relevant background info. In order to search for relevant
background reading, queries that represent our information need have to
be constructed. A common approach uses the top-k TF-IDF terms of the
source article [Yang and Lin, 2019]. These can easily be found using the
Cypher statement in Figure 4.10. Instead of using Cypher, it would also
be possible to use SQL, as shown in Figure 4.11; however, this example
shows again that the Cypher query is more elegant than SQL, and easier to
comprehend.

Processing Cypher queries depends on the schema information that must
be loaded, before queries can be issued. Graph schema info is external to
DuckDB. For prototyping you handle it in a support class, that is written
in Python. The schema data used in this chapter are available via GitHub.
Using the terms found with Cypher, we can construct queries to pass to the
searcher and create a BM25 ranking. The code that generates the rankings
for all topics is presented in Figure 4.12. In only a few lines of Python code,
it is easy to create rankings. From this point, writing the content of hits
to a runfile and evaluating their effectiveness using trec_eval is trivial.

66 CHAPTER 4. FROM TABLES TO GRAPHS

authors co-wrote a news article. We also annotate documents with entity
information which was obtained by using the Radboud Entity Linker [van
Hulst et al., 2020]. In total 31, 622, 419 references to 541, 729 unique entities
were found. The links also contain mention and location information, as
well as the entity type (ner_tag) found by the linker’s entity recognition
module (the entity type is part of a link, as the entity linker can assign
different tags to the same entity.) Figure 4.7 illustrates the data schema
that we use for the background linking task.

4.3.4 Indexing and Search
In order to start, a database containing at least the document and term
information needs to be created. Figure 4.8 shows how the data can be
easily loaded using CSV files.

Instead of loading the data from CSV files, it is also possible to load
the text data directly using the CIFF format for information retrieval data
exchange [Lin et al., 2020a]. GeeseDB also has functionalities to create
CSV files from the CIFF format. Authorship information and entity links
are loaded similarly. After loading the data, we can easily create a BM25
ranking for ad hoc search in the Washington Post collection, as shown
in Figure 4.9.

For the background linking task, however, we do not have regular
topics; we only have the document identifiers of the documents for which
we need to find relevant background info. In order to search for relevant
background reading, queries that represent our information need have to
be constructed. A common approach uses the top-k TF-IDF terms of the
source article [Yang and Lin, 2019]. These can easily be found using the
Cypher statement in Figure 4.10. Instead of using Cypher, it would also
be possible to use SQL, as shown in Figure 4.11; however, this example
shows again that the Cypher query is more elegant than SQL, and easier to
comprehend.

Processing Cypher queries depends on the schema information that must
be loaded, before queries can be issued. Graph schema info is external to
DuckDB. For prototyping you handle it in a support class, that is written
in Python. The schema data used in this chapter are available via GitHub.
Using the terms found with Cypher, we can construct queries to pass to the
searcher and create a BM25 ranking. The code that generates the rankings
for all topics is presented in Figure 4.12. In only a few lines of Python code,
it is easy to create rankings. From this point, writing the content of hits
to a runfile and evaluating their effectiveness using trec_eval is trivial.

4.3. GEESEDB 67

Documents
len: 3

collection_id: "abc"

Authors
Name: "Arjen"

Documents
len: 2

collection_id: "def"

Authors
Chris: "Chris"

Terms
string: "dog"

df: 1

Terms
string: "cat"

df: 2

Terms
string: "music"

df: 1

Entities
entity: "dog"

df: 1

tf: 1 tf: 2 tf: 1 tf: 1

mention: "dog"
ner_tag: "misc"

start: 0
len: 1

Figure 4.7: Example property graph for the TREC News Track’s
background linking task. The node types are authors, entities, terms,
and documents. Edges connect document nodes to other types of nodes.
Both edges and nodes can have properties (following the property graph
model). Multiple edges may exist between one entity node and one
document node, as one entity can be linked multiple times to one
document. Note that some nodes here are squares instead of circles,
this was done for readability.

68 CHAPTER 4. FROM TABLES TO GRAPHS

1 from geesedb.index import FullTextFromCSV
2

3 index = FullTextFromCSV(
4 database='/path/to/database',
5 docs_file='/path/to/docs.csv',
6 term_dict_file='/path/to/term_dict.csv',
7 term_doc_file='/path/to/term_doc.csv'
8)
9 index.load_data()

Figure 4.8: Load text data from the WashingtonPost collection for-
matted as CSV files in the format as described by Mühleisen et al.
[2014]

1 from geesedb.search import Searcher
2

3 searcher = Searcher(
4 database='/path/to/database',
5 n=10
6)
7 hits = searcher.search_topic('fast dogs')

Figure 4.9: Example on how to create a BM25 ranking for the query
“fast dogs” that returns the top 10 documents. The Searcher class also
takes the optional parameters k1 and b, in this example it uses the
default values 0.9 and 0.4 respectively [Trotman et al., 2012].

1 MATCH (d:docs {collection_id: ?})-[]-(t:term_dict)
2 RETURN string
3 ORDER BY tf*log(671945/df)
4 DESC
5 LIMIT 5

Figure 4.10: Prepared7 Cypher statement that finds the top-5 TF-IDF
terms in a given document. The number 671945 on line 3 corresponds
to the collection size, this could be computed in a sub-query.

68 CHAPTER 4. FROM TABLES TO GRAPHS

1 from geesedb.index import FullTextFromCSV
2

3 index = FullTextFromCSV(
4 database='/path/to/database',
5 docs_file='/path/to/docs.csv',
6 term_dict_file='/path/to/term_dict.csv',
7 term_doc_file='/path/to/term_doc.csv'
8)
9 index.load_data()

Figure 4.8: Load text data from the WashingtonPost collection for-
matted as CSV files in the format as described by Mühleisen et al.
[2014]

1 from geesedb.search import Searcher
2

3 searcher = Searcher(
4 database='/path/to/database',
5 n=10
6)
7 hits = searcher.search_topic('fast dogs')

Figure 4.9: Example on how to create a BM25 ranking for the query
“fast dogs” that returns the top 10 documents. The Searcher class also
takes the optional parameters k1 and b, in this example it uses the
default values 0.9 and 0.4 respectively [Trotman et al., 2012].

1 MATCH (d:docs {collection_id: ?})-[]-(t:term_dict)
2 RETURN string
3 ORDER BY tf*log(671945/df)
4 DESC
5 LIMIT 5

Figure 4.10: Prepared7 Cypher statement that finds the top-5 TF-IDF
terms in a given document. The number 671945 on line 3 corresponds
to the collection size, this could be computed in a sub-query.

4.3. GEESEDB 69

1 SELECT term_dict.string
2 FROM term_dict
3 JOIN term_doc ON (term_dict.term_id = term_doc.term_id)
4 JOIN docs ON (docs.doc_id = term_doc.doc_id)
5 WHERE docs.collection_id = ?
6 ORDER BY term_doc.tf * log(671945/term_dict.df)
7 DESC
8 LIMIT 5;

Figure 4.11: Prepared SQL statement that finds the top-5 TF-IDF
terms in a document.

Instead of “just” ranking with BM25, expressing strategies that would
use metadata to adapt the ranking is straightforward. In the case of
background linking, it makes sense to consider authorship information when
recommending articles that might be suitable as background reading. As
journalists often specialize in specific news topics (e.g., politics, foreign affairs,
tech), the stories they write often share context. Also, when journalists
collaborate on stories, they write together on topics they specialize in.
As authorship information is represented in the data graph, we can use
the information whether an article is written by the authors of the topic
article or by someone they have collaborated with in the past. The graph
query that finds the articles that this group of people has written is shown
in Figure 4.13.
Depending on the number of documents this query identifies, different
rescoring strategies can be decided upon. If the set of documents written by
the authors or their co-authors is large, it is possible only to consider these
documents, but if the set is small, a score boost might be more appropriate.
Figure 4.14 shows an example of how only to consider documents found
with the query in Figure 4.13. In this case, we ensure that at least 2000
documents are found before filtering.

For another example, expressiveness of the graph query language is
also valuable when considering the occurrences of entities in news articles.
Journalists write news articles that relate to events concerning, e.g., people,
organizations, or countries. In other words, entities are often the subject
of news. So, instead of using the most informative terms in a news article,
it is worthwhile to consider the entities identified in the article instead.
Important entities tend to be mentioned at the beginning of a news article
for this collection [Kamphuis et al., 2019]; Figure 4.15 shows the Cypher

70 CHAPTER 4. FROM TABLES TO GRAPHS

1 from geesedb.search import Searcher
2 from geesedb.connection import get_connection
3 from geesedb.resources import

get_topics_backgroundlinking↪→

4 from geesedb.interpreter import Translator
5

6 db_path = '/path/to/database'
7 searcher = Searcher(
8 database=db_path,
9 n=1000

10)
11

12 translator = Translator(db_path)
13 c_query = """cypher TFIDF query"""
14

15 query = translator.translate(c_query)
16 cursor = get_connection(db_path).cursor
17 topics = get_topics_backgroundlinking(
18 '/path/to/topics'
19)
20 for topic_no, collection_id in topics:
21 cursor.execute(query, [collection_id])
22 topic = ' '.join(cursor.fetchall()[0])
23 hits = searcher.search_topic(topic)

Figure 4.12: Create a BM25 ranking for all background linking topics
using the top-5 TFIDF terms. Note that a processed topic file was
used where only the topic identifier and article id are available. The
topic file in this format is provided on our GitHub.

1 MATCH (d:docs)-[]-(:authors)-[]-(:docs)-[]-(:authors)- ⌋

[]-(d2:docs {collection_id:
?})

↪→

↪→

2 RETURN DISTINCT d.collection_id

Figure 4.13: Cypher query to find documents written by co-authors of
the authors of the topic article.

70 CHAPTER 4. FROM TABLES TO GRAPHS

1 from geesedb.search import Searcher
2 from geesedb.connection import get_connection
3 from geesedb.resources import

get_topics_backgroundlinking↪→

4 from geesedb.interpreter import Translator
5

6 db_path = '/path/to/database'
7 searcher = Searcher(
8 database=db_path,
9 n=1000

10)
11

12 translator = Translator(db_path)
13 c_query = """cypher TFIDF query"""
14

15 query = translator.translate(c_query)
16 cursor = get_connection(db_path).cursor
17 topics = get_topics_backgroundlinking(
18 '/path/to/topics'
19)
20 for topic_no, collection_id in topics:
21 cursor.execute(query, [collection_id])
22 topic = ' '.join(cursor.fetchall()[0])
23 hits = searcher.search_topic(topic)

Figure 4.12: Create a BM25 ranking for all background linking topics
using the top-5 TFIDF terms. Note that a processed topic file was
used where only the topic identifier and article id are available. The
topic file in this format is provided on our GitHub.

1 MATCH (d:docs)-[]-(:authors)-[]-(:docs)-[]-(:authors)- ⌋

[]-(d2:docs {collection_id:
?})

↪→

↪→

2 RETURN DISTINCT d.collection_id

Figure 4.13: Cypher query to find documents written by co-authors of
the authors of the topic article.

4.3. GEESEDB 71

1 # import and first lines the same as previous example
2

3 author_c_query = """cypher authorship query"""
4 author_query = t.translate(author_c_query)
5

6 cursor = get_connection(db_path).cursor
7 topics = get_topics_backgroundlinking(
8 '/path/to/topics'
9)

10 for topic_no, collection_id in topics:
11 cursor.execute(query, [collection_id])
12 topic = ' '.join(cursor.fetchall()[0])
13 hits = searcher.search_topic(topic)
14

15 cursor.execute(author_query, [collection_id])
16 docs_authors = {
17 e[0] for e in cursor.fetchall()
18 }
19 if len(docs_authors) > 2000:
20 hits =

hits[hits.collection_id.isin(docs_authors)]↪→

Figure 4.14: Find documents written by all authors that collaborated
with the authors of the topic article. When there are more than 2000
documents found, we only consider these documents as background
reading candidates.

72 CHAPTER 4. FROM TABLES TO GRAPHS

1 MATCH (d:docs {collection_id: ?})-[]-(e:entities)
2 RETURN mention
3 ORDER BY start
4 LIMIT 5

Figure 4.15: Retrieve the first five entities mentioned in the topic
article, and return the terms used to mention the entity.

query to retrieve the text mentions of the first five mentioned entities.
Before it is possible to search using the text describing the first five entity
mentions, the text needs to be processed by an entity linker. The term data
loaded in GeeseDB was already processed, as it was data loaded from CSV
files built from a CIFF file created from an Anserini [Yang et al., 2018a]
(Lucene) index. Pyserini [Lin et al., 2021] can be used to tokenize the text in
the same way the documents were tokenized. Figure 4.16 shows the Python
code where we extract the mentions, process them such that they become a
usable query for GeeseDB, and then a BM25 ranking is created with this
query.

4.4 Experiments
The previous sections give examples on how non textual content can be
used for retrieval experiments. For example, authorship information can
be used as a boost for finding related background reading articles. In the
example the result set is filtered if sufficient articles are written by the same
author, it might however be more interesting to use authorship information
as a feature. Let us define a boosting value p for a a document when it is
written by the same author. Then we can score documents with, e.g., BM25
and adapt the score with p:

score =
{

p · BM25 if same author
BM25 otherwise

(4.1)

We choose to multiply the scores by p instead of adding a constant values,
as the distribution of BM25 scores can different quite a bit depending on
the topic.8 We run a series of retrieval experiments for different values of p
and measure the effect on retrieval effectiveness. We run this experiment

8Topic terms with a high IDF will increase the BM25 scores for that topic.

72 CHAPTER 4. FROM TABLES TO GRAPHS

1 MATCH (d:docs {collection_id: ?})-[]-(e:entities)
2 RETURN mention
3 ORDER BY start
4 LIMIT 5

Figure 4.15: Retrieve the first five entities mentioned in the topic
article, and return the terms used to mention the entity.

query to retrieve the text mentions of the first five mentioned entities.
Before it is possible to search using the text describing the first five entity
mentions, the text needs to be processed by an entity linker. The term data
loaded in GeeseDB was already processed, as it was data loaded from CSV
files built from a CIFF file created from an Anserini [Yang et al., 2018a]
(Lucene) index. Pyserini [Lin et al., 2021] can be used to tokenize the text in
the same way the documents were tokenized. Figure 4.16 shows the Python
code where we extract the mentions, process them such that they become a
usable query for GeeseDB, and then a BM25 ranking is created with this
query.

4.4 Experiments
The previous sections give examples on how non textual content can be
used for retrieval experiments. For example, authorship information can
be used as a boost for finding related background reading articles. In the
example the result set is filtered if sufficient articles are written by the same
author, it might however be more interesting to use authorship information
as a feature. Let us define a boosting value p for a a document when it is
written by the same author. Then we can score documents with, e.g., BM25
and adapt the score with p:

score =
{

p · BM25 if same author
BM25 otherwise

(4.1)

We choose to multiply the scores by p instead of adding a constant values,
as the distribution of BM25 scores can different quite a bit depending on
the topic.8 We run a series of retrieval experiments for different values of p
and measure the effect on retrieval effectiveness. We run this experiment

8Topic terms with a high IDF will increase the BM25 scores for that topic.

4.4. EXPERIMENTS 73

1 from geesedb.search import Searcher
2 from geesedb.connection import get_connection
3 from geesedb.resources import

get_topics_backgroundlinking↪→

4 from geesedb.interpreter import Translator
5 from pyserini.analysis import Analyzer,

get_lucene_analyzer↪→

6

7 db_path = '/path/to/database'
8 searcher = Searcher(
9 database=db_path,

10 n=1000
11)
12

13 analyzer = Analyzer(get_lucene_analyzer())
14

15 translator = Translator(db_path)
16 c_query = """cypher entity query"""
17 query = translator.translate(c_query)
18

19 cursor = get_connection(db_path).cursor
20 topics = get_topics_backgroundlinking(
21 '/path/to/topics'
22)
23

24 for topic_no, collection_id in topics:
25 cursor.execute(query, [collection_id])
26 topic = ' '.join([e[0] for e in cursor.fetchall()])
27 topic = ' '.join(analyzer.analyze(topic))
28 hits = searcher.search_topic(topic)

Figure 4.16: Create a BM25 ranking for all background linking topics
using the mention text of the first five linked entities in the source
article. The Cypher query is shown in Figure 4.15

74 CHAPTER 4. FROM TABLES TO GRAPHS

Figure 4.17: Recall @ 20 for varying levels of p

on the background linking tasks for TREC news 2018 and 2019. Both topic
sets contain 60 topics. Varying for different values of p, we see the effects on
retrieval effectiveness. We evaluate using recall, as BM25 is quite a cheap
ranking method whose ranking should be the input for a more sophisticated
second stage ranking system to reorder the top documents by their content.

Figures 4.17 to 4.19 show the effectiveness scores for values of p from
0.75 to 1.25 for recall at 20, 50 and 100.9 When p = 1, documents written
by the same author get the same score. Values for p lower than 1 would
decrease the scores for articles written by the same author. We see that
for both collections, a slight boost of documents that are written by the
same author, represented by the values 1 < p < 1.1, does increase recall at
different depths for both document collections. However when p becomes
larger than 1.1 the recall tends to decrease, especially for recall at depth 20.
This experiment shows that it is quite easy to use GeeseDB for retrieval
experiments and adding metadata; showing that including metadata might
benefit first stage ranking methods.

9Expensive large language model based rerankers do not rerank many documents.

74 CHAPTER 4. FROM TABLES TO GRAPHS

Figure 4.17: Recall @ 20 for varying levels of p

on the background linking tasks for TREC news 2018 and 2019. Both topic
sets contain 60 topics. Varying for different values of p, we see the effects on
retrieval effectiveness. We evaluate using recall, as BM25 is quite a cheap
ranking method whose ranking should be the input for a more sophisticated
second stage ranking system to reorder the top documents by their content.

Figures 4.17 to 4.19 show the effectiveness scores for values of p from
0.75 to 1.25 for recall at 20, 50 and 100.9 When p = 1, documents written
by the same author get the same score. Values for p lower than 1 would
decrease the scores for articles written by the same author. We see that
for both collections, a slight boost of documents that are written by the
same author, represented by the values 1 < p < 1.1, does increase recall at
different depths for both document collections. However when p becomes
larger than 1.1 the recall tends to decrease, especially for recall at depth 20.
This experiment shows that it is quite easy to use GeeseDB for retrieval
experiments and adding metadata; showing that including metadata might
benefit first stage ranking methods.

9Expensive large language model based rerankers do not rerank many documents.

4.4. EXPERIMENTS 75

Figure 4.18: Recall @ 50 for varying levels of p

Figure 4.19: Recall @ 100 for varying levels of p

76 CHAPTER 4. FROM TABLES TO GRAPHS

4.5 Conclusion
This chapter described the prototype implementation of GeeseDB, and how
we envision graph databases be used for information retrieval research. The
GeeseDB system can be considered the answer on our research question:
Can we extend the benefits from using relational databases for information
retrieval to using graph databases, while being able to express graph-related
problems easier? As GeeseDB is built on top of a relational engine it
automatically inherits the benefits of using relational databases for IR. As
GeeseDB can process graph queries, we also are able to express graph related
problems.

GeeseDB is still however a prototype system, and more functionalities
need to be implemented. In particular, although the architecture is not
coupled, it is not (yet) as efficient as traditional methods that do use coupled
architectures.

Not all graph operators have been supported in the current implementa-
tion. In order to make GeeseDB a usable system for IR researchers, more
operators need to be implemented and the system needs to be developed to
be more robust.

76 CHAPTER 4. FROM TABLES TO GRAPHS

4.5 Conclusion
This chapter described the prototype implementation of GeeseDB, and how
we envision graph databases be used for information retrieval research. The
GeeseDB system can be considered the answer on our research question:
Can we extend the benefits from using relational databases for information
retrieval to using graph databases, while being able to express graph-related
problems easier? As GeeseDB is built on top of a relational engine it
automatically inherits the benefits of using relational databases for IR. As
GeeseDB can process graph queries, we also are able to express graph related
problems.

GeeseDB is still however a prototype system, and more functionalities
need to be implemented. In particular, although the architecture is not
coupled, it is not (yet) as efficient as traditional methods that do use coupled
architectures.

Not all graph operators have been supported in the current implementa-
tion. In order to make GeeseDB a usable system for IR researchers, more
operators need to be implemented and the system needs to be developed to
be more robust.

Chapter 5

Creation of the Entity Graph

“Is this new question a worthy
one to investigate?” This
latter question we investigate
without further ado, thereby
cutting short an infinite
regress.

Alan Turing - 1950

Abstract

REBL is an extension of the Radboud Entity Linker (REL) for
Batch Entity Linking. REBL was developed after encountering
unforeseen issues when trying to link the large MS MARCO v2
document collection with REL. In this chapter we discuss the
issues we ran into and our solutions to mitigate them. REBL
makes it easier to isolate the GPU heavy operations from the
CPU heavy operations, by separating the mention detection
stage from the candidate selection and entity disambiguation
stages. By improving the entity disambiguation module we were
able to lower the time needed for linking documents by an order
of magnitude.

77

78 CHAPTER 5. CREATION OF THE ENTITY GRAPH

5.1 Introduction
In the previous chapter we have introduced GeeseDB, a system that can
query IR graphs and create rankings. We have used the system to express
queries over the Washington Post news article collection. The examples we
showed made use of entity annotations that were created by the Radboud
Entity Linker (REL) [van Hulst et al., 2020]. Although, the Washington
Post collection has been used for retrieval experiments, it is mostly used as
a benchmark for news retrieval. In recent years, the MS MARCO ranking
collections have become the de-facto benchmark for information retrieval
experiments that employ deep learning. These collections are considerably
larger than the Washington Post collection; the Washington Post collection
consists of 728,626 news articles and blog posts, while the MS MARCO v2
document collections consists of almost 12 million web documents. The MS
MARCO v2 document collections has almost 20 times as many documents,
which are also longer on average. When using REL, the Washington Post
collection can be linked in a relatively short time. Using one GPU1 the
linking time was amounted to approximately one day (24 hours). As the
documents in the MS MARCO v2 document collection are longer than those
in the Washington Post collection, we expected it would take about a month
of time to link this collection using the same system setup. As it is possible
to divide the workload over multiple machines, the time needed to link all
documents can be decreased easily by deploying more servers.

When starting to link the first segment of this collection however, the
time it took to link was considerably larger than expected. In fact, after
72 hours there was a time-out after only linking 20 percent of the segment
(200k documents), a processing job that should only take about 12 hours
(following a rough estimation). Why entity linking took so much more time
than estimated by extrapolation was unclear.

The goal of the research described in this chapter concerns our approach
to understand and mitigate these efficiency issues, such that we could
link the MS MARCO v2 document collection in an acceptable runtime.
In databases runtime efficiency is often improved through set-at-a-time
operations instead of tuple-at-a-time operations. This means that instead
of doing all computations for one data entry at a time, one computation is
calculated for all data entries, before starting the following computation.

We investigate whether the set-at-a-time execution model from database
research might be applicable in the context of entity linking as well. Specifi-
cally, we developed a batch extension for REL dubbed REBL. REBL splits

1NVIDIA GeForce RTX 3090

78 CHAPTER 5. CREATION OF THE ENTITY GRAPH

5.1 Introduction
In the previous chapter we have introduced GeeseDB, a system that can
query IR graphs and create rankings. We have used the system to express
queries over the Washington Post news article collection. The examples we
showed made use of entity annotations that were created by the Radboud
Entity Linker (REL) [van Hulst et al., 2020]. Although, the Washington
Post collection has been used for retrieval experiments, it is mostly used as
a benchmark for news retrieval. In recent years, the MS MARCO ranking
collections have become the de-facto benchmark for information retrieval
experiments that employ deep learning. These collections are considerably
larger than the Washington Post collection; the Washington Post collection
consists of 728,626 news articles and blog posts, while the MS MARCO v2
document collections consists of almost 12 million web documents. The MS
MARCO v2 document collections has almost 20 times as many documents,
which are also longer on average. When using REL, the Washington Post
collection can be linked in a relatively short time. Using one GPU1 the
linking time was amounted to approximately one day (24 hours). As the
documents in the MS MARCO v2 document collection are longer than those
in the Washington Post collection, we expected it would take about a month
of time to link this collection using the same system setup. As it is possible
to divide the workload over multiple machines, the time needed to link all
documents can be decreased easily by deploying more servers.

When starting to link the first segment of this collection however, the
time it took to link was considerably larger than expected. In fact, after
72 hours there was a time-out after only linking 20 percent of the segment
(200k documents), a processing job that should only take about 12 hours
(following a rough estimation). Why entity linking took so much more time
than estimated by extrapolation was unclear.

The goal of the research described in this chapter concerns our approach
to understand and mitigate these efficiency issues, such that we could
link the MS MARCO v2 document collection in an acceptable runtime.
In databases runtime efficiency is often improved through set-at-a-time
operations instead of tuple-at-a-time operations. This means that instead
of doing all computations for one data entry at a time, one computation is
calculated for all data entries, before starting the following computation.

We investigate whether the set-at-a-time execution model from database
research might be applicable in the context of entity linking as well. Specifi-
cally, we developed a batch extension for REL dubbed REBL. REBL splits

1NVIDIA GeForce RTX 3090

5.2. RELATED WORK 79

different stages in entity linking such that partial computations for the whole
dataset can be calculated before starting the next computation. REBL
improves REL efficiency by almost an order of magnitude, decreasing the
processing time per document (excluding mention detection) on a sam-
ple of 5000 MS MARCO documents from 1.23 seconds to 0.13 seconds.
Given modest computational resources, we demonstrate that REBL en-
ables the annotation of a large corpus like MS MARCO v2. We discuss
potential improvements that can be made to further improve batch entity
linking efficiency. The REBL code and toolkit are available publicly at
https://github.com/informagi/REBL.

Our third research question;

• Research Question 3: When does information retrieval research benefit
from graph data?

is not directly answered by the research described in this chapter. The
research in this chapter was needed in order to obtain a dataset that we
want to approach the third question. So, it forms the basis for the research
described in the next chapter that will try to answers this question. In order
to give proper context for the research described in this chapter, first entity
linking will be described in more depth, before explaining the Radboud
Entity Linking system that was used for this research.

5.2 Related Work
Entity linking concerns identifying entity mentions in text and linking them
to their corresponding entities in a knowledge graph. It fulfills a key role in
the knowledge-grounded understanding of documents. It has been shown
effective for diverse tasks in information retrieval [Gerritse et al., 2020, 2022,
Xiong et al., 2017, Hasibi et al., 2016, Balog et al., 2013, Reinanda et al., 2015,
Chatterjee and Dietz, 2022], natural language processing [Lin et al., 2012,
Ferrucci, 2012], and recommendation [Yang et al., 2018b]. Utilizing entity
annotations in these downstream tasks depends upon the annotation of text
corpora with a method for entity linking. Due to the complexity of entity
linking systems, this process is often performed by reliance on a third-party
entity linking toolkit, where examples include DBpedia Spotlight [Mendes
et al., 2011], TAGME [Ferragina and Scaiella, 2010], Nordlys [Hasibi et al.,
2017b], GENRE [De Cao et al., 2021], Blink [Wu et al., 2020], and REL [van
Hulst et al., 2020].

A caveat in existing entity linking toolkits is that they are not designed
for batch processing large numbers of documents. Existing entity linking

80 CHAPTER 5. CREATION OF THE ENTITY GRAPH

toolkits are primarily optimized to annotate individual documents, one
at a time. This severely restricts utilizing state-of-the-art entity linking
tools, such as REL, Blink, and GENRE, that employ neural approaches and
require GPUs for fast operation. Annotating millions of documents incurs
significant computational overhead, to the extent that annotation of a large
text corpus becomes practically infeasible using modest computational power
resources, especially when tagging documents one by one. Batch entity
linking is, however, necessary to build today’s data-hungry machine learning
models, considering large text corpora like the MS MARCO v2 (12M Web
documents) [Bajaj et al., 2016], or the newer ClueWeb22 collection [Overwijk
et al., 2022].

5.3 REL
This research specifically concerns the Radboud Entity Linking (REL)
toolkit, in the context of processing large corpora. REL is a state-of-the-art
entity linking system as shown emperically and independently by Bast et al.
[2023]. Its system architecture is similar to that of competing systems,
including BLINK [Wu et al., 2020]. REL annotates individual documents
efficiently, requiring only modest computational resources while performing
competitively compared to the state-of-the-art methods on effectiveness. It
considers entity linking as a modular problem consisting of three stages:

• Mention Detection. This step aims to identify all possible text spans
in a document that might refer to an entity. If text spans that
refer to entities are not appropriately identified, the system cannot
correctly link the entity in later stages. REL is built to be a modular
system, making it possible to use different named entity recognition
(NER) systems for this stage. For REL the default system used is
FLAIR [Akbik et al., 2019], which is a state-of-the-art NER system
that uses contextual word embeddings.

• Candidate Selection. For every detected mention, REL considers up to
k1 +k2(= 7) candidate entities. k1(= 4) candidate entities are selected
based on their a priori occurrence probability p(e|m) (for entity e given
mention m). These priors are pre-calculated by summing Wikipedia
hyperlinks and priors from the CrossWiki corpus [Spitkovsky and
Chang, 2012].2 The other k2(= 3) entities are chosen based on the

2So the conditional is based on occurrences in different collections, these are
then used as a prior in the candidate selection stage.

80 CHAPTER 5. CREATION OF THE ENTITY GRAPH

toolkits are primarily optimized to annotate individual documents, one
at a time. This severely restricts utilizing state-of-the-art entity linking
tools, such as REL, Blink, and GENRE, that employ neural approaches and
require GPUs for fast operation. Annotating millions of documents incurs
significant computational overhead, to the extent that annotation of a large
text corpus becomes practically infeasible using modest computational power
resources, especially when tagging documents one by one. Batch entity
linking is, however, necessary to build today’s data-hungry machine learning
models, considering large text corpora like the MS MARCO v2 (12M Web
documents) [Bajaj et al., 2016], or the newer ClueWeb22 collection [Overwijk
et al., 2022].

5.3 REL
This research specifically concerns the Radboud Entity Linking (REL)
toolkit, in the context of processing large corpora. REL is a state-of-the-art
entity linking system as shown emperically and independently by Bast et al.
[2023]. Its system architecture is similar to that of competing systems,
including BLINK [Wu et al., 2020]. REL annotates individual documents
efficiently, requiring only modest computational resources while performing
competitively compared to the state-of-the-art methods on effectiveness. It
considers entity linking as a modular problem consisting of three stages:

• Mention Detection. This step aims to identify all possible text spans
in a document that might refer to an entity. If text spans that
refer to entities are not appropriately identified, the system cannot
correctly link the entity in later stages. REL is built to be a modular
system, making it possible to use different named entity recognition
(NER) systems for this stage. For REL the default system used is
FLAIR [Akbik et al., 2019], which is a state-of-the-art NER system
that uses contextual word embeddings.

• Candidate Selection. For every detected mention, REL considers up to
k1 +k2(= 7) candidate entities. k1(= 4) candidate entities are selected
based on their a priori occurrence probability p(e|m) (for entity e given
mention m). These priors are pre-calculated by summing Wikipedia
hyperlinks and priors from the CrossWiki corpus [Spitkovsky and
Chang, 2012].2 The other k2(= 3) entities are chosen based on the

2So the conditional is based on occurrences in different collections, these are
then used as a prior in the candidate selection stage.

5.4. FROM REL TO REBL 81

similarity of their entity embedding to the word embeddings of the
context. In this stage, a context of a maximum of 200-word tokens is
considered.

• Entity Disambiguation. The final step aims to map the mention to
the correct entity in a knowledge base. The candidate entities for
each mention are obtained from the previous stage. REL implements
the Ment-norm method proposed by Le and Titov [2018].

After all entities have been found, REL produces a JSON object that
contains the entities and their respective locations in the source text using
standoff annotation. Because of REL’s modular architecture, it is an ideal
system to deploy set-at-a-time.

5.4 From REL to REBL
The MS MARCO v2 document collection contains 11,959,635 documents
split into 60 compressed files, totaling roughly 33GB. Uncompressed, these
files are in JSON line format (where every line represents a document,
described by a JSON object). These JSON objects have five fields: url,
title, headings, body, and docid. We wanted to link the documents’ titles,
headings, and bodies for our experiments. We link to the 2019-07 Wikipedia
dump, one of the two dumps also used in the initial development of REL.

In order to ease linking this size of data, we separated the GPU-heavy
mention detection stage from the CPU-heavy candidate selection and entity
disambiguation stages; the modified code can be found on GitHub.3 For
REBL, the input for mention detection are the compressed MS MARCO
v2 document files, and its output consists of the mentions found and their
location in the document, in Apache Parquet format.4 These files and the
source text are the input for the subsequent phases (candidate selection and
entity disambiguation). The final output consists of Parquet files containing
spans of text and their linked entities. In the following section, we discuss
what is changed for mention detection, candidate selection, and entity
disambiguation steps to make REL more suited to annotate large collections
with entity links, in a batch processing manner.

3https://github.com/informagi/REBL, last accessed September 2025
4https://github.com/apache/parquet-format, last accessed September

2025

82 CHAPTER 5. CREATION OF THE ENTITY GRAPH

5.4.1 Mention Detection
REL [van Hulst et al., 2020] uses Flair [Akbik et al., 2019] as the default
method for mention detection, a state-of-the-art named entity recognition
system. In this section, we focus on inefficiencies that arise when interfacing
between REL and flair. Flair uses the segtok5 package to segment an
(Indo-European) document in sentences, internally represented as Sentence
objects. These sentences are split into words/symbols represented as Token
objects. When creating these representations, however, it is not possible
to recreate the source text properly, as Flair adjusts the representations in
its internal processing of text data. In order to have full control of these
representations we decided to construct the underlying data structures for
REBL ourselves. To do this, we used the syntok6 package, a follow-up
version of segtok. Both packages were developed by the same author, who
claims that the syntok package segments sentences better than segtok.
Using this new representation we fixed two problems:

1. Flair removes white space characters when multiple occur after each
other, REL accounts for this by counting the number of white spaces
characters removed, a somewhat inefficient process prone to introduce
inaccuracies in the mapping between source text and the annotated
result. Using our own representation we know the start of every token,
and we do not need an additional system that tracks the number of
removed white spaces. So we change the interface between Flair and
REL, as we create the Flair objects that REL uses manually.

2. Various zero width Unicode characters are removed by Flair from the
source text before creating a token: zero width space (U+200B), zero
width non-joiner (U+200C), variation selector-16 (U+FE0F0), and zero
width no-break space (U+FEFF). These characters occur rarely, but in
a collection as large and diverse as MS MARCO v2, these characters
do occur. When encountering these characters using REBL, the token
objects were constructed such that the span and offset of the token
still referred to that of the source text: For the case of the zero
width space, we updated the syntok package. While, according to
the Unicode standard, zero width space is not a whitespace character,
it should be considered a character that separates two words. For
the other Unicode characters removed by Flair, we manually update
the span in the Token objects created by Flair such that they refer

5https://github.com/fnl/segtok, last accessed September 2025
6https://github.com/fnl/syntok, last accessed September 2025

82 CHAPTER 5. CREATION OF THE ENTITY GRAPH

5.4.1 Mention Detection
REL [van Hulst et al., 2020] uses Flair [Akbik et al., 2019] as the default
method for mention detection, a state-of-the-art named entity recognition
system. In this section, we focus on inefficiencies that arise when interfacing
between REL and flair. Flair uses the segtok5 package to segment an
(Indo-European) document in sentences, internally represented as Sentence
objects. These sentences are split into words/symbols represented as Token
objects. When creating these representations, however, it is not possible
to recreate the source text properly, as Flair adjusts the representations in
its internal processing of text data. In order to have full control of these
representations we decided to construct the underlying data structures for
REBL ourselves. To do this, we used the syntok6 package, a follow-up
version of segtok. Both packages were developed by the same author, who
claims that the syntok package segments sentences better than segtok.
Using this new representation we fixed two problems:

1. Flair removes white space characters when multiple occur after each
other, REL accounts for this by counting the number of white spaces
characters removed, a somewhat inefficient process prone to introduce
inaccuracies in the mapping between source text and the annotated
result. Using our own representation we know the start of every token,
and we do not need an additional system that tracks the number of
removed white spaces. So we change the interface between Flair and
REL, as we create the Flair objects that REL uses manually.

2. Various zero width Unicode characters are removed by Flair from the
source text before creating a token: zero width space (U+200B), zero
width non-joiner (U+200C), variation selector-16 (U+FE0F0), and zero
width no-break space (U+FEFF). These characters occur rarely, but in
a collection as large and diverse as MS MARCO v2, these characters
do occur. When encountering these characters using REBL, the token
objects were constructed such that the span and offset of the token
still referred to that of the source text: For the case of the zero
width space, we updated the syntok package. While, according to
the Unicode standard, zero width space is not a whitespace character,
it should be considered a character that separates two words. For
the other Unicode characters removed by Flair, we manually update
the span in the Token objects created by Flair such that they refer

5https://github.com/fnl/segtok, last accessed September 2025
6https://github.com/fnl/syntok, last accessed September 2025

5.4. FROM REL TO REBL 83

correctly to the positions in the source text. Now, when Flair identifies
a series of tokens as a possible mention, we can directly identify the
location in the source text from the Token objects.

To efficiently use GPU resources, it is important to create batches of data
to decrease the number of I/O operations. Every time a GPU calculation is
called, data needs to be transferred from and to the GPU hardware. This
way it is possible to parallelise the mention detection stage. Flair does in
fact support named entity recognition in batches; multiple pieces of text
can be sent to the GPU, to achieve an overall faster inference time (as
fewer I/O operations are needed). Because REL was designed to tag one
document at a time, it did not utilize this functionality. REBL exploits this
feature, allowing users to specify the number of documents to be tagged
simultaneously, increasing linking efficiency.

5.4.2 Candidate Selection and Entity Disambigua-
tion

For candidate selection, REL makes use of a p(e|m) prior, where e is an
entity, and m is a mention. These priors are saved in an (SQLite) database,
and up to 100 priors per mention are considered. However, data conversion
between the client and the representation stored in the database incurred a
high serialization cost. We updated this to a format that is faster to load,
with the additional benefit of a considerably decreased database size.7 We
experimented with data storage in the DuckDB column-oriented database
as an alternative. However, we found that SQLite was (still) more efficient
as a key-value store, at least in DuckDB’s state of development when we
ran the experiments.

The entity disambiguation stage took much longer than reported in the
original REL paper. This difference can partially be explained by the length
of the documents to be linked. The documents evaluated by van Hulst et al.
[2020] consisted of, on average, 323 tokens, with an average of 42 mentions
to consider. The average number of tokens in an MS MARCO v2 document
is about 1, 800, with 84 possible mentions per document.8 Per mention, 100
tokens to the left and the right (so 200 total) are considered as context for
the disambiguation model. The longer documents result in a higher memory
consumption per context and document, with higher processing costs as the
result.

7The table that represents the priors shrank from 9.6GB to 2.2GB.
8These figures are calculated over the body field; we also tagged the shorter

title and headers fields.

84 CHAPTER 5. CREATION OF THE ENTITY GRAPH

We improve the efficiency of the entity disambiguation step such that it
can be run in a manageable time. REL recreated a database cursor every
time candidates where being generated. We rewrote the REL database code
to create a single database cursor for the entity disambiguation module.
When a mention occurs multiple times within a document, the exact same
queries were issued to the database multiple times within a document. By
caching the output of these queries, we could considerably lower the number
of database calls needed. We ended up caching all database calls for a
segment, as we ran the process for every segment separately.

The default setting of REL is to keep embeddings on the GPU after they
are loaded, also ones that are not needed for disambiguation for following
batches. This design decision, however, slowed down disambiguation when
many documents were being processed consecutively, because operations
like normalization were carried out over all embeddings on the GPU. A
considerable speed-up has been achieved by clearing these embeddings as
soon as a document is processed.

Finally, after retrieving the embeddings from the database, REL puts
them in a Python list. We rewrote the REL code such that the binary data
is directly loaded from NumPy, a data format that Pytorch can use directly.

5.5 Effects on Execution
In the mention detection stage, we improved tokenization and applied batch-
ing. The MS MARCO v1 collection does not contain characters that cause
the problem in tokenization; the documents in that version of the collection
were sanitized before it was published. In the MS MARCO v2 collection,
411, 906 documents have tokens that would be removed automatically by
Flair, which corresponds to 3.4% of all documents. Batching documents
in the mention detection stage decreased the average time for finding all
named entities. We used batches of size 10, as the documents are relatively
large. The optimal batch size will depend on the available GPU memory,
and the length of the documents that need to be processed.

Some documents in the MS MARCO v2 collection cannot be linked.
This happens only in extraordinary cases where linking with entities did not
make sense in the first place, an example being a document consisting of
numbers only. Here, the syntok package created one long Sentence object
from this file that could not fit in GPU memory.

Table 5.1 shows our improvements to the candidate selection and entity
disambiguation step and describes how much time is saved in REBL. The
code improvements to create the database cursor only once and to load

84 CHAPTER 5. CREATION OF THE ENTITY GRAPH

We improve the efficiency of the entity disambiguation step such that it
can be run in a manageable time. REL recreated a database cursor every
time candidates where being generated. We rewrote the REL database code
to create a single database cursor for the entity disambiguation module.
When a mention occurs multiple times within a document, the exact same
queries were issued to the database multiple times within a document. By
caching the output of these queries, we could considerably lower the number
of database calls needed. We ended up caching all database calls for a
segment, as we ran the process for every segment separately.

The default setting of REL is to keep embeddings on the GPU after they
are loaded, also ones that are not needed for disambiguation for following
batches. This design decision, however, slowed down disambiguation when
many documents were being processed consecutively, because operations
like normalization were carried out over all embeddings on the GPU. A
considerable speed-up has been achieved by clearing these embeddings as
soon as a document is processed.

Finally, after retrieving the embeddings from the database, REL puts
them in a Python list. We rewrote the REL code such that the binary data
is directly loaded from NumPy, a data format that Pytorch can use directly.

5.5 Effects on Execution
In the mention detection stage, we improved tokenization and applied batch-
ing. The MS MARCO v1 collection does not contain characters that cause
the problem in tokenization; the documents in that version of the collection
were sanitized before it was published. In the MS MARCO v2 collection,
411, 906 documents have tokens that would be removed automatically by
Flair, which corresponds to 3.4% of all documents. Batching documents
in the mention detection stage decreased the average time for finding all
named entities. We used batches of size 10, as the documents are relatively
large. The optimal batch size will depend on the available GPU memory,
and the length of the documents that need to be processed.

Some documents in the MS MARCO v2 collection cannot be linked.
This happens only in extraordinary cases where linking with entities did not
make sense in the first place, an example being a document consisting of
numbers only. Here, the syntok package created one long Sentence object
from this file that could not fit in GPU memory.

Table 5.1 shows our improvements to the candidate selection and entity
disambiguation step and describes how much time is saved in REBL. The
code improvements to create the database cursor only once and to load

5.6. CONCLUSION AND DISCUSSION 85

the data directly from NumPy had no noticeable effect on the overall run
time of entity disambiguation and are not reported in this table. This is
likely because the costs of these operations are quite low, relatively to the
efficiency improvements made by the other changes. Note that the large
standard deviations are primarily due to the differences in processing costs
between long and short documents.

5.6 Conclusion and Discussion
This chapter described REBL, an extension for the Radboud Entity Linker.
We utilized REL’s modular design to separate the GPU-heavy mention
detection stage from the CPU-heavy candidate selection and entity disam-
biguation stages. The mention detection module is now more robust and
reliable, using a better segmenter and preserving location metadata correctly.
The candidate selection and entity disambiguation steps were updated to
improve their runtime Although it is now possible to run REL. [van Hulst
et al., 2020] on MS MARCO v2 [Bajaj et al., 2016] in a (for us) somewhat
reasonable time, we identified further improvements to implement.

In the candidate selection step, found mentions are compared to all
other mentions. The complexity of this step is O(n2), with n being the
number of mentions found in a document, which is especially problematic
for longer documents. As we are only interested in similar mentions, it
may be worthwhile to implement a locality-sensitive hashing algorithm to
decrease the number of comparisons needed at this stage.

Per mention, all context tokens are considered. This context has to be
constructed from the source document. As a result, we load the source data
a second time during candidate selection. Alternatively, we could output
the mention context in the mention detection stage, which could speed up
the candidate selection stage as we do not have to reconstruct the context
for a second time. However, this would significantly increase the size of the
mention detection output. More experiments are needed to strike the right
balance here. Having a streaming approach would probably mitigate this
issue. Another way a streaming approach might benefit REBL is that now,
because a two-step approach is being used, intermediate results are written
to the file system in parquet format.

Overall, it has become clear that a data processing-oriented perspective
on entity linking is necessary for efficient solutions. A set-at-a-time approach
should be preferred over a tuple-at-a-time approach when large amounts of
data have to be processed.

86 CHAPTER 5. CREATION OF THE ENTITY GRAPH

Table
5.1:

Effi
ciency

im
provem

ents
for

C
andidate

Selection
and

Entity
D

isam
biguation.

Im
provem

ents
are

calculated
overa

sam
ple

of5000
docum

ents
using

a
m

achine
with

an
IntelX

eon
Silver4214

CPU
@

2.20G
H

z
using

two
cores

with
187G

B
R

A
M

and
a

G
eForce

RTX
2080

Ti(11G
B)

G
PU

.Im
provem

ents
are

cum
ulative;

the
tim

es
show

n
include

the
previous

im
provem

ent
as

well.

Im
provem

ent
Seconds

Explanation
O

ld
Candidate

Selection
+

Entity
D

isam
biguation

1.23±
2.09

Average
tim

e
it

takes
to

select
candidates

and
disam

-
biguate

per
docum

ent
N

o
em

bedding
reset

0.26±
1.60

T
he

default
setting

ofR
EL

was
to

keep
em

beddings
in

G
PU

m
em

ory
after

they
were

loaded
by

clearing
them

from
G

PU
m

em
ory

afterevery
docum

enta
speed

up
was

achieved.
C

ache
database

calls
0.15±

1.31
W

hen
an

entity
occurswithin

a
docum

ent,thereisa
high

probability
ofitoccurring

m
ultipletim

es.By
caching

the
calls,we

increase
m

em
ory

usage
but

can
lower

the
tim

e
needed

forcandidateselection
and

entity
disam

biguation.
R

epresentation
change

candidates
0.13±

1.19
B

y
representing

the
candidates

better
in

the
database,

we
were

able
to

save
on

conversion
tim

e,lowering
the

tim
e

needed
for

candidate
selection.

86 CHAPTER 5. CREATION OF THE ENTITY GRAPH

Table
5.1:

Effi
ciency

im
provem

ents
for

C
andidate

Selection
and

Entity
D

isam
biguation.

Im
provem

ents
are

calculated
overa

sam
ple

of5000
docum

ents
using

a
m

achine
with

an
IntelX

eon
Silver4214

CPU
@

2.20G
H

z
using

two
cores

with
187G

B
R

A
M

and
a

G
eForce

RTX
2080

Ti(11G
B)

G
PU

.Im
provem

ents
are

cum
ulative;

the
tim

es
show

n
include

the
previous

im
provem

ent
as

well.

Im
provem

ent
Seconds

Explanation
O

ld
Candidate

Selection
+

Entity
D

isam
biguation

1.23±
2.09

Average
tim

e
it

takes
to

select
candidates

and
disam

-
biguate

per
docum

ent
N

o
em

bedding
reset

0.26±
1.60

T
he

default
setting

ofR
EL

was
to

keep
em

beddings
in

G
PU

m
em

ory
after

they
were

loaded
by

clearing
them

from
G

PU
m

em
ory

afterevery
docum

enta
speed

up
was

achieved.
C

ache
database

calls
0.15±

1.31
W

hen
an

entity
occurswithin

a
docum

ent,thereisa
high

probability
ofitoccurring

m
ultipletim

es.By
caching

the
calls,we

increase
m

em
ory

usage
but

can
lower

the
tim

e
needed

forcandidateselection
and

entity
disam

biguation.
R

epresentation
change

candidates
0.13±

1.19
B

y
representing

the
candidates

better
in

the
database,

we
were

able
to

save
on

conversion
tim

e,lowering
the

tim
e

needed
for

candidate
selection.

Chapter 6

Using the Entity Graph

The reader will have
anticipated that I have no
very convincing arguments of
a positive nature to support
my views. If I had I should
not have taken such pains to
point out the fallacies in
contrary views.

Alan Turing - 1950

Abstract

MMEAD, or MS MARCO Entity Annotations and Disambigua-
tions, is a resource of entity links for the MS MARCO datasets.
We specify a format to store and share links for both document
and passage collections of MS MARCO. Following this specifi-
cation, we release entity links to Wikipedia for documents and
passages in both MS MARCO collections (v1 and v2). Entity
links have been produced by the REL and BLINK systems.
MMEAD is an easy-to-install Python package, allowing users
to load the link data and entity embeddings effortlessly. Using
MMEAD takes only a few lines of code. Finally, we show how
MMEAD can be used for IR research that uses entity informa-
tion. We show how to improve recall@1000 and MRR@10 on
more complex queries on the MS MARCO v1 passage dataset by

87

88 CHAPTER 6. USING THE ENTITY GRAPH

using this resource. We also demonstrate how entity expansions
can be used for interactive search applications.

6.1 Introduction
The MS MARCO datasets [Bajaj et al., 2016] have become the de facto
benchmark for evaluating deep learning methods for Information Retrieval
(IR). The TREC deep learning track [Craswell et al., 2021], which has run
since 2019, derives its datasets from the MS MARCO passage and document
collections. The collections have been used in zero- and few-shot scenarios
for diverse retrieval tasks and domains [Thakur et al., 2021, 2023, Xu et al.,
2022]. They also serve as primary resources for training deep learning
models for downstream IR tasks such as conversational search [Dalton et al.,
2021] and search with knowledge graphs [Gerritse et al., 2022] to achieve
state-of-the-art results.

Purely text-based neural IR models, trained using MS MARCO collec-
tions, are generally unable to reason over complex concepts in the social
and physical world [Bosselut et al., 2021, Sciavolino et al., 2021]. In re-
sponse, recently proposed neuro-symbolic methods aim to combine neural
models and symbolic AI approaches, e.g., by using knowledge graphs, which
map concepts to symbols and relations. An essential step in developing
neuro-symbolic models is connecting text to entities that represent the
world’s concepts formally. This step is mainly done using Entity linking,
an intermediary step between text and knowledge graphs, which detects
entity mentions in the text and links them to the corresponding entries in a
knowledge graph.

Despite the proven effectiveness of neuro-symbolic AI – and for IR
models in particular [Tran and Yates, 2022, Gerritse et al., 2022, Chatterjee
and Dietz, 2022] – the IR community has made limited efforts to develop
such models. We argue that the annotation of large-scale collections with
entities is a primary hindrance; entity linking methods are computationally
expensive. Running them over a large text corpus (e.g., MS MARCO v2
with 12M documents and 140M passages) requires extensive resources. This
work aims to fill this gap by making entity annotations of the MS MARCO
ranking collections readily available and easy to use. In the context of green
AI / IR, computing the data only once, and then sharing it with many will
reduce the amount of computation needed for people to carry out research
on entity annotated web documents.

This chapter continues where the previous chapter ended. In the previous
chapter the batch extension for the Radboud Entity Linking system, REBL,

88 CHAPTER 6. USING THE ENTITY GRAPH

using this resource. We also demonstrate how entity expansions
can be used for interactive search applications.

6.1 Introduction
The MS MARCO datasets [Bajaj et al., 2016] have become the de facto
benchmark for evaluating deep learning methods for Information Retrieval
(IR). The TREC deep learning track [Craswell et al., 2021], which has run
since 2019, derives its datasets from the MS MARCO passage and document
collections. The collections have been used in zero- and few-shot scenarios
for diverse retrieval tasks and domains [Thakur et al., 2021, 2023, Xu et al.,
2022]. They also serve as primary resources for training deep learning
models for downstream IR tasks such as conversational search [Dalton et al.,
2021] and search with knowledge graphs [Gerritse et al., 2022] to achieve
state-of-the-art results.

Purely text-based neural IR models, trained using MS MARCO collec-
tions, are generally unable to reason over complex concepts in the social
and physical world [Bosselut et al., 2021, Sciavolino et al., 2021]. In re-
sponse, recently proposed neuro-symbolic methods aim to combine neural
models and symbolic AI approaches, e.g., by using knowledge graphs, which
map concepts to symbols and relations. An essential step in developing
neuro-symbolic models is connecting text to entities that represent the
world’s concepts formally. This step is mainly done using Entity linking,
an intermediary step between text and knowledge graphs, which detects
entity mentions in the text and links them to the corresponding entries in a
knowledge graph.

Despite the proven effectiveness of neuro-symbolic AI – and for IR
models in particular [Tran and Yates, 2022, Gerritse et al., 2022, Chatterjee
and Dietz, 2022] – the IR community has made limited efforts to develop
such models. We argue that the annotation of large-scale collections with
entities is a primary hindrance; entity linking methods are computationally
expensive. Running them over a large text corpus (e.g., MS MARCO v2
with 12M documents and 140M passages) requires extensive resources. This
work aims to fill this gap by making entity annotations of the MS MARCO
ranking collections readily available and easy to use. In the context of green
AI / IR, computing the data only once, and then sharing it with many will
reduce the amount of computation needed for people to carry out research
on entity annotated web documents.

This chapter continues where the previous chapter ended. In the previous
chapter the batch extension for the Radboud Entity Linking system, REBL,

6.1. INTRODUCTION 89

is introduced. In this chapter MMEAD is presented, a resource that provides
entity links for the MS MARCO document and passage ranking collections.
Two state-of-the-art entity linking tools, namely REL [van Hulst et al.,
2020], with efficiency improvements made in REBL, [Kamphuis et al., 2022]
and BLINK [Wu et al., 2020], are utilized for annotating the corpora. The
annotations are stored in a DuckDB database, enabling efficient analytical
operations and fast access to the entities. The resource is available as a
Python package and can be installed from PyPI effortlessly. The resource
also includes a sample demo, enabling queries with complex compositional
structures about entities.

The primary objective of the work in this chapter is to simplify the
study of neuro-symbolic IR research, enabling further steps in neural IR.
In our experiments, we show significant improvements on recall for neural
re-ranking IR models when using MMEAD annotations as bag-of-word
expansions for queries and passages. Our experiments reveal that the
difference in effectiveness is even greater (in terms of both recall and MRR)
for complex queries that require further reasoning over entities.

To show the usefulness of our resource beyond plain ranking, we also
present how to enrich interactive search applications. Specifically, we
demonstrate how to obtain entities’ geographical locations by relating the
entities found in passages to their Wikidata entries. Plotting these entities
on the world map shows that the MS MARCO passages can be geo-located
all over the world. We can also move from location to web text by retrieving
all passages associated with a geographical location.

To return to our last research question;

• Research Question 3: When does information retrieval research benefit
from graph data?

This chapter attempts to demonstrate that graph data, in this case a graph
of entities, can help retrieval by considering metadata that is included
through graph operations. Although we have not used GeeseDB, the work
described in Chapter 4, it would be a natural application of GeeseDB to
carry out the query expansion methods described.

In summary, this chapter makes the following contributions:

• We annotate the documents of the MS MARCO passage and document
collections and share these annotations. By sharing these annotations,
we ease future research in neuro-symbolic retrieval, which extensively
uses entity information. We also provide useful metadata such as
Wikipedia2Vec [Yamada et al., 2016] entity embeddings.

90 CHAPTER 6. USING THE ENTITY GRAPH

• We provide a Python library that makes our data easy to use. All
data is stored in DuckDB tables, which can be loaded and queried
quickly. The library is easy to install through PyPI, and the entity
annotations are available with only a few lines of code.

• We experimentally show that retrieval effectiveness measured by
recall significantly increases when using MMEAD. The improvement
is even greater for complex queries, where we observe low retrieval
effectiveness using text-only IR models.

• We demonstrate how the data can be used in geographical applications.
For example, we can plot on a static map all entities found in the
MS MARCO v2 passage collection for which geographical data is
available. Additionally, one can retrieve all passages associated with
a geographical location.

MMEAD is publicly available at https://github.com/informagi/
mmead. In this chapter we will first described the systems that we used to
create the MMEAD dataset. Then we describe how the dataset was de-
signed, and how it can be used. With some experiments we show that using
MMEAD can lead to higher retrieval effectiveness on the MS MARCO v1
dataset. We also demonstrate that this dataset can be used for geographical
related tasks.

6.2 Background
In this section, we describe systems that are used for creating entity an-
notations on the MS MARCO collections for MMEAD. Some information
presented in this section overlaps with that of the previous chapter, but the
full context is included here to enable reading this chapter as standalone
work.

6.2.1 REL
REL (Radboud Entity Linker) [van Hulst et al., 2020] is a state-of-the-art
open-source entity linking tool designed for high throughput and precision.
REL links entities to a knowledge graph (Wikipedia) using a three-stage
approach: (1) mention detection, (2) candidate selection, and (3) entity
disambiguation. We briefly explain these three steps:

1. Mention Detection. REL starts the entity linking process by first
identifying all text spans that might refer to an entity. In this stage, it

90 CHAPTER 6. USING THE ENTITY GRAPH

• We provide a Python library that makes our data easy to use. All
data is stored in DuckDB tables, which can be loaded and queried
quickly. The library is easy to install through PyPI, and the entity
annotations are available with only a few lines of code.

• We experimentally show that retrieval effectiveness measured by
recall significantly increases when using MMEAD. The improvement
is even greater for complex queries, where we observe low retrieval
effectiveness using text-only IR models.

• We demonstrate how the data can be used in geographical applications.
For example, we can plot on a static map all entities found in the
MS MARCO v2 passage collection for which geographical data is
available. Additionally, one can retrieve all passages associated with
a geographical location.

MMEAD is publicly available at https://github.com/informagi/
mmead. In this chapter we will first described the systems that we used to
create the MMEAD dataset. Then we describe how the dataset was de-
signed, and how it can be used. With some experiments we show that using
MMEAD can lead to higher retrieval effectiveness on the MS MARCO v1
dataset. We also demonstrate that this dataset can be used for geographical
related tasks.

6.2 Background
In this section, we describe systems that are used for creating entity an-
notations on the MS MARCO collections for MMEAD. Some information
presented in this section overlaps with that of the previous chapter, but the
full context is included here to enable reading this chapter as standalone
work.

6.2.1 REL
REL (Radboud Entity Linker) [van Hulst et al., 2020] is a state-of-the-art
open-source entity linking tool designed for high throughput and precision.
REL links entities to a knowledge graph (Wikipedia) using a three-stage
approach: (1) mention detection, (2) candidate selection, and (3) entity
disambiguation. We briefly explain these three steps:

1. Mention Detection. REL starts the entity linking process by first
identifying all text spans that might refer to an entity. In this stage, it

6.2. BACKGROUND 91

is essential that all possible entities in the text are identified, as only
the output of this stage can be considered an entity by REL. These
spans are identified using a named entity recognition (NER) model
based on contextual word embeddings. For our experiments, we use
the NER model based on Flair [Akbik et al., 2019] embeddings.

2. Candidate Selection. Up to seven candidate entities are considered
for every mention found by Flair. Part of these entities are selected
according to the prior probability P (e|m) of the mention m being
linked to the entity e. This probability is estimated from exist-
ing dictionaries YAGO [Hoffart et al., 2011], Wikipedia, and Cross-
Wikis [Spitkovsky and Chang, 2012]. Precisely, the top-4 ranked enti-
ties are selected based on P (e|m) = min(1, PWiki(e|m)+PYAGO(e|m)),
where PYAGO(e|m)) is a uniform probability from the YAGO dictio-
nary and PWiki(e|m) is computed based on the summation of hyper-
link counts in Wikipedia and the CrossWikis corpus. The remaining
three candidate entities are determined according to the similarity
of an entity and the context of a mention (entities provided in the
previous step are not considered). For the top-ranked candidates
based on P (e|m) probabilities, the context similarity is calculated
by eT ∑

w∈c w. Here e is the entity embedding for entity e, and w
are the word embeddings in context c, with a maximum length of
200-word tokens. The entity and word embeddings are jointly learned
using Wikipedia2Vec [Yamada et al., 2016].

3. Entity Disambiguation. The final stage tries to select the correct
entity from the candidate entities and maps it to the corresponding
entry in a knowledge graph (Wikipedia). For this, REL assumes a
latent relation between entities in the text and utilizes the Ment-norm
method proposed by Le and Titov [2018].

6.2.2 BLINK
BLINK [Wu et al., 2020] is a BERT-based [Devlin et al., 2019] model
for candidate selection and entity disambiguation, which assumes that
entity mentions are already given. When utilized in an end-to-end entity
linking setup, BLINK achieves similar effectiveness scores as REL. Below
we describe the three steps of mention detection, candidate selection, and
entity disambiguation for end-to-end entity linking using BLINK.

1. Mention Detection. The mention detection stage can be done using an
NER model. Like REL, we use Flair [Akbik et al., 2019] for mention

92 CHAPTER 6. USING THE ENTITY GRAPH

detection.

2. Candidate Selection. BLINK considers ten candidates for each men-
tion. The candidates are selected through a bi-encoder (similar to
the bi-encoder described by Humeau et al. [2019]) that embeds men-
tion contexts and entity descriptions. The mention and the entity
are encoded into two separate vectors . The similarity score is then
calculated using the dot-product of the two vectors representing the
mention context and the entity.

3. Entity Disambiguation. For entity disambiguation, BLINK employs
a cross-encoder to re-rank the top 10 candidates selected by the
candidate selection stage. The cross-encoder usage is similar to
cross encoder described by Humeau et al. [2019], which employs a
cross-attention mechanism between the mention context and entity
descriptions. The input is the concatenation of the mention text and
the candidate entity description.

6.2.3 DuckDB
DuckDB [Raasveldt and Mühleisen, 2019] is an in-process column-oriented
database management system. It is designed with requirements that are
beneficial for the MMEAD resource:

1. Efficient analytics. DuckDB is designed for analytical (OLAP) work-
loads, while many other database systems are optimized for transac-
tional queries (OLTP). DuckDB is especially suitable for cases where
analytics are more important than transactions. As we release a re-
source, transactions (after loading the data) are unnecessary, making
an analytics database more useful than a transactional-focused one.

2. In-process. DuckDB runs in-process, which means no database server
is necessary, and all data processing happens in-process. This allows
the database to be installed from PyPI without any additional steps.

3. Efficient data transfer. Because DuckDB runs in-process, it can
transfer data from and to the database more easily, as the address
space is shared. In particular, DuckDB uses an API built around
NumPy and Pandas, which makes data (almost) immediately available
for further data analysis within Python.

DuckDB also supports the JSON and parquet file formats, making data
loading especially fast when data is provided in such formats.

92 CHAPTER 6. USING THE ENTITY GRAPH

detection.

2. Candidate Selection. BLINK considers ten candidates for each men-
tion. The candidates are selected through a bi-encoder (similar to
the bi-encoder described by Humeau et al. [2019]) that embeds men-
tion contexts and entity descriptions. The mention and the entity
are encoded into two separate vectors . The similarity score is then
calculated using the dot-product of the two vectors representing the
mention context and the entity.

3. Entity Disambiguation. For entity disambiguation, BLINK employs
a cross-encoder to re-rank the top 10 candidates selected by the
candidate selection stage. The cross-encoder usage is similar to
cross encoder described by Humeau et al. [2019], which employs a
cross-attention mechanism between the mention context and entity
descriptions. The input is the concatenation of the mention text and
the candidate entity description.

6.2.3 DuckDB
DuckDB [Raasveldt and Mühleisen, 2019] is an in-process column-oriented
database management system. It is designed with requirements that are
beneficial for the MMEAD resource:

1. Efficient analytics. DuckDB is designed for analytical (OLAP) work-
loads, while many other database systems are optimized for transac-
tional queries (OLTP). DuckDB is especially suitable for cases where
analytics are more important than transactions. As we release a re-
source, transactions (after loading the data) are unnecessary, making
an analytics database more useful than a transactional-focused one.

2. In-process. DuckDB runs in-process, which means no database server
is necessary, and all data processing happens in-process. This allows
the database to be installed from PyPI without any additional steps.

3. Efficient data transfer. Because DuckDB runs in-process, it can
transfer data from and to the database more easily, as the address
space is shared. In particular, DuckDB uses an API built around
NumPy and Pandas, which makes data (almost) immediately available
for further data analysis within Python.

DuckDB also supports the JSON and parquet file formats, making data
loading especially fast when data is provided in such formats.

6.3. MMEAD 93

6.3 MMEAD
MMEAD provides links for MS MARCO collections v1 and v2 created by
the REL entity linker, and links for the MS MARCO v1 passage collection by
the BLINK entity linker. For REL, we use its batch entity linking extension,
REBL [Kamphuis et al., 2022]. The knowledge graphs used for the REL
and BLINK entity linkers are Wikipedia dumps from 2019-07 and 2019-08,
respectively. Both dumps are publicly available from the linking systems’
Github pages.

6.3.1 Goals
The design criteria for MMEAD are based on the following goals:

• Easy-to-use. It should be easy to load and use the linked entities
in experiments. With only a few lines of code, it should be possible
to load entities and use them for analysis. Additional information
should also be readily available, like where entities appear in the text
and their latent representations.

• High-quality entity links. We wish to release high-quality entity links
for the MS MARCO collections, so that applying neuro-symbolic
models and reasoning over entities becomes feasible.

• Extensibility. It should be easy to link the collections with a different
entity linking system and publish them in the same format as MMEAD.
This way, we can integrate links produced by other entity linking
systems and make them automatically available through the MMEAD
framework.

• Useful metadata. Additional data that can help with experiments
should be provided; this includes mapping entities to their respective
identifiers and latent representations.

6.3.2 Design
Easy-to-use. To create an easy-to-use package, we make the MMEAD
data publicly available as JSONL files, which is the same format as the
MS MARCO v2 collections. Each line of JSON contains entity links for
one of the documents or passages in the collections; see Figure 6.1. The
corresponding document can be identified through the JSON field that
represents the document/passage identifier: docid for documents and pid

94 CHAPTER 6. USING THE ENTITY GRAPH

for passages. Then, for every section of a document, a separate JSON field
is available to access the entities in that section. For passages, there is only
one section containing the entity annotations of the passage, while for MS
MARCO v2 documents, we link not only the body of the document but also
the header and the title.

All essential information about the entity mentions and linked entities
is stored in the JSON objects. Specifically, the following metadata is
made available: entity_id, start_pos, end_pos, entity, and details.
The field entity_id stores the identifier that refers to the entry in the
knowledge graph (Wikipedia, in our case). The start_pos and end_pos
fields store the start and end positions of the text span that refers to the
linked entity (i.e., as a standoff annotation of the entity mention). The
positions are UTF-8 indices into the text, ready to be used in Python to
extract the relevant parts of the document. The field entity stores the
text representation of the entity from the knowledge graph. We chose to
store this field for convenience and human readability. The details field
is a JSON object that stores linker-specific information; examples include
the entity type according to the NER module and the confidence of the
identified mention.

High-quality entity links. MMEAD provides entity links produced
by state-of-the-art entity linking systems. Both REL and BLINK are
high precision entity linkers, ensuring that identified mentions and their
corresponding entities are likely correct. The knowledge graphs used by the
entity linkers are the same as those used in the original studies; this way,
extensive research has been done to confirm the precision of the linking
systems.

Extensibility. We ensure extensibility by clearly describing the format in
which the entity links are provided. If another system shares its links in the
same format, the MMEAD Python library can work with the data directly.
The details field per entity annotation enables inclusion of linker-specific
information. REL provides specific instructions on updating the system to
newer versions of Wikipedia in its documentation, making it possible to
easily release links to newer versions of Wikipedia.

Useful metadata. Alongside the entity links, we also provide additional
useful metadata. Specifically, we release Wikipedia2Vec [Yamada et al.,
2016] embeddings (300d and 500d feature vectors). REL uses the 300d
Wikipedia2Vec feature vectors internally for candidate selection. These

94 CHAPTER 6. USING THE ENTITY GRAPH

for passages. Then, for every section of a document, a separate JSON field
is available to access the entities in that section. For passages, there is only
one section containing the entity annotations of the passage, while for MS
MARCO v2 documents, we link not only the body of the document but also
the header and the title.

All essential information about the entity mentions and linked entities
is stored in the JSON objects. Specifically, the following metadata is
made available: entity_id, start_pos, end_pos, entity, and details.
The field entity_id stores the identifier that refers to the entry in the
knowledge graph (Wikipedia, in our case). The start_pos and end_pos
fields store the start and end positions of the text span that refers to the
linked entity (i.e., as a standoff annotation of the entity mention). The
positions are UTF-8 indices into the text, ready to be used in Python to
extract the relevant parts of the document. The field entity stores the
text representation of the entity from the knowledge graph. We chose to
store this field for convenience and human readability. The details field
is a JSON object that stores linker-specific information; examples include
the entity type according to the NER module and the confidence of the
identified mention.

High-quality entity links. MMEAD provides entity links produced
by state-of-the-art entity linking systems. Both REL and BLINK are
high precision entity linkers, ensuring that identified mentions and their
corresponding entities are likely correct. The knowledge graphs used by the
entity linkers are the same as those used in the original studies; this way,
extensive research has been done to confirm the precision of the linking
systems.

Extensibility. We ensure extensibility by clearly describing the format in
which the entity links are provided. If another system shares its links in the
same format, the MMEAD Python library can work with the data directly.
The details field per entity annotation enables inclusion of linker-specific
information. REL provides specific instructions on updating the system to
newer versions of Wikipedia in its documentation, making it possible to
easily release links to newer versions of Wikipedia.

Useful metadata. Alongside the entity links, we also provide additional
useful metadata. Specifically, we release Wikipedia2Vec [Yamada et al.,
2016] embeddings (300d and 500d feature vectors). REL uses the 300d
Wikipedia2Vec feature vectors internally for candidate selection. These

6.4. HOW TO USE 95

Table 6.1: Number of entities linked by REL; we show the total number
of entities found and how many entities there are per passage/document
on average.

passages docs
MS MARCO v1 18,561,221 (2.10) 145,725,732 (45.34)
MS MARCO v2 233,254,024 (1.69) 661,183,287 (55.28)

feature vectors consist of word embeddings and entity embeddings mapped
into the same high-dimensional feature space. These embeddings can be used
directly for information retrieval research [Gerritse et al., 2020, 2022]. We
also release a mapping of entities to their identifiers. The entity descriptions
can change in different versions of Wikipedia, but their identifiers remain
constant. The identifier can also be used to find the corresponding entity in
other knowledge graphs such as Wikidata.

6.3.3 An Example
A passage from the MS MARCO v1 passage ranking collection is shown
below.

A: While Pablo Picasso may be best known as one of the pioneers,
along with George Braques, of the Cubism style of art, the Spanish
painter and sculptor also painted in many other styles. Before
Cubism,...

Several text spans in this text can be considered as entities. REL
identifies three of these entities: Pable Picasso, Georges Braque, and Spain.
It does however miss the concept Cubism as an entity. The output of the
system is converted to our JSON specification, which results in the JSON
object presented in Figure 6.1.

Table 6.1 shows the number of entities found in the collections by
the REL system. Blink found 21,968,356 entity links for the v1 passage
collection. For 11,177,904 entities, the two linking systems produced exactly
the same output.

6.4 How To Use
MMEAD comes with easy-to-use Python code, allowing users to work with
the resource effortlessly. To start, MMEAD can be installed from PyPI

96 CHAPTER 6. USING THE ENTITY GRAPH

{
"passage": [

{
"entity_id": 24176,
"start_pos": 9,
"end_pos": 22,
"entity": "Pablo Picasso"

},
{

"entity_id": 12317,
"start_pos": 76,
"end_pos": 90,
"entity": "Georges Braque"

},
{

"entity_id": 26667,
"start_pos": 124,
"end_pos": 131,
"entity": "Spain"

}
],
"pid": "3263"

}

Figure 6.1: Example of MMEAD annotations for a MS MARCO
passage in JSON format.

96 CHAPTER 6. USING THE ENTITY GRAPH

{
"passage": [

{
"entity_id": 24176,
"start_pos": 9,
"end_pos": 22,
"entity": "Pablo Picasso"

},
{

"entity_id": 12317,
"start_pos": 76,
"end_pos": 90,
"entity": "Georges Braque"

},
{

"entity_id": 26667,
"start_pos": 124,
"end_pos": 131,
"entity": "Spain"

}
],
"pid": "3263"

}

Figure 6.1: Example of MMEAD annotations for a MS MARCO
passage in JSON format.

6.4. HOW TO USE 97

1 from mmead import get_links
2 links = get_links('v1', 'passage', linker='rel')

Figure 6.2: Example of how to load MMEAD entity links for the MS
MARCO v1 passage collection.

1 >>> links.load_links_from_docid(123)
2 {"passage":[{"entity_id":"7954681", ... }

Figure 6.3: Example of how to load the entity links for a document.
For formatting reasons, we do not show the full output.

using pip:

$ pip install mmead

After installation of MMEAD, the entity links can be loaded into a
DuckDB database [Raasveldt and Mühleisen, 2019], as shown in Figure 6.2,
with only a couple of lines of code.

When running this code for the first time, initialization will take some
time, as all the data need to be downloaded and ingested into the DuckDB
database. After loading the data for the first time, it is automatically stored
on disk. Loading the persisted data for later usage will only take seconds.

Once the data is loaded, it is ready to use. We provide a simple interface
to access the data. The code shown in Figure 6.3 loads the entity links
available for a document in the MS MARCO v1 passage ranking collection.
When using this function, the data is provided in JSON format, making it
easy to access the annotations.

We also provide word embeddings and entity embeddings generated by
Wikipedia2Vec [Yamada et al., 2016] based on the 2019-07 Wikipedia dump.
These embeddings are stored in DuckDB tables and are available as Numpy
arrays after loading. Figure 6.4 shows how embeddings are loaded using
MMEAD. The example demonstrates that the entity embedding of Montreal
and the word embedding of “Montreal” are closer to each other than the
word embeddings of the two words “Montreal” and “green” based on dot-
product as a similarity function. The dimensionality of the embedding
vectors (300 or 500) can be specified in the code.

The mapping between the official Wikipedia identifiers and entity text
representations is extracted from the 2019-07 Wikipedia dump. If entity

98 CHAPTER 6. USING THE ENTITY GRAPH

1 >>> from mmead import get_embeddings
2 >>> e = get_embeddings(300, verbose=False)
3 >>> montreal_word = e.load_word_embedding("Montreal")
4 >>> montreal_entity = e.load_entity_embedding("Montreal")
5 >>> green_word = e.load_word_embedding("green")
6

7 >>> montreal_word @ montreal_entity
8 31.83191792
9 >>> montreal_word @ green_word

10 5.55568354
11

12 >>> toronto_word = e.load_word_embedding("Toronto")
13 >>> toronto_word
14 array([-1.497e-01, -7.765e-01, -1.000e-02, ...])
15 >>> montreal_word @ toronto_word
16 21.62585146

Figure 6.4: Example code for loading word and entity embeddings.
It shows that the dot-product between “Montreal” word and entity
embeddings is greater than the dot-product of embedding vectors for
the word “Montreal” and “green” (a word chosen at random). The
word embeddings of Montreal and Toronto, two cities in Canada, are
also more similar.

98 CHAPTER 6. USING THE ENTITY GRAPH

1 >>> from mmead import get_embeddings
2 >>> e = get_embeddings(300, verbose=False)
3 >>> montreal_word = e.load_word_embedding("Montreal")
4 >>> montreal_entity = e.load_entity_embedding("Montreal")
5 >>> green_word = e.load_word_embedding("green")
6

7 >>> montreal_word @ montreal_entity
8 31.83191792
9 >>> montreal_word @ green_word

10 5.55568354
11

12 >>> toronto_word = e.load_word_embedding("Toronto")
13 >>> toronto_word
14 array([-1.497e-01, -7.765e-01, -1.000e-02, ...])
15 >>> montreal_word @ toronto_word
16 21.62585146

Figure 6.4: Example code for loading word and entity embeddings.
It shows that the dot-product between “Montreal” word and entity
embeddings is greater than the dot-product of embedding vectors for
the word “Montreal” and “green” (a word chosen at random). The
word embeddings of Montreal and Toronto, two cities in Canada, are
also more similar.

6.5. ENTITY EXPANSION WITH MMEAD 99

1 >>> from mmead import get_mappings
2 >>> m = get_mappings(verbose=False)
3 >>> m.get_id_from_entity('Montreal')
4 7954681
5 >>> m.get_entity_from_id(7954681)
6 'Montreal'

Figure 6.5: Entity names and identifiers are accessible in MMEAD.
Given an entity text, we can directly find its corresponding identifier
and vice versa.

annotations from another version of Wikipedia are available, the MMEAD
mappings can be used to match entities between the dumps. Needless to say,
emerging entities in newer versions of Wikipedia cannot be mapped to the
version that is available in MMEAD (as their pages did not yet exist when
making this dataset). However, existing entities in MMEAD can be mapped
to newer versions of Wikipedia in a straightforward manner. Figure 6.5
shows how entity identifiers can be matched to their text and the other way
around.

As DuckDB is used as a database engine for MMEAD, it is possible
to directly access the underlying tables and issue structured queries in an
efficient manner. Figure 6.6 shows an example, where a connection to the
database is created, and the identifiers of passages containing the entity
Nijmegen are retrieved.

All data can be downloaded directly as well, and links to the data are
provided on our Github page.1

6.5 Entity Expansion with MMEAD

To demonstrate the usefulness of MMEAD for (neural) retrieval models,
we have conducted experiments that extend existing models with MMEAD
annotations. These experiments serve a demonstrative purpose only, and the
full potential of this resource is to be further explored in (neuro-)symbolic
IR models [Gerritse et al., 2022, Tran and Yates, 2022].

1https://github.com/informagi/mmead, last accessed September 2025

100 CHAPTER 6. USING THE ENTITY GRAPH

1 >>> from mmead import load_links
2 >>> cursor = load_links(
3 ... 'msmarco_v1_passage_links',
4 ... verbose=False
5 ...)
6 >>> cursor.execute("""
7 ... SELECT pid
8 ... FROM msmarco_v1_passage_links_rel
9 ... WHERE entity='Nijmegen'

10 ... """)
11 [(771129,), (1273612,), (1418035,), ...]

Figure 6.6: All data is stored in DuckDB tables, and thus it is possible
to directly access the tables and issue queries. In this example, we
extract the identifiers of passages that contain the city of Nijmegen.

6.5.1 Methods
BM25 expansion. We experimented with three retrieval methods to
show the benefits of entity annotation for passage ranking: one baseline
method and two methods that use query entity expansion [Shehata, 2022]
using REL:

a BM25 – No Expansion. As a baseline method, we used BM25 as
implemented in Anserini [Yang et al., 2018a] using hyper-parameters
k1 = 0.82 and b = 0.68, tuned to be optimal for the MS MARCO
dataset. MS MARCO was indexed normally, and no expansion was
considered for the queries or the passages.

b BM25 – Entity Text Expansion. In this method, passages and
queries are concatenated with the text representation of their anno-
tated entities (from REL). Once the passages and queries have been
expanded with entities, we run BM25 with the same hyper-parameter
settings as described in a.

c BM25 – Entity Hash Expansion. Instead of using the text
representation of entities as an expansion, we concatenate the passages
and queries by the MD5 hash of the entity text (from REL). The use
of MD5 hashing provides a consistent representation of multi-word
terms and avoids partial or incorrect matching between queries and

100 CHAPTER 6. USING THE ENTITY GRAPH

1 >>> from mmead import load_links
2 >>> cursor = load_links(
3 ... 'msmarco_v1_passage_links',
4 ... verbose=False
5 ...)
6 >>> cursor.execute("""
7 ... SELECT pid
8 ... FROM msmarco_v1_passage_links_rel
9 ... WHERE entity='Nijmegen'

10 ... """)
11 [(771129,), (1273612,), (1418035,), ...]

Figure 6.6: All data is stored in DuckDB tables, and thus it is possible
to directly access the tables and issue queries. In this example, we
extract the identifiers of passages that contain the city of Nijmegen.

6.5.1 Methods
BM25 expansion. We experimented with three retrieval methods to
show the benefits of entity annotation for passage ranking: one baseline
method and two methods that use query entity expansion [Shehata, 2022]
using REL:

a BM25 – No Expansion. As a baseline method, we used BM25 as
implemented in Anserini [Yang et al., 2018a] using hyper-parameters
k1 = 0.82 and b = 0.68, tuned to be optimal for the MS MARCO
dataset. MS MARCO was indexed normally, and no expansion was
considered for the queries or the passages.

b BM25 – Entity Text Expansion. In this method, passages and
queries are concatenated with the text representation of their anno-
tated entities (from REL). Once the passages and queries have been
expanded with entities, we run BM25 with the same hyper-parameter
settings as described in a.

c BM25 – Entity Hash Expansion. Instead of using the text
representation of entities as an expansion, we concatenate the passages
and queries by the MD5 hash of the entity text (from REL). The use
of MD5 hashing provides a consistent representation of multi-word
terms and avoids partial or incorrect matching between queries and

6.5. ENTITY EXPANSION WITH MMEAD 101

a. did sacajawea cross the pacific ocean with lewis and clark

b. The same text as shown in a. + Sacagawea Clark Pacific
Ocean C. S. Lewis

c. The same text as shown in a. + 860324 a97fed 3e3b0e
3fe907

Figure 6.7: Examples of queries for the three different experiments; (a)
the non-expanded query, (b) the query with entity text expansion, and
(c) the query with entity hash expansion. Text expansions are shown
in italics. The MD5 hashes shown in (c) are shortened for formatting.

non-relevant passages; e.g., passages that contain the word “united”,
do not benefit if the query contains “United States” as an entity.
Again, after expansion, we run BM25 with the same hyper-parameter
settings described in a.

In these experiments, the identified entities are deduplicated, i.e. entities
are only added to queries and passages once. As a demonstration of the
proposed text expansion methods, Figure 6.7 shows how the query expansion
is performed using explicit and hashed forms. The added entities provide
more precise context and help eliminate ambiguous terms. Figure 6.8 shows
the expansion methods on the relevant passage for this query. The relevant
passage can be found through our expansion technique. The linking system
recognizes that both the query and the passage contain a reference to the
entity Sacagawea, even though they are spelled differently in the query and
the passage.

Reciprocal Rank Fusion. As a second series of experiments, we applied
Reciprocal Rank Fusion (RRF) [Cormack et al., 2009] to the runs described
above. RRF is a fusion technique that can combine rankings produced
by different systems. RRF creates a new ranking by only considering the
rank of a document in the input. Given a set of documents D and a set of
rankings R, RRF can be computed as:

RRF(d ∈ D) =
∑
r∈R

1
k + r(d) (6.1)

102 CHAPTER 6. USING THE ENTITY GRAPH

a. Introduction. Sacagawea, as everyone knows, was the young
Indian woman who, along with her baby, traveled with Lewis and
Clark to the Pacific Ocean and back.She was a great help to the
expedition and many organizations are preparing celebrations
to commemorate the 200-year anniversary of the endeavor.y:
M. R. Hansen. Sacagawea, as everyone knows, was the young
Indian woman who, along with her baby, traveled with Lewis
and Clark to the Pacific Ocean and back.

b. The same text as shown in a. + Indian Ocean James Hansen
Sacagawea India Oceania William Clark Meriwether Lewis Pa-
cific Ocean

c. The same text as shown in a. + fe6fc8 860324 aa84e6
7847ef 3e3b0e 7d31e0 2d8836 e58bef

Figure 6.8: The relevant passage for the query presented in Figure 6.7;
(a) the non-expanded passage, (b) the passage with entity text expan-
sion, and (c) the passage with entity hash expansion. Text expansions
are in italics. The MD5 hashes shown in (c) are shortened for format-
ting.

102 CHAPTER 6. USING THE ENTITY GRAPH

a. Introduction. Sacagawea, as everyone knows, was the young
Indian woman who, along with her baby, traveled with Lewis and
Clark to the Pacific Ocean and back.She was a great help to the
expedition and many organizations are preparing celebrations
to commemorate the 200-year anniversary of the endeavor.y:
M. R. Hansen. Sacagawea, as everyone knows, was the young
Indian woman who, along with her baby, traveled with Lewis
and Clark to the Pacific Ocean and back.

b. The same text as shown in a. + Indian Ocean James Hansen
Sacagawea India Oceania William Clark Meriwether Lewis Pa-
cific Ocean

c. The same text as shown in a. + fe6fc8 860324 aa84e6
7847ef 3e3b0e 7d31e0 2d8836 e58bef

Figure 6.8: The relevant passage for the query presented in Figure 6.7;
(a) the non-expanded passage, (b) the passage with entity text expan-
sion, and (c) the passage with entity hash expansion. Text expansions
are in italics. The MD5 hashes shown in (c) are shortened for format-
ting.

6.5. ENTITY EXPANSION WITH MMEAD 103

Here k is a hyperparameter that can be optimized, but we simply used a
default value of k = 60 for all settings.

This provides us with four new rankings; the RRF of the pairwise
combinations of the three rankings described above and the RRF of all three
of these runs:

d. RRF – No Expansion + Entity Text. RRF fusion of runs a
and b. The run with no expansions and the run with entity text
expansions are considered.

e. RRF – No Expansion + Entity Hash. RRF fusion of runs a
and c. The run with no expansions and the run with entity hash
expansions are considered.

f. RRF – Entity Text + Entity Hash. RRF fusion of runs b and
c. The run with entity text expansions and the run with entity hash
expansions are considered.

g. RRF – No Expansion + Entity Text + Entity Hash. RRF
fusion of runs a, b, and c. All three runs are considered.

6.5.2 Experimental Setup
In our experiments, we use MMEAD as a resource to expand queries
and passages with entities. The experiments are performed using the MS
MARCO v1 passage ranking collection, where only queries containing at least
one entity annotation are used. We do not expect meaningful differences
for queries without any linked entities, as the expanded query is identical
to the original query in that case.

As we expect the linked entities to provide additional semantic infor-
mation about the queries and passages, we conduct further testing on the
obstinate query sets of the MS MARCO Chameleons [Arabzadeh et al.,
2021], which consist of challenging queries from the original MS MARCO
passage dataset. In general, ranking methods show poor effectiveness in
finding relevant matches for these queries. Our testing focuses on the
bottom 50% of the worst-performing queries from the subsets of Veiled
Chameleon (Hard), Pygmy Chameleon (Harder), and Lesser Chameleon
(Hardest), which represent increasing levels of difficulty.

This gives us four query sets on which we evaluate; (1) all queries that
contain entity annotations (dev – 1984 queries), (2) all queries in the hard
subset that contain entity annotations (hard – 680 queries), (3) all queries
in the harder subset that contain entity annotations (harder – 493 queries),

104 CHAPTER 6. USING THE ENTITY GRAPH

and lastly, (4) all queries in the hardest subset that have entity annotations
(hardest – 322 queries).

The experiments are evaluated using Mean Reciprocal Rank (MRR) at
rank ten and Recall (R) at rank one thousand. MRR@10 is the official metric
for the MS MARCO passage ranking task, while R@1000 gives an upper
limit on how well re-ranking systems could perform. The Anserini [Yang
et al., 2018a] toolkit is used to generate our experiments.

6.5.3 Results
Table 6.2 presents the results of our experiments. If we first look at lines a-c
in the results table, we can examine the effects of our expansion methods
compared to the baseline run. Looking at R@1000, we can see that more
relevant passages are found using entity expansion for the dev collection and
its harder subsets. We do not find additional relevant documents/passages
on the dev set when we use the entity hashes, and entity text seems to
be the better approach. There is, however, no increase in MRR@10 when
using this expansion method. Entity expansions help when evaluating using
R@1000, especially when the queries are more complex. The difference
in recall effectiveness becomes larger the more complex the queries get.
MRR@10 only improves when using entity text expansion.

The reciprocal rank fusion methods are presented in lines d-g. When
using these methods, the R@1000 increases more. Again, the subsets that
contain more complex queries tend to benefit more. Regarding R@1000
effectiveness, the best RRF method uses a ranking from the normal, not
expanded index, with the index that has been expanded with the entity text.
Again, entity text expansion helps recall more than using hash expansion.
Although the RRF methods improve recall, MRR@10 does not benefit from
RRF when compared to using only one of the expansion techniques.

6.6 Beyond Quantitative Results
In the previous section, we demonstrated the potential value of MMEAD
using quantitative evaluations, where we leverage entities to improve retrieval
effectiveness in standard benchmark datasets. Beyond these quantitative
results, MMEAD can also help enrich interactive search applications in
various ways. This section describes a few such examples.

Entity links to Wikidata provide an entrée into the broader world of
open-linked data, which enables integration with other existing resources.
This allows us to build interesting “mashups” or support search beyond

104 CHAPTER 6. USING THE ENTITY GRAPH

and lastly, (4) all queries in the hardest subset that have entity annotations
(hardest – 322 queries).

The experiments are evaluated using Mean Reciprocal Rank (MRR) at
rank ten and Recall (R) at rank one thousand. MRR@10 is the official metric
for the MS MARCO passage ranking task, while R@1000 gives an upper
limit on how well re-ranking systems could perform. The Anserini [Yang
et al., 2018a] toolkit is used to generate our experiments.

6.5.3 Results
Table 6.2 presents the results of our experiments. If we first look at lines a-c
in the results table, we can examine the effects of our expansion methods
compared to the baseline run. Looking at R@1000, we can see that more
relevant passages are found using entity expansion for the dev collection and
its harder subsets. We do not find additional relevant documents/passages
on the dev set when we use the entity hashes, and entity text seems to
be the better approach. There is, however, no increase in MRR@10 when
using this expansion method. Entity expansions help when evaluating using
R@1000, especially when the queries are more complex. The difference
in recall effectiveness becomes larger the more complex the queries get.
MRR@10 only improves when using entity text expansion.

The reciprocal rank fusion methods are presented in lines d-g. When
using these methods, the R@1000 increases more. Again, the subsets that
contain more complex queries tend to benefit more. Regarding R@1000
effectiveness, the best RRF method uses a ranking from the normal, not
expanded index, with the index that has been expanded with the entity text.
Again, entity text expansion helps recall more than using hash expansion.
Although the RRF methods improve recall, MRR@10 does not benefit from
RRF when compared to using only one of the expansion techniques.

6.6 Beyond Quantitative Results
In the previous section, we demonstrated the potential value of MMEAD
using quantitative evaluations, where we leverage entities to improve retrieval
effectiveness in standard benchmark datasets. Beyond these quantitative
results, MMEAD can also help enrich interactive search applications in
various ways. This section describes a few such examples.

Entity links to Wikidata provide an entrée into the broader world of
open-linked data, which enables integration with other existing resources.
This allows us to build interesting “mashups” or support search beyond

6.6. BEYOND QUANTITATIVE RESULTS 105

Ta
bl

e6
.2

:R
es

ul
ts

on
th

eM
S

M
A

RC
O

v1
pa

ss
ag

ec
ol

lec
tio

n,
us

in
g

on
ly

th
eq

ue
rie

st
ha

th
av

ee
nt

ity
an

no
ta

tio
ns

.
B

ol
de

d
nu

m
be

rs
ar

e
th

e
hi

gh
es

t
ac

hi
ev

ed
eff

ec
tiv

en
es

s.
Sc

or
es

w
ith

a
da

gg
er

(†
)

ar
e

sig
ni

fic
an

tly
be

tt
er

co
m

pa
re

d
to

BM
25

wi
th

no
ex

pa
ns

io
n

(r
un

a)
,f

ol
lo

wi
ng

a
pa

ire
d

t-t
es

tw
ith

Bo
nf

er
ro

ni
co

rr
ec

tio
n.

Fo
rM

R
R

,
we

ha
ve

no
t

ca
lc

ul
at

ed
sig

ni
fic

an
ce

sc
or

es
du

e
to

its
or

di
na

ls
ca

le
[F

uh
r,

20
18

].

R
@

10
00

M
R

R
@

10
de

v
ha

rd
ha

rd
er

ha
rd

es
t

de
v

ha
rd

ha
rd

er
ha

rd
es

t
a.

BM
25

N
o

Ex
pa

ns
io

n
0.

91
11

0.
78

55
0.

74
44

0.
66

77
0.

24
13

0.
03

73
0.

01
37

0.
00

00
b.

BM
25

En
tit

y
Te

xt
0.

91
83

0.
82

40
†

0.
79

51
†

0.
72

98
†

0.
22

02
0.

03
85

0.
01

73
0.

00
57

c.
BM

25
En

tit
y

H
as

h
0.

91
05

0.
79

80
0.

75
76

0.
68

48
0.

21
99

0.
03

83
0.

01
75

0.
00

52
d.

R
R

F
N

o
Ex

pa
ns

io
n

0.
93

38
†

0.
84

36
†

0.
81

24
†

0.
75

00
†

0.
23

72
0.

03
85

0.
01

63
0.

00
19

+
En

tit
y

Te
xt

e.
R

R
F

N
o

Ex
pa

ns
io

n
0.

92
50

†
0.

82
60

†
0.

79
21

†
0.

72
05

†
0.

23
78

0.
03

67
0.

01
52

0.
00

34
+

En
tit

y
H

as
h

f.
R

R
F

En
tit

y
Te

xt
&

H
as

h
0.

92
31

0.
82

60
†

0.
79

82
†

0.
73

14
†

0.
22

18
0.

03
75

0.
01

61
0.

00
53

g.
R

R
F

N
o

Ex
pa

ns
io

n
0.

93
13

†
0.

83
70

†
0.

80
43

†
0.

73
76

†
0.

23
58

0.
03

91
0.

01
56

0.
00

35
+

En
tit

y
Te

xt
&

H
as

h

106 CHAPTER 6. USING THE ENTITY GRAPH

Figure 6.9: Locations of entities found in the MS MARCO v2 passage
collection.

simple keyword queries. As a simple example, we can take the entities
referenced in MS MARCO, look up the coordinates for geographic entities,
and plot them on a map. Figure 6.9 shows a world map with all entities
found in the MS MARCO v2 passage collection mapped onto it (each shown
with a transparent blue dot). The results are as expected, where the blue
dots’ density largely mirrors worldwide population density, although (also
as expected) we observe more representation from entities in North America,
Europe, and other parts of the world with better access to internet.

Figure 6.9 is a static visualization, but we can take the same underlying
data and principles to create interesting interactive demonstrations. Geo-
based search is an obvious idea, where users can specify a geographic region
– either by dragging a box in an interactive interface to encompass a region
of interest, or specifying a geographic entity. For example, the user might
ask “Show me content about tourist sites in Paris” and receive passages
about the Eiffel Tower in which Paris is not mentioned explicitly. Simple
reasoning based on geographic containment relationships on open-linked data
resources would be sufficient for answering this query. While it is possible
that pretrained transformers might implicitly contain this information, they
can never offer the same degree of fine-grained control provided by explicit
entity linking.

As a simple demonstration, we have taken MMEAD, reformatted the
entity links into RDF, and ingested the results into the QLever SPARQL

106 CHAPTER 6. USING THE ENTITY GRAPH

Figure 6.9: Locations of entities found in the MS MARCO v2 passage
collection.

simple keyword queries. As a simple example, we can take the entities
referenced in MS MARCO, look up the coordinates for geographic entities,
and plot them on a map. Figure 6.9 shows a world map with all entities
found in the MS MARCO v2 passage collection mapped onto it (each shown
with a transparent blue dot). The results are as expected, where the blue
dots’ density largely mirrors worldwide population density, although (also
as expected) we observe more representation from entities in North America,
Europe, and other parts of the world with better access to internet.

Figure 6.9 is a static visualization, but we can take the same underlying
data and principles to create interesting interactive demonstrations. Geo-
based search is an obvious idea, where users can specify a geographic region
– either by dragging a box in an interactive interface to encompass a region
of interest, or specifying a geographic entity. For example, the user might
ask “Show me content about tourist sites in Paris” and receive passages
about the Eiffel Tower in which Paris is not mentioned explicitly. Simple
reasoning based on geographic containment relationships on open-linked data
resources would be sufficient for answering this query. While it is possible
that pretrained transformers might implicitly contain this information, they
can never offer the same degree of fine-grained control provided by explicit
entity linking.

As a simple demonstration, we have taken MMEAD, reformatted the
entity links into RDF, and ingested the results into the QLever SPARQL

6.6. BEYOND QUANTITATIVE RESULTS 107

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX ex: <http://example.org/>
3 PREFIX schema: <https://schema.org/>
4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5 PREFIX passage: <http://example.org/passage>
6 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
7 PREFIX wd: <http://www.wikidata.org/entity/>
8 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
9 SELECT ?pid ?content ?entity ?label ?coord

10 WHERE {
11 ?pid rdf:type passage: .
12 ?pid schema:description ?content .
13 ?pid passage:has ?entity .
14 FILTER (regex(?entity, "wikidata", "i"))
15 ?entity rdfs:label ?label .
16 ?entity wdt:P625 ?coord .
17 ?entity wdt:P17 wd:Q142 .
18 FILTER (LANG(?label) = "en")
19 }

Figure 6.10: SPARQL query that produces all entities in the passages
of the MS MARCO v2 collection that are related to the country of
France.

engine [Bast and Buchhold, 2017].2 By combining MMEAD with RDF data
from Wikidata and OpenStreetMap, we can issue SPARQL queries such as
“Show me all passages in MS MARCO related to France”.

The query is shown in Figure 6.10, which gives us 122, 316 entities found
in the collection that have a connection with France (most of them are
located in France). We can automatically show the entities on a map, as
presented in Figure 6.11 (showing the first 1000 entities found).

Not all linked entities are located in France, however. For example,
some entities are related to France (entities for which France is mentioned
in their Wikidata) but located elsewhere in the world. One of the blue dots
in Germany is the source of the river Moselle. This river starts in Germany
by splitting off from the Rhine, and then goes through France. Instead of
querying for France, we can also query for different countries. Table 6.3

2https://github.com/ad-freiburg/qlever, last accessed September 2025

108 CHAPTER 6. USING THE ENTITY GRAPH

Figure 6.11: First 1000 entities found that are connected to France.
Entities are represented with a blue dot on the map.

shows the number of entities found for a sample of countries.
Although we have used SPARQL for this experiment, it would also be

possible to express this query using Cypher in GeeseDB. Depending on the
exact schema, this would look like the query shown in Figure 6.12.

6.7 Conclusion and Future Work
This chapter introduces a new Information Retrieval resource called MMEAD,
or MS MARCO Entity Annotations and Disambiguations. MMEAD con-
tains entity annotations for the passages and documents in MS MARCO
v1 and v2. These annotations simplify entity-oriented research on the MS
MARCO collections. Links have been provided using the REL and BLINK
entity linking systems. Using DuckDB, the data can quickly be queried,
making the resource easy to use.

To return to our third research question:

RQ3: When does information retrieval research benefit from graph data?

108 CHAPTER 6. USING THE ENTITY GRAPH

Figure 6.11: First 1000 entities found that are connected to France.
Entities are represented with a blue dot on the map.

shows the number of entities found for a sample of countries.
Although we have used SPARQL for this experiment, it would also be

possible to express this query using Cypher in GeeseDB. Depending on the
exact schema, this would look like the query shown in Figure 6.12.

6.7 Conclusion and Future Work
This chapter introduces a new Information Retrieval resource called MMEAD,
or MS MARCO Entity Annotations and Disambiguations. MMEAD con-
tains entity annotations for the passages and documents in MS MARCO
v1 and v2. These annotations simplify entity-oriented research on the MS
MARCO collections. Links have been provided using the REL and BLINK
entity linking systems. Using DuckDB, the data can quickly be queried,
making the resource easy to use.

To return to our third research question:

RQ3: When does information retrieval research benefit from graph data?

6.7. CONCLUSION AND FUTURE WORK 109

Table 6.3: Number of entities found per country, for example countries
where the entity has an English language label.

Country WikiData ID # Entities
United States Q30 3,429,889
Canada Q16 170,833
France Q146 122,316
New Zealand Q664 19,094
Peru Q419 16,448
Iran Q794 13,633
Ecuador Q736 10,588
South Korea Q884 9,718
Monaco Q235 8,546
Singapore Q334 6,597

1 MATCH (pid:Passage)-[:has]->(entity)
2 WHERE entity.uri CONTAINS "wikidata"
3 MATCH (pid)-[:description]->(content)
4 MATCH (entity)-[:label {lang: 'en'}]->(label)
5 MATCH (entity)-[:P625]->(coord)
6 MATCH (entity)-[:P17]->(:Country)
7 RETURN pid, content, entity, label, coord

Figure 6.12: Cypher query with similar behaviour as the SPARQL
query shown in 6.10.

110 CHAPTER 6. USING THE ENTITY GRAPH

With MMEAD, we support information retrieval research that combines
deep learning and entity graph information. Entity links can be considered
as a bi-partite graph where entities and documents are nodes, that are
connected when entities appear in documents. Using these entities for query
and passage expansion, we showed experimentally a significant increase in
recall effectiveness. When using reciprocal rank fusion, the effectiveness
difference becomes even more prominent and recall increases significantly
with the new relevant passages found. The question remains open whether
these passages previously missed, can be ranked higher by new retrieval
models.

We also demonstrated that our resource can enrich interactive search
applications. In particular, we present a demo where all entities related to
geographical locations can be positioned on a map. Specifically we queried
the data as a RDF triple graph.

Using the MMEAD format, releasing entity links for collections beyond
MS MARCO is also possible. We already showed that using entity links
improves recall when using the linked entities for query expansion. What
the effects are when training, e.g., dense passage retrieval methods that
include the entity links, is yet to be investigated – an exciting research
opportunity that lies ahead.

110 CHAPTER 6. USING THE ENTITY GRAPH

With MMEAD, we support information retrieval research that combines
deep learning and entity graph information. Entity links can be considered
as a bi-partite graph where entities and documents are nodes, that are
connected when entities appear in documents. Using these entities for query
and passage expansion, we showed experimentally a significant increase in
recall effectiveness. When using reciprocal rank fusion, the effectiveness
difference becomes even more prominent and recall increases significantly
with the new relevant passages found. The question remains open whether
these passages previously missed, can be ranked higher by new retrieval
models.

We also demonstrated that our resource can enrich interactive search
applications. In particular, we present a demo where all entities related to
geographical locations can be positioned on a map. Specifically we queried
the data as a RDF triple graph.

Using the MMEAD format, releasing entity links for collections beyond
MS MARCO is also possible. We already showed that using entity links
improves recall when using the linked entities for query expansion. What
the effects are when training, e.g., dense passage retrieval methods that
include the entity links, is yet to be investigated – an exciting research
opportunity that lies ahead.

Chapter 7

Conclusion

We can only see a short
distance ahead, but we can
see plenty there that needs to
be done.

Alan Turing - 1950

This thesis will be concluded using the research questions as a guide.
We will look once more at the work presented in the individual chapters,
and tie it together with the research questions. Finally, I want to reflect on
the work described in this thesis and present research opportunities that
follow this work.

7.1 Contributions
Recall the main research question and its subquestions:

• Research Question: How can information retrieval benefit
from graph databases and graph query languages?

• Research Question 1: What are the benefits of using relational databases
for information retrieval?

• Research Question 2: Can we extend the benefits from using relational
databases for information retrieval to using graph databases while
being able to express graph-related problems easier?

• Research Question 3: When does information retrieval research benefit
from graph data?

111

112 CHAPTER 7. CONCLUSION

Chapter 3 introduces the history of using relational databases for infor-
mation retrieval. One of the latter attempts, using columnar databases for
retrieval, is highlighted. This approach is re-implemented as a prototype sys-
tem: “OldDog”. OldDog is used for a reproduction experiment, where many
expressions of BM25 are compared against each other. Because OldDog
was built using a relational database, we could express the logical model
of the ranking functions separately from their physical models. This way,
we could find the differences between models while keeping the data the
same. This work demonstrates the usefulness of using relational databases
for reproduction experiments in information retrieval. Looking at research
question 1: What are the benefits of using relational databases for informa-
tion retrieval?, we have demonstrated that relational databases provide a
framework for easily comparing different ranking methods, as shown in the
reproduction study. The system is reasonably efficient, making it easy to
set up for new experiments.

Chapter 4 takes the data model for information retrieval using relational
databases, as presented in Chapter 3, and extends this model to a graph data
model. This model is implemented in GeeseDB, a prototype graph database
for information retrieval. GeeseDB is built on top of DuckDB and uses its
column-oriented tables and the fact that it can be run in-process. With a
robust backend, we can express graph queries for information retrieval and
run them on GeeseDB. GeeseDB supports all functionalities that OldDog
already supports, plus it makes the expression of more complicated problems
through the graph framework easier. Considering research question 2:
Can we extend the benefits from using relational databases for information
retrieval to using graph databases, while being able to express graph-related
problems easier?, we find that, with GeeseDB, it is possible to take all
the benefits from using relational databases for information retrieval, while
making it possible to express more complex problems through a graph query
language.

Chapter 5 concerns improvements on the Radboud Entity Linking (REL)
system. Some unforeseen issues were encountered when trying to deploy
this system to annotate a large document collection. The time it took to tag
the whole collection was much larger than expected, making it unfeasible to
annotate the whole corpus in a reasonable time. By improving the efficiency
of several components of the software and including a batch extension, it
was possible to speed up parts of the software by a factor of ten. After
deploying these improvements, it was possible to use the REL software for
large corpora.

Chapter 6 continues with the system created in Chapter 5 and deploys

112 CHAPTER 7. CONCLUSION

Chapter 3 introduces the history of using relational databases for infor-
mation retrieval. One of the latter attempts, using columnar databases for
retrieval, is highlighted. This approach is re-implemented as a prototype sys-
tem: “OldDog”. OldDog is used for a reproduction experiment, where many
expressions of BM25 are compared against each other. Because OldDog
was built using a relational database, we could express the logical model
of the ranking functions separately from their physical models. This way,
we could find the differences between models while keeping the data the
same. This work demonstrates the usefulness of using relational databases
for reproduction experiments in information retrieval. Looking at research
question 1: What are the benefits of using relational databases for informa-
tion retrieval?, we have demonstrated that relational databases provide a
framework for easily comparing different ranking methods, as shown in the
reproduction study. The system is reasonably efficient, making it easy to
set up for new experiments.

Chapter 4 takes the data model for information retrieval using relational
databases, as presented in Chapter 3, and extends this model to a graph data
model. This model is implemented in GeeseDB, a prototype graph database
for information retrieval. GeeseDB is built on top of DuckDB and uses its
column-oriented tables and the fact that it can be run in-process. With a
robust backend, we can express graph queries for information retrieval and
run them on GeeseDB. GeeseDB supports all functionalities that OldDog
already supports, plus it makes the expression of more complicated problems
through the graph framework easier. Considering research question 2:
Can we extend the benefits from using relational databases for information
retrieval to using graph databases, while being able to express graph-related
problems easier?, we find that, with GeeseDB, it is possible to take all
the benefits from using relational databases for information retrieval, while
making it possible to express more complex problems through a graph query
language.

Chapter 5 concerns improvements on the Radboud Entity Linking (REL)
system. Some unforeseen issues were encountered when trying to deploy
this system to annotate a large document collection. The time it took to tag
the whole collection was much larger than expected, making it unfeasible to
annotate the whole corpus in a reasonable time. By improving the efficiency
of several components of the software and including a batch extension, it
was possible to speed up parts of the software by a factor of ten. After
deploying these improvements, it was possible to use the REL software for
large corpora.

Chapter 6 continues with the system created in Chapter 5 and deploys

7.2. FUTURE WORK 113

it to annotate the large MS MARCO document and passage collections.
A specification on how to share these annotations, independent of the
linking system, is proposed. Following this specification, we make the
annotations created by the REL system publicly available. We also publish
data created by the BLINK entity linking system for the MS MARCO
v1 passage collection. Using the annotations by REL, we show on the
MS MARCO v1 collection that query expansion with entity annotations
significantly improves recall for complicated queries. Although this is just
a simple experiment, we show that these annotations contain valuable
information for finding relevant documents, and they could be beneficial for
more sophisticated methods. Also, through a demonstration that combines
entity annotations with geographical information, we show that entity
annotations benefit interactive search applications—considering research
question 3: When does information retrieval research benefit from graph
data?. We demonstrate that information retrieval can benefit from graph
data, such as an entity graph. Employing it for retrieval techniques leads
to an increase in retrieval effectiveness. Also, the graph model is ideal for
interactive search systems.

Finally, to address the main research question; How can information
retrieval benefit from graph databases and graph query languages?.
This thesis demonstrates the usefulness of graph databases for information
retrieval by creating a prototype system, GeeseDB, that is directly useful
for information retrieval. With GeeseDB, it is possible to set up retrieval
experiments using the graph model quickly. It inherits all benefits of using
relational databases for information retrieval. We show that we can increase
retrieval effectiveness by using a graph of entities. This graph of entities
can improve interactive search applications as well.

7.2 Future Work
Following the work presented in this thesis, interesting research opportunities
lie ahead. In particular, I would like to highlight three directions that seem
promising to improve retrieval:

Firstly, an obvious follow-up on the work presented in this thesis is
a study that combines the work of Chapters 4 and 6. In Chapter 4,
we introduced GeeseDB, a graph-based system for information retrieval.
In Chapter 6, we use graph data produced by the REL system. It would
be interesting to see if we can reproduce the results of Chapter 6 using
GeeseDB. We used an SPARQL engine for the demonstration in Chapter 6.
While convenient for the purpose of this demonstration, it would also be

114 CHAPTER 7. CONCLUSION

interesting to see how well GeeseDB would hold up in terms of effiency
compared to the SPARQL engine.

The examples shown in Chapter 4 are relatively straightforward. Ad-
ditional studies should be carried out that consider more complex graph
structures. For example, can we employ a graph structure and utilize paths
in the graph? These paths could propagate probabilities used to calculate
relevancy scores, a strategy that is naturally expressed using graphs.

Lastly, it would be interesting to see if the concepts of graph databases
for information retrieval and deep learning for information retrieval can
be married together. In the last couple of years, deep learning for infor-
mation retrieval has become more prominent, especially with the rise of
large language models. The representations found by these models can be
expressed in graph databases, and both techniques can benefit from each
other. Additional studies need to be conducted to determine how this can
be done well.

114 CHAPTER 7. CONCLUSION

interesting to see how well GeeseDB would hold up in terms of effiency
compared to the SPARQL engine.

The examples shown in Chapter 4 are relatively straightforward. Ad-
ditional studies should be carried out that consider more complex graph
structures. For example, can we employ a graph structure and utilize paths
in the graph? These paths could propagate probabilities used to calculate
relevancy scores, a strategy that is naturally expressed using graphs.

Lastly, it would be interesting to see if the concepts of graph databases
for information retrieval and deep learning for information retrieval can
be married together. In the last couple of years, deep learning for infor-
mation retrieval has become more prominent, especially with the rise of
large language models. The representations found by these models can be
expressed in graph databases, and both techniques can benefit from each
other. Additional studies need to be conducted to determine how this can
be done well.

Bibliography

E. Agichtein, E. Brill, and S. Dumais. Improving Web Search Ranking by Incorporating User
Behavior Information. In Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’06, page 19–26, New York,
NY, USA, 2006. Association for Computing Machinery. ISBN 1595933697. URL https:
//doi.org/10.1145/1148170.1148177.

A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf. FLAIR: An Easy-
to-Use Framework for State-of-the-Art NLP. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics (Demonstrations),
NAACL ’19, pages 54–59, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-4010. URL https://aclanthology.org/N19-4010.

R. Angles. The Property Graph Database Model. In Proceedings of the 12th Alberto Mendelzon
International Workshop on Foundations of Data Management, AMW ’18, Aachen, 2018.
CEUR-WS.org.

Apache Software Foundation. Giraph, 2012. URL https://giraph.apache.org/.

Apache Software Foundation. Lucene, 2013. URL https://lucene.apache.org/.

N. Arabzadeh, B. Mitra, and E. Bagheri. MS MARCO Chameleons: Challenging the MS MARCO
Leaderboard with Extremely Obstinate Queries. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, page 4426–4435, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469. URL
https://doi.org/10.1145/3459637.3482011.

J. Arguello, M. Crane, F. Diaz, J. Lin, and A. Trotman. Report on the SIGIR 2015 Workshop on
Reproducibility, Inexplicability, and Generalizability of Results (RIGOR). SIGIR Forum, 49
(2):107–116, jan 2016. ISSN 0163-5840. doi: 10.1145/2888422.2888439.

T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Improvements That Don’t Add up: Ad-Hoc
Retrieval Results since 1998. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, page 601–610, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605585123. URL https://doi.org/10.1145/1645953.
1646031.

R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463. ACM press
New York, 1999.

P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, B. M. Andrew McNa-
mara, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and T. Wang. MS MARCO:
A Human Generated MAchine Reading COmprehension Dataset. In InCoCo@NIPS, 2016.

115

116 BIBLIOGRAPHY

K. Balog. Entity-Oriented Search. Springer Nature, Gewerbestrasse 11, 6330 Cham, Switzerland,
2018.

K. Balog, H. Ramampiaro, N. Takhirov, and K. Nørvåg. Multi-Step Classification Approaches
to Cumulative Citation Recommendation. In Proceedings of the 10th Conference on Open
Research Areas in Information Retrieval, OAIR ’13, page 121–128, Paris, France, 2013. Le
centre de hautes études internationales d’informatique documentaire. ISBN 9782905450098.

H. Bast and B. Buchhold. QLever: A Query Engine for Efficient SPARQL+Text Search. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM ’17, page 647–656, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450349185.

H. Bast, M. Hertel, and N. Prange. A Fair and In-Depth Evaluation of Existing End-to-End
Entity Linking Systems. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 6659–6672, Singapore,
Dec. 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.411.
URL https://aclanthology.org/2023.emnlp-main.411.

P. Boers, C. Kamphuis, and A. P. de Vries. Radboud University at TREC 2020. In NIST Special
Publication 1266: The Twenty-Ninth Text REtrieval Conference Proceedings (TREC 2020),
TREC’20, Gaithersburg, Maryland, 2020. [Sl]: NIST. URL https://trec.nist.gov/pubs/
trec29/papers/RUIR.N.pdf.

P. Boldi and S. Vigna. MG4J at TREC 2005. In The Fourteenth Text REtrieval Conference
(TREC 2005) Proceedings, number SP 500-266 in Special Papers. NIST, 2005. URL http:
//mg4j.di.unimi.it/.

P. A. Boncz. A Next-Generation DBMS Kernel For Query-Intensive Applications. PhD thesis,
University of Amsterdam, May 2002.

P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution.
In Proceedings of the Second Biennial Conference on Innovative Data Systems Research,
CIDR’05, pages 225–237. www.cidrdb.org, 2005.

A. Bosselut, R. Le Bras, and Y. Choi. Dynamic Neuro-Symbolic Knowledge Graph Construction
for Zero-shot Commonsense Question Answering. In Proceedings of The Thirty-Fifth AAAI
Conference on Artificial Intelligence, volume 35 of AAAI ’20, pages 4923–4931, 2021.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using
a two-level retrieval process. In Proceedings of the Twelfth International Conference on
Information and Knowledge Management, CIKM ’03, page 426–434, New York, NY, USA,
2003. Association for Computing Machinery. ISBN 1581137230. URL https://doi.org/10.
1145/956863.956944.

C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Technical
report, Microsoft Research, 2010. URL http://research.microsoft.com/en-us/um/people/
cburges/tech_reports/MSR-TR-2010-82.pdf.

A. Câmara and C. Macdonald. Dockerising Terrier for The Open-Source IR Replicability Challenge
(OSIRRC 2019). In Proceedings of the Open-Source IR Replicability Challenge co-located with
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019, pages 26–30, Aachen, 2019.
CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker02.pdf.

R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27, May 2011. ISSN
0163-5808. URL https://doi.org/10.1145/1978915.1978919.

116 BIBLIOGRAPHY

K. Balog. Entity-Oriented Search. Springer Nature, Gewerbestrasse 11, 6330 Cham, Switzerland,
2018.

K. Balog, H. Ramampiaro, N. Takhirov, and K. Nørvåg. Multi-Step Classification Approaches
to Cumulative Citation Recommendation. In Proceedings of the 10th Conference on Open
Research Areas in Information Retrieval, OAIR ’13, page 121–128, Paris, France, 2013. Le
centre de hautes études internationales d’informatique documentaire. ISBN 9782905450098.

H. Bast and B. Buchhold. QLever: A Query Engine for Efficient SPARQL+Text Search. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM ’17, page 647–656, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450349185.

H. Bast, M. Hertel, and N. Prange. A Fair and In-Depth Evaluation of Existing End-to-End
Entity Linking Systems. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 6659–6672, Singapore,
Dec. 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.411.
URL https://aclanthology.org/2023.emnlp-main.411.

P. Boers, C. Kamphuis, and A. P. de Vries. Radboud University at TREC 2020. In NIST Special
Publication 1266: The Twenty-Ninth Text REtrieval Conference Proceedings (TREC 2020),
TREC’20, Gaithersburg, Maryland, 2020. [Sl]: NIST. URL https://trec.nist.gov/pubs/
trec29/papers/RUIR.N.pdf.

P. Boldi and S. Vigna. MG4J at TREC 2005. In The Fourteenth Text REtrieval Conference
(TREC 2005) Proceedings, number SP 500-266 in Special Papers. NIST, 2005. URL http:
//mg4j.di.unimi.it/.

P. A. Boncz. A Next-Generation DBMS Kernel For Query-Intensive Applications. PhD thesis,
University of Amsterdam, May 2002.

P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution.
In Proceedings of the Second Biennial Conference on Innovative Data Systems Research,
CIDR’05, pages 225–237. www.cidrdb.org, 2005.

A. Bosselut, R. Le Bras, and Y. Choi. Dynamic Neuro-Symbolic Knowledge Graph Construction
for Zero-shot Commonsense Question Answering. In Proceedings of The Thirty-Fifth AAAI
Conference on Artificial Intelligence, volume 35 of AAAI ’20, pages 4923–4931, 2021.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using
a two-level retrieval process. In Proceedings of the Twelfth International Conference on
Information and Knowledge Management, CIKM ’03, page 426–434, New York, NY, USA,
2003. Association for Computing Machinery. ISBN 1581137230. URL https://doi.org/10.
1145/956863.956944.

C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Technical
report, Microsoft Research, 2010. URL http://research.microsoft.com/en-us/um/people/
cburges/tech_reports/MSR-TR-2010-82.pdf.

A. Câmara and C. Macdonald. Dockerising Terrier for The Open-Source IR Replicability Challenge
(OSIRRC 2019). In Proceedings of the Open-Source IR Replicability Challenge co-located with
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019, pages 26–30, Aachen, 2019.
CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker02.pdf.

R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27, May 2011. ISSN
0163-5808. URL https://doi.org/10.1145/1978915.1978919.

BIBLIOGRAPHY 117

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured Data. In
7th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
205–218, 2006.

S. Chatterjee and L. Dietz. BERT-ER: Query-Specific BERT Entity Representations for Entity
Ranking. In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’22, page 1466–1477, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531944.

S. Chaudhuri and G. Weikum. Rethinking Database System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proceedings of the 26th International Conference on Very
Large Data Bases, VLDB ’00, page 1–10, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc. ISBN 1558607153.

S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR Technologies: What
is the Sound of One Hand Clapping? In Proceedings of the Second Biennial Conference on
Innovative Data Systems Research, CIDR’05, 2005.

K. W. Church and W. A. Gale. Poisson Mixtures. Natural Language Engineering, 1(2):163–190,
1995. doi: 10.1017/S1351324900000139.

R. Clancy, Z. Akkalyoncu Yilmaz, Z. Z. Wu, and J. Lin. University of Waterloo Docker Images
for OSIRRC at SIGIR 2019. In Proceedings of the Open-Source IR Replicability Challenge
co-located with 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019, page 36, Aachen,
2019a. CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker04.pdf.

R. Clancy, N. Ferro, C. Hauff, J. Lin, T. Sakai, and Z. Z. Wu. The SIGIR 2019 Open-Source IR
Replicability Challenge (OSIRRC 2019). In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’19, page 1432–1434,
New York, NY, USA, 2019b. Association for Computing Machinery. ISBN 9781450361729.
doi: 10.1145/3331184.3331647.

G. P. Copeland and S. N. Khoshafian. A decomposition storage model. In Proceedings of the
1985 ACM SIGMOD International Conference on Management of Data, SIGMOD ’85, page
268–279, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911601.
doi: 10.1145/318898.318923. URL https://doi.org/10.1145/318898.318923.

G. V. Cormack, C. L. A. Clarke, and S. Buettcher. Reciprocal Rank Fusion Outperforms Condorcet
and Individual Rank Learning Methods. In Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’09, page 758–759,
New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605584836. URL
https://doi.org/10.1145/1571941.1572114.

R. Cornacchia, S. Héman, M. Zukowski, A. P. Vries, and P. Boncz. Flexible and Efficient IR
Using Array Databases. The VLDB Journal, 17(1):151–168, jan 2008. ISSN 1066-8888. doi:
10.1007/s00778-007-0071-0.

N. Craswell, B. Mitra, E. Yilmaz, D. Campos, E. M. Voorhees, and I. Soboroff. TREC Deep
Learning Track: Reusable Test Collections in the Large Data Regime. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’21, page 2369–2375, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450380379. URL https://doi.org/10.1145/3404835.3463249.

J. Dalton, L. Dietz, and J. Allan. Entity Query Feature Expansion Using Knowledge Base
Links. In Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’14, page 365–374, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450322577. doi: 10.1145/2600428.2609628.

118 BIBLIOGRAPHY

J. Dalton, C. Xiong, and J. Callan. CAsT 2020: The Conversational Assistance Track Overview.
In The Twenty-Ninth Text REtrieval Conference (TREC 2020) Proceedings, Gaithersburg,
Maryland, USA, 2021. NIST.

N. De Cao, G. Izacard, S. Riedel, and F. Petroni. Autoregressive Entity Retrieval. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=5k8F6UU39V.

A. Dean-Hall, C. L.A. Clarke, J. Kamps, P. Thomas, N. Simone, and E. Voorhees. Overview of
the TREC 2013 Contextual Suggestion Track. In Proceedings of The Twenty-Second Text
REtrieval Conference (TREC 2013) Proceedings, TREC ’13, Gaithersburg, Maryland, USA,
2014. National Institute for Standards and Technology (NIST).

R. Deveaud, M.-D. Albakour, C. Macdonald, and I. Ounis. On the Importance of Venue-Dependent
Features for Learning to Rank Contextual Suggestions. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, CIKM
’14, page 1827–1830, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450325981. doi: 10.1145/2661829.2661956.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), NAACL ’19, pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math., 1(1):
269–271, Dec. 1959. ISSN 0029-599X. URL https://doi.org/10.1007/BF01386390.

L. Dolamic and J. Savoy. When Stopword Lists Make the Difference. J. Am. Soc. Inf. Sci.
Technol., 61(1):200–203, Jan. 2010. ISSN 1532-2882.

P. Ferragina and U. Scaiella. TAGME: On-the-Fly Annotation of Short Text Fragments (by
Wikipedia Entities). In Proceedings of the 19th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’10, page 1625–1628, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781450300995. doi: 10.1145/1871437.1871689.

D. Ferrucci. Introduction to “This is Watson”. IBM Journal of Research and Development, 56:
1:1–1:15, 05 2012. doi: 10.1147/JRD.2012.2184356.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,
M. Rydberg, P. Selmer, and A. Taylor. Cypher: An Evolving Query Language for Property
Graphs. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, page 1433–1445, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450347037. doi: 10.1145/3183713.3190657.

N. Fuhr. Models for Integrated Information Retrieval and Database Systems. IEEE Data
Engineering Bulletin, 19(1):3–13, 1996.

N. Fuhr. Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum,
51(3):32–41, 2018. ISSN 0163-5840. URL https://doi.org/10.1145/3190580.3190586.

N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of Information
Retrieval and Database Systems. ACM Trans. Inf. Syst., 15(1):32–66, jan 1997. ISSN
1046-8188. doi: 10.1145/239041.239045.

118 BIBLIOGRAPHY

J. Dalton, C. Xiong, and J. Callan. CAsT 2020: The Conversational Assistance Track Overview.
In The Twenty-Ninth Text REtrieval Conference (TREC 2020) Proceedings, Gaithersburg,
Maryland, USA, 2021. NIST.

N. De Cao, G. Izacard, S. Riedel, and F. Petroni. Autoregressive Entity Retrieval. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=5k8F6UU39V.

A. Dean-Hall, C. L.A. Clarke, J. Kamps, P. Thomas, N. Simone, and E. Voorhees. Overview of
the TREC 2013 Contextual Suggestion Track. In Proceedings of The Twenty-Second Text
REtrieval Conference (TREC 2013) Proceedings, TREC ’13, Gaithersburg, Maryland, USA,
2014. National Institute for Standards and Technology (NIST).

R. Deveaud, M.-D. Albakour, C. Macdonald, and I. Ounis. On the Importance of Venue-Dependent
Features for Learning to Rank Contextual Suggestions. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, CIKM
’14, page 1827–1830, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450325981. doi: 10.1145/2661829.2661956.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), NAACL ’19, pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math., 1(1):
269–271, Dec. 1959. ISSN 0029-599X. URL https://doi.org/10.1007/BF01386390.

L. Dolamic and J. Savoy. When Stopword Lists Make the Difference. J. Am. Soc. Inf. Sci.
Technol., 61(1):200–203, Jan. 2010. ISSN 1532-2882.

P. Ferragina and U. Scaiella. TAGME: On-the-Fly Annotation of Short Text Fragments (by
Wikipedia Entities). In Proceedings of the 19th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’10, page 1625–1628, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781450300995. doi: 10.1145/1871437.1871689.

D. Ferrucci. Introduction to “This is Watson”. IBM Journal of Research and Development, 56:
1:1–1:15, 05 2012. doi: 10.1147/JRD.2012.2184356.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,
M. Rydberg, P. Selmer, and A. Taylor. Cypher: An Evolving Query Language for Property
Graphs. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, page 1433–1445, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450347037. doi: 10.1145/3183713.3190657.

N. Fuhr. Models for Integrated Information Retrieval and Database Systems. IEEE Data
Engineering Bulletin, 19(1):3–13, 1996.

N. Fuhr. Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum,
51(3):32–41, 2018. ISSN 0163-5840. URL https://doi.org/10.1145/3190580.3190586.

N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of Information
Retrieval and Database Systems. ACM Trans. Inf. Syst., 15(1):32–66, jan 1997. ISSN
1046-8188. doi: 10.1145/239041.239045.

BIBLIOGRAPHY 119

L. Gao, Z. Dai, T. Chen, Z. Fan, B. Van Durme, and J. Callan. Complement Lexical Retrieval
Model with Semantic Residual Embeddings. In Advances in Information Retrieval, ECIR ’21,
pages 146–160, Cham, 2021. Springer International Publishing. ISBN 978-3-030-72113-8.

E. J. Gerritse, F. Hasibi, and A. P. de Vries. Graph-Embedding Empowered Entity Retrieval. In
Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020,
Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I, page 97–110, Berlin, Heidelberg,
2020. Springer-Verlag. ISBN 978-3-030-45438-8. doi: 10.1007/978-3-030-45439-5_7.

E. J. Gerritse, F. Hasibi, and A. P. de Vries. Entity-Aware Transformers for Entity Search. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’22, page 1455–1465, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531971.

T. Grabs, K. Böhm, and H.-J. Schek. PowerDB-IR – Scalable Information Retrieval and Storage
with a Cluster of Databases. Knowl. Inf. Syst., 6(4):465–505, jul 2004. ISSN 0219-1377.

R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Accelerating
Large-Scale Inference with Anisotropic Vector Quantization. In International Conference on
Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396.

F. Hasibi, K. Balog, and S. E. Bratsberg. Exploiting Entity Linking in Queries for Entity Retrieval.
In Proceedings of the 2016 ACM International Conference on the Theory of Information
Retrieval, ICTIR ’16, page 209–218, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450344975. doi: 10.1145/2970398.2970406.

F. Hasibi, K. Balog, and S. E. Bratsberg. Dynamic Factual Summaries for Entity Cards. In
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, page 773–782, New York, NY, USA, 2017a. Association
for Computing Machinery. ISBN 9781450350228. URL https://doi.org/10.1145/3077136.
3080810.

F. Hasibi, K. Balog, D. Garigliotti, and S. Zhang. Nordlys: A Toolkit for Entity-Oriented
and Semantic Search. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’17, page 1289–1292, New
York, NY, USA, 2017b. Association for Computing Machinery. ISBN 9781450350228. doi:
10.1145/3077136.3084149.

C. Hauff. Dockerizing Indri for OSIRRC 2019. In Proceedings of the Open-Source IR Replicability
Challenge co-located with 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019,
pages 44–46, Aachen, 2019. CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker06.
pdf.

S. Héman, M. Zukowski, A. P. de Vries, and P. Boncz. MonetDB/X100 at the 2006 TREC
TeraByte Track. In NIST Special Publication: SP 500-272. The Fifteenth Text REtrieval
Conference (TREC 2006) Proceedings, TREC’06, Gaithersburg, Maryland, USA, 2006. [Sl]:
NIST. URL https://trec.nist.gov/pubs/trec15/papers/cwi-heman.tera.final.pdf.

D. Hiemstra. Using Language Models for Information Retrieval. Phd thesis, Universiteit Twente,
2001.

D. Hiemstra, G. Hendriksen, C. Kamphuis, and A. P. de Vries. Challenges of Index Exchange
for Search Engine Interoperability. In Proceedings of the 5th International Open Search
Sympositum, OSSYM23. Open Search Foundation, 2023.

120 BIBLIOGRAPHY

J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater,
and G. Weikum. Robust Disambiguation of Named Entities in Text. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
782–792, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics.
URL https://aclanthology.org/D11-1072.

S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston. Poly-encoders: Transformer Architectures
and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring. In Proceedings of
the 7th International Conference on Learning Representations, ICLR’19, New Orleans, LA,
USA, may 2019. URL https://openreview.net/pdf?id=SkxgnnNFvH.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans.
Inf. Syst., 20(4):422–446, Oct. 2002. ISSN 1046-8188. doi: 10.1145/582415.582418. URL
https://doi.org/10.1145/582415.582418.

F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source parameters from sparse
data. Workshop on Pattern Recognition in Practice, page 381–402, 1980.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough
data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’05, page 154–161,
New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595930345. URL
https://doi.org/10.1145/1076034.1076063.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions
on Big Data, 7(3):535–547, 2019.

C. Kamphuis. Graph Databases for Information Retrieval. In Advances in Information Retrieval,
pages 608–612, Cham, 2020. Springer International Publishing. ISBN 978-3-030-45442-5.

C. Kamphuis and A. P. de Vries. Reproducible IR needs an (IR) (graph) query language. In Pro-
ceedings of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 17–20, Aachen, 2019a. CEUR-WS.org. URL
http://ceur-ws.org/Vol-2409/position03.pdf.

C. Kamphuis and A. P. de Vries. The OldDog Docker Image for OSIRRC at SIGIR 2019. In Pro-
ceedings of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 47–49, Aachen, 2019b. CEUR-WS.org. URL
http://ceur-ws.org/Vol-2409/docker07.pdf.

C. Kamphuis and A. P. de Vries. GeeseDB: A Python Graph Engine for Exploration and Search.
In Proceedings of the 2nd International Conference on Design of Experimental Search &
Information REtrieval Systems, DESIRES ’21, pages 10–18, Aachen, 2021. CEUR-WS.org.
URL http://ceur-ws.org/Vol-2950/paper-11.pdf.

C. Kamphuis, F. Hasibi, A. P. de Vries, and T. Crijns. Radboud University at TREC 2019. In
NIST Special Publication 1250: The Twenty-Eighth Text REtrieval Conference Proceedings
(TREC 2019), TREC ’19, Gaithersburg, Maryland, 2019. [Sl]: NIST. URL https://trec.
nist.gov/pubs/trec28/papers/RUIR.N.C.pdf.

C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. Which BM25 Do You Mean? A Large-Scale
Reproducibility Study of Scoring Variants. In Advances in Information Retrieval, ECIR ’20,
pages 28–34, Cham, 2020. Springer International Publishing. ISBN 978-3-030-45442-5.

120 BIBLIOGRAPHY

J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater,
and G. Weikum. Robust Disambiguation of Named Entities in Text. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
782–792, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics.
URL https://aclanthology.org/D11-1072.

S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston. Poly-encoders: Transformer Architectures
and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring. In Proceedings of
the 7th International Conference on Learning Representations, ICLR’19, New Orleans, LA,
USA, may 2019. URL https://openreview.net/pdf?id=SkxgnnNFvH.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans.
Inf. Syst., 20(4):422–446, Oct. 2002. ISSN 1046-8188. doi: 10.1145/582415.582418. URL
https://doi.org/10.1145/582415.582418.

F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source parameters from sparse
data. Workshop on Pattern Recognition in Practice, page 381–402, 1980.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough
data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’05, page 154–161,
New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595930345. URL
https://doi.org/10.1145/1076034.1076063.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions
on Big Data, 7(3):535–547, 2019.

C. Kamphuis. Graph Databases for Information Retrieval. In Advances in Information Retrieval,
pages 608–612, Cham, 2020. Springer International Publishing. ISBN 978-3-030-45442-5.

C. Kamphuis and A. P. de Vries. Reproducible IR needs an (IR) (graph) query language. In Pro-
ceedings of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 17–20, Aachen, 2019a. CEUR-WS.org. URL
http://ceur-ws.org/Vol-2409/position03.pdf.

C. Kamphuis and A. P. de Vries. The OldDog Docker Image for OSIRRC at SIGIR 2019. In Pro-
ceedings of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 47–49, Aachen, 2019b. CEUR-WS.org. URL
http://ceur-ws.org/Vol-2409/docker07.pdf.

C. Kamphuis and A. P. de Vries. GeeseDB: A Python Graph Engine for Exploration and Search.
In Proceedings of the 2nd International Conference on Design of Experimental Search &
Information REtrieval Systems, DESIRES ’21, pages 10–18, Aachen, 2021. CEUR-WS.org.
URL http://ceur-ws.org/Vol-2950/paper-11.pdf.

C. Kamphuis, F. Hasibi, A. P. de Vries, and T. Crijns. Radboud University at TREC 2019. In
NIST Special Publication 1250: The Twenty-Eighth Text REtrieval Conference Proceedings
(TREC 2019), TREC ’19, Gaithersburg, Maryland, 2019. [Sl]: NIST. URL https://trec.
nist.gov/pubs/trec28/papers/RUIR.N.C.pdf.

C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. Which BM25 Do You Mean? A Large-Scale
Reproducibility Study of Scoring Variants. In Advances in Information Retrieval, ECIR ’20,
pages 28–34, Cham, 2020. Springer International Publishing. ISBN 978-3-030-45442-5.

BIBLIOGRAPHY 121

C. Kamphuis, F. Hasibi, J. Lin, and A. P. de Vries. REBL: Entity Linking at Scale. In Proceedings
of the 3rd International Conference on Design of Experimental Search & Information REtrieval
Systems, DESIRES ’22, Aachen, 2022. CEUR-WS.org. URL https://desires.dei.unipd.it/
2022/papers/paper-08.pdf.

C. Kamphuis, A. Lin, S. Yang, J. Lin, A. P. de Vries, and F. Hasibi. MMEAD: MS MARCO
Entity Annotations and Disambiguations. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 978-1-4503-9408-6. doi:
10.1145/3539618.3591887.

F. Lancaster. Information Retrieval Systems: Characteristics, Testing and Evaluation. John
Wiley and Sons, New York, 2 edition, 1979.

F. Lancaster and E. Fayen. Information Retrieval On-Line. Melville Publishing Co., Los Angeles,
California, 1973.

P. Le and I. Titov. Improving Entity Linking by Modeling Latent Relations between Mentions.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1595–1604, Melbourne, Australia, July 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-1148. URL https://aclanthology.org/
P18-1148.

J. Lin. A Proposed Conceptual Framework for a Representational Approach to Information
Retrieval. SIGIR Forum, 55(2), mar 2022. ISSN 0163-5840. URL https://doi.org/10.1145/
3527546.3527552.

J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia, M. Siedlaczek, A. Trotman, and
A. P. de Vries. Supporting Interoperability Between Open-Source Search Engines with the
Common Index File Format. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’20, page 2149–2152, New
York, NY, USA, 2020a. Association for Computing Machinery. ISBN 9781450380164. doi:
10.1145/3397271.3401404.

J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira. Pyserini: A Python Toolkit
for Reproducible Information Retrieval Research with Sparse and Dense Representations. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’21, page 2356–2362, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450380379. doi: 10.1145/3404835.3463238.

J. Lin, R. Nogueira, and A. Yates. Pretrained Transformers for Text Ranking. Springer Cham, 1
edition, 2022. ISBN 978-3-031-02181-7. doi: https://doi.org/10.1007/978-3-031-02181-7.

S. Lin, J. Yang, and J. Lin. Distilling Dense Representations for Ranking using Tightly-Coupled
Teachers. CoRR, abs/2010.11386, 2020b. URL https://arxiv.org/abs/2010.11386.

T. Lin, Mausam, and O. Etzioni. Entity Linking at Web Scale. In Proceedings of the Joint
Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction
(AKBC-WEKEX), pages 84–88, June 2012.

T.-Y. Liu. Learning to Rank for Information Retrieval. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’10, page 904, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450301534. URL https://doi.org/10.1145/1835449.1835676.

Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. Sparse, Dense, and Attentional Represen-
tations for Text Retrieval. Transactions of the Association for Computational Linguistics, 9:
329–345, 2021.

122 BIBLIOGRAPHY

Y. Lv and C. Zhai. Lower-Bounding Term Frequency Normalization. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM
’11, page 7–16, New York, NY, USA, 2011a. Association for Computing Machinery. ISBN
9781450307178. doi: 10.1145/2063576.2063584.

Y. Lv and C. Zhai. Adaptive Term Frequency Normalization for BM25. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM ’11,
page 1985–1988, New York, NY, USA, 2011b. Association for Computing Machinery. ISBN
9781450307178. doi: 10.1145/2063576.2063871.

Y. Lv and C. Zhai. When Documents Are Very Long, BM25 Fails! In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’11, page 1103–1104, New York, NY, USA, 2011c. Association for Computing Machinery.
ISBN 9781450307574. doi: 10.1145/2009916.2010070.

C. Macdonald, R. L. Santos, and I. Ounis. On the Usefulness of Query Features for Learning
to Rank. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, CIKM ’12, page 2559–2562, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450311564. doi: 10.1145/2396761.2398691.

C. Macdonald, N. Tonellotto, S. MacAvaney, and I. Ounis. PyTerrier: Declarative Experimentation
in Python from BM25 to Dense Retrieval. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, page 4526–4533, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469. doi:
10.1145/3459637.3482013.

I. A. Macleod. Text Retrieval and the Relational Model. Journal of the American Society for Infor-
mation Science, 42(3):155–165, 1991. doi: https://doi.org/10.1002/(SICI)1097-4571(199104)42:
3<155::AID-ASI1>3.0.CO;2-H.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10, page 135–146,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300322. URL
https://doi.org/10.1145/1807167.1807184.

A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: Performant Indexes and Search
for Academia. In Proceedings of the Open-Source IR Replicability Challenge co-located with
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019, pages 50–56, Aachen, 2019.
CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker08.pdf.

P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer. DBpedia Spotlight: Shedding Light
on the Web of Documents. In Proceedings of the 7th International Conference on Semantic
Systems, I-Semantics ’11, page 1–8, 2011.

A. Moffat and J. Zobel. Self-Indexing Inverted Files for Fast Text Retrieval. ACM Trans. Inf. Syst.,
14(4):349–379, Oct. 1996. ISSN 1046-8188. URL https://doi.org/10.1145/237496.237497.

H. Mühleisen, T. Samar, J. Lin, and A. P. de Vries. Old Dogs Are Great at New Tricks: Column
Stores for IR Prototyping. In Proceedings of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’14, page 863–866, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450322577. doi:
10.1145/2600428.2609460.

Open Science Collaboration. Estimating the reproducibility of psychological science. Science, 349
(6251):aac4716, 2015. doi: 10.1126/science.aac4716.

122 BIBLIOGRAPHY

Y. Lv and C. Zhai. Lower-Bounding Term Frequency Normalization. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM
’11, page 7–16, New York, NY, USA, 2011a. Association for Computing Machinery. ISBN
9781450307178. doi: 10.1145/2063576.2063584.

Y. Lv and C. Zhai. Adaptive Term Frequency Normalization for BM25. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM ’11,
page 1985–1988, New York, NY, USA, 2011b. Association for Computing Machinery. ISBN
9781450307178. doi: 10.1145/2063576.2063871.

Y. Lv and C. Zhai. When Documents Are Very Long, BM25 Fails! In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’11, page 1103–1104, New York, NY, USA, 2011c. Association for Computing Machinery.
ISBN 9781450307574. doi: 10.1145/2009916.2010070.

C. Macdonald, R. L. Santos, and I. Ounis. On the Usefulness of Query Features for Learning
to Rank. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, CIKM ’12, page 2559–2562, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450311564. doi: 10.1145/2396761.2398691.

C. Macdonald, N. Tonellotto, S. MacAvaney, and I. Ounis. PyTerrier: Declarative Experimentation
in Python from BM25 to Dense Retrieval. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, page 4526–4533, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469. doi:
10.1145/3459637.3482013.

I. A. Macleod. Text Retrieval and the Relational Model. Journal of the American Society for Infor-
mation Science, 42(3):155–165, 1991. doi: https://doi.org/10.1002/(SICI)1097-4571(199104)42:
3<155::AID-ASI1>3.0.CO;2-H.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10, page 135–146,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300322. URL
https://doi.org/10.1145/1807167.1807184.

A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: Performant Indexes and Search
for Academia. In Proceedings of the Open-Source IR Replicability Challenge co-located with
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, OSIRRC@SIGIR 2019, Paris, France, July 25, 2019, pages 50–56, Aachen, 2019.
CEUR-WS.org. URL https://ceur-ws.org/Vol-2409/docker08.pdf.

P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer. DBpedia Spotlight: Shedding Light
on the Web of Documents. In Proceedings of the 7th International Conference on Semantic
Systems, I-Semantics ’11, page 1–8, 2011.

A. Moffat and J. Zobel. Self-Indexing Inverted Files for Fast Text Retrieval. ACM Trans. Inf. Syst.,
14(4):349–379, Oct. 1996. ISSN 1046-8188. URL https://doi.org/10.1145/237496.237497.

H. Mühleisen, T. Samar, J. Lin, and A. P. de Vries. Old Dogs Are Great at New Tricks: Column
Stores for IR Prototyping. In Proceedings of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’14, page 863–866, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450322577. doi:
10.1145/2600428.2609460.

Open Science Collaboration. Estimating the reproducibility of psychological science. Science, 349
(6251):aac4716, 2015. doi: 10.1126/science.aac4716.

BIBLIOGRAPHY 123

I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and D. Johnson. Terrier Information
Retrieval Platform. In Advances in Information Retrieval, pages 517–519, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-31865-1.

A. Overwijk, C. Xiong, and J. Callan. ClueWeb22: 10 Billion Web Documents with Rich
Information. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’22, page 3360–3362, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450387323. URL https:
//doi.org/10.1145/3477495.3536321.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing
Order to the Web. Technical Report 1999-66, Stanford InfoLab, November 1999. URL
http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120.

M. F. Porter. An algorithm for suffix stripping. Program: electronic library and information
systems, 14(3):130–137, 03 1980. ISSN 0033-0337. URL https://doi.org/10.1108/eb046814.

M. Raasveldt and H. Mühleisen. DuckDB: An Embeddable Analytical Database. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD ’19, page 1981–1984,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450356435. doi:
10.1145/3299869.3320212.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/
v21/20-074.html.

R. Reinanda, E. Meij, and M. de Rijke. Mining, Ranking and Recommending Entity Aspects. In
Proceedings of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’15, page 263–272, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450336215. doi: 10.1145/2766462.2767724.

S. E. Robertson and K. Spärck Jones. Relevance weighting of search terms. Journal of the
American Society for Information Science, 27(3):129–146, 1976. doi: https://doi.org/10.1002/
asi.4630270302.

S. E. Robertson and H. Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond.
Found. Trends Inf. Retr., 3(4):333–389, apr 2009. ISSN 1554-0669. doi: 10.1561/1500000019.

S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3.
In Overview of the third text Retrieval conference, TREC-3, Gaithersburg, Maryland, USA,
1994. [Sl]: NIST. URL https://trec.nist.gov/pubs/trec3/papers/city.ps.gz.

F. Rousseau and M. Vazirgiannis. Composition of TF Normalizations: New Insights on Scoring
Functions for Ad Hoc IR. In Proceedings of the 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’13, page 917–920, New
York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320344. doi:
10.1145/2484028.2484121.

T. Sakai. On Fuhr’s guideline for IR evaluation. SIGIR Forum, 54(1), Feb. 2021. ISSN 0163-5840.
URL https://doi.org/10.1145/3451964.3451976.

S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref, M. Arenas, M. Besta,
P. A. Boncz, K. Daudjee, E. D. Valle, S. Dumbrava, O. Hartig, B. Haslhofer, T. Hegeman,
J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens, M. T. Özsu, E. Peukert,
S. Plantikow, M. Ragab, M. R. Ripeanu, S. Salihoglu, C. Schulz, P. Selmer, J. F. Sequeda,
J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo, A. Uta, A. L. Varbanescu, H.-Y. Wu,

124 BIBLIOGRAPHY

N. Yakovets, D. Yan, and E. Yoneki. The Future is Big Graphs: A Community View on
Graph Processing Systems. Commun. ACM, 64(9):62–71, aug 2021. ISSN 0001-0782. URL
https://doi.org/10.1145/3434642.

G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM, 18(11):613–620, nov 1975. ISSN 0001-0782. URL https:
//doi.org/10.1145/361219.361220.

H. Scells and G. Zuccon. ielab at the Open-Source IR Replicability Challenge 2019. In Proceedings
of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 57–61, Aachen, 2019. CEUR-WS.org. URL http:
//ceur-ws.org/Vol-2409/docker09.pdf.

H.-J. Schek and P. Pistor. Data Structures for an Integrated Data Base Management and
Information Retrieval System. In Proceedings of the 8th International Conference on Very
Large Data Bases, VLDB ’82, page 197–207, San Francisco, CA, USA, 1982. Morgan Kaufmann
Publishers Inc. ISBN 0934613141.

T. Schoegje, C. Kamphuis, K. Dercksen, D. Hiemstra, T. Pieters, and A. P. de Vries. Exploring
task-based query expansion at the TREC-COVID track. CoRR, abs/2010.12674, 2020. URL
https://arxiv.org/abs/2010.12674.

C. Sciavolino, Z. Zhong, J. Lee, and D. Chen. Simple Entity-Centric Questions Challenge Dense
Retrievers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’21, pages 6138–6148, Online and Punta Cana, Dominican Republic,
Nov. 2021. Association for Computational Linguistics. URL https://aclanthology.org/2021.
emnlp-main.496.

D. Shehata. Information Retrieval with Entity Linking. Master’s thesis, University of Waterloo,
2022. URL http://hdl.handle.net/10012/18557.

A. Singhal, C. Buckley, and M. Mitra. Pivoted Document Length Normalization. In Proceedings
of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’96, page 21–29, New York, NY, USA, 1996. Association for
Computing Machinery. ISBN 0897917928. doi: 10.1145/243199.243206.

I. Soboroff, S. Huang, and D. Harman. TREC 2018 News Track Overview. In Proceedings of The
Twenty-Seventh Text REtrieval Conference, TREC ’18, Gaithersburg, Maryland, USA, 2019.
National Institute for Standards and Technology (NIST).

F. Song and W. B. Croft. A General Language Model for Information Retrieval. In Proceedings
of the Eighth International Conference on Information and Knowledge Management, CIKM
’99, page 316–321, New York, NY, USA, 1999. Association for Computing Machinery. ISBN
1581131461. URL https://doi.org/10.1145/319950.320022.

K. Spärck Jones. A Statistical Interpretation of Term Specificity and its Application in Retrieval.
Journal of Documentation, 60:493–502, 1972.

V. I. Spitkovsky and A. X. Chang. A Cross-Lingual Dictionary for English Wikipedia Concepts.
In Proceedings of the Eighth International Conference on Language Resources and Evaluation,
LREC ’12, pages 3168–3175, Istanbul, Turkey, May 2012. European Language Resources As-
sociation (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/266_Paper.
pdf.

T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-based search
engine for complex queries. In Proceedings of the International Conference on Intelligent
Analysis, number 6 in ICIA’05, pages 2–6. Washington, DC., 2005. URL http://ciir.cs.
umass.edu/pubfiles/ir-407.pdf.

124 BIBLIOGRAPHY

N. Yakovets, D. Yan, and E. Yoneki. The Future is Big Graphs: A Community View on
Graph Processing Systems. Commun. ACM, 64(9):62–71, aug 2021. ISSN 0001-0782. URL
https://doi.org/10.1145/3434642.

G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM, 18(11):613–620, nov 1975. ISSN 0001-0782. URL https:
//doi.org/10.1145/361219.361220.

H. Scells and G. Zuccon. ielab at the Open-Source IR Replicability Challenge 2019. In Proceedings
of the Open-Source IR Replicability Challenge co-located with 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019, pages 57–61, Aachen, 2019. CEUR-WS.org. URL http:
//ceur-ws.org/Vol-2409/docker09.pdf.

H.-J. Schek and P. Pistor. Data Structures for an Integrated Data Base Management and
Information Retrieval System. In Proceedings of the 8th International Conference on Very
Large Data Bases, VLDB ’82, page 197–207, San Francisco, CA, USA, 1982. Morgan Kaufmann
Publishers Inc. ISBN 0934613141.

T. Schoegje, C. Kamphuis, K. Dercksen, D. Hiemstra, T. Pieters, and A. P. de Vries. Exploring
task-based query expansion at the TREC-COVID track. CoRR, abs/2010.12674, 2020. URL
https://arxiv.org/abs/2010.12674.

C. Sciavolino, Z. Zhong, J. Lee, and D. Chen. Simple Entity-Centric Questions Challenge Dense
Retrievers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’21, pages 6138–6148, Online and Punta Cana, Dominican Republic,
Nov. 2021. Association for Computational Linguistics. URL https://aclanthology.org/2021.
emnlp-main.496.

D. Shehata. Information Retrieval with Entity Linking. Master’s thesis, University of Waterloo,
2022. URL http://hdl.handle.net/10012/18557.

A. Singhal, C. Buckley, and M. Mitra. Pivoted Document Length Normalization. In Proceedings
of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’96, page 21–29, New York, NY, USA, 1996. Association for
Computing Machinery. ISBN 0897917928. doi: 10.1145/243199.243206.

I. Soboroff, S. Huang, and D. Harman. TREC 2018 News Track Overview. In Proceedings of The
Twenty-Seventh Text REtrieval Conference, TREC ’18, Gaithersburg, Maryland, USA, 2019.
National Institute for Standards and Technology (NIST).

F. Song and W. B. Croft. A General Language Model for Information Retrieval. In Proceedings
of the Eighth International Conference on Information and Knowledge Management, CIKM
’99, page 316–321, New York, NY, USA, 1999. Association for Computing Machinery. ISBN
1581131461. URL https://doi.org/10.1145/319950.320022.

K. Spärck Jones. A Statistical Interpretation of Term Specificity and its Application in Retrieval.
Journal of Documentation, 60:493–502, 1972.

V. I. Spitkovsky and A. X. Chang. A Cross-Lingual Dictionary for English Wikipedia Concepts.
In Proceedings of the Eighth International Conference on Language Resources and Evaluation,
LREC ’12, pages 3168–3175, Istanbul, Turkey, May 2012. European Language Resources As-
sociation (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/266_Paper.
pdf.

T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-based search
engine for complex queries. In Proceedings of the International Conference on Intelligent
Analysis, number 6 in ICIA’05, pages 2–6. Washington, DC., 2005. URL http://ciir.cs.
umass.edu/pubfiles/ir-407.pdf.

BIBLIOGRAPHY 125

N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. BEIR: A Heterogeneous
Benchmark for Zero-shot Evaluation of Information Retrieval Models. In Proceedings of the
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), NeurIPS ’21, 2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.

N. Thakur, N. Reimers, and J. Lin. Injecting Domain Adaptation with Learning-to-hash for
Effective and Efficient Zero-shot Dense Retrieval. In Workshop on Reaching Efficiency in
Neural Information Retrieval, ReNeuIR’23, July 2023.

H. D. Tran and A. Yates. Dense Retrieval with Entity Views. In Proceedings of the 31st ACM In-
ternational Conference on Information & Knowledge Management, CIKM ’22, page 1955–1964,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392365. URL
https://doi.org/10.1145/3511808.3557285.

A. Trotman, X. Jia, and M. Crane. Towards an Efficient and Effective Search Engine. In
Proceedings of the SIGIR 2012 Workshop on Open Source Information Retrieval, OSIR@
SIGIR’12, pages 40–47, 2012.

A. Trotman, A. Puurula, and B. Burgess. Improvements to BM25 and Language Models Examined.
In Proceedings of the 2014 Australasian Document Computing Symposium, ADCS ’14, page
58–65, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450330008.
doi: 10.1145/2682862.2682863.

J. M. van Hulst, F. Hasibi, K. Dercksen, K. Balog, and A. P. de Vries. REL: An Entity Linker
Standing on the Shoulders of Giants. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’20, page 2197–2200,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380164. URL
https://doi.org/10.1145/3397271.3401416.

C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 2 edition, 1979. URL
http://www.dcs.gla.ac.uk/Keith/Preface.html.

E. M. Voorhees and D. M. Tice. The TREC-8 Question Answering Track Evaluation. In Text
Retrieval Conference TREC-8. NIST, 2000.

J. Webber. A Programmatic Introduction to Neo4j. In Proceedings of the 3rd Annual Conference on
Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, page 217–218,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315630. URL
https://doi.org/10.1145/2384716.2384777.

L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer. Scalable Zero-shot Entity Linking
with Dense Entity Retrieval. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’20, pages 6397–6407, Online, Nov. 2020. Association
for Computational Linguistics. URL https://aclanthology.org/2020.emnlp-main.519.

C. Xiong, J. Callan, and T.-Y. Liu. Word-Entity Duet Representations for Document Ranking. In
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, page 763–772, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080768.

C. Xu, D. Guo, N. Duan, and J. McAuley. LaPraDoR: Unsupervised Pretrained Dense Retriever
for Zero-Shot Text Retrieval. In Findings of the Association for Computational Linguistics:
ACL 2022, pages 3557–3569, Dublin, Ireland, May 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.findings-acl.281.

I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji. Joint Learning of the Embedding of Words and
Entities for Named Entity Disambiguation. In Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning, pages 250–259, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics. URL https://aclanthology.org/K16-1025.

126 BIBLIOGRAPHY

P. Yang and J. Lin. Anserini at TREC 2018: Centre, common core, and news tracks. In
Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC 2018), Gaithersburg,
MD, TREC ’18, Gaithersburg, Maryland, USA, 2019. National Institute for Standards and
Technology (NIST).

P. Yang, H. Fang, and J. Lin. Anserini: Reproducible Ranking Baselines Using Lucene. Journal
of Data and Information Quality, 10(4), 2018a. ISSN 1936-1955. URL https://doi.org/10.
1145/3239571.

W. Yang, K. Lu, P. Yang, and J. Lin. Critically Examining the "Neural Hype": Weak Baselines
and the Additivity of Effectiveness Gains from Neural Ranking Models. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’19, page 1129–1132, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450361729. doi: 10.1145/3331184.3331340.

Y. Yang, O. Irsoy, and K. S. Rahman. Collective Entity Disambiguation with Structured Gradient
Tree Boosting. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 777–786, New Orleans, Louisiana, June 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1071. URL https://aclanthology.org/N18-1071.

C. Zhai and J. Lafferty. Two-Stage Language Models for Information Retrieval. In Proceedings
of the 25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’02, page 49–56, New York, NY, USA, 2002. Association for
Computing Machinery. ISBN 1581135610. URL https://doi.org/10.1145/564376.564387.

C. Zhai and J. Lafferty. A Study of Smoothing Methods for Language Models Applied to
Information Retrieval. ACM Trans. Inf. Syst., 22(2):179–214, Apr. 2004. ISSN 1046-8188.
doi: 10.1145/984321.984322. URL https://doi.org/10.1145/984321.984322.

M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A Vectorized Analytical DBMS. In
Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, ICDE ’12,
page 1349–1350, USA, 2012. IEEE Computer Society. ISBN 9780769547473. doi: 10.1109/
ICDE.2012.148.

126 BIBLIOGRAPHY

P. Yang and J. Lin. Anserini at TREC 2018: Centre, common core, and news tracks. In
Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC 2018), Gaithersburg,
MD, TREC ’18, Gaithersburg, Maryland, USA, 2019. National Institute for Standards and
Technology (NIST).

P. Yang, H. Fang, and J. Lin. Anserini: Reproducible Ranking Baselines Using Lucene. Journal
of Data and Information Quality, 10(4), 2018a. ISSN 1936-1955. URL https://doi.org/10.
1145/3239571.

W. Yang, K. Lu, P. Yang, and J. Lin. Critically Examining the "Neural Hype": Weak Baselines
and the Additivity of Effectiveness Gains from Neural Ranking Models. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’19, page 1129–1132, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450361729. doi: 10.1145/3331184.3331340.

Y. Yang, O. Irsoy, and K. S. Rahman. Collective Entity Disambiguation with Structured Gradient
Tree Boosting. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 777–786, New Orleans, Louisiana, June 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1071. URL https://aclanthology.org/N18-1071.

C. Zhai and J. Lafferty. Two-Stage Language Models for Information Retrieval. In Proceedings
of the 25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’02, page 49–56, New York, NY, USA, 2002. Association for
Computing Machinery. ISBN 1581135610. URL https://doi.org/10.1145/564376.564387.

C. Zhai and J. Lafferty. A Study of Smoothing Methods for Language Models Applied to
Information Retrieval. ACM Trans. Inf. Syst., 22(2):179–214, Apr. 2004. ISSN 1046-8188.
doi: 10.1145/984321.984322. URL https://doi.org/10.1145/984321.984322.

M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A Vectorized Analytical DBMS. In
Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, ICDE ’12,
page 1349–1350, USA, 2012. IEEE Computer Society. ISBN 9780769547473. doi: 10.1109/
ICDE.2012.148.

Summary

Finding relevant information in a large collection of documents can be
challenging, especially when only text is considered when determining
relevancy. This research leverages graph data to express information needs
that consider more information than just text data. In some cases, instead
of using inverted indexes for the data representation in our work, we use
database management systems to store data.

First, we show that relational database systems are suited for retrieval
experiments. A prototype system we built implements many proposed
improvements to the BM25 ranking algorithm. In a large-scale reproduction
study, we compare these improvements and find that the differences in
effectiveness are smaller than we would expect, given the literature. We
can easily change between versions of BM25 by rewriting the SQL query
slightly, validating the usefulness of relational databases for reproducible IR
research.

Then, we extend the data model to a graph data model. Using a graph
data model; we can include more diverse data than just text. We show that
we can more easily express complex information needs with a corresponding
graph query language than when a relational language is used. This model is
built on top of an embedded database system, allowing fast materialization
of output data and using it for further steps. One of the aspects we capture
in the graph is information about entities. We use the Radboud Entity
Linking (REL) system to connect entity information with documents. In
order to efficiently annotate a large document collection with REL, we
improved its efficiency. After these improvements, we used REL to create
annotations for the MS MARCO document and passage collections. We
can significantly improve recall for harder MS MARCO queries using these
annotations. These entities are also used for an interactive demonstration
where the geographical data of entities is used.

127

128 Summary

128 Summary

Samenvatting

Het vinden van relevante informatie in een grote verzameling van documenten
is een zeer uitdagende taak, zeker wanneer alleen tekst in overweging wordt
genomen bij het bepalen of een document relevant is. Dit onderzoek maakt
gebruik van grafen om informatiebehoeften uit te drukken waar meer in
overweging genomen moet worden dan alleen tekst. In sommige gevallen
gebruiken we, voor de data representatie, in plaats van inverted indexes,
data management systemen om data op te slaan.

Allereerst, laten we zien dat relationele database systemen geschikt
zijn voor information retrieval experimenten. Een door ons gebouwd
prototype systeem implementeert een hele reeks verbeteringen aan het
BM25-rangschikking algoritme die zijn voorgesteld in de literatuur. In een
grootschalig reproductie onderzoek vergelijken we deze verbeteringen en
vinden we dat de verschillen in effectiviteit kleiner zijn dan we op grond van
de literatuur zouden verwachten. We kunnen gemakkelijk wisselen tussen
versies van BM25 door de SQL-query slechts weinig te herschrijven met
simpele variaties op een onderliggende SQL query.

Hiermee valideren we het nut van relationele databases voor reproduceer-
baar IR-onderzoek. Vervolgens breiden we het datamodel uit naar een graaf
datamodel. Met dit graaf datamodel kunnen we meer diverse gegevens
uitdrukken dan alleen tekst. We kunnen complexe informatiebehoeften
makkelijker uitdrukken met een bijbehorende graaf querytaal, dan wanneer
een relationele taal wordt gebruikt. Dit model is gebouwd bovenop een
embedded database systeem, hierdoor kunnen we data dat geproduceerd
wordt door dit systeem snel voor een andere applicatie gebruiken.

Een van de aspecten die we in de graaf vastleggen, is informatie over
entiteiten. We gebruiken het Radboud Entity Linking (REL) systeem
om entiteit informatie te koppelen aan documenten. Om een grote docu-
mentverzameling efficiënt te annoteren met REL hebben we de efficiëntie
van REL verbeterd. Na deze verbeteringen hebben we REL gebruikt om
annotaties te maken voor de MS MARCO-document- en passage-collecties.
Met behulp van deze annotaties kunnen we de recall voor moeilijkere MS

129

130 Samenvatting

MARCO-query’s aanzienlijk verbeteren. Deze entiteiten worden ook ge-
bruikt voor een interactieve demonstratie waarbij de geografische gegevens
van entiteiten worden gebruikt.

130 Samenvatting

MARCO-query’s aanzienlijk verbeteren. Deze entiteiten worden ook ge-
bruikt voor een interactieve demonstratie waarbij de geografische gegevens
van entiteiten worden gebruikt.

Acknowledgements

On October 1st, 2018, I started my PhD research. The work done in the
following years eventually led to this thesis. I attribute this to a trifecta of
excellent supervision, collaboration, and support. For this, I would like to
thank some people:

First and foremost, thank you, Arjen. Thank you for the opportunity
to be your student. Throughout the years, I have learned a lot from you. I
have always enjoyed working together with you, and I still do. I will always
be appreciative of what you have offered me.

I want to thank the manuscript committee for reading my thesis carefully
and providing me with great feedback. Your input really helped me.

I am grateful for the collaborations that helped my research. Jimmy, I
really enjoyed working together on a couple of occasions. I liked seeing how
you approach research projects. Working with you showed me how I can
approach work more structured, helping me become more efficient in my
work. Faegheh, our collaborations were a pleasure as well. I have learned a
lot from you working together. You have a great attention to detail, without
losing sight of the bigger picture.

When I started my research, Arjen and I formed a two-person Informa-
tion Retrieval research group. Over the years, this changed to a large group
of Information Retrieval researchers. Emma, you were the first person to
join the group, and we have been office mates throughout our appointments
as PhD students. We were in the same situation, making it possible to
always share our work experiences with someone going through the same.
The Information Retrieval research group grew rapidly, making the job even
more delightful. So thank you, Djoerd, Martha, Faegheh, Harrie, Ivan, Koen,
Neghin, Hideaki, Norman, Tim, Gijs, Daria, Mohanna, Heydar, Thomas,
and Mick.

Our research group was, of course, part of a larger group of researchers
in the department of data science at the institute of computing science.
All colleagues at DAS were very kind and knowledgeable. I really enjoyed
all our lunch sessions together, as well as all board game nights and other

131

132 Acknowledgements

informal events. I am very lucky that I was able to work in such a great
environment.

Then, I would say thank you to my current colleagues at Spinque. I
really enjoy working at a company with so many great people. At Spinque,
I can work on projects where I can use the things I learned during my PhD.
Thank you also for your support when finishing my thesis.

Mart, Koen, and Pieter, thank you for being great friends not only
during my PhD research, but already throughout the bachelor’s and master’s
programs. Mart, we have known each other even longer. Thank you for
being such a good friend for such a long time. To all my other friends, thank
you for being my friend. I am very lucky to have you all in my life.

Mijn ouders wil ik bedanken voor een warm en fijn thuis. Op een goed
fundament kun je bouwen, en die hebben jullie zeker gelegd. Stijn en Anne,
ik ben heel blij met jullie als broer en zus. Jullie inspireren mij dagelijks.
Ook mijn schoonfamilie wil ik bedanken, jullie staan altijd voor mij klaar.

Ten slotte, Maudy, bedankt voor jouw onuitputtelijke steun en liefde.
Joep, de afgelopen maanden met jou waren geweldig. Ik kijk er naar uit om
de rest van het leven samen met jullie door te brengen.

132 Acknowledgements

informal events. I am very lucky that I was able to work in such a great
environment.

Then, I would say thank you to my current colleagues at Spinque. I
really enjoy working at a company with so many great people. At Spinque,
I can work on projects where I can use the things I learned during my PhD.
Thank you also for your support when finishing my thesis.

Mart, Koen, and Pieter, thank you for being great friends not only
during my PhD research, but already throughout the bachelor’s and master’s
programs. Mart, we have known each other even longer. Thank you for
being such a good friend for such a long time. To all my other friends, thank
you for being my friend. I am very lucky to have you all in my life.

Mijn ouders wil ik bedanken voor een warm en fijn thuis. Op een goed
fundament kun je bouwen, en die hebben jullie zeker gelegd. Stijn en Anne,
ik ben heel blij met jullie als broer en zus. Jullie inspireren mij dagelijks.
Ook mijn schoonfamilie wil ik bedanken, jullie staan altijd voor mij klaar.

Ten slotte, Maudy, bedankt voor jouw onuitputtelijke steun en liefde.
Joep, de afgelopen maanden met jou waren geweldig. Ik kijk er naar uit om
de rest van het leven samen met jullie door te brengen.

Research Data Management

This thesis research has been carried out under the research data manage-
ment policy of the Institute for Computing and Information Science of the
Radboud University, the Netherlands.1

The following research datasets have been produced during this PhD
research:

• Resources for Chapter 3

– Code for OldDog [Kamphuis and de Vries, 2019b]:
chriskamphuis/olddog: (v1.0.0). Zenodo. 10.5281/zenodo.3255060

– Code for the OldDog docker [Kamphuis and de Vries, 2019b]:
osirrc/olddog-docker: (v1.0.0). Zenodo. 10.5281/zenodo.3255060

• Resources for Chapter 4

– Code for GeeseDB [Kamphuis and de Vries, 2021]:
informagi/GeeseDB: (v0.0.2). Zenodo. 10.5281/zenodo.7892326

• Resources for Chapter 5

– Code for REBL [Kamphuis et al., 2022]:
informagi/REBL: (v0.0.1). Zenodo. 10.5281/zenodo.7892359

• Resources for Chapter 6

– Code for MMEAD [Kamphuis et al., 2023]:
informagi/mmead: (v0.1.0). Zenodo. 10.5281/zenodo.7897027

– Data for MMEAD [Kamphuis et al., 2023]:
informagi/mmead: (v0.1.0). Zenodo. 10.5281/zenodo.7896782

1https://www.ru.nl/rdm/, last accessed September 2025

133

134 Research Data Management

134 Research Data Management

Curriculum Vitæ

Chris Kamphuis

1993 Born March 22th, Oldenzaal
2005–2012 VWO at the Twents Carmelcollege De Thij, Olden-

zaal
2012–2016 Bachelor’s degree Artificial Intelligence at the Rad-

boud University, Nijmegen
2016–2018 Master’s degree (cum laude) Computing Science

(Data Science track) at the Radboud University, Ni-
jmegen

2018–2023 PhD candidate at the Institute for Computing and
Information Sciences (iCIS) of Radboud University,
Nijmegen

2024– Data Scientist at Spinque, Utrecht

135

136 Curriculum Vitæ

136 Curriculum Vitæ

SIKS Dissertations

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans
and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication re-
views through decision support: prescribing a better pill to swal-
low

03 Maya Sappelli (RUN), Knowledge Work in Context: User Cen-
tered Knowledge Worker Support

04 Laurens Rietveld (VUA), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Contain-

ment and an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain envi-

ronment
07 Jeroen de Man (VUA), Measuring and modeling negative emo-

tions for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing

Historical Social Networks from Unstructured Data
09 Archana Nottamkandath (VUA), Trusting Crowdsourced Infor-

mation on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary

Algorithms
11 Anne Schuth (UvA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Norma-

tive Multi-Agent Systems
13 Nana Baah Gyan (VUA), The Web, Speech Technologies and

Rural Development in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modern-

ization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical

Aspects, Algorithms and Experiments

137

138 SIKS Dissertations

16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents
that Learn from Human Reward

17 Berend Weel (VUA), Towards Embodied Evolution of Robot
Organisms

18 Albert Meroño Peñuela (VUA), Refining Statistical Data on the
Web

19 Julia Efremova (TU/e), Mining Social Structures from Genealog-
ical Data

20 Daan Odijk (UvA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interac-

tive Playspaces: Automatic Analysis of Player Behavior in the
Interactive Tag Playground

22 Grace Lewis (VUA), Software Architecture Strategies for Cyber-
Foraging Systems

23 Fei Cai (UvA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration

of Data; An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Under-

stand Searching and Browsing Behavior
26 Dilhan Thilakarathne (VUA), In or Out of Control: Exploring

Computational Models to Study the Role of Human Awareness
and Control in Behavioural Choices, with Applications in Aviation
and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social
Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation
- A study on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity
systems - Markets and prices for flexible planning

30 Ruud Mattheij (TiU), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service

Availability Risks for Crisis Organisations
33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning

from just one example
34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicita-

tion, Analysis, and Enactment
35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization,

Classification and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal

interaction behavior optimized for robot-specific morphologies

138 SIKS Dissertations

16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents
that Learn from Human Reward

17 Berend Weel (VUA), Towards Embodied Evolution of Robot
Organisms

18 Albert Meroño Peñuela (VUA), Refining Statistical Data on the
Web

19 Julia Efremova (TU/e), Mining Social Structures from Genealog-
ical Data

20 Daan Odijk (UvA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interac-

tive Playspaces: Automatic Analysis of Player Behavior in the
Interactive Tag Playground

22 Grace Lewis (VUA), Software Architecture Strategies for Cyber-
Foraging Systems

23 Fei Cai (UvA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration

of Data; An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Under-

stand Searching and Browsing Behavior
26 Dilhan Thilakarathne (VUA), In or Out of Control: Exploring

Computational Models to Study the Role of Human Awareness
and Control in Behavioural Choices, with Applications in Aviation
and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social
Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation
- A study on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity
systems - Markets and prices for flexible planning

30 Ruud Mattheij (TiU), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service

Availability Risks for Crisis Organisations
33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning

from just one example
34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicita-

tion, Analysis, and Enactment
35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization,

Classification and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal

interaction behavior optimized for robot-specific morphologies

SIKS Dissertations 139

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual
and computational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials
meet Art & Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and
Interpersonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Frame-

work for Analysing Institutional Design and Enactment Gover-
nance

42 Spyros Martzoukos (UvA), Combinatorial and Compositional
Aspects of Bilingual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-
Management: From Theory to Practice

44 Thibault Sellam (UvA), Automatic Assistants for Database Ex-
ploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface
Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for

dynamic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects.

A Game-Theoretic Analysis
50 Yan Wang (TiU), The Bridge of Dreams: Towards a Method for

Operational Performance Alignment in IT-enabled Service Supply
Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic

Bayesian Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-

Physical Approach with Autonomous Products and Reconfig-
urable Manufacturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UvA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web

Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to

Anomaly

140 SIKS Dissertations

08 Rob Konijn (VUA), Detecting Interesting Differences:Data Mining
in Health Insurance Data using Outlier Detection and Subgroup
Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Com-
putational Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emo-

tion in Twitter #anticipointment
12 Sander Leemans (TU/e), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the

reach of social touch through haptic technology
14 Shoshannah Tekofsky (TiU), You Are Who You Play You Are:

Modelling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of

Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UvA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic

Vectors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in

Knowledge Sharing: The Role of Perceived Benefits, Costs and
Visibility

21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling
and Serious Gaming (A Play on Worlds)

22 Sara Magliacane (VUA), Logics for causal inference under uncer-
tainty

23 David Graus (UvA), Entities of Interest — Discovery in Digital
Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot
Learning

25 Veruska Zamborlini (VUA), Knowledge Representation for Clini-
cal Guidelines, with applications to Multimorbidity Analysis and
Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and
respond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Be-
haviors of Social Robots: People’s Preferences, Perceptions and
Behaviors

28 John Klein (VUA), Architecture Practices for Complex Contexts

140 SIKS Dissertations

08 Rob Konijn (VUA), Detecting Interesting Differences:Data Mining
in Health Insurance Data using Outlier Detection and Subgroup
Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Com-
putational Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emo-

tion in Twitter #anticipointment
12 Sander Leemans (TU/e), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the

reach of social touch through haptic technology
14 Shoshannah Tekofsky (TiU), You Are Who You Play You Are:

Modelling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of

Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UvA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic

Vectors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in

Knowledge Sharing: The Role of Perceived Benefits, Costs and
Visibility

21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling
and Serious Gaming (A Play on Worlds)

22 Sara Magliacane (VUA), Logics for causal inference under uncer-
tainty

23 David Graus (UvA), Entities of Interest — Discovery in Digital
Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot
Learning

25 Veruska Zamborlini (VUA), Knowledge Representation for Clini-
cal Guidelines, with applications to Multimorbidity Analysis and
Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and
respond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Be-
haviors of Social Robots: People’s Preferences, Perceptions and
Behaviors

28 John Klein (VUA), Architecture Practices for Complex Contexts

SIKS Dissertations 141

29 Adel Alhuraibi (TiU), From IT-BusinessStrategic Alignment to
Performance: A Moderated Mediation Model of Social Innovation,
and Enterprise Governance of IT"

30 Wilma Latuny (TiU), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT

calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in

Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software

Documentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning

Analytics
35 Martine de Vos (VUA), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisa-

tion from High-throughput Imaging
37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser

Adaptation Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human audi-

tory system and compressive sensing methods to increase noise
robustness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational
Exploration of Human Control in Relation to Emotions, Desires
and Social Support For applications in human-aware support
systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Explo-
ration of Mental Processes and a Smart Environment to Provide
Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing
data with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computa-

tional Linguistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Repre-
sentations

02 Felix Mannhardt (TU/e), Multi-perspective Process Mining

142 SIKS Dissertations

03 Steven Bosems (UT), Causal Models For Well-Being: Knowl-
edge Modeling, Model-Driven Development of Context-Aware
Applications, and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diag-
nosis Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of
the Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk As-
sessment of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent
systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software
Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical

activity behavior change through intelligent technology
11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented

Collaborative Networks
12 Xixi Lu (TU/e), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal

Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and

emotion in a group of children
17 Jianpeng Zhang (TU/e), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OU), EMERGO: a generic platform for author-

ing and playing scenario-based serious games
22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling

the Spread of Behaviours, Perceptions and Emotions in Social
Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment
Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for
Semi-Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made:

Motivational Messages for Behavior Change Technology

142 SIKS Dissertations

03 Steven Bosems (UT), Causal Models For Well-Being: Knowl-
edge Modeling, Model-Driven Development of Context-Aware
Applications, and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diag-
nosis Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of
the Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk As-
sessment of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent
systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software
Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical

activity behavior change through intelligent technology
11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented

Collaborative Networks
12 Xixi Lu (TU/e), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal

Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and

emotion in a group of children
17 Jianpeng Zhang (TU/e), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OU), EMERGO: a generic platform for author-

ing and playing scenario-based serious games
22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling

the Spread of Behaviours, Perceptions and Emotions in Social
Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment
Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for
Semi-Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made:

Motivational Messages for Behavior Change Technology

SIKS Dissertations 143

27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable
Software Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they
feel and how they make you feel

29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech
30 Wouter Beek (VUA), The "K" in "semantic web" stands for "knowl-

edge": scaling semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding
systems. A graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visual-
izations for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from
clinical data

05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming
Data

06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to
Linked Cultural Heritage Datasets

07 Soude Fazeli (TUD), Recommender Systems in Social Learning
Platforms

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov
Decision Processes

09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy
efficiency in software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods
for Allocation and Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand
Learner Behavioral Engagement in MOOCs

12 Jacqueline Heinerman (VUA), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling

and Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling

Learner Behavior & Improving Learning Outcomes in Massive
Open Online Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Con-
strained and Partially Observable Environments

16 Guangming Li (TU/e), Process Mining based on Object-Centric
Behavioral Constraint (OCBC) Models

144 SIKS Dissertations

17 Ali Hurriyetoglu (RUN),Extracting actionable information from
microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human

collective intelligence
21 Cong Liu (TU/e), Software Data Analytics: Architectural Model

Discovery and Design Pattern Detection
22 Martin van den Berg (VUA),Improving IT Decisions with Enter-

prise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpret-

ing, Verification
24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing

Labeled Data for Natural Language Processing
25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic)

image description
26 Prince Singh (UT), An Integration Platform for Synchromodal

Transport
27 Alessandra Antonaci (OU), The Gamification Design Process

applied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learn-

ing to prepare airline pilots for critical situations
29 Daniel Formolo (VUA), Using virtual agents for simulation and

training of social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Sys-

tems
31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in

Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial Gen-

eral Intelligence in Games
33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning

in Artificial Neural Networks
34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain

Network Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OU), Gamification with digital badges in learn-

ing programming
36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to

Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs

144 SIKS Dissertations

17 Ali Hurriyetoglu (RUN),Extracting actionable information from
microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human

collective intelligence
21 Cong Liu (TU/e), Software Data Analytics: Architectural Model

Discovery and Design Pattern Detection
22 Martin van den Berg (VUA),Improving IT Decisions with Enter-

prise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpret-

ing, Verification
24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing

Labeled Data for Natural Language Processing
25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic)

image description
26 Prince Singh (UT), An Integration Platform for Synchromodal

Transport
27 Alessandra Antonaci (OU), The Gamification Design Process

applied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learn-

ing to prepare airline pilots for critical situations
29 Daniel Formolo (VUA), Using virtual agents for simulation and

training of social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Sys-

tems
31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in

Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial Gen-

eral Intelligence in Games
33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning

in Artificial Neural Networks
34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain

Network Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OU), Gamification with digital badges in learn-

ing programming
36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to

Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs

SIKS Dissertations 145

38 Akos Kadar (OU), Learning visually grounded and multilingual
representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Com-
bat Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes
using Probabilistic Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision
for Language Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TU/e), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking

during Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OU), Towards a software architecture for

reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for

Monte Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data

Quality for Digital Humanities Research
10 Alifah Syamsiyah (TU/e), In-database Preprocessing for Process

Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Aug-

mentationMethods for Long-Tail Entity Recognition Models
12 Ward van Breda (VUA), Predictive Modeling in E-Mental Health:

Exploring Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Op-

timal Mixing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational

Databases
15 Konstantinos Georgiadis (OU), Smart CAT: Machine Learning

for Configurable Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feed-

back from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms

in Markets with Uncertainties: Electricity Markets in Renewable
Energy Systems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender
Systems

20 Albert Hankel (VUA), Embedding Green ICT Maturity in Or-
ganisations

146 SIKS Dissertations

21 Karine da Silva Miras de Araujo (VUA), Where is the robot?:
Life as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems
implementation through a modeling approach: the case of e-
government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics
approach to studying writing processes using keystroke logging

24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling,
human? Towards emotionally supportive chatbots

25 Xin Du (TU/e), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm

for Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent

in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate prac-

tice: Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Infer-

ence
30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst
31 Gongjin Lan (VUA), Learning better – From Baby to Better
32 Jason Rhuggenaath (TU/e), Revenue management in online mar-

kets: pricing and online advertising
33 Rick Gilsing (TU/e), Supporting service-dominant business model

evaluation in the context of business model innovation
34 Anna Bon (UM), Intervention or Collaboration? Redesigning

Information and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Soft-

ware Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based
Games for Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating
Social Practice Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with
Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing
adaptive learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous
Systems

06 Daniel Davison (UT), "Hey robot, what do you think?" How
children learn with a social robot

146 SIKS Dissertations

21 Karine da Silva Miras de Araujo (VUA), Where is the robot?:
Life as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems
implementation through a modeling approach: the case of e-
government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics
approach to studying writing processes using keystroke logging

24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling,
human? Towards emotionally supportive chatbots

25 Xin Du (TU/e), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm

for Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent

in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate prac-

tice: Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Infer-

ence
30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst
31 Gongjin Lan (VUA), Learning better – From Baby to Better
32 Jason Rhuggenaath (TU/e), Revenue management in online mar-

kets: pricing and online advertising
33 Rick Gilsing (TU/e), Supporting service-dominant business model

evaluation in the context of business model innovation
34 Anna Bon (UM), Intervention or Collaboration? Redesigning

Information and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Soft-

ware Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based
Games for Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating
Social Practice Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with
Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing
adaptive learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous
Systems

06 Daniel Davison (UT), "Hey robot, what do you think?" How
children learn with a social robot

SIKS Dissertations 147

07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act

Programming on Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-

Anthropomorphic and Non-Verbal Robots to Promote Children’s
Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical
Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in
Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Un-

derstanding and Facilitating Predictability for Engagement in
Learning

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of
Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions
into Resource Re-Configurations through the Business Services
Paradigm

16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from
audio-visual cues

17 Dario Dotti (UM), Human Behavior Understanding from motion
and bodily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-
Making Tools and Formal Systems - Facilitating the Construction
of Bayesian Networks and Argumentation Frameworks

19 Roberto Verdecchia (VUA), Architectural Technical Debt: Iden-
tification and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-
Sided Exposure Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proença (UL), Robust rules for prediction and

description
24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Pro-

cessing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile:

Combining AI and Self-Adaptation to Create Adaptive E-Health
Mobile Applications

26 Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowl-
edge Bases from Human-readable Tables

148 SIKS Dissertations

27 Jelte van Waterschoot (UT), Personalized and Personal Conver-
sations: Designing Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Cor-
porate Entrepreneurship Programs

2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing
video games

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics
Optimisation: A Deep Learning Journey

03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away:
Reinforcement Learning For Personalized Healthcare

04 Ünal Aksu (UU), A Cross-Organizational Process Mining Frame-
work

05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time
Over-Parameterization

06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers
in Real Time Bidding

07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards
Automatic Co-located Collaboration Analytics

08 Maikel L. van Eck (TU/e), Process Mining for Smart Product
Design

09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-
driven Human-Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of
Collaborative Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interaction,
a quantitative approach to studying preschoolers’ engagement
with robots and tasks during second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun
Phrases

13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowl-
edge Graphs: Opportunities, Challenges, and Methods for Learn-
ing on Real-World Heterogeneous and Spatially-Oriented Knowl-
edge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning

using Process Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research
17 Laura van der Lubbe (VUA), Empowering vulnerable people with

serious games and gamification

148 SIKS Dissertations

27 Jelte van Waterschoot (UT), Personalized and Personal Conver-
sations: Designing Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Cor-
porate Entrepreneurship Programs

2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing
video games

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics
Optimisation: A Deep Learning Journey

03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away:
Reinforcement Learning For Personalized Healthcare

04 Ünal Aksu (UU), A Cross-Organizational Process Mining Frame-
work

05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time
Over-Parameterization

06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers
in Real Time Bidding

07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards
Automatic Co-located Collaboration Analytics

08 Maikel L. van Eck (TU/e), Process Mining for Smart Product
Design

09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-
driven Human-Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of
Collaborative Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interaction,
a quantitative approach to studying preschoolers’ engagement
with robots and tasks during second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun
Phrases

13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowl-
edge Graphs: Opportunities, Challenges, and Methods for Learn-
ing on Real-World Heterogeneous and Spatially-Oriented Knowl-
edge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning

using Process Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research
17 Laura van der Lubbe (VUA), Empowering vulnerable people with

serious games and gamification

SIKS Dissertations 149

18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and
Video Game Personalisation

19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and
Standardisation

20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Compu-
tational Analysis of Negative Human Behaviors on Social Media

21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical
and Cognitive Assessments

22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its
potential to foster Empathy, Immersion, and Collaboration Skills
in Video Games and Virtual Reality Simulations

23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support
Agents

24 Samaneh Heidari (UU), Agents with Social Norms and Values -
A framework for agent based social simulations with social norms
and personal values

25 Anna L.D. Latour (UL), Optimal decision-making under con-
straints and uncertainty

26 Anne Dirkson (UL), Knowledge Discovery from Patient Forums:
Gaining novel medical insights from patient experiences

27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain
adaptation in video sequences

28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems
29 Jan Kolkmeier (UT), From Head Transform to Mind Transplant:

Social Interactions in Mixed Reality
30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse

Arrays
31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart

Manufacturing with Advanced Manufacturing Process Manage-
ment

32 Cezara Pastrav (UU), Social simulation for socio-ecological sys-
tems

33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid
Congestion Management

34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Mod-
elling of Emotion & Desire Regulation for Behaviour Change

35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relation-
ship: Interaction Design Patterns for a Sustainable Interaction

2023 01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health
Interventions

150 SIKS Dissertations

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What
our bodies can tell us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving
Explanations in Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-
enhanced legal information retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms
for Large-Scale Real-Valued Optimization, Including Real-World
Medical Applications

06 António Pereira Barata (UL), Reliable and Fair Machine Learning
for Risk Assessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on
Trustworthiness of Deep Learning

08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learn-
ing

09 Xu Wang (VUA), Scientific Dataset Recommendation with Se-
mantic Techniques

10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for
General Game Playing

11 Fawad Taj (VUA), Towards Motivating Machines: Computational
Modeling of the Mechanism of Actions for Effective Digital Health
Behavior Change Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search
Behavior in Digital Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge
Representation

14 Selma Čaušević (TUD), Energy resilience through self-
organization

15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning
Tractable Probabilistic Graphical Models

16 Peter Blomsma (TiU), Building Embodied Conversational Agents:
Observations on human nonverbal behaviour as a resource for the
development of artificial characters

17 Meike Nauta (UT), Explainable AI and Interpretable Computer
Vision – From Oversight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for
Conversational Search and Recommendation

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smart-
phones to Capture Signals of Well-Being in Individuals

150 SIKS Dissertations

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What
our bodies can tell us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving
Explanations in Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-
enhanced legal information retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms
for Large-Scale Real-Valued Optimization, Including Real-World
Medical Applications

06 António Pereira Barata (UL), Reliable and Fair Machine Learning
for Risk Assessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on
Trustworthiness of Deep Learning

08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learn-
ing

09 Xu Wang (VUA), Scientific Dataset Recommendation with Se-
mantic Techniques

10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for
General Game Playing

11 Fawad Taj (VUA), Towards Motivating Machines: Computational
Modeling of the Mechanism of Actions for Effective Digital Health
Behavior Change Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search
Behavior in Digital Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge
Representation

14 Selma Čaušević (TUD), Energy resilience through self-
organization

15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning
Tractable Probabilistic Graphical Models

16 Peter Blomsma (TiU), Building Embodied Conversational Agents:
Observations on human nonverbal behaviour as a resource for the
development of artificial characters

17 Meike Nauta (UT), Explainable AI and Interpretable Computer
Vision – From Oversight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for
Conversational Search and Recommendation

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smart-
phones to Capture Signals of Well-Being in Individuals

SIKS Dissertations 151

20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-
Based Evolutionary Algorithms applied to Medical Image Seg-
mentation using Deep Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart
Inspection in the Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity
23 Theo Theunissen (UU), Documentation in Continuous Software

Development
24 Agathe Balayn (TUD), Practices Towards Hazardous Failure

Diagnosis in Machine Learning
25 Jurian Baas (UU), Entity Resolution on Historical Knowledge

Graphs
26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled

Representations and their Out-of-Distribution Behaviour
27 Ghada Sokar (TU/e), Learning Continually Under Changing Data

Distributions
28 Floris den Hengst (VUA), Learning to Behave: Reinforcement

Learning in Human Contexts
29 Tim Draws (TUD), Understanding Viewpoint Biases in Web

Search Results

2024 01 Daphne Miedema (TU/e), On Learning SQL: Disentangling con-
cepts in data systems education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learn-
ing Systems

03 Feri Wijayanto (RUN), Automated Model Selection for Rasch
and Mediation Analysis

04 Mike Huisman (UL), Understanding Deep Meta-Learning
05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment

Cooperative Inspection & Construction Crack Autonomous Re-
pair

06 Azqa Nadeem (TUD), Understanding Adversary Behavior via
XAI: Leveraging Sequence Clustering to Extract Threat Intelli-
gence

07 Parisa Shayan (TiU), Modeling User Behavior in Learning Man-
agement Systems

08 Xin Zhou (UvA), From Empowering to Motivating: Enhanc-
ing Policy Enforcement through Process Design and Incentive
Implementation

09 Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian
Networks

152 SIKS Dissertations

10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Seman-
tic Publishing in Science

11 withdrawn
12 Peide Zhu (TUD), Towards Robust Automatic Question Genera-

tion For Learning
13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid

Intelligence
14 Larissa Capobianco Shimomura (TU/e), On Graph Generating

Dependencies and their Applications in Data Profiling
15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs

for Interrelating the Gut Microbiome and Mental Health
16 Arthur Barbosa Câmara (TUD), Designing Search-as-Learning

Systems
17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture

Design
18 Laurens Stoop (UU), Data Driven Understanding of Energy-

Meteorological Variability and its Impact on Energy System
Operations

19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance
Checking: Identifying and Understanding Patterns of Anomalous
Behavior

20 Ritsart Anne Plantenga (UL), Omgang met Regels
21 Federica Vinella (UU), Crowdsourcing User-Centered Teams
22 Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM

for Knowledge-Intensive Processes with Controllable Dynamic
Contexts

23 Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits
Improves Robot Evolution

24 Nirmal Roy (TUD), Exploring the effects of interactive interfaces
on user search behaviour

25 Alisa Rieger (TUD), Striving for Responsible Opinion Formation
in Web Search on Debated Topics

26 Tim Gubner (CWI), Adaptively Generating Heterogeneous Exe-
cution Strategies using the VOILA Framework

27 Lincen Yang (UL), Information-theoretic Partition-based Models
for Interpretable Machine Learning

28 Leon Helwerda (UL), Grip on Software: Understanding develop-
ment progress of Scrum sprints and backlogs

29 David Wilson Romero Guzman (VUA), The Good, the Efficient
and the Inductive Biases: Exploring Efficiency in Deep Learning
Through the Use of Inductive Biases

152 SIKS Dissertations

10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Seman-
tic Publishing in Science

11 withdrawn
12 Peide Zhu (TUD), Towards Robust Automatic Question Genera-

tion For Learning
13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid

Intelligence
14 Larissa Capobianco Shimomura (TU/e), On Graph Generating

Dependencies and their Applications in Data Profiling
15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs

for Interrelating the Gut Microbiome and Mental Health
16 Arthur Barbosa Câmara (TUD), Designing Search-as-Learning

Systems
17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture

Design
18 Laurens Stoop (UU), Data Driven Understanding of Energy-

Meteorological Variability and its Impact on Energy System
Operations

19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance
Checking: Identifying and Understanding Patterns of Anomalous
Behavior

20 Ritsart Anne Plantenga (UL), Omgang met Regels
21 Federica Vinella (UU), Crowdsourcing User-Centered Teams
22 Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM

for Knowledge-Intensive Processes with Controllable Dynamic
Contexts

23 Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits
Improves Robot Evolution

24 Nirmal Roy (TUD), Exploring the effects of interactive interfaces
on user search behaviour

25 Alisa Rieger (TUD), Striving for Responsible Opinion Formation
in Web Search on Debated Topics

26 Tim Gubner (CWI), Adaptively Generating Heterogeneous Exe-
cution Strategies using the VOILA Framework

27 Lincen Yang (UL), Information-theoretic Partition-based Models
for Interpretable Machine Learning

28 Leon Helwerda (UL), Grip on Software: Understanding develop-
ment progress of Scrum sprints and backlogs

29 David Wilson Romero Guzman (VUA), The Good, the Efficient
and the Inductive Biases: Exploring Efficiency in Deep Learning
Through the Use of Inductive Biases

SIKS Dissertations 153

30 Vijanti Ramautar (UU), Model-Driven Sustainability Accounting
31 Ziyu Li (TUD), On the Utility of Metadata to Optimize Machine

Learning Workflows
32 Vinicius Stein Dani (UU), The Alpha and Omega of Process

Mining
33 Siddharth Mehrotra (TUD), Designing for Appropriate Trust in

Human-AI interaction
34 Robert Deckers (VUA), From Smallest Software Particle to

System Specification - MuDForM: Multi-Domain Formalization
Method

35 Sicui Zhang (TU/e), Methods of Detecting Clinical Deviations
with Process Mining: a fuzzy set approach

36 Thomas Mulder (TU/e), Optimization of Recursive Queries on
Graphs

37 James Graham Nevin (UvA), The Ramifications of Data Handling
for Computational Models

38 Christos Koutras (TUD), Tabular Schema Matching for Modern
Settings

39 Paola Lara Machado (TU/e), The Nexus between Business Mod-
els and Operating Models: From Conceptual Understanding to
Actionable Guidance

40 Montijn van de Ven (TU/e), Guiding the Definition of Key Per-
formance Indicators for Business Models

41 Georgios Siachamis (TUD), Adaptivity for Streaming Dataflow
Engines

42 Emmeke Veltmeijer (VUA), Small Groups, Big Insights: Under-
standing the Crowd through Expressive Subgroup Analysis

43 Cedric Waterschoot (KNAW Meertens Instituut), The Construc-
tive Conundrum: Computational Approaches to Facilitate Con-
structive Commenting on Online News Platforms

44 Marcel Schmitz (OU), Towards learning analytics-supported learn-
ing design

45 Sara Salimzadeh (TUD), Living in the Age of AI: Understanding
Contextual Factors that Shape Human-AI Decision-Making

46 Georgios Stathis (Leiden University), Preventing Disputes: Pre-
ventive Logic, Law & Technology

47 Daniel Daza (VUA), Exploiting Subgraphs and Attributes for
Representation Learning on Knowledge Graphs

48 Ioannis Petros Samiotis (TUD), Crowd-Assisted Annotation of
Classical Music Compositions

154 SIKS Dissertations

2025 01 Max van Haastrecht (UL), Transdisciplinary Perspectives on
Validity: Bridging the Gap Between Design and Implementation
for Technology-Enhanced Learning Systems

02 Jurgen van den Hoogen (JADS), Time Series Analysis Using
Convolutional Neural Networks

03 Andra-Denis Ionescu (TUD), Feature Discovery for Data-Centric
AI

04 Rianne Schouten (TU/e), Exceptional Model Mining for Hierar-
chical Data

05 Nele Albers (TUD), Psychology-Informed Reinforcement Learning
for Situated Virtual Coaching in Smoking Cessation

06 Daniël Vos (TUD), Decision Tree Learning: Algorithms for Robust
Prediction and Policy Optimization

07 Ricky Maulana Fajri (TU/e), Towards Safer Active Learning:
Dealing with Unwanted Biases, Graph-Structured Data, Adver-
sary, and Data Imbalance

08 Stefan Bloemheuvel (TiU), Spatio-Temporal Analysis Through
Graphs: Predictive Modeling and Graph Construction

09 Fadime Kaya (VUA), Decentralized Governance Design - A Model-
Based Approach

10 Zhao Yang (UL), Enhancing Autonomy and Efficiency in Goal-
Conditioned Reinforcement Learning

11 Shahin Sharifi Noorian (TUD), From Recognition to Understand-
ing: Enriching Visual Models Through Multi-Modal Semantic
Integration

12 Lijun Lyu (TUD), Interpretability in Neural Information Retrieval
13 Fuda van Diggelen (VUA), Robots Need Some Education: on the

complexity of learning in evolutionary robotics
14 Gennaro Gala (TU/e), Probabilistic Generative Modeling with

Latent Variable Hierarchies
15 Michiel van der Meer (UL), Opinion Diversity through Hybrid

Intelligence
16 Monika Grewal (TU Delft), Deep Learning for Landmark Detec-

tion, Segmentation, and Multi-Objective Deformable Registration
in Medical Imaging

17 Matteo De Carlo (VUA), Real Robot Reproduction: Towards
Evolving Robotic Ecosystems

18 Anouk Neerincx (UU), Robots That Care: How Social Robots
Can Boost Children’s Mental Wellbeing

19 Fang Hou (UU), Trust in Software Ecosystems

154 SIKS Dissertations

2025 01 Max van Haastrecht (UL), Transdisciplinary Perspectives on
Validity: Bridging the Gap Between Design and Implementation
for Technology-Enhanced Learning Systems

02 Jurgen van den Hoogen (JADS), Time Series Analysis Using
Convolutional Neural Networks

03 Andra-Denis Ionescu (TUD), Feature Discovery for Data-Centric
AI

04 Rianne Schouten (TU/e), Exceptional Model Mining for Hierar-
chical Data

05 Nele Albers (TUD), Psychology-Informed Reinforcement Learning
for Situated Virtual Coaching in Smoking Cessation

06 Daniël Vos (TUD), Decision Tree Learning: Algorithms for Robust
Prediction and Policy Optimization

07 Ricky Maulana Fajri (TU/e), Towards Safer Active Learning:
Dealing with Unwanted Biases, Graph-Structured Data, Adver-
sary, and Data Imbalance

08 Stefan Bloemheuvel (TiU), Spatio-Temporal Analysis Through
Graphs: Predictive Modeling and Graph Construction

09 Fadime Kaya (VUA), Decentralized Governance Design - A Model-
Based Approach

10 Zhao Yang (UL), Enhancing Autonomy and Efficiency in Goal-
Conditioned Reinforcement Learning

11 Shahin Sharifi Noorian (TUD), From Recognition to Understand-
ing: Enriching Visual Models Through Multi-Modal Semantic
Integration

12 Lijun Lyu (TUD), Interpretability in Neural Information Retrieval
13 Fuda van Diggelen (VUA), Robots Need Some Education: on the

complexity of learning in evolutionary robotics
14 Gennaro Gala (TU/e), Probabilistic Generative Modeling with

Latent Variable Hierarchies
15 Michiel van der Meer (UL), Opinion Diversity through Hybrid

Intelligence
16 Monika Grewal (TU Delft), Deep Learning for Landmark Detec-

tion, Segmentation, and Multi-Objective Deformable Registration
in Medical Imaging

17 Matteo De Carlo (VUA), Real Robot Reproduction: Towards
Evolving Robotic Ecosystems

18 Anouk Neerincx (UU), Robots That Care: How Social Robots
Can Boost Children’s Mental Wellbeing

19 Fang Hou (UU), Trust in Software Ecosystems

SIKS Dissertations 155

20 Alexander Melchior (UU), Modelling for Policy is More Than Pol-
icy Modelling (The Useful Application of Agent-Based Modelling
in Complex Policy Processes)

21 Mandani Ntekouli (UM), Bridging Individual and Group Perspec-
tives in Psychopathology: Computational Modeling Approaches
using Ecological Momentary Assessment Data

22 Hilde Weerts (TU/e), Decoding Algorithmic Fairness: Towards
Interdisciplinary Understanding of Fairness and Discrimination
in Algorithmic Decision-Making

23 Roderick van der Weerdt (VUA), IoT Measurement Knowledge
Graphs: Constructing, Working and Learning with IoT Measure-
ment Data as a Knowledge Graph

24 Zhong Li (UL), Trustworthy Anomaly Detection for Smart Man-
ufacturing

25 Kyana van Eijndhoven (TiU), A Breakdown of Breakdowns:
Multi-Level Team Coordination Dynamics under Stressful Condi-
tions

26 Tom Pepels (UM), Monte-Carlo Tree Search is Work in Progress
27 Danil Provodin (JADS, TU/e), Sequential Decision Making Under

Complex Feedback
28 Jinke He (TU Delft), Exploring Learned Abstract Models for

Efficient Planning and Learning
29 Erik van Haeringen (VUA), Mixed Feelings: Simulating Emotion

Contagion in Groups
30 Myrthe Reuver (VUA), A Puzzle of Perspectives: Interdisciplinary

Language Technology for Responsible News Recommendation
31 Gebrekirstos Gebreselassie Gebremeskel (RUN), Spotlight on

Recommender Systems: Contributions to Selected Components
in the Recommendation Pipeline

32 Ryan Brate (UU), Words Matter: A Computational Toolkit for
Charged Terms

33 Merle Reimann (VUA), Speaking the Same Language: Spoken
Capability Communication in Human-Agent and Human-Robot
Interaction

34 Eduard C. Groen (UU), Crowd-Based Requirements Engineering
35 Urja Khurana (VUA), From Concept To Impact: Toward More

Robust Language Model Deployment
36 Anna Maria Wegmann (UU), Say the Same but Differently: Com-

putational Approaches to Stylistic Variation and Paraphrasing

9 789465 151298

	Cover
	Colophon
	Contents
	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. IR using Relational Databases
	Chapter 4. From Tables to Graphs
	Chapter 5. Creation of the Entity Graph
	Chapter 6. Using the Entity Graph
	Chapter 7. Conclusion
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Research Data Management
	Curriculum Vitæ
	SIKS Dissertations

