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1.	 Introduction

1.1	 Renewable Electricity

1.1.1	 Energy sources
Fossil fuels – coal, oil and natural gas – are still the dominant energy sources in our 
world today [1]. We depend on fossil fuels for electricity and heat generation, to fuel 
vehicles, and as feedstock for the production of a variety of products, such as plastics 
and paints. The use of fossil fuels causes emissions of greenhouse gasses (GHGs), such 
as carbon dioxide (CO2) and methane (CH4), which are widely accepted to cause global 
warming through radiative forcing. The IPCC estimated that in 2019 64% of the global 
net anthropogenic GHG emissions came from CO2 from fossil fuel and industry  [2], 
indicating that in order to limit global warming and climate change, fossil fuels should 
be replaced by cleaner energy sources. The energy system accounted for 32% of the 
direct GHG emissions in 2019 and therefore is a major consumer of fossil fuels [3].

Alternatively, renewable energy sources can be used, such as wind and solar power, 
to reduce the GHG emissions of the energy system. Wind, water and the sun have 
been used as energy sources for generations. Wind has first been used for sailing, 
more than 5,000 years ago [4] and the first windmills to grind grain and pump water 
are believed to have been developed as early as the 9th century  [5]. The United 
Nations [6] describe renewable energy as “energy derived from natural sources that 
are replenished at a higher rate than they are consumed.” There are several types of 
renewable energy, with biomass currently making the largest contribution, mainly 
to transport and as traditional biomass to heat [7]. The three most important non-
biomass renewables are hydropower, wind, and solar, generating respectively 16%, 
5.5%, and 2.5% of the global electricity in 2019 [2]. The development of these non-
biomass renewables shares since 2000 with a projection beyond 2025 is shown in 
Figure 1-1. In my thesis, the focus will be on utility-scale non-biomass renewable 
energy sources, i.e. wind power, solar power and hydropower.

1.1.2	 Wind power
Electricity from wind has first been generated in the 19th century [8] and utility scale 
wind turbines were developed in the middle of the 20th century [9]. Wind turbines 
installed today usually have a rated capacity of at least 1 MW and the largest wind 
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turbine has a capacity of 26 MW [10]. The principle by which wind turbines generate 
electricity is straightforward: The blades of a wind turbine are moved by differences 
in pressure created when wind flows around them – similar to the way lift is created 
around airplane wings [11]. The rotational energy of the blades is then converted to 
electricity through a generator connected to the rotor.

Currently, wind power is becoming increasingly competitive with other forms of 
electricity generation as costs are continuing to decline  [12]. Wind power can be 
developed both onshore and offshore, with the wind speeds on average being 
higher and less variable offshore than onshore. This variability of the wind resource 
is one of the biggest drawbacks of wind power and requires flexible grid integration 
and can be offset by amongst others storage, possibly in a combination with solar 
PV  [13]. Wind turbines can also have an impact on local ecology, for instance 
on bats and birds  [14 - 17]. Social impacts can include shadow flicker and noise 
emissions  [18, 19]. However, these impacts can be mitigated by implementing 
curtailment measures during certain times of day or migrating seasons, or 
employing algorithms to determine shut-down times  [20]. Advantages of wind 
turbines are that their impact on land area is generally low as the area between 
turbines can continue to be used. Furthermore, GHG emissions from wind turbines 
occur mainly during manufacturing, construction and demolition and are relatively 
low compared to fossil electricity sources [21, 22].

Figure 1-1 Share of renewable electricity generation by technology in %, 2000-2030 [23]. Biomass is 
not included here because its mainly used for transportation and heat and not electricity generation. 
“Variable renewables” combines the shares of wind and solar PV.
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1.1.3	 Solar power
Solar PV panels can be installed virtually everywhere, from being integrated into roof 
slates and building panels to solar cells integrated in fabric [24, 25]. The first practical PV 
cell was built in the mid-20th century [26] and their first application was in the Vanguard 
satellite in 1958  [27]. PV cells generate electricity because the energy from the sun 
that hits the solar panel is absorbed by the material [28]. A PV cell consists of different 
materials with different electronic properties and the photons hitting it are creating an 
electric field, creating the current which is needed to generate electricity [28].

Prices started to drop in the 1970s and currently, utility-scale solar PV is becoming 
increasingly competitive with other forms of electricity generation [12] and several 
PV parks already exceed an installed capacity of 1 GW  [29]. Different types of PV 
panels exist, the most common one being mono-crystalline silicon, followed by 
multi-crystalline silicon and thin film panels, examples of the latter being cadmium 
telluride (CdTe) and copper indium gallium selenide (CI(G)S)  [30]. They differ in 
the types of materials used, cost and efficiency. Utility-scale solar PV is usually 
ground-mounted, often on fixed racks, but the mounting systems can also track 
the sun along one or two axes  [30]. In addition to the intermittent nature of the 
solar resource, which varies greatly with location – locations closer to the equator 
having a higher solar resource than those closer to the poles – another possible 
disadvantage of solar PV is the use of land necessary to build utility-scale PV, which 
can potentially compete with alternative uses such as agriculture  [31]. However, 
solar PV can be integrated with other uses, such as combining it with agriculture 
using shade-tolerant crops or sheep herding  [32]. Competition with other uses 
can also be minimized by installing PV on closed landfills [33] or as floating PV on 
reservoirs, which also can reduce water evaporation  [34]. Solar PV can also create 
barriers to species movement, although mitigation measures, such as wildlife-
friendly fences or travel corridors, are available and can be implemented  [32]. As 
with wind power, GHG emissions occur mainly during manufacturing, construction 
and end-of-life, but during the use phase emissions are negligible [30].

1.1.4	 Hydropower
Hydropower has been used to produce electricity since the 19th century  [35]. 
Therefore, it is a mature and proven technology to provide renewable electricity 
worldwide. Different types of hydropower technologies exist, the most common 
ones being reservoir and run-of-river facilities, which can range in capacity from a 
few kilowatts (kWs) to several gigawatts (GWs)  [36]. Hydroelectricity is generated 
by water flowing through a turbine, causing it to rotate, which in turn spins a 
generator producing the electricity [37].
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One of the advantages of hydropower in an energy system with growing amounts 
of intermittent renewable energy sources is that it can provide flexibility and 
therefore balance the electricity supply, as water can be stored in the reservoirs and 
released when necessary  [38]. Furthermore, dams generally have long lifetimes, 
some being more than 100 years old, and they can provide additional services to 
the community, such as recreation, irrigation and flood control, and municipal 
water supply [36]. However, hydropower also has drawbacks, as it is susceptible to 
climate change, where droughts may lead to an insufficient amount of water being 
available  [39]. Another disadvantage of hydropower is that it can have negative 
social and environmental impacts. Dam construction can lead to loss of land and 
fragmentation of ecosystems  [40]. While hydropower is generally perceived to 
be a clean source of electricity, emissions are caused throughout the life cycle of 
a project, through material used during construction and operation, as well as 
through biogenic GHG emissions from a mad-made reservoir through decaying 
biomass after land has been flooded [40].

1.2	 Life cycle greenhouse gas emissions of renewable 
electricity

1.2.1	 Life Cycle Assessment
A life cycle assessment (LCA) is a standardized methodology to assess the 
environmental impact of a product, process or service covering its entire life 
cycle, from cradle to grave, thus covering the extraction of raw materials, the use 
phase and the end-of-life phase (see Figure 1-2). An LCA consists of four distinctive 
phases, which are described in International Organization for Standardization (ISO) 
standards 14040 and 14044 [41, 42]:

1.	 Goal and scope definition: First phase of an LCA stating the intended application 
and rationale behind the study, as well as the functional unit, product system 
and its boundaries, assumptions and limitations, and the allocation procedure.

2.	 Inventory analysis: In the inventory analysis, raw materials, energy requirements 
and resource uses are quantified as are emissions to land, water and air and 
other discharges to the environment.

3.	 Impact assessment: In this phase, the impacts on the environment and human 
health are evaluated.

4.	 Interpretation: In this final phase, the significant issues of the LCA are identified 
and the study is evaluated on its completeness and consistency, resulting in 
conclusions, limitations and recommendations.
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If applied in practice, a life cycle assessment can be an iterative process, whereby the 
results of the assessment and interpretation inform decisions to for instance adjust 
the production process, which in turn alters the inputs for the inventory analysis etc.

Figure 1-2 Schematic representation of the life cycle of a product, process or service [43].

1.2.2	 Life cycle GHG emissions of renewable electricity

GHG footprint
LCAs are used to quantify the life cycle impacts of the generation of electricity using 
renewable energy technologies, such as wind power, solar power and hydropower.

Often, the focus is on life cycle greenhouse gas emissions, presented as so-called 
greenhouse gas (GHG) footprints FGHG (in g CO2eq/kWh), which is the life cycle GHG 
emissions (I) in g CO2eq per facility divided by the lifetime electricity production (E) 
in kWh per facility:

�(1-1)

Wind power
The greenhouse gas (GHG) emissions associated with wind power reported in 
literature range from 2 to 156 g CO2eq/kWh (see Table A-3), typically based on 
mean wind speeds at hub height  [44 - 51]. It is important to note, however, that 
electricity production can vary significantly with minor changes in wind speed, 
because electricity generation depends on the wind speed cubed. Generally, larger 
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wind turbines tend to produce lower life cycle GHG emissions per kWh. Caduff 
et al.  [45] have estimated emissions by developing a metamodel based on rotor 
diameter and hub height. However, their study was limited by its focus on onshore 
turbines only and not accounting for the variability of climatological data. A recent 
Danish study [52, 53] employed spatiotemporal wind speed data with a resolution 
of approximately 50 by 50 km to model life cycle emissions, underscoring the 
necessity of accounting for the spatial and temporal variability in wind speed.

Solar power
Much research has been conducted on life cycle greenhouse gas emissions of 
photovoltaic (PV) systems. A common approach involves performing a meta-
analysis by consolidating case studies reported in the literature and harmonizing 
their findings to establish standardized system boundaries regarding irradiation, 
lifetime, performance ratio, and/or module efficiency  [54 - 57]. These studies 
show that the GHG footprints of PV systems range from approximately 14 to 82 g 
CO2eq/kWh under harmonized conditions. The fact that the footprints of thin-film 
panels can be about 40% lower than those of crystalline silicon panels shows that 
the type of panel is the most significant source of variation [58 - 61]. While meta-
analyses offer insights into the sources of life cycle GHG emissions related to PV 
systems, the harmonization process may obscure real-world variations in footprints.

On the one hand, it has been shown that locations with higher irradiation lead to 
increases in electricity production. Therefore, higher irradiation leads to a reduction 
in GHG footprints  [54, 60, 62-66]. On the other hand, the manufacturing location 
affects GHG emissions during production  [60, 62, 63, 64, 67]. Other important 
factors which can explain differences in PV GHG footprints are variations in module 
efficiency, mounting system types, lifespan, degradation rates, and capacity between 
different types of PV panels [54, 65, 66, 68 - 71]. A study that has investigated spatial 
differences in environmental footprints of PV systems has been conducted by Louwen 
et al. [72] for rooftop PV in Eurasia and Africa, showing that installing a PV facility in a 
high-irradiation area can reduce the GHG footprint by up to 75%. Ito et al.  [73] have 
investigated GHG footprints for two sites in France and Morocco. Pérez-López et al. 
([74] and [75]) for utility-scale PV globally, who showed that even within one country, 
selecting a location with higher irradiation can reduce the footprint by about 25%. 
These studies highlight the significant variance in PV GHG footprints based on location.

Hydropower
Greenhouse gas footprints from hydropower have been shown to vary greatly, 
ranging from 2.0∙10-4 to 6.6 kg CO2eq/kWh [76 - 93]. The reported range of 4.5 orders 
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of magnitude in GHG footprint of hydropower facilities can be caused by differences 
in various environmental and technological factors. Emissions from the reservoirs 
themselves heavily depend on the reservoir lifetime and the climate zone in which 
the reservoir is located, as well as pre-impoundment land cover type  [94]. Earlier 
studies have shown that the ratio of GHG emissions from the dam itself compared 
to those of the reservoir lies anywhere between 100% for diversion dams to 0.01% 
for tropical reservoirs  [91]. Little research has been done on quantifying facility-
specific GHG footprints of hydropower at large geographical scales. Most studies 
focus on one or a few plants, focusing on a specific type of dam and associated 
technology. Wang et al.  [95] assessed carbon emission and water consumption of 
hydropower plants in China, but they did not relate the impacts to the facilities’ 
electricity generation. A study by Harrison et al. [96] used the G-res tool to calculate 
GHG emissions from reservoirs on a global scale but neglected dam construction 
and also does not relate the emissions to electricity production. Scherer and 
Pfister  [97] modelled the biogenic carbon footprint of hydropower reservoirs and 
reported an average GHG footprint of 0.273 kg CO2eq/kWh, again focussing solely 
on the reservoir and not accounting for dam construction. Gemechu and Kumar [98] 
assessed LCA studies of hydropower and found that the wide range of emission 
intensities reported (1.5∙10-3 - 3.7 kg CO2 eq/kWh) is caused by inconsistency in how 
LCA is used, high variability in key reservoir characteristics and data limitations.

1.3	 Scientific challenges

While conducting an LCA is a standardized process, various sources of variability can 
cause large differences in the life cycle GHG emissions of renewable electricity sources. 
Possible sources of variability can be spatial, temporal and/or technical in nature.

•	 Spatial variability arises because resources (wind speed, solar irradiation and water 
flows) are not distributed evenly across the globe, influencing electricity production.

•	 Temporal variability is introduced by changes in the same renewable resources 
over time, which also influences electricity production.

•	 Technical variability is caused by the choice of technology to be deployed 
at a certain location. Changing the type of wind turbine, solar PV module or 
hydropower plant influences the type and amount of resources used and thus 
the life cycle GHG emissions as well as the electricity production.

Typically, LCA studies use only one variant of a given technology at a certain 
point in time and space or a small set of variants of either of the three sources of 
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variability. The main reason that most LCA studies include only a limited amount 
of variability is that conducting an LCA is a time-consuming process because a lot 
of information needs to be collected, processed and analysed. Therefore, in order 
to capture information on the location, time and technology for a specific project, 
each time a new LCA has to be carried out.

Up to now, integrating spatial, temporal and technical variation into one 
assessment of GHG footprints of renewable electricity sources has not been done 
on larger spatial scales. Moreover, it is not known what the main contributors are 
to the variability in GHG footprints observed between different studies of the 
same technology. Such an assessment adds value because it enables policy makers 
and developers to easily assess differences in GHG performance between either 
different technologies in the same location or the same technology in multiple 
locations. Furthermore, the comparison to other (non-)renewable electricity 
sources offers the possibility to determine how much can be gained in terms of 
GHG emission mitigation at each location. Such an assessment may be feasible by 
developing models that allow for straightforward calculation of the GHG footprints 
of the most important non-biomass renewable energy sources on a global scale 
identifying and using a key set of technological and meteorological variables.

1.4	 Goal and outline

The main goal of my thesis is to quantify facility-specific GHG footprints of wind 
power, solar power and hydropower at large spatial scales. Understanding how 
differences in technology and meteorology influence GHG footprints of renewable 
electricity sources will allow for the identification of the most suitable technology 
to deploy in any given location from a life cycle perspective.

Apart from the introduction, this PhD thesis consists of four individual chapters and 
a synthesis (see Table 1-1 for the sources of variability considered in each chapter).

Chapter 2 �describes the space, time and size dependencies of greenhouse gas 
payback times of wind turbines in Northwestern Europe.

Chapter 3 �quantifies the variability in GHG footprints between individual wind 
farms at the global scale.

Chapter 4 �assesses the GHG footprints of utility-scale PV facilities on a global scale.
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Chapter 5 �investigates the variability of GHG footprints of hydropower facilities in 

the United States of America.

Finally, in chapter 6 the results of the previous chapters are synthesized.

Table 1-1 Sources of variability in GHG footprints for electricity from wind, solar and hydropower 
considered in the chapters of my thesis.

Chapter 2
(wind)

Chapter 3
(wind)

Chapter 4
(solar PV)

Chapter 5
(hydropower)

Geographic 
Scale

Northwestern 
Europe

Global Global US

Technological 
variability

Rotor diameter
Hub height
Onshore/
offshore

Rotor diameter
Hub height
Onshore/offshore
Rated power
Power curve
Wind farm size

Panel type
Capacity
Construction year

Natural lakes 
vs. man-made 
reservoirs
Capacity
Reservoir area
Height

Temporal 
meteorologic 
variability

Wind speed Wind speed
Temperature
Pressure

Irradiation
Temperature
Wind speed

Water flow
CO2 and CH4 
emission factors

Spatial 
meteorologic 
variability

Wind speed Wind speed
Temperature
Pressure

Irradiation
Temperature
Wind speed

Water flow
Chlorophyll-a
CO2 and CH4 
emission factors
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Abstract

The net greenhouse gas benefits of wind turbines compared to their fossil energy 
counterparts depend on location-specific wind climatology and the turbines’ 
technological characteristics. Assessing the environmental impact of individual wind 
parks requires a universal but location-dependent method. Here, the greenhouse 
gas pay-back time for 4,161 wind turbine locations in northwestern Europe was 
determined as a function of (i) turbine size and (ii) spatial and temporal variability 
in wind speed. A high-resolution wind atlas (hourly wind speed data between 
1979 and 2013 on a 2.5 by 2.5 km grid) was combined with a regression model 
predicting the wind turbines’ life cycle greenhouse gas emissions from turbine size. 
The greenhouse gas payback time of wind turbines in northwestern Europe varied 
between 1.8 and 22.5 months, averaging 5.3 months. The spatiotemporal variability 
in wind climatology has a particularly large influence on the payback time, while 
the variability in turbine size is of lesser importance. Applying lower-resolution 
wind speed data (daily on a 30 by 30 km grid) approximated the high-resolution 
results. These findings imply that forecasting location-specific greenhouse gas 
payback times of wind turbines globally is well within reach with the availability of 
a high-resolution wind climatology in combination with technological information.
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2.1	 Introduction

Wind energy is becoming increasingly important in the world’s electricity supply as 
it becomes cost competitive and the demand for sustainable energy is rising [99]. 
By the end of 2017, the cumulative capacity of all wind turbines installed globally 
reached over 539 GW, meeting approximately 5% of the world’s electricity 
demand [100]. It is projected that wind could contribute 18% to 36% of the world’s 
electricity production in 2050 [101, 102].

The environmental performance of wind electricity is typically determined by 
means of a life cycle assessment (LCA)  [103], which is a systematic approach to 
determine the environmental impact of a technology considering all the resources 
required and related emissions during the different stages of its life cycle [41]. For 
wind, the environmental impact per unit of electricity produced depends on the 
amount and type of materials used to build and maintain the wind turbine as well 
as the electricity produced over its life cycle [44]. Because it is virtually impossible 
to perform specific LCAs for all individual wind turbines worldwide, Caduff et 
al.  [45] developed a regression model estimating the life cycle greenhouse gas 
(GHG) emission of onshore wind turbines as a function of rotor diameter and hub 
height. They found that the bigger the wind turbine, the lower the GHG emissions 
per unit of electricity produced. However, their analysis was focused on onshore 
turbines and did not take climatological variations of wind speed into account.

LCAs of wind turbines are typically based on the mean wind speed at hub 
height  [44 - 51]. More recently, a comprehensive LCA study for wind electricity in 
Denmark built a model to estimate a wind turbine’s life cycle GHG emissions based 
on technological scaling relationships and spatiotemporal information on wind 
speed data with approximately a 50 by 50 km grid resolution [52, 53]. Their study 
emphasized the importance of including spatiotemporal variation of wind speed 
in the power calculations. The required spatiotemporal resolution of wind speed 
data to obtain reliable LCA results was, however, not analysed in their study. To our 
knowledge, a comparison of the site-specific environmental performance of wind 
electricity on larger spatial scales that takes into account detailed spatiotemporal 
variability in the local wind resource is currently lacking. Moreover, it is not known 
which spatiotemporal resolution actually is sufficient to capture the variability in 
the wind resource in such an assessment.

Here, the greenhouse gas payback time (GPBT) of 4,161 wind turbine locations 
in northwestern Europe was quantified, accounting for variability in both wind 
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climatology and turbine technology. The GPBT is a commonly used metric to 
identify the environmental performance of wind energy compared with a fossil 
energy benchmark, which equals the time it takes until the total GHG savings due 
to the replacement of fossil energy by wind energy equals the GHG emissions 
during a turbine’s life cycle [104].

To simulate the yearly average power output of the individual wind turbines high-
resolution wind data for 35 years on a 2.5 by 2.5 km grid  [105] was combined 
with technical information for individual wind turbines  [106]. The life cycle GHG 
emissions for onshore and offshore wind turbines were derived from the turbine 
size with an updated regression model based on the work by Caduff et al.  [45]. 
The importance of using a high-resolution wind climatology data set and turbine-
specific data was assessed by analysing the sensitivity of wind turbine GPBTs to (i) 
differences in spatiotemporal detail of wind speed and (ii) including or excluding 
differences in turbine size.
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2.2	 Materials and Methods

Overview. The influence of time and space dependencies in wind speed and 
size variations of wind turbine characteristics on the environmental impacts 
was analysed according to the steps shown in Figure 2-1. These steps are further 
explained below.

Figure 2-1 Schematic representation of the calculation of the turbine-specific greenhouse gas 
payback time (GPBT).
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Greenhouse Gas Payback Time. The GPBT depends on the total emissions during 
the lifetime of the wind turbine and its power output, as well as the greenhouse gas 
emissions of the fossil energy reference. The GPBT (in months) of a wind turbine is 
calculated as

�(2-1)

where GHGturbine is the cumulative GHG emission resulting from the production 
and installation of the wind turbine (kg CO2eq/turbine), Pturbine the lifetime average 
electricity production of the wind turbine (kWh/month), and GHGfossil the GHG 
emission of the fossil energy benchmark (kg CO2eq/kWh). The average emission of 
natural gas-fired power plants of 0.5 kg CO2eq/kWh was chosen as reference for the 
whole study area [59].

GHG Emissions of Wind Turbine Production. To calculate the GHG emissions, a 
regression model was developed that expresses GHG emissions of a turbine during 
its lifetime (GHGturbine) as a function of rotor diameter (D) and hub height (h). For 
this, the model from Caduff et al.  [45]. was modified by expanding the underlying 
empirical data set [46 - 49, 107 - 118] and including systematic differences in GHG 
emissions between onshore and offshore turbine production  [119]. A Gaussian 
generalized linear model was applied using RStudio (RStudio Team, 2015), based on 
28 wind turbine LCA studies of 22 on- and 6 offshore locations. Cross-validation was 
performed using a leave-one-out method [120]. The best model was chosen based 
on the Akaike information criterion (AIC).

Power Output. The turbine’s power output Pturbine,i at time i depends on the time-
varying wind speed at hub height ui (m/s) and the rotor diameter (m) through

�(2-2)

where μ = 0.85 is the overall efficiency (including grid losses and machine downtime, 
among others) [121], μBetz the theoretical maximum power that a wind turbine can 
produce (16/27 , Betz’s law)  [122], ρ the air density (1.225 kg/m2), and Aturbine the 
swept area (m2) given by 0.25 · π · D2. A wind turbine operates in a limited wind 
speed range (between cut-in and cut-out wind speeds), below and above which no 
electricity is produced. Above the rated wind speed the turbine is programmed to 
operate at its rated power output until it reaches the cut-out wind speed.

Data. Wind Turbines. Wind turbines in Northwestern Europe within the domain 
of 48°N to 60°N and -8°E to +12°E were included in this study. Their location and 
technical specifications were taken from The WindPower database  [106], which 
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provides information on the turbines’ hub heights and rotor diameters. This 
information is used in the calculation of the turbines’ life cycle GHG emissions 
(equation (2-4)) as well as their power output (equation (2-2)). Data was available 
for 4,161 wind power locations within the selected domain, of which 80 are offshore 
and 4,081 are onshore. The included technological turbine characteristics are given 
in Figure 2-1.

Wind Speed. Wind speed data was derived from the KNMI North Sea Wind Atlas 
(KNW-Atlas)  [105]. This data set contains hourly wind speed data on a 2.5 by  
2.5 km grid for all years between 1979 and 2013. The KNW-Atlas is based on ERA-
Interim reanalysis data [123] downscaled with the high-resolution, nonhydrostatic 
weather forecasting model HARMONIE CY37h1.1  [124, 125]. It contains wind 
speeds at heights of 10, 20, 40, 60, 80, 100, 150, and 200 m. The KNW-Atlas has been 
validated  [126, 127] and produces accurate wind climatology up to 200 m above 
sea level. For the wind turbine locations, wind speed data at the nearest KNW-
grid point were used. The wind speed at hub height was calculated by a linear 
interpolation of KNW-levels to the hub height. This wind speed was then used to 
calculate the average yearly power output for each wind turbine location over the 
full period of 35 years.

Statistical Analysis. Technology versus Climatology. In the reference situation, the 
turbines’ GPBTs were calculated using the high-resolution data from the KNW-Atlas 
(2.5 by 2.5 km grid, hourly data). To assess the importance of knowing the location-
specific turbine size and wind climatology, this reference was compared to the 
turbines’ GPBTs for four scenarios in which variability characteristics were modified:

1.	 The importance of spatial variability in the GPBT calculations was assessed by 
using a spatial average of the wind data.

2.	 The importance of temporal variability was assessed by using a temporal 
average of the wind data.

3.	 The importance of spatial and temporal variability was assessed using a spatial 
and temporal average of the wind data.

4.	 The importance of technological variation was assessed using average turbine 
sizes for on- and offshore turbines.

Spatial average means that for every hour in the 35-year study period, the wind 
data of each grid point were averaged and used as wind speed value at that hour 
for every grid point in the domain prior to calculating the power output for that 
hour. Similarly, a temporal average means that all hourly wind speed values at 
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a certain grid point were averaged and used for every time slot at that location. 
Using both the spatial and the temporal average, only one wind speed value was 
used for all turbines for the whole study period, resulting in only the technological 
variability of the wind turbines (e.g., hub height, diameter, and cut-in and cut-out 
wind speeds) remaining. Lastly, technological averages were created by using 
average onshore and offshore turbine characteristics based on the turbines in the 
study area, which are shown in Figure 2-2.

The Kling−Gupta efficiency (KGE) was used to calculate the effect of neglecting 
spatial, temporal, or technological variability. The KGE is a combination of 
correlation, bias, and variability between scenario n (constant wind in space, time, 
or both or constant turbine type) and the reference scenario and is defined as [128]

� (2-3)

with rn the Pearson correlation coefficient between the GPBT, γn the variability ratio 
((σn/μn) · (μr/σr)), and βn the bias ratio (μn/μr), with σ the standard deviation and μ 
the mean of the GPBT results, of scenario n (see above) compared to the reference 
scenario with a 2.5 by 2.5 km grid, hourly wind speed data, and turbine-specific 
data. The KGE ranges from -∞ to 1 (1 being a perfect fit).

Figure 2-2 Boxplots show the distribution of important technological wind turbine characteristics for 
the turbines in the data set. Blue bars are onshore turbines (n = 4,061), and green bars are offshore 
turbines (n = 80). The plots show the three quartile values of the distribution, the 1.5 interquartile 
range represented by the whiskers, and the data points outside this range as individual values. The red 
dots represent the mean used for average turbine sizes.
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Importance of Spatial and Temporal Resolution. The importance of using a high 
spatial and temporal resolution in the GPBT calculations was investigated as well, 
because wind data on large spatial scales are usually available at coarser resolutions 
than used in this study [129, 130]. For this, 25 data sets were created from the KNW-
Atlas data by aggregating temporal and spatial resolutions to a coarser scale, based 
on typical resolutions of regional and global climate archives [131]:

•	 temporal resolution: 1 h (default), 3 h, 6 h, 12 h, and 24 h
•	 spatial resolution: 2.5 by 2.5 km (default), 5 by 5 km, 10 by 10 km, 30 by 30 km, 

and 80 by 80 km

Reduction of temporal and spatial resolutions was obtained by subsampling the 
default data at indicated space and time intervals. Daily wind speed data were 
constructed by sampling data at noon (12:00 UTC). GPBTs of the 4,161 wind power 
locations were recalculated for the 25 additional data sets, and the results of each data 
set were evaluated against the reference data set using the KGE (see equation (2-3)).  
All spatiotemporal analyses were carried out using NCL [132].

2.3	 Results

Regression Model. The optimal AIC model fit to describe turbine life cycle GHG 
emission as a function of its diameter (D), hub height (h), and onshore/offshore 
technology indicator (T) was

�(2-4)

where c0 = 2.00  [±0.45] is the intercept, c1 = 1.27  [±0.50], c2 = 0.84  [±0.56], and  
c3 = 0.29  [±0.10]. Figure 2-3 shows the regression lines for offshore and onshore 
wind turbines based on 28 LCA studies found in the literature [45 - 49, 107 – 118].
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Figure 2-3 GHG emissions of onshore turbines (T = 0, grey line shading) and offshore turbines (T = 1, 
purple line shading) as a function of log (D ∙ h). The shading represents the 95% confidence interval. 
The markers are the harmonized LCA results from the literature (circles are onshore and triangles 
offshore wind turbines).

Reference Situation. Using the turbine-specific GHG emissions and wind data from 
the KNW-Atlas at the highest spatiotemporal resolution, GPBTs show a pronounced 
spatial pattern (Figure 2-4). The lowest values are located offshore and close to the 
coast (1.8 months as lowest GPBT), where wind speeds tend to be higher. Inland, 
where lower wind speeds prevail, the GPBT is typically higher (up to 22.5 months). 
The average GPBT for wind turbines in northwestern Europe is 5.25 months.

Figure 2-4 Greenhouse gas payback time (in months) for the reference situation (wind data at 2.5 by 
2.5 km and hourly resolution and turbine-specific size characteristics) [132].
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Ignoring Variability in Wind Speed and Turbine Size. Spatially averaging wind 
speed while maintaining the hourly temporal resolution and the variation in 
turbine technology results in a poor match with the reference data (KGE = -0.27) 
(Figure 2-5a). This is due to a 2-fold underestimation of the GPBT (β = 1.93), while 
the spread in the GPBT is smaller than in the reference situation (γ = 0.27). The 
correlation between GPBTs of the spatially averaged wind speed and the reference 
situation is also relatively low (r = 0.53).

Figure 2-5 Comparison of greenhouse gas payback times (GPBT) for the reference scenario vs the 
scenarios with spatially averaged wind speed (a), time-averaged wind speed (b), wind speed averaged 
over space and time (c), and average turbine size for onshore and offshore wind farms (d). Offshore 
wind locations are represented by the blue dots, and onshore wind locations are represented by the 
black crosses. KGE is the Kling-Gupta efficiency, r the Pearson correlation coefficient, γ the variability 
ratio, and β the bias ratio [132].
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Using a time-averaged wind speed at a 2.5 by 2.5 km spatial resolution results in 
an even poorer match with the reference data with a KGE of -0.53 (Figure 2-5b). 
This low KGE value is mainly due to a large overestimation of the spread in GPBT  
(γ = 2.51). Averaging wind speed both spatially and temporally also gives a negative 
KGE of -0.26 (Figure 2-5c). Similar to the spatially homogeneous wind field, the 
average GPBT is strongly overestimated (β = 1.94).

Using an average turbine size for on- and offshore wind turbines results in a much 
higher KGE of 0.82 (Figure 2-5d), compared to neglecting climatological variability. 
The correlation coefficient is relatively high (r = 0.88), and systematic deviations of 
the mean and spread are relatively small (β = 1.12; γ = 1.06).

Figure 2-6 Kling-Gupta efficiency (a), Pearson correlation coefficient (b), variability ratio (c), and bias 
ratio (d) of the GPBT at various coarser spatial (5 by 5, 10 by 10, 30 by 30, and 80 by 80 km) and temporal 
resolutions (3, 6, 12, 24 hly) relative to the most detailed reference resolution (resKNW, hourly and 2.5 
by 2.5 km) [132].
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Spatial and Temporal Resolution. Figure 2-6 summarizes the influence of the 
spatial and temporal resolution on the KGE performance metric and its components.  
Figure 2-6a shows that decreasing the spatial resolution is the dominant factor 
for lowering the KGE, while temporal resolution (hourly vs daily wind speed 
estimations) has only a limited influence on the KGE. The lowest KGE is found for 
the spatial resolution of 80 by 80 km (KGE = 0.18-0.43). The 30 by 30 km resolution 
provides intermediate KGEs (0.65-0.75), while a 10 by 10 km resolution or higher 
always results in a KGE greater than 0.89. The relatively low KGE for the 80 by  
80 km resolution is caused by an overestimation of the spread in GPBT (γ = 1.48-1.75;  
Figure 2-6c) in combination with a decrease in the correlation coefficient (r = 0.79-
0.81; Figure 2-6d). The γ coefficient shows two interesting trends: it decreases 
with a decrease in temporal resolution, and it increases with a decrease in spatial 
resolution. These two trends counteract one another resulting in a higher KGE for 
the 80 by 80 km resolution with the lowest temporal resolution (24 hly).

2.4	 Discussion

Interpretation. The analysis showed that the spatial and temporal wind information 
are of particular importance when assessing the wind turbine greenhouse gas payback 
time, a fact that is often neglected in LCAs, while the variation in turbine size appears to 
be of relatively lower importance. The analysis further indicated that daily wind speed 
data on a 30 by 30 km grid provide results that still match the reference high-resolution 
data (KGE = 0.75), although a spatial resolution of 10 by 10 km would further improve 
model performance (KGE = 0.89).

When time-averaged wind speeds over 35 years were used as an extreme scenario, 
GPBTs were severely overestimated. Wind speed shows a non-normal temporal 
frequency distribution, with lower wind speeds occurring more frequently than 
higher values  [121]. Combined with the nonlinear dependence of the power 
output on the wind speed, the long-term average wind speed causes a strong 
underestimation of the power output and hence an overestimation of the GPBT. 
Using one daily wind speed value measured at noon performed equally well 
compared to the use of hourly data. In Europe, the average wind speed at noon is 
slightly higher than the daily mean for vertical levels up to 80 m [133]. Because more 
than 75% of the wind turbines included here have hub heights lower than 80 m, 
this leads to slightly higher power yields and consequently a 10% underestimation 
of GPBT compared to using the daily averaged wind data.
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Completely neglecting spatial variability in the wind speed led to large over- and 
underestimations of GPBT of individual wind turbines. Although offshore wind 
turbines require more building materials (and hence have higher GHG emissions) 
than onshore installations, offshore GPBT are typically lower because of the higher 
wind speeds over sea. The results reflect, however, only a relatively small sample of 
only 80 offshore wind turbine locations; more offshore locations should be included 
to consolidate this conclusion.

Uncertainties. This study showed that it is highly relevant to account for spatio
temporal and technological variation when calculating the GPBT of wind electricity. 
A number of uncertainties may, however, influence the results, which are further 
discussed below.

First, wind farms were treated as a single geographical location, while in reality 
wind farms may occupy large surface areas. The largest farm in the data set (175 
turbines with a diameter of 107 m) covers an area of approximately 56 km2, thus 
covering multiple grid cells in the KNW-Atlas, which could each have a distinct 
wind climatology. However, less than 2% of the wind turbine locations in the data 
set span more than one grid cell and less than 0.6% more than two grid cells. 
Additionally, large wind farms are predominantly located offshore, where wind 
climatology is more stable because of low surface roughness  [121]. Therefore, 
the effect of ignoring the spatial extent of wind farms is considered limited in the 
context of this study.

The power performance of wind turbines can also be influenced by wake effects. 
In a wind farm, downstream turbines are affected by a decrease in wind speed due 
to momentum loss caused by upstream turbines  [134]. Several studies  [121, 135] 
report that power output in wind farms are typically 5 to 10% lower because of 
these wake effects, but losses could be as high as 50% in large farms with narrow 
turbine spacing  [136]. Here, more than 75% of the locations consisted of fewer 
than 4 turbines and only 0.1% of the locations had array sizes exceeding 10 × 10 
turbines. Wake effects therefore are unlikely to influence the GPBT calculations. 
Still, wake effects may become important for other locations in the world and as 
more large wind farms are built in the future.

Another source of uncertainty is that a resolution of 2.5 km is most likely not 
sufficient to capture the local properties of wind speed at the top of mountain 
ranges. The energy yield of a wind turbine at mountain tops is therefore most likely 
underestimated in this analysis. However, with increasing height the air density 
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decreases, which also influences power performance. A recent study by Jung and 
Schindler [137] showed that at a height of 800 m, the highest elevation with wind 
turbines in the study area, annual energy yields are overestimated by 6% when 
changes in air density are not considered. The same error in GPBTs is achieved when 
taking one daily wind speed measure instead of hourly data or changing from a 2.5 
by 2.5 km to a 5 by 5 km grid. While the uncertainty from this simplification is not 
negligible, the 6% error in GPBT from neglecting air density changes is relatively 
small compared to the error introduced by using average wind speeds, as shown 
in the analysis. In areas with even higher elevations, spatiotemporal variance in 
air density should be accounted for because errors in energy yield can otherwise 
amount to up to 25%.

Incorporating more turbine-specific losses can further improve the GPBT 
calculations. Examples are performance decline due to aging, which has been 
reported to lie around 0.6% per year  [138], and losses due to rotor blade soiling 
and/or icing, which are generally assumed to account for 2%, but can in rare cases 
exceed 20% [139].

Finally, a gas-fired power plant was chosen as the background energy system to 
focus the investigation on the effect of changes in wind climatology and turbine 
technology. More advanced reference systems that more precisely reflect what is 
replaced by the produced wind electricity can also be considered, but that would 
require a substantial amount of extra information about the electricity system as a 
whole  [140]. Another possibility to evaluate the environmental trade-offs of wind 
electricity is to integrate the location-specific long-term power output and material 
requirements for wind turbines into integrated assessment models [141].

Outlook. The method presented here can be used to derive the environmental 
performance of current and future individual wind turbines worldwide even when 
limited information on turbine technology is available. Following the developments 
in the wind energy market to build larger wind farms, wake effects should be 
included in the future, and when areas with higher elevation are considered, the 
spatiotemporal variability in air density has to be considered.

Recent studies specifically focused on the energy production potential of wind 
turbines but did not consider environmental impacts such as GPBT  [129, 142, 
143] or use wind climatology that is either not globally available or at coarser 
resolutions. This study indicates that the use of current spatial resolution for global 
climate data archives (e.g., ERA-Interim [123]) of 80 by 80 km introduces a relatively 
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large uncertainty in the power predictions (KGE = 0.18-0.43). A new ERA-suite, 
ERA5 [144], is under development with global climatological data at an hourly and 
30 by 30 km resolution at which the KGE exceeds 0.7.

Therefore, using this method with the new ERA-suite would provide a good 
opportunity for location-specific predictions of the environmental impacts for 
wind turbines at the global scale. The method may also be used to identify optimal 
locations for wind turbines taking into account environmental impacts. The 
results could be incorporated as an extra factor in wind energy potential studies 
for various regions worldwide. In addition to the GPBT, this method can also be 
used to calculate payback times for other environmental impacts, such as water 
and mineral resource scarcity  [145, 146], giving a more complete picture of wind 
turbines’ environmental performances.

This study showed that the GPBT of wind turbines in northwestern Europe varies 
between 1.8 and 22.5 months. Detailed spatiotemporal (at least daily wind speed 
on a 30 by 30 km grid) wind climatology as well as hub height and rotor diameter 
of the wind turbines are required to assess the greenhouse gas payback times of 
wind electricity with sufficient accuracy. The findings imply that a location-specific 
assessment of wind turbines’ GPBTs at the global scale is well within reach with the 
availability of high-resolution reanalysis data sets and wind turbine databases.
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Abstract

While technological characteristics largely determine the greenhouse gas (GHG) 
emissions during the construction of a wind farm and meteorological circumstances 
the actual electricity production, a thorough analysis to quantify the GHG footprint 
variability (in g CO2eq/kWh electricity produced) between wind farms is still lacking 
at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms 
located across the globe, combining turbine-specific technological parameters, 
life cycle inventory data, and location- and temporal-specific meteorological 
information. These wind farms represent 79% of the 651 GW global wind capacity 
installed in 2019. Our results indicate a median GHG footprint for global wind 
electricity of 10 g CO2eq/kWh, ranging from 4 to 56 g CO2eq/kWh (2.5th and 97.5th 
percentiles). Differences in the GHG footprint of wind farms are mainly explained 
by spatial variability in wind speed, followed by whether the wind farm is located 
onshore or offshore, the turbine diameter, and the number of turbines in a wind 
farm. We also provided a metamodel based on these four predictors for users to 
be able to easily obtain a first indication of GHG footprints of new wind farms 
considered. Our results can be used to compare the GHG footprint of wind farms to 
one another and to other sources of electricity in a location-specific manner.
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3.1	 Introduction

In order to limit global warming to 1.5 °C by 2100, a drastic reduction of greenhouse 
gas (GHG) emissions is needed [147]. While there are multiple pathways to achieve 
such a reduction, renewable energy technologies, such as wind energy, are an 
essential part in mitigation GHG emissions. Wind energy is often considered to be 
related to low emissions of air since its operation does not involve the emission 
of large quantities of GHGs and therefore wind energy operates at much lower 
GHG emissions than fossil fuel-based electricity generation technologies  [148]. In 
recent years, wind energy has played an increasingly important role in supplying 
renewable energy, with more than 20% added installed capacity for onshore farms 
and more than 35% added installed capacity offshore between 2000 and 2018 and 
expected annual growth rates exceeding 7% and 11% until 2050  [149]. In 2019, 
the cumulative installed capacity worldwide was 651 GW  [150] generating more 
than 1,400 TWh – roughly 5% of all electricity produced  [151] – and the installed 
capacity could exceed 6,000 GW in 2050 [149].

However, GHG emissions from electricity production with wind turbines are not 
zero, as GHGs are emitted during other life cycle stages, mainly manufacturing of 
wind turbines [59, 152]. To assess the life cycle emissions of electricity production 
with wind turbines, all direct and indirect emissions need to be assessed. 
Expressing the life cycle GHG emissions per unit of electricity production provides 
the so-called GHG footprint (in g CO2eq/kWh) [45], a metric enabling comparing life 
cycle GHG emissions of, among others, various technologies at different locations. 
Several studies report the GHG footprint of wind turbines, often by studying 
only one or a few wind turbines (see Table A-3 in Appendix A for references) or 
by harmonizing the conditions of multiple studies to cover a greater range of 
locations  [58, 153]. These meta-analyses provide excellent insights into the main 
causes of GHG emissions of wind farms but do not show the variation in footprints 
between facilities at the global scale. A number of studies have looked at the GHG 
footprints of wind turbines on a larger scale, however often limited to one or a 
few countries [53, 152] or have not yet taken into account the effect of variation in 
climatology and technology [59].

Here, we quantified the GHG footprint of 26,821 wind farms worldwide, combining 
turbine-specific technological parameters, life cycle inventory data, and location- 
and temporal-specific meteorological information. To this end, we first applied a 
model to predict GHG life cycle emissions of wind turbines, excluding the end-of-life 
phase  [21], using turbine-specific technological information from thewindpower.
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net database  [106]. Electricity production of the wind turbines was estimated by 
combining turbine-specific power curves with meteorological information from 
the ERA5 reanalysis data set  [154] at a 0.25° by 0.25° grid and hourly temporal 
resolution over a standard turbine lifetime of 30 years  [155]. Based on our GHG 
footprint calculations for wind farms at the global scale, we further developed a 
metamodel for users to straightforwardly quantify the GHG footprint of a new wind 
farm, based on a limited number of technological and climatological key variables.

3.2	 Materials and methods

We first describe the calculation of GHG emissions of wind turbine construction 
(section  3.2.1). Section 3.2.2 provides insight into the calculation of the lifetime 
electricity generation of the wind farm. Section 3.2.3 explains the development of 
the metamodel on the basis of the GHG footprints of the individual wind farms.

3.2.1	 GHG emissions of wind turbine construction
The prediction of GHG emission related to wind turbine construction and 
maintenance are based on Dammeier et al.  [21], in which a regression model was 
developed relating GHG emissions per turbine (in kg CO2eq/turbine) to the wind 
turbine's rotor diameter (D; in m), hub height (H; in m) and on- or offshore location 
(O; 0 for onshore, 1 for offshore):

�(3-1)

based on information from 28 wind turbine LCA studies, which were standardized 
by Dammeier et  al.  [21], using the same LCI database (EcoInvent version 3.2) for 
the materials and energy required for the construction of the wind turbines as 
reported in these LCA studies. Maintenance cycles were also standardized in 
Dammeier et  al.  [21]. The model excludes the emissions related to the end-of life 
and grid connection of a turbine. Differences in materials used and construction are 
included implicitly through the use of different LCA studies. In order to calculate 
GHG emissions for a wind farm, GHGturbine is multiplied by the number of turbines in 
a wind farm.

Data on the wind turbine's rotor diameter, hub height, and on- or offshore location 
were derived from thewindpower.net database  [106], which provides data on 
wind farm location and technological turbine characteristics for 31,298 wind farms 
worldwide, consisting of 266,074 wind turbines. For 132 offshore wind farms, 
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information on location was supplemented with updated information from  [106] 
and [156]. Data on both diameter and hub height were complete for 15,684 of the 
wind farms (50%). The 4,609 wind farms were excluded because information on 
location was unavailable. For the other wind farms, information on rotor diameter 
D (n = 5,132) or hub height H (n = 10,336) were lacking. In these cases, other 
turbine-specific parameters, such as nameplate capacity, were used to predict rotor 
diameter and/or hub height (see Appendix A, section A.1). We were able to include 
26,821 (85.7%) wind farms with a total capacity of 523.3 GW in our GHG footprint 
calculations. This is 80% of the 651 GW installed in 2019  [150]. In the supporting 
information (section A.2) we provide per country the installed capacity we were 
able to include in our calculations versus the total installed capacity reported by 
Ritchie and Roser [151] and IRENA [157].

3.2.2	 Electricity generation
Power curves were used to predict net electricity generation of wind turbines (Pturbine in 
kW), which can be described by a logistic function chosen to stay as close as possible 
to the information provided by the manufacturers and which is of the form [158]:

�(3-2)

where Prated is the turbine's nameplate capacity  [MW], vH is the instantaneous 
wind speed at hub height  [m/s], k the logistic growth rate, and b the sigmoid's 
midpoint wind speed. The power curves were fitted to the data provided by the 
manufacturers through the wind farm database using SciPy's curve fit routine [159]. 
The average R2 of the fit for each wind farm with power curve data is 99.6% (ranging 
from 98.6 to 99.9 as the 2.5th and 97.5th percentiles). For the 7,771 wind farms for 
which data on the power curve were not available, the average k of 0.74 (0.58-0.77; 
95% confidence interval) and an average b of 8.58 (7.20-8.82; 95% CI) of the wind 
farms with power curves were used.

Note that below the cut-in wind speed, a wind turbine is not operational. If the 
actual wind speed is higher than the rated wind speed, the wind turbine produces 
at its nameplate capacity up to the cut-off wind speed. Under circumstances that 
the wind speed is above the cut-off wind speed, the turbine is turned off. If this 
type of data were not available for an individual wind farm, the cut-in wind speed 
was set to 3 m/s, the rated wind speed to 13 m/s, and the cut-off wind speed to 
25 m/s, which are the typical cut-in, rated, and cut-off wind speeds of wind farms 
in the data set (see Appendix A, section  A.1 for more information on gap filling). 
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All instantaneous power calculations were added to calculate the total power 
produced by a turbine during its lifetime.

The wind speed at hub height vH [m/s] is calculated from wind speed at 10 m [m/s] 
according to the power law

� (3-3)

with H the hub height in m, air density ρH at hub height in kg/m3, and the wind 
shear exponent α being given through

(3-4)

with v100 the wind speed at 100 m and v10 the wind speed at 10 m. In order to be 
consistent throughout the calculations, the same spatial and temporal resolution 
applied in the other calculations is used here as well.

Often, a standard air density of 1.225 kg/m3 is used when estimating annual 
energy production of wind turbines  [160]. However, air density decreases with 
decreasing temperature and increasing altitude and neglecting air density in power 
production can lead to over- and underestimations of power production of more 
than 20%. Differences increase with increasing wind speed (up until the rated wind 
speed) [160]. Therefore, air density ρ was corrected for temperature and altitude to 
give air density at hub height (ρH [kg/m3]) through

� (3-5)

with pH air pressure at hub height [Pa], TH temperature at hub height [K], and R the 
ideal gas constant of 8.31447 J/mol/K  [137]. Pressure and temperature also vary 
with height, which is further explained in section A.3 of Appendix A.

The location-specific climate data required for the calculations of the wind speed, 
including the wind shear exponent and the air density, has been downloaded from 
ERA5, the most recent and highest-resolution reanalysis data set [144]. Here, hourly 
data over a period of 30 years was used (years 1988 until 2017) for v, T, and p on 
a 0.25° by 0.25° grid, which has recently been shown to provide sufficient spatial 
and temporal details  [21], because a lower temporal resolution can lead to over- 
and underestimations of GHG footprint calculations. For each of these hourly data 
points, the power output is calculated using equation (3-2) and subsequently 
aggregated over the 30 years to give the lifetime power production of the wind 
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farms. We used a typical 30-year life span of a wind turbine, as reported in a recent 
survey carried out in the United States [155].

The so-called wake effects can decrease the net electricity generation Pnet of 
wind farms, because the wind speed downstream of a wind turbine is lower than 
upstream. We included the wake effect in our calculations via:

�(3-6)

The relative reduction in net electricity generation due to wake effects (fw is 
dimensionless between 0 and 1) depends on a wind farm's size according to:

� (3-7)

with Nturbines the number of turbines in the wind farm. The relationship in equation 
(3-7) was derived by extrapolating information on the power loss in different wind 
farm settings given in  [136] (see Appendix A, section  A.4 for more information). 
Here, we assume an average turbine spacing of nine rotor diameters, as we do not 
have location-specific information on turbine spacing. The number of turbines is 
given in thewindpower.net database [106].

3.2.3	 Metamodel
A metamodel was developed to be able to directly approximate the GHG footprint 
of a specific wind farm with a limited number of technological and climatological 
variables. The metamodel was derived with a generalized linear modelling (GLM) 
approach, linking the log-transformed GHG footprints we derived with our detailed 
calculations for the individual wind farms to hub height, rated power, on-/offshore 
location, number of turbines in farm, and the 30-year average 100 m wind speed 
at farm location. Rotor diameter was excluded from the GLM fitting due to high 
covariance with other wind turbine characteristics, that is, a variation inflation 
factor of higher than five. The metamodel was built with data from the 15,684 wind 
farms for which all relevant turbine-specific data were reported. The best model 
was chosen based on the Akaike information criterion (AIC). Variable importance 
in the metamodel was assessed by predictor randomization. Every predictor was 
randomized in turn and the model was rebuilt, after which the R2 of the rebuilt 
models are compared. The bigger the drop in R2, the more important a predictor. 
For the best model, partial dependency plots were created, which show how each 
predictor affects the GHG footprint. More information on the metamodel can be 
found in Appendix A, section A.5.
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3.3	 Results

We show the GHG footprint of the global wind farm fleet (section  3.3.1) and the 
results of the metamodel development (section 3.3.2).

3.3.1	 Greenhouse gas footprint
Figure 3-1 maps the individual GHG footprints of the global wind farm fleet, with a 
median of 10 g CO2eq/kWh and a range of 4-56 g CO2eq/kWh [2.5-97.5% interval]. 
Maps of the GHG footprints per continent can be found in Appendix A, section A.6. 
We found relatively low GHG footprints along the coast and offshore, while higher 
footprints are typically found further inland. While the GHG footprint ranges can 
vary, with Africa and Asia showing larger ranges than America, Europe, and Oceania, 
the median does not vary greatly between continents (Figure 3-2).

The wind farms included here have an average calculated capacity factor of 24% 
ranging from 2% to 70% (2.5th to 97.5th percentiles), with more detail provided in 
section A.7 of Appendix A.

The results from our study are in line with what previous studies on individual 
turbines have found, in which footprints range from 3.6 to 46 g CO2eq/kWh (see 
Table A-3 in Appendix A for reference) (Figure 3-3).

Figure 3-1 Greenhouse gas footprints of the individual wind farms in CO2eq/kWh of the global wind 
farm fleet. Underlying data for Figure 3-1 can be found in Supporting Information S2.
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Figure 3-2 Greenhouse gas footprints grouped by continent. The white line is the median, the box the 
25th to 75th percentile, and the whisker the 2.5th to 97.5th percentile. Underlying data for Figure 3-2 can 
be found in Supporting Information S2.

Figure 3-3 Greenhouse gas footprint ranges of our study compared to values found in literature (see 
Table A-3 of Appendix A for details). The orange line is the median, the box the 25th to 75th percentile, and 
the whisker the 2.5th to 97.5th percentile. Underlying data for the results from this study in Figure 3-3 can 
be found in Supporting Information S2. Data from the literature can be found in Table A-3 of Appendix A.

3.3.2	 Metamodel
The best model based on the AIC is

� (3-8)

vavg is the 30-year average wind speed at 100 m  [m/s], Prated the turbine's rated 
power  [kW], H the turbine's hub height  [m], Nt the number of turbines in a wind 
farm, and O is a categorical variable denoting either onshore (0) or offshore (1) 
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wind farms. This means that GHG footprints decrease with increasing average 
wind speed, capacity, and hub height and increase with increasing number of 
turbines and offshore location. The model's R2 is 0.85 with a residual standard 
error (RSE) of 0.10. The RSE of 0.1 implies that 95% of the GHG footprint estimates 
of the metamodel fall within a factor of ±1.6 of the more detailed GHG footprint 
calculations with hourly time steps.

Figure 3-4 Importance of predictors of greenhouse gas footprints after rebuilding the model 
with randomized variables. A bigger reduction of R2 means that the variable is more important. R2 
reductions are 0.015 for the number of turbines, 0.018 for the rated power, 0.020 for the hub height. 
0.067 for on-/offshore, and 0.802 for average wind speed.

Figure 3-4 shows the effect of randomization on the R2. Randomizing the average 
wind speed leads to the biggest reduction in R2, which means that it is the most 
important predictor of wind farms' GHG footprints, followed by whether a 
farm is located on- or offshore. Hence, an increase of the average wind speed of 
1 m/s would lead to a factor 1.6 decrease in the log of the GHG footprint, while 
changing from on- to offshore would lead to a factor 2.1 decrease in the log of 
the GHG footprint. Similarly, Figure 3-5 shows the effect of each variable on the 
GHG footprint of wind farms. The effect is shown for on- and offshore wind farms 
separately. A bigger change means that the variable is more important, and the 
figure  also shows the direction of change in GHG footprint related to a variable. 
Higher wind speeds result in lower footprints while more turbines lead to higher 
GHG footprints.
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Figure 3-5 Partial dependency plots showing the effect of each variable on the greenhouse gas (GHG) 
footprint of wind farms. A bigger change in GHG footprint means that the variable is more important. 
(a) Average wind speed at 100 m in m/s. (b) Number of turbines. (c) Hub height in m. (d) Rated power 
per turbine in MW. Underlying data for Figure 3-5 can be found in Supporting Information S2.

3.4	 Discussion

We first discuss the GHG emissions of wind turbines (section 3.4.1) and section 3.4.2 
discusses the factors influencing the electricity generation calculations.

3.4.1	 GHG emissions of wind turbines
The model to predict the life cycle GHG emissions of the production of a wind 
turbine, based on a limited number of technological characteristics, has been 
developed in an earlier study  [21]. While 78% of the wind farms evaluated in 
our study have a hub height and rotor diameter that fall within the limits of the 
turbines used to build the regression model (see Appendix A, section A.9), further 
improvements in the model can be considered by expanding the LCA data set 
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with smaller and bigger turbines to further increase the applicability domain. With 
a larger data set, other predictor variables, such as more detailed information on 
wind turbine type, can be considered as well in the regression model development. 
Furthermore, our model includes major life cycle stages of wind turbines but does 
not take into account emissions that occur during a wind turbine's end-of-life. 
While most materials can be recycled, the end-of-life of turbine blades is a pending 
point of discussion as no common recycling method is available yet [161]. Also, the 
grid connection is not included in the analysis, which can be especially important 
in offshore wind farms [52]. Future studies could incorporate these aspects as well, 
to make the model more complete. Furthermore, it would be interesting to see the 
effect of energy storage, which will likely be needed as the share of wind energy in 
the electricity mix increases, on the GHG footprint of wind farms [162].

To understand possible consequences of gap filling, we compared the GHG 
footprint ranges of the group of wind farms for which all information was complete 
to the group for which at least one variable was estimated. The results can be seen 
in Figure A-9 of Appendix A, which shows that there are no systematic differences 
between the GHG footprints of wind farms for which all information was available 
and those for which information had to be derived via gap filling.

3.4.2	 Electricity generation
An important factor in GHG footprint calculations is the amount of electricity 
generated by a wind turbine. To verify electricity production estimates, we compare 
our results with empirical electricity production data at the level of individual wind 
farms for the United States of America and Denmark (see Figure 3-6). These two 
countries provide long-term electricity production data for which comparison on 
a wind farm by wind farm basis was possible. We obtained empirical electricity 
production data from wind farms in the United States for the period 2001 through 
2017 [163]. We included empirical data from 657 wind farms in the United States that 
could be matched to wind farms in our database, based on specific name and state. 
On average, electricity production reported by the EIA was 1.15 higher than the 
yearly average electricity production we calculated over the 17 years time period, 
with extremes ranging from 0.64 times our calculated yearly average electricity 
production to 4.80 times that [2.5th and 97.5th percentile range]. This relatively large 
range could in part be caused because matching is solely done on name and state, 
but additional information on capacity and technology was unavailable. We also 
compared our yearly average electricity production estimates of 1,724 wind farms 
with empirical data for the Danish wind farm fleet  [164], using data from 1988 to 
2017. The reported electricity production was, on average, 0.78 times our estimated 
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electricity production for the Danish farms over a period of 30 years (with 0.45 and 
1.17 the 2.5th-97.5th percentiles) (see section 3.3 for more details).

Figure 3-6 The boxplot shows the ratios of calculated versus reported electricity generation for the 
United States and Denmark. The orange line is the median, the box the 25th to 75th percentile, and 
the whisker the 2.5th to 97.5th percentile. Underlying data for Figure 3-6 can be found in Supporting 
Information S2.

This comparison shows that, although our electricity estimates are generally 
in line with empirical observations, they are not without uncertainty. First, a 
logistic function was used to calculate the power curve. Recent developments 
have shown that power curves can also be derived using process-based model 
approaches  [165]. It could be interesting to evaluate whether alternative power 
curves are able to further improve the prediction of electricity production of a 
large range of wind turbines. Second, we used the ERA5 climate data which has 
the highest-resolution reanalysis data available on a global scale, with hourly time 
steps and 0.25 × 0.25°spatial resolution. There are uncertainties in the ERA5 wind 
data, such as incidental very high wind speeds at some locations [166] – at which 
our data set shows that no wind farms are present, and difficulties to capture the 
variations in wind speed in more complex terrain [167]. Despite these uncertainties, 
Ramon et al. [168] have shown that the ERA5 near-surface wind data set is the best 
global reanalysis data set available to provide wind speed at hub height. Due to 
their relative coarse resolution, reanalyses have difficulties to adequately represent 
local climatic conditions  [169]. As electricity production depends on the cube of 
the wind speed, small biases in wind speed data have a large effect on electricity 
production estimations and hence the GHG footprint. Applying bias correction 
using more detailed spatial information does not improve results significantly [169] 
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and the ERA-5 reanalysis data used here has been found to be better at estimating 
electricity production from wind, in a country-wise comparison as well as on a per-
turbine basis, than other global data sets, such as MERRA-2 [167, 169]. When wind 
speed is overestimated, the GHG footprint is underestimated and vice versa. Efforts 
have been made to derive country-wise correction factors to apply to reanalysis 
data so that the country-wide electricity production better matches historic 
production [170]. Applying such a country-wide correction factor to our wind farm-
specific data would however lead to over- or underestimations of production where 
our calculations match reported production and therefore not improve overall 
results. Furthermore, we accounted for the wind turbine wake effect in a simplified 
manner. Findings of previous studies vary, but generally wake effects depend on 
atmospheric stability and the distance between turbines and between wind farms. 
Here, turbines have been assumed to be placed at a distance of 9 diameters, which 
is slightly higher than the often seen 7 diameters (see section A.4 for more details). 
However, wind parks are not usually built in a square but have a larger front facing 
the main wind direction with varying spacing between cross- and downwind 
direction  [171]. To counteract this effect, we assume a larger turbine spacing. If 
turbines are placed closer together, power production will decrease [136]. Placing 
turbines at 5 diameters distance instead of 9 diameters in a 10 by 10 array reduces 
the efficiency to 70% instead of 86%. In larger arrays, the effect thus becomes more 
pronounced. A higher wake effect thus results in lower electricity generation and 
therefore higher GHG footprints. Finally, the electricity generation of a wind turbine 
is directly dependent on its lifetime. Here, we assume a lifetime of 30 years, which 
is representative for recent turbines [155], but in the past shorter lifetimes of 20 to 
25 years have been assumed  [59, 172, 173]. A shorter lifetime increases the GHG 
footprint because less electricity is produced.

3.5	 Conclusions

The GHG footprint of the global wind farm fleet has been calculated in a location-
specific manner ranging 1.1 orders of magnitude  [2.5th-97.5th range] between 
individual wind farms. Our metamodel showed that the GHG footprint of electricity 
produced by a specific wind farm can be approximated by a limited number of 
technological and meteorological variables. The variation in GHG footprint of wind 
electricity was mostly explained by the variation in wind speed across different 
locations. The metamodel developed can also be used to calculate the GHG 
footprint of new wind farms and to straightforwardly derive potential well-suited 
locations for these new wind farms. Furthermore, our results can also be used to 
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compare the GHG footprint of wind farms to one another and to other sources of 
electricity in a location-specific manner. Finally, the method described here can be 
extended to other impact categories, to identify potential environmental trade-offs 
of placing wind farms in certain locations.
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Abstract

Technological characteristics and meteorological conditions are major 
determinants of the greenhouse gas (GHG) footprints of photovoltaic facilities. By 
accounting for technological and meteorological differences, we quantified the 
GHG footprints of 9,992 utility-scale photovoltaic facilities worldwide. We obtained 
a median greenhouse gas footprint of 58.7 g CO2eq/kWh, with a 3-fold spread 
(28.2-94.6 g CO2eq/kWh, 2.5th and 97.5th percentiles). Differences in panel type 
appeared to be the most important determinant of variability in the GHG footprint, 
followed by irradiation and a facility’s age. We also provided a metamodel based on 
these three predictors for users to determine the facility-specific greenhouse gas 
footprint. The total cumulative electricity produced by the utility-scale photovoltaic 
fleet worldwide is 457 TWh/yr, 99.6% of which is produced at footprints below  
100 g CO2eq/kWh. Compared to earlier studies, the footprints we computed of 
global utility-scale facilities show a relatively large spread. In order to further 
improve the accuracy of facility-specific footprints, more information on panel type 
as well as production country is required.
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4.1	 Introduction

Photovoltaic solar power (PV) is an important source of renewable energy, 
producing electricity at much lower greenhouse gas (GHG) emissions than 
conventional fossil-based technologies [174]. By 2019, global PV capacity reached 
580 GW [175] and generated ~720 TWh of electricity, roughly 3% of current global 
electricity production [176]. PV is now the third-largest renewable electricity source 
after hydropower and onshore wind [177], and its share is growing rapidly, with a 
potential 877 GW added by 2024, accounting for 60% of the expected growth of all 
renewables [176].

Various studies have investigated how life cycle GHG emissions of PV compare 
to emissions from fossil-based electricity sources. One approach in such studies 
is to perform a meta-analysis by gathering case studies reported in literature 
and harmonize their findings to represent standardized system boundaries for 
irradiation, lifetime, performance ratio and/or module efficiency [54 - 57]. The GHG 
footprints in these papers, expressed as life cycle GHG emissions per unit of electricity 
produced, range from ~14 to 82 g CO2eq/kWh under harmonized conditions, 
with the greatest source of variation being the type of panel  [56, 59, 60, 61].  
Typically, thin film panels such as cadmium telluride, copper indium gallium 
diselenide and amorphous silicon have lower GHG footprints than mono- and poly-
crystalline silicon panels.

Meta-analyses provide insights in the sources of life cycle GHG emissions related 
to PV, but because of the harmonization process they do not show how footprints 
can vary in reality. Location of installation determines the amount of irradiation 
received by the panels, and location of production determines the GHG emissions 
during manufacturing, both important factors in the PV GHG footprints  [60, 62,  
63, 64, 67]. Furthermore, intra-type variation in module efficiency, type of 
mounting system, lifetime, degradation and capacity can explain variations in PV 
GHG footprints [54, 65, 66, 68 - 71]. With higher irradiation, for instance, footprints 
reduce due to higher electricity production [54, 60, 62 - 66]. Spatial differences in 
environmental footprints of PV are assessed by Louwen et al.  [72] for rooftop PV 
in Eurasia and Africa, Ito et al. [73] for two sites in France and Morocco, and Pérez-
López et al.  [74], Perez-Lopez et al.  [75] for utility-scale PV globally. These studies 
indicate that GHG footprints of PV vary significantly with location. Placing a PV 
facility at a location with high irradiation can reduce the GHG footprint by up to 
~75%  [72], and even within a country such as France choosing a location with 
higher irradiation can reduce the footprint by ~25% [74]. While providing valuable 
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insights into the geographic variation of PV footprints, these studies do not use 
data on the actual fleet of PV facilities and therefore cannot assess the footprint of 
actual PV electricity.

Here, we quantified life cycle GHG footprints of the global utility-scale PV fleet, 
including ~10,000 facilities. With these GHG footprints we derived GHG emission-
electricity supply curves for the PV fleet and built a regression model to analyse 
which technological and/or climatological variables are most important for 
determining the GHG footprint. In addition, this regression model can be used for 
quick estimation of GHG footprints of PV. We use 30 years of the most recent high-
resolution climate reanalysis dataset ERA5  [144] at ~0.25° spatial and hourly time 
resolution, as well as a global dataset on facility-specific location and technological 
characteristics of existing and planned utility-scale facilities, combined with 
regionalized life cycle inventory data for PV production.

4.2	 Materials and methods

4.2.1	 GHG footprint
We compute the GHG environmental footprint EFGHG as impact I per unit of electric 
power P:

� (4-1)

where we consider life cycle impact I in g CO2eq, and lifetime electricity output P 
of a PV facility in kWh. For a location-specific EF, we use a dataset of 9,992 utility-
scale photovoltaic parks across the globe (see section 4.2.2), market shares by 
origin countries per continent  [178] and production location-specific impact I  
(this section), as well as a high-resolution global climate reanalysis dataset  
(see section 4.2.3). Figure 4-1 provides an overview of our methods.
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Figure 4-1 Overview of methods. Blue boxes refer to facility-specific technological characteristics 
(section 4.2.2), mainly from Wiki-Solar, the red box refers to input from the ERA5 climate reanalysis 
dataset (section 4.2.3). The equations refer to the computations described in section 4.2.1.

Life cycle greenhouse gas emissions, or impact I in equation (4-1), are derived using 
market shares by origin countries per continent  [178] and production location-
specific impact (see Appendix B section B.2 for further details) and a facility’s panel 
surface area:

�(4-2)

with surface area A (m2) depending on a facility’s capacity and efficiency:

�(4-3)

following Bhandari et al.  [56]. Capacity in Wp is available from the Wiki-Solar 
dataset (‘Wp’ for Watt-peak, indicating direct current output under standard testing 
conditions), rsdsSTC is surface downward solar radiation under standard testing 
conditions (1,000 Wm−2) and η is panel efficiency (as a fraction of solar radiation 
that the panel can convert into electricity). η depends on panel type and year, 
following Chen et al. [179], see Appendix B section B.1.

We derived for each panel type considered (mono-crystalline silicon, poly-
crystalline silicon, amorphous silicon, cadmium telluride and copper indium 
(gallium) diselenide life cycle GHG emissions (Im

2) representing a continent-specific 
weighted average of production countries, as data on the production location for 
each individual facility is unavailable. Market shares by producing countries per 
continent are obtained from Absolute Reports  [178]. We use 2016 market shares 
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for current facilities, and 2019 market shares for planned facilities. Type-specific 
impacts per producing country (China, EU, US, Malaysia and Korea) are obtained 
from literature (see Appendix B Table B-3).

Besides the impacts per m2 of panel, a PV facility’s impact derives from the so-called 
‘balance of systems’ (BOS). The BOS includes the mounting system, wiring and 
inverters [54]. Here we use EcoInvent 3.5 values per m2 of open ground mounting 
system as well as the impacts of inverters and electrical installation per unit 
capacity, independent of panel type and production location.

For more detail on life cycle GHG emissions, see Appendix B section B.2.

The electricity output of a PV facility depends on multiple variables, including the 
panel type, irradiation and temperature. Here we follow the PV power computations 
of Jerez et al. [180], based on Mavromatakis et al. [181]. Jerez et al. [180] define the 
PV power generation potential PVpot, a dimensionless magnitude accounting for 
the performance of a PV cell with respect to the power capacity (here expressed 
in MWac, obtained from the WikiSolar database). PVpot depends on radiation rad 
and cell temperature Tcell, the latter depending on air temperature, radiation and 
wind  [30] as well as panel type. We furthermore account for losses due to panel 
degradation. In short, the instantaneous PV power production provided to the grid 
(in alternating current) is given by:

� (4-4)

For PVpot we use the location-specific hourly ERA5 climate variables for 1988-2017 
(see section 4.2.3), thus obtaining a power output representative of current climate. 
Loss ratio floss is applied to account for panel degradation and is set to 0.899, 
representing a loss of 0.7%/yr over a 30-years lifetime [74, 182]. A 30-year lifetime is 
assumed to be representative of modern PV [182]. The full equations for computing 
generated electricity are given in Appendix B section B.3.

4.2.2	 Facility-specific technology and location data
To compute facility-specific impact I and power output P, we need to know a 
facility’s age (construction year), panel type, capacity and location-specific climate 
variables (see Figure 4-1). We use the Wiki-Solar dataset (http://wiki-solar.org) 
which provides technological characteristics of utility-scale PV projects around the 
globe, with a minimum, median and maximum capacity of 3, 10 and 3,000 MWp. 
Wiki-Solar includes 10,268 PV facilities, of which 9,992 with a known location. 7,982 
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facilities are operating or were in late stages of construction at the time of data-
gathering (2019) and 2,010 are planned. The median construction year is 2016. The 
total capacity in these 9,992 facilities is 367 GWp. Figure 4-2 shows the location and 
capacities of all facilities.

Figure 4-2 Location (map) and histogram (inset) of capacity, in MWp, available from the Wiki-Solar 
database for currently operating facilities (top) and planned facilities (bottom). The red dashed line in 
the histogram indicates the median capacity.

The Wiki-Solar dataset provides information on the panel type for 1,249 out of 
9,992 facilities. We consider the five most common types  [183]; mono-crystalline 
silicon, poly-crystalline silicon, amorphous silicon, cadmium telluride and copper 
indium (gallium) diselenide. To increase the number of facilities with known panel 
type, we gathered extra information from PV suppliers in Wiki-Solar as well as US 
EIA and GEO datasets  [184, 185]. We found specific panel types for 99 additional 
facilities and narrowed the panel type to either crystalline or thin film for 1,443 and 
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17 facilities, respectively. Where a specific type is unknown, we computed the GHG 
footprint for the two crystalline types in case of crystalline panels, the three thin 
film types in case of thin film panels, or all five types where no information on panel 
type was found. The results represent an average footprint of these types weighted 
by 2016 production data for current facilities and 2019 production data for planned 
facilities (see Appendix B Table B-2). As described above in section 4.2.1, results also 
represent a continent-specific weighted average of Ipanel by production countries.

For capacity, Wiki-Solar provides both MWac and MWp for 2,046 facilities. For these 
facilities, the median performance ratio (PR = MWac/MWp) is 0.8, which is also the 
IEA recommended value  [182]. For all remaining facilities, either MWac or MWp is 
given, and the PR value of 0.8 is used to derive the missing MWac or MWp.

For more detail on the Wiki-Solar dataset and gap filling, see Appendix B section B.1 
(available online at https://stacks.iop.org/ERL/16/094056/mmedia).

4.2.3	 Climate data
For power output computation, we use the most recent and highest-resolution 
global re-analysis dataset representing current climate at 0.25° × 0.25° (roughly 
30 × 30 km at equator)  [144], obtained through the Copernicus Climate Change 
Service [186]. Hourly resolution allows us to include the daily cycle of radiation as 
well as temporal variation in cell efficiency due to cell temperature (including air 
temperature, radiation and wind) see Appendix B section B.3  [187]. Hourly data 
gives improved estimates of PV power generation compared to lower-resolution 
data [188] (for more detail see Appendix B section B.4).

4.2.4	 GHG emission—supply curves
To create GHG emission—supply curves, we ordered all 9,992 by their GHG footprint 
and computed the cumulative power production. Furthermore, we applied a 
bootstrapping technique to determine the uncertainty introduced by panel type, 
which is unknown for a large number of facilities. Instead of using weighted 
footprints at facilities where panel is unknown, we created 10,000 instances of our 
dataset, where each time a facility’s footprint (if unknown) is set to that of one of 
the panel types, selected using 2016 (2019) production data as weights for current 
(planned) facilities (Fraunhofer ISE  [183], also used in the weighted footprints in 
section 4.3.1). 2016 is the median construction year for facilities with unknown type 
in the Wiki-Solar database, 2019 is the latest year for which type-specific production 
data is available (see Appendix B Table B-2).
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4.2.5	 Regression analyses
After computing the GHG footprint for utility-scale PV facilities, we created a linear 
regression model to help determine which of the predictors we take into account 
(age, panel type, capacity and location-specific climate variables, see Figure 4-1) 
explains most of the variance in EFGHG. We build this model on the 1,348 facilities for 
which panel type is known. Note that we cannot currently take production location 
into account in this regression, as facility-specific production location is unknown 
(instead we used continent-specific weighted averages of production countries 
based on market shares). For the climate variables, we use location-specific 30-year 
mean day-time irradiation I, temperature T and wind speed u as well as coefficient 
of variation (CV) for each variable to represent intra-year variation (see Appendix B 
equation (B-7)). The correlation matrix of the predictors (supplementary Figure B-1)  
shows that there are no significant correlations between the variables, and the 
variance inflation factors (vifs) are all below 5. Capacity is log-transformed because 
its distribution is right-skewed. We also log-transformed the response variable 
(EFGHG). The model includes the interaction between panel type and construction 
year, because these together determine efficiency η used in the life cycle GHG 
emissions (equation (4-3), Appendix B section B.1).

After determining the best model, based on the Akaike Information Criterion, 
we assess the importance of each predictor using predictor randomization. Each 
predictor is randomized in turn, after which the model is re-built. The larger the drop 
in the model’s R2, the more important a predictor is. Results are shown in section 4.3 
and more details on the regression model can be found in Appendix B section B.5.

4.3	 Results

4.3.1	 GHG footprints
The GHG footprint of all PV facilities is 58.7 (28.2-94.6) g CO2eq/kWh (median, 2.5%-
97.5% quantiles). 9,810 out of the 9,992 facilities (98.2%) have a GHG footprint below 
100 g CO2eq/kWh. Figure 4-3 shows that the spatial pattern is mostly dominated 
by latitude, with facilities at higher latitudes having higher GHG footprints due to 
lower irradiation and electricity output. The latitudinal pattern also emerges by 
looking at GHG footprints per continent (boxplots in Figure 4-3); Europe has the 
highest footprint, with a median EFGHG of 76.9 (46.1-112.2) g CO2eq/kWh (based 
on current and planned facilities combined). Lowest footprints are found in low-
latitude continents; South America (45.4  [30.6-62.3] g CO2eq/kWh) and Africa 
(49.1 [31.5-61.0] g CO2eq/kWh).
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Figure 4-3 GHG footprint in g CO2eq/kWh for currently operating (top) and planned (bottom) facilities. 
The boxplots show the median (red line), 25th and 75th percentile (blue box) as well as the 2.5th and 
97.5th percentile (whiskers) of the footprints per continent (Afr: Africa, Asia, Eur: Europe, N Am: North 
America, S Am: South America, Oce: Oceania). The footprints reflect those of the panel type where 
known, and that of a weighted average of types based on 2016 and 2019 production data where panel 
type is not (fully) known (see Appendix B section B.1). They furthermore reflect continent-specific 
weighted averages of impacts from various production countries (see Appendix B section B.2).

Besides latitude, panel type also has a great influence on EFGHG. As a sensitivity analysis, 
we assessed the non-weighted footprints of the 7,148 facilities of unknown type, for 
which footprints were computed for all five types, across types and continents. This 
indicates that panel type can have a larger effect on GHG footprints than location 
of installation; choosing cadmium telluride in Europe can result in lower footprints 
(35.9  [23.0-51.7] g CO2eq/kWh) than choosing mono-crystalline panels in South 
America (57.9  [44.0-74.7] g CO2eq/kWh), despite facilities in South America receiving 
much higher irradiation than those in Europe (2,165 vs 1,135 kWh/m/yr, median values).

Differentiating between operating and planned facilities indicates slightly lower 
footprints for current facilities (58.4  [27.1-93.3] g CO2eq/kWh) compared to planned 
facilities (60.1  [38.4-95.6] g CO2eq/kWh). This increase occurs despite an increase in 
panel efficiency, which causes lower footprints for newer facilities of all individual 
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panel types. However, across all facilities, the increase in market share of mono-Si 
panels (see Appendix B Table B-2), which have the highest impacts of all panel types, 
causes footprints to increase. Also, in Europe a higher share of planned facilities is 
produced in China, further increasing EFGHG. In North America the opposite happens; 
footprints drop as imports shift from China to production locations with lower impacts.

4.3.2	 GHG emission – supply curves
The GHG emission supply curves show that all facilities together produce 457 TWh/
yr with a maximum GHG footprint of 138 g CO2eq/kWh. The majority of power, 455 
TWh/yr (99.6%), is produced with a footprint below 100 g CO2eq/kWh, in 9,810 
facilities. 262 TWh/yr is produced by current facilities (see Figure 4-4a)), and 194 
TWh/yr by planned facilities (see Figure 4-4b)). For current facilities, 7,818 out 
of 7,934 facilities (97.9%) have a footprint below 100 g CO2eq/kWh. For planned 
facilities, 1,992 out of 2,010 (99.1%) have a footprint below 100 g CO2eq/kWh.

Figure 4-4 Cumulative power production (TWh/yr, y-axis) versus GHG footprint (g CO2eq/kWh, x-axis), 
for current (a) and planned (b) facilities. The bootstrapping technique described in the text (Materials 
and Methods section 4.2.4) was used to determine the 2.5th and 97.5th percentile and median footprint 
at very 2 TWh/yr power production. The plots extend to the median values of the maximum power and 
the maximum EFGHG of each bootstrap.

Furthermore, by applying a bootstrapping technique we find that for current 
facilities, uncertainty in panel type does not have a strong effect on the GHG 
emission-supply curve (see Figure 4-4a)). The spread induced by unknown panel 
types (difference between the 2.5th and 97.5th percentiles) is less than 5 g CO2eq/kWh 
and is highest at low footprints (~10%). Near total cumulative production the 
spread reduces to ~1%. For planned facilities, the spread is larger (see Figure 4-4b)), 
because a large part of these facilities (94.0%) has an unknown panel type. At low 
footprints the spread reaches 50%, or 11 g CO2eq/kWh. The spread reduces to ~5% 
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in the upper regions of the emission-supply curve and reduces further towards the 
total cumulative production.

4.3.3	 Regression analyses
The best linear regression model to fit the EFGHG, based on the facility-specific 
predictors we take into account, is

� (4-5)

where βtype and βY−type have a type-specific value, because PV panel type is a 
categorical variable. βtype is −48.85 for mono-Si, −48.62 for poly-Si, −13.07 for CdTe, 
−51.28 for CI(G)S and 0 for a-Si. βY−type is 0.02435 for mono-Si, 0.02416 for poly-Si, 
0.006379 for CdTe, 0.02543 for CI(G)S and 0 for a-Si. The model’s R2 is 0.9868, see 
Appendix B Figure B-2. Year should be given in absolute value (i.e. 2009, 2017), 
irradiation Imean in kWh/m2/yr, daytime temperature Tmean in °C, and daytime wind 
speed umean in m/s, ICV as a fraction (see Appendix B section B.5).

The fact that equation (4-5) does not include capacity and variation in temperature 
and wind indicates that these are not important predictors of EFGHG (see Appendix 
B section B.5). Randomizing each predictor in equation (4-5) in turn indicates that 
PV type is the most important predictor, as the change in R2 is largest, followed by 
mean irradiation (see Figure 4-5). Year, or age of facility (used together with panel 
type to determine panel efficiency), is the third most important predictor of EFGHG.

This regression model and importance analyses thus indicates that with only panel 
type, yearly irradiation and age of a facility, data which should easily be available 
to a user interested in a specific PV facility, one can quickly make an estimate of 
the GHG footprint, representing a globally weighted average for PV-producing 
countries across the world. Reducing the regression model to these three predictors 
results in the following metamodel:

� (4-6)

where βtype is −12.68 for CdTe, -49.43 for CI(G)S, -48.87 for mono-Si, -47.63 for poly-Si 
and 0 for a-Si. βY−type is 0.006182 for CdTe, 0.02451 for CI(G)S, 0.02436 for mono-Si, 
0.02367 for poly-Si and 0 for a-Si. Year should be given in absolute value (i.e. 2009, 
2017), irradiation Imean in kWh/m2/yr. This model has an R2 of 0.9862, very close to 
the best model with R2 = 0.9868.
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Figure 4-5 Importance of predictors of EFGHG. The change in R2 is computed by the R2 of the original 
model (equation (4-5)) minus the equation (4-5) if that specific predictor is randomized.

4.4	 Discussion

4.4.1	 Interpretation
Our study confirms that photovoltaic solar power can produce electricity at much 
lower GHG footprints than fossil fuel, which has footprints in the range of 710-950 g  
CO2eq/kWh for coal or 410-650 g CO2eq/kWh for gas. When carbon capture and 
storage (CCS) is considered, the majority of the fossil-based electricity still has a 
higher footprint than PV (70-290 g CO2eq/kWh) [59, 174].

Compared to published studies or meta-analyses, our footprints are on the same 
order of magnitude but are generally higher (Figure 4-6). Our range is often larger 
than that reported in other studies, because we consider a large range of system 
boundaries such as irradiation and age (efficiency). Some studies also consider a 
range of system boundaries; see Appendix B Table B-8 to Table B-11 for parameters 
used in the literature discussed here and shown in Figure 4-6. Similar ranges of EFGHG 
are reported by Ludin et al.  [71]. For poly-Si and CdTe they even extend slightly 
above our values, which could be related to including lower panel efficiencies and 
shorter lifetimes. Leccisi et al. [60] also report a range of footprints, representing a 
range of irradiation similar to ours, as well as production countries. Their lower GHG 
footprints could be related to higher panel efficiencies (compared to our median 
values) as well as relatively low impacts I. However, other studies with lower panel 
efficiencies (such as Hertwich et al.  [59], Bergesen et al.  [68] for CdTe and CI(G)S) 
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also report lower GHG footprints, with similar lifetimes and irradiation, likely related 
to different boundary conditions, inventory data or assessment methods. Nian [62] 
report a similar range, across a similar range of irradiation. High efficiencies may 
explain why their footprints are overall lower. See Appendix B section B.6 for more 
details on comparing our footprints to those in literature.

Figure 4-6 Reported GHG footprints of PV electricity in literature compared to ours (Bos, for Bosmans 
et al.). Ber: Bergesen et al.  [68], Bey: Beylot et al.  [69], Her: Hertwich et al.  [59], Hou: Hou et al.  [63], 
Hsu: Hsu et al.  [54], Ito: Ito et al.  [73], Kim: Kim et al.  [61], K14: Kim et al.  [189], Lec: Leccisi et al.  [60], 
Lud: Ludin et al. [71], Mil: Miller et al. [64], Nia: Nian [62], Wet: Wetzel and Borchers [66], dWS: de Wild-
Scholten [190], Yao: Yao et al.  [191], Yue: Yue et al.  [192]. From our study (Bos) we report the median 
(white line and 2.5-97.5th percentile (bar extent), based on the subset of facilities where panel type 
is known (450 facilities with mono-Si, 402 with poly-Si, 416 with CdTe, 73 with Ci(G)S, 43 with a-Si). 
Appendix B section B.6 and Table B-8 to Table B-11 give an overview of system boundaries used in 
the studies represented here. Note that the poly-Si footprints of Yao et al. [191] are beyond the range 
shown here (cropped for visibility).
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4.4.2	 Production location
One important source of variability in PV environmental footprints, and in different 
footprints reported in literature, is the location where the panels are produced. 
Several studies compare footprints of PV produced in different locations, mostly 
due to different background electricity mixes [60, 62, 64, 70, 75, 190, 193, 194, 195]. 
Furthermore, changes in manufacturing efficiencies and/or import of materials can 
affect the impacts and footprints for a single production location [63, 64, 67, 191, 
192]. Of all studies providing footprints (shown in Figure 4-6) and/or impact I we 
summarized the system boundaries, including production location if provided, in 
Appendix B Table B-8 to Table B-11 (see also Appendix B section B.6). A large range 
of impact I is shown, often related to production location. Locations (countries) 
with a low GHG background electricity mix such as France or Germany are typically 
associated with low GHG emissions during production (impact I), while countries 
with electricity mixes strongly based on e.g. coal, such as China, typically have the 
highest GHG life cycle emissions. Even for one production country a large range of 
emissions is reported; for instance, for poly-Si from China Leccisi et al.  [60] report 
165 kg CO2eq/m2 while Grant et al. [195] report 519 kg CO2eq/m2.

The exact impact I, and subsequently the GHG footprint, thus strongly depends 
on the production location as well as the chosen system boundaries, life cycle 
inventories, impact assessment methods etc.  [67]. We included variation in 
production location by using continent-specific weighted averages of the most 
important production countries based on market shares but acknowledge that 
in order to derive facility-specific footprints, more information on facility-specific 
supply chains is necessary.

Note that we did not include variation in BOS production location. Nian  [62] 
report variation in impacts I and footprints for both panels and BOS, showing that 
changing production location for BOS has an effect, but the effect of changing panel 
production location is larger. Overall, the impacts associated with panels are larger 
than the impacts associated with BOS, particularly for crystalline panels [67, 189].

4.4.3	 Limitations
A number of assumptions and uncertainties may influence our results.

Some of the input (Figure 4-1) was unknown, particularly for panel type. Our results 
as well as those of others [60, 74] indicate that panel type is an important predictor 
of EFGHG. We used an average footprint if type is unknown, weighted by production 
values of the five most common types considered, which we believe results in a 
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representative variation of EFGHG of global PV electricity production. Also, the global 
emission-supply curve is not strongly affected by uncertainty in panel type. Having 
more data on panel type will however reduce the uncertainty in facility-specific EFGHG.

When computing life cycle GHG emissions (I in equation (4-1)), we did not include 
facility-specific supply chains, but continent-specific weighted averages of 
production countries based on market shares. Variation in production location can 
be an important source of variation in GHG footprints, as described in the previous 
section. If facility-specific supply chains are known, production country can be 
added to the regression analysis, improving the prediction of facility-specific 
GHG footprints.

Another important predictor of EFGHG is panel efficiency. In this study, efficiency 
varies based on construction year and panel type, but further variation in efficiency 
can be introduced among different manufacturers or models of the same type. 
Besides improved panel efficiencies, EFGHG also decreases over time due to improved 
material and energy utilization in the production process, [e.g. [191, 196]]. The latter 
is not considered in our study.

Furthermore, ‘balance of system’ components (BOS) were assumed to be the same 
for all facilities, but we acknowledge that different mounting structures can affect 
the GHG emissions of a PV facility [56, 69]. We also ignored differences in BOS due 
to tilt angles or tracking systems. Of all facilities from the Wiki-Solar database, 
~10% uses 1- or 2-way tracking. Although this increases the power output of 
a facility  [197, 198], it also increases environmental impacts due to increased 
electricity and material needs. Sinha et al.  [198] report that therefore the EFGHG of 
fixed and tracking systems are comparable, while Leccisi et al. [60] find that EFGHG is 
reduced for an East-West-tracking system, particularly for crystalline panels. Miller 
et al. [64] find that whether the PV GHG footprint is in- or decreased when a tracking 
system is included strongly depends on the panel type as well as irradiation and 
cloud cover.

When computing the lifetime electricity output (P in equation (4-1)), we included 
location-specific high-resolution climate variables, as well as a loss factor to take 
panel degradation into account. Using an IEA-recommended fixed loss factor of 
0.7% [182] we ignore that panel degradation can vary between locations and panel 
types [64, 72, 199, 200, 201]. We also ignore that power production can be reduced 
by shading or soiling through e.g. dust or snow as well as faulty installation or lack 
of maintenance [72, 200, 202, 203].
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Third, we assume a fixed lifetime of 30 years for all facilities. A shorter or longer 
lifetime will directly affect the footprint, as shown by  [54, 61, 66]. We use the 
ERA5 reanalysis data from 1988 to 2017 to obtain a representative power output 
under current climate. We tested that power output is not sensitive to the 
exact years chosen; for 1,460 locations we compared average power output for  
2008–2017 to that of 1988–2017 and found that the difference is less than 1% for 
88% of the locations, and all differences are less than 3%. We did not account for 
the panel type-specific effects of low irradiance, variation in spectral irradiance or 
angle of incidence on PV electricity production [188]. Furthermore, our footprint is 
expressed per kWh produced, while the amount of power ultimately consumed will 
be lower due to losses in the power grid as well as potential mismatches between 
PV production and power demand. Adding battery storage would allow for less 
power losses, but will likely increase environmental footprints, depending on the 
battery type  [204]. The inclusion of batteries may increase payback times and 
global warming potential by up to 30% [205].

Lastly, we computed electric power output for all facilities assuming flat panels. 
Louwen et al. [72], Chen et al. [206] show that the tilt of a facility can have a large 
range within which electricity production remains very similar, but we acknowledge 
that especially at higher latitudes we may underestimate electricity output.

4.4.4	 Outlook
Our conclusions hold for GHG footprints, but this type of analysis could be 
expanded to other impact categories, such as material scarcity or eco-toxicity. 
Furthermore, the regression model we built can be used to estimate GHG footprints 
for individual facilities even with limited input. Computational efforts can be 
reduced by not using temporarily detailed climate data, as the regression model 
indicated that climate variables other than mean irradiation do not strongly affect 
a PV facility’s life cycle GHG footprint. It is however important to fill data gaps 
concerning the panel type used and production location.

Our GHG emission-supply curves of cumulative PV production can also be used 
in integrated assessment models (IAMs), in addition to cost-supply curves  [207], 
to include both financial and environmental constraints in renewable energy 
scenarios. For future scenarios, one should take into account reduced impacts I 
during manufacturing due to technological advances as well as the decarbonization 
of energy supply (e.g. [141, 196]).
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4.5	 Conclusion

In this study we computed the GHG footprint for 9,992 utility-scale PV facilities 
across the globe, based on facility-specific construction year, capacity, panel type 
and high-resolution climate data, as well as variation in production location. We 
find utility-scale PV GHG footprints of 58.7 (28.2-94.6) g CO2eq/kWh (median,  
2.5-97.5th quantiles). Spatially, locations with higher irradiation logically have 
lower footprints, but panel type is the most important predictor of EFGHG. Placing 
a cadmium telluride panel, with low life cycle GHG emissions, in Europe can result 
in a lower GHG footprint than placing a mono-crystalline silicon panel, with high 
life cycle GHG emissions, in South America, despite the much larger irradiation at 
facilities in the latter continent [72, 74]. Panel efficiency (here determined through 
a facilities age) is the third most important predictor of GHG footprints.

We acknowledge that with more data, more accurate facility-specific footprints can 
be computed. Efforts should mainly focus on adding panel type and production 
country. We do find that the uncertainty in panel type does not strongly affect the 
global PV GHG emission-electricity supply curves.

4.6	 Data availability statement

The data generated and/or analysed during the current study are not publicly 
available for legal/ethical reasons but are available from the corresponding author 
on reasonable request.

The facility-specific technological characteristics and locations from Wiki-Solar are 
proprietary and can be obtained from https://wiki-solar.org. The continent-specific 
market shares by origin countries are also proprietary and can be obtained through 
https://www.marketreportsworld.com/TOC/12344406#TOC. We used Chapter 8 
(Global Solar Photovoltaic (PV) Market Analysis, by Geography)  [178]. The climate 
data used in this study [208] can be obtained from the Copernicus Climate Change 
Service [186] for free. We used ERA5’s hourly single level data.
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Abstract

Hydropower is the largest source of renewable energy in the United States of 
America (US). While it is generally considered to be a low-carbon electricity 
source, technological and site-specific differences can lead to large variations in 
hydropower’s greenhouse gas (GHG) footprints. Here, we quantified greenhouse gas 
footprints of 1,812 individual hydropower facilities in the US, accounting for facility-
specific differences in electricity production as well as differences in life cycle GHG 
emissions during the construction and operation of the hydropower facility. We 
found that the GHG footprint of hydropower facilities in the US range from 5.6∙10-3 
to 1.1 kg CO2eq/kWh (5-95th percentile), with a median of 2.8∙10-2 kg CO2eq/kWh. 
Our results show that the GHG footprint of hydropower from natural storage areas 
is systematically lower compared to man-made storage areas. Variation in GHG 
footprints of hydropower from man-made storage areas can be large and is mainly 
caused by differences in size, trophic state and climate zone. Our results can be 
used to identify hotspots of GHG footprints of hydropower production on the level 
of individual facilities. Our method can also be used as a blueprint to quantify the 
GHG footprints of existing and planned hydropower facilities worldwide.
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5.1	 Introduction

There is strong scientific evidence that the emission of greenhouse gasses (GHG) 
caused by anthropogenic activities is the main driver of climate change and that 
ambitious and global action is required to limit global warming to 1.5 to 2 °C, 
including large-scale transformations in the energy system towards renewable, 
low-carbon energy sources  [210]. Hydropower is one of the most prominent 
renewable energy technologies worldwide. In 2023, 14.3% of the global electricity 
was supplied by hydropower and in 20 countries it provides more than 75% of 
the electricity produced  [211]. In the United States of America (US), hydropower 
generated 5.5% of the electricity  [212]. Hydropower is predicted to increase in 
the global primary energy mix in many energy scenarios  [213]. As hydropower 
is a flexible source of electricity that can generate electricity when there is little 
wind and solar power and may in the case of pumped storage also be used to store 
excess electricity, it can be applied to mitigate the intermittent nature of solar and 
wind electricity production.

A common metric to compare GHG emissions of different power technologies is the 
GHG footprint, which is defined as the life cycle GHG emissions per unit of electricity 
produced (in kg CO2eq/kWh). Life cycle emissions are usually quantified making use 
of life cycle assessments (LCAs), which is a standardized methodology to calculate 
emissions of a service or production during all life cycle stages. It has been shown 
that GHG footprints of hydropower production can vary greatly, ranging from 2∙10-4  
to 6.6 kg CO2eq/kWh  [76 - 93]. The reported range of 4.5 orders of magnitude in 
GHG footprint of hydropower facilities can be caused by differences in various 
environmental and technological factors. Different types of hydropower exist, from 
small run-of-river facilities to large dams creating vast reservoirs. Each of these 
types has different technological characteristics and even within the same type, 
there are large differences in technology, due to differences in topology at the site 
of the plant [38, 98].

Hydropower facilities without a man-made storage area have GHG emissions 
related to dam construction as well as operation and maintenance of the dam itself, 
including downstream emissions and emissions from dam spillways. Hydropower 
facilities that have a man-made storage area also have biogenic GHG emissions from 
that storage area during the operation of the facility. Emissions from the storage 
areas themselves heavily depend on the storage area’s lifetime and the climate 
zone in which the hydropower facility is located, as well as pre-impoundment land 
cover type [94]. Earlier studies have shown that the ratio of GHG emissions from the 
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dam itself compared to those of the storage area lies anywhere between 100% for 
diversion dams to 0.01% for tropical reservoirs [91].

One way to assess the GHG footprint of a technology on a larger scale is to 
harmonize outcomes of previous studies in a meta-analysis. However, one drawback 
of such meta-analyses is that due to the harmonization step detail is lost on how 
GHG footprints vary in reality. Little research has been done on quantifying facility-
specific GHG footprints of hydropower at large geographical scales. Being able to 
quantify the GHG footprint at the level of individual hydropower facilities can help 
to identify hotspots of GHG footprints of current hydropower production. Most 
studies focus, however, on one or a few facilities, focusing on a specific type of dam 
and associated technology. Wang et al.  [95] assessed carbon emission and water 
consumption of hydropower plants in China, but they did not relate the impacts to 
the plants’ electricity generation. A study by Harrison et al. [96] used the G-res tool 
to calculate GHG emissions from reservoirs on a global scale but neglected dam 
construction and also do not relate the emissions to electricity production. Scherer 
and Pfister  [97] modelled the biogenic carbon footprint of hydropower reservoirs 
and reported an average GHG footprint of 0.273 kg/kWh, again focussing solely on 
the reservoir and not accounting for dam construction. Gemechu and Kumar  [98] 
assessed LCA studies of hydropower and found that a wide range of emission 
intensities reported (1.5∙10-3-3.7 kg CO2eq/kWh) is caused by inconsistency in how 
LCA is used, high variability in key reservoir characteristics and data limitations.

Here, we quantified the GHG footprint of 1,812 hydropower facilities in the 
US, derived from the National Inventory of Dams (NID)  [214] and amended with 
information from Hydrosource [215] and the WRI global power plan database [216]. 
The hydropower facilities’ lifetime electricity production was estimated by a newly 
developed regression model, linking the historic electricity production data from 
the US Energy Information Administration (EIA) to high-resolution streamflow data 
from FLO1K [217] and the dams’ height and capacity taken from the NID [214]. We 
derived facility-specific GHG emission factors, depending on the climate zone and 
the storage area’s trophic state.

5.2	 Materials and methods

5.2.1	 Greenhouse gas footprint
The GHG footprint of a hydropower facility is defined as its life cycle GHG emissions 
divided by its electricity generation (P in kWh/year). The GHG emissions of a 
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hydropower facility depend on two components: the construction of the facility 
(Ic, in kg CO2eq/kWh) as well as the storage area emissions, including downstream 
emissions, during operation (Io, in kg CO2eq/year). Hence, the GHG footprint (FGHG, in 
kg CO2eq/kWh) can be calculated from

� (5-1)

Figure 5-1 gives an overview of the approach to quantify GHG emissions and 
electricity production of the 1,812 hydropower facilities in the US included in 
our calculations.

Figure 5-1 Overview of the method. Red boxes refer to facility-specific information  [214, 215, 216]. 
Yellow boxes refer to information derived from FLO1K [217], which is a dataset providing streamflow 
data. The green box refers to information on chlorophyll-a data [218]. Equations (5-1), (5-2) and (5-4) 
are described further below in this section; abbreviation can be found in Table C-1. Capacity is used to 
derive the construction phase emissions from Kadiyala et al. [219].

5.2.2	 GHG emissions of hydropower

Construction
We included emissions from the dam construction phase (Ic in kg CO2eq/kWh) 
based on Kadiyala et al. [219], who quantified GHG emissions for small (<0.1 MW), 
medium (0.1-30 MW) and large (>30 MW) hydropower facilities based meta-analysis 
(for more information see Table C-2 in Appendix C). In our database, 16 facilities 
are classified as small, 948 facilities as medium and 316 facilities as large, based on 
information from the National Inventory of Dams (NID) [214] and Hydrosource [215]. 
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When the capacity was not reported (n = 532), we calculated a weighted average 
of the GHG footprint for dam construction, based on the classification of Kadiyala 
et al.  [219] and the relative occurrence of small, medium and large dams in our 
database, see section C.2.2 for more information.

Operation
During the operational phase of hydropower facilities based on man-made storage 
areas, most emissions come from the storage area itself and downstream of the 
spillway, caused by the decomposition of organic material in the water, which 
depends on the climate zone  [91]. Information on the climate zone in which the 
hydropower facilities are located has been gathered from the IPCC  [220] and is 
reported in section C.3. We based the GHG emissions in the operational phase 
of man-made storage areas on IPCC emission factor guidelines  [221], assuming a 
hydropower facility lifetime of 100 years [222]:

� (5-2)

where Ares is the storage area  [km2], derived from the NID  [214]. The hydropower 
facilities’ storage areas have been classified as man-made or natural storage area 
based on the classification of HydroLAKES [223]. Because in accordance with [224] 
run-of-river facilities can also have storage areas, albeit most often much smaller, 
we have not excluded emissions from these storage areas for run-of-river facilities 
here and apply equation (5-2) or (5-4) depending on whether or not these storage 
areas are classified as man-made or natural. Deemer et al. have shown that there is 
no significant difference between surface emissions between man-made storage 
areas and natural lakes  [225]. In cases where no storage area is present, equation 
(5-4) is applied.

EFCH4, a≤20, j is the methane emission factor of man-made storage areas in the first  
20 years of operation, situated in climate zone j (kg CH4/km2/year) (see Table C-2).  
EFCH4, a>20, j is the methane emission factor of man-made storage areas in the period 
of 20 to 100 years of operation, situated in climate zone j (kg CH4/km2/year) (see 
Table C-2).

EFCO2, a≤20, j is the CO2 emission factor of man-made storage areas in the first 20 years 
of operation, situated in climate zone j (see Table C-2). Note that CO2 emissions 
from storage areas are considered to be only relevant for the initial 20 years of a 
storage area’s life [221].
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α is the emission factor adjustment for the trophic state of the storage area in 
climate zone j and GWPCH4 is the global warming potential of methane for a 100-
year time horizon (34 kg CO2eq/kg CH4) [226]. Rd is a dimensionless constant equal 
to the fraction of downstream emissions of CH4 compared to the total flux of CH4 
from the storage area surface, here set equal to 9% [221].

The emission factor adjustment for the trophic state of a storage area α was 
calculated via [221]:

� (5-3)

with Chl-ai the mean annual chlorophyll-a concentration in storage area i in g/L. 
The Chl-ai is taken from a database which gives the Chl-ai concentrations on a 50 by 
50 km grid for the US in 2010 [218].

More information on how equation (5-2) is derived can be found in appendix C.2.1.

For hydropower facilities built on natural storage areas, we assume that the area’s 
surface does not change upon construction of the hydropower facility and thus the 
size of the storage area attributed to anthropogenic use is considered negligible, 
because relevant information was not available. Therefore, emissions related to 
land use change during the first 20 years of operations are not relevant and since 
the storage area’s surface is assumed to not change emissions from the surface 
cannot be attributed to hydropower operation. In accordance with the IPCC [221], 
reservoir emissions can thus be calculated via:

� (5-4)

5.2.3	 Electricity generation
We imputed the electricity generation data for the hydropower facilities by 
developing a linear mixed-effect regression model fitted to yearly electricity data. 
We used hydropower facility-specific electricity generation from the EIA [163]. We 
matched the EIA hydropower facilities to the NID hydropower facilities via the Oak 
Ridge National Laboratory hydropower dataset [227], which provides the matching 
IDs of NID and EIA datasets. Yearly electricity generation data for the period 1989 
to 2015 could be retrieved for 960 (out of 1,812) hydropower facilities from the NID 
dataset and a total of 15,191 observations (dams∙years).

Since power generation is dependent on hydraulic head, design discharge, capacity 
and load factors, we used proxies that approximate these variables as predictors in 
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our model [228]. Namely, we employed dam height, storage area surface area, yearly 
average streamflow, yearly streamflow seasonality (see appendix C.4.1 for how 
this was calculated) and Gross Domestic Product (GDP) of the administrative unit 
connected to the hydropower facility. Dam height was used as proxy for hydraulic 
head. Storage area size and average flow at the dam location were used as proxies 
for design discharge. Seasonality of streamflow and GDP of the administrative unit 
were used as proxies for the load factor. Dam height and storage area size were 
retrieved directly from the NID. Yearly streamflow metrics were sampled from the 
FLO1K dataset (see appendix C.4.2 for the sampling procedure,  [217]). The GDP of 
the administrative unit where the dam is located was computed by averaging GDP 
data [229] over the administrative units provided by https://gadm.org/data.html.

Due to harmonization across datasets, re-allocation to the river network and exclusion 
of outliers, the final set of observations consisted of 14,295 dams∙year for a total of 
942 NID facilities. Prior to fitting the model, we log-transformed the response variable 
and applied a Yeo-Johnson transformation to the predictors to resemble a Gaussian 
distribution as these were all highly skewed (Figure C-1 and Figure C-2). In addition, we 
standardized all variables to zero mean and unit variance to improve the comparability 
of the regression coefficients. We checked for multicollinearity of the predictor set and 
found that all Pearson’s r was below 0.7 and therefore retained the full set of predictors 
(Figure C-3). We considered the hydropower facility ID as a random term in the 
mixed-effect model to account for non-independence of yearly electricity generation 
coming from the same power plant and allowed all first-order interaction terms. We 
used an automated procedure for model selection that uses a genetic algorithm to 
find the optimal combination of predictors with the lowest Bayesian Information 
Criterion (BIC) [230]. We preferred BIC over Akaike Information Criterion as BIC tends 
to outperform alternatives particularly if the sampling size is large  [231]. We ranked 
the models based on BIC and chose the model with the lowest complexity (i.e., the 
lowest number of predictors) within the first 10 BIC interval points (see Table C-5 for 
the results). To assess model reliability, we used 10-fold cross-validation across all 
observations (i.e., number of dams∙years, see Table C-6) and across hydropower sites 
(i.e., by excluding 10% of the power plants in each fold, see Table C-7) and reported 
coefficients of determination R2 and root mean square error (RMSE).

The model to predict a hydropower facilities electricity generation was

(5-5)

with H the dam height as given in the NID in m and qav and qma the average and 
maximum annual streamflow in m3/s, respectively.
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5.3	 Results

5.3.1	 Yearly GHG emissions during operation
Yearly GHG emissions during operation from the 1,812 hydropower dams in the US 
as included in our study range from 286 to 53.5∙106 kg CO2eq/yr  [5-95 percentile], 
with a median of 57∙103 kg CO2eq/yr (Figure 5-2). In total, these hydropower facilities 
are expected to cause GHG emissions of 34∙103 kt CO2eq/year. Facilities situated on 
man-made storage areas (n = 632) account for 98% of the yearly GHG emissions 
during operation, with a median of 2.2∙106 kg CO2eq/yr [5.2∙103-206∙106 kg CO2eq/yr  
the 5-95 percentile]. Those facilities having natural storage areas (n = 1,180) 
account for 2% of GHG emissions during operation, with a median of 18∙103 kg 
CO2eq/yr [155-1.1∙106 kg CO2eq/yr the 5-95 percentile]. 90% of the total emissions 
during operation are from 96 high-emitting hydropower facilities, which is 5% of all 
facilities. Of these 96 facilities, all but three have man-made storage areas.

5.3.2	 Electricity generation
Figure 5-3 shows the distribution of electricity generation of the 1,812 hydropower 
dams in the US that are part of our database. They are expected to generate a total of 
223 TWh electricity each year. 90% of the electricity is produced by 361 hydropower 
facilities, which is 20% of all facilities. Hydropower facilities with man-made storage 
areas (n = 632) account for 43% of the yearly electricity generation. Electricity 
generation ranges from 3.2 to 637.2 GWh, with a median of 31.6 GWh. Hydropower 
facilities having natural storage areas (n = 1,180) generate 57% of the yearly electricity 
production, ranging from 2.0 to 224.5 GWh, with a median of 8.7 GWh.

5.3.3	 GHG footprints
GHG footprints of hydropower facilities in the US (n = 1,812) range from 5.6∙10-3 to 
1.1 kg CO2eq/kWh (5-95 percentile), with a median of 2.8∙10-2 kg CO2eq/kWh. The 
GHG footprints per facility are shown in Figure 5-4. GHG footprints vary greatly 
between dams with or without a man-made storage area, generally being higher 
for facilities located at man-made storage areas compared to those located on 
natural storage areas, as can be seen from the boxplot in Figure 5-5. Hydropower 
facilities with man-made storage areas have a median GHG footprint of  
7.9∙10-2 kg CO2eq/kWh, ranging from 6.4∙10-3 to 4.3 kg CO2eq/kWh [5-95 percentile]. 
Those facilities with natural ones have a median GHG footprint of 2.6∙10-2 kg 
CO2eq/kWh, ranging from 5.6∙10-3 to 6.5∙10-2 kg CO2eq/kWh [5-95 percentile].

The boxplot in Figure 5-5 shows the distribution of GHG emissions grouped by 
climate zone and type of storage area (man-made vs. natural). With the exception 
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of boreal climate zones, hydropower facilities on man-made storage areas in all 
climate zones have higher GHG footprints than those located on natural storage 
areas. Facilities located in tropical dry/montane areas have the highest average GHG 
footprints, both for natural storage areas as man-made storage areas. Underlying 
data for Figure 5-5 is given in Table C-8.

Figure 5-2 Yearly operational GHG emissions (t CO2eq/year) from hydropower facilities in the US. The 
boxplot shows the distribution of GHG emissions from facilities with man-made (MM) storage areas or 
natural ones (NL). The orange line represents the median, the boxes the 25-75th percentile and the 
whiskers the 5-95th percentiles.

Figure 5-3 Yearly electricity generation (TWh/year) by hydropower facilities in the US. The boxplot 
shows the distribution of electricity generation by facilities with man-made (MM) storage areas or 
natural ones (NL). The orange line represents the median, the boxes the 25-75th percentile and the 
whiskers the 5-95th percentiles.
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Figure 5-4 GHG footprints (kg CO2eq/kWh) of hydropower facilities in the US. The boxplot shows the 
distribution of GHG footprints of facilities with man-made (MM) storage areas or natural ones (NL). The 
orange line represents the median, the boxes the 25-75th percentile and the whiskers the 5-95th percentiles.

Figure 5-5 Boxplot showing the distribution of GHG emissions grouped by climate zone and storage 
area type. The orange line represents the median, the boxes the 25-75th percentile and the whiskers 
the 5-95th percentiles. Below each category, the number of observations is given. Climate zones are 
Bo: boreal, CT: cool temperate, T d/m: tropical dry/montane, T m/w: tropical moist/wet, WT d, warm 
temperate dry, WT m: warm temperate moist. Storage area types are MM: man-made and NL: natural.
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5.4	 Discussion

We calculated GHG footprints for hydropower facilities in the US ranging from 5.6∙10-3  
to 1.1 kg CO2eq/kWh (5-95 percentile), with a median of 2.8∙10-2 kg CO2eq/kWh. This 
range is in line with what is reported in literature [98]. The study by Song et al. [91] 
reports footprints to be higher, but they also consider dam demolition, which is 
omitted here. A study by Li and He  [232] report a median carbon intensity from 
hydropower reservoirs of 63 g CO2eq/kWh, which also is higher than in our study. 
They find that higher GHG footprints are found for eutrophic reservoirs and those 
with shallow depth (<20 m), a factor that we did not include in our study.

While in general, the GHG footprints presented in this study are in line with results 
found in previous studies, we see extreme outliers, over- or underestimating the 
GHG footprints from hydropower. The discussion tries to explain the causes of these 
outliers as well as examine sources of uncertainty in the results.

5.4.1	 GHG emissions

Construction emissions
GHG emissions from the construction phase are difficult to quantify because 
the type of dam built depends on site-specific characteristics. For example, the 
geography of the site has a large effect on the type of dam to be built and the size 
of it [91]. Here, we derived the construction GHG emissions (in kg CO2eq/kWh) from 
a classification made by Kadiyala et al. [219], which is based on the capacity of the 
hydropower facility and whether it is operated as a reservoir or run-of-river facility.

Information on the capacity and the mode of operation was not known 29.5% 
of the hydropower facilities included in our analysis. Using a weighted average 
based on the distribution of these attributes in the dataset where capacity and/
or the mode of operation is not known introduces uncertainty in the estimation 
of GHG emissions connected to the construction phase. The construction phase 
emissions reported in Kadiyala range from 3.45∙10-3 kg CO2eq/kWh for large run-
of-river facilities to 4.782∙10-2 kg CO2eq/kWh for small run-of-river facilities  [219]. 
Additional information on capacity and mode of operation of these facilities can 
reduce this uncertainty.

Beyond capacity and mode of operation, other factors may also influence construction 
phase GHG emissions from hydropower facilities, such as information on different 
structural types of hydropower dams (e.g., embankment dams, arch dams, gravity 
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dams and buttress dams). Dams differ in their shape as well as the type and amount of 
materials used [91]. Combined with information on the size of the dam, such as height, 
width, and volume, GHG emissions during the construction phase can be further 
improved. Note that the NID also provides information on dam structure and the type 
of materials used [214], but due to data limitations this information was not used here.

Operational emissions
Man-made storage areas appear to be an important source of GHG emissions from 
hydropower facilities for most climate zones  [233]. It is therefore highly relevant 
to classify water bodies as man-made or natural for GHG footprint predictions of 
hydropower facilities. Information on whether a reservoir is man-made or natural 
was unavailable in the NID and therefore had to be derived from the HydroLAKES 
database [223].

We used the coordinates of the pour points in HydroLAKES to match with the 
coordinates of the dams under the assumption that if a new dam has been 
constructed, it has been constructed on an existing river and that if an existing lake 
has been dammed, it is dammed at the natural pour point. However, due to the 
complexity of some hydropower projects, which can consist of cascades of dams 
or where the waterflow can partially be diverted over a turbine further downhill 
to increase head, mismatches might occur in areas with relatively large number 
of waterbodies.

We also assumed that whenever a storage area was man-made, that all emissions 
occurring would not have occurred otherwise. A review by Prairie et al. [234] indeed 
suggested that almost all CH4 emissions from reservoirs are new, although only 
part of the CO2 emissions would not have occurred otherwise. Organic matter that 
is trapped and dissolved in a storage area after its construction would otherwise 
have been dissolved somewhere else, further downstream along the river. Hence, 
the CO2 emissions may only be displaced and not new. Other studies have also 
evaluated the GHG emissions from reservoirs in the US. A recent study from Hansen 
et al. [235], who applied the G-res emissions model to a subset of hydropower dams 
in the US, showed that the dominant emission pathways are CO2 diffusion and CH4 
ebullition. Note that in our calculations, the vast majority of the GHG emissions due 
to the operation phase is explained by CH4 emissions.

Given that hydropower is a long-lived technology, with the oldest facilities being 
commissioned in the late 19th century, climate change as well as changes in the land 
use and development of the catchment areas of storage areas are likely to occur, 
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which are in our case neglected in the quantification of storage area emissions. 
Changes in the surroundings can also lead to changes in the influx of organic 
material into the reservoir. While these changes can be involuntary, this implies 
that by explicitly managing the influx of materials into a reservoir can affect and 
lower emissions from reservoirs. Tigli et al. [236] showed that efforts made to lower 
the trophic status of a storage area indeed lead to lower GHG emissions, as also 
suggested by Meerhoff et al. [237] and Aben et al. [238], who advocate that reducing 
nutrient loadings through, for example, better agricultural practices or wastewater 
treatment, is not only good for water quality but also from a climate perspective.

Other factors influencing emissions and leading to uncertainty in the calculations 
are the use of emission factors for six aggregated climate zones, instead of the  
12 climate zones known to the IPCC, the use of average yearly Chl-a data , which is 
known to vary temporally between seasons as well as spatially within a lake [236], 
and assuming a standard emission factor for downstream CH4 emissions, which may 
well become more and more important in the future [239] as hydropower facilities 
age and therefore, CO2 emissions from the storage area become less prominent. 
These were not included here due to data limitations.

Finally, it should be noted that an important aspect in LCA is the allocation of 
emissions to a specific activity. In the case of hydropower, the reservoir or run-of-
river facility might be used for additional purposes next to electricity generation, 
such as recreation, fishing, municipal and agricultural water supplies, and flood 
control  [91]. Here, we assigned the full emissions to electricity generation due 
to a lack of information on other uses of the storage area which causes an 
overestimation of emissions allocated to hydropower in case it is used for multiple 
purposes. Scherer and Pfister  [97] applied an allocation based on the ranking of 
hydropower compared to other uses, which could also be included to allocate 
emissions in future studies, but was not used here because the ranking of the 
facilities’ purposes was not known in our case.

5.4.2	 Electricity generation
The amount of electricity generated as an important factor in the quantification 
of GHG footprints of hydropower facilities. The decision to release water and thus 
produce electricity in most cases does not solely depend on the need for electricity 
but also depends on other uses such as irrigation or general water management 
strategies. Recently, Baratgin et al.  [240] have developed a model to reproduce 
hydropower electricity production in France by including amongst others water 
demands and non-energy demands. A similar model could be developed for the US.
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Furthermore, hydraulic head is commonly accepted to be estimated by dam 
height, but it has also been discussed to not always be an accurate representation 
of the actual head of a reservoir, because water intake and the location of the 
turbine usually are not at the top and bottom of the dam, respectively, see for 
example  [241]. As electricity generation linearly depends on the height, height is 
an important parameter in determining the power output.

Another potential source of uncertainty is the relocation of dams, which took 
place to match the dams to FLO1K data. In areas with many waterways, this can 
potentially lead to erroneous flow information and hence electricity production 
estimates, either over- or underestimating the electricity generated.

However, we see that the modelling of the amount of electricity produced is in the 
same order of magnitude as the actual production of electricity from hydropower in the 
US (223 vs.240 TWh, respectively [242], or 93%) and comparison of the average annual 
electricity production data we estimate with the study conducted by Turner et al. [243] 
shows a very good fit, with the exception of two extreme outliers (see Appendix C.6 for 
more information). Therefore, while improvements to quantify electricity production 
from hydropower may be achieved moving forward, we are confident that the model 
developed here provides a good approximation for the GHG footprint calculations.

5.5	 Conclusions and outlook

We quantified the GHG footprint of individual hydropower facilities in the US and 
found a range of 2 orders of magnitude  [5th-95th percentile] between individual 
hydropower facilities. This range is in line with other GHG footprints reported 
in literature  [98]. While in many cases, the GHG footprints of hydropower are 
comparable to those of other renewable electricity sources, such as wind power 
and solar power, some hydropower plants have GHG footprints that exceed those 
of conventional electricity generation [91]. High GHG footprints are typically found 
for hydropower facilities with eutrophic man-made storage areas.

Our method can be used to identify dams with large GHG footprints, which could 
then potentially be combined with floating PV, which has been shown to potentially 
decrease the GHG intensity of hydropower reservoirs  [244]. It can also be applied 
to identify locations where non-hydropower dams can be repurposed to generate 
low-carbon electricity or where new hydropower facilities with low GHG footprints 
could be constructed.
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6.	 Synthesis
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6.1	 Introduction

The aim of this thesis was to quantify facility-specific GHG footprints of renewable 
electricity sources at large spatial scales. Accounting for technological and 
meteorological variability, facility-specific GHG footprints of the three most important 
non-biomass renewable energy technologies were derived: wind (chapter 2 and 3), solar 
(chapter 4) and hydropower (chapter 5). In this synthesis, the main sources of variability 
are discussed. Section 6.2 covers the technological variability in GHG footprints,  
section 6.3 is about spatial variability and section 6.4 about temporal variability. Finally, 
section 6.5 includes conclusions and recommendations for future research.

6.2	 Technological variability

In my thesis, I quantified GHG footprints for wind farms and utility-scale PV 
facilities at the global scale, while for hydropower facilities the assessment 
was done for the United States of America (US). The differences between the 
renewable electricity technologies are summarized in Figure 6-1. GHG footprints 
for wind are shown separately for on- and offshore wind farms. For utility-scale PV, 
a distinction between crystalline and thin-film panels is made. The GHG footprints 
for hydropower facilities are split into man-made storage areas and natural storage 
areas. To compare the GHG footprints to conventional electricity generation 
technologies, information on coal- and gas-fired power plants is added from [245] 
and [246], respectively, and information on nuclear power comes from Le Boulch et 
al. [247]. From Figure 6-1 it becomes apparent that the GHG footprints have a larger 
variability between different technologies than within the same technology.

Overall, wind power has the lowest GHG footprints of the technologies assessed 
in my thesis, with offshore wind farms on average having a lower GHG footprint 
than onshore wind farms. Note that offshore wind farms show a larger range of 
GHG footprints than onshore wind farms, with the 5th percentile being lower than 
the 5th percentile of onshore wind farms and the 90th percentile exceeding the 
90th percentile of onshore wind. For solar power, thin-film panels have lower GHG 
footprints than crystalline ones, with the 90th percentile of thin-film panels being 
lower than the median of their crystalline counterparts. This is in line with literature 
on solar  [59, 60, 64, 71, 73, 190] and wind power  [52, 59, 248]. However, a recent 
study has shown that increasing distance to shore increases the GHG footprint of 
wind power [249]. Man-made storage area-based hydropower facilities have higher 
GHG footprints than those located on natural storage areas. Hydropower facilities 
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based on natural storage areas have GHG footprints in the range of wind and solar 
power. Those with man-made storage areas can have GHG footprints as low as wind 
power but can also have GHG footprints exceeding those of natural gas and coal. 
Other studies confirm this observation [91, 98, 250].

Even though wind power on average has the lowest GHG footprints, its 90th 
percentile overlaps with the 5th percentile of solar and hydropower, showing that 
there are instances when thin-film PV or hydropower can have GHG footprints as 
low as wind power. Similarly, there are instances where hydropower facilities can 
have a lower GHG footprint than solar power.

Wind, solar and hydropower all have lower median GHG footprints than coal- and 
gas-fired power plants. The 90th percentile of wind and solar power as well as natural 
storage area-based hydropower GHG footprints is lower than the 5th percentile 
of the GHG footprints of coal-fired power plants. However, there are hydropower 
facilities located on man-made storage areas with GHG footprints exceeding the 
90th percentile of coal-fired power plants. Nuclear power has GHG footprints that 
are in the same range as those of wind power, with the median being lower than 
both on- and offshore wind power [247].

This shows that my results can be used to choose electricity sources with the lowest 
GHG footprints using facility-specific data for a certain location, which can increase 
gains in GHG emission reduction compared to choosing a technology based on the 
lowest average GHG footprint.

The metamodels developed for wind and solar power indicated the importance 
of technological aspects on the intra-technology variability of GHG footprints. For 
wind, in addition to whether or not a facility is onshore or offshore, the turbines’ 
hub heights, rated power and the number of turbines in a wind farm are explaining 
differences in GHG footprints of wind turbines [251]. The panel type and the module 
efficiency are the two main technological variables determining differences in the 
GHG footprints of PV facilities [30].

No metamodel for the GHG footprint of hydropower facilities has been developed 
yet, but Figure 6-1 indicates that intra-technological variations, such as whether a 
facility has a man-made or natural storage area, could be used as proxies in the 
development of such a model. Furthermore, dam height and reservoir surface area 
were used to predict a hydropower facilities’ electricity generation, implying that 
they might be important technological variables to include in a metamodel.
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My results imply that it is always important to include facility-specific information, 
no matter whether GHG footprints of different technologies are to be compared 
to each other, or the GHG footprint of the same technology is to be assessed in 
different locations.

Figure 6-1 GHG footprints of the different technologies assessed in this thesis with comparison to 
coal [245], gas [246], and nuclear power [247]. The orange line represents the median, the boxes the 
25-75th percentile and the whiskers the 5-95th percentiles.

6.3	 Spatial variability

The importance of spatial resolution of the meteorological data has been 
investigated in chapter 2, where I have shown that a resolution of 30 by 30 km 
for wind speed data is a small enough resolution to predict a wind turbine’s GHG 
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footprint. We built on that analysis in chapter 3, where I showed that wind speed 
is the most important variable in determining a facility’s GHG footprint. This is 
caused by the fact that – within its operational wind speed range – the electricity 
production of a wind turbine is roughly related to the cubed wind speed, meaning 
that even a small increase in wind speed can create a large increase in the electricity 
production and thus a strong reduction in the GHG footprint (see Figure 6-2a).

For solar power, the relationship between irradiation and electricity production is 
linear, and hence we see that irradiation is an important variable to determine a 
facilities GHG footprint in the metamodel developed in chapter 4 (see Figure 6-2b). 
This finding is in line with Louwen et al. [72] who also showed that solar irradiance 
is an important factor in the environmental assessment of PV, with temperature 
being another important aspect as it can affect a PV panel’s efficiency. Temperature 
was also included in the metamodel developed in chapter 4, but the importance 
analysis showed that using only irradiation as predictor sufficiently well estimated 
the results.

For hydropower facilities, flow data has been used to impute electricity production, 
but as I have not developed a metamodel for the GHG footprint, I have not assessed 
the importance of meteorological variables on the GHG footprint. Other spatially 
explicit variables included in the GHG footprint prediction are the storage area’s 
chlorophyll a (Chl-a) concentration and the climate zone a hydropower facility is 
located in. [252] and [225] have shown that these are important factors influencing 
GHG emissions and thus GHG footprints. However, to date spatial and temporal 
variability of temperature and chlorophyll a concentration in water bodies is 
difficult to capture on large spatial scales, but recently Zhao et al. used high-
resolution satellite images to develop a Chl-a retrieval algorithm [253]. They found 
that lake surface temperature was the most important factor in determining Chl-a 
concentration. These findings could be used in future research to develop a similar 
approach as taken for wind and solar power, which can then provide clarity on 
which factors determine spatial variability for hydropower GHG footprints.

Thus, spatial variability in meteorological conditions are strong predictors for GHG 
footprints of wind, solar and possibly hydropower. For wind power, wind speed 
seems to be more important than technological variability, due to the production 
being related to wind speed cubed. For solar power, irradiation is slightly less 
important than technological variability, due to the strong difference in energy 
needed for producing crystalline vs. thin film panels, which also depend on 
production location [254].
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a) Partial dependence plot for wind power.	 b) Partial dependence plot for solar power

Figure 6-2 Partial dependence plots for wind power (a) and solar power (b) showing the effect of the 
main spatial variable on the greenhouse gas (GHG) footprint of the facilities. A bigger change in GHG 
footprint means that the variable is more important.

6.4	 Temporal variability

In chapter 2, I have investigated how temporal variation in wind speed affects the 
calculation of GHG footprints. I found that using daily data at a 30 by 30 km grid 
sufficiently represent the life cycle GHG emissions of wind turbines compared to 
higher resolution data.

While I used hourly wind speed data to calculate the facility-specific GHG footprints 
of wind power in chapter 2, the metamodel developed in chapter 3 uses location-
specific 30-year average wind speeds as the only non-technological predictor. 
For the solar power GHG footprint calculations in chapter 4, I initially used hourly 
irradiation, temperature and wind speed data. Again, the metamodel showed that 
location-specific yearly average irradiation, temperature and wind speed play a role 
in the estimation of solar power GHG footprints. An importance analysis showed 
that with only hourly irradiation GHG footprints can be well approximated.

In both instances, temporal variability was deemed to be of lesser importance 
in the estimation of facility-specific GHG footprints of the electricity generation 
technologies assessed in this thesis. However, the confidence in the metamodel is 
increased by using a methodology that first makes use of the detailed (i.e., hourly) 
information available before reducing the level of detail.

For hydropower, I followed a different approach, where metamodels were used to 
impute the facility-specific GHG footprints from the start. The electricity production of 
each hydropower facility was calculated using a regression model based on average 
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yearly flow data [217]. GHG emissions for the construction and operational phases of 
the facilities were derived from emission factors derived from literature [219]. Given 
the increasing availability of data and the rise of AI technologies, a similar approach 
to those used here for wind and solar power could be used when calculating GHG 
footprints of hydropower facilities on a global scale. AI could be applied to gap 
filling, using, for example, data scraping methods. Furthermore, temporal variability 
in chlorophyll concentration and temperature, which  [252, 225] have shown to be 
important in a reservoir’s GHG emission, could be included in the calculations once 
datasets covering larger spatial and temporal scales are available.

6.5	 Conclusions and Recommendations

In conclusion, the main findings of my thesis are:

•	 In order to develop a metamodel that can predict greenhouse gas footprint 
information as specific as possible with a minimum of information, the first step 
always has to be a detailed, in-depth analysis. Conducting an in-depth analysis 
helps to understand where the limits lie of an acceptable approximation.

•	 Facility-specific GHG footprints for wind power, solar power and hydropower 
can be approximated by a limited number of technological and spatio-temporal 
variables, allowing for an easier comparison of GHG footprints for specific 
technologies at distinct locations.

•	 The variability in the GHG footprints of the renewable electricity generation 
technologies considered here is greater between the different technologies than 
within a technology.

Based on these main findings, several recommendations for future work can be 
made. Future research should:

•	 Explore a similar approach as taken for wind and solar power when attempting 
to calculate GHG footprints for hydropower facilities on a global scale in 
which time-, space, and technology-specific variables are first used in the 
highest-possible resolution to then determine the most important variables in 
hydropower’s GHG footprint.

•	 Improve the metamodels derived for wind and solar power by including 
additional location- and technology-specific information, made possible by 
increased data availability and improvements in AI technology, which can reduce 
the computational requirements.
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•	 Develop GHG emission-supply curves for relevant electricity generation 
technologies to integrate into integrated assessment models in addition to cost-
supply curves.

•	 Expand the models developed here to other impact categories to facilitate the 
evaluation of environmental performance and trade-offs of different electricity 
generation technologies.

•	 Develop a tool that supports decision makers which electricity generation 
technology is best suited at a certain location to minimize environmental 
impacts and trade-offs.

•	 Determine how much can be gained in terms of GHG emission mitigation at 
each location by comparing facility-specific GHG footprints of one technology to 
other (non-)renewable electricity sources.
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Appendix A	 Appendix for chapter 3

This appendix provides more information on how gap-filling was done for the 
different variables (section A.1), an overview of the completeness of the data set 
with regard to total installed capacity and a validation of the electricity production 
(section A.2), how the wind data was processed (section A.3), as well as what wake 
effect is and how it was accounted for (section A.4). Additional information on how 
the metamodel was developed is presented in section A.5, and section A.6 provides 
more detailed maps of the GHG footprint for different world regions. Section A.7 
covers the capacity factor of the global wind farm fleet. Section A.8 covers which 
data was included in the literature comparison and section A.9 describes the 
applicability domain of the GHG emission regression model.

A.1	 Gap filling of wind farm data
Whenever the data needed in the calculations was not available, the data gaps 
were filled according to the methods described in this section. Some information 
could be derived directly from other data from the database, other information 
had to be derived using regression analysis. Data on the global wind farm fleet 
has been provided by TheWindpower.net  [106]. For 132 offshore wind farms, 
information on location was supplemented with updated information from  [106] 
and  [156]. For 26,821 of the 31,298 wind farms in the original data set, sufficient 
data was available to include the wind farm in the calculations. Summary Table A-1 
shows which information was available for how many wind farms. How many of 
the missing values were added using which gap filling method is also included in 
Table A-1.

A.1.1	 Hub height
For 4,572 wind farms where no information on hub height was available, a 
regression model was built to estimate turbine height (m) based on either the 
diameter (m) (321 farms):

� (A-1)

with an R2 of 0.76 and a standard error of 0.22, or the rated power (MW) (4,380 farms):

�(A-2)

with an R2 of 0.74 and a standard error of 7.90.
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A.1.2	 Rotor diameter
The rotor diameter (m) was derived from a regression model based on the rated 
power (MW) (5,243 turbines):

� (A-3)

which has an R2 of 0.94 and a standard error of 6.78.

A.1.3	 Rated power
The rated power (MW) can be calculated from the total power (MW) of all wind 
turbines in a wind farm and the number of turbines in that farm for 5,243 turbines 
without this information:

�(A-4)

A.1.4	 Number of turbines
Similar to the rated power, the number of wind turbines can be calculated by 
dividing the total power (MW) of all wind turbines in a wind farm by the rated 
power (MW) of the individual wind turbines in it, which was done for one entry:

�(A-5)

A.1.5	 Power curve: k and b
For 19,091 wind turbines information on the power curve was available. 
Thewindpower.net provides power outputs in 0.5 m/s intervals as given by the 
turbines’ manufacturers. Wind turbines’power curves follow a so-called sigmoid 
function [158] and such a function was fit to the data provided by Thewindpower.
net using SciPy’s curve fit method with the sigmoid function [159].

This results in two variables, k and b, which describe the power curve of each given 
wind turbine. The average R2 of the fitted curves is 0.996. For the wind turbines 
where data is not available (7,771 turbines), the average k and b of all wind turbines 
in the database are used (0.74  [the 2.5 and 97.5 percentiles are 0.58-0.94] and 
8.57 [the 2.5 and 97.5 percentiles are 7.20-9.64], respectively).
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A.1.6	 Cut-in, rated and cut-off wind speeds
Based on the histograms in Figure A-1, 3 m/s was used as the cut-in wind speed if 
it was unknown, 14 m/s was used in case the rated wind speed was not known and 
when the cut-off wind speed was missing, 25 m/s was used.

a) Cut-in wind speed (m/s)

b) Rated wind speed (m/s)

c) Cut-off wind speed (m/s)

Figure A-1 Histogram of the distribution of cut-in (a), rated (b) and cut-off (c) wind speeds for all 
turbines in the database.
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Onshore/offshore location
Upon loading the wind farms labelled as ‘offshore’ in qgis, some of them were seen 
to be located onshore. A global raster map distinguishing land and water was 
combined with all wind farms in the data set and all of them were reallocated to 
be either on- or offshore using qgis’s point sampling tool. In total, 2,159 wind farms 
had to be relocated in this manner.

Summary table
Table A-1 gives an overview of how many wind farms in the data set used here had 
not all information available. Additionally, the number of data gaps filled by the 
different methods is provided.

Table A-1 Number of gaps filled by which method. Methods correspond to section numbers above.

Variable Number of farms without  
this information

Number of farms information derived 
for (via equation/method)

Hub height 4,601 321 (eq. (A-1))/4,380 (eq. (A-2))

Rotor diameter 5,243 5,132 (eq. (A-3))

Rated power 5,243 5,132 (eq. (A-4))

Number of turbines 1 1 (eq. (A-5))

Total power 0 n.a.

Power curve

•	 k 7,771 7,646 (m. A.1.5)

•	 b 7,771 7,646 (m. A.1.5)

Cut-in wind speed 5,643 5,532 (m. A.1.6)

Rated wind speed 5,769 5,658 (m. A.1.6)

Cut-off wind speed 5,653 5,524 (m. A.1.6)

On-/Offshore n.a. 2,159 (m. A.1.7)
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A.2	� Completeness of turbine database and validation of  
the electricity production

We computed electricity production for all wind farms due to the lack of data on 
location-specific electricity production over its lifetime (30 years). For two countries, 
Denmark and the US, the electricity produced has been validated on a per-wind 
farm basis using data sets from the Danish Energy Agency [164] and the EIA [163]. 
The wind farms in our database were matched to the EIA database based on name, 
state and commissioning year. Matching with the Danish database was done based 
on name, commissioning year, manufacturer, hub height, rotor diameter, nameplate 
capacity and the number of turbines in a farm. While matching the Danish wind 
turbines to wind farms in our data set could be done with a high degree of certainty 
due to the availability of both technological and spatial information, matching was 
done purely on a limited number of spatial information for the US.

Since we calculated electricity production for whole years and the exact 
commissioning date was not known, the first year of production was excluded from 
the analysis. All wind farms that did not have continuous production records were 
also excluded. In total, 1,724 Danish wind farms were successfully matched to a 
farm in our data set and 657 US wind farms were matched.

Table A-2 gives an overview of the installed capacity per country. Data was available 
from Our World in Data [151] and IRENA [157].

Table A-2 Comparison of installed capacity in our study to data from Our world in data  [151] and 
IRENA [157].

Country Installed capacity oud 
database (GW)

Installed capacity Our 
world in data (GW, 2020)

Installed capacity 
IRENA (GW, 2020)

Albania 0.15

Algeria 0.01 0.01

Argentina 3.29 2.62 2.62

Armenia 0.004 0.002

Australia 10.33 9.46 8.60

Austria 2.86 3.22 3.22

Azerbaijan 0.01 0.07

Bahrain 0.001 0.0007

Bangladesh 0.0009 0.003

Belarus 0.003 0.11

Belgium 4.26 4.69 4.69

Bhutan 0.0006 0.0006
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Country Installed capacity oud 
database (GW)

Installed capacity Our 
world in data (GW, 2020)

Installed capacity 
IRENA (GW, 2020)

Bolivia 0.03 0.03

Bosnia & Herzegovina 0.13 0.09

Brazil 14.10 17.20 17.20

Bulgaria 0.52 0.70 0.70

Cambodia 0.0003 0.0003

Canada 12.62 13.58 13.58

Cape Verde 0.02 0.03

Chile 2.43 2.15 2.15

China 88.53 281.99 281.99

Colombia 0.02 0.51

Costa Rica 0.37 0.39 0.39

Croatia 0.87 0.79

Cuba 0.11 0.01

Curacao 0.03 0.05

Cyprus 0.19 0.16

Czech Republic 0.33 0.34

Denmark 6.92 6.24 6.24

Dominica 0.0002 0.0002

Dominican Republic 0.37 0.37

Ecuador 0.07 0.02

Egypt 1.30 1.38 1.38

El Salvador 0.05

Eritrea 0.0008 0.0008

Estonia 2.71 0.32

Ethiopia 0.32 0.32

Faroe Islands 0.02 0.02

Fiji 0.01 0.01

Finland 4.09 2.47 2.47

France 19.91 17.38 17.38

Gambia 0.0002 0.001

Georgia 0.02 0.02

Germany 65.15 62.18 62.18

Greece 2.39 4.11 4.11

Guam 0.0003 0.0003

Guatemala 0.11 0.11

Honduras 0.18 0.24

Table A-2 Continued



130 | Appendices

Country Installed capacity oud 
database (GW)

Installed capacity Our 
world in data (GW, 2020)

Installed capacity 
IRENA (GW, 2020)

Hungary 0.38 0.32

Iceland 0.004 0.002

India 16.41 38.56 38.56

Indonesia 0.15 0.15

Iran 0.28 0.30 0.31

Ireland 6.19 4.30 4.30

Israel 0.03 0.03

Italy 10.59 10.84 10.84

Jamaica 0.10 0.10

Japan 5.09 4.21 4.38

Jordan 0.47 0.52 0.51

Kazakhstan 0.45 0.49

Kenya 0.44 0.34

Kosovo 0.03 0.03

Kuwait 0.01 0.01

Latvia 0.05 0.08

Lithuania 0.72 0.54

Luxembourg 0.006 0.17

Mauritania 0.14 0.03

Mauritius 0.01 0.01

Mexico 5.09 8.13 8.13

Micronesia 0.0008 0.0008

Mongolia 0.05 0.16

Montenegro 0.12 0.12

Morocco 1.29 1.41 1.41

Mozambique 0.003

Namibia 0.005 0.005

Netherlands 8.65 6.60 6.60

New Zealand 0.94 0.78 0.78

Nicaragua 0.14 0.19

Nigeria 0.01 0.003

North Macedonia 0.04 0.04

Norway 2.99 3.98 3.98

Oman 0.05 0.05

Pakistan 0.51 1.24 1.24

Panama 0.34 0.27

Table A-2 Continued
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Country Installed capacity oud 
database (GW)

Installed capacity Our 
world in data (GW, 2020)

Installed capacity 
IRENA (GW, 2020)

Peru 0.41 0.38

Philippines 0.46 0.44 0.44

Poland 9.49 6.27 6.27

Portugal 5.62 5.24 5.24

Puerto Rico 0.13 0.10

Romania 2.00 3.02 3.02

Russia 1.05 0.95 0.95

St. Kitts & Nevis 0.002 0.002

Saudi Arabia 0.42 0.003

Senegal 0.16 0.05

Serbia 0.60 0.40

Seychelles 0.006 0.006

Singapore 0.0001 0.0001

Slovakia 0.005 0.004

Slovenia 0.003 0.005

South Africa 3.04 2.64 2.64

South Korea 1.96 1.64 1.64

Spain 23.25 27.09 27.09

Sri Lanka 0.13 0.25

Sweden 12.65 9.69 9.69

Switzerland 0.17 0.09

Syria 0.003 0.0006

Taiwan 3.92 0.84

Thailand 0.55 1.51 1.51

Tunisia 0.24 0.24 0.24

Turkey 5.96 8.83 8.83

Ukraine 1.15 1.40 1.40

United Arab Emirates 0.009

United Kingdom 38.10 24.66 24.48

United States 102.44 117.74 117.74

Uruguay 1.35 1.51 1.51

Uzbekistan 0.0008 0.0008

Vanuatu 0.004 0.003

Venezuela 0.13 0.07

Vietnam 0.71 0.60

Table A-2 Continued
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A.3	 ERA 5
ERA5 climate data has been downloaded from the Copernicus Climate Data 
Store. Hourly data was used on a 0.25°x 0.25° resolution starting from 1988 until 
2017. Wind data is available at 10 and 100 m height and in a u- and v-component 
(eastward and northward, respectively), both in m/s. To get the wind speed at hub 
height, two steps are necessary:

1.	 Combine u- and v-component to get one wind speed at 10 and 100 m for each 
grid cell and time step.

2.	 Extrapolate the wind speed at 10 m to the wind turbines’ hub height.

A.3.1	 Wind speed calculation
Calculating the wind speed (v, in m/s) at 10 and 100 m is done using

�(A-6)

A.3.2	 Wind speed extrapolation
Extrapolating the 10 m wind speed to the turbines’ hub height is more complex. 
Here, we assume that wind speed can be extrapolated using the power law

�(A-7)

with vH the wind speed at hub height (m/s), v10 the wind speed at 10 m (m/s), H the 
hub height (m) and α the wind shear exponent. α can be calculated for each grid 
point and each time step via

�(A-8)

Additionally, wind speed also depends on air density (kg/m3)  [255]. Air density at 
hub height is calculated according to

�(A-9)

with ρH the air pressure at hub height (Pa), TH the temperature at hub height (K) and 
R the ideal gas constant of 8.31447 J/mol∙K. Both ρH and TH also vary with height and 
are usually measured above the ground. Therefore, they need to be extrapolated 
as well following the method described in  [255]. Measured air pressure pa is 
extrapolated to the hub height using
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� (A-10)

with pa the air pressure at mean sea level, Δh the height difference between the 
measurement height and the hub height (m) and Ta the temperature at 2 m (K). Ta is 
extrapolated to the temperature at hub height using

� (A-11)

Temperature and pressure are also available from the Copernicus Climate Data 
Store, given in K and Pa, respectively.

A.4	 Wake effect
Wind turbines extract energy from the wind meaning that downwind of a wind 
turbine, the wind blows less hard than upwind. Hence, turbines that are located 
downwind of another wind turbine experience slower wind speeds, an effect 
that is especially pronounced in wind farms. This effect is called the wake effect. 
Quantifying the wake effect for wind turbines in wind farms is difficult as it 
depends on the exact lay-out of the farm, meaning for example the turbine spacing 
and general form of the farm, but also on local wind speed characteristics such as 
wind speed and direction. If wind turbines are, for example, placed in two rows of 
eight turbines each, with the rows in a north-south orientation, only one turbine is 
downwind of another turbine if the wind blows from the east or west. If, however, 
the wind comes from the north or south, 7 turbines are downwind of at least one 
other turbine and thus experience some form of wake effect.

When designing a wind farm, extensive research is done on the predominant wind 
direction and what the effects of different farm lay-outs and turbine spacing are on 
the power output. However, information on the farms’ lay-outs and turbine spacing 
were not provided in the database. Therefore, a standard square wind farm lay-out 
was deployed here, following [136], who calculated wake effects for different wind 
farm sizes under various turbine spacing. Considering a square wind farm lay-out 
has the advantage that wind direction does not have a big influence on the results. 
Based on the table provided in  [136], the following wake effect regression was 
derived, taking 9D as the distance between turbines:

�(A-12)
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A.5	 Metamodel
In a first step to develop the metamodel, variation inflation factors (vifs) were 
calculated. If a vif is above 5, the multicolinearity is considered to be too high. For 
this reason, rotor diameter was excluded from the list of variables. Furthermore, 
in order to see if variables are correlated, a correlation matrix was made. If values 
are higher than 0.8, the variables are thought to be dependent and excluded. The 
correlation matrix of the variables included is shown in Figure A-2. It shows that all 
values are below 0.8 and therefore all variables are included.

Figure A-2 Correlation matrix of the predictors included in the metamodel. All values are below 0.8.

Figure A-3 shows the residuals vs. fitted plot of the best model (based on the Akaike 
Information Criterion). The residual standard error for this model was 0.10 with an 
adjusted R2 of 0.83.
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Figure A-3 Residuals vs. fitted plot of the best model based on the Akaike Information Criterion.

A.6	 GHG footprint of world regions
Below, the GHG footprints of the different world regions are shown. Figure A-4 
shows the GHG footprint of wind farms in Africa, Figure A-5 the footprint of those in 
America, Figure A-6 that of those in Asia, Figure A-7 the footprint of wind farms in 
Europe and Figure A-8 that of Oceanian wind farms.

Figure A-4 GHG footprints of wind farms in Africa.
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Figure A-5 GHG footprints of wind farms in America.

Figure A-6 GHG footprints of wind farms in Asia.

Figure A-7 GHG footprints of wind farms in Europe.
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Figure A-8 GHG footprints of wind farms in Oceania.

The effect of gap filling on the GHG footprint of the wind farms included here is 
shown in Figure A-9.

Figure A-9 Effect of gap filling on GHG footprint ranges per continent. 0: at least one wind farm 
characteristic had to be informed by gap filling. 1: all wind farm characteristics available in the data set.
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A.7	 Capacity factor of the global wind farm fleet
The capacity factor of a technology can be calculated by dividing the amount of 
electricity produced during a given time by the amount of electricity that could 
theoretically have been produced during that same time. Figure A-10 provides 
an overview of how the capacity factors of the wind farms included in this study 
distribute compared to the carbon footprint. Higher footprints are related to lower 
capacity factors, which can also be seen when comparing Figure A-11, which shows 
how capacity factors distribute globally, to the maps in section A.6.

Figure A-10 Scatter plot of the GHG footprint versus the capacity factor of the global wind farm fleet.

Figure A-11 Distribution of the capacity factor of the global wind farm fleet.
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Figure A-12 Histogram of the capacity factor of the global wind farm fleet.

A.8	 Literature review
Table A-3 summarizes the GHG footprints found in literature.

Table A-3 GHG footprints found in literature.

Reference Information GHG footprint
(g CO2eq/kWh)

[256] 49.5 MW, China 4.429

[257] Three turbines in China 3.9

[258] Onshore 1MW, TX, US 7.13

Onshore 2MW, TX, US 6.86

Onshore 2.3MW, TX, US 5.63

Shallow water offshore 2MW, TX, US 9.11

Shallow water offshore 2.3MW, TX, US 6.23

Deep water offshore 2.3MW, TX, US 7.58

Deep water offshore 5MW, TX, US 6.98

[259] Offshore wind farm Tuno Knob 16.5

Offshore wind farm Fjaldene 9.7

[52] 100 kW wind turbine set (n = 542) 45.3

500 kW wind turbine set (n = 230) 19.1

1MW wind turbine set (n = 370) 21.6

2MW wind turbine set (n = 154) 17.3

2MW offshore wind turbine set (n = 104) 11.7

[260] Greek wind farm 4.1

[261] Alpha ventus wind farm 32
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Reference Information GHG footprint
(g CO2eq/kWh)

[262] Havsu I offshore wind farm 35.1

[263] 38 Vestas wind turbines in Joran 9.11

[264] 14 onshore wind turbines in Brazil 7.1

[265] 330kW turbine 50m hub in Pınarbaşı-Kayseri 40.36

330kW turbine 80m hub in Pınarbaşı-Kayseri 36.46

330kW turbine 100m hub in Pınarbaşı-Kayseri 33.96

500kW turbine 50m hub in Pınarbaşı-Kayseri 38.96

500kW turbine 80m hub in Pınarbaşı-Kayseri 32.01

500kW turbine 100m hub in Pınarbaşı-Kayseri 29.97

810kW turbine 50m hub in Pınarbaşı-Kayseri 26.57

810kW turbine 80m hub in Pınarbaşı-Kayseri 21.66

810kW turbine 100m hub in Pınarbaşı-Kayseri 20.41

2050kW turbine 50m hub in Pınarbaşı-Kayseri 19.54

2050kW turbine 80m hub in Pınarbaşı-Kayseri 16.63

2050kW turbine 100m hub in Pınarbaşı-Kayseri 16.27

3020kW turbine 50m hub in Pınarbaşı-Kayseri 28.61

3020kW turbine 80m hub in Pınarbaşı-Kayseri 23.77

3020kW turbine 100m hub in Pınarbaşı-Kayseri 22.29

[266] Best case 29.5

Future case 20.3

[267] Dernah wind farm in Libya 10.42

[268] 49.5MW wind farm in China 28.6

[248] 186x1.65MW onshore wind farm in China 8.21

100x3.00MW offshore wind farm in China 5.98

100x3.00MW onshore wind farm in China 4.97

[269] Donghai Bridge offshore wind farm in China 25.5

[46] 24x1.25MW wind farm in China 7.2

[270] Saihan wind farm China 8.65

[271] 20x5kW turbines in Alberta, CA 17.8

5x20kW turbines in Alberta, CA 25.1

100kW turbines in Alberta, CA 42.7

[272] 11x660kW turbines in Italy 14.8

[118] Vestas V112 wind farm 7.0

[273] 150mW wind farm in Inner Mongolia, China 7.2

[274] 5MW offshore wind farm in Germany 22.0

[275] 4.5MW wind turbine 16.0

Table A-3 Continued
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Reference Information GHG footprint
(g CO2eq/kWh)

250W wind turbine 46

[276] Onshore V90-3.0MW turbine 4.6

Onshore V90-3.0MW turbine 5.2

[277] 40x5MW offshore wind farm 11.5

[44] Onshore turbine 7.0

Offshore turbine 11.0

[278] Vestas 2MW GridStreamer 7.7

[279] 180MW offshore wind farm 24.0

[280] 5MW offshore wind farm 16.8

3MW onshore coastal wind farm 13.2

2.5MW onshore inland wind farm 23.4

[47] 2.0MW geared wind turbine 7.59

1.8MW gearless wind turbine 7.89

[281] 3.6

[49] Buffalo Ridge wind farm, US 14

Lake Benton wind farm, US 18

Glenmore wind farm, US 34

[282] 5MW floating offshore turbine Umaine Spar 25.3

5MW floating offshore turbine MIT TLB 18.0

5MW floating offshore turbine SWAY 20.9

5MW floating offshore turbine Umaine Semi-S 31.4

5MW floating offshore turbine Umaine TLP 19.2

5MW bottom-fixed offshore turbine OC4 Jacket 18.9

[283] 1.5MW onshore wind farm 11.8

[284] Onshore Vestas V112-3.45MW turbine 5.3

[111] Onshore Vestas V110-2.0MW turbine 7.2

[285] Onshore Vestas V112-3.3MW turbine 5.8

[172] Onshore Gamesa G128-5.0MW turbine 9.65

[173] Onshore Gamesa G132-5.0MW turbine 8.58

[53] Onshore, 1MW 17.6

Onshore 1-3MW 15.5

Onshore >3MW 14.1

Offshore 1-3MW 13.6

[286] Onshore 1MW 11.9

Onshore 1-3MW 12.5

Onshore >3MW 19.7

Table A-3 Continued
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Reference Information GHG footprint
(g CO2eq/kWh)

Offshore 1-3MW 15.6

[103] Mean, harmonized 15

Minimum, harmonized 3.0

Maximum, harmonized 45

[287] 3MW onshore turbine 7.25

3MW onshore turbine 12.43

[288] 850kW wind turbine 10.28

3MW wind turbine 9.30

[289] 5MW wind turbine, LT = 30 yrs, CF = 43% 2.8

5MW wind turbine, LT = 30 yrs, CF = 20% 7.4

5MW wind turbine, LT = 20 yrs, CF = 43% 4.2

5MW wind turbine, LT = 20 yrs, CF = 20% 11.1

[290] Onshore wind turbine 11

Offshore wind turbine 13

[291] 44m hub, coastal, production & operation in GER 45

44m hub, coastal, production in GER, operation BRA 15

44m hub, coastal, production in GER & BRA, operation in BRA 8

44m hub, coastal, production & operation in BRA 3

44m hub, coastal, production & operation in BRA, recycled steel 2

55m hub, coastal, production & operation in GER 48

55m hub, coastal, production in GER, operation BRA 16

55m hub, coastal, production in GER & BRA, operation in BRA 8

55m hub, coastal, production & operation in BRA 3

55m hub, coastal, production & operation in BRA, recycled steel 2

55m hub, near coastal, production & operation in GER 61

55m hub, near coastal, production in GER, operation BRA 20

55m hub, near coastal, production in GER & BRA, operation in BRA 10

55m hub, near coastal, production & operation in BRA 3

55m hub, near coastal, production & 
operation in BRA, recycled steel

2

55m hub, inland, production & operation in GER 81

55m hub, inland, production in GER, operation BRA 27

55m hub, inland, production in GER & BRA, operation in BRA 13

55m hub, inland, production & operation in BRA 4

55m hub, inland, production & operation in BRA, recycled steel 3

65m hub, inland, production & operation in GER 77

Table A-3 Continued
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Reference Information GHG footprint
(g CO2eq/kWh)

65m hub, inland, production in GER, operation BRA 26

65m hub, inland, production in GER & BRA, operation in BRA 12

65m hub, inland, production & operation in BRA 4

65m hub, inland, production & operation in BRA, recycled steel 3

[292] Minimum 13

Maximum 156

[293] 2MW turbine, base case 6.58

2MW turbine, maximum case 9.29

2MW turbine, minimum case 6.2

[294] 600kW wind turbine in Canada 13

[295] 600kW turbine wind farm 7.2

[296] 1.5MW onshore turbine 11

2.5MW offshore turbine 9

[297] Te Apiti wind farm 3.0

[298] 225kW wind turbine, renovation 7.2

225kW wind turbine, relocation 11

225kW wind turbine, recycling 11

[299] 300kW turbine 9.51

170kW turbine 12.92

400kW turbine 6.56

100kW turbine 33.74

[300] Coast, 0.15-1.5MW 9.2

Inland, 0.15-1.5MW 27

0.6MW, coast 7.9

0.6MW, inland 24

[301] 25MW wind plant 15

A.9	 Applicability domain
The applicability domain of the regression model used to calculate a wind turbine’s 
lifetime GHG emissions as defined in [21] is defined by the minimum and maximum 
hub height and rotor diameter of the wind turbines used to build this model. The 
minimum hub height was 40 m, the maximum hub height 117 m. For the rotor 
diameter, the minimum value was 39 m and the maximum 126 m. Of all the turbines 
in the dataset used here, 78% fall within that range.

Table A-3 Continued
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Appendix B	 Appendix for chapter 4

B.1	� Facility-specific data and filling in missing data
We obtain facility-specific technological characteristics mainly from the proprietary 
Wiki-Solar dataset, available from http://wiki-solar.org. It contains data on utility-
scale projects, ranging from a minimum capacity of 3.0 MWp (‘p’ for peak, indicating 
direct current output under standard testing conditions) to projects of 3 GWp. In 
this study we focus on photovoltaic (PV) plants (thus excluding concentrated solar 
power) and use the 9,992 with a known location out of 10,268 PV plants in the 
Wiki-Solar database (obtained in November 2019). In this section we describe what 
information is available from Wiki-Solar and how we fill in gaps.

Year. We use the age of a facility as a proxy for its efficiency, combined with panel 
type. For the 990 facilities where the year is not provided, we apply the median year 
per status of the 9,002 facilities where year is provided (2015 for operating facilities 
- status A, 2018 for facilities near completion - status B and 2020 for planned 
facilities - status C).

We then use efficiency values from Chen et al. [179], determined using their Figure 3  
and a WebPlotDigitizer https://apps.automeris.io/wpd/. Efficiencies increase 
approximately linearly for the timeframe they consider (2006-2018). The majority 
of facilities in our dataset are within this timeframe too – only 7 predate 2006. For 
planned facilities (2019 or later) we extrapolate the linear increase of efficiencies 
over time. For amorphous silicon (a-Si), Chen et al.  [179] does not provide values, 
so we use the 2009-2012 averaged values from Bhandari et al. [56] and the average 
growth rates of CdTe and CI(G)S. Table B-1 provides the parameters used to 
determine panel efficiencies.

We thus take into consideration that thin film panel efficiency improves faster than 
crystalline panel efficiency [179]. We note that applying a linear growth rate implies 
that our computations are valid for current facilities and those planned for the next 
couple of years, but our computations do not hold for future scenarios in which 
panel efficiencies may gradually approach their practical efficiency limits.
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Table B-1 Parameters used to determine the panel efficiencies η [%] per type based on Chen et al. [179] 
and Bhandari et al. [56]. Efficiencies are determined as η=a ∙ year + b, values for 2016 are given as examples.

Panel type Growth rate a [%] Intercept b η 2016

Mono-crystalline 0.4027 -794.87 16.97

Poly-crystalline 0.3509 -691.29 16.12

Cadmium telluride 0.8056 -1609.15 14.94

Copper indium (gallium) selenide 0.5062 -1005.89 14.61

Amorphous silicon 0.6559 -1311.80 10.49

Panel type. PV facility’s impact I and power (electricity) output P furthermore 
depends on the type of PV, which is provided for 1,249 of the facilities in the Wiki-
Solar database, i.e. 12.5% of the facilities. We extended this by using input from 
various sources. First, we used the US Energy Information Administration’s database 
EIA-860  [184], matching utility-scale PV facilities from their 2018 data to those in 
Wiki-Solar using a proximity of maximum 0.1° latitude and longitude as well as a 
visual check for facility names and capacities. This yielded 858 facilities in the US 
with added information on panel type. Second, we obtained facility-specific panel 
types from the Global Energy Observatory [185], resulting in added information for 
53 facilities globally. Third, we used the module supplier, provided in the Wiki-Solar 
database, as an indicator for type of panel. This yielded panel types for 771 facilities.

After these efforts to fill the gaps in panel types, we know for 1,348 out of  
9,992 facilities which of the five most common types of panels is used (mono- and 
poly-crystalline silicon, amorphous silicon, cadmium telluride or copper indium 
(gallium) diselenide). For an additional 1,443 facilities, we know that crystalline 
panels are used, and for 17 facilities we know that thin film panels are used. For 
these facilities, we compute the footprint for each type, i.e. for the 1,443 crystalline 
facilities we compute both a footprint for mono- and poly-crystalline panels. For 
the thin film facilities, we compute footprints for amorphous silicon, cadmium 
telluride and copper indium (gallium) diselenide. For the remaining 7,148 facilities 
with unknown panel type, we compute footprints for all five types. This allows us 
to test the sensitivity of the footprint to panel type, such as in main Figure 4-4. In 
main Figure 4-3 showing the spatial distribution of EFGHG, an overall footprint for 
facilities where type is unknown is computed based on a weighted average using 
the relative production of each type in 2016 for current facilities (status A and B) 
and 2019 for planned facilities (status C), see Table B-2. 2019 is the latest year for 
which type-specific market shares are available, which is assumed representative 
for planned facilities (for which the median year is 2020). We opted for the simpler 
computations of using 2016 and 2019 market shares instead of market shares of 
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each year, as for most years in the dataset the market shares are very similar [183]. 
Only in recent years (2018, 2019) a shift to more mono-Si and less poly-Si becomes 
apparent. Thus, for instance for current locations where we know panels are of 
crystalline type, the weighted footprint is computed as

�(B-1)

Both mono-Si and poly-Si footprints are computed using the same facility-specific 
capacity, location and year of construction. The same approach is used for facilities 
with thin film or unknown panel type.

Table B-2 Market share of PV panel types in percentages, derived from Frauenhofer ISE [183].

2016 2019

mono-Si 22.7 64.7

poly-Si 71.2 29.6

CdTe 3.9 4.3

CI(G)S 1.6 1.4

a-Si 0.6 0.2

Within the Wiki-Solar database we can distinguish between current facilities and 
those under development (planned), see Figure 4-2 in the main text. Current 
facilities include operating facilities as well as those near completion (status A and 
B in the Wiki-Solar dataset, as of end of 2019). Of the 7,982 current facilities, 5,221 
(65.4%) have no information on panel type. For facilities in development (2,010 out 
of the total 9,992), there are relatively more plants with high capacity (>100 MW, 
Figure 4-2), and also relatively more facilities with no information on panel type 
(1,889 out of 2,010 - 94.0%).

Capacity. A facility’s capacity is given in watt-peak (p, direct current) and/or in 
alternating current (ac, power that goes into the grid after e.g. inverter losses). In our 
computation of impacts, we use MWp when computing the surface panel area of a 
facility (see section 4.2.1 in the main paper). For 2,495 out of 9,992 facilities, MWp 
is unknown, and we compute it from MWac using a performance ratio of 0.8 (PR = 
MWac/MWp). This is the median value for the 2,049 plants for which both MWac 
and MWp are provided, as well as the IEA recommended value  [182]. Fraunhofer 
ISE  [183] indicates that a performance ratio of 80-90% is common for newer PV 
plants, up from ~70% before 2000. In our database all plants became operational in 
or after 2000, with a median in 2015/2016. A performance ratio of 80% is therefore 
a representative and even slightly conservative value for our computations.
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For our computation of electricity output, we use MWac, in order to have kWh 
delivered to the grid as our functional unit. MWac is unknown for 5,451 and is 
computed from MWp and a PR of 0.8, as described above.

In some cases where both MWac and MWp are given, these were deemed too dissimilar 
if the PR was below 0.5 or above 1.0. For these cases (41), the MWp is set to MWac/0.8.

The global summed PV capacity of the 9,992 facilities used is 294 GWac, or 368 GWp. 
Figure 4-2 in the main paper shows the distribution of the plants in the database. 
Operating and near-operating facilities (7,120 and 862 facilities respectively) 
make up 215 GWp, and planned facilities make up 152 GWp. IRENA reports that 
in 2019, solar PV capacity reached 580 GWp [175]. Assuming 60% of this is utility-
scale (https://www.iea.org/topics/renewables/solar/, the remainder consisting 
of residential, commercial and off-grid capacity) implies 348 GWp of utility-scale 
capacity. Counting all facilities built up to and including 2019 in the Wiki-Solar 
database results in 8,381 facilities with a total capacity of 233 GWp, or 67% of the 
IRENA-reported 2019 utility-scale capacity. Note however that numbers on capacity 
as well as distribution amongst utility, residential and commercial capacity can vary 
greatly per year and per source.

B.2	� Impact I: GHG emissions
We calculate life cycle GHG emissions per facility using its surface area. Surface 
area is computed using equation (4-3), capacity and a year- and panel type-specific 
efficiency (see Main Figure 4-1, section B.1 - Facility-specific data and filling in 
missing data). We then compute impacts for the panels and BOS separately.

Panel impacts. Impacts per m2 of panel depend on the panel type and production 
location. The latter is taken into account by using market shares by origin countries 
per continent  [178] (proprietary) and production country-specific impacts I. No 
facility-specific information on production location was available or traceable, so 
instead we include variations in production countries by using the continent-specific 
market shares of origin (producing) countries. The data from Absolute Reports [178] 
provides supply for the years 2015 - 2020 for Asia Pacific, Europe, Africa and Middle 
East, North America, and South America. Here we use 2016 for current facilities and 
2019 for current facilities, the same years used for the panel type market shares 
(see section B.1). Other years show very similar market shares (i.e. using 2015 and 
2020 instead gives very similar results); there are only shifts in import from China, 
which is higher for 2019 in Europe compared to 2016 but lower for North America. 
Note that for North America we included values from the US Energy Information 
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Administration, which provides values for Chinese imports, which are not specified 
by Absolute Reports  [178] (likely included in the category ‘other’ – they do specify 
Chinese imports for other continents). See EIA websites for 20161 and 20192.

The market shares we found are not type-specific, so we assume that they are valid 
for all panel types. Only for CdTe we use different market shares, based on the 
assumption that the CdTe market is dominated by one manufacturer (FirstSolar), 
who (currently) has production locations in Malaysia, the US and Vietnam (see their 
website https://www.firstsolar.com/en-Emea/About-Us/Locations). We did not find 
impact values for production of CdTe in Vietnam in literature and therefore assume 
50% US and 50% Malaysian production for CdTe.

We combined the continent-specific market shares per producing country with 
type-specific impacts Ipanel per producing country. As performing a full LCIA per 
panel type and per producing country was beyond the scope of this study, we 
obtained values from literature. There is no single source of impacts for all panel 
types and all producing countries. One of the most complete sources is de Wild-
Scholten  [190], who provide impacts for all panel type for both European and 
Chinese production. Values for production in the US and Malaysia are obtained 
from Leccisi et al. [60], and Kim et al. [189] provides values for Korea. For panel types 
and producing countries where we could not find the impacts, we used values from 
EcoInvent 3.5, representing a weighted average for all PV-producing countries in 
the world (‘GLO’, see Table B-2 for market shares). These values where obtained 
through SimaPro 9.0.0.35. Specifically, we use allocation, cut-off by classification. 
We selected the ReCiPe2016 method [302] to translate life cycle emissions from the 
LCI into the midpoint impact category global warming (GHG emissions in kg CO2-
eq.). We opted for ‘GLO’ instead of ‘RoW’ (rest of world) as both give almost the same 
impacts for each panel type, thus giving the same footprints.

We note that there is a wide range of values for I available from literature, see 
Table B-8 to Table B-11, reflecting different data sources, LCIA methods, production 
processes etc. Replacing the values we used (Table B-3) with values from other 
literature sources would change the exact values reported in our results, but not 
the main conclusions, as all studies report similar patterns (i.e. high impacts from 
production in China, low impacts from EU, intermediate values for the US). We 
furthermore acknowledge that by using impacts I from different sources there may 
be inherent differences in system boundaries, impact assessments etc.

1. 	  https://www.eia.gov/todayinenergy/detail.php?id=34952
2. 	  https://www.eia.gov/renewable/annual/solar_photo/pdf/pv_table7.pdf
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Table B-3 Impacts in kg CO2-eq/m2 per producing country, per type, for panels (excl. BOS). Sources: 
dWS: de Wild-Scholten [190], Lec: Leccisi et al. [60], K14: Kim et al. [189], GLO (EcoInvent 3.5 ‘GLO’). GLO 
is used for production in countries other than China, EU, US, or KO, and for production of CI(G)S and 
a-Si in the US and KO, for which we did not find impacts.

mono-Si poly-Si CdTe CI(G)S a-Si

China dWS 415.88 214.32 102.61 81.90

EU dWS 180.56 106.74 74.18 57.89

US Lec 263 153 51

MY Lec 46

KO K14 163.5 104.33

GLO 277.1 209.5 131.2 77.5

Table B-4 Market shares in PV production used in 'GLO' by EcoInvent, representative for 2018, based 
on electricity used in laminate production. CdTe production in North America is in the US alone. ROW 
represents rest of world. Market shares in 2016, the year used to weight footprints across panel types 
of current facilities, are very similar [183].

Panel type Asia Europe Germany North America ROW

a-Si 46.1% 17.3% 21.5% 15%

CdTe 41% 59.0%

CI(G)S 30.3% 36.1% 14.2% 19.4%

poly-Si 35.7% 36.0% 16.7% 11.6%

mono-Si 35.7% 36.0% 16.7% 11.6%

Combining the market shares by origin countries per continent [178] and impacts 
per producing country (Table B-3) we thus obtain continent- and type-specific 
panel impacts for current and planned facilities, see Table B-5. The market shares by 
origin countries were used as weights, just as the market shares of panel types (as 
described in Appendix B section B.1). For many continents and panel types there 
is little difference in impacts for current and planned facilities. A drop (increase) in 
impacts typically reflects less (more) import from China, where impacts per m2 are 
higher (Table B-3). At the same time impacts for CI(G)S show a change in the opposite 
direction, as the EcoInvent ‘GLO’ impacts are higher than those reported for China 
by de Wild-Scholten [190]. Note that for CdTe we used the same impact value for all 
locations (reflecting 50% US and 50% Malaysian production as described above). 
Also note that changes in impacts for current and planned facilities reflect changes 
in import and panel efficiency. We do not consider improvements in material and 
energy utilization in the production process, which likely result in lower impacts 
and footprints for newer facilities, e.g. [196].
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BOS. The GHG emissions of the balance of systems includes mounting hardware as 
well as inverters and cabling. Mounting hardware is considered per m2, where the 
area of BOS required is assumed equal to the panel area (equation (4-3)). Specifically, 
we use GHG emissions per m2 of mounting system provided by EcoInvent 3.5 for a 
570 kWp poly-Si open-ground facility, independently of PV panel type. For inverters 
and cabling (i.e. electrical installation), EcoInvent provides GHG emissions for the 
entire 570 kWp facility, which includes 3.126 500 kW inverters (assuming a 15-year 
lifetime) and an electric installation consisting of cabling, an electric meter and a 
fuse box. We scale these GHG emissions for electrical installation to the capacity 
of each facility. These impacts for BOS, IBOS represent a weighted average for all PV-
producing countries in the world (`GLO', Table B-4). Table B-6 shows the values we 
used in our impact computations. For an easier comparison to panel and mounting 
system emissions, the emissions for electric installation are provided per m2, which 
is type-specific because surface area depends on type-specific panel efficiency η ∙ 
η depends on year too; Table B-6 represents 2016 values. Overall, crystalline panels 
have higher GHG emissions per m2 for electric installations, because they require 
more inverters and cabling per m2 due to higher efficiencies.

We note that the EcoInvent results we use do not account for the end-of-life stage, 
so no cost for removal or benefits from recycling are considered.

Table B-6 GHG emissions per m2 used in kg CO2-eq, from EcoInvent 3. For electric installation, 
emissions per unit capacity have been translated to m-2 for easier comparison using equation (4-3) and 
2016 efficiencies (Table B-1). GHG emissions per m2 of panel are given in Table B-3.

kg CO2-eq

BOS: 1 m2 mounting system 74

1 m2 mono-Si electric installation 15.1

1 m2 poly-Si electric installation 14.4

1 m2 CdTe electric installation 13.3

1 m2 CI(G)S electric installation 13.0

1 m2 a-Si electric installation 9.3
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B.3	� Power computation
To compute the electricity output per PV plant we use equations from Jerez et 
al. [180], as briefly described in section 4.2.1 in the main text. Here we show the full 
equations and coefficients used.

� (B-2)

PVpot is computed as a function of temperature ratio TR, surface downward solar 
radiation rsds (Wm2) and rsdsSTC, surface downward solar radiation under standard 
testing conditions at 1,000 Wm-2:

� (B-3)

where the performance ratio TR is a function of cell temperature:

�(B-4)

where TSTC = 25 °C and γ is a (negative) PV type-specific temperature coefficient, set 
to -0.0050 for mono-Si in Jerez et al. [180] and scaled to values reported in Crook et 
al. [303] for other types (see Table B-7).

Tcell depends on the surrounding temperature T, incoming solar radiation rsds and 
wind speed vws (m/s) as follows:

� (B-5)

with c1 – c4 type-specific coefficients (see Table B-7), following Chenni et al.  [304], 
TamizhMani et al.  [305]. ERA5 wind speed at 10 m is rescaled to 2 m wind speed 
using the 1/7 logarithmic profile. Combining equations (B-4) and (B-5) shows that 
the performance of a PV plant increases (decreases) with lower (higher) Tcell, with Tcell 
increasing with temperature and radiation, and decreasing with wind.

Equations (B-2) to (B-5) are applied to each of the 9,992 PV plants from the Wiki-Solar 
database using the hourly ERA5 climate reanalysis data for the grid cell in which 
the PV plant is located. The power production is then summed over 1988-2017, in 
order to ultimately express the lifetime environmental footprint per kWh. A 30-year 
lifetime is assumed to be representative of modern PV [182], but a different lifetime 
would of course affect the lifetime power output and GHG footprint. A 30-year 
lifetime is also used in comparable studies Pérez-López et al. [74], Louwen et al. [72] 
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and in the majority of literature (see Table B-8 to Table B-11). Using climate data 
over the period 1988-2017 is deemed to result in a power output representative 
of current climate, as a 30-year period is long enough to average out over climatic 
extremes and oscillations. Here we thus assume that the computed power output 
is representative for the facilities in our dataset which are all dating later than 
2000. We tested that power output is not sensitive to the exact years chosen; for 
1,460 locations we compared average power output for 2008-2017 to that of 1988-
2017 and found that the difference is less than 1% for 88% of the locations, and all 
differences are less than 3%.

We furthermore apply a loss ratio (or panel degradation) of 0.7%/yr, amounting to 
a loss of power of 10.1% over the 30-year lifetime [182, 74]. The final lifetime power 
output is thus:

� (B-6)

with floss = 0.899.

Table B-7 PV type specific parameters used in our computations. γ is the temperature coefficient 
used in equation (B-4), based on computations for mono-Si types in Jerez et al. [180]. For other types, 
γ is scaled to the values given in Crook et al.  [303]. c1-c4 are the coefficients used to compute cell 
temperature in equation (B-5), from TamizhMani et al. [305].

Technology γ [°C-1] c1 [°C] c2 [-] c3 [°Cm2W-1] c4 [°Csm-1]

mono-Si -0.0050 3.9 0.942 0.028 -1.509

poly-Si -0.0044 5.1 0.926 0.030 -1.666

a-Si -0.0022 4.1 0.943 0.026 -1.450

CI(G)S -0.0039 4.0 0.960 0.029 -1.507

CdTe -0.0028 4.8 0.953 0.031 -1.667

B.4	� The ERA5 climate reanalysis dataset
We use the most recent and highest-resolution global (re-analysis) dataset 
representing current climate at 0.25°x0.25° (roughly 30x30 km at equator)  [144]. 
Hourly resolution allows us to include the daily cycle of radiation as well as 
temporal variation in cell efficiency due to cell temperature (including air 
temperature, radiation and wind, see section B.3 - Power computation). Hourly data 
gives improved estimates of PV power generation compared to lower-resolution 
data  [187, 188], due to the non-linear interaction between air temperature 
and radiation.
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Urraca et al. [306] find that surface irradiance from ERA5 is less biased than earlier 
reanalysis datasets (MERRA2, ERA-Interim), and gives results that are comparable 
to satellite-derived products. The benefit of ERA5 over satellite-derived products 
(covering the entire globe and excluding gaps in timeseries) makes it a valid 
alternative when satellite observations are lacking or incomplete. ERA5 is, however, 
considered inadequate in regions with high irradiance variability (coastal areas 
and mountains).

B.5	� Regression model
When building the regression model, we chose an ordinary least squares approach 
because it gives an explicit equation which allows for easy interpretation. We build 
this model on the 1,348 facilities for which panel type is known.

The predictors, given in the top of Figure 4-1 in the main text, are year (used 
to represent facility age and determine panel efficiency), panel type (used to 
determine panel efficiency as well as in power output computation), capacity (used 
to determine panel area and in power output computation) and climate variables. 
We also include the interaction between panel type and construction year, because 
these together determine efficiency η used in the life cycle GHG emissions (Eq. (B-
4), Appendix B section B.1). Note that we cannot currently take production location 
into account in this regression, as facility-specific production location is unknown 
(instead we used continent-specific weighted averages of production countries 
based on market shares). If production country would be known for each facility, 
this can be added to the regression model as a categorical variable (like panel type) 
and would likely reduce the uncertainty in facility-specific the GHG footprint.

For the climate variables, we use location-specific 30-year means of annually 
summed irradiation and mean day-time temperature and wind speed. We 
furthermore computed a coefficient of variation to account for inter-yearly variation 
in the climate variables, based on monthly and yearly summed irradiation and 
monthly and yearly mean temperature and wind, for example for temperature (°C):

� (B-7)

where the bar indicates the 30-year mean.

For capacity, we used MWac, which gave the same conclusions from the regression 
model as using MWp. MWac is log-transformed because its distribution is right-
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skewed. We also log-transformed the response variable (EFGHG), because not doing 
so resulted in skewed model residuals.

Before building the regression model, we checked for multicollinearity. The 
correlation matrix is shown in Figure B-1, showing that correlations (R) are at or 
below 0.8. Furthermore, we checked variance inflation factors using the R package 
corvif [307], and found that all factors are below 5. Therefore, we conclude there is 
no multicollinearity in the predictors.

Figure B-1 Correlation plot for predictors and response variables in our footprint computation. 
PVtype_Con is a continuous representation of the 5 panel types (1-5), used for plotting purposes (a 
categorical variable such as PV type cannot be included in a correlation matrix).

We used the R package glmulti, considering main effects and one interaction (panel 
type - construction year) to find the best model based on AIC (Akaike's Information 
Criterion), which results in equation (4-5). This model has an AIC of -6167 and an 
R2 of 0.9868. It is built upon the predictors year (age), PV type, mean irradiation, 
mean temperature, mean wind, variation in irradiation (ICV) and the interaction 
between age and PV type. Predictors capacity and CV of temperature and wind 
are excluded, as including them leads to a higher AIC. This indicates that these are 
not important predictors of EFGHG. Capacity is a predictor of both impact I (higher 
capacity indicating higher surface area and thus higher lifetime GHG emissions) and 
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power output P, but our results indicate that this averages out for EFGHG. Variation in 
wind and temperature can be important for temporally detailed location-specific 
power (electricity) output P [187, 308] but the regression model indicates it is of no 
importance for the lifetime power output used in EFGHG.

Note that βtype in equation (4-5) has a fixed value per type, relative to a-Si. If the 
model is forced to use a different panel type as reference (using `contrasts' in R), the 
values of βtype and the intercept β0 change but the other coefficients and the R2, as 
well as our conclusions, remain the same.

The best model results in an R2 of 0.9868, see Figure B-2. The median residual 
(computed minus predicted) is -2.6 g CO2-eq/kWh, the 2.5th and 97.5th percentiles 
are at -13.1 and 3.4 g CO2-eq/kWh respectively, hence the regression slightly 
overestimates the footprints from the full computation.

Figure B-2 Computed versus predicted (equation (4-5)) GHG footprints, based on 1,348 PV facilities. 
The 1:1 line is given in blue.

To formally test the importance of each predictor, we re-built the model of 
equation (4-5), randomizing each predictor in turn (leaving all other predictors un-
randomized). The change in R2 is indicative of the predictor’s importance, a larger 
drop in R2 indicating a higher importance. Figure 4-5 shows the results, indicating 
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that randomizing PV type causes the largest change in R2, followed by mean 
irradiation and year. We checked that not log-transforming the response variable 
EFGHG leads to the same conclusions relating to predictor importance.

The shorter regression model (equation (4-6)), for easy use to any interested user, 
has an R2 of 0.9862 and residuals of -1.4 [-11.6 - 5.1] g CO2-eq/kWh.

B.6	� Comparison to literature
From literature, we selected studies that reported EFGHG and/or impact I for any of 
the five panel types considered here (mono-Si, poly-Si, CdTe, CI(G)S or a-Si) and 
which were fairly recent (dating from 2012 or later). Some studies summarize or 
harmonize earlier work on EFGHG (such as Hsu et al.  [54], Ludin et al.  [71]) while 
others compute EFGHG themselves. From the overview provided by Ludin et al. [71], 
we used their ranges based on studies from 2000 onwards, and selected ground-
mounted systems. The range of values from Ludin et al.  [71] reported here is 
therefore smaller than in their study, especially for crystalline panels, where some 
very high footprints were found for rooftop systems. We note that Nugent and 
Sovacool  [65] provide a similar useful overview of PV footprints, which we do not 
report separately here as all values from ground-mounted systems are also reported 
in other studies shown in Figure 4-6 [71, 61, 69].

A range of system boundaries, life cycle inventories, impact assessment methods, 
etc. is used in previous studies, complicating comparisons across studies  [67]. For 
the values reported in Figure 4-6 as well as those reporting impact I, we summarise 
the system boundaries in Table B-8 through Table B-11. System boundaries not 
given in the tables are for instance type of installation. All values given in Figure 4-6 
are for ground-mounted systems. Only values from Hsu et al.  [54] represent a mix 
of rooftop and ground-mounted systems. Results shown in Figure 4-6 are for the PV 
system (panels + BOS). To the values reported by Wetzel and Borchers [66], Yao et 
al. [191], Yue et al. [192], who include only panels, we added 6.5 g CO2-eq/kWh for 
BOS as recommended by Wetzel and Borchers [66].

Table B-8 to Table B-11 include country of production and impact I for panel and BOS, 
where available. Impacts are either given in kg CO2-eq/m2 or kg CO2-eq/Wp; the latter 
is converted to impacts per m2 using efficiencies used by the study and equation (4-3).  
The tables thus show there is a range of reported values for both impact I and, 
subsequently, EFGHG even within one country of production. For Hertwich et al.  [59], 
values are derived from ReCiPe 1.08 and EcoInvent 2.2, and for PV values are presented 
for OECD North America. We therefore report production in the US for their study.
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Lastly, we checked whether our method of computing electricity output is a reason 
for higher footprints. We include the effects of temperature and wind (see sections 
4.2.1) and allow for the negative impact of panel temperature on electricity output. 
Other studies typically use a simpler approach (Power = I ∙ η ∙ PR ∙ A ∙ LT) ignoring 
such temperature effects. If we re-compute electricity output P as well as EFGHG 
using this simpler approach (also including the loss factor, hence Power = I ∙ η ∙ PR 
∙ A ∙ LT ∙ floss) we indeed find higher electricity power output and lower footprints 
compared to our original computations. However, the differences are small: instead 
of 56.7  [31.9-92.6] g CO2-eq/kWh we find 54.1  [30.0-92.6] g CO2-eq/kWh with the 
simpler computation of electricity output. We note that differences are larger at 
lower latitudes (where temperatures are higher) but are overall too small to explain 
the higher footprints in our study compared to others. Differences in irradiation, 
panel type, age or country of production thus seem to introduce larger variability in 
GHG footprints than the exact method of computing electricity output.
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Appendix C	 Appendix for chapter 5

C.1	 Abbreviations used in the main article and the Appendix

Table C-1 Abbreviations used in the main article and the Appendix.

Abbreviation Explanation

α Trophic state adjustment factor

Ares Reservoir area

BIC Bayesian Information Criterion

Bo Boreal climate zone

Chl-a Chlorophyll-a

CT Cool temperate climate zone

EFCH4,age≤20,j CH4 emission factor of reservoirs younger than 20 years in climate zone j

EFCH4,age>20,j CH4 emission factor of reservoirs older than 20 years in climate zone j

EFCO2,age≤20,j CO2 emission factor of reservoirs younger than 20 years in climate zone j

EIA US Energy Information Administration

FCH4,age≤20,j Reservoir CH4 emissions in the first 20 years of operation in climate zone j

FCH4,age>20,j Reservoir CH4 emissions after the first 20 years of operation in climate zone j

FCH4,downstream Downstream CH4 emissions

FCH4,res Reservoir CH4 emissions

FCO2 Reservoir CO2 emissions

FPav Average GHG footprint

FPGHG GHG footprint

GDP Gross domestic product

GHG Greenhouse gas

GHGav Average greenhouse gas emissions

GHGtot Total greenhouse gas emissions

GWPCH4 Greenhouse gas warming potential of CH4

h Dam height

Ic Construction impact (kg CO2eq/kWh)

Io Operational impact (kg CO2eq)

ID Identification

IPCC Intergovernmental Panel of Climate Change

j Aggregated climate zone

kWh Kilowatt hours

L Large hydropower

LCA Life cycle assessment

M Medium hydropower
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Abbreviation Explanation

MM Man-made storage area

MW Megawatt

MWh Megawatt hours

n The number of items in a set

ntest Number of items in test set

ntrain Number of items in train set

NID National Inventory of Dams

NL Natural storage area

P Power output

PV Photovoltaic

qav Average yearly streamflow

qcv Yearly streamflow seasonality

qmax Maximum yearly streamflow

qmin Minimum yearly streamflow

R2
test R2 of test set

R2
train R2 of training set

Rd Fraction of downstream emissions

res Reservoir plant

RMSEtest Root mean square error of the test set

RMSEtrain Root mean square error of the training set

ror Run-of-river plant

S Small hydropower

T d/m Temperate dry/montane climate zone

T m/w Temperate moist/wet climate zone

WT d Warm temperate dry climate zone

WT m Warm temperate montane climate zone

Table C-1 Continued
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C.2	 GHG calculations

C.2.1	 Operating-phase emissions
Storage areas that have just recently been constructed (less than 20 years ago) emit 
both CO2 and CH4. Storage areas that are older than 20 years are considered to emit 
only CH4 in these later years [221]. Annual CO2 emissions for the first 20 years of a 
storage area’s life are calculated as follows:

�(C-1)

Annual CH4 emissions from storage areas during their first 20 years can be 
calculated according to:

� (C-2)

Annual CH4 emissions from storage areas after their first 20 years are then 
calculated using:

� (C-3)

These equations can be combined to give equation (C-4). It is important to note that 
because we assume a 100-year lifetime of the hydropower facility and equation (C-1)  
and (C-2) only apply to storage areas younger than 20 years and equation (C-3) 
only applies to storage areas older than 20 years, they are multiplied by 0.2 and 0.8, 
respectively, to represent emissions over the entire 100-year storage area lifetime.

� (C-4)
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The emission factors used for the calculations are aggregated in Table C-2. Trophic 
state adjustment factors α are listed in Table C-3.

Table C-2 Emission factors for different climate zones as used in equations (C-1) to (C-4) [221].

Aggregated  
climate zone

j CH4

(≤20y, kg CH4/ha/yr)
CH4

(>20y, kg CH4/ha/yr)
CO2

(≤20y, t CO2/ha/yr)

Boreal 1 13.6 27.7 0.94

Cool temperate 2 54.0 84.7 1.02

Warm temperate/dry 3 150.9 195.6 1.70

Warm temperate/moist 4 80.3 127.5 1.46

Tropical dry/montane 5 283.7 392.3 2.95

Tropical moist/wet 6 141.1 251.6 2.77

Table C-3 Trophic state adjustment factors based on the chlorophyll concentration (Chl-a, in g/L) and 
related trophic class, adapted from [221].

Trophic class Chl-a 
(g/L)

Average trophic state 
adjustment factor

Oligotrophic 0 – 2.6 0.7

Mesotrophic 2.6 – 20 3

Eutrophic 20 – 56 10

Hypereutrophic 56 – >155 25

C.2.2	 Construction-phase emissions
Construction phase emissions in this study are based on the classification from 
Kadiyala et al. [219], who have grouped hydropower facilities according to type (res: 
reservoir; ror: run-of-river) and capacity (S – less than 0.1 MW; M – 0.1 to 30 MW;  
L – more than 30 MW). GHG emissions in g CO2eq/kW are shown in Table C-4.

Table C-4 Classification table of hydropower facilities adapted from Kadiyala et al. [219].

Dam type Number of facilities in the 
dataset in [219]

GHG emissions
(g CO2/kW)

res-M 24 21.05 (±6.25)

res-L 8 40.63 (±80.57)

ror-S 3 47.82 (±34.53)

ror-M 133 27.18 (±10.38)

ror-L 3 3.45 (±1.43)
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When information on the capacity was not available, we used weighted averages of 
the GHG emission factors based on the facilities for which information was available 
as follows:

•	 Reservoir facility of unknown capacity:

�(C-5)

•	 Run-of-river facility of unknown capacity:

� (C-6)

•	 Unknown mode of operation with medium capacity:

� (C-7)

•	 Unknown mode of operation with large capacity:

� (C-8)

•	 Unknown mode of operation of unknown capacity:

�(C-9)

C.3	 Data preparation
Different databases have been combined in this study, namely the National 
Inventory of Dams (NID)  [214], HydroLAKES  [223] and the EIA  [163]. The main 
database is the NID. Information from the other databases has been added to the 
NID as needed. Climate zone information has been added to the NID using QIGS. 
An IPCC climate zones map has been overlayed with the hydropower facilities’ 
database and matched by location. HydroLAKES has been added to the NID using 
an algorithm that matches the two databases based on reported latitudes and 
longitudes of the pour points in HydroLAKES and the hydropower facility location 
in NID using an implementation of the Haversine formula:

�(C-10)
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C.4	 Imputation of electricity generation data

C.4.1	 Defining streamflow seasonality
Since the database FLO1K  [217] provides maximum, minimum and average 
streamflow values for each year at each 30 arcmin grid-cell, we calculated the yearly 
streamflow seasonality qcv as

� (C-11)

where qav is the average yearly streamflow and qmax and qmin are the maximum and 
minimum yearly streamflow.

C.4.2	 Sampling of flow data
Prior to sampling streamflow data from FLO1K to obtain average, maximum 
and minimum yearly streamflow values at the hydropower facility locations, we 
snapped the facilities to the hydrological network of FLO1K. This was done to avoid 
sampling from the wrong locations due to the discrepancy between the reported 
geo-coordinates in the NID dataset and the location of the actual river according to 
the arcseconds river network of FLO1K [217]. We used the upstream catchment area 
reported in the NID database to snap the locations to the river network. We used 
the FLO1K sampler tool provided at https://github.com/vbarbarossa/flo1k_sampler.

C.4.3	 Model development
Key information of the model development process is given in the following figures 
and tables. The model selection ranking for the power output calculation is given 
in Table C-5, with the best model printed in bold. Figure C-1 and Figure C-2 show 
the distributions of the predictor and response variables respectively before and 
after transformation. Figure C-3 depicts the correlation matrix of the variables after 
transformation. Finally, Table C-6 and Table C-7 show the ten-fold cross-validation 
across all observations and across hydropower facilities, respectively.
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Figure C-1 Histogram of predictor and response variables used in the linear mixed effect model. 
GDPave: average GDP of the administrative unit connected to the hydropower plant; height: dam 
height; PMWh: yearly electricity generated in MWh; qav: yearly average streamflow; qcv: yearly streamflow 
seasonality; surfacesum: total surface area of the reservoir.
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Figure C-2 Histogram of transformed predictor and response variables used in the linear mixed effect 
model. PMWh was log-transformed, while the other variables were transformed according to a Yeo-
Johnson transformation. All variables were standardized to mean 0 and standard deviation 1. GDPavg: 
average GDP of the administrative unit connected to the hydropower plant; height: dam height; PMWh: 
yearly electricity generation in MWh; qav: yearly average streamflow; qcv: yearly streamflow seasonality; 
surfacesum: total surface area of the reservoir.
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Figure C-3 Correlation matrix of the transformed model variables. Correlation is expressed as Pearson’s 
r. GDPave: average GDP of the administrative unit connected to the hydropower plant; height: dam 
height; PMWh: yearly electricity generated in MWh; qav: yearly average streamflow; qcv: yearly streamflow 
seasonality; surfacesum: total surface area of the reservoir.

Table C-6 Ten-fold cross-validation across all observations. For each fold, 10% of the total observations 
(i.e. hydropower facilities ∙ year) are in the test set. Number of observations (n), coefficient of 
determination (R2) and Root Mean Square Error (RMSE) are reported for train and test sets.

ntrain ntest R2
train R2

test RMSEtrain RMSEtest

12865 1430 0.95 0.95 0.19 0.20

12866 1429 0.95 0.95 0.19 0.20

12866 1429 0.95 0.94 0.19 0.22

12864 1431 0.95 0.94 0.19 0.22

12866 1429 0.95 0.94 0.19 0.22

12865 1430 0.95 0.95 0.19 0.21

12865 1430 0.95 0.95 0.19 0.20

12866 1429 0.95 0.95 0.19 0.21

12866 1429 0.95 0.95 0.19 0.20

12866 1429 0.95 0.95 0.19 0.21
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Table C-7 Ten-fold cross-validation across hydropower facilities. For each fold, 10% of the power plants 
are in the test set. Number of observations (n), coefficient of determination (R2) and Root Mean Square 
Error (RMSE) are reported for train and test sets.

ntrain ntest R2
train R2

test RMSEtrain RMSEtest

12899 1396 0.95 0.62 0.19 0.53

12971 1324 0.95 0.73 0.19 0.47

12625 1670 0.95 0.65 0.19 0.53

13044 1251 0.95 0.74 0.20 0.44

12809 1486 0.95 0.75 0.19 0.49

12404 1891 0.95 0.68 0.19 0.49

12974 1321 0.95 0.72 0.19 0.53

12921 1374 0.95 0.64 0.19 0.51

12999 1296 0.95 0.64 0.19 0.54

13009 1286 0.95 0.69 0.19 0.51

C.5	 Results
Table C-8 shows the underlying data for Figure 5-4 and Figure 5-5. The GHG 
footprints of hydropower facilities classified as having a man-made storage area are 
shown in Figure C-4. Those facilities being classified as having a natural storage area 
are shown in Figure C-5. Finally, yearly electricity generation is shown in Figure C-6.

Table C-8 The medians, 5th percentile, 95th percentile and number of hydropower facilities in each 
category depicted in Figure 5-4, Figure 5-5, Figure C-4 and Figure C-5.

Climate zone Number 
of dams

Type of 
storage area

Median
(kg CO2eq/kWh)

5th percentile
(kg CO2eq/kWh)

95th percentile
(kg CO2eq/kWh)

Boreal 5 Natural 1.4∙10-2 5.6∙10-3 4.1∙10-2

4 Man-made 1.1∙10-2 6.0∙10-3 2.7∙10-2

Cool temperate 935 Natural 2.6∙10-2 5.6∙10-3 5.9∙10-2

342 Man-made 5.5∙10-2 7.5∙10-3 2.6

Tropical dry/
montane

9 Natural 8.4∙10-2 4.2∙10-2 1.2

17 Man-made 3.8 8.4∙10-1 27.4

Tropical 
moist/wet

15 Natural 6.6∙10-3 5.7∙10-3 7.3∙10-2

15 Man-made 1.3∙10-1 7.4∙10-3 11.4

Warm 
temperate dry

34 Natural 2.7∙10-2 4.8∙10-3 1.5∙10-1

55 Man-made 2.9∙10-1 2.1∙10-2 4.6

Warm temperate 
moist

182 Natural 2.8∙10-2 4.2∙10-2 5.7∙10-2

199 Man-made 1.1∙10-1 6.1∙10-3 1.6

All climate zones 1,180 Natural 2.6∙10-2 5.6∙10-3 6.5∙10-2

632 Man-made 7.9∙10-2 6.4∙10-3 4.3
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Figure C-4 GHG footprint (kg CO2eq/kWh) of facilities classified as having a man-made storage area in 
the US. For reference, the boxplot shows the distribution of GHG footprints of man-made storage areas 
(MM) and natural ones (NL). The orange line represents the median, the boxes the 25-75th percentile 
and the whiskers the 5-95th percentiles.

Figure C-5 GHG footprint (kg CO2eq/kWh) of hydropower facilities in the US classified as having a 
natural storage area. For reference, the boxplot shows the distribution of GHG footprints of man-made 
storage areas (MM) and natural ones (NL). The orange line represents the median, the boxes the 25-
75th percentile and the whiskers the 5-95th percentiles.
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Comparison of electricity generation
We compared the average yearly electricity generation calculated by Turner et 
al. [243] with the average yearly electricity generation calculated in our study. The 
results are shown in Figure C-6. We see a very good fit with the exception of two 
extreme outliers. Data has been matched by hydropower facility name and state, 
because no other overlapping information was available in the two databases, 
which could explain the outliers as they may be two different facilities with the 
same name in the same state. Another possible explanation is that facilities have 
been combined differently between the two databases.

Figure C-6 Comparison of average yearly electricity production in Turner et al. [243] and this study.
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Summary

Fossil fuels have been the world’s primary power source since the industrial 
revolution. The large-scale use of these fossil fuels has led to a tremendous increase 
of greenhouse gasses (GHGs) in the atmosphere, and in turn has become a key 
driver of climate change. In order to reduce climate change, cleaner alternative 
energy sources have been developed. For electricity production, this includes 
different types of wind, solar and hydropower.

Many studies quantified the GHG footprints of wind, solar and hydropower. 
However, integrating spatial, temporal and technical variation into one assessment 
has not been done at larger spatial scales. Such an assessment adds value 
because it enables policy makers and developers to easily assess differences in 
GHG performance between either different technologies in the same location or 
the same technology in multiple locations. Furthermore, the comparison to other 
(non-)renewable electricity sources offers the possibility to determine how much 
can be gained in terms of GHG emission mitigation at each location. This thesis 
aims to provide a basis for such an assessment by developing models that allow 
for easy calculation of the GHG footprints of the most important non-biomass 
renewable electricity sources at facility level, using a key set of technological and 
meteorological variables.

Chapter 2 describes the space, time and size dependencies of the greenhouse gas 
payback times of wind turbines in Northwestern Europe. The net greenhouse gas 
benefits of wind turbines compared to their fossil energy counterparts depend on 
location-specific wind climatology and the turbines’ technological characteristics. 
Assessing the environmental impact of individual wind parks requires a universal 
but location-dependent method. Here, the greenhouse gas pay-back time for 
4,161 wind turbine locations in northwestern Europe was determined as a function 
of (i) turbine size and (ii) spatial and temporal variability in wind speed. A high-
resolution wind atlas (hourly wind speed data between 1979 and 2013 on a 2.5 by 
2.5 km grid) was combined with a regression model predicting the wind turbines’ 
life cycle greenhouse gas emissions from turbine size. The greenhouse gas payback 
time of wind turbines in northwestern Europe varied between 1.8 and 22.5 months, 
averaging 5.3 months. The spatiotemporal variability in wind climatology has a 
particularly large influence on the payback time, while the variability in turbine 
size is of lesser importance. Applying lower-resolution wind speed data (daily on a  
30 by 30 km grid) approximated the high-resolution results well.
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Chapter 3 then covers the variability in GHG footprints of the global wind farm 
fleet. While it is known that technological characteristics largely determine the 
greenhouse gas (GHG) emissions during the construction of a wind farm and 
meteorological circumstances the actual electricity production, a thorough analysis 
to quantify the GHG footprint variability (in g CO2eq/kWh electricity produced) 
between wind farms is still lacking at the global scale. Here, we quantified the 
GHG footprint of 26,821 wind farms located across the globe, combining turbine-
specific technological parameters, life cycle inventory data, and location- and 
temporal-specific meteorological information. These wind farms represent 79% 
of the 651 GW global wind capacity installed up until 2019. Our results indicate a 
median GHG footprint for global wind electricity of 10 g CO2eq/kWh, ranging from 
4 to 56 g CO2eq/kWh (2.5th and 97.5th percentiles). Differences in the GHG footprint 
of wind farms are mainly explained by spatial variability in wind speed, followed 
by whether the wind farm is located onshore or offshore, the turbine diameter, 
and the number of turbines in a wind farm. I also provided a metamodel based on 
these four predictors for users to be able to easily obtain a first indication of GHG 
footprints of new wind farms.

In Chapter 4, the GHG footprints of utility-scale PV facilities on a global scale are 
covered. Technological characteristics and meteorological conditions are major 
determinants of the greenhouse gas (GHG) footprints of photovoltaic facilities. By 
accounting for technological and meteorological differences, we quantified the 
GHG footprints of 9,992 utility-scale photovoltaic facilities worldwide. We obtained 
a median greenhouse gas footprint of 58.7 g CO2eq/kWh, with a 3-fold spread 
(28.2-94.6 g CO2eq/kWh, 2.5th and 97.5th percentiles). Differences in panel type 
appeared to be the most important determinant of variability in the GHG footprint, 
followed by irradiation and a facility’s age. We also provided a metamodel based on 
these three predictors for users to determine the facility-specific greenhouse gas 
footprint. The total cumulative electricity produced by the utility-scale photovoltaic 
fleet computed in our study is 457 TWh/yr, 99.6% of which is produced at footprints 
below 100 g CO2eq/kWh.

Chapter 5 describes the variability of GHG footprints of hydropower in the United 
States of America (US). Hydropower is the largest source of renewable energy in 
the US. While it is generally considered to be a low-carbon electricity source, 
technological and regional differences can lead to large variations in hydropower’s 
GHG footprints. Here, I quantified greenhouse gas footprints of 1,812 individual 
hydropower facilities in the US, accounting for facility-specific differences in 
electricity production as well as differences in life cycle GHG emissions during the 
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construction and operation of the hydropower facility. I found that the GHG footprint 
of hydropower facilities in the US range from 5.6∙10-3 to 1.1 kg CO2eq/kWh [5-95th 
percentile], with a median of 2.8∙10-2 kg CO2eq/kWh. My results show that the 
GHG footprint of hydropower with natural storage areas is systematically lower 
compared to man-made storage areas. Variation in GHG footprints of hydropower 
from man-made storage areas can be large and is mainly caused by differences in 
size, trophic state and climate zone.

Finally, chapter 6 reflected on the lessons learned. Starting from in-depth analyses, 
metamodels for wind and solar power were developed to predict GHG footprints 
at the facility-level with a minimum of information. Using in-depth analysis first 
helped to understand the limitations of simplifications and approximations made in 
the metamodels. The metamodels allow for an easier comparison of GHG footprints 
for specific technologies at distinct locations, which is important because it offers 
the possibility to determine how much can be gained in terms of GHG emission 
mitigations when comparing different (non-)renewable electricity sources. It 
also offers the potential to develop a tool that supports decision makers which 
electricity generation technology is best suited at a certain location to minimize 
environmental impacts and trade-offs.
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Samenvatting

Fossiele brandstoffen zijn sinds de industriële revolutie de belangrijkste 
energiebron ter wereld. Het grootschalige gebruik van deze fossiele brandstoffen 
heeft geleid tot een enorme toename van broeikasgassen (BKG's) in de atmosfeer, 
wat op zijn beurt een belangrijke aanjager van klimaatverandering is geworden. Om 
die klimaatverandering tegen te gaan, zijn schonere alternatieve energiebronnen 
ontwikkeld. Voor de productie van elektriciteit gaat het om verschillende soorten 
wind- en zonneenergie en waterkracht.

Er zijn al veel studies uitgevoerd die de klimaatvoetafdruk van wind-, zonne- en 
waterkrachtbronnen hebben berekend. Het integreren van ruimtelijke, temporele 
en technische variatie in één beoordeling is echter niet gedaan op grotere 
ruimtelijke schaal. Een dergelijke beoordeling voegt waarde toe omdat het beleids
makers en ontwikkelaars in staat stelt om eenvoudig verschillen in broeikasgas
uitstoot te beoordelen tussen verschillende technologieën op dezelfde locatie of 
dezelfde technologie op verschillende locaties. Bovendien biedt de vergelijking 
met andere (niet-)hernieuwbare elektriciteitsbronnen de mogelijkheid om te 
bepalen hoeveel reductie aan broeikasgasuitstoot op elke locatie kan worden 
gerealiseerd. Dit proefschrift heeft tot doel een basis te bieden voor een dergelijke 
beoordeling door modellen te ontwikkelen die het mogelijk maken om eenvoudig 
de klimaatvoetafdruk van de belangrijkste hernieuwbare energiebronnen op iedere 
locatie te berekenen.

Hoofdstuk 2 beschrijft de ruimtelijke, temporele en technologische variatie 
in de terugverdientijden van broeikasgassen van windturbines in Noordwest-
Europa. De netto broeikasgasvoordelen van windturbines in vergelijking met hun 
fossiele tegenhangers zijn afhankelijk van de locatiespecifieke windklimatologie 
en de technologische kenmerken van de turbines. Het beoordelen van de milieu-
impact van individuele windparken vereist een universele, maar tegelijkertijd 
locatieafhankelijke methode. In dit hoofstuk is de terugverdientijd van broeikas
gassen voor 4 161 windturbinelocaties in Noordwest-Europa bepaald als functie 
van (i) turbinegrootte en (ii) ruimtelijke en temporele variabiliteit in windsnelheid. 
Een windatlas met hoge resolutie (gegevens over de windsnelheid per uur 
tussen 1979 en 2013 op een raster van 2,5 bij 2,5 km) is gecombineerd met een 
regressiemodel dat de broeikasgasemissies van productie van de windturbines 
voorspelt op basis van de grootte van de turbines. De terugverdientijd van 
windturbines in Noordwest-Europa varieerde tussen de 1,8 en 22,5 maanden en is 
gemiddeld 5,3 maanden. De spatiotemporele variabiliteit in de windklimatologie 
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heeft een bijzonder grote invloed op de terugverdientijd, terwijl de variabiliteit in 
turbinegrootte van minder belang is. Het toepassen van windsnelheidsgegevens 
met een lagere resolutie (dagelijks op een raster van 30 bij 30 km) benaderde de 
resultaten met hoge nauwkeurigheid.

Hoofdstuk 3 behandelt vervolgens de variabiliteit in klimaatvoetafdruk van 
windparken wereldwijd. Hoewel al bekend is dat technologische kenmerken 
grotendeels bepalend zijn voor de uitstoot van broeikasgassen tijdens de bouw 
van een windpark en meteorologische omstandigheden voor de werkelijke 
elektriciteitsproductie, ontbreekt een grondige analyse om de variabiliteit van 
de klimaatvoetafdruk (in g CO2eq/kWh geproduceerde elektriciteit) tussen 
windparken te kwantificeren. Ik heb de klimaatvoetafdruk van 26 821 windparken 
over de hele wereld gekwantificeerd, waarbij ik turbinespecifieke techno-logische 
parameters, een inventarisatie van informatie over het materiaalgebruik gedurende 
de levenscyclus en locatie- en temporele specifieke meteorologische informatie 
combineerde. Deze windparken vertegenwoordigen 79% van de 651 GW 
wereldwijde windcapaciteit die in 2019 operationeel was. De resultaten laten een 
mediane klimaatvoetafdruk voor wereldwijde windelektriciteit van 10 g CO2eq/kWh 
zien, variërend van 4 tot 56 g CO2eq/kWh (2,5e en 97,5e percentiel). Verschillen in de 
klimaatvoetafdruk van windparken worden voornamelijk verklaard door ruimtelijke 
variabiliteit in windsnelheid, gevolgd door of het windpark op land of op zee ligt, de 
turbinediameter en het aantal turbines in een windpark. Ik heb ook een metamodel 
ontwikkeld waarmee op basis van deze vier predictoren de klimaatvoetafdruk van 
nieuwe windparken kan worden berekend.

In hoofdstuk 4 worden de klimaatvoetafdrukken van zonneparken wereldwijd 
behandeld. Technologische kenmerken en meteorologische omstandigheden 
zijn belangrijke bepalende factoren voor de klimaatvoetafdruk van zonneparken. 
Door rekening te houden met technologische en meteorologische verschillen, heb 
ik de klimaatvoetafdruk van 9 992 zonneparken wereldwijd gekwantificeerd. De 
mediane klimaatvoetafdruk van deze zonneparken is 58,7 g CO2eq/kWh, met een 
3-voudige spreiding (28,2-94,6 g CO2eq/kWh, 2,5e en 97,5e percentiel). Verschillen in 
paneeltype bleken de belangrijkste bepalende factor te zijn voor de variabiliteit in de 
klimaatvoetafdruk, gevolgd door zonne-instraling en de leeftijd van een zonnepark. 
Ik heb ook een metamodel op basis van deze drie predictoren beschikbaar gesteld 
voor gebruikers om de klimaatvoetafdruk per zonnepark te bepalen. De totale 
cumulatieve elektriciteit die wereldwijd door de zonneparken, die zijn meegenomen 
in deze studie, wordt geproduceerd, bedraagt 457 TWh/jaar, waarvan 99,6% wordt 
geproduceerd met een voetafdruk van minder dan 100 g CO2eq/kWh.
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Hoofdstuk 5 beschrijft de variabiliteit van de klimaatvoetafdruk van waterkracht 
in de Verenigde Staten van Amerika (VS). Waterkracht is de grootste bron van 
hernieuwbare energie in de VS. Hoewel het over het algemeen wordt beschouwd 
als een koolstofarme elektriciteitsbron, kunnen technologische en regionale 
verschillen leiden tot grote variaties in de klimaatvoetafdruk van waterkracht. 
Hier heb ik de klimaatvoetafdruk van 1 812 individuele waterkrachtcentrales in 
de VS gekwantificeerd, waarbij ik rekening heb gehouden met locatiespecifieke 
verschillen in elektriciteitsproductie en verschillen in broeikasgasemissies 
gedurende de levenscyclus van de waterkrachtcentrale (de bouw en het gebruik). 
De klimaatvoetafdruk van waterkrachtcentrales in de VS varieert van 5,6∙10-3 to 
1,1 kg CO2eq/kWh [5-95e percentiel], met een mediaan van 2,8∙10-2 kg CO2eq/kWh. 
Mijn resultaten tonen aan dat de klimaatvoetafdruk van waterkrachtcentrales 
zonder door de mens gemaakte reservoirs lager is in vergelijking met door de mens 
gemaakte reservoirs. De variatie in de klimaatvoetafdruk van waterkracht uit door 
de mens ge-maakte reservoirs kan groot zijn en wordt voornamelijk veroorzaakt 
door verschillen in grootte, nutrient-status en klimaatzone.

In hoofdstuk 6 reflecteer ik op de geleerde lessen. Op basis van gedetaillerde 
analyses werden metamodellen voor wind en zonneenergie ontwikkeld om 
de klimaatvoetafdruk op faciliteitsniveau te voorspellen met een minimum 
aan informatie. De eerst uitgevoerde gedetaillerde analyses hielpen bij het 
begrijpen van de beperkingen van de vereenvoudigingen en benaderingen in 
de metamodellen. De ontwikkelde metamodellen maken het mogelijk om de 
klimaatvoetafdruk gemakkelijker te vergelijken voor specifieke technologieën 
op verschillende locaties, wat belangrijk is omdat het de mogelijkheid biedt om 
te bepalen hoeveel broeikasgasreductie kan worden behaald bij het vergelijken 
van verschillende (niet-)hernieuwbare elektriciteitsbronnen. Daarnaast vormt 
dit een basis om een instrument te ontwikkelen dat besluitvormers ondersteunt 
bij de keuze voor elektriciteitsopwekking op een bepaalde locatie op basis 
van milieueffecten.
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This thesis research has been carried out under the RDM policy of the Radboud 
Institute for Biological and Environmental Sciences, version 9-Jan-2025 accessed 
at www.ru.nl/ribes.

The data used in this thesis can be accessed from the following links:

Chapter 1: No data has been produced.

Chapter 2: The wind farm-specific technological characteristics and locations 
from The WindPower.net are proprietary and can be obtained from https://
www.thewindpower.net/. The wind data used can be obtained for free from the 
KNMI (http://www.knmiprojects.nl/projects/knw-atlas).

Chapter 3: Underlying data for the figures is available at the journal: https://
onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjiec.13325&
file=jiec13325-sup-0002-SuppMatS2.xlsx.

The wind farm-specific technological characteristics and locations from The 
WindPower.net are proprietary and can be obtained from https://www.thewindpower.
net/. The climate data used in this study can be obtained from the Copernicus Climate 
Change Service (https://cds.climate.copernicus.eu/cdsapp#!/home) for free.

Chapter 4: The facility-specific technological characteristics and locations from 
Wiki-Solar are proprietary and can be obtained from https://wiki-solar.org. The 
continent-specific market shares by origin countries are also proprietary, and can 
be obtained through https://www.marketreportsworld.com/TOC/12344406#TOC. 
We used Chapter 8 (Global Solar Photovoltaic (PV) Market Analysis, by Geography) 
(http://www.marketreportsworld.com/TOC/12344406#TOC). The climate data used 
in this study can be obtained from the Copernicus Climate Change Service (https://
cds.climate.copernicus.eu/cdsapp#!/home) for free. We used ERA5's hourly single 
level data.

Chapter 5: Data will be made openly available upon publication. Now key 
supporting information is added as Appendix C in this thesis.

Chapter 6: No data has been produced.
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