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1. Introduction

1.1 Renewable Electricity

1.1.1 Energy sources

Fossil fuels - coal, oil and natural gas - are still the dominant energy sources in our
world today [1]. We depend on fossil fuels for electricity and heat generation, to fuel
vehicles, and as feedstock for the production of a variety of products, such as plastics
and paints. The use of fossil fuels causes emissions of greenhouse gasses (GHGs), such
as carbon dioxide (CO,) and methane (CH,), which are widely accepted to cause global
warming through radiative forcing. The IPCC estimated that in 2019 64% of the global
net anthropogenic GHG emissions came from CO, from fossil fuel and industry [2],
indicating that in order to limit global warming and climate change, fossil fuels should
be replaced by cleaner energy sources. The energy system accounted for 32% of the
direct GHG emissions in 2019 and therefore is a major consumer of fossil fuels [3].

Alternatively, renewable energy sources can be used, such as wind and solar power,
to reduce the GHG emissions of the energy system. Wind, water and the sun have
been used as energy sources for generations. Wind has first been used for sailing,
more than 5,000 years ago [4] and the first windmills to grind grain and pump water
are believed to have been developed as early as the 9™ century [5]. The United
Nations [6] describe renewable energy as “energy derived from natural sources that
are replenished at a higher rate than they are consumed.” There are several types of
renewable energy, with biomass currently making the largest contribution, mainly
to transport and as traditional biomass to heat [7]. The three most important non-
biomass renewables are hydropower, wind, and solar, generating respectively 16%,
5.5%, and 2.5% of the global electricity in 2019 [2]. The development of these non-
biomass renewables shares since 2000 with a projection beyond 2025 is shown in
Figure 1-1. In my thesis, the focus will be on utility-scale non-biomass renewable
energy sources, i.e. wind power, solar power and hydropower.

1.1.2 Wind power

Electricity from wind has first been generated in the 19* century [8] and utility scale
wind turbines were developed in the middle of the 20" century [9]. Wind turbines
installed today usually have a rated capacity of at least 1 MW and the largest wind
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turbine has a capacity of 26 MW [10]. The principle by which wind turbines generate
electricity is straightforward: The blades of a wind turbine are moved by differences
in pressure created when wind flows around them - similar to the way lift is created
around airplane wings [11]. The rotational energy of the blades is then converted to
electricity through a generator connected to the rotor.

Currently, wind power is becoming increasingly competitive with other forms of
electricity generation as costs are continuing to decline [12]. Wind power can be
developed both onshore and offshore, with the wind speeds on average being
higher and less variable offshore than onshore. This variability of the wind resource
is one of the biggest drawbacks of wind power and requires flexible grid integration
and can be offset by amongst others storage, possibly in a combination with solar
PV [13]. Wind turbines can also have an impact on local ecology, for instance
on bats and birds [14 - 17]. Social impacts can include shadow flicker and noise
emissions [18, 19]. However, these impacts can be mitigated by implementing
curtailment measures during certain times of day or migrating seasons, or
employing algorithms to determine shut-down times [20]. Advantages of wind
turbines are that their impact on land area is generally low as the area between
turbines can continue to be used. Furthermore, GHG emissions from wind turbines
occur mainly during manufacturing, construction and demolition and are relatively
low compared to fossil electricity sources [21, 22].

50
45
40
35 All renewables
b )
30
Variable renewables
25
20
Hydropower Solar PV
15 -
10
5
a Other renewables
| [ I I [ I I
2000 2005 200 2015 2020 2025 2030

Figure 1-1 Share of renewable electricity generation by technology in %, 2000-2030 [23]. Biomass is
not included here because its mainly used for transportation and heat and not electricity generation.
“Variable renewables” combines the shares of wind and solar PV.
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1.1.3 Solar power

Solar PV panels can be installed virtually everywhere, from being integrated into roof
slates and building panels to solar cells integrated in fabric [24, 25]. The first practical PV
cell was built in the mid-20t" century [26] and their first application was in the Vanguard
satellite in 1958 [27]. PV cells generate electricity because the energy from the sun
that hits the solar panel is absorbed by the material [28]. A PV cell consists of different
materials with different electronic properties and the photons hitting it are creating an
electric field, creating the current which is needed to generate electricity [28].

Prices started to drop in the 1970s and currently, utility-scale solar PV is becoming
increasingly competitive with other forms of electricity generation [12] and several
PV parks already exceed an installed capacity of 1 GW [29]. Different types of PV
panels exist, the most common one being mono-crystalline silicon, followed by
multi-crystalline silicon and thin film panels, examples of the latter being cadmium
telluride (CdTe) and copper indium gallium selenide (CI(G)S) [30]. They differ in
the types of materials used, cost and efficiency. Utility-scale solar PV is usually
ground-mounted, often on fixed racks, but the mounting systems can also track
the sun along one or two axes [30]. In addition to the intermittent nature of the
solar resource, which varies greatly with location - locations closer to the equator
having a higher solar resource than those closer to the poles - another possible
disadvantage of solar PV is the use of land necessary to build utility-scale PV, which
can potentially compete with alternative uses such as agriculture [31]. However,
solar PV can be integrated with other uses, such as combining it with agriculture
using shade-tolerant crops or sheep herding [32]. Competition with other uses
can also be minimized by installing PV on closed landfills [33] or as floating PV on
reservoirs, which also can reduce water evaporation [34]. Solar PV can also create
barriers to species movement, although mitigation measures, such as wildlife-
friendly fences or travel corridors, are available and can be implemented [32]. As
with wind power, GHG emissions occur mainly during manufacturing, construction
and end-of-life, but during the use phase emissions are negligible [30].

1.1.4 Hydropower

Hydropower has been used to produce electricity since the 19" century [35].
Therefore, it is a mature and proven technology to provide renewable electricity
worldwide. Different types of hydropower technologies exist, the most common
ones being reservoir and run-of-river facilities, which can range in capacity from a
few kilowatts (kWs) to several gigawatts (GWs) [36]. Hydroelectricity is generated
by water flowing through a turbine, causing it to rotate, which in turn spins a
generator producing the electricity [37].

13
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One of the advantages of hydropower in an energy system with growing amounts
of intermittent renewable energy sources is that it can provide flexibility and
therefore balance the electricity supply, as water can be stored in the reservoirs and
released when necessary [38]. Furthermore, dams generally have long lifetimes,
some being more than 100 years old, and they can provide additional services to
the community, such as recreation, irrigation and flood control, and municipal
water supply [36]. However, hydropower also has drawbacks, as it is susceptible to
climate change, where droughts may lead to an insufficient amount of water being
available [39]. Another disadvantage of hydropower is that it can have negative
social and environmental impacts. Dam construction can lead to loss of land and
fragmentation of ecosystems [40]. While hydropower is generally perceived to
be a clean source of electricity, emissions are caused throughout the life cycle of
a project, through material used during construction and operation, as well as
through biogenic GHG emissions from a mad-made reservoir through decaying
biomass after land has been flooded [40].

1.2 Life cycle greenhouse gas emissions of renewable
electricity

1.2.1 Life Cycle Assessment

A life cycle assessment (LCA) is a standardized methodology to assess the
environmental impact of a product, process or service covering its entire life
cycle, from cradle to grave, thus covering the extraction of raw materials, the use
phase and the end-of-life phase (see Figure 1-2). An LCA consists of four distinctive
phases, which are described in International Organization for Standardization (ISO)
standards 14040 and 14044 [41, 42]:

1. Goal and scope definition: First phase of an LCA stating the intended application
and rationale behind the study, as well as the functional unit, product system
and its boundaries, assumptions and limitations, and the allocation procedure.

2. Inventory analysis: In the inventory analysis, raw materials, energy requirements
and resource uses are quantified as are emissions to land, water and air and
other discharges to the environment.

3. Impact assessment: In this phase, the impacts on the environment and human
health are evaluated.

4. Interpretation: In this final phase, the significant issues of the LCA are identified
and the study is evaluated on its completeness and consistency, resulting in
conclusions, limitations and recommendations.



Introduction | 15

If applied in practice, a life cycle assessment can be an iterative process, whereby the
results of the assessment and interpretation inform decisions to for instance adjust

the production process, which in turn alters the inputs for the inventory analysis etc.

Figure 1-2 Schematic representation of the life cycle of a product, process or service [43].

1.2.2 Life cycle GHG emissions of renewable electricity

GHG footprint
LCAs are used to quantify the life cycle impacts of the generation of electricity using
renewable energy technologies, such as wind power, solar power and hydropower.

Often, the focus is on life cycle greenhouse gas emissions, presented as so-called
e (in g CO_eq/kWh), which is the life cycle GHG
emissions (1) in g CO,eq per facility divided by the lifetime electricity production (E)

greenhouse gas (GHG) footprints F

in kWh per facility:

I

F = — (1'1)
GHG =
Wind power

The greenhouse gas (GHG) emissions associated with wind power reported in
literature range from 2 to 156 g CO,eq/kWh (see Table A-3), typically based on
mean wind speeds at hub height [44 - 51]. It is important to note, however, that
electricity production can vary significantly with minor changes in wind speed,
because electricity generation depends on the wind speed cubed. Generally, larger
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wind turbines tend to produce lower life cycle GHG emissions per kWh. Caduff
et al. [45] have estimated emissions by developing a metamodel based on rotor
diameter and hub height. However, their study was limited by its focus on onshore
turbines only and not accounting for the variability of climatological data. A recent
Danish study [52, 53] employed spatiotemporal wind speed data with a resolution
of approximately 50 by 50 km to model life cycle emissions, underscoring the
necessity of accounting for the spatial and temporal variability in wind speed.

Solar power

Much research has been conducted on life cycle greenhouse gas emissions of
photovoltaic (PV) systems. A common approach involves performing a meta-
analysis by consolidating case studies reported in the literature and harmonizing
their findings to establish standardized system boundaries regarding irradiation,
lifetime, performance ratio, and/or module efficiency [54 - 57]. These studies
show that the GHG footprints of PV systems range from approximately 14 to 82 g
CO,eq/kWh under harmonized conditions. The fact that the footprints of thin-film
panels can be about 40% lower than those of crystalline silicon panels shows that
the type of panel is the most significant source of variation [58 - 61]. While meta-
analyses offer insights into the sources of life cycle GHG emissions related to PV
systems, the harmonization process may obscure real-world variations in footprints.

On the one hand, it has been shown that locations with higher irradiation lead to
increases in electricity production. Therefore, higher irradiation leads to a reduction
in GHG footprints [54, 60, 62-66]. On the other hand, the manufacturing location
affects GHG emissions during production [60, 62, 63, 64, 67]. Other important
factors which can explain differences in PV GHG footprints are variations in module
efficiency, mounting system types, lifespan, degradation rates, and capacity between
different types of PV panels [54, 65, 66, 68 - 71]. A study that has investigated spatial
differences in environmental footprints of PV systems has been conducted by Louwen
et al. [72] for rooftop PV in Eurasia and Africa, showing that installing a PV facility in a
high-irradiation area can reduce the GHG footprint by up to 75%. Ito et al. [73] have
investigated GHG footprints for two sites in France and Morocco. Pérez-Lépez et al.
([74] and [75]) for utility-scale PV globally, who showed that even within one country,
selecting a location with higher irradiation can reduce the footprint by about 25%.
These studies highlight the significant variance in PV GHG footprints based on location.

Hydropower
Greenhouse gas footprints from hydropower have been shown to vary greatly,
ranging from 2.0-10* to 6.6 kg CO,eq/kWh [76 - 93]. The reported range of 4.5 orders
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of magnitude in GHG footprint of hydropower facilities can be caused by differences
in various environmental and technological factors. Emissions from the reservoirs
themselves heavily depend on the reservoir lifetime and the climate zone in which
the reservoir is located, as well as pre-impoundment land cover type [94]. Earlier
studies have shown that the ratio of GHG emissions from the dam itself compared
to those of the reservoir lies anywhere between 100% for diversion dams to 0.01%
for tropical reservoirs [91]. Little research has been done on quantifying facility-
specific GHG footprints of hydropower at large geographical scales. Most studies
focus on one or a few plants, focusing on a specific type of dam and associated
technology. Wang et al. [95] assessed carbon emission and water consumption of
hydropower plants in China, but they did not relate the impacts to the facilities’
electricity generation. A study by Harrison et al. [96] used the G-res tool to calculate
GHG emissions from reservoirs on a global scale but neglected dam construction
and also does not relate the emissions to electricity production. Scherer and
Pfister [97] modelled the biogenic carbon footprint of hydropower reservoirs and
reported an average GHG footprint of 0.273 kg CO,eq/kWh, again focussing solely
on the reservoir and not accounting for dam construction. Gemechu and Kumar [98]
assessed LCA studies of hydropower and found that the wide range of emission
intensities reported (1.5-102 - 3.7 kg CO, eq/kWh) is caused by inconsistency in how
LCA is used, high variability in key reservoir characteristics and data limitations.

1.3 Scientific challenges

While conducting an LCA is a standardized process, various sources of variability can
cause large differences in the life cycle GHG emissions of renewable electricity sources.
Possible sources of variability can be spatial, temporal and/or technical in nature.

« Spatial variability arises because resources (wind speed, solar irradiation and water
flows) are not distributed evenly across the globe, influencing electricity production.

« Temporal variability is introduced by changes in the same renewable resources
over time, which also influences electricity production.

« Technical variability is caused by the choice of technology to be deployed
at a certain location. Changing the type of wind turbine, solar PV module or
hydropower plant influences the type and amount of resources used and thus
the life cycle GHG emissions as well as the electricity production.

Typically, LCA studies use only one variant of a given technology at a certain
point in time and space or a small set of variants of either of the three sources of

17
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variability. The main reason that most LCA studies include only a limited amount
of variability is that conducting an LCA is a time-consuming process because a lot
of information needs to be collected, processed and analysed. Therefore, in order
to capture information on the location, time and technology for a specific project,
each time a new LCA has to be carried out.

Up to now, integrating spatial, temporal and technical variation into one
assessment of GHG footprints of renewable electricity sources has not been done
on larger spatial scales. Moreover, it is not known what the main contributors are
to the variability in GHG footprints observed between different studies of the
same technology. Such an assessment adds value because it enables policy makers
and developers to easily assess differences in GHG performance between either
different technologies in the same location or the same technology in multiple
locations. Furthermore, the comparison to other (non-)renewable electricity
sources offers the possibility to determine how much can be gained in terms of
GHG emission mitigation at each location. Such an assessment may be feasible by
developing models that allow for straightforward calculation of the GHG footprints
of the most important non-biomass renewable energy sources on a global scale
identifying and using a key set of technological and meteorological variables.

1.4 Goal and outline

The main goal of my thesis is to quantify facility-specific GHG footprints of wind
power, solar power and hydropower at large spatial scales. Understanding how
differences in technology and meteorology influence GHG footprints of renewable
electricity sources will allow for the identification of the most suitable technology
to deploy in any given location from a life cycle perspective.

Apart from the introduction, this PhD thesis consists of four individual chapters and
a synthesis (see Table 1-1 for the sources of variability considered in each chapter).

Chapter 2 describes the space, time and size dependencies of greenhouse gas
payback times of wind turbines in Northwestern Europe.

Chapter 3 quantifies the variability in GHG footprints between individual wind
farms at the global scale.

Chapter 4 assesses the GHG footprints of utility-scale PV facilities on a global scale.
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Chapter 5 investigates the variability of GHG footprints of hydropower facilities in
the United States of America.

Finally, in chapter 6 the results of the previous chapters are synthesized.

Table 1-1 Sources of variability in GHG footprints for electricity from wind, solar and hydropower
considered in the chapters of my thesis.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
(wind) (wind) (solar PV) (hydropower)
Geographic Northwestern Global Global us
Scale Europe
Technological Rotor diameter ~ Rotor diameter Panel type Natural lakes
variability Hub height Hub height Capacity vs. man-made
Onshore/ Onshore/offshore Construction year  reservoirs
offshore Rated power Capacity
Power curve Reservoir area
Wind farm size Height
Temporal Wind speed Wind speed Irradiation Water flow
meteorologic Temperature Temperature CO,and CH,
variability Pressure Wind speed emission factors
Spatial Wind speed Wind speed Irradiation Water flow
meteorologic Temperature Temperature Chlorophyll-a
variability Pressure Wind speed CO,and CH,

emission factors

19
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Abstract

The net greenhouse gas benefits of wind turbines compared to their fossil energy
counterparts depend on location-specific wind climatology and the turbines’
technological characteristics. Assessing the environmental impact of individual wind
parks requires a universal but location-dependent method. Here, the greenhouse
gas pay-back time for 4,161 wind turbine locations in northwestern Europe was
determined as a function of (i) turbine size and (ii) spatial and temporal variability
in wind speed. A high-resolution wind atlas (hourly wind speed data between
1979 and 2013 on a 2.5 by 2.5 km grid) was combined with a regression model
predicting the wind turbines’ life cycle greenhouse gas emissions from turbine size.
The greenhouse gas payback time of wind turbines in northwestern Europe varied
between 1.8 and 22.5 months, averaging 5.3 months. The spatiotemporal variability
in wind climatology has a particularly large influence on the payback time, while
the variability in turbine size is of lesser importance. Applying lower-resolution
wind speed data (daily on a 30 by 30 km grid) approximated the high-resolution
results. These findings imply that forecasting location-specific greenhouse gas
payback times of wind turbines globally is well within reach with the availability of
a high-resolution wind climatology in combination with technological information.

Wind speed (u) [ms)

Greenhouse gas payback Sme

Hub height (K

, G;I'@e

Tk [y
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2.1 Introduction

Wind energy is becoming increasingly important in the world’s electricity supply as
it becomes cost competitive and the demand for sustainable energy is rising [99].

By the end of 2017, the cumulative capacity of all wind turbines installed globally
reached over 539 GW, meeting approximately 5% of the world’s electricity
demand [100]. It is projected that wind could contribute 18% to 36% of the world’s
electricity production in 2050 [101, 102].

The environmental performance of wind electricity is typically determined by
means of a life cycle assessment (LCA) [103], which is a systematic approach to
determine the environmental impact of a technology considering all the resources
required and related emissions during the different stages of its life cycle [41]. For
wind, the environmental impact per unit of electricity produced depends on the
amount and type of materials used to build and maintain the wind turbine as well
as the electricity produced over its life cycle [44]. Because it is virtually impossible
to perform specific LCAs for all individual wind turbines worldwide, Caduff et
al. [45] developed a regression model estimating the life cycle greenhouse gas
(GHG) emission of onshore wind turbines as a function of rotor diameter and hub
height. They found that the bigger the wind turbine, the lower the GHG emissions
per unit of electricity produced. However, their analysis was focused on onshore
turbines and did not take climatological variations of wind speed into account.

LCAs of wind turbines are typically based on the mean wind speed at hub
height [44 - 51]. More recently, a comprehensive LCA study for wind electricity in
Denmark built a model to estimate a wind turbine’s life cycle GHG emissions based
on technological scaling relationships and spatiotemporal information on wind
speed data with approximately a 50 by 50 km grid resolution [52, 53]. Their study
emphasized the importance of including spatiotemporal variation of wind speed
in the power calculations. The required spatiotemporal resolution of wind speed
data to obtain reliable LCA results was, however, not analysed in their study. To our
knowledge, a comparison of the site-specific environmental performance of wind
electricity on larger spatial scales that takes into account detailed spatiotemporal
variability in the local wind resource is currently lacking. Moreover, it is not known
which spatiotemporal resolution actually is sufficient to capture the variability in
the wind resource in such an assessment.

Here, the greenhouse gas payback time (GPBT) of 4,161 wind turbine locations
in northwestern Europe was quantified, accounting for variability in both wind
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climatology and turbine technology. The GPBT is a commonly used metric to
identify the environmental performance of wind energy compared with a fossil
energy benchmark, which equals the time it takes until the total GHG savings due
to the replacement of fossil energy by wind energy equals the GHG emissions
during a turbine’s life cycle [104].

To simulate the yearly average power output of the individual wind turbines high-
resolution wind data for 35 years on a 2.5 by 2.5 km grid [105] was combined
with technical information for individual wind turbines [106]. The life cycle GHG
emissions for onshore and offshore wind turbines were derived from the turbine
size with an updated regression model based on the work by Caduff et al. [45].
The importance of using a high-resolution wind climatology data set and turbine-
specific data was assessed by analysing the sensitivity of wind turbine GPBTs to (i)
differences in spatiotemporal detail of wind speed and (ii) including or excluding
differences in turbine size.
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2.2 Materials and Methods

Overview. The influence of time and space dependencies in wind speed and
size variations of wind turbine characteristics on the environmental impacts
was analysed according to the steps shown in Figure 2-1. These steps are further

explained below.

i '
wind speed data [105] Wind turbine dats [106] Lifie cycle invenbories of wind
at resehationss At resolhutions: turbines [45 - 49, 107 - 118]
Time (h) = 1, 3, 66, 12, 24, fime-averaged Turkinig bvel L J
Space [km) = 2.5, 5, 10, 30, 80, space-averaged Onfalfihore sverages
i '
Regressian model
N ] 4
Equatian [ 2-2 ] Equation | 2-4 )
Tursina-speifis pawar Turbine-spacitie grasrhauss
Fassil relerence
praduscton Ras emissiong

l

Equation [ 2-1]

Turbing-specific GPATs 31 sach
possible cambinarion of reso-
lutiarg

Statistical comparson with
Eling-Gupta-LfMicency
Equatsan [ 2-4 ]

o

Figure 2-1 Schematic representation of the calculation of the turbine-specific greenhouse gas
payback time (GPBT).
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Greenhouse Gas Payback Time. The GPBT depends on the total emissions during
the lifetime of the wind turbine and its power output, as well as the greenhouse gas
emissions of the fossil energy reference. The GPBT (in months) of a wind turbine is
calculated as

ﬂHﬂle‘Dlﬂt
GPRT, =———— -
urbine Frurbine * ‘J-'.qu"n;;l'[ 2-1)
where GHG,_ . is the cumulative GHG emission resulting from the production

and installation of the wind turbine (kg CO,eq/turbine), P . the lifetime average
electricity production of the wind turbine (kWh/month), and GHG the GHG
emission of the fossil energy benchmark (kg CO,eq/kWh). The average emission of

fossil

natural gas-fired power plants of 0.5 kg CO,eq/kWh was chosen as reference for the
whole study area [59].

GHG Emissions of Wind Turbine Production. To calculate the GHG emissions, a
regression model was developed that expresses GHG emissions of a turbine during
its lifetime (GHG
this, the model from Caduff et al. [45]. was modified by expanding the underlying

wrbine) @S @ function of rotor diameter (D) and hub height (h). For
empirical data set [46 - 49, 107 - 118] and including systematic differences in GHG
emissions between onshore and offshore turbine production [119]. A Gaussian
generalized linear model was applied using RStudio (RStudio Team, 2015), based on
28 wind turbine LCA studies of 22 on- and 6 offshore locations. Cross-validation was
performed using a leave-one-out method [120]. The best model was chosen based
on the Akaike information criterion (AIC).

Power Output. The turbine’s power output P at time i depends on the time-

turbine,i

varying wind speed at hub height u, (m/s) and the rotor diameter (m) through
Prurbines = 05 J- Hpeez - 0 - Apurine - “13 (2-2)

where u=0.85 is the overall efficiency (including grid losses and machine downtime,
among others) [121], y,_,, the theoretical maximum power that a wind turbine can
produce (16/27 , Betz's law) [122], p the air density (1.225 kg/m?), and A one the
swept area (m?) given by 0.25 - m - D2 A wind turbine operates in a limited wind
speed range (between cut-in and cut-out wind speeds), below and above which no
electricity is produced. Above the rated wind speed the turbine is programmed to

operate at its rated power output until it reaches the cut-out wind speed.

Data. Wind Turbines. Wind turbines in Northwestern Europe within the domain
of 48°N to 60°N and -8°E to +12°E were included in this study. Their location and
technical specifications were taken from The WindPower database [106], which



Space, Time and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe | 27

provides information on the turbines’ hub heights and rotor diameters. This
information is used in the calculation of the turbines’ life cycle GHG emissions
(equation (2-4)) as well as their power output (equation (2-2)). Data was available
for 4,161 wind power locations within the selected domain, of which 80 are offshore

and 4,081 are onshore. The included technological turbine characteristics are given
in Figure 2-1.

Wind Speed. Wind speed data was derived from the KNMI North Sea Wind Atlas
(KNW-Atlas) [105]. This data set contains hourly wind speed data on a 2.5 by
2.5 km grid for all years between 1979 and 2013. The KNW-Atlas is based on ERA-
Interim reanalysis data [123] downscaled with the high-resolution, nonhydrostatic
weather forecasting model HARMONIE CY37h1.1 [124, 125]. It contains wind
speeds at heights of 10, 20, 40, 60, 80, 100, 150, and 200 m. The KNW-Atlas has been
validated [126, 127] and produces accurate wind climatology up to 200 m above
sea level. For the wind turbine locations, wind speed data at the nearest KNW-
grid point were used. The wind speed at hub height was calculated by a linear
interpolation of KNW-levels to the hub height. This wind speed was then used to
calculate the average yearly power output for each wind turbine location over the
full period of 35 years.

Statistical Analysis. Technology versus Climatology. In the reference situation, the
turbines’ GPBTs were calculated using the high-resolution data from the KNW-Atlas
(2.5 by 2.5 km grid, hourly data). To assess the importance of knowing the location-
specific turbine size and wind climatology, this reference was compared to the
turbines’ GPBTs for four scenarios in which variability characteristics were modified:

1. The importance of spatial variability in the GPBT calculations was assessed by
using a spatial average of the wind data.

2. The importance of temporal variability was assessed by using a temporal
average of the wind data.

3. Theimportance of spatial and temporal variability was assessed using a spatial
and temporal average of the wind data.

4. The importance of technological variation was assessed using average turbine
sizes for on- and offshore turbines.

Spatial average means that for every hour in the 35-year study period, the wind
data of each grid point were averaged and used as wind speed value at that hour
for every grid point in the domain prior to calculating the power output for that
hour. Similarly, a temporal average means that all hourly wind speed values at



28

| Chapter 2

a certain grid point were averaged and used for every time slot at that location.
Using both the spatial and the temporal average, only one wind speed value was
used for all turbines for the whole study period, resulting in only the technological
variability of the wind turbines (e.g., hub height, diameter, and cut-in and cut-out
wind speeds) remaining. Lastly, technological averages were created by using
average onshore and offshore turbine characteristics based on the turbines in the
study area, which are shown in Figure 2-2.

The Kling—Gupta efficiency (KGE) was used to calculate the effect of neglecting
spatial, temporal, or technological variability. The KGE is a combination of
correlation, bias, and variability between scenario n (constant wind in space, time,
or both or constant turbine type) and the reference scenario and is defined as [128]

KGEy =1 =(By = 1% + O = 1) + (1 — 1)? (2-3)

with r_the Pearson correlation coefficient between the GPBT, Y, the variability ratio
((o,/v,) - (u/0)), and B the bias ratio (u /b)), with o the standard deviation and p
the mean of the GPBT results, of scenario n (see above) compared to the reference
scenario with a 2.5 by 2.5 km grid, hourly wind speed data, and turbine-specific
data. The KGE ranges from -« to 1 (1 being a perfect fit).
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Figure 2-2 Boxplots show the distribution of important technological wind turbine characteristics for
the turbines in the data set. Blue bars are onshore turbines (n = 4,061), and green bars are offshore
turbines (n = 80). The plots show the three quartile values of the distribution, the 1.5 interquartile
range represented by the whiskers, and the data points outside this range as individual values. The red
dots represent the mean used for average turbine sizes.
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Importance of Spatial and Temporal Resolution. The importance of using a high

spatial and temporal resolution in the GPBT calculations was investigated as well,

because wind data on large spatial scales are usually available at coarser resolutions

than used in this study [129, 130]. For this, 25 data sets were created from the KNW-

Atlas data by aggregating temporal and spatial resolutions to a coarser scale, based
on typical resolutions of regional and global climate archives [131]:

- temporal resolution: 1 h (default), 3 h,6 h, 12 h,and 24 h
« spatial resolution: 2.5 by 2.5 km (default), 5 by 5 km, 10 by 10 km, 30 by 30 km,
and 80 by 80 km

Reduction of temporal and spatial resolutions was obtained by subsampling the
default data at indicated space and time intervals. Daily wind speed data were
constructed by sampling data at noon (12:00 UTC). GPBTSs of the 4,161 wind power
locations were recalculated forthe 25 additional data sets,and the results of each data
set were evaluated against the reference data set using the KGE (see equation (2-3)).
All spatiotemporal analyses were carried out using NCL [132].

2.3 Results

Regression Model. The optimal AIC model fit to describe turbine life cycle GHG
emission as a function of its diameter (D), hub height (h), and onshore/offshore
technology indicator (T) was

10g(GHGrurping) = Co + €1 - log(D) + ¢z - log(h) +c3-T (2-4)
where ¢, = 2.00 [+£0.45] is the intercept, ¢, = 1.27 [£0.50], c, = 0.84 [+0.56], and

¢, = 0.29 [+0.10]. Figure 2-3 shows the regression lines for offshore and onshore
wind turbines based on 28 LCA studies found in the literature [45 - 49, 107 - 118].
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Figure 2-3 GHG emissions of onshore turbines (T = 0, grey line shading) and offshore turbines (T =1,
purple line shading) as a function of log (D - h). The shading represents the 95% confidence interval.
The markers are the harmonized LCA results from the literature (circles are onshore and triangles
offshore wind turbines).

Reference Situation. Using the turbine-specific GHG emissions and wind data from
the KNW-Atlas at the highest spatiotemporal resolution, GPBTs show a pronounced
spatial pattern (Figure 2-4). The lowest values are located offshore and close to the
coast (1.8 months as lowest GPBT), where wind speeds tend to be higher. Inland,
where lower wind speeds prevail, the GPBT is typically higher (up to 22.5 months).
The average GPBT for wind turbines in northwestern Europe is 5.25 months.

: GPT all

2 3 4 5 8B 7T B 8 10
Figure 2-4 Greenhouse gas payback time (in months) for the reference situation (wind data at 2.5 by
2.5 km and hourly resolution and turbine-specific size characteristics) [132].
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Ignoring Variability in Wind Speed and Turbine Size. Spatially averaging wind
speed while maintaining the hourly temporal resolution and the variation in
turbine technology results in a poor match with the reference data (KGE = -0.27)
(Figure 2-5a). This is due to a 2-fold underestimation of the GPBT ( = 1.93), while
the spread in the GPBT is smaller than in the reference situation (y = 0.27). The

correlation between GPBTs of the spatially averaged wind speed and the reference
situation is also relatively low (r = 0.53).
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Figure 2-5 Comparison of greenhouse gas payback times (GPBT) for the reference scenario vs the
scenarios with spatially averaged wind speed (a), time-averaged wind speed (b), wind speed averaged
over space and time (c), and average turbine size for onshore and offshore wind farms (d). Offshore
wind locations are represented by the blue dots, and onshore wind locations are represented by the
black crosses. KGE is the Kling-Gupta efficiency, r the Pearson correlation coefficient, y the variability
ratio, and 3 the bias ratio [132].
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Using a time-averaged wind speed at a 2.5 by 2.5 km spatial resolution results in
an even poorer match with the reference data with a KGE of -0.53 (Figure 2-5b).
This low KGE value is mainly due to a large overestimation of the spread in GPBT
(y=2.51). Averaging wind speed both spatially and temporally also gives a negative
KGE of -0.26 (Figure 2-5c). Similar to the spatially homogeneous wind field, the
average GPBT is strongly overestimated (3 = 1.94).

Using an average turbine size for on- and offshore wind turbines results in a much
higher KGE of 0.82 (Figure 2-5d), compared to neglecting climatological variability.
The correlation coefficient is relatively high (r = 0.88), and systematic deviations of
the mean and spread are relatively small ( = 1.12; y = 1.06).
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Figure 2-6 Kling-Gupta efficiency (a), Pearson correlation coefficient (b), variability ratio (c), and bias
ratio (d) of the GPBT at various coarser spatial (5 by 5, 10 by 10, 30 by 30, and 80 by 80 km) and temporal
resolutions (3, 6, 12, 24 hly) relative to the most detailed reference resolution (reskNW, hourly and 2.5
by 2.5 km) [132].
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Spatial and Temporal Resolution. Figure 2-6 summarizes the influence of the
spatial and temporal resolution on the KGE performance metric and its components.
Figure 2-6a shows that decreasing the spatial resolution is the dominant factor
for lowering the KGE, while temporal resolution (hourly vs daily wind speed

estimations) has only a limited influence on the KGE. The lowest KGE is found for
the spatial resolution of 80 by 80 km (KGE = 0.18-0.43). The 30 by 30 km resolution
provides intermediate KGEs (0.65-0.75), while a 10 by 10 km resolution or higher
always results in a KGE greater than 0.89. The relatively low KGE for the 80 by
80 km resolution is caused by an overestimation of the spread in GPBT (y = 1.48-1.75;
Figure 2-6¢) in combination with a decrease in the correlation coefficient (r = 0.79-
0.81; Figure 2-6d). The y coefficient shows two interesting trends: it decreases
with a decrease in temporal resolution, and it increases with a decrease in spatial
resolution. These two trends counteract one another resulting in a higher KGE for
the 80 by 80 km resolution with the lowest temporal resolution (24 hly).

2.4 Discussion

Interpretation. The analysis showed that the spatial and temporal wind information
are of particularimportance when assessing the wind turbine greenhouse gas payback
time, a fact that is often neglected in LCAs, while the variation in turbine size appears to
be of relatively lower importance. The analysis further indicated that daily wind speed
data on a 30 by 30 km grid provide results that still match the reference high-resolution
data (KGE = 0.75), although a spatial resolution of 10 by 10 km would further improve
model performance (KGE = 0.89).

When time-averaged wind speeds over 35 years were used as an extreme scenario,
GPBTs were severely overestimated. Wind speed shows a non-normal temporal
frequency distribution, with lower wind speeds occurring more frequently than
higher values [121]. Combined with the nonlinear dependence of the power
output on the wind speed, the long-term average wind speed causes a strong
underestimation of the power output and hence an overestimation of the GPBT.
Using one daily wind speed value measured at noon performed equally well
compared to the use of hourly data. In Europe, the average wind speed at noon is
slightly higher than the daily mean for vertical levels up to 80 m [133]. Because more
than 75% of the wind turbines included here have hub heights lower than 80 m,
this leads to slightly higher power yields and consequently a 10% underestimation
of GPBT compared to using the daily averaged wind data.
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Completely neglecting spatial variability in the wind speed led to large over- and
underestimations of GPBT of individual wind turbines. Although offshore wind
turbines require more building materials (and hence have higher GHG emissions)
than onshore installations, offshore GPBT are typically lower because of the higher
wind speeds over sea. The results reflect, however, only a relatively small sample of
only 80 offshore wind turbine locations; more offshore locations should be included
to consolidate this conclusion.

Uncertainties. This study showed that it is highly relevant to account for spatio-
temporal and technological variation when calculating the GPBT of wind electricity.
A number of uncertainties may, however, influence the results, which are further
discussed below.

First, wind farms were treated as a single geographical location, while in reality
wind farms may occupy large surface areas. The largest farm in the data set (175
turbines with a diameter of 107 m) covers an area of approximately 56 km? thus
covering multiple grid cells in the KNW-Atlas, which could each have a distinct
wind climatology. However, less than 2% of the wind turbine locations in the data
set span more than one grid cell and less than 0.6% more than two grid cells.
Additionally, large wind farms are predominantly located offshore, where wind
climatology is more stable because of low surface roughness [121]. Therefore,
the effect of ignoring the spatial extent of wind farms is considered limited in the
context of this study.

The power performance of wind turbines can also be influenced by wake effects.
In a wind farm, downstream turbines are affected by a decrease in wind speed due
to momentum loss caused by upstream turbines [134]. Several studies [121, 135]
report that power output in wind farms are typically 5 to 10% lower because of
these wake effects, but losses could be as high as 50% in large farms with narrow
turbine spacing [136]. Here, more than 75% of the locations consisted of fewer
than 4 turbines and only 0.1% of the locations had array sizes exceeding 10 x 10
turbines. Wake effects therefore are unlikely to influence the GPBT calculations.
Still, wake effects may become important for other locations in the world and as
more large wind farms are built in the future.

Another source of uncertainty is that a resolution of 2.5 km is most likely not
sufficient to capture the local properties of wind speed at the top of mountain
ranges. The energy yield of a wind turbine at mountain tops is therefore most likely
underestimated in this analysis. However, with increasing height the air density



Space, Time and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe | 35

decreases, which also influences power performance. A recent study by Jung and
Schindler [137] showed that at a height of 800 m, the highest elevation with wind
turbines in the study area, annual energy yields are overestimated by 6% when
changes in air density are not considered. The same error in GPBTs is achieved when

taking one daily wind speed measure instead of hourly data or changing from a 2.5
by 2.5 km to a 5 by 5 km grid. While the uncertainty from this simplification is not
negligible, the 6% error in GPBT from neglecting air density changes is relatively
small compared to the error introduced by using average wind speeds, as shown
in the analysis. In areas with even higher elevations, spatiotemporal variance in
air density should be accounted for because errors in energy yield can otherwise
amount to up to 25%.

Incorporating more turbine-specific losses can further improve the GPBT
calculations. Examples are performance decline due to aging, which has been
reported to lie around 0.6% per year [138], and losses due to rotor blade soiling
and/or icing, which are generally assumed to account for 2%, but can in rare cases
exceed 20% [139].

Finally, a gas-fired power plant was chosen as the background energy system to
focus the investigation on the effect of changes in wind climatology and turbine
technology. More advanced reference systems that more precisely reflect what is
replaced by the produced wind electricity can also be considered, but that would
require a substantial amount of extra information about the electricity system as a
whole [140]. Another possibility to evaluate the environmental trade-offs of wind
electricity is to integrate the location-specific long-term power output and material
requirements for wind turbines into integrated assessment models [141].

Outlook. The method presented here can be used to derive the environmental
performance of current and future individual wind turbines worldwide even when
limited information on turbine technology is available. Following the developments
in the wind energy market to build larger wind farms, wake effects should be
included in the future, and when areas with higher elevation are considered, the
spatiotemporal variability in air density has to be considered.

Recent studies specifically focused on the energy production potential of wind
turbines but did not consider environmental impacts such as GPBT [129, 142,
143] or use wind climatology that is either not globally available or at coarser
resolutions. This study indicates that the use of current spatial resolution for global
climate data archives (e.g., ERA-Interim [123]) of 80 by 80 km introduces a relatively
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large uncertainty in the power predictions (KGE = 0.18-0.43). A new ERA-suite,
ERAS5 [144], is under development with global climatological data at an hourly and
30 by 30 km resolution at which the KGE exceeds 0.7.

Therefore, using this method with the new ERA-suite would provide a good
opportunity for location-specific predictions of the environmental impacts for
wind turbines at the global scale. The method may also be used to identify optimal
locations for wind turbines taking into account environmental impacts. The
results could be incorporated as an extra factor in wind energy potential studies
for various regions worldwide. In addition to the GPBT, this method can also be
used to calculate payback times for other environmental impacts, such as water
and mineral resource scarcity [145, 146], giving a more complete picture of wind
turbines’ environmental performances.

This study showed that the GPBT of wind turbines in northwestern Europe varies
between 1.8 and 22.5 months. Detailed spatiotemporal (at least daily wind speed
on a 30 by 30 km grid) wind climatology as well as hub height and rotor diameter
of the wind turbines are required to assess the greenhouse gas payback times of
wind electricity with sufficient accuracy. The findings imply that a location-specific
assessment of wind turbines’ GPBTs at the global scale is well within reach with the
availability of high-resolution reanalysis data sets and wind turbine databases.
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Abstract

While technological characteristics largely determine the greenhouse gas (GHG)
emissions during the construction of a wind farm and meteorological circumstances
the actual electricity production, a thorough analysis to quantify the GHG footprint
variability (in g CO,eq/kWh electricity produced) between wind farms is still lacking
at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms
located across the globe, combining turbine-specific technological parameters,
life cycle inventory data, and location- and temporal-specific meteorological
information. These wind farms represent 79% of the 651 GW global wind capacity
installed in 2019. Our results indicate a median GHG footprint for global wind
electricity of 10 g CO,eq/kWh, ranging from 4 to 56 g CO,eq/kWh (2.5" and 97.5™
percentiles). Differences in the GHG footprint of wind farms are mainly explained
by spatial variability in wind speed, followed by whether the wind farm is located
onshore or offshore, the turbine diameter, and the number of turbines in a wind
farm. We also provided a metamodel based on these four predictors for users to
be able to easily obtain a first indication of GHG footprints of new wind farms
considered. Our results can be used to compare the GHG footprint of wind farms to
one another and to other sources of electricity in a location-specific manner.
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3.1 Introduction

In order to limit global warming to 1.5 °C by 2100, a drastic reduction of greenhouse
gas (GHG) emissions is needed [147]. While there are multiple pathways to achieve
such a reduction, renewable energy technologies, such as wind energy, are an
essential part in mitigation GHG emissions. Wind energy is often considered to be
related to low emissions of air since its operation does not involve the emission
of large quantities of GHGs and therefore wind energy operates at much lower
GHG emissions than fossil fuel-based electricity generation technologies [148]. In
recent years, wind energy has played an increasingly important role in supplying
renewable energy, with more than 20% added installed capacity for onshore farms
and more than 35% added installed capacity offshore between 2000 and 2018 and
expected annual growth rates exceeding 7% and 11% until 2050 [149]. In 2019,
the cumulative installed capacity worldwide was 651 GW [150] generating more
than 1,400 TWh - roughly 5% of all electricity produced [151] - and the installed
capacity could exceed 6,000 GW in 2050 [149].

However, GHG emissions from electricity production with wind turbines are not
zero, as GHGs are emitted during other life cycle stages, mainly manufacturing of
wind turbines [59, 152]. To assess the life cycle emissions of electricity production
with wind turbines, all direct and indirect emissions need to be assessed.
Expressing the life cycle GHG emissions per unit of electricity production provides
the so-called GHG footprint (in g CO,eq/kWh) [45], a metric enabling comparing life
cycle GHG emissions of, among others, various technologies at different locations.
Several studies report the GHG footprint of wind turbines, often by studying
only one or a few wind turbines (see Table A-3 in Appendix A for references) or
by harmonizing the conditions of multiple studies to cover a greater range of
locations [58, 153]. These meta-analyses provide excellent insights into the main
causes of GHG emissions of wind farms but do not show the variation in footprints
between facilities at the global scale. A number of studies have looked at the GHG
footprints of wind turbines on a larger scale, however often limited to one or a
few countries [53, 152] or have not yet taken into account the effect of variation in
climatology and technology [59].

Here, we quantified the GHG footprint of 26,821 wind farms worldwide, combining
turbine-specific technological parameters, life cycle inventory data, and location-
and temporal-specific meteorological information. To this end, we first applied a
model to predict GHG life cycle emissions of wind turbines, excluding the end-of-life
phase [21], using turbine-specific technological information from thewindpower.

41
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net database [106]. Electricity production of the wind turbines was estimated by
combining turbine-specific power curves with meteorological information from
the ERA5 reanalysis data set [154] at a 0.25° by 0.25° grid and hourly temporal
resolution over a standard turbine lifetime of 30 years [155]. Based on our GHG
footprint calculations for wind farms at the global scale, we further developed a
metamodel for users to straightforwardly quantify the GHG footprint of a new wind
farm, based on a limited number of technological and climatological key variables.

3.2 Materials and methods

We first describe the calculation of GHG emissions of wind turbine construction
(section 3.2.1). Section 3.2.2 provides insight into the calculation of the lifetime
electricity generation of the wind farm. Section 3.2.3 explains the development of
the metamodel on the basis of the GHG footprints of the individual wind farms.

3.2.1 GHG emissions of wind turbine construction

The prediction of GHG emission related to wind turbine construction and
maintenance are based on Dammeier et al. [21], in which a regression model was
developed relating GHG emissions per turbine (in kg CO,eq/turbine) to the wind
turbine's rotor diameter (D; in m), hub height (H; in m) and on- or offshore location
(O; 0 for onshore, 1 for offshore):

[0gyo(GHGryrpine) = 199 + 1.31 - log, o(D) + 0.79 - logy o (H) + 0.29- 0 (3-1)

based on information from 28 wind turbine LCA studies, which were standardized
by Dammeier et al. [21], using the same LCl database (Ecolnvent version 3.2) for
the materials and energy required for the construction of the wind turbines as
reported in these LCA studies. Maintenance cycles were also standardized in
Dammeier et al. [21]. The model excludes the emissions related to the end-of life
and grid connection of a turbine. Differences in materials used and construction are
included implicitly through the use of different LCA studies. In order to calculate
GHG emissions for a wind farm, GHG, . is multiplied by the number of turbines in
a wind farm.

Data on the wind turbine's rotor diameter, hub height, and on- or offshore location
were derived from thewindpower.net database [106], which provides data on
wind farm location and technological turbine characteristics for 31,298 wind farms
worldwide, consisting of 266,074 wind turbines. For 132 offshore wind farms,
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information on location was supplemented with updated information from [106]
and [156]. Data on both diameter and hub height were complete for 15,684 of the
wind farms (50%). The 4,609 wind farms were excluded because information on
location was unavailable. For the other wind farms, information on rotor diameter
D (n = 5,132) or hub height H (n = 10,336) were lacking. In these cases, other
turbine-specific parameters, such as nameplate capacity, were used to predict rotor
diameter and/or hub height (see Appendix A, section A.1). We were able to include
26,821 (85.7%) wind farms with a total capacity of 523.3 GW in our GHG footprint
calculations. This is 80% of the 651 GW installed in 2019 [150]. In the supporting
information (section A.2) we provide per country the installed capacity we were
able to include in our calculations versus the total installed capacity reported by
Ritchie and Roser [151] and IRENA [157].

3.2.2 Electricity generation

Power curves were used to predict net electricity generation of wind turbines (P, in

kW), which can be described by a logistic function chosen to stay as close as possible
to the information provided by the manufacturers and which is of the form [158]:

p:'ated

Prrbine = 1+ el-kn-5) (3-2)

where P is the turbine's nameplate capacity [MW], v, is the instantaneous

rated
wind speed at hub height [m/s], k the logistic growth rate, and b the sigmoid's
midpoint wind speed. The power curves were fitted to the data provided by the
manufacturers through the wind farm database using SciPy's curve fit routine [159].
The average R? of the fit for each wind farm with power curve data is 99.6% (ranging
from 98.6 to 99.9 as the 2.5 and 97.5™ percentiles). For the 7,771 wind farms for
which data on the power curve were not available, the average k of 0.74 (0.58-0.77;
95% confidence interval) and an average b of 8.58 (7.20-8.82; 95% Cl) of the wind

farms with power curves were used.

Note that below the cut-in wind speed, a wind turbine is not operational. If the
actual wind speed is higher than the rated wind speed, the wind turbine produces
at its nameplate capacity up to the cut-off wind speed. Under circumstances that
the wind speed is above the cut-off wind speed, the turbine is turned off. If this
type of data were not available for an individual wind farm, the cut-in wind speed
was set to 3 m/s, the rated wind speed to 13 m/s, and the cut-off wind speed to
25 m/s, which are the typical cut-in, rated, and cut-off wind speeds of wind farms
in the data set (see Appendix A, section A.1 for more information on gap filling).
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All instantaneous power calculations were added to calculate the total power
produced by a turbine during its lifetime.

The wind speed at hub height v, [m/s] is calculated from wind speed at 10 m [m/s]
according to the power law

H\® ; py A
- (HY . 3-3
Vi = V1o (m) (1.225) (3-3)

with H the hub height in m, air density p, at hub height in kg/m? and the wind
shear exponent a being given through

Y100

o= Iagm( ] (3-4)
Vi

with v, the wind speed at 100 m and v, the wind speed at 10 m. In order to be

consistent throughout the calculations, the same spatial and temporal resolution

applied in the other calculations is used here as well.

Often, a standard air density of 1.225 kg/m?* is used when estimating annual
energy production of wind turbines [160]. However, air density decreases with
decreasing temperature and increasing altitude and neglecting air density in power
production can lead to over- and underestimations of power production of more
than 20%. Differences increase with increasing wind speed (up until the rated wind
speed) [160]. Therefore, air density p was corrected for temperature and altitude to
give air density at hub height (p ,[kg/m?]) through

i
o= RoTy _';.H] (3-5)

with p,air pressure at hub height [Pa], T, temperature at hub height [K], and R the
ideal gas constant of 8.31447 J/mol/K [137]. Pressure and temperature also vary
with height, which is further explained in section A.3 of Appendix A.

The location-specific climate data required for the calculations of the wind speed,
including the wind shear exponent and the air density, has been downloaded from
ERAS5, the most recent and highest-resolution reanalysis data set [144]. Here, hourly
data over a period of 30 years was used (years 1988 until 2017) for v, T, and p on
a 0.25° by 0.25° grid, which has recently been shown to provide sufficient spatial
and temporal details [21], because a lower temporal resolution can lead to over-
and underestimations of GHG footprint calculations. For each of these hourly data
points, the power output is calculated using equation (3-2) and subsequently
aggregated over the 30 years to give the lifetime power production of the wind
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farms. We used a typical 30-year life span of a wind turbine, as reported in a recent
survey carried out in the United States [155].

The so-called wake effects can decrease the net electricity generation P_ of

wind farms, because the wind speed downstream of a wind turbine is lower than
upstream. We included the wake effect in our calculations via:

Puer = Porvine * Newroine * fiv (3-6)

The relative reduction in net electricity generation due to wake effects (f is
dimensionless between 0 and 1) depends on a wind farm's size according to:

foo =1 =0.033 ' In{Neyrpines) (3-7)

with N
(3-7) was derived by extrapolating information on the power loss in different wind

wbines th€ Number of turbines in the wind farm. The relationship in equation
farm settings given in [136] (see Appendix A, section A.4 for more information).
Here, we assume an average turbine spacing of nine rotor diameters, as we do not
have location-specific information on turbine spacing. The number of turbines is
given in thewindpower.net database [106].

3.2.3 Metamodel

A metamodel was developed to be able to directly approximate the GHG footprint
of a specific wind farm with a limited number of technological and climatological
variables. The metamodel was derived with a generalized linear modelling (GLM)
approach, linking the log-transformed GHG footprints we derived with our detailed
calculations for the individual wind farms to hub height, rated power, on-/offshore
location, number of turbines in farm, and the 30-year average 100 m wind speed
at farm location. Rotor diameter was excluded from the GLM fitting due to high
covariance with other wind turbine characteristics, that is, a variation inflation
factor of higher than five. The metamodel was built with data from the 15,684 wind
farms for which all relevant turbine-specific data were reported. The best model
was chosen based on the Akaike information criterion (AIC). Variable importance
in the metamodel was assessed by predictor randomization. Every predictor was
randomized in turn and the model was rebuilt, after which the R? of the rebuilt
models are compared. The bigger the drop in R?, the more important a predictor.
For the best model, partial dependency plots were created, which show how each
predictor affects the GHG footprint. More information on the metamodel can be
found in Appendix A, section A.5.
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3.3 Results

We show the GHG footprint of the global wind farm fleet (section 3.3.1) and the
results of the metamodel development (section 3.3.2).

3.3.1 Greenhouse gas footprint

Figure 3-1 maps the individual GHG footprints of the global wind farm fleet, with a
median of 10 g CO,eq/kWh and a range of 4-56 g CO,eq/kWh [2.5-97.5% interval].
Maps of the GHG footprints per continent can be found in Appendix A, section A.6.
We found relatively low GHG footprints along the coast and offshore, while higher
footprints are typically found further inland. While the GHG footprint ranges can
vary, with Africa and Asia showing larger ranges than America, Europe, and Oceania,
the median does not vary greatly between continents (Figure 3-2).

The wind farms included here have an average calculated capacity factor of 24%
ranging from 2% to 70% (2.5" to 97.5" percentiles), with more detail provided in
section A.7 of Appendix A.

The results from our study are in line with what previous studies on individual
turbines have found, in which footprints range from 3.6 to 46 g CO,eq/kWh (see
Table A-3 in Appendix A for reference) (Figure 3-3).
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Figure 3-1 Greenhouse gas footprints of the individual wind farms in CO,eq/kWh of the global wind
farm fleet. Underlying data for Figure 3-1 can be found in Supporting Information S2.
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Figure 3-2 Greenhouse gas footprints grouped by continent. The white line is the median, the box the
25t to 75 percentile, and the whisker the 2.5™ to 97.5% percentile. Underlying data for Figure 3-2 can
be found in Supporting Information S2.
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Figure 3-3 Greenhouse gas footprint ranges of our study compared to values found in literature (see
Table A-3 of Appendix A for details). The orange line is the median, the box the 25t to 75 percentile, and
the whisker the 2.5" to 97.5" percentile. Underlying data for the results from this study in Figure 3-3 can
be found in Supporting Information S2. Data from the literature can be found in Table A-3 of Appendix A.

3.3.2 Metamodel
The best model based on the AIC is

10g;(GHG) = 241 — 0.20 - Uy — 5.9 - 107% - Py —8.3-107% - H +53 - 1077 - N, + 0.33- 0

(3-8)

Vag is the 30-year average wind speed at 100 m [m/s], P the turbine's rated

rated

power [kW], H the turbine's hub height [m], N, the number of turbines in a wind
farm, and O is a categorical variable denoting either onshore (0) or offshore (1)
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wind farms. This means that GHG footprints decrease with increasing average
wind speed, capacity, and hub height and increase with increasing number of
turbines and offshore location. The model's R? is 0.85 with a residual standard
error (RSE) of 0.10. The RSE of 0.1 implies that 95% of the GHG footprint estimates
of the metamodel fall within a factor of +1.6 of the more detailed GHG footprint
calculations with hourly time steps.
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Figure 3-4 Importance of predictors of greenhouse gas footprints after rebuilding the model
with randomized variables. A bigger reduction of R? means that the variable is more important. R?
reductions are 0.015 for the number of turbines, 0.018 for the rated power, 0.020 for the hub height.
0.067 for on-/offshore, and 0.802 for average wind speed.

Figure 3-4 shows the effect of randomization on the R% Randomizing the average
wind speed leads to the biggest reduction in R?, which means that it is the most
important predictor of wind farms' GHG footprints, followed by whether a
farm is located on- or offshore. Hence, an increase of the average wind speed of
1 m/s would lead to a factor 1.6 decrease in the log of the GHG footprint, while
changing from on- to offshore would lead to a factor 2.1 decrease in the log of
the GHG footprint. Similarly, Figure 3-5 shows the effect of each variable on the
GHG footprint of wind farms. The effect is shown for on- and offshore wind farms
separately. A bigger change means that the variable is more important, and the
figure also shows the direction of change in GHG footprint related to a variable.
Higher wind speeds result in lower footprints while more turbines lead to higher
GHG footprints.
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Figure 3-5 Partial dependency plots showing the effect of each variable on the greenhouse gas (GHG)
footprint of wind farms. A bigger change in GHG footprint means that the variable is more important.
(a) Average wind speed at 100 m in m/s. (b) Number of turbines. (c) Hub height in m. (d) Rated power
per turbine in MW. Underlying data for Figure 3-5 can be found in Supporting Information S2.

3.4 Discussion

We first discuss the GHG emissions of wind turbines (section 3.4.1) and section 3.4.2
discusses the factors influencing the electricity generation calculations.

3.4.1 GHG emissions of wind turbines

The model to predict the life cycle GHG emissions of the production of a wind
turbine, based on a limited number of technological characteristics, has been
developed in an earlier study [21]. While 78% of the wind farms evaluated in
our study have a hub height and rotor diameter that fall within the limits of the
turbines used to build the regression model (see Appendix A, section A.9), further
improvements in the model can be considered by expanding the LCA data set
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with smaller and bigger turbines to further increase the applicability domain. With
a larger data set, other predictor variables, such as more detailed information on
wind turbine type, can be considered as well in the regression model development.
Furthermore, our model includes major life cycle stages of wind turbines but does
not take into account emissions that occur during a wind turbine's end-of-life.
While most materials can be recycled, the end-of-life of turbine blades is a pending
point of discussion as no common recycling method is available yet [161]. Also, the
grid connection is not included in the analysis, which can be especially important
in offshore wind farms [52]. Future studies could incorporate these aspects as well,
to make the model more complete. Furthermore, it would be interesting to see the
effect of energy storage, which will likely be needed as the share of wind energy in
the electricity mix increases, on the GHG footprint of wind farms [162].

To understand possible consequences of gap filling, we compared the GHG
footprint ranges of the group of wind farms for which all information was complete
to the group for which at least one variable was estimated. The results can be seen
in Figure A-9 of Appendix A, which shows that there are no systematic differences
between the GHG footprints of wind farms for which all information was available
and those for which information had to be derived via gap filling.

3.4.2 Electricity generation

An important factor in GHG footprint calculations is the amount of electricity
generated by a wind turbine. To verify electricity production estimates, we compare
our results with empirical electricity production data at the level of individual wind
farms for the United States of America and Denmark (see Figure 3-6). These two
countries provide long-term electricity production data for which comparison on
a wind farm by wind farm basis was possible. We obtained empirical electricity
production data from wind farms in the United States for the period 2001 through
2017 [163]. We included empirical data from 657 wind farms in the United States that
could be matched to wind farms in our database, based on specific name and state.
On average, electricity production reported by the EIA was 1.15 higher than the
yearly average electricity production we calculated over the 17 years time period,
with extremes ranging from 0.64 times our calculated yearly average electricity
production to 4.80 times that [2.5"" and 97.5" percentile range]. This relatively large
range could in part be caused because matching is solely done on name and state,
but additional information on capacity and technology was unavailable. We also
compared our yearly average electricity production estimates of 1,724 wind farms
with empirical data for the Danish wind farm fleet [164], using data from 1988 to
2017.The reported electricity production was, on average, 0.78 times our estimated
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electricity production for the Danish farms over a period of 30 years (with 0.45 and
1.17 the 2.5"-97.5" percentiles) (see section 3.3 for more details).
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Figure 3-6 The boxplot shows the ratios of calculated versus reported electricity generation for the
United States and Denmark. The orange line is the median, the box the 25" to 75t percentile, and
the whisker the 2.5" to 97.5% percentile. Underlying data for Figure 3-6 can be found in Supporting
Information S2.

This comparison shows that, although our electricity estimates are generally
in line with empirical observations, they are not without uncertainty. First, a
logistic function was used to calculate the power curve. Recent developments
have shown that power curves can also be derived using process-based model
approaches [165]. It could be interesting to evaluate whether alternative power
curves are able to further improve the prediction of electricity production of a
large range of wind turbines. Second, we used the ERA5 climate data which has
the highest-resolution reanalysis data available on a global scale, with hourly time
steps and 0.25 x 0.25°spatial resolution. There are uncertainties in the ERA5 wind
data, such as incidental very high wind speeds at some locations [166] — at which
our data set shows that no wind farms are present, and difficulties to capture the
variations in wind speed in more complex terrain [167]. Despite these uncertainties,
Ramon et al. [168] have shown that the ERA5 near-surface wind data set is the best
global reanalysis data set available to provide wind speed at hub height. Due to
their relative coarse resolution, reanalyses have difficulties to adequately represent
local climatic conditions [169]. As electricity production depends on the cube of
the wind speed, small biases in wind speed data have a large effect on electricity
production estimations and hence the GHG footprint. Applying bias correction
using more detailed spatial information does not improve results significantly [169]
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and the ERA-5 reanalysis data used here has been found to be better at estimating
electricity production from wind, in a country-wise comparison as well as on a per-
turbine basis, than other global data sets, such as MERRA-2 [167, 169]. When wind
speed is overestimated, the GHG footprint is underestimated and vice versa. Efforts
have been made to derive country-wise correction factors to apply to reanalysis
data so that the country-wide electricity production better matches historic
production [170]. Applying such a country-wide correction factor to our wind farm-
specific data would however lead to over- or underestimations of production where
our calculations match reported production and therefore not improve overall
results. Furthermore, we accounted for the wind turbine wake effect in a simplified
manner. Findings of previous studies vary, but generally wake effects depend on
atmospheric stability and the distance between turbines and between wind farms.
Here, turbines have been assumed to be placed at a distance of 9 diameters, which
is slightly higher than the often seen 7 diameters (see section A.4 for more details).
However, wind parks are not usually built in a square but have a larger front facing
the main wind direction with varying spacing between cross- and downwind
direction [171]. To counteract this effect, we assume a larger turbine spacing. If
turbines are placed closer together, power production will decrease [136]. Placing
turbines at 5 diameters distance instead of 9 diameters in a 10 by 10 array reduces
the efficiency to 70% instead of 86%. In larger arrays, the effect thus becomes more
pronounced. A higher wake effect thus results in lower electricity generation and
therefore higher GHG footprints. Finally, the electricity generation of a wind turbine
is directly dependent on its lifetime. Here, we assume a lifetime of 30 years, which
is representative for recent turbines [155], but in the past shorter lifetimes of 20 to
25 years have been assumed [59, 172, 173]. A shorter lifetime increases the GHG
footprint because less electricity is produced.

3.5 Conclusions

The GHG footprint of the global wind farm fleet has been calculated in a location-
specific manner ranging 1.1 orders of magnitude [2.5"-97.5" range] between
individual wind farms. Our metamodel showed that the GHG footprint of electricity
produced by a specific wind farm can be approximated by a limited number of
technological and meteorological variables. The variation in GHG footprint of wind
electricity was mostly explained by the variation in wind speed across different
locations. The metamodel developed can also be used to calculate the GHG
footprint of new wind farms and to straightforwardly derive potential well-suited
locations for these new wind farms. Furthermore, our results can also be used to
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compare the GHG footprint of wind farms to one another and to other sources of
electricity in a location-specific manner. Finally, the method described here can be
extended to other impact categories, to identify potential environmental trade-offs
of placing wind farms in certain locations.

Acknowledgments

This work is part of project number 016.Vici.170.190, which is financed by The
Netherlands Organisation for Scientific Research (NWO).

53







4. Greenhouse Gas Footprints
of Utility-scale Photovoltaic
Facilities at the Global Scale

J.H.C. Bosmans, L.C. Dammeier, M.A.J. Huijbregts (2021). Environmental Research Letters
16: 094056

J.H.C. Bosmans, L.C. Dammeier, M.AJ. Huijbregts (2023). Corrigendum: Greenhouse gas
footprints of utility-scale photovoltaic facilities at the global scale (2021 Environ. Res.
Lett. 16 094056). Environmental Research Letters 18: 059501

Own contribution: Conceptualization, Data curation, Formal analysis, Methodology, Writing — review

and editing



56

| Chapter 4

Abstract

Technological characteristics and meteorological conditions are major
determinants of the greenhouse gas (GHG) footprints of photovoltaic facilities. By
accounting for technological and meteorological differences, we quantified the
GHG footprints of 9,992 utility-scale photovoltaic facilities worldwide. We obtained
a median greenhouse gas footprint of 58.7 g CO,eq/kWh, with a 3-fold spread
(28.2-94.6 g CO,eq/kWh, 2.5™ and 97.5" percentiles). Differences in panel type
appeared to be the most important determinant of variability in the GHG footprint,
followed by irradiation and a facility’s age. We also provided a metamodel based on
these three predictors for users to determine the facility-specific greenhouse gas
footprint. The total cumulative electricity produced by the utility-scale photovoltaic
fleet worldwide is 457 TWh/yr, 99.6% of which is produced at footprints below
100 g CO,eq/kWh. Compared to earlier studies, the footprints we computed of
global utility-scale facilities show a relatively large spread. In order to further
improve the accuracy of facility-specific footprints, more information on panel type
as well as production country is required.
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4.1 Introduction

Photovoltaic solar power (PV) is an important source of renewable energy,
producing electricity at much lower greenhouse gas (GHG) emissions than
conventional fossil-based technologies [174]. By 2019, global PV capacity reached
580 GW [175] and generated ~720 TWh of electricity, roughly 3% of current global
electricity production [176]. PV is now the third-largest renewable electricity source
after hydropower and onshore wind [177], and its share is growing rapidly, with a
potential 877 GW added by 2024, accounting for 60% of the expected growth of all
renewables [176].

Various studies have investigated how life cycle GHG emissions of PV compare
to emissions from fossil-based electricity sources. One approach in such studies
is to perform a meta-analysis by gathering case studies reported in literature
and harmonize their findings to represent standardized system boundaries for
irradiation, lifetime, performance ratio and/or module efficiency [54 - 57]. The GHG
footprintsinthese papers, expressed as life cycle GHG emissions per unit of electricity
produced, range from ~14 to 82 g CO,eq/kWh under harmonized conditions,
with the greatest source of variation being the type of panel [56, 59, 60, 61].
Typically, thin film panels such as cadmium telluride, copper indium gallium
diselenide and amorphous silicon have lower GHG footprints than mono- and poly-
crystalline silicon panels.

Meta-analyses provide insights in the sources of life cycle GHG emissions related
to PV, but because of the harmonization process they do not show how footprints
can vary in reality. Location of installation determines the amount of irradiation
received by the panels, and location of production determines the GHG emissions
during manufacturing, both important factors in the PV GHG footprints [60, 62,
63, 64, 67]. Furthermore, intra-type variation in module efficiency, type of
mounting system, lifetime, degradation and capacity can explain variations in PV
GHG footprints [54, 65, 66, 68 - 71]. With higher irradiation, for instance, footprints
reduce due to higher electricity production [54, 60, 62 - 66]. Spatial differences in
environmental footprints of PV are assessed by Louwen et al. [72] for rooftop PV
in Eurasia and Africa, Ito et al. [73] for two sites in France and Morocco, and Pérez-
Lépez et al. [74], Perez-Lopez et al. [75] for utility-scale PV globally. These studies
indicate that GHG footprints of PV vary significantly with location. Placing a PV
facility at a location with high irradiation can reduce the GHG footprint by up to
~75% [72], and even within a country such as France choosing a location with
higher irradiation can reduce the footprint by ~25% [74]. While providing valuable
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insights into the geographic variation of PV footprints, these studies do not use
data on the actual fleet of PV facilities and therefore cannot assess the footprint of
actual PV electricity.

Here, we quantified life cycle GHG footprints of the global utility-scale PV fleet,
including ~10,000 facilities. With these GHG footprints we derived GHG emission-
electricity supply curves for the PV fleet and built a regression model to analyse
which technological and/or climatological variables are most important for
determining the GHG footprint. In addition, this regression model can be used for
quick estimation of GHG footprints of PV. We use 30 years of the most recent high-
resolution climate reanalysis dataset ERA5 [144] at ~0.25° spatial and hourly time
resolution, as well as a global dataset on facility-specific location and technological
characteristics of existing and planned utility-scale facilities, combined with
regionalized life cycle inventory data for PV production.

4.2 Materials and methods

4.2.1 GHG footprint
We compute the GHG environmental footprint EF _, _ as impact | per unit of electric
power P: ;
== 4-1

EFgus = (4-1)
where we consider life cycle impact | in g CO,eq, and lifetime electricity output P
of a PV facility in kWh. For a location-specific EF, we use a dataset of 9,992 utility-
scale photovoltaic parks across the globe (see section 4.2.2), market shares by
origin countries per continent [178] and production location-specific impact |
(this section), as well as a high-resolution global climate reanalysis dataset

(see section 4.2.3). Figure 4-1 provides an overview of our methods.
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Figure 4-1 Overview of methods. Blue boxes refer to facility-specific technological characteristics
(section 4.2.2), mainly from Wiki-Solar, the red box refers to input from the ERA5 climate reanalysis
dataset (section 4.2.3). The equations refer to the computations described in section 4.2.1.

Life cycle greenhouse gas emissions, or impact | in equation (4-1), are derived using
market shares by origin countries per continent [178] and production location-
specific impact (see Appendix B section B.2 for further details) and a facility’s panel
surface area:

I=1.:-4 (4-2)

m

with surface area A (m?) depending on a facility’s capacity and efficiency:

W

= rsdsorc 1 @3

following Bhandari et al. [56]. Capacity in Wp is available from the Wiki-Solar
dataset ("Wp' for Watt-peak, indicating direct current output under standard testing

conditions), rsds._ is surface downward solar radiation under standard testing

C
conditions (1,000 Wm~=2) and n is panel efficiency (as a fraction of solar radiation
that the panel can convert into electricity). n depends on panel type and year,

following Chen et al. [179], see Appendix B section B.1.

We derived for each panel type considered (mono-crystalline silicon, poly-
crystalline silicon, amorphous silicon, cadmium telluride and copper indium
(gallium) diselenide life cycle GHG emissions (I_?) representing a continent-specific
weighted average of production countries, as data on the production location for
each individual facility is unavailable. Market shares by producing countries per
continent are obtained from Absolute Reports [178]. We use 2016 market shares
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for current facilities, and 2019 market shares for planned facilities. Type-specific
impacts per producing country (China, EU, US, Malaysia and Korea) are obtained
from literature (see Appendix B Table B-3).

Besides the impacts per m? of panel, a PV facility’s impact derives from the so-called
‘balance of systems’ (BOS). The BOS includes the mounting system, wiring and
inverters [54]. Here we use Ecolnvent 3.5 values per m? of open ground mounting
system as well as the impacts of inverters and electrical installation per unit
capacity, independent of panel type and production location.

For more detail on life cycle GHG emissions, see Appendix B section B.2.

The electricity output of a PV facility depends on multiple variables, including the
panel type, irradiation and temperature. Here we follow the PV power computations
of Jerez et al. [180], based on Mavromatakis et al. [181]. Jerez et al. [180] define the
PV power generation potential PVpot, a dimensionless magnitude accounting for
the performance of a PV cell with respect to the power capacity (here expressed
in MWac, obtained from the WikiSolar database). PVpot depends on radiation rad

and cell temperature T_, the latter depending on air temperature, radiation and

ell’
wind [30] as well as panel type. We furthermore account for losses due to panel
degradation. In short, the instantaneous PV power production provided to the grid

(in alternating current) is given by:
F(t) = PVpot(rad, Tea ) - MWac - fiaes (4-4)

For PVpot we use the location-specific hourly ERA5 climate variables for 1988-2017
(see section 4.2.3), thus obtaining a power output representative of current climate.
Loss ratio f__is applied to account for panel degradation and is set to 0.899,
representing a loss of 0.7%/yr over a 30-years lifetime [74, 182]. A 30-year lifetime is
assumed to be representative of modern PV [182]. The full equations for computing
generated electricity are given in Appendix B section B.3.

4.2.2 Facility-specific technology and location data

To compute facility-specific impact | and power output P, we need to know a
facility’s age (construction year), panel type, capacity and location-specific climate
variables (see Figure 4-1). We use the Wiki-Solar dataset (http://wiki-solar.org)
which provides technological characteristics of utility-scale PV projects around the
globe, with a minimum, median and maximum capacity of 3, 10 and 3,000 MWp.
Wiki-Solar includes 10,268 PV facilities, of which 9,992 with a known location. 7,982
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facilities are operating or were in late stages of construction at the time of data-
gathering (2019) and 2,010 are planned. The median construction year is 2016. The
total capacity in these 9,992 facilities is 367 GWp. Figure 4-2 shows the location and
capacities of all facilities.

MWp for 7982 current plants, total capacity 215 GWp

10C

I 80

60

40

20

Figure 4-2 Location (map) and histogram (inset) of capacity, in MWp, available from the Wiki-Solar
database for currently operating facilities (top) and planned facilities (bottom). The red dashed line in
the histogram indicates the median capacity.

The Wiki-Solar dataset provides information on the panel type for 1,249 out of
9,992 facilities. We consider the five most common types [183]; mono-crystalline
silicon, poly-crystalline silicon, amorphous silicon, cadmium telluride and copper
indium (gallium) diselenide. To increase the number of facilities with known panel
type, we gathered extra information from PV suppliers in Wiki-Solar as well as US
EIA and GEO datasets [184, 185]. We found specific panel types for 99 additional
facilities and narrowed the panel type to either crystalline or thin film for 1,443 and
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17 facilities, respectively. Where a specific type is unknown, we computed the GHG
footprint for the two crystalline types in case of crystalline panels, the three thin
film types in case of thin film panels, or all five types where no information on panel
type was found. The results represent an average footprint of these types weighted
by 2016 production data for current facilities and 2019 production data for planned
facilities (see Appendix B Table B-2). As described above in section 4.2.1, results also

represent a continent-specific weighted average of | by production countries.

panel
For capacity, Wiki-Solar provides both MWac and MWp for 2,046 facilities. For these
facilities, the median performance ratio (PR = MWac/MWp) is 0.8, which is also the
IEA recommended value [182]. For all remaining facilities, either MWac or MWp is
given, and the PR value of 0.8 is used to derive the missing MWac or MWp.

For more detail on the Wiki-Solar dataset and gap filling, see Appendix B section B.1
(available online at https://stacks.iop.org/ERL/16/094056/mmedia).

4.2.3 Climate data

For power output computation, we use the most recent and highest-resolution
global re-analysis dataset representing current climate at 0.25° x 0.25° (roughly
30 x 30 km at equator) [144], obtained through the Copernicus Climate Change
Service [186]. Hourly resolution allows us to include the daily cycle of radiation as
well as temporal variation in cell efficiency due to cell temperature (including air
temperature, radiation and wind) see Appendix B section B.3 [187]. Hourly data
gives improved estimates of PV power generation compared to lower-resolution
data [188] (for more detail see Appendix B section B.4).

4.2.4 GHG emission—supply curves

To create GHG emission—supply curves, we ordered all 9,992 by their GHG footprint
and computed the cumulative power production. Furthermore, we applied a
bootstrapping technique to determine the uncertainty introduced by panel type,
which is unknown for a large number of facilities. Instead of using weighted
footprints at facilities where panel is unknown, we created 10,000 instances of our
dataset, where each time a facility’s footprint (if unknown) is set to that of one of
the panel types, selected using 2016 (2019) production data as weights for current
(planned) facilities (Fraunhofer ISE [183], also used in the weighted footprints in
section 4.3.1). 2016 is the median construction year for facilities with unknown type
in the Wiki-Solar database, 2019 is the latest year for which type-specific production
data is available (see Appendix B Table B-2).
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4.2.5 Regression analyses

After computing the GHG footprint for utility-scale PV facilities, we created a linear
regression model to help determine which of the predictors we take into account
(age, panel type, capacity and location-specific climate variables, see Figure 4-1)
e We build this model on the 1,348 facilities for
which panel type is known. Note that we cannot currently take production location

explains most of the variance in EF

into account in this regression, as facility-specific production location is unknown
(instead we used continent-specific weighted averages of production countries
based on market shares). For the climate variables, we use location-specific 30-year
mean day-time irradiation |, temperature T and wind speed u as well as coefficient
of variation (CV) for each variable to represent intra-year variation (see Appendix B
equation (B-7)). The correlation matrix of the predictors (supplementary Figure B-1)
shows that there are no significant correlations between the variables, and the
variance inflation factors (vifs) are all below 5. Capacity is log-transformed because
its distribution is right-skewed. We also log-transformed the response variable
(EF i)
year, because these together determine efficiency n used in the life cycle GHG

. The model includes the interaction between panel type and construction
emissions (equation (4-3), Appendix B section B.1).

After determining the best model, based on the Akaike Information Criterion,
we assess the importance of each predictor using predictor randomization. Each
predictor is randomized in turn, after which the model is re-built. The larger the drop
in the model’s R?, the more important a predictor is. Results are shown in section 4.3
and more details on the regression model can be found in Appendix B section B.5.

4.3 Results

4.3.1 GHG footprints

The GHG footprint of all PV facilities is 58.7 (28.2-94.6) g CO,eq/kWh (median, 2.5%-
97.5% quantiles). 9,810 out of the 9,992 facilities (98.2%) have a GHG footprint below
100 g CO,eq/kWh. Figure 4-3 shows that the spatial pattern is mostly dominated
by latitude, with facilities at higher latitudes having higher GHG footprints due to
lower irradiation and electricity output. The latitudinal pattern also emerges by
looking at GHG footprints per continent (boxplots in Figure 4-3); Europe has the
o Of 76.9 (46.1-112.2) g CO,eq/kWh (based
on current and planned facilities combined). Lowest footprints are found in low-
latitude continents; South America (45.4 [30.6-62.3] g CO,eq/kWh) and Africa
(49.1[31.5-61.0] g CO,eq/kWh).

highest footprint, with a median EF
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Climate footprint for all 7982 current PV plants, in g COz-eq/kWh
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Figure 4-3 GHG footprint in g CO_eq/kWh for currently operating (top) and planned (bottom) facilities.
The boxplots show the median (red line), 25" and 75™ percentile (blue box) as well as the 2.5" and
97.5" percentile (whiskers) of the footprints per continent (Afr: Africa, Asia, Eur: Europe, N Am: North
America, S Am: South America, Oce: Oceania). The footprints reflect those of the panel type where
known, and that of a weighted average of types based on 2016 and 2019 production data where panel
type is not (fully) known (see Appendix B section B.1). They furthermore reflect continent-specific
weighted averages of impacts from various production countries (see Appendix B section B.2).

Besides latitude, panel type also has a great influence on EF_, . As a sensitivity analysis,
we assessed the non-weighted footprints of the 7,148 facilities of unknown type, for
which footprints were computed for all five types, across types and continents. This
indicates that panel type can have a larger effect on GHG footprints than location
of installation; choosing cadmium telluride in Europe can result in lower footprints
(35.9 [23.0-51.7] g CO,eq/kWh) than choosing mono-crystalline panels in South
America (57.9 [44.0-74.7] g CO_eq/kWh), despite facilities in South America receiving

much higher irradiation than those in Europe (2,165 vs 1,135 kWh/m/yr, median values).

Differentiating between operating and planned facilities indicates slightly lower
footprints for current facilities (58.4 [27.1-93.3] g CO,eq/kWh) compared to planned
facilities (60.1 [38.4-95.6] g CO,eq/kWh). This increase occurs despite an increase in
panel efficiency, which causes lower footprints for newer facilities of all individual
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panel types. However, across all facilities, the increase in market share of mono-Si
panels (see Appendix B Table B-2), which have the highest impacts of all panel types,
causes footprints to increase. Also, in Europe a higher share of planned facilities is
produced in China, further increasing EF . In North America the opposite happens;
footprints drop as imports shift from China to production locations with lower impacts.

4.3.2 GHG emission - supply curves

The GHG emission supply curves show that all facilities together produce 457 TWh/
yr with a maximum GHG footprint of 138 g CO,eq/kWh. The majority of power, 455
TWh/yr (99.6%), is produced with a footprint below 100 g CO,eq/kWh, in 9,810
facilities. 262 TWh/yr is produced by current facilities (see Figure 4-4a)), and 194
TWh/yr by planned facilities (see Figure 4-4b)). For current facilities, 7,818 out
of 7,934 facilities (97.9%) have a footprint below 100 g CO,eq/kWh. For planned
facilities, 1,992 out of 2,010 (99.1%) have a footprint below 100 g CO,eq/kWh.

e _— 350
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=} | d
50/ f fivesan 50| . Hedian
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Chmate fastprint i g CO2-8g/h Chmate fostzrint i g CO2-qAWh
(a) Current facilities (n = 7,934) (b} Planned facilities (n = 2,000)

Figure 4-4 Cumulative power production (TWh/yr, y-axis) versus GHG footprint (g CO,eq/kWh, x-axis),
for current (a) and planned (b) facilities. The bootstrapping technique described in the text (Materials
and Methods section 4.2.4) was used to determine the 2.5 and 97.5% percentile and median footprint
at very 2 TWh/yr power production. The plots extend to the median values of the maximum power and
the maximum EF_ _ of each bootstrap.

Furthermore, by applying a bootstrapping technique we find that for current
facilities, uncertainty in panel type does not have a strong effect on the GHG
emission-supply curve (see Figure 4-4a)). The spread induced by unknown panel
types (difference between the 2.5" and 97.5" percentiles) is less than 5 g CO,eq/kWh
and is highest at low footprints (~10%). Near total cumulative production the
spread reduces to ~1%. For planned facilities, the spread is larger (see Figure 4-4b)),
because a large part of these facilities (94.0%) has an unknown panel type. At low
footprints the spread reaches 50%, or 11 g CO,eq/kWh. The spread reduces to ~5%
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in the upper regions of the emission-supply curve and reduces further towards the
total cumulative production.

4.3.3 Regression analyses

The best linear regression model to fit the EF based on the facility-specific

GHG’
predictors we take into account, is

l0g(EFsuc) = 65.07 — 0.03125 - Year + fiype — 0.0002518 - Lpeqn + 0.0007004 - Trpan

— 0003853 - Upegn — 01678 - Iy + By _gype - Year (45)

where B have a type-specific value, because PV panel type is a

and B
type
categorical variable. Btype is —48.85 for mono-Si, —48.62 for poly-Si, —13.07 for CdTe,
—51.28 for CI(G)S and 0 for a-Si. BY_type is 0.02435 for mono-Si, 0.02416 for poly-Si,
0.006379 for CdTe, 0.02543 for CI(G)S and 0 for a-Si. The model’s R? is 0.9868, see

Appendix B Figure B-2. Year should be given in absolute value (i.e. 2009, 2017),

Y-type

irradiation | in kWh/m?/yr, daytime temperature T

mean mean

in °C, and daytime wind
speedu__ inm/s, |, as afraction (see Appendix B section B.5).

The fact that equation (4-5) does not include capacity and variation in temperature

and wind indicates that these are not important predictors of EF___ (see Appendix

GHG
B section B.5). Randomizing each predictor in equation (4-5) in turn indicates that
PV type is the most important predictor, as the change in R? is largest, followed by
mean irradiation (see Figure 4-5). Year, or age of facility (used together with panel

type to determine panel efficiency), is the third most important predictor of EF_, .

This regression model and importance analyses thus indicates that with only panel
type, yearly irradiation and age of a facility, data which should easily be available
to a user interested in a specific PV facility, one can quickly make an estimate of
the GHG footprint, representing a globally weighted average for PV-producing
countries across the world. Reducing the regression model to these three predictors
results in the following metamodel:

log(EFgue) = 64.30 — 0.03088 - Year + fiype — 0.000232 - Lyegy + By_eype - Year  (4-6)

where Btype is —12.68 for CdTe, -49.43 for CI(G)S, -48.87 for mono-Si, -47.63 for poly-Si
and 0 for a-Si. BY_type is 0.006182 for CdTe, 0.02451 for CI(G)S, 0.02436 for mono-Si,
0.02367 for poly-Si and 0 for a-Si. Year should be given in absolute value (i.e. 2009,
2017), irradiation |___in kWh/m?/yr. This model has an R* of 0.9862, very close to
the best model with R? =0.9868.
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Figure 4-5 Importance of predictors of EF . The change in R* is computed by the R* of the original
model (equation (4-5)) minus the equation (4-5) if that specific predictor is randomized.

4.4 Discussion

4.4.1 Interpretation

Our study confirms that photovoltaic solar power can produce electricity at much
lower GHG footprints than fossil fuel, which has footprints in the range of 710-950 g
C0,eq/kWh for coal or 410-650 g CO,eq/kWh for gas. When carbon capture and
storage (CCS) is considered, the majority of the fossil-based electricity still has a
higher footprint than PV (70-290 g CO,eq/kWh) [59, 174].

Compared to published studies or meta-analyses, our footprints are on the same
order of magnitude but are generally higher (Figure 4-6). Our range is often larger
than that reported in other studies, because we consider a large range of system
boundaries such as irradiation and age (efficiency). Some studies also consider a
range of system boundaries; see Appendix B Table B-8 to Table B-11 for parameters
used in the literature discussed here and shown in Figure 4-6. Similar ranges of EF
are reported by Ludin et al. [71]. For poly-Si and CdTe they even extend slightly
above our values, which could be related to including lower panel efficiencies and
shorter lifetimes. Leccisi et al. [60] also report a range of footprints, representing a
range of irradiation similar to ours, as well as production countries. Their lower GHG
footprints could be related to higher panel efficiencies (compared to our median
values) as well as relatively low impacts I. However, other studies with lower panel
efficiencies (such as Hertwich et al. [59], Bergesen et al. [68] for CdTe and CI(G)S)
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also report lower GHG footprints, with similar lifetimes and irradiation, likely related
to different boundary conditions, inventory data or assessment methods. Nian [62]
report a similar range, across a similar range of irradiation. High efficiencies may
explain why their footprints are overall lower. See Appendix B section B.6 for more
details on comparing our footprints to those in literature.
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Figure 4-6 Reported GHG footprints of PV electricity in literature compared to ours (Bos, for Bosmans
et al.). Ber: Bergesen et al. [68], Bey: Beylot et al. [69], Her: Hertwich et al. [59], Hou: Hou et al. [63],
Hsu: Hsu et al. [54], Ito: Ito et al. [73], Kim: Kim et al. [61], K14: Kim et al. [189], Lec: Leccisi et al. [60],
Lud: Ludin et al. [71], Mil: Miller et al. [64], Nia: Nian [62], Wet: Wetzel and Borchers [66], dWS: de Wild-
Scholten [190], Yao: Yao et al. [191], Yue: Yue et al. [192]. From our study (Bos) we report the median
(white line and 2.5-97.5™ percentile (bar extent), based on the subset of facilities where panel type
is known (450 facilities with mono-Si, 402 with poly-Si, 416 with CdTe, 73 with Ci(G)S, 43 with a-Si).
Appendix B section B.6 and Table B-8 to Table B-11 give an overview of system boundaries used in
the studies represented here. Note that the poly-Si footprints of Yao et al. [191] are beyond the range
shown here (cropped for visibility).
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4.4.2 Production location

One important source of variability in PV environmental footprints, and in different
footprints reported in literature, is the location where the panels are produced.
Several studies compare footprints of PV produced in different locations, mostly
due to different background electricity mixes [60, 62, 64, 70, 75, 190, 193, 194, 195].
Furthermore, changes in manufacturing efficiencies and/or import of materials can
affect the impacts and footprints for a single production location [63, 64, 67, 191,
192]. Of all studies providing footprints (shown in Figure 4-6) and/or impact | we
summarized the system boundaries, including production location if provided, in
Appendix B Table B-8 to Table B-11 (see also Appendix B section B.6). A large range
of impact | is shown, often related to production location. Locations (countries)
with a low GHG background electricity mix such as France or Germany are typically
associated with low GHG emissions during production (impact I), while countries
with electricity mixes strongly based on e.g. coal, such as China, typically have the
highest GHG life cycle emissions. Even for one production country a large range of
emissions is reported; for instance, for poly-Si from China Leccisi et al. [60] report
165 kg CO,eq/m? while Grant et al. [195] report 519 kg CO,eq/m?

The exact impact |, and subsequently the GHG footprint, thus strongly depends
on the production location as well as the chosen system boundaries, life cycle
inventories, impact assessment methods etc. [67]. We included variation in
production location by using continent-specific weighted averages of the most
important production countries based on market shares but acknowledge that
in order to derive facility-specific footprints, more information on facility-specific
supply chains is necessary.

Note that we did not include variation in BOS production location. Nian [62]
report variation in impacts | and footprints for both panels and BOS, showing that
changing production location for BOS has an effect, but the effect of changing panel
production location is larger. Overall, the impacts associated with panels are larger
than the impacts associated with BOS, particularly for crystalline panels [67, 189].

4.4.3 Limitations
A number of assumptions and uncertainties may influence our results.

Some of the input (Figure 4-1) was unknown, particularly for panel type. Our results
as well as those of others [60, 74] indicate that panel type is an important predictor
of EF, .. We used an average footprint if type is unknown, weighted by production
values of the five most common types considered, which we believe results in a
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representative variation of EF . of global PV electricity production. Also, the global
emission-supply curve is not strongly affected by uncertainty in panel type. Having
more data on panel type will however reduce the uncertainty in facility-specific EF .

When computing life cycle GHG emissions (I in equation (4-1)), we did not include
facility-specific supply chains, but continent-specific weighted averages of
production countries based on market shares. Variation in production location can
be an important source of variation in GHG footprints, as described in the previous
section. If facility-specific supply chains are known, production country can be
added to the regression analysis, improving the prediction of facility-specific
GHG footprints.

Another important predictor of EF_ _is panel efficiency. In this study, efficiency

GHG
varies based on construction year and panel type, but further variation in efficiency
can be introduced among different manufacturers or models of the same type.

Besides improved panel efficiencies, EF_,_also decreases over time due to improved

GHG
material and energy utilization in the production process, [e.g. [191, 196]]. The latter

is not considered in our study.

Furthermore, ‘balance of system’ components (BOS) were assumed to be the same
for all facilities, but we acknowledge that different mounting structures can affect
the GHG emissions of a PV facility [56, 69]. We also ignored differences in BOS due
to tilt angles or tracking systems. Of all facilities from the Wiki-Solar database,
~10% uses 1- or 2-way tracking. Although this increases the power output of
a facility [197, 198], it also increases environmental impacts due to increased

electricity and material needs. Sinha et al. [198] report that therefore the EF f

o
GHG
fixed and tracking systems are comparable, while Leccisi et al. [60] find that EF

is
GHG
reduced for an East-West-tracking system, particularly for crystalline panels. Miller

et al. [64] find that whether the PV GHG footprint is in- or decreased when a tracking
system is included strongly depends on the panel type as well as irradiation and
cloud cover.

When computing the lifetime electricity output (P in equation (4-1)), we included
location-specific high-resolution climate variables, as well as a loss factor to take
panel degradation into account. Using an IEA-recommended fixed loss factor of
0.7% [182] we ignore that panel degradation can vary between locations and panel
types [64, 72, 199, 200, 201]. We also ignore that power production can be reduced
by shading or soiling through e.g. dust or snow as well as faulty installation or lack
of maintenance [72, 200, 202, 203].
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Third, we assume a fixed lifetime of 30 years for all facilities. A shorter or longer
lifetime will directly affect the footprint, as shown by [54, 61, 66]. We use the
ERAS5 reanalysis data from 1988 to 2017 to obtain a representative power output
under current climate. We tested that power output is not sensitive to the
exact years chosen; for 1,460 locations we compared average power output for
2008-2017 to that of 1988-2017 and found that the difference is less than 1% for
88% of the locations, and all differences are less than 3%. We did not account for
the panel type-specific effects of low irradiance, variation in spectral irradiance or
angle of incidence on PV electricity production [188]. Furthermore, our footprint is
expressed per kWh produced, while the amount of power ultimately consumed will
be lower due to losses in the power grid as well as potential mismatches between
PV production and power demand. Adding battery storage would allow for less
power losses, but will likely increase environmental footprints, depending on the
battery type [204]. The inclusion of batteries may increase payback times and
global warming potential by up to 30% [205].

Lastly, we computed electric power output for all facilities assuming flat panels.
Louwen et al. [72], Chen et al. [206] show that the tilt of a facility can have a large
range within which electricity production remains very similar, but we acknowledge
that especially at higher latitudes we may underestimate electricity output.

4.4.4 Outlook

Our conclusions hold for GHG footprints, but this type of analysis could be
expanded to other impact categories, such as material scarcity or eco-toxicity.
Furthermore, the regression model we built can be used to estimate GHG footprints
for individual facilities even with limited input. Computational efforts can be
reduced by not using temporarily detailed climate data, as the regression model
indicated that climate variables other than mean irradiation do not strongly affect
a PV facility’s life cycle GHG footprint. It is however important to fill data gaps
concerning the panel type used and production location.

Our GHG emission-supply curves of cumulative PV production can also be used
in integrated assessment models (IAMs), in addition to cost-supply curves [207],
to include both financial and environmental constraints in renewable energy
scenarios. For future scenarios, one should take into account reduced impacts |
during manufacturing due to technological advances as well as the decarbonization
of energy supply (e.g. [141, 196]).
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4.5 Conclusion

In this study we computed the GHG footprint for 9,992 utility-scale PV facilities
across the globe, based on facility-specific construction year, capacity, panel type
and high-resolution climate data, as well as variation in production location. We
find utility-scale PV GHG footprints of 58.7 (28.2-94.6) g CO,eq/kWh (median,
2.5-97.5" quantiles). Spatially, locations with higher irradiation logically have
lower footprints, but panel type is the most important predictor of EF_, . Placing
a cadmium telluride panel, with low life cycle GHG emissions, in Europe can result
in a lower GHG footprint than placing a mono-crystalline silicon panel, with high
life cycle GHG emissions, in South America, despite the much larger irradiation at
facilities in the latter continent [72, 74]. Panel efficiency (here determined through
a facilities age) is the third most important predictor of GHG footprints.

We acknowledge that with more data, more accurate facility-specific footprints can
be computed. Efforts should mainly focus on adding panel type and production
country. We do find that the uncertainty in panel type does not strongly affect the
global PV GHG emission-electricity supply curves.

4.6 Data availability statement

The data generated and/or analysed during the current study are not publicly
available for legal/ethical reasons but are available from the corresponding author
on reasonable request.

The facility-specific technological characteristics and locations from Wiki-Solar are
proprietary and can be obtained from https://wiki-solar.org. The continent-specific
market shares by origin countries are also proprietary and can be obtained through
https://www.marketreportsworld.com/TOC/12344406#TOC. We used Chapter 8
(Global Solar Photovoltaic (PV) Market Analysis, by Geography) [178]. The climate
data used in this study [208] can be obtained from the Copernicus Climate Change
Service [186] for free. We used ERA5’s hourly single level data.
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Abstract

Hydropower is the largest source of renewable energy in the United States of
America (US). While it is generally considered to be a low-carbon electricity
source, technological and site-specific differences can lead to large variations in
hydropower’s greenhouse gas (GHG) footprints. Here, we quantified greenhouse gas
footprints of 1,812 individual hydropower facilities in the US, accounting for facility-
specific differences in electricity production as well as differences in life cycle GHG
emissions during the construction and operation of the hydropower facility. We
found that the GHG footprint of hydropower facilities in the US range from 5.6-10°3
to 1.1 kg CO,eq/kWh (5-95" percentile), with a median of 2.8:102 kg CO_eq/kWh.
Our results show that the GHG footprint of hydropower from natural storage areas
is systematically lower compared to man-made storage areas. Variation in GHG
footprints of hydropower from man-made storage areas can be large and is mainly
caused by differences in size, trophic state and climate zone. Our results can be
used to identify hotspots of GHG footprints of hydropower production on the level
of individual facilities. Our method can also be used as a blueprint to quantify the
GHG footprints of existing and planned hydropower facilities worldwide.
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5.1 Introduction

There is strong scientific evidence that the emission of greenhouse gasses (GHG)
caused by anthropogenic activities is the main driver of climate change and that
ambitious and global action is required to limit global warming to 1.5 to 2 °C,
including large-scale transformations in the energy system towards renewable,
low-carbon energy sources [210]. Hydropower is one of the most prominent
renewable energy technologies worldwide. In 2023, 14.3% of the global electricity
was supplied by hydropower and in 20 countries it provides more than 75% of
the electricity produced [211]. In the United States of America (US), hydropower
generated 5.5% of the electricity [212]. Hydropower is predicted to increase in
the global primary energy mix in many energy scenarios [213]. As hydropower
is a flexible source of electricity that can generate electricity when there is little
wind and solar power and may in the case of pumped storage also be used to store
excess electricity, it can be applied to mitigate the intermittent nature of solar and
wind electricity production.

A common metric to compare GHG emissions of different power technologies is the
GHG footprint, which is defined as the life cycle GHG emissions per unit of electricity
produced (in kg CO,eq/kWh). Life cycle emissions are usually quantified making use
of life cycle assessments (LCAs), which is a standardized methodology to calculate
emissions of a service or production during all life cycle stages. It has been shown
that GHG footprints of hydropower production can vary greatly, ranging from 2-10*
to 6.6 kg CO,eq/kWh [76 - 93]. The reported range of 4.5 orders of magnitude in
GHG footprint of hydropower facilities can be caused by differences in various
environmental and technological factors. Different types of hydropower exist, from
small run-of-river facilities to large dams creating vast reservoirs. Each of these
types has different technological characteristics and even within the same type,
there are large differences in technology, due to differences in topology at the site
of the plant [38, 98].

Hydropower facilities without a man-made storage area have GHG emissions
related to dam construction as well as operation and maintenance of the dam itself,
including downstream emissions and emissions from dam spillways. Hydropower
facilities that have a man-made storage area also have biogenic GHG emissions from
that storage area during the operation of the facility. Emissions from the storage
areas themselves heavily depend on the storage area’s lifetime and the climate
zone in which the hydropower facility is located, as well as pre-impoundment land
cover type [94]. Earlier studies have shown that the ratio of GHG emissions from the
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dam itself compared to those of the storage area lies anywhere between 100% for
diversion dams to 0.01% for tropical reservoirs [91].

One way to assess the GHG footprint of a technology on a larger scale is to
harmonize outcomes of previous studies in a meta-analysis. However, one drawback
of such meta-analyses is that due to the harmonization step detail is lost on how
GHG footprints vary in reality. Little research has been done on quantifying facility-
specific GHG footprints of hydropower at large geographical scales. Being able to
quantify the GHG footprint at the level of individual hydropower facilities can help
to identify hotspots of GHG footprints of current hydropower production. Most
studies focus, however, on one or a few facilities, focusing on a specific type of dam
and associated technology. Wang et al. [95] assessed carbon emission and water
consumption of hydropower plants in China, but they did not relate the impacts to
the plants’ electricity generation. A study by Harrison et al. [96] used the G-res tool
to calculate GHG emissions from reservoirs on a global scale but neglected dam
construction and also do not relate the emissions to electricity production. Scherer
and Pfister [97] modelled the biogenic carbon footprint of hydropower reservoirs
and reported an average GHG footprint of 0.273 kg/kWh, again focussing solely on
the reservoir and not accounting for dam construction. Gemechu and Kumar [98]
assessed LCA studies of hydropower and found that a wide range of emission
intensities reported (1.5-103-3.7 kg CO,eq/kWh) is caused by inconsistency in how
LCA is used, high variability in key reservoir characteristics and data limitations.

Here, we quantified the GHG footprint of 1,812 hydropower facilities in the
US, derived from the National Inventory of Dams (NID) [214] and amended with
information from Hydrosource [215] and the WRI global power plan database [216].
The hydropower facilities’ lifetime electricity production was estimated by a newly
developed regression model, linking the historic electricity production data from
the US Energy Information Administration (EIA) to high-resolution streamflow data
from FLO1K [217] and the dams’ height and capacity taken from the NID [214]. We
derived facility-specific GHG emission factors, depending on the climate zone and
the storage area’s trophic state.

5.2 Materials and methods

5.2.1 Greenhouse gas footprint
The GHG footprint of a hydropower facility is defined as its life cycle GHG emissions
divided by its electricity generation (P in kWh/year). The GHG emissions of a
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hydropower facility depend on two components: the construction of the facility
(I, in kg CO,eq/kWh) as well as the storage area emissions, including downstream
emissions, during operation (I, in kg CO_eq/year). Hence, the GHG footprint (F_,, in
kg CO,eq/kWh) can be calculated from

1
Fope = f:+£ (5-1)
Figure 5-1 gives an overview of the approach to quantify GHG emissions and
electricity production of the 1,812 hydropower facilities in the US included in
our calculations.
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Figure 5-1 Overview of the method. Red boxes refer to facility-specific information [214, 215, 216].
Yellow boxes refer to information derived from FLO1K [217], which is a dataset providing streamflow
data. The green box refers to information on chlorophyll-a data [218]. Equations (5-1), (5-2) and (5-4)
are described further below in this section; abbreviation can be found in Table C-1. Capacity is used to
derive the construction phase emissions from Kadiyala et al. [219].

5.2.2 GHG emissions of hydropower

Construction

We included emissions from the dam construction phase (I_in kg CO,eq/kWh)
based on Kadiyala et al. [219], who quantified GHG emissions for small (<0.1 MW),
medium (0.1-30 MW) and large (>30 MW) hydropower facilities based meta-analysis
(for more information see Table C-2 in Appendix C). In our database, 16 facilities
are classified as small, 948 facilities as medium and 316 facilities as large, based on
information from the National Inventory of Dams (NID) [214] and Hydrosource [215].
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When the capacity was not reported (n = 532), we calculated a weighted average
of the GHG footprint for dam construction, based on the classification of Kadiyala
et al. [219] and the relative occurrence of small, medium and large dams in our
database, see section C.2.2 for more information.

Operation

During the operational phase of hydropower facilities based on man-made storage
areas, most emissions come from the storage area itself and downstream of the
spillway, caused by the decomposition of organic material in the water, which
depends on the climate zone [91]. Information on the climate zone in which the
hydropower facilities are located has been gathered from the IPCC [220] and is
reported in section C.3. We based the GHG emissions in the operational phase
of man-made storage areas on IPCC emission factor guidelines [221], assuming a
hydropower facility lifetime of 100 years [222]:

Io = Ares - ((EFciyaszny 02 + EFcuyenz0, - 08) - @ GWPey, - (1 + Ra) + EFgoyaszo, - 02)

(5-2)

where A is the storage area [km?], derived from the NID [214]. The hydropower
facilities’ storage areas have been classified as man-made or natural storage area
based on the classification of HydroLAKES [223]. Because in accordance with [224]
run-of-river facilities can also have storage areas, albeit most often much smaller,
we have not excluded emissions from these storage areas for run-of-river facilities
here and apply equation (5-2) or (5-4) depending on whether or not these storage
areas are classified as man-made or natural. Deemer et al. have shown that there is
no significant difference between surface emissions between man-made storage
areas and natural lakes [225]. In cases where no storage area is present, equation
(5-4) is applied.

EF s, as20,; 1S the methane emission factor of man-made storage areas in the first

20 years of operation, situated in climate zone j (kg CH4/km2/year) (see Table C-2).
EF 14, 2520,; 1S the methane emission factor of man-made storage areas in the period
of 20 to 100 years of operation, situated in climate zone j (kg CH,/km?/year) (see

Table C-2).

EF 020220 1S the CO, emission factor of man-made storage areas in the first 20 years
of operation, situated in climate zone j (see Table C-2). Note that CO, emissions
from storage areas are considered to be only relevant for the initial 20 years of a

storage area’s life [221].
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a is the emission factor adjustment for the trophic state of the storage area in

climate zone j and GWP_,, is the global warming potential of methane for a 100-

CH4
year time horizon (34 kg CO_eq/kg CH,) [226]. R, is a dimensionless constant equal
to the fraction of downstream emissions of CH, compared to the total flux of CH,

from the storage area surface, here set equal to 9% [221].

The emission factor adjustment for the trophic state of a storage area a was

calculated via [221]:
oy = 0.26 - Chl—a; (5-3)

with Chl-a, the mean annual chlorophyll-a concentration in storage area i in g/L.
The Chl-a, is taken from a database which gives the Chl-a, concentrations on a 50 by
50 km grid for the USin 2010 [218].

More information on how equation (5-2) is derived can be found in appendix C.2.1.

For hydropower facilities built on natural storage areas, we assume that the area’s
surface does not change upon construction of the hydropower facility and thus the
size of the storage area attributed to anthropogenic use is considered negligible,
because relevant information was not available. Therefore, emissions related to
land use change during the first 20 years of operations are not relevant and since
the storage area’s surface is assumed to not change emissions from the surface
cannot be attributed to hydropower operation. In accordance with the IPCC [221],
reservoir emissions can thus be calculated via:

Io = Apps - EFppy gmonj - 0.8 - - GW gy, - Ry (5-4)

5.2.3 Electricity generation

We imputed the electricity generation data for the hydropower facilities by
developing a linear mixed-effect regression model fitted to yearly electricity data.
We used hydropower facility-specific electricity generation from the EIA [163]. We
matched the EIA hydropower facilities to the NID hydropower facilities via the Oak
Ridge National Laboratory hydropower dataset [227], which provides the matching
IDs of NID and EIA datasets. Yearly electricity generation data for the period 1989
to 2015 could be retrieved for 960 (out of 1,812) hydropower facilities from the NID
dataset and a total of 15,191 observations (dams-years).

Since power generation is dependent on hydraulic head, design discharge, capacity
and load factors, we used proxies that approximate these variables as predictors in
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our model [228]. Namely, we employed dam height, storage area surface area, yearly
average streamflow, yearly streamflow seasonality (see appendix C.4.1 for how
this was calculated) and Gross Domestic Product (GDP) of the administrative unit
connected to the hydropower facility. Dam height was used as proxy for hydraulic
head. Storage area size and average flow at the dam location were used as proxies
for design discharge. Seasonality of streamflow and GDP of the administrative unit
were used as proxies for the load factor. Dam height and storage area size were
retrieved directly from the NID. Yearly streamflow metrics were sampled from the
FLO1K dataset (see appendix C.4.2 for the sampling procedure, [217]). The GDP of
the administrative unit where the dam is located was computed by averaging GDP
data [229] over the administrative units provided by https://gadm.org/data.html.

Due to harmonization across datasets, re-allocation to the river network and exclusion
of outliers, the final set of observations consisted of 14,295 dams-year for a total of
942 NID facilities. Prior to fitting the model, we log-transformed the response variable
and applied a Yeo-Johnson transformation to the predictors to resemble a Gaussian
distribution as these were all highly skewed (Figure C-1 and Figure C-2). In addition, we
standardized all variables to zero mean and unit variance to improve the comparability
of the regression coefficients. We checked for multicollinearity of the predictor set and
found that all Pearson’s r was below 0.7 and therefore retained the full set of predictors
(Figure C-3). We considered the hydropower facility ID as a random term in the
mixed-effect model to account for non-independence of yearly electricity generation
coming from the same power plant and allowed all first-order interaction terms. We
used an automated procedure for model selection that uses a genetic algorithm to
find the optimal combination of predictors with the lowest Bayesian Information
Criterion (BIC) [230]. We preferred BIC over Akaike Information Criterion as BIC tends
to outperform alternatives particularly if the sampling size is large [231]. We ranked
the models based on BIC and chose the model with the lowest complexity (i.e., the
lowest number of predictors) within the first 10 BIC interval points (see Table C-5 for
the results). To assess model reliability, we used 10-fold cross-validation across all
observations (i.e., number of dams-years, see Table C-6) and across hydropower sites
(i.e., by excluding 10% of the power plants in each fold, see Table C-7) and reported
coefficients of determination R? and root mean square error (RMSE).

The model to predict a hydropower facilities electricity generation was

P= —0025- H5% 4 g388 & g - HOO51 4 (g0 - ggp) @018 (5-5)

with H the dam height as given in the NID in m and q_, and q__ the average and
maximum annual streamflow in m%/s, respectively.
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5.3 Results

5.3.1 Yearly GHG emissions during operation

Yearly GHG emissions during operation from the 1,812 hydropower dams in the US
as included in our study range from 286 to 53.5-10° kg CO,eq/yr [5-95 percentile],
with a median of 57-10% kg CO_eq/yr (Figure 5-2). In total, these hydropower facilities
are expected to cause GHG emissions of 34-10° kt CO,eq/year. Facilities situated on
man-made storage areas (n = 632) account for 98% of the yearly GHG emissions
during operation, with a median of 2.2:10° kg CO,eq/yr [5.2:10°-206-10°kg CO,eq/yr
the 5-95 percentile]. Those facilities having natural storage areas (n = 1,180)
account for 2% of GHG emissions during operation, with a median of 18:10° kg
CO,eq/yr [155-1.1-10° kg CO,eq/yr the 5-95 percentile]. 90% of the total emissions
during operation are from 96 high-emitting hydropower facilities, which is 5% of all
facilities. Of these 96 facilities, all but three have man-made storage areas.

5.3.2 Electricity generation

Figure 5-3 shows the distribution of electricity generation of the 1,812 hydropower
dams in the US that are part of our database. They are expected to generate a total of
223 TWh electricity each year. 90% of the electricity is produced by 361 hydropower
facilities, which is 20% of all facilities. Hydropower facilities with man-made storage
areas (n = 632) account for 43% of the yearly electricity generation. Electricity
generation ranges from 3.2 to 637.2 GWh, with a median of 31.6 GWh. Hydropower
facilities having natural storage areas (n = 1,180) generate 57% of the yearly electricity
production, ranging from 2.0 to 224.5 GWh, with a median of 8.7 GWh.

5.3.3 GHG footprints

GHG footprints of hydropower facilities in the US (n = 1,812) range from 5.6-107 to
1.1 kg CO,eq/kWh (5-95 percentile), with a median of 2.8:102 kg CO,eq/kWh. The
GHG footprints per facility are shown in Figure 5-4. GHG footprints vary greatly
between dams with or without a man-made storage area, generally being higher
for facilities located at man-made storage areas compared to those located on
natural storage areas, as can be seen from the boxplot in Figure 5-5. Hydropower
facilities with man-made storage areas have a median GHG footprint of
7.9-107 kg CO,eq/kWh, ranging from 6.4-107 to 4.3 kg CO,eq/kWh [5-95 percentile].
Those facilities with natural ones have a median GHG footprint of 2.6:102 kg
CO,eq/kWh, ranging from 5.6-10° to 6.5-10 kg CO,eq/kWh [5-95 percentile].

The boxplot in Figure 5-5 shows the distribution of GHG emissions grouped by
climate zone and type of storage area (man-made vs. natural). With the exception
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of boreal climate zones, hydropower facilities on man-made storage areas in all
climate zones have higher GHG footprints than those located on natural storage
areas. Facilities located in tropical dry/montane areas have the highest average GHG
footprints, both for natural storage areas as man-made storage areas. Underlying
data for Figure 5-5 is given in Table C-8.
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Figure 5-2 Yearly operational GHG emissions (t CO,eq/year) from hydropower facilities in the US. The
boxplot shows the distribution of GHG emissions from facilities with man-made (MM) storage areas or
natural ones (NL). The orange line represents the median, the boxes the 25-75" percentile and the
whiskers the 5-95™ percentiles.
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Figure 5-3 Yearly electricity generation (TWh/year) by hydropower facilities in the US. The boxplot
shows the distribution of electricity generation by facilities with man-made (MM) storage areas or
natural ones (NL). The orange line represents the median, the boxes the 25-75" percentile and the
whiskers the 5-95™ percentiles.
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Figure 5-4 GHG footprints (kg CO,eq/kWh) of hydropower facilities in the US. The boxplot shows the
distribution of GHG footprints of facilities with man-made (MM) storage areas or natural ones (NL). The
orange line represents the median, the boxes the 25-75™ percentile and the whiskers the 5-95%" percentiles.
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Figure 5-5 Boxplot showing the distribution of GHG emissions grouped by climate zone and storage
area type. The orange line represents the median, the boxes the 25-75" percentile and the whiskers
the 5-95™ percentiles. Below each category, the number of observations is given. Climate zones are
Bo: boreal, CT: cool temperate, T d/m: tropical dry/montane, T m/w: tropical moist/wet, WT d, warm
temperate dry, WT m: warm temperate moist. Storage area types are MM: man-made and NL: natural.
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5.4 Discussion

We calculated GHG footprints for hydropower facilities in the US ranging from 5.6-103
to 1.1 kg CO,eq/kWh (5-95 percentile), with a median of 2.8-10 kg CO,eq/kWh. This
range is in line with what is reported in literature [98]. The study by Song et al. [91]
reports footprints to be higher, but they also consider dam demolition, which is
omitted here. A study by Li and He [232] report a median carbon intensity from
hydropower reservoirs of 63 g CO,eq/kWh, which also is higher than in our study.
They find that higher GHG footprints are found for eutrophic reservoirs and those
with shallow depth (<20 m), a factor that we did not include in our study.

While in general, the GHG footprints presented in this study are in line with results
found in previous studies, we see extreme outliers, over- or underestimating the
GHG footprints from hydropower. The discussion tries to explain the causes of these
outliers as well as examine sources of uncertainty in the results.

5.4.1 GHG emissions

Construction emissions

GHG emissions from the construction phase are difficult to quantify because
the type of dam built depends on site-specific characteristics. For example, the
geography of the site has a large effect on the type of dam to be built and the size
of it [91]. Here, we derived the construction GHG emissions (in kg CO_eq/kWh) from
a classification made by Kadiyala et al. [219], which is based on the capacity of the
hydropower facility and whether it is operated as a reservoir or run-of-river facility.

Information on the capacity and the mode of operation was not known 29.5%
of the hydropower facilities included in our analysis. Using a weighted average
based on the distribution of these attributes in the dataset where capacity and/
or the mode of operation is not known introduces uncertainty in the estimation
of GHG emissions connected to the construction phase. The construction phase
emissions reported in Kadiyala range from 3.45-10° kg CO,eq/kWh for large run-
of-river facilities to 4.782:102 kg CO,eq/kWh for small run-of-river facilities [219].
Additional information on capacity and mode of operation of these facilities can
reduce this uncertainty.

Beyond capacity and mode of operation, other factors may also influence construction
phase GHG emissions from hydropower facilities, such as information on different
structural types of hydropower dams (e.g., embankment dams, arch dams, gravity
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dams and buttress dams). Dams differ in their shape as well as the type and amount of
materials used [91]. Combined with information on the size of the dam, such as height,
width, and volume, GHG emissions during the construction phase can be further
improved. Note that the NID also provides information on dam structure and the type
of materials used [214], but due to data limitations this information was not used here.

Operational emissions

Man-made storage areas appear to be an important source of GHG emissions from
hydropower facilities for most climate zones [233]. It is therefore highly relevant
to classify water bodies as man-made or natural for GHG footprint predictions of
hydropower facilities. Information on whether a reservoir is man-made or natural
was unavailable in the NID and therefore had to be derived from the HydroLAKES
database [223].

We used the coordinates of the pour points in HydroLAKES to match with the
coordinates of the dams under the assumption that if a new dam has been
constructed, it has been constructed on an existing river and that if an existing lake
has been dammed, it is dammed at the natural pour point. However, due to the
complexity of some hydropower projects, which can consist of cascades of dams
or where the waterflow can partially be diverted over a turbine further downhill
to increase head, mismatches might occur in areas with relatively large number
of waterbodies.

We also assumed that whenever a storage area was man-made, that all emissions
occurring would not have occurred otherwise. A review by Prairie et al. [234] indeed
suggested that almost all CH, emissions from reservoirs are new, although only
part of the CO, emissions would not have occurred otherwise. Organic matter that
is trapped and dissolved in a storage area after its construction would otherwise
have been dissolved somewhere else, further downstream along the river. Hence,
the CO, emissions may only be displaced and not new. Other studies have also
evaluated the GHG emissions from reservoirs in the US. A recent study from Hansen
et al. [235], who applied the G-res emissions model to a subset of hydropower dams
in the US, showed that the dominant emission pathways are CO, diffusion and CH,
ebullition. Note that in our calculations, the vast majority of the GHG emissions due
to the operation phase is explained by CH, emissions.

Given that hydropower is a long-lived technology, with the oldest facilities being
commissioned in the late 19t century, climate change as well as changes in the land
use and development of the catchment areas of storage areas are likely to occur,
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which are in our case neglected in the quantification of storage area emissions.
Changes in the surroundings can also lead to changes in the influx of organic
material into the reservoir. While these changes can be involuntary, this implies
that by explicitly managing the influx of materials into a reservoir can affect and
lower emissions from reservoirs. Tigli et al. [236] showed that efforts made to lower
the trophic status of a storage area indeed lead to lower GHG emissions, as also
suggested by Meerhoff et al. [237] and Aben et al. [238], who advocate that reducing
nutrient loadings through, for example, better agricultural practices or wastewater
treatment, is not only good for water quality but also from a climate perspective.

Other factors influencing emissions and leading to uncertainty in the calculations
are the use of emission factors for six aggregated climate zones, instead of the
12 climate zones known to the IPCC, the use of average yearly Chl-a data , which is
known to vary temporally between seasons as well as spatially within a lake [236],
and assuming a standard emission factor for downstream CH, emissions, which may
well become more and more important in the future [239] as hydropower facilities
age and therefore, CO, emissions from the storage area become less prominent.
These were not included here due to data limitations.

Finally, it should be noted that an important aspect in LCA is the allocation of
emissions to a specific activity. In the case of hydropower, the reservoir or run-of-
river facility might be used for additional purposes next to electricity generation,
such as recreation, fishing, municipal and agricultural water supplies, and flood
control [91]. Here, we assigned the full emissions to electricity generation due
to a lack of information on other uses of the storage area which causes an
overestimation of emissions allocated to hydropower in case it is used for multiple
purposes. Scherer and Pfister [97] applied an allocation based on the ranking of
hydropower compared to other uses, which could also be included to allocate
emissions in future studies, but was not used here because the ranking of the
facilities’ purposes was not known in our case.

5.4.2 Electricity generation

The amount of electricity generated as an important factor in the quantification
of GHG footprints of hydropower facilities. The decision to release water and thus
produce electricity in most cases does not solely depend on the need for electricity
but also depends on other uses such as irrigation or general water management
strategies. Recently, Baratgin et al. [240] have developed a model to reproduce
hydropower electricity production in France by including amongst others water
demands and non-energy demands. A similar model could be developed for the US.
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Furthermore, hydraulic head is commonly accepted to be estimated by dam
height, but it has also been discussed to not always be an accurate representation
of the actual head of a reservoir, because water intake and the location of the
turbine usually are not at the top and bottom of the dam, respectively, see for
example [241]. As electricity generation linearly depends on the height, height is
an important parameter in determining the power output.

Another potential source of uncertainty is the relocation of dams, which took
place to match the dams to FLO1K data. In areas with many waterways, this can
potentially lead to erroneous flow information and hence electricity production
estimates, either over- or underestimating the electricity generated.

However, we see that the modelling of the amount of electricity produced is in the
same order of magnitude as the actual production of electricity from hydropower in the
US (223 vs.240 TWh, respectively [242], or 93%) and comparison of the average annual
electricity production data we estimate with the study conducted by Turner et al. [243]
shows a very good fit, with the exception of two extreme outliers (see Appendix C.6 for
more information). Therefore, while improvements to quantify electricity production
from hydropower may be achieved moving forward, we are confident that the model
developed here provides a good approximation for the GHG footprint calculations.

5.5 Conclusions and outlook

We quantified the GHG footprint of individual hydropower facilities in the US and
found a range of 2 orders of magnitude [5"-95" percentile] between individual
hydropower facilities. This range is in line with other GHG footprints reported
in literature [98]. While in many cases, the GHG footprints of hydropower are
comparable to those of other renewable electricity sources, such as wind power
and solar power, some hydropower plants have GHG footprints that exceed those
of conventional electricity generation [91]. High GHG footprints are typically found
for hydropower facilities with eutrophic man-made storage areas.

Our method can be used to identify dams with large GHG footprints, which could
then potentially be combined with floating PV, which has been shown to potentially
decrease the GHG intensity of hydropower reservoirs [244]. It can also be applied
to identify locations where non-hydropower dams can be repurposed to generate
low-carbon electricity or where new hydropower facilities with low GHG footprints
could be constructed.
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6.1 Introduction

The aim of this thesis was to quantify facility-specific GHG footprints of renewable
electricity sources at large spatial scales. Accounting for technological and
meteorological variability, facility-specific GHG footprints of the three most important
non-biomass renewable energy technologies were derived: wind (chapter 2 and 3), solar
(chapter 4) and hydropower (chapter 5). In this synthesis, the main sources of variability
are discussed. Section 6.2 covers the technological variability in GHG footprints,
section 6.3 is about spatial variability and section 6.4 about temporal variability. Finally,
section 6.5 includes conclusions and recommendations for future research.

6.2 Technological variability

In my thesis, | quantified GHG footprints for wind farms and utility-scale PV
facilities at the global scale, while for hydropower facilities the assessment
was done for the United States of America (US). The differences between the
renewable electricity technologies are summarized in Figure 6-1. GHG footprints
for wind are shown separately for on- and offshore wind farms. For utility-scale PV,
a distinction between crystalline and thin-film panels is made. The GHG footprints
for hydropower facilities are split into man-made storage areas and natural storage
areas. To compare the GHG footprints to conventional electricity generation
technologies, information on coal- and gas-fired power plants is added from [245]
and [246], respectively, and information on nuclear power comes from Le Boulch et
al. [247]. From Figure 6-1 it becomes apparent that the GHG footprints have a larger
variability between different technologies than within the same technology.

Overall, wind power has the lowest GHG footprints of the technologies assessed
in my thesis, with offshore wind farms on average having a lower GHG footprint
than onshore wind farms. Note that offshore wind farms show a larger range of
GHG footprints than onshore wind farms, with the 5% percentile being lower than
the 5" percentile of onshore wind farms and the 90" percentile exceeding the
90" percentile of onshore wind. For solar power, thin-film panels have lower GHG
footprints than crystalline ones, with the 90t percentile of thin-film panels being
lower than the median of their crystalline counterparts. This is in line with literature
on solar [59, 60, 64, 71, 73, 190] and wind power [52, 59, 248]. However, a recent
study has shown that increasing distance to shore increases the GHG footprint of
wind power [249]. Man-made storage area-based hydropower facilities have higher
GHG footprints than those located on natural storage areas. Hydropower facilities
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based on natural storage areas have GHG footprints in the range of wind and solar
power. Those with man-made storage areas can have GHG footprints as low as wind
power but can also have GHG footprints exceeding those of natural gas and coal.
Other studies confirm this observation [91, 98, 250].

Even though wind power on average has the lowest GHG footprints, its 90®
percentile overlaps with the 5™ percentile of solar and hydropower, showing that
there are instances when thin-film PV or hydropower can have GHG footprints as
low as wind power. Similarly, there are instances where hydropower facilities can
have a lower GHG footprint than solar power.

Wind, solar and hydropower all have lower median GHG footprints than coal- and
gas-fired power plants. The 90™ percentile of wind and solar power as well as natural
storage area-based hydropower GHG footprints is lower than the 5" percentile
of the GHG footprints of coal-fired power plants. However, there are hydropower
facilities located on man-made storage areas with GHG footprints exceeding the
90t percentile of coal-fired power plants. Nuclear power has GHG footprints that
are in the same range as those of wind power, with the median being lower than
both on- and offshore wind power [247].

This shows that my results can be used to choose electricity sources with the lowest
GHG footprints using facility-specific data for a certain location, which can increase
gains in GHG emission reduction compared to choosing a technology based on the
lowest average GHG footprint.

The metamodels developed for wind and solar power indicated the importance
of technological aspects on the intra-technology variability of GHG footprints. For
wind, in addition to whether or not a facility is onshore or offshore, the turbines’
hub heights, rated power and the number of turbines in a wind farm are explaining
differences in GHG footprints of wind turbines [251]. The panel type and the module
efficiency are the two main technological variables determining differences in the

GHG footprints of PV facilities [30].

No metamodel for the GHG footprint of hydropower facilities has been developed
yet, but Figure 6-1 indicates that intra-technological variations, such as whether a
facility has a man-made or natural storage area, could be used as proxies in the
development of such a model. Furthermore, dam height and reservoir surface area
were used to predict a hydropower facilities’ electricity generation, implying that
they might be important technological variables to include in a metamodel.
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My results imply that it is always important to include facility-specific information,
no matter whether GHG footprints of different technologies are to be compared
to each other, or the GHG footprint of the same technology is to be assessed in
different locations.

10° 4 é
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Figure 6-1 GHG footprints of the different technologies assessed in this thesis with comparison to
coal [245], gas [246], and nuclear power [247]. The orange line represents the median, the boxes the
25-75™ percentile and the whiskers the 5-95™ percentiles.

6.3 Spatial variability

The importance of spatial resolution of the meteorological data has been
investigated in chapter 2, where | have shown that a resolution of 30 by 30 km
for wind speed data is a small enough resolution to predict a wind turbine’s GHG
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footprint. We built on that analysis in chapter 3, where | showed that wind speed
is the most important variable in determining a facility’s GHG footprint. This is
caused by the fact that — within its operational wind speed range - the electricity
production of a wind turbine is roughly related to the cubed wind speed, meaning
that even a small increase in wind speed can create a large increase in the electricity
production and thus a strong reduction in the GHG footprint (see Figure 6-2a).

For solar power, the relationship between irradiation and electricity production is
linear, and hence we see that irradiation is an important variable to determine a
facilities GHG footprint in the metamodel developed in chapter 4 (see Figure 6-2b).
This finding is in line with Louwen et al. [72] who also showed that solar irradiance
is an important factor in the environmental assessment of PV, with temperature
being another important aspect as it can affect a PV panel’s efficiency. Temperature
was also included in the metamodel developed in chapter 4, but the importance
analysis showed that using only irradiation as predictor sufficiently well estimated
the results.

For hydropower facilities, flow data has been used to impute electricity production,
but as | have not developed a metamodel for the GHG footprint, | have not assessed
the importance of meteorological variables on the GHG footprint. Other spatially
explicit variables included in the GHG footprint prediction are the storage area’s
chlorophyll a (Chl-a) concentration and the climate zone a hydropower facility is
located in. [252] and [225] have shown that these are important factors influencing
GHG emissions and thus GHG footprints. However, to date spatial and temporal
variability of temperature and chlorophyll a concentration in water bodies is
difficult to capture on large spatial scales, but recently Zhao et al. used high-
resolution satellite images to develop a Chl-a retrieval algorithm [253]. They found
that lake surface temperature was the most important factor in determining Chl-a
concentration. These findings could be used in future research to develop a similar
approach as taken for wind and solar power, which can then provide clarity on
which factors determine spatial variability for hydropower GHG footprints.

Thus, spatial variability in meteorological conditions are strong predictors for GHG
footprints of wind, solar and possibly hydropower. For wind power, wind speed
seems to be more important than technological variability, due to the production
being related to wind speed cubed. For solar power, irradiation is slightly less
important than technological variability, due to the strong difference in energy
needed for producing crystalline vs. thin film panels, which also depend on
production location [254].
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Figure 6-2 Partial dependence plots for wind power (a) and solar power (b) showing the effect of the
main spatial variable on the greenhouse gas (GHG) footprint of the facilities. A bigger change in GHG
footprint means that the variable is more important.

6.4 Temporal variability

In chapter 2, | have investigated how temporal variation in wind speed affects the
calculation of GHG footprints. | found that using daily data at a 30 by 30 km grid
sufficiently represent the life cycle GHG emissions of wind turbines compared to
higher resolution data.

While | used hourly wind speed data to calculate the facility-specific GHG footprints
of wind power in chapter 2, the metamodel developed in chapter 3 uses location-
specific 30-year average wind speeds as the only non-technological predictor.
For the solar power GHG footprint calculations in chapter 4, | initially used hourly
irradiation, temperature and wind speed data. Again, the metamodel showed that
location-specific yearly average irradiation, temperature and wind speed play a role
in the estimation of solar power GHG footprints. An importance analysis showed
that with only hourly irradiation GHG footprints can be well approximated.

In both instances, temporal variability was deemed to be of lesser importance
in the estimation of facility-specific GHG footprints of the electricity generation
technologies assessed in this thesis. However, the confidence in the metamodel is
increased by using a methodology that first makes use of the detailed (i.e., hourly)
information available before reducing the level of detail.

For hydropower, | followed a different approach, where metamodels were used to
impute the facility-specific GHG footprints from the start. The electricity production of
each hydropower facility was calculated using a regression model based on average
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yearly flow data [217]. GHG emissions for the construction and operational phases of
the facilities were derived from emission factors derived from literature [219]. Given
the increasing availability of data and the rise of Al technologies, a similar approach
to those used here for wind and solar power could be used when calculating GHG
footprints of hydropower facilities on a global scale. Al could be applied to gap
filling, using, for example, data scraping methods. Furthermore, temporal variability
in chlorophyll concentration and temperature, which [252, 225] have shown to be
important in a reservoir’s GHG emission, could be included in the calculations once
datasets covering larger spatial and temporal scales are available.

6.5 Conclusions and Recommendations
In conclusion, the main findings of my thesis are:

« In order to develop a metamodel that can predict greenhouse gas footprint
information as specific as possible with a minimum of information, the first step
always has to be a detailed, in-depth analysis. Conducting an in-depth analysis
helps to understand where the limits lie of an acceptable approximation.

- Facility-specific GHG footprints for wind power, solar power and hydropower
can be approximated by a limited number of technological and spatio-temporal
variables, allowing for an easier comparison of GHG footprints for specific
technologies at distinct locations.

« The variability in the GHG footprints of the renewable electricity generation
technologies considered here is greater between the different technologies than
within a technology.

Based on these main findings, several recommendations for future work can be
made. Future research should:

« Explore a similar approach as taken for wind and solar power when attempting
to calculate GHG footprints for hydropower facilities on a global scale in
which time-, space, and technology-specific variables are first used in the
highest-possible resolution to then determine the most important variables in
hydropower’s GHG footprint.

« Improve the metamodels derived for wind and solar power by including
additional location- and technology-specific information, made possible by
increased data availability and improvements in Al technology, which can reduce
the computational requirements.
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. Develop GHG emission-supply curves for relevant electricity generation
technologies to integrate into integrated assessment models in addition to cost-
supply curves.

- Expand the models developed here to other impact categories to facilitate the
evaluation of environmental performance and trade-offs of different electricity
generation technologies.

+ Develop a tool that supports decision makers which electricity generation
technology is best suited at a certain location to minimize environmental
impacts and trade-offs.

« Determine how much can be gained in terms of GHG emission mitigation at
each location by comparing facility-specific GHG footprints of one technology to
other (non-)renewable electricity sources.
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Appendix A Appendix for chapter 3

This appendix provides more information on how gap-filling was done for the
different variables (section A.1), an overview of the completeness of the data set
with regard to total installed capacity and a validation of the electricity production
(section A.2), how the wind data was processed (section A.3), as well as what wake
effect is and how it was accounted for (section A.4). Additional information on how
the metamodel was developed is presented in section A.5, and section A.6 provides
more detailed maps of the GHG footprint for different world regions. Section A.7
covers the capacity factor of the global wind farm fleet. Section A.8 covers which
data was included in the literature comparison and section A.9 describes the
applicability domain of the GHG emission regression model.

A.1 Gap filling of wind farm data

Whenever the data needed in the calculations was not available, the data gaps
were filled according to the methods described in this section. Some information
could be derived directly from other data from the database, other information
had to be derived using regression analysis. Data on the global wind farm fleet
has been provided by TheWindpower.net [106]. For 132 offshore wind farms,
information on location was supplemented with updated information from [106]
and [156]. For 26,821 of the 31,298 wind farms in the original data set, sufficient
data was available to include the wind farm in the calculations. Summary Table A-1
shows which information was available for how many wind farms. How many of
the missing values were added using which gap filling method is also included in
Table A-1.

A.1.1  Hub height
For 4,572 wind farms where no information on hub height was available, a
regression model was built to estimate turbine height (m) based on either the

diameter (m) (321 farms):
H=13. D% (A-1)

with an R?of 0.76 and a standard error of 0.22, or the rated power (MW) (4,380 farms):
H=31 Pt (A-2)

with an R? of 0.74 and a standard error of 7.90.
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A.1.2  Rotor diameter
The rotor diameter (m) was derived from a regression model based on the rated
power (MW) (5,243 turbines):

D = 1557 PR32 (A-3)

which has an R? of 0.94 and a standard error of 6.78.

A.1.3  Rated power
The rated power (MW) can be calculated from the total power (MW) of all wind
turbines in a wind farm and the number of turbines in that farm for 5,243 turbines
without this information: p
Prated = ot (A-4)
turbines
A.1.4  Number of turbines
Similar to the rated power, the number of wind turbines can be calculated by
dividing the total power (MW) of all wind turbines in a wind farm by the rated
power (MW) of the individual wind turbines in it, which was done for one entry:
Ptﬂ!ﬂ:l

Neurpines = Proted (A-5)
ra

A.1.5 Power curve: k and b

For 19,091 wind turbines information on the power curve was available.
Thewindpower.net provides power outputs in 0.5 m/s intervals as given by the
turbines’ manufacturers. Wind turbines’power curves follow a so-called sigmoid
function [158] and such a function was fit to the data provided by Thewindpower.
net using SciPy’s curve fit method with the sigmoid function [159].

This results in two variables, k and b, which describe the power curve of each given
wind turbine. The average R? of the fitted curves is 0.996. For the wind turbines
where data is not available (7,771 turbines), the average k and b of all wind turbines
in the database are used (0.74 [the 2.5 and 97.5 percentiles are 0.58-0.94] and
8.57 [the 2.5 and 97.5 percentiles are 7.20-9.64], respectively).
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A.1.6 Cut-in, rated and cut-off wind speeds

Based on the histograms in Figure A-1, 3 m/s was used as the cut-in wind speed if
it was unknown, 14 m/s was used in case the rated wind speed was not known and
when the cut-off wind speed was missing, 25 m/s was used.
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Figure A-1 Histogram of the distribution of cut-in (a), rated (b) and cut-off (c) wind speeds for all
turbines in the database.
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Onshore/offshore location

Upon loading the wind farms labelled as ‘offshore’in qgis, some of them were seen
to be located onshore. A global raster map distinguishing land and water was
combined with all wind farms in the data set and all of them were reallocated to
be either on- or offshore using qgis’s point sampling tool. In total, 2,159 wind farms
had to be relocated in this manner.

Summary table

Table A-1 gives an overview of how many wind farms in the data set used here had
not all information available. Additionally, the number of data gaps filled by the
different methods is provided.

Table A-1 Number of gaps filled by which method. Methods correspond to section numbers above.

Variable Number of farms without Number of farms information derived
this information for (via equation/method)

Hub height 4,601 321 (eq. (A-1))/4,380 (eq. (A-2))

Rotor diameter 5,243 5,132 (eq. (A-3))

Rated power 5,243 5,132 (eq. (A-4))

Number of turbines 1 1 (eq. (A-5))

Total power 0 n.a.

Power curve

- k 7,771 7,646 (m. A.1.5)
- b 7,771 7,646 (m. A.1.5)
Cut-in wind speed 5,643 5,532 (m.A.1.6)
Rated wind speed 5,769 5,658 (m. A.1.6)
Cut-off wind speed 5,653 5,524 (m. A.1.6)

On-/Offshore n.a. 2,159 (m. A.1.7)




128 | Appendices

A.2 Completeness of turbine database and validation of
the electricity production

We computed electricity production for all wind farms due to the lack of data on
location-specific electricity production over its lifetime (30 years). For two countries,
Denmark and the US, the electricity produced has been validated on a per-wind
farm basis using data sets from the Danish Energy Agency [164] and the EIA [163].
The wind farms in our database were matched to the EIA database based on name,
state and commissioning year. Matching with the Danish database was done based
on name, commissioning year, manufacturer, hub height, rotor diameter, nameplate
capacity and the number of turbines in a farm. While matching the Danish wind
turbines to wind farms in our data set could be done with a high degree of certainty
due to the availability of both technological and spatial information, matching was
done purely on a limited number of spatial information for the US.

Since we calculated electricity production for whole years and the exact
commissioning date was not known, the first year of production was excluded from
the analysis. All wind farms that did not have continuous production records were
also excluded. In total, 1,724 Danish wind farms were successfully matched to a
farm in our data set and 657 US wind farms were matched.

Table A-2 gives an overview of the installed capacity per country. Data was available
from Our World in Data [151] and IRENA [157].

Table A-2 Comparison of installed capacity in our study to data from Our world in data [151] and

IRENA [157].
Country Installed capacityoud Installed capacity Our Installed capacity
database (GW) world in data (GW, 2020) IRENA (GW, 2020)
Albania 0.15
Algeria 0.01 0.01
Argentina 3.29 2.62 2.62
Armenia 0.004 0.002
Australia 10.33 9.46 8.60
Austria 2.86 3.22 3.22
Azerbaijan 0.01 0.07
Bahrain 0.001 0.0007
Bangladesh 0.0009 0.003
Belarus 0.003 0.11
Belgium 4.26 4.69 4.69

Bhutan 0.0006 0.0006




Table A-2 Continued

Country Installed capacity oud Installed capacity Our Installed capacity
database (GW) world in data (GW, 2020) IRENA (GW, 2020)
Bolivia 0.03 0.03
Bosnia & Herzegovina 0.13 0.09
Brazil 14.10 17.20 17.20
Bulgaria 0.52 0.70 0.70
Cambodia 0.0003 0.0003
Canada 12.62 13.58 13.58
Cape Verde 0.02 0.03
Chile 243 2.15 2.15
China 88.53 281.99 281.99
Colombia 0.02 0.51
Costa Rica 0.37 0.39 0.39
Croatia 0.87 0.79
Cuba 0.11 0.01
Curacao 0.03 0.05
Cyprus 0.19 0.16
Czech Republic 0.33 0.34
Denmark 6.92 6.24 6.24
Dominica 0.0002 0.0002
Dominican Republic 0.37 0.37
Ecuador 0.07 0.02
Egypt 1.30 138 1.38
El Salvador 0.05
Eritrea 0.0008 0.0008
Estonia 2.71 0.32
Ethiopia 0.32 0.32
Faroe Islands 0.02 0.02
Fiji 0.01 0.01
Finland 4.09 247 2.47
France 19.91 17.38 17.38
Gambia 0.0002 0.001
Georgia 0.02 0.02
Germany 65.15 62.18 62.18
Greece 2.39 4.11 4.11
Guam 0.0003 0.0003
Guatemala 0.1 0.1
Honduras 0.18 0.24
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Table A-2 Continued

Country Installed capacityoud Installed capacity Our Installed capacity
database (GW) world in data (GW, 2020) IRENA (GW, 2020)
Hungary 0.38 0.32
Iceland 0.004 0.002
India 16.41 38.56 38.56
Indonesia 0.15 0.15
Iran 0.28 0.30 0.31
Ireland 6.19 4.30 4.30
Israel 0.03 0.03
Italy 10.59 10.84 10.84
Jamaica 0.10 0.10
Japan 5.09 4.21 4.38
Jordan 0.47 0.52 0.51
Kazakhstan 0.45 0.49
Kenya 0.44 0.34
Kosovo 0.03 0.03
Kuwait 0.01 0.01
Latvia 0.05 0.08
Lithuania 0.72 0.54
Luxembourg 0.006 0.17
Mauritania 0.14 0.03
Mauritius 0.01 0.01
Mexico 5.09 8.13 8.13
Micronesia 0.0008 0.0008
Mongolia 0.05 0.16
Montenegro 0.12 0.12
Morocco 1.29 141 141
Mozambique 0.003
Namibia 0.005 0.005
Netherlands 8.65 6.60 6.60
New Zealand 0.94 0.78 0.78
Nicaragua 0.14 0.19
Nigeria 0.01 0.003
North Macedonia 0.04 0.04
Norway 299 3.98 3.98
Oman 0.05 0.05
Pakistan 0.51 1.24 1.24

Panama 0.34 0.27
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Table A-2 Continued

Country Installed capacity oud Installed capacity Our Installed capacity
database (GW) world in data (GW, 2020) IRENA (GW, 2020)
Peru 0.41 0.38
Philippines 0.46 0.44 0.44
Poland 9.49 6.27 6.27
Portugal 5.62 5.24 524
Puerto Rico 0.13 0.10
Romania 2.00 3.02 3.02
Russia 1.05 0.95 0.95
St. Kitts & Nevis 0.002 0.002
Saudi Arabia 0.42 0.003
Senegal 0.16 0.05
Serbia 0.60 0.40
Seychelles 0.006 0.006
Singapore 0.0001 0.0001
Slovakia 0.005 0.004
Slovenia 0.003 0.005
South Africa 3.04 2.64 2.64
South Korea 1.96 1.64 1.64
Spain 23.25 27.09 27.09
Sri Lanka 0.13 0.25
Sweden 12.65 9.69 9.69
Switzerland 0.17 0.09
Syria 0.003 0.0006
Taiwan 3.92 0.84
Thailand 0.55 1.51 1.51
Tunisia 0.24 0.24 0.24
Turkey 5.96 8.83 8.83
Ukraine 1.15 1.40 1.40
United Arab Emirates 0.009
United Kingdom 38.10 24.66 24.48
United States 102.44 117.74 117.74
Uruguay 1.35 1.51 1.51
Uzbekistan 0.0008 0.0008
Vanuatu 0.004 0.003
Venezuela 0.13 0.07

Vietnam 0.71 0.60
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A.3 ERA5

ERA5 climate data has been downloaded from the Copernicus Climate Data
Store. Hourly data was used on a 0.25°x 0.25° resolution starting from 1988 until
2017. Wind data is available at 10 and 100 m height and in a u- and v-component
(eastward and northward, respectively), both in m/s. To get the wind speed at hub
height, two steps are necessary:

1. Combine u- and v-component to get one wind speed at 10 and 100 m for each
grid cell and time step.
2. Extrapolate the wind speed at 10 m to the wind turbines’ hub height.

A.3.1 Wind speed calculation
Calculating the wind speed (v, in m/s) at 10 and 100 m is done using

N (A-6)

A.3.2  Wind speed extrapolation
Extrapolating the 10 m wind speed to the turbines’ hub height is more complex.
Here, we assume that wind speed can be extrapolated using the power law

H A"
Vi = Vg~ (ﬁ) (A-7)
with v, the wind speed at hub height (m/s), v,  the wind speed at 10 m (m/s), H the
hub height (m) and a the wind shear exponent. a can be calculated for each grid
point and each time step via

Pio0
a=lo A-8
10 ( o ) (A-8)
Additionally, wind speed also depends on air density (kg/m?3) [255]. Air density at
hub height is calculated according to

o= (A-9)
with p, the air pressure at hub height (Pa), T, the temperature at hub height (K) and
R the ideal gas constant of 8.31447 J/mol-K. Both p, and T, also vary with height and
are usually measured above the ground. Therefore, they need to be extrapolated
as well following the method described in [255]. Measured air pressure p_ is
extrapolated to the hub height using
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i 53225
0.0065 -4 h) (A-10)

PJJ':pa‘(l_ Ta

with p_ the air pressure at mean sea level, Ah the height difference between the
measurement height and the hub height (m) and T, the temperature at 2 m (K). T is
extrapolated to the temperature at hub height using

Ty =T, —0.0065 - 4h (A-11)

Temperature and pressure are also available from the Copernicus Climate Data
Store, given in K and Pa, respectively.

A.4 Wake effect

Wind turbines extract energy from the wind meaning that downwind of a wind
turbine, the wind blows less hard than upwind. Hence, turbines that are located
downwind of another wind turbine experience slower wind speeds, an effect
that is especially pronounced in wind farms. This effect is called the wake effect.
Quantifying the wake effect for wind turbines in wind farms is difficult as it
depends on the exact lay-out of the farm, meaning for example the turbine spacing
and general form of the farm, but also on local wind speed characteristics such as
wind speed and direction. If wind turbines are, for example, placed in two rows of

eight turbines each, with the rows in a north-south orientation, only one turbine is
downwind of another turbine if the wind blows from the east or west. If, however,
the wind comes from the north or south, 7 turbines are downwind of at least one
other turbine and thus experience some form of wake effect.

When designing a wind farm, extensive research is done on the predominant wind
direction and what the effects of different farm lay-outs and turbine spacing are on
the power output. However, information on the farms’ lay-outs and turbine spacing
were not provided in the database. Therefore, a standard square wind farm lay-out
was deployed here, following [136], who calculated wake effects for different wind
farm sizes under various turbine spacing. Considering a square wind farm lay-out
has the advantage that wind direction does not have a big influence on the results.
Based on the table provided in [136], the following wake effect regression was
derived, taking 9D as the distance between turbines:

fiw = —0.0353Z - In(Npyyrpines) (A-12)
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A.5 Metamodel

In a first step to develop the metamodel, variation inflation factors (vifs) were
calculated. If a vif is above 5, the multicolinearity is considered to be too high. For
this reason, rotor diameter was excluded from the list of variables. Furthermore,
in order to see if variables are correlated, a correlation matrix was made. If values
are higher than 0.8, the variables are thought to be dependent and excluded. The
correlation matrix of the variables included is shown in Figure A-2. It shows that all
values are below 0.8 and therefore all variables are included.
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Figure A-2 Correlation matrix of the predictors included in the metamodel. All values are below 0.8.

Figure A-3 shows the residuals vs. fitted plot of the best model (based on the Akaike
Information Criterion). The residual standard error for this model was 0.10 with an

adjusted R? of 0.83.
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Figure A-3 Residuals vs. fitted plot of the best model based on the Akaike Information Criterion.

A.6 GHG footprint of world regions

Below, the GHG footprints of the different world regions are shown. Figure A-4

shows the GHG footprint of wind farms in Africa, Figure A-5 the footprint of those in

America, Figure A-6 that of those in Asia, Figure A-7 the footprint of wind farms in
Europe and Figure A-8 that of Oceanian wind farms.
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Figure A-4 GHG footprints of wind farms in Africa.
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Figure A-5 GHG footprints of wind farms in America.
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Figure A-6 GHG footprints of wind farms in Asia.
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Figure A-7 GHG footprints of wind farms in Europe.
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Figure A-8 GHG footprints of wind farms in Oceania.

The effect of gap filling on the GHG footprint of the wind farms included here is
shown in Figure A-9.
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Figure A-9 Effect of gap filling on GHG footprint ranges per continent. 0: at least one wind farm
characteristic had to be informed by gap filling. 1: all wind farm characteristics available in the data set.
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A.7 Capacity factor of the global wind farm fleet

The capacity factor of a technology can be calculated by dividing the amount of
electricity produced during a given time by the amount of electricity that could
theoretically have been produced during that same time. Figure A-10 provides
an overview of how the capacity factors of the wind farms included in this study
distribute compared to the carbon footprint. Higher footprints are related to lower
capacity factors, which can also be seen when comparing Figure A-11, which shows
how capacity factors distribute globally, to the maps in section A.6.
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Figure A-10 Scatter plot of the GHG footprint versus the capacity factor of the global wind farm fleet.
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Figure A-11 Distribution of the capacity factor of the global wind farm fleet.
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Figure A-12 Histogram of the capacity factor of the global wind farm fleet.
A.8 Literature review
Table A-3 summarizes the GHG footprints found in literature.
Table A-3 GHG footprints found in literature.
Reference  Information GHG footprint
(g CO,eq/kWh)
[256] 49.5 MW, China 4.429
[257] Three turbines in China 3.9
[258] Onshore TMW, TX, US 7.13
Onshore 2MW, TX, US 6.86
Onshore 2.3MW, TX, US 5.63
Shallow water offshore 2MW, TX, US 9.1
Shallow water offshore 2.3MW, TX, US 6.23
Deep water offshore 2.3MW, TX, US 7.58
Deep water offshore 5MW, TX, US 6.98
[259] Offshore wind farm Tuno Knob 16.5
Offshore wind farm Fjaldene 9.7
[52] 100 kW wind turbine set (n = 542) 453
500 kW wind turbine set (n = 230) 19.1
1MW wind turbine set (n = 370) 216
2MW wind turbine set (n = 154) 17.3
2MW offshore wind turbine set (n = 104) 11.7
[260] Greek wind farm 4.1
[261] Alpha ventus wind farm 32
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Table A-3 Continued

Reference  Information GHG footprint
(g CO,eq/kWh)
[262] Havsu | offshore wind farm 35.1
[263] 38 Vestas wind turbines in Joran 9.11
[264] 14 onshore wind turbines in Brazil 7.1
[265] 330kW turbine 50m hub in Pinarbasi-Kayseri 40.36
330kW turbine 80m hub in Pinarbasi-Kayseri 36.46
330kW turbine 100m hub in Pinarbasi-Kayseri 33.96
500kW turbine 50m hub in Pinarbasi-Kayseri 38.96
500kW turbine 80m hub in Pinarbasi-Kayseri 32.01
500kW turbine 100m hub in Pinarbasi-Kayseri 29.97
810kW turbine 50m hub in Pinarbasi-Kayseri 26.57
810kW turbine 80m hub in Pinarbasi-Kayseri 21.66
810kW turbine 100m hub in Pinarbasi-Kayseri 20.41
2050kW turbine 50m hub in Pinarbasi-Kayseri 19.54
2050kW turbine 80m hub in Pinarbasi-Kayseri 16.63
2050kW turbine 100m hub in Pinarbasi-Kayseri 16.27
3020kW turbine 50m hub in Pinarbasi-Kayseri 28.61
3020kW turbine 80m hub in Pinarbasi-Kayseri 23.77
3020kW turbine 100m hub in Pinarbasi-Kayseri 22.29
[266] Best case 29.5
Future case 203
[267] Dernah wind farm in Libya 10.42
[268] 49,5MW wind farm in China 28.6
[248] 186x1.65MW onshore wind farm in China 8.21
100x3.00MW offshore wind farm in China 5.98
100x3.00MW onshore wind farm in China 4.97
[269] Donghai Bridge offshore wind farm in China 25.5
[46] 24x1.25MW wind farm in China 7.2
[270] Saihan wind farm China 8.65
[271] 20x5kW turbines in Alberta, CA 17.8
5x20kW turbines in Alberta, CA 25.1
100kW turbines in Alberta, CA 42.7
[272] 11x660kW turbines in Italy 14.8
[118] Vestas V112 wind farm 7.0
[273] 150mW wind farm in Inner Mongolia, China 7.2
[274] 5MW offshore wind farm in Germany 22.0
[275] 4.5MW wind turbine 16.0
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Table A-3 Continued

Reference  Information GHG footprint
(g CO,eq/kWh)
250W wind turbine 46
[276] Onshore V90-3.0MW turbine 46
Onshore V90-3.0MW turbine 5.2
[277] 40x5MW offshore wind farm 11.5
[44] Onshore turbine 7.0
Offshore turbine 11.0
[278] Vestas 2MW GridStreamer 7.7
[279] 180MW offshore wind farm 24.0
[280] 5MW offshore wind farm 16.8
3MW onshore coastal wind farm 13.2
2.5MW onshore inland wind farm 234
[47] 2.0MW geared wind turbine 7.59
1.8MW gearless wind turbine 7.89
[281] 36
[49] Buffalo Ridge wind farm, US 14
Lake Benton wind farm, US 18
Glenmore wind farm, US 34
[282] 5MW floating offshore turbine Umaine Spar 253
5MW floating offshore turbine MIT TLB 18.0
5MW floating offshore turbine SWAY 20.9
5MW floating offshore turbine Umaine Semi-S 314
5MW floating offshore turbine Umaine TLP 19.2
5MW bottom-fixed offshore turbine OC4 Jacket 18.9
[283] 1.5MW onshore wind farm 11.8
[284] Onshore Vestas V112-3.45MW turbine 5.3
[111] Onshore Vestas V110-2.0MW turbine 7.2
[285] Onshore Vestas V112-3.3MW turbine 5.8
[172] Onshore Gamesa G128-5.0MW turbine 9.65
[173] Onshore Gamesa G132-5.0MW turbine 8.58
[53] Onshore, 1MW 17.6
Onshore 1-3MW 15.5
Onshore >3MW 14.1
Offshore 1-3MW 13.6
[286] Onshore TMW 11.9
Onshore 1-3MW 125

Onshore >3MW 19.7
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Table A-3 Continued

Reference  Information GHG footprint
(g CO,eq/kWh)
Offshore 1-3MW 15.6
[103] Mean, harmonized 15
Minimum, harmonized 3.0
Maximum, harmonized 45
[287] 3MW onshore turbine 7.25
3MW onshore turbine 1243
[288] 850kW wind turbine 10.28
3MW wind turbine 9.30
[289] 5MW wind turbine, LT = 30 yrs, CF = 43% 2.8
5MW wind turbine, LT = 30 yrs, CF = 20% 7.4
5MW wind turbine, LT = 20 yrs, CF = 43% 4.2
5MW wind turbine, LT = 20 yrs, CF = 20% 1.1
[290] Onshore wind turbine 11
Offshore wind turbine 13
[291] 44m hub, coastal, production & operation in GER 45
44m hub, coastal, production in GER, operation BRA 15
44m hub, coastal, production in GER & BRA, operation in BRA 8
44m hub, coastal, production & operation in BRA 3
44m hub, coastal, production & operation in BRA, recycled steel 2
55m hub, coastal, production & operation in GER 48
55m hub, coastal, production in GER, operation BRA 16
55m hub, coastal, production in GER & BRA, operation in BRA 8
55m hub, coastal, production & operation in BRA 3
55m hub, coastal, production & operation in BRA, recycled steel 2
55m hub, near coastal, production & operation in GER 61
55m hub, near coastal, production in GER, operation BRA 20
55m hub, near coastal, production in GER & BRA, operation in BRA 10
55m hub, near coastal, production & operation in BRA 3
55m hub, near coastal, production & 2
operation in BRA, recycled steel
55m hub, inland, production & operation in GER 81
55m hub, inland, production in GER, operation BRA 27
55m hub, inland, production in GER & BRA, operation in BRA 13
55m hub, inland, production & operation in BRA 4
55m hub, inland, production & operation in BRA, recycled steel 3
65m hub, inland, production & operation in GER 77
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Table A-3 Continued

Reference  Information GHG footprint
(g CO,eq/kWh)
65m hub, inland, production in GER, operation BRA 26
65m hub, inland, production in GER & BRA, operation in BRA 12
65m hub, inland, production & operation in BRA 4
65m hub, inland, production & operation in BRA, recycled steel 3
[292] Minimum 13
Maximum 156
[293] 2MW turbine, base case 6.58
2MW turbine, maximum case 9.29
2MW turbine, minimum case 6.2
[294] 600kW wind turbine in Canada 13
[295] 600kW turbine wind farm 7.2
[296] 1.5MW onshore turbine 11
2.5MW offshore turbine 9
[297] Te Apiti wind farm 3.0
[298] 225kW wind turbine, renovation 7.2
225kW wind turbine, relocation 11
225kW wind turbine, recycling 11
[299] 300kW turbine 9.51
170kW turbine 12.92
400kW turbine 6.56
100kW turbine 33.74
[300] Coast, 0.15-1.5MW 9.2
Inland, 0.15-1.5MW 27
0.6MW, coast 7.9
0.6MW, inland 24
[301] 25MW wind plant 15

A.9 Applicability domain

The applicability domain of the regression model used to calculate a wind turbine’s
lifetime GHG emissions as defined in [21] is defined by the minimum and maximum
hub height and rotor diameter of the wind turbines used to build this model. The
minimum hub height was 40 m, the maximum hub height 117 m. For the rotor
diameter, the minimum value was 39 m and the maximum 126 m. Of all the turbines
in the dataset used here, 78% fall within that range.
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Appendix B Appendix for chapter 4

B.1 Facility-specific data and filling in missing data

We obtain facility-specific technological characteristics mainly from the proprietary
Wiki-Solar dataset, available from http://wiki-solar.org. It contains data on utility-
scale projects, ranging from a minimum capacity of 3.0 MWp (‘p’ for peak, indicating
direct current output under standard testing conditions) to projects of 3 GWp. In
this study we focus on photovoltaic (PV) plants (thus excluding concentrated solar
power) and use the 9,992 with a known location out of 10,268 PV plants in the
Wiki-Solar database (obtained in November 2019). In this section we describe what
information is available from Wiki-Solar and how we fill in gaps.

Year. We use the age of a facility as a proxy for its efficiency, combined with panel
type. For the 990 facilities where the year is not provided, we apply the median year
per status of the 9,002 facilities where year is provided (2015 for operating facilities
- status A, 2018 for facilities near completion - status B and 2020 for planned
facilities - status C).

We then use efficiency values from Chen et al. [179], determined using their Figure 3
and a WebPlotDigitizer https://apps.automeris.io/wpd/. Efficiencies increase
approximately linearly for the timeframe they consider (2006-2018). The majority
of facilities in our dataset are within this timeframe too - only 7 predate 2006. For
planned facilities (2019 or later) we extrapolate the linear increase of efficiencies
over time. For amorphous silicon (a-Si), Chen et al. [179] does not provide values,
so we use the 2009-2012 averaged values from Bhandari et al. [56] and the average
growth rates of CdTe and CI(G)S. Table B-1 provides the parameters used to
determine panel efficiencies.

We thus take into consideration that thin film panel efficiency improves faster than
crystalline panel efficiency [179]. We note that applying a linear growth rate implies
that our computations are valid for current facilities and those planned for the next
couple of years, but our computations do not hold for future scenarios in which
panel efficiencies may gradually approach their practical efficiency limits.
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Table B-1 Parameters used to determine the panel efficiencies n [%] per type based on Chen et al. [179]
and Bhandari et al. [56]. Efficiencies are determined as n=a - year + b, values for 2016 are given as examples.

Panel type Growth rate a[%] Interceptb n 2016
Mono-crystalline 0.4027 -794.87 16.97
Poly-crystalline 0.3509 -691.29 16.12
Cadmium telluride 0.8056 -1609.15 14.94
Copper indium (gallium) selenide 0.5062 -1005.89 14.61
Amorphous silicon 0.6559 -1311.80 10.49

Panel type. PV facility’s impact | and power (electricity) output P furthermore
depends on the type of PV, which is provided for 1,249 of the facilities in the Wiki-
Solar database, i.e. 12.5% of the facilities. We extended this by using input from
various sources. First, we used the US Energy Information Administration’s database
EIA-860 [184], matching utility-scale PV facilities from their 2018 data to those in
Wiki-Solar using a proximity of maximum 0.1° latitude and longitude as well as a
visual check for facility names and capacities. This yielded 858 facilities in the US
with added information on panel type. Second, we obtained facility-specific panel
types from the Global Energy Observatory [185], resulting in added information for
53 facilities globally. Third, we used the module supplier, provided in the Wiki-Solar
database, as an indicator for type of panel. This yielded panel types for 771 facilities.

After these efforts to fill the gaps in panel types, we know for 1,348 out of
9,992 facilities which of the five most common types of panels is used (mono- and
poly-crystalline silicon, amorphous silicon, cadmium telluride or copper indium
(gallium) diselenide). For an additional 1,443 facilities, we know that crystalline
panels are used, and for 17 facilities we know that thin film panels are used. For
these facilities, we compute the footprint for each type, i.e. for the 1,443 crystalline
facilities we compute both a footprint for mono- and poly-crystalline panels. For
the thin film facilities, we compute footprints for amorphous silicon, cadmium
telluride and copper indium (gallium) diselenide. For the remaining 7,148 facilities
with unknown panel type, we compute footprints for all five types. This allows us
to test the sensitivity of the footprint to panel type, such as in main Figure 4-4. In

main Figure 4-3 showing the spatial distribution of EF___, an overall footprint for

GHG’
facilities where type is unknown is computed based on a weighted average using
the relative production of each type in 2016 for current facilities (status A and B)
and 2019 for planned facilities (status C), see Table B-2. 2019 is the latest year for
which type-specific market shares are available, which is assumed representative
for planned facilities (for which the median year is 2020). We opted for the simpler

computations of using 2016 and 2019 market shares instead of market shares of
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each year, as for most years in the dataset the market shares are very similar [183].
Only in recent years (2018, 2019) a shift to more mono-Si and less poly-Si becomes
apparent. Thus, for instance for current locations where we know panels are of
crystalline type, the weighted footprint is computed as

22.7 712
GHGypeighred = 2T+ 712 E Fapig-monosi +m’EFGHG—MySE (B-1)

Both mono-Si and poly-Si footprints are computed using the same facility-specific
capacity, location and year of construction. The same approach is used for facilities
with thin film or unknown panel type.

Table B-2 Market share of PV panel types in percentages, derived from Frauenhofer ISE [183].

2016 2019
mono-Si 22.7 64.7
poly-Si 71.2 29.6
CdTe 39 4.3
cl(G)s 1.6 14
a-Si 0.6 0.2

Within the Wiki-Solar database we can distinguish between current facilities and
those under development (planned), see Figure 4-2 in the main text. Current
facilities include operating facilities as well as those near completion (status A and
B in the Wiki-Solar dataset, as of end of 2019). Of the 7,982 current facilities, 5,221
(65.4%) have no information on panel type. For facilities in development (2,010 out
of the total 9,992), there are relatively more plants with high capacity (>100 MW,
Figure 4-2), and also relatively more facilities with no information on panel type
(1,889 out of 2,010 - 94.0%).

Capacity. A facility’s capacity is given in watt-peak (p, direct current) and/or in
alternating current (ac, power that goes into the grid after e.g. inverter losses). In our
computation of impacts, we use MWp when computing the surface panel area of a
facility (see section 4.2.1 in the main paper). For 2,495 out of 9,992 facilities, MWp
is unknown, and we compute it from MWac using a performance ratio of 0.8 (PR =
MWac/MWp). This is the median value for the 2,049 plants for which both MWac
and MWp are provided, as well as the IEA recommended value [182]. Fraunhofer
ISE [183] indicates that a performance ratio of 80-90% is common for newer PV
plants, up from ~70% before 2000. In our database all plants became operational in
or after 2000, with a median in 2015/2016. A performance ratio of 80% is therefore
a representative and even slightly conservative value for our computations.
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For our computation of electricity output, we use MWac, in order to have kWh
delivered to the grid as our functional unit. MWac is unknown for 5,451 and is
computed from MWp and a PR of 0.8, as described above.

In some cases where both MWac and MWp are given, these were deemed too dissimilar
if the PR was below 0.5 or above 1.0. For these cases (41), the MWp is set to MWac/0.8.

The global summed PV capacity of the 9,992 facilities used is 294 GWac, or 368 GWp.
Figure 4-2 in the main paper shows the distribution of the plants in the database.
Operating and near-operating facilities (7,120 and 862 facilities respectively)
make up 215 GWp, and planned facilities make up 152 GWp. IRENA reports that
in 2019, solar PV capacity reached 580 GWp [175]. Assuming 60% of this is utility-
scale (https://www.iea.org/topics/renewables/solar/, the remainder consisting
of residential, commercial and off-grid capacity) implies 348 GWp of utility-scale
capacity. Counting all facilities built up to and including 2019 in the Wiki-Solar
database results in 8,381 facilities with a total capacity of 233 GWp, or 67% of the
IRENA-reported 2019 utility-scale capacity. Note however that numbers on capacity
as well as distribution amongst utility, residential and commercial capacity can vary
greatly per year and per source.

B.2 Impact I: GHG emissions

We calculate life cycle GHG emissions per facility using its surface area. Surface
area is computed using equation (4-3), capacity and a year- and panel type-specific
efficiency (see Main Figure 4-1, section B.1 - Facility-specific data and filling in
missing data). We then compute impacts for the panels and BOS separately.

Panel impacts. Impacts per m? of panel depend on the panel type and production
location. The latter is taken into account by using market shares by origin countries
per continent [178] (proprietary) and production country-specific impacts I. No
facility-specific information on production location was available or traceable, so
instead we include variations in production countries by using the continent-specific
market shares of origin (producing) countries. The data from Absolute Reports [178]
provides supply for the years 2015 - 2020 for Asia Pacific, Europe, Africa and Middle
East, North America, and South America. Here we use 2016 for current facilities and
2019 for current facilities, the same years used for the panel type market shares
(see section B.1). Other years show very similar market shares (i.e. using 2015 and
2020 instead gives very similar results); there are only shifts in import from China,
which is higher for 2019 in Europe compared to 2016 but lower for North America.
Note that for North America we included values from the US Energy Information
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Administration, which provides values for Chinese imports, which are not specified
by Absolute Reports [178] (likely included in the category ‘other’ - they do specify
Chinese imports for other continents). See EIA websites for 2016" and 20192

The market shares we found are not type-specific, so we assume that they are valid
for all panel types. Only for CdTe we use different market shares, based on the
assumption that the CdTe market is dominated by one manufacturer (FirstSolar),
who (currently) has production locations in Malaysia, the US and Vietnam (see their
website https://www.firstsolar.com/en-Emea/About-Us/Locations). We did not find
impact values for production of CdTe in Vietnam in literature and therefore assume
50% US and 50% Malaysian production for CdTe.

We combined the continent-specific market shares per producing country with

type-specific impacts | per producing country. As performing a full LCIA per

anel
panel type and per prgducing country was beyond the scope of this study, we
obtained values from literature. There is no single source of impacts for all panel
types and all producing countries. One of the most complete sources is de Wild-
Scholten [190], who provide impacts for all panel type for both European and
Chinese production. Values for production in the US and Malaysia are obtained
from Leccisi et al. [60], and Kim et al. [189] provides values for Korea. For panel types
and producing countries where we could not find the impacts, we used values from
Ecolnvent 3.5, representing a weighted average for all PV-producing countries in
the world (‘GLO/, see Table B-2 for market shares). These values where obtained
through SimaPro 9.0.0.35. Specifically, we use allocation, cut-off by classification.
We selected the ReCiPe2016 method [302] to translate life cycle emissions from the
LCl into the midpoint impact category global warming (GHG emissions in kg CO,-
eq.). We opted for‘GLO’ instead of ‘RoW’ (rest of world) as both give almost the same
impacts for each panel type, thus giving the same footprints.

We note that there is a wide range of values for | available from literature, see
Table B-8 to Table B-11, reflecting different data sources, LCIA methods, production
processes etc. Replacing the values we used (Table B-3) with values from other
literature sources would change the exact values reported in our results, but not
the main conclusions, as all studies report similar patterns (i.e. high impacts from
production in China, low impacts from EU, intermediate values for the US). We
furthermore acknowledge that by using impacts | from different sources there may
be inherent differences in system boundaries, impact assessments etc.

' https://www.eia.gov/todayinenergy/detail.php?id=34952
% https://www.eia.gov/renewable/annual/solar_photo/pdf/pv_table7.pdf
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Table B-3 Impacts in kg CO,-eq/m? per producing country, per type, for panels (excl. BOS). Sources:
dWS: de Wild-Scholten [190], Lec: Leccisi et al. [60], K14: Kim et al. [189], GLO (Ecolnvent 3.5 ‘GLO’). GLO
is used for production in countries other than China, EU, US, or KO, and for production of CI(G)S and
a-Siin the US and KO, for which we did not find impacts.

mono-Si poly-Si CdTe Cl(G)S a-Si
China 9% 415.88 214.32 102.61 81.90
EU aWs 180.56 106.74 74.18 57.89
US tec 263 153 51
MY ‘e 46
KO ¥4 163.5 104.33
GLO 2771 209.5 131.2 77.5

Table B-4 Market shares in PV production used in 'GLO' by Ecolnvent, representative for 2018, based
on electricity used in laminate production. CdTe production in North America is in the US alone. ROW
represents rest of world. Market shares in 2016, the year used to weight footprints across panel types
of current facilities, are very similar [183].

Panel type Asia Europe Germany North America ROW
a-Si 46.1% 17.3% 21.5% 15%

CdTe 41% 59.0%

Cl(G)S 30.3% 36.1% 14.2% 19.4%
poly-Si 35.7% 36.0% 16.7% 11.6%
mono-Si 35.7% 36.0% 16.7% 11.6%

Combining the market shares by origin countries per continent [178] and impacts
per producing country (Table B-3) we thus obtain continent- and type-specific
panel impacts for current and planned facilities, see Table B-5. The market shares by
origin countries were used as weights, just as the market shares of panel types (as
described in Appendix B section B.1). For many continents and panel types there
is little difference in impacts for current and planned facilities. A drop (increase) in
impacts typically reflects less (more) import from China, where impacts per m? are
higher (Table B-3). At the same time impacts for CI(G)S show a change in the opposite
direction, as the Ecolnvent ‘GLO’ impacts are higher than those reported for China
by de Wild-Scholten [190]. Note that for CdTe we used the same impact value for all
locations (reflecting 50% US and 50% Malaysian production as described above).
Also note that changes in impacts for current and planned facilities reflect changes
in import and panel efficiency. We do not consider improvements in material and
energy utilization in the production process, which likely result in lower impacts
and footprints for newer facilities, e.g. [196].
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BOS. The GHG emissions of the balance of systems includes mounting hardware as
well as inverters and cabling. Mounting hardware is considered per m? where the
area of BOS required is assumed equal to the panel area (equation (4-3)). Specifically,
we use GHG emissions per m? of mounting system provided by Ecolnvent 3.5 for a
570 kWp poly-Si open-ground facility, independently of PV panel type. For inverters
and cabling (i.e. electrical installation), Ecolnvent provides GHG emissions for the
entire 570 kWp facility, which includes 3.126 500 kW inverters (assuming a 15-year
lifetime) and an electric installation consisting of cabling, an electric meter and a
fuse box. We scale these GHG emissions for electrical installation to the capacity

of each facility. These impacts for BOS, |, . represent a weighted average for all PV-

BOS
producing countries in the world ('GLO), Table B-4). Table B-6 shows the values we
used in our impact computations. For an easier comparison to panel and mounting
system emissions, the emissions for electric installation are provided per m?, which
is type-specific because surface area depends on type-specific panel efficiency n -
n depends on year too; Table B-6 represents 2016 values. Overall, crystalline panels
have higher GHG emissions per m? for electric installations, because they require

more inverters and cabling per m? due to higher efficiencies.

We note that the Ecolnvent results we use do not account for the end-of-life stage,
so no cost for removal or benefits from recycling are considered.

Table B-6 GHG emissions per m? used in kg CO,-eq, from Ecolnvent 3. For electric installation,
emissions per unit capacity have been translated to m~ for easier comparison using equation (4-3) and
2016 efficiencies (Table B-1). GHG emissions per m? of panel are given in Table B-3.

kg CO,-eq
BOS: 1 m? mounting system 74
1 m? mono-Si electric installation 15.1
1 m? poly-Si electric installation 14.4
1 m? CdTe electric installation 13.3
1 m? CI(G)S electric installation 13.0

1 m? a-Si electric installation 9.3
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B.3 Power computation
To compute the electricity output per PV plant we use equations from Jerez et
al. [180], as briefly described in section 4.2.1 in the main text. Here we show the full
equations and coefficients used.

Power(t) = P¥pot(t) - MWac (B-2)

PVpot is computed as a function of temperature ratio T,, surface downward solar
radiation rsds (W™) and rsds,,,
testing conditions at 1,000 Wm

surface downward solar radiation under standard

o Tsds(t)
PYpot(t) = Ta(t) dsere (B-3)
where the performance ratio T, is a function of cell temperature:
Telt) = 1+ ¥[Teeul(t) — Terc] (B-4)

where T =25°Candyis a (negative) PV type-specific temperature coefficient, set
to -0.0050 for mono-Si in Jerez et al. [180] and scaled to values reported in Crook et

al. [303] for other types (see Table B-7).

T, depends on the surrounding temperature T, incoming solar radiation rsds and
wind speed vws (m/s) as follows:

Teenr(t) = ¢y 4z - T 4 g - rsds(t) + ¢y - vws(t) (B-5)

with ¢, - ¢, type-specific coefficients (see Table B-7), following Chenni et al. [304],
TamizhMani et al. [305]. ERA5 wind speed at 10 m is rescaled to 2 m wind speed
using the 1/7 logarithmic profile. Combining equations (B-4) and (B-5) shows that
the performance of a PV plant increases (decreases) with lower (higher) T, with T

cell’ cell

increasing with temperature and radiation, and decreasing with wind.

Equations (B-2) to (B-5) are applied to each of the 9,992 PV plants from the Wiki-Solar
database using the hourly ERA5 climate reanalysis data for the grid cell in which
the PV plant is located. The power production is then summed over 1988-2017, in
order to ultimately express the lifetime environmental footprint per kWh. A 30-year
lifetime is assumed to be representative of modern PV [182], but a different lifetime
would of course affect the lifetime power output and GHG footprint. A 30-year
lifetime is also used in comparable studies Pérez-Lépez et al. [74], Louwen et al. [72]
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and in the majority of literature (see Table B-8 to Table B-11). Using climate data
over the period 1988-2017 is deemed to result in a power output representative
of current climate, as a 30-year period is long enough to average out over climatic
extremes and oscillations. Here we thus assume that the computed power output
is representative for the facilities in our dataset which are all dating later than
2000. We tested that power output is not sensitive to the exact years chosen; for
1,460 locations we compared average power output for 2008-2017 to that of 1988-
2017 and found that the difference is less than 1% for 88% of the locations, and all
differences are less than 3%.

We furthermore apply a loss ratio (or panel degradation) of 0.7%/yr, amounting to
a loss of power of 10.1% over the 30-year lifetime [182, 74]. The final lifetime power
output is thus:

2017

Pﬂwm]’fﬂime = .f!os.u N ;Pﬂ‘w#[ﬂ (B'6)

with f__=0.899.

loss
Table B-7 PV type specific parameters used in our computations. y is the temperature coefficient
used in equation (B-4), based on computations for mono-Si types in Jerez et al. [180]. For other types,
y is scaled to the values given in Crook et al. [303]. c,-c, are the coefficients used to compute cell
temperature in equation (B-5), from TamizhMani et al. [305].

Technology y[°CT] c,[°Cl c [ ¢, [*Cm*W] ¢, [°Csm™]
mono-Si -0.0050 3.9 0.942 0.028 -1.509
poly-Si -0.0044 5.1 0.926 0.030 -1.666
a-Si -0.0022 4.1 0.943 0.026 -1.450
cl(G)s -0.0039 4.0 0.960 0.029 -1.507
CdTe -0.0028 4.8 0.953 0.031 -1.667

B.4  The ERA5 climate reanalysis dataset

We use the most recent and highest-resolution global (re-analysis) dataset
representing current climate at 0.25°x0.25° (roughly 30x30 km at equator) [144].
Hourly resolution allows us to include the daily cycle of radiation as well as
temporal variation in cell efficiency due to cell temperature (including air
temperature, radiation and wind, see section B.3 - Power computation). Hourly data
gives improved estimates of PV power generation compared to lower-resolution
data [187, 188], due to the non-linear interaction between air temperature
and radiation.
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Urraca et al. [306] find that surface irradiance from ERA5 is less biased than earlier
reanalysis datasets (VERRA2, ERA-Interim), and gives results that are comparable
to satellite-derived products. The benefit of ERA5 over satellite-derived products
(covering the entire globe and excluding gaps in timeseries) makes it a valid
alternative when satellite observations are lacking or incomplete. ERA5 is, however,
considered inadequate in regions with high irradiance variability (coastal areas
and mountains).

B.5 Regression model

When building the regression model, we chose an ordinary least squares approach
because it gives an explicit equation which allows for easy interpretation. We build
this model on the 1,348 facilities for which panel type is known.

The predictors, given in the top of Figure 4-1 in the main text, are year (used
to represent facility age and determine panel efficiency), panel type (used to
determine panel efficiency as well as in power output computation), capacity (used
to determine panel area and in power output computation) and climate variables.
We also include the interaction between panel type and construction year, because
these together determine efficiency n used in the life cycle GHG emissions (Eq. (B-
4), Appendix B section B.1). Note that we cannot currently take production location
into account in this regression, as facility-specific production location is unknown
(instead we used continent-specific weighted averages of production countries
based on market shares). If production country would be known for each facility,
this can be added to the regression model as a categorical variable (like panel type)
and would likely reduce the uncertainty in facility-specific the GHG footprint.

For the climate variables, we use location-specific 30-year means of annually
summed irradiation and mean day-time temperature and wind speed. We
furthermore computed a coefficient of variation to account for inter-yearly variation
in the climate variables, based on monthly and yearly summed irradiation and
monthly and yearly mean temperature and wind, for example for temperature (°C):

Tf_‘v —_ IR, ALY Tmon, iR (B_7)

Tn::rm.mrm

where the bar indicates the 30-year mean.

For capacity, we used MWac, which gave the same conclusions from the regression
model as using MWp. MWac is log-transformed because its distribution is right-
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skewed. We also log-transformed the response variable (EF because not doing

GHG)’
so resulted in skewed model residuals.

Before building the regression model, we checked for multicollinearity. The
correlation matrix is shown in Figure B-1, showing that correlations (R) are at or
below 0.8. Furthermore, we checked variance inflation factors using the R package
corvif [307], and found that all factors are below 5. Therefore, we conclude there is
no multicollinearity in the predictors.

Mdiac 1 o =

Year 1
ta 1 .
a =8 1 &
L -
=
lemp_mean 1 -ATE 1 g
— 1 b
wind_mean 1 2
winad_cv 1
043 B 02 L4 L a2 04 L UL

Figure B-1 Correlation plot for predictors and response variables in our footprint computation.
PVtype_Con is a continuous representation of the 5 panel types (1-5), used for plotting purposes (a
categorical variable such as PV type cannot be included in a correlation matrix).

We used the R package glmulti, considering main effects and one interaction (panel
type - construction year) to find the best model based on AIC (Akaike's Information
Criterion), which results in equation (4-5). This model has an AIC of -6167 and an
R? of 0.9868. It is built upon the predictors year (age), PV type, mean irradiation,
mean temperature, mean wind, variation in irradiation (l) and the interaction
between age and PV type. Predictors capacity and CV of temperature and wind
are excluded, as including them leads to a higher AIC. This indicates that these are
not important predictors of EF _, . Capacity is a predictor of both impact | (higher
capacity indicating higher surface area and thus higher lifetime GHG emissions) and



156 | Appendices

power output P, but our results indicate that this averages out for EF . Variation in
wind and temperature can be important for temporally detailed location-specific
power (electricity) output P [187, 308] but the regression model indicates it is of no
importance for the lifetime power output used in EF .

Note that Btype in equation (4-5) has a fixed value per type, relative to a-Si. If the

model is forced to use a different panel type as reference (using “contrasts' in R), the

values of B, __and the intercept B, change but the other coefficients and the R?, as
ype 0

well as our conclusions, remain the same.

The best model results in an R? of 0.9868, see Figure B-2. The median residual
(computed minus predicted) is -2.6 g CO_-eq/kWh, the 2.5" and 97.5" percentiles
are at -13.1 and 3.4 g CO,-eq/kWh respectively, hence the regression slightly
overestimates the footprints from the full computation.

Computed versus predicted footprints

LK ]
120
%
[ ] ‘. ™
L

e 100 - . L H
E L ] L ]
E L ] [ ]
E' -
S 801 o .
=
£ L
: :
B &0 - o
: .
i
=40
T
3 . ,

RZ: 0.9868

20 4
0 ; ; y . , ,
0 20 40 60 a0 100 120

Computed foatprint in g COZ-eqfkWh

Figure B-2 Computed versus predicted (equation (4-5)) GHG footprints, based on 1,348 PV facilities.
The 1:1 line is given in blue.

To formally test the importance of each predictor, we re-built the model of
equation (4-5), randomizing each predictor in turn (leaving all other predictors un-
randomized). The change in R? is indicative of the predictor’s importance, a larger
drop in R? indicating a higher importance. Figure 4-5 shows the results, indicating
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that randomizing PV type causes the largest change in R? followed by mean
irradiation and year. We checked that not log-transforming the response variable
EF . leads to the same conclusions relating to predictor importance.

The shorter regression model (equation (4-6)), for easy use to any interested user,
has an R? of 0.9862 and residuals of -1.4 [-11.6 - 5.1] g CO_-eq/kWh.

B.6 Comparison to literature

From literature, we selected studies that reported EF_ . and/or impact | for any of

GHG
the five panel types considered here (mono-Si, poly-Si, CdTe, CI(G)S or a-Si) and
which were fairly recent (dating from 2012 or later). Some studies summarize or
harmonize earlier work on EF_, (such as Hsu et al. [54], Ludin et al. [71]) while
others compute EF e themselves. From the overview provided by Ludin et al. [71],
we used their ranges based on studies from 2000 onwards, and selected ground-
mounted systems. The range of values from Ludin et al. [71] reported here is
therefore smaller than in their study, especially for crystalline panels, where some
very high footprints were found for rooftop systems. We note that Nugent and
Sovacool [65] provide a similar useful overview of PV footprints, which we do not
report separately here as all values from ground-mounted systems are also reported

in other studies shown in Figure 4-6 [71, 61, 69].

A range of system boundaries, life cycle inventories, impact assessment methods,
etc. is used in previous studies, complicating comparisons across studies [67]. For
the values reported in Figure 4-6 as well as those reporting impact I, we summarise
the system boundaries in Table B-8 through Table B-11. System boundaries not
given in the tables are for instance type of installation. All values given in Figure 4-6
are for ground-mounted systems. Only values from Hsu et al. [54] represent a mix
of rooftop and ground-mounted systems. Results shown in Figure 4-6 are for the PV
system (panels + BOS). To the values reported by Wetzel and Borchers [66], Yao et
al. [191], Yue et al. [192], who include only panels, we added 6.5 g CO,-eq/kWh for
BOS as recommended by Wetzel and Borchers [66].

Table B-8 to Table B-11 include country of production and impact | for panel and BOS,
where available. Impacts are either given in kg CO,-eq/m? or kg CO,-eq/Wp; the latter
is converted to impacts per m? using efficiencies used by the study and equation (4-3).
The tables thus show there is a range of reported values for both impact | and,

subsequently, EF_ . even within one country of production. For Hertwich et al. [59],

GHG
values are derived from ReCiPe 1.08 and Ecolnvent 2.2, and for PV values are presented

for OECD North America. We therefore report production in the US for their study.



158 | Appendices

Lastly, we checked whether our method of computing electricity output is a reason
for higher footprints. We include the effects of temperature and wind (see sections
4.2.1) and allow for the negative impact of panel temperature on electricity output.
Other studies typically use a simpler approach (Power =1-n-PR-A . LT) ignoring
such temperature effects. If we re-compute electricity output P as well as EF_,
using this simpler approach (also including the loss factor, hence Power =1-n - PR
<A -LT-f_) we indeed find higher electricity power output and lower footprints
compared to our original computations. However, the differences are small: instead
of 56.7 [31.9-92.6] g CO,-eq/kWh we find 54.1 [30.0-92.6] g CO,-eq/kWh with the
simpler computation of electricity output. We note that differences are larger at
lower latitudes (where temperatures are higher) but are overall too small to explain
the higher footprints in our study compared to others. Differences in irradiation,
panel type, age or country of production thus seem to introduce larger variability in

GHG footprints than the exact method of computing electricity output.



| 159

[02S 80 [zl
508 104 019 &€ JUIAU[0>3 -1Z1] “52°0] -6'6] [S0Z'2-780°1]
| 10§ 5-g 3|qeL 995 1’9z o1 9ly €/8 80 €€l o€ 6881 sog
0z ND 9'19
7'71U9AU|0DT 91 n3 z 9T LL0 6Ll o€ 00£'L SMP
504 104 K113 OTD B ND o019
sassac0id weansdn 1oy AU N ZE-SL ND oL 951 0 S6TT-LLO'L "W
L1 160 601 o€ 090
M3IADI 3INjeIBYT 99 Ll SL0 06 0T 00£'L pn1
uondnpoid S ‘1 MOl — [T sn LS
uondnpoid AN ‘Ui ybiy :abuey Ll AW 9 0s o 80 961 0€  00€£7-000'L 97
11 moj-yBiy :abuel ‘paziuowie 07 - pl L 80 60l 0€  00¥'Z-00L'L wiry
urmol-ybiy obuel Y 07 € - LT Y4 z €/ 09 ¥8°0 zel 0€  PhETLELL oy
T'7IUSAUI0T ‘80" L BdIDRY 91 sn oLl o€ J3H
T'TIUaAUI0T ‘80" BdIDY ‘0'L IDVYL 0z sn 80 oLl o€ 008'L 1ag
|
S9J0N 43 poid u o8 ) ud u n SIPd )

's1aydelq ul [s3]13uadiad ,S6-G] sebues yum ‘2dA) S1Y3 JO S313|1D8) || SSOIDE URIPIW 3Y) Juasaidal sanjeA ay) (sog) S3NsaJ Ino 104 “(‘e 19
suewisog 40j) Apn3s siy3 :sog ‘[06 1] USHOYIS-PIIM 3P :SMP ‘[#9] *[ 32 12|11 ‘[L£] @ 38 ulpnT :pn [09] *[e 32 1512337 37 ‘[L9] "[e 32 Wity :wiiy ‘[€/] *|e 32 3 :03] ‘[65] e
13 YdIMUIBH HaH ‘[89] '|e 1 uasabiag uag ((SOg + s|aued) waisAs 243U ay3 1oy ymy/ba-‘0d 6 ur uaaib si > 43 *(euryd IND ‘se1e1S panun SN ‘eiskeje| (AN ‘obeiane
jeqo|b paybiam 01D ‘@dueld ;Y4 ‘@doing :n3) bunnidejnuew/uononpoid Jo A13unod ayy st (uoidnpoid) poid “salH[IDe) 4O SIIPNIS JO Jaquinu 3y} SI U *(€-) uolzenbs
pue Apnis 3yl Aq pasn sapuapyd buisn ,w Jad sydedwi payndwod am ‘dpp 1ad usalb asem syoedwi J| *Apnis oyl Aq papiaoad ji ‘A|9reledss (syusuodwod |ed113d3]9
pue ainpnis buunow) sog pue sjaued 1oy ,w/ba-‘0d B ul usAIb si | 1edwi (dAIN/PRMIN) Ol1el duewIoIad 10§ SPURIS Hd "% Ul (Aduspyya [aued) U ‘sieak ul
(awiIadl|) 17 “4A/;W/YM3 Ul USAID I (Uolielpeall) 41| *(9-1 24nbi4 Ul umoys aJe spulidiooy asoym asoyl buipn|dpul) 9] pD 104 SAIPNIS Ul PAsh saiepunoq waisAs g-g a|qel




160 | Appendices

S04 404 019 §'€ JUSAU[03] [8€8 - L'LE] [68°0-08°0] [8'6-99] [e8T'T-961°L]

[pued

104 G-g 3|qe] 995 ver o1 €/ €€ 80 6L o€ 510 sog
St ND 618

T'71UdAU0D] se n3 z 645 LL0 0L o€ 00£'L SMP

160 0L o€ £10T
M3IASI 2INRIB T 1S~ LT € LL0 §'s 0z 00£'L pn
1 mol-ybiy :a6uel ‘paziuowliey 67~ 07 L g0 €9 0€  00v'7-00L'L wiy

1S-e

SO910} 01D §'EUBAUI0DT  [£7/9 - £TE] [88'0-0401  [85L+TL] [002'2-590"1]
") 10y 5-g 3|qeL 335 Ly o1 €L 078 80 L'yl o€ 8v9'L sog

8z ND 9701

77 UaAU[0DT 1z n3 z L LL0 L1l o€ 00£'L SMP

160 oLl o€ £10T
M3IAD] 2IN]eIR) L6 - €€ S 80 00l 0z 00£'L pn
11 mol-ybiy :abuey €r-61 dr L 05 6 80 ovl 0€  00€£7-000'L 297
11 mol-yBiy :abuel ‘paziuowiiey L£-9T L g0 g1l 0 00v'T-00L'L wiy
111 mol-ybiy :abues 4 .0z St - 6€ u4 z o/ 9Ll €80 o€l 0 breTLEL'L oy
T'71UBAU0DT 80 | 9d1DY oIS 56l sn 0zl o€ 1BH

7’7 3UdAU|0D]

'80°L 3d1DAY ‘0°L IDVYL 44 sn 80 0zl o€ 008'L JEL|

iT|
sajoN R E poid u %) | ud u n SOID o]

's19ydelq ul [s3]1uadiad S6-S] sebues yum ‘2dAy iyl Jo s911|1D8) [|e SSOIDR URIpaW 9Y) Juasaidal sanjeA sy} (sog) S3INsaJ N0 104 *(‘|e 12 suewsog 10j) Apnis
SIY3 :50g ‘(06 L] US3OYDS-PIIM 2P [SMP ‘[£9] '[e 32 43I (1IN ‘[L£] '[e 33 uIpnT :pn ‘[09] *|e 32 1512397 297 ‘[L9] “| 38 Wiy sy} ‘[€/] @ 33 3] 103 '[65] '|e 32 YdIMMSH USH
‘[89] *|e 32 uasablag :1ag (SO + s|aued) waisAs 113U 3y3 105 Yywi/ba-‘0d B ur uaalb si °* 43 *(euiyd IND ‘sa1e1s panun :sn ‘ueder :dr ‘obeiaae [eqolb payblam 010
‘aduel 1y ‘°doin3 :n3) bunnioeynuew/uondnpoid jo A13unod ayi si (uononpold) poud "S91[IDe) JO SIIPNIS JO JSquInU 3y SI U *(g-7) uonenba pue Apnis ayy Aq pasn
sa1puaPYd buisn ,w 4ad syoedwi paindwod am ‘dpp Jad uaalb a1am sydedwl J| *Apnis ayy Aq papiroad ji ‘Aj9resedas (sjusuodwod [e314309[9 pue a1n1dnJys buijunow)
509 pue sjaued 104 ;w/ba-‘0) By ur uaalb si | 1edw] (AMIN/IBMIN) O11es dduewI0Nd 10} SPURLS Hd “% Ul (Kduapuyys |sued) U ‘sieak ur (ewinayl) 17 44/, W/ymy ul
UaAIb sI (uonelpeut) 1 *(9- 24nbi4 ur umoys ale syulidiooy asoym asoyy buipnpdpul) sjpued wiy Uiyl IS-e pue §(D)|D 40} SIPNIS Ul pasn sallepunod walsAs 6-g ajqeL




| 161

Sod Lof_o._w G'€UdAU0DT  [€TTL - £'8S] [£8°0-80] [FLL-€€ll [L£0'T-¥90°L]
! 110} G-g 9|qe] 995 a8 o159 oSy 1’68 80 ovlL (019 Lol sog
6L ND £'98¢€
T'TIUSAUI0DT ‘8°0A ADT1D 1474 n3 4 8661 SL0 ovl (013 00£'L CIUN
18 ND 6'Gly
C'C 1UdAU|00] 8¢ n3 4 9’081l SL0 8l (013 00£'L SMP
uolepeibap xew-uiw 0€
‘17 pue 1 xew-uiw :abuey 69- 1€ 19 8 651 SL0 0c¢ 00£'1-000°L M
"uofjelpe.ll pue ‘sog pue Ad 10
$911s Bulinyoejnuew snoliea :abuey -z 80 6'CC o€ 00%'2-006 eIN
S04 40} A1121132312 01D B ND o119
sassad0.id wealysdn 1oy A3d1IRID ND 16 - Sy ND oL Ll 0€ S6T'T-1L0'L "W
80 L'0¢ (013
MBIASI 2INJeId}T L8 —-9¢ 9 L0 ovlL 14 008'L-00C°L pm
SJ2Jn1dejNUeW UR3I0Y :erep Alewlid [474 (0)]] L S'e9l 80 96'Gl o€ oLEL 7N
ND /8T
uondnpoud N ‘U1 MO| — SN €9¢
uononpoud N3 ‘L1 ybiy :abuey 8- LT n3 6 0S L0T 80 0LL o€ 00€'2-000°L 53]
1 mol-ybiy :abues 31 .07 8y -0t Sl 4 0L 6l 180 6'Gl (013 vreT-LEL'L 0}
paziuowieH o €l 80'S.0 ovl (013 00/'L nsH
SASAINS ‘S)ISIA ‘DiN3eIa}| WOl eleq <9 ND L L1l 14 009'L noH
71|
s3joN 43 poud u % ey 4d U n IS-ouow  joy

's}aydelq Ul [$3]13uad4ad ,S6-G] sebues yum ‘2dA) S1Y3 JO S313|1D8) || SSOJDE URIpaW 3y} Juasaidal sanjeA ay) (Sog) S3Nsal INo Jo4 *(‘|e 32 suewsog
104) Apnis siyy :s0g ‘[g61] 2 32 3NA:2NA ‘(06 L] USIOYIS-PIIM 3P :SMP ‘[99] S19U210g pue 9239/ 1M ‘[29] UBIN “BIN ‘9] ‘[ 32 43|11 |1 ‘[L£] "|e 33 ulpnT :pnT ‘[09] ‘e 19
1519397 397 ‘[68 1] *[2 38 Wiy L) “[£] "|e 32 03] :03| ‘[S] *| 38 NSH :NSH ‘[£9] "|e 32 NOH :NOH (SO + s|aued) wa1sAs aiinua ay3 1oy ywi/ba-‘0d b ui usaib si °*43 (sare1s
pajun :sN ‘ealoy] :0y ‘abesane [eqob parybiam :079 ‘Auewan 3o ‘@duel Y4 ‘@doing :n3 ‘euiyd :ND) bunnioejnuew/uononpoid jo A13unod ayy si (uondnpoud) poid
"Pasn sal}|Ioky IO SIPNIS JO JDGUINU Y3 SI U *(L-g d|qeL #10T JO SDIDUIIDLYYD Pasn am [99] s1aydiog pue [9z39\ 104 *(€-%) uolrenba pue Apnis ayy Aq pasn sadULDLYYD
Buisn ,w sad syoedwi pazndwod am ‘dpp Jad uanlb a1am syoedu | “Apnis oyl Aq papinroid Ji ‘Ajp1esedas (sjusuodwiod [e1123]9 pue ainidniis buiunow) sog pue
sjaued Joy ;w/ba-‘0d By Ul usAIB si | 1oedW] (AAMIN/2BAIA) Ol3ed 9duewIoad 104 SPURIS Hd "% Ul (Kdusidyya [aued) U ‘sieak ur (W) 17 “4A/,W/ymy Ul usaib si
(uoneipeur) 1| (9-f ainbi4 ur umoys aie sjulidiooy asoym asoyy Buipnjpui) (1S-ouow) sjpued suljjeisAId-ouow 10y S3IPNIS Ul PIsh SaIEPUNOQ WSAS OL-g d|qeL



162 | Appendices

(4 ND €vic

T'TUaAU|0D] [T n3 14 £'901 S0 L'yl o€ 0041 SMP
uojjepelbap ujw-xew 0€ 00£'L
‘I pue 11 xew-uiw :abuey §§-6ST ED) 8 Lzt S0 (174 000'L ™M
uonelpeul pue ‘s0g pue Ad 104
SIS mc_‘_swumu:q:m& snoleA ”wmcmm_ GO -G 30 g8l [0} OOTN.OO@ BIN
S04 404 A1121123[3 01D ' ND o1
sassad0.d wealysdn 1oy A}d13D319 ND 89 - ¥€ ND ol 9l 0€ S6C'C-1L0L "W
¥8°0 S/L 0€

M3IASI 3INjeIN ] 68-C¢€ 6 £9°0 6€l ST £10'7-007'L pn

ND Sol

uonanpoid ND ‘Ui MO| — sn €51
uononpoud N3 i ybry :abuey 95-0¢ n3 6 0S 431 80 09l 0€  00£'2-000'L 537
$124n1oeJNUEW UB3I0Y :eIep Alewid 143 o) L €0l 80 6l 0€ oLE'L LN
11 mol-ybiy :abuel 41,07 St - /€ 4 14 0L SSL 180 oSl 0f  vhE'T-LEL'L 0y
paziuow.ieH Ly €l 80'SL°0 el 0€ 00£'L nsH
SA9AINS ‘SYISIA ‘D1nela}l| woly eleq 09 ND L L1l 14 009°L noH
T'TIUSAU|0DT ‘80’ | 2d1D3Y WOl LS sn 9l 74 1o

n3 L0z

sn 114
[L61] 132 0BA ‘IDVYL ‘6 L0OT 3UdAU[0D] ND € 615 80 9l 0€  0L8THLEL ein
S0g ul sadAy 1oddns snowen :abues i ,0€ €5-8¢ G580 ol 0€ 0041 fag

]

sajoN 43 poud u ) ud u n 1s-Ajod o]

"[60€] '[e 32 Buep :ueA ‘[65] '[e 39 YdIMLISH U3H ‘[S61] |2 39 JuelD :euD ‘[69] ‘| 39 10|Aag :Aog *(1L-g 3]|qelL) 10T JO SAIDUBIDYS Pasn dm [99] S13YDI0g PUe [9Z)3A 404 'S|1eIdp 10}
01-g 9|qe] jo uonded 335 *(9- 21nBI14 Ul umoys ase spulidiooy asoym asoyy buipnpui) (1s-Ajod) sjpued auljjeishid-Ajod 1oy saipnis ul pasn saliepunoq wWaisAs | L-g d|qeL



| 163

Sod ‘_ou_aon_U G'€JUdAUI0DT  [L'08-6'S€E] [68°0-7£0] [¥FLLvPL] [ozT'z-LLL'L]
_ 110} G-g 9|qeL 935 (4] o1 140,74 1’88 80 el (013 ws'lL sog
9L ND 9'6vE
T'TIUSAUI0DT “8'0A DD 8¢ n3a 4 091 SL0 el 0€ 00/'L CLUN
paodu| S[eLIa}eW J3Y30 PUE IS JO %75 6e€
papodwil UODI|IS JO %75 (3743
euiyd ur uondnpoud ||y ND € 2147 ueA
aonoeid pasueapy oLl ad
2213oe.d abesany €le ND 4 80 a4’ (019 00/'L oep
]
s3j0N 43 poud u 5 e ud u 1n 1s-Ajod ]

panuiuod L L-g ajqeL



164 | Appendices

Appendix C Appendix for chapter 5

C.1 Abbreviations used in the main article and the Appendix

Table C-1 Abbreviations used in the main article and the Appendix.

Abbreviation

Explanation

a
Ares

BIC

Bo

Chl-a

cT
EFCHA,ageSZD,j

EF

CH4,age>20,j

EF

C02,age<20,j
CH4,age<20,j
CH4,age>20,j
CH4,downstream

CH4,res

Trophic state adjustment factor

Reservoir area

Bayesian Information Criterion

Boreal climate zone

Chlorophyll-a

Cool temperate climate zone

CH, emission factor of reservoirs younger than 20 years in climate zone j
CH, emission factor of reservoirs older than 20 years in climate zone j
CO, emission factor of reservoirs younger than 20 years in climate zone j
US Energy Information Administration

Reservoir CH, emissions in the first 20 years of operation in climate zone j
Reservoir CH, emissions after the first 20 years of operation in climate zone j
Downstream CH, emissions

Reservoir CH, emissions

Reservoir CO, emissions

Average GHG footprint

GHG footprint

Gross domestic product

Greenhouse gas

Average greenhouse gas emissions

Total greenhouse gas emissions

Greenhouse gas warming potential of CH,

Dam height

Construction impact (kg CO,eq/kWh)

Operational impact (kg CO_eq)

Identification

Intergovernmental Panel of Climate Change

Aggregated climate zone

Kilowatt hours

Large hydropower

Life cycle assessment

Medium hydropower
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Abbreviation

Explanation

MM
Mw
MWh

test

train

NID
NL

PV

e}

av

qmax

'min
2
R test

2
train

d

res
RMSE

test

RMSE,
ror

S

Td/m
Tm/w
WTd

WTm

Man-made storage area

Megawatt

Megawatt hours

The number of items in a set

Number of items in test set

Number of items in train set

National Inventory of Dams

Natural storage area

Power output

Photovoltaic

Average yearly streamflow

Yearly streamflow seasonality
Maximum yearly streamflow
Minimum yearly streamflow

R? of test set

R? of training set

Fraction of downstream emissions
Reservoir plant

Root mean square error of the test set
Root mean square error of the training set
Run-of-river plant

Small hydropower

Temperate dry/montane climate zone
Temperate moist/wet climate zone
Warm temperate dry climate zone

Warm temperate montane climate zone
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C.2 GHG calculations

C.2.1 Operating-phase emissions

Storage areas that have just recently been constructed (less than 20 years ago) emit
both CO, and CH,. Storage areas that are older than 20 years are considered to emit
only CH, in these later years [221]. Annual CO, emissions for the first 20 years of a
storage area’s life are calculated as follows:

Fra, = Aves - EFco, agesan (C-1)

Annual CH, emissions from storage areas during their first 20 years can be
calculated according to:

Foigageszof = Fougres + Fou, downstream
Fepyres = @ (EFcy ageszaj ° Ares)

(C-2)
FCFF;,dnwns!rmm =i (‘EF-CH._,EHESZDJ' - -'qre;] - Ra

Fouageszo = (ﬂ . {EFCH‘qusmlj 'ﬂ,.,,]) (14 Ry

Annual CH, emissions from storage areas after their first 20 years are then
calculated using:

FCHM}ZIM = F{'H4,n':. + F(‘thuwmlrmm
Feptores = @ - (EFzy, agenz0j - Ares)
Fr?ﬂ,,,.ﬂnmﬂ:rmm = (-EFI.'H...ﬂnnb-lﬂf ; J"'rps} Ry
Fenpagesang = (@ (EFcuyageszo; - Ares) ) (14 Ra)

These equations can be combined to give equation (C-4). It is important to note that
because we assume a 100-year lifetime of the hydropower facility and equation (C-1)
and (C-2) only apply to storage areas younger than 20 years and equation (C-3)
only applies to storage areas older than 20 years, they are multiplied by 0.2 and 0.8,
respectively, to represent emissions over the entire 100-year storage area lifetime.

GHG = (Ff‘hmlﬂnlf = u.z + Fﬁ""‘lum‘zﬂlr ‘ ﬂrﬂ} + sz ‘ ﬂ.z
- ([{“ « EFpy, ageszo, * Ares) - (14 Rﬂ) 0.2+ ({ﬂ - (EFeu,ages20 - J"-m:') 1+ Rﬂ)

. D.B) “GWPFeh, + Aves - EFgo,agesan,; - 0.2

= Ares ((EFcn, ageszn,i - 02 + EFe,agesan - 08) - @ GWPey, - (14 Ry) + EFzo, agesan,

-0.2)

(C-4)
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The emission factors used for the calculations are aggregated in Table C-2. Trophic
state adjustment factors a are listed in Table C-3.

Table C-2 Emission factors for different climate zones as used in equations (C-1) to (C-4) [221].

Aggregated j CH, CH, co,
climate zone (=20y, kg CH,/ha/yr)  (>20y, kg CH,/ha/yr)  (<20y,tCO, /ha/yr)
Boreal 1 13.6 27.7 0.94
Cool temperate 2 540 84.7 1.02
Warm temperate/dry 3 1509 195.6 1.70
Warm temperate/moist 4  80.3 127.5 1.46
Tropical dry/montane 5 2837 3923 2.95
Tropical moist/wet 6 141.1 251.6 2.77

Table C-3 Trophic state adjustment factors based on the chlorophyll concentration (Chl-a, in g/L) and
related trophic class, adapted from [221].

Trophic class Chl-a Average trophic state
(g/L) adjustment factor

Oligotrophic 0-26 0.7

Mesotrophic 2.6-20 3

Eutrophic 20-56 10

Hypereutrophic 56 ->155 25

C.2.2 Construction-phase emissions

Construction phase emissions in this study are based on the classification from

Kadiyala et al. [219], who have grouped hydropower facilities according to type (res:

reservoir; ror: run-of-river) and capacity (S - less than 0.1 MW; M - 0.1 to 30 MW;
L - more than 30 MW). GHG emissions in g CO,eq/kW are shown in Table C-4.

Table C-4 Classification table of hydropower facilities adapted from Kadiyala et al. [219].

Dam type Number of facilities in the GHG emissions
dataset in [219] (g CO,/kW)
res-M 24 21.05 (+6.25)
res-L 8 40.63 (+80.57)
ror-S 3 47.82 (+34.53)
ror-M 133 27.18 (+£10.38)
ror-L 3 3.45(+1.43)
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When information on the capacity was not available, we used weighted averages of
the GHG emission factors based on the facilities for which information was available
as follows:

Reservoir facility of unknown capacity:

EF‘F‘!‘ ) e, +-E"'rrr.' * 5,
E-Frzs..un.k“wm= L f?'ﬂ{' £ 2 £ f}'ﬂﬂr M (C-5)

Run-of-river facility of unknown capacity:

- _EFpgry,  frocegrs + EFrgry - fracrorm + EFrors - [T0800e s (C-6)
E i:"n'.l'r.|mjr:cu.|.rr: - 3

«  Unknown mode of operation with medium capacity:

EF:rﬂ'. - TS, +£Fror ) TOT
EFunownm = i fT0Cress 3 24~ fracror (C-7)

Unknown mode of operation with large capacity:
EFyngowns = EFrars (C-8)

Unknown mode of operation of unknown capacity:

EFgmionown = EFres ynimoven * fTaCras ;EFmrmnan s fracey (C-9)

Cc3 Data preparation

Different databases have been combined in this study, namely the National
Inventory of Dams (NID) [214], HydroLAKES [223] and the EIA [163]. The main
database is the NID. Information from the other databases has been added to the
NID as needed. Climate zone information has been added to the NID using QIGS.
An IPCC climate zones map has been overlayed with the hydropower facilities’
database and matched by location. HydroLAKES has been added to the NID using
an algorithm that matches the two databases based on reported latitudes and
longitudes of the pour points in HydroLAKES and the hydropower facility location

in NID using an implementation of the Haversine formula:

cos((lat; — laty) - p)
2

d = 12742 - arcsin ((u_s : + cos(lat, - p) - cos(lat; - p) (C-10)

1
1- cos( (longs — long,) - p])z)
2
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c4 Imputation of electricity generation data

C.4.1 Defining streamflow seasonality

Since the database FLO1K [217] provides maximum, minimum and average
streamflow values for each year at each 30 arcmin grid-cell, we calculated the yearly
streamflow seasonality q_ as

oy = T Smin (c-11)

where q_ is the average yearly streamflow and q__ and q_. are the maximum and
av max min
minimum yearly streamflow.

C.4.2 Sampling of flow data

Prior to sampling streamflow data from FLO1K to obtain average, maximum
and minimum yearly streamflow values at the hydropower facility locations, we
snapped the facilities to the hydrological network of FLO1K. This was done to avoid
sampling from the wrong locations due to the discrepancy between the reported
geo-coordinates in the NID dataset and the location of the actual river according to
the arcseconds river network of FLOTK [217]. We used the upstream catchment area
reported in the NID database to snap the locations to the river network. We used
the FLOTK sampler tool provided at https://github.com/vbarbarossa/flo1k_sampler.

C.4.3 Model development

Key information of the model development process is given in the following figures
and tables. The model selection ranking for the power output calculation is given
in Table C-5, with the best model printed in bold. Figure C-1 and Figure C-2 show
the distributions of the predictor and response variables respectively before and
after transformation. Figure C-3 depicts the correlation matrix of the variables after
transformation. Finally, Table C-6 and Table C-7 show the ten-fold cross-validation
across all observations and across hydropower facilities, respectively.
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Figure C-1 Histogram of predictor and response variables used in the linear mixed effect model.
GDP_ : average GDP of the administrative unit connected to the hydropower plant; height: dam

height; P, . yearly electricity generated in MWh; q_ : yearly average streamflow; q_: yearly streamflow
seasonality; surface_ :total surface area of the reservoir.
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Figure C-2 Histogram of transformed predictor and response variables used in the linear mixed effect
model. P, was log-transformed, while the other variables were transformed according to a Yeo-
Johnson transformation. All variables were standardized to mean 0 and standard deviation 1. GDP__:
average GDP of the administrative unit connected to the hydropower plant; height: dam height; P, -
yearly electricity generation in MWh; q_ : yearly average streamflow; q_: yearly streamflow seasonality;
surface_ :total surface area of the reservoir.
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Figure C-3 Correlation matrix of the transformed model variables. Correlation is expressed as Pearson’s
r. GDP_ : average GDP of the administrative unit connected to the hydropower plant; height: dam

height; P,,.: yearly electricity generated in MWh; q_: yearly average streamflow; q_: yearly streamflow
seasonality; surface_ :total surface area of the reservoir.

Table C-6 Ten-fold cross-validation across all observations. For each fold, 10% of the total observations
(i.e. hydropower facilities - year) are in the test set. Number of observations (n), coefficient of
determination (R?) and Root Mean Square Error (RMSE) are reported for train and test sets.

n.. Ny R, R, RMSE, . RMSE,_,
12865 1430 0.95 095 0.19 0.20
12866 1429 0.95 095 0.19 0.20
12866 1429 0.95 0.94 0.19 0.22
12864 1431 0.95 0.94 0.19 0.22
12866 1429 0.95 0.94 0.19 0.22
12865 1430 0.95 0.95 0.19 0.21
12865 1430 0.95 095 0.19 0.20
12866 1429 0.95 095 0.19 0.21
12866 1429 0.95 0.95 0.19 0.20

12866 1429 0.95 0.95 0.19 0.21
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Table C-7 Ten-fold cross-validation across hydropower facilities. For each fold, 10% of the power plants
are in the test set. Number of observations (n), coefficient of determination (R?) and Root Mean Square

Error (RMSE) are reported for train and test sets.

N .. 2 R, RMSE, . RMSE, _,
12899 1396 0.95 0.62 0.19 0.53
12971 1324 0.95 0.73 0.19 047
12625 1670 0.95 0.65 0.19 0.53
13044 1251 0.95 0.74 0.20 0.44
12809 1486 0.95 0.75 0.19 0.49
12404 1891 0.95 0.68 0.19 0.49
12974 1321 0.95 0.72 0.19 0.53
12921 1374 0.95 0.64 0.19 0.51
12999 1296 0.95 0.64 0.19 0.54
13009 1286 0.95 0.69 0.19 0.51

C.5 Results

Table C-8 shows the underlying data for Figure 5-4 and Figure 5-5. The GHG
footprints of hydropower facilities classified as having a man-made storage area are

shown in Figure C-4. Those facilities being classified as having a natural storage area

are shown in Figure C-5. Finally, yearly electricity generation is shown in Figure C-6.

Table C-8 The medians, 5™ percentile, 95" percentile and number of hydropower facilities in each
category depicted in Figure 5-4, Figure 5-5, Figure C-4 and Figure C-5.

Climate zone Number Type of Median 5% percentile 95 percentile
of dams storagearea (kg CO,eq/kWh) (kg CO,eq/kWh) (kg CO,eq/kWh)
Boreal 5 Natural 14107 5.6-103 41107
4 Man-made 1.1-10? 6.0-10° 2.7-102
Cool temperate 935 Natural 2.6-102 5.6-10° 5.9-10?
342 Man-made 5.5-102 7.5103 2.6
Tropical dry/ 9 Natural 8.4-102 4.2.102 1.2
montane 17 Man-made 38 84107 274
Tropical 15 Natural 6.6:10° 5.7-10° 7.3-10?
moist/wet 15 Man-made 130" 7.410° 1.4
Warm 34 Natural 2.7-102 4.810° 1.5-10"
temperate dry 55 Man-made 2910" 21102 46
Warm temperate 182 Natural 2.8:10? 42102 5.7:10%?
moist 199 Man-made 11107 6.1-10° 16
All climate zones 1,180 Natural 2.6:10? 5.6:103 6.5-10?
632 Man-made 7.9-102 6.410° 43
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Figure C-4 GHG footprint (kg CO,eq/kWh) of facilities classified as having a man-made storage area in
the US. For reference, the boxplot shows the distribution of GHG footprints of man-made storage areas
(MM) and natural ones (NL). The orange line represents the median, the boxes the 25-75" percentile
and the whiskers the 5-95t" percentiles.
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Figure C-5 GHG footprint (kg CO,eq/kWh) of hydropower facilities in the US classified as having a
natural storage area. For reference, the boxplot shows the distribution of GHG footprints of man-made
storage areas (MM) and natural ones (NL). The orange line represents the median, the boxes the 25-
75 percentile and the whiskers the 5-95™ percentiles.
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Comparison of electricity generation

We compared the average yearly electricity generation calculated by Turner et
al. [243] with the average yearly electricity generation calculated in our study. The
results are shown in Figure C-6. We see a very good fit with the exception of two
extreme outliers. Data has been matched by hydropower facility name and state,
because no other overlapping information was available in the two databases,
which could explain the outliers as they may be two different facilities with the
same name in the same state. Another possible explanation is that facilities have
been combined differently between the two databases.

"

F (MWh] Tusres of 2

P (Mh] i

Figure C-6 Comparison of average yearly electricity production in Turner et al. [243] and this study.
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Summary

Fossil fuels have been the world’s primary power source since the industrial
revolution. The large-scale use of these fossil fuels has led to a tremendous increase
of greenhouse gasses (GHGs) in the atmosphere, and in turn has become a key
driver of climate change. In order to reduce climate change, cleaner alternative
energy sources have been developed. For electricity production, this includes
different types of wind, solar and hydropower.

Many studies quantified the GHG footprints of wind, solar and hydropower.
However, integrating spatial, temporal and technical variation into one assessment
has not been done at larger spatial scales. Such an assessment adds value
because it enables policy makers and developers to easily assess differences in
GHG performance between either different technologies in the same location or
the same technology in multiple locations. Furthermore, the comparison to other
(non-)renewable electricity sources offers the possibility to determine how much
can be gained in terms of GHG emission mitigation at each location. This thesis
aims to provide a basis for such an assessment by developing models that allow
for easy calculation of the GHG footprints of the most important non-biomass
renewable electricity sources at facility level, using a key set of technological and
meteorological variables.

Chapter 2 describes the space, time and size dependencies of the greenhouse gas
payback times of wind turbines in Northwestern Europe. The net greenhouse gas
benefits of wind turbines compared to their fossil energy counterparts depend on
location-specific wind climatology and the turbines’ technological characteristics.
Assessing the environmental impact of individual wind parks requires a universal
but location-dependent method. Here, the greenhouse gas pay-back time for
4,161 wind turbine locations in northwestern Europe was determined as a function
of (i) turbine size and (ii) spatial and temporal variability in wind speed. A high-
resolution wind atlas (hourly wind speed data between 1979 and 2013 on a 2.5 by
2.5 km grid) was combined with a regression model predicting the wind turbines’
life cycle greenhouse gas emissions from turbine size. The greenhouse gas payback
time of wind turbines in northwestern Europe varied between 1.8 and 22.5 months,
averaging 5.3 months. The spatiotemporal variability in wind climatology has a
particularly large influence on the payback time, while the variability in turbine
size is of lesser importance. Applying lower-resolution wind speed data (daily on a
30 by 30 km grid) approximated the high-resolution results well.
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Chapter 3 then covers the variability in GHG footprints of the global wind farm
fleet. While it is known that technological characteristics largely determine the
greenhouse gas (GHG) emissions during the construction of a wind farm and
meteorological circumstances the actual electricity production, a thorough analysis
to quantify the GHG footprint variability (in g CO,eq/kWh electricity produced)
between wind farms is still lacking at the global scale. Here, we quantified the
GHG footprint of 26,821 wind farms located across the globe, combining turbine-
specific technological parameters, life cycle inventory data, and location- and
temporal-specific meteorological information. These wind farms represent 79%
of the 651 GW global wind capacity installed up until 2019. Our results indicate a
median GHG footprint for global wind electricity of 10 g CO,eq/kWh, ranging from
4 to 56 g CO,eq/kWh (2.5" and 97.5" percentiles). Differences in the GHG footprint
of wind farms are mainly explained by spatial variability in wind speed, followed
by whether the wind farm is located onshore or offshore, the turbine diameter,
and the number of turbines in a wind farm. | also provided a metamodel based on
these four predictors for users to be able to easily obtain a first indication of GHG
footprints of new wind farms.

In Chapter 4, the GHG footprints of utility-scale PV facilities on a global scale are
covered. Technological characteristics and meteorological conditions are major
determinants of the greenhouse gas (GHG) footprints of photovoltaic facilities. By
accounting for technological and meteorological differences, we quantified the
GHG footprints of 9,992 utility-scale photovoltaic facilities worldwide. We obtained
a median greenhouse gas footprint of 58.7 g CO,eq/kWh, with a 3-fold spread
(28.2-94.6 g CO,eq/kWh, 2.5" and 97.5" percentiles). Differences in panel type
appeared to be the most important determinant of variability in the GHG footprint,
followed by irradiation and a facility’s age. We also provided a metamodel based on
these three predictors for users to determine the facility-specific greenhouse gas
footprint. The total cumulative electricity produced by the utility-scale photovoltaic
fleet computed in our study is 457 TWh/yr, 99.6% of which is produced at footprints
below 100 g CO,eq/kWh.

Chapter 5 describes the variability of GHG footprints of hydropower in the United
States of America (US). Hydropower is the largest source of renewable energy in
the US. While it is generally considered to be a low-carbon electricity source,
technological and regional differences can lead to large variations in hydropower’s
GHG footprints. Here, | quantified greenhouse gas footprints of 1,812 individual
hydropower facilities in the US, accounting for facility-specific differences in
electricity production as well as differences in life cycle GHG emissions during the



182 | Summary

construction and operation of the hydropower facility. | found that the GHG footprint
of hydropower facilities in the US range from 5.6-10° to 1.1 kg CO,eq/kWh [5-95™
percentile], with a median of 2.8-102 kg CO,eq/kWh. My results show that the
GHG footprint of hydropower with natural storage areas is systematically lower
compared to man-made storage areas. Variation in GHG footprints of hydropower
from man-made storage areas can be large and is mainly caused by differences in
size, trophic state and climate zone.

Finally, chapter 6 reflected on the lessons learned. Starting from in-depth analyses,
metamodels for wind and solar power were developed to predict GHG footprints
at the facility-level with a minimum of information. Using in-depth analysis first
helped to understand the limitations of simplifications and approximations made in
the metamodels. The metamodels allow for an easier comparison of GHG footprints
for specific technologies at distinct locations, which is important because it offers
the possibility to determine how much can be gained in terms of GHG emission
mitigations when comparing different (non-)renewable electricity sources. It
also offers the potential to develop a tool that supports decision makers which
electricity generation technology is best suited at a certain location to minimize
environmental impacts and trade-offs.
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Samenvatting

Fossiele brandstoffen zijn sinds de industriéle revolutie de belangrijkste
energiebron ter wereld. Het grootschalige gebruik van deze fossiele brandstoffen
heeft geleid tot een enorme toename van broeikasgassen (BKG's) in de atmosfeer,
wat op zijn beurt een belangrijke aanjager van klimaatverandering is geworden. Om
die klimaatverandering tegen te gaan, zijn schonere alternatieve energiebronnen
ontwikkeld. Voor de productie van elektriciteit gaat het om verschillende soorten
wind- en zonneenergie en waterkracht.

Er zijn al veel studies uitgevoerd die de klimaatvoetafdruk van wind-, zonne- en
waterkrachtbronnen hebben berekend. Het integreren van ruimtelijke, temporele
en technische variatie in één beoordeling is echter niet gedaan op grotere
ruimtelijke schaal. Een dergelijke beoordeling voegt waarde toe omdat het beleids-
makers en ontwikkelaars in staat stelt om eenvoudig verschillen in broeikasgas-
uitstoot te beoordelen tussen verschillende technologieén op dezelfde locatie of
dezelfde technologie op verschillende locaties. Bovendien biedt de vergelijking
met andere (niet-)hernieuwbare elektriciteitsbronnen de mogelijkheid om te
bepalen hoeveel reductie aan broeikasgasuitstoot op elke locatie kan worden
gerealiseerd. Dit proefschrift heeft tot doel een basis te bieden voor een dergelijke
beoordeling door modellen te ontwikkelen die het mogelijk maken om eenvoudig
de klimaatvoetafdruk van de belangrijkste hernieuwbare energiebronnen op iedere
locatie te berekenen.

Hoofdstuk 2 beschrijft de ruimtelijke, temporele en technologische variatie
in de terugverdientijden van broeikasgassen van windturbines in Noordwest-
Europa. De netto broeikasgasvoordelen van windturbines in vergelijking met hun
fossiele tegenhangers zijn afhankelijk van de locatiespecifieke windklimatologie
en de technologische kenmerken van de turbines. Het beoordelen van de milieu-
impact van individuele windparken vereist een universele, maar tegelijkertijd
locatieafhankelijke methode. In dit hoofstuk is de terugverdientijd van broeikas-
gassen voor 4 161 windturbinelocaties in Noordwest-Europa bepaald als functie
van (i) turbinegrootte en (ii) ruimtelijke en temporele variabiliteit in windsnelheid.
Een windatlas met hoge resolutie (gegevens over de windsnelheid per uur
tussen 1979 en 2013 op een raster van 2,5 bij 2,5 km) is gecombineerd met een
regressiemodel dat de broeikasgasemissies van productie van de windturbines
voorspelt op basis van de grootte van de turbines. De terugverdientijd van
windturbines in Noordwest-Europa varieerde tussen de 1,8 en 22,5 maanden en is
gemiddeld 5,3 maanden. De spatiotemporele variabiliteit in de windklimatologie
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heeft een bijzonder grote invloed op de terugverdientijd, terwijl de variabiliteit in
turbinegrootte van minder belang is. Het toepassen van windsnelheidsgegevens
met een lagere resolutie (dagelijks op een raster van 30 bij 30 km) benaderde de
resultaten met hoge nauwkeurigheid.

Hoofdstuk 3 behandelt vervolgens de variabiliteit in klimaatvoetafdruk van
windparken wereldwijd. Hoewel al bekend is dat technologische kenmerken
grotendeels bepalend zijn voor de uitstoot van broeikasgassen tijdens de bouw
van een windpark en meteorologische omstandigheden voor de werkelijke
elektriciteitsproductie, ontbreekt een grondige analyse om de variabiliteit van
de klimaatvoetafdruk (in g CO,eq/kWh geproduceerde elektriciteit) tussen
windparken te kwantificeren. Ik heb de klimaatvoetafdruk van 26 821 windparken
over de hele wereld gekwantificeerd, waarbij ik turbinespecifieke techno-logische
parameters, een inventarisatie van informatie over het materiaalgebruik gedurende
de levenscyclus en locatie- en temporele specifieke meteorologische informatie
combineerde. Deze windparken vertegenwoordigen 79% van de 651 GW
wereldwijde windcapaciteit die in 2019 operationeel was. De resultaten laten een
mediane klimaatvoetafdruk voor wereldwijde windelektriciteit van 10 g CO,eq/kWh
zien, variérend van 4 tot 56 g CO,eq/kWh (2,5¢ en 97,5¢ percentiel). Verschillen in de
klimaatvoetafdruk van windparken worden voornamelijk verklaard door ruimtelijke
variabiliteit in windsnelheid, gevolgd door of het windpark op land of op zee ligt, de
turbinediameter en het aantal turbines in een windpark. [k heb ook een metamodel
ontwikkeld waarmee op basis van deze vier predictoren de klimaatvoetafdruk van
nieuwe windparken kan worden berekend.

In hoofdstuk 4 worden de klimaatvoetafdrukken van zonneparken wereldwijd
behandeld. Technologische kenmerken en meteorologische omstandigheden
zijn belangrijke bepalende factoren voor de klimaatvoetafdruk van zonneparken.
Door rekening te houden met technologische en meteorologische verschillen, heb
ik de klimaatvoetafdruk van 9 992 zonneparken wereldwijd gekwantificeerd. De
mediane klimaatvoetafdruk van deze zonneparken is 58,7 g CO,eq/kWh, met een
3-voudige spreiding (28,2-94,6 g CO,eq/kWh, 2,5¢ en 97,5° percentiel). Verschillen in
paneeltype bleken de belangrijkste bepalende factor te zijn voor de variabiliteit in de
klimaatvoetafdruk, gevolgd door zonne-instraling en de leeftijd van een zonnepark.
Ik heb ook een metamodel op basis van deze drie predictoren beschikbaar gesteld
voor gebruikers om de klimaatvoetafdruk per zonnepark te bepalen. De totale
cumulatieve elektriciteit die wereldwijd door de zonneparken, die zijn meegenomen
in deze studie, wordt geproduceerd, bedraagt 457 TWh/jaar, waarvan 99,6% wordt
geproduceerd met een voetafdruk van minder dan 100 g CO,eq/kWh.
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Hoofdstuk 5 beschrijft de variabiliteit van de klimaatvoetafdruk van waterkracht
in de Verenigde Staten van Amerika (VS). Waterkracht is de grootste bron van
hernieuwbare energie in de VS. Hoewel het over het algemeen wordt beschouwd
als een koolstofarme elektriciteitsbron, kunnen technologische en regionale
verschillen leiden tot grote variaties in de klimaatvoetafdruk van waterkracht.
Hier heb ik de klimaatvoetafdruk van 1 812 individuele waterkrachtcentrales in
de VS gekwantificeerd, waarbij ik rekening heb gehouden met locatiespecifieke
verschillen in elektriciteitsproductie en verschillen in broeikasgasemissies
gedurende de levenscyclus van de waterkrachtcentrale (de bouw en het gebruik).
De klimaatvoetafdruk van waterkrachtcentrales in de VS varieert van 5,6:103 to
1,1 kg CO,eq/kWh [5-95¢ percentiel], met een mediaan van 2,8-102 kg CO_eq/kWh.
Mijn resultaten tonen aan dat de klimaatvoetafdruk van waterkrachtcentrales
zonder door de mens gemaakte reservoirs lager is in vergelijking met door de mens
gemaakte reservoirs. De variatie in de klimaatvoetafdruk van waterkracht uit door
de mens ge-maakte reservoirs kan groot zijn en wordt voornamelijk veroorzaakt
door verschillen in grootte, nutrient-status en klimaatzone.

In hoofdstuk 6 reflecteer ik op de geleerde lessen. Op basis van gedetaillerde
analyses werden metamodellen voor wind en zonneenergie ontwikkeld om
de klimaatvoetafdruk op faciliteitsniveau te voorspellen met een minimum
aan informatie. De eerst uitgevoerde gedetaillerde analyses hielpen bij het
begrijpen van de beperkingen van de vereenvoudigingen en benaderingen in
de metamodellen. De ontwikkelde metamodellen maken het mogelijk om de
klimaatvoetafdruk gemakkelijker te vergelijken voor specifieke technologieén
op verschillende locaties, wat belangrijk is omdat het de mogelijkheid biedt om
te bepalen hoeveel broeikasgasreductie kan worden behaald bij het vergelijken
van verschillende (niet-)hernieuwbare elektriciteitsbronnen. Daarnaast vormt
dit een basis om een instrument te ontwikkelen dat besluitvormers ondersteunt
bij de keuze voor elektriciteitsopwekking op een bepaalde locatie op basis
van milieueffecten.
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Research Data Management

This thesis research has been carried out under the RDM policy of the Radboud
Institute for Biological and Environmental Sciences, version 9-Jan-2025 accessed
at www.ru.nl/ribes.

The data used in this thesis can be accessed from the following links:
Chapter 1: No data has been produced.

Chapter 2: The wind farm-specific technological characteristics and locations
from The WindPower.net are proprietary and can be obtained from https://
www.thewindpower.net/. The wind data used can be obtained for free from the
KNMI (http://www.knmiprojects.nl/projects/knw-atlas).

Chapter 3: Underlying data for the figures is available at the journal: https://
onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjiec.13325&
file=jiec13325-sup-0002-SuppMatS2.xlIsx.

The wind farm-specific technological characteristics and locations from The
WindPower.net are proprietary and can be obtained from https://www.thewindpower.
net/. The climate data used in this study can be obtained from the Copernicus Climate
Change Service (https://cds.climate.copernicus.eu/cdsapp#!/home) for free.

Chapter 4: The facility-specific technological characteristics and locations from
Wiki-Solar are proprietary and can be obtained from https://wiki-solar.org. The
continent-specific market shares by origin countries are also proprietary, and can
be obtained through https://www.marketreportsworld.com/TOC/12344406#TOC.
We used Chapter 8 (Global Solar Photovoltaic (PV) Market Analysis, by Geography)
(http://www.marketreportsworld.com/TOC/12344406#TOC). The climate data used
in this study can be obtained from the Copernicus Climate Change Service (https://
cds.climate.copernicus.eu/cdsapp#!/home) for free. We used ERA5's hourly single
level data.

Chapter 5: Data will be made openly available upon publication. Now key
supporting information is added as Appendix C in this thesis.

Chapter 6: No data has been produced.
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