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Computed Tomography

Computed tomography (CT) is an imaging technique that allows for the 
visualization of structures inside the human body. This non-invasive technique 
employs x-ray photons, a form of high-energy light, strong enough to pass, partly, 
through a human body.

During a CT scan, x rays are emitted from a source towards the specific area of the 
body being imaged. As they travel, most of the x rays interact with tissues in the 
body. The number of x rays that will interact is dependent on the energy of the  
x ray and the linear attenuation of the tissue the x ray is traveling through. The linear 
attenuation of a tissue is dependent on its density and elemental composition.

Figure 1: Illustration of a CT scanner, which shows the position and direction of movement of 
each component.
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On the opposite side of the body, the x rays that are not stopped by the body will be 
detected and measured by a detector, creating an x-ray image or x-ray radiograph. 
In CT, this process is repeated at various angles while the source and detector rotate 
around the patient. Finally, a method called reconstruction combines these individual 
images into a cross-sectional image, creating a CT scan, providing valuable insights 
for diagnosis and treatment. The values in a CT image are based on the attenuation 
coefficient of the materials present in the voxel, and are called CT numbers, which 
are expressed in Hounsfield units (HU). Figure 1 provides a schematic overview of a 
CT acquisition and the CT systems most important components.

Currently, CT imaging is one of the most common imaging modalities in hospitals. 
Its prevalence continues to grow every year  [1–7]. This widespread adoption can 
be ascribed to a number of reasons; its versatility in imaging a wide range of 
diseases and anatomical structures, its rapid image acquisition, and its high spatial 
resolution [8]. In the following paragraphs, we will delve deeper into each of them, 
explaining how they have helped CT move to the forefront of medical imaging.

The ability of CT to provide cross-sectional images of the body’s interior, while 
being non-invasive, has made it a fundamental imaging tool for a wide variety of 
applications. It can be used for diagnosis, disease staging, and treatment response 
monitoring. Its utility extends even beyond these applications, since CT can even 
be used for image-guided biopsy or image-guided treatment.

Over the last few decades, the hardware components of CT have advanced 
drastically, resulting in faster scan times, higher spatial resolution, lower noise, 
and lower dose. Two pivotal advancements were the introduction of helical 
CT  [9], which enables continuous scanning of the patient while the patient table 
is moved through the scanner, and multidetector CT  [10], which uses a detector 
with multiple rows in the axial direction of the patient to capture a large volume 
of data in a single rotation. These two innovations drastically reduced scan time 
and motion artifacts due to the patient moving during acquisition of the CT scan. 
Nowadays, multidetector CT scanners can cover a volume of up to 16 cm in a single 
rotation  [11], which takes less than one second, making CT an extremely fast-
imaging technique.

An also important development over the past decades is the reduction in detector 
pixel size [8], which has led to high spatial resolution in CT. The in-plane resolution, 
or so-called slice thickness, of a CT image can nowadays be as small as 0.2 mm [12], 
allowing the radiologist to detect very small structures.
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The short scan time and relatively little dependency on operator skills of modern CT 
scanners have made CT a consistent imaging modality. The scan time of CT is now 
so short that the negative influence of patient motion has decreased substantially, 
leading to more accurate images. Although the patient must be positioned properly 
and the protocol selection remains essential, CT imaging is less reliant on operator 
expertise compared to other modalities, like ultrasound. This reliability is one of the 
essential factors for the widespread adoption of CT as a diagnostic imaging tool.

Despite its benefits, CT imaging does have some limitations. The primary 
disadvantage of CT, or any x-ray-based imaging modality, is its use of ionizing 
radiation, which may be harmful to the patient, since it could potentially lead to 
cancer. This is a larger concern when scanning young patients [13,14]. Additionally, 
contrast in CT images is primarily based on tissue density and elemental 
composition differences, therefore, in principle, providing only anatomical and 
morphological information of the body. Thus, lacking the ability to provide 
functional information, such as, for instance, metabolism or blood flow. This also 
makes differentiation between organs challenging as they often have similar 
densities. Furthermore, the information on a CT image is static, since the scan is 
basically a snapshot in time, and therefore will not provide any information about 
dynamic processes in the body.

To enhance the diagnostic value of CT images, an iodinated contrast agent can be 
injected into the patient’s bloodstream. This technique is called contrast-enhanced 
CT or CECT and will be explained in the next section.

Contrast-enhanced CT

Contrast-enhanced CT is a technique that uses the high attenuation coefficient of 
iodine in CT contrast agents that are injected into the bloodstream to demonstrate 
differences in perfusion between structures and within organs. Normally, the 
iodinated contrast is injected intravenously into the bloodstream where it will mix 
with the blood and flow via the heart to the arteries, organs, and then via the veins 
back to the heart. The timing of the CECT scan thus determines which structures 
and tissues are enhanced, see Figure 2. Depending on the medical question for the 
scan, images will be taken at a different time points after contrast injection.

When timed correctly, it is possible to depict a range of anatomies and pathologies. 
For example, aneurysms can be made visible [15], and the visibility of lesions can also 
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be improved. This ability to not only differentiate tissues based on density, but also on 
blood flow-related information significantly expands the diagnostic capability of CT.

CECT still only provides one static image or a snapshot in time. However, as 
mentioned earlier, the iodine flows with the blood throughout the body. By 
sampling repeatedly and rapidly, the blood flow itself could be estimated as well. 
This technique is called CT perfusion imaging.

Figure 2: (left) An early arterial phase abdomen CT scan, showing the enhanced arteries, and (right) a 
later, venous phase abdomen CT scan, of the same patient, showing a dilated common bile duct and 
pancreatic duct resulting from a subtle hypodense tumor in the pancreatic head.

CT perfusion imaging

CT perfusion imaging is a dynamic imaging technique that provides information 
about blood flow through tissues. By acquiring multiple CT scans in a short period of 
time while iodinated contrast flows through the body, this technique can track the 
changes in tissue CT number or attenuation over time. The temporal information 
obtained in this way can be represented in graphs of the CT numbers over time, or 
so-called time attenuation curves (TACs), see Figure 3. These TACs can be processed 
to gain information about various parameters characterizing the perfusion of a 
tissue, such as the blood volume and blood flow. This functional information gives 
us insight into the physiological processes in the body.

To extract blood flow and blood volume estimates from the acquired CT image 
series the tissue residue function (RF) can be determined. The tissue RF tells us how 
the tissue is responding to the blood it receives.
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Figure 3: Example of time attenuation curves of the aorta, liver, and vena cava. The markers indicated 
the scan times.

The tissue RF cannot be estimated directly from the observed TAC of a tissue, 
since this TAC is a combination of the tissue RF and the TAC of the feeding artery, 
called the arterial input function (AIF). The AIF depends, among other factors, on 
the injection protocol and patient anatomy and physiology, whereas the tissue RF 
is only influenced by tissue properties. To solve this problem, it is assumed that 
the observed TAC of the tissue is the result of the convolution of the AIF with the 
tissue RF. So, by an analytical approach called deconvolution the tissue RF can be 
obtained. To perform the deconvolution, a mathematical technique called singular 
value decomposition is commonly used [16]. An alternative method to determine 
the tissue RF is by using a Bayesian estimation approach in combination with a 
vascular model. The vascular model explicitly models the capillary flow and thus the 
microvasculature flow dynamics. The Bayesian estimation is then used to determine 
the probability distribution for all model parameters [17].

With either approach, information about the tissue and vessel perfusion is 
determined from the estimated tissue RF and summarized in so-called perfusion 
maps. Several perfusion maps are generated from this analysis, including maps 
displaying, for example, blood volume, blood flow or mean transit time. These maps 
allow for easy or more intuitive visualization of functional information, see Figure 4.
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Figure 4: Five cerebral perfusion maps, all depicting different perfusion properties of the brain.

The perfusion characteristics of healthy tissue are different from those of abnormal 
tissue and thus making it possible to detect and characterize potential abnormalities.

One application of CT perfusion is brain imaging. When a person suffers from an 
ischemic stroke, the blood supply to a part of the brain is blocked. This results in 
a region where the blood supply is reduced in comparison to the rest of the brain. 
This affected region consists of a part in which the brain tissue is irreversibly 
damaged, i.e., the infarct core, and a part in which the tissue is salvageable and can 
recover after normalization of the blood supply, i.e., the penumbra.

Studies like the ones performed by Jovin et al.  [18] and Albers et al.  [19] have 
shown the potential of functional information when it comes to treating stroke. 
In these studies, treatment of stroke patients with symptom onset more than six 
hours ago was based on a mismatch between infarct core and stroke symptoms or 
infarct core and affected tissue. A mismatch suggests the presence of salvageable 
tissue, i.e., penumbra, in the brain. If a mismatch was present, patients got treated 
with thrombectomy even though onset of symptoms was more than six hours 
ago. These results showed an improved outcome, confirming the added benefit of 
functional imaging.

The work of Kim et al.  [20] provided a clear overview of the benefits of CT 
perfusion in liver imaging. Currently, different molecular-targeted agents for the 
treatment of cancer are being developed. One type of drugs is antiangiogenic, 
designed to hamper the formation of new blood vessels. Since blood vessels are 
necessary for a tumor to provide itself with oxygen and nutrients, antiangiogenic 
drugs negatively impact tumor growth. However, the current clinical standard for 
assessing treatment response in oncology is mainly based on tumor size  [21,22]. 
Antiangiogenic drugs target the formation of new blood vessels, an effect that does 
not necessarily impact tumor size directly [23]. Therefore, the addition of functional 
imaging, in the form of CT perfusion, to provide information on the vascularity of 
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the tumor could potentially help to find early imaging biomarkers for treatment 
response [24]. Antiangiogenic drugs are usually relatively expensive and can cause 
serious side effects, so early assessment of treatment response is important. In this 
way, the potential side effects and costs can be minimized for non-responders, 
which is beneficial for patients and the healthcare system.

While CT perfusion imaging holds the potential to be a powerful tool for this 
clinical application, it has two challenges. The first one is the assumption that 
the same volume of the patient is imaged in all CT scans acquired during the 
protocol. However, patient movement is inevitable in many cases and can cause 
inconsistencies in the data. To minimize the effect of movement between scans, 
registration algorithms have been developed to align and correct for these 
movements [25–27].

The second challenge, and the one this thesis focusses on, is the total radiation 
dose required for a CT perfusion protocol, because of the high number of CT scans 
involved. This relatively high radiation dose raises concerns about long-term risks 
and thus limits the clinical impact of CT perfusion, especially in case of patients 
with a good long-term prognosis. This challenge will be discussed in more detail in 
the next section.

Image quality vs Radiation dose

In CT imaging, image quality and radiation dose are inherently intertwined. This 
is due to the physics of x-ray imaging: a higher number of x-ray photons leads to 
lower image noise, i.e., a higher image quality. However, at the same time, a higher 
number of photons results in a higher radiation dose to the patient, which may be 
harmful. Because of this relationship, the ‘As Low As Reasonably Achievable’ or in 
short, ALARA principle is normally followed  [28]. This principle says that all x-ray-
based imaging should be performed such that the radiation dose administered to 
the patient is the minimum necessary to achieve the image quality needed for an 
accurate diagnosis.

CT perfusion is an imaging technique in which radiation dose plays a big role, since 
successive scanning leads to a total radiation dose defined by the dose per scan 
and the number of scans. Thus, there are two ways to keep the dose low: reducing 
the total number of scans acquired in a protocol and decreasing the radiation dose 
per individual scan.
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Several efforts have been made to obtain relevant functional information while 
keeping the total number of scans low. One of the most notable involves performing 
triple-phase imaging, which are protocols performing only three CT scans over 
time. This technique can be used to generate simple perfusion maps of the liver, 
such as arterial enhancement fraction, which has been shown to closely correlate 
with the hepatic perfusion index obtained with a full CT perfusion protocol in an 
animal study [29]. The work of Kim et al.  [30] and Mahnken et al.  [31] showed the 
potential benefit of triple-phase imaging in combination with functional maps for 
detection and recurrence prediction of liver tumors. However, this technique falls 
short in providing detailed perfusion information. As explained in the previous 
section, the tissue RF is determined by deconvolution of the AIF, or Bayesian 
estimation, with the time-concentration curve of the tissue of interest. To perform 
this deconvolution and obtain the functional information, high temporal sampling 
is needed, which is not the case in triple-phase imaging.

The second way to keep the radiation dose in CT perfusion low is to decrease 
the dose per individual scan. This can be achieved through advancements in 
both hardware and software. Software-based developments hold significant but 
underutilized potential for reducing radiation dose while preserving the diagnostic 
quality of the images.

A current focus area of software development to reduce radiation dose is 
the development of new reconstruction methods. Traditionally, filtered back 
projection (FBP) was the standard reconstruction method. In the case of FBP, the 
spatial resolution and the noise are completely independent. However, newer 
reconstruction methods, such as iterative reconstruction methods and lately deep 
learning reconstruction, have now become the clinical standard. These methods are 
especially designed to reduce image noise by sacrificing some spatial resolution. 
With these new techniques, the independence between spatial resolution and 
radiation dose does not hold anymore.

There are many different types of iterative reconstructions, the most common one 
being iterative reconstructions with total variation regularization. Another subset 
of iterative reconstruction methods is called model-based iterative reconstructions 
(MBIR)  [32]. MBIR methods use prior knowledge of the imaging process, by 
incorporating models that, for example, contain the noise statistics, detector 
characteristics, or even information on the expected anatomy. All these models 
provide additional information to the reconstruction algorithm, so it can result in 
improved image quality.
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Deep learning (DL) has also been introduced to the field of reconstruction methods, 
offering even more opportunities to enhance image quality and thus reduce 
radiation dose. One way of implementing DL is in an iterative scheme, called primal-
dual reconstruction [33]. In this scheme, DL blocks are used to smoothen the data 
without losing detail by processing it in both the projection and reconstruction 
domain. Another way of incorporating DL in reconstruction is in the case of sparse 
angular coverage. Sparse angular coverage means that the angular step between 
two projections is large, which can be used to reduce radiation dose. In this case, 
DL can be used to interpolate the projection data and thus artificially increase the 
angular sampling. Such a network can be trained on paired data of densely- and 
sparsely-sampled angular projections to train the DL network to interpolate the 
missing data [34].

A significant advantage of DL reconstruction over MBIR is the computational time. 
The computation-heavy nature of MBIR means that it is usually associated with 
increased computational time. However, DL reconstruction, once trained, offers fast 
and high-quality image reconstruction. This is a crucial advantage of DL, since in a 
clinical setting it can improve workflow and reduce total time for diagnosis.

In addition to reconstruction methods, there are also post-processing methods 
developed to enhance the image quality of low dose CT scans. DL is also a topic 
of interest in this field, with a plethora of network designs aimed at denoising CT 
data [35,36]. These networks are typically trained on paired low- and high-dose CT 
data, allowing the network to learn how to reduce noise while limiting the loss of 
spatial resolution, and thus of small details.

Alongside DL, classical image processing techniques, like bilateral filters, 
anisotropic diffusion filters, k-means clustering, or the Canny filter continue to 
play a vital role in enhancing image quality. These techniques remain particularly 
relevant in the case of CT perfusion, due to this modality commonly comprising of 
4-dimensional data, which therefore involves a large amount of data. DL networks 
are not yet capable of processing this amount of data at once, due to computational 
and memory constraints. One could work around this constraint by, for instance, 
processing each CT scan separately, but then the temporal information cannot be 
used to aid the denoising.

Examples of classical image processing methods for denoising CT perfusion data 
are the work of Mendrik et al.  [37]. In this work, a modified version of a bilateral 
filter was developed, called TIPS, to reduce image noise. The TIPS filter performs 
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weighted averaging of the TACs in a spatial neighborhood based on similarity and 
spatial distance between the TACs. Pisana et al. [38] proposed an alternative to this 
method in which a guiding image, spatial distance, and k-means clustering based 
on TACs is used to perform weighted averaging of TACs.

A common challenge for all these efforts, which some have tried to minimize, is the 
loss of spatial resolution. Denoising almost always comes with loss of resolution 
since high frequency content is sacrificed to suppress noise. This thesis focuses 
on addressing this issue, aiming to denoise low dose CT perfusion images with no 
or minimal resolution loss. The primary method evaluated and improved for this 
purpose is the so-called 4D similarity filter (4DSF), which will be introduced in the 
next section.

4D Similarity Filter

The 4DSF is a novel noise reduction method developed specially to reduce noise 
in image time series, such as 4-dimensional CT data, i.e., CT perfusion. Unlike 
conventional image filters, the 4DSF avoids the use of a spatial neighborhood, thus 
preserving spatial resolution.

The novelty of the 4DSF is twofold. First each CT image of the temporal sequence 
is filtered separately, this principle will be explained in the following paragraphs.

Let’s assume we are given a 4D CT acquisition with tissues that have different TACs, 
so not all TACs in the set have the same underlying noiseless ground truth, but all 
TACs are corrupted by noise. When denoising one of the TACs, this TAC in question 
will be compared to all other TACs in the set and will be averaged with the N most 
similar TACs, because these N TACs have the highest chance of having the same 
underlying ground truth, and thus to be of the same tissue.

However, if the set of TACs is very large, and the number of timepoints in the TACs is 
not infinitely large, it is highly likely that when looking for the N most similar TACs, 
the algorithm will not only find curves with the same underlying ground truth but 
also a similar noise realization. This will cause the noise in the N most similar TACs to 
be correlated, which will diminish the impact of the noise reduction and potentially 
introduce a bias. To overcome this problem, the TACs can be filtered separately for 
each timepoint, so that search and averaging are decoupled.
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Figure 5: Schematic representation of the 4DSF, describing the steps of the filter. The binary mask is 
optional, but helps to reduce the number of TACs to be processed. Adapted from S. A. M. Tunissen et 
al., “Performance evaluation of a 4D similarity filter for dynamic CT angiography imaging of the liver”, 
Med. Phys., doi.org/10.1002/mp.17394
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To avoid this correlation, the 4DSF works as follows: when the first timepoint, i.e., 
the first attenuation value of the TAC, is filtered, the N most similar TACs will be 
determined by checking only the most similar TACs based on all other timepoints 
except for the first timepoint. By excluding the timepoint that is filtered from 
the search of similar TACs, the N TACs cannot have similar noise at the excluded 
timepoint. The last step in this process is to average the values of the most similar 
TACs only for the timepoint being filtered, so the first timepoint, hence avoiding 
bias. This search and averaging process is then repeated for all other timepoints.

The second novelty of the 4DSF is based on the fact that in a standard CT image 
the number of voxels, and thus TACs, is typically around tens of millions. In this 
case, computational power and time do not allow us to compare all TACs in the 
given set to each other. As described previously, other filtering techniques limit 
themselves to a spatial neighborhood, resulting in spatial resolution loss. Since 
4DSF aims to reduce noise without or with minimal resolution loss, the use of a 
spatial neighborhood is avoided. Instead, all TACs are sorted based on their average 
attenuation value, i.e., temporal mean. A neighborhood based on this sorted vector, 
around the TAC being filtered, is then used to limit the number of calculations. A 
schematic representation of the 4DSF is presented in Figure 5.

Quantitative evaluation of low dose imaging

Thorough evaluation of a newly developed post-processing or reconstruction 
method is of utmost importance before its integration into clinical practice. For 
assessment of quantitative accuracy, the ground truth of the condition being 
studied needs to be known. Of course, patient scans do not have ground truth 
available, since noiseless versions of these scans are not available. Also, clinical 
scans need to have sufficient diagnostic value, so their image quality is normally 
relatively high. A common approach is to take these high-quality scans and modify 
them to degrade their quality, so a high and low image quality pair is created.

The most suitable methods in CT imaging to do so are the ones that operate in the 
projection domain, i.e., the radiographs from which the CT image is reconstructed. 
Notable examples of these methods are the work of Yu et al.  [39] and Žabić et 
al.  [40], who presented methods that model the noise in the projection, so that 
realistic noise can be added. However, since these methods work in the projection 
domain, they assume access to the projection domain data and the ability to 
reconstruct the modified data.
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An alternative approach to create high- and low-quality image pairs involves 
algorithms that operate directly in the image domain, i.e., on the CT image itself. 
One example is the work of Divel et al.  [41], in which an analytical method is 
proposed to generate noise to degrade the image quality. However, this method 
is only valid for analytical, and thus linear, reconstruction methods, such as FBP. 
With the introduction of more sophisticated reconstruction methods such as MBIR 
and DL reconstructions, which are normally not analytical, the application of this 
method becomes limited.

The limiting factor for all these methods is that only the noise level of existing data 
can be modified. If one wants to test a new scanning protocol with, for instance, a 
different tube voltage or number of scans, this is not possible with these methods.

An alternative in these cases would be to scan phantoms. The advantage of 
phantoms is that they can be scanned at very high dose levels without radiation 
dose problems, enabling the acquisition of near-perfect, "ground truth" images. For 
the same reason, phantoms can be scanned at different dose levels and scanner 
settings, providing a wide variety of test data. The main disadvantage of phantom 
data is their limited anatomical and functional realism.

Figure 6: Example of a coronal plane view of an XCAT phantom (left), the intensities only indicate 
different tissues, not any physical property. A simulated CT image in the axial plane of the XCAT 
phantom (right).

To partly overcome this disadvantage efforts have been made in the field of digital 
phantoms, which are models of human bodies. One example is the work of Segars 
et al.  [42], in which a set of digital human-based phantoms is developed. These 
phantoms are anatomically realistic and can, in combination with a CT simulator, 
provide CT images for testing purposes, see Figure 6. Since the exact shape and 
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composition of the phantoms is known, the ground truth underlying the CT images 
will be known. The mentioned CT simulator is a tool that can mimic the processes 
taking place in a real CT scanner, so realistic CT images of digital phantoms can be 
obtained  [43,44]. The combination of digital phantoms and a CT simulator forms 
a powerful platform for testing new algorithms, without radiation exposure for 
patients. During this thesis such a CT simulator was developed and validated.

Aim and outline of thesis

The aim of this thesis was to characterize, validate, and, if possible, improve the 
4DSF for its application in CT perfusion imaging. Our research efforts are divided 
into two distinct parts. The first part focuses on the development of CT image 
simulators that can generate realistic test data. The second part focuses on the 
detailed characterization of the 4DSF, exploring its behavior and limitations, 
ultimately leading to the development and evaluation of strategies for improving 
its performance.

In the first part, two tools for CT simulations are developed. Chapter 2 presents 
a scanner-specific CT simulator capable of generating synthetic CT scans from 
digital phantoms. On top of this, we validated simplifications of the simulation to 
reduce computation time. The second simulation tool is presented in Chapter 3 
and focuses on the simulation of low dose CT images from clinical dose patient 
CT images when knowledge and access on the CT system and reconstruction are 
unavailable. The method circumvents the use of projection domain data, which is 
often hard to obtain, by working directly in image domain. Therefore, the method 
will also work for non-analytical methods.

The second part of this thesis is focused on the analysis and optimization of the 4DSF. 
In Chapter 4 we present a digital phantom study in which the 4DSF is characterized, 
and its use in combination with the TIPS filter is investigated. Finally, a suggestion 
on a possible implementation for 4D liver CT is given, focusing on lesion detection. 
Chapter 5 introduces a modified version of the 4DSF for GPU implementation. Since 
GPUs are much faster than CPUs, the use of the former is intriguing to accelerate the 
4DSF. Chapter 6 presents another modified version of the 4DSF tailored for stroke 
imaging. By incorporating the unique perfusion characteristics of ischemic brain 
tissue, which receives blood later than healthy brain tissue, this modified version 
enhances the quantitative accuracy of the functional maps. The modified version 
is validated using a phantom study and patient cases to demonstrate its potential.
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ABSTRACT

Background
Simulated Computed Tomography (CT) images allow for knowledge of the underlying 
ground truth and for easy variation of imaging conditions, making them ideal for 
testing and optimization of new applications or algorithms. However, simulating all 
processes that affect CT images can result in simulations that are demanding in terms 
of processing time and computer memory. Therefore, it is of interest to determine 
how much the simulation can be simplified while still achieving realistic results.

Purpose
To develop a scanner-specific CT simulation using physics-based simulations for 
the position-dependent effects and shift-invariant image corruption methods for 
the detector effects. And to investigate the impact on image realism of introducing 
simplifications in the simulation process that lead to faster and less memory-
demanding simulations.

Methods
To make the simulator realistic and scanner-specific, the spatial resolution and noise 
characteristics, and the exposure-to-detector output relationship of a clinical CT 
system were determined. The simulator includes a finite focal spot size, raytracing 
of the digital phantom, gantry rotation during projection acquisition, and finite 
detector element size. Previously published spectral models were used to model 
the spectrum for the given tube voltage. The integrated energy at each element 
of the detector was calculated using the Beer-Lambert Law. The resulting angular 
projections were subsequently corrupted by the detector Modulation Transfer 
Function (MTF), and by addition of noise according to the Noise Power Spectrum 
(NPS) and signal mean-variance relationship, which were measured for different 
scanner settings. The simulated sinograms were reconstructed on the clinical CT 
system and compared to real CT images in terms of CT numbers, noise magnitude 
using the standard deviation, noise frequency content using the NPS, and spatial 
resolution using the MTF throughout the field of view. The CT numbers were 
validated using a multi-energy CT phantom, the noise magnitude and frequency 
were validated with a water phantom, and the spatial resolution was validated 
with a tungsten wire. These metrics were compared at multiple scanner settings, 
and locations in the field of view. Once validated, the simulation was simplified by 
reducing the level of subsampling of the focal spot area, rotation and of detector 
pixel size, and the changes in MTFs were analyzed.
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Results
The average relative errors for spatial resolution within and across image slices, 
noise magnitude, and noise frequency content within and across slices were 3.4%, 
3.3%, 4.9%, 3.9%, and 6.2%, respectively. The average absolute difference in CT 
numbers was 10.2 HU and the maximum was 22.5 HU. The simulation simplification 
showed that all subsampling can be avoided, except for angular, while the error in 
frequency at 10% MTF would be maximum 16.3%.

Conclusion
The simulation of a scanner-specific CT allows for the generation of realistic CT 
images by combining physics-based simulations for the position-dependent 
effects and image-corruption methods for the shift-invariant ones. Together 
with the available ground truth of the digital phantom, it results in a useful tool 
to perform quantitative analysis of reconstruction or post-processing algorithms. 
Some simulation simplifications allow for reduced time and computer power 
requirements with minimal loss of realism.
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Introduction

Currently, Computed Tomography (CT) is the workhorse imaging modality in 
most radiology departments  [3,45–47]. CT is used for screening, diagnosis, and 
interventional procedures, such as CT-guided biopsies or ablations  [48–52]. 
Therefore, research on reconstruction and post-processing algorithms to increase 
image quality in CT, without increasing patient dose, is a growing field of interest. 
Examples of these efforts include developments in deep learning reconstruction 
of low dose CT  [53], in denoising of low dose CT using Convolution Neural 
Networks [35,36], and in CT denoising using statistical methods [54,55].

New reconstruction or post processing algorithms are typically developed and 
validated using physical phantoms, which are limited in their capability to represent 
real human anatomy. This limits the usefulness of these phantoms when developing 
new algorithms. Patient images can also be used during development and 
validation, but aside from the ethical issues if new research-specific acquisitions are 
needed, patient images do not have a quantitative ground truth available, making 
it hard to quantify the performance of the developed algorithms [56].

Therefore, it would be beneficial to have the possibility to test these algorithms using 
virtual clinical trials [57]. In these, computer simulated images are generated from digital 
models of humans, such as the XCAT phantom  [42]. These phantoms have ground 
truth available and include considerably realistic anatomy, making them ideal for 
quantitative evaluation of clinically-relevant conditions. In addition, an infinite number 
of different realizations of the phantoms can be generated and infinite combinations of 
imaging conditions/parameters can be evaluated, thus the amount of data that can be 
used for a virtual clinical trial is only limited by computation time and memory.

However, simulating a fully detailed CT image that incorporates all acquisition 
process characteristics accurately is time and memory consuming. Therefore, for 
specific tasks it could be beneficial to evaluate the impact on realism of different 
simplifications that lead to substantially shorter computation time.

Therefore, we aim to develop a simulation of a scanner-specific CT capable of 
generating CT images with realistic appearance considering the spatial resolution 
and noise characteristics of a clinical CT system [43,44]. With this scanner-specific CT 
simulation, a broad range of scanner parameters can be simulated, such as different 
tube currents, tube voltages, exposure times, bowtie filters, and focal spot sizes. In 
addition, once a full simulator is developed and validated, we aim to evaluate the 
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impact on the realism of the resulting images when different simplifications (e.g. 
less subsampling) of the simulator are introduced, with the aim to reduce the time 
and computer power necessary to simulate an image.

Methods

The scanner to be simulated in this work is a 320-row CT system (Aquilion ONE 
PRISM Edition, Canon Medical Systems, Otawara, Japan) installed at the Dept. of 
Medical Imaging of Radboudumc, Nijmegen, The Netherlands. The scanner-specific 
CT simulation consists of a pipeline (Figure 1) to generate CT images that are 
realistic and scanner-specific, based on physics-based simulations for the position-
dependent effects and image corruption methods proposed by Saunders et al. for 
shift-invariant corruption of ideal images [58]. In this way the need for proprietary 
system-specific information from the vendor is minimized. However, for many of 
these steps, specific system characteristics need to be known, which, for this work, 
were obtained via measurements. The details of all steps and these measurements 
will be discussed in the next sections. A general simulation pipeline, with an 
overview of required information for each step, can be found in Appendix A (see 
online supplemental material).

Figure 1: Scanner-specific CT simulation pipeline.

3D raytracing
To perform the 3D raytracing, the specific geometry and dimensions of the clinical 
CT system, including the detector pixel size, detector distance, focal spot size, focal 
spot angle, and focal spot distance, were used. However, these are vendor-specific 
and confidential, so they are not reported here. For the CT system being simulated, 



30 | Chapter 2

the detector consists of 896 detector channels and 320 rows. The detector is curved 
such that all pixels in a row have the same distance to the source. The input to the 
3D raytracing is a voxelized phantom, representing the object that will be imaged, 
with the voxel values indicating an index linking it to the material it contains. The 
3D raytracing is performed for every material present in the phantom, resulting 
in a separate thickness map (T) for each material. The raytracing algorithm is a 
GPU-based pixel-driven raytracing based on the work of Moriakov et al.  [59] and  
Syben et al. [60].

Figure 2: Schematic drawing of the focal spot and detector elements subsampling.

To account for the finite size of the focal spot, the raytracing is not performed 
from a single point on the focal spot, but from LxL subsamples of the focal spot, 
ordered in a square grid, because the shape of the focal spot is approximately 
square. To minimize the discretization effect on the detector, the detector elements 
are subsampled by MxM accordingly and are up-sampled later in the simulation 
process [58]. To incorporate the effect of the finite exposure time during the angular 
motion of the CT gantry that causes spatial resolution loss, the angular projections 
are also subsampled by a factor K. The focal spot and detector subsampling is 
depicted in Figure 2 and the angular subsampling is depicted in Figure 3.

This results in thickness maps containing the intersection length for each material 
from each focal spot subsample fa,b to the center of each subsampled detector 
element (xi,yj) at each subsampled angular projection θk.
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Figure 3: Schematic drawing of the angular subsampling.

To include the effect of the bowtie filters in the simulation, the shape of the bowtie 
filters was determined using the method described by McKenney et al.  [61] For 
this, the air kerma was measured with a dosimeter (10X6-0.6CT, Radcal, Monrovia, 
California, USA) at the center of rotation (CoR) of the CT gantry and outwards in the 
lateral direction from the central ray, in steps of 5 mm out to 160 mm from the CoR, 
while the tube remained static. The resulting air kerma measurements were used to 
estimate the equivalent thickness of the bowtie filter.

Primary projection images
To calculate the incident primary photon energy that is absorbed by the detector, 
first the x-ray spectrum (N) leaving the source must be determined. The x-ray 
spectrum is modeled by measuring the incident air kerma as close as possible to 
the detector (8 cm away) under four different attenuation conditions: no added 
attenuating materials, 6 mm aluminum, and 1 mm and 2 mm copper. These air 
kerma measurements are used to fit the spectrum model  [62]. Measurements of 
the same attenuations are used to obtain the conversion from absorbed primary 
photon energy to Digital Units (DU). This conversion was determined for each 
bowtie filter separately.

As depicted in Figure 1, the x-ray spectrum is used together with the thickness map 
of each material to determine the primary photon energy absorbed by the detector, 
i.e., the simulated sinogram I(fa,b,xi,yj,θk) according to the Beer-Lambert law [63]:
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where Ne is the number of photons with energy e emitted from the source, QEeis 
the quantum efficiency of the detector for each energy e, μm,e is the attenuation 
coefficient of material m at energy e (determined using the xraydb package in python 
based on the work of Elam et al. [64], and the work of Boone et al. [65]), and Tm,fa,b,xi,yj,θk is 
the thickness map of each material m at each subsampled detector element (xi,yj) for 
each focal spot subsample fa,b and at each subsampled projection angle θk.

Spatial resolution loss
The spatial resolution characteristics of the detector are incorporated by applying 
the Modulation Transfer Function (MTF) of the detector to the simulated sinogram 
resulting from Equation 1. This is done by multiplication, in frequency domain, of 
the MTF with the 2D Fast Fourier Transform (FFT) of the simulated sinogram (at each 
subsampled projection angle) and then taking the inverse FFT. Please note that the 
MTF needs to be divided by the sinc function of the final detector spacing, since the 
sampling of the detector causes the MTF to be multiplied by the sinc function.

The detector MTF was measured in the detector row direction, since this direction 
does not suffer from resolution loss due to rotation, and was used in all directions, 
assuming it is rotationally invariant. The slanted edge method [66] was used with a 
tungsten edge (TX5, IBA Dosimetry, Schwarzenbruck, Germany). The tungsten edge 
was placed as close as possible to the detector (8 cm away) to minimize the focal 
spot size effect. A Lorentzian based fit  [67] is used to fit the MTF. The measured 
edge and fitted MTF are shown in Appendix B. The fit could potentially result in 
values close to the zero frequency to be larger than one. These are forced to one 
when applying the MTF.

The other causes of spatial resolution loss, namely, the focal spot size effect and the 
blur caused by exposure time per angular projection, are already included in the 
image, as described above, by raytracing the focal spot and angular projections, 
including subsampling. To maximize the realism of the image simulation, these 
effects must be included in the raytracing step, since they are position-dependent 
in the field of view, and therefore this information cannot be added to the 
sinogram directly.

After the incorporation of the detector MTF, the simulated sinogram is binned to its 
real dimension, using Equation 2:
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where I(x,y,θ) is the sinogram after all subsamples are averaged at detector pixel x, y  
and angular projection θ, M is the number of detector pixel subsamples in each 
direction, K is the number of angular subsamples, L is the number of focal spot 
subsamples in each direction, I(fa,b,xi,yj,θk ) is the sinogram with all subsamples, fa,b is 
the focal spot subsample, xi,yj is the detector pixel subsample, and θk is the angular 
projection subsample.

Noise addition
To add the correct noise to the sinogram two characteristics of the noise need to 
be known, the mean-variance relationship of the noise signal and the noise power 
spectrum (NPS). Both are determined using the same scans of two water phantoms 
of 240 mm and 320 mm in diameter, representing the attenuation of brain and 
abdomen, respectively.

The mean and variance of the signal were determined in a 20×30-pixel region of 
interest (ROI) at approximately the center of each sinogram projection, and their 
averages over all projections were used as the final mean and variance. To obtain 
the NPSs, first a correction for image lines due to detector tiling was performed 
by averaging all projections and subtracting the result from each individual 
projection. Second, the 2D FFT of a 64×64-pixel ROI in the center of the sinogram 
was calculated for each projection and the square of the absolute value of these 
FFTs was taken. The results were averaged for all projections, resulting in 2D NPSs. 
Despite the anisotropic pixel size there was no significant difference between 
the NPS in the horizontal and vertical directions, so they were radially averaged 
to obtain a 1D NPS. The mean-variance relationship is dependent on the tube 
voltage, and bowtie filter. The shape of the NPS is dependent on the tube current, 
tube voltage, exposure time, and bowtie filter. Hence, both were measured at 
nine different tube current levels between 10 mA and 400 mA, four different tube 
voltage levels, 80 kV, 100 kV, 120 kV, and 135 kV, two different exposure times  
0.275 s and 0.5 s, and for two different bowtie filters.

The mean-variance relationship (MV) is defined as a linear function with a positive 
offset (Equation 3). This offset is the electronic noise.
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where a is the slope of MV, m is the mean in a 3×3 pixel region (Saunders et al. [58]), 
and belectronic noise is the offset due to the electronic noise. 
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To get the desired noise, white noise is generated with similar spatial dimensions as 
the sinogram projections, as described by Saunders et al. [58]. The resulting noise is 
multiplied in frequency domain with the square root of the NPS (Equation 4) and is 
scaled by the MV in spatial domain to obtain the desired noise, which is then added 
to the sinogram I(x,y,θ) (Equation 5).
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where Ƒ is the FFT operator, n is a realization of white Gaussian noise with mean 
µ and standard deviation σ, Ƒ-1 is the inverse FFT, N(u,v) is the colored noise image 
with the correct NPS, σ(Ƒ-1 {N(u,v)}) is the standard deviation and μ(Ƒ-1 {N(u,v)}) the 
mean of the colored noise in image domain after inverse FFT, MV is the mean-
variance relationship, I is the primary projection image after the MTF is applied and 
binned and Inoise is the projection image after the noise is added to it.

Hounsfield Unit Calibration
As is standard in CT imaging, a linear calibration was obtained to apply to all 
reconstructed images to correct the resulting CT numbers for different materials 
and densities. The applied linear correction was determined by digitally simulating 
a cylindrical water phantom with 5 different inserts: Teflon, Delrin, acrylic, 
polypropylene, and air (quality control phantom provided by Canon Medical 
Systems) and fitting the CT numbers of the simulation to the theoretical CT 
numbers. The diameter of this phantom is 190 mm, and the inserts have a diameter 
of 20 mm. A linear correction was obtained from the mean HU of the simulated 
phantom inserts and water background and their corresponding theoretical values, 
using Equation 6.
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The value of bwater (offset of water) was fit such that the simulated water value 
corresponds to the theoretical one, i.e., equal to zero. Afterwards a (slope) was fit 
such that the HUsimulation, after correction, had the smallest possible error against 
the corresponding HUtheoretical. This was done separately for each tube voltage level 
available in the system, and the corresponding calibration was then applied to all 
subsequent simulated images.
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Validation of simulation
To assess the accuracy of the simulator, multiple validations were performed to 
validate the CT numbers of different materials, the spatial resolution, and the noise 
characteristics of the simulated images against images acquired with the clinical 
CT system. All validations were performed after reconstruction of the sinogram 
projections on the clinical CT system using the clinically available filtered back 
projection (FBP), which is based on the Feldkamp Davis Kress (FDK) algorithm [68]. For 
the CT number and noise characteristics validation, the number of angular subsamples 
K was set to 2, the number of focal spot subsamples L was set to 1, and the number of 
detector subsamples M was set to 2. For the resolution loss validation, the number of 
angular subsamples K was set to 3, the number of focal spot subsamples L was set to 3,  
and the number of detector subsamples M was set to 4. These subsampling factors 
were obtained experimentally, the details can be found in Appendix C.

The CT numbers were validated using a physical oval phantom (with 40 cm and  
30 cm radii for the horizontal and vertical directions, respectively) with  
15 cylindrical inserts, each of different material and of diameter 28.5 mm [69] (MECT 
phantom, Sun Nuclear, Middleton, WI, US). The exact dimensions and material 
composition of the MECT phantom were known, so we could not only image but 
also simulate the phantom and its image acquisition, with a tube current of 400 mA 
and three different tube voltage levels (100 kV, 120 kV, and 135 kV). The simulated 
voxel size of the phantom was 3.3 mm × 0.25 mm × 0.25 mm. The voxel size in 
the longitudinal direction was substantially larger since the phantom is constant 
in this direction. The measured and simulated sinograms were both reconstructed 
on the clinical CT system using FBP and a Field of View (FOV) of 320 mm × 320 mm 
and 160 mm in the longitudinal direction. The reconstructed volume consisted of  
320 slices of 512×512 pixels. The Hounsfield Units (HU) within these inserts 
and in the water-equivalent background was measured by averaging a squared  
10×10 pixel ROI across 80 slices.

The resolution loss of the simulator was validated by imaging a 50 µm diameter 
tungsten wire [70,71], both digitally and physically. This tungsten wire creates a Dirac 
delta function or unit impulse [72], and the point-spread function (PSF) is obtained 
by taking the Radon transform [73] of this signal in one direction. The MTF is then 
determined by calculating the FFT of the PSF. The spatial resolution was validated 
at 7 cm, 14 cm, and 21 cm from the isocenter, for both the digitally simulated 
wire and the real physical measured wire to verify the validity of the simulation 
of the shift-variant rotational blur and focal spot size effects. Each simulated 
and measured wire was reconstructed with a small FOV of 19.5 mm × 19.5 mm  
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of 512×512 pixels, so the PSF had enough samples. The resolution loss was checked 
for both focal spot sizes present in the clinical system, which will be referred to as 
large and small focal spots from here on, and for both the radial and tangential 
direction for all positions. The simulated voxel size of the phantom was 0.1432 mm × 
0.005 mm × 0.005 mm. The voxel size in the longitudinal direction was substantially 
larger and set to this exact value because with a shift of one pixel per longitudinal 
(the direction with pixel size 0.1432 mm) step this results in the simulated wire 
being placed at an angle of 3 degrees. Please note that the simulations were 
noiseless, since noise does not influence the resolution loss.

The resolution loss in longitudinal direction (across slices) has also been validated 
by imaging this 50 µm diameter of the tungsten wire both digitally and physically. 
The wire was placed such that the angle with the slices was 8 degrees. The slice 
sensitivity profile (SSP) was determined in the same way as the MTF. The simulated 
voxel size of the phantom was 0.005 mm × 0.035 mm × 0.005 mm. The voxel size 
in the lateral direction was substantially larger and set to this exact value because 
with a shift of one pixel per lateral (the direction with pixel size 0.035 mm) step this 
results in the simulated wire being placed at an angle of 8 degrees. Please note that 
the simulations were noiseless, since noise does not influence the resolution loss.

The 50 µm diameter of the tungsten wire is relatively small compared to the 
detector pixel size, even when subsampled. To overcome this problem the detector 
subsampling M was set to 24, just for the raytracing. After the raytracing, the 
detector was rebinned to its original subsampling of M=4.

For validating the noise magnitude and frequency content, a water phantom with 
a radius of 320 mm was again both digitally simulated and physically measured, 
and the results were compared. The noise magnitude and frequency content 
were validated at two different tube current levels (140 mA and 400 mA), and 
three different tube voltage levels (100 kV, 120 kV, and 135 kV). The simulated 
voxel size of the phantom was 1.0 mm × 0.25 mm × 0.25 mm. The voxel size in the 
longitudinal direction was substantially larger since the phantom is constant in this 
direction. A volume of interest (VOI) of 64×64×64 voxels was placed in the center of 
the water phantom images. The standard deviation of this VOI was used to validate 
the magnitude of the noise. To validate the noise frequency content, a 100 mm FOV 
was reconstructed in the center and at the periphery, approximately 120 mm from 
the center, of the water phantom. This smaller FOV was reconstructed, to have a 
smaller pixel size, making it possible to validate higher frequencies. The 2D NPS and 
2D unstructured NPS of both these FOVs, were calculated in 256×256-pixel ROIs 
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from across 80 slices, by determining the square of the 2D Fourier transform. In the 
case of the unstructured NPS the average of the 80 slices was subtracted before 
calculating the Fourier transform. Both the 2D NPS and 2D unstructured NPS were 
normalized to have an area of one, obtaining the normalized NPS (nNPS). Both the 
2D nNPS and 2D unstructured nNPS were calculated to show that the simulation 
does not introduce any structured noise. A comparison of the nNPS at these two 
positions was performed to validate the changes in the noise characteristics 
throughout the imaging field. These 2D nNPSs at the center were also radially 
averaged, and again normalized to have an area of one, to obtain a 1D nNPS. To 
validate the frequency content across slices, the 1D nNPS was calculated across  
280 slices for all pixels in a 128×128 ROI at the center, and the results were averaged.

Scatter was not included in our simulator, since the system performs scatter 
correction during the reconstruction process, and therefore, the benefit of adding 
simulated scatter would be minimal. To validate the performance of the scatter 
correction, the 320 mm water phantom (also used for the validation of the noise) 
was imaged with the standard volume scan collimation of 160 mm (equal to all 
measurements in this work) and with a 20 mm collimation, which is assumed to have 
a negligible amount of scatter. The line profile of the reconstructed water phantom 
images was compared for both collimations. Line profiles were obtained from these 
images by averaging 60 individual line profiles across 38 slices both horizontal and 
vertical directions for both water phantom scans and the corresponding simulation.

Simulation simplifications
The three steps of the simulator incorporating subsampling, namely, the number 
of angular projection subsamples K, the number of detector subsamples M×M and 
the number of focal spot subsamples L×L, were simplified to reduce the time and 
computer power necessary. The angular subsamples K were set to 1, 2, and 3. The 
detector subsamples M×M  were set to 1×1, 2×2, 3×3, and 4×4. The number of focal 
spot subsamples L×L was set to 1×1, 2×2, and 3×3. Please note that while one of 
these three was reduced the other two were kept at their original value. Previous 
CT simulators [43,74,75] also used or optimized their subsampling, however with 
this analysis the impact of each individual simplification is shown.

To validate the impact of these simplifications on the realism of the simulation, 
the MTFs of the images resulting from the digitally simulated simplified sinograms 
were determined and compared to the MTFs of the physically measured sinograms. 
In both cases these MTFs were again determined from a tungsten wire at 7 cm,  
14 cm, and 21 cm from the isocenter.



38 | Chapter 2

In addition, the possibility of compensating for simplifying the focal spot as being 
a point source by using the system MTF, i.e., the MTF measured with the edge 
located at the CoR, instead of the detector MTF, was also tested. These MTFs are 
shown in Appendix B. Finally, the possibility of simplifying the incorporation of 
the rotational blurring, due to the angular motion of the source and detector, was 
also investigated by averaging each angular projection with the subsequent one, 
instead of performing the angular projection subsampling.

Results

In Figure 4, one of the measurements of the MECT phantom used for the CT number 
validation is shown. Table 1 shows the measured and simulated CT numbers for the 
different materials in the MECT phantom, with the numbers corresponding to the 
regions in Figure 4. Table 1 also shows the maximum (bold and underlined), mean 
absolute, and mean error of the CT numbers in HU. As can be seen from the values 
in Table 1, the simulations result in a small negative bias in the CT numbers for all 
tube voltage levels.

Figure 4: MECT phantom, measured with 135 kV, used for CT number validation, with a window level (WL)  
of 300 HU and a window width (WW) of 1000 HU.
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Figure 5: CT numbers of the real and simulated MECT phantom images at 135kV. Note that the B 
stands for blood ρ=1.03 g/cm3.

Table 1: CT numbers corresponding to the regions indicated in the MECT phantom of Figure 4. 
The material with the maximum error in CT number is bold and underlined for each tube voltage.  
Note that the B in material 11 and 12 stands for blood with ρ=1.03 g/cm3. The error is defined as 
simulation – measurement.

Material 100 kV 120 kV 135 kV

Measurement 
[HU]

Simulation 
[HU]

Measurement 
[HU]

Simulation 
[HU]

Measurement 
[HU]

Simulation 
[HU]

(1)	 Solid water 8.1 -0.6 3.9 -5.3 4.6 -4.0

(2)	 Adipose -61.4 -74.7 -52.5 -69.7 -48.8 -66.2

(3)	 Brain 43.4 28.0 42.7 26.6 42.3 26.7

(4)	 2 mg/mL I 63.6 54.1 51.6 38.6 48.3 35.4

(5)	 5 mg/mL I 143.9 132.3 114.6 103.7 103.4 90.8

(6)	 10 mg/mL I 267.4 263.5 206.2 203.8 178.0 177.5

(7)	 15 mg/mL I 384.1 385.4 296.5 303.3 258.0 264.1

(8)	 Blood ρ=1.03 54.8 41.8 45.5 38.8 44.8 41.3

(9)	 Blood ρ=1.07 78.1 65.6 70.9 63.7 70.6 68.2

(10)	 Blood ρ=1.1 106.0 97.4 104.7 97.3 106.3 100.3

(11)	 2 mg/mL I + B 107.6 95.6 92.4 82.1 86.5 77.3

(12)	 4 mg/mL I + B 149.6 140.2 127.0 119.6 117.8 111.2

(13)	 50 mg/mL Ca 189.8 169.9 176.3 162.4 171.2 157.7

(14)	 100 mg/mL Ca 335.0 313.7 302.4 281.7 291.6 269.1

(15)	 300 mg/mL Ca 882.9 886.3 776.3 779.6 728.9 732.8

Mean Absolute 
Error [HU]

10.9 10.2 9.4

Mean Error [HU] -10.3 -8.8 -8.1
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Figure 5 shows the measured and simulated CT numbers of the 135 kV case. The 
remaining errors in the CT numbers do not seem to have a correlation, indicating 
the simulation does not introduce any non-linear offset to the CT numbers. Note 
that, as explained before, the linear calibration is determined using a different 
phantom and is applied to all subsequent images.

Figure 6: Modulation transfer function of measured and simulated wires in radial (left) and tangential 
(right) direction for the large focal spot.

The MTFs in the radial and tangential directions can be seen in Figure 6. It can be 
observed that the latter starts dropping when moving out of the CoR in both the 
measured and simulated cases. This is due to the rotation of the system introducing 
more blur further away from the CoR. The frequencies at 10% MTF and their relative 
error for the various FoV positions, directions, and focal spot sizes are listed in Table 2.  
The maximum error is 11.1% and the mean absolute error is 3.4%, showing that the 
spatial resolution characteristics in the simulated CT images are close to those of 
the clinical system.

The SSP of both the large and small focal spot can be seen in Figure 7. It can be 
observed that the resolution loss is higher for the large focal spot, as expected. 
Table 3 shows the frequencies at 10% SSP for measurement and simulation and 
their relative error for both focal spots. The mean absolute error is 3.3%, showing 
that the spatial resolution across slices in the simulated CT images is close to those 
of the clinical system.
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Table 2: Frequency at 10% MTF of the measured and simulated MTF, and the relative error of these 
frequencies in the different directions, positions, and focal spot sizes evaluated. Relative error = 
(simulation – measurement)/measurement * 100%.

Focal spot 
size

Direction Position [cm] Measured 
frequency 
[mm-1]

Simulated
frequency 
[mm-1]

Relative
error
[%]

Large Tangential 7 0.62 0.62 0.3

14 0.57 0.57 1.2

21 0.49 0.51 3.6

Radial 7 0.62 0.65 3.8

14 0.56 0.63 11.1

21 0.37 0.38 2.6

Small Tangential 7 0.72 0.70 -3.4

14 0.64 0.63 -1.5

21 0.55 0.55 0.8

Radial 7 0.77 0.74 -3.3

14 0.70 0.73 3.6

21 0.41 0.39 -5.7

Figure 7: Slice sensitivity profile of measured and simulated wires for both focal spots present in the system.
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Table 3: Frequency at 10% SSP of the measured and simulated SSP, and the relative error of these 
frequencies for both focal spot sizes evaluated. Relative error = (simulation – measurement)/
measurement * 100%.

Focal spot size Measured  
frequency [mm-1]

Simulated  
frequency [mm-1]

Relative error [%]

Large 1.14 1.12 -1.7

Small 1.48 1.55 4.8

Figure 8 shows images of the water phantom used to validate the noise 
characteristics of the simulated images. The red square indicates the ROI used 
for the validation of the noise magnitude. Table 4 shows the results of the noise 
magnitude in terms of standard deviation. The maximum and mean absolute errors 
were 8.5% and 4.9%.

Figure 8: Water phantom used for nNPS validation (140 mA, 135 kV) with a WL of 0 HU and a WW of 
400 HU. The squares indicate the ROIs used to determine the nNPSs.

The ROIs used to validate the frequency content within a slice are also indicated 
in Figure 8, by the red and yellow squares. Please note that the ROIs of the 
measurements have a slight offset in vertical direction, this offset compensates 
for misalignment between the measured and simulated water phantom, to 
ensure that the same location of the phantom was analyzed. The 2D nNPS and 
2D unstructured nNPS of the noise at the center (red square in Figure 8) within a 
slice of the measured and simulated phantom are shown in Figure 9 and Figure 11,  
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respectively. It can be seen that the 2D nNPS and 2D unstructured nNPS are 
isotropic in the center for both measurement and simulation. The difference images 
only show a small overestimation at lower frequencies (white dominant ring) and 
underestimation at slightly higher frequencies (black dominant ring). The 2D nNPS 
and 2D unstructured nNPS of the noise at the periphery (yellow square in Figure 8)  
of the measured and simulated phantom are shown in Figure 10 and Figure 12, 
respectively. These results show that the nNPS is anisotropic at the periphery 
for both measurement and simulation, and that the degree of anisotropy in the 
simulated image is similar to that in the real one. The difference images only show a 
small overestimation in vertical direction (white dominant regions above and below 
the center) and underestimation in horizontal direction (black dominant regions 
left and right from the center). The only difference between the 2D normalized 
nNPSs and 2D unstructured normalized nNPSs is a small low frequency peak in the 
horizontal direction of the 2D nNPS of the periphery, which is not present in the 
2D unstructured nNPS of the periphery. This minor peak is introduced by a small 
cupping artifact in the periphery of the measurement, see Figure 15.

Table 4: Noise magnitude of measured and simulated water phantom of Figure 8. Relative error = 
(simulation – measurement)/measurement * 100%.

Tube voltage
[kV]

Tube current 
[mA]

σ measurement 
[HU]

σ simulation 
[HU]

Relative error 
[%]

100 140 128.2 140.2 8.5

400 66.8 68.8 2.9

120 140 83.8 89.0 5.8

400 47.0 48.1 2.2

135 140 68.4 72.8 6.1

400 39.0 40.4 3.6

Figure 9: 2D nNPS in the center region of measured (left) and simulated (middle) water phantom, and 
the difference between both nNPSs (right). Difference = simulation – measurement.
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Figure 10: 2D nNPS in the periphery region of measured (left) and simulated (middle) water phantom, 
and the difference between both nNPSs (right). Difference = simulation – measurement.

Figure 11: 2D unstructured nNPS in the center region of measured (left) and simulated (middle) water 
phantom, and the difference between both nNPSs (right). Difference = simulation – measurement.

Figure 12: 2D unstructured nNPS in the periphery region of measured (left) and simulated (middle) 
water phantom, and the difference between both nNPSs (right). Difference = simulation – measurement.

Figure 14 shows the radially averaged nNPS and nNPS across slices in the center of 
both the measurement and simulation for the 135 kV and 140 mA case. The mean 
absolute errors of radially averaged nNPSs are summarized in Table 5, which shows 
that the maximum mean absolute error is 8.4% and the average mean absolute 
error is 3.9%. The mean absolute errors of the nNPSs in the slice direction are 
summarized in Table 5, and is on average 6.2% and maximum 8.8%. The plots of the 
other radially averaged nNPSs and nNPSs across slices are depicted in Appendix D.
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Figure 13: Radially averaged center nNPS (left) and nNPS across slices (right), for 135 kV and 140 mA.

Table 5: Difference in measured and simulated nNPS with a slice and across slices

Tube voltage 100 kV 120 kV 135 kV

Tube current 140 mA 400 mA 140 mA 400 mA 140 mA 400 mA

% Mean absolute 
difference within slice

2.2 2.2 2.4 4.9 3.1 8.4

% Mean absolute 
difference across slices

5.6 5.7 5.2 7.3 4.8 8.8

Figure 14 indicates the region from where the line profiles of the water phantom 
for the scatter correction validation are obtained, with the resulting average line 
profiles shown in Fig 15. The line profiles show the effect of the scatter correction, 
resulting in a good match in HU values at the center of the phantom, but with a 
larger remaining error at the sides. As a result, it can be seen that the line profile 
of our simulation is also approximately flat, as expected, and has a maximum 
difference of 15 HU at the edge of the water phantom.

Figure 14: Averaged slices of simulated water 
phantom with indicated ROIs used for obtaining 
the line profiles.
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Figure 15: Line profiles of the measurement with 160 mm collimation, the measurement with 20 mm 
collimation, and the simulation.

Table 6: Frequency at 10% MTF for all simulation simplifications and absolute relative error of this 
frequency compared to the frequency of the full simulation at 10% MTF, for tangential direction.

Focal spot size Subsampling
simplification

Subsampling 
factor

Absolute relative error
at 10% MTF

Time / memory
reduction factor

7 cm 14 cm 21 cm

Large focal spot 1 20.9 18.0 12.1 9

2 7.7 8.5 4.1 2.25

system MTF 1 12.5 11.9 7.6 9

angular 1 2.5 6.0 16.5 3

2 0.4 0.7 1.8 1.5

projection 
averaging

1 15.2 14.5 15.3 3

detector 1 0.4 0.0 0.2 16

2 0.1 0.0 0.0 4

3 0.1 0.1 0.1 1.78

Small focal spot 1 6.9 6.6 3.8 9

2 3.0 3.4 2.2 2.25

system MTF 1 0.6 1.1 0.4 9

angular 1 2.5 10.3 20.1 3

2 0.4 1.5 2.3 1.5

projection 
averaging

1 16.9 12.6 9.7 3

detector 1 0.2 0.0 0.4 16

2 0.0 0.0 0.1 4

3 0.0 0.1 0.1 1.78
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Table 6 and Table 7 show the absolute relative errors between the simplified and 
the fully subsampled simulation of the frequency at 10% MTF for the simulated 
tungsten wire at 7 cm, 14 cm, and 21 cm from the CoR. The absolute relative errors 
for all simplifications are shown for the tangential (Table 6) and radial (Table 7) 
direction. In the last column of both Table 6 and Table 7, the time and memory 
reduction factor are listed (the reduction factor is the same for time and memory, 
because the number of calculations that need to be performed scales linearly with 
the amount of memory in our application).

Table 7: Frequency at 10% MTF for all simulation simplifications and absolute relative error of this 
frequency compared to the frequency of the full simulation at 10% MTF, for radial direction.

Focal spot size Subsampling
simplification

Subsampling 
factor

Absolute relative error
at 10% MTF

Time / memory
reduction factor

7 cm 14 cm 21 cm

Large focal spot 1 21.1 25.2 2.8 9

2 11.2 10.4 1.7 2.25

system MTF 1 12.7 16.3 3.4 9

angular 1 0.1 0.1 0.1 3

2 0.1 0.0 0.0 1.5

projection 
averaging

1 0.6 1.0 0.4 3

detector 1 -0.6 2.1 0.1 16

2 0.2 0.3 0.1 4

3 0.3 0.1 0.1 1.78

Small focal spot 1 5.5 7.7 0.8 9

2 3.7 3.8 0.5 2.25

system MTF 1 1.8 0.0 1.3 9

angular 1 0.0 0.1 0.0 3

2 0.1 0.0 0.0 1.5

projection 
averaging

1 1.1 1.3 0.1 3

detector 1 1.2 1.3 0.2 16

2 0.1 0.2 0.0 4

3 0.0 0.1 0.0 1.78

The differences in the resulting MTFs are, for most cases, subtle, except for the case 
of not subsampling the focal spot or angular projections. The detector subsampling 
seems to have very little effect in both directions.
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Table 6 and Table 7 also show the absolute relative errors in the frequency at 10% MTF 
between using the system MTF (as described in Section Simulation simplifications) 
and the fully subsampled focal spot simulation for the simulated tungsten wire at  
7 cm, 14 cm, and 21 cm from the CoR. The results clearly show that using the system 
MTF improves the results when assuming the focal spot is a point source, since it 
reduces the error compared to the full simulation by approximately 30-40%. The 
results also show that averaging each angular projection with the subsequent 
angular projection gives worse results than when simplifying to only using a single 
angular projection. Therefore, to have an error of 17% or less in the frequency at 10% 
MTF compared to the full simulation, all subsamples can be reduced to 1, except for 
the angular projections, which should still be 2. In this case the maximum error is 
16.3% and the time and memory consumption could be reduced by a factor of 216.

Figure 16: Noiseless simulations of a lesion at 14 cm from the CoR. (Left) Full simulation (WW: 100,  
WL: 85). (Middle) Simplified simulation, 1 source sample using the MTF measured in the CoR, 2 angular 
subsamples and 1 detector sample, time and memory consumption potentially reduced by a  
factor 216 (WW: 100, WL: 85). (Right) Difference between the two simulations (WW: 40, WL: 0).

Figure 17: (Left) Line profile of the full and simplified simulation of the lesion in Figure 16. (Right) 
Difference between simplified simulation and full simulation (simplified simulation – full simulation).
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The influence of these simplifications (resulting in 16.3% error) can be observed 
in Figure 16. Here a small lesion is imaged with full subsampling and simplified 
subsampling (1 source sample using the system MTF, 2 angular subsamples, and 
1 detector sample) at 14 cm from the CoR, to show its influence. The difference 
image shows a minor ring but no other structural differences, indicating minimal 
difference between the two simulations after reconstruction. The same can be 
observed from the line profiles of these two reconstructed simulations plotted in 
Figure 17. However, for each application, the desired accuracy could differ, so the 
user should decide what is an acceptable error margin for their application.

Computation time
All simulations were performed on a Linux system with 128 GB RAM, AMD 
Ryzen Threadripper 1950X 16-core CPU, and a 48 GB Nvidia RX A600 GPU. The 
ray tracing and sinogram calculations were performed on the GPU. All image 
corruptions were performed on the CPU (due to the sinogram size). Generating 
all projections of 896×320 pixels for the MECT phantom, with a voxel array size 
of 50×1600×1600 voxels of the same voxel size as those used for validation and 
consisting of 15 different materials (used for CT number validation), took ~40 hours 
on this workstation. Please note that the time reduction factor reported with the 
simplification results is theoretical as some minor operations are independent of 
sinogram size and the calculations of an entire set of projections are done in batches 
due to memory constraints. As an example, by reducing the sub-sampling of the 
focal spot to 1, angular projections to 2, and detector pixels to 1, the simulation 
time for this same simulation results in ~35 minutes.

Discussion

In this work a scanner-specific CT simulation was developed and validated, 
combining physics-based simulations for the position-dependent effects and the 
shift-invariant image corruption methods described by Saunders et al. [58] for the 
detector effects. Therefore, minimizing the system information needed from the 
vendor and making it possible to perform scanner-specific CT simulations with 
only system-specific geometry information. In addition, the impact of simplifying 
the simulation process, both in terms of resulting realism and computer power 
requirements, was evaluated. To include all effects of the real CT system resulting 
in spatial resolution loss, the shift-variant impact of the finite focal spot size and 
of gantry rotation are modelled. The simulator is shown to generate images that 
match the characteristics of the real images to within an average of 3.4% and 3.3% 
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in terms of spatial resolution within and across image slices, respectively. In terms 
of noise characteristics, these matched in terms of noise magnitude (standard 
deviation) and noise frequency content (nNPS) within and across slices to within 
4.9%, 3.9%, and 6.2%, respectively. The effect of simulation simplification was 
assessed, and the results showed that for general applications most simplifications, 
except for the angular simplification, do not cause a major decrease in realism 
of the simulated image (maximum error in frequency at 10% MTF of 16.3%). 
Therefore, the time and computer power necessary could be reduced for many 
applications in which this level of realism is sufficient. This would aid studies that 
aim to use large virtual clinical trials, since it will become feasible to generate very 
extensive datasets within a reasonable time frame. Also, studies about processing 
or reconstruction algorithms could benefit as it becomes more feasible to cover 
large multi-dimensional parameter spaces for (first stage) testing, after which one 
could choose for more realistic simulations for refinement of solutions, if needed. 
However, the purpose of the study must be considered to make an informed 
decision on the level of realism that is desired.

During the development some assumptions had to be made. One of them being 
the assumption of stationary behavior of the detector MTF and NPS across the 
entire detector. The NPSs were only measured at the detector center, since the 
curvature of the detector is such that the normal direction of each element 
is pointing to the source. Only in the direction of the rows, where there is no 
curvature, the normal is not pointing directly to the source, however the maximum 
angle is 10° and therefore assumed to have a negligible effect. Also, the MTF 
was only measured in the detector row direction (since in the other direction 
the MTF is affected by the gantry rotation), then assuming rotational symmetry 
between all directions. In addition, the resolution characteristics are dominated 
by the focal spot size and finite exposure time during the angular motion of the 
CT gantry, justifying the assumption of stationary and symmetric MTF across the 
detector. Also, the residual scatter after correction was neglected. As shown, this 
simplification results in a CT number difference of approximately 15 HU at the edge 
of a 320 mm water phantom with the widest x-ray beam collimations. The QE of 
the detector is based on the theoretical energy absorption of the nominal detector 
active layer thickness. However, even with these assumptions, the validation results 
point to the appropriateness of the simulations in terms of spatial resolution, noise 
magnitude and frequency content, and, especially, their shift variance compared to 
a real clinical CT system.
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The developed scanner-specific CT simulation may function as a tool to facilitate 
virtual clinical trials to test new reconstruction algorithms and post-processing 
algorithms. The simulator could additionally be used to also test new components 
like bowtie filters or flat filters, different detectors, or a different focal spot size, as 
well as new acquisition protocols.

Conclusion

A scanner-specific CT simulation was developed, implemented, and validated. 
The validation of the performed simulations showed that it can generate images 
comparable to those obtained using a real clinical CT system. An analysis on 
simulation simplification also showed that for general applications, time and 
computer power can be spared without substantial loss of realism. The simulator 
can generate realistic scanner-specific CT images, which will aid the development 
of new reconstruction and post-processing algorithms by opening the possibility 
for virtual clinical trials.
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Supplementary Material

Appendix A – General overview pipeline

The general simulation pipeline in Figure A1 gives an overview of all information or 
measurements required per step, so the same method can be applied for simulating 
other CT systems.

Figure A1: General pipeline presenting all required information or measurements per simulation step.
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Appendix B - Modulation Transfer Functions

A tungsten edge (TX5, IBA Dosimetry, Schwarzenbruck, Germany) was used in 
combination with the slanted edge method  [66] to measure the edge spread 
function in the row direction of the detector. Since this direction does not 
experience resolution loss due to rotation and obtaining linear domain data with 
the gantry remaining static was not possible. To determine the detector MTF, the 
tungsten edge was placed as close as possible to the detector entrance surface  
(8 cm away), to minimize the focal spot size effect.

The function used to fit the MTF is based on the Lorentzian fit of Siewerdsen et 
al. [67], defined as follows:

  (1) 

𝐼𝐼"𝑓𝑓!,#, 𝑥𝑥$, 𝑦𝑦%, 𝜃𝜃&( = *𝑒𝑒 ∗ 𝑁𝑁' ∗ 𝑄𝑄𝑄𝑄' ∗ exp3−*𝜇𝜇(,'𝑇𝑇(,)!,#,*$,+%,,&
(

7
'

 

 

  (2) 

𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) =
1

𝑀𝑀- ∗ 𝐾𝐾 ∗ 𝐿𝐿-
**** *𝐼𝐼"𝑓𝑓!,#, 𝑥𝑥$, 𝑦𝑦%, 𝜃𝜃&(

.

#/0

.

!/0

1

&/0

2

%/0

2

$/0

 

  (3) 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 ∗ 𝑚𝑚 + 𝑏𝑏'3'45678$4	87$:'  

  (4) 

𝑁𝑁(𝑢𝑢, 𝑣𝑣) = √𝑁𝑁𝑁𝑁𝑁𝑁 ∗ ℱ{𝑛𝑛(µ = 0, 𝜎𝜎 = 1)} 

  (5) 

𝐼𝐼87$:'(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) = 	𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) +	P𝑀𝑀𝑀𝑀"𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝜃𝜃)(

∗ Q
1

𝜎𝜎(ℱ;0{𝑁𝑁(𝑢𝑢, 𝑣𝑣)})
∗ "ℱ;0{𝑁𝑁(𝑢𝑢, 𝑣𝑣)} − 𝜇𝜇(ℱ;0{𝑁𝑁(𝑢𝑢, 𝑣𝑣)})(R 

 (6) 

  

Min
!∈ℝ

(𝐻𝐻𝐻𝐻5>'76'5$4!3 − 𝑎𝑎 ∗ (𝐻𝐻𝐻𝐻:$(?3!5$78 + 𝑏𝑏@!5'6))- 

 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) =
1

1 + 𝑎𝑎 ∗ 𝑓𝑓 + 𝑏𝑏 ∗ 𝑓𝑓- + 𝑐𝑐 ∗ 𝑓𝑓A + 𝑑𝑑 ∗ 𝑓𝑓B + 𝑒𝑒 ∗ 𝑓𝑓C
 

 

� (B.1)

where f is the spatial frequency and a, b, c, d and e are the optimizable parameters of 
the function.

Figure B1: Measured data and fit of the detector MTF.

The data points and fitted MTF are shown in Figure B1. The R2 of the fit is listed in 
Table B1. Please note that the values of the x-axis are not displayed, and the fitted 
parameters are not reported, since these are confidential.
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The same measurements have been performed at the center of rotation (CoR) to 
determine the system MTF for both focal spots present in the system. The data 
points and fitted MTF curves are shown in Figure B2. The resulting R2 of the fits 
are listed in Table B1 for both focal spot sizes. Please note that the values of the 
x-axes are not displayed, and the fitted parameters are not reported, since these 
are confidential.

Figure B2: Measured data and fit of the system MTF of both focal spots present in the system.

Table B1: R2 values for fits.

R2

Detector MTF 0.998

System MTF (small focal spot) 0.996

System MTF (large focal spot) 0.998
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Appendix C – Subsampling Experiments

The number of subsamples required for the focal spot (LxL), detector elements 
(MxM), and angular projections (K) were determined experimentally. Please note 
that the values of the x-axes are not displayed, since these are confidential. 

To determine the number of focal spot subsamples, a tungsten edge (TX5, IBA 
Dosimetry, Schwarzenbruck, Germany) was placed at the Center of Rotation (CoR) and 
imaged using the large focal spot of the system. This tungsten edge was also simulated 
at the CoR. The MTF in the sinogram was determined for both directions and for both 
measurement and simulation. Experimental validation showed that the optimal 
number of focal spot subsamples per direction is L=3, see Figure C1 and Figure C2.

Figure C1: MTF in the row direction of the detector with, from left to right 2, 3, and 4 subsamples in 
each direction of the focal spot.

The number of subsamples for the detector elements was determined by placing the 
tungsten edge as close as possible to the detector entrance (8 cm away), to minimize 
the focal spot effect, and imaging it with the small focal spot present in the system. 
The MTF in the sinogram was determined only for the direction across detector rows 
since the other direction has the angular rotation effect. Experiments showed that 
the optimal number of detector subsamples per direction is M=4, see Figure C3, since 
lower subsamples result in the minimum of the MTF being at a too low frequency.

To determine the number of angular projections subsamples the tungsten edge 
was again placed as close as possible to the detector entrance (8 cm away) and 
imaged with the small focal spot. The MTF in the sinogram was determined only 
for the direction across detector columns, as this is the only direction in which the 
resolution loss is influenced by the angular rotation. Experimental validation showed 
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that the optimal number of angular projection subsamples is K=3, see Figure C4,  
since higher subsampling does not show significant improvement.

Figure C2: MTF in the column direction of the detector with, from left to right 2, 3, and 4 subsamples 
in each direction of the focal spot.

Figure C3: MTF in the row direction of the detector with, from left to right 3, 4, and 5 subsamples in 
each direction of the detector pixels.

Figure C4: MTF in the column direction of the detector with, from left to right 2, 3, and 4 subsamples 
for each angular projection.
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Appendix D – Noise Power Spectra

The radially averaged nNPS and nNPS across slices in the center of both the 
measured and simulated water phantom of Figure 8 of the manuscript, at tube 
voltage levels of 100 kV, 120 kV, and 135 kV and tube current levels of 140 mA and 
400 mA are shown in Figure D1-D5. Please note that the 135 kV and 140 mA case is 
not shown, since it is already shown in Figure 13 of the manuscript.

Figure D1: Radially averaged center nNPS (left) and nNPS across slices (right), for 100 kV and 140 mA.

Figure D2: Radially averaged center nNPS (left) and nNPS across slices (right), for 100 kV and 400 mA.

Figure D3: Radially averaged center nNPS (left) and nNPS across slices (right), for 120 kV and 140 mA.
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Figure D4: Radially averaged center nNPS (left) and nNPS across slices (right), for 120 kV and 400 mA.

Figure D5: Radially averaged center nNPS (left) and nNPS across slices (right), for 135 kV and 400 mA.
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ABSTRACT

Background
Computer algorithms that simulate lower-dose Computed Tomography (CT) images 
from clinical-dose images are widely available. However, most operate in the projection 
domain and assume access to the reconstruction method. Access to commercial 
reconstruction methods may often not be available in medical research, making image-
domain noise simulation methods useful. However, the introduction of non-linear 
reconstruction methods, such as iterative and deep learning-based reconstruction, 
makes noise insertion in the image domain intractable, as it is not possible to determine 
the noise textures analytically.

Purpose
To develop a deep learning-based image-domain method to generate low-dose  
CT images from clinical-dose CT images for non-linear reconstruction methods.

Methods
We propose a fully image domain-based method, utilizing a series of three 
convolutional neural networks (CNNs), which, respectively, denoise clinical-dose  
CT images, predict the standard deviation map of the low-dose image, and generate 
the noise power spectra of local patches throughout the low-dose image. All three 
models have U-net-based architectures and are partly or fully 3-dimensional. As 
a use case for this study and with no loss of generality, we use paired low-dose 
and clinical-dose brain CT scans. A dataset of 326 paired scans was retrospectively 
obtained. All images were acquired with a wide-area detector clinical system 
and reconstructed using its standard clinical iterative algorithm. Each pair was 
registered using rigid registration to correct for motion between acquisitions. The 
data was randomly partitioned into training (251 samples), validation (25 samples), 
and test (50 samples) sets. The performance of each of these three CNNs was 
validated separately. For the denoising CNN, the local standard deviation decrease 
and bias were determined. For the standard deviation map CNN, the real and 
estimated standard deviations were compared locally. Finally, for the noise power 
spectra CNN, the noise power spectra of the synthetic and real low-dose noise were 
compared inside and outside the skull. Two proof-of-concept denoising studies 
were performed to determine if the performance of a CNN- or a gradient-based 
denoising filter on the synthetic low-dose data vs. real data differed.
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Results
The denoising network had a median decrease in noise in the cerebrospinal fluid 
by a factor of 1.71 and introduced a median bias of +0.7 HU. The network for 
standard deviation map estimation had a median error of +0.1 HU. The noise power 
spectrum estimation network was able to capture the anisotropic and shift-variant 
nature of the noise structure by showing good agreement between the synthetic 
and real low-dose noise and their corresponding power spectra. The two proof of 
concept denoising studies showed only minimal difference in standard deviation 
improvement ratio between the synthetic and real low-dose CT images with the 
median difference between the two being 0.0 and +0.05 for the CNN- and gradient-
based filter, respectively.

Conclusion
The proposed method demonstrated good performance in generating synthetic 
low-dose brain CT scans without access to the projection data or to the 
reconstruction method. This method can generate multiple low-dose image 
realizations from one clinical-dose image, so it is useful for validation, optimization, 
and repeatability studies of image-processing algorithms.
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Introduction

In accordance with the “as low as reasonably achievable” (ALARA) principle [76,77], 
low-dose CT (LDCT) scans should be performed whenever possible. In these 
scans, the signal-to-noise ratio (SNR) is relatively low, making their interpretation 
challenging. To overcome this problem the development of denoising methods 
to increase the SNR and improve image interpretability has been a growing 
research topic. Efforts in different directions have been made to denoise low 
dose images. Most of these efforts focus on deep learning-based denoising 
methods, utilizing neural networks to reduce image noise with as little structure 
loss as possible [35,36,78–81]. However, there are also methods that use statistical 
methods to reduce noise in image data [38,55].

In many cases, studies on denoising methods require pairs of low-dose CT (LDCT) 
and matching clinical-dose CT (CDCT) scans or other types of ground truth. 
This data can be used to, e.g., train deep learning-based methods or test their 
robustness in low dose situations but is also helpful for quantitative validation 
of the performance of the denoising techniques. However, paired sets of LDCT 
and CDCT scans, or LDCT in general, are not widely available since they are not 
commonly acquired during clinical work. Also, the validation of new algorithms 
for abnormality detection in LDCT requires LDCT data. These LDCT scans could be 
obtained using phantoms, but phantoms have limited anatomic variability and 
realism, limiting the generalizability of studies using them. Therefore, it is beneficial 
to be able to generate LDCT images from existing CDCT patient images since this 
would enlarge the available LDCT data, since CDCT patient images are normally 
available in larger quantities compared to LDCT patient images.

Several low-dose simulators have been developed that generate LDCT images 
from CDCT ones, either operating in the projection domain or the image domain. 
Several of the former use physics-based noise models in unprocessed projection 
domain  [39,40,82,83]. However, in most research settings there is often no access 
to the unprocessed projection data, since vendors apply specific processing to 
their projection data, whose details are not disseminated. One could overcome this 
problem by forward projecting the available images to recreate the unprocessed 
projection data. However, this would require information about the system 
geometry and some of the system components, such as the (bowtie-)filter 
thickness. This information is, again, often not publicly available and, when possible, 
very challenging and time-consuming to obtain by experimental measurements. 
Even with access to this information, knowledge about the specific processing of 
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the vendor is still needed to be able to reconstruct the resulting projection data. 
These practical reasons limit the applicability of such projection domain methods. 
Therefore, in these situations, it is desirable to simulate LDCT images directly in the 
image domain.

Examples of image-domain methods are the noise generators of Niu et al.  [84], 
Britten et al. [85], and Divel et al. [41]. The work of Niu et al. uses deep learning to 
generate LDCT scans; however, it still requires access to the reconstruction method if 
one wants to generate multiple LDCT realization from one CDCT. Since their method 
needs a new CDCT noise realization as input for the LDCT generation, which could 
be obtained via sinogram simulations and reconstruction. Britten et al. generate 
LDCT images by adding white noise that is convolved with a kernel determined 
using LDCT scans. The method does not require access to the reconstruction 
method at the time of utilization. However, the convolution kernel is shift-invariant, 
so the noise's position and image-content dependency are not captured. The 
work of Divel et al. determines the local variance and frequency content of the 
LDCT noise analytically. However, this method can only be applied with linear 
reconstruction methods, such as Filtered Back Projection (FBP), if the filter is known. 
In routine clinical practice, FBP has been primarily replaced by more advanced 
techniques such as regularized iterative- or deep learning-based reconstruction 
methods  [86,87]. This makes analytical determination of the local variance and 
frequency content of the noise impossible, therefore these reconstruction methods 
are called non-linear in practice. In either case, even for truly linear reconstruction 
methods, analytical determination of these noise properties is impossible without 
in-depth knowledge on the reconstruction algorithm, such as the filter used and 
details on other processing steps.

Therefore, in this work, we present a fully image domain-based LDCT image 
simulator, for situations in which there is no access to projection-domain data, no 
knowledge about system geometry and components, and no in-depth knowledge 
on the reconstruction method. Therefore, our method should be seen as an 
alternative in this limited, but in most research settings realistic, situation and not 
as an improvement to projection-domain methods. The simulator aims to generate 
noise with shift- and content-variant magnitude and frequency, as would result 
from linear and non-linear reconstruction methods, without having access to 
information about the method itself. Our use case for this study is paired clinical-
dose and low-dose brain CT scans, since images of this anatomy acquired with the 
same protocol were the only ones available to us in sufficient numbers.
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Materials & Methods

The proposed method consists of three convolutional neural networks (CNNs) to 
predict the correct characteristics of the desired LDCT images. The first CNN denoises 
the CDCT image such that an almost noiseless image is obtained. The second network 
estimates the standard deviation (σ) for each voxel, i.e., voxelwise, resulting in a  
σ map of the LDCT noise (σLD map). The third and final CNN estimates the shift- and 
content-variant noise power spectra (NPS) of the LDCT noise in local patches. For 
linear reconstruction methods, such as FBP, using neural networks to predict the  
σ map and the local NPS is not needed since this can be achieved analytically [41].

Figure 1: General overview of the proposed method showing the three CNNs and the use of the 
pipeline for generating synthetic LDCT images.

To create the synthetic LDCT image, a random white noise image is transformed to 
a corresponding LDCT noise image using the estimated local low dose NPSs and a 
σLD map. This ensures the creation of the correct noise correlation based on content 
and location in the field of view (FOV), and the correct noise magnitude based on 
content. A synthetic LDCT image is then obtained by adding this LDCT noise image 
to the noiseless image generated by the first network. Multiple realizations of the 
LDCT image can be generated by using different random white noise images. A 
schematic overview of the proposed method is shown in Figure 1.

Datasets
In this work, we use CDCT and LDCT brain images of the same patient. Ethical 
approval for the retrospective use of this data was obtained from the local ethical 
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review committee, with patient informed consent waived due to the use of only 
fully anonymized and already-existing clinical data. The images were obtained 
from the first two scans of a brain dynamic CT perfusion protocol routinely 
used in patients with suspected stroke. In this perfusion protocol, a clinical-
dose acquisition is performed, followed by a series of low-dose scans after the 
intravenous injection of contrast agent. This clinical-dose scan is clinically used for 
offset correction of the perfusion curves. The clinical-dose and first low-dose scan 
are assumed to have been acquired before arrival of the contrast agent, although 
this assumption is sometimes violated in our data. All available patient data that 
followed this protocol and was acquired between 01/01/2019 and 03/30/2020 was 
obtained retrospectively from the electronic patient archive. Only the data with 
similar acquisition details were used to ensure consistency in the noise textures. 
The acquisition details of the scans used are listed in Table 1. All scans were 
acquired using the Aquilion ONE ViSION Edition CT system (Canon Medical Systems, 
Otawara, Japan) installed at Radboud University Medical Center, Nijmegen, the 
Netherlands. Each LDCT and CDCT image consists of 320 slices (512×512 pixels) 
covering 220 mm × 220 mm with a thickness of 0.5 mm reconstructed using an 
iterative algorithm (AIDR 3D Iterative Reconstruction, Canon Medical Systems) [32].

The image pairs were registered by means of rigid registration using the Elastix 
toolbox [25]. The registration used was multi-resolution registration (4 resolutions), 
using Euler transform initialized in the center of gravity. The optimizer used was 
standard gradient descent and the metric was advanced mean squares. The used 
parameter file can be found in the online supplemental material. Only the head 
portion of the images was registered since the head rest is included in the FOV, 
but the head could have moved relative to it. Therefore, a mask was created for all 
images by assuming all CT numbers larger than -200 HU were part of the head. This 
assumption leads in some cases to the false positive inclusion of a small group of 
voxels that are part of the head rest, but the registration was not affected in these 
cases. In total, 326 pairs of CDCT and LDCT brain scans were available. From this 
dataset, 251 pairs were used for training, 25 pairs for validation, and 50 for testing 
the CNNs, with the partitioning done randomly at the patient level.

Table 1: Acquisition protocol used for the clinical-dose and low-dose brain CT scans used in this study.

Scan Tube voltage 
[kV]

Tube current 
[mA]

Exposure time 
[s]

Reconstruction 
method (kernel)

Filter type

CDCT
80

400
0.5

AIDR 3D STD 
(FC43)

SMALL
LDCT 200
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Denoising network
We assumed that the noise contribution in the CDCT image is additive, i.e., a CDCT 
image can be decomposed by:
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where GT is the ground truth noiseless attenuation image and nCD is the image noise 
introduced by the noise in the projection domain and the underlying reconstruction 
algorithm. Therefore, subtracting the noise from the CDCT would give a noiseless 
image. A similar assumption for the LDCT image yields the decomposition:
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where nLD here is the image noise in the low-dose measurements.

The denoising network D is based on the method proposed by Lehtinen et al. [88]. 
They present a method to denoise images without the need for a noiseless GT 
during training. Based on their work, we can assume that the CDCT and LDCT 
images have the same underlying GT image, and that their noise realizations are 
independent, thus making the recovery of the GT possible by minimizing the mean 
squared error or the mean absolute error between the CDCT and LDCT.

Due to memory constraints, it is difficult to denoise an entire volume at once. 
Therefore, we simplify the problem and denoise the volume slice-by-slice. However, 
the noise correlations also span across the axial dimension and last for, in most 
cases, 7 or fewer slices in both directions. To provide the network with the required 
information from all three spatial directions, a slab of 15 axial CDCT slices (denoted 
as Y), with the middle one being the slice of interest, is provided to the network. If 
the slice of interest is in the first or last 7 slices of the volume, empty slices are added 
to the slab to ensure that there are 15 slices in a slab. The target is the corresponding 
LDCT slice. An additional 32 voxels are zero-padded to each side in the axial plane 
to prevent edge artifacts in the output of the network. So, for denoising the entire 
CDCT volume image, the network has to be ran 320 times (number of slices), since 
the denoising is done per individual slice. Figure 2 shows the architecture of the 
used partly 3D U-Net, the network architecture is based on the work of Adler et 
al.  [36]. The main differences with the architecture used by Adler et al., are the 
partly-3D nature of our network, the use of instance normalization instead of batch 
normalization, the use of bilinear up sampling instead of pixel shuffle, and a shorter 
bottleneck. These differences were introduced since they are more suitable for our 
purpose. Please note, all convolutions have a stride of 1 and were so-called ’same’ 
convolutions with zero padding, and all pooling layers have a stride of 2.
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The CT numbers of the input data, in Hounsfield Units (HU), were scaled as follows:
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based on the dynamic range present in the images. A mask of the reconstructed FOV 
is applied to Y before passing it through the network because the reconstructed FOV 
is circular instead of rectangular. Before calculation of the loss, the reconstruction 
mask is applied again, and the outer 32 voxels introduced for the zero padding are 
removed from the network output. The loss function was defined to be an L1-loss:
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where θ are the trainable parameters of the denoising network D, and X is the 
LDCT slice. The L1-loss was chosen because this loss is less susceptible to large 
errors in small areas than the L2-loss. The network was trained using the Adam 
optimizer  [89] with a batch size of 4 due to memory constraints. The optimizer’s 
β1 and β2 parameters were set to 0.5 and 0.9, respectively, and the weight decay 
parameter was set to 0. The learning rate α was initially 2∙10-4 and was decreased 
every 2 epochs with a factor γ=0.9. No warm up was used. The network was trained 
for 200 epochs since convergence was reached within these 200 epochs. For each 
sample in each epoch, a single randomly chosen slab of 15 slices per sample was 
used for training.

Standard deviation map network
The GT obtained for each sample, with network D, provides access to nCD and during 
training also to nLD, as given by Equations 1 and 2. The ground truth or measured 
σLD map, for each nLD noise sample is obtained by calculating the standard deviation 
for each individual voxel using a 5×5×5 voxel moving window. All voxels with 
a value higher than a threshold of 5σ are set to zero since these values are more 
likely to originate from registration mismatches than real noise. This 5σ threshold is 
determined in a 10×50×50 voxel volume of interest (VOI) in the center of nLD.

Due to memory constraints, it is difficult to estimate the σLD map for the entire LDCT 
image volume at once. Therefore, we simplify the problem and estimate the σLD 

map slice-by-slice. To estimate the σLD map, the same U-Net architecture (Figure 2),  
denoted as S, and input CDCT 15-slice slabs Y from Section 2.2, are used. The 
slab Y is scaled using Equation 3, before passing it through S. During training the 
measured σLD map is scaled using Equation 5:
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where dividing by 40 scales the highest values to approximately 1 and the values 
inside the skull to approximately 0.4. Again 32 voxels are zero-padded, and the 
circular reconstruction masking was applied to the input slabs as that described in 
Section 2.2. This time, the loss function was a L2-loss:
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where ψ are the trainable parameters of the network S. The training of the network 
was performed with the same parameters as those described in Section 2.2, 
except that the learning rate α was initially 1∙10-4, and the network was trained for 
100 epochs.

NPS network
Although the noise structure, i.e., the NPS, differs between nCD and nLD, one could 
assume that the transformation from one to the other is constant since the noise 
level in projection domain should be similar for all LDCT images and for all CDCT 
images. Hence, it should be possible to learn this transformation. However, the 
noise correlation is shift and signal variant, i.e., the correlation between the noise 
in a specific voxel and in its surrounding voxels is dependent on where in the FOV 
the voxels are located and what the tissue content is in those voxels. For example, 
the noise close to the isocenter of the system is mostly isotropic, while it displays 
a strong directionality closer to the edges. Also, the noise correlation is broader, 
i.e., spans a larger distance, in homogeneous areas while it is reduced in areas that 
include sharp tissue transitions. Therefore, it is not possible to use a single NPS to 
characterize the entire image. Hence, the transformation from NPSCD to NPSLD is 
learned and applied patch-based, which also alleviates memory concerns. The size 
of these patches was set to 64×64×64 voxels, from which the local NPS was obtained 
by calculating the squared magnitude of the discrete 3D Fourier transform. The 3D 
Fourier transform is used since the noise is not only correlated within each 2D slice, 
but also across slices.

A 3D U-Net based CNN was trained to learn the transformation from the NPSCD 
patches to the NPSLD patches. The architecture of this network, F, is depicted in 
Figure 3. All convolutions had a stride of 1 and were so called ’same’ convolutions 
with reflection padding, and all pooling layers had a stride of 2.
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Before predicting the NPS, a set of three masks was applied to the patch in the image 
domain to remove any residual registration errors. The first mask is for the circular 
FOV, the second mask excludes the skull, and the last mask excludes the head rest. 
The FOV mask was binary eroded with a 9×9×9 voxel VOI since the registration 
sometimes moved the FOV causing rings just inside the FOV. The skull mask was 
obtained by setting the threshold to 100 HU in the denoised CDCT image i.e., the GT. 
The head rest mask was obtained by assuming that all values between -900 HU and 
-200 HU in the denoised image correspond to the head rest. The skull mask and head 
rest mask are both eroded with a 5×5×5 voxel VOI to ensure the skull and head rest 
are fully removed. The final combined mask is obtained by subtracting the skull and 
head rest mask from the FOV mask, a sample from the test set can be seen in Figure 4,  
together with the nCD before and after applying the mask.

Figure 4: Test set sample CDCT image (left), corresponding binary mask for removing residual error of 
registration (middle), and test set sample CDCT image after applying binary mask (right).

The values of the NPS determined after applying these masks were scaled before 
passing them through the network as follows:
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where  is the average value of the NPS. Division by the average value is used to 
scale the NPSs to the same magnitude, which should aid the network in learning the 
mapping from CDCT noise NPS to LDCT noise NPS. An additional 8 voxels were zero-
padded to each side of NPSCD to prevent edge artifacts in the output of the network. 
These 8 voxels were removed from the network output. During training, more 
weight was given to the high frequencies, since these values are smaller and will 
thus contribute less to the overall loss. Equation 8 describes the weighting function:
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where u, v, and w are the relative frequencies in all three spatial directions, ranging 
from -1 to 1. The loss function was L2-loss, defined by:
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where ф are the trainable parameters of the network F.

Again, the network was trained using the same parameters as the other two 
networks, but with a learning rate α  initially set to 3∙10-5, which was decreased 
every 3 epochs with a factor γ=0.33. The network was trained for 100 epochs, every 
epoch one patch per sample was used for training. This patch was in a randomly 
chosen location, for every epoch, the only constraint is that at least one voxel of the 
patch has the be inside the combined mask, see Figure 4.

Low-dose CT Image Simulation
As mentioned above, the proposed method to simulate synthetic LDCT images 
consists of three CNN. The first CNN denoises CDCT per slice, to obtain a fully 
denoised CDCT volume, GT according to Equation 1. With this estimated GT and 
CDCT it is possible to obtain nCD (Equation 1). Using the three CNNs described above, 
a synthetic LDCT is obtained by a fully automated pipeline that does the following:

1.	 A random white noise volume, the same size as CDCT, with zero mean and 
unit variance is generated.

2.	 Network F is used to estimate the NPSLD per patch, with a patch overlap on 
each side. The patch sizes were chosen to be 64×64×64 voxels, and the patch 
overlap was set to 25%.

3.	 Due to the Hermitian property of the Fourier transform, NPS values at 
corresponding positive and negative frequencies must be equal, which is 
not necessarily the case for the output of network F. Hence, the values at 
corresponding positive and negative frequencies are averaged to have a 
symmetrical NPS.

4.	 The estimated NPS are applied to the white noise image patch-by-patch by 
multiplication in the frequency domain.

5.	 The overlapping voxels are averaged using a trapezoidal weighting function (ω), 
in which the weights always add up to unity, similar to the work or Divel et al. [41]:
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where n is the current voxel, M is the number of voxels that overlap, and P 
is the patch size. Note that the patches at the border need to have a larger 
overlap to fit the FOV size of 320×512×512.

6.	 The colored noise patches are scaled to each have zero mean and unit variance.
7.	 The estimated σLD map is used to scale the noise in each location to the correct 

magnitude, by means of multiplication.
8.	 To obtain the synthetic LDCT image the generated nLD is added to the GT.

Validation
All three simulation steps were validated separately. The denoising network, Dθ, was 
validated by determining the ratio of the standard deviations of the network output 
GT to that of CDCT image, denoted σimprove, and by validating if the removed noise 
has zero mean i.e., if a bias was not introduced. To calculate σimprove, the standard 
deviations of the CDCT image and the GT were evaluated in the cerebrospinal fluid 
(CSF) of the 80 central slices, since this was considered to be the most homogeneous 
area in brain CT images. The CSF was identified by thresholding the denoised image 
between -10 HU and 40 HU, followed by binary eroding with a 9×9×9 voxel VOI, and 
is shown in Figure 5. The bias of the noise was determined for the 80 central slices 
in an 80×80 VOI in the approximate center of the brain, avoiding the nasal cavity 
and eye sockets.

Figure 5: CDCT image with the dark area in the center of the brain being CSF, WL/WW: 50/100 (left) 
and corresponding CSF mask after erosion (right).
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To assess the performance of the standard deviation network, Sψ, the ROIs used for 
verifying the bias of the denoising network above were used here. For the measured 
σLD map and estimated σLD map, the mean value inside the VOI was calculated and 
compared to that of the test set.

To validate if the correct noise structure is present in all three spatial dimensions, 
different normalized NPSs (nNPSs) from within a 64×64×80 voxel VOIs were 
calculated. Within this VOI, the average of the 2D nNPS within each of the 80 slices 
of 100 different noise realizations were used to validate the axial noise structure. 
For the noise structure in the axial direction (across slices), the 1D nNPS was 
determined along the 80 voxels for all voxels in one realization of the VOI.

Since the aim of the proposed method is not to outperform other methods, but 
simply to present an alternative to methods that need access to the projection 
data and/or the reconstruction algorithm, there is no comparison made to these 
methods. Instead, the quality of the synthetic LDCT volumes was tested by 
performing two proof-of-concept denoising studies. In the first study, a CNN 
with identical architecture and training details as the denoising network, D, was 
trained to denoise synthetic LDCT images. The targets for the network were the 
corresponding CDCT images. The training, validation, and test sets consisted of 
the synthetic LDCT images obtained during inference of the proposed method. 
The sets were partitioned in the same way as for the training of the three networks 
of the proposed method, i.e., 251 images for training, 25 for validation, and 50 for 
testing. The images were scaled using Equation 3. The network was trained with 
a batch size of 4 using the Adam optimizer, and L1-loss. The optimizer’s β1 and β2  

parameters were set to 0.5 and 0.9, respectively, and the weight decay parameter 
was set to 0. The learning rate α was initially 2∙10-4 and was decreased by a factor 
γ=0.9 every 2 epochs. No warm up was used. In total the network was trained for 
200 epochs. For each sample in each epoch, one randomly chosen slab of 15 slices 
per sample was used for training. The performance of the CNN was tested on two 
test sets, the test set with synthetic LDCT images (50 samples) and the original test 
set with real counterparts (also 50 samples) of these LDCT images. For both test sets 
the σ is compared inside the CSF of the 80 central slices before and after denoising 
just like for network D. The CSF is identified by thresholding the denoised image 
between -10 HU and 40 HU, followed by binary eroding with a 9×9×9 voxel VOI, 
an example of a CSF ROI is depicted in Figure 5. In this way the σimprove ratio can be 
obtained, and it could be verified if the CNN show similar behavior for the real vs. 
the synthetic LDCT images.
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In the second proof-of-concept study, an Anisotropic Diffusion Filter (ADF) [90] was 
used for denoising the same two test sets, one with real and one with synthetic 
LDCT, again, each consisting of 50 images. The ADF uses the following equations:
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Where K and ∂t are parameters of the filter, that are set to 30 and 0.2, respectively.  
 is the gradient operator, ∆ is the Laplacian operator, and c is the diffusion 

coefficient. Five iterations of the ADF were used to denoise the real and synthetic 
LDCT images. The σimprove ratio, was again compared, using the same CSF ROI as 
for the first proof-of-concept study. In this way, it could be verified if the results 
of the gradient-based filter were similar for the real and synthetic LDCT images. 
With these two denoising studies we aim to show that our proposed method for 
generating synthetic LDCT images could be used to estimate performance on real 
LDCT images.
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Results

Denoising of CDCT
An example of a CDCT from the test set and its denoised version are shown in Figure 6.  
In Table 2 we report the median and interquartile ranges (IQR) of the standard 
deviation ratio, σimprove, in the CSF, and the bias introduced by denoising. The results 
show that little bias is introduced, since the mean of the removed noise is close 
to zero. For some extreme cases a more significant bias is introduced (negative 
extreme -4.1, positive extreme +8.1). Visual inspection shows that this happened for 
cases where abnormalities were present in the images, as can be seen in Figure 7,  
the left image shows calcifications, and the right image shows a hemorrhage, both 
indicated by red arrows. The larger bias could be explained by the fact that the 
network is mainly trained on data without abnormalities.

Figure 6: Single slice from CDCT volume (left), with the corresponding denoised slice of CDCT volume 
(right), WL/WW: 50/100.

Figure 7: CDCT images with calcifications, red arrows, which resulted in the largest negative bias (left) 
and with a hemorrhage, red arrows, which resulted in the largest positive bias (right), WL/WW: 50/100.
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Table 2: The results of denoising the CDCT images. The median and IQR of the σimprove and the 
introduced bias for the data of the test set. A boxplot of the results can be found in the online 
supplemental material.

Mean Median IQR

σimprove (-) 1.78 1.71 1.61 – 1.95

Bias (HU) +0.7 +0.7 -0.6 – +1.5

Standard deviation map
Figure 8 shows an example of a measured and estimated σLD map from the test 
set. Note that the measured σLD map is not as homogeneous as the latter since the 
former is a noisy estimate of the true underlying σ at each voxel. Further increase 
of the window size used to determine the measured σ  would lead to introduction 
of errors in the σLD map at the edge of image features. The estimated σLD map is, 
as expected, homogeneous within the skull. A vertical line profile of the measured 
and estimated σLD maps shown in Figure 8 is plotted in Figure 9. The median, IQR, 
and difference of the averaged value in the VOI inside the skull of all measured and 
estimated σLD maps in the test set are reported in Table 3. The results show that 
network S can accurately estimate the σ  of the noise in the LDCT image.

Table 3: The median σ and IQR of the σ for both the real and generated LDCT samples of the test set. 
Please note, the error is defined as estimated - measured. A boxplot of the results can be found in the 
online supplemental material.

Mean Median IQR

Measurement σ (HU) 16.3 16.3 15.3 – 16.6

Estimate σ (HU) 16.2 16.1 15.6 – 16.7

Difference σ (HU) 0.0 +0.1 -0.2 – +0.3

Figure 8: Measured (left) and estimated (right) σLD map, WL/WW: 20/40.
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Figure 9: Line profile of measured and estimated σLD map, obtained in vertical profiles shown in Figure 8.

Noise Power Spectrum
Figure 10 shows an example of a synthetic LDCT noise image from the test set 
before and after scaling by the σLD map. Figure 11 shows real and synthetic LDCT 
noise, including zoomed-in areas of the inside of the skull and the periphery. The 
results show that the NPS network F is able to generate noise with visually correct 
location-dependent noise although the noise in the synthetic LDCT image has 
slightly higher frequency, since the noise looks visually a bit grainier. In addition, 
the real LDCT noise shows some subtle streaks in the periphery, possibly caused by 
beam-hardening, which are not present in the synthetic LDCT noise.

Figure 10: Unscaled synthetic LDCT noise (left) and scaled synthetic LDCT noise (right).
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Figure 11: Real and synthetic LDCT image (left), with zoomed-in parts showing the noise texture 
inside and outside the skull for both real and synthetic LDCT noise (right), WL/WW: 0/80.

The 2D nNPS of these ROIs are shown in Figure 12. Please note that the nNPS of the 
synthetic noise is an average of 100 realizations, and therefore appears smoother 
than the real noise nNPS, which is derived from only 1 realization. This smoothness 
allows for a clearer comparison of the result in the profiles in Figure 13. The resulting 
2D nNPS clearly show that our model generates different noise patterns at different 
locations, including different levels of anisotropy similar to the real LDCT noise. 
Figure 13 shows the line and circle profiles across the nNPS shown in Figure 12,  
the line profiles indicate that the network F slightly underestimates the noise power 
at low frequencies and a slightly overestimates it at high frequencies. Please note, 
that the y-axis of the line profile is plotted in log scale. The circle profiles suggest 
that the network F can accurately estimate the degree of anisotropy, since the 
profiles show the same trend along the full rotation.
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Figure 12: nNPS of real (left) and 100 synthetic (middle left) LDCT noise realizations inside the skull 
(red ROI) and of corresponding ROIs outside the skull (yellow ROI, middle right and right) of image in 
Figure 11, WL/WW: 0.002/0.004. The red line and yellow circle mark the profiles shown in Figure 13.

Figure 13: Line profile of red line crossing nNPS (left) and yellow circle profile around nNPS (right) 
depicted in Figure 12.

The axial nNPS of the red ROI of Figure 11 is shown in Figure 14. The same trend is 
observed as for the other two directions – slight underestimation at low frequencies 
and a slight overestimation at high frequencies.

Figure 14: The synthetic and measured nNPS across slices (axial direction) of a LDCT volume image.

Figure 15 depicts three examples of a real and synthetic LDCT image pair showing 
good similarity. The main visual difference between them is the less clearly defined 
structures, e.g., the CSF indicated by red arrows, due to the denoising operation in 
our proposed method.
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Figure 15: Single slices from three example cases of the test set, each showing the real LDCT image 
(left) and corresponding synthetic LDCT image (right), WL/WW: 50/100. The overall magnitude and 
texture of the noise can be seen to be similar between the real and synthetic images. However, as can 
be seen by the red arrows, the borders between the CSF and the brain matter tend to be less clearly 
depicted in the synthetic LDCT image.

Proof-of-concept denoising study
The results of the CNN- and ADF-based denoising studies are shown in Table 4. Both 
studies yield slightly better results on the synthetic test set than on the real one. 
The CNN denoising resulted in slightly more comparable values for σimprove than the 
ADF. For both studies the real test sets results in a wider IQR. However, in general 
the results of the synthetic and real test set are very similar.
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Table 4: The median and IQR of σimprove using the denoising CNN and ADF, and the error for both the 
real and synthetic test set. Please note, the difference is defined as synthetic − real. A boxplot of the 
results can be found in the online supplemental material.

CNN denoising ADF denoising

mean median IQR mean median IQR

σimprove real (-) 1.69 1.71 1.60 – 1.79 1.85 1.89 1.77 – 1.94

σimprove synthetic (-) 1.71 1.71 1.64 – 1.77 1.90 1.92 1.85 – 1.97

Difference (-) +0.01 0.00 -0.02 – +0.04 +0.05 +0.05 +0.01 – +0.10

Computation time
The synthetic LDCT images were generated using a Linux system with 128 GB RAM, 
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, and a 48 GB Nvidia RTX A600 GPU. 
To obtain a good computation time estimate 50 synthetic LDCT samples were 
generated. The generation of the full denoised CDCT volume and σLD map takes 
approximately 42 seconds and 44 seconds on average, respectively. The generation 
of a synthetic LDCT noise image takes approximately 22 seconds. Note that this also 
includes the time to obtain the estimated NPSLD patches; thus, generating multiple 
synthetic LDCT noise realizations for one CDCT case is much faster. Generating  
50 noise realizations, of one original CDCT case, takes a total of approximately  
200 seconds, so 4 seconds on average.

Discussion

In this work, we developed and validated a method to create an arbitrary number 
of LDCT realizations from a given CDCT image. This method makes low dose CT 
data more readily available, especially in a research setting without access to every 
detail of the workings and algorithms of clinical CT systems. The resulting synthetic 
low dose CT images can be used for (pre-)training deep learning networks, testing 
robustness of deep learning algorithms on low dose protocols, validating statistical 
denoising methods, perform repeatability studies, because multiple noise 
realization can be obtained for one low dose CT image, and other purposes.

In contrast to earlier work, our method works completely in the image domain, 
does not require access to the projection data, knowledge about the reconstruction 
algorithm, nor information about system geometry and components. Our method 
works for images obtained with a non-linear reconstruction algorithm, with no given 
loss of generality to allow it to work on other non-linear or linear reconstruction 
algorithms. However, its performance with other reconstruction algorithms was not 
tested, given that we do not have access to paired datasets using other algorithms. 
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The limited information needed and the fact that it works fully in the image domain 
make the method easier and faster to use than projection domain methods.

We have developed and evaluated our method using LDCT and CDCT brain images. 
The first, denoising, network had a median decrease in σ in the cerebrospinal fluid 
of a factor 1.71 and introduced a median bias of +0.7 HU, indicating good noise 
reduction since the denoised image looks visually noiseless compared to the 
LDCT image and with little bias. The factor of 1.71 might appear relatively low, 
but it should be noted that the CDCT being denoised already has a low standard 
deviation, since it is a reconstruction obtained using a hybrid iterative algorithm. 
Also, by denoising the image further, anatomically-relevant details might be 
lost. The second network, for σLD map estimation, had a median error of +0.1 HU 
showing the ability of the network to match the σ of the real LDCT noise well. When 
it comes to the generation of realistic noise structure, the method only shows slight 
underestimation at low frequencies and a slight overestimation at high frequencies 
for the nNPS, and it shows excellent agreement with the real LDCT noise in degree 
of anisotropy. The synthetic LDCT images showed a good similarity with the real 
low dose data, although some edges are less sharp because of the denoising 
performed in our method. The denoising network D introduces a bias for cases that 
contain abnormalities. Therefore, for application of this method to iodine cases, the 
networks should be trained on a dataset containing such type of cases.

To show that the differences in noise and resolution loss are not relevant to the 
intended application of the simulated LDCT images, which is, for instance, to 
validate denoising methods, two proof-of-concept denoising studies were 
performed. With these two proof-of-concept denoising studies, we showed that the 
result of applying a filter to real data is very similar to applying it to synthetic data. 
Therefore, the synthesizing method appears to meet its goal of generating lower-
dose images that can be used for development or testing of image processing 
algorithms. Also, the IQR of the σimprove in these denoising studies was larger for 
the real LDCT images. The resulting narrower σimprove distribution when filtering 
synthesized data could indicate that the variability in image noise, i.e., the structure 
and σ, is larger in the real noise than in the simulated noise images. This could be 
explained by the network trying to find an average noise structure and σ to mimic.

One of the primary assumptions in our work is that the CDCT and LDCT images 
represent the same underlying object. This does not completely hold as the 
registration of both scans is not ideal. Moreover, the denoising CNN used for 
obtaining the underlying ground truth or object, introduces resolution loss, as seen 
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in the final synthetic image (Figure 15). Therefore, small anatomical structures might 
be lost, and edges are smoothed. However, for the purpose of predicting post-
processing performance (mainly denoising), this may be of minor importance. In 
case one desires to use the proposed method for a different purpose, one should be 
aware of these non-idealities and assess if these are crucial for the intended purpose.

A limitation of this work is that the method is currently only working for the simulation 
from a single clinical-dose level to a single low-dose level leading to the network’s 
need to be retrained for different dose levels. However, if data of multiple lower dose 
levels is available, then an extra input parameter to the networks to indicate which 
lower dose level is desired could be added. In addition, this study involved the use of 
a single reconstruction algorithm, while it can be expected that the transformation 
from clinical-dose NPS to low-dose NPS might be different for other reconstruction 
methods. Hence, the networks should be retrained if one intends to simulate images 
obtained with another reconstruction algorithm. However, none of the LDCT 
simulation steps involve imposition of parameters specific to the reconstruction 
algorithm used in this study, and therefore it is expected that the methods described 
generalize well to other reconstruction algorithms.

Our dataset consists of only brain data. In case the method is applied to other 
anatomies the models should be retrained. Also, in case of, for instance, abdomen 
scans the variability in patient size will be larger. In addition, such body scans should 
probably be acquired using some form of automatic exposure control, so the noise 
content of images across body sizes is more consistent. However, given the current 
state of clinical practice, this would be expected for any contemporary dataset.

Conclusion

A low-dose CT simulation pipeline was developed and validated for a non-linear 
reconstruction algorithm. The simulation is fully image-domain based and uses three 
CNNs. The results showed good agreement in simulating both noise magnitude (σ) and 
noise structure. The proposed method enables the possibility to generate large datasets 
of LDCT images for testing post-processing algorithms, such as the ADF or other spatial 
filters, or for deep-learning tasks, such as abnormality detection in LDCT images. The 
possibility to generate multiple LDCT images from one CDCT image also enables 
the opportunity to perform repeatability studies. Since no reconstruction algorithm-
specific assumption was made, it is expected that after re-training the method can also 
be used for other non-linear, as well as linear, reconstruction algorithms.
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Supplementary Material

Appendix A – Registration parameters

The elastix parameters used for registration can be found below.

(UseDirectionCosines "true")
// ********** ImageTypes
(FixedImageDimension 3)
(MovingImageDimension 3)
(ErodeFixedMask "false")

// ********** Components
(Registration "MultiResolutionRegistration")
(Metric "AdvancedMeanSquares")
(Transform "EulerTransform")
(HowToCombineTransforms "Compose")
(Optimizer "StandardGradientDescent")

// ********** Image Sampler
(ImageSampler "RandomSparseMask" "RandomSparseMask" "RandomSparseMask")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

// ********** Internal Image Type
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")

// ********** Initialization
(AutomaticTransformInitialization "true")
(AutomaticTransformInitializationMethod "CenterOfGravity")
(AutomaticScalesEstimation "true")

// ********** Multi resolution
//The number of resolutions, the downsampling schedules of the pyramids are
//determined automatically. It is also possible to give the schedules manually
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(NumberOfResolutions 4)
(ImagePyramidSchedule 16 16 16 8 8 8 2 2 2 1 1 1)

// ********** Optimization
//Maximum number of iterations in each resolution level:
(MaximumNumberOfIterations 500)
//Order of B-Spline interpolation used in each resolution level:
(BSplineInterpolationOrder 3)
//Number of grey level bins in each resolution level for mutual information:
(NumberOfHistogramBins 32)
//Number of spatial samples used to compute the mutual information in each 
resolution level:
(NumberOfSpatialSamples 2048)
(NewSamplesEveryIteration "true")
(CheckNumberOfSamples "true")
(UseNormalization "false")
(MaximumNumberOfSamplingAttempts 0)

(NumberOfSamplesForSelfHessian 100000)
(SelfHessianSmoothingSigma 1.0)
(SelfHessianNoiseRange 1.0)

//a_k = a/(A+k+1)^alpha
(SP_a 0.0001)
(SP_alpha 0.602)
(SP_A 50.0)

// ********** Miscellaneous
(WriteTransformParametersEachIteration "false")
(WriteTransformParametersEachResolution "false")
(ShowExactMetricValue "false")

// ******* Result
//Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)
(DefaultPixelValue -1060)
(WriteResultImage "true")
(ResultImageFormat "mhd")
(CompressResultImage "false")
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Appendix B – Boxplots of Results

This appendix contains the boxplots of the results shown in Tables 2, 3, and 4.

Figure B1 shows an example boxplot indicating the meaning of each line. The end 
of the whiskers is the maximum and minimum or the last value falling within the 
75th percentile + 1.5 ∙ IQR upper bound or 25th percentile – 1.5 ∙ IQR lower bound, 
where IQR stands for interquartile range.

Figure B1: Example boxplot indicating the 25th percentile, the median, and the 75th percentile.

Figure B2 shows the boxplots of standard deviation improvement and bias 
introduced by the denoising network, D, on the test set (Table 2 of manuscript).

Figure B2: Boxplots of the standard deviation improvement (left) and the bias (right) of the test set 
results from denoising network D.
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Figure B3 shows the boxplots of the measured and estimated, by network S, 
voxelwise standard deviation of the test set (Table 3 of manuscript).

Figure B3: Boxplots of the measured (left) and estimated by network S (right) standard deviation of 
the test set.

Figure B4 shows the boxplots of the standard deviation improvement for the proof-
of-concept denoising studies using ADF filter and CNN (Table 4 of manuscript). 
Indicating good agreement between the real and synthetic data for both ADF and 
CNN-based denoising.

Figure B4: Boxplots of real and synthetic standard deviation improvement for ADF denoising (left), 
and CNN denoising (right).
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ABSTRACT

Background
Dynamic CT angiography of the abdomen provides perfusion information and 
characteristics of the tissues present in the abdomen. This information could 
potentially help characterize liver metastases. However, radiation dose has to be 
relatively low for the patient, causing the images to have very high noise content. 
Denoising methods are needed to increase image quality.

Purpose
To investigate the performance, limitations, and behavior of a new 4D filtering 
method, called the 4D Similarity Filter (4DSF), to reduce image noise in temporal 
CT data.

Methods
The 4DSF averages voxels with similar time attenuation curves (TACs). Each phase 
is filtered individually using the information of all phases except for the one being 
filtered. This approach minimizes the bias towards the noise initially present in this 
phase. Since the 4DSF does not base similarity on spatial proximity, loss of spatial 
resolution is avoided.

The 4DSF was evaluated on a 12-phase liver dynamic CT angiography acquisition 
of 52 digital anthropomorphic phantoms, each containing one hypervascular 
1cm-lesion with a small necrotic core. The metrics used for evaluation were noise 
reduction, lesion contrast-to-noise ratio (CNR), CT number accuracy using peak-
time and peak attenuation of the TACs, and resolution loss. The results were 
compared to those obtained by the time-intensity profile similarity (TIPS) filter, 
which uses the whole TAC for determining similarity, and the combination 4DSF 
followed by TIPS filter (4DSF + TIPS).

Results
The 4DSF alone resulted in a median noise reduction by a factor of 6.8, which is 
lower than that obtained by the TIPS filter at 8.1, and 4DSF + TIPS at 12.2. The 4DSF 
increased the median CNR from 0.44 to 1.85, which is less than the TIPS filter at 2.59 
and 4DSF + TIPS at 3.12. However, the peak attenuation accuracy in the TACs was 
superior for the 4DSF, with a median attenuation decrease of -34 HU compared to 
-88 HU and -50 HU for the hepatic artery when using the TIPS filter and 4DSF + TIPS, 
respectively. The median peak-time accuracy was inferior for the 4DSF filter and 
4DSF + TIPS, with a time shift of -1 phases for the portal vein TAC compared to no 
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shift in time when using the TIPS. The analysis of the full-width-at-half-maximum 
(FWHM) of a small artery, showed significantly less spatial resolution loss for the 
4DSF at 3.2 pixels, compared to the TIPS filter at 4.3 pixels, and 3.4 pixels for the 
4DSF + TIPS.

Conclusion
The 4DSF can reduce noise with almost no resolution loss, making the filter very 
suitable for denoising 4D CT data for detection tasks, even in very low dose, i.e., 
very high noise level, situations. In combination with the TIPS filter the noise 
reduction can be increased even further.



96 | Chapter 4

Introduction

Dynamic CT angiography, also known as dCTA or 4D-CTA, aims to image the flow 
of injected contrast agent through the body by acquiring multiple CT images over 
time. From these dynamic CTA images, perfusion parameters of organs and lesions 
can be calculated, which can be displayed as images and are referred to as CT 
perfusion (CTP). Due to the repeated image acquisitions, the radiation dose used 
per single image acquisition must be kept low to limit the total dose of the entire 
protocol. However, this low radiation dose causes the individual images of a dCTA 
sequence to have a very high noise level and consequently very low signal-to-
noise ratios (SNR). As a result, subjective radiologist interpretation and quantitative 
analysis of the dynamic information in these scans is challenging, therefore limiting 
the clinical impact of these sequences. However, this type of scans is used to detect 
endoleaks after endovascular aneurysm repair [91,92].

If the SNR could be increased, the resulting image sequence could provide extensive 
information about vascular flow patterns and organ and lesion perfusion [20,93]. In 
addition, an increase in SNR allows for the acquisition of a higher number of images 
in the protocol at the same total dose, thus achieving better temporal sampling 
of the perfusion dynamics. This improved information, either from higher SNR per 
frame or a higher temporal sampling, could potentially result in better treatment 
decisions and, therefore, increase the chances of a positive treatment outcome.

There have been attempts to enhance the image quality of single low-dose CT scans 
and of low-dose dCTA sequences. Most of these rely on advanced reconstruction 
algorithms involving iterative [32,86] or deep learning-based approaches [33,59,94]. 
However, these methods process each image separately, meaning they do not 
use the additional information present in the temporal dimension. Other noise-
reduction methods consider the temporal dimension, like the partial temporal 
nonlocal means (PATEN) method [95], or the time-intensity profile similarity (TIPS) 
filter [37]. However, both the TIPS and PATEN filter use a spatial neighborhood 
making it prone to resolution loss when the noise level is high. Finally, the k-means 
clustering guided bilateral filter (KMGB) method [38], does suffer less from 
substantial spatial resolution loss. However, at very high noise levels, the difference 
between time attenuation curves (TAC) of similar tissues increases as the TACs are 
increasingly dominated by noise rather than signal. This makes k-means clustering 
hard and even the temporal mean will be noisy. Also, choosing the number of 
clusters is not a trivial task.
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Recently, Smit and Prokop proposed a 4D similarity filter (4DSF) that intends 
to reduce the image noise in dynamic images with little to no spatial resolution 
loss and that still works at very high noise levels [55]. The 4DSF uses only the 
information in the temporal domain, ignoring any spatial information, and hence 
it is expected to maintain the spatial resolution of the image. In addition, by 
filtering each phase in the TAC separately, it is designed to avoid finding TACs with 
similar noise present in each phase of the TAC. The promise of the 4DSF filter has 
led to it being introduced for clinical use in dCTA protocols acquired with certain 
commercial CT systems, such as for brain perfusion and cardiac perfusion imaging 
applications [96–100].

However, to date, the performance of the 4DSF in CT has not been extensively 
evaluated. Therefore, the aim of this study is to quantitatively characterize and 
evaluate the performance of the 4DSF in dCTA imaging. For this work, imaging 
of the liver is used as a case study since multiphase imaging of the liver has been 
shown to result in good lesion detectability [101]. However, CT perfusion and dCTA 
of the liver could potentially improve liver lesion detectability further [101,102], 
improve lesion characterization [93,103–106], and help monitor treatment response 
[106,107]. The introduction of the 4DSF for liver dCTA could push these benefits 
into the clinical realm by achieving these clinical applications while lowering 
the radiation dose needed to achieve the required minimum image quality. This 
evaluation is performed using realistic computer simulated dCTA images of digital 
anthropomorphic phantoms. This provides the possibility to both evaluate multiple 
imaging conditions and to have the ground truth available to quantitatively 
characterize the filtered results.

4D Similarity Filter Description
The 4DSF is a statistical method that reduces noise in temporal CT data, such as 
these dCTA image sequences. The method is based on averaging the values of 
voxels with similar TACs, as determined by the root-mean-square error (RMSE) 
between the TACs. Algorithm 1 shows the pseudocode of the filter implementation.
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Algorithm 1: 4D Similarity Filter

Require:	� Initial temporal CT image data after applying a mask I*, with N number of voxels within the 
mask and T number of phases

Require: 	 Initial temporal CT image data I

Require: 	 4DSF filtered temporal CT image data within the mask I4DSF

Require: 	 �Number of voxels used to set the new values of the voxel being filtered, called  
Filter Strength (FS)

# Loop over all voxels to get the current voxel c, and loop over all phases to get current phase t

1: for c ∈ [1,N] do

2: for t ∈ [1,T] do

# Loop over all voxels to get the candidate voxel m

3: for m ∈ [1,N] do

# Loop over all phases except for the current phase t to calculated RMSE of each 
# candidate voxel m with the current voxel c

4: e ← 0

5: for p ∈ [1,T], p ≠ t do

6:

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

7: end for

8:

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

9: end for

# Sort the indices of all candidates sorted based on the RMSE

10: get indices 

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

 

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

# Average the values at phase t of the FS number of voxels with the lowest RMSE

11:

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

12: end for

13: end for

14: return 

 # Loop over all voxels to get the current voxel c, and loop over 
all  

 # phases to get current phase t 

1: for 𝑐𝑐 ∈ [1, 𝑁𝑁] do 

2:     for 𝑡𝑡 ∈ [1, 𝑇𝑇] do 

         # Loop over all voxels to get the candidate voxel m  

3:         for 	𝑚𝑚 ∈ [1, 𝑁𝑁] do 

             # Loop over all phases except for the current phase t to 

             # calculated RMSE of each candidate voxel m with the  

             # current voxel c 

4:             𝑒𝑒 ← 0 

5:             for  𝑝𝑝 ∈ [1, 𝑇𝑇], 𝑝𝑝 ≠ 𝑡𝑡 do 

6:                 𝑒𝑒 ← 𝑒𝑒 + (𝐼𝐼∗",$ − 𝐼𝐼∗%,$)& 

7:             end for 

8:             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒% ← 8𝑒𝑒 (𝑇𝑇 − 1)⁄   

9:         end for 

         # Sort the indices of all candidates sorted based on the 
RMSE 

10:         get indices {𝑖𝑖𝑖𝑖𝑖𝑖', … , 𝑖𝑖𝑖𝑖𝑖𝑖(}|{𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*! ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*" ≤
								… ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)"*#} 

         # Average the values at phase t of the FS number of voxels  

         # with the lowest RMSE 

11:         𝐼𝐼+,-./,0 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚CD𝐼𝐼)"*!,0, … , 𝐼𝐼)"*$%,0EF 

12:     end for 

13: end for 

14: return 𝐼𝐼+,-.  

 

There are two aspects that make the 4DSF unique. First, to find the voxels with 
similar TAC, the 4DSF searches the entire image for voxels similar to the one being 
filtered rather than restricting its search to a certain number of spatially neighboring 
voxels. This is because when filtering small lesions or arteries, there will only be 
few voxels in the neighborhood with similar TACs but there might be other lesions 
and arteries elsewhere in the image with similar TACs. Second, the 4DSF decouples 
the candidate voxel identification from the signal averaging, since, especially in 
high noise level situations, a single measurement is not a good representation of 
the underlying ground truth. To achieve this decoupling, each phase of the TAC 
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will be filtered separately, so the phase being filtered can be excluded from the 
RMSE calculation. This is because the 4DSF compares a very large number, typically 
thousands to tens of thousands, of voxels from the entire image, which by the very 
nature of the image, usually include a high level of noise. Of all these voxels, only 
the Filter Strength (FS) number of candidate voxels that have the most similar TACs, 
based on the RMSE, will be averaged. However, this FS number of voxels will not 
only have the same underlying ground truth TAC, but also, since the noise is so 
dominant, they will have a similar realization of the noise. As a result, the average 
value of this distribution of voxels will tend to be biased towards the noise value 
present in the TAC of the voxel at hand, as opposed to it being an unbiased estimate 
of the ground truth. By filtering each phase of the TAC separately and excluding the 
phase being filtered when calculating the RMSE, the TACs of the selected voxels 
will not necessarily have similar noise values at this excluded time point, but rather 
the values will be randomly distributed around the ground truth value. Thus, their 
average will be an unbiased estimate of the ground truth. It is important to note 
that this principle assumes that the noise across phases is uncorrelated, i.e., that 
the 4D image contains temporally uncorrelated noise. If this were not the case, the 
phases before and after the excluded phase would still hold information about 
the noise in the excluded phase. This would mean that the FS number of voxels 
selected would still have noise similar to that of the excluded phase.

In its theoretical form and its simplest implementation, the 4DSF has only one input 
parameter, the FS, which defines the number of voxels that should be averaged 
together to set the new value of the voxel and phase being filtered. However, 
evaluating all voxels to identify the ones similar to the voxel currently being filtered 
is computationally very demanding, therefore the real-world implementation of 
the 4DSF uses additional parameters and an additional input solely for reducing 
computation time. The additional input is a binary mask, indicating which voxels 
should be filtered. This excludes processing of, for example, the air and the bones. 
Figure 1 shows a graphical overview of this implementation, with an overview of 
additional filter parameters.
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Figure 1: Graphical overview of the 4DSF, including the modifications to make it computationally feasible.
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This implementation first sorts all voxels within the mask according to their 
temporal mean. For each voxel in the sorted vector, the principle described in 
Algorithm 1 is applied. However, when searching for similar voxels, only the voxels 
closest to the current one, in the temporal-mean sense, are considered, since 
voxel pairs with increasing difference in temporal mean values will be increasingly 
less likely to have a small RMSE between them. For computational feasibility, a 
maximum number of voxels is analyzed, set defined by one of the additional filter 
parameters, called the Maximum index Distance (MD). All voxels within the MD are 
checked for similarity, starting with the closest one, by determining if the RMSE 
between the corresponding TACs is lower than a set threshold, called the Similarity 
Threshold (ST). If a certain number of voxels, called Kernel Size (KS), fulfills the ST 
criterion before all voxels within the MD are checked, the remaining voxels are 
skipped. Finally, the FS number of voxels with the lowest RMSE are used to average 
and determine the new value of the voxel at the phase being filtered.

In case of very high noise levels in the initial images of the dCTA sequence, a pre-
filter, e.g., an average filter, is used to reduce the noise in the initial images before 
utilizing the 4DSF. This is to reduce the possibility of including incorrect voxels  
(i.e., voxels of other tissues than the one being filtered) when averaging the FS best 
voxels. However, the pre-filtered images are only used to determine the FS best 
voxels, not as part of the processing of the final filtered image. Once the FS best 
voxels are determined, the actual averaging of the voxels in the FS set is performed 
with the voxel values from the initial images.

Methods

To extensively evaluate the 4DSF, anthropomorphic digital phantoms of different 
sizes were used to simulate hepatic dCTA image sequences, which were then 
processed by the 4DSF with different parameter settings. The images filtered 
by the 4DSF were evaluated for both image quality and quantitative accuracy to 
characterize the performance of the 4DSF, including the computational cost, under 
varying conditions and with different input parameters.

Digital Phantoms
A population of 52 4D anthropomorphic digital XCAT phantoms (Duke University, 
Durham, NC, USA) [42] was used for this work. See Table 1 for the details of the 
phantoms. The abdominal section of the phantoms was voxelized with an isotropic 
voxel size of 0.25 mm, with no motion included. One sphere-like liver lesion with a 
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10 mm diameter was generated and inserted in each of the XCAT phantoms using 
the work of Sauer et al. [108]. The diameter was chosen to be relatively small to test 
the limits of the 4DSF. The parameter settings for the lesion generation are listed in 
the online supplements Appendix A. The lesion represents a liver metastasis, so it is 
set to consist of two regions: a hyper-vascular outer layer and a necrotic inner core. 
The inner core is simulated via binary eroding of the initial lesion, with a 3×3×3 
kernel, until the eroded part is 1/6 or less of the initial lesion volume. The lesion was 
added to each of the 52 phantoms, by placing it randomly within the liver.

Table 1: The details of the XCAT phantoms used in this study. For each parameter the median, 
minimum, and maximum are given, except for gender.

Gender (Female/Male) Weight (kg) Height (cm) BMI (kg/m2)

22/30 78.7 (52.0 – 120.0) 173 (153 - 190) 27.0 (18.2 - 38.8)

The simulated iodine concentrations over time in each tissue were determined 
for each XCAT phantom using the work of Sahbaee et al. [109,110], which models 
all organs and vessels as different compartments to determine the iodine 
concentration over time by volume, including the corresponding in- and outflow. 
The protocol simulated for this work was 100 ml of 300 mg I/ml iodinated contrast 
at a constant injection rate of 3.33 mL/s. For the liver lesion, which is not included 
in Sahbaee et al.’s work, the iodine concentration of the outer layer was set to 
50% of that of the hepatic artery with a delay of 5 seconds, since, in general, liver 
metastases are arterially perfused [111–113]. No contrast perfusion was added to 
the inner core since it represents a central necrosis.

Image Simulation
A dynamic image sequence, consisting of 12 phases at 10 second intervals (i.e., total 
scan duration of 110 s) covering the time from pre-contrast until the delayed phase, 
was simulated for each of the 52 phantoms using a previously-developed and 
-validated CT simulator [114]. Volume scans were simulated as acquired with a tube 
voltage of 120 kV. The tube current-time product was set such that its total over all 
phases was, on average, the same as that for the clinical 4-phase protocol used at 
our institution, and scaled to patient size, based on water equivalent diameter [115].  
On average, this resulted in a tube current-time product of 31.2 mAs and a CTDIvol 
of 1.6 mGy per phase. No angular tube current modulation was simulated, since in 
this study we are not investigating, comparing, or optimizing the dose used during 
image acquisition.
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Before reconstruction, beam-hardening correction [116] was applied to the 
projections. To reconstruct these images, the FDK algorithm [68] was used, with 
a field of view of 400 mm, a slice thickness of 0.5 mm, an image size of 512 by  
512 pixels, and 320 slices.

Evaluation Conditions
For the initial evaluation of the performance of the 4DSF, all 52 phantoms were 
filtered, using the implementation in Figure 1, using the settings listed in Table 2. 
The FS was set to 100, to have a potential noise reduction factor of 10, and 100 
voxels have a volume of approximately 30 mm3, which is similar to the volume of 
a solid spere of 4 mm in diameter. The KS and MD were set to 30,000 and 300,000, 
respectively, to have enough voxels to choose from. Theoretically, the difference 
between two TACs with the same underlying ground truth should be √

_
2∙σavg. 

Note that by setting an ST of 1,000, this parameter is in essence unused for this 
initial analysis.

Table 2: 4DSF parameter values for validation.

Parameter Value

Filter Strength, FS (voxels) 100

Similarity Threshold, ST (HU) 1,000

Kernel Size, KS (voxels) 30,000

Maximum index Distance, MD (voxels) 300,000

The mask was generated by using an average filter with a 3×3×3 kernel on the first, 
pre-contrast, image, after which thresholding was applied to set all voxels with 
values between -300 HU and 300 HU to unity and all others to zero. The pre-filter 
used for each of the 12 images of the dCTA sequence was also an average filter with 
a 3×3×3 kernel.

The results were also compared to those obtained when applying the TIPS filter to 
the same 52 dCTA sequences. For a description of the TIPS filter and its equations, 
see online supplements Appendix B. This filter was chosen for comparison because 
it is most similar to the 4DSF, and also uses the TACs to find similar voxels. However, 
the TIPS filter limits the search for similar TACs to the spatial neighborhood of the 
voxel being filtered, while the 4DSF does this based on the temporal mean.

Since the TIPS filter works differently compared to the 4DSF, the two can also be 
combined. In this analysis the combination of applying the TIPS filter after 4DSF 
was investigated. This order seems most logical since the TIPS searches in a spatial 
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neighborhood, i.e., spatial gradients, which should be easier after initial noise 
reduction with 4DSF. The TIPS filter parameters used can be found in Appendix B 
in the online supplement, while the 4DSF parameters used are listed in Table 2. The 
TIPS filter parameters are different when the TIPS is used in combination with the 
4DSF compared to when the TIPS is used on its own. Most importantly the kernel 
size of the TIPS filter is smaller when it is used in combination with the 4DSF, so that 
less smoothing is performed.

The influence of different 4DSF filter parameter settings, image acquisition settings, 
and lesion characteristics were also analyzed (Table 3). This was not done for 
the entire set of XCAT phantoms, but for the XCAT phantom of average size, in 
terms of water equivalent diameter (301 mm). From here on this XCAT phantom 
will be denoted as average XCAT. All these results will be presented in the online 
supplements Appendix C, except for the influence of the image acquisition settings.

Table 3: The different parameter settings, image acquisition settings, and lesion characteristics that 
were tested using the average XCAT.

Parameter Values

Filter Strength, FS (voxels) 50, 100, 200, 500, 1000

Kernel Size, KS (voxels) 100, 300, 1000, 3000, 10000, 30000

Similarity Threshold, ST (HU) 25, 50, 100, 250, 500, 1000

Exposure scaling (-) 0.5, 0.75, 1.0, 1.25, 1.5

Lesion delay w.r.t. hepatic artery (s) 2, 5, 7, 10, 15

Lesion attenuation w.r.t. hepatic artery (-) 0.25, 0.375, 0.5, 0.625, 0.75

Lesion diameter (mm) 5, 10, 15, 20

The average XCAT was also used to test the 4DSF without a pre-filter and with a 
median pre-filter with a 3×3×3 kernel in addition to with the default average pre-
filter with a 3×3×3 kernel. These results can be found in the online supplements 
Appendix C as well.

Analysis Metrics
The performance of the 4DSF was evaluated by determining the resulting noise 
reduction, lesion CNR, impact on CT number accuracy in time and attenuation, 
and spatial resolution loss. The noise reduction is defined as the ratio between the 
standard deviations (σ) in the liver parenchyma before and after use of the filter:
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where 𝑇𝑇 is the total number of phases in the dCTA sequence, 𝑡𝑡 is the phase number, 
𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,"'"((𝑡𝑡) is the region of interest (consisting of all liver parenchyma voxels) of the initial 
image at phase 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,)*+,(𝑡𝑡) is the region of interest after 4DSF of  the 𝑡𝑡 image, and σ(∗) is 
the standard deviation of the region. Please note that all these tissue ROIs are binary eroded, with 
a 3×3×3 kernel, to ensure that the influence of tissue transitions at the borders is minimized. 

For each patient the contrast-to-noise ratio (CNR) of the lesion was determined before and after 
the application of the 4DSF. The CNR is described in Equation 2: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝜇𝜇(𝑅𝑅𝑅𝑅𝑅𝑅!$0"1') − 𝜇𝜇(𝑅𝑅𝑅𝑅𝑅𝑅!"#$%)

=12 (𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅!$0"1')
2 + 𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅!"#$%)2) (2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅!$0"1' is again only the enhancing outer layer of the lesion. The CNR at all phases is 
determined and the maximum one is used as the CNR of the case. 

The CT number accuracy was evaluated to investigate if the 4DSF introduces any bias to the 
attenuation or timing of the TAC by comparing the height and temporal location of the TAC peak 
before and after filtering. This evaluation was performed separately for the liver parenchyma, 
lesion outer layer, portal vein, and hepatic artery. The bias in peak attenuation was determined 
as:  
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where 𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 after the use of the 4DSF, 
𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 before the use of the 4DSF and 𝜇𝜇(∗) is 
the average attenuation of the region.  

The bias in timing of the TAC peak was determined as: 
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where T is the total number of phases in the dCTA sequence t, is the phase number,  
ROIliver,init (t) is the region of interest (consisting of all liver parenchyma voxels) of 
the initial image at phase t, ROIliver,4DSF (t) is the region of interest after 4DSF of the 
t image, and σ(*) is the standard deviation of the region. Please note that all these 
tissue ROIs are binary eroded, with a 3×3×3 kernel, to ensure that the influence of 
tissue transitions at the borders is minimized.

For each patient the contrast-to-noise ratio (CNR) of the lesion was determined 
before and after the application of the 4DSF. The CNR is described in Equation 2:
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where 𝑇𝑇 is the total number of phases in the dCTA sequence, 𝑡𝑡 is the phase number, 
𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,"'"((𝑡𝑡) is the region of interest (consisting of all liver parenchyma voxels) of the initial 
image at phase 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,)*+,(𝑡𝑡) is the region of interest after 4DSF of  the 𝑡𝑡 image, and σ(∗) is 
the standard deviation of the region. Please note that all these tissue ROIs are binary eroded, with 
a 3×3×3 kernel, to ensure that the influence of tissue transitions at the borders is minimized. 

For each patient the contrast-to-noise ratio (CNR) of the lesion was determined before and after 
the application of the 4DSF. The CNR is described in Equation 2: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
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where 𝑅𝑅𝑅𝑅𝑅𝑅!$0"1' is again only the enhancing outer layer of the lesion. The CNR at all phases is 
determined and the maximum one is used as the CNR of the case. 

The CT number accuracy was evaluated to investigate if the 4DSF introduces any bias to the 
attenuation or timing of the TAC by comparing the height and temporal location of the TAC peak 
before and after filtering. This evaluation was performed separately for the liver parenchyma, 
lesion outer layer, portal vein, and hepatic artery. The bias in peak attenuation was determined 
as:  
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where 𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 after the use of the 4DSF, 
𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 before the use of the 4DSF and 𝜇𝜇(∗) is 
the average attenuation of the region.  

The bias in timing of the TAC peak was determined as: 
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where ROIlesion is again only the enhancing outer layer of the lesion. The CNR at all 
phases is determined and the maximum one is used as the CNR of the case.

The CT number accuracy was evaluated to investigate if the 4DSF introduces any 
bias to the attenuation or timing of the TAC by comparing the height and temporal 
location of the TAC peak before and after filtering. This evaluation was performed 
separately for the liver parenchyma, lesion outer layer, portal vein, and hepatic 
artery. The bias in peak attenuation was determined as:
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where 𝑇𝑇 is the total number of phases in the dCTA sequence, 𝑡𝑡 is the phase number, 
𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,"'"((𝑡𝑡) is the region of interest (consisting of all liver parenchyma voxels) of the initial 
image at phase 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,)*+,(𝑡𝑡) is the region of interest after 4DSF of  the 𝑡𝑡 image, and σ(∗) is 
the standard deviation of the region. Please note that all these tissue ROIs are binary eroded, with 
a 3×3×3 kernel, to ensure that the influence of tissue transitions at the borders is minimized. 

For each patient the contrast-to-noise ratio (CNR) of the lesion was determined before and after 
the application of the 4DSF. The CNR is described in Equation 2: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
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where 𝑅𝑅𝑅𝑅𝑅𝑅!$0"1' is again only the enhancing outer layer of the lesion. The CNR at all phases is 
determined and the maximum one is used as the CNR of the case. 

The CT number accuracy was evaluated to investigate if the 4DSF introduces any bias to the 
attenuation or timing of the TAC by comparing the height and temporal location of the TAC peak 
before and after filtering. This evaluation was performed separately for the liver parenchyma, 
lesion outer layer, portal vein, and hepatic artery. The bias in peak attenuation was determined 
as:  
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where 𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 after the use of the 4DSF, 
𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 before the use of the 4DSF and 𝜇𝜇(∗) is 
the average attenuation of the region.  

The bias in timing of the TAC peak was determined as: 
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where ROIx,4DSF (t) is the region of interest of tissue x at phase t after the use of the 
4DSF, ROIx,init (t)  is the region of interest of tissue x at phase t before the use of the 
4DSF and μ(*) is the average attenuation of the region.

The bias in timing of the TAC peak was determined as:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑇𝑇
0

𝜎𝜎 2𝑅𝑅𝑂𝑂𝐼𝐼!"#$%,"'"((𝑡𝑡)7     

𝜎𝜎𝜎2𝑅𝑅𝑂𝑂𝑂𝑂!"#$%,)*+,(𝑡𝑡)7

-

(./

where 𝑇𝑇 is the total number of phases in the dCTA sequence, 𝑡𝑡 is the phase number, 
𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,"'"((𝑡𝑡) is the region of interest (consisting of all liver parenchyma voxels) of the initial 
image at phase 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑅𝑅!"#$%,)*+,(𝑡𝑡) is the region of interest after 4DSF of  the 𝑡𝑡 image, and σ(∗) is 
the standard deviation of the region. Please note that all these tissue ROIs are binary eroded, with 
a 3×3×3 kernel, to ensure that the influence of tissue transitions at the borders is minimized. 

For each patient the contrast-to-noise ratio (CNR) of the lesion was determined before and after 
the application of the 4DSF. The CNR is described in Equation 2: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝜇𝜇(𝑅𝑅𝑅𝑅𝑅𝑅!$0"1') − 𝜇𝜇(𝑅𝑅𝑅𝑅𝑅𝑅!"#$%)

=12 (𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅!$0"1')
2 + 𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅!"#$%)2) (2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅!$0"1' is again only the enhancing outer layer of the lesion. The CNR at all phases is 
determined and the maximum one is used as the CNR of the case. 

The CT number accuracy was evaluated to investigate if the 4DSF introduces any bias to the 
attenuation or timing of the TAC by comparing the height and temporal location of the TAC peak 
before and after filtering. This evaluation was performed separately for the liver parenchyma, 
lesion outer layer, portal vein, and hepatic artery. The bias in peak attenuation was determined 
as:  

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3(( = max
(∈5,..,-

	(𝜇𝜇 2𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡)7) − max
(∈5,..,-

(𝜇𝜇 2𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡)7) (3) 

where 𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 after the use of the 4DSF, 
𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡) is the region of interest of tissue 𝑥𝑥 at phase 𝑡𝑡 before the use of the 4DSF and 𝜇𝜇(∗) is 
the average attenuation of the region.  

The bias in timing of the TAC peak was determined as: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏("8$ = argmax
(∈/,..,-

	(𝜇𝜇 2𝑅𝑅𝑅𝑅𝑅𝑅7,)*+,(𝑡𝑡)7) − argmax
(∈/,..,-

(𝜇𝜇 2𝑅𝑅𝑅𝑅𝑅𝑅7,"'"((𝑡𝑡)7) (4)� (4)

The spatial resolution loss was evaluated by comparing the full-width-at-half-
maximum (FWHM) of a small hepatic artery in the average XCAT phantom. The 
FWHM was obtained using vertical and horizontal line profiles through the 
maximum of the small hepatic artery, for 10 consecutive slices. These line profiles 
were averaged, and a Gaussian fit was applied. The FWHM was determined using 
this Gaussian fit. Also, line profiles of the lesion in the average phantom before and 
after filtering were taken for visual comparison.
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Finally, the noise texture before and after filtering were compared by means of the 
normalized noise power spectrum (nNPS). The 2D NPS was determined in a 55×55 
voxel ROI for 40 consecutive slices and averaged, followed by rotational averaging, 
and normalized to unit area under the curve.

Results

Figure 2 shows one slice, and a zoomed in part, of the ground truth (no noise), initial, 
the TIPS filtered, and the 4DSF filtered image at phase six out of the twelve. Figure 3 
shows the zoomed in subtraction images of the initial minus the 4DSF and TIPS filtered 
images. The results show that 4DSF visually reduces most of the noise and introduces 
little to no blurring, even though the initial image has high noise content. The TIPS 
filter also reduces most of the noise but introduces visually more blurring. The 4DSF 
+ TIPS seems to be the cleanest image from visual assessment. The results also show 
that none of the filters could restore all the very small peripheral arteries in the liver.

Figure 2: Ground truth, initial, and filtered results. For the 4DSF, the parameter values listed in Table 2 
were used. Top row WL/WW: 150/500, bottom row WL/WW: 150/300.

Figure 3: Subtraction images of initial image minus filtered image of Figure 2. WL/WW: 0/500.
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Noise reduction & Lesion CNR

Table 4 shows the median and interquartile range (IQR) over all 52 XCAT phantoms 
of the standard deviation of all liver voxels before (initial) and after filtering, and 
of the resulting noise reduction, as defined in Equation 1. The TIPS filter, 4DSF, 
and 4DSF + TIPS all show excellent noise reduction capabilities, with the TIPS filter 
outperforming the 4DSF. In Table 5, the lesion CNR before and after filtering is 
shown, the TIPS filter also outperforms the 4DSF for this metric. For both metrics 
4DSF + TIPS gives the best results.

Table 4: The median and IQR of the σ of the liver parenchyma determined for all 52 XCAT phantoms in 
the dataset.

Median IQR

σinitial (HU) 196.6 184.4 – 213.6

σTIPS (HU) 24.8 22.6 – 26.8

σ4DSF (HU) 29.4 28.0 – 31.1

σ4DSF+TIPS (HU) 16.2 15.3 – 17.5

Noise Reduction TIPS (-) 8.1 7.8 – 8.3

Noise Reduction 4DSF (-) 6.8 6.5 – 7.0

Noise Reduction 4DSF+TIPS (-) 12.2 11.4 – 13.2

Table 5: The median and IQR of the lesion CNR determined for all 52 XCAT phantoms in the dataset.

Median IQR

CNRinitial (-) 0.44 0.40 – 0.50

CNRTIPS (-) 2.59 2.25 – 3.00

CNR4DSF (-) 1.85 1.54 – 2.07

CNR4DSF+TIPS (-) 3.12 2.46 – 3.56

Time Attenuation Curve Accuracy
The CT number accuracy of the dCTA sequence after TIPS, 4DSF, and 4DSF + TIPS 
is shown in the histograms for the 52 XCAT phantoms in Figures 4 and 5, and 
summarized in Table 6. The figures show the bias in time (Figure 4) and attenuation 
(Figure 5). The time bias histogram of the dCTA sequences filtered by 4DSF, and by 
4DSF + TIPS, indicates that in a few cases the lesion tends to have a positive time 
bias (delay) and in most cases the portal vein tends to have a negative time bias. 
In other words, the 4DSF shrinks the temporal separation between the different 
enhancement peaks. As can be seen in Figure 4 (left), the TIPS filter introduces 
very little time bias. The attenuation bias histograms indicate that for the tissues 
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that have a high peak, like arteries and lesions, the TIPS tends to introduce a 
negative attenuation bias. As opposed to the time bias, the 4DSF filter introduces a 
considerably smaller attenuation bias compared to the TIPS for the small and highly 
perfusing tissues such as the lesion and hepatic artery. The 4DSF + TIPS shows a 
slightly higher bias compared to only the 4DSF for the small and high peak tissues 
such as lesion and hepatic artery. The TACs of the average XCAT before and after 
the use of 4DSF are plotted in Figure 6 to show the loss in attenuation for the artery 
and lesion, and the bias in peak time, especially for the portal vein.

Figure 4: Histograms of CT number accuracy of all XCAT phantoms in terms of bias introduced in the 
TAC peak time for the dCTA sequence processed by TIPS filter (left), processed by 4DSF (middle), and 
processed by 4DSF + TIPS (right). Negative bias in time means that the peak is shifted forward in time 
after filtering.

Figure 5: Histograms of CT number accuracy of all XCAT phantoms in terms of bias introduced in the 
peak attenuation of the TAC for the dCTA sequence processed by TIPS filter (left), processed by 4DSF 
(middle), and processed by 4DSF + TIPS (right). Negative bias in attenuation means that the peak is 
decreased after filtering and positive attenuation bias means an increase in the height of the peak 
after filtering. 
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Table 6: The median and IQR of the time and attenuation bias determined for all 52 XCAT phantoms in 
the dataset for the results after both the TIPS filter and 4DSF.

Liver Artery Portal Vein Lesion

Time bias 
(phase)

TIPS 0 (0 – 0) 0 (0 – 0) 0 (0 – 0) 0 (0 – 0)

4DSF 0 (0 – 0) 0 (0 – 0) -1 (-1 – -1) 0 (0 – 0)

4DSF+TIPS 0 (0 – 0) 0 (0 – 0) -1 (-1 – -1) 0 (0 – 0)

Attenuation 
bias (HU)

TIPS -1 (-1 – -1) -88 (-95 – -78) -6 (-6 – -5) -26 (-32 – -21)

4DSF +6 (+5 – +6) -34 (-43 – -26) 1 (0 – 3) -22 (-28 – -12)

4DSF+TIPS +5 (+5 – +6) -50 (-61 – -41) 0 (-2 – 1) -28 (-34 – -19)

Figure 6: TACs of the average XCAT from the liver, artery, portal vein, and lesion. The transparent plot is 
the initial TAC and the dotted plot is the TAC after 4DSF.

Spatial Resolution
Figure 7 shows a partial CT scan of the average XCAT phantom, the yellow circle 
indicates the small hepatic artery used to determine the FWHM. Visually it is already 
clear that the resolution is different for all three filter techniques. The FWHM values 
for the ground truth and the three different filters are listed in Table 7. The values 
show almost no increase in FWHM for the techniques including 4DSF, whereas the 
TIPS filter did increase the FWHM by more than 35%, indicating more resolution loss.

Figure 7: Zoomed in part of the liver and some of its small hepatic arteries of the sixth phase.  
The yellow ROI indicates of which hepatic artery the FWHM is determined. WL/WW: 150/300.
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Table 7: Full Width Half Maximum values of three different filter techniques and the ground truth 
value for comparison.

Filter FWHM (pixels)

Ground truth 3.1

TIPS filter 4.3

4DSF 3.2

4DSF + TIPS filter 3.4

Figure 8 shows the peak arterial phase, which is the seventh out of the twelve 
phases of the dCTA sequence initial, TIPS, 4DSF, and 4DSF + TIPS filtered image of 
the average XCAT phantom. The images show that the 4DSF-filtered image appears 
much sharper and has little to no blurring across edges compared to the others. 
The bottom row of Figure 8 shows zoomed-in portions of the top row images, 
highlighting the lesion. Line profiles of the voxel values between the red dots of 
Figure 8 are plotted in Figure 9, please note that the line profile is three pixels thick, 
i.e., it is an average of three line profiles next to each other, to suppress the noise 
for better visualization. These show that the 4DSF introduces less resolution loss 
compared to that resulting from applying the TIPS and TIPS post-filter, since it is 
the one of the three filter techniques that comes close to restoring the necrotic 
inner layer of the lesion. In Figure 8 it can also be seen that the noise textures after 
TIPS filter and TIPS post-filtering is different from the one after 4DSF only, with the 
noise in the latter containing more higher frequencies. The rotationally-averaged 
normalized noise power spectra (nNPS), obtained within the yellow ROI of Figure 8, 
shown in Figure 10, confirm this.

Figure 8: Results of the different filters on the average XCAT, with a lesion in the posterior of the liver. 
All filters result in different degrees of blurring and different noise textures, with the TIPS filter seeming 
to introduce the most blurring and the 4DSF the least. The red dots indicate the start and end point of 
the line profiles of Figure 9. The yellow ROIs indicate where the rotationally-averaged nNPS of Figure 10 
were computed. WL/WW: 150/300.
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Figure 9: Line profiles of the lesion highlighted in Figure 8, showing that the 4DSF is the only filter that 
fully restores the voxel values of the necrotic inner layer of the lesion because it does not suffer from 
major resolution loss. The horizontal gray lines indicate the CT number of the liver and of the necrotic 
inner layer of the lesion. The gray dashes on the x-axis indicate the extent of the enhancing outer layer 
of the lesion and of the necrotic inner layer.

Figure 10: The nNPS (normalized to unit area under the curve) of the noise obtained from the different 
images within the yellow ROI of Figure 8.

Influence of image acquisition settings
Figure 11 shows the influence of different tube current levels, relative to the original 
tube current, called exposure scaling in Figure 11. The initial image noise has a 
minor influence on noise reduction and CNR. With decreasing initial image noise, 
e.g., due to increasing exposure, the resulting noise reduction decreases slightly 
and therefore the improvement ratio in lesion CNR is minor. Slightly more time bias 
seems to be introduced with increasing initial image noise. The attenuation bias 
shows a clear increasing trend for the arteries and a slightly increasing trend for 
the lesions in case of increased initial image noise. As expected, increased initial 
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image noise makes restoring the image more difficult, which is manifested by the 
introduction of larger quantitative inaccuracy in the TACs. Figure 12 shows the 
liver and lesion TACs for three different exposure levels, showing the decreasing 
difference between the lesion and liver TACs with lower exposure levels, i.e., with 
increasing initial noise.

Figure 11: Influence of the initial image noise, in this case set by varying the exposure, on the four 
image quality metrics after filtering.

Figure 12: TACs at three different exposure levels, 0.5x the original exposure level(left), the original 
exposure level (middle), and 1.5x the original exposure level (right). It shows that the resulting difference 
between lesion and liver after filtering is decreased in images acquired with lower exposure level. 

Computation time
The 4DSF was implemented in C++ and runs on the CPU only. For this study  
it was run on a Linux system with 128 GB RAM, Intel(R) Xeon(R) Silver 4210R CPU  
@ 2.40GHz. The process was multi-threaded over 32 CPU threads each on a separate 
core. The computation time for the standard parameter settings as listed in Table 2 
was 7103 seconds. The computation time was measured for different KS and ST 
values and the results can be found in the online supplements Appendix C. This 
analysis showed that the computation time increases approximately linearly with 
increasing KS. So, if the KS would be set to 1,000 instead of 30,000, the computation 
time would be 255 seconds.
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Discussion

This work presents an extensive analysis of the 4DSF on dCTA sequences of digital 
anthropomorphic phantoms. The performance of this filter was compared to that 
of the TIPS filter, the influence of different filter parameters, scanner settings, and 
lesion characteristics on the quality of the output image have been analyzed. 
By using digital anthropomorphic phantoms, it was possible to quantify the 
performance of the filter in terms of accuracy and introduction of bias, since the 
underlying truth is known.

It can be concluded that the 4DSF reduces noise and improves lesion CNR greatly, 
but the TIPS filter is superior for these metrics. However, the 4DSF does this with 
minimal spatial resolution loss and results in noise that is of higher frequency in 
nature. These two results are due to the filter not using information based on the 
spatial neighborhood of the voxel being processed. This is advantageous because 
if the residual noise is higher frequency in nature, this results in better visibility of 
low contrast abnormalities or changes [117,118]. Also, the height of the TAC peak of 
small highly-perfused tissues, such as hepatic artery and the lesion, were restored 
better by the 4DSF compared to the TIPS filter. The combination of 4DSF + TIPS 
filter showed the best results for noise reduction and lesion CNR. In addition, the 
spatial resolution loss for 4DSF + TIPS is minor compared to that resulting from the 
4DSF. Finally, the height of the TAC peaks for 4DSF + TIPS were not restored as well 
as when applying the 4DSF alone, but better compared to TIPS filter.

The investigation on the impact of the parameters of the 4DSF showed that the FS 
can be increased to reduce the noise and increase the lesion CNR with only minor 
loss in accuracy of the TAC peak of the highly-perfused tissues, i.e., the arteries and 
lesions. The KS can be reduced to 10 times the FS before it affects the accuracy of 
the TAC peak, in case of an FS of 100. This means that for the conditions investigated 
in terms of image size (512×512×320 of which approximately 35% was inside the 
binary mask) and number of phases (12), the filter’s running time is approximately 
255 seconds on our system when FS=100.

The exposure scaling showed that the TAC peak of the small highly-perfused tissues 
suffered the most from decreasing exposure. Also, an increase in exposure by 
a factor of 1.25 seemed to have a very positive influence on the accuracy of the 
TAC peak. This result suggests that, for instance, reducing the number of phases 
acquired to nine- or ten, so that the exposure can be increased by a factor of 1.25, 
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resulting in the same total dose, might be a good option for increased quantitative 
accuracy. However, more research is needed to confirm this.

The analysis of the impact of lesion characteristics showed no clear trend in the 
metrics for different lesion delays. The lesion attenuation had a positive influence 
on the CNR of the lesion and a slightly negative influence on the attenuation bias. 
Finally, as expected, the larger lesions suffer less from a decrease in the height of 
the TAC and their CNR is easier to restore.

The results also showed that using a pre-filter, be it average or median, gives much 
better results for all metrics compared to no pre-filtering. The average pre-filter 
showed superiority compared to the median pre-filter for CNR improvement and 
attenuation bias with slightly lower noise reduction. Therefore, the average pre-
filter is the preferred choice, based on this study.

Several limitations in this study should be kept in mind. The analysis was 
performed solely on digital anthropomorphic phantoms, which only represent 
human bodies and the iodine perfusion behavior to a certain extent. Also, the 
analysis was performed assuming no patient motion or perfect registration. 
The FDK reconstruction algorithm was used, resulting in relatively high high-
frequency noise, when utilizing the filter in situations where a more sophisticated 
reconstruction method is used, the results might differ. We still used FDK instead of 
a more sophisticated reconstruction method, such as model-based reconstruction 
or deep learning reconstruction, because these were not available to us. Since 
the 4DSF is expected to work best for reconstruction methods with low spatial 
correlation and FDK reconstruction with a sharp kernel probably comes closest 
to this assumption from all commonly-available reconstructions, the presented 
analysis gives good insight into the capabilities of the 4DSF. In addition, the pre-
filters used here do introduce spatially-correlated noise, indicating that the 4DSF 
works also in cases where there is increased spatial correlation of the noise, at least 
to a certain degree.

Because of these limitations, the performance of the 4DSF found here should be 
considered a ceiling, rather than what can be expected unless a highly accurate 
registration algorithm is applied. However, the results are still a good indication of 
the strong and weak points of the filter and the influence of certain variables on the 
resulting output.
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Overall, the filter is able to achieve substantial noise reduction and CNR increase, 
but at the cost of reduced TAC accuracy. Therefore, the filter seems to be ideal for 
abnormality detection, especially in combination with the TIPS filter, i.e., 4DSF + 
TIPS, after applying an averaging pre-filter. However, one should be careful when 
performing quantitative evaluation of the filtered dCTA sequences, especially when 
looking at TACs of small objects, e.g., via flow or volume maps.

Conclusion

An extensive performance analysis of the 4DSF was performed on simulated 
12-phase dCTA abdomen acquisition simulations. With the results of the analysis, 
the influence of filter parameters, scanner settings, and lesion types was 
determined. The strong points, being the noise reduction capability and increasing 
in lesion CNR, and weak points, being reducing the accuracy of the TAC peak of the 
highly perfusion tissues, of the filter are identified. Future use cases and protocols 
utilizing the 4DSF can be chosen or adjusted based on these insights, potentially 
leading to better or proper use of the 4DSF.
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Supplementary Material

Appendix A – Lesion generation parameters
For lesion generation, a computer program provided by the CVIT was used [108]. 
Below the input parameters for the lesion generation computer program, as used in 
this work, are given.

% Base options
base.imgRes = 0.25;	 %voxel size (mm)
base.seed = 1;	 %random number generator seed
base.complexity = 1.0;	 %complexity scaling, 1=normal

% Mass options
mass.lMax = 4;	 %maximum spherical harmonic order [int]
mass.alpha = 5.0;	%mean mass radius (mm)
mass.meanSigma2 = 0.2;	 %mean mass surface irregularity variance (mm^2)
mass.stdSigma2 = 0.04;	 %mass surface irregularity standard deviation (mm^2)
mass.powerLaw = 4.0;	 %covariance power law index
mass.meanLF = 500.0;	 %mean number of low freq. modifications
mass.stdLF = 50.0;	 %std. deviation of number of low freq. modifications
mass.meanShape = 0.8;	 %mean LF shape distribution 0=spike, 1=bump
mass.stdShape = 0.1;	 %std. deviation of LF shape 0=spike, 1=bump
mass.meanLFRad = 0.1;	 %mean relative LF radius
mass.stdLFRad = 0.05;	 %std. deviation of LF radius
mass.meanLFLen = 0.1;	 %mean relative LF length
mass.stdLFLen = 0.01;	 %std. deviation of LF length
mass.meanFuzzAlpha = 0.0; %mean fuzzy alpha
mass.stdFuzzAlpha = 0.0;	 %std. deviation of fuzzy alpha

% Spiculation options
spicule.meanInitial = 1000; %mean number of initial segments (set to zero)
spicule.stdInitial = 60; %std. deviation number of initial segments
spicule.meanNeigh = 8.98; %mean max number of neighbor segments
spicule.stdNeigh = 1.89; %std. deviation max number of neighbor segments
spicule.meanInitRad = 0.024; %mean initial relative radius
spicule.stdInitRad = 0.0053; %std. deviation initial relative radius
spicule.meanRadDec = 0.93; %mean radius decrease
spicule.stdRadDec = 0.05; %std. deviation radius decrease
spicule.meanInitLen = 0.025; %mean initial relative length
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spicule.stdInitLen = 0.0025; %std. deviation initial relative length
spicule.meanLenDec = 0.95; %mean length decrease
spicule.stdLenDec = 0.05; %std. deviation length decrease
spicule.meanContProb = 0.717; %mean continue prob.
spicule.stdContProb = 0.057; %std. deviation continue prob.
%%% Assuming equi-probably symmetric and asymmetric branching
spicule.meanSymBifProb = 0.142; %mean symmentric bifurcation prob.
spicule.stdSymBifProb = 0.028; %std. deviation symm bif. prob.
spicule.meanAsymBifProb = 0.142; %mean asymmentric bifurcation prob.
spicule.stdAsymBifProb = 0.028; %std. deviation asymm bif. prob.
spicule.meanBranchAng = 6.55; %mean asymmentric bifurcation prob.
spicule.stdBranchAng = 0.62; %std. deviation asymm bif. prob.

save('tmp.mat','base','mass','spicule','-v7.3')
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Appendix B – Tips filter
The TIPS filter is described below [37]:

� (B.1)

where c is a gaussian closeness function, d is the Euclidean distance in pixels, a is 
the voxel being filtered, ξ is a neighboring voxel, and σd is the parameter deciding 
which distance is considered close. The TIPS function p is defined as:

� (B.2)

� (B.3)

where v is the sum of squared differences (SSD) between the TAC, T is the number of 
phases, and σv is the parameter deciding if the SSD between the TAC is low enough.

� (B.4)

� (B.5)

where, m, n, and o, are length of the kernel in each direction, thus half the kernel 
size, and ITIPS is the TIPS filtered dCTA sequence. For this comparison, the parameters 
of the TIPS filter were set to kernel size = 5 × 5 × 5, σd = 3 voxels, and σv = (2∙σliver)

2, 
where σliver is the standard deviation in the liver, based on the suggested parameter 
range and optimized via trial-and-error for liver dCTA [37]. For the TIPS post-
filtering the parameters were set as followed kernel size = 3 × 3 × 3, σd = 1.5 voxels, 
and σv=(2∙σliver)

2.

The TIPS filter is described below [11]:  
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where	𝑐𝑐	is	a	gaussian	closeness	function, 𝑑𝑑 is the Euclidean distance in pixels, 𝑎𝑎 is the voxel being 
filtered, 𝜉𝜉 is a neighboring voxel, and 𝜎𝜎!  is the parameter deciding which distance is considered 
close. The TIPS function 𝑝𝑝 is defined as: 
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where 𝑣𝑣 is the sum of squared diIerences (SSD) between the TAC, 𝑇𝑇 is the number of phases, and 
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Appendix C – Additional Results
In this appendix additional results of the 4D similarity filter (4DSF) will be presented. 
Such as the influence of 4DSF parameters, lesion characteristics, pre- and post-
filtering. Additionally, the results of a computational time analysis are given.

Influence of 4DSF Parameter
The influence of the different parameter settings for FS, KS, and TH are plotted in 
Figure C1. For this analysis, the improvement ratio in CNR compared to the initial 
dCTA sequence is given.

Figure C1: Influence of the 4DSF parameter settings (Filter Strength (FS), Kernel Size (KS), and Similarity 
Threshold (ST)) on the four image quality metrics after filtering. The vertical dashed line in the third 
row indicates the theoretical ST threshold.

The results show, as expected, an increase in noise reduction with increased FS, 
since this is the number of voxels averaged. Since the noise is reduced the lesion 
CNR also increases, however the magnitude of the attenuation bias in tissues with 
high TACs, i.e., arteries and lesions, worsen with increased FS. The KS parameter 
has limited to no influence on the performance metrics, as long as it is at least  
10 times larger than FS, otherwise the attenuation biases in the lesions and arteries 
increase. Similarly, the ST parameter seems to have limited to no influence on the 
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performance metrics, as long as it is larger than the theoretical threshold √2∙σavg 

(as explained in the manuscript), with σavg being the standard deviation of the liver 
after pre-filtering. The average XCAT has a σavg of 52 HU, so the theoretical ST is 
73 HU, which is indicated by the dashed line in the third row of Figure C1. Below 
this threshold, the filter has a high chance of disregarding voxels of similar tissue 
types, leading to reduced filtering and thus reduced noise reduction and CNR 
improvement. However, reduced filtering also leads to reduced attenuation bias. In 
practice the number of voxels per tissue is so high that the performance only starts 
dropping when ST is much lower than the theoretical threshold.

Influence of lesion characteristics
Figure C2 shows the influence of different lesion characteristics on the 4DSF results. 
The delay in lesion enhancement compared to the liver artery has limited to no 
influence on the noise reduction and CNR improvement. The lesion attenuation, 
i.e., the iodine concentration, as expected, has a positive influence on the lesion 
CNR improvement, but has no influence on the magnitude of the noise reduction. 
The attenuation bias is slightly larger with higher lesion attenuation. The lesion 
size has no influence on noise reduction, as expected, and only the smallest lesion 
shows a decrease in CNR improvement. The attenuation bias is clearly reduced 
with increasing lesion size, which is logical since there will be more lesion voxels to 
average, so less chance of mixing with different tissues.

Influence of pre- and post-filtering
Figure C3 shows the influence of different pre-filters. The results clearly show that 
using no pre-filter leads to considerably worse results. Also, using an averaging 
pre-filter results in a lower attenuation bias, a higher lesion CNR improvement, and 
slightly lower noise reduction compared to using a median pre-filter. Therefore, the 
average pre-filter seems to be the preferred pre-filter in this situation.
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Figure C2: Influence of the lesion characteristics on the four image quality metrics after filtering. 

Figure C3: Plots showing all four metrics for no pre-filter, a median pre-filter, and an average pre-filter. 
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Computation time
The computation time was measured for different values of KS and ST and is listed 
in Table C1.

Table C1: Computation times of the 4DSF for different ST and KS values. The top row represents the 
use of the filter with the standard parameter settings as listed in Table 2, of the manuscript. The FS was 
100 for all runs.

ST KS Time (s) Fraction time relative to standard settings

1,000 30,000 7103 1.0

25 30,000 25069 3.53

50 30,000 14743 2.08

100 30,000 7302 1.03

250 30,000 6965 0.98

500 30,000 7143 1.01

1,000 100 38 0.005

1,000 300 104 0.015

1,000 1,000 255 0.036

1,000 3,000 649 0.091

1,000 10,000 2015 0.284

It can be seen that the time increases approximately linearly with increasing KS. 
Also, the value of ST does not influence the computation time as long as its value is 
above √2∙σavg. The TIPS filter processing time was not measured because we do not 
have a speed-optimized implementation of it, and therefore the comparison would 
not be fair.
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ABSTRACT

Functional 4D CT imaging including contrast injection can be beneficial when 
evaluating pathology. However, acquisition of long image sequences implies 
the need to use a low dose per phase to limit total radiation dose. This calls for 
development of advanced processing methods that can handle the resulting high 
image noise efficiently. Noise filters specific for dynamic imaging can use temporal 
information to achieve higher noise reduction but have a high computational cost. 
In this work, we accelerated an existing clinical 4D noise filter by making changes to 
its algorithm that enabled it to run approximately 13 times faster on GPU compared 
to a highly optimized CPU implementation without any obvious reduction in 
its effectiveness.
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Introduction

Despite significant progress in CT hardware and software that improved image 
quality and clinical decision making, standard CT provides only anatomical 
information of the patient condition. In many clinical situations it would be 
beneficial to also obtain functional information by studying the enhancement with 
iodinated contrast agents, especially when evaluating pathology for treatment 
planning or response. 

Usually three- or four-phase functional imaging protocols are implemented in 
the clinic for patients with stroke, cardiac ischemia, or liver lesions. They can still 
be performed at relatively low doses but have the risk of mistimed acquisitions, 
resulting in missing important aspects of contrast dynamics. More densely sampled 
sequences would eliminate the risk of missing important points on perfusion curves.

Functional imaging with long sequences consisting of 10 to 30 phases depending 
on the protocol comes at the cost of an increased dose. To reduce this, each phase 
in the sequence needs to be acquired at considerably lower dose than a standard 
anatomical CT image. Noise reduction filters can then be applied as a postprocessing 
step to enable the extraction of useful information from otherwise too-noisy images. 

Traditional denoising filters can be used in each individual phase, however 
they often use information from a small spatial neighborhood, leading to loss of 
resolution. To solve this, information from the other images in the sequence can 
also be used to decrease noise in the current phase. Therefore, noise filters specific 
for dynamic imaging that leverage the temporal information such as the 4D 
similarity filter have been proposed [55]. 

In this work, we aim to improve runtime of the 4D similarity filter by introducing a small 
modification to the algorithm that enables its implementation on GPU. We performed 
the first comparison with the exact CPU version and did not notice a performance drop.

Filter Implementation

4D Similarity Filter
Prokop and Smit introduced a 4D similarity filter to reduce noise in low dose  
4D imaging [55]. The idea of this filter is to find, for each voxel v in the image at a 
given timepoint t, a set of voxels {Vc} that have similar perfusion curves and use 
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those with the least differences to calculate an average voxel value that can then be 
used to update the image. 

The search for similar voxels is performed by comparing the perfusion curves of the 
voxel of interest v (the one being updated) with a large pool of candidate voxels vc 
in Vc from the entire image according to how close the temporal mean of each voxel 
vc is to that of v. If the perfusion curve of a candidate voxel vc is similar according 
to some threshold TH, it is saved in an array A. When the array is full, it is sorted 
based on the difference of perfusion curves and only the best FS candidate voxels 
are used to calculate the average value for this voxel. This filter can be implemented 
both on CPU and GPU, but the latter has not been achieved before. There exist 
multi-threaded CPU realizations of this filter, which are already used in clinical 
practice [96,97,100]. 

One of the drawbacks of the 4D similarity filter is long computational times 
since every voxel in the image needs to be processed independently. In a typical  
320 x 512 x 512 volume, with just 1/3 of all voxels being in the mask, the total 
number of voxels is around 27 million. On a 32-core CPU, each core would need to 
process more than 870 thousand voxels. The independence of each voxel invites use 
of the GPU for this task, since it has many more cores, which can process even more 
voxels in parallel. However, we encountered major problems when implementing 
the 4D similarity filter on the GPU.

Difficulties of Implementation on GPU
In general, low computational times on the GPU are achieved when it is possible 
to execute one thread per output element that can run independently from other 
threads and consists mainly of arithmetic operations with very limited memory 
accesses. This is due to the fact that arithmetic operations need up to 20 times 
fewer cycles to complete than operations on device (global) memory. If a high 
number of memory accesses are required to compute a single output element, 
several techniques can be employed. First, one wants to ensure that memory reads 
are coalesced, i.e., during the calculation of neighboring output elements, memory 
reads from the threads in the same block should be performed in accordance to 
memory layout. Second, if multiple threads in the same block can reuse some of the 
information, shared memory can be used to specify a user-defined and -maintained 
cache. Third, if memory reads are random but there is a high chance of having close 
spatial proximity, textures can be utilized due to their large cache, which is checked 
first before reading the data from the (slow) device memory.
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Unfortunately, none of these optimization techniques are applicable in our 
problem since each candidate voxel can be located in a completely different part 
of the image, therefore making coalesced memory reads impossible. Moreover, the 
probability of hitting the same element is very low, which removes the advantages 
of using the fast texture cache. Shared memory cannot be used either since it is not 
known at execution time whether a candidate voxel in one of the threads will be 
reused in another thread within the same block and, if so, in which one specifically. 
Thus, it is not possible to save this value in a structured cache for future use.

Another major limiting factor is the need to sort the selected similar voxels in array 
A according to the difference in perfusion curves. This is difficult due to two reasons. 
To begin with, keeping track of sometimes thousands of data pairs (difference and 
voxel value) requires sufficient memory that quickly exceeds the amount of fast on-
chip shared memory. Moreover, since shared memory needs to be shared between 
all threads in a thread block, it greatly reduces the number of voxels that can be 
processed in parallel. Thus, there is no other choice left other than accept writes into 
slow device memory. The fastest sorting algorithms require on average 𝒪(n log n)  
comparisons, which can become a large number for typical settings of the filter. 
From the computational point of view this method becomes inefficient on the GPU, 
since memory reads and writes are done in device memory and if not all threads 
in a thread block (warp) have finished their sorting, the core cannot be released to 
process another block of threads.

A very straightforward approach to reduce the computational burden due to 
sorting at the end is to sort each element at insertion by using, e.g., min-heap 
structure of size FS. With this approach, one does still need to keep the differences 
and values of FS elements. However, FS is almost always smaller than the size of 
A and it can be possible to store all FS elements in fast memory. Theoretically, on 
average the insertion takes again 𝒪(n log n) comparisons, but now the memory 
throughput is very high since we are working with fast shared memory only. In our 
case, this number will be even lower since the min-heap structure is sorted before 
each insertion. Nevertheless, the insertion must be performed as many times as 
the number of elements we wanted to have in our original array A. Furthermore, 
element insertion into a heap has multiple if-statements, which increases the 
likelihood of branching and therefore they could lead to the cores being idle 
more often.
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Our Solution
Based on these algorithmic bottlenecks hindering an efficient implementation on 
GPU, we propose a simple change to the algorithm that enables us to work around 
these issues and attain fast computational times on the GPU at the cost of a small 
reduction in the numerical accuracy of the solution.

Figure 1 schematically represents our way of storing the same number of elements 
as in the original A with limited space requirements and a fixed number of 
operations (𝒪(1)) on insertion and reading in the worst-case scenario.

Figure 1: sorted array structure is used to store the average value of voxels within a specific range 
of differences, along with the corresponding voxel count required for this average calculation. The 
insertion and extraction operations have a worst-case performance of 𝒪(1).

As in the original version, a candidate voxel vc is considered for future processing only 
if the difference between its and voxel v’s perfusion curves is below a given threshold 
TH. By carefully selecting TH, it is possible to save all good candidate values in a sorted 
manner with limited memory resources. Since the end-result of each kernel execution 
is an average of FS best candidate voxels vc, it makes sense to store the average and 
corresponding count utilizing as little memory space as possible. Assuming that 
a typical CT image is in the range from -1024 to 3071 HU, storing each value using 
only positive numbers requires just 12 bits. In case of 32-bit integers it leaves us with  
20 bits that can be used to store metadata corresponding to this number. For 
us, the only metadata we have for the average value is the number of voxels that 
were used to calculate it. Now we only need to store it in a sorted manner in a 
small data structure. We propose to create an array H of size N where each n-th bin 
stores the average value of the candidate voxels vc with the differences between 
n∙TH/N and (n+1)∙TH/N. For example, if N=100, TH=2000, the first bin is responsible 
for storing the average value of candidate voxels with the difference between 0 
and 19. The size of the array N is a trade-off between the intended bin width for a 
certain TH and the number of threads that can run in parallel. For example, for 
the Nvidia A6000 GPU with 99 KB of shared memory, one can theoretically have  
193 parallel threads with N=128 or just 96 threads with N=256 in each block.
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Limitations
The changes introduced to the algorithm have a negative effect on the numerical 
accuracy of the 4D similarity filter, which is important to understand and to explore 
possible solutions.

To start, some accuracy is lost when calculating the average due to rounding, 
since only integer values can be stored. Theoretically, one could use fixed point 
number arithmetic to mitigate this problem, if one can accept that fewer bits will 
be used to represent the integer part of the number or the maximum count will be 
smaller. Following that, the width of the bin could be too broad so that almost all 
of FS best voxels can be found in one of the first bins. If the number of candidate 
voxels in one of the bins near the start of the array H greatly exceeds FS at some 
locations in the image, the noise reduction will not be homogeneous across the 
whole image. When it is not possible to increase the number of bins anymore due 
to memory constraints, one could move the array H into device memory, at the cost 
of increasing memory latency. Alternative solution could be to use the array H with 
non-uniform bin width. This way, the first bins can be made smaller to enable more 
granular summation of FS.

Materials & Methods

We compared the performance of our and commercial CPU implementations of the 
4D similarity filter on simulated CT images of an anthropomorphic XCAT perfusion 
phantom. The acquisitions were simulated in low-dose mode (CTDIvol = 1.3 mGy per 
phase) using a previously developed and validated CT simulator [114]. The images were 
reconstructed using an own implementation of the standard FDK algorithm. To avoid 
negative values and allow the custom array structure we applied the following linear 
scaling to arbitrary units: AU=(HU+3000)/6. In this preliminary work, we performed 
very simple analysis that included quantification of noise reduction in terms of signal-
to-noise ratio (SNR) in a homogeneous region of the liver and estimation of the bias. 

The GPU implementation has fewer and slightly different parameters than the CPU 
version. Even though we adjusted the parameters according to our understanding 
of the filter in order to achieve comparable performance, we note that both filters 
are not expected to lead to identical results. The size of array H was 128 bins to have 
a multiple of 32 to avoid bank conflicts when writing and reading from H. Mean 
squared error (MSE) TH was 12800, leading to each bin being 100 MSE units wide. FS 
was set to 100. For each voxel in the mask, 40,000 candidate voxels were checked.
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Results

Figure 2 shows a slice of the original reconstructed phantom and two slices filtered 
using the CPU and GPU versions of the algorithm. Both results look very similar in 
terms of representing anatomical structures. To confirm this a subtraction image of 
the CPU and GPU output is shown in Figure 3.

Figure 2: Comparison of exact CPU and approximate GPU 4D similarity filters. WW/WL: 200/50 HU.

Figure 3: Subtraction image of gpu minus cpu. WL/WW: 0/100.
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We calculated the SNR in the entire liver as we had perfect segmentation from 
the XCAT phantom. The GPU version has achieved slightly higher noise reduction 
than the GPU version, (SNR increased by a factor of 7.3 and 7.7, respectively). Since 
the noise is expected to decrease mainly as a function of the number of averaged 
voxels FS provided that they are sampled from the same distribution, and unlike in 
the CPU version, FS is not fixed, we calculated the actually used FS for each voxel 
in the output. Figure 4 shows the actually used FS to calculate the average for each 
voxel in the image. In the whole liver, we found FS to be 126±19 which is higher 
than the intended FS used in the CPU version. 

Figure 4: Actually, used FS for each voxel measured as a number of voxels used to calculate the average. 
The values are clipped at 300.

No visible bias is observed when comparing images filtered on CPU and GPU. 
To verify this we constructed the Bland-Altman plot shown in Figure 5. There is 
a small negative bias of -6 HU. There appears to be no clear dependency of the 
difference between two versions of the filter and voxel grayscale value. Moreover, 
we observed that both the CPU and GPU versions introduce either positive or 
negative bias depending on the location in the liver or other organs. There is no 
clear dependency on anatomy, functional or image properties.
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Figure 5: Bland-Altman plot comparing GPU and CPU versions of the filter. The output of the GPU 
version is on average lower.

The GPU result can be obtained within 44 seconds on an Nvidia A6000 GPU, 
which is on average 13 times faster than the multi-threaded commercial CPU 
implementation that is executed on 32 cores, based on the mean of three runs. 
The Nvidia profiler has also shown that the L1 and L2 caches are not fully utilized. 
In order to improve reading from device memory, we implemented memory 
prefetching, eight candidate voxels are loaded from the device memory into 
registers and are then processed. This modification improved the utilization of 
the caches. Better memory utilization increased compute throughput by 385% 
and enabled, thus, the execution of the filter within 27 seconds, which is roughly  
23 times faster than the CPU version. 

Discussion

We modified the original algorithm of the 4D similarity filter in order to avoid GPU-
specific computational constraints. With this we were able to run it on GPU several 
times faster than with highly-optimized multi-threaded code on the CPU. The main 
change was replacing the sorting operation by using an ordered hash-like structure 
that can reside in fast but limited on-chip shared memory and thereby enabling 
𝒪(1) writing and reading. However, we needed to sacrifice accuracy to use this data 
structure. We performed first tests with both versions of the similarity filter to study 
the effect of this accuracy loss.
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Overall, both versions produce very similar outputs with comparable set of 
parameters. The main difference is a higher level of denoising than anticipated, 
which is explained by the fact that FS is not a fixed parameter anymore. Therefore, 
it leads to different level of noise reduction in various parts of the image, as 
demonstrated. To counteract this effect, the bin width in the hash H could be 
chosen smaller, therefore enabling more granular division of candidate voxels and 
thus increasing the chance of using the sought number of voxels FS for averaging.

An important advantage of our implementation is significantly reduced complexity 
of the code. This simplification will enable us to add modifications to the algorithm 
and explore additional features such as looking for neighbors in a local region or 
using different metrics to select the voxels. Furthermore, our implementation 
enables the filtering of single phase in the sequence. An interesting scenario 
to investigate would be the application of the filter to reduce the noise in every 
second or third image in the sequence for calculation of approximate perfusion 
maps in clinical situations in which the time of diagnosis is the main concern, while 
more images are being processed in the background to update the perfusion maps 
with more accurate data.

In this work we performed an initial evaluation of how the filter is affected by the 
algorithm changes in a digital phantom. At the moment it is not clear whether 
the introduction of slightly non-uniform noise reduction throughout the image 
and different anatomies we found will have negative effects on the performance 
of radiologists or further processing of the images, e.g., to calculate perfusion 
maps. Based on these initial results we plan to continue with further analysis of 
the performance by, e.g., quantifying bias of the perfusion curves in different 
anatomies. Such an analysis combined with hyperparameter tuning must be done 
in order to ensure correct and trustworthy performance.

Conclusion and Outlook

We implemented a GPU version of the 4D similarity filter that is on average 
approximately 13 times faster than a highly optimized commercial multi-threaded 
CPU realization by introducing a change into the original algorithm to make it more 
GPU-friendly at the cost of lowering accuracy. Our modification to the algorithm 
removed a significant bottleneck for GPU implementation. Our further non 
algorithm-specific modification enabled further speedup by factor of 1.7 compared 
to the already modified algorithm.
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ABSTRACT

Background
Brain CT perfusion is used for diagnosing ischemic stroke and treatment planning.

Purpose
Optimizing the 4D Similarity Filter (4DSF), a noise reducing filter, for CT perfusion in 
patients with acute stroke.

Methods
To reduce noise in dynamic perfusion images, the 4DSF averages voxels with the 
most similar time-intensity curves. The commercial implementation searches for 
similar voxels based on temporal mean. The proposed stroke-specific 4DSF (s4DSF) 
searches for voxels with similar peak times, thus measuring changes in blood 
supply that are characteristic of acute stroke. For evaluation, nine stroke scenarios 
were simulated using a digital phantom. For each scenario, a 30-phase CT perfusion 
protocol was simulated. Perfusion analysis was performed using (i) Bayesian 
estimation on 4DSF-filtered (clinical standard) and s4DSF-filtered CT scans, and 
(ii) SVD on original (clinical standard) and s4DSF-filtered CT scans to obtain five 
different perfusion maps. For all maps, the contrast and root-mean-square error 
of the stroke and contralateral regions were compared with and without s4DSF. 
Improvements in contrast correctness were evaluated with a binomial test. To show 
clinical potential, CT perfusion scans of twelve patients admitted with suspected 
stroke were retrospectively retrieved. In these cases, s4DSF performance was 
visually assessed and compared to the clinical Bayesian and SVD methods.

Results
Compared to the clinical version, the s4DSF improved contrast correctness in 64% 
of the Bayesian estimation (29/45) and 73% of the SVD maps (33/45) (P=.036 and 
P=.001, respectively). Moreover, the root-mean-square error was lower for the 
s4DSF-filtered maps in 70% (63/90) of Bayesian- and 99% (89/90) of SVD-derived 
perfusion regions. Analysis of patient data yielded similar results, with s4DSF 
showing more visible and clearly delineated stroke regions.

Conclusion
The s4DSF shows better performance than current clinical filters in phantom 
simulations and patient cases. Therefore, application of the s4DSF could improve 
diagnostic accuracy of cerebral perfusion maps.



6

139|4D Similarity Filter for ischemic stroke

This study was supported by Canon Medical Systems Corporation, by providing 
technical support in the use of the Vitrea workstation so that the perfusion analysis 
could be performed on the images filtered by us offline, and by co-funding project 
FILTER, funded by Health Holland (project LSHM19020). The authors, none of whom 
are employees or consultants of Canon, had control of the data and the information 
submitted for publication at all times.



140 | Chapter 6

Introduction

CT perfusion (CTP) is used in acute stroke to diagnose ischemia, make treatment 
decisions on reperfusion therapy, and predict outcome  [119–121]. Multiple 
prospective trials, such as the DAWN and DEFUSE 3  [122,123], demonstrated the 
ability of CTP to guide treatment decisions by identifying patients that are suitable 
for intra-arterial thrombectomy even after 6 hours since symptom onset.

Most commonly, methods for estimating perfusion maps from CTP images are 
based on deconvolution using singular value decomposition (SVD)  [16]. However, 
these SVD-based methods often fail for images with low signal-to-noise ratios 
(SNRs)  [124]. Since cerebral CTP protocols consist of multiple CT scans over time, 
the dose per scan must be kept relatively low, resulting in a low SNR and making 
it challenging to obtain accurate perfusion maps. Different variants of SVD-based 
methods have been proposed to minimize this problem  [125], but they do not 
yield sufficient accuracy in low-SNR situations. Another method based on Bayesian 
estimation, which is more robust to low SNRs but still shows worse performance in 
these scenarios, has been proposed [17].

Therefore, it is important to increase the SNR of CTP scans as a preprocessing step 
before perfusion analysis to maximize the accuracy of the resulting perfusion 
maps  [32,37,38,126]. One such noise reducing filter, the 4D similarity filter 
(4DSF)  [55], has been combined with a Bayesian estimation method and made 
available on a clinical perfusion analysis solution (Brain Perfusion 4D, Vitrea, Vital 
Images, Minnetonka, MN, USA); this solution has already been shown to improve 
perfusion analysis [100].

In this work, an alternative implementation of the 4DSF for diagnosing ischemic 
stroke that aims to accurately depict differences between healthy and ischemic 
brain tissue is proposed and tested.

Methods

The newly proposed stroke-specific implementation of the 4DSF is referred to 
as the s4DSF. The s4DSF was used in combination with two perfusion methods 
available on the Vitrea workstation (version 7.11.0), the Bayesian estimation 
method and an SVD method (called SVD+). To examine whether the proposed 
s4DSF outperformed the current standards used clinically, it was compared with 
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the 4DSF-Bayesian estimation and standalone SVD methods. When using s4DSF 
in combination with the Bayesian estimation method, the clinically used Bayesian 
estimation implementation was used with the original 4DSF turned off.

Phantom data
To quantify the performance of the s4DSF and the impact of the changes proposed, 
a digital anthropomorphic brain phantom and perfusion model developed by 
Divel et al.  [127] were used. In this brain phantom, the vessels, gray matter, and 
white matter are divided into multiple smaller regions such that local perfusion 
differences, including strokes, can be simulated. A previously developed and 
validated CT simulator  [114] was used to generate CT images from this phantom. 
This simulator mimics the physical process of image acquisition and therefore 
results in realistic CT images that mimic real noise and spatial resolution limitations. 
More details on the phantom and images can be found in Appendix A.

A total of nine different stroke scenarios were simulated with three different peak 
delays of 1.5, 3.0, and 5.0 seconds and three different peak intensities of 0.2, 0.4, 
and 0.6 relative to the time attenuation curves (TACs) of the contralateral, healthy 
white matter. A 30-phase CT protocol was simulated for each scenario. All strokes 
were approximately 11.5 mL in size and located in the left hemisphere; none of 
them had an infarct, i.e., the brain tissue itself was not simulated as hypodense. 
Figure 1 shows a simulated CT image with and without noise.

Figure 1: Reconstructions of the simulated acquisition of the phantom at the twelfth timepoint. (left) 
Reconstruction of the phantom without noise, i.e., the reference. (right) Reconstruction with a noise 
level comparable to a clinical scan in our institution. The ischemia is visible as a hypodense region in 
the contrast-enhanced image (indicated by the yellow arrow), since it receives less blood. Please note 
that the ischemic region is hardly visible on the noisy image on the right. WW/WL: 200/50.
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Patient data
As an exploratory study on clinical feasibility, the CT perfusion data of twelve patients 
were retrospectively obtained from the imaging archive of a tertiary academic 
medical center. These data were obtained under an approved protocol for the use 
of existing clinical data obtained for clinical purposes after anonymization, with 
the requirement for informed consent waived (protocol numbers: CMO 2016-3045, 
Projects 20031, v5 and v6). The study cohort comprised of twelve patients of two 
groups. The first group included two consecutive patients admitted for acute stroke 
and subsequently underwent intra-arterial thrombectomy between January 1,  
2024, and May 1, 2024, and the second group comprised of ten consecutive patients 
who were presented with suspected stroke and treated between August 1, 2024, 
and August 18, 2024. This non-continuous patient selection was due to the peer-
review process. An initial evaluation of two patients was followed by the addition of 
ten patients at the reviewer's request. Because raw scanner data, required for this 
study, was not routinely archived at our institution, patients treated immediately 
following the initial two could not be included, necessitating the selection of a 
subsequent cohort of ten patients. There were no exclusion criteria.

Filter
The 4DSF searches for voxels with similar TACs and averages these voxels together, 
improving the SNR in the image. However, because computation time limits the 
number of voxels that can be assessed for similarity, the voxels are sorted on the 
basis of a metric; in the current version, this metric is the temporal mean and the 
voxels closest after sorting based on this metric are assessed. Importantly, since 
the tissue densities and enhancements are very similar and the image noise is 
relatively high, the difference between healthy and ischemic tissue in the brain is 
relatively small on the temporal mean images. Therefore, the temporal mean has 
limited discriminative ability for separating ischemic tissue from healthy tissue. 
In the s4DSF, the voxels are sorted on the basis of peak time. Figure 2 shows an 
example of the temporal mean-based values and the peak time-based values 
in which the peak time-based metric can clearly discriminate the stroke voxels, 
whereas little distinction is possible when the temporal mean-based values are 
used. Additionally, in the s4DSF method, only voxels that are physically close to the 
voxels being processed are considered. The technical details about the 4DSF are 
described in Appendix B.
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Figure 2: Images of the metrics used to sort the voxels and, consequently, determine candidates to 
obtain the average. (left) The temporal mean-based metric. (right) The peak time-based metric. The 
yellow arrow indicates the stroke area. Owing to its greater contrast between the ischemic and healthy 
tissues, the peak time-based metric better discriminates the stroke voxels.

Perfusion Analysis
Perfusion maps from the simulated and real patient CTP images were generated 
via the Vitrea ‘Brain Perfusion 4D’ tool. Specifically, relative cerebral blood volume 
(rCBV), relative cerebral blood flow (rCBF), mean transit time (MTT), time to peak 
(TTP), and Delay with 320 slices, each 0.5 mm thick with 512x512 pixels covering a 
field of view of 220 mm, were generated.

Maps using both the Bayesian estimation and SVD method were obtained. For 
each method, the same analysis was performed. The perfusion maps of the clinical 
implementation and proposed implementation using s4DSF were compared to 
the reference maps, i.e., the noiseless phantom data. The clinical implementation of 
Bayesian estimation uses the original 4DSF already in its preprocessing; therefore, when 
combining s4DSF with Bayesian estimation, the 4DSF step was turned off. The clinical 
implementation of the SVD method does not use the 4DSF during preprocessing.

The comparison was performed in two regions of interest (ROIs), defined by the 
known stroke (ipsilateral) and healthy (contralateral) areas of the phantom brain.

For each ROI, the average value was calculated. The contrast (difference in 
average value) between these two ROIs, i.e., the healthy and ischemic ROIs, was 
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subsequently determined. This contrast indicates the visibility of the stroke in each 
map. The contrast of the reference maps, i.e., the noiseless phantom data, served 
as the reference standard, and the contrast of the clinical and proposed methods 
were compared to the reference standard contrast to determine which was more 
accurate; this binary measure is referred to as contrast correctness.

Next, the root-mean-square error (RMSE) between the reference standard and 
clinical implementation was determined, as was that between the reference 
standard and proposed implementation. The RMSE is a combination of the 
systematic error and the noise level in the perfusion map and is therefore a 
quantitative measure of accuracy.

All these measurements were performed for all nine different stroke scenarios. 
Three scenarios were selected to represent mild (delay of 1.5 s and peak of 0.6), 
moderate (delay of 3 s and peak of 0.4) and severe perfusion deficits (delay of 5 s 
and peak of 0.2) and are reported in the results. The other scenarios are presented 
in Appendix C.

Consistent with the analysis of the simulated data, perfusion maps were obtained 
for the patient cases using both the Bayesian estimation and SVD methods. 
The clinical and proposed implementations were both used so that the effect of 
s4DSF on the perfusion maps could be analyzed. Since no reference standard was 
available for the patient data, quantitative analysis was not possible and the results 
were analyzed only visually.

Statistical Analysis for Phantom data
Before the contrast was calculated, differences in the values within the healthy 
and ischemic ROIs of the same case were evaluated via a Mann-Whitney U test, 
since the distributions within the ROIs were not expected to be normal and were 
independent. The values of the same ROIs processed with the clinical and proposed 
versions were compared using a Wilcoxon signed-rank test, since the distributions 
within the ROIs are not expected to be normal and are paired. The threshold for 
significance was chosen as P<.01 for both tests.

Finally, a binomial test was performed based on the number of perfusion maps in 
which the proposed method had a contrast closer to the reference standard than 
did the clinical method to determine whether one method outperformed the other. 
The threshold for significant difference was chosen as P<.05 for both tests. All 
statistical tested were performed using python package SciPy (version 1.7.3).
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Results

Bayesian estimation Analysis
Figure 3 shows the perfusion maps of the 3 second delay and 0.4 relative peak 
intensity case for the Bayesian estimation method. The ischemic region is more visible 
on the TTP, MTT, and delay maps for the proposed method than those obtained with 
the clinical method. However, the maps of the proposed method seem slightly more 
blurred. The perfusion maps of all other stroke scenarios can be found in Appendix C.

Figure 3: Perfusion maps of the Bayesian estimation method for the phantom with left-sided ischemia, 
with a 3 second peak delay and a peak height of 0.4 relative to healthy tissue. The top row shows 
the reference perfusion maps, the middle row shows the perfusion maps resulting from the clinical 
implementation, and the bottom row shows the perfusion maps of the proposed implementation.

In Table 1, the average values of the ischemic and healthy ROIs and their contrasts 
are presented for three different stroke scenarios. The results show that the contrast 
correctness of the proposed method was superior to that of the clinical method for 
most of the TTP, rCBF, and MTT maps. As expected, the proposed method was least 
superior in the stroke scenario with the smallest delay at a peak time of 1.5 s for 
Bayesian estimation. The results of the other six scenarios, presented in Tables S1 
and S2 of Appendix C in the online supplementary materials, were similar. Overall, 
i.e., for all nine scenarios, with five perfusion maps each, 29 out of the 45 maps 
showed improved contrast correctness when the proposed method was used and 
the remaining 16 maps showed worse contrast correctness. The p value resulting 
from the binomial test was .036. The values of the ischemic and healthy ROIs were 
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significantly different for all maps according to the Mann-Whitney U test. The 
values of the clinical and proposed methods were significantly different for all maps 
except one, as indicated in Table 1, according to the Wilcoxon signed-rank test.

Table 2 presents the RMSE of both the clinical and proposed methods relative to 
the reference standard for each stroke scenario. The TTP, MTT, and Delay maps 
generated with the proposed method combined with Bayesian estimation 
consistently resulted in the lowest RMSE. For the rCBV and rCBF, the proposed 
method seemed to have slightly worse performance in terms of RMSE. The results 
of the other six scenarios were similar (Tables S3 and S4 of Appendix C). Overall, for 
all nine scenarios, with five perfusion maps each and two ROIs per map, the RMSE 
was reduced in 63 out of 90 analyzed ROIs for the Bayesian estimation method.
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SVD Analysis
Figure 4 shows the SVD perfusion maps for the 3 second delay and 0.4 relative 
peak intensity scenario. Compared with those of the clinical method, the perfusion 
maps of the proposed method have little noise content, considerably improving 
the visibility of the stroke. However, the maps of the proposed method are less 
well delineated. The perfusion maps of all other stroke scenarios can be found in 
Appendix C in the online supplementary materials.

Figure 4: Perfusion maps of the SVD method for the phantom with left-sided ischemia, with a 3 second 
peak delay and a peak height of 0.4 relative to healthy tissue. The top row shows the reference standard 
perfusion maps, the middle row shows the perfusion maps obtained with the clinical implementation, 
and the bottom row shows the perfusion maps obtained with the proposed implementation.  
SVD – singular value decomposition.
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In Table 3, the average values of the ischemic and healthy ROIs and their contrasts 
are presented for the three different stroke scenarios. The results show that the 
contrast correctness of the proposed method was superior to that of the clinical 
method for the Delay, rCBF, and MTT maps. The results of the other six scenarios 
were similar (Tables S5 and S6 of Appendix C). Overall, i.e., for all nine scenarios, 
with five perfusion maps each, the contrast correctness was improved in 33 out of 
the 45 maps and worse in 12 out of 45 maps when the proposed method was used. 
The p value resulting from the binomial test was .001. The values of the ischemic 
and healthy ROIs were significantly different for all maps according to the Mann-
Whitney U test. The values of the clinical and proposed methods were significantly 
different for all maps except three according to the Wilcoxon signed-rank test 
(Tables 1 and S6).

Table 4 presents the RMSE between the reference method and both the clinical and 
proposed methods for each stroke scenario. The proposed method combined with 
SVD consistently resulted in the lowest RMSE. The results of the other six scenarios 
were similar (Tables S7 and S8 of Appendix C). Overall, for all nine scenarios, with 
five perfusion maps each and two ROIs per map, the RMSE was reduced in 89 out of 
90 analyzed ROIs for the SVD method.
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Patient data

Bayesian estimation analysis
Figure 5 shows the perfusion maps of two patient cases with the Vitrea Bayesian 
estimation method. For both patients, the stroke was more visible and clearly 
delineated with the proposed method. For Patient 1, the time-based maps (i.e., TTP, 
MTT, and Delay) show a much better delineation of the ischemic area. For Patient 2, 
these maps show a deficit in the images from the proposed method, which is hard 
to see in the clinical images, especially on the Delay map. Patient 1 was woman 
age 81 and Patient 2 was a man age 73. The results of the other ten patient cases 
are presented in Appendix D. Out of the ten patients nine were men and one was a 
woman and their age ranged from 59 and 80.

SVD analysis
Figure 6 shows the perfusion maps of the two patient cases when the SVD method 
was used. Compared with those of the clinical method, the perfusion maps of the 
proposed method had little noise. For all the maps of Patient 1, with the exception 
of the TTP, the stroke area is much better delineated by the proposed method. For 
Patient 2, the stroke is barely visible on the presented slice of the rCBV, rCBF, and 
MTT maps of the clinical implementation; however, on the maps of the proposed 
implementation, the stroke is clearly visible. The results of the remaining 10 patient 
cases are presented in Appendix D.



154 | Chapter 6

Figure 5: The perfusion maps of the patient data when using the Bayesian estimation method. The top part 
titled patient 1 shows the perfusion maps of an 81-year-old female with right sided middle cerebral artery 
occlusion presented as a wake-up stroke (NIHSS 13). The bottom part titled patient 2 shows perfusion 
maps of a 73-year-old male with a left sided middle cerebral artery occlusion scanned 45 minutes after 
onset of symptoms (NIHSS 4). For both patients the stroke is more visible and better delineated in case of 
the proposed method. For patient 1, the time-based maps (i.e., TTP, MTT, and Delay) show a much better 
delineation of the ischemic area. For patient 2 these maps show a deficit in the images from the proposed 
method, which is hard to see in the clinical images, especially on the Delay map.
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Figure 6: Perfusion maps of the patient data when the SVD method is used. The top part labeled 
Patient 1 shows the perfusion maps of an 81-year-old female with right-sided middle cerebral artery 
occlusion who presented with a wake-up stroke (NIHSS 13). The bottom part labeled Patient 2 shows 
perfusion maps of a 73-year-old male with left-sided middle cerebral artery occlusion scanned  
45 minutes after the onset of symptoms (NIHSS 4). For both patients, the perfusion maps of the 
proposed method have less noise than those of the clinical method.
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Discussion

Considering the characteristics of the perfusion deficits associated with stroke, this 
study proposed an alternative implementation of a clinical 4-dimensional noise 
filter, the 4DSF, for diagnosing ischemic stroke in CTP. While the clinical version 
of the 4DSF searches for similar voxels on the basis of tissue density and average 
enhancement, our proposed method searches for voxels on the basis of iodinated 
contrast timing, since it provides more discriminative power for the perfusion 
deficits associated with stroke.

As expected for the Bayesian estimation method, the proposed approach worked best 
for perfusion maps that relate to timing information, i.e., the TTP and MTT maps. The 
results of the phantom-based analysis for the Bayesian estimation method showed that 
the proposed s4DSF provides perfusion maps that are superior to the clinical version.

We found that both the contrast correctness of the perfusion deficit, which is 
important for visual assessment, and the accuracy of the perfusion values, which 
is important for, for example, automatic infarct core and penumbra quantification, 
improved. The contrast correctness improved in 64% (29/45) of the perfusion 
maps with P=.036. The rCBV maps, however, were slightly worse with the proposed 
implementation in terms of RMSE, whereas the contrast correctness of the perfusion 
deficit was similar. This has potential implications for automatic infarct core 
detection, but visual assessment of the rCBV maps should have results similar to 
those of the current clinical implementation. Owing to the central volume principle, 
which states that the rCBF is equal to the rCBV divided by the MTT, these moderate 
results for the rCBV maps also resulted in moderate results for the CBF maps. 
However, for the moderate and severe stroke scenarios, involving greater delays, the 
results of the proposed method were superior to those of the clinical method. For 
the mild-stroke scenario, with a shorter delay, the results were more varied.

The results of the SVD method showed that for almost all stroke scenarios, the 
proposed s4DSF increased the contrast correctness of the rCBF, MTT, and delay 
maps. The contrast correctness of the rCBV and TTP maps was more varied, with 
some increases and some decreases for the proposed method. The contrast 
correctness of the perfusion maps, when using s4DSF, were superior in 73% (33/45) 
with P=.001. Almost all these results were statistically significant; however, their 
clinical significance remains to be determined. The accuracy of the perfusion 
maps increased as the noise decreased drastically, leading to more visible and 
clearly delineated stroke regions. This result was expected since SVD does not 
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use advanced denoising as a preprocessing step. These results show that adding 
a noise reduction step improves the performance of SVD and that s4DSF-SVD can 
depict the contrast between the ischemic and contralateral sides more accurately 
than standalone SVD can.

The fact that the proposed s4DSF improved the results when combined with both 
the Bayesian estimation and SVD methods, which have very different methodologies, 
indicates the potential value of the s4DSF independent of perfusion estimation 
methods or specific pre- or postprocessing algorithms used.

The patient data could not be analyzed quantitatively since there was no reference 
standard available for these data. Nevertheless, the TTP, delay, and MTT maps 
show a greater distinction between healthy and ischemic regions and better 
delineations when the proposed method is used. The patient cases presented in 
Appendix D show that, overall, the proposed method enhances the visibility of a 
stroke. However, in one case, an asymmetry was observed in the perfusion maps 
generated with the proposed method, which could result in a false positive stroke 
detection, as it did not correspond with clinical symptoms. We believe that this is 
due to the algorithm being very sensitive to differences in the time of enhancement. 
Therefore, the s4DSF and color scaling for this specific algorithm must be further 
optimized, especially since studies have shown that color scaling is very important 
for image interpretation  [128,129]. The fact that the patient data could only be 
analyzed visually is a limitation, although the observed results for the patient data 
agrees with those obtained with the phantom data and could be an indication that 
the newly proposed s4DSF is superior, as shown quantitatively with the phantom 
data. The actual impact of the method on diagnostic performance remains to be 
seen, which will require a multireader, multicase observer study for performance.

This work has some limitations. First, phantom data are only a simulation of real 
stroke data. Simplifications made in generating these data include simulating a 
‘homogeneous’ stroke, whereas real strokes often consist of a core and a penumbra 
with different perfusion characteristics. Nonetheless, these simulations did allow 
for quantitative analysis. Second, the binomial test used assumes independent 
samples; however, the 45 samples, i.e., perfusion maps, used are from nine different 
stroke scenarios each resulting in five different perfusion maps. Therefore, the 
five maps from the same stroke scenario are neither fully independent nor fully 
dependent. Third, the inevitable lack of a reference standard for the patient data 
makes quantitative analysis of these results challenging and limited analysis to 
visual assessment only. However, the fact that the patient data yielded results 
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similar to those of the phantom study illustrated the potential of the s4DSF. Fourth, 
the reconstruction method used was conventional filtered back projection; thus, the 
noise content in the image could be lower if a more sophisticated reconstruction 
method had been used. While this may affect the image quality of the perfusion 
maps, it is not likely to affect the comparison between the clinical and proposed 
implementation of the 4DSF.

In summary, this work proposes a new implementation of the 4DSF optimized for 
stroke imaging. This results in more accurate perfusion maps in most cases. Before 
clinical implementation, a diagnostic performance study should be performed to 
confirm these early findings.
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Supplementary Material

Appendix A – Data

Phantom details
In this work the digital anthropomorphic brain phantom and perfusion model 
developed by Divel et al.  [127] was used. In this brain phantom, the vessels, gray 
matter, and white matter have been divided into multiple smaller regions such that 
local perfusion differences can be simulated, see Figure A1.

Figure A1: Brain phantom developed by Divel et al., the gray and white matter is subdivided into 
smaller parts, so the perfusion in each part can be different. The intensities only indicate different 
tissues with different perfusion characteristics, so have no physical meaning.

The amount of iodinated contrast, the concentration, and the fraction of the 
iodinated contrast flowing to the brain are all model inputs. It can also be indicated 
which artery is occluded and what the tissue parameters are for healthy and 
ischemic gray and white matter. These tissue parameters determine the blood flow, 
volume, and meant transit time of the tissue.

All gray and white matter sections that are supplied by the occluded artery will have the 
ischemic tissue parameters and thus will have a lower blood flow, blood volume, and 
mean transit time. In a real brain, the brain regions distal to the occlusion receive blood 
via collaterals, however in this model the occlusion is simulated as a partial occlusion.

The total iodine concentration over time in each part of the phantom can be 
determined using backward flow dynamics, since the blood volume, flow, and 
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mean transit time of each brain section and total contrast input is known. For the 
mathematical details, we refer the reader to the work of Divel et al. [127]. Figure A2  
shows the iodine concentration over time in the ischemic white matter and in a 
healthy white matter brain section, for a stroke with a peak delay of 5 seconds and a 
peak attenuation of a factor 0.4 compared to healthy tissue.

Figure A2: Iodine concentration over time for a healthy and an ischemic section of white matter in the 
brain phantom.

Phantom data
A previously developed CT simulation tool was used to generate a CT perfusion 
protocol  [114]. The simulated CTP protocol consisted of 30 volume scans over  
60 seconds with 2 second intervals. Each scan was acquired with a tube voltage of  
80 kV and a tube current-time product of 100 mAs per scan, resulting in a CTDIvol of  
3.3 mGy per scan. The reconstruction method used was filtered backprojection [68,116], 
with a field of view of 220 mm and 320 slices with a thickness of 0.5 mm. The 
simulations also provided access to data without noise, i.e., reference data.

Patient data
The CT perfusion protocol consisted of 19 scans, the timesteps between the 
first and second scan was approximately 5 seconds, followed by 12 timesteps of  
2.1 seconds and lastly 5 timesteps of 5 seconds again. The tube voltage was 80 kV 
and the exposure of the scans was varied, the first scan was performed at 200 mAs, 
followed by 13 scans at 100 mAs, and lastly 5 scans at 75 mAs. The total CTDIvol of 
the protocol was 67.4 mGy. All CT scans in both protocols were reconstructed with 
the clinically-available filtered backprojection.
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Appendix B - 4D Similarity Filter (4DSF)

The 4DSF filters each voxel in the image separately and searches for the best 
candidates to average this voxel with, so that the noise in the image is reduced. 
The 4DSF has been previously described in detail  [55,130], so we only summarize 
it here, highlighting the overall process but focusing on the changes made for the 
cerebral CT perfusion application presented here.

Each timepoint on the time attenuation curve (TAC) of each voxel is analyzed 
separately. When searching for TACs similar to those of a specific voxel, the values 
for the specific timepoint being filtered is left out from the comparison. In this way, 
the similarity between the TAC and the identified candidate curves is not influenced 
by the noise present in this specific timepoint.

Because of limited time and computational resources, it is not possible to compare 
each voxel at each timepoint to all other voxels in the CT perfusion sequence. Thus, 
only a subset of voxels is compared. In the original implementation, this subset 
is based on the temporal mean of the TAC. For this, the entire TAC of each voxel 
is averaged over time and the resulting average values for all voxels are sorted in 
increasing order. Then, when processing each voxel its TAC is compared only to 
those voxels that have similar temporal mean.

However, in cerebral CT perfusion the tissue density and enhancement difference 
between healthy and ischemic gray or white matter is relatively small compared to 
the noise content of the CT scans. Therefore, the temporal mean is not the optimal 
metric to discriminate between ischemic and healthy tissue. In the proposed 
implementation of the 4DSF, the stroke 4DSF (s4DSF), the voxels are not sorted 
based on their temporal mean but based on their peak time.

With this modification, the algorithm of the s4DSF is as follows (Figure B1):

1.	 Initial noise reduction of image within each timepoint: An averaging filter with 
a 7x7x7 kernel is applied to each individual CT image in the perfusion sequence.

2.	 Determination of peak enhancement time for each voxel: The time values 
of the three highest-enhancement points on the TAC of each voxel are 
determined and averaged together, resulting in an estimate of the peak 
enhancement time for each voxel.

3.	 Creation of peak-time image: These resulting peak enhancement time values 
for all voxels are represented as one 3D image, denoted the peak-time image.
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4.	 Noise reduction of peak-time image: The peak-time image is downscaled by a 
factor of four in each direction, filtered with an averaging filter with a  5x5x5 
kernel, and then upscaled back by a factor of four in each direction using 
trilinear upscaling.

5.	 Image mask to exclude air and bone: A mask is generated from the first, pre-
contrast, scan by first reducing its noise (averaging filter, 3x3x3 kernel) and 
thresholding all voxels between -300 HU and 300 HU to unity and all others 
to zero.

6.	 Masking of peak-time image: The image mask is applied to the peak-time 
image, resulting in an image with only soft tissue (brain, skin, etc.) remaining 
in the image, denoted masked-peak-time image.

7.	 Voxel sorting based on peak time: All voxels of the masked-peak-time image 
are sorted in increasing order of peak enhancement time. Therefore, this 4D 
image is converted into a long 1D vector of TACs, denoted the peak-time-
sorted vector.

Each timepoint of the TAC of each voxel is filtered separately from here on. The 
voxel and timepoint being filtered are denoted the current voxel and current 
timepoint, respectively:

8.	 Identification of candidate voxels with similar peak time: The subset of  
2000 voxels closest to the current voxel in the peak-time-sorted vector is 
selected. These identified voxels are denoted the candidate voxels.

9.	 Comparison of TACs between current and candidate voxels: The mean-square-
error (MSE) between the TACs of each candidate voxel and the current voxel 
are computed. The current timepoint is excluded from this MSE calculation, so 
the noise present in the current timepoint does not influence the MSE.

10.	 Identification of similar voxels: If the MSE is below a certain threshold and 
the current voxel and the candidate voxels are spatially close enough to each 
other, then the candidate voxel is deemed a similar voxel. This is a voxel that 
has been identified as having a similar enough underlying perfusion process 
that it can be used to filter the current voxel at the current timepoint. This 
similar voxel is placed in a vector, denoted the MSE vector, which stores all 
the identified similar voxels, sorted by increasing MSE compared to the 
current voxel.

11.	 Averaging of 100 most-similar voxel values: Once all candidate voxels 
are checked and the similar ones are identified, the values of the current 
timepoint of the up to 100 (set by the filter strength) similar voxel values with 
the lowest MSE (i.e. the first up to 100 voxels in the MSE vector) are averaged. 
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If the MSE vector contains fewer than 100 voxels, then all voxels are used. The 
values used to average are the values of the original image, i.e., without the 
initial noise reduction applied in Step 1, above.

12.	 Setting of filtered value: The value of the current timepoint of the current 
voxel is set to this average value.

13.	 Steps 8 to 12 are repeated for every timepoint of every voxel.

Note that only Steps 2 to 4 and the spatial constraint of Step 10 are different from 
the standard implementation of the 4DSF.

The exact implementation of the s4DSF used in this work is a GPU-based 
implementation of which the details are described in the work of Mikerov et al [131]. 
The number of candidates checked for each voxel is 2000, the filter strength is 100, 
the mean squared error threshold is set to 900, and the hash length is 128. The 
number of candidates checked for each voxel is set relatively low for computational 
time purposes, since the clinical application is stroke imaging. A maximum radius 
of 50 voxels is used for the distance constraint. This distance constraint reduces 
computation time, which is very valuable for stroke imaging. It is important to note 
that the mean squared error between the TACs is determine after average filtering 
each CT image in the perfusion sequence with a 7x7x7 kernel. However, the values 
obtained at the timepoint being processed, to determine the running average, are 
of the original image.

Processing Time
The proposed s4DSF needs approximately 290 seconds, on a GPU (NVIDIA RTX 
A6000), to process the full 30 scan protocol. This time is specific to our protocol, 
and it scales approximately linearly with the number of scans in the protocol.
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Figure B1: Schematic overview of 4DSF of ischemic stroke. Adapted from S. A. M. Tunissen et al., 
“Performance evaluation of a 4D similarity filter for dynamic CT angiography imaging of the liver”, 
Med. Phys., doi.org/10.1002/mp.17394
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Appendix C – Additional Results
In the main text the perfusion maps of one of the nine stroke scenarios are shown 
and the results of the analysis are shown for three of the nine stroke scenarios. 
The perfusion maps of the eight remaining scenarios and the analysis results of 
the six remaining scenarios are presented in this appendix, for both the Bayesian 
estimation and Singular Value Decomposition (SVD) method. The results are shown 
for the situation with (proposed) and without (clinical) use of the proposed s4DSF, 
and the reference situation (noiseless phantom data).

The eight scenarios of which the perfusion maps are presented are the following: a 
peak delay of 1.5 seconds with a peak attenuation of 0.2, 0.4, and 0.6 relative to the 
healthy perfusion curve, a peak delay of 3.0 seconds with a peak attenuation of 0.2, 
and 0.6, and a peak delay of 5.0 seconds with a peak attenuation 0.2, 0.4, and 0.6.

The six scenarios of which the analysis results are presented are the following: a 
peak delay of 1.5 seconds with a peak attenuation of 0.2 and 0.6 relative to the 
healthy perfusion curve, a peak delay of 3.0 seconds with a peak attenuation of 0.2 
and 0.6, and a peak delay of 5.0 seconds with a peak attenuation 0.4 and 0.6.

Bayesian estimation
In this appendix the perfusion maps and analysis results for the Bayesian estimation 
method are listed. The perfusion maps of the eight scenarios are presented in 
Figures C1-C8.

Tables C1 and C2 present the results of the analysis of the six remaining stroke 
scenarios. The values of the ischemic and healthy Region of Interests (ROIs) are 
significantly different for all maps in Tables C1 and C2 according to the Mann-Whitney 
U test. The values of the clinical and proposed methods are significantly different for 
all maps in Tables C1 and C2 according to the Wilcoxon signed-rank test. In Tables C3 
and C4 the RMSE between reference and the clinical or proposed are given.
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Figure C1: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 1.5 seconds and a peak attenuation of 0.2.

Figure C2: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 1.5 seconds and a peak attenuation of 0.4.
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Figure C3: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 1.5 seconds and a peak attenuation of 0.6.

Figure C4: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 3 seconds and a peak attenuation of 0.2.
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Figure C5: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 3 seconds and a peak attenuation of 0.6.

Figure C6: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 5 seconds and a peak attenuation of 0.2.
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Figure C7: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 5 seconds and a peak attenuation of 0.4.

Figure C8: The perfusion maps of the Bayesian estimation method of stroke scenario with a peak 
delay of 5 seconds and a peak attenuation of 0.6.



170 | Chapter 6

Ta
bl

e 
C1

: M
ea

n 
va

lu
es

 o
f 

re
fe

re
nc

e,
 c

lin
ic

al
, a

nd
 p

ro
po

se
d 

m
et

ho
d 

fo
r 

th
e 

is
ch

em
ic

 a
nd

 h
ea

lth
y 

RO
I, 

an
d 

th
e 

co
nt

ra
st

 b
et

w
ee

n 
th

em
, w

he
n 

us
in

g 
th

e 
Ba

ye
si

an
 

es
tim

at
io

n 
m

et
ho

d.
 T

he
 c

on
tr

as
t v

al
ue

s 
cl

os
es

t t
o 

th
e 

re
fe

re
nc

e 
ha

ve
 a

 g
ra

y 
ba

ck
gr

ou
nd

.

Pe
ak

 d
el

ay
 =

 1
.5

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

2
Pe

ak
 d

el
ay

 =
 1

.5
Pe

ak
 a

tt
en

ua
tio

n 
= 

0.
4

Pe
ak

 d
el

ay
 =

 3
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

2

is
ch

em
ic

he
al

th
y

co
nt

ra
st

is
ch

em
ic

he
al

th
y

co
nt

ra
st

is
ch

em
ic

he
al

th
y

co
nt

ra
st

rC
BV

 (m
L/

10
0g

)

Re
fe

re
nc

e
0.

71
3.

08
2.

37
1.

27
3.

08
1.

81
0.

80
3.

08
2.

28

Cl
in

ic
al

0.
89

2.
56

1.
67

1.
53

2.
94

1.
40

1.
29

3.
08

1.
80

Pr
op

os
ed

1.
64

4.
17

2.
53

1.
57

2.
83

1.
26

1.
20

2.
74

1.
55

TT
P 

(s
)

Re
fe

re
nc

e
20

.9
0

19
.5

0
-1

.4
0

20
.9

3
19

.5
0

-1
.4

3
22

.0
1

19
.5

0
-2

.5
1

Cl
in

ic
al

20
.4

1
19

.2
5

-1
.1

6
20

.3
0

19
.7

2
-0

.5
8

20
.7

7
19

.3
6

-1
.4

1

Pr
op

os
ed

20
.4

8
19

.6
7

-0
.8

1
20

.5
3

19
.7

1
-0

.8
3

21
.3

0
19

.6
3

-1
.6

7

rC
BF

 (m
L/

10
0g

/m
in

)

Re
fe

re
nc

e
7.

96
29

.7
8

21
.8

2
11

.8
9

29
.8

3
17

.9
4

6.
85

29
.6

6
22

.8
1

Cl
in

ic
al

6.
29

19
.1

4
12

.8
4

10
.2

9
22

.2
9

11
.9

9
9.

08
27

.3
1

18
.2

3

Pr
op

os
ed

12
.4

2
35

.7
0

23
.2

8
14

.2
3

28
.0

5
13

.8
2

8.
02

25
.1

0
17

.0
7

M
TT

 (s
)

Re
fe

re
nc

e
6.

38
6.

55
0.

18
7.

34
6.

55
-0

.7
9

8.
68

6.
57

-2
.1

0

Cl
in

ic
al

7.
84

8.
16

0.
32

8.
71

8.
09

-0
.6

2
8.

26
6.

88
-1

.3
8

Pr
op

os
ed

8.
19

7.
04

-1
.1

5
6.

72
6.

08
-0

.6
4

10
.1

3
6.

59
-3

.5
4

D
el

ay
 (s

)

Re
fe

re
nc

e
1.

22
-0

.1
7

-1
.3

9
0.

95
-0

.1
7

-1
.1

2
1.

56
-0

.1
8

-1
.7

4

Cl
in

ic
al

0.
76

-1
.1

0
-1

.8
6

0.
12

-0
.6

0
-0

.7
2

0.
75

-0
.9

5
-1

.7
0

Pr
op

os
ed

0.
47

-0
.3

4
-0

.8
0

0.
42

-0
.3

2
-0

.7
4

0.
68

-0
.3

5
-1

.0
3



6

171|4D Similarity Filter for ischemic stroke

Ta
bl

e 
C2

: M
ea

n 
va

lu
es

 o
f 

re
fe

re
nc

e,
 c

lin
ic

al
, a

nd
 p

ro
po

se
d 

m
et

ho
d 

fo
r 

th
e 

is
ch

em
ic

 a
nd

 h
ea

lth
y 

RO
I, 

an
d 

th
e 

co
nt

ra
st

 b
et

w
ee

n 
th

em
, w

he
n 

us
in

g 
th

e 
Ba

ye
si

an
 

es
tim

at
io

n 
m

et
ho

d.
 T

he
 c

on
tr

as
t v

al
ue

s 
cl

os
es

t t
o 

th
e 

re
fe

re
nc

e 
ha

ve
 a

 g
ra

y 
ba

ck
gr

ou
nd

.

Pe
ak

 d
el

ay
 =

 3
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

6
Pe

ak
 d

el
ay

 =
 5

.0
Pe

ak
 a

tt
en

ua
tio

n 
= 

0.
4

Pe
ak

 d
el

ay
 =

 5
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

6

is
ch

em
ic

he
al

th
y

co
nt

ra
st

is
ch

em
ic

he
al

th
y

co
nt

ra
st

is
ch

em
ic

he
al

th
y

co
nt

ra
st

rC
BV

 (m
L/

10
0g

)

Re
fe

re
nc

e
2.

14
3.

03
0.

89
1.

68
3.

03
1.

35
2.

49
3.

03
0.

54

Cl
in

ic
al

2.
16

2.
83

0.
66

1.
51

2.
52

1.
01

2.
44

3.
05

0.
61

Pr
op

os
ed

2.
39

3.
24

0.
86

1.
79

3.
13

1.
34

2.
66

3.
30

0.
65

TT
P 

(s
)

Re
fe

re
nc

e
22

.3
1

19
.4

9
-2

.8
2

23
.7

7
19

.5
0

-4
.2

8
23

.9
4

19
.4

9
-4

.4
5

Cl
in

ic
al

20
.4

1
19

.4
6

-0
.9

5
21

.0
0

19
.2

2
-1

.7
8

21
.2

4
19

.8
4

-1
.4

0

Pr
op

os
ed

21
.1

3
19

.6
2

-1
.5

1
22

.5
3

19
.6

2
-2

.9
1

22
.3

8
19

.7
8

-2
.6

0

rC
BF

 (m
L/

10
0g

/m
in

)

Re
fe

re
nc

e
11

.3
1

29
.6

7
18

.3
6

7.
29

29
.2

6
21

.9
8

9.
97

29
.4

7
19

.5
0

Cl
in

ic
al

14
.0

5
22

.6
3

8.
58

10
.7

4
23

.9
3

13
.1

9
14

.0
3

25
.5

8
11

.5
5

Pr
op

os
ed

14
.9

0
29

.6
6

14
.7

6
10

.5
8

28
.8

6
18

.2
8

11
.7

5
26

.8
0

15
.0

5

M
TT

 (s
)

Re
fe

re
nc

e
12

.1
7

6.
53

-5
.6

3
15

.6
0

6.
58

-9
.0

3
16

.6
1

6.
54

-1
0.

07

Cl
in

ic
al

9.
28

7.
62

-1
.6

6
8.

29
6.

39
-1

.9
0

10
.3

8
7.

33
-3

.0
6

Pr
op

os
ed

9.
91

6.
61

-3
.3

0
10

.9
1

6.
53

-4
.3

8
14

.4
5

7.
42

-7
.0

3

D
el

ay
 (s

)

Re
fe

re
nc

e
0.

83
-0

.1
2

-0
.9

5
1.

06
-0

.1
5

-1
.2

1
0.

74
-0

.1
4

-0
.8

8

Cl
in

ic
al

0.
20

-0
.8

1
-1

.0
1

0.
51

-1
.3

1
-1

.8
3

0.
26

-0
.6

1
-0

.8
7

Pr
op

os
ed

0.
28

-0
.3

4
-0

.6
2

1.
22

-0
.2

8
-1

.5
1

0.
52

-0
.3

3
-0

.8
4



172 | Chapter 6

Ta
bl

e 
C3

: R
M

SE
 o

f c
lin

ic
al

 a
nd

 p
ro

po
se

d 
w

ith
 th

e 
re

fe
re

nc
e 

w
he

n 
us

in
g 

th
e 

Ba
ye

si
an

 e
st

im
at

io
n 

m
et

ho
d.

 T
he

 lo
w

es
t R

M
SE

 h
as

 a
 g

ra
y 

ba
ck

gr
ou

nd
.

Pe
ak

 d
el

ay
 =

 1
.5

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

2
Pe

ak
 d

el
ay

 =
 1

.5
Pe

ak
 a

tt
en

ua
tio

n 
= 

0.
4

Pe
ak

 d
el

ay
 =

 3
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

2

is
ch

em
ic

he
al

th
y

is
ch

em
ic

he
al

th
y

is
ch

em
ic

he
al

th
y

rC
BV

 (m
L/

10
0g

)
Cl

in
ic

al
0.

50
0.

79
0.

55
0.

50
0.

72
0.

63

Pr
op

os
ed

1.
25

1.
32

0.
58

0.
69

0.
64

0.
77

TT
P 

(s
)

Cl
in

ic
al

1.
08

2.
44

1.
31

1.
60

1.
67

2.
32

Pr
op

os
ed

1.
10

0.
54

0.
79

0.
59

1.
41

0.
54

rC
BF

 (m
L/

10
0g

/m
in

)
Cl

in
ic

al
10

.7
6

13
.0

6
10

.4
2

9.
62

10
.7

3
7.

40

Pr
op

os
ed

12
.6

4
10

.5
9

10
.3

7
8.

79
10

.2
6

10
.3

0

M
TT

 (s
)

Cl
in

ic
al

3.
26

2.
11

2.
44

1.
95

2.
69

1.
18

Pr
op

os
ed

2.
89

1.
01

1.
65

0.
93

3.
35

0.
95

D
el

ay
 (s

)
Cl

in
ic

al
1.

20
6.

37
2.

67
4.

01
1.

51
6.

01

Pr
op

os
ed

1.
25

0.
81

0.
89

0.
91

1.
50

0.
71



6

173|4D Similarity Filter for ischemic stroke

Ta
bl

e 
C4

: R
M

SE
 o

f c
lin

ic
al

 a
nd

 p
ro

po
se

d 
w

ith
 th

e 
re

fe
re

nc
e 

w
he

n 
us

in
g 

th
e 

Ba
ye

si
an

 e
st

im
at

io
n 

m
et

ho
d.

 T
he

 lo
w

es
t R

M
SE

 h
as

 a
 g

ra
y 

ba
ck

gr
ou

nd
.

Pe
ak

 d
el

ay
 =

 3
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

6
Pe

ak
 d

el
ay

 =
 5

.0
Pe

ak
 a

tt
en

ua
tio

n 
= 

0.
4

Pe
ak

 d
el

ay
 =

 5
.0

Pe
ak

 a
tt

en
ua

tio
n 

= 
0.

6

is
ch

em
ic

he
al

th
y

is
ch

em
ic

he
al

th
y

is
ch

em
ic

he
al

th
y

rC
BV

 (m
L/

10
0g

)
Cl

in
ic

al
0.

44
0.

59
0.

46
0.

82
0.

45
0.

49

Pr
op

os
ed

0.
69

0.
71

0.
51

0.
64

0.
70

0.
72

TT
P 

(s
)

Cl
in

ic
al

2.
01

2.
06

2.
96

2.
81

2.
80

1.
70

Pr
op

os
ed

1.
41

0.
55

1.
86

0.
52

1.
89

0.
58

rC
BF

 (m
L/

10
0g

/m
in

)
Cl

in
ic

al
3.

97
9.

63
4.

57
8.

98
5.

74
6.

91

Pr
op

os
ed

5.
51

8.
75

5.
68

8.
30

5.
43

9.
14

M
TT

 (s
)

Cl
in

ic
al

3.
76

1.
67

8.
04

1.
23

6.
88

1.
34

Pr
op

os
ed

3.
47

0.
94

5.
81

0.
91

3.
95

1.
33

D
el

ay
 (s

)
Cl

in
ic

al
0.

81
5.

34
1.

10
7.

32
0.

80
4.

18

Pr
op

os
ed

0.
84

0.
87

1.
07

0.
75

0.
73

0.
68



174 | Chapter 6

SVD
In this appendix the perfusion maps and analysis results for the SVD method are 
listed. The perfusion maps of the eight scenarios are presented in Figures C9-C16.

Figure C9: The perfusion maps of the SVD method of stroke scenario with a peak delay of 1.5 seconds 
and a peak attenuation of 0.2.

Figure C10: The perfusion maps of the SVD method of stroke scenario with a peak delay of 1.5 seconds 
and a peak attenuation of 0.4.



6

175|4D Similarity Filter for ischemic stroke

Figure C11: The perfusion maps of the SVD method of stroke scenario with a peak delay of 1.5 seconds 
and a peak attenuation of 0.6.

Figure C12: The perfusion maps of the SVD method of stroke scenario with a peak delay of 3 seconds 
and a peak attenuation of 0.2.
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Figure C13: The perfusion maps of the SVD method of stroke scenario with a peak delay of 3 seconds 
and a peak attenuation of 0.6.

Figure C14: The perfusion maps of the SVD method of stroke scenario with a peak delay of 5 seconds 
and a peak attenuation of 0.2.
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Figure C15: The perfusion maps of the SVD method of stroke scenario with a peak delay of 5 seconds 
and a peak attenuation of 0.4.

Figure C16: The perfusion maps of the SVD method of stroke scenario with a peak delay of 5 seconds 
and a peak attenuation of 0.6.
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Tables C5 and C6 present the results of the analysis of the six remaining stroke 
scenarios. The values of the ischemic and healthy ROIs are significantly different 
for all maps in Tables C5 and C6 according to the Mann-Whitney U test. The values 
of the clinical and proposed methods are significantly different for all maps in 
Tables C5 and C6 except two, as indicated in Table C6, according to the Wilcoxon 
signed-rank test. In Tables C7 and C8 the RMSE between reference and the clinical 
or proposed are given.
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Appendix D – Additional Patient Cases

In this appendix ten additional consecutive cases are presented of patients 
that presented at our hospital with suspected stroke. The results of the clinically 
and proposed Bayesian estimation and Singular Value Decomposition (SVD) 
methods are presented for each of these cases. The perfusion maps are depicted 
as generated by the clinical workstation (Vitrea) including its automatic window/
leveling and alignment. Therefore, the perfusion maps of the clinical and proposed 
methods do not have the same window/leveling. All cases were interpreted visually 
by a radiologist experienced in stroke imaging (10 years of experience reading 
stroke scans).

Five patient cases, depicted in Figures D1, D2, D5, D6, D13, D14, D17, D18, D19, and 
D20, show perfusion maps on which no stroke is visible. The perfusion maps of the 
proposed method are much cleaner, especially for the SVD method.

Three patient cases, depicted in Figures D3, D4, D7, D8, D9, and D10, show perfusion 
maps on which a stroke is clearly visible. The stroke is better delineated with the 
proposed method. Figures D8 and D10 show two cases in which the stroke is only 
visible on one of the five perfusion maps for the clinical method and visible on all 
five perfusion maps for the proposed method.

Two patient cases, depicted in Figures D11, D12, D15, and D16, show slight 
asymmetries in some perfusion maps. In the patient case presented in Figures D11 
and D12, this asymmetry is only visible in the TTP and MTT map (Figure D11) or 
TTP and Delay map (Figure D12), making it not clinically relevant. In the patient 
case presented in Figures D15 and D16 this asymmetry is present in five and four 
maps, respectively, however the clinical symptoms did not match with the region of 
asymmetry. Thus, this asymmetry may lead to a false positive stroke detection on 
the CT perfusion scan.
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Figure D1: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a much cleaner image. However, there is no stroke visible for this patient.
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Figure D2: The perfusion maps obtained using the SVD method. The proposed method results in a 
much cleaner image. However, there is no stroke visible for this patient.
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Figure D3: The perfusion maps obtained using Bayesian estimation method. The proposed method 
delineates the stroke better.
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Figure D4: The perfusion maps obtained using the SVD method. The proposed method delineates the 
stroke better and has much lower noise content.
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Figure D5: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a much cleaner image. However, there is no stroke visible for this patient.
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Figure D6: The perfusion maps obtained using the SVD method. The proposed method results in a 
much cleaner image. However, there is no stroke visible for this patient.
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Figure D7: The perfusion maps obtained using Bayesian estimation method. The proposed method 
delineates the stroke better. Please note, that for this case the alignment tool did not align the clinical 
and proposed method in the same way.
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Figure D8: The perfusion maps obtained using the SVD method. The proposed method delineates the 
stroke better and the stroke is clearly visible in all five perfusion maps instead of only one. Please note, 
that for this case the alignment tool did not align the clinical and proposed method in the same way.
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Figure D9: The perfusion maps obtained using Bayesian estimation method. The proposed method 
delineates the stroke better.
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Figure D10: The perfusion maps obtained using the SVD method. The proposed method delineates 
the stroke better and the stroke is clearly visible in all five perfusion maps instead of only one.
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Figure D11: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a cleaner image. The TTP and MTT map of the proposed method show some asymmetry, 
however the other maps do not show this asymmetry making it not clinically relevant.
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Figure D12: The perfusion maps obtained using the SVD method. The proposed method results in a 
cleaner image. The TTP and Delay map of the proposed method show some asymmetry, however the 
other maps do not show this asymmetry making it not clinically relevant.



196 | Chapter 6

Figure D13: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a cleaner image. However, there is no stroke visible for this patient.  
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Figure D14: The perfusion maps obtained using the SVD method. The proposed method results in a 
much cleaner image. However, there is no stroke visible for this patient.
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Figure D15: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a cleaner image. However, this low noise content also reveals a region on the left posterior 
side of the brain that might be interpreted as a stroke. However, this stroke region does not correlate 
with the symptoms of the patient.
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Figure D16: The perfusion maps obtained using the SVD method. The proposed method results in a 
cleaner image. However, this low noise content also reveals a region on the left posterior side of the 
brain that might be interpreted as a stroke. However, this stroke region does not correlate with the 
symptoms of the patient.
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Figure D17: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a cleaner image. However, there is no stroke visible for this patient.
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Figure D18: The perfusion maps obtained using the SVD method. The proposed method results in a 
cleaner image. However, there is no stroke visible for this patient.
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Figure D19: The perfusion maps obtained using Bayesian estimation method. The proposed method 
results in a cleaner image. However, there is no stroke visible for this patient.
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Figure D20: The perfusion maps obtained using the SVD method. The proposed method results in a 
cleaner image. However, there is no stroke visible for this patient.
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In this thesis we explored the potential of the 4D Similarity Filter (4DSF) to reduce 
noise in CT perfusion (CTP) imaging. The first part of this thesis focused on 
developing simulation tools to make quantitative analysis of the 4DSF, or any other 
image processing method, easier. In this chapter we will first discuss the impact of 
the developed simulation tools, followed by a discussion of future directions for 
4DSF research and implementation.

Simulation methods

In Chapter 2, we presented a system-specific CT simulator capable of generating 
realistic CT scans of digital phantoms. This simulator offers a lot of freedom when 
used for validation of, for instance, processing algorithms, since it allows for 
simulation of various acquisition settings, such as exposure or tube voltage levels. 
Therefore, their influence on, e.g., 4DSF performance, can be analyzed extensively 
without the need to image patients. In the same way, the performance and 
different parameter settings of the 4DSF, or other processing algorithms, can be 
tested. Besides avoiding the use of radiation, this type of simulation-based analysis 
is both quick and cost-effective, requiring only computer power and processing 
time. Another crucial benefit of using this type of simulations is the availability of 
a ground truth and thus the possibility to quantitatively assess the accuracy of a 
processing algorithm. This could lead to a better understanding and potentially 
improved version of the algorithm before entering into clinical trials.

This research field, of so-called virtual imaging trials (VIT), aims to eventually 
substitute for most clinical imaging trials. A complete VIT is comprised of three key 
components: scanner models, patient models, and observer or radiologist models. 
However, we believe it is still far from achieving the goal of substituting clinical trials 
with VITs, since the realism of each of these three components is not yet optimal or 
comes at a great computational cost. From here on we will only focus on the patient 
models and scanner models, since these are the ones utilized in this thesis.

Regarding patient models, significant improvements are still needed. For example, 
most digital phantoms lack intra-organ variability, meaning that each organ is 
modeled as consisting of homogeneous tissue, simplifying the heterogeneous 
nature of real organs. When studying CT perfusion, it is, of course, important to 
focus on the simulation of the blood flow. However, most existing phantoms lack 
extensive artery trees and do not model microvasculature or complex flow dynamics 
but rather assume uniform flow. The same is true for simulating pathology, where 
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the accurate modelling of diseases is still far from optimal. For example, the work of 
Divel et al. [127], which simulates stroke, does not incorporate collateral flow that 
can be present in stroke patients, thus over-simplifying reality.

In terms of scanner models, while we believe most phenomena occurring in the 
process of creating projections can be modelled accurately, incorporating all of 
them would result in excessive computational demands. This points to the need 
for a tradeoff between realism and computation time and power. We also showed 
this in Chapter 2, where less subsampling of, e.g., the projection angles, saves 
computation time, but also reduces the accuracy of the rotational blurring.

For certain applications, a high level of realism might not be essential, allowing for 
computational time saving. However, the level of realism required depends on the 
method being tested and the goal of the study being performed. Researchers must 
judge which factors are important for their study, since achieving complete realism 
for all elements of the VIT seems computationally unfeasible at the moment.

To summarize, while the current state of VITs allows for elaborate testing and 
optimization of image formation, processing, and analysis algorithms, they are not 
ready yet to replace clinical trials entirely. However, VITs provide a unique opportunity 
to perform quantitative analysis on the accuracy of new methods via the available 
ground truth. This is normally not possible in medical imaging and can, in our 
opinion, play a key role in the development and refinement of processing algorithms. 
Additionally, a VIT gives a lot of freedom while testing, since scanner settings and 
patient characteristics can be finely controlled. As a result, clinical test periods can be 
shortened, improved algorithms can be designed quicker, and clinical results can be 
strengthened by quantitative analysis on accuracy. Chapter 6 is a good example of 
an improved algorithm design, resulting from the availability of a ground truth.

In some cases, VITs might not be sufficient or efficient in predicting performance. 
For instance, when training or validating deep learning (DL) tools to detect or 
classify lesions, the realism of the lesions needs to be as close as possible to patient 
cases for the DL network to learn the morphology and heterogeneous nature of 
real lesions and thus generalize well. For these purposes, real patient data is much 
better suited, since modelling all details and the heterogeneous nature of the 
disease is difficult.

Therefore, in Chapter 3 we presented a method to generate low-dose CT scans 
from existing clinical dose CT scans. This method focuses specifically on the 
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situation when one does not have access to the projection data, system geometry 
and components, and reconstruction methods.

Methods with a similar purpose already exist, with most of them being based 
on projection domain data. However, in a clinical or research setting there is 
commonly a lack of access to this data and of details on the format of such data. 
In addition, vendors are usually hesitant to share such information or provide 
such direct access. Obtaining proprietary details about scanners and processing 
techniques without support of the vendor can be very time-consuming or 
downright impossible. The proposed method could therefore be very useful for the 
generation of low-dose CT scans for testing purposes. To work around restrictions 
imposed by vendors, the proposed method operates fully in the image domain 
and is non-analytical, contrary to other image-domain methods, but rather uses 
a signal processing-based approach. This makes the method not only suitable for 
filtered back projection (FBP)-based reconstruction, but also for more advanced 
reconstruction algorithms like DL and model-based reconstructions. The method 
can basically transform one type of noise to another type of noise using the noise 
power spectrum and voxel-wise standard deviation. This makes the proposed 
method ideal for testing purposes, since it is very easy to use.

If one aims for optimal realism of the simulated noise, projection domain methods 
are preferred, since they model the actual process and are thus expected to be more 
accurate. However, as explained, these methods can be very time-intensive and, in 
some situations, it is not even possible to use them due to lack of knowledge of 
the details of the imaging system. This emphasizes the usefulness of the method 
proposed in Chapter 3, which allows for the generation of low-dose testing data 
with real patient anatomy without access to scanner details.

Hence, we have developed two methods to generate test data for validating 
algorithms. As discussed, if the realism of a specific part of the anatomy, normal 
or diseased, is important, methods corrupting existing patient data, like the one 
proposed in Chapter 3, are more suitable over VITs. As discussed earlier, when 
performing classification tasks, the realism of the specific disease is of utmost 
importance. However, in our opinion, the disease models for VITs are not yet 
sophisticated enough for such classification methods to generalize well to patient 
data. Nevertheless, we believe these models are sufficiently accurate to test 
algorithms designed to improve the visibility of a disease by specific processing 
of the image. Therefore, either a VIT or a noise-corrupting method, like the one 
of Chapter 3, can be used in such cases. The choice between these two methods 
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could then be based on other factors, such as the availability of patient data, or the 
type of analysis to be performed on the processed data. For example, if quantitative 
accuracy, instead of observer performance, needs to be determined, then only the 
VIT approach is appropriate because it has access to the ground truth for every case.

Ideally, the method proposed in Chapter 3 or any other image domain method 
would be unnecessary if computational power were unlimited and system details 
and access to projection data were available to everybody. However, since this is not 
the case, workarounds, like the one proposed in Chapter 3, have to be developed, 
which are less optimal.

In general, we think the field would benefit from a stronger vendor-researcher 
relationship. Especially when it comes to more technical research, since for these 
projects scanner and software details are often needed. During this PhD, multiple 
projects would not have been possible without this close vendor collaboration. 
However, we also noticed that there is a research interest and a company interest, 
which need to be balanced.

4-Dimensional Similarity Filter

The remainder of this thesis focused on the characterization, validation, and 
optimization of the 4DSF. At the end, we will give our view on how the 4DSF can 
best be implemented.

Chapter 5 introduced a slightly modified version of the 4DSF, which can be executed 
on a GPU. This substantially decreased computation time of the algorithm, allowing 
for faster or better filter results. Moreover, the GPU implementation is easier to alter 
in case one wants to implement a different sorting method than temporal mean 
or if one only wants to filter one timepoint on the time attenuation curve (TAC) 
instead of the entire TAC. This adaptability of the algorithm is extremely useful in a 
research setting. This version of the algorithm is used in Chapter 6.

In Chapter 4 we presented an elaborate characterization and validation study of the 
4DSF. This chapter uses the well-known XCAT phantoms in combination with the CT 
simulator of Chapter 2 to simulate CT perfusion sequences of the liver. In this way, 
a quantitative analysis of the accuracy resulting from the 4DSF was possible. In this 
study the influence of different filter parameters, acquisition parameters, and lesion 
characteristics on image quality was analyzed.
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This analysis also provided insight into the strengths and limitations of the 4DSF. 
The major strength was clearly the filter’s ability to reduce image noise significantly, 
with limited resolution loss, where other noise-reducing filters showed substantial 
resolution loss. As demonstrated in Chapter 4, this limited resolution loss also 
leaves room for further noise reduction using classic spatial based noise reduction 
algorithms post 4DSF. This double filtering results in very clean, i.e., denoised, 
images, showing potential for detection of relatively small lesions. This double 
filtering could be particularly interesting in the context of low-dose CT scans for 
lesion characterization. This type of scans is typically used to assess morphology 
and to judge which part of the lesion enhances.

Although we have not performed a study on this yet, it would be interesting to see 
how this double filtering would perform on, for example, a four-phase liver protocol 
for lesion detection. Since the results of Chapter 4 show potential possibilities to 
decrease dose, while keeping image quality high for detection tasks. However, 
needs to be confirmed in a VIT or phantom study first.

The major limitation of the 4DSF is the accuracy of the TAC after application of the 
4DSF, especially for small highly-perfusing structures. The analysis showed us that 
the peak of these TACs is not only lowered, which is expected, but also shifted in 
time. So, not only the amplitude of the TAC is influenced, but also the shape. Noise 
reduction comes at the cost of quantitative accuracy, which is an important aspect 
to understand when using this filter in clinical practice.

This indicates that the optimal parameter setting is not only dependent on image 
content, such as initial noise level, lesion characteristics, but also on the diagnostic 
task at hand. Detection tasks do not per se require quantitative accuracy, while 
quantitative accuracy may become more important when perfusion analysis is used 
for lesion characterization. However, the importance of quantitative accuracy also 
depends on the difference in the perfusion characteristics between lesion types. This 
is, together with the understanding on how the filter output is influenced by the 
parameter settings, the most important lesson learned from the study of Chapter 4.

The aim of Chapter 6 was to optimize the use of the 4DSF to accurately detect 
and assess acute strokes. The original aim was to use the knowledge obtained in 
Chapter 4 to optimize the parameter settings of the 4DSF for stroke detection. To 
do this in a quantitative manner, a brain phantom was used in combination with 
the CT simulator developed in Chapter 2. While the insights of Chapter 4 helped 
us to understand and improve the results of the 4DSF to some degree compared to 
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the clinically used version, the 4DSF still underperformed compared to what was 
expected and resulted in hampered stroke visibility for some cases. This shows, first 
of all, that the knowledge obtained in Chapter 4 on liver CT perfusion protocols 
do not translate directly to stroke imaging, and secondly that for some clinical 
applications the original 4DSF implementation is not so suitable to reduce noise.

Chapter 4 already helped us understand how various lesion characteristics influence 
the image quality after 4DSF. However, in Chapter 6 we deal with a completely 
different disease and a completely different anatomy. We underestimated how a 
different disease and anatomy influences the performance of the 4DSF. In Chapter 4  
the task is to differentiate between liver parenchyma and the vessels and tumors 
within it, which stand out from the liver parenchyma. However, in Chapter 6 the 
task is to differentiate between healthy and ischemic brain tissue. The healthy brain 
tissue receives relatively little blood compared to vessels; thus, the attenuation 
change in the tissues is limited. During a stroke the affected brain tissue receives 
even less blood, however as the attenuation change is already limited relative to 
the noise this decrease is hardly noticeable.

As explained in the introduction, ideally each TAC is compared to all TACs in the dataset. 
However, this is computationally not feasible. Therefore, each TAC is only compared to 
a subset of TACs, which have the most similar temporal mean. This temporal mean is 
based on attenuation differences, which are very minimal in stroke imaging. So, the 
candidate TACs in the subset will be suboptimal and will result in suboptimal filtering.

To overcome this problem, we suggested an alternative version of the 4DSF basing the 
subset for searching similar TACs not on temporal mean, but rather on peak time, since 
tissue suffering stroke does not only receive less blood, but also receives it later in time. 
In this way the ischemic tissue could be differentiated better from the healthy tissue.

Chapter 6 taught us that optimizing the 4DSF entails more than just optimizing a 
set of parameters. It requires understanding of underlying disease physiology, which 
then dictates what the optimal modifications to the algorithm or its parameters are. 
Therefore, it is rather hard to give one method or parameter set that will always work.

The original goal of this thesis was to develop a DL-based method to find the optimal 
parameter set for each CT perfusion dataset. A DL network would be trained to predict 
the image quality of a CT perfusion dataset after filtering. The input of this DL network 
being the filter parameters and data of the CT perfusion protocol and acquisition 
settings, for example number of scans, time between scans, noise level, number of 
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voxels, reason for CT scan, etc. The optimal parameter set could then be obtained 
via gradient information of the DL network, thus automating the optimal parameter 
selection. However, as this thesis shows, image quality is influenced by many different 
factors, including purpose of scan, body part imaged, patient anatomy, disease type or 
size, among others. This suggests that CT perfusion protocol, image characteristics, and 
acquisition settings will probably not be enough to predict image quality. Chapter 6  
is the perfect example, since it shows that a change in the anatomy and/or disease 
characteristics causes the 4DSF to be suboptimal and the algorithm itself, not only 
its input parameters, had to be updated, compared to Chapter 4. This indicates that 
the image quality prediction does not generalize well across different anatomies and 
diseases, making the development of one DL network to predict optimal parameter 
settings nearly impossible. Therefore, we have chosen not to pursue this initial aim.

Additionally, the data for training this DL network should have been generated 
using the CT simulator of Chapter 2 in combination with phantoms and disease 
models. However, as discussed before, disease models can be complex and accurate 
models do not yet exist for all diseases. This poses a challenge in obtaining a large 
and diverse dataset with consistent quality across various diseases. Consequently, 
the performance of the DL network and thus the 4DSF might be inconsistent or 
suboptimal when applied to patient data.

Based on the findings of this thesis, we would suggest that a systematic 
approach for optimization be taken when the 4DSF is introduced for a new CT 
perfusion protocol. We recommend to first analyze the anatomy and disease 
physiology to determine what differentiates the healthy tissue from the disease. 
This understanding should then be used to alter the 4DSF parameters and/or 
algorithm to optimize the performance for the disease and anatomy at hand. While 
making these choices, secondary factors should be considered as well, such as 
computational time, because perfusion results may sometimes be needed quickly, 
as is the case in stroke imaging.

Throughout the research performed for this thesis we have also come to understand 
some characteristics of the 4DSF that are not described in any of the chapters of this 
thesis. First, the 4DSF assumes no noise correlation between scans, i.e., no correlation 
between timepoints on the TAC. If this assumption is violated, the principle of 
preventing bias by leaving the timepoint being filtered out of the search for similar 
voxels becomes invalid. In such a case, we recommend to determine how many 
timepoints the correlation stretches over and leave this number of timepoints, 
instead of just one, out of the search for similar voxels. Second, since the similarity 
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filter’s strength is to reduce image noise with minimal resolution loss, it is not advised 
to reconstruct images to be filtered with strong model-based or DL reconstruction, 
which sacrifices spatial resolution to decrease noise. This is because the resolution 
lost in the original image reconstruction cannot be retrieved by the 4DSF.

If enough computational power is available, it would be advisable to investigate the 
reconstruction of one image using FBP with a sharp kernel and one image using a 
strong model-based or DL reconstruction. The latter images can then be used to 
determine the voxels that should be averaged by the 4DSF, just like the average filter 
is now used in Chapter 4, while the FBP reconstructed images are used to retrieve 
the select voxel values and average them. This might lead to improved results.

For the same reason, the 4DSF achieves sub-par performance when applied 
to time-series MRI data, such as diffusion-weighted imaging. This is due to the 
inherently low noise, low spatial resolution and small matrix sizes of perfusion MRI. 
If one wants to enhance the 4DSF’s efficacy on time-series MRI data, we advise to 
first explore the development of MRI sequences that yield higher resolution, which 
would likely lead to less correlated noise and a higher noise content. This could 
potentially improve the performance of the 4DSF by providing a more suitable 
input for its noise reduction capabilities.

To summarize, the research presented in this thesis introduced two tools to 
perform quantitative evaluation of processing algorithms. One using digital 
phantoms and the other using patient data. The latter one is the most novel, since 
it enables researchers with limited knowledge about their system to simulate lower 
dose CT data. However, the core contribution of this thesis is the investigation into 
the characteristics and performance of the 4DSF. The key points of this part are 
the following: first, the limited resolution loss of the 4DSF leaves room for further 
noise reduction using classic spatial-based noise reduction algorithms post-4DSF 
application. Second, when utilizing the 4DSF, one should be aware of the potential 
introduction of a modest bias to the TAC, which might influence the diagnosis, 
especially when performing quantitative analysis. Lastly, optimizing the parameters 
of the 4DSF is not a straightforward task, since disease characteristics and anatomy 
heavily influence the results. Therefore, one should focus on understanding the 
disease physiology and thus the difference between healthy and diseased tissue to 
optimize the algorithm by parameter selection or altering the algorithm itself.
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Summary – English
CT perfusion is a promising imaging technique, that can provide information about 
blood flow in the body by obtaining a series of standard CT images. Information 
about the flow, i.e., perfusion, has shown to be able to improve detection of lesions, 
staging of diseases, and prediction of treatment response. Making CT perfusion a 
potentially powerful tool in the clinic. The disadvantage of CT perfusion is however, 
that the technique uses multiple CT scans in a short time period, and thus comes 
with a relatively high radiation dose for the patient. The clinical implementation 
of CT perfusion is limited, because of this high radiation dose. To overcome the 
high radiation dose, one could obtain all scans in a CT perfusion protocol at a low 
dose. This will however lead to high noise content and thus low image quality. 
This thesis tries to overcome the limitation of high noise content in low dose CT 
perfusion scans. We investigated and developed algorithms to reduce noise content 
without sacrificing details. Our focus was mainly on a novel 4-dimensional filtering 
technique, called 4-dimensional Similarity Filter (4DSF). The 4DSF was characterized, 
validated, and optimized in this thesis. To do so, we developed simulation tools to 
enable quantitative validation, since clinical CT perfusion data is limited.

Chapter 2 and 3 both present a method to simulate low dose CT scans. Chapter 2  
simulated the principles of the CT scanner to obtain CT images from digital 
phantoms. Chapter 3 uses deep learning to transform a normal dose CT image 
into a low dose CT image. The simulated CT images can be used to validate 
processing algorithms like the 4DSF. These tools make CT data more accessible, 
since clinical data is not always available or easy to obtain. The biggest upside of 
simulated data is the availability of the ground truth, i.e., the real voxel values, 
which allows for quantitative analysis. Chapter 4 presents an elaborate analysis 
and validation of the 4DSF for liver CT perfusion. The results of this chapter showed 
the potential of the 4DSF, especially combined with another filter, to greatly reduce 
noise. In Chapter 5 a GPU version of the 4DSF is presented. This version reduced 
computation time and allowed for easier modifications to the algorithm. Lastly in 
Chapter 6, a modified version of the 4DSF is presented for ischemic stroke. This 
version improved the visibility of the stroke in perfusion maps, potentially leading 
to more accurate diagnoses.

To summarize, this thesis provides insight and understanding of the 4DSF its 
behavior, strengths, and weaknesses. Next to this, it gives a general approach to 
optimize the filters use when new CT perfusion protocols are introduced. I hope we 
have brought CT perfusion one step closer to clinical use with these contributions.
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Samenvatting – Nederlands
CT perfusie is een veelbelovende beeldvormingstechniek, die informatie over de 
doorbloeding van verschillende weefsels in het lichaam kan geven door het maken 
van een reeks CT beelden. Informatie over de doorbloeding, of in andere woorden, 
perfusie, is gerelateerd aan verbeterde leasie herkenning, stadiëring van ziektes en 
voorspelling van de behandelrespons. Hierdoor kan CT perfusie een zeer belangrijk 
hulpmiddel zijn in de kliniek. Het nadeel van CT perfusie is echter dat de techniek 
meerdere CT scans maakt in een korte periode en dus voor relatief veel straling 
zorgt. In de kliniek wordt CT perfusie tot op heden weinig gebruikt, omdat de 
straling relatief hoog is. Om deze hoge straling tegen te gaan kan men de scans 
in CT perfusie protocollen verkrijgen met een lage dosis. Dit leidt echter tot veel 
ruis en dus een lagere beeld kwaliteit. Dit proefschrift probeert de limitaties van 
deze hoge ruis in de CT perfusie beelden tegen te gaan. We hebben algoritmes 
onderzocht en ontwikkeld om ruis te onderdrukken zonder details te verliezen. 
Onze focus lag voornamelijk op de nieuwe 4-dimensionale filter techniek, genaamd 
4-dimensionale Similarity Filter (4DSF). De 4DSF is gekarakteriseerd, gevalideerd en 
geoptimaliseerd in dit proefschrift. Om dit mogelijk te maken hebben we onder 
andere simulatie instrumenten ontwikkeld, omdat klinische data vrij beperkt 
beschikbaar is en het de mogelijkheid biedt tot kwantitatieve analyse.

Hoofdstuk 2 en 3 stellen beide een methode voor om lage dosis CT beelden te 
simuleren. Hoofdstuk 2 simuleert de principes van de CT scanner om CT beelden 
te genereren van digitale fantomen. Hoofstuk 3 gebruikt kunstmatige intelligentie 
om normale dosis CT beelden om te vormen tot lage dosis CT beelden. De 
gesimuleerde CT beelden kunnen gebruikt worden om algoritmes zoals de 4DSF te 
valideren. Deze instrumenten maken het verkrijgen van CT beelden toegankelijker, 
omdat klinische beelden niet altijd makkelijk te verkrijgen of beschikbaar zijn. Het 
grootste voordeel van gesimuleerde data is de toegang tot de grondwaarheid, 
oftewel, de echte voxel waardes, dit maakt het mogelijk om kwantitatieve analyses 
te doen. Hoofdstuk 4 presenteert een uitgebreide analyse en validatie van de 4DSF 
voor lever CT perfusie. De resultaten van dit hoofdstuk laten de potentie van de 
4DSF zien, in het bijzonder als de 4DSF worden gecombineerd met een andere filter 
om zo de ruis verder te onderdrukken. In Hoofdstuk 5 wordt een GPU versie van de 
4DSF voorgesteld. Deze versie dringt de rekentijd van het algoritme terug en maakt 
het makkelijker het algoritme aan te passen. Als laatste wordt in Hoofdstuk 6 een 
aangepaste versie van het 4DSF voorgesteld voor herseninfarcten. Deze versie 
verbetert de zichtbaarheid van de beroerte in de perfusie mappen, wat mogelijk 
tot betere diagnostisering leidt.
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Dit proefschrift biedt inzicht in de 4DSF en helpt ons het gedrag, de sterke en de 
zwakke punten van het filter te begrijpen. Bovendien wordt een algemene manier 
voorgesteld voor het optimaliseren van het filter wanneer men het wil gebruiken 
voor een nieuw CT perfusie protocol. Door deze bijdrages hoop ik dat we CT perfusie 
een stap dichter bij klinisch gebruik hebben gebracht.
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Research Data Management

In this thesis different types of data were used consisting of phantom images, 
simulated data, and retrospective patient images and respective imaging information.

All data has been stored on AXTI group servers belonging to the Department of 
Medical Imaging. All data archives, measured, raw, processed, and simulated 
images are stored and accessible by the associated staff members of the AXTI 
group. To ensure the interpretability and reusability of the data, documentation has 
been added to the data.

The retrospective patient images and respective imaging information used in 
Chapter 3 and 6 were obtained following the CMO2016-3045 (Umbrella protocol), 
project 20031. This is a protocol approved by the medical ethical committee, 
the Netherlands. In both cases the data was retrieved by using the RADNG 
anonymization server, to ensure no personal information that could identify 
individuals was included. This anonymization was only on metadata level for 
internal use; however, the data itself could still be identifiable via face recognition. 
The data will be archived for a period of 5 years before destruction, according to 
the CMO2016-3045 (Umbrella protocol).

The retrospective patient data is not shared publicly as it is not allowed according 
to the protocol we used to retrieve it. We are also not allowed to publicly share 
the simulated data, because of vendor agreements. We have added a metadata 
repository to the Radboud Data Repository about the tools we used to simulate our 
data, which has the following DOI: https://doi.org/10.34973/4zgg-5j18
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me great advice. Joana thank you for always being you. It was great to always have 
you there (30 minutes late) when we were going to do something no matter what, a 
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drink or play board games. I enjoy still being in contact with you. Wendelien, thank 
you for always being so early, so I was not the only one in the office until 9:30.

To the new ones Gustavo, Raneim, Hanne, Maranda, and Martina. Gustavo thank 
you for the great story on how your bike got stolen, I will never forget this. Raneim, 
one of the few ones to be earlier than me in the office. It was great to get to know 
you and I really enjoyed all the questions you had for me. Hanne, bedankt voor een 
geweldig verhaal over jouw supermarkt tripje op zondagavond. Ook vond ik het 
leuk om met jou les te geven. Maranda, dankjewel voor al het lachen op kantoor en 
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en je hulp bij mijn appartementen jacht. Jessie, dankje dat je altijd op kantoor was 
en het lab altijd vulde met je goede lach en Brabantse gezelligheid. Het was fijn 
om nog iemand anders op kantoor te hebben met een zachte G. Luuk, degene aan 
wie ik altijd al mijn vragen kon stellen en wie mij altijd hielp met mijn metingen. 
Ik ga jouw flauwe humor niet vergeten. Mikhail, mijn vriend, bedankt dat je altijd 
eerlijk en recht voor zijn raap bent, voor alle keren dat je mij geholpen hebt met 
mijn onderzoek, en voor alle keren dat je naar mijn problemen hebt geluisterd 
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herinneringen over. Iedere week weer het heuveltje bij Tivoli op en een snellere 
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listened to my struggles about work or others things in life and the advice you gave 
me, this really helped me in hard times. I really enjoyed all the practice walks and 
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together through California where we sat on the couch of Friends was the highlight 
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Aan de mensen uit Limburg. Pieter, dankje voor alle wielrenritten op zondag in de 
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vragen is iets waar ik tegen op kijk. Mam, dankje dat je er altijd voor me bent als 
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Marian, Cor, Max, Fleur, Frieda, Joep, Jos, Dorienne en Pieter, dankje dat jullie er 
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