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Chapter 1

General introduction

1.1 Measuring rodent behavior

Animal behavior studies have been instrumental for our understanding of biological and
psychological phenomena for a long time (Aristotle, 384-322 BC; (Darwin, 1872; Tinber-
gen, 1951). Given their genetic similarities with humans, rats and mice serve as integral
models for human diseases, allowing researchers worldwide to probe potential drug ther-
apies for psychiatric and neurological disorders. The behavior of transgenic rodents pro-
vides valuable insights into the genetic underpinnings of brain disorders, and the function
of specific proteins and genes.

Measuring animal behavior objectively is crucial for reliable and reproducible assess-
ments, for instance when evaluating the effectiveness or safety of medicines. Long-term
observation is important to monitor the well-being of laboratory animals and obtain as
much data as possible, thereby reducing the total number of animals needed in the exper-
iments. However, manual recording of behavior by human observers is time-consuming
(and therefore costly), tedious and error-prone, making it unsuitable as input for systems
that perform continuous, unsupervised operation. Therefore, there has been an ongoing
effort in the scientific community to develop techniques for automated measurement of
behavior.

Since the 1990s, we have seen automated behavioral observation tools evolve (Baran
et al., 2022) from electro-mechanical devices such as infrared photobeam sensors that
record the amount of activity of a laboratory rat in a test arena, to early video analysis
systems that monitor the location and direction of the movement (Spruijt et al., 1992;
Noldus et al., 2001). After that, behavior measurement from video evolved with multiple
body-point tracking and with quantification of behavior classes derived from the animal’s
pose (Rousseau et al., 2000). At the same time, the need was expressed to detect more
high-level behaviors like ‘rearing’ and ‘grooming’, and for assessing behavior in more nat-
ural conditions and for longer durations, for better behavior recognition performance and
for tools to analyse behavioral patterns(Spruijt and De Visser, 2006). This led to the
development of high-throughput behavior analysis software in 2012 that is described in
Chapter 2 of this thesis. The method is intended for long duration recordings of a ro-
dent in a home cage and is able to recognize ten different categories of behavior from a
continuous stream of video input (Van Dam et al., 2013).

Such automated systems provide a quick, consistent annotation with an accuracy com-
parable to human annotators, while being immune to the bias, drift, and limitations in-
herent in human observers. These advancements have become more significant with the
increase of large recording datasets and computational hardware capacity, which has pro-
pelled progress in automated behavior measurement across animal species in general. In
essence, automated assessment of rodent behavior from camera recordings has become
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indispensable in behavioral research, enhancing the speed of rodent behavior analysis and
helping to ensure more consistent behavior annotations.

However, available systems are still restricted in the sense that they either have a
limited interpretation of the input signals (measuring for instance low level features such
as the amount of activity or displacement, or simple activities such as walking), or in the
sense that they are tailored to a specific research setup, or required extensive development
efforts and large amounts of training data. As a consequence, in frequent situations where
no off-the-shelf measurement systems are available for the specific research setup or where
the behaviors that need to be observed are more complex, researchers are left with the
laborious and error-prone method of manually scoring their data. These problems impede
progress in areas where the interpretation of behavior is a core objective.

This thesis covers seventeen years of research, at first instance to find a method of
automatically annotating the rodent behaviors that are most relevant for behavioral neu-
roscience research, and following that, to improve recognition to be more accurate, more
robust, more generic and more flexible. It starts in 2007, before neural networks were redis-
covered and before the amount of artificial intelligence (AI) hardware and tools exploded
to what is available now, in 2024. The field of computer vision and pattern recognition
has expanded to the field of AI, with enormous progress in image and text processing
to serve diverse, specific tasks, to an extent that many experts in the field believe that
artificial general intelligence (AGI), with generic cognitive capabilities and perhaps even
understanding, is within reach (Morris et al., 2023; Roser, 2023). What progress has this
brought so far to the field of rodent behavior recognition? What are the limitations that
are shared between the different methods, and can we identify their causes, the reasons
why the limitations occur? And is it possible to combine the strengths of humans and Al
to be both flexible and efficient while remaining accurate?

1.2 Automated behavior recognition basics

Automated behavior recognition strives to infer behaviors or specific types of activity from
a stream of sensor data. There are many ways to infer behaviors from input data. In gen-
eral, the process consists of multiple consecutive steps (see Figure 1.1): preprocessing the
input data to ensure the right input quality and format, deriving features from the input
data to extract relevant information, preprocessing the features to reduce the dimension-
ality, classification of the features by mapping them onto one of the behavior categories
and finally, applying post-processing to smoothen the result or correct inconsistencies.
Each of the stages can be either simple, or can be an advanced system by itself such as
tracking the animal in a video to derive location and trajectory features or a deep learning
classification network for the detection of the behaviors.

Event log

Figure 1.1: General diagram showing the stages of the automated behavior recognition
process, from the raw video input to the resulting event log that contains the behavioral
events.
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With machine learning, tuning and optimization of feature extraction and classification
can be automated using algorithms that learn and improve from experience. In this
thesis, several types are applied. If an algorithm can compare the actual outcomes to
ideal outcomes that have been annotated in advance (ground truth), it is considered
supervised learning. If the algorithm only uses the data itself, for instance to group or
segment parts of the data based on its distribution or pattern, it is called unsupervised
learning. Optimization of algorithms can also be done using with only a small proportion
of the ground truth annotation (semi-supervision). There is a body of work dedicated
to estimating the desired output from limited amounts of data. One of those is active
learning that seeks to find the most informative parts of the data that it needs annotation
for in order to optimize its learning and improve its predictive performance. Finally,
there is self-supervised learning where the algorithm uses part of the data to reconstruct
or predict the remaining part of the input data. It is mostly used to learn a lower-
dimensional representation of the input data, preserving only the relevant information
needed for reconstruction (auto-encoding) or, in case of timeseries, to predict the future
data (auto-regression).

Another important distinction between behavior classification methods is the way that
time is handled. Behaviors are typically temporal and usually cannot be inferred from still
images or body postures alone. The temporal aspect can be taken into account by either
incorporating surrounding context data in the features, in classification, or both.

1.3 Developments in automated behavior recognition tech-
nology

1.3.1 Progress in video processing and activity detection

Around 2015, the field of automated behavior recognition, or activity detection as it was
called in the human domain, was shifting from traditional computer vision and from
machine learning to deep learning. Traditional methods such as the Automated Behavior
Recognition (ABR) system described in Chapter 2 require handcrafted feature detection,
which makes use of domain-specific knowledge to extract the relevant information from
the data. The quality of the detection relies mainly on the quality of the features, which
is mostly influenced by the quality of the tracking. Traditional tracking from video is
based on computer vision techniques, especially on background detection and active shape
modeling. Given carefully designed and normalized features, it is possible to learn to
estimate activities from a relatively small number of around 50 examples, for instance with
statistical approaches like Linear or Quadratic Discriminant Analysis (LDA and QDA),
mostly preceded by dimension reduction like Principle Component Analysis (PCA), or
projective methods like Support Vector Machines (SVM) or decision trees like Random
Forests (RF).

With deep learning, feature extraction is automated. Especially in image processing,
convolutional neural networks (CNNs) have made the detection of objects much more flex-
ible and efficient. For temporal data, a combination of convolutional (2D and 3D-CNNs)
and recurrent neural networks (RNNs), including Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) became popular, detecting activities in short video clips
or in wearable sensors data streams. In 2018, Transformer models were first introduced
in text processing with the BERT model (Devlin et al., 2018), with the benefit of better
handling of long-range dependencies. These successes were the prelude of a new gen-
eration of Generative Pretrained Transformer (GPT) models such as OpenAl’s natural
language processing chatbot ChatGPT (OpenAl, 2022a). For images, the text-to-image
model Dall-E was released (OpenAl, 2022b)). Very recently in 2024, Sora was announced
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for text-to-video generation ((Brooks et al., 2024)). The focus of video generation is still
largely on 3D-consistency during camera movements with very limited capabilities for
variation in activities, although simulations of walking, swimming and eating individuals
look impressive. Automated generic modeling and generation of natural, diverse behavior
in videos is still a far away goal.

1.3.2 Rodent behavior recognition

In the domain of rodent behavior recognition, several traditional systems are described in
the literature (for instance VSAmbr (Jhuang et al., 2010), ABR (Van Dam et al., 2013),
JAABA (Kabra et al., 2013), idTracker (Pérez-Escudero et al., 2014), Moseq (Wiltschko
et al., 2015)). The ABR system described in Chapter 2 of this thesis has been part of
the commercial EthoVision XT video tracking system that Noldus Information Technology
offers for rodent behavior research (www.noldus.com/ethovision). The first version of
the ABR software was applicable for rat behavior and was released in 2012 as part of
EthoVision XT 10. In 2014, the software was extended with a module for the recognition
of mouse behavior and was additionally adapted to handle videos from multiple frame
rates as well as live recordings with real-time, simultaneous inference for up to eight cages.
The rat and the mouse behavior recognition modules are currently used in more than 300
academic and industrial laboratories around the world. Although a strong effort was made
to make the modules robust and although they perform well in varying circumstances, they
are not sufficiently flexible to handle all of the use cases of rodent behavior researchers.

Since 2016, deep learning approaches have been published for rodent behavior recogni-
tion (Eyjolfsdottir et al., 2016). Deep learning has been especially beneficial in detection
and tracking of rodents, with for instance with open source tools such as DeepLabCut
(Mathis et al., 2018) and SLEAP (Pereira et al., 2022). SimBA (Goodwin et al., 2024)
and BehaveNet (Batty et al., 2019) were the first open source tools to add behavior anal-
ysis. A recent survey describes the features and pros and cons of multiple available open
source tools (Isik and Unal, 2023). As is clear from the growing number of publications,
the field of rodent behavior recognition is flourishing and will be for the coming years, as
new Al methodologies and techniques are being explored.

1.4 Outline of the thesis

This thesis describes how rodent behavior can be annotated automatically, and explores
how this can be improved to be more robust, more generic and more flexible. The recog-
nized behaviors are restricted to the behaviors performed by a singly-housed rodent (rat
or mouse) and recorded by a camera that is placed above the animal cage with constant
background and infrared lighting. Examples of behavior are for instance ‘walk’, ‘groom’
or ‘scratch’. Chapter 2 describes the classical approach, namely supervised classification
of generic, hand-crafted features derived from the videos after tracking. It presents the
Automated Behavior Recognition (ABR) system for the recognition of various specific rat
behaviors that are the most annotated behavior by hand: ‘drink’, ‘eat’, ‘groom’; ‘jump’,
‘rear unsupported’, ‘rear wall’, ‘rest’, ‘sniff’, ‘twitch’ and ‘walk’. In this study, ABR is
validated on an unseen dataset by comparison with manual behavioral scoring by an ex-
pert. The effects of drug treatment on certain behavioral categories were measured and
compared for both analysis methods. Chapter 3 explores if more generic classification
of rodent behavior is possible by inferring rat behaviors directly from the video frames
in an end-to-end manner, using deep learning. The performance is evaluated within and
across experimental setups. It shows that using a 3D-convolutional network in conjunc-
tion with data augmentation strategies improves within-setup dataset performance over
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the traditional ABR system. However, it also shows that improvements do not transfer to
videos in different experimental setups. Finally, possible causes and cures are discussed.
Chapter 4 elaborates on the main reasons why rodent behavior recognition does not
reach 100% accuracy in general and performs poorly on certain specific behaviors. Three
aspects of behavior dynamics are distinguished that are difficult to automate. These
aspects are isolated in an artificial dataset and with the artificial data, the results are
reproduced using state-of-the-art behavior recognition models. These newer models use
self-supervised learning to first generate a lower-dimensional representation of the data
before classification.

The last research chapter, Chapter 5, elaborates on the practical solutions and tools
that help behavior researchers annotate new behaviors for which no supervised classifier
was previously trained, allowing for more flexible classification by tailoring the annotation
to the needs of a particular research experiment with specific behaviors that the researcher
wants to investigate, in new experimental setups. The first part of the chapter, Chapter
5a proves the robustness and generic applicability of the ABR features by using them
to classify ‘scratch’ behavior of mice in two different datasets, from high-speed video
recordings. In the second part, Chapter 5b, the possibility is investigated to combine
manual annotation with Al assistance into a hybrid solution, in such a way that the
manual annotation process is more efficient than a fully manual annotation and that the
end result is more precise than a fully automated annotation result. The benefit of active
learning is presented on the behaviors ‘stretched attend’ and ‘unsupported rearing’.

The thesis concludes with a general discussion in Chapter 6, in which the contribu-
tions of the research chapters are highlighted and in which the shortcomings and future
solutions are explained. It furthermore gives an outlook on new ways of behavioral anal-
ysis that take advantage of fully unsupervised detection of behavioral effects and allow
behavioral researchers to explore their data and the behavioral effects between experi-
ment groups interactively. The discussion chapter ends with a reflection on the ethical
implications of rodent behavior recognition research.
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Chapter 2

An automated system for the
recognition of various specific rat
behaviors

This chapter has been published as E.A. van Dam, J.E. van der Harst, C.J.F ter Braak,
R.A.J. Tegelenbosch, B.M. Spruijt and L.P.J.J. Noldus (2013). An automated system for
the recognition of various specific rat behaviors. Journal of Neuroscience Methods, 218(2),
214-224. https://doi.org/10.1016/j. jneumeth.2013.05.012

2.1 Introduction

Rats and mice are widely used as models for human diseases, and their behavior is studied
in laboratories around the world to find new drugs for psychiatric and neurologic disorders.
Furthermore, the behavioral phenotype of transgenic rodents is used as a read-out in the
search for the genetic basis of brain disorders and to reveal the underlying functional role
of proteins and genes. Difficulties in the reproducibility and reliability of behavioral data
have been known for a number of years (Crabbe et al., 1999; Wiirbel, 2002; Wahlsten
et al., 2003). One of the primary sources of difficulty is the limited sustained attention
of human observers, especially under dimmed light conditions, resulting in predominantly
short-lasting behavioral observations. Golani and colleagues showed that a very precise
ethogram and consistent time and space conditions are crucial to describe animal behavior
accurately (Drai et al., 2001; Fonio et al., 2009; Benjamini et al., 2011).

For the tracking and analysis of rodent location, body contour and mobility, computer
vision systems exist that observe animals in real time from an overhead infrared-sensitive
video camera. A summary of home-cage testing systems based on computer vision and
other sensor techniques was provided by Spruijt and De Visser (2006).

For the analysis of more specific body postures and behavioral patterns, however, re-
searchers still rely on human observation. However, manual annotation is labour intensive,
error-prone and subject to bias as a consequence of individual interpretation. In contrast,
automated annotation is repeatable, objective and consistent, and it saves time and effort.

Research in behavior recognition from video mainly focuses on human activities. Dur-
ing the past decade, many methods have been proposed to recognise activities such as
‘walking’, ‘waving’ or ‘punching’ (Aggarwal and Ryoo, 2011). Rodents do not have rigid
limbs that make behaviors look different and, hence, easier to distinguish; the behaviors
that interest biologists and neurologists can be very subtle. There is not a clear difference
in animal posture or movement intensity between ‘eating’ and ‘grooming snout’ or be-
tween ‘drinking’ and ‘sniffing the drink nipple’. Moreover, because rodents are nocturnal
animals, their behavior is preferably studied under dimmed or infrared light. This means
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that the automated system cannot use color information, which is an important cue in
human tracking. Conversely, there are many difficulties in human activity recognition that
are not present in animal lab recordings; cameras and backgrounds are static and stable,
and occlusions can be avoided.

In the literature, a few systems have been described that can automatically recognise
animal behaviors that are more complex than locomotion and pose. For instance, Dankert
et al. (2009) used action detection in the recognition of aggression and courtship behavior
of insects. For rodents, Rousseau et al. (2000) were the first to show that the detection of
specific behaviors was possible. They applied neural network techniques to recognise nine
solitary rat behaviors from body shape and position, recorded from the side-view. The
behavior of 63.7% of the frames was correctly recognised compared to human-annotated
ground truth. In 2005, Dollar et al. (2005) recognised mouse behavior from the clas-
sification of sparse spatio-temporal features, reaching an accuracy of 72%. Steele et al.
(2007) used alterations in home-cage behavior for detecting perturbations in neural circuit
function based on pose estimation. In 2010, Jhuang et al. (2010) predicted mouse strain
type with an accuracy of 90% by comparing the relative frequencies of eight automatically
detected behaviors. The features that they used were generated based on a computational
model of motion processing in the human brain, followed by classification using a Hidden
Markov Model Support Vector Machine (SVMHMM). They achieved an overlap between
the generated 8-class behavior annotation and human-annotated ground truth of 77.3%.
This is a considerable result that is on par with human annotation, which had a measured
agreement of only 71.6% according to the same article. Poor inter-observer agreement is
a well-known problem reported by List et al. (2005), among others, who also addressed
the difficulties of performance evaluation when the ground truth is ambiguous.

Recently, Burgos-Artizzu et al. (2012) created a system for the recognition of the
social behavior of mice, from both top and side views; this system included the solitary
behaviors ‘clean’, ‘drink’, ‘eat’, ‘up’ and ‘walk’. Their approach was based on spatio-
temporal and trajectory features and was extended with a temporal context model. They
calculated the performance not as the percentage agreement over all video frames, but
they instead took the average recognition rate per behavior to account for the imbalance in
behavior frequencies. The average recognition rate over 13 behavior classes was 61%. They
measured a human inter-observer agreement of 70%. The authors remarked that human
disagreement was almost entirely associated with the labelling of ‘other’ behaviors, whereas
the automatic approach made more mistakes discerning among the specified behaviors.
Removing ‘other’ from their performance measurement resulted in a human recognition
rate of 91% and an automated recognition rate of 66%.

All of these systems show that, in principle, it is possible to recognise rodent behavior
from video footage. However, the current systems have limitations. Most importantly,
for all of the systems, changes in experimental setup, such as cage layout and position
or camera distance and resolution, require re-training the classification algorithms. Some
behaviors are restricted to location either due to the small cage or by definition. For
example, for Jhuang et al. (2010) eating behavior could only be detected close to the
feeder. However, rodents often take pieces of food to eat elsewhere in the cage. It cannot
be excluded that the classification relies on location for these behaviors as location is part
of the features in these systems. The second limitation is that not everything can be
observed from the side view. Although the side view provides a better perspective for
some behavior bouts, other episodes where the animal is facing away from the camera are
difficult to observe, and even the manually annotated ground truth has to be estimated
from uncertain clues. Finally, there is a risk in training a behavioral system using a Hidden
Markov Model, in which the state transition probabilities are learned from the training
sequence. For drug-treated animals, the behavioral transition probabilities are likely to be
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altered. These changed transitions are a result of the experiment, not part of the model,
and researchers will want to analyse the altered transition data.

A common feature of all the studies mentioned above is that training and testing
videos are recorded in exactly the same setup. With the system presented here, we take
recognition a step further by generalising the applicability to robust detection in videos
with a setup not seen before by the algorithm. The variations in setup concern the animal
size, strain, camera distance, illumination, cage layout, and cage background.

The structure of the paper is as follows. In Section 2.2, we describe the technical
aspects of the proposed Automated Behavior Recognition (ABR) system, followed by a
description of the two-way validation. First, we perform a straightforward frame-by-frame
comparison of ABR with frame-accurate manual annotation. We evaluate videos recorded
in the same setup as the training videos as well as on videos recorded in a different setup.
Second, we perform an experimental study to validate ABR on a large set without the need
to supply frame-accurate manual annotation. For this, we compared drug treatment effects
detected by ABR to those detected by human observation. Rats are treated with two types
of psychopharmaca that are well-known for their effects on behavior: a stimulant drug
(Amphetamine) and a sedative drug (Diazepam). Pharmacological validation is achieved
by analysing the type and direction of the drug effects detected by both methods, as well
as a comparison of the behavior frequencies and durations across 5-minute intervals. The
results of the two validation methods are in Section 2.3. We present the study conclusions
in Sections 2.4 and 2.5.

2.2 Materials and methods

2.2.1 Rat behavior recognition system

In this study, image processing, machine learning and pattern recognition techniques are
combined to create a system for automated behavior recognition in rats. The ABR system
can categorise video data into behaviors: ‘drink’, ‘eat’; ‘groom’; ‘jump’, ‘rear-unsupported’
(standing on hind legs), ‘rear-wall’ (standing on hing legs with front paws leaning against
the wall), ‘rest’, ‘sniff’, ‘twitch’, and ‘walk’. These are the categories that are currently
annotated by hand in neurobehavioral research protocols and from which the cognitive,
motivational and emotional state of the animal is indirectly inferred. The system can
be deployed online using a video stream; there is no need to store the entire video or
perform multiple iterations to obtain the annotation. The only information needed from
the user is the boundaries of the cage region in the video image and the animal size.
Information about the cage layout such as the location of the feeder, drink nipple and the
wall is preferred but not necessary. ABR uses an overhead camera view as opposed to the
side-view camera that is applied in other systems. Behavior recognition from an overhead
camera is technically more challenging because body postures are less prominently related
to specific behaviors such as ‘rearing’, but it offers significant advantages. With side-view
observation, the visibility of specific behaviors depends on the orientation of the animal
relative to the camera; multiple cameras are needed to capture all views, and researchers
must ensure that the backgrounds of all views are blank and remain constant. A top-
view camera allows multiple locomotion parameters to be recorded (e.g., velocity, distance
travelled, and walking pattern), and it allows the drink bottle, feeder and operant devices
to be mounted to the cage. This is more practical in the lab and can even be applied
in rack-mounted home-cage systems. For an example of the classification performed by
ABR, see the supplementary video ‘ABR demo’. Supplementary material related to this
article can be found, in the online version, at http://dx.doi.org/10.1016/j. jneumeth.
2013.05.012.
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Training set

The system was trained using a high-quality dataset recorded at Janssen Research and
Development in Beerse, Belgium. The dataset consisted of 25.3 video hours of six Sprague-
Dawley rats individually housed in a PhenoTyper® 4500 cage (http://www.noldus.com/
phenotyper, Noldus Information Technology, Wageningen, Netherlands) (Figure 2.1) at
720x 576 pixel resolution, 25 frames per second and with infrared lighting. Subsets of these
recordings were annotated by a trained observer using The Observer XT 10.0 annotation
software, leading to a dataset of 254,652 frames comprising 13 behavior classes and 37
behavioral elements. Too few instances of the behaviors ‘dig’ and ‘gnaw’ occurred to
be effectively used in training, and these behaviors were labelled as ‘other’ behavior.
To reduce noise and enable frame-by-frame evaluation, the annotations have been made
frame-accurate. Manual annotation takes time and concentration; a trained expert can
score approximately two hours in succession with this concentration. Frame-accurate
annotation took one hour for every five minutes of video.

Figure 2.1: PhenoTyper 3000 cages

For the training dataset, all frames with unspecified or unusual behavior were removed;
for instance, one case involved the animal grooming while lying on its back. Additionally,
frames where features contained missing data were removed from the dataset. For every
remaining behavior class, a random sub-selection of 3000 frames was made. For the
distribution estimation of zone distances, bout duration per behavior and minimal gap
sizes between behavior bouts of the same category, all frames of the training set were
used.

Features for behavior recognition

From the video data, two feature groups were generated, with a total of 169 features per
video frame: tracking features and motion features. Each of these features was carefully
chosen to capture different aspects of the animal posture and movement.
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Tracking

From the tracking analysis, the following features were generated:
e Movement of the animal’s centre of gravity, nose point and tail base
e Animal body contour features (shape and area)
e Zone information: distance to feeder, drink nipple and wall

The features were obtained using EthoVision XT 8.0, a video tracking system devel-
oped by Noldus Information Technology (2011a,b). We used the detection parameters
‘dynamic background subtraction’ and ‘model-based tracking’.

Motion features

From the motion analysis, the following features were generated:
e Motion statistics at multiple sliding temporal windows
e Motion intensity
e Motion periodicity

The drawback of including temporal information in the features is that near the tem-
poral boundaries of the behavior bouts, the features become dependent on the previous
or following behavior bouts. This is especially the case for short-lasting behaviors, such
as ‘twitch’, where there is a risk of training on the context instead of on the characteris-
tics of the behavior itself. The motion features were estimated by calculating the optical
flow of adjacent frames at regions of interest on the animal body using the Lucas—Kanade
algorithm (Lucas and Kanade, 1981). Next, the flow vector field on the animal’s contour
was compressed to a motion profile line of every frame. These profile lines were stitched
together to form a normalised 2D motion map of the animal over time. On this motion
map, sliding time window statistics (mean, variance, range of motion intensity) were cal-
culated. Periodicity was retrieved by the use of log-Gabor filters in the temporal direction
(Field, 1987).

Classification

The generated features are classified in multiple stages. After dimensionality reduction by
means of Fisher linear discriminant analysis (LDA) (Fukunaga, 1990), a set of the most
distinctive behavioral elements are classified for all behaviors of interest with a quadratic
classifier based on normal densities (Duda et al., 2001). From these elements, the com-
posite behavior is deduced. ‘Rearing’ behavior, for instance, consists of three behavioral
elements: rising, standing on hind legs and coming down. ‘Grooming’ behavior can consist
of many elements (grooming snout, grooming fur, and scratching). ‘Eat’ behavior can con-
sist of any one of the elements ‘eat-at-feeder’, ‘eat-from-floor’; or ‘eat-from-hand’. Because
these behavioral elements all have different characteristic postures, they are recognised sep-
arately and combined later. After classification, the probabilities of behavioral elements
are known for each frame. For the location-restricted behaviors ‘drink’ and ‘rear-wall’
and the behavioral element ‘eat-at-feeder’, these probabilities can be modified by multi-
plication with the distance-to-location probability given a particular behavior; these are
derived from offline training distributions for these locations and behavior combinations.
This step is optional, and it is the only time that zone information is used. Temporal
smoothing is applied to the modified behavioral element probabilities. This is performed
based on offline trained distributions of behavior durations and durations of gaps between
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Table 2.1: Diversity in test datasets

Dataset Duration Resolution Setup

Video 1 13.7 min 720x576 One video from the within-setup dataset
Video 2 10.5 min 360x320 Half resolution, different sawdust

Video 3 5.0 min 720x576  Different strain (Wistar)

Video 4 5.3 min 768x576  Visible light

Video 5 2.5 min 720x576 Visible light, no sawdust

consecutive behaviors of the same type. The retrieved likelihoods are combined to ten
high-level behavior classes by taking the maximum probability of the behavioral elements,
with a reject threshold set to 0.25. This threshold means that all frames with a maximum
class probability below this value are labelled as ‘other’. As a final step, the annotation is
smoothed again.

2.2.2 Measuring frame-by-frame accuracy
Test videos with a different setup

Apart from the high-quality video dataset discussed in Section 2.2.1 we also annotated
four videos with different resolution, animal strain, illumination and background. The
recording conditions of these videos were used to test both the flexibility and robustness
of the classification system. All videos were recorded with a static overhead camera at a
frame rate of 25 frames per second and with a pixel resolution such that a walking rat
is at least 46 pixels long. A constant level of illumination was provided by either visible
or infrared light. The lighting maintained sufficient contrast between the animal and the
background. Only one animal was present in each cage, and the animal was entirely visible
during the whole session. The cage layout (feeder, drink nipple, and wall) was provided.
The total time of the test videos was 37.0 minutes, i.e. 55,521 frames. Figure 2.2 and
Table 2.1 show the diversity of these data.

. B ' r
-- \ &

Figure 2.2: Different setups used for testing. See Table 2.1 for description.

Test set

Initially, we used all videos for training and testing and performed a general leave-one-out
cross-validation. However, tests showed that overall performance dropped when noisier
datasets were added to the training set. Therefore, because the high-quality dataset was
large and we were especially interested in the performance on unseen datasets of lower
quality, we trained only on the high-quality dataset and used the other videos for testing.
As a reference, we also evaluated the ABR performance on one video from the high-quality
dataset. For this test, we retrained the ABR on the remaining high-quality training sets to
ensure that the classifier had not seen this video before testing. In addition, there were no
recordings of the same animal in both training and test videos to avoid individual animal
bias. For all test sets, the frames with missing data were removed. Missing data occur
when the animal is not (entirely) visible in the arena.
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2.2.3 Validation in a pharmacological experiment
Experimental setup

To validate ABR on a larger scale, we conducted a study to compare the treatment ef-
fects detected by ABR to those found by human observers. Rats were treated with two
types of psycho-pharmaca !: a stimulant drug (Amphetamine, dose of 2.5 mg/kg) and
a sedative drug (Diazepam, dose of 1.0 mg/kg). Saline treatment at an equal volume
was used as a control. Table 2.2 presents an overview of the experimental schedule. The
experiments were performed in adherence to the legal requirements of Dutch legislation
on laboratory animals (Wod/Dutch ‘Experiments on Animals Act’) and were approved by
an Animal Ethics Committee (‘Lely-DEC’). To minimise the required number of animals,
animals served as their own control; both treatments were applied to the same animal
with a washout period of four days. Furthermore, each drug treatment was preceded by
a saline treatment 24 hours prior to provide a separate baseline per treatment, thereby
excluding a time effect. It was intentionally decided to start with the Diazepam treatment
for all animals and not to use a mixed design. This decision was based on previous studies
where the animals seemed to be context-conditioned after Amphetamine treatment, and a
subsequent saline injection resulted in anticipatory activity (Van der Harst, personal ob-
servation). Amphetamine-induced behavioral sensitisation has been reported extensively
in the literature (Vanderschuren et al., 1999; Do Nascimento Alvarez et al., 2006) also in
relation to conditioning (Drew and Glick, 1988, 1990). Therefore,it was decided to admin-
ister the stimulant drug at the end of the experiment. The behavior of the animals was
recorded on video for one hour post-injection. The period of 10-35 minutes post-injection,
containing the peak-effects of both treatments, was analysed using both ABR and man-
ual annotation. The validation consisted of a comparison of (the direction of) treatment
effects detected by both analysis methods on certain behavioral categories (Section 2.2.3)
using 5-minute intervals as the statistical units (Section 2.2.3). The behavior durations
in these 5-minute intervals are graphically summarised in a biplot, which highlights the
variation in duration of behaviors within and between treatments and within and between
observation methods.

Animals and housing

The test subjects were four male Sprague-Dawley rats that were six weeks old (Hsd:SD,
Harlan, The Netherlands) and weighed approximately 150-200 gram on arrival. After
arrival, the animals were housed socially with a reversed day/night cycle (9:00-21:00 red
lights on, 21:00-9:00 white lights on) in cohorts of two animals in a Macrolon IV-S cage
(Techniplast, Italy) with a heightened lid, a shelter/climbing-partition object and two
water bottles. Water and standard lab chow (CRM-E, SpecialDiet Services, United King-
dom) was available ad libitum and was refreshed weekly. The animals were allowed to
habituate to the reversed day/night cycle, housing and management for 12-14 days before
the experiments. The animals were handled on a regular basis during this habituation
phase to avoid any effects of handling on the rats’ behavior during the experiment. After
the general habituation phase, the animals were transferred individually to the automated
home cage, PhenoTyper 4500, equipped with a feeder and drink bottle. On the third day
of PhenoTyper-housing, the animals were habituated to the experimental procedures to
avoid any effects of these procedures (e.g., entering the room, starting camera-recording,
handling the animals and placing them back in the PhenoTyper) on the behavior of the
animals during the actual test. After 4 days of habituation to the new home cage, the

'Doses are based on dose-response tests in a related study by Dunne et al. (2007) [dose volume: 2
ml/kg, s.c.], in combination with the results from a pilot study in which a dose of 2 mg/kg Diazepam
caused sedation.



18 2.2. MATERIALS AND METHODS

Table 2.2: Schematic overview of the experimental setup — see also description in Sec-
tion 2.2.3

Arrival animals Day 0
Habituation, incl handling and fixation® Day 0-15
Start experiment — housing in PhenoTyper” Day 16
Habituation test procedure [2x] Day 19
Baseline 1 (saline-1) Day 20
Diazepam Day 22
Re-housing (socially) in Macrolon® Day 22
Habituation test procedure [2x] Day 26
Baseline 2 (saline-2) Day 27
Amphetamine Day 29
Re-housing (socially) in Macrolon Day 29

® During habituation to the reversed day-night cycle, housing and management, the
animals are also habituated to procedures such as handling (being picked-up and
held by a human) and fixation (restraining procedure to be able to inject the ani-
mals), to prevent stress of these procedures during the experiment.

® PhenoTyper 4500 cage.

¢ Macrolon IV-S cage.

experiment started with the first baseline recording (after saline injection) (Table 2.2).
Weighing of the animals and other activities, such as cage-cleaning, were always per-
formed after testing to prevent any influence of these procedures on the behavior of the
animals during monitoring.

Annotation and behavioral categories

The video files were analysed by an annotation expert using The Observer XT 10.0 annota-
tion software and by the ABR system. This process resulted in two datasets containing 25
min of continuous behavioral observation for each of the four treatments (Saline-Baseline-
1, Diazepam, Saline-Baseline-2, Amphetamine; Table 2.2). It is important to note that
in relation to the validation method (i.e., comparison of the direction of the effects as
detected by human observations and by automated observation), the applied ethograms
for the observation methods were not identical. The human annotator used an ethogram
of 26 elements that was previously applied in behavioral research (Van der Harst et al.,
2003a,b). The human annotator was very well trained in this ethogram, which supported
reliable scoring. The ABR ethogram consisted of 11 elements (including an ‘other’ cate-
gory). To facilitate a comparison of the annotation methods, some of the behaviors were
grouped into categories. The two ethograms with the behavior definitions are provided in
Table 2.3 and Table 2.4. The grouping of behavioral categories is presented in Table 2.5.
The ‘sniff’ category of ABR was mapped onto more categories than the ‘sniffing’ categories
used by human annotators because ABR used a broader definition of ‘sniff’, where sniffing
was not restricted to nose sniffing while holding the head and body still. Some of the
behavior that ABR categorised as ‘sniff” was defined as ‘mobile exploration’ by the human
observer. However, ‘mobile exploration’ was grouped with ‘walk’ by the ABR because
these behaviors showed greater overlap. Another difference in definition was the human
‘root/dig’ category. When the rat used its entire body or moved around sawdust with
either its nose or paws, ABR defined this as ‘other’ behavior. However, when it moved its
nose around on the floor, ABR scored this behavior as ‘sniff’. The same was true for the
human ‘gnaw/nibble’ category, which additionally overlapped with ABR ‘eat’. There was
no ambiguity between the two ethograms for the categories ‘drink’, ‘groom’; ‘rear’ and
‘rest’.
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Table 2.3: Ethogram of the observed behavioral elements, derived from Van der Harst
et al. (2003a)

Human Description

Drink Licking at the spout of the water bottle

Eat Gnawing/eating food pellets (either from feeder or from pieces that are
held by the fore-paws)

Groom Washing the muzzle with fore-paws (including licking fore-paws) or
grooming the fur or hind-paws by means of licking or chewing

Scratch Scratching muzzle, head or body with one the hind-paws

Hop/jump Hopping (moving forward with small hops) or jumping (big forward or
upward jump(s))

Jerk Sudden convulsive movement of the head or body

Shake Shaking the head or entire body

Rear supported

Rear unsupported
Resting (lie and sit)

Attention

Sniffing air

Sniffing other
Root/dig

Gnaw /nibble
Walk/forward move
Mobile exploration
Other

Stretch

Stretched attend

Undefined transition

Yawn
Scan

Freeze

Circling/chase tail

Exploring while standing in an upright posture, leaning with front paws
against the cage-wall or other object (not present in the current setup)
Exploring while standing in an upright posture, unsupported

Lying or sitting without obvious exploration, including sleeping (eyes
closed)

Alert posture (sitting or lying with slightly lifted head, apparently lis-
tening and/or looking around)

Sniffing in the air

Sniffing at sawdust, walls or other objects

Rooting with the muzzle or digging with the front paws in the sawdust
Gnawing or nibbling on sawdust, droppings or at the walls or floor of
the cage

Moving forward in a clear direction (more than three steps) without
obvious exploration

Exploring the surroundings (sniffing, attention) while moving forward
or around

Behavior other than defined in this ethogram, or when it is not visible
what behavior the animal displays

Stretching body, often in combination with stretching fore- and/or
hind-paws

Stretched posture with head/nose pointed forward, often in combina-
tion with one lifted fore-paw

Short transition (point-event) during the display of a specific behavior,
without interrupting this behavior®

Yawning

Slow sideways swaying of the head and anterior part of the body (typical
behavior for albino rats)

Stiffening of the entire body, including immobility of the whiskers and
auricles

Circling around own axis or chasing tail

# Ambulation while rearing, change of body-position during grooming (falling backward when

going from grooming muzzle to licking genitals).
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Table 2.4: Ethogram of the automated behavior recognition system ABR, used for single
housed rats in home cage or open field.

Behavior Event type  Description

Drink State Drinking from the drink nipple

Eat State Eat at feeder or from floor or eating while holding food in front paws

Groom State Grooming snout, head, fur or genitals. Includes scratch and licking of
paws during a grooming session

Jump State Fast displacement, taking off with both hind legs at the same time

Rear unsupported State Standing on hind legs unsupported. Rearing events include the rise and
descend

Rear wall State Standing on hind legs with front paws leaning against the wall. Rearing
events include the rise and descend

Rest State Resting without hardly moving, either sit or lying down. Includes sleep-
ing. No interest in environment

Sniff State Slight movements of the head in order to gather information about the
environment, possibly with slight, discontinuous displacement. The
category includes: sniff air, wall, floor and other objects

Twitch Point Sudden and short movement of the body or head. Includes body shake,
head shake

Walk State The rat moves to another place. Hind legs must move as well

Other State Any behavior other than described above

Table 2.5: Merged ethogram. The behavioral categories were merged for analysis. Cate-
gories of the human ethogram ‘root/dig’ and ‘gnaw /nibble’ were ambiguous for the ABR
ethogram but have been merged into the ‘explore’ category.

Human ABR Merged
Drink Drink Drink
Eat Eat Eat
Groom, scratch Groom Groom
Hop/jump Jump Jump
Jerk, shake Twitch Twitch
Rear-supported Rear wall Rear
Rear-unsupported Rear unsupported

Resting (lie and sit) Rest Rest
Attention, sniffing-air, sniffing-other, root/dig,  Sniff Explore
gnaw /nibble

Walk/forward-move, mobile-exploration Walk Walk
Other, stretch, stretched-attend, undefined-transition, Other (including dig and Other

yawn, scan, freeze, circling/chase-tail, head-exploration

gnaw)
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Statistical analysis

The frequencies and durations of the nine behaviors of the combined ethogram were
recorded in five non-overlapping intervals of five minutes for each rat, treatment and
observation method, as explained in the previous sections. This analysis was achieved by
processing and integrating the data of both observation methods in The Observer XT 10.0
software. The duration of five minutes per analysis interval was chosen to maximise the
level of detail and amount of information and to minimise statistical pseudo-replication
and distortion due to a lack of synchrony between the logs. This process yielded five
records per rat and treatment; there were four treatments and 20 pairs of records for each
of the four rats, each pair consisting of an ABR record and a human-scored record. Prior
to statistical analysis, durations were logarithmically transformed (natural logarithm) af-
ter the addition of the minimum non-zero value (because In(0) does not exist). This
transformation made distributions more symmetric and fit with models for percentage
change on the original scale. The duration of ‘twitch’ was discarded because the human
‘twitch’ was scored as a point event, so it had no duration. For both observation methods
separately, the effect of Diazepam and Amphetamine was defined as the difference of the
means between the transformed data of the drug treatment and the corresponding con-
trol treatment. Data were tested for significance using a two-tailed paired t-test and a
Wilcoxon signed-rank test using R (R Development Core Team, 2010). The mean on a
In-scale corresponds approximately to the median on the original scale. We also compared
the annotations of ABR and human directly by Spearman rank correlation. For both tests,
the level of significance was set at 0.05. Frequencies were analysed by a method designed
for count data, namely, a log-linear regression assuming a quasi-Poisson distribution (Far-
away, 2006; McCulloch et al., 2008). By including rat and interval combinations in the
model, this regression is similar to a paired t-test for count data. The treatment effect
in this model was tested with a deviance-based F-test (Faraway, 2006; McCulloch et al.,
2008).

The variation in the duration of the eight state behaviors (nine minus ‘twitch’) in all 160
records is graphically summarised by a log-ratio principal component analysis (Aitchison
and Greenacre, 2002), as implemented in Canoco 5 (Ter Braak and Smilauer, 2012). This
analysis focuses on the (logarithm of) ratios of durations and thereby avoids the problem
of pseudo-correlations between behaviors. These arise because the total duration is equal
to the observation interval, so if one behavior lasts longer, the others must be shorter. The
result of the analysis is presented in a biplot (Greenacre, 2012) with points for records
and arrows for behaviors that point in the direction of maximum increase across the
diagram. In the biplot, each ABR record is connected with a line to the corresponding
human observed record. Each of the 80 five-minute intervals is thus represented by a
line segment. The mean positions of the records of the treatment observation method
combinations are also shown and similarly connected. The resulting biplot highlights the
variation in duration of behaviors within and between treatments, within and between
observation methods and within and between the 80 individual five-minute intervals.

2.3 Results

2.3.1 Frame-by-frame accuracy

Interpretation of the performance figures is not trivial when comparing precision and recall
results between behavior classes or between videos. The amount of ‘other’ data influences
the result, especially for the precision calculation. In other research on action recognition,
this problem is often avoided by creating a balanced sub-selection of target class data
and using it to generate random training and test subsets. In this way, the behaviors in
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the training and test sets are equally balanced. In our tests, we chose the most stringent
validation by testing on unseen animals and video setups. This makes it impossible to
use a test set that has the same behavior histogram as the training set because it is not
possible to select videos where different animals behave the same.

Accuracy on videos with same setup as the training dataset

Figure 2.3 displays the correspondence of the ground truth and the generated annotation
over time for reference test video 1. The overlap between manual and automatic annotation
measured on the subset of target behaviors was 71%. As is clear from the confusion matrix
of video 1 in Figure 2.4, the recall was rather good for most behaviors, but the recall was
0 for the ‘rest’ behavior. This can be explained by the fact that only one ‘rest’ event
occurred in this video. This event was significantly shorter than normal ‘rest’ events,
and because it was in between two ‘eat’ events, the ‘rest’ annotation was lost during the
temporal smoothing. The main mistakes on this test set involved the ‘drink behavior
being misclassified as the ‘sniff’ behavior. The same misclassification was also observed
for behavior that was manually labelled as ‘other’ (‘dig’, ‘gnaw’ and unspecified, often
explorative behavior, in total 22% of the data). The ‘sniff’ versus ‘other’ confusion plays
a major role in the low agreement observed for the entire video (62%). The computation
time needed by ABR to label video 1 was 23 fps, i.e., near real-time.

Event log videol
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Figure 2.3: Ground truth and generated annotation over time for test Video 1. 71% of the
target frames (all frames except ‘other’) is correctly labeled by ABR. The main confusions
are ‘sniff” as ‘eat’; ‘sniff” as ‘walk’, ‘eat’ as ‘sniff’, ‘sniff’ as ‘rear-unsupported’; accounting
for 26%, 20%, 9% and 7% of the mistakes, respectively.
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drink = 0.42 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00

eat = 0.00 0.79 0.06 0.00 0.01 0.00 0.00 0.00 0.14 0.00 0.00

groom = 0.00 0.00 0.74 0.00 0.00 0.01 0.00 0.00 0.18 0.08 0.00
jump = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
other = 0.00 0.18 0.16 0.00 0.00 0.02 0.01 0.00 0.56 0.01 0.06

rearun = 0.00 0.00 0.00 0.00 0.00 0.70 0.01 0.00 0.15 0.00 0.14

rearwall = 0.00 0.04 0.00 0.00 0.00 0.01 0.69 0.00 0.19 0.00 0.07
rest = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
sniff = 0.00 0.13 0.00 0.00 0.00 0.03 0.03 0.00 0.70 0.01 0.10

twitch = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.19

walk = 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.00 0.03 0.01 0.86
| | | | | | | | |
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Figure 2.4: Confusion matrix of ABR results on video 1. Rows denote ground truth, the
columns denote the decisions. So the first row indicates that 42% of the ‘drink’ behavior
was scored as ‘drink’, 26% was misinterpreted as ‘eat’ and 32% was considered as ‘sniff’

Accuracy on videos with a different setup

In Table 2.6, the results obtained with the other test videos are presented. It shows
two percentages of overlap between manually labelled ground truth and ABR-generated
annotation; the first percentage is calculated only on the subset of target frames and the
second on the entire video, including ‘other’ behavior. Overall agreement is always lower
because the ‘other’ class is too diverse to train on and because at the same time the ‘other’
class resembles the target behaviors, thus making it difficult to distinguish. The ‘other’
category is often scored in case of a transition between two behaviors. However, it is
important to note that the results of test videos 2 to 5 are comparable to the results of
reference video 1.

Table 2.6: Percentage overlap between ground truth and ABR annotation on the test
videos. Since this is a 10-class problem, the chance agreement is 10% for the agreement
on target class subset, and 9% for the agreement on all frames.

Test video  Overlap on target classes  Overlap on entire video, including ‘other’

Video 1 1% 62%
Video 2 65% 59%
Video 3 80% 72%
Video 4 67% 60%

Video 5 65% 65%
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Table 2.7: ABR recall per behavior compared to benchmark in Jhuang et al. (2010) and
to Burgos-Artizzu et al. (2012). These systems do not classify behaviors ‘jump’, ‘sniff’
and ‘twitch’. Class ‘mmove’ stands for ‘micromovement’ behavior that is defined by ‘small
movements of the animal’s head or limbs’. For comparison, behaviors ‘rear-unsupported’
and ‘rear-wall’ are grouped.

Test setup  Our system Jhuang Human Commercial Burgos-
system Artizzu

Equal to  Unseen Same as train-  Same as train-  Unknown Same as train-
training setup ing setup ing setup ing setup
Video 1 Video 2-5

Drink 0.42 0.93 0.72 0.78 0.63 0.49

Eat 0.79 0.76 0.75 0.87 0.73 0.53

Groom 0.74 0.58 0.70 0.57 0.30 0.47

Jump - 0.48 - - - -

Mmove - - 0.83 0.64 0.64 -

Rear 0.70 0.68 0.70 0.78 0.35 0.62

Rest 0.00 0.16 0.94 0.95 0.96 -

Sniff 0.70 0.76 - - - -

Twitch 0.81 0.75 - - - -

Walk 0.86 0.60 0.55 0.68 0.69 -

Benchmark to other systems

In Table 2.7, the recall results of each behavior class are compared to the results of the
side-view systems described in Jhuang et al. (2010) and the top view system of Burgos-
Artizzu et al. (2012). Although one has to be cautious when comparing the results of
datasets with different setups, species, ethograms and annotators, the table shows that
performance is similar across systems.

2.3.2 Results of the pharmacological experiment
Frequencies of behavior

Figure 2.5 displays the mean behavior frequencies measured over the 5-min intervals for
the treated animals and their control (baseline measurement after saline injection) for
both treatments and both annotation methods. The frequencies measured by ABR are
consistently higher than the frequencies measured by human observation. However, log-
linear regression shows a clear correspondence in the significance and direction of the
treatment effects (p < 0.05). For the Amphetamine treatment, the two methods disagree
only on the behaviors ‘eat’ and ‘twitch’. For the Diazepam treatment, the methods agree
on all behaviors. Both methods found no significant differences between the two control
groups, except for the behavior ‘jump’ according to ABR (Figure 2.7).

Durations of behavior

For both methods separately, a paired t-test and a two-tailed Wilcoxon signed-rank test
were performed on the log durations per five-minute intervals, comparing behavior post-
treatment with the corresponding baseline measurement (i.e., Diazepam versus saline-1,
Amphetamine versus saline-2). Both tests indicated that the same behaviors were signifi-
cant (p < 0.05, except for the ‘drink’ behavior in the Diazepam versus saline-1 comparison,
which was not significant using the Wilcoxon test but was significant in the ¢-test for ABR.
Table 2.8 shows an overview of the observed effects, based on the ¢-test. For the effects of
Amphetamine, both methods detected a significant decrease in the durations of ‘drink’,
‘groom’ and ‘rest’ and a significant increase in the durations of ‘explore’, ‘rear’ and ‘walk’
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Figure 2.5: Comparison of the means of behavior frequencies over the 5-min intervals
for the treated animals and their control (baseline measurement after saline injection), for
both treatments and both annotation methods. For the Diazepam treatment, the methods
(manual scoring and ABR) agree on the significance and the direction of the treatment
effect on all behaviors frequencies (*p < 0.05, "p < 0.01, ™ p < 0.001; # trend toward
significance p < 0.1). For the effect of the Amphetamine treatment the methods disagree
only on behaviors ‘eat’ and ‘twitch’. See Section 2.3.2.

(p < 0.05 for all cases and both methods). For ‘eat’, there was no agreement, due to
one video containing a long sequence (25 min) during which the rat sat at the feeder
performing stereotypic behavior that consisted of short head movements. Both methods
scored mostly ‘sniff” during this period (Human 93% and ABR 72%), but ABR also scored
5% ‘eat’, 11%‘rear’ and 6% ‘groom’. For the Diazepam treatment, both methods showed
significant decreases in the ‘drink’, ‘eat’, ‘eroom’ and ‘rear’ behaviors and a significant in-
crease in ‘rest’ (p < 0.05 for all cases and both methods). For ‘jump’, there was agreement
on the direction of the effect, but not on the significance. ABR also indicated significant
decreases in ‘explore’ and ‘walk’ behaviors after Diazepam treatment, whereas the human
annotation data did not confirm such an effect. The different conclusions for the effect of
Diazepam on ‘explore’ can be explained by the grouped ethogram; in the human annota-
tion, ‘root/dig’ and ‘gnaw/nibble’ are mapped onto ‘explore’, and this is in fact what the
Diazepam-treated animals displayed. Human annotation did find a significant decrease
in the other elements of the ‘explore’ category, ‘sniffing’ and ‘attention’ behavior. As for
‘walk’, a close look at the human annotation data revealed a rather long false positive
‘walking’ event (6.79 s) that lasted almost 1/3 of the entire ‘walk’ duration in one video.
We also compared the saline-1 and saline-2 treatments to test for the stability of the be-
haviors in the control treatments. Neither the paired ¢-test nor the Wilcoxon test showed
any significant differences. The minimum observed p-value in these 8x2 tests was 0.16.

We also compared the annotations of ABR and human directly. The Spearman rank
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Table 2.8: Treatment effects comparing the treatment with its own baseline (i.e. Diazepam
vs saline-1, Amphetamine versus saline-2) expressed as mean difference on In-scale (with
standard error of difference between means between parentheses) on the behavioral cate-
gories as found by ABR and human annotation. The p-values (NS: p > 0.05) result from a
two-tailed paired t-test on the In-durations per 5-min intervals. ‘twitch’ is excluded from
this analysis since it is scored as a point event with no duration. The methods agree about
significance in 12 of the 16 cases (marked cells). There were no opposite effects. For an
explanation of the disagreements see Section 2.3.2.

Amphetamine Diazepam
cline2-3 cline4-5
ABR Human ABR Human

Drink \L46%* (0.44)  \L74%* (0.57)  \L.05* (0.46)  \1.62%* (0.56)
Eat \1.00NS (0.60)  \1.96** (0.58) \1.10* (0.46) \1.75%* (0.52)
Explore 1.29%% (0.41)  2.02%* (0.42)  \1.10* (0.41)  \0.48NS (0.44)
Groom \2.20%* (0.58)  \2.21** (0.39)  \2.99** (0.59)  \1.85** (0.53)
Jump 0.20NS (0.26)  \0.15NS (0.27) \0.71** (0.24) \0.45NS (0.23)
Rear 3.56%F (0.49) 2407 (0.71)  \1.95%* (0.49) \2.45%* (0.49)
Rest \3.76*%* (0.72)  \3.09** (0.80) 2.70%* (0.60) 2.75%* (0.73)
Walk 1.49* (0.60) 1.75% (0.62) \1.21* (0.53)  \0.85NS (0.79)
T p<0.05

™ p<0.01

Table 2.9: Comparison of ABR and human annotation over all intervals. Spearman rank
correlation was significant for all behavior log durations and frequencies. For instance for
‘groom’ and ‘rear’ duration correlation was 0.69 and 0.86 respectively (for n = 80 intervals
(5 min), p < 0.001).

Duration  Frequency

Drink 0.64 0.60
Groom 0.69 0.55
Jump 0.63 0.62
Twitch n.a. 0.57
Rear 0.86 0.78
Rest 0.92 0.62
Explore 0.85 0.75

Walk 0.89 0.89
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correlation was significant for all log durations and frequencies of behaviors. For instance,
for ‘groom’ and ‘rear’, the correlation was 0.69 and 0.86, respectively (for n=80 intervals
(5 min), p < 0.001; Table 2.9). Figure 2.6 shows the behaviors (arrows) and records (sym-
bols) projected onto a plane formed by the two major axes. The axes were found by the
log-ratio PCA on the matrix of durations of eight behavioral categories in 160 records (80
5-min intervals scored by both ABR and a human). Each ABR record in the plot is con-
ected by a line with its corresponding human manual observation record, and the mean
positions of records of each treatment and observation method combination are shown
(big symbols). Most of the variation in behavior duration is due to the treatment (Am-
phetamine or Diazepam), as indicated by the large distance between the positions of the
treatment means positions using either observation method. The biplot also confirms that
the mean difference between the saline treatments (intermediate between Amphetamine
and Diazepam) is small. More importantly, in the context of this paper, the mean differ-
ence between the observation methods is small, as indicated by the small distance between
the mean positions for each treatment. Not only is the mean difference small, but also
the lines connecting the corresponding ABR and human records are also short compared
to the overall differences between records. For some intervals of the saline treatment, the
difference between observation methods is relatively large, but these are still small com-
pared to the large overall differences within the saline treatments. In contrast, records
from intervals of Amphetamine treatment are similar, both between intervals and between
observation methods, and the same holds true for Diazepam.

2.4 Discussion

The experimental study with drug treatment demonstrated that ABR detects similar ef-
fects on behavior that are found by human observers for both Amphetamine and Diazepam.
For Amphetamine, both methods found significant decreases in the ‘drink’, ‘groom’ and
‘rest” behaviors and significant increases in the ‘explore’, ‘rear’ and ‘walk’ behaviors. For
Diazepam, both methods showed significant decreases in ‘drink’, ‘eat’, ‘groom’ and ‘rear’
and a significant increase in ‘rest’ behavior. ABR also found significant decreases in the
‘jump’, ‘explore’ and ‘walk’ behaviors.

The differences between the drug effects detected by each method are partially ex-
plained by interpretation differences. One could say that using different ethograms in-
evitably introduces difficulties. However, some of the behavior classes overlap and in-
terpretative differences between different observers are inevitable. The use of different
ethograms reveals, rather than introduces, the problem. For the more clearly defined
behaviors such as ‘groom’, ‘rear’ and ‘rest’, the agreement between the methods is un-
questionable. The overlapping behavior classes also explain the difference in observed
frequencies. In these cases, ABR switches between behaviors, whereas humans make in-
terpretation decisions for longer periods. This switching occurs, for instance, between
the behaviors ‘eat-at-feeder’, ‘sniff” and ‘rear-wall” and between the categories ‘eat-floor’
and ‘sniff’. Other differences in the reported drug effects are caused by inherent errors in
both methods. It is important to note that the types of errors are different between the
methods. The errors in ABR are always systematic; for instance, ABR may consistently
misinterpret a certain behavior. For example, lifting the head and sniffing air with a pure
vertical head movement but without lifting the front paws is mistaken for unsupported
rearing. However, the systematic mistakes are always related to the behavior, not to the
recording duration, as is likely to be the case with human annotation (e.g., due to a loss of
concentration). Another mistake is that the automatic annotation of ‘rest’ is too conserva-
tive: very short walking bouts of only one or two small steps are ignored by the automatic
annotation but are scored by the human annotator. Because the animal moved very slowly
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Figure 2.6: Logratio principal component biplot of durations of eight behaviors (arrows
from the plot origin pointing in the direction of maximum change in duration) and 160
rat records (point symbols indicating treatment and observation method) with lines con-
necting each ABR observation record (closed symbol) with its corresponding human ob-
servation record (open symbol) and larger symbols indicating the mean positions of the
treatment—observation method combinations. Treatments are Amphetamine (circles), Di-
azepam (squares), first saline treatment (down triangle) and second saline treatment (up
triangle). The diagram displays 70% of the variance in the log-ratios of behavioral dura-
tions and highlights the small difference between observation methods compared to the
large differences between and even within treatments. The behaviors ‘explore’, ‘rear’ and
‘walk’ last longest with Amphetamine (at the left hand side), ‘rest’ last longest with
Diazepam (at the right hand side) and ‘groom’ and ‘eat’ last longest with the saline treat-
ments (in the center of the diagram).

in this case, these movements are prominent to the human annotator, whereas the same
event would be less prominent if it had occurred in the behavior sequence of a very active
animal. One explanation is that human observers are very sensitive to behavior context
and adjust their interpretation to the overall behavior of the animal. In some cases,this
adjustment may be desirable, for instance, when an animal performs the same behavior
differently than ‘normal’ due to treatment or genetic variance. When the deviation is
large, the ABR considers it to be different from normal behavior. To account for this,
either a translation needs to be made from the normal ethogram to the deviant one or
the system needs to be trained to recognise the deviant behaviors. The same influence of
context emerges in the annotation of behavior that is not listed in the ethogram, such as
the stereotypical head movements at the feeder by a rat treated with Amphetamine. ABR
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does not recognise this unseen behavior as ‘other’ because it is not notably different with
respect to shape, motion intensity or direction; thus, ABR switches among behaviors that
are most alike. The human annotator could recognise it as a new type of behavior and
choose the best-fitting category for its assignment. These effects of the scoring context on
the annotation itself remain an interesting subject for future studies. Further investigation
will note whether ABR can reveal behavioral effects that are more subtle than the well-
known effects of Amphetamine and Diazepam. A major advantage of automated behavior
measurement is that it offers the opportunity to measure behavior over very long periods
of time, thereby increasing the amount of data and widening the window of opportunity
for the detection of effects.

2.5 Conclusions

The ABR system is able to recognise the most relevant rat behaviors in a fully auto-
mated manner. Due to the inevitable interpretation differences between human observers,
100% agreement between human and automated annotation is not feasible. However, the
ABR-human correspondence is similar to human inter-observer agreement, i.e., generally
acceptable to a level of 70-85% (Bateson and Martin, 2007). Unlike humans, however,
the system operates with consistent and sustained attention, thereby allowing 24-hour
observation of animals without human subjectivity. Automated annotation is repeatable,
objective and consistent, and it saves time and effort. To our knowledge, ABR is the
only system that can recognise behaviors across different setups. It therefore outperforms
other known systems by offering equal reliability without the need for on-site training that
requires labour-intensive hand-labelled data. ABR has the additional benefit of a more
practical top-view camera position. ABR functionality will be integrated into the Etho-
Vision software package. In the future, ABR will extend recognition to mouse behavior
and social behavior and will make ABR suitable for videos of other frame rates and live
recordings.
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Figure 2.7: Comparison of the means of behavior frequencies over the 5-min intervals
for the control groups (baseline measurement after saline injection), for both annotation
methods. Both methods found no significant differences between the two control groups,
except for the behaviour ‘jump’ according to ABR. (*p < 0.05)
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Chapter 3

Deep learning improves automated
rodent behavior recognition within
a specific experimental setup

This chapter has been published as E.A. van Dam, L.P.J.J. Noldus and M.A.J. van Gerven
(2020). Deep learning improves automated rodent behavior recognition within a specific
experimental setup. Journal of Neuroscience Methods, 332, 108536. https://doi.org/
10.1016/j . jneumeth.2019.108536

3.1 Introduction

Observation and analysis of rodent behavior are widely used in studies in neuroscience and
pharmacology. Laboratory rats and mice are valuable animal models for psychiatric and
neurological disorders to study the behavioral effects of genetic variation, pharmacological
treatment, optogenetic stimulation, and other interventions. However, manual annotation
of animal behavior by human observers is labor-intensive, error-prone and subjective.
Several automated systems are available that have been reported to perform on par with
human annotators. They offer the advantage of quick and consistent annotation and are
insensitive to bias, drift and the limited sustained attention of human observers. Yet most
of them can only recognize behaviors as performed in the training material, recorded in
the exact same setting as the training environment. This works fine with in standardized
test cages, but in reality a lot of variation exists between rodent test environments used in
different laboratories. The performance of the behaviors might also vary with treatment.
There is still no adequate solution that works out of the box in the diverse real-life scenarios
faced by behavioral researchers.

During the last 20 years, there have been several publications on automated rodent
behavior recognition from video. One of the first to publish on this topic were Rousseau
et al. (2000), who trained a neural network on pose features and reached an overall agree-
ment of 63% on nine rat behaviors (49% average recall). Note that overall agreement is
calculated over frames only, whereas average recall is the average of the proportion of cor-
rect frames per class. Subsequently, Dollar et al. (2005) used the bag-of-words approach
for activity recognition with 72% average recall on five mouse behaviors. This was followed
by the work of Jhuang et al. (2010), who applied a Support Vector Machine and Hidden
Markov Model (SVM-HMM) on a combination of biologically-inspired video filter output
and location features. They report 76% average recall for eight mouse behaviors. They
also compared human to human scoring, which resulted in 72% overall agreement and
76% average recall. Van Dam et al. (2013) presented the EthoVision XT RBR system for
automated rat behavior recognition that applies Fisher dimension reduction followed by a
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quadratic discriminant on highly normalized, handcrafted features derived from tracking
and optical flow. They addressed the importance of cross-setup validation in order to
assess out-of-sample generalization, and reached 72% overall agreement and 63% average
recall on ten classes for both within-setup and across-setup evaluation.

Meanwhile activity recognition research for human activities progressed tremendously,
particularly with the advent of deep learning (Simonyan and Zisserman, 2014; Tran et al.,
2015; Wang et al., 2016; Carreira and Zisserman, 2017; Huang et al., 2017; Tran et al.,
2018). Deep neural networks allow an abstraction from input data to output categories by
learning increasingly higher-level representations of the input. By feeding labeled input
examples to the network, the network can compare its own output with the desired out-
put and can amplify features that are important for discrimination and ignore irrelevant
information. Deep networks vary in their architecture: the number and size of layers and
the way information can flow through. Ideally, the network learns the mapping from input
data to output class without any preprocessing, in a so-called end-to-end manner.

A few deep learning models have been applied to rodent behavior: Kramida et al.
(2016) applied a Long short-term memory (LSTM) model to the features of the Very
Deep Convolutional Networks architecture (VGG) and report 7% overall failure on a highly
imbalanced test set with four mouse behavior classes. More recently Le and Murari (2019)
applied a combination of three-dimensional Convolutional Neural Network (3D-CNN) and
LSTM on the dataset from Jhuang et al. (2010) and report comparable results as Jhuang
et al. with only end-to-end input. Finally, Jiang et al. (2019) propose a hybrid deep
learning architecture with a combination of unsupervised and supervised layers followed
by an HMM. They outperform Jhuang et al. on their mouse behavior dataset with overall
agreement of 81.5% vs 78.3% and an average recall of 79% vs 76%. They also show that,
after retraining, their method is applicable to another task with different classes in a
slightly different setup.

As stated above, in order to be useful in behavioral research, an automated system
must be able to recognize behaviors independent of treatment and laboratory setup. Good
recognition performance on a dataset recorded in one setup is an important step. However,
retraining supervised systems on a new setup requires a lot of data and brings back the
manual annotation task for a significant number of video segments. Three approaches
are possible to get closer to the goal. One direction is to standardize laboratory setups
(Arroyo-Araujo et al., 2019). Second is to aim for quick adaptation of a classifier towards
a new setup with minimal annotation effort, i.e. learn from limited data. The third is to
strive for generic recognition with robust and adaptive methods.

Deep learning might provide the key to achieving these goals. Development time is
reduced since laborious handcrafting of features is not needed anymore. Without dedicated
features we might also be less restricted in the application, and less preprocessing avoids
noise being introduced by it. Furthermore, trained networks can be partially reused so we
don’t need to train from scratch in a different but comparable scenario. The downside of
neural networks is the amount and variety of data needed to train them.

The goal of this study is to compare our earlier handcrafted rodent behavior classifica-
tion system to end-to-end classification by an advanced deep learning network for action
recognition, to evaluate the flexibility of the recognition on unseen setups, and to learn
how it can be improved. In Section 3.2 we explain network, metrics, datasets, sampling
and augmentation. In Section 3.3 we present classification results of within-setup and
across-setup recognition, which we discuss in Section 3.4. We conclude in Section 3.5.
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3.2 Materials and methods

We address two questions. First, what is the performance of an advanced action recog-
nition deep learning network on a rodent behavior dataset? We experiment on a dataset
of short rat behavior clips and apply two different input schemes, namely a) end-to-end
input without preprocessing, versus b) region-based input from tracking information, i.e.
regions of interest around the animal + optical flow to capture the motion. We train with
and without data augmentation. The second question we address is aimed to investigate
applicability in real-life scenarios: what is the performance of this network on continuous
videos and across setups? We evaluate videos of rat behavior using the best performing
input scheme and compare within-setup and across-setup classification performance.

Video clip
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Figure 3.1: Architecture of Multi-Fiber network. (a) The overall architecture. (b) The
internal structure of each Multi-Fiber Unit. The diagrams were reconstructed from Chen
et al. (2018).

3.2.1 Network

As network architecture we used the Multi-Fiber network (MF-Net) described in Chen
et al. (2018). Figure 3.1 shows the diagram of the network. The choice of this network
was based on its good performance on the currently most important benchmark datasets
for activity recognition, e.g. UCF-101 (Soomro et al., 2012), HMDB-51 (Kuehne et al.,
2011) and Kinetics (Carreira and Zisserman, 2017), and its efficiency compared to other
well performing networks, namely it needs 9x less calculations than I3D (Carreira and
Zisserman, 2017) and 30X less calculations than R(2+1)D (Tran et al., 2018) to get to
the same results. The crux of the MF-Net architecture is that it uses an ensemble of
lightweight networks (fibers) to replace a complex neural network, reducing the compu-
tational cost while improving recognition performance. Multiplexer modules are used to
facilitate information flow between fibers. We used the available code ! with modified
sampling, augmentation and performance metric. Furthermore we adjusted the number
of layers and kernels to deal with our specific input layout considering resolution and
channels.

"https://github. com/cypw/PyTorch-MFNet
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The network consists of one three-dimensional convolutional (conv3d) layer followed
by four multi-fiber convolution (MFconv) blocks. Each MFconv block consists of multiple
MF units, and each MF unit consists of four (five for the first block unit) conv3d layers.
All conv3d layers are followed by batch normalization and a rectified linear unit (ReLU).
The final layers of the network are an average pooling layer and a fully connected layer.
Since the middle layer of every MF unit uses a (3,3,3) kernel there is temporal convolution
in 17 conv3d layers and additionally in the last average pooling layer during aggregation
of the final eight frames.

We did not initialize the network with a pretrained model since our input channel
layout differs from the colored 3-channel human activity datasets that available pretrained
networks are trained on.

3.2.2 Metrics

In large scale activity recognition nowadays the most popular performance metric is top-1
or top-k accuracy, where the top-1 accuracy denotes the overall agreement across frames,
i.e. the proportion of the input where the model’s prediction was right and top-k denotes
the proportion of the input where the target class was in the model’s top k most likely
predictions. However, these measures are misleading for imbalanced datasets with equally
important classes as is the case with sampling from continuous videos. Suppose the dom-
inant class covers 80% of the samples and the network classifies all samples as belonging
to this class. Then the overall agreement of this obviously bad classifier would be 80%.
More informative measures in this situation are precision and recall per class, precision of
a class being the proportion of found frames that is correct and recall being the proportion
of correct frames found. In this study, we use average recall as an aggregated measure,
calculated by taking the average of the behavior class recalls. Although this does not
take into account the precision, all ill-labeled samples contribute negatively to the average
recall since we take all classes into account. In comparison to the averaged F1-score, false
positives of rare classes have more negative impact than those of frequent classes, which is
preferable. For comparison with related work, we also report overall agreement per video
for the cross-setup evaluation, calculated as the proportion of correct frames per video.

Note that behavior itself is not discrete and behavior changes take time. Therefore, it
is good to keep in mind that 100% accuracy is not feasible because of inherent ambiguity
at behavior bout boundaries.

In all experiments and evaluations, frames not belonging to one of the nine classes
are left out of the evaluation. The goal of this study is to compare handcrafted feature
classification to end-to-end classification, within and across setups. Although the question
how to detect ‘other’ behavior is important for applicability it was left outside the scope
of this study.

3.2.3 Within-setup experiments on clips
Dataset

For the within-setup experiments we used the high quality dataset described by Van Dam
et al. (2013). It consists of 25.3 video hours of six Sprague-Dawley rats individually housed
in a PhenoTyper 4500 cage (http://www.noldus.com/phenotyper, Noldus Information
Technology, Wageningen, Netherlands) at 720x576 pixel resolution, 25 frames per second
and with infrared lighting, hence gray-scale. Subsets of these recordings (~2.7 hour in 14
subvideos) were annotated by a trained observer using The Observer XT 10.0 annotation
software (http://www.noldus.com/observer), and manually checked and aligned after-
wards to ensure frame accurate and consistent labeling. Checking and alignment took one
hour per five-minute video for 14 classes (including subatomic classes). In this study we
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focused on the nine most frequent state behavior classes ‘drink’, ‘eat’, ‘groom’, ‘jump’,
‘rest’, ‘rear unsupported’, ‘rear wall’, ‘sniff” and ‘walk’. The tenth behavior, ‘twitch’, is a
point behavior without annotated duration and was left out of the comparison.

The data is presented to the network in two different ways. End-to-end input consists
of the gray-scale videos resized to square 224 x 224 resolution. The square crop was made
from the center of the arena, after the resize. The end-to-end model trained on the clips
subset is referred to as E2e-c. As an alternative to the end-to-end input we removed the
tracking task and provided the model with a 88x88 moving region-of-interest around the
animal. Frame motion information was added with the optical flow (x and y) in the second
and third channel. The tracking, flow calculation and cropping was done with EthoVision
XT 14.0 (http://www.noldus.com/ethovision), which was modified for this purpose.
The second type of input format is referred to as Roi+flow.

Network details

Because the input resolution differs for the end-to-end (224x224x1x32) and Roi+flow
inputs (88x88x3x32) the network layouts are slightly different. The main difference is
that the max pooling layer was omitted in the Roi+flow layout, because the Roi+flow res-
olution needs less spatial reduction. For both networks the total size is 7.7M parameters.
See Table 3.1 and Table 3.2 for more details.

Table 3.1: Details of the MF-Net architecture in end-to-end experiments.

layers #MF units  #channels #frames width height kernel stride padding

input 1 32 224 224

conv3d 16 16 112 112 5,5,5 2,2,2 3,3,3
maxpool 16 16 56 56 1,3,3 1,2,2 1,1,1
MFconvl 3 96 8 56 56
MFconv2 4 192 8 56 56
MFconv3 6 384 8 14 14
MFconv4 3 768 8 7 7
avg pool 1 1 1 8,7,7 1,1,1

FC 400

Table 3.2: Details of the MF-Net architecture in Roi+flow experiments.

layers #MF units  #channels #frames w h  kernel stride padding

input 3 32 88 88
conv3d 32 32 44 44 3,33 1,2,2 1,1,1
MFconvl 3 96 16 44 44
MFconv2 4 192 8 22 22
MFconv3 6 384 8 1 11
MFconv4 3 768 8 6 6
avg pool 1 1 1 8,6,6 1,1,1
FC 400
Sampling

The within-setup experiments are applied on a set of behavior clips sampled from the
within-setup dataset. We perform 4-fold cross-validation over different random train/test
splits (80/20 per class). In each fold there are 2314 training clips and 398 test clips. Each
clip contains 32 consecutive frames. The clip label is the behavior in the middle of the clip
i.e. the annotation of the 17" frame. Clips were randomly picked with the constraint that
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there is no behavior transition in the middle of the clip, between frame 14 and 19. In the
training set, the clips have a maximum overlap of 29 frames and there were never more
than four clips selected per behavior bout, with a maximum of 400 clips per behavior. For
testing, the maximum overlap is 25 frames and there are never more than two clips selected
per behavior bout, with a maximum of 50 clips per behavior. For the exact number of test
clips per behavior see Table 3.4. Clips from the same behavior bout are always together
in the same split, so either in the training or in the test set.

Data augmentation

To prevent overfitting, the data is augmented by applying a random combination of
the following known filters: resized crop, horizontal and vertical flip, inverse, rotation
(90/180/270 degrees), luminance variation (brightness, contrast and gamma), additional
Gaussian noise, additional salt & pepper noise, image blur. Additionally we applied two
new filters: video cutout and dynamic illumination change. Video cutout is the 3D ver-
sion of 2D-cutout introduced by DeVries and Taylor (2017). It implies adding occlusions
to the clip by replacing randomly located cuboids with the mean clip value. Dynamic
illumination change is created by adding a random 3D Gaussian to the clip, which has the
effect of gradually turning on or dimming a spotlight on a random time and location in
the clip. For Roi+flow the flow was calculated after random rotation and inverse of the
video frame, and modified implementations where made for the flipping filters to flip the
optical flow vectors. Resized crop was omitted and luminance variation was only applied
to the gray-scale channels. Dynamic illumination change was also omitted for Roi+flow
since it would affect the optical flow calculation.

After augmentation, the clips were normalized to have a mean of 0 and standard
deviation of 1. Normalization was done per channel to avoid mixing image and optical
flow information.

3.2.4 Continuous and cross-setup experiments
Dataset

In these experiments we used the cross-setup validation dataset from (Van Dam et al.,
2013) illustrated by Figure 3.2 and Table 3.3. It contains one video from the within-setup
dataset and four videos recorded with different resolution, animal strain, illumination,
background and feeder and spout positions. Frame rate and camera viewpoint were not
changed, and all recordings were made with constant lighting and good contrast between
animal and background. Table 3.5 presents the performance of the conventional RBR
system on these videos.
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Figure 3.2: Stills of the five videos with different setups used for cross evaluation.

Sampling

In order to estimate robustness in real-life scenarios we next evaluate the performance
across experimental setups and on continuous videos. Unlike the within-setup experiments
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Table 3.3: Description of the five videos with different setups used for cross evaluation.

Dataset Duration Resolution Setup

Video 1 13.7 min 720%x 576 One video from the within-setup dataset
Video 2 10.5 min 360x320 Half resolution, different sawdust

Video 3 5.0 min 720x576  Different strain (Wistar)

Video 4 5.3 min 768x576  Visible light

Video 5 2.5 min 720%x 576 Visible light, no sawdust

that were conducted on a balanced subset of clips and ignored clips around behavior bout
transitions, the model is now deployed on sliding-window clips (32 frames wide, step size
1 frame). These clips contain more ambiguous data than the subset of clips used in our
within-experiments and the set is not balanced anymore.

In the cross-setup experiments we consider only the end-to-end input scheme. We
applied the E2e-c model that was trained on the entire balanced clips dataset (2712 clips)
to the sliding-window clips of the test videos. Alternatively, we retrained the model on
all sliding-window clips from the within-setup dataset (32 frames wide, step size 4). This
model is referred to as E2e-s. The sliding-window clips set is much bigger (52560 clips) and
not balanced anymore. To account for the imbalance during training we used weighted
random sampling. This way during every epoch the less frequent behaviors are presented
to the network more often. Since random augmentation is applied, the network sees
different versions of the clips. For evaluation of within Video 1, the models were retrained
without the clips of Video 1.

3.3 Results

All experiments were conducted on a Dell Precision T5810 with 32GB memory and a
NVIDIA Titan X (Pascal) GPU with 12 GB, running Ubuntu 18.04, with Python 3.7
using the PyTorch framework (0.4.1). MF-Net with end-to-end input ran the forward
call at ~230 frames/sec. The annotation speed of RBR (including video 10, tracking and
feature extraction by EthoVision) is ~124 frames/sec on a CPU (Dell Precision T3620 with
8GB, Intel Xeon E3-1240 v6 @3.7 GHz), which is almost five times faster than real-time.

3.3.1 Within-setup evaluation on clips

Figure 3.3 presents violin plots showing the classification results on the balanced clips
dataset with and without data augmentation for the two different input schemes, for all
folds. The end-to-end input scheme with data augmentation yields the best result of 75%
average recall. The results per behavior are listed in Table 3.4, for both average fold
and best fold. The effect of increasing data augmentation is shown in Figure 3.4. The
confusion matrices in Figure 3.5 show that accuracy is high for almost all classes, the
biggest confusion coming from ‘jump’/‘walk’ and from ‘sniff’/‘eat’. From the loss curves
in Figure 3.6 we observe that the network overtrains without data augmentation and that
the network can learn longer for the more difficult end-to-end task. Experiments with
smaller sized networks (less layers) did not improve Roi+flow test performance.

3.3.2 Across-setup evaluation on continuous videos

First, we evaluated the E2e performance on continuous videos. We compare two models:
E2e-c trained on the cleaner and balanced clip dataset, and E2e-s trained on the much
bigger but noisier dataset of sliding-window clips as it contains also clips with behavior
bout transitions in the middle. We test both models on the sliding-window clips of Video
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Figure 3.3: Average recall per class of the end-to-end and Roi+flow models after 4-fold
within-setup evaluation on the balanced clips dataset, with and without augmentation.
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Figure 3.4: The effect of increasing data augmentation on the average class recall using
the end-to-end model.

1. In Table 3.4 we see that having good performance on an unseen set of clips is not enough
to guarantee performance on continuous videos. Instead, the E2e-s model performs better
on all behaviors except ‘rest’ (that only has 16 frames). Figure 3.7 shows the event log for
within-setup Video 1.

Next, we evaluated the E2e-s model on our set of videos in varying setups. Table 3.5
presents the overall agreement per video, Table 3.6 shows the recall per behavior. Com-
pared to handcrafted-feature classification, E2e-s outperforms RBR on the within-setup
evaluation, but not on the cross-validation task. This holds for all four cross-setup videos
and for all classes except ‘groom’ and ‘jump’. Performance was decreased especially for
Video 3, which is mostly due to the large amount of false negatives for ‘sniff” and false
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Figure 3.5: Confusion matrices with results of the end-to-end and the Roi+flow model on
the within-setup test clips, with and without augmentation.
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Figure 3.6: Train and test losses while training the end-to-end and Roi+flow model with
and without augmentation on the clipped, within-setup dataset. Horizontal axis is training
iteration, vertical axis is loss. Once the training loss is zero, the network cannot learn
anymore from the training set. Only b) E2e-c-augmented does not overtrain and learns

best.

positives on ‘rest’ (see the event log in Figure 3.8). From the results per class the misclas-
sifications of ‘drink’; ‘eat’ and ‘rear wall’ behaviors stand out compared to RBR.
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3.4. DISCUSSION

Table 3.4: Recall per behavior of the end-to-end model, tested on clips test sets and on
continuous video, all within-setup. For the model applied to the clips test set both the
4-fold and best fold results are presented.

Event log
Video 1

Ground
Truth

Event log
Video 1

MFNet
E2e-s

Clips test set Video 1
4-fold  best fold
clips E2e-c E2e-c frames E2e-c  E2e-s

Drink (32) 082 0.8 (689) 0.00  0.39

Eat (50) 082  0.86 (3186) 0.44  0.53

Groom (50) 0.80  0.80 (331) 0.68 0.86

Jump (24) 067 054 ) - -

Rear unsupported (48) 0.67 0.92 (559) 0.56 0.76

Rear wall (50) 086  0.96 (2008) 0.86  0.94

Rest (44) 067  0.89 (16) 0.79  0.00

Sniff (50) 051 0.4 (2453) 041  0.80

Walk (50) 0.89 0.86 (10290) 0.68 0.89

Average recall (398) 0.75 0.79 (18872)  0.55 0.65

Overall agreement  (398)  0.76 0.80 (18872) 0.48 0.77
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Figure 3.7: Event logs for manually labeled ground truth (above) and automatic end-to-
end annotation (below) on Video 1 (within-setup evaluation).

Table 3.5: Overall agreement of the end-to-end model with augmentation after evaluation
on unseen continuous videos, within and across setups, compared to the results of hand-
crafted RBR classification. Note that datasets are not balanced.

3.4 Discussion

RBR E2e-s
Within
Video1l 0.71  0.77
Across
Video 2 0.65  0.50
Video 3 0.80 0.27
Video 4 0.67 0.51
Video 5 0.65 0.59

First, we interpret the within-setup mistakes of E2e-c. Looking at the confusion matrix
in Figure 3.5 we see that most confusion comes from ‘jump’/‘walk’, ‘sniff’/‘eat’ and to
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Table 3.6: Recall per behavior of the handcrafted RBR classification and the end-to-end
model with augmentation, evaluated on unseen continuous videos within and across setups.

Within Across
Video 1 Video 2-5
frames RBR E2e-s frames RBR E2e-s
Drink (689) 0.42 0.39 (1181) 0.93 0.38
Eat (3186) 0.79 0.53 (6691) 0.76 0.10
Groom (331) 0.74 0.86 (1900)  0.58 0.73
Jump 0) - - (73) 0.48 0.99
Rear unsupported (559) 0.70  0.76 (871) 0.74 0.63
Rear wall (2908)  0.69 0.94 (2248) 0.63 0.05
Rest (16)  0.00 0.00 (1003) 0.16 0.27
Sniff (2453)  0.70 0.80 (15352) 0.67 0.65
Walk (10290) 0.86  0.89 (2127) 0.60 0.55
Average recall (18872) 0.62 0.65  (31446) 0.62 0.45
Time (sec) 30.00 60.00 90.00 12000 150.00 180.00 210.00 240.00 270.00
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Figure 3.8: Event logs for manually labeled ground truth (above) and automatic end-to-
end annotation (below) on Video 3 (across-setup evaluation).

a lesser extent from ‘eat’/‘sniff” and ‘sniff’/‘walk’. These are understandable mistakes
since these are gradually overlapping behaviors that can be performed more or less at the
same time and hence easily subject to interpretation differences. In these cases, automated
annotation is probably even more consistent than human annotation that is more sensitive
to context.

Second, we interpret the mistakes made by E2e-s on continuous video, within setup.
The event logs for Video 1 (Figure 3.7) show very good correlation between human and
E2e-s annotation. It stands out that there are more behavior switches in the E2e-s anno-
tation. This suggests that although E2e-s classification contains many temporal filters, it
could still benefit from post processing, either by explicitly averaging the soft-label output
over time or by adding a recurrent layer after the FC layer. Many of the related work
methods use recurrence in their classification. This is helpful to smoothen the output and
helps the algorithm to suppress detection of unlikely behavior sequences. However, this
makes these systems less applicable to annotate behavior of drug-treated animals. In these
cases, the behavioral transition probabilities might be altered, and instead of being part
of the model, these changed transitions are a result of the experiment.

Thirdly, let us examine the poor results of E2e-s on the cross-setup tasks. Looking at
event logs for Video 3 in Figure 3.8 it is notable that many ‘sniff’ frames are mistakenly
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detected as ‘rest’ or ‘rear unsupported’. Also, many ‘eat’ behaviors are mistaken for ‘rest’.
Looking at the video reveals that the animal in Video 3 is very cautious and pauses a
lot during its movements. Although this behavior was labeled by the human as ‘sniff’ it
is a type of sniff that was not in the training data where the animals are more at ease.
RBR does not suffer from these mistakes, possibly because the decision making is more
integrated over time and ‘rest’ will be only detected when the animal does not move for a
longer period.

The E2e model especially fails to recognize environment-dependent behaviors in the
cross-setup task. Behaviors ‘drink’; ‘eat’ and ‘rear wall’ score below 40% while the recog-
nition of these three behaviors is over 80% in the within-setup evaluation. Handcrafted
RBR has an advantage since the location of the drinking spout, feeder zone and walls are
provided by the user. However, the network should be able to ‘see’ the feeder and the
edges of the floor in all setup videos, and deduce that the drinking spout is always on the
side of the arena. Also during augmentation all clips are rotated and resized hence the
model should be robust to changes in the exact position of walls, feeder and spout.

Future work will be to experiment with adding a recurrent layer to the network, adding
augmentation that varies backgrounds and adding explicit visible environment cues to the
input video, such as a floor map. Alternatively, we can optimize networks for specific se-
tups. Still the most challenging problem will be to address the unseen behavior variation
that caused wrong automated annotations of Video 3. A first step can be to detect abnor-
mal behavior sequences and let the user tell the network how to interpret the sequence.
This requires learning from fewer data examples.

3.5 Conclusion

In this study, we addressed the problem of automated rodent behavior recognition and
compared the accuracy performance of an advanced deep learning approach (MF-Net) to
conventional handcrafted classification (RBR). For within-setup performance on a clipped
dataset we showed that MF-Net with end-to-end input outperforms both handcrafted
RBR and MF-Net with Roi+flow input, provided sufficient data augmentation. For cross-
setup performance on continuous video, we showed that MF-Net with end-to-end input
could not outperform RBR. We argue that the end-to-end model has difficulty recognizing
environment cues and is not robust to differences in behavior sequences observed, which is
a problem for animals behaving different than normal, for instance due to treatment. We
conclude that deep learning networks give us good performance on fixed setups with known
behavior, but that more research is necessary to reach adaptive and flexible human-like
performance that is independent of the setup and behavior performance.
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Chapter 4

Disentangling rodent behaviors to
improve automated behavior
recognition

This chapter has been published as E.A. van Dam, L.P.J.J. Noldus and M.A.J. van Ger-
ven (2023). Disentangling rodent behaviors to improve automated behavior recognition.
Frontiers in Neuroscience, volume 17:1198209. https://doi.org/10.3389/fnins.2023.
1198209

4.1 Introduction

Automated observation and analysis of behavior is important to facilitate progress in many
fields of science, especially in behavioral studies on neurological and psychiatric disorders
or drug discovery, where rodents (mice and rats) are still the most commonly used model
animals in preclinical research. With increasingly large image datasets and computational
hardware capacity, we have seen a tremendous progress in pose estimation for many dif-
ferent animal species (Mathis et al., 2018; Lauer et al., 2022). In behavior recognition, the
progress has not been that evident. Available systems recognize behaviors with a reliabil-
ity of around 70-75% (Van Dam et al., 2020), or are trained and tested on footage from
the same recording session, for a limited set of specific behaviors. However, in order to be
useful in behavioral research, automated systems that can recognize behavioral activities
must be able to recognize them independent of animal genetic background, drug treatment
or laboratory setup. To match human-level performance in annotating behavior, we need
to improve accuracy, robustness and genericity of automated systems. Accuracy means
good precision and recall per behavior, robustness means consistent accuracy across ex-
perimental setups, and genericity means that the same method is applied to all behaviors.
Three approaches are at hand. First is to standardize laboratory setups, i.e. the test
environment in which the animals are observed (Grieco et al., 2021). This limits the vari-
ance but leaves the animal- and treatment-related variation. Second is to aim for quick
adaptation of the recognition system towards a new setup with minimal annotation effort,
i.e. fine-tuning or retraining. This requires new ground truth data and brings back the
manual annotation task for a significant number of video segments. Moreover and more
importantly, researchers who need to compare animal behavior between treatment groups
need one measurement system instead of separately trained observation models. The third
approach is to explicitly strive for generic recognition with robust methods, which is in
principle possible as humans can do so.

In this paper, we investigate where we stand with respect to the goal of generic recogni-
tion, and what is needed when we raise the bar for future automated behavior recognition,
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that is, (1) to recognize ethologically relevant behaviors, (2) recognize behaviors robustly
across experimental setups, and (3) recognize new behaviors with limited data and fine-
tuning effort.

Robustness across experimental setups requires that the system can handle variation
in three aspects, namely appearance, behavior execution, and behavioral sequence. For
the behavior class performed, the appearance of the animal is irrelevant, i.e. whether
the animal is white or black, long or small, thick or slim, long or short-haired. The
same applies to the appearance of the environment, such as the walls, floor, feeder, drink
spout or enrichment objects. While their presence may enable or limit certain behaviors,
their color and texture should not affect recognition. Behavior recognition should also
be invariant to how behaviors are executed, i.e. differences in event duration, pace and
subbehavioral pattern. In addition to the usual event variations, behavior execution varies
by physical or emotional state, and by individual animal, depending on strain, gender,
age, history and medication. Furthermore, execution varies due to different layout of the
environment, such as the size of the cage or the height of the drink spout. The third
aspect for which automated recognition systems need to be robust is the sequence of
the behaviors performed, as the treatment of animals affects the frequencies of specific
behaviors. Behavior recognition systems that use history or recurrence such as hidden
Markov models (HMMs), recurrent neural networks (RNNs) or 3D convolutional neural
networks (3D-CNNs) train on temporal context and hence on behavioral context, and will
have difficulty to recognize the behavior events when applied in a different context.

There are multiple ways to increase robustness of behavior classification systems. The
best way is to train on larger and more diverse datasets. This is costly and it is not always
possible to cover all experimental diversity beforehand. Alternatively, we can factor out
variance up front by normalizing the input. By using tracked body points we can focus
on the poses and dynamics, and solve most of the appearance bias (Graving et al., 2019).
Furthermore, there are training ‘tricks’ to improve a model’s internal robustness, such as
dropout and variational encoding of latent variables (Goodfellow et al., 2016). We can
also add variance by augmentation of the input, altering the input in ways that leave the
behavior intact. Most data augmentation methods used are augmentations of appearance,
such as size, scale or pixel intensity (Krizhevsky et al., 2017).

Behavior execution differences and behavior sequence differences are differences in dy-
namics. We believe that focus on variation in dynamics can improve behavior modeling
substantially. If we can normalize and augment the behavior execution and behavior se-
quence, classification will be more robust. Stretching and folding the time-series to alter
the speed and intensity of the movement is one way, but we can also vary the sequence
of the behavior events as well as the subbehavioral pattern. To vary the sequence of the
behaviors we need to detect the events and how they follow each other. To vary the subbe-
havioral patterns per behavior, we need to understand the type and characteristics of the
possible subbehaviors and how they are combined. We give examples of composite rodent
behaviors in Section 4.3.1. We further expect that breaking down composite behaviors
into subbehaviors will also highlight subtle yet essential constituents and thereby will in-
crease the detection accuracy of behaviors that are otherwise too difficult to separate from
behaviors that are alike and more frequent.

The main idea of this paper is that acknowledging the hierarchical and composite
structure of behavior can bring automated behavior recognition to the next level and a
step closer to human-like annotation performance. If we could leave out the appearance
variation and measurement errors and if we had endless amount of training data, to what
extent are state-of-the-art networks able to model behavior dynamics?

We illustrate and explain three types of composite behaviors in Section 4.3.1. These
compositions are present in the rat dataset described in Section 4.3.2. Next, we describe an
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artificial dataset that contains these compositions in an abstracted form and can be used to
study the limits of automation models without input noise or lack of data (Section 4.3.2).
Finally, we present behavior recognition results on both the rat and the artificial data in
Section 4.4 and draw conclusions in Section 4.5

4.2 Related work

4.2.1 Supervised behavior recognition

An effective recipe for training a recognition system is to record a dataset, annotate it
and use supervised learning to train a classifier to recognize the behaviors. The classifier
iteratively finds the best optimization path to get as close to the ground truth as it can,
using all the cues it can find. Hence, the quality and robustness of the resulting classifier
is always dependent on the representational value of the data trained on. In order to be
robust to using cues that are only coincidentally or concurrently related to the behavior
classes, data augmentation is applied to the input: typically, image transformations like
flipping, scaling and rotation. Deep learning models are very good at finding informative
cues, but this also means they are sensitive to using cues that only apply within the
training dataset. In almost all studies that describe behavior recognition systems, the test
set is recorded in the same setup, with animals from the same strain and treatment as
those in the training set. Previous work shows that although deep models can reach better
performance than conventional methods, the performance is less transferable to different
experiment settings (Van Dam et al., 2020). Supervised methods that have been applied
are conventional methods such as bag-of-words (Dollar et al., 2005), Bayesian classification
(Van Dam et al., 2013) or tree-based classifiers used in MARS (Segalin et al., 2021) and
SimBA (Goodwin et al., 2024). Perez and Toler-Franklin (2023) provide an overview of
CNN-based approaches, such as 2D, Two Stream networks and 3D-CNNs, often combined
with recurrent head to model the temporal dependencies. In recent years, major advances
in deep learning classification are made using Transformer architectures that are designed
to pick up the most relevant context without constraints on how far away that context is.
Sun et al. (2023) report that multiple Transformer-derived networks applied to trajectory
data improve the classification of social rodent behavior.

4.2.2 Data-driven approaches

During the past 10 years, data-driven approaches have been presented that learn the con-
stituent modules of behavior from the data itself. MoSeq from the Datta Lab introduced
behavior syllables or motifs as behavior components (Datta, 2019) and uses autoregres-
sion filters for classification (Wiltschko et al., 2020; Costacurta et al., 2022). TREBA (Sun
et al., 2021), and VAME (Luxem et al., 2022) use self-supervised learning with recurrence
on sliding temporal windows to create latent representations that are used as input in
supervised downstream tasks. These methods are capable of accurately predicting pheno-
types and behaviors from videos withheld from the training dataset. Self-supervision is
very useful when the amount of training data is small compared to the network complex-
ity, and in discovering new significant behavior motifs or patterns. For image classifica-
tion tasks, Newell (2022) showed that, with self-supervised pretraining, the top accuracy
plateau is reached faster and with less data. Nonetheless, as in supervised training, accu-
racy increase stops around 75-80% (Sun et al., 2023). What most models have in common
is the assumption that behavior consists of a sequence of behavior states and that the
subject switches from one state to the next. The underlying assumption is that states can
be inferred either statistically by learning the underlying state-switching process from the
observed samples (HMMs), or by sliding window classification.
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4.2.3 Hierarchical approaches

Other research recognizes that behavior can be looked upon at different levels and different
scales, and that detection can be improved when models are trained at multiple hierar-
chical levels simultaneously. Gupta and Gomez-Marin (2019) show that worm behavior
is organized hierarchically and derive a context-free grammar to model this. Casarrubea
et al. (2018) apply T-pattern analysis to study the deep structure of behavior in different
experimental contexts. Kim et al. (2019) introduce a variational approach to learn hi-
erarchical representation of time-series on navigation tasks. Finally, Luxem et al. (2022)
detect behavioral motifs in an unsupervised manner and let human experts assign labels to
communities of these motifs obtained from motif traversal analysis. Recent work that most
closely resembles our representation of hierarchical structure in rodent behavior is that
of Weinreb et al. (2024). This work builds upon MoSeq and extends the auto-regressive
model (AR-HMM) by Switching linear dynamical systems (SLDS). They distinguish three
hierarchical levels, namely behavior syllables, pose dynamics and keypoint coordinates.
Their main purpose however is to denoise the input that contains erroneous keypoint
jitter introduced by failing tracking.

4.3 Materials and methods

4.3.1 Behavior

In the following we provide a description of the constituents that make up behavior, give
different examples of composite behavior and describe other factors that make automated
behavior recognition non-trivial. We derived these constituents and compositions after
visual inspection of the failures of rat behavior classification that we report in Section 4.4.1,
as well as from the results on various other datasets reported over the years by users of
the keypoint-based behavior recognition module RBR from Van Dam et al. (2013) that is
part of the EthoVision XT video tracking system.

Behavior constituents

Figure 4.1, panel (A) shows a representation of behavior seen as switching states. The
samples are the observed poses, extended with derived features at the consecutive times-
tamps. It is implied that all observations are related to a single behavior state, and that
state switches are abrupt. This is the way behavioral data is labeled that is used as ground
truth for training recognition systems and that the system gets to see either one-by-one or
in a sliding window with fixed length. However, when we as humans annotate behavior,
we evaluate the samples differently and distinguish more than switching states. Subjective
experience suggests that we predict future motion, and only take a closer look when we see
deviation of what we expect, regardless of the subject or the behaviors at hand. This inter-
pretation of the human brain as a prediction machine is supported by research in cognitive
neuroscience (Keller and Mrsic-Flogel, 2018; Heilbron et al., 2022). We seem to build a
belief about the goal pose and intentional state of the subject, based on the observed poses
over time. When what we see no longer resembles our belief, we take a closer look, in
order to revise our belief. That is, we go through the following stages of observation and
inference: The subject displays behavior A - the subject no longer displays behavior A -
the subject is in transition to another behavior - the subject is in transition towards either
behavior B, C or D - the subject is doing behavior B. We evaluate the consecutive poses
until we see that the subject arrives at a new key pose and infer the behavior from that.
Sometimes we have to wait for a sequence of key poses before a decision can be made.
In a transition between behaviors, the intermediate poses are merely pose changes to get
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from one key pose to another. They are necessary because subjects can only move around
in space and time in a continuous manner. Yet, they do not define the behaviors, but
are defined entirely by the previous and the next key pose. The constituents that form
behavior are therefore not only states that determine the samples. Apart from states, we
can also distinguish transitions, key poses with no duration and sequential combinations
of these.
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Figure 4.1: Different representations of behavior (A) Behavior seen as switching states
with successive behaviors b at event level and observations z at sample level (one for every
time-step). (B) Behavior seen as hierarchically structured constituents and transitions,
with two intermediate levels, namely a sub-event level and pose level. The sub-event level
contains state events s and point events p. The pose level contains key poses k. Key poses
are body postures that are held by the animal during one sub-event. The intermediate
samples between successive sub events are transition samples between different key poses.

With this is mind we propose a new representation of behavior, shown in Figure 4.1,
panel (B). It shows a representation of behavioral components and how they can be com-
bined, which resembles what we see when we annotate behavior. While we are labeling
the events, we perceive behavior as a sequence of state events, point events and transi-
tions. State events are defined by key poses with a certain variation and duration, whereas
point events are defined by key poses with zero or minimal duration. Note that we use
point event slightly different than is common among ethologists, who use point event to
indicate that the duration is not relevant for analysis. Here we want to emphasize that
the behavior is characterized by a momentary key pose. Transitions are the transitional
movements between different key poses (also known as movement epenthesis). Behaviors
are combinations of these constituents. If we can build automated models that can detect
these constituents, we can improve the recognition.

Finally a note on what should not be modelled, namely the dependencies between
the behaviors at the top-level. We need to make sure that the recognition of a behavior
is not dependent on the occurrence of specific previous behavior events. The behavior
transition matrix is an output of an experimental test and this information should not be
used during training to optimize the recognition, for if the sequence changes because of
treatment effects, the detection will be hampered. In practice this means that we must
have a sufficient amount of diverse training data, either by collection or augmentation.
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Three examples of composite rodent behavior

We illustrate the composition of behavior into a sequence of transitions, state events and
point events with three examples of rodent behavior in Figure 4.2.
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Figure 4.2: Three examples of structured behavior, each with a schematic representation
and a selection of frames from a single event. Panels (A) and (B) show a point event
(rearing), (C) and (D) show an ordered composition (jumping) that consists of three
sub events, namely a point event (take-off), a state event (stretched pose) and another
point event (landing). Panels (E) and (F) illustrate an unordered sequence of state events
(grooming).

Figure 4.2, panels (A) and (B), show a typical rearing event, where the behavior
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consists of a transition from the non-rearing key pose before the rearing, towards the short
peeking pose in an upright body position, followed by the second transition towards the
next non-rearing key pose. What happens often is the detection of a false-positive rearing
event when the actual rearing pose does not occur but the animal is shortly retreating to
change direction. However, the system detects the transitional movements, i.e. a forward
movement or turn followed by a backward movement or turn. The point event in the
middle that is defining the event as rearing is missing but the transition samples match
most of the samples of the rearing events in the training set. Note that rearing events can
also be state events, when the upright position is held for some time.

The next example in Figure 4.2, panels (C) and (D), is a jumping event that starts with
the point event of the take-off, followed by a fast-forward movement and the landing as a
second point event. These two point events, the take-off and the landing, are essential for
the jumping behavior and distinguishes it from mere walking behavior. Yet the majority
of the samples in the jumping event are in the fast-forward movement, so the behavior
distributions of walking and jumping overlap considerably when all samples are weighted
equally.

The third example in Figure 4.2 on panels (E) and (F) is a grooming event that is com-
posed of multiple state events that are not strictly ordered although the common sequence
is grooming snout, head, fur, genitals. The grooming-snout substate samples overlap con-
siderably with substates of behaviors eating, sniffing and resting, but can nevertheless
be identified as grooming because they are surrounded or followed by more outstand-
ing grooming subevents. In this case it is the context of the surrounding substates that
determine the decision when made by a human annotator.

Distribution characteristics of rodent behaviors

Apart from the challenging demands posed by the composite behaviors, additional charac-
teristics of rodent behavior make automated recognition difficult. These are: high overlap
between poses of different behavior classes, high variance between events of the same class,
mixture of pose distributions for a subset of classes, unbalance of event frequency distri-
butions hence little training data for rare but important classes, and finally, high variance
in event duration, which makes it difficult to set global temporal scales for processing. We
give examples of pose overlaps and present behavior event distributions in Figure 4.3.

4.3.2 Data

To analyze the extent to which automated behavior recognition models are able to model
rodent behavior in general and composite rodent behavior in particular, we experiment
with two types of data: real rat behavior data and artificial abstracted behavior inspired
by real rat behavior.

Rat behavior dataset

The rat behavior dataset was reused from previous work and is described in (Van Dam
et al., 2013). It consists of 25.3 video hours of six Sprague-Dawley rats, each in a Phe-
noTyper 4500 cage ! at 720x576 pixel resolution, 25 frames per second and with infrared
lighting, hence gray-scale. Subsets of these recordings (~2.7 hour in 14 subvideos) were
annotated by a trained observer using The Observer XT 10.0 annotation software 2, and
manually checked and aligned afterwards to ensure frame accurate and consistent labeling.
In this study we focused on the nine most frequent behavior classes ‘drink’, ‘eat’, ‘groom’,

"ttp://www.noldus . com/phenotyper
thtp ://www.noldus.com/observer



50 4.8. MATERIALS AND METHODS

400 o ’ 20 -
350
¢ ¢

300 15 -
gzso— ’g
%200- : N :gw_
3 150 - ‘ a

100 + 0 i 5

504 ¢ ¢

0_%Lﬁ_+4.é}_+ o === =

\'z@ S \@\ @5\\ O ; PO @,/"o@ & \(\,,%b\ (\,,5’\\ (\,@) K \(\,);5\ o /,.5@
& 2 &€ & R & ¢
s > & L R » =
& @ & & R d‘“\\ & & &8 Q@oﬂ“ § o ‘@ & &
P & &8
Behavior Behavior

Figure 4.3: Illustrations of the distribution characteristics of rat behavior that make auto-
mated recognition challenging. Panel (A) shows four examples of pose confusions. Clock-
wise, starting upper left, are the confusions (manual label/automated label) sniff/eat,
sniff/drink, eat/groom. groom/eat. Panel (B) and panel (C) show the distributions
of the behavior event durations on the entire rat dataset, with and without outliers, to
illustrate the big differences across and within behavior classes.

‘jump’, ‘rear unsupported’, ‘rear wall’, ‘rest’, ‘sniff” and ‘walk’. To focus on the dynamics,
we applied the same input preprocessing as was used in VAME by (Luxem et al., 2022),
namely we tracked six body-points using DeepLabCut (Mathis et al., 2018), and aligned
and normalized these.

Artificial time-series

In order to experiment with different types of behavior dynamics without suffering from
incomplete or incorrect features or insufficient amount of data, we generated artificial time-
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series of randomly sampled behavioral events, with predefined behavior components and
substate dependencies inspired by the rodent behavior components. The sample features,
or poses, are drawn from predefined distributions, with configurable variation across and
inside events. Components are either point events or states with durations sampled from
a distribution, and are concatenated by transition periods of two to eight samples. Per
behavior event, we added fluctuations with configurable smoothness, amount and period-
icity. As a last step, we added observation noise. The result is a configurable amount of
time-series data that we can train the recognition models on, with configurable difficulty,
depending on the number of behaviors, number of features, overlap in feature distribu-
tions, complexity of behavior structure, and amount of overlap between the constituents
of different behaviors. With this procedure we generated two different datasets to exper-
iment with: 1) artificial state behaviors and 2) artificial composite behaviors. The code
to construct these datasets is publicly available 3. In the code repository, we included the
definitions for the artificial datasets used here, as well as an example with four features.

Artificial state behaviors The first artificial dataset contains only state behaviors,
modeled after the varying distribution characteristics mentioned in Section 4.3.1. The
feature distributions and an example time-series of state behaviors are plotted in Fig-
ure 4.4, panel (A) and (B). The following behaviors are included. First, behaviors with
well separated pose (b01, b02), which should be easy to recognize and are added as sanity
check. Second, behaviors with poses that are alike (b03, b04; confusion group 1). In real
rat data there are behavior pairs have overlapping poses, for instance ‘drink’ and ‘sniff’.
Third, behaviors whose pose distributions are a mixture of poses (b05), for instance as
‘groom’ and ‘eat’. Fourth, behaviors with uncommon event duration distributions, either
long or short (b06, b07; confusion group 2). Examples in rat behavior are ‘sleep’ and
‘twitch’.  Fifth, periodic behaviors (b08, b09 overlapping with behavior b10; confusion
group 3). Finally, we inserted pose transition samples between behavior events (b00).

Artificial composite behaviors The second artificial dataset contains two behaviors
with well-separated pose (b0l and b02) and additionally the following composite behav-
iors. First, point behaviors, i.e. defined by key poses of zero or minimal duration, with
transitions dependent on the key poses of surrounding events. Point behaviors are hard
to detect because they may overlap with samples from state behaviors or with transition
samples. An example in the rat behavior data are rearing events, where the surrounding
frames are similar to sniffing poses. In the artificial dataset, the point behavior is b11,
overlapping with b12. Second, ambiguous subbehaviors in unordered sequences: behaviors
defined as an unordered sequence of subbehaviors that have their own distributions, and
where some of these subbehavior distributions overlap with other behaviors (behaviorl =
n x {A or B or X}, behavior2 = {P or Q or X}). In the rat behavior data this corresponds
with the overlap between grooming-snout and eating events (b13, overlapping with b14:
confusion group 4). Third, ambiguous subbehaviors in ordered sequences: behavior de-
fined by a specific, fixed sequence of subbehaviors, where some of the subbehaviors also
occur in the sequence of other behaviors (composite behavior A-X-B versus behavior P-
X-Q). An example in the rat behavior data is jumping behavior that consists of take-off -
stretched pose - landing. The stretched pose is also part of a walking sequence (b15, over-
lapping with b16: confusion group 5). Feature distributions and an example time-series
of composite behavior are plotted in Figure 4.4, panel (C) and (D).

Shttps://github.com/ElsbethvanDam/artificial_behavior_data
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Figure 4.4: Artificial behavior feature distributions and 1-dimensional time-series example
with the behavior event bar on top. (A) and (B) for artificial state behaviors, and (C)
and (D) for a set including artificial composite behaviors, i.e. behaviors that can consist
of a sequence of subbehaviors per event.

feature

4.3.3 Classification models

We will now describe the two models we used to evaluate the current performance of
automated rodent behavior recognition. The first model is a recurrent variational auto-
encoder (RNN-VAE) that we applied to all the data. The second is a Transformer model
for time-series that we applied to the artificial data.

A good approach is to train a recurrent variational auto-encoder (RNN-VAE) to get
a behavior embedding for every short time window of length 7' (7=0.5 sec) and use
this embedding as input for a small linear network that aims to find n behavioral motifs
(n=30) from the data. The mapping to the motifs is then used to classify the final
behaviors per sample in a supervised manner, using a linear classifier. We followed the
network implementation of VAME (Luxem et al., 2022) with an encoder consisting of
two bidirectional GRU layers (hidden dimension h=64) and a decoder of one GRU layer
(h=32) plus a linear layer to map the input resolution of T'xF, where F denotes the
feature dimensionality. The embedding size varies with the size of the features: For the
rat data (14 features) we used embedding dimension d=30, and for the artificial data
with only one feature we use d=6. The output of the encoder is the concatenation of
the hidden RNN states. Before passing the output of the encoder to the decoder, a joint
distribution is learned and sampled from during training, to ensure better robustness of the
embedding. The n motifs are learned by including in the loss the clustering-based spectral
regularization term (see Luxem et al. (2022) (supporting information), Ma et al. (2019)).
In our experiments, we did not train the motifs and behavior classification separately,
but instead added a supervised classification head. This means we allowed the network
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to optimize embedding and motifs for both the decoding and the behavior classification
task, by optimizing three losses: a self-supervised reconstruction loss, a clustering loss and
a supervised classification loss. During training, the importance of the classification loss
is gradually increased. Note that for supervised classification we could have omitted the
motif cluster mapping. We kept it in because we want to investigate the model’s ability
to learn motifs for the difficult (rare, subtle, composite) behaviors.

As an alternative model, we replaced the RNN-VAE network with a Transformer net-
work derived from LIMU-Bert (Xu et al., 2021), a Bert model for time-series, and applied
it to the artificial datasets. The model has four encoder layers, each with four attention
heads and a feed-forward layer with hidden size h=80. A linear decoder projects the en-
coded input back to the original input size T'x F. As in LIMU-Bert, to train the encoder,
the input sequence of 20 samples is masked with a contiguous span of samples instead of
individual samples to avoid trivial solutions (mask ratio=0.45), and only the spans are rep-
resented and predicted. After reconstruction, the entire original input sequence is encoded
without masking and a slice of five samples is classified with a bidirectional GRU classifi-
cation head (h=30). As before, the reconstruction loss and a supervised classification loss
are trained simultaneously.

For all experiments, we performed a hyperparameter search with Optuna (Akiba et al.,
2019) to ensure the best possible results. The tuned parameters are learning rate, number
of hidden dimensions and the size of the embedding. For the Transformer network we also
tuned the mask ratio and the window size of the slice that is sent to classification.

4.4 Results

4.4.1 Modeling rat behavior as switching states

The confusion matrices in Figure 4.5 present the result of the RNN-VAE model on the rat
behavior dataset, calculated from the sequences of the aligned six body-point coordinates
per frame. Figure 4.5, panel (A) shows the confusions at event level, panel (B) shows
confusions at sub-event level. It is clear that the recognition works well for some of the
state behaviors and is less successful for other behaviors. Half of the drinking frames
are detected as sniffing, and most of the eating samples are seen as sniffing or grooming.
Eating is executed in three different ways: at the feeder, in which case it overlaps with
sniffing, or away from the feeder in a sitting pose or off the floor, in a way that it also
overlaps with the grooming-snout pose. Nearly all behaviors are confused with sniffing,
which is due to overlap in both pose and movement intensity of the very wide distribution
of sniffing poses. For a human annotator, it is the context of more explicit behavior that
determines the decision. The confusion in resting behavior is because the sequences in
the test data are very short compared to the few very long resting periods in the training
data, and in different poses. In the detailed results of the rearings, the middle part of the
rearing (‘high’) is confused differently than the upward and downward movements, which
can be due to our observation that rearing events contain a relatively large amount of
transitional samples.

Overall we identify four types of confusion. First, the features can be sub-optimal,
i.e. incomplete, insufficient or just noisy and incorrect. Next, point behaviors may not
be detected. Furthermore, confusion is likely when the relevant context is not picked up.
Finally, not all confusions are errors. Transitional samples between states get labeled but
are in fact ambiguous ground truth.
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Figure 4.5: Confusion matrices with classification results on the rat dataset using the
supervised RNN-VAE, per behavior on Panel (A) and per sub-behavior on Panel (B).
The overlaps differ per subbehavior.

4.4.2 Modeling artificial behaviors

The first set of artificial data contains only state behaviors, without structure. Both models
can recognize the behaviors equally well, as shown in confusion matrices in Figure 4.6,
panels (A) and (B). The confusion that we see is grouped according to the behavior
definitions of the dataset. As expected, classes b01, b02 and b05 are well-separated. The
models have difficulty with 2 of the 3 confusion groups: confusion group 1 with poses that
are alike (classes b03 and b04), and confusion group 2 with uncommon event distributions
(classes b06 for long events and b07 for short events). Confusion group 3 with class-specific
periodicity (classes b08, b09 and b10) is handled correctly. We conclude that both models
can learn state behaviors that have no specific dynamical structure, except for behaviors
with class-specific event durations (confusion group 2).

The results on the artificial dataset with composite behavior are presented in Fig-
ure 4.6, panels (C) and (D). This artificial dataset was inspired by the analysis of con-
fusions made in classifying the rat dataset, and contains state behaviors, point behaviors
and transitions, as well as state sequences with ambiguous subbehaviors. The behavior
definitions overlap in the same way that the rat behaviors do, see the definitions in 4.3.2.
In the confusion matrix, we see the confusions that we expect, even with a big enough
dataset. Again, classes b01 and b02 are well separated. In both models, point behavior
b1l (equivalent to ‘rear’) is confused with state behavior b12 (‘sniff’), but also with b15
(‘jump’), which is most likely due to the overlap with the transitional poses that com-
prise most of the b1l context samples. In confusion group 4, behavior b13 (‘groom’) was
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Figure 4.6: Confusion matrices with classification results on the artificial datasets for (A)
state behaviors and model RNN-VAE, (B) state behaviors and model Transformer, (C)
composite behaviors and model RNN-VAE, (D) composite behaviors and model Trans-
former. Confusion groups are outlined in red.

defined as an unordered sequence of substates corresponding to different grooming poses,
one of which is overlapping with state behaviors b12 (‘sniff’) and b14 (‘eat’). See supple-
mentary Figure4.7 for the sub-event level confusion matrix. The models did not use the
surrounding context of substates to infer behavior b13. Nor could the models solve con-
fusion in confusion group 5, namely find the conditional context of behavior b15 (‘jump’)
that separates it from b16 behavior (‘walk’).

4.5 Discussion

Currently known automated systems for the recognition of animal behavior from video
suffer from lack of robustness with respect to animal treatment and environment setup.
In order to be useful in behavioral research, systems must recognize the behaviors of control
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and treated animals regardless of compound effects on appearance, behavior execution and
behavior sequence. Careful analysis of miss-detections in rat behavior recognition lead us
to distinguish behaviors into four types of behavior constituents, namely state events,
point events and pose transitions, and sequences thereof. To study the performance of
recognition models on the different types of dynamics, we created artificial time-series and
present results for the most advanced recognition systems.

The classification results on the artificial dataset show that, even with sufficient amount
of data with absent noise and ideal annotation quality, and with supervised classification
and hyperparameter tuning, the networks are not capable of classifying the composite
rodent behaviors, or behavior-specific event durations. Therefore, the solution towards
more robust rodent behavior classification is not only to train on more data or to avoid
input noise. We also need to improve on how to break down the composition. If models
can learn to compress time-series into segments that correspond to behavior constituents,
they can analyse segment properties and sequences regardless of the temporal scale of the
segments. The usual way of segmenting data into equidistant samples and segments of
equal duration is therefore not the best way to segment behavior, and adding the attention
mechanism of the Transformer is not enough to overcome this.

Although rodents can switch goal poses instantaneously, they can only change their
actual pose in a continuous manner. This makes certain samples more informative than
others. For instance, a rat can be walking towards the feeder and suddenly decide to drink
first. It takes intermediate positions to change a walking pose into drinking pose. Such
pose changes while changing from one behavior to another are often not informative for
the behaviors themselves. This is generally true for recordings of intentional agents. How
to infer the agent’s goal poses is unsolved so far, but if we can discard the uninformative
transitional samples we can reduce confusion. One possible way to achieve this is to predict
future poses, and take as start and stop pose of the transition the frames that are difficult
to predict. Although this seems a good approach, it is very difficult to steer the predictions
from the data itself given the amount of variation and valid, possible projections.

With the data compressed into behavior segments and transitions, we would be able
to normalize and augment the behavior execution and the behavior sequence which would
make classifiers more robust. Breaking down composite behaviors will furthermore increase
the detection accuracy of difficult behaviors, for it allows to highlight short yet necessary
constituents.

We showed that adding more training data is not sufficient to make progress for several
ethologically relevant behaviors, and we argue that understanding the composite nature
of animal behavior is necessary to move the field forward. We believe that discarding
uninformative pose transitions will reduce confusions and that detection and evaluation of
segment sequences will pick up more relevant context. Future research can focus on this
direction.
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Figure 4.7: Sub-behavior level confusion matrices with classification results of model RNN-
VAE on the artificial datasets for (A) state behaviors and (B) composite behaviors. For
the composite behaviors, only some of the sub-behaviors overlap with other behaviors.
Confusion groups are outlined in red.
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Chapter 5

Practical solutions for recognition
of new behaviors

The following chapter describes two different practical solutions to classify new behaviors
with help of the ABR features. The first is a supervised method for the classification of
scratching behavior from videos with a framerate of 100 frames per second. Once trained,
the classifier can be deployed on new videos recorded in a comparable setup. The second
solution describes an active learning approach, for the efficient and accurate annotation
of more difficult and subtle behaviors. This Al-assisted annotation method learns to take
over from the human annotator, but leaves decisions about ambiguous cases to the user.

5.1 Robust scratching behavior detection in mice from generic
features and a lightweight neural network in 100 fps
videos

This subchapter is based on this publication: E.A. van Dam, M.H. Roosken and L.P.J.J.
Noldus (2022). Robust scratching behavior detection in mice from generic features and
a lightweight neural network in 100 fps videos. Volume 2 of the Proceedings of the Joint
Meeting of the 12th International Conference on Measuring Behavior and the 6th Seminar
on Behavioral Methods Held Online, 18-20 May 2022, p. 301-305. http://doi.org/10.
6084/m9.figshare.20066849

5.1.1 Introduction

Quantification of rodent scratching behavior is important because scratching is used in
animal models for skin diseases and stress. Scratching behavior consists of a rapid, repet-
itive movement of the paw against the body, mostly the hind paw against the neck. Since
scratching instances are usually rare and short, it is difficult to annotate them manually.
Also, in the field of automated behavior recognition, short and infrequent events pose a
challenge. A scratching bout usually lasts less than a second, hence only a small fraction
of input is positive. This hinders the training of classification algorithms, which need
sufficient examples for their models to converge. Furthermore, the behavior is unevenly
distributed: it occurs frequently in one recording and does not occur at all in others.
Another important consideration for classification of this behavior is the high speed of
paw moments. This may cause part of the movement to be lost on recordings with a low
sample rate. The average frequency of paw movement during scratching in our records
is roughly 20 Hz. Given this information, Nyquist’s Sampling Theorem implies that the
sample rate of the recordings should be at least 40 Hz to prevent distortions. This means
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that in case of inferring scratching behavior from video, the frame rate should be higher
than the CCTV standard video frame rate of 25 or 30 frames per second (fps). Although
some authors report results using the standard frame rate, e.g. Akita et al. (2019), several
others reported methods based on higher frame rates. For instance, Nie et al. (2012) cal-
culate the frame-to-frame difference on videos with 240 fps and use a short-pulse detection
filter to detect the scratches. More recently, Kobayashi et al. (2021) applied a convolu-
tional recurrent neural network directly to the video input of 60 fps, on a sliding window
of 20 frames. Both methods were trained and tested on videos from a single dataset and
are not designed to work out of the box on footage recorded in other circumstances, e.g
with different cage, background, camera height and light. That severely limits the prac-
tical applicability of these methods. In this work we aim for automatic recognition of
scratching behavior of mice in footage from multiple datasets using the features described
in Van Dam et al. (2013), which are derived from tracked body-point locations and optical
flow. From this, a normalized 2D motion profile map of the animal movement over time
is created. The final set of 169 features is the result of sliding window statistics and 1D
log-Gabor responses in the temporal direction. Classification of these features enables
robust behavior recognition of rodent behavior across datasets.

5.1.2 Methods
Data

The dataset consists of nine trials recorded at two different labs, see Figure 5.1. The
trials are roughly 30 minutes long and were recorded with a Basler USB-3 IR camera
(acA1920-155um) with 100 frames per second, resolution 1920 x 1080 pixels. The first setup
combines three cages. Both setups use home cages, black mice, and sawdust covering. The
videos were recorded for other behavioral research studies that are covered by approval of
authorized ethical committees.

Figure 5.2: Four equally spaced frames from a single scratching paw movement in video
4. This set of consecutive paw movements had an average frequency of 17.9 Hz.
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Features

The input data for the model consists of the 169 features designed by Van Dam et al. (2013)
with a small adjustment to log-Gabor filters because of the higher frame-rate. Notice that
the log-Gabor filters are calculated in the temporal dimension and respond to the periodic
movement of the scratching, each filter at a specific frequency. As such, the feature array
for a single time step is sufficient to classify that frame. This means that there is no direct
need to employ RNNs, so that we can use a lighter, faster architecture for the model. The
features were calculated using EthoVision XT 17, a video-tracking system developed by
Noldus Information Technology (http://www.noldus.com/ethovision).

Network

The model is a simple Multi-Layer Perceptron (MLP) consisting of linear layers and acti-
vation functions. The network topology consists of one hidden layer with 75 units. This
is left fixed for performance reasons.

Loss function

For the training loss we used the focal loss, which is defined as follows:

((Plyo) = —(1 = p(y = v0))" log(Dy, )

Here, p is an array of predictions, yo is the ground truth, p(y = yo) is the proportion
of class yo in the train data and v > 0 is a hyperparameter. The focal loss is a rescaled
version of the familiar categorical cross-entropy (i.e. the log loss), with class weights
w; = (1 — p(y = yo)7. It is biased towards classes that are rare in the training dataset.
A larger value of ~ increases the relative class weight of rare classes, which in our case is
scratching behavior. Both L2-regularization and dropout are applied to all hidden layers
of the network in order to reduce the chance of overfitting.

Hyperparameter optimization

For optimization of hyperparameters, we used the Optuna framework (Akiba et al., 2019).
This framework attempts to find the best set of hyperparameters by efficiently sampling
from the hyperparameter space. We ran Optuna to optimize the following: learning rate,
batch size, number of epochs, L2 factor, dropout probability, activation (sigmoid, relu,
tanh) and 7. We ran Optuna with 500 trials and pruning enabled. As our trial objective,
we took the minimum of the precision and the recall. This forces Optuna to always improve
the lowest of the two values. We computed this objective by nine-fold cross-validation over
the nine videos, averaging over folds.

Cross-validation

We used cross-validation to evaluate the best model as found by Optuna. The nine videos
were used as folds for cross-validation. On each fold, we recorded the f1, precision, recall,
FPR (false positive rate) and FNR (false negative rate). The model was trained five times
per video to compute the mean and standard deviation. Finally, the combined predictions
on on all nine folds were used to compute total performance metrics of the classifier.
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5.1.3 Results
Hyperparameter optimization

Optuna ran for 500 trials, of which 145 finished and the rest was pruned (due to un-
promising results). The best value was found after 454 trials, having a score of 0.783. The
optimization history is shown in Figure 5.3.
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Figure 5.3: Optuna optimization history.

The optimal values for the hyperparameters are as follows: learning rate = 7.2 x 1074,
batch size = 512, number of epochs = 6, activation function = sigmoid, L2 factor =
1.1 x 1075, dropout probability = 0.16, v = 0.097

Cross-validation

The results of cross-validation, with means and standard deviation, are shown in Table 5.1.
Note that videos 4 and 8 contain no scratching behavior. The metrics are all computed
based on the number of frames correctly classified (rather than the number of events).
The predictions for videos 3 and 5, respectively, are shown in Figure 5.4 and Figure 5.5.

Setup 3: Ground truth and predictions
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Figure 5.4: Predictions compared to ground truth for video 3.
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Table 5.1: Table with cross-validation results f1, precision, recall, false positive rate (FPR)
and false negative rate (FNR) over the nine videos, as well a total score over all videos.
The number before the + sign indicates the mean and the one after the standard deviation.

Video f1 precision recall FPR FNR

Video 1 0.725 £ 0.003  0.796 4+ 0.022 0.666 + 0.012  0.0032 + 0.0005 0.3342 4+ 0.0116

Video 2 0.763 £ 0.007 0.775 4+ 0.019  0.752 £+ 0.012  0.0010 # 0.0001  0.2484 4 0.0120

Video 3 0.813 £ 0.005 0.832 4+ 0.014 0.795 £+ 0.014  0.0024 + 0.0003  0.2053 4 0.0142

Video 4 - - 1.000 £+ 0.000  0.0012 + 0.0004 -

Video 5 0.909 £ 0.001  0.901 4+ 0.005 0.917 £ 0.005 0.0138 #+ 0.0009  0.0828 4 0.0051

Video 6  0.902 £ 0.002  0.909 4+ 0.009 0.894 £+ 0.011  0.0099 + 0.0012  0.1058 4 0.0113

Video 7 0.666 £ 0.015 0.720 4+ 0.035 0.621 £+ 0.015 0.0014 + 0.0002  0.3795 4 0.0154

Video 8 - - 1.000 £ 0.000  0.0002 + 0.0001 -

Video 9 0.772 £ 0.004 0.785 £ 0.015 0.761 & 0.013  0.0027 £ 0.0003  0.2393 £ 0.0133

Total 0.872 £ 0.001  0.878 £ 0.005 0.867 £ 0.005 0.0036 + 0.0002 0.1335 + 0.0049

Setup 5: Ground truth and predictions
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Figure 5.5: Predictions compared to ground truth for video 5.

5.1.4 Conclusion

In this study we present a robust rodent scratching behavior classifier that works out-of-
the-box for top-view videos recorded at 100 fps. We used generic features derived from
earlier work and optimized a small classification network for the detection. The detector
will be used in behavioral studies at multiple labs so we will have more validation data in

the future.
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5.2 Fast annotation of rodent behaviors with Al assistance:
Human observer and Smart Annotator collaborate through
active learning

This subchapter is based on the following publication: E.A. van Dam, T.J. Daniels, L.
Ottink, M.A.J. van Gerven and L.P.J.J. Noldus (2024). Fast Annotation of Rodent Be-
haviors with AT Assistance: Human Observer and SmartAnnotator Collaborate through
Active Learning. Proceedings of Measuring Behavior 2024, Aberdeen, 15-17 May 2024 p.
230-235. https://doi.org/10.6084/m9.figshare.25897855

5.2.1 Introduction

Automated annotation of rodent behavior from video recordings is an essential tool for
behavioral research. It speeds up and improves rodent behavior analysis with more readily
available and consistent behavior annotations. Since early 2013, commercially available
solutions as well as open source projects exist for a specific set of behaviors (Van Dam
et al., 2013, 2022; Isik and Unal, 2023; Segalin et al., 2021). Although great strides have
been made and the most common rodent behaviors can be detected in video streams under
specific recording conditions, many ambiguous or rare behaviors that are also relevant in
behavioral research (such as epileptic seizures, stereotypic variants of behaviors, whisking),
or for which a different definition is used, are still scored by hand. Developing generic,
robust automatic solutions is costly since it requires a large set of precise and consistently
labeled video footage that contains the same variation as the variation in the footage
that the solution will be applied to (Van Dam et al., 2020). This refers not only to the
appearance of the animals and environment (fur color, cage, lighting), but also to the way
the behaviors are executed. The speed of walking, the length of a grooming session, the
height of a rearing and angle to the camera, the behaviors before and after a scratching
event, etc., vary with for instance age, time of day, mood, motor skills and drug treatment.
An automated classifier that was optimized with use of machine learning can only reliably
recognize what has been seen in training data, so all variations in the deployment data
set must occur in the training set as well. If this is not the case, the classifier will suffer
from selection bias. To collect and label a sufficient amount of such training data is
difficult to achieve, especially for rare and subtle behaviors, or for behaviors that are very
specific to the research question at hand. To meet the demand for faster annotation of
behaviors for which there is no generic solution available, and to tackle the challenges in
behavior classification, we developed a novel Al-assisted annotation tool, SmartAnnotator
(Figure 5.6). This tool helps the researcher to annotate behaviors, by training a classifier
through active learning. Here, active learning refers to the ability of an Al system to
interactively query a human user to label new data points to maximally improve learning
performance. Instead of playing a video from start to end and scoring behavior by hand,
the researcher is presented short video clips to annotate. Simultaneously, a classifier is
trained in the background on these annotations, and infers behaviors on unlabeled video
clips, until the entire video is annotated. Importantly, Smart Annotator selects video clips
that were given an uncertain label by the model and asks the user to label these clips.
In other words, Smart Annotator selects events whose annotation will maximally improve
behavior classification. This exploits both human expertise and Al to increase annotation
accuracy. This interactive approach is much more efficient than labeling all data from start
to end and avoids observer drift, as well as unavoidable decision delay in manual scoring.
Hence, it reduces annotation time while increasing the quality of the labels. Furthermore,
unlike previously described tools for interactive behavior annotation (Kabra et al., 2013;
Lorbach et al., 2019), SmartAnnotator is cloud-based, so annotation can be done in any
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web browser and resources are scalable.
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Figure 5.6: A screen capture of the SmartAnnotator tool. Multiple selected clips are
presented to the user for labeling.

Al-assisted annotation, nevertheless, also has its challenges. It relies on the relevance
and quality of the features that it can extract from the videos, the segmentation of the data
into clips, and on how reliably the tool can detect similarities in the data. Furthermore,
the learning and processing needs to be fast, since it is an interactive process that must
be user-friendly. Yet the advantage over generically trained classifiers that are deployed
out-of-the-box is that with Al-assisted annotation, a dedicated classifier can be trained on
a specific set of features with a specific interpretation of the behavior by the user. Also, the
algorithm does not need to account for unseen variance since it works on the entire set of
videos from one behavioral experiment at once. Recent work (Luxem et al., 2022; Weinreb
et al., 2024) on automated behavior detection furthermore highlights the use of behavioral
clusters, i.e. short pieces of behavior of a certain type that are learned by clustering a latent
representation (embedding) of the data, learned by a self-supervised auto-encoder. It has
also been shown (Van Dam et al., 2023) that there is not always a straightforward one-to-
one relation between such clusters and specific behaviors of interest. Therefore, we have not
applied classification on the embedding at this moment but used the behavioral clusters
only for segmentation of our data. We have used SmartAnnotator to annotate specific
target behaviors in a set of videos: ‘stretched attend’ in a mouse dataset, and ‘unsupported
rearing’ in a rat dataset. ‘Stretched attend‘ was chosen since it is relatively easy to
recognize manually from videos and does not have a large variation in event duration.
It is more difficult to recognize for automated recognition tools, since elongated body
postures also occur during ‘walking’, ‘jumping’ and ‘rearing wall’ events. ‘Unsupported
rearing’ was selected as a challenging example that is difficult to detect automatically from
2D-videos since event durations are typically short and contain a relatively large number of
transitional postures that are equal to postures of other behaviors (Van Dam et al., 2023).
For both behaviors, this can easily lead to a large number of false positive detections.
We show that our method improves annotation accuracy and reduces the amount of data
that needs manual labeling compared to a supervised classification of these behaviors.
This demonstrates the benefit of active learning and our SmartAnnotator tool in finding
particular or rare behaviors in a larger dataset, that would otherwise easily have been
misclassified.
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5.2.2 Methods
Annotation through active learning using SmartAnnotator

Using SmartAnnotator, instead of playing a video from start to end and simultaneously
scoring behavior, the researcher is presented short video clips to annotate, based on their
similarity in the videos. The similarity is derived from low-level behavior features that
are precalculated from the experiment videos by EthoVision XT (http://www.noldus.
com/ethovision). While the researcher is labeling clips, a classifier is trained on these
annotations, infers the labels of similar clips, and clips with low certainty are presented to
the researcher to ensure high annotation accuracy. Once all clips are labeled, the researcher
can inspect the clips and edit the labels if necessary. The low-level behavior features were
designed for automatic mouse and rat behavior recognition. They are described in Van
Dam et al. (2013) and combine spatial body shape features, movement features, multi-
scale temporal window features, and environment proximity features based on location.
Together these features form a low-level behavior profile over time, independent of species,
gender, age and appearance. The features have proven their richness and robustness in
the Mouse and Rat Behavior Recognition modules of EthoVision XT. Also, these features
were successfully used as input for a scratch behavior classifier (Van Dam et al., 2022). In
order to create an Al-assisted annotation, the following steps are performed: 1) Cluster
experiment data (low-level behavior features) and use these for data segmentation to create
events in the data, 2) Let the human label n events, and 3) Train a behavior classifier on
all the labeled data available. We first transformed the data using MiniRocket (Dempster
et al., 2021), and then used a linear classification model with one fully connected layer.
Steps 2 and 3 are repeated until a user-defined accuracy threshold is reached. 4) Apply
the best classifier resulting from tuning to all unlabeled data, and label the certain events,
5) Pick n uncertain events and present them to the human for labeling. Steps 3-5 are
repeated until all data are labeled. For the experiments in this study, we made use of a
look-up table (so called oracle) with access to ground truth labels, as a replacement of the
human labeler.

Annotation using supervised classification

To determine the benefits of an active learning approach using our SmartAnnotator tool
for the annotation of ‘stretched attend’ and ‘unsupported rearing’, we compared it to
supervised classification of those behaviors, where the classifiers were given access to the
manually labeled ground truth of the entire training dataset at once. To this end, we
trained a classifier for each of the two behaviors, consisting of two main parts: first, a
variational autoencoder of three 1D-CNN layers to learn an embedding of the features
that can be used to reconstruct the input, and second a classification head of two linear
layers to estimate the behaviors from the embedding. For supervised classification, we used
the same datasets as for the active learning approach. For the mouse dataset we made a
training split including four out of five videos and a validation split with the remaining
data. The training split contained 85.1% of the ‘stretched attend’ samples in the dataset.
For the rat dataset we made a training split including 12 out of 14 videos and a validation
split including data of the remaining two videos. In this case, the training split contained
75.1% of the ‘unsupported rearing’ samples. In both the active learning scenario and the
supervised scenario, we optimized the classification towards high recall at the cost of low
precision, because in post-processing it is easier to correct for false positives than for false
negatives.
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Datasets and behaviors

The mouse dataset that we used for annotation of ‘stretched attend’ consists of 5 x 5
minutes of video with annotated behaviors ‘stretched attend’ (121 events), ‘walk’ (110)
and ‘other’ (172). Since we focused on the annotation of ‘stretched attend’ (Figure 5.7
pane A), the ‘walk’ behavior events were also considered as ‘other’ (resulting in 282 events
for ‘other’). The recordings were made for other purposes at Utrecht University, and were
given to us with permission to use for our research. The rat dataset that we used for
annotation of ‘unsupported rearing’ consists of 14 x 5 minutes of video, with annotated
behaviors ‘drink’, ‘eat’; ‘groom’, ‘jump’, ‘unsupported rearing’, ‘rearing supported’, ‘rest’,
‘sniff’, ‘walk’, and ‘other’. Since we focused on the annotation of ‘unsupported rearing’
(Figure 5.7 pane B), the rest of the behavior events were also considered as ‘other’, resulting
in 31 events for ‘unsupported rearing’ and 912 events for ‘other’. The dataset was reused
from previous work and described in Van Dam et al. (2013). With respect to ethical
permissions we remark that no animals were handled for his work.
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Figure 5.7: A. Screen capture of one of the ‘stretched attend’” videos with event logs. B.
Screen capture of one of the ‘unsupported rearing’ videos.

5.2.3 Results

We evaluated the benefit of active learning using SmartAnnotator with two examples of
specific behaviors that are easily misclassified by generic automatic tools: ‘stretched at-
tend’ and ‘unsupported rearing’. We analyzed precision, recall and fl-scores of the anno-
tation using the active learning approach as well as the supervised classification approach
(Table 5.2). We performed a Wilcoxon rank sum test to test for differences between the
active learning and supervised approach. The active learning approach results in similar
recall compared to supervised classification, for both ‘stretched attend’ (p = 0.104) and
‘unsupported rearing’ (p = 0.762; Table 5.2).

The precision, however, is higher in the active learning approach (p < 0.001 for both
behaviors), and with that also the fl-scores (p < 0.001 for both behaviors; Table 5.2). The
standard deviation, however, of precision is quite high, especially for ‘unsupported rearing’.
One explanation might be the different training data between runs because of the setup
of the active learning process. Additionally, the active learning approach requires much
less manually labeled data compared to supervised classification. For ‘stretched attend’,
18.3% manual labels was required for the active learning method (75 out of 403 events),
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Table 5.2: Results of the active learning and supervised approach in classifying ‘stretched
attend’ and ‘unsupported rearing’. Reported are the true number of events of the behavior,
the total number of events in the dataset, the mean percentage of manual labels (events
labeled by the human) required, and precision, recall and fl-scores. The results are the
mean of ten runs for each behavior and for both methods. “p < 0.001 for the comparison
between the active learning and the supervised approach.

classification n events % manual precision recall fl-score

method behavior labels (mean + std)  (mean £ std)  (mean % std)
Stretched Active learning 121 (of 403) 18.3 0.73 (£ 0.13)*  0.88 (£ 0.08) 0.79 (£ 0.09)*
attend Supervised 121 (of 403) 85.1 0.44 (£ 0.04)  0.84 (£ 0.03)  0.57 (£ 0.04)
Unsupported — Active learning 31 (of 943) 25.4 0.41 (£ 0.32)*  0.75 (£ 0.05) 0.46 (£ 0.27)*
rearing Supervised 31 (of 943) 75.1 0.04 (£0.01) 0.75 (£ 0.10)  0.08 (£ 0.01)

as opposed to the 85.1% (343 out of 403 events) we used for the supervised method. For
‘unsupported rearing’, 25.4% (239 out of 943 events) manual labels was required for active
learning while we used 75.1% (708 out of 943 events) manual labels for the supervised
method (Table 5.2). Overall, these results indicate that the active learning method using
Smart Annotator recalls a high number of specific behavior instances, while also reducing
the number of false positives (reflected in the higher precision) compared to supervised
classification of these two behaviors.

This is also reflected in Figure 5.8, where we plotted the annotation of the target be-
haviors by the active learning approach across the dataset, compared to ground truth. Via
visual inspection we can see that the pattern over time is recovered well for both ‘stretched
attend’ and ‘unsupported rearing’, and that most of the events have been retrieved.
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Figure 5.8: The generated (predicted) annotations using the active learning approach,
compared to ground truth, of the run that resulted in statistics closest to the mean (Ta-
ble 5.2). Annotations of videos in the dataset are appended. A. Generated annotation of
‘stretched attend’ (precision = 0.74, recall = 0.9, f1 = 0.81). B. Generated annotation of
‘unsupported rearing’ (precision = 0.44, recall = 0.77, f1 = 0.56). Here, we plotted the
first 40000 frames (out of 95750), as in that portion most of the ‘unsupported rearing’
events occur.

5.2.4 Discussion

In this study, we demonstrate the benefit of an active learning approach of our Smart-
Annotator tool in annotating specific or rare behaviors that are otherwise easily misclas-
sified: ‘stretched attend’ and ‘unsupported rearing’. The results in this study indicate
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that SmartAnnotator increases annotation accuracy and reduces the number of required
manual annotations which are otherwise labor-intensive and thereby decreases annotation
time. While automatic annotation was already available for the most commonly observed
rodent behaviors, more ambiguous or rare behaviors are still scored by hand. We demon-
strate the advantage of active learning in annotating such behaviors. These results are
also promising considering annotation of specific behaviors that have a clear definition
but are not commonly observed. By letting the model pick uncertain events and ask the
human for a label of these events, the model can be specifically trained to recognize the
target behavior, even if the behavior only rarely occurs in the dataset. In such situa-
tions, we argue that the interactive way of annotating behaviors using SmartAnnotator is
useful, as the algorithm can automatically annotate a large portion of the data but ask
feedback from the human about parts where it is uncertain, and thereby ask for examples
of a difficult behavior. In the current study, we present results for ‘stretched attend’ and
‘unsupported rearing’. Considering that these two behaviors are difficult to automatically
classify precisely, our annotations using the active learning approach are quite accurate.
For a more difficult behavior like ‘unsupported rearing’, the model needs a relatively large
number of manual labels, as is reflected in the percentage of manual labels (Table 5.2). We
expect that for less difficult behavior types, the tool will need fewer manual labels to reach
an accurate annotation, and furthermore yield higher precision and recall. Besides, the
tool can be used to annotate multiple behaviors in the same dataset. In our current active
learning approach, event segmentation is based on framewise clustering of the temporal
features from EthoVision XT. This leads to far more events than would be annotated by
a human observer. One of the potential improvements that is to be explored is to combine
cluster traversals into coarser events, to investigate whether this could increase annotation
accuracy even further. In short, the results in the current study demonstrate the benefit
of applying an active learning approach to classify ambiguous or rare rodent behaviors.
These are easily misclassified by conventional automatic classification and are therefore
currently still often scored by hand. Tools like SmartAnnotator increase annotation accu-
racy of such difficult behaviors and reduce annotation time. Through the development of
this Al-assisted approach we contribute a hybrid AI solution, where combining the skills
of humans and machines yields better performance than using one of both.
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Chapter 6

General discussion

Here the research chapters are summarized and contributions are highlighted and reflected
on. After that, a general conclusion is formulated and directions for future research are
pointed out.

6.1 Chapter summaries and reflections

6.1.1 Chapter 2: An automated system for the recognition of various
specific rat behaviors

Summary

Automated measurement of rodent behavior is crucial to advance research in neuroscience
and pharmacology. Rats and mice are used as models for human diseases; their behavior is
studied to discover and develop new drugs for psychiatric and neurological disorders and to
establish the effect of genetic variation on behavioral changes. Such behavior is primarily
labelled by humans. Manual annotation is labour intensive, error-prone and subject to
individual interpretation. In Chapter 2, a system for automated behavior recognition
(ABR) is presented that recognises the rat behaviors ‘drink’, ‘eat’, ‘groom’, ‘jump’, ‘rear
unsupported’; ‘rear wall’, ‘rest’, ‘sniff’, ‘twitch’ and ‘walk’. The ABR system needs no
on-site training; the only inputs needed are the sizes of the cage and the animal. This
is a major advantage over other systems that need to be trained with hand-labelled data
before they can be used in a new experimental setup. ABR uses an overhead camera view,
which is more practical in lab situations and facilitates high-throughput testing more easily
than a side-view setup. ABR has been validated by comparison with manual behavioral
scoring by an expert. For this, animals were treated with two types of psychopharmaca:
a stimulant drug (Amphetamine) and a sedative drug (Diazepam). The effects of drug
treatment on certain behavioral categories were measured and compared for both analysis
methods. Statistical analysis showed that ABR found similar behavioral effects as the
human observer.
The main results from this chapter are the following:

e We presented an automated system for the recognition of the most relevant rat
behaviors that performs on par with human annotation (ABR).

e ABR can be deployed real-time on a continuous video stream.

e Automated annotation with ABR is repeatable, objective and consistent. To our
knowledge, ABR is the only system that can recognise behaviors across different
setups. It therefore outperforms other known systems by offering equal reliability
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without the need for on-site training that requires labour-intensive hand-labelled
data.

e For both Amphetamine and Diazepam, ABR finds similar effects on behavior as can
be found using human annotation.

Reflection

During the development of ABR around 2010, most emphasis was put on design of the
feature generation to make them generically usable for the detection of diverse behaviors.
This was accomplished by including diverse aspects of body shape and movement into the
features and by making all distance and direction features relative to the size and orienta-
tion of the animal. Descriptive statistics at multiple timescales ensured that the features
are suitable to detect behaviors of diverse durations. Using such generalized features has
the benefit that it simplifies the classification task and that less training data is needed
than for more complicated methods that can learn from raw input data. Nonetheless,
the drawback is that it requires preprocessing. In the case of ABR, it requires reliable
tracking of the animal’s contour and body points (nose and tail). Also, in normalizing
and generalizing information before training takes place, we might throw away informative
features and not reach the best solution for the specific setup at hand. There is a balance
to be found between broad usage and peak performance, which corresponds to a trade-off
between robustness and flexibility. Robustness suggests that minor changes are ignored,
while flexibility implies that classification can be adjusted to identify subtle differences.
How can these properties be combined? Human annotators let interpretation of behavior
depend on how the surrounding behaviors are performed (for instance older individuals
behave slower), but that contradicts with consistent annotation across experiment trials.
Out-of-the-box classifiers that apply to diverse experiment setups should learn to do what
humans do: adjust their interpretations when animals behave differently than seen be-
fore. For humans, this takes agreement on the ethogram and time to learn to annotate
accordingly. For automated classifiers, it might need a similar tuning phase to adjust to
out-of-domain input, for instance by unsupervised or semisupervised transfer learning.

6.1.2 Chapter 3: Deep learning improves automated rodent behavior
recognition within a specific experimental setup

Summary

Traditional automated systems rely on tracking input and feature preprocessing and can
benefit from advances in Al In this chapter, we explore whether it is possible to classify
rat behaviors directly from the video frames in an end-to-end manner, using deep learn-
ing. In our experiments we use the Multi-Fiber network (MF-Net), which is an ensemble
of lightweight networks. MF-Net performs well and generally more efficient than other
networks on important benchmark datasets for human activity recognition. We show that
when using this network in conjunction with data augmentation strategies, within-setup
dataset performance improves over the conventional ABR module that we described in
Chapter 2. In order to be useful in behavioral research, systems must perform indepen-
dent of animal treatment and laboratory setup. Therefore, we also compare the results of
the end-to-end method to the ABR module across experimental setups. For within-setup
performance on a clipped dataset we show that MF-Net with end-to-end input outper-
forms both handcrafted ABR and MF-Net with tracking region-based input, provided
sufficient data augmentation. For cross-setup performance on continuous video, we show
that MF-Net with end-to-end input does not outperform ABR. We argue that the end-
to-end model has difficulty recognizing environment cues and is not robust to differences
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in behavior sequences observed. We conclude that deep learning networks give us good
performance on fixed setups with known behavior, but that more research is necessary to
reach adaptive and flexible human-like performance that is independent of the setup and
behavior performance.

The main results from this chapter are the following:

e Deep networks improve recognition when trained and applied in equal setups.

e Improvements do not transfer to other setups or to animals behaving differently, for
instance due to treatment.

o We presented two new video augmentations: video cutout and dynamic illumination
change.

e The network performs better on end-to-end input than on region-based input based
on tracking.

e For deployment on continuous video, it is better to train on noisier, continuous videos
than on a subset of clips.

Reflection

The outcomes of Chapter 3 are good news for those who need to analyse large rodent be-
havior datasets in a constant setup, such as the long-term monitoring of well-being in home
cages or the frequent and standardized screening of drugs that effect merely the frequency
and duration of behaviors instead of how the behaviors are executed qualitatively. In these
cases, it is possible to train behavior classifiers directly on the videos, without the need for
intermediate steps such as animal tracking and pose estimation. This method requires a
large set of manually annotated data and is resource intensive during the training phase,
but has stable within-dataset accuracy for behaviors ‘groom’, ‘rear’; ‘sniff’ and ‘walk’. It
is very fast to deploy. For unknown drug effects or more subtle behaviors the method is
not suitable and retraining is needed. Future research may be to increase accuracy by
training on much larger and more diverse input datasets, and to add a floor plan to the
input data, to let the network find relations to walls, feeder, spout and other objects more
easily.

6.1.3 Chapter 4: Disentangling rodent behaviors to improve automated
behavior recognition

Summary

Developments in deep learning have enabled progress in object detection and tracking, but
rodent behavior recognition struggles to exceed 75-80% accuracy for ethologically relevant
behaviors, for both conventional machine learning systems and deep learning systems. We
distinguish three aspects of behavior dynamics that are difficult to automate, namely 1)
behaviors defined by poses of minimal duration, surrounded by transitional poses that
depend on the surrounding behaviors (for example ‘rear’), 2) behaviors that consist of a
sequence of different subbehaviors, some of which are similar to another behavior (for ex-
ample ‘groom-snout’ and ‘eat’), and 3) behaviors characterized by a fixed sequence of few
short poses of minimal duration and a larger part being ambiguous (for example ‘jump’
and ‘walk’). We isolate these aspects in an artificial dataset and reproduce effects with
the state-of-the-art behavior recognition models. These newer models use self-supervised
learning to first generate a lower-dimensional representation of the data before classifi-
cation. Artificial datasets have the advantage that there is no limit to the amount of
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labeled training data and that the noise can be regulated. The classification results on
the artificial dataset show that, even with sufficient amount of data with absent noise and
ideal annotation quality, and with supervised classification and hyperparameter tuning,
the networks are not capable of classifying the composite rodent behaviors. Therefore,
the solution towards more robust rodent behavior classification is not only to train on
more data or to avoid input noise. We also need to improve on how to break down the
composition automatically. If models can learn to ignore transitional poses and compress
time-series into segments that correspond to behavior constituents, they can analyse seg-
ment properties and sequences regardless of the temporal scale of the segments. The usual
way of segmenting data into equidistant samples and segments of equal duration is there-
fore not the best way to segment behavior, and adding the attention mechanism of the
Transformer is not enough to overcome this.
The main results from this chapter are the following:

o We distinguish three aspects of behavior dynamics that are difficult to automate.

e We isolate these aspects in an artificial dataset and reproduce effects with two
state-of-the-art behavior recognition models, namely a RNN-VAE and a Transformer
model. Both models learn a self-supervised embedding first by reconstructing the
input and then learn to classify the behaviors from the embedding.

e Adding more training data is not sufficient to make progress for several ethologically
relevant behaviors, therefore we argue that understanding the composite nature of
animal behavior is necessary to move the field forward.

Reflection

This study does not present a method that is able to model the dynamics of behavior,
but instead tries to pinpoint the difficulties in behavior classification in a both precise and
generic manner, by trying to understand how the shortcomings of current approaches are
related to the structure of the data. For this, a broad palette of behaviors was evaluated.
Mostly, publications that report results of rodent behavior classification are trained on
two or three behaviors and avoid classification of more subtle and fine-grained behavior
categories. The results in this work supports the idea that both the conventional and non-
hierarchical deep learning methods have reached their limits for the full ethogram, even
with sufficient amount of correct input data. Hopefully in the future, adding intermediate
levels of subevents and key poses allows for modeling multiple hierarchical levels. So
far, to our knowledge, hierarchical network architectures have not been applied to rodent
behavioral timeseries, other than by modeling multiple input streams, multiple resolutions
or timescales. Furthermore, it might be needed to incorporate a latent level that models
the decision-making strategies of an animal. It would be interesting to see how good
humans perform on classification tasks of comparable difficulty, without their common
knowledge of animals and their behavior.

6.1.4 Chapter 5: Practical tools for the recognition of rodent behaviors

Robust scratching behavior detection in mice from generic features and a
lightweight neural network in 100 fps videos

Summary The generic applicability and robustness of the ABR features is shown by
using them to classify ‘scratch’ behavior of mice in two different datasets, from high-speed
video recordings. The method performs well on home-cage videos recorded from top view
in infrared light with a frame-rate of 100 frames per second. Although scratching events
are infrequent and usually very short, our method detects events with a precision of 0.878
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and recall of 0.867. Due to the use of highly generic, normalized features followed by a
relatively small neural network, the method does not need a large training set and is fast
to deploy.

The main results from this chapter are the following:

e We presented an automated system for the recognition of ‘scratch’ behavior of mice.
e The system is accurate and fast to deploy.

e The system performs in multiple recording setups without additional training or
tuning.

Fast annotation of rodent behaviors with AI assistance: Human observer and
SmartAnnotator collaborate through active learning

Summary Al-assisted behavior annotation saves time compared to manual annotation.
Although automated systems for rodent behavior annotation exist, specific behaviors are
still scored by hand, as results are not equally accurate across behaviors. With active
learning, we can tailor the annotation towards the needs within a research experiment and
reduce the annotation effort. In this chapter, the benefit of active learning is presented
on two particular and ambiguous behaviors: ‘stretched attend’ and ‘unsupported rearing’,
from the low-level features from the ABR system. Classification metrics and number of
required manual labels can be improved even more for less ambiguous behaviors.
The main results from this chapter are the following:

e Active learning is beneficial for the annotation of behaviors for which no classifier
or supervised training dataset is available. This can be either new behaviors or
behaviors that for which classification has not successful so far, such as rare or
subtle behaviors.

e We demonstrate this using the SmartAnnotator tool for the annotation of behaviors
‘stretched attend’ and ‘unsupported rearing’, from the input of the ABR features.

e The proposed solution is a hybrid AT solution: combining the skills of human and
Al yields better performance than using one of both. The SmartAnnotator increases
annotation accuracy and decreases manual annotation effort.

Reflection

This chapter describes two methods for adapting classification to new behaviors. The first
method is useful in stable, standardized setups: Create a new, frame-accurately annotated
dataset that contains representative videos with respect to the animal’s appearance and
behavior, and train a supervised classifier on it. For many behaviors, this will produce a
classifier that can be used on unseen videos as long as they contain behaviors executed
in the same way as the behaviors in the training set. When classification accuracy is
below the desired accuracy (for instance because the behavior is characterized by on of
the aspects that were mentioned in Chapter 4), the model can be tuned to favor false
positives over false negatives. The researcher can review and interpret the false positives,
which is less effort than viewing the entire dataset.

In case of research datasets in changing setups or with changing execution of the
behavior due to drug treatment, the effort of frame-accurate annotation and training a
supervised classifier will most likely not pay off. In these cases, the second method can be
used. The SmartAnnotator acts as an Al assistant that takes over the annotation from
the researcher by asking labels for specific fragments and by proposing annotations for the
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others. The small study presented in Chapter 5.2 implies that this is possible, although it
was demonstrated here in small datasets and on two behaviors only. Yet, it is a promising
hybrid solution that gives the human control over the interpretation of the behaviors and is
transparent during the process. As such, it is a nice example of explainable and responsible
Al

6.2 General conclusions and future directions

This thesis presented an automated rodent behavior recognition system (ABR) that per-
forms on par with human annotation for many, although not for all behaviors. The raw,
handcrafted ABR features serve as a generic embedding of behavior that can be used as
input for classification of diverse behaviors of both rats and mice. Classification can be
trained either in a fully supervised or in a self-supervised manner, or in an active learning
scenario. With active learning, the human annotator teams up with AI to annotate to-
gether by prioritizing the labeling of more informative samples. To optimize the learning
process this way makes the annotation process more efficient with less annotation work
for the human annotator. At the same time, the precision is improved by giving the most
difficult samples to the human to decide.

Deep networks improve recognition when trained and applied in identical setups, but
improvements do not transfer to other setups or to animals behaving differently, for in-
stance due to treatment. There are three aspects of behavior dynamics that are difficult
to automate for all models and by using artificial data it was shown that adding more
training data is not sufficient to make progress for these categories. This indicates that
we need network architectures that can model the composite nature of animal behavior
to move the field forward. Whether this modeling is best done while learning the rep-
resentation of the data or during classification of the representation is an open research
question.

During this project, in research not described in this thesis, I tried to segment the
data stream based on the hypothesis that as long as the data stream is predictable the
same behavior is conducted. The rationale behind this is that rodents are intentional
agents that exhibit goal-driven behavior. Their consecutive goals can be viewed as states,
that are linked together through state transitions when their goals change. If we can
predict the behavior within a certain behavioral state, it is perhaps possible to infer state
changes from failing predictions. If this is possible we can model the data as a consecutive
set of states and state transitions, and build a dictionary of states, which would yield a
representation of behavior at a higher level than that of frames or frame windows and
a step closer to an ethogram that human annotators use. To infer the states from the
data has been tried before by using autoregressive Hidden Markov Models (AR-HMMs)
(Markowitz et al., 2018). However, predicting the continuous rodent behavior data turned
out to be very difficult to steer, because the complexity of the task is not constant and
the networks were easily overfitted if they are too large or fail to learn if they are too
small. The impossibility to predict continuous video data at the lowest level of frames and
pixels was discussed recently by Yann LeCun', during a discussion whether it is possible
to train a generative model for video analogue to the successfully Large Language Models
(LLMs) trained on text. LeCun argues that the world is incredibly more complicated and
richer in terms of information than text, and therefore it is far more complicated to predict
video than it is to predict text. Text is discrete, whereas video is high-dimensional and
continuous. The proposed solution for this has been to model a representative embedding.
However, he explains, this has not worked out in the last ten years, despite many attempts.

"Lex Fridman Podcast #416, March 7, 2024 - Video Prediction https://wwu.youtube.com/watch?v=
5t1vTLU7s40&t=1066s
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What should be done instead, according to LeCun, is do the prediction in representation
space, which allows the system to learn an abstract representation of the world where what
can be modeled and predicted is preserved and the rest is viewed as noise and eliminated
by the encoder. This lifts the level of abstraction of the representation. I believe that
the same is true for the prediction of multivariate timeseries recorded from a behavioral
state-switching intentional agent such as a rodent. It is not feasible to build a generative
model for the low level timeseries as is, but it must be possible to learn a more abstract
representation that is better suited to classify behaviors from. This requires a new type
of modeling, and it would be interesting to try the newest Joint Embedding Predictive
Architectures for video (V-JEPA) (Bardes et al., 2024) on the rodent datasets.

Another interesting direction to explore in future work is to loosen the focus on specific
behaviors to annotate, but instead see what a completely unsupervised approach can tell
about the behavioral differences between animal groups or individuals. In a preliminary
experiment I trained an embedding on all the ABR features from an experiment with four-
teen animals that were treated with different compounds. After training the embedding,
the embedding of the entire dataset was clustered into 30 prototypes. Next, all timeseries
were segmented based on the clustering, and behavior profiles were created per 3-minute
interval by counting the cluster types and cluster transitions. After a Principal Compo-
nents Analysis (PCA) over all the data, the intervals and the mean interval per animal
were projected on the two main axes of the PCA in Figure 6.1. The distances between the
animals are very similar, which suggests that the same behavioral effects of compounds
can be retrieved from fully unsupervised data analysis as can be found by analysis of the
manually annotated behavior frequencies. More research is needed to confirm these results
in other datasets and to see whether this can be used for subtle behavioral effects as well.

Bea plol f SUBENVISED BERaVIOr BONIES per Blservalion (Big dot} and Der 3 min intervals {small sots) ca biplot of molif behavior profiies per observation (big dot) and per 3 min Mtervals (smal dots)

Figure 6.1: Biplots with the preliminary results of animal similarities based on either
manual annotation Panel (A) and unsupervised annotation Panel (B). The plots suggest
that the same behavioral effects can be found with fully unsupervised data analysis as
with manual behavior annotation analysis.

Furthermore, with the fast growing number of solutions that can recognize rodent be-
haviors automatically, it would be useful to have a representative benchmark to compare
the methods. Ideally, this benchmark should contain recordings from multiple research
labs, multiple experiments, multiple strains and include different types of behaviors, in-
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cluding behaviors that are difficult to classify, such as the compound behavioral categories
mentioned in Chapter 4. However, the difficulty with such a benchmark is the amount of
annotated data that is needed for training and evaluation of the methods, as well as the
amount of work to host and monitor the benchmark.

Finally, future work can be to extend the project to other species and multiple subjects.
Although the generated ABR features depend on video tracking and are specific for rodents
recorded from a camera with a top-view perspective, the behavior recognition strategies
are independent of this and can be applied to other streams of data, such as audio with
ultrasonic vocalizations, or physiological data like heart rate and temperature, or brain
signals from EEG or fMRI. The active learning strategy can perhaps even be combined
with the end-to-end processing to avoid the tracking altogether, if synchronized video is
available and the datasets is sufficiently large to cover the variance.

To conclude, there are many behavioral research applications were automated annota-
tion is eagerly waited for and that can benefit from the work in this thesis. The exciting
progress in artificial intelligence algorithms, hardware and deployment options will cer-
tainly make more automation possible in the near future.

6.3 Ethics: Animal testing, automated behavior recognition
and Al

The work described in this thesis combines three ethically sensitive themes, namely ani-
mal testing, automated behavior recognition and artificial intelligence. All three themes
can contribute to greater science output and thus to increasing prosperity and well-
being. Although major investments are already made in replacing animal testing (https:
//www.animalfreeinnovationtpi.nl/), tests are still indispensable for safety checks on
food and medicines, for example. In scientific research, animals are used to understand
human physiology and to learn how organisms detect and interact with each other and
their environment. Studies of brain function, such as memory and social behavior, still
need animal models (Homberg et al., 2021). Automated behavior annotation can increase
the throughput of such studies and make them more reliable, thus contributing to the
guiding principles for more ethical use of animals in testing: the 3R’s described by Russell
et al. (1959), namely Replacement, Reduction and Refinement. More data per animal
with 24/7 observation can reduce the number of animals needed and automated home-
cage monitoring can contribute to stress reduction (Refinement) by detecting behavioral
changes without subjecting animals to unnecessary handling or exposure to novel environ-
ments (Fuochi et al., 2024). With artificial intelligence, automated behavior recognition
can be improved.

Like all technology, animal testing, automated behavior monitoring and artificial intel-
ligence can be used for malicious purposes that are harmful for the well-being of animals
and humans. Behavior monitoring of people can harm privacy and freedom. The use of Al
can accelerate this even further and make it more easily accessible to people or institutions
(governments, companies) or, if you like, to other Als with bad intentions (see Tegmark
(2018) for different future scenarios of what Als that supersede human intelligence could
mean for society). It is therefore important to regulate its use. Animal testing must be
assessed for necessity, the number of animals required must be minimized, and the tests
must be conducted in such a way that they minimize the amount of discomfort, pain,
and permanent damage and maximize welfare. These conditions are checked by ethics
committees in most countries, and animal testing is not possible without prior approval
of the experiment. The same regulations and law enforcement are necessary for the use of
automated monitoring tools, which must be limited to well-defined purposes that are non-
biased, transparent, with respect for privacy and security, to prevent social manipulation
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and misinformation. The recently introduced EU AI Act? regulates the use of artificial
intelligence in Europe and tries to find the right balance between ethical values and tech-
nological innovation. It is also up to us, Al researchers and Al engineers, to ensure that
we create ethical, usable, and beneficial applications for society. I strongly believe that
building behavioral research tools that combine the processing capacity and scalability of
AT with human expertise and guidance contributes to this.

’https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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English summary

Research into animal behavior has since long been of great importance to our understand-
ing of biological and psychological phenomena. Given their genetic similarities to humans,
rats and mice serve as models for human disease, allowing researchers to determine the
effectiveness and safety of treatments for psychiatric and neurological disorders. The be-
havior of transgenic rodents provides valuable insights into the genetic underpinnings of
brain disorders and the function of specific proteins and genes. Objective recording of
behavior is crucial for reliable and reproducible research. Long-term observation is impor-
tant to collect as much data as possible per individual, thus reducing the total number
of laboratory animals required for the experiments. It is also important to monitor the
welfare of laboratory animals. However, manually annotation of animal behavior by hu-
man observers is time-consuming (and therefore expensive), difficult and error-prone, and
therefore unsuitable as input for systems that must be able to work continuously, without
intervention.

This thesis describes how rodent behavior can be automatically annotated and inves-
tigates how this can be made more robust, generic and flexible. The recognized behavior
is limited to the behavior of individually housed rodents (rat or mouse) that are observed
with a camera placed above the cage, with constant background and infrared lighting.
Chapter 2 describes the traditional approach for activity recognition, namely classifying
generic, hand-defined features computed from videos. It presents the Automated Behavior
Recognition (ABR) system for the recognition of specific rat behaviors most commonly
annotated by hand: ‘drink’; ‘eat’, ‘groom’, ‘jump’, ‘rear unsupported’, ‘rear wall’, ‘rest’,
‘sniff”, ‘twitch’ and ‘walk’. The system is validated on an unseen video by comparison with
manual behavior annotation by an expert. In addition, the effects of two medications on
the behavioral categories are measured and compared for both annotation methods. The
measured effects are similar for both treatments. Chapter 3 investigates whether more
generic classification of rodent behavior is possible by using deep learning to infer rat
behavior directly from the video frames in an end-to-end manner, without prior track-
ing and without generation of predefined features. Performance is evaluated within and
across experimental setups. It shows that using a 3D-convolutional network in combina-
tion with data-augmentation strategies improves recognition within the setup compared
to the traditional ABR system. However, it also shows that improvements do not occur
for videos that were recorded in different experimental setups. Finally, possible causes
and treatments are discussed.

Chapter 4 explores the main reasons why rodent behavior recognition generally does
not reach 100% accuracy and performs poorly for certain behaviors. Three aspects are
distinguished in the dynamics of behavior that are difficult to automate. These aspects are
isolated in an artificial dataset and the results are reproduced on the artificial data, using
state-of-the-art behavioral recognition models. These newer models use self-supervised
learning to first generate a lower-dimensional representation of the data before classifica-
tion.

The final research chapter, Chapter 5, elaborates on the practical solutions and
tools that can help behavioral researchers annotate new behaviors for which no previously
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trained classifier is available. Certain research experiments require flexible classification,
for example in the case of new setups or new behavioral effects. The first part of the chap-
ter, Chapter 5a proves the robustness and generic applicability of the ABR features by
using them to classify mouse scratching behavior in two different datasets, from high-speed
video recordings. In the second part, Chapter 5b, the possibility of combining manual
annotation with AT assistance into a hybrid active learning solution is explored, such that
the annotation process is on the one hand more efficient than fully manual annotation
and on the other hand, that the end result is more accurate than fully automated anno-
tation. The advantage of active learning is presented on the behaviors ’stretched attend’
and 'unsupported rearing’.

The dissertation concludes with a discussion in Chapter 6, which highlights the con-
tributions per research chapter and explains the shortcomings and future solutions. Fur-
thermore, it provides a glimpse into new ways of behavioral analysis that take advantage of
completely unsupervised detection of behavioral effects that allow behavioral researchers
to interactively investigate their data and the behavioral effects between experimental
groups. The discussion chapter ends with a reflection on the ethical implications of re-
search into automated rodent behavior recognition.

In conclusion, there are many behavioral research applications where robust and flex-
ible automated annotation of behavior is eagerly awaited. The work in this thesis meets
this need with an automatic system and provides directions for further development of be-
havioral recognition. The exciting advances in artificial intelligence algorithms, hardware
and deployment options will certainly enable more and more flexible automation in the
near future.
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Nederlandse samenvatting

Onderzoek naar diergedrag is sinds lange tijd van groot belang voor ons begrip van bi-
ologische en psychologische verschijnselen. Gezien hun genetische overeenkomsten met
mensen dienen ratten en muizen als modellen voor ziekten bij de mens, waardoor onder-
zoekers de effectiviteit en veiligheid van behandelingen van psychiatrische en neurologische
aandoeningen kunnen bepalen. Het gedrag van transgene knaagdieren biedt waardevolle
inzichten in de genetische onderbouwing van hersenaandoeningen en de functie van spec-
ifieke eiwitten en genen. Voor betrouwbaar en reproduceerbaar onderzoek is het objectief
vastleggen van het gedrag cruciaal. Lange-termijnobservatie is belangrijk om per indi-
vidu zoveel mogelijk data te verzamelen, waardoor het totaal aantal proefdieren dat nodig
is voor de experimenten wordt verminderd. Het is eveneens belangrijk om het welzijn
van proefdieren te monitoren. Echter, het handmatig vastleggen van het diergedrag door
menselijke waarnemers is tijdrovend (en dus kostbaar), moeizaam en foutgevoelig, en
daarom ongeschikt als invoer voor systemen die volcontinu en zonder interventie moeten
kunnen werken.

Dit proefschrift beschrijft hoe het gedrag van knaagdieren automatisch kan worden
geannoteerd en onderzoekt hoe dit robuuster, generieker en flexibeler gemaakt kan worden.
Het herkende gedrag beperkt zich tot het gedrag van individueel-gehuisveste knaagdieren
(rat of muis) die worden geobserveerd met een camera die boven de kooi is geplaatst,
en waarvan de achtergrond- en infraroodverlichting constant is. Hoofdstuk 2 beschri-
jft de traditionele aanpak in patroonherkenning, namelijk door classificatie van gener-
ieke, handgedefinieerde features (kenmerken) die worden berekend uit video’s. Het pre-
senteert het Automated Behavior Recognition (ABR)-systeem voor de herkenning van
specifieke rattengedragingen die het meest met de hand worden geannoteerd: ’drinken’,
‘eten’, ’lopen’, 'niet-ondersteund oprichten’, ’oprichten tegen de muur’, ’rusten’, ’snuffe-
len’, ’springen’, 'uitschudden’ en 'wassen’. Het systeem wordt gevalideerd op een ongeziene
video door vergelijking met handmatige gedragsscores door een expert. Daarnaast wor-
den voor beide annotatiemethodes de effecten van twee medicamenten op de gedragscat-
egorieén gemeten en vergeleken. Voor beide behandelingen komen de gemeten effecten
overeen. Hoofdstuk 3 onderzoekt of generiekere classificatie van knaagdiergedrag mo-
gelijk is door met behulp van deep learning het gedrag van ratten rechtstreeks uit de vide-
oframes af te leiden op een end-to-end manier, zonder tracking vooraf en zonder vooraf
gedefinieerde features te genereren. De prestaties worden geévalueerd binnen en tussen ex-
perimentele opstellingen. Het laat zien dat het gebruik van een 3D-convolutioneel netwerk
in combinatie met data-augmentatiestrategieén de herkenning binnen de setup verbetert
ten opzichte van het traditionele ABR-systeem. Het laat echter ook zien dat verbeteringen
niet optreden voor video’s in verschillende experimentele opstellingen. Tenslotte worden
mogelijke oorzaken en behandelingen besproken.

Hoofdstuk 4 gaat dieper in op de belangrijkste redenen waarom de herkenning van
knaagdiergedrag in het algemeen geen 100% nauwkeurigheid bereikt en slecht presteert
voor bepaalde gedragingen. Er worden drie aspecten onderscheiden in de dynamiek van
gedrag die moeilijk te automatiseren zijn. Deze aspecten worden geisoleerd in een kunst-
matige dataset en met de kunstmatige data worden de resultaten gereproduceerd, met de
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modernste gedragsherkenningsmodellen. Deze nieuwere modellen maken gebruik van self-
supervised learning om eerst een lager-dimensionale representatie van de data te genereren
voordat ze worden geclassificeerd.

Het laatste onderzoekshoofdstuk, Hoofdstuk 5, gaat dieper in op de praktische
oplossingen en tools die gedragsonderzoekers kunnen helpen om nieuw gedrag te annoteren
waarvoor voorheen geen getrainde classifier beschikbaar is. Bij bepaalde onderzoeksex-
perimenten is flexibelere classificatie nodig, bijvoorbeeld in geval van nieuwe opstellingen
of nieuwe gedragseffecten. Het eerste deel van het hoofdstuk, Hoofdstuk 5a bewijst de
robuustheid en generieke toepasbaarheid van de ABR-features door ze te gebruiken om
’scratch’-gedrag van muizen te classificeren in twee verschillende datasets, uit high-speed
video-opnames. In het tweede deel, Hoofdstuk 5b, wordt de mogelijkheid onderzocht
om handmatige annotatie te combineren met Al-assistentie tot een hybride active learning
oplossing, zodanig dat het annotatieproces enerzijds efficiénter is dan volledig handmatige
annotatie en anderzijds dat het eindresultaat nauwkeuriger is dan volledig geautoma-
tiseerde annotatie. Het voordeel van active learning wordt gepresenteerd aan de hand van
de gedragingen ‘gestrekte attentie’ en ‘niet-ondersteund oprichten’.

Het proefschrift wordt afgesloten met een discussiehoofdstuk Hoofdstuk 6, waarin
de contributies per onderzoekshoofdstuk worden belicht en waarin de tekortkomingen
en toekomstige oplossingen worden uitgelegd. Het geeft bovendien een kijk op nieuwe
manieren van gedragsanalyse die profiteren van volledig unsupervised detectie van gedragsef-
fecten die gedragsonderzoekers in staat stelt hun gegevens en de gedragseffecten tussen
experimentgroepen interactief te onderzoeken. Het discussiehoofdstuk eindigt met een re-
flectie op de ethische implicaties van onderzoek naar de herkenning van knaagdiergedrag.

Concluderend kunnen we stellen dat er veel onderzoekstoepassingen zijn waarbij met
spanning wordt uitgekeken naar robuuste en flexibele geautomatiseerde annotatie van
gedrag. Het werk in dit proefschrift komt tegemoet aan deze behoefte met een automatisch
systeem en geeft aanwijzingen voor de verdere ontwikkeling van gedragsherkenning. De
spannende ontwikkelingen op het gebied van artificial intelligence-algoritmen, hardware en
uitrolmogelijkheden zullen in de nabije toekomst zeker meer en flexibelere automatisering
mogelijk maken.
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Data Management

Research Data Management was performed according to the FAIR principles, ensuring
that the data is Findable, Accessible, Interoperable, and Reusable. However, the data is
not readily available because they are proprietary to either Noldus Information Technology
or Boehringer Ingelheim. The data and documentation necessary to reproduce the results
are available upon request and after permission from Noldus Information Technology, with
restriction to academic use. The artificial data that was used in Chapter 4 is publicly avail-
able at https://github.com/ElsbethvanDam/artificial_behavior_data. All data re-
main available for at least ten years after termination of the studies. Requests to access
the proprietary datasets should be directed to info@noldus.com.

All research data has been structured in a standardized way that is described in ac-
companying text files. The documentation includes specifications on:

e experimental setup

e data variables

formatting of the raw data

e providing of analysis scripts or pipelines

specification of version numbers for the software used

Ethical Approval

The rodent datasets that are used in this thesis are listed in Table 6.1. This PhD research
followed the applicable laws and ethical guidelines. The ABR videos where recorded in
2009 at Janssen Pharmaceutical Research & Development in Beerse, Belgium according
to the local regulations. The ABR validation experiments were performed in 2011 by
Delta Phenomics in Utrecht, Netherlands, in adherence to the legal requirements of Dutch
legislation on laboratory animals (Wod/Dutch ‘Experiments on Animals Act’) and were
approved by an Animal Ethics Committee (‘Lely-DEC’). The data for the unsupervised
approach mentioned in the future outlook of the general discussion was derived based
on a crowd sourcing call via Boehringer Ingelheim’s open innovation portal, opnMe.com.

Table 6.1: Datasets used

Chapter  Dataset Recorded at Owned by
2-5 RBR dataset Janssen Pharmaceutical R&D  Noldus IT
2 Validation dataset Delta Phenomics Noldus IT
5.1 Scratching dataset Two customers of Noldus IT Noldus IT
5.2 Stretched Attend dataset  Utrecht University Noldus IT

6 OpnME dataset Boehringer Ingelheim Boehringer Ingelheim
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For these videos, the maintenance and handling of animals were carried out in compli-
ance with (i) the ethical guidelines established by German National Animal Welfare Laws
within the framework of the European Union Directive 2010/63/EU and (ii) the Guide
for the Care and Use of Laboratory Animals produced by the National Research Council
and the Association for Assessment and Accreditation of Laboratory Animal Care Interna-
tional (AAALAC). The study protocol was approved by the responsible German authority
(Regierungsprasidium Tiibingen).
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the Donders Graduate School in 2009. The mission of the Donders Graduate School is
to guide our graduates to become skilled academics who are equipped for a wide range of
professions. To achieve this, we do our utmost to ensure that our PhD candidates receive
support and supervision of the highest quality.

Since 2009, the Donders Graduate School has grown into a vibrant community of
highly talented national and international PhD candidates, with over 500 PhD candidates
enrolled. Their backgrounds cover a wide range of disciplines, from physics to psychology,
medicine to psycholinguistics, and biology to artificial intelligence. Similarly, their inter-
disciplinary research covers genetic, molecular, and cellular processes at one end and com-
putational, system-level neuroscience with cognitive and behavioural analysis at the other
end. We ask all PhD candidates within the Donders Graduate School to publish their PhD
thesis in de Donders Thesis Series. This series currently includes over 700 PhD theses from
our PhD graduates and thereby provides a comprehensive overview of the diverse types of
research performed at the Donders Institute. A complete overview of the Donders Thesis
Series can be found on our website: https://www.ru.nl/donders/donders-series

The Donders Graduate School tracks the careers of our PhD graduates carefully. In
general, the PhD graduates end up at high-quality positions in different sectors, for a
complete overview see https://www.ru.nl/donders/destination-our-former-phd. A
large proportion of our PhD alumni continue in academia (;50%). Most of them first
work as a postdoc before growing into more senior research positions. They work at
top institutes worldwide, such as University of Oxford, University of Cambridge, Stan-
ford University, Princeton University, UCL London, MPI Leipzig, Karolinska Institute,
UC Berkeley, EPFL Lausanne, and many others. In addition, a large group of PhD
graduates continue in clinical positions, sometimes combining it with academic research.
Clinical positions can be divided into medical doctors, for instance, in genetics, geriatrics,
psychiatry, or neurology, and in psychologists, for instance as healthcare psychologist,
clinical neuropsychologist, or clinical psychologist. Furthermore, there are PhD gradu-
ates who continue to work as researchers outside academia, for instance at non-profit or
government organizations, or in pharmaceutical companies. There are also PhD grad-
uates who work in education, such as teachers in high school, or as lecturers in higher
education. Others continue in a wide range of positions, such as policy advisors, project
managers, consultants, data scientists, web- or software developers, business owners, reg-
ulatory affairs specialists, engineers, managers, or I'T architects. As such, the career paths
of Donders PhD graduates span a broad range of sectors and professions, but the common
factor is that they almost all have become successful professionals. For more informa-
tion on the Donders Graduate School, as well as past and upcoming defences please visit:
http://www.ru.nl/donders/graduate-school/phd/
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