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Background and rationale

Psychiatric disorders are a major cause of global disease burden, affecting 
hundreds of millions of individuals annually (GBD, 2022). Epidemiological research 
ranks these conditions among the leading contributors to disability-adjusted life 
years (DALYs), illustrating the magnitude of their public health impact (GBD, 2022). 
Beyond their contribution to functional impairment, psychiatric disorders impose 
considerable societal and economic costs, including direct healthcare expenditures 
and indirect losses linked to reduced productivity, unemployment, and caregiving 
demands (GBD, 2022).

Psychiatric disorders encompass a wide range of conditions with heterogeneous 
symptom profiles and variable clinical courses. While they are classified as distinct 
diagnostic entities, substantial heterogeneity and symptom overlap complicate both 
diagnosis and treatment (Zald & Lahey, 2017), and comorbidity is frequent. Their 
aaetiology is multifactorial, arising from the interplay between genetic predisposition, 
biological processes, and environmental influences (Panariello et al., 2022).

Psychiatric disorders do not occur in isolation. Growing evidence indicates that 
individuals with psychiatric disorders experience worse overall health outcomes, 
which cannot be explained by psychiatric symptoms alone. This adds an extra layer 
of difficulty to understanding these  conditions as well as their clinical management.

Convergence of symptomatology and transdiagnostic dimensions in 
neuropsychiatric disorders
Despite differences in diagnostic criteria and clinical trajectories, psychiatric 
disorders share overlapping symptom dimensions, including mood instability, 
cognitive impairments, compulsivity, and alterations in social-behavioural 
regulation (see also Table 1; Guineau et al. (2023); Zald and Lahey (2017)). These 
transdiagnostic dimensions suggest that psychiatric conditions may not be 
entirely distinct entities but rather exist along a spectrum of shared cognitive and 
affective dysfunctions.

Mood instability and emotional dysregulation are observed across multiple 
psychiatric conditions, including major depressive disorder (MDD), bipolar disorder 
(BD), borderline personality disorder (BPD), and attention-deficit/hyperactivity 
disorder (ADHD). MDD is primarily characterised by persistent low mood, 
anhedonia, fatigue, and disturbances in sleep and appetite, but it is also frequently 
associated with cognitive dysfunction, including impairments in attention, 
executive function, and decision-making, which contribute to long-term disability 
(Marx et al., 2023). BD also involves mood instability, though it is episodic in nature, 
alternating between depressive and manic or hypomanic states. Manic episodes 
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include elevated mood, hyperactivity, impulsivity, and, in some cases, psychotic 
symptoms such as delusions of grandeur, while depressive episodes closely 
resemble those of MDD (Nierenberg et al., 2023). Outside acute mood episodes, 
BD is associated with persistent cognitive impairments, particularly in executive 
function, which persist across illness phases (Dickinson et al., 2017). Beyond mood 
disorders, emotional dysregulation in BPD and ADHD leads to heightened reactivity 
to stress, impulsivity, and difficulties in modulating mood, further demonstrating 
that affective instability is not limited to mood disorders (Richard-Lepouriel et al., 
2016). However, while BD is characterised by episodic mood shifts, BPD and ADHD 
involve more chronic patterns of affective instability (Moukhtarian et al., 2018). This 
distinction highlights the need to consider mood dysregulation not only within the 
framework of mood disorders but also across conditions traditionally classified as 
neurodevelopmental or personality disorders.

Beyond mood dysregulation, cognitive dysfunction represents a core 
transdiagnostic feature spanning multiple disorders, including schizophrenia, 
neurodevelopmental conditions, and obsessive-compulsive spectrum disorders. 
Cognitive deficits are central to schizophrenia, where impairments in executive 
function, working memory, and attentional control are major contributors to 
functional impairment (Kahn et al., 2015). While delusions and hallucinations 
represent hallmark positive symptoms, schizophrenia also involves negative 
symptoms such as anhedonia, social withdrawal, and emotional blunting, which 
significantly overlap with features observed in depressive and anxiety disorders.

Notably, cognitive inflexibility is also a shared trait across multiple conditions, 
contributing to difficulties in set-shifting, problem-solving, and adapting to changing 
environmental demands. This is particularly evident in neurodevelopmental 
disorders such as ADHD and autism spectrum disorder (ASD), where deficits in 
cognitive flexibility and executive functioning are well documented (Lord et al., 
2020; Thye et al., 2018). Individuals with ADHD frequently struggle with cognitive 
rigidity, particularly in adapting to new rules or shifting between tasks, reflecting 
impairments in set-shifting and response inhibition (Lord et al., 2020; Pearson et al., 
2013). Similarly, ASD is characterised by atypical social communication, repetitive 
behaviours, and sensory processing abnormalities, alongside rigid cognitive patterns 
that further impair adaptive functioning (Lord et al., 2020; Thye et al., 2018). Given 
that schizophrenia shares developmental vulnerabilities with ADHD and ASD, it is 
increasingly conceptualised within a neurodevelopmental framework, where early 
disruptions in brain maturation, synaptic pruning, and neuroinflammatory processes 
are thought to contribute to disease onset in late adolescence or early adulthood 
(Owen & O'Donovan, 2017).
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Beyond cognitive rigidity, compulsivity represents another transdiagnostic 

dimension with overlapping but distinct characteristics. While cognitive rigidity 
refers to difficulties in adapting to new information and shifting cognitive strategies, 
compulsivity is characterised by repetitive behaviours driven by an urge to reduce 
distress or avoid negative outcomes (Luigjes et al., 2019). Obsessive-compulsive 
disorder (OCD) exemplifies this pattern, with individuals experiencing intrusive, 
distressing thoughts (obsessions) and ritualistic behaviours (compulsions) aimed 
at reducing anxiety (Stein et al., 2019). However, compulsivity extends beyond 
OCD and is observed in schizophrenia, eating disorders, and other psychiatric 
conditions. In schizophrenia, compulsive-like behaviours often stem from cognitive 
inflexibility and impaired set-shifting rather than an anxiety-driven threat response, 
distinguishing them from the compulsions seen in OCD (McTeague et al., 2017; 
Mushtaq et al., 2011; Norman et al., 2019). Similarly, anorexia nervosa (AN), a 
disorder characterised by restrictive eating patterns and intense fear of weight gain, 
presents with disturbances in reward processing, interoception, and compulsivity, 
further illustrating cognitive-affective dysregulation and compulsivity as a shared 
feature across psychiatric illness (Zipfel et al., 2015).

Although psychiatric disorders primarily affect mood, cognition, and behaviour, 
neurodegenerative conditions such as Alzheimer’s disease (AD) also present with 
significant psychiatric symptoms. AD is primarily characterised by progressive 
memory loss and executive dysfunction, yet depressive symptoms, anxiety, apathy, 
and agitation are commonly observed throughout its course (Scheltens et al., 
2021). Additionally, psychotic symptoms, such as paranoic delusions, can emerge in 
later stages of AD, resembling those seen in primary psychotic disorders (Ismail et 
al., 2022). This overlap suggests that cognitive and affective dysfunctions span both 
psychiatric and neurodegenerative conditions, further supporting the need for a 
dimensional, rather than purely categorical, understanding of mental illness.

Given these substantial areas of symptom convergence, psychiatric 
comorbidity—the co-occurrence of two or more mental disorders within the same 
individual—is frequently observed in clinical practice (Nordgaard et al., 2023). For 
instance, BD and ADHD frequently co-occur, with studies suggesting a strong link 
between these conditions (Schiweck et al., 2021). This overlap is particularly evident 
in impulsivity, emotional dysregulation, and executive dysfunction, which persist 
across illness phases, although impulsivity is most pronounced during manic or 
hypomanic episodes in BD and represents a core trait of ADHD (Faraone et al., 2015; 
Vieta et al., 2018). Similarly, OCD and Tourette's syndrome (TS) show high rates 
of comorbidity, with TS often involving repetitive behaviours and intrusive urges 
that may resemble compulsions but are typically driven by premonitory sensory 
experiences rather than obsessive thoughts (Shitova et al., 2023). Other notable 
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examples of comorbidity include MDD and anxiety disorders, which frequently 
co-occur due to overlapping stress-response dysregulation and heightened 
sensitivity to negative affect (Davies et al., 2023). AN is frequently comorbid with 
OCD, with shared characteristics including cognitive rigidity, perfectionism, and 
compulsive behaviours related to food intake and body image (Sternheim et al., 
2022). In psychotic disorders, schizophrenia and substance use disorders (SUDs) 
often co-occur, with some estimates suggesting that over 25% of individuals with 
schizophrenia experience a comorbid SUD (Nesvag et al., 2015). This association 
is particularly problematic, as substance use can worsen psychotic symptoms, 
increase relapse risk, and interfere with treatment adherence (Miller et al., 2009).

Despite its widespread recognition, psychiatric comorbidity remains a concept 
in need of theoretical refinement (Nordgaard et al., 2023). Nosological frameworks 
such as the Diagnostic and Statistical Manual of Mental disorders (DSM) and 
International Classification of Diseases (ICD) classify neuropsychiatric disorders 
as distinct categorical entities, yet substantial evidence suggests that many co-
occurring conditions may not be truly independent disease processes. Instead, they 
may reflect shared pathophysiological mechanisms or transdiagnostic dimensions 
of psychopathology, spanning multiple diagnostic categories (Lai et al., 2019; 
Pearlson, 2015; see Table 1)..

Beyond the theoretical challenges, psychiatric comorbidity has significant 
clinical implications. Individuals with multiple psychiatric diagnoses exhibit greater 
symptom severity, higher rates of functional impairment, and poorer treatment 
outcomes (Archer et al., 2019; Barlattani et al., 2023; Ziobrowski et al., 2021). As 
for the latter, treatment of comorbid conditions often requires more complex 
strategies, as different disorders may demand competing therapeutic approaches. 
For instance, selective serotonin reuptake inhibitors (SSRIs) are first-line treatments 
for depression and anxiety but can induce manic episodes in individuals with BD, 
necessitating careful medication management (Ott, 2018). Similarly, cognitive-
behavioural therapy interventions targeting obsessive-compulsive symptoms 
in ASD or AN may need to be adapted to account for the distinct cognitive and 
emotional processing styles observed in individuals with these conditions (Flygare 
et al., 2020).

Among the treatment challenges, therapeutic response is an additional topic 
complicated by comorbidity and shared aaetiology. Despite the availability of 
pharmacological and psychological treatments, response rates in psychiatric 
disorders generally remain suboptimal (Howes et al., 2022; Solmi et al., 2023). 
Unlike other areas of medicine, where diagnoses are often grounded in clear 
pathophysiological mechanisms, psychiatric disorders continue to be classified 
based on symptomatology rather than underlying aaetiology (Jablensky, 2016). This 
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contributes to variability in treatment response. Indeed, a significant proportion 
of individuals with mood disorders, including MDD and BD, fail to achieve 
remission despite receiving guideline-concordant treatment, a phenomenon 
termed treatment resistance (Solmi et al., 2023). In MDD, treatment-resistant 
depression (TRD), defined as the failure to respond to at least two adequate trials of 
antidepressants, affects approximately 30% of patients (McIntyre et al., 2023). TRD 
is associated with greater symptom severity, higher rates of comorbid anxiety and 
substance use disorders, and poorer overall functioning (Brenner et al., 2020). Similar 
challenges are observed across other psychiatric conditions. For instance, up to  
20–50% of individuals with schizophrenia are classified as treatment-resistant, often 
requiring clozapine, a medication associated with significant metabolic side effects 
(Nucifora et al., 2019). In ADHD, treatment adherence and efficacy are frequently 
limited by side effects and comorbid conditions (Kamimura-Nishimura et al., 2019), 
while ASD interventions often fail to address core symptoms (McCracken et al., 2021), 
reflecting the substantial unmet therapeutic needs in these populations. Shared 
disorder dimensions and comorbidity are part of the problem, as they can make 
it difficult to determine whether a lack of response to treatment reflects true 
pharmacological resistance or diagnostic misclassification. For instance, individuals 
with BD who present with comorbid anxiety or obsessive-compulsive symptoms 
may not only fail to respond to standard antidepressant treatments but may also 
experience worsening mood instability (Amerio et al., 2019; Mucci et al., 2018). 
Similarly, individuals with schizophrenia who exhibit persistent negative symptoms 
and cognitive dysfunction despite treatment may be misdiagnosed with comorbid 
depression, leading to inappropriate pharmacological interventions.

The challenges listed above highlight the urgent need for research aiming 
to improve our understanding of the mechanisms underlying psychiatric 
symptomatology, especially of shared pathophysiological processes. Identifying 
these mechanisms is important not only for refining diagnostic classification but 
also for improving treatment response predictions and developing biologically 
informed therapeutic strategies (Quinlan et al., 2020). One can envisage future 
hierarchical diagnostic models incorporating trait vs. state distinctions, longitudinal 
symptom trajectories, and neurobiological correlates, which may enhance clinical 
decision-making, but these approaches critically depend on first clarifying the 
biological mechanisms linking different psychiatric conditions (Nordgaard et 
al., 2023). Reliable biomarkers and mechanistically driven classifications based 
on biologically meaningful entities across (and within) disorders with distinct 
therapeutic responses will be needed for the development of precision medicine 
approaches. Incorporating mechanistic insights from molecular ‘omics’ and 
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neurobiology will be essential for improving treatment personalisation and 
clinical outcomes.

Comorbidity between neuropsychiatric disorders and insulin 
resistance-related conditions 
While comorbidity among psychiatric disorders is well established, psychiatric 
disorders also frequently co-occur with physical health conditions, leading 
to psychiatric–somatic multimorbidities. Among these, the co-occurrence of 
psychiatric disorders with metabolic and cardiovascular conditions is particularly 
frequent (Nielsen et al., 2021; Rajan & Menon, 2017). The psychiatric-somatic 
association extends beyond the impact of lifestyle factors or medication effects, as 
research suggests that psychiatric and metabolic conditions might share biological 
mechanisms that influence their co-occurrence and clinical outcomes (Garrido-
Torres et al., 2021).

Individuals with severe mental illness, including schizophrenia, BD, and MDD, 
face a significantly reduced life expectancy, with estimates suggesting a lifespan 
reduction of approximately 15 years compared to the general population (Walker 
et al., 2015). A meta-analysis of mortality in psychiatric disorders found a pooled 
relative risk of 2.22 for all-cause mortality, indicating the substantial public health 
burden posed by these conditions (Walker et al., 2015). While suicide is a major 
contributor to premature mortality, the majority of excess deaths in psychiatric 
populations result from natural causes, including cardiovascular disease (CVD), 
type 2 diabetes mellitus (T2DM), and also chronic respiratory conditions (Walker et 
al., 2015). Importantly, psychiatric disorders are associated with a higher prevalence 
of adverse health behaviours, such as physical inactivity, poor diet, smoking, and 
substance use, which contribute to elevated cardiometabolic risk (Walker et al., 2015). 
In addition to lifestyle-related risks, structural barriers in healthcare access 
exacerbate disparities in medical outcomes. People with psychiatric disorders 
often receive suboptimal medical care, with lower rates of preventive screenings, 
delayed diagnoses, and undertreatment of medical conditions (Scott & Happell, 
2011). Moreover, diagnostic overshadowing — where physical symptoms are 
misattributed to mental illness — further complicates appropriate medical 
management (Hallyburton, 2022). This contributes to disparities in mortality 
rates that persist despite advancements in medical treatments. While effective 
interventions targeting psychiatric disorders exist, their impact on longevity 
remains limited unless medical comorbidities are simultaneously addressed 
(Walker et al., 2015).

Large-scale cohort studies have demonstrated that individuals diagnosed with 
MDD, BD, schizophrenia, ADHD, and other psychiatric disorders exhibit higher rates 
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of metabolic conditions, especially obesity, T2DM, and metabolic syndrome (MetS), 
than the general population (Penninx & Lange, 2018; Vancampfort et al., 2015; 
Wimberley et al., 2022). Likewise, metabolic conditions have been associated with 
an increased risk for developing psychiatric disorders, suggesting a bidirectional 
relationship potentially driven by overlapping physiological and behavioural factors 
(Wimberley et al., 2022). Adverse health behaviours and other environmental 
factors have been implicated in the psychiatric-metabolic comorbidity, but also 
intrinsic metabolic dysfunctions have been identified as contributing factors 
(Mazereel et al., 2020). Notably, metabolic dysregulation often precedes the onset of 
psychiatric illness, challenging the notion that this dysregulation is a consequence 
of psychotropic medication exposure (Mazereel et al., 2020). Longitudinal studies in 
drug-naïve individuals with psychiatric disorders have demonstrated that elevated 
fasting glucose, altered lipid profiles, and insulin resistance (IR) — a condition in 
which peripheral tissues become less responsive to insulin, leading to impaired 
glucose regulation — can be observed before the onset of psychiatric symptoms or 
the initiation of psychotropic treatment (Garrido-Torres et al., 2021). This evidence 
is consistent with intrinsic biological vulnerabilities contributing to the observed 
metabolic dysfunction.

While metabolic abnormalities can present prior to psychiatric illness onset, 
psychotropic medications — particularly second-generation antipsychotics and 
certain antidepressants, with high affinity for histamine and serotonin 2C receptors 
— exacerbate metabolic risk by inducing weight gain, IR, and dyslipidaemia 
(Pillinger et al., 2020; Virk et al., 2004). This pharmacologically induced metabolic 
burden further compounds the risk for cardiometabolic disease, especially in 
individuals with pre-existing vulnerabilities. These findings emphasise the need for 
integrated treatment approaches that take into account both psychiatric symptom 
management and metabolic health, rather than treating them as separate entities.

That metabolic dysfunction can present before psychiatric illness onset likely 
has developmental origins. Indeed, maternal IR-related conditions, including T2DM, 
gestational diabetes mellitus, and obesity, are associated with an elevated risk for 
psychiatric disorders in offspring (Kong, Chen, et al., 2020; Kong, Nilsson, et al., 2020). 
Large-scale cohort studies have demonstrated that prenatal exposure to maternal 
metabolic dysregulation is linked to a heightened risk for ASD, ADHD, mood disorders, 
and conduct disorders in children (Kong, Nilsson, et al., 2020). Additionally, maternal 
pre-pregnancy obesity has been implicated in a two- to three-fold increased risk 
for schizophrenia in offspring (Kong, Chen, et al., 2020). The association between 
maternal obesity and offspring eating disorders has also been documented, with 
prospective cohort studies showing a positive correlation between early pregnancy 
BMI and eating disorder risk in offspring (Kong, Chen, et al., 2020). These findings 
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highlight the potential for intergenerational transmission of metabolic and psychiatric 
vulnerability, reinforcing the need for early identification of at-risk individuals.

Figure 1. Insulin signalling in the brain: roles in neuronal and glial function.

Insulin crosses the blood-brain barrier and binds to insulin receptors on neurons, astrocytes, 
and oligodendrocytes, influencing multiple neurobiological processes. In the central nervous 
system, insulin plays a key role in synaptic plasticity, neurotransmission, apoptosis inhibition, 
and neuroinflammation regulation. Through its interactions with neurotransmitter systems such 
as serotonin and dopamine, insulin modulates neuronal survival, function, and communication, 
highlighting its relevance in both cognitive processes and neuropsychiatric disorders.

Insulin signalling in the brain
The co-occurrence of psychiatric disorders and metabolic dysfunction suggests a 
need to examine shared biological mechanisms, and previous literature points to a 
potential involvement of insulin signalling (Milstein & Ferris, 2021). Insulin plays a 
dual role in peripheral metabolism and central nervous system (CNS) function. Insulin 
crosses the blood-brain barrier, and it is also produced locally in the brain, where it 
binds to insulin receptors expressed on neurons and glial cells (Csajbok & Tamas, 2016). 
Insulin signalling within the CNS regulates synaptic plasticity, neurotransmission, 
neuroinflammation, and neuronal survival (Fanelli & Serretti, 2022) (see Figure 1).

Disruptions in brain insulin signalling can lead to dopaminergic dysfunction, 
particularly affecting the mesolimbic reward circuit, which modulates hedonic 
responses (Gruber et al., 2023). Such alterations may contribute to anhedonia, 
characterised by a diminished ability to experience pleasure and reduced 
motivation, which is a core symptom of depression that is often resistant to available 
pharmacotherapies (Gruber et al., 2023; Martone et al., 2024). Insulin receptors 
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are highly expressed in the mesolimbic dopamine system, including the ventral 
tegmental area (VTA), nucleus accumbens (NAc), and striatum, which regulate 
reward processing and motivation (Gruber et al., 2023). Under normal physiological 
conditions, insulin enhances dopamine clearance by increasing dopamine transporter 
(DAT) expression, while simultaneously reducing glutamatergic excitatory input, 
ultimately regulating extracellular dopamine levels (Gold, 2015; Gruber et al., 
2023). However, IR impairs these mechanisms. IR reduces DAT expression, leading 
to excess extracellular dopamine, particularly in the NAc and striatum. Although 
transient increases in dopamine might initially enhance reward sensitivity, chronic 
dysregulation disrupts synaptic plasticity, blunting hedonic response (Carter & 
Swardfager, 2016). Neuroimaging studies in individuals with IR consistently show 
diminished responsivity of reward-related brain regions, supporting the association 
between metabolic dysfunction and anhedonia (Carter & Swardfager, 2016; Gruber et 
al., 2023). The phosphoinositide 3-kinase (PI3K)/Akt (protein kinase B) pathway, which 
is a component of insulin signalling, regulates dopamine clearance by modulating 
DAT expression and function. Experimental studies demonstrate that acute insulin 
application in the VTA enhances DAT activity through PI3K and mammalian target 
of rapamycin (mTOR) signalling pathways, reducing somatodendritic dopamine 
levels (Fanelli et al., 2025; Gruber et al., 2023). However, chronic hyperglycaemia 
and prolonged IR impair these regulatory mechanisms, leading to glutamatergic 
dysregulation and neurotoxicity in the medial prefrontal cortex (mPFC), a region 
implicated in mood regulation and cognitive control (Fanelli et al., 2025). Insulin 
signalling also influences corticostriatal circuits, which regulate reward anticipation, 
effort-based decision-making, and goal-directed behaviour. Disruptions in these 
pathways are linked to reduced motivation, a defining feature of motivational 
anhedonia (Gold, 2015). Preclinical models of diet-induced IR demonstrate deficits 
in effort-based reward tasks, mirroring the behavioural phenotypes observed in 
individuals with MDD (Gruber et al., 2023).

In addition to insulin, insulin-like growth factor-1 (IGF-1) plays a role in neuronal 
function and mood regulation (Fanelli et al., 2025). Despite structural similarities 
between insulin and IGF-1, these hormones exhibit distinct spatial distribution and 
functional roles within the CNS (Werner & LeRoith, 2014). Both insulin and IGF-1 
activate overlapping intracellular pathways, such as PI3K/Akt and mitogen-activated 
protein kinase (MAPK) cascades, yet their receptor distribution varies, influencing 
their distinct contributions to neurobiology (Fanelli et al., 2025). Insulin receptors 
are abundantly expressed in the hippocampus, cerebral cortex, hypothalamus, and 
cerebellum — regions involved in learning, memory, and emotional regulation. 
IGF-1 receptors, while also widely distributed, are particularly concentrated in the 
cortex, hippocampus, and thalamus, with moderate expression in the olfactory 
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bulb, hypothalamus, and cerebellum (Fanelli et al., 2025). Experimental findings 
indicate that IGF-1 promotes hippocampal neurogenesis, and reduced IGF-1 
levels are associated with depressive-like behaviours in animal models (Fanelli 
et al., 2025). Furthermore, IGF-1 interacts with serotonin receptors, including the 
5-HT3 receptor, facilitating neurogenesis and exerting antidepressant-like effects 
independent of traditional serotonin reuptake mechanisms (Fanelli et al., 2025).

An additional disorder-overarching trait associated with altered insulin-mediated 
dopamine regulation is impulsivity, a defining feature of ADHD, BD, and substance 
use disorders (Eckstrand et al., 2017). Insulin signalling in the striatum influences 
dopamine clearance and synaptic availability, and its dysregulation leads to 
heightened impulsivity in addition to impaired reward processing (Daws et al., 2011). 
In individuals with IR, blunted insulin responses correlate with dopaminergic 
dysfunction, potentially predisposing them to impulsivity-driven behaviours 
(Eckstrand et al., 2017; Gruber et al., 2023). Beyond psychiatric conditions, insulin 
dysfunction has also been linked to impulsivity in obesity, where alterations in 
reward sensitivity and impulse control contribute to disinhibited eating behaviours 
and compulsive reward-seeking (Sfera et al., 2017). Neuroimaging studies indicate 
that individuals with high impulsivity scores exhibit structural and functional 
abnormalities in the orbitofrontal cortex and prefrontal regions, areas critical for 
decision-making and self-regulation (Sfera et al., 2017). These deficits, observed 
in both psychiatric impulsivity and obesity-related behaviours, suggest a shared 
metabolic-neurobehavioural vulnerability. Additionally, epidemiological studies 
report that obese individuals display increased risk-taking behaviours, supporting 
an association between metabolic dysfunction and impulsivity (Sfera et al., 2017). 
The connection between IR, impulsivity, and altered reward processing extends 
beyond metabolic conditions and is particularly evident in ADHD, where deficits 
in impulse control manifest in difficulties with academic performance (Faraone et 
al., 2015). Impaired insulin signalling may further exacerbate impulsivity in BD and 
SUDs, where dysregulated reward sensitivity is a core component of the underlying 
pathophysiology (Gomez-Coronado et al., 2018).

Beyond its role in reward, motivation, and impulsivity, IR has also been 
implicated in cognitive inflexibility, a feature observed in ASD, schizophrenia, 
OCD, and AD, as previously mentioned (Barlattani et al., 2023). This executive 
dysfunction is characterised by rigid thought patterns, difficulty adapting to new 
information, and repetitive behaviours. Preclinical studies suggest that IR impairs 
behavioural adaptation and decision-making by altering neuronal signalling within 
corticostriatal pathways, which regulate habit formation, goal-directed behaviour, 
and cognitive flexibility (Sullivan et al., 2023). For example, high-fat diet-induced 
IR in rodents has been shown to increase perseverative responding and reduce 
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behavioural flexibility, closely mirroring cognitive impairments observed in OCD and 
ASD (Yao et al., 2023). Moreover, TALLYHO/JngJ mice, a preclinical model of T2DM, 
exhibit behavioural phenotypes suggestive of compulsivity, a trait often associated 
with cognitive rigidity. (Sullivan et al., 2023; van de Vondervoort et al., 2019). These 
findings support the hypothesis that metabolic dysfunction may contribute to 
impaired cognitive flexibility and suggest that metabolic dysregulation may be a 
contributing factor to cognitive dysfunction across multiple psychiatric conditions, 
underscoring the need for integrative approaches in psychiatric research.

IR is also increasingly recognised as a contributing factor to neurodegeneration. 
In AD, impaired insulin signalling in the brain has gained attention, leading 
some researchers to describe AD as “type 3 diabetes” due to its overlap with 
T2DM in terms of insulin receptor dysfunction, glucose metabolism deficits, and 
neuroinflammation (De Sousa et al., 2020; Nguyen et al., 2020). Defective insulin 
signalling in AD contributes to amyloid-β aggregation, tau hyperphosphorylation, 
and neuroinflammatory cascades, all of which lead to synaptic dysfunction and 
neuronal loss (De Sousa et al., 2020; Kellar & Craft, 2020). Importantly, markers of 
altered insulin signalling are detectable even in preclinical stages of AD, suggesting 
a role in disease progression (Stanley et al., 2016). Given such evidence, therapeutic 
approaches targeting insulin pathways have been explored: intranasal insulin 
administration has been shown to improve cognitive function in individuals with 
mild cognitive impairment and AD, with some studies indicating modulation of 
amyloid-β levels and insulin signalling pathways (Arnold et al., 2018). Interestingly, 
the cognitive benefits of intranasal insulin appear genotype-dependent, with 
APOE ε4 non-carriers experiencing more pronounced improvements (Arnold et al., 
2018). Neuroimaging studies have demonstrated that intranasal insulin enhances 
resting-state functional connectivity in the hippocampus and increases regional 
cerebral blood flow, further supporting its potential role in mitigating AD-related 
neuropathology (Arnold et al., 2018). While AD provides a prominent example of 
the link between insulin dysregulation and cognitive impairment, there is growing 
recognition that similar mechanisms, such as neuroinflammation and disrupted 
glucose metabolism, may also play roles in mood disorders, schizophrenia, and 
OCD, as previously mentioned (Fernandes et al., 2022; Kapogiannis et al., 2019; 
Martin et al., 2021; van de Vondervoort et al., 2016).

Although the exact mechanisms linking psychiatric and IR-related conditions 
remain under investigation, existing research underscores the importance of 
understanding possible shared biological pathways, of which insulin signalling is 
one, more thoroughly. Investigating these mechanisms could provide a foundation 
for identifying biomarkers and developing early intervention strategies to mitigate 
the burden of psychiatric-metabolic multimorbidity. Considering psychiatric 
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disorders within a broader framework of diseases of the body and not only of 
the mind can thus contribute to refined diagnostic models, improved treatment 
strategies, and better patient outcomes.

Importance of genetic studies in psychiatry and cross-disorder 
findings among psychiatric disorders
Psychiatric disorders are heritable, as demonstrated by twin and family-based 
studies. Estimates suggest that genetic factors explain up to 80% of the phenotypic 
variability for certain psychiatric disorders (Watson et al., 2020). A way to find out 
which genetic factors contribute to psychiatric disorders is to perform genome-
wide association studies (GWASs), as has been done for schizophrenia, BD, and 
MDD, and many other psychiatric conditions (Howard et al., 2019; Mullins et al., 
2021; Trubetskoy et al., 2022). In GWASs, millions of common genetic variants — i.e., 
single-nucleotide polymorphisms (SNPs) with a minor allele frequency exceeding 
1% in the population) — are systematically examined across the genome and tested 
for allele frequency differences between individuals with a certain condition and 
those without it, in order to identify susceptibility loci. While individual common 
genetic variants typically exert small effects on disorder risk, their cumulative 
contribution accounts for a substantial proportion of genetic liability (Trubetskoy 
et al., 2022).

Two important insights have emerged from GWAS investigations in the conditions 
of interest for this thesis. First, psychiatric disorders display high levels of polygenicity, 
meaning that risk is conferred by numerous, possibly thousands, of variants spread 
throughout the genome, each with a small effect. SNP-based heritability estimates 
from GWASs indicate that common variants explain only a part of disorder liability, 
e.g. approximately 8.4% of MDD liability (Major Depressive Disorder Working 
Group of the Psychiatric Genomics Consortium. Electronic address & Major 
Depressive Disorder Working Group of the Psychiatric Genomics, 2025) and 24% for 
schizophrenia (Trubetskoy et al., 2022). The polygenic patterns also extend to IR-
related conditions, such as obesity and T2DM, which rank among the most heritable 
common diseases. Twin studies estimated the heritability of adiposity measures 
at 50–90% and that of T2DM at 72% (Bouchard, 2021; Willemsen et al., 2015). 
Large-scale GWASs have identified multiple genomic loci associated with these 
conditions and related traits (Mahajan et al., 2022; Pulit et al., 2019; Watanabe 
et al., 2019). Second, extensive genetic overlap is observed among different 
psychiatric disorders.

Cross-disorder genomic analyses have e.g. revealed significant positive genetic 
correlations of schizophrenia with BD, as well as with MDD, albeit to a lesser extent, 
suggesting shared underlying risk factors (Cross-Disorder Group of the Psychiatric 
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Genomics Consortium, 2019). Similarly, moderate genetic correlation has been 
observed between AN, OCD, and TS, indicating that phenotypic comorbidity in 
clinical settings may, at least in part, reflect shared genetic architecture (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2019). Beyond disorder-
specific genetic relationships, a general psychopathology factor (p-factor) has been 
proposed as a single latent dimension that captures shared genetic liability across 
multiple psychiatric disorders (Sprooten et al., 2022). Based on structural equation 
modelling (SEM) and principal component analysis, the polygenic p-factor explains 
between 20% and 43% of SNP effects across disorders (Sprooten et al., 2022). This 
genomic dimension reflects pleiotropic effects of common genetic variants, meaning 
that many risk loci contribute to multiple disorders rather than being disorder-
specific. Building upon this framework, recent cross-disorder genomic studies using 
refined statistical techniques, such as genomic SEM and transcriptome-wide SEM 
(T-SEM), have further refined our understanding of shared and distinct genetic 
architectures. Recent work by Grotzinger et al. (2023) applied T-SEM to analyse  
13 major psychiatric disorders and identified five transdiagnostic genomic factors, 
which group psychiatric disorders based on shared genetic risk: thought disorders 
(schizophrenia, BD), compulsive disorders (OCD, AN, TS), internalising disorders 
(MDD, anxiety disorders, post-traumatic-stress disorder), neurodevelopmental 
disorders (ADHD, ASD), and SUDs (Grotzinger et al., 2023). These results support the 
view that genetic psychiatric risk factors do not conform to categorical diagnostic 
boundaries but rather contribute to shared biological liabilities across disorders, 
challenging conventional diagnostic classifications.

Beyond disorder-specific constructs, genetic influences extend to broader traits 
with transdiagnostic relevance. For instance, neuroticism and sensitivity to early-life 
stress, both traits with substantial heritability, are strongly correlated with mood 
and anxiety disorders (Nagel et al., 2018). This shared heritability underscores the 
idea that genetic liability is distributed along continuous dimensions rather than 
restricted to discrete diagnostic categories, another piece of evidence supporting 
the need for a shift toward dimensional or transdiagnostic conceptualisations of 
psychiatric conditions. Polygenic scores (PGSs), which are derived from large GWAS 
summary statistics, provide a means to quantify genetic risk along such dimensions. 
PGSs aggregate the effects of multiple common genetic variants into a single score, 
estimating an individual’s genetic predisposition to a particular trait or disorder 
(Kullo et al., 2022; Oliva et al., 2023). PGSs are instrumental in studying genetic 
overlap among psychiatric conditions; for the time being, their predictive value 
remains limited due to low variance explained and limited generalisability across 
populations, with current models capturing only a small proportion of disease risk 
in psychiatric disorders (Lewis & Vassos, 2020). Although PGSs have been used to 
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examine transdiagnostic liability, their role in risk stratification and personalised 
treatment remains under investigation (Kullo et al., 2022; Oliva et al., 2023).

GWASs have successfully been used to identify multiple psychiatric risk genomic 
loci; translating these associations into biological disease mechanisms is the current 
challenge. Several factors contribute to this difficulty, which include the following: 
most genome-wide significant loci are located in non-coding regions, making it 
unclear how they influence gene expression and neur(on)al function (Schipper & 
Posthuma, 2022); moreover, pleiotropy — where a single genetic variant influences 
more than one trait — complicates causal inference, making it challenging to 
determine whether a specific genetic variant contributes directly to disease risk 
or reflects broader transdiagnostic liability (Hemani et al., 2018). Integrative 
approaches that combine genetic findings with transcriptomic, epigenomic, and 
functional data are needed to infer causal mechanisms and identify biologically 
relevant pathways associated with psychiatric disorders (Gallagher & Chen-Plotkin, 
2018). These approaches can help refine our understanding of how genetic variation 
translates into disease risk, setting the stage for more mechanistic insights into 
psychiatric pathology. In addition, imaging genetics studies have provided insights 
into how polygenic risk influences brain structure and function, helping to bridge 
the gap between GWAS findings and neurobiological mechanisms (Gallagher & 
Chen-Plotkin, 2018).

Two decades of genome-wide studies and extension into other molecular 
‘omics’ approaches have advanced our understanding of genetic risk in psychiatric 
disorders considerably, but many open questions remain. Among them is the 
question how genetic influences extend beyond the CNS. The extent to which 
psychiatric-somatic (e.g., IR-related metabolic) comorbidity reflects shared genetic 
factors remains unresolved. The next steps involve exploring whether the same or 
related genetic factors and related mechanistic pathways predispose individuals to 
both psychiatric and IR-linked phenotypes.

Research objectives

Above, I have argued that psychiatric disorders represent a significant global 
health challenge, characterised by diverse clinical manifestations and overlapping 
transdiagnostic traits, substantial personal and societal costs, as well as reduced 
life expectancy. High rates of comorbidity among psychiatric disorders, frequent 
psychiatric-somatic comorbidity, and the high prevalence of suboptimal treatment 
response and outcome complicate clinical management. This all emphasises the 
urgent need for research that integrates biological, clinical, and epidemiological 
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perspectives to move beyond categorical diagnostic frameworks toward a 
dimensional, biological mechanism-informed understanding of psychiatric 
disorders that offers room for shared symptom domains and physical comorbidities.

Addressing this need, the overarching goal of this thesis was to investigate 
how psychiatric disorders and IR-related metabolic conditions influence clinical 
progression, treatment response, and overall multimorbidity in patients, and 
to determine whether these highly heritable neuropsychiatric and somatic 
conditions share genetic risk factors and biological mechanisms. As previously 
mentioned, recent insights suggest that the influence of insulin extends beyond 
peripheral tissues and modulates central processes such as neurotransmission and 
neuroplasticity (Milstein & Ferris, 2021). Parallel findings indicate that numerous 
psychiatric conditions display considerable polygenic risk overlaps (Grotzinger, 
Mallard, et al., 2022; Lee et al., 2021), which may potentially also extend to somatic 
conditions like obesity and T2DM. Here, I focused on investigating how the 
comorbidity between neuropsychiatric and IR-related conditions influences both 
the clinical trajectory and treatment outcomes of affected individuals, and whether 
the observed comorbidity reflects shared genetic and biological pathways. 
My thesis addresses three core objectives, integrating clinical and genomic 
methodologies to systematically investigate the intersections of psychiatric and  
IR-related conditions:

Objective 1: examine the clinical burden and phenotypic 
associations between psychiatric and insulin resistance-
related conditions
The first objective was to assess the clinical, cognitive, and treatment-related burden 
associated with the comorbidity between psychiatric disorders and IR-related 
conditions. In Chapters 2 to 4, I approached this question through systematic 
reviews, longitudinal analyses, and large-scale observational studies. These 
chapters evaluated how dysregulated glucose and insulin parameters coincide with 
cognitive impairment, treatment resistance, and distinct symptom profiles in mood 
disorders, aiming to clarify the clinical consequences of this comorbidity.

Objective 2: investigate the genetic architecture that underpins 
psychiatric-insulin resistance multimorbidity
The second objective was to determine the extent to which genetic factors 
contribute to the observed comorbidity between psychiatric disorders and  
IR-related metabolic conditions. This was explored in Chapters 5 to 7, in which  
I assessed global and regional genetic overlap between psychiatric and metabolic 
traits. Additionally, latent transdiagnostic genetic factors were examined to 



32 | Chapter 1

determine whether shared genetic liability contributes to multimorbidity across 
psychiatric and IR-related metabolic conditions.

Objective 3: identify potential biological mechanisms underlying the 
comorbidity and explore therapeutic targets  
through integrative genomic approaches
Third, in this thesis, I evaluated whether the convergent genetic and biological 
processes — once identified — might be leveraged for improving personalised 
treatment interventions. Building on novel genomic findings, in Chapters 6 and 7, 
I investigated how shared genetic risk translates into dysregulated molecular 
processes. Furthermore, Chapter 3 examined whether existing pharmacological 
compounds, such as antidiabetic medications, could be repurposed for psychiatric 
disorders. More broadly, I evaluated throughout the thesis potential druggable 
targets shared between psychiatric and metabolic conditions, providing preliminary 
insights into novel therapeutic interventions, which will need further validation in 
future studies.

In this work, I adopted an interdisciplinary approach, systematically linking 
clinical, genomic, and other -omics data to elucidate how metabolic dysfunction 
intersects with the pathophysiology of psychiatric disorders. By bridging metabolic 
and psychiatric research domains, I aimed to provide a deeper understanding of 
the biological processes that contribute to psychiatric and IR-related metabolic 
multimorbidity. My findings lay the groundwork for future studies focused on 
improving risk stratification, early detection, treatment personalisation, and the 
development of interventions for individuals with increased susceptibility to both 
psychiatric and metabolic conditions.

General overview of methods and datasets

Different methods were adopted in this thesis to investigate the association 
of metabolic conditions IR-related with psychiatric disorders and related 
symptomatology. The studies described in Chapters 2 through 7 collectively draw 
upon literature reviews, large-scale primary care databases, and publicly available 
summary statistics from extensive GWASs. The methodological frameworks and 
participant samples used across Chapters 2 through 7 are summarised here, with 
detailed descriptions provided in the respective chapters.
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Systematic review approach on IR-related conditions and cognitive 
functioning (Chapter 2)
A systematic review was conducted to consolidate evidence on the relationship 
between IR-related somatic conditions and cognition within the UK Biobank cohort. 
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines (Page et al., 2021), the review protocol was pre-registered 
in PROSPERO (CRD42022335139). Comprehensive searches were performed across 
PubMed, Scopus, and Web of Science using structured queries designed to capture 
studies investigating the phenotypic relationship between IR-related conditions, 
including T2DM, obesity, MetS, and various measures of glycaemic and lipidaemic 
control, and cognitive outcomes. The search was limited to peer-reviewed studies 
published up to April 2022. Included studies were assessed for quality and risk 
of bias using the Newcastle-Ottawa Scale (Herzog et al., 2013; Wells et al., 2000), 
ensuring a rigorous appraisal of both longitudinal and cross-sectional findings. 
This systematic review established the epidemiological and cognitive correlates of 
IR-related conditions in a population-based sample, providing an evidence-based 
foundation for subsequent analyses.

Review of longitudinal evidence and Mendelian randomisation 
studies on mood disorders and type 2 diabetes mellitus (Chapter 3)
To investigate the bidirectional relationship between mood disorders, including 
MDD and BD, and T2DM, Chapter 3 reviewed evidence from longitudinal and 
Mendelian randomisation (MR) studies. Longitudinal studies were prioritised 
for their ability to evaluate temporal associations and provide insights into the 
directionality of the relationship between these conditions. MR studies, which 
leverage genetic variants strongly associated with T2DM or mood disorders as 
instrumental variables, were also reviewed to explore whether these associations 
might reflect underlying causal relationships. Additionally, the review included a 
qualitative synthesis of studies examining how comorbid T2DM and mood disorders 
impact the clinical progression of either condition, along with an evaluation of the 
effects of psychotropic medications on diabetes risk and the potential therapeutic 
repurposing of antidiabetic drugs for mood disorders. By integrating these lines 
of evidence, this chapterexamined the relationship between mood disorders 
and T2DM, with attention to causality, temporality, and potential implications 
for treatment.
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Analyses on the UK Biobank primary care-linked data focusing on  
IR-related conditions and depression treatment outcomes (Chapter 4)
Analyses in Chapter 4 leveraged data from the UK Biobank, a prospective cohort 
study of approximately 500,000 individuals aged 40–69 years at recruitment 
(2006–2010), encompassing diverse genetic, lifestyle, and clinical data (Bycroft et 
al., 2018). This study specifically utilised the subset of 230,096 participants with 
linked primary care records. Diagnostic and prescription codes from Read V2, CTV3, 
and BNF systems were used to identify depression diagnoses, IR-related conditions 
(e.g., obesity, T2DM), antidepressant prescriptions, and treatment outcomes. 
Antidepressant response/resistance was operationalised based on prescription 
records and antidepressants switches. Additionally, temporal relationships between 
diagnoses of MDD and IR-related conditions were evaluated to distinguish between 
MDD-first and IR-first scenarios. To complement phenotypic analyses, PGSs for 
IR-related traits (e.g., body mass index, T2DM, fasting glucose, triglycerides, 
homeostasis model assessment for IR [HOMA-IR]) were computed using PRS-CS-
auto (Ge et al., 2019). PGSs were derived using the largest GWAS summary statistics 
available. Statistical models assessed the associations of IR-related conditions and 
related PGSs with antidepressant treatment outcomes, adjusting for covariates 
such as age, sex, socioeconomic status, smoking, and population structure (via 
principal components).

Pairwise global genetic correlations and stratified genetic 
covariance analyses (Chapter 5)
This analysis leveraged the largest available GWAS summary statistics to explore 
shared heritable risks between neuropsychiatric disorders and IR-related conditions. 
Disorders such as AD, ASD, OCD, and others were compared with IR phenotypes, 
including T2DM, MetS, and obesity, as well as IR-related traits like HOMA-IR and 
fasting glucose. Genome-wide genetic correlations were quantified using Linkage 
Disequilibrium Score Regression (LDSC) (Bulik-Sullivan et al., 2015), a robust 
method that estimates the extent of genetic liability shared across phenotypes. 
To refine these findings, GNOVA (GeNetic cOVariance Analyser) (Lu et al., 2017) 
was employed to perform stratified genetic covariance analyses focused on gene 
sets relevant to insulin signalling. These complementary approaches provided 
both global and pathway-specific insights into the genetic interplay between 
psychiatric and IR-related traits, advancing the understanding of potential shared 
biological mechanisms.
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Local genetic correlation, functional annotation, and colocalisation 
analyses (Chapter 6)
Chapter 6 employed the Local Analysis of [co]Variant Association (LAVA) (Werme 
et al., 2022) to identify genomic loci demonstrating significant local genetic 
correlations between IR-related metabolic conditions (i.e., obesity, T2DM, and 
MetS) and psychiatric disorders (e.g., mood disorders, OCD). Colocalisation analyses 
were then conducted within these loci to assess whether shared causal variants 
could explain the observed correlations. These analyses used robust Bayesian 
colocalisation frameworks, such as SuSiE (Wallace, 2021), to account for multiple 
causal variants within each region. GWAS summary statistics for both IR-related 
conditions and psychiatric disorders were harmonised using consistent genome 
builds (GRCh37/hg19) to ensure methodological rigor. Subsequent functional 
annotation and gene mapping were performed using tools like Functional Mapping 
and Annotation of GWASs (FUMA) (Watanabe et al., 2017) and SNPnexus (Oscanoa 
et al., 2020). Gene mapping incorporated positional and expression quantitative 
trait loci (eQTL) data from brain-relevant tissues, as defined by Genotype-
Tissue Expression (GTEx), to identify genes potentially driving the associations. 
Furthermore, druggability analyses were integrated into the pipeline, leveraging 
databases such as GeneCards, DrugBank, and Drug–Gene Interaction Database 
(DGIdb) to assess whether the identified genes represented viable pharmacological 
targets. This step aimed to identify candidate genes with therapeutic relevance, 
expanding the translational potential of the findings.

Genomic and transcriptome-wide structural equation modelling, 
and drug repurposing analyses (Chapter 7)
Chapter 7 employed genomic SEM (Grotzinger et al., 2019) to uncover latent 
genetic factors underlying the shared liability between psychiatric disorders 
and IR-related conditions. This multivariate framework utilised GWAS summary 
statistics from five psychiatric disorders (e.g., ADHD, MDD, OCD) and three  
IR-related conditions (e.g., T2DM, obesity, MetS), leveraging SNP-based heritability 
estimates and genetic covariance matrices derived from LDSC. Exploratory and 
confirmatory factor analyses identified a latent multimorbidity factor, reflecting 
shared genetic risk across these conditions. This latent factor was then linked to 
brain morphometric traits, expanding the analysis to neuroanatomical correlates 
of the shared genetic architecture. T-SEM (Grotzinger, de la Fuente, et al., 2022) 
extended this analysis by incorporating tissue-specific gene expression data. This 
approach utilised eQTL datasets from brain regions (e.g., hippocampus, prefrontal 
cortex) and the pituitary gland, as well as transcriptomic data from external 
resources like GTEx and PsychENCODE. The analyses allowed the identification 
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of genes whose expression in neural and peripheral tissues contributed to the 
shared genetic liability. To enhance translational relevance, prioritised genes from 
the multivariate GWAS and T-SEM were analysed for therapeutic potential using 
PharmOmics (Chen et al., 2022), a platform for drug repurposing that integrates 
transcriptomic and pharmacological data. Drugs targeting prioritised genes were 
filtered based on criteria such as blood-brain barrier permeability, cross-species 
concordance, and opposing gene regulation patterns to disease-related changes, 
offering a framework for potential therapeutic applications.
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Abstract

Clinical and genomic studies have shown an overlap between neuropsychiatric 
disorders and insulin resistance (IR)-related somatic conditions, including obesity, 
type 2 diabetes, and cardiovascular diseases. Impaired cognition is often observed 
among neuropsychiatric disorders, where multiple cognitive domains may be 
affected. In this review, we aimed to summarise previous evidence on the relationship 
between IR-related diseases/traits and cognitive performance in the large UK 
Biobank study cohort. Electronic searches were conducted on PubMed, Scopus, 
and Web of Science until April 2022. Eighteen articles met the inclusion criteria and 
were qualitatively reviewed. Overall, there is substantial evidence for an association 
between IR-related cardio-metabolic diseases/traits and worse performance on 
various cognitive domains, which is largely independent of possible confoundings. 
The most consistent findings referred to IR-related associations with poorer verbal 
and numerical reasoning ability, as well as slower processing speed. The observed 
associations might be mediated by alterations in immune-inflammation, brain 
integrity/connectivity, and/or comorbid somatic or psychiatric diseases/traits. Our 
findings provide impetus for further research into the underlying neurobiology and 
possible new therapeutic targets.
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Introduction

The main feature of somatic diseases and traits linked to insulin resistance (IR) 
is a deficient response to insulin in peripheral tissues. IR is prominently involved 
in the pathophysiology of obesity, type 2 diabetes mellitus, and cardiovascular 
diseases (e.g., atherosclerosis, hypertension, coronary artery disease), as well 
as related traits, such as elevated glycated haemoglobin levels, high body mass 
index (BMI), and increased systolic blood pressure (Mancusi et al., 2020; Ormazabal 
et al., 2018). These conditions frequently coexist and are considered modern-
day epidemics due to their increasingly high prevalence as a result of, amongst 
others, unhealthy diets and sedentary lifestyle (Seidell, 2000). While the role of 
IR in these somatic diseases and traits is well established (DeFronzo & Ferrannini, 
1991; Mancusi et al., 2020; Ormazabal et al., 2018), it is becoming clearer that 
insulin also plays an important role in the central nervous system. For example, 
insulin is involved in important brain processes like neurotransmission, synaptic 
plasticity, and neuroprotection (Klinedinst et al., 2019). A growing body of studies 
shows evidence of both clinical and genetic overlap between IR-related somatic 
diseases and neuropsychiatric disorders (Bralten et al., 2020; Fanelli et al., 2022; 
(Wimberley et al., 2022). For example, many studies have linked Alzheimer’s 
disease to altered insulin signalling, and some people even refer to Alzheimer’s 
disease as type 3 diabetes mellitus (Kroner, 2009). In addition, studies in rat models 
have shown that local administration of insulin in the hippocampus modulates 
cognitive function, including spatial memory, and that selective blockade of the 
insulin signalling pathway leads to dysfunction of memory abilities, as also occurs 
following IR induced by a high-fat diet (McNay et al., 2010). These observations 
indicate a potential role for insulin-related processes on cognitive phenotypes, like 
cognitive impairment and dementia. Cognitive impairment and IR-related somatic 
diseases are important contributors to reduced quality of life and life expectancy 
and constitute major health and economic burdens for society (Kazukauskiene et 
al., 2021). Another relevant issue is that cognitive deficits are commonly seen in 
individuals with neuropsychiatric disorders and are seldom alleviated by currently 
available pharmacotherapies, usually persisting even in individuals who show a 
good overall response to treatment (Hori et al., 2020; Vinasi et al., 2021).

The recent availability of very large, population-based, well-phenotyped cohorts 
makes it possible to extend analyses beyond clinically defined phenotypes, allowing 
for a better investigation of the relationship of IR with cognition in humans. The 
largest of these cohorts addressing cognition and IR-related conditions is the UK 
Biobank cohort, which is a deeply phenotyped, large prospective study aimed 
at studying the general health of middle-aged and older people (≥40 years old)  
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across the United Kingdom (Sudlow et al., 2015). From 2006 to 2010, approximately 
500,000 individuals were recruited for baseline assessments, which included 
detailed characterisation of sociodemographic, lifestyle, environmental factors, 
medical history, physical measures, and cognition. The richness of this data 
collection makes the UK Biobank study particularly useful to address the relationship 
between IR-related somatic diseases and traits with cognition. Cognitive function 
was initially measured by the pairs matching and reaction time tests using fully 
automated, unsupervised touchscreen questionnaires. Additional cognitive tests 
were later added to the baseline assessment and therefore administered only to 
a subsample of participants, namely prospective memory, numeric memory, and 
fluid intelligence tests. A subset of 20,000 participants was invited to repeat the 
assessment of baseline measures (between 2012 and 2013), which included the 
same baseline tests as cognitive measures, excluding the numeric memory test. 
Several cognitive function tests (i.e., fluid intelligence, pairs matching, and numeric 
memory tests) were later re-implemented as web-based questionnaires (completed 
between 2014 and 2015 by around 110,000 participants), and two additional tests 
were included, the trail making and the symbol digit substitution tests. Starting 
in 2016 and with ongoing recruitment, a subsequent imaging assessment visit 
has been introduced, where participants are also assessed on additional cognitive 
domains by tests such as the tower rearranging, the matrix pattern completion, and 
the trail making tests, for example. A further detailed description of the UK Biobank 
cognitive tests can be found in Lyall et al. (2016).

With UK Biobank making its collected data available to the research community, 
many studies had the ability to investigate the cognitive phenotypes in this cohort 
in combination with somatic IR-related disorders and traits. While multiple studies 
included parts of this exploration in their analyses, the literature still lacks a good 
overview of the gathered information. Therefore, we performed a literature review 
to identify and summarise the studies that investigated the relationship between 
IR-related diseases and traits and different cognitive domains in the UK Biobank 
study cohort, the largest population cohort addressing both a wide range of 
cognitive measures as well as diverse IR-traits and diseases on the same individual.

Methods

Study protocol
This review was conducted in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement (Page et al., 
2021). The full review protocol was registered on the international Prospective 
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Register Of systematic reviews (https://www.crd.york.ac.uk/prospero, PROSPERO 
ID: CRD42022335139).

Searching strategy
An electronic search of the literature was conducted on the PubMed, Scopus, and 
Web of Science databases looking for studies investigating the relationship between  
IR-related diseases/traits and cognitive functioning in the UK Biobank study cohort. We 
used the Polyglot Search Translator tool to transform the PubMed query into formats 
appropriate to other databases (Clark et al., 2020). We included papers published until 
April 2022, when the databases were last searched. We used search terms related 
to cognition and to IR-related traits and diseases, including terms encompassing 
glycaemic and lipidaemic control/homeostasis, diabetes mellitus, obesity and obesity-
related measures, metabolic syndrome, cardiovascular disease, Cushing’s syndrome, 
and polycystic ovary syndrome. The search was restricted to studies conducted using 
the UK Biobank study cohort and where any of the search terms appeared in the title 
or abstract. The full search queries used are provided in the Supplementary Materials. 
Duplicates were removed using EndNote 20.2 (Clarivate, Philadelphia, PA).

Two reviewers (GF and NRM) independently screened the results retrieved from 
the search query to identify potentially relevant studies by evaluating titles and 
abstracts. The full text of the selected studies and those of uncertain relevance 
were obtained and thoroughly evaluated to ascertain the pertinence of each study. 
In the event of disagreement during the study selection process, a decision was 
made through open discussion (and, in the case of persistent inconsistency of 
judgement, with the involvement of a third reviewer (JB)).

Inclusion and exclusion criteria
Studies were included if: 1) they investigated the phenotypic relationship between 
cognition and IR-related traits/diseases; 2) the analyses were conducted within the 
population-based UK Biobank cohort; 3) written in English. Reasons for exclusion 
were: 1) being a meta-analysis or review; 2) being a preprint (not yet peer-reviewed); 
3) being a commentary, a letter, a congress abstract, or an editorial; 4) not having 
the outcomes of interest measured/reported.

Study quality and risk of bias assessment
The Newcastle-Ottawa Scale (NOS) for cohort studies (Wells et al., 2000) and its 
version adapted for cross-sectional studies (Herzog et al., 2013) were used to assess 
the quality and risk of bias of each included study (longitudinal or cross-sectional, 
respectively) by two independent reviewers (GF and NRM) (Herzog et al., 2013). 
A maximum score of 9 points (NOS for cohort studies) or 10 points (NOS adapted 
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for cross-sectional studies) could be assigned to a study. Studies with 0 to 4 points 
were deemed to be of unsatisfactory quality, 5 to 6 points to be of adequate quality, 
7 to 8 points to be of good quality, and 9 to 10 points to be of very good quality. 
Regardless of the NOS score, all studies were considered for qualitative synthesis. 
Any disagreements were settled through consensus among reviewers.

Table 1. Description of the cognitive function tests administered throughout the UK 
Biobank study. Further information on how each test was conducted can be found at:  
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026.

UK Biobank 
cognitive tests

Cognitive domains a UK Biobank Field 
ID(s) used by 
reviewed studies

Cognitive assessment 
time point (number 
of participants with 
valid data) b

Prospective 
memory

Prospective Memory Field ID: 20018 
Prospective 
memory result

Baseline (subsample: 
N=117,517)
Repeat (subsample: 
N=20,329)
Imaging (subsample: 
N=48,178)

Trail Making Test, 
part A (TMT-A) §

Executive function, divided 
attention, visual scanning, 
processing speed

Field ID: 6348 Duration 
to complete numeric 
path (trail #1)

Imaging (subsample: 
N=35,663)

Trail Making Test, 
part B (TMT-B) §

Executive function (and more 
specifically, set shifting/
cognitive flexibility, and 
working memory (short-term 
memory)), divided attention, 
visual scanning, conceptual 
tracking, processing speed

Field ID: 6350 
Duration to complete 
alphanumeric 
path (trail #2)

Imaging (subsample: 
N=35,663)

Tower rearranging Executive function (and 
more specifically, planning, 
working memory (short-term 
memory), problem solving, 
and response inhibition), 
visuospatial memory, 
procedural and skill learning

Field ID: 21004 
Number of 
puzzles correct

Imaging (subsample: 
N=34,933)

Numeric memory Working memory (short-
term memory), attention

Field ID: 4282 
Maximum digits 
remembered correctly

Baseline (subsample: 
N=51,799)
Imaging (subsample: 
N=36,535)

Pairs matching Visual declarative memory 
(short-term memory)

Field ID: 399 
Number of incorrect 
matches in round

Baseline (subsample: 
N=497,791)
Repeat (subsample: 
N=20,344)
Imaging (subsample: 
N=48,202)
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UK Biobank 
cognitive tests

Cognitive domains a UK Biobank Field 
ID(s) used by 
reviewed studies

Cognitive assessment 
time point (number 
of participants with 
valid data) b

Fluid intelligence Verbal and numerical 
reasoning

Field ID: 20016 Fluid 
intelligence score (i.e., ​​
sum of the correct 
answers given)

Baseline (subsample: 
N=165,430)
Repeat (subsample: 
N=20,110)
Imaging (subsample: 
N=47,291)

Matrix pattern 
completion

Non-verbal reasoning Field ID: 6373 
Number of puzzles 
correctly solved

Imaging (subsample: 
N=35,243)

Reaction time Processing speed Field ID: 20023 Mean 
time to correctly 
identify matches
Field ID: 404c Duration 
to first press of snap-
button in each round

Baseline (subsample: 
N=496,590)
Repeat (subsample: 
N=20,254)
Imaging (subsample: 
N=47,878)
Baseline (subsample: 
N=493,160)
Repeat (subsample: 
N=20,265)
Imaging (subsample: 
N=47,926)

Symbol digit 
substitution

Processing speed, attention Field ID: 23324 
Number of symbol 
digit matches 
made correctly

Imaging (subsample: 
N=35,264)

a Different cognitive test may correlate with one another because they can measure the same cognitive 
domain or general cognitive ability. Definitions of associated cognitive domains to each test are 
according to Fawns-Ritchie and Deary (2020) and Lezak (2012).
b Baseline (N=502,536), repeat assessment (N=20,346), and/or imaging assessment visit (tot N=37,102). 
Maximum sample size (N) for each cognitive assessment visit and test according to UK Biobank data 
Showcase: https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026).
c Used only by Morys et al. (2021); Talboom et al. (2021).
§ The Trail Making Test difference (TMT part B - part A) score removes the speed and completion time 
component from the evaluation of shifting ability; the Trail Making Test B/A ratio score (TMT part B/
part A) better captures set-switching ability.

Table 1. Continued
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Results

Figure 1. PRISMA flow diagram of the systematic review process.
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The initial literature search yielded 244 results; these articles were screened to 
determine whether they met the inclusion criteria. After removing 156 duplicates, 
the remaining 88 studies were screened for possible inclusion. After the title and 
abstract inspection, 28 studies were selected as potentially relevant to our research 
topic and their full texts were collected. Finally, after careful assessment of full texts 
and discussion between reviewers, 18 pertinent studies matching the inclusion 
criteria were identified and reviewed (Figure 1). The quality of the included studies, 
according to the NOS assessment tool (Herzog et al., 2013; Wells et al., 2000), ranged 
from adequate to very good, indicating a low risk of bias (Table 2).

Results are reported in detail in the following paragraphs, grouping evidence 
regarding obesity, diabetes mellitus, and cardiovascular diseases and their related 
traits. With regard to diabetes mellitus, most of the studies included in this review 
did not make a clear distinction between type 2 diabetes mellitus and other (much 
less prevalent) types of diabetes, such as type 1 diabetes mellitus, and gestational 
diabetes mellitus, among others. Only three reviewed studies (Garfield et al., 2021; 
Hagenaars et al., 2017; Whitelock et al., 2021) report having applied additional 
algorithms and/or filtering inclusion criteria in order to retain as cases mainly 
those with type 2 diabetes, for example by excluding cases diagnosed before 
a certain age or those that started insulin therapy soon after diagnosis (features 
more commonly associated with type 1 diabetes mellitus). However, despite the 
lack of clear distinguishing measures by the other studies, it should be taken into 
consideration that it has been reported that 90% of all confirmed cases of diabetes 
mellitus in the UK population are type 2 diabetes mellitus, about 8% are type 1 
diabetes mellitus, and the other forms account for the remaining 2% (Whicher et 
al., 2020). Therefore, for practical and readability reasons, hereafter we will refer to 
findings involving either type 2 diabetes mellitus or diabetes mellitus not otherwise 
specified simply as 'diabetes'.

Obesity and related measures
BMI is the most used quantitative measure to diagnose and classify obesity. BMI 
was significantly associated with performance in several cognitive domains in the 
UK Biobank study. Higher BMI has been associated with worse performance on 
fluid intelligence (Ferguson et al. (2020); Hagenaars et al. (2017); Olivo et al. (2019), 
but not by Morys et al. (2021)), numeric memory (Morys et al., 2021; Olivo et al., 
2019), matrix pattern completion (Ferguson et al., 2020), trail making (i.e., higher 
Trail Making Test B/A ratio; Olivo et al. (2019)), and symbol digit substitution 
tests (Ferguson et al., 2020). On the other hand, no association between BMI 
and prospective memory was found (Morys et al., 2021). Interestingly, the 
association between BMI and numeric memory was partially mediated (9%) by 
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Table 2. Continued
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brain white matter hyperintensity (WMH) load (Morys et al., 2021). Similarly, the 
association between BMI and symbol digit substitution was found to be mediated 
(approximately 19%) by WMH, along with grey matter volume and a general factor 
of mean diffusivity (Ferguson et al., 2020).

Results were mixed for the association between BMI and slower reaction time, 
with one study finding an association (Ferguson et al., 2020), and another one 
not (Morys et al., 2021). Similarly, no consistent results were found regarding BMI 
and pairs matching and tower rearranging tests. While one study found increasing 
BMI associated with worse performance in the pairs matching test at the baseline 
assessment (Olivo et al., 2019), two studies examined the data collected during the 
imaging assessment visit, available only from a subset of participants, and found 
that BMI was associated with better performance on this test (Ferguson et al., 2020; 
Morys et al., 2021). Regarding the tower rearranging test, while one study found 
no association with BMI (Ferguson et al., 2020), another, using more limited sample 
size, found increasing BMI associated with better performance (Morys et al., 2021).

When BMI was used to categorise individuals, those with overweight (BMI: 25 kg/m2 
to 29.9 kg/m2) or obesity (BMI ≥30 kg/m2) showed worse cognitive performance 
compared to normal-weight individuals (BMI: 18.5 to 24.9 kg/m2). In particular, 
both overweight and obesity were associated with poorer performance on fluid 
intelligence, numeric memory, and pairs matching, while only obesity (but not 
overweight) was associated with worse performance on the trail making (Trail 
Making Test B/A ratio (Olivo et al., 2019)). Severe obesity (BMI ≥40 kg/m2) was 
associated with worse performance on reaction time, TMT part B (but not part A), 
fluid intelligence, and symbol digit substitutions (Lyall et al., 2019). The presence 
of obesity, when combined with diabetes, hypertension, and frequent alcohol 
use, was associated with worse performance on the pairs matching task, and this 
association was found to be partially mediated by lower grey matter volume in the 
posterior cingulate cortex (Suzuki et al., 2019).

Considering other continuous obesity-related measures, increasing waist-to-
hip ratio (WHR) has been associated with worse performance on fluid intelligence 
and numeric memory tasks, but no association was found with reaction time, 
prospective memory, pairs matching, and tower rearranging tasks (Morys et al., 
2021). The authors suggested that the association between WHR and numeric 
memory and fluid intelligence were partially mediated by brain WMH load  
(7% and 12%, respectively). No association was found between WHR and a 
continuous latent variable representing executive function (i.e., predicting 
reaction time and pairs matching performances) (Veldsman et al., 2020). Body fat 
percentage, in turn, has been associated with worse numeric memory and better 
pairs matching performance, while no association was found with fluid intelligence, 
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reaction time, prospective memory, and tower rearranging (Morys et al., 2021). The 
associations found with body fat percentage were found to be partially mediated 
(9%) by WMH load.

Adipose mass is another quantitative measure related to obesity. A longitudinal 
study found that more visceral and non-visceral adipose mass independently 
predicted a decline in fluid intelligence performance over a period of six years, both 
in men and women (Klinedinst et al., 2019). Conversely, the presence of greater 
lean muscle mass favoured gains in fluid intelligence across time. Interestingly, 
they show important immune system-related mediation effects as the association 
between visceral adipose mass and fluid intelligence was either partially (men) or 
fully (women) mediated by changes in leukocyte subpopulation counts (Klinedinst 
et al., 2019).

Diabetes and related measures
Diabetes has been associated with worse performance on fluid intelligence, both 
at baseline (Lyall et al., 2017) and on follow-up data from the imaging assessment 
visit (Newby and Garfield, 2022). Others, however, did not find such an association 
(Whitelock et al., 2021). Intriguingly, when comorbidity with hypertension was 
considered, individuals with only diabetes had worse performances on fluid 
intelligence than those with comorbid diabetes and hypertension (Newby and 
Garfield, 2022).

Diabetes has also been repeatedly associated with slower reaction time (Garfield 
et al., 2021; Lyall et al., 2017; Talboom et al., 2021; van Gennip et al., 2021), although 
this was not always the case (Whitelock et al., 2021). These results were shown to be 
independent of possible confounders, such as socio-economic and demographic 
variables, depression, medications use, and BMI (Garfield et al., 2021; Lyall et al., 
2017). Furthermore, diabetes has also been associated with worse performance on 
a latent executive function continuous variable, representing reaction time and pairs 
matching test scores (Veldsman et al., 2020). In addition to participants with known 
diabetes (i.e., self-reported, diagnosed by a doctor and/or hypoglycaemic medications 
use), those classified with either prediabetes (i.e., HbA1c 42-48 mmol/mol) 
or undiagnosed diabetes (i.e., HbA1c≥48 mmol/mol) at baseline also showed slower 
reaction time than normoglycaemic participants (i.e., HbA1c ≥35 and <42 mmol/
mol; Garfield et al. (2021)). The association between diabetes and worse reaction 
time performance has been replicated using data from the imaging visit assessment 
and individuals with comorbid diabetes+hypertension showed worse performance 
than individuals with non-comorbid hypertension or neither diabetes nor 
hypertension (Newby and Garfield, 2022). Noteworthy, another study showed that 
the higher the number of cardio-metabolic risk variables found within the normal 
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ranges (i.e., HbA1c, blood pressure, and BMI), the least reaction time impairment 
difference was found between individuals with and without diabetes (van Gennip et 
al., 2021). A machine learning approach was used to examine whether diabetes and 
cardiovascular disease could predict reaction time intraindividual variability (RT-IIV) 
over time (i.e., across baseline and two follow-up assessments). This was considered 
a sensitive measure of cognitive change over time, with greater RT-IIV used as 
an indicator of longitudinal cognitive decline. Although it was outperformed by 
alternative models whose variables captured psychiatric phenotypes (i.e., anxiety 
and depression models, with an area under the curve (AUC) of 0.68 and 0.63, 
respectively), the 'diabetes and cardiovascular' model showed a significantly better 
classification performance than randomness (AUC=0.60; Li et al. (2020)).

The results about the relationship between diabetes and the pairs matching 
test, however, have been less consistent. While some reported an association 
between known diabetes and better baseline performance on this test (Garfield et 
al., 2021), others found an association with worse performance only when diabetes 
was comorbid with hypertension (no association otherwise) (Lyall et al., 2017), and 
others reported no association in smaller sample sizes from baseline (van Gennip 
et al., 2021; Whitelock et al., 2021) or imaging assessment visit data (see Table 2) 
(Newby and Garfield, 2022).

Interestingly, the same study that showed an outperformance of individuals with 
diabetes in the pairs matching task at baseline, further combined this data with the 
scores obtained during the UK Biobank follow-up assessment to address cognitive 
decline (i.e., measured by regressing the follow-up scores on the baseline scores). 
This longitudinal analysis indicated that participants with prediabetes and with 
known diabetes might be subject to a faster deterioration rate of pairs matching 
abilities than normoglycaemic individuals, suggesting a higher risk for cognitive 
decline (Garfield et al., 2021).

Using baseline data, Whitelock and colleagues (2021) found that participants 
with diabetes showed worse performance on numeric memory compared to 
those without diabetes, while they did not differ in terms of prospective memory 
performance. No differences between those with and without diabetes at the 
imaging assessment visit were found on tower rearranging performance either 
(Newby and Garfield, 2022).

At the imaging assessment visit, participants with diabetes performed worse 
on symbol digit substitution, trail making (i.e., trail making test B–A), and matrix 
pattern completion than those without diabetes (Newby and Garfield, 2022). When 
comorbidity with hypertension was considered, both the group of participants with 
only diabetes and those with comorbid diabetes+hypertension performed worse 
on symbol digit substitution compared to those with only hypertension or none 
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of these diseases (Newby and Garfield, 2022). Interestingly, when cardiovascular 
confounders were considered (i.e., smoking, BMI, hypertension, high cholesterol), 
the associations between diabetes and worse cognitive performance were 
attenuated, in particular matrix pattern completion and symbol digit substitution 
performances (Newby and Garfield, 2022). On this note, others have shown that 
the association between diabetes and cognitive performance was partially 
mediated (between 10 and 59%) by cardiovascular diseases (i.e., hypertension, 
thromboembolism, stroke, coronary artery disease (CAD)), depressive symptoms, 
and to a lesser extent by visceral obesity (i.e., WHR), possibly via immune-
inflammatory dysregulation that is commonly present in each of these three 
conditions (Whitelock et al., 2021).

Lastly, the effect of diabetes and other cardio-metabolic diseases on cognition 
was found to be additive, meaning that an increasing number of concomitant 
cardio-metabolic diseases was associated with greater cognitive impairment 
(Lyall et al., 2017). Furthermore, a latent variable composed of BMI, diabetes, 
hypercholesterolaemia, hypertension, and smoking, was found to be associated 
with a cognition latent variable (composed of fluid intelligence, pairs matching, 
reaction time, prospective memory, and numeric memory scores). However, this 
association was no longer significant after controlling for brain global efficiency, a 
measure of brain network integration (Shen et al., 2020). Further investigation through 
mediation analysis supported the (partially) mediating role of global efficiency in the 
relationship between vascular burden and cognition (Shen et al., 2020).

Cardiovascular diseases and traits
CAD, defined as (self-reported) presence of angina and/or myocardial infarction 
diagnosis, was associated with poorer performance on fluid intelligence (Hagenaars 
et al., 2017; Lyall et al., 2017) and on pairs matching and reaction time tests (Lyall et 
al., 2017). These associations remained significant independently from the presence 
of other cardio-metabolic diseases (i.e., diabetes and/or hypertension) and after the 
adjustment for socio-economic and demographic variables, depression, medication 
use, and BMI (Lyall et al., 2017). In addition, stroke was also associated with worse 
processing speed on the reaction time test (Talboom et al., 2021).

Hypertension has also been repeatedly associated with worse cognitive 
performance. Although hypertension may have diverse underlying pathophysiology, 
it has been estimated that 60-70% of hypertension cases during adulthood may be 
directly attributed to adiposity and IR (Jameson et al., 2018). Furthermore, IR has been 
shown to contribute to hypertension by impairing vascular peripheral resistance 
and endothelial function (Mancusi et al., 2020). A history of hypertension (i.e., self-
reported having previously received hypertension diagnosis by a doctor) has been 
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associated with poorer performance in fluid intelligence (Lyall et al., 2017) and slower 
reaction time (Lyall et al., 2017; Talboom et al., 2021). Regarding the pairs matching 
task, no association was found with a history of non-comorbid hypertension, but 
associations with worse performance were observed when hypertension was 
comorbid with either diabetes or CAD (Lyall et al., 2017). When taking multiple 
combined measures to define hypertension (i.e., SBP ≥140 mmHg and diastolic blood 
pressure ≥90 mmHg and/or use of blood pressure medication and/or self-reported 
history of a hypertension diagnosis by a doctor), results replicated the associations 
with fluid intelligence and reaction time and in turn also revealed an association 
with worse performance on the pairs matching task (Newby et al., 2021). However, 
no association was found with symbol digit substitution, matrix pattern completion, 
tower rearranging, and trail making (difference between part B and part A) tasks, 
for which data was acquired during the imaging assessment visit and thus was 
only available from a subset of UK Biobank participants (Newby et al., 2021). Data 
from hospital admission records for hypertension treatment has also been used to 
classify UK Biobank participants regarding hypertension. A history of hospitalisation 
for hypertension treatment was associated with lower fluid intelligence scores, 
corroborating previous findings. Additionally, it was associated with reduced 
prospective and numeric memories (Feng et al., 2020). Of note, this association with 
prospective memory was found to be partially mediated by reduced brain functional 
connectivity, which explained 11.5% of the association between hypertension and 
these cognitive task results (Feng et al., 2020).

When assessing the effect of systolic blood pressure as a continuous measure 
rather than a dichotomous hypertension diagnosis, (higher) SBP was associated 
with (lower) fluid intelligence (Ferguson et al., 2020; Hagenaars et al., 2017) and 
matrix pattern completion (Ferguson et al., 2020) scores, while no significant 
association was found with reaction time, symbol digit substitution, tower 
rearranging, and pairs matching tests (Ferguson et al., 2020). It is suggested that 
the association between SBP and fluid intelligence is, at least partially, mediated 
by differences in brain morphometry and connectivity/integrity (Ferguson et 
al., 2020). Furthermore, increasing SBP was associated with a graded reduction 
in performance on a continuous latent variable representing executive function 
(i.e., corresponding to reaction time and pairs matching tasks) in participants not 
taking antihypertensive medication (Veldsman et al., 2020). This was especially true 
for mid-aged participants (44-69 years) and less so for older ones (>70 years). For 
the participants taking antihypertensive medication (which can be considered as 
a proxy for hypertension diagnosis), however, executive performance was stable 
for the SBP range <140 mmHg, while increasing SBP above this threshold was 
associated with a decline in performance (Veldsman et al., 2020).
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Discussion 

This literature review aimed to summarise previous evidence on the relationship 
between somatic diseases and traits linked to insulin resistance and cognitive 
performance across several domains based on studies conducted in the large 
population-based UK Biobank study cohort. Overall, there is substantial evidence 
for an association between IR-related cardio-metabolic diseases and traits and 
general worse performance on various cognitive domains, which is largely 
independent of possible confounding factors, such as general socio-economic and 
demographic factors and the use of medications.

Worse fluid intelligence performance consistently associated with IR-related 
diseases/traits
The most consistent finding across studies within the UK biobank cohort is the 
association between the presence of IR-related diseases and traits with worse 
performance on fluid intelligence. This test was designed to evaluate verbal and 
numerical reasoning, which refers to the ability to derive logical inferences and solve 
novel problems through evaluation, abstraction, and integration of information and 
hypothesis testing. Fluid intelligence was initially assessed on a subsample of UK 
Biobank participants at baseline, with follow-up assessments at different time points. 
Despite encompassing a smaller sample size compared to other tasks (Table 1), 
it shows largely consistent findings for all the IR-related phenotypes reviewed (i.e., 
obesity, diabetes, cardiovascular disease, and their related traits), independent 
of the methods and corrections for confounders applied. Verbal and numerical 
reasoning have been linked to the activity of the dorsolateral and medial prefrontal 
cortex (which is part of the frontal lobe) and the posterior parietal cortex in previous 
studies in samples other than UK Biobank (Kolb and Wishaw, 2012). In line with 
this evidence, Ferguson and colleagues reported a mediating effect of frontal 
lobe volumes in the association between high SBP and poor verbal and numerical 
reasoning (Ferguson et al., 2020). Noteworthy, impairment in this cognitive domain 
has been associated with higher psychopathological severity across psychiatric 
disorders, a recent diagnosis of specific phobia, bipolar disorder and impulse-control 
disorders among adolescents (Keyes et al., 2017), and depressive symptoms in elderly 
individuals (Murray et al., 2013). Moreover, fluid intelligence deficits significantly 
contribute to worse performance in executive tasks among patients with Parkinson’s 
disease, frontotemporal dementia, and schizophrenia (Roca et al., 2014).
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Slower reaction time also associated with IR-related phenotypes
Similarly, the associations between IR-related phenotypes and slower reaction time 
have been quite consistent in the UK biobank literature. The reaction time task 
constitutes one of the tasks with the largest sample size in the UK Biobank, being 
assessed in the whole baseline cohort, in addition to the follow-up assessments. 
The reaction time task measures processing speed, which is the ability to quickly 
perform a variety of cognitive, perceptual, and motor processes, whose impairment 
has been linked to white matter integrity (Papanicolaou, 2017). Processing speed 
deficit is an important characteristic of Parkinson’s disease and several major 
psychiatric disorders, such as autism spectrum disorder, mood disorders, attention-
deficit/hyperactivity disorder (ADHD), schizophrenia, obsessive-compulsive 
disorder, and panic disorder (Millan et al., 2012), which in turn have been shown 
to overlap (clinically and genetically) with IR-related somatic diseases (Fanelli et al., 
2022; Wimberley et al., 2022).

Better pairs matching performance: a counterintuitive finding?
A less consistent but perhaps more intriguing finding concerns the associations 
with better performance on the pairs matching test for individuals with IR-related 
somatic phenotypes, which was assessed at baseline for the whole cohort and 
included in all cognitive reassessments. The pairs matching test assesses visual 
short-term memory, which is the ability to retain information from a visual stimulus 
for a short period of time after the stimulus has ceased and allows the comparison 
of perceptual information of objects separated in time and space (Hollingworth & 
Luck, 2008). Impairment in visual memory is a typical characteristic of Alzheimer’s 
disease, and it is also commonly present in ADHD, although it has been less strongly 
reported in other neuropsychiatric disorders (Millan et al., 2012). The seemingly 
counterintuitive association with pairs matching outperformance was found with 
higher BMI (Ferguson et al., 2020; Morys et al., 2021), body fat percentage (Morys et 
al., 2021), and diabetes (Garfield et al., 2021). Although others have not replicated 
these findings (see the Results section), the repeated association of IR-related 
diseases and traits with better cognitive performance seems to be unique for pair 
matching, but a pathophysiological explanation behind such findings does not 
appear to be obvious at present. Noteworthy is the fact that the pairs matching 
task did not present a good test-retest reliability between baseline and a repeat 
assessment (in a subsample of 20,000 participants) about four years apart (Lyall 
et al., 2016). Furthermore, an intriguing finding arises from a longitudinal study 
showing that, despite a baseline association with better performance on this 
test, individuals with diabetes had a steeper decline in performance on follow-up 
assessment compared to individuals without diabetes (Garfield et al., 2021).



2

71|Cognitive function and insulin resistance in UK Biobank

Possible underlying mechanisms linking IR and cognition
Several mechanisms have been suggested as possibly underlying the link between 
IR and cognition, including the insulin modulation of some neurotransmitter 
systems (among others, the cholinergic and glutamatergic systems having a 
major role in cognition), immune-inflammation and oxidative stress, and altered 
hypothalamus-pituitary axis function (Butterfield & Halliwell, 2019; De Felice et 
al., 2022). In particular, insulin has been implicated in the modulation of synaptic 
plasticity and memory through its effects on the expression and presentation 
on the plasma membrane of glutamatergic receptors (De Felice et al., 2022). 
Furthermore, insulin is responsible for glucose uptake in the hippocampus and 
some cortical areas through the membrane translocation of glucose transporter 
type 4 (GLUT4) (Koepsell, 2020), whose inhibition was shown to hinder the 
procognitive insulin's action on working memory in rats (De Felice et al., 2022). It 
is also important to consider that obesity and diabetes lead to a state of systemic 
inflammation with an increase in proinflammatory cytokines that is also reflected 
in the brain (Lyra et al., 2019). Here, microglia activation results in the production 
of proinflammatory cytokines, such as interleukin (IL)-6, tumour necrosis factor-α,  
IL-1β, which may interfere with insulin signalling (Kullmann et al., 2016). 
Interestingly, a UK Biobank study showed that the association between fluid 
intelligence and lean muscle or visceral adipose mass was mediated by the levels of 
different leukocyte subpopulations (Klinedinst et al., 2019).

Interestingly, it has been suggested that accumulation of amyloid-β oligomers, 
which is a hallmark of Alzheimer's disease neuropathology, may lead to cognitive 
impairment through defective brain insulin signalling (Tumminia et al., 2018). 
Animal studies have shown that impairments in insulin signalling following 
intracerebroventricular infusion of amyloid-β oligomers were accompanied by 
memory deficits in several behavioural tasks. In turn, IR may accelerate amyloid-β 
production and brain accumulation (Tumminia et al., 2018). IR may also result in 
microcirculation damage and atherosclerosis, leading to brain reduced oxygen 
supply and tissue suffering, as also revealed by widespread white matter and 
functional connectivity alterations, as well as regional brain volumes variations 
seen in individuals with diabetes or obesity, also in UK Biobank (Ferguson et al., 
2020; Garfield et al., 2021; Hsu et al., 2012; Morys et al., 2021; Suzuki et al., 2017). 
These neuroimaging correlates and cardiovascular alterations may mediate the 
relationship between IR and worse cognitive performance, as repeatedly suggested 
by some authors (Feng et al., 2020; Ferguson et al., 2020; Morys et al., 2021; Suzuki 
et al., 2017; Whitelock et al., 2021). In fact, recent studies further suggest that 
white matter integrity may mediate the link between cognitive performance and 
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both variations in HbA1c levels (Repple et al., 2021) and genetic liability to type 2 
diabetes (Repple et al., 2022).

Interestingly, one study in the UK Biobank also suggested that depressive 
symptoms may mediate the relationship between diabetes and cognitive function 
(Whitelock et al., 2021). Of note, depression and diabetes are both predisposing 
factors for each other, and common molecular pathways have been proposed 
(Nguyen et al., 2018). In addition, oral hypoglycaemic medications used in diabetes, 
such as liraglutide, have shown clinical usefulness in improving cognitive function 
in people with depression (Fanelli & Serretti, 2022). As a result, it is possible to 
speculate that biological factors common to diabetes and depression may have an 
influence on cognition.

Strengths and limitations
This review should be considered in light of clear strengths and limitations. The 
UK Biobank represents the largest population-based cohort where both cognitive 
measures and IR-related somatic diseases and traits have been deeply phenotyped. 
While large-scale Danish/Scandinavian population-based registries include 
information on clinical diagnoses and prescribed medication to identify cardio-
metabolic and psychiatric conditions, they do not contain information on cognitive 
measures (Schmidt et al., 2019) or only do so for a very limited subsample derived 
from smaller clinical/follow-up studies on specific patient groups (e.g., patients with 
dementia or diabetes) that are then linked to national registries (Fereshtehnejad et 
al., 2015; Wium-Andersen et al., 2019). The richness of the phenotypes measured 
in UK Biobank allows going beyond clinical comparisons and addressing the full 
spectrum of phenotypes as a continuum in the general population. In order to allow 
cognitive assessment of an unprecedented number of individuals under the same 
protocol, some of the most widely used and clinician-rated cognitive instruments 
were specifically adapted for the UK Biobank study. Thus, a possible limitation is that 
the cognitive measures under the UK Biobank protocol were obtained by concise, 
unsupervised touchscreen assessments and not under traditional standardised 
conditions (Sudlow et al., 2015). It is important, however, to also weigh in as a clear 
strength of this approach the possibility of addressing several facets of cognition 
in a short period of time and that, despite the adapted nature of this protocol, the 
UK Biobank tests showed overall good validity, demonstrating moderate-to-high 
test-retest reliability and substantial correlation with the reference tests from which 
they were derived (Fawns-Ritchie and Deary, 2020). However, it is worth considering 
that the UK Biobank sample population was recruited on a voluntary basis and is 
not fully representative of the general UK population. In fact, participants were 
generally healthier, less likely to smoke or consume alcohol, and resided in less socio-
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economically deprived areas than non-participants (Fry et al., 2017). Nevertheless, 
because of its large sample size and variety of exposure measurements, it can still 
provide valid scientific inferences about the link between exposures and health 
outcomes that are generalisable to other populations (Fry et al., 2017). Another 
possible point of attention is that the derivation of the diabetes phenotype was 
heterogeneous across different studies, sometimes pooling type 1 and type 2 
diabetes mellitus, or even other types of diabetes, which have partially or entirely 
different aetiopathogenetic mechanisms. This may have added noise to the results 
of individual studies, contributing to some of the inconsistent findings described 
in this review. Last but not least, the study design was cross-sectional in most of 
the reviewed studies, limiting any interpretation of a temporal and/or causal link 
between IR-related diseases and cognitive changes. Cardio-metabolic diseases may 
have a deleterious impact on cerebral blood flow and, consequently, on cognitive 
function, while individuals with poorer cognitive abilities may be less likely to 
engage in healthy lifestyles and behaviours that prevent cardio-metabolic diseases. 
Although a causal relationship between IR-related cardio-metabolic diseases and 
impaired cognitive function is likely, data from the UK Biobank calls for caution 
for the time being. Studies on independent cohorts are required to clarify any 
causal relationship.

Directions for future research
In addition to focusing on better understanding the causal relationship 
between cognitive impairment and cardio-metabolic diseases linked to IR, 
both at the genomic and clinical levels, future research should also examine the 
potential contribution of immune-inflammatory, oxidative, and central insulin 
signalling mechanisms. Genomic research examining the pleiotropic effect of 
genes implicated in insulin signalling, immune-inflammation, and HPA axis 
modulation on both cognition and IR-somatic diseases might aid in unravelling 
the mechanisms behind the phenotypic associations highlighted in this review. 
Additional studies are also needed to further investigate the possible underlying 
mechanisms (and/or alternative explanations) for the seemingly counterintuitive 
findings associating IR-related conditions and better performance on visual 
memory tasks. Functional analyses, possibly including (animal) modelling, could 
provide further answers to the underlying pathological mechanisms involved in 
the differential effects observed for specific cognitive domains. Future research 
could benefit from a more homogeneous classification of participant diagnostic 
groups (e.g., better distinction between type 2 diabetes mellitus cases from those 
with other types of diabetes) to allow better interpretation of the findings and/or 
uncovering of possible underlying biology. Furthermore, despite the lack of clear 
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knowledge on the causal relationship between IR-related conditions and cognitive 
performance nor the identification of (possible) shared underlying factors so far, 
growing evidence suggests a potential future use of hypoglycaemic drugs, such as 
metformin, proliferator-activated receptor-γ (PPAR-γ) agonists, and glucagon-like 
peptide 1 receptor agonists (GLP1RA), in the treatment of cognitive deficits seen 
in various neuropsychiatric disorders (Fanelli & Serretti, 2022; Zhang et al., 2020). 
However, large-scale randomised clinical trials are required to confirm their efficacy 
and safety, which could possibly also inform on the shared pathophysiological 
mechanisms. Cognitive impairment is still one of the most challenging symptom 
domains to tackle with available pharmacological therapy (Fanelli & Serretti, 
2022). As a result, gaining a deeper understanding of the processes underlying the 
reported links between IR and cognitive impairment will be critical in identifying 
potential new targets for pharmacological and/or behavioural intervention in 
patients with neuropsychiatric disorders.

Conclusion
In conclusion, this literature review of UK Biobank studies found substantial 
evidence for an association between an overall worse performance on various 
cognitive domains and cardio-metabolic traits and diseases related to insulin 
resistance, such as obesity, type 2 diabetes mellitus, hypertension, and CAD, in the 
general adult population. The most consistent findings are related to a detrimental 
influence on measures of verbal and numerical reasoning, as well as processing 
speed, while results for visual short-term memory have been mixed or indicated 
enhanced performance. It has been suggested that these associations might 
be mediated by alterations in immune-inflammation or white matter integrity/
connectivity or brain volumes. Considering the worldwide increasing levels of 
multimorbidity and public health concerns about rising rates of cognitive decline, 
our findings offer important suggestions for future research in this crucial field 
and draw the attention of clinicians to the importance of primary and secondary 
prevention in people with cardio-metabolic diseases.
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Abstract

Mood disorders and type 2 diabetes mellitus (T2DM) are prevalent conditions that 
often co-occur. We reviewed the available evidence from longitudinal and Mendelian 
randomisation (MR) studies on the relationship between major depressive disorder 
(MDD), bipolar disorder and T2DM. The clinical implications of this comorbidity 
on the course of either condition and the impact of antidepressants, mood 
stabilisers, and antidiabetic drugs were examined. Consistent evidence indicates a 
bidirectional association between mood disorders and T2DM. T2DM leads to more 
severe depression, whereas depression is associated with more complications and 
higher mortality in T2DM. MR studies  demonstrated a  causal effect of MDD on 
T2DM in Europeans, while a suggestive causal association in the opposite direction 
was found in East Asians. Antidepressants, but not lithium, were associated with a 
higher T2DM risk in the long-term, but confounders cannot be excluded. Some oral 
antidiabetics, such as pioglitazone and liraglutide, may be effective on depressive 
and cognitive symptoms. Studies in multi-ethnic populations, with a more careful 
assessment of confounders and appropriate power, would be important.
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Introduction

Mood disorders and type 2 diabetes mellitus (T2DM) are among the top leading 
causes of disability worldwide, affecting around 4% and 6% of the population, 
respectively (Dattani et al., 2021; Khan et al., 2019; Vos et al., 2020). In addition to 
their high prevalence, epidemiological studies showed that mood disorders and 
T2DM often co-occur (Wimberley et al., 2022). Compared to the general population, 
people with major depressive disorder (MDD) or bipolar disorder (BD) have twice the 
chance of being diagnosed with T2DM (Wimberley et al., 2022). Likewise, the risk of 
developing MDD or BD is almost doubled after a diagnosis of T2DM (Anderson et al., 
2001; Wang et al., 2019; Wimberley et al., 2022). This comorbidity results in high social 
costs, reduced quality of life, and increased mortality (Holt et al., 2014; Molosankwe 
et al., 2012).

Many biological and behavioural/environmental factors may contribute to this 
comorbidity. Patients with mood disorders frequently lead an unhealthy lifestyle, 
e.g., altered sleep patterns, sedentariness, poor diet, and tobacco/substance use, 
which may predispose to insulin resistance and T2DM (Fanelli & Serretti, 2022). 
Second-generation antipsychotics are often prescribed for mood disorders, and 
they can have significant metabolic effects (Goncalves et al., 2015). In terms of 
biological mechanisms, genome-wide and locus-specific patterns of genetic overlap 
were found between MDD, BD and T2DM, suggesting co-heritability between these 
conditions, and pointing to the existence of common aetiopathogenetic mechanisms 
(Fanelli, Erdogan, et al., 2022; Fanelli, Franke, et al., 2022), as illustrated in Figure 1. 
These may include alterations in insulin signalling and inflammation, as well as 
hypothalamic-pituitary-adrenal (HPA) axis and gut microbiota dysregulations 
(Fanelli & Serretti, 2022). Insulin signalling plays a pivotal role in the brain, where it 
is involved in neuroprotection, neurogenesis, and synaptic plasticity (Nguyen et al., 
2018). Of note, insulin from the periphery can cross the blood-brain barrier, but it is 
also centrally produced by the choroid plexus, and insulin receptors are present on 
both neurons and astrocytes (Lyra et al., 2019). Brain insulin resistance may impact 
the dopaminergic-mesolimbic reward circuit and the expression of glutamatergic 
receptors in the hippocampus, with detrimental effects on cognition and hedonic 
perceptions (Fanelli & Serretti, 2022). Both depressive and manic episodes were 
linked to persistent low-grade inflammation and elevated levels of circulating pro-
inflammatory cytokines, such as interleukin-6 and tumour necrosis factor-α, which 
can lead to affective symptoms through HPA axis hyperactivity and changes in 
neurotransmission (Nguyen et al., 2018). A systemic inflammatory state, further 
induced by adipose tissue accumulation and a high-fat diet, may also disrupt insulin 
signalling, leading to the development of T2DM (Nguyen et al., 2018).
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Figure 1. Summary of the evidence from epidemiological and MR studies.

Meta-analyses and cohort studies corroborated the hypothesis of a bidirectional relationship between 
mood disorders and T2DM. MDD predicts higher risk of subsequent T2DM, as confirmed by Mendelian 
randomisation studies. Results of studies on T2DM predicting incident mood disorders are contrasting. 
Many biological and behavioural/environmental factors may contribute to this correlation. The 
co-occurrence of T2DM and mood disorders can lead to worse outcomes for both conditions. 
Abbreviations: HPA, Hypothalamic–pituitary–adrenal; MR, Mendelian randomisation; T2DM, type 2 
diabetes mellitus.

Given the considerable individual and socio-economic impact of the comorbidity 
between T2DM and mood disorders, and the steadily increasing prevalence of both 
these conditions in recent years (Holt et al., 2014; Molosankwe et al., 2012; World 
Health Organization, 2022), it is of paramount interest to clarify the presence of 
a possible causal link between them, to improve their prevention and treatment. 
To achieve this objective, we reviewed the literature on the association between 
mood disorders (MDD and BD) and T2DM. We specifically focused on longitudinal 
studies, as these are best suited to provide information about bidirectional and 
temporal relationships, and Mendelian randomisation (MR) studies, which use 
single-nucleotide polymorphisms (SNPs) associated with an exposure to examine 
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whether an association between the exposure and an outcome is compatible with 
a causal effect (Davies et al., 2018). In addition, we provided a qualitative synthesis 
of longitudinal studies on the impact of co-occurring mood disorders and T2DM, 
in terms of clinical course of either condition. Finally, we evaluated the potential 
beneficial or detrimental effects of psychotropic treatments in T2DM, as well as of 
antidiabetic drugs in mood disorders.

Methods

An electronic search of the literature was conducted on PubMed looking for studies 
investigating the relationship between T2DM and mood disorders, namely MDD 
and BD, and published from inception until September 2022. We used search terms 
related to mood disorders and diabetes mellitus, as well as antidepressants, mood 
stabilisers, and antidiabetic medications. The search was restricted to published 
only studies, written in English and conducted in human samples. The full 
search query used is available as Supplementary Methods. The final search was 
performed on October 3rd, 2022.

The records resulting from the search query were screened to find potentially 
relevant studies by inspecting titles and abstracts. The full text of the selected 
studies and those of uncertain relevance were retrieved and carefully examined to 
determine the pertinence of each study. Then the list of references in the included 
articles was screened to identify other potentially eligible studies not captured by 
the initial search. Studies whose samples consisted of patients with type 1 diabetes 
mellitus were excluded, as well as commentaries, letters and editorials. We only 
included longitudinal (i.e., observational studies and clinical trials), meta-analyses 
of longitudinal studies, and MR studies, as these are the best suited to study the 
temporality and direction of associations and possible causal effects.

The present review was narrative, as a quantitative synthesis and standardised 
quality assessment of the included articles were not within the scope of this work. 
The main reasons for this choice were the heterogeneity of the considered studies 
and the breadth of the research questions and methodologies. However, to provide 
a description of the results of our literature search, we synthesised the article 
selection process in Figure S1.
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Results

The initial literature search identified 2,130 unique abstracts, out of which  
232 full-text articles were evaluated to determine their eligibility. Ultimately,  
84 papers were included in the review. The study selection process is summarised 
in Figure S1.

Epidemiological studies

Mood Disorders predicting incident T2DM
Previous meta-analyses of prospective studies supported the hypothesis of a link 
between depression and a subsequent diagnosis of T2DM (Table S1). In detail, 
a meta-analysis of nine studies with a mean follow-up of 9.4 years and a total of 
174,035 individuals, found a relative risk (RR) of T2DM of 1.37 in the group with 
depression (95% CI 1.14-1.63) (Knol et al., 2006). This result is similar to what was 
reported by a later meta-analysis (RR 1.60, [95% CI 1.37-1.88]) that extended the 
total sample size to 222,019 individuals from 13 studies, with the same average 
duration of follow-up (Mezuk et al., 2008). The inclusion of an almost doubled 
total sample size did not change the result in a following meta-analysis (Rotella & 
Mannucci, 2013).

Other longitudinal studies were published after the mentioned meta-analyses, 
and they overall confirmed that depression increases the risk of incident T2DM in 
samples with various ethnic origins and clinical characteristics. Two studies used 
insurance claims/national registries in Asian samples, extracting data referred to 
11,670 and 461,213 individuals, respectively, referred to ~7 years (Chen et al., 2013; 
Meng et al., 2018). Other studies confirmed the finding, but they showed a smaller 
sample size and/or shorter duration of follow-up, and/or they were performed in 
samples with specific clinical characteristics. Specifically, a study prescription of 
these 2981 individuals found an increased risk of incident T2DM within two years 
in those with depression or anxiety, particularly in those with both conditions. 
However, this association was attenuated after adjusting for risk factors of T2DM, 
such as plasma triglyceride levels and lifestyle (Atlantis et al., 2012). A study on a 
large cohort of 161,808 post-menopausal women reported consistent results, but it 
considered elevated depressive symptoms rather than a diagnosis of MDD, with a 
follow-up of 7.6 years (Ma et al., 2011). This limitation was balanced by the fact that 
the study evaluated the persistence of elevated depressive symptoms (baseline 
and year 3), which helped in distinguishing between transitory symptoms and 
probable MDD. Interestingly, only the group with persistently elevated depressive 
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symptoms (probable MDD) had an increased risk of incident T2DM after adjusting 
for confounders.

Other consistent evidence from the literature highlighted the synergistic 
interaction between metabolic dysregulation/prediabetes and comorbid 
depressive symptoms on the risk of T2DM (Deschenes et al., 2016; Schmitz et al., 
2016). However, it should be noted that a recent study on a total of 1,766 individuals 
from a German nation-wide cohort, followed for 12 years, showed no increased 
risk of incident diabetes in the group with MDD (Nubel et al., 2022). The relatively 
small sample size of this study represents a limitation, but as discussed in the next 
section, longitudinal cohort studies are not free of potential limitations and risk of 
bias, therefore results (both positive and negative) should be interpreted carefully.

Although the cumulative evidence suggests a link between depression and 
incident T2DM, it is important to consider the influence of several confounding 
factors on the presented results. As mentioned before, adjusting for confounders 
reduced the effect size in studies that reported an association. The risk of bias 
coming from confounders is often not easy to evaluate, as the available studies 
were heterogeneous in terms of sample characteristics and covariates included.

Among potential confounders, undetected diabetes at baseline represents 
a relevant variable. Some studies relied on self-reported diabetes at baseline 
(e.g., Chen et al. (2013); Ma et al. (2011)), resulting in the risk of not controlling 
appropriately for this confounder. However, the exclusion of these studies did 
not change the pooled relative risk of T2DM compared to the overall estimate 
in an early meta-analysis (Knol et al., 2006). Other than undetected diabetes at 
baseline, there are risk factors for T2DM, such as overweight/obesity and lifestyle 
(e.g., physical activity and alcohol intake), that not all studies controlled for in an 
exhaustive way (Chen et al., 2013; Knol et al., 2006; Mezuk et al., 2008). Notably, 
many of these risk factors are shared between depression and T2DM (Milaneschi et 
al., 2020), therefore it is fundamental to adjust for them to avoid spurious or inflated 
results. Concomitant medications for depression are another important variable 
to take in account, as antidepressants and antipsychotics can have an impact on 
metabolic parameters (Goncalves et al., 2015; Rotella & Mannucci, 2013). However, 
most studies did not adjust for the prescription of these medications (Knol et al., 
2006; Mezuk et al., 2008), and those that did adjust did not consider the specific 
medications but the class (e.g., Ma et al., (2011). Interestingly, antidepressant 
prescription was associated with an increased risk of incident T2DM, independent 
of depressive symptom severity (Andersohn et al., 2009; Kivimaki et al., 2010; Rubin 
et al., 2010). However, not all studies that reported an effect of antidepressant 
prescription adjusted for psychopathology (Pan et al., 2012). With one exception 
(Wium-Andersen et al., 2021), previous studies did not adjust for the concomitant 
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prescription of antipsychotics. Some antipsychotics are not rarely prescribed 
in depression and the prevalence of diabetes is ~ 12% among people taking 
antipsychotics (2-3 folds than the general population; Holt & Mitchell (2015)), 
therefore this variable should be considered as covariate in future studies.

Other modulating factors have been investigated in relation to the effect of 
depression on the risk of incident T2DM. Several studies considered the severity 
of depression and reported higher risk in case of severe and persistent depressive 
symptoms (Carnethon et al., 2003; Engum, 2007; Golden et al., 2008; Golden et al., 
2004; Ma et al., 2011; Meng et al., 2018; Windle & Windle, 2013). Data about sex-
specific correlations are contrasting - higher risk in women (Carnethon et al., 2003; 
Demmer et al., 2015) or in men (Mezuk et al., 2008) or no effect of sex (Chen et al., 
2013)). Age seems to be a modulating factor, consistent with a couple of studies 
that found that the risk of incident T2DM becomes lower as age increases (Chen 
et al., 2013; Mezuk et al., 2008). Regarding socio-demographic factors, a lower 
education level was associated with increased risk (Mezuk et al., 2008), while social 
support does not seem to modify the risk of incident diabetes (Laursen et al., 2017).

Another relevant point to consider is the possible influence of unipolar vs 
bipolar depression on the risk of incident T2DM, as these disorders have largely 
different pathogenetic mechanisms (Johnston-Wilson et al., 2000). Unfortunately, 
there is much less literature on BD in this regard and no meta-analysis to the best 
of our knowledge. The available results are not univocal, and in most cases the 
potential effects of confounders do not seem appropriately accounted for. One 
of the available studies extracted insurance claims from a nation-wide database 
in Taiwan, to test the risk of initiation of antidiabetic medications within 10 years 
in people with MDD or BD at baseline vs matched controls (Bai et al., 2013). The 
authors reported an increased risk in BD but not in MDD; however, they did not 
control for prescription of psychotropic medications, body mass index (BMI), and 
other risk factors for T2DM, such as prediabetes at baseline. Further, the incidence 
of T2DM itself could have been underestimated, because the prescription of 
antidiabetic medications was the primary outcome, instead of T2DM diagnosis. 
Conversely, studies in the Danish registries found a similar increase in the risk of 
incident diabetes in both MDD and BD (Wimberley et al., 2022; Wium-Andersen 
et al., 2021). The results were confirmed when antidepressant/antipsychotic 
prescription and socio-demographic variables were considered (Wium-Andersen 
et al., 2021). However, these studies did not control for T2DM risk factors either, 
such as BMI, medical comorbidities, and lifestyle at baseline (Wimberley et al., 2022; 
Wium-Andersen et al., 2021). A smaller study with a 13-year follow-up included  
475 patients with affective psychosis (bipolar or unipolar) and found no increased 
risk of incident T2DM after controlling for several confounders, including 
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medications, BMI, cholesterol, and inflammation levels (Dieset et al., 2019). Finally, 
in a Swedish nation-wide cohort of 6,587, 036 individuals, people with a diagnosis 
of BD were found to have a ~1.5 fold increased risk of developing diabetes within 
7 years, but BMI, lifestyle and medications were not considered as potential 
confounders (Crump et al., 2013). Therefore, studies with positive findings were 
larger but did not correct appropriately for confounding factors, the only negative 
study was smaller but adjusted the analyses for confounding factors in a more 
complete manner.

In conclusion, there is quite robust evidence of an increased risk of incident 
T2DM in people with depression (at least MDD), but this effect may be largely 
explained by shared risk factors between depression and T2DM and concomitant 
medications. Overall, epidemiological studies were not able to determine if there 
are depression-specific mechanisms that may link depression to the subsequent 
development of diabetes.

T2DM predicting incident mood disorders
The hypothesis of an increased risk of depressive disorders in people with a 
primary diagnosis of diabetes is controversial (Table S1), as available studies and 
meta-analyses reported small effect sizes and they suggested that medications for 
T2DM, characteristics of the disease and of individuals, lifestyle, and the modality 
used for diagnosis ascertainment could largely account for/modulate the observed 
(small) effects.

Two meta-analyses of longitudinal studies reported T2DM as a modest predictor 
of subsequent depression, with a pooled RR of 1.15 (95% CI 1.02-1.30) (Mezuk 
et al., 2008) and OR of 1.34 (95% CI 1.14-1.57) (Chireh et al., 2019). However, 
sensitivity analyses to test the robustness of findings showed that these results 
may be affected by confounders. Studies with clinical measures of depression 
indeed reported smaller effects than those using only self-reported data, and the 
exclusion of the latter group made the results no longer significant (Mezuk et al., 
2008), similar to results found when considering self-reported diabetes (Chireh et 
al., 2019). Further, the exclusion of samples that had short (≤5 years) follow-ups also 
made the results no longer significant, suggesting that depressive symptoms may 
have been undetected at baseline, at least in part of the studies (Mezuk et al., 2008).

Individual studies found sex-specific effects (higher risk of depression/higher 
severity of depressive symptoms in women vs men (Jacob & Kostev, 2016; Lloyd 
et al., 2020; Salinero-Fort et al., 2018; Trento et al., 2015), age-related effects (Chen 
et al., 2013; Trento et al., 2015) and effects of lifestyle, medical comorbidities, 
and diabetes medications (e.g., (Golden et al., 2008; Jacob & Kostev, 2016; 
Salinero-Fort et al., 2018), though without univocal evidence. This underlines the 
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complexity of the relationship between depression and T2DM. For example, older 
age in patients with T2DM was found to have a negative impact on the severity of 
depressive symptoms (Trento et al., 2015), but older age is also associated with a 
longer duration of T2DM and a higher risk of having developed complications of 
the disease (e.g., retinopathy, neuropathy, coronary heart disease), which were 
associated with increased risk of depression (Jacob & Kostev, 2016; Lloyd et al., 
2020). However, another study reported a higher risk of depression in younger 
patients (Chen et al., 2013). In this regard, it should be noted that the latter study 
considered new diagnoses of depression in patients with T2DM within a period of  
7 years, while the previously mentioned work just assessed the severity of 
depressive symptoms at baseline and at follow-up (after 8 years) (Trento et al., 2015), 
therefore there is a substantial difference in study design.

Variables associated with T2DM severity were also suggested as modulators of 
the occurrence and the persistence of depressive symptomatology, such as worse 
glycaemic control (Fisher et al., 2008; Jacob & Kostev, 2016; Maraldi et al., 2007). 
Several lifestyle factors were also associated with a greater risk of depression, 
including physical inactivity (Lloyd et al., 2020; Salinero-Fort et al., 2018), higher BMI 
and unhealthy eating habits (Lloyd et al., 2020; Schmitz et al., 2013). Consistently with 
these findings, high levels of stress and reduced perceived health status were found 
to be markers of incident depression (Lloyd et al.; 2020). The association with the risk 
of incident depression or depressive mood seems stronger in subjects with treated 
vs untreated diabetes, especially in the case of insulin therapy, which could be a sign 
of worst glycaemic control or more severe complications/comorbidities (Golden et al., 
2008; Lloyd et al., 2020; Pan et al., 2010). In addition, the psychological burden linked 
to the management of a complex therapy may contribute to depressed mood (Golden 
et al, 2008). On the contrary, another study demonstrated that the prescription of 
insulin and oral antidiabetic drugs did not affect the risk of depression (Jacob and 
Kostev, 2016).

The literature is much scarcer for incident BD in T2DM. To the best of our knowledge, 
there are only two large studies in population-based cohorts. An earlier study in a 
Taiwanese population-based cohort (~800,000 individuals) reported a 2.62-fold higher 
risk of a mood disorder (both MDD and BD) in patients with diabetes not taking any 
oral antidiabetic medication, but not in those taking an antidiabetic medication 
(Wahlqvist et al., 2012). A more recent study in the Danish registries confirmed 
increased odds of BD in patients with previous T2DM (hazard ratio [HR]=2.25, 95% 
CI 2.08-2.43), with an effect size comparable to that observed for incident MDD. The 
analyses were adjusted for sex, birth year, and family history of both mood disorders 
and T2DM, but they did not consider possible confounding and/or mediating effects 
of psychotropic medications and/or lifestyle (Wimberley et al., 2022).
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Based on the discussed evidence, we can conclude that the relationship 
between T2DM and incident MDD and BD is complex and likely affected by 
multiple modulators. As discussed, a replicated finding was a higher risk of incident 
depression in women with T2DM compared to men. However, the most recent 
meta-analysis of incident depression in T2DM did not stratify the analyses by sex 
(Chireh et al., 2019), and a previous one did not identify sex effects (Mezuk et al., 
2008), but it did not include the recent studies that highlighted the described 
higher risk in women (see above). This reflects the general difficulty in taking into 
account all the variables that modulate the link between T2DM and depression in 
epidemiological studies.

Mendelian randomisation studies
Several MR studies tested the two-way causal association between MDD and T2DM 
(Table S2), but none between BD and T2DM. A causal effect of MDD on T2DM was 
found by two well-powered two-sample MR studies, using summary statistics of 
genome-wide associations studies, including only subjects of European ancestry 
and a random-effect inverse-variance weighted (IVW) method (OR=1.22, 95% 
CI 1.09-1.36, and OR=1.26, 95% CI 1.10-1.43) (Tang et al., 2020; Tao et al., 2022). 
This effect was robust to sensitivity analyses that excluded possible horizontal 
pleiotropic effects, except for the less efficient Egger-MR –it frequently produces less 
precise estimates and suffers from a significant loss of power –, where the direction 
of the effect was nevertheless maintained. No causal association was shown in the 
opposite direction (T2DM → MDD) by the same studies (Tang et al., 2020; Tao et 
al., 2022). This negative finding is in line with an MR study using population-based 
individual-level data from a Scottish sample (N = 19,858) (Clarke et al., 2017). To 
the best of our knowledge, only one MR study reported a causal association of 
T2DM with MDD, using individual-level data from East-Asian ancestry subjects 
(N=11,506) (Xuan et al., 2018). The results showed a probable causal effect of T2DM 
on MDD (OR=1.83, 95% CI 1.25 - 2.70, and OR=1.57, 95% CI 1.04-2.37, derived using 
the Wald-type estimator with unweighted and weighted genetic scores for T2DM, 
respectively). The findings were confirmed by excluding pleiotropic variants and 
using the IVW method but not the Egger-MR, where the association was found to 
be non-significant and in the opposite direction (Xuan et al., 2018).

Overall, there is robust evidence of a causal effect of MDD on the risk of T2DM 
in European populations, while a causal effect in the opposite direction was found 
only by one study in East-Asian subjects, and it needs replication by more powerful 
studies. Further studies on ethnically diverse samples would be important.
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Effects of mood disorders/T2DM comorbidity on the course of 
either condition
Given the chronic/relapsing nature of both mood disorders and T2DM, it is 
intriguing to better understand whether their co-occurrence may worsen the 
course of either condition.

Many prospective studies have explored depression trajectories in the 
context of T2DM, with the general conclusion that T2DM leads to a greater 
chronicity of depression, and worse depressive symptoms over time (Table S1). 
In this regard, an 8-year follow-up study found that patients with T2DM on 
insulin treatment experienced a mild but significant worsening of depressive 
symptomatology over time (Trento et al., 2015). This was corroborated by a 5-year 
study, showing that most patients with T2DM had low and persistent depressive 
symptoms, with a gradual worsening in 7.5% of cases (Whitworth et al., 2017). A 
lifetime history of MDD, followed by female sex, higher BMI, and younger age, were 
the strongest predictors for persistent depressive symptoms in T2DM (Whitworth 
et al., 2017). A number of social and clinical factors were also associated with 
the recurrence or relapse of depressive symptomatology in T2DM; for example, 
lack of home ownership, diabetes treatment complexity or dissatisfaction with 
antidepressant medications (de Groot et al., 2015), as well as poor control of 
glycaemic parameters (Ell et al., 2012; Maraldi et al., 2007). A recent study indicated 
that MDD occurring either before or after the diagnosis of T2DM may significantly 
increase the risk of dying by suicide (Huang et al., 2022).

No longitudinal studies investigated the relationship between T2DM and 
the clinical course and treatment outcomes of BD. Only one study conducted in 
the population-based Danish registries showed that women but not men with 
treatment-resistant depression (TRD) had a higher prevalence of a previous 
diabetes diagnosis than those without TRD. The risk of subsequent diabetes instead 
was increased for both sexes in individuals with TRD, after adjusting for the age at 
first antidepressant prescription and the number of other medical comorbidities 
(Madsen et al., 2021). However, there is still no longitudinal research investigating 
whether the presence of T2DM in BD or MDD may impact on treatment effects or 
may be related to specific symptom patterns.

Considering the consequences of depression on diabetes, many studies found  
that it may be associated with worse medical outcomes, e.g., more severe 
cardiovascular complications, and higher all-cause mortality (Table S1). This 
association may be at least partly mediated by poorer glycaemic control, which 
effect, despite small, may increase the risk of complications. An association 
between depressive symptoms and increased glycated haemoglobin (HbA1c) 
values was indeed observed in elderly patients at risk of depression or having 
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depression, in a longitudinal 1-year study (Sirirak et al., 2022). A sex-specific effect 
of MDD on glycaemic changes in T2DM was also suggested, with females but not 
males being less likely to return to normal glycaemic values ​​(Nubel et al., 2022). 
However, studies on larger samples found no association between mood symptoms 
or lifetime MDD/BD and worse glycaemic control in T2DM (Aikens et al., 2009; Ismail 
et al., 2017; Speerforck et al., 2019; Whitworth et al., 2017).

As discussed, the effect of depression on glycaemic control seems negligible, but it 
may still considerably increase the risk of complications. In a cohort of elderly Mexican 
Americans, diabetes with comorbid depression predicted a greater risk of vascular 
complications, higher disability and mortality, as well as an earlier occurrence of these 
negative outcomes (Black et al., 2003). The risk of adverse outcomes increased with 
the severity of depression (Black et al., 2003). A number of other studies replicated 
these findings and showed that MDD in T2DM may increase the risk of advanced 
macrovascular complications, such as stroke, myocardial infarction, and heart failure 
(Ismail et al., 2017; Lin et al., 2010; Novak et al., 2016; Scherrer, Garfield, Chrusciel, 
et al., 2011), as well as microvascular complications, such as proliferative retinopathy 
and end-stage renal disease, compared to non-depressed patients with T2DM or 
patients with either diagnosis (Lin et al., 2010; Novak et al., 2016). Not surprisingly, 
in a 12-year follow-up study, baseline diabetes mellitus and lifetime moderate MDD 
were associated with an intensified antidiabetic treatment at follow-up (Speerforck 
et al., 2019). This was not found in diabetic patients with lifetime mild or severe MDD 
or lifetime BD (Speerforck et al., 2019). Most importantly, several studies confirmed 
a synergistic effect of comorbid depression and T2DM on increased mortality, 
even after controlling for sociodemographic, other health, and lifestyle variables 
(Huang et al., 2022; Jung et al., 2021; Naicker et al., 2017; Novak et al., 2016; Prigge 
et al., 2022; Sullivan et al., 2012; Zhang et al., 2005). The increased mortality in the 
presence of this comorbidity exceeded the sum of the risk associated with diabetes 
and depression alone (Prigge et al., 2022). Likewise, longitudinal studies focusing 
on BD and comorbid T2DM have corroborated these findings. In a 7-year follow-up 
study, subjects with BD had a higher risk of dying by a diabetes-specific cause than 
the general population, particularly in females (Crump et al., 2013). Additionally, 
there was an association between BD and premature mortality for diabetes mellitus 
(Crump et al., 2013). A more than 60% increase in the RR of mortality was also shown 
in patients with newly diagnosed BD and previous diabetes mellitus during a 3-year 
follow-up (Pan et al., 2016).
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Do antidepressants and mood stabilisers impact on incident 
T2DM risk?
Many population-based studies found that individuals taking antidepressants 
have an increased risk of incident T2DM, especially in the long-term, as confirmed 
by a meta-analysis including studies with a mean follow-up of 5.8 years (OR 1.31, 
95% CI 1.18–1.45) (Ma et al., 2011; Pan et al., 2010; Rotella & Mannucci, 2013). 
The association was stronger for selective serotonin reuptake inhibitors (SSRI) 
and multiple antidepressant users, while non-significant for other classes of 
antidepressants (mainly tricyclic antidepressants (TCAs)) in a study on middle-aged 
women followed for ~10 years; however, this could be due to the higher frequency 
of SSRIs prescription vs other classes (Pan et al., 2010). Another long follow-up 
study including individuals of both sexes found that those taking antidepressants 
were more likely to develop T2DM, regardless of the antidepressant class/molecule; 
participants were free of diabetes and cardiovascular diseases at baseline (Pan 
et al., 2012). However, the association was attenuated after adjusting for cardio-
metabolic risk factors and BMI (Pan et al., 2012). The link between long-term use 
of antidepressants and increased diabetes risk was confirmed for both TCAs and 
SSRIs in other studies (Andersohn et al., 2009; Kivimaki et al., 2010; Rubin et al., 
2010). Depressed patients on moderate-to-high daily doses of antidepressants 
for more than 24 months showed a nearly doubled risk of diabetes vs non-users, 
and this effect was independent of depression severity (Andersohn et al., 2009). 
In an 18-year study including ~6,000 middle-aged individuals, antidepressant 
use was associated with incident diabetes defined as use of antidiabetics or self-
reported diagnosis, but not with diabetes detected during screenings of blood 
biomarkers or with increased glucose levels over time (Kivimaki et al., 2011). The 
analyses were adjusted for socio-demographic variables, other cardiovascular risk 
factors and medication use. These findings suggest that the association between 
antidepressant use and incident T2DM may be at least partly explained by the 
more frequent healthcare service use in patients with depression (Tusa et al., 2019), 
which increases the probability that T2DM is early diagnosed. This observation, 
together with the difficulty in adjusting for all the factors associated with long-term 
antidepressant use (e.g., lifestyle) suggests caution in concluding there may be an 
association with incident T2DM risk.

The evidence is scarcer regarding the use of lithium or valproate and the risk of 
incident T2DM. Existing studies do not show an increased risk of diabetes in patients 
taking lithium vs other mood stabilisers, taken individually or in combination, but 
the evidence is limited by a short duration of treatment or follow-up and the lack of 
a treatment-free/placebo control group (not feasible due to ethical reasons). In an 
early study, 460 patients with BD in long-term treatment with lithium were followed 
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for a period between 6 months and 6 years; there was no increase in diabetes 
mellitus risk, as observed by fasting blood glucose measurement, although weight 
gain was observed (Vestergaard & Schou, 1987). More recently, in a cohort of 
~7,000 patients with BD, those receiving lithium showed no difference in the rate of 
T2DM compared to those treated with valproate, olanzapine, or quetiapine (Hayes 
et al., 2016). However, the median treatment duration was 1.48 years, which was 
a relevant limitation as T2DM develops typically in the longer term (Hayes et al., 
2016). Lithium in combination with antipsychotics or anticonvulsants showed no 
evidence of increased cardiometabolic risk in patients with BD (Kohler-Forsberg et 
al., 2022); however, also this study had a relatively short follow-up (24 weeks).

Positive effects of treatments for depression and diabetes on 
either condition
The identification of effective treatment strategies for both mood disorders and 
T2DM is pivotal given the high comorbidity between the two conditions, as well 
as the common risk factors and aetiopathogenetic mechanisms (Fanelli & Serretti, 
2022). Early studies investigated which drugs among those approved for MDD or 
BD had the best efficacy in patients with T2DM (e.g., Gulseren et al. (2005)). More 
recently, precision medicine and the development of a systemic vision of psychiatric 
disorders have become highly important. For example, several studies investigated 
the repurposing of antidiabetic drugs for treating mood disorders, as many of them 
cross the blood-brain barrier (Heneka et al., 2005; Kastin et al., 2002; Labuzek et al., 
2010). An overview of studies on this topic is described in Table S3.

Antidepressants and mood-stabilisers
As expected, treatment with antidepressants showed an effect on depressive 
symptoms in samples of depressed patients with comorbid T2DM or altered 
glycaemic status (Table S3). The available clinical trials did not find differences in 
the decrease of depressive symptoms within 12 weeks when comparing an SSRI vs 
another SSRI (Gulseren et al., 2005; Khazaie et al., 2011). Two trials reported a higher 
benefit of agomelatine over an SSRI (sertraline or paroxetine) on depression scores 
after 12-16 weeks of treatment (Kang et al., 2015; Karaiskos et al., 2013). However, 
these studies did not provide an estimation of power to support sample size choice, 
and the statistical significance of the difference between the considered drugs 
seems doubtful. Other studies compared an antidepressant (SSRI or nortriptyline) 
vs placebo, and confirmed the benefit of the active treatment on depressive 
symptoms (Lustman et al., 2000; Lustman et al., 1997), despite one negative 
6-month study on a small sample treated with sertraline (Echeverry et al., 2009). A 
couple of studies investigated the potential benefits of paroxetine in patients with 
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T2DM and subthreshold-mild depressive symptoms, finding no benefits on quality 
of life in the short term (10 weeks) or after 6 months (Paile-Hyvarinen et al., 2003, 
2007). A recent network meta-analysis found that escitalopram, agomelatine and 
paroxetine have evidence of higher benefit on depression severity in patients with 
T2DM vs placebo, with escitalopram raking first; on the other hand, nortriptyline 
had a large but non-significant effect (Srisurapanont et al., 2022).

Data about antidepressant efficacy on glycaemic control (HbA1c) are conflicting. 
Although long-term antidepressant use was suggested to increase incident T2DM 
risk (see the previous paragraph), SSRIs may improve glycaemic control after  
12 weeks, with similar benefits of citalopram and fluoxetine (Khazaie et al., 2011) and 
higher effect of sertraline over placebo at month 6 (Echeverry et al., 2009). However, 
no benefits over placebo were reported for citalopram (Nicolau et al., 2013), or no 
improvement in patients receiving fluoxetine or paroxetine (Gulseren et al., 2005). 
The results of a recent meta-analysis are helpful to interpret these conflicting 
results (Srisurapanont et al., 2022). The paper found that vortioxetine, escitalopram, 
agomelatine, sertraline, fluoxetine, and paroxetine reduced HbA1c significantly 
more than placebo, with vortioxetine ranking first, followed by escitalopram and 
agomelatine. The meta-analysis also reported that the hypoglycaemic benefits 
of agomelatine and vortioxetine were drawn from two trials with a moderate risk 
of bias. Interestingly, an open-label trial conducted in 93 patients with comorbid 
T2DM and MDD demonstrated that bupropion hydrochloride improved glycaemic 
control, BMI, as well as diabetes self-care in the acute phase (10 weeks), and this 
effect persisted during the maintenance phase (24 weeks) (Lustman et al., 2007). 
The improvement in glycaemic control in both the short- and medium-term was 
suggested to be potentially mediated by improvements in mood, although the 
findings must be interpreted with caution given the lack of a control arm and 
randomisation, as well as the small sample size (Lustman et al., 2007). Of note, 
in a large cohort of 93,653 individuals with depression, SSRIs, TCAs and other 
antidepressants prescribed for at least 12 weeks reduced the risk of incident 
myocardial infarction within a period of 8 years, with HRs ranging from 0.50 to 0.66 
(Scherrer, Garfield, Lustman, et al., 2011).

To summarise, the available evidence suggests that antidepressants are effective 
in treating depression in patients with T2DM, and some antidepressants may have 
positive effects on glycaemic control, in the short term. Escitalopram seems to have 
good support for both depressive symptoms and glycaemic control. The positive 
impact of effectively treating depression in the long term should also be considered. 
Unfortunately, the studies that investigated the potential effects of mood stabilisers 
on HbA1c levels and T2DM complications are much scarcer. In patients with BD, mood 
stabilisers (including lithium) and antidepressants, in monotherapy or combination, 



3

97|Clinical insights into the cross-link between mood disorders and type 2 diabetes

were associated with a decrease in HbA1c levels vs no psychotropic medication, 
independent from having a diagnosis of diabetes (Castilla-Puentes, 2007). On the 
contrary, antipsychotics in monotherapy or in combination with a mood stabiliser are 
known to have a negative effect on glycaemic control, while lithium monotherapy 
may be slightly better than lithium combination with another mood stabiliser 
(Castilla-Puentes, 2007; Kohler-Forsberg et al., 2022; Kuperberg et al., 2022).

Antidiabetic medications

Insulin
Insulin receptor knockout mice have depressive-like behaviours, and both 
depression and cognitive symptoms were associated with low insulin-like growth 
factor-1 in the elderly (Mueller et al., 2018). Therefore, it was hypothesised that 
insulin may have effects on both depressive and cognitive symptoms, particularly 
in the elderly. A previous study tested this hypothesis in type 2 diabetic elderly 
patients with poor glycaemic control, by randomising them to continuing oral 
medication, switching to insulin twice-a-day or basal insulin (Hendra & Taylor, 
2004). The group that switched to basal insulin showed a decrease in depressive 
symptoms at months 1 and 3, though not at month 6; however, the study included 
only 19 patients per arm and the clinical significance and reproducibility of results 
seem doubtful. Another small study in elderly patients with poorly controlled T2DM 
adopted a similar design (though not randomised), with one group continuing oral 
medication and another switching to insulin. This study reported benefits on well-
being and mood in the group that switched to insulin, however, as outlined, the 
study had relevant limitations (Reza et al., 2002).

Other studies tested intranasal insulin effects on mood and cognitive function in 
healthy individuals (Benedict et al., 2004), in euthymic BD (McIntyre et al., 2012) or 
in treatment-resistant depression (TRD) (Cha et al., 2017). These studies were also 
limited by small sample sizes. The first study reported an improvement in mood 
and memory after 8 weeks (vs placebo) in healthy individuals, consistently with the 
results of the second, which found an improvement in executive functioning in BD 
patients at week 8. On the contrary, the latter study did not find benefits on mood 
or neurocognitive functioning in TRD.

In conclusion, there is currently poor evidence in support of a possible effect of 
insulin on mood and neurocognitive functioning, since the results come from small 
and heterogeneous samples (Table S3).
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Metformin
Metformin, a biguanide compound, is a commonly prescribed hypoglycaemic 
agent. Two recent meta-analyses of randomised clinical trials (RCTs) found 
metformin to have a neutral effect on mood symptomatology compared to placebo 
and inferior to active controls (Moulton et al., 2018; Nibber et al., 2022). Among the 
RCTs included in these meta-analyses, only one found metformin to be effective 
on depressive symptomatology, mainly by improving cognition (Guo et al., 2014). 
This result is in line with the meta-analytic finding that metformin was superior 
to placebo in improving cognitive function in patients with cognitive impairment 
(Nibber et al., 2022).

A recent randomised placebo-controlled study not included in the cited meta-
analyses tested adjunctive metformin in a group of non-diabetic patients with 
treatment-resistant BD and insulin resistance (Calkin et al., 2022). The study 
reported a significant improvement in depression and anxiety, as well as in insulin 
resistance, although gastro-intestinal side effects were common.

In conclusion, metformin does not show consistent benefits on depressive 
symptoms (Table S3), and a relevant point for future research would be to test if 
it may improve specific depressive symptoms (e.g., cognitive symptoms) rather 
than the whole depressive spectrum. Another hypothesis worth further study is 
the possible preventing effects of oral antidiabetics on the development of mood 
disorders. This was suggested by a population-based study showing that the 
combination of metformin and sulfonylurea may reduce the risk of mood disorders 
in patients with T2DM, despite metformin alone did not show a protective role 
(Wahlqvist et al., 2012).

Thiazolidinediones
Thiazolidinediones, also known as peroxisome proliferator-activated receptor-γ 
(PPAR-γ) agonists, are oral hypoglycaemic agents that ameliorate insulin sensitivity 
by enhancing fatty acids storage and adipocytes differentiation (Raymond et al., 
2014). A first meta-analysis included four RCTs and tested pioglitazone in MDD  
or BD, showing benefits vs control treatments, on both remission (OR 3.3, 95% CI  
1.4-7.8) and symptom improvement (mean difference=2.8, 95% CI 1.4-4.3) (Colle 
et al., 2017). The benefit of pioglitazone on depressive symptomatology either 
alone or as an add-on treatment was confirmed by a following larger meta-analysis 
(Moulton et al., 2018). Interestingly, the improvement in depressive symptoms was 
predicted by the female sex, but not by the severity of depressive symptoms or 
by glycaemic control at baseline (Moulton et al., 2018). A significant reduction of 
depressive symptoms was also reported in three open-label studies, two testing 
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pioglitazone and one rosiglitazone (Kemp et al., 2012; Kemp et al., 2014; Rasgon et 
al., 2010). However, a double-blind placebo-controlled RCT (not included in the cited 
meta-analyses) failed to demonstrate the antidepressant effects of pioglitazone in  
38 outpatients with bipolar depression, but it was limited by lack of power and the 
concurrent use of other psychotropic medications (Aftab et al., 2019).

Overall, there is suggestive evidence for a positive effect of pioglitazone on  
depressive symptomatology, regardless of a mood disorder diagnosis (Table S3). 
However, previous meta-analyses suffer from high heterogeneity, and future 
studies should include more homogeneous populations, particularly in terms of 
psychiatric diagnosis.

Glucagon-like peptide-1 receptor agonists (GLP-1RAs)
Most studies on the neuropsychiatric effects of glucagon-like peptide (GLP-1) 
receptor agonists (GLP-1RAs) were conducted on animal models (e.g., (Chaves 
Filho et al., 2020). A previous meta-analysis considered the effect of GLP-1RAs on 
depression rating scales and found GLP-1RAs to be superior in reducing depression 
compared to control treatments, meta-analysing data that included both depressed 
and non-depressed patients with diabetes (Pozzi et al., 2019). Limitations of these 
results are the small number of included studies, the possibility of severe bias found 
for some studies, and the high heterogeneity.

As outlined for other anti-diabetic treatments, cognitive dysfunction represents 
a possible target symptom for GLP-1RAs as well. A four-week open-label trial tested 
the effectiveness of liraglutide on a sample of 19 non-diabetic patients with MDD 
or BD and below-average cognitive performance (Mansur et al., 2017). The results 
are clearly preliminary, but it is encouraging that a significant improvement in 
depressive symptoms and executive functions was observed, with no correlation 
with levels of glycaemia or insulin resistance (Table S3).

Dipeptidyl peptidase-4 inhibitors
Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral antidiabetics, also known 
as gliptins, which act by blocking the degradation of the incretin hormones (Kasina 
& Baradhi, 2022). These hormones regulate glycaemic homeostasis after food intake 
by increasing insulin secretion (Kasina & Baradhi, 2022). DPP-4 inhibitors also have 
anti-apoptotic, anti-inflammatory, and immunomodulatory actions on multiple 
tissues (Kasina & Baradhi, 2022). These mechanisms seem very promising in terms 
of a possible antidepressant effect; however, all the available studies provided 
negative results. An RCT in 44 middle-aged patients with T2DM assessed the effect 
of sitagliptin, a DPP-4 inhibitor, and found it was inferior to placebo in alleviating 
depressive symptoms at week 12 (Moulton et al., 2021). The RCT had, however, several 
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limitations, including an inadequate sample size, the exclusion of patients with 
very poor glycaemic control, and the use of a self-reported measure of depressive 
symptoms (Moulton et al., 2021). An observational study in 10 elderly patients 
with T2DM evaluated the effect of the DPP-4 inhibitor vildagliptin, as an add-on to 
metformin, with no evidence of benefits on depressive or cognitive symptoms at 
month 11 vs baseline (Tasci et al., 2013). Another RCT compared the DPP-4 inhibitor 
linagliptin to glimepiride, a hypoglycaemic drug of the sulphonylurea class, and 
found no differences on cognition, in 3163 middle-aged patients with T2DM, over a 
median of ~6 years of follow-up (Biessels et al., 2021).

Overall, there is currently no evidence to support the use of DPP-4 inhibitors for 
the treatment of depressive and cognitive symptoms (Table S3); however, there are 
only three available studies, two of them showed a small sample size, and each of 
them had a different design.

Non-pharmacological interventions
A Cochrane meta-analysis found a non-significant effect of psychological 
interventions vs usual care (including pharmacological treatment when indicated) 
on glycaemic control in individuals with both depression and diabetes, in the short-, 
medium- and long-term (Baumeister et al., 2012). This meta-analysis also outlined 
that the quality of the available evidence was low, and it was not possible to evaluate 
the impact of psychological interventions on the risk of diabetes complications.

When looking at individual studies, the evidence is heterogeneous. 
Psychotherapy (in particular cognitive-behavioural therapy [CBT]), combined with 
pharmacological treatment and/or lifestyle modifications, was associated with a 
higher rate of response in terms of depressive symptomatology, both in the short- 
(10-12 weeks) and medium-term (6-12 months) (de Groot et al., 2019; Huang et al., 
2016; Lustman et al., 1998; Piette et al., 2011; Safren et al., 2014). Only a part of 
these studies also showed a benefit of the intervention on glycaemic control (de 
Groot et al., 2019; Huang et al., 2016; Safren et al., 2014). However, these studies 
were generally limited in sample size (<100 participants in most cases) and were 
heterogeneous in terms of inclusion criteria, type of intervention and type of 
control. For example, some studies compared CBT with diabetes self-management 
training (Lustman et al., 1998), or other forms of enhanced usual care (e.g., 
educational and self-help material (Piette et al., 2011)), while others used just usual 
care as control (e.g., Huang et al. (2016)).

On the other hand, psychoeducation or behavioural activation vs treatment 
as usual or other forms of enhanced treatment (e.g., physical exercise) does not 
seem to provide benefits in diabetic patients with subthreshold depression or 
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depression, according to previous studies in small samples (Pibernik-Okanovic et 
al., 2009; Pibernik-Okanovic et al., 2015; Schneider et al., 2016).

A recent meta-analysis (32 RCTs, including a total of 3,543 patients) contributed 
to clarify the cumulative evidence (van der Feltz-Cornelis et al., 2021). The 
results supported the efficacy of group‐based therapy, psychotherapy, and 
collaborative care on glycaemic control in patients with diabetes and depressive 
symptomatology, with moderate heterogeneity among studies. High baseline 
depression and high baseline HbA1c were associated with a greater reduction in 
HbA1c. However, the meta-analysis also outlined that most studies had some risk 
of bias, mostly unclear reporting about randomisation and blinding. Moreover, the 
control group considered in each study was variable (e.g., waiting list, usual care). 
Another limitation of this and the meta-analysis discussed above (Baumeister et 
al., 2012) was the inclusion of RCTs of both type 1 and T2DM, despite the fact that 
these have different pathogenesis and treatment.

Discussion

Summary of findings
Meta-analyses and cohort studies corroborated the hypothesis of a bidirectional 
relationship between mood disorders and T2DM (Figure 1). MDD predicts a higher 
risk of subsequent T2DM, as confirmed by Mendelian randomisation studies, 
and this appears the finding with the strongest support emerging from this 
review. Evidence is scarcer for BD predicting the risk of incident T2DM, and the 
risk of confounding effects could not be excluded. Studies on T2DM predicting 
subsequent mood disorders outline a possible association, but show conflicting 
results, and further investigations are needed, particularly in patients with BD.

Independently from possible causal links, the available studies clearly 
demonstrated that the co-occurrence of T2DM and MDD can lead to worse outcomes 
for both conditions. T2DM leads to greater depression treatment resistance, chronicity, 
and more severe symptoms, while MDD leads to worse medical outcomes and higher 
mortality in T2DM. Both T2DM and mood disorders are associated with detrimental 
consequences on cognitive functioning and an increased risk of dementia (G. Fanelli 
et al., 2022; Jorm, 2000). Therefore, the promotion of a healthy lifestyle represents 
a clinical priority, with the Mediterranean diet and physical exercise having strong 
support for the prevention of both conditions (Strasser & Fuchs, 2015). The early 
detection and treatment of impaired glucose tolerance in patients with mood 
disorders are of similar importance, as well as of anxiety, depressed/irritable mood, or 
sleep alterations in patients with T2DM (Benasi et al., 2021).



102 | Chapter 3

Psychopharmacological treatments may contribute to an increased risk of 
developing T2DM in patients with mood disorders, particularly in the long term, 
and it is advisable to avoid combination therapies. However, certain antidepressants 
and mood stabilisers showed efficacy in treating mood symptoms in patients with 
T2DM, and they may also have beneficial effects on glycaemic control at least in 
the short term. Interestingly, promising results from clinical trials showed potential 
antidepressant benefits of hypoglycaemic drugs.

Modulators of the bidirectional association between mood disorders 
and T2DM
There are multiple confounders that should be taken into account when considering 
the bidirectional association between mood disorders and T2DM. As noted, these 
include cardiometabolic risk factors, such as cigarette smoking, which is frequent 
in mood disorders (Otte et al., 2016). MDD, particularly the atypical subtype, is 
often characterised by sedentary behaviour and increased appetite, leading to 
overweight/obesity (Otte et al., 2016). Patients with BD have disrupted circadian 
rhythms and a high rate of alcohol and substance consumption (Hunt et al., 2016). 
Several medical comorbidities may affect mood and increase the risk of T2DM, 
such as obesity, Cushing’s disease, polycystic ovary syndrome, and hypothyroidism 
(Diez & Iglesias, 2012; Golden, 2007; Kolhe et al., 2022). Further, mood disorders 
are characterised by low adherence to pharmacological and non-pharmacological 
medical prescriptions, which may increase the likelihood of incident T2DM (Grenard 
et al., 2011). On the other hand, the prescription of some medications for mood 
disorders can increase the risk of metabolic alterations. Long-term treatment with 
antipsychotics, especially second-generation ones, increases the risk of T2DM 
(Burghardt et al., 2018; Vancampfort et al., 2016). Almost all the included studies 
considered some of the discussed confounders and provided adjusted analyses 
that substantially confirmed the initial results. However, as previously discussed, we 
noticed a high heterogeneity in the factors each study adjusted for.

Given the metabolic effects of some psychotropic drugs, another significant topic 
discussed in this review was the possible effect of antidepressant prescriptions in 
modulating the link between mood disorders and T2DM. The prescription of more 
than one antidepressant and for a longer period was associated with a higher risk 
of T2DM (Pan et al., 2010), corroborating the importance of preferring monotherapy 
when possible. On the other hand, antidepressant combinations prescribed over a 
long period could indicate a more severe form of depression, e.g., with chronicity 
and recurrence, which are predictors of T2DM (Andersohn et al., 2009; Rubin et al., 
2010). Another issue that suggests the complexity of the illustrated relationship is 
the finding that antidepressant users may seek medical attention more frequently 
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than untreated or non-depressed people, increasing the likelihood of being 
diagnosed with medical conditions, including T2DM (Kivimaki et al., 2010). As 
previously stated, it is necessary to consider all the potential confounders and 
be cautious in stating that antidepressants may have a role in increasing the risk 
of diabetes.

Possible effects of medications for mood disorders and T2DM on the 
comorbid condition
Previous studies hypothesised that antidepressant prescription in patients with 
T2DM may ameliorate not only depression but also glycaemic control, despite 
conflicting data. Unfortunately, most antidepressant clinical trials excluded patients 
with T2DM, while those designed for comorbid mood disorders and T2DM are only 
a few and had small sample sizes. According to a meta-analysis of observational 
and cross-sectional studies in patients with T2DM and depression, individual 
characteristics may influence the probability of receiving an antidepressant 
prescription, such as sex, ethnicity, concurrent medications and comorbidities 
(Jeffery et al., 2021). Keeping in mind these limitations and modulating factors, 
the available evidence suggests that some SSRIs (particularly escitalopram), 
agomelatine, vortioxetine, and bupropion may have a positive impact on glycaemic 
control and in the prevention of cardiovascular complications, at least in the short-
term (Lustman et al., 2007; Srisurapanont et al., 2022) (Figure 2).

Lithium is another medication that may have a positive effect in patients with 
mood disorders at risk of T2DM (Figure 2). Lithium acts on several molecular 
intracellular effectors of insulin signalling (Campbell et al., 2022). Indeed, lithium 
decreases the signalling of the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/
Akt) pathway, by inhibiting the phosphatidylinositol cycle (PI-cycle) upstream and 
glycogen synthase kinase-3β (GSK3β) downstream (Campbell et al., 2022). Insulin 
resistance and related hyperinsulinaemia lead to chronic GSK3β overactivation, 
which negatively impacts on glycidic metabolism and energy production at the 
mitochondrial level (Campbell et al., 2022). Lithium could therefore be considered 
an insulin sensitiser for cells, as suggested also by animal studies (Lee & Kim, 2007; 
Rossetti, 1989). Markers of insulin resistance should be considered as possible 
predictors of lithium response in future studies.

Insulin signalling plays a critical role in the energy metabolism of both neurons 
and glia, in brain areas involved in mood regulation and cognition (Lyra et al., 
2019), therefore antidiabetic medications may exert effects also in the brain 
(Figure 2). While insulin does not seem to improve mood, a procognitive action 
was hypothesised. Metformin was broadly tested for preventing or reducing the 
metabolic side effects of antipsychotics (Vancampfort et al., 2019) and it may 
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modulate the blood-brain barrier function with neuroprotective benefits (Takata 
et al., 2013). Nevertheless, clinical studies do not provide conclusive results on 
possible antidepressant or procognitive effects. On the other hand, encouraging 
evidence is available for PPAR-γ receptor agonists. Thiazolidinediones' activation 
of central PPAR-γ receptors protects neurons from oxidative stress and apoptosis, 
and it enhances mitochondrial energy generation (Hauner, 2002; Villapol, 
2018). GLP-1RAs enhance neurogenesis via the 5' adenosine monophosphate-
activated protein kinase (AMPK)-pathway and have very preliminary evidence of 
antidepressant benefits (Andreozzi et al., 2016). Intriguingly, thiazolidinediones 
and GLP-1RAs exhibit anti-inflammatory effects, attributed to a downregulation of 
pro-inflammatory genes (Kothari et al., 2016).

Figure 2. Effects of treatments for depression and diabetes on either condition.

Antidepressants, namely escitalopram, agomelatine, vortioxetine, and bupropion, may have a 
positive impact on glycaemic control, at least in the short-term, but the prescription of more than one 
antidepressant and for a long period may increase the risk of T2DM. Suggestive evidence indicates that 
lithium may improve glycaemic control, possibly by directly acting on the insulin signalling pathway. 
As shown at the top right of this figure, it has been hypothesised that drugs commonly prescribed 
for T2DM also exert effects on the brain. GLP-1R agonists and PPAR-γ agonists, such as liraglutide 
and pioglitazone, have shown promise in relation to their possible antidepressant effects. There is 
little evidence to support a possible effect of insulin and metformin on mood and neurocognitive 
functioning. No evidence supported the use of DPP-4 inhibitors for the treatment of depressive 
and cognitive symptoms. Abbreviations: PPAR-γ, peroxisome proliferator-activated receptor-γ;  
GLP-1R=glucagon-like peptide-1 receptor; DPP-4, dipeptidyl peptidase-4; T2DM, type 2 diabetes mellitus.
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Limitations of the available studies
This review aimed to provide a comprehensive overview on the topic of interest; 
however, the reviewed studies showed several limitations that should be 
considered. Longer follow-ups would have been useful to intercept all cases of 
incident T2DM, which have typically an insidious onset, to better analyse the course 
of these chronic/relapsing conditions, and to detect the effects of medications 
on depressive and metabolic symptoms. The heterogeneous presentations of 
both mood disorders and T2DM should be better considered, to reduce the risk 
of stratification, and to disentangle possible differences due to disease subtypes 
(e.g., MDD with atypical vs melancholic features, BD type 1 vs 2), various disease 
stages (e.g., acute or remission phases, depressive or manic phases, earlier or later 
stages of T2DM), presence or absence of complications and/or other comorbidities. 
Another issue that came up as a possible limitation was the use of self-reported 
questionnaires for the diagnosis of depression in many studies, and the prescription 
of antidepressants as a proxy for depression in a few studies (e.g., (Ismail et 
al., 2017; Ma et al., 2011). Likewise, in several studies T2DM was self-reported or 
assessed using records of antidiabetic treatments (e.g., (Atlantis et al., 2010; Bai et 
al., 2013), which could result in an underestimation of the incidence of diabetes. 
Some studies did not differentiate between type 1 and type 2 diabetes. However, 
>95% of all diagnosed cases of diabetes are T2DM (World Health Organization, 
2022). Finally, as previously outlined, common confounding variables, such as 
lifestyle and medication use, were not systematically considered in previous 
research, and some important topics were only marginally or not investigated. It is 
worth noting that, despite the evidence of brain insulin resistance being involved 
in BD aetiopathology (Mansur et al., 2021), there are no or few studies in BD for 
all the areas considered in this review. The paucity of studies could be explained 
by the lower prevalence of BD than MDD (Dattani et al., 2021), and the common 
use of screening and self-reported questionnaires in population studies, which 
have low positive predictive values for BD (Smith et al., 2011). Since cross-sectional 
studies have found that people with comorbid T2DM are more likely to experience 
a chronic course of BD, as well as rapid cycling, and are less prone to respond to 
lithium (Calkin et al., 2022; Calkin et al., 2015), future prospective studies should 
aim to elucidate the complex relationship between T2DM and BD and to treat more 
effectively these disabling forms of BD.

Conclusion
Epidemiological studies and meta-analyses consistently suggested an increased 
risk of incident T2DM in mood disorders and vice versa, with possible sex-specific 
effects. However, the evidence was less strong for the effect of T2DM on incident 
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depression, and these associations may be subject to undetected confounders. 
T2DM leads to greater treatment resistance, chronicity and more severe symptoms 
of depression, and depression leads to worse medical outcomes, micro- and 
macrovascular complications, and higher mortality in T2DM. Some antidepressants 
may improve glycaemic control in the short term; however, they may be associated 
with metabolic alterations in the long-term. Lithium may have protective effects on 
metabolic parameters vs other treatment options, but long-term studies are lacking. 
The use of some oral antidiabetics, such as thiazolidinediones and GLP-1RAs, may 
be beneficial in treating depressive and cognitive symptoms in mood disorders.
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Abstract

Major depressive disorder (MDD) and insulin resistance (IR)-related conditions are 
major contributors to global disability. Their co-occurrence complicates clinical 
outcomes, increasing mortality and symptom severity. In this study, we investigated 
the association of IR-related conditions and related polygenic scores (PGSs) with MDD 
clinical profile and treatment outcomes, using primary care records from UK Biobank. 
We identified MDD cases and IR-related conditions, as well as measures of depression 
treatment outcomes (e.g., resistance) from the records. Clinical-demographic variables 
were derived from self-reports, and IR-related PGSs were calculated using PRS-CS. 
Univariable analyses were conducted to compare socio-demographic and clinical 
variables of MDD cases with (IR+) and without lifetime IR-related conditions. Multiple 
regressions were performed to identify factors, including IR-related PGSs, potentially 
associated with treatment outcomes, adjusting for confounders. Among 30,919 MDD 
cases, 51.95% were IR+. These had more antidepressant prescriptions and classes 
utilisation and longer treatment duration than patients without IR-related conditions 
(p<0.001). IR+ participants showed distinctive depressive profiles, characterised by 
concentration issues, loneliness and inadequacy feelings, which varied according 
to the timing of MDD diagnosis relative to IR-related conditions. After adjusting for 
confounders, IR-related conditions (i.e., cardiovascular diseases, hypertension, non-
alcoholic fatty liver disease, obesity/overweight, prediabetes, and type 2 diabetes 
mellitus) were associated with antidepressant non-response/resistance and longer 
treatment duration, particularly when MDD preceded IR-related conditions. No 
significant PGS associations were found with antidepressant treatment outcomes. 
Our findings support an integrated treatment approach, prioritising both psychiatric 
and metabolic health, and public health strategies aimed at early intervention and 
prevention of IR in MDD.
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Introduction

Major depressive disorder (MDD) and insulin resistance (IR)-related conditions rank 
among the leading causes of disability worldwide, and their incidence continues to 
grow to epidemic proportions (GBD, 2020). IR, which is characterised by diminished 
cellular response to insulin in muscles, fat, and liver, is a common feature 
underlying cardio-metabolic conditions like type 2 diabetes mellitus (T2DM), 
obesity, dyslipidaemia, and cardiovascular diseases (CVDs) (James et al., 2021). 
These conditions are increasingly recognised as significant risk factors for 
psychiatric disorders, notably MDD (Possidente et al., 2023).

The epidemiological link between MDD and IR-related conditions has been 
well-established (Rajan et al., 2020; Wimberley et al., 2022). The risk for IR-related 
conditions is higher among patients with MDD, and, in turn, people with T2DM and 
obesity have up to 4-fold higher risk for MDD (Possidente et al., 2023). Comorbidity 
with IR-related conditions in individuals with MDD adversely affects the clinical 
trajectory of depression, resulting in increased severity, greater chronicity, and 
higher mortality rates (Fanelli & Serretti, 2022; Possidente et al., 2023).

Recent studies have identified shared genetics and pathophysiological 
mechanisms between IR and MDD, including dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis, chronic low-grade inflammation, alterations in the gut 
microbiota, and neurotransmitter systems, suggesting a bi-directional relationship 
where each condition may influence the onset of the other (Fanelli, Franke, et al., 2022; 
Fanelli & Serretti, 2022; Possidente et al., 2023). In MDD, chronic stress induces 
HPA axis hyperactivation, resulting in sustained cortisol elevation that promotes 
gluconeogenesis, impairs insulin-mediated glucose uptake in peripheral tissues, and 
elevates circulating free fatty acids, thereby contributing to IR (Fanelli et al., 2025). 
Concurrently, MDD-associated inflammation can disrupt insulin receptor signalling 
and contribute to metabolic dysfunction (Fanelli et al., 2025; Possidente et al., 2023). 
On the other hand, IR within the central nervous system impairs synaptic plasticity 
and affects mood-regulating neurotransmitter systems (Fanelli et al., 2025; 
Possidente et al., 2023). These shared pathophysiological mechanisms have also 
been linked to resistance to treatments (Borgiani et al., 2024; Murphy et al., 2017). 
The first exploration of insulin’s effects in psychiatric disorders was unfortunately 
linked to insulin shock therapy, introduced in the mid-20th century as a treatment 
for severe psychiatric conditions; this approach was abandoned by the 1970s, due 
to the lack of therapeutic rationale and risks of prolonged hypoglycaemia and other 
side effects (Freudenthal & Moncrieff, 2022). As discussed above, in recent years, 
the study of IR in psychiatric disorders has been based on solid scientific evidence 
coming from both epidemiological and neurobiological studies.
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Traditional antidepressant drugs are a cornerstone of MDD management. They 
address imbalances of distinct neurotransmitter systems but display inconsistent 
treatment efficacy. About 60% of treated individuals, in fact, do not reach complete 
clinical remission after a full course of treatment (De Carlo et al., 2016). This 
variability in response is partly attributed to the high clinical and pathophysiological 
heterogeneity of MDD, which is not restricted to monoamine system abnormalities 
(Oliva et al., 2023); one of the most studied MDD subgroups is characterised by 
metabolic disturbances, and it has been named immune-metabolic depression 
(Milaneschi et al., 2020). The presence of IR-related conditions in patients with MDD 
results in significant clinical challenges. The altered inflammatory and endocrine 
profile in these patients might reduce the effectiveness of standard antidepressant 
therapies, contributing to treatment-resistant depression (TRD) (Murphy et al., 2017). 
Therefore, understanding the influence of IR and related conditions on antidepressant 
response is essential for developing personalised treatment strategies, which is 
a key goal for precision psychiatry (van Dellen, 2024). Some antidepressants, like 
monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs), may 
exacerbate metabolic disturbances, further complicating treatment (Fanelli & 
Serretti, 2022). This necessitates a careful balancing, to weight the expected benefits 
on mental health against the potential metabolic risks.

Genomic studies have highlighted the role of genetic predisposition in the 
development of both MDD and IR, hinting to their shared genetic aaetiology 
(Fanelli, Franke, et al., 2022). Polygenic scores (PGSs) quantify the cumulative effect 
of genetic variants associated with a particular trait or disease; they are a promising 
approach for studying the clinical/genetic heterogeneity and treatment response 
in depression (Oliva et al., 2023), heralding personalised medicine approaches 
based on individual genetic profiles.

Despite growing evidence supporting a link between IR and MDD, there is still a 
paucity of large-scale studies comprehensively exploring the association between 
IR-related conditions and treatment outcomes in MDD (Kraus et al., 2023; Madsen 
et al., 2021). Particularly, the temporal relationship between the onset of IR-related 
conditions and MDD, and how this sequence influences the clinical course of MDD 
and response to treatment, is not well-understood. This gap in knowledge hinders 
possible considerations for developing more well-tolerated and effective treatment 
strategies for patients with MDD and comorbid IR-related conditions.

The present study investigated whether IR-related conditions and their PGSs are 
associated with the clinical course of MDD or response to antidepressant treatment, 
considering also which condition was diagnosed earlier. This study leveraged data 
from the UK Biobank (UKB) cohort linked to primary care records, providing the 
opportunity to examine these relationships in a large population cohort.
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Methods

UK Biobank cohort and linked primary care data
This study utilises data from the UKB, which is a large-scale, prospective cohort 
study providing extensive genetic, lifestyle, and health data from approximately 
500,000 individuals across the UK, aged between 40 and 69 years at recruitment 
(2006-2010) (Bycroft et al., 2018). Primary care data were available for ~45% of 
the cohort (230,096 participants), reflecting regional and provider variability (UK 
Biobank, 2019). Missing or incomplete data were not imputed.

The UKB includes genotypes for 488,377 participants, who were genotyped using 
the Applied Biosystems UK BiLEVE and UK Biobank Axiom Arrays (Thermo Fisher 
Scientific Inc., Waltham, MA, USA) (Bycroft et al., 2018). Detailed methodologies for 
DNA extraction, genotyping, quality control, and imputation in UKB are reported 
elsewhere (UK Biobank, 2019).

As part of the UKB’s comprehensive data collection, primary care data have been 
obtained for 230,096 participants, forming the basis of our study (UK Biobank, 
2019). This subset includes electronic health records (EHRs) sourced from English, 
Scottish, and Welsh General Practitioner practices, employing various primary 
care information systems (EMIS, Vision, TPP). The records include dates and 
codes for primary care clinical events (e.g., consultations, diagnoses, referrals to 
specialists, or prescriptions events) coded using Read version 2 (V2) and Clinical 
Terms Version 3 (CTV3 or V3), the British National Formulary (BNF), and/or the 
Dictionary of Medicines and Devices (dm+d) (UK Biobank, 2019). These codes 
were used to identify MDD and IR-related conditions, the time at first diagnosis, 
and antidepressant prescriptions. In cases where prescription or diagnosis dates 
were missing or implausible (e.g., 01/01/1901, 07/07/2037), diagnostic codes 
were excluded from temporal analyses but retained for non-temporal analyses to 
maximise sample size, and prescription records were not considered for deriving 
treatment outcome variables. Potential biases arising from missing or incomplete 
primary care data are addressed in the Discussion section.

Ethics Statement
The authors assert that all procedures contributing to this work comply with the 
ethical standards of the relevant national and institutional committees on human 
experimentation and with the Helsinki Declaration of 1975, as revised in 2013. All 
procedures involving human subjects/patients were approved by the Northwest 
Multi-centre Research Ethics Committee (MREC) with approval number 11/NW/0382.
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Target population: MDD cases with or without IR-related conditions
We focused on a subset of UKB participants having at least one diagnostic 
record for a unipolar depressive disorder and at least one prescription code for 
an antidepressant medication, excluding those with bipolar, psychotic, and/
or substance use disorders. These data were extracted according to the steps 
described in a previous work (Fabbri et al., 2021).

Similarly, IR-related conditions were defined based on diagnostic records. We 
considered the presence of at least one primary care Read code for coronary artery 
disease (CAD), cerebral ischaemia, CVDs, dyslipidaemia, polycystic ovary syndrome 
(PCOS), familiar dyslipidaemia, gestational diabetes, hypertension, non-alcoholic 
fatty liver disease (NAFLD), obesity/overweight, T2DM, and Cushing’s disease. Read 
V2 and CTV3 codes used for the extraction of IR-related conditions are reported in 
Tables S1-2. These IR-related conditions were selected based on their established 
contribution to or pathogenic association with metabolic dysregulations commonly 
seen in IR (da Silva et al., 2020; Hill et al., 2021; James et al., 2021).

Outcomes of interest
The outcomes of interest were: 1) antidepressant non-response, defined as ≥1 switch 
between different antidepressant drugs, with each drug prescribed for at least six 
consecutive weeks to avoid drug switches due to side effects. We considered a time 
interval between consecutive prescriptions of no more than 14 weeks to ensure 
that treatment had not been suspended, following another recent study (Fabbri et 
al., 2021); 2) TRD, defined as ≥2 switches between different antidepressant drugs, 
with each drug prescribed at least for six consecutive weeks, to ensure an adequate 
duration of treatment before switching, and a time interval between prescriptions 
shorter than 14 weeks (Fabbri et al., 2021); 3) overall treatment time, used as 
proxy for MDD chronicity and calculated as the sum of time windows between 
two consecutive antidepressant prescriptions (if the time interval between two 
consecutive prescriptions was shorter than 14 weeks, otherwise it was considered a 
time window free from antidepressants).

Polygenic risk scores computation
PGSs were estimated in the UKB using PRS-CS-auto, a Bayesian method that applies 
continuous shrinkage priors on single-nucleotide polymorphism (SNP) effect sizes, 
bypassing the need to preselect a GWAS P-threshold for SNP inclusion (Ge et al., 
2019). GWAS summary statistics used for the construction of PGSs were those for 
body mass index (BMI), CAD, T2DM, fasting plasma glucose (FPG), glucose levels 
2 hours after an oral glucose challenge (2hGlu), glycated haemoglobin (HbA1C), 
high density lipoproteins (HDL), HOMA-IR, low density lipoproteins (LDL), and 
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triglycerides (TGL). GWAS summary statistics were selected based on the largest 
GWAS sample size available excluding UKB to avoid sample overlap between the 
input and target samples (Table S3).

Statistical analysis 
We compared individuals with MDD having or not having IR-related comorbidities, 
also considering stratifying individuals based on the temporal sequence of MDD-
first diagnosis relative to IR-related condition-first diagnosis, according to primary 
care records.

Univariable analyses were conducted using two-sample Student’s t-test and 
Pearson’s chi-square test, as appropriate, to examine differences in demographic, 
socio-economic, clinical, and lifestyle factors between individuals affected by 
MDD with and without IR-related conditions. The variables assessed included the 
age at MDD onset, follow-up duration, mean age during follow-up, patterns of 
antidepressant prescription, psychological symptoms, and treatment outcomes 
(see Table S4 for information on variables and their coding). A subsequent one-
way Analysis of Variance (ANOVA) was used to compare these variables across three 
defined groups of individuals: MDD without IR-related conditions (IR-), MDD after 
an IR-related condition diagnosis (MDD-after-IR), MDD diagnosis preceding IR-
related conditions (MDD-before-IR). Post hoc analyses, employing Tukey’s Honestly 
Significant Difference (HSD) test, were conducted to identify differences between 
group pairs.

To examine the association of IR-related conditions and their PGSs with 
treatment outcomes, we used multivariable linear or logistic regression models. 
These analyses were adjusted for assessment centre, mean age during follow-
up, follow-up duration, sex, smoking status, Townsend deprivation index, and 
population principal components (the latter only for PGS analyses). PGS analyses 
were carried out in European individuals only (identified as in Fabbri et al. (2021)).

We quantified the variance explained in treatment non-response or resistance 
using Nagelkerke’s pseudo-R2. For models with overall treatment time as a 
continuous outcome, the variance was quantified using R². The Hosmer-Lemeshow 
χ² test was employed to evaluate the goodness of fit of logistic regression models, 
with p≥0.05 suggesting no significant difference between observed and predicted 
values, suggesting an adequate model fit. While the pseudo-R² in this study are 
anticipated to be low due to the multifactorial nature of depression treatment 
outcomes, and IR-related traits, goodness-of-fit metrics of the Hosmer-Lemeshow 
test can ensure that the predictions are reliable within the observed data.

This study was hypothesis-driven, building on prior evidence and well-
established biological links between MDD and IR-related conditions. Although not 
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pre-registered, the analysis plan and the selection of the variables analysed was 
informed by previous literature (Fabbri et al., 2021; Possidente et al., 2023; Rashidian 
et al., 2021). To minimise the risk of type I errors due to multiple testing, a stringent 
Bonferroni correction was applied (α=0.0006), accounting for 27 predictors and 
three treatment outcomes.

All analyses were performed in R version 4.3.2 (2023-10-31), with data cleaning 
and manipulation streamlined by the tidyverse 2.0 R package.

Results

Socio-demographics characteristics of the sample
Our study included 30,919 individuals with MDD, among whom 16,063 (51.95%) 
had a lifetime history of insulin resistance (IR)-related conditions (Table S5). The 
mean age during follow-up was 56.12 years (SD=8.35), with males comprising 
31.8% of the cohort. A predominant majority (N=29,581; 95.67%) were of European 
descent. The most prevalent IR-related conditions included hypertension (N=9,499; 
30,74%), obesity/overweight (N=5,243; 16.97%), CVDs (N=3,650; 11.81%), T2DM 
(N=3,092; 10.01%), and CAD (N=2,450; 7.92%) (Table S5). Of the cohort, 6,357 
individuals (20.56%) received the first MDD diagnosis following an IR-related 
diagnosis. Conversely, 9,483 (30.67%) had MDD before any IR-related condition, 
and 14,856 (48.05%) had no history of IR-related conditions (Table S5).

Univariable analyses revealed significant socio-demographic differences among 
patients with MDD when stratified by the presence or absence of lifetime IR-related 
conditions (Table 1). Patients with lifetime IR-related conditions were older and were 
more frequently male compared to those without IR-related conditions (Table 1). 
These patients also reported lower levels of education and lower socioeconomic 
status, as indicated by the Townsend Deprivation Index and household income 
(Table 1). Stratification by IR-related diagnosis timing relative to MDD onset 
confirmed these findings (Tables S7-S8).

MDD clinical profile and insulin resistance
Individuals in the MDD IR+ group had a higher mean age at depression first diagnosis 
and longer duration of follow-up (Table 1). This group exhibited more frequently 
characteristics suggestive of unhealthy lifestyle, including higher rates of smoking 
and lower levels of moderate physical activity, but also lower alcohol intake frequency 
compared to the IR- group (Table 1). The IR+ group also showed higher prevalence of 
long-term illnesses and disability, as well as higher BMI (Table 1). BMI was highest in 
the MDD-after-IR group, followed by the MDD-before-IR group (Table S9).
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Depressive symptoms and traits also varied between the groups. The IR+ group 
reported more feelings of loneliness and being fed-up, but reduced rumination over 
embarrassing situations, the latter especially in the MDD-after-IR group (Table 1; 
Tables S7-S8). Patients in the IR+ MDD-after-IR subgroup were characterised by 
fewer feelings of nervousness, worry/anxiety, guilt, and sensitivity to hurt, but 
increased feelings of inadequacy and concentration difficulties when compared to 
IR- individuals (Table S8). In contrast, those with pre-existing MDD exhibited higher 
levels of neuroticism compared to IR- individuals (Table S7).

Prescription patterns
IR+ individuals had a higher rate of antidepressant prescriptions per follow-up year, 
used more drug classes, and had more frequent antidepressant switches than those 
without any lifetime IR-related condition (Table 1). There were also differences 
in the prevalence of prescribed antidepressant classes between the groups. 
Specifically, individuals prescribed serotonin antagonist and reuptake inhibitors 
(SARIs - nefazodone and trazodone), serotonin-norepinephrine reuptake inhibitors 
(SNRIs - duloxetine and venlafaxine), tetracyclic antidepressants (i.e., mirtazapine), 
and tricyclic antidepressants (TCAs) were more numerous in the IR+ group, 
while the opposite was found for selective serotonin reuptake inhibitors (SSRIs); 
however, the number of prescriptions of individual antidepressants, including 
SSRIs, was higher in the IR+ group (Table 1). After stratifying the sample based 
on the timing of the first diagnosis of IR-related conditions in relation to the first 
MDD diagnosis, the higher antidepressant prescription and use of more different 
antidepressant classes was particularly evident in individuals having MDD onset 
before IR-related conditions (Tables S7-S8). A higher number of antidepressant 
switches and prescriptions of SARIs and SNRIs was found in patients with MDD 
preceding IR-related diagnoses versus the IR- group, but not in those with later 
MDD diagnosis (Tables S7-S8). Among individuals diagnosed with MDD following, 
but not preceding, an IR-related condition, a higher proportion were prescribed 
SSRIs compared to IR- individuals (Tables S7-S8). No differences were observed 
in antipsychotic use as adjunct treatments or other antidepressant classes among 
the groups.
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Treatment Outcomes
IR+ patients had overall longer treatment duration and poorer outcomes, including 
higher rates of TRD and non-response, than IR- counterparts (Table 1). After adjusting 
for confounders, specific IR-related conditions (i.e., CVDs, CAD, hypertension, 
NAFLD, obesity/overweight, prediabetes, and T2DM) were associated with increased 
odds of TRD and antidepressant non-response (Figure 1a-b; Table S10a-b). 
This pattern was consistent in the overall sample and in the subgroup of patients 
who developed MDD prior to each specific IR-related condition, but not in those who 
developed MDD after IR-related conditions (Table S11). Regarding the chronicity 
of MDD, proxied by the overall treatment time, a similar result was observed. The 
presence of IR-related conditions was associated with longer overall treatment time 
in the entire sample (Figure 1c; Table S10c), especially in individuals diagnosed 
with MDD before the IR-related condition (Tables S11). Conversely, in patients 
who developed MDD after IR diagnoses, a general association of poorer treatment 
outcomes and overall treatment time with the presence of any IR-related condition, 
rather than with specific IR-related conditions, was observed (Table S12).

We did not identify any association between the PGSs of IR-related diseases/traits 
and treatment outcomes or overall treatment time; we found nominal associations 
(p<0.05) with the PGSs of CAD, triglycerides, and BMI in certain subgroups defined 
by diagnosis timing (Tables S13-S15). The R²/Nagelkerke’s pseudo-R² values 
for models predicting treatment outcomes ranged from 1.3 to 3.9%, reflecting 
the complexity of multifactorial traits like depression treatment outcomes and 
IR-related conditions. Despite this, the Hosmer-Lemeshow χ² test indicated an 
acceptable fit for most models (Tables S10–15), supporting the validity of the 
observed associations.
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Figure 1a. Associations between insulin resistance-related conditions and treatment-resistant 
depression. 

Odds ratios (ORs) along with their 95% confidence intervals are depicted for each insulin resistance-
related conditions. Statistical significance is represented using different symbols: stars (★) for 
statistically significant results (p < 0.0006), triangles (▲) for nominally significant results (p < 0.05), 
and crosses (⤬) for non-significant results (p ≥ 0.05). The findings are arranged in a gradient based 
on significance, with the most statistically significant results at the top, and non-significant results 
at the bottom of the plot. Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary 
syndrome; MetS, metabolic syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type 
2 diabetes mellitus.
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Figure 1b. Associations between insulin resistance-related conditions and antidepressant non-
response. 

Odds ratios (ORs) along with their 95% confidence intervals are depicted for each insulin resistance-
related conditions. Statistical significance is represented using different symbols: stars (★) for 
statistically significant results (p < 0.0006), triangles (▲) for nominally significant results (p < 0.05), 
and crosses (⤬) for non-significant results (p ≥ 0.05). The findings are arranged in a gradient based 
on significance, with the most statistically significant results at the top, and non-significant results 
at the bottom of the plot. Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary 
syndrome; MetS, metabolic syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type 
2 diabetes mellitus.
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Figure 1c. Associations between insulin resistance-related conditions and overall treatment time 
in MDD. 

β’s and standard errors are depicted for each insulin resistance-related condition. Statistical 
significance is represented using different symbols: stars (★) for statistically significant results  
(p < 0.0006), triangles (▲) for nominally significant results (p < 0.05), and crosses (⤬) for non-
significant results (p ≥ 0.05). The findings are arranged in a gradient based on significance, with the 
most statistically significant results at the top, and non-significant results at the bottom of the plot. 
Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary syndrome; MetS, metabolic 
syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type 2 diabetes mellitus.
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Discussion

Overview of main findings
This study, leveraging primary care-linked data from the UK Biobank, investigated 
the associations between IR-related conditions and treatment outcomes, 
prescription patterns, and clinical profiles of patients with MDD. Our analyses 
revealed a high prevalence of IR-related conditions among individuals with a history 
of MDD, emphasising the need to integrate metabolic health into psychiatric care. 
Those with IR-related comorbidities showed a later age at first MDD diagnosis, 
were less often females, and exhibited more unhealthy lifestyle factors. Our study 
is the first to utilise a large, real-world primary care sample with EHRs and genetic 
information, demonstrating the increased complexity in managing depression in 
this population. This complexity is evidenced by a higher number of antidepressant 
prescriptions, switches, and number of classes ever used among those with IR-
related comorbidities. Most notably, the presence of IR-related conditions was 
associated with a higher likelihood of TRD, antidepressant non-response, and 
prolonged treatment duration, particularly when MDD preceded the onset of IR-
related conditions.

Prevalence of IR-conditions in depression: mechanisms and 
unhealthy lifestyle
The high prevalence of hypertension, obesity/overweight, CVDs, and T2DM within 
our MDD sample aligns with existing research, underscoring the influence of these 
comorbidities on mental health (Kangethe et al., 2021; Kraus et al., 2023; Possidente 
et al., 2023; Wimberley et al., 2022). Metabolic dysregulation and MDD share 
overlapping pathophysiological mechanisms, including chronic inflammation, 
impaired insulin signalling, neuroendocrine dysfunction, and oxidative stress 
(e.g., Milaneschi et al. (2020)). These disturbances contribute to depressive 
symptomatology by disrupting neural circuits related to reward, verbal/numerical 
reasoning, and processing speed (Fanelli, Mota, et al., 2022; Milaneschi et al., 2019), 
thereby exacerbating core depressive symptoms such as anhedonia and cognitive 
dysfunction and hindering treatment response (Martone et al., 2024). Furthermore, 
behavioural and affective symptoms of depression may foster unhealthy lifestyle, 
predisposing individuals to IR-related conditions. This underscores the necessity of 
integrated treatment approaches.

The higher prevalence of unhealthy behaviours, such as smoking and reduced 
physical activity, in the IR+ group resonates with existing evidence linking lifestyle 
factors to both depression and metabolic disturbances (Kandola et al., 2019). This 
observation, coupled with the evidence indicating poorer treatment outcomes 
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in the same group, highlights the potential benefits of incorporating lifestyle 
interventions in MDD management (Kandola et al., 2019). However, lower alcohol 
intake frequency was noted, which aligns with certain clinical characteristics of the 
IR+ group. Given the comorbidities and more complex medication regimens in this 
group, it is likely that they prudently reduced alcohol intake for medical reasons 
(as form of tertiary prevention and to avoid possible pharmacokinetic interactions 
with their medications (Chan & Anderson, 2014)). The link between chronic health 
conditions like MDD and IR and lower SES is likely bi-directional. The risk of chronic 
diseases is increased in groups with lower SES (Sommer et al., 2015), but at the same 
time these conditions negatively impact wellbeing and social/work functioning, 
escalating medical expenses (Cabral et al., 2019).

Distinct clinical and emotional profiles
Our study also suggests that individuals with a lifetime history of both MDD and 
IR-related conditions exhibit a distinct clinical profile of depression. The higher 
mean age at MDD first diagnosis in the IR+ group could possibly result from an 
intersection of age-related reduction in insulin sensitivity, lifestyle, and psychosocial 
stressors inherent to aging, such as social isolation. Age-related factors, including 
chronic health challenges, retirement, and shifts in social roles, may contribute to 
the simultaneous emergence of depression and IR-related conditions (Stenholm 
et al., 2014). The prevalent feelings of loneliness and being fed-up in the MDD IR+ 
group resonate with the heightened susceptibility to perceived social isolation 
associated with atypical depression (Lojko & Rybakowski, 2017). This subtype of 
depression, frequently connected with inflammatory and metabolic disturbances, 
may also be reflected in the elevated BMI observed in the same group, consistent 
with the weight gain characteristic of atypical depression (Lojko & Rybakowski, 
2017). The distinctive emotional profiles observed in relation to the timing of MDD-
onset versus IR-related diagnoses provide potential hints for targeted preventive 
interventions. Higher neuroticism in individuals with pre-existing MDD suggests 
that these patients might have personality characteristics that could predispose 
not only to depression but also to metabolic changes. Neuroticism, characterised 
by a tendency towards anxiety, depression, and emotional instability, is a well-
established risk factor for developing both mood disorders and cardio-metabolic 
conditions (Lee et al., 2022). Conversely, the reduced presence of classical 
anxiety-related symptoms, coupled with increased feelings of inadequacy and 
difficulty concentrating in the MDD-after-IR subgroup, could reflect the negative 
psychological impact of experiencing a chronic cardio-metabolic condition before 
depression. Living with a chronic IR-related condition may lead to adaptation 
to some emotional responses, shifting from anxiety and worry to feelings of 
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inadequacy and difficulty concentrating. This could be attributed to the constant 
coping and management demands of a chronic physical illness, which may lead to 
a sense of cognitive overload and being overwhelmed.

Prescription patterns and IR-related comorbidities
An increased prescription of SSRIs, SARIs, SNRIs, tetracyclic, and tricyclic 
antidepressants in the IR+ group was found, suggesting a more challenging 
treatment course. This is confirmed by the higher frequency of antidepressant 
switches and the use of a wider array of antidepressant classes, particularly in patients 
with MDD preceding IR-related diagnoses. The metabolic side effect profiles of these 
antidepressant classes warrant careful consideration. SSRIs are typically preferred 
for their relatively favourable side effect profile, especially in patients with comorbid 
medical conditions (Gold et al., 2020). SSRIs have been shown to improve glycaemic 
control in adults with comorbid MDD and T2DM in short-term studies, and have no 
long-term deleterious effects on glycaemic homeostasis (Possidente et al., 2023). 
Conversely, SNRIs, tetracyclic, and tricyclic antidepressants, despite their efficacy, 
are associated with significant cardio-metabolic side effects, such as hypertension, 
weight gain, and dyslipidaemia (Gold et al., 2020; Serretti & Mandelli, 2010), posing 
potential exacerbation risks in the presence of underlying IR predisposition. The use 
of TCAs in these patients, often a choice of last resort due to their lower tolerability, 
suggests a clinical pivot towards more pharmacodynamically complex treatment 
options when first-line treatments fail. Conversely, a less frequent use of some 
antidepressant classes in the MDD-after-IR group likely reflects clinicians’ attention 
to the metabolic side effects of certain antidepressants, and a consequently more 
conservative approach. Overall, these findings emphasise the importance of a 
personalised treatment strategy for MDD, especially for individuals with a personal 
or familiar history of IR-related conditions. Antidepressant selection must carefully 
weigh the risk/benefit ratio, prioritising patient safety and overall health in the 
context of pre-existing or heightened risk of IR.

IR-related conditions and treatment outcomes in depression
The association between IR-related conditions and higher odds of poorer 
treatment outcomes and overall treatment duration supports the hypothesis that 
metabolic dysregulation may be linked with difficult-to-treat depression. The 
association with poorer treatment outcomes was particularly evident when MDD 
diagnosis preceded IR-related conditions. This trajectory may suggest that the 
neurobiological and behavioural effects of depression, including stress-related 
hormonal imbalances and reduced physical activity, may predispose individuals 
to metabolic disturbances, which likely worsen treatment response (Horstmann & 
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Binder, 2011; Milaneschi et al., 2020; Milaneschi et al., 2019). Chronic inflammation 
and oxidative stress, which are associated with IR, can impair serotonin signalling 
and synaptic plasticity, processes involved in antidepressant response (Mehdi et 
al., 2023; Milaneschi et al., 2020; Pilar-Cuellar et al., 2013). Notably, the observed 
higher prescription of antidepressants and diverse pharmacological classes in IR+ 
individuals raises questions about the potential of pharmacotherapy in triggering 
or worsening IR-related conditions; indeed, patients with difficult-to-treat MDD may 
be more frequently exposed to medications with metabolic side effects (Serretti 
& Mandelli, 2010). On the other hand, the observation in our sample that a broad 
phenotype of IR pathology – defined by the presence of any IR-related condition 
rather than specific ones – is linked to worse treatment outcomes when IR precedes 
MDD, may support a direct influence of metabolic health on psychiatric treatment 
effectiveness. Of note, the larger sample size of the cumulative IR phenotype likely 
increased the statistical power of this analysis, thus revealing associations not 
apparent in more narrowly defined groups. However, future research is needed 
to clarify whether IR-related conditions primarily aggravate depressive symptoms 
through metabolic dysregulation or directly impair antidepressant efficacy, as the 
current study design does not establish causality.

Polygenic scores and future directions
Our study did not identify significant associations between PGSs for IR-related 
conditions and treatment outcomes, although nominal associations were observed 
with PGS for CAD, TG, and BMI in certain subgroups. The multifactorial nature of 
treatment outcomes, with relatively modest contribution of common genetic 
variants (Pain et al., 2022), and methodological limitations may have impacted on the 
possibility to reach statistical significance for these results. For example, the used PGS 
approach was not biologically informed, i.e., it did not prioritise SNPs based on their 
known or predicted functional impact, which may improve PGS prediction accuracy 
(Sharew et al., 2024). Consistently with our findings, previous studies reported limited 
explanatory power of PGSs for IR-related conditions in antidepressant treatment 
outcomes. For instance, PGSs for CAD and BMI explained only 1.3% and 0.8% of SSRI 
treatment response variance, respectively, with notable cohort-specific and quartile-
dependent differences in effect sizes (Amare et al., 2019). In one cohort, associations 
were evident only among individuals in the highest PGS quartile, while intermediate 
quartiles showed stronger effects in another (Amare et al., 2019). Similarly, research 
on PGSs for T2DM and depression has shown that significant associations were 
particularly evident in early-onset cases or only nominally significant across 
ancestrally diverse cohorts (Fanelli et al., 2025).
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In addition to lifestyle modifications, addressing inflammatory-metabolic 
dysfunctions of MDD with new pharmacological interventions offers promising 
opportunities. Anti-inflammatory agents, such as anti-interleukin-6 antibodies, and 
tumor necrosis factor-α inhibitors have shown potential in alleviating depressive 
symptoms, particularly in individuals with elevated inflammatory biomarkers 
(Fanelli et al., 2025; Wittenberg et al., 2020). Similarly, glucagon-like peptide-1 
receptor agonists (GLP-1 RAs), like liraglutide, offer dual benefits by improving 
glycaemic control and reducing systemic inflammation, with preliminary evidence 
of antidepressant effects (Fanelli et al., 2025; Possidente et al., 2023). Integrating 
these pharmacological interventions with precision psychiatry tools, such as 
multivariable models incorporating more advanced PGS approaches, could 
optimise treatment personalisation.

Strengths and limitations
This study should be viewed in the context of its strengths and limitations. The 
strengths of this study lie in its large sample size and the use of a comprehensive 
dataset from the UK Biobank. The inclusion of primary care data enriched the 
findings, providing a real-world perspective on the management of MDD in 
relation to IR-related conditions. However, its observational nature precludes causal 
inferences, and generalisability of the findings may be limited to similar healthcare 
settings. While the results demonstrate a strong association between IR-related 
conditions and poorer treatment outcomes in MDD, they cannot determine whether 
IR-related conditions primarily aggravate MDD, directly contribute to resistance, or 
result from prolonged treatment resistance and pharmacological burden. Future 
longitudinal and experimental studies are required to disentangle the temporal and 
causal dynamics between IR conditions, MDD severity, and treatment outcomes. 
The demographic composition of the UK Biobank, predominantly consisting of 
females, older individuals, and those of higher socioeconomic status, does not 
mirror the general UK population (Fry et al., 2017). Additionally, our analysis relied 
on proxy measures such as antidepressant switches for treatment non-response/
resistance. While these proxies are well-established in the literature (Lage et al., 
2022; Wigmore et al., 2020), they depend on the completeness of EHRs and are not 
direct measures of treatment response. The interpretation of our results should 
consider possible biases introduced by missing data, such as gaps in prescription or 
diagnosis dates. Furthermore, our analysis did not consider prescription dosages, 
nor did it differentiate based on symptom severity or MDD phase (acute vs. non-
acute). Regarding PGS calculation, to prevent results inflation we could not use 
some of the larger GWAS whose sample was overlapping with our target UK Biobank 
sample. While our findings demonstrate statistically significant associations 
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between various IR-related conditions and treatment outcomes in depression, the 
predictive impact of these associations, as indicated by Nagelkerke’s pseudo-R² 
and R² values, was limited. This aligns with expectations for complex, multifactorial 
conditions like MDD and IR-related traits, where a substantial portion of variance 
arises from unmeasured genetic, environmental, and clinical factors. Nonetheless, 
the Hosmer-Lemeshow test results (p>0.05 in most models) indicated acceptable 
model fit, supporting the validity of the observed associations. Future research 
should incorporate other variables and advanced modelling approaches to better 
capture the full complexity of biopsychosocial factors that contribute to depression 
treatment outcomes.

Conclusion
In conclusion, this study highlights a substantial prevalence of IR-related conditions 
among individuals with a history of MDD, highlighting a demographic profile 
characterised by later age of MDD onset, a propensity towards unhealthy lifestyle, 
and a distinct clinical profile. Notably, the presence of IR-related conditions was 
associated with heightened complexity in managing depression, as evidenced by 
an increase in antidepressant prescriptions, treatment non-response/resistance, 
and prolonged treatment duration, particularly when MDD diagnosis preceded 
IR-related diagnoses. These results advocate for careful antidepressant selection, 
mindful of potential metabolic adverse effects. Overall, these insights endorse 
the implementation of a holistic care model that surpasses traditional psychiatric 
management, incorporating metabolic assessments and lifestyle interventions to 
improve outcomes in patients with MDD. It is important for healthcare providers 
to regularly monitor metabolic health in patients with MDD, as the early detection/
treatment of IR-related conditions hold the potential to enhance psychiatric 
and physical outcomes, particularly in patients with persistent or treatment-
resistant MDD.
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Abstract

The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, 
and type 2 diabetes mellitus (T2DM), is higher in Alzheimer’s disease (AD), autism 
spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of 
insulin signalling has been implicated in these neuropsychiatric disorders, and shared 
genetic factors might partly underlie this observed multimorbidity. We investigated 
the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by 
estimating pairwise global genetic correlations using the summary statistics of the 
largest available genome-wide association studies for these phenotypes. Having 
tested these hypotheses, other potential brain “insulinopathies” were also explored 
by estimating the genetic relationship of six additional neuropsychiatric disorders 
with nine insulin-related diseases/traits. Stratified covariance analyses were then 
performed to investigate the contribution of insulin-related gene-sets. Significant 
negative genetic correlations were found between OCD and MetS (rg=-0.315, 
p=3.9x10-8), OCD and obesity (rg=-0.379, p=3.4x10-5), and OCD and T2DM (rg=-0.172, 
p=3x10-4). Significant genetic correlations with insulin-related phenotypes were also 
found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), 
major depressive disorder, and schizophrenia (p<6.17x10-4). Stratified analyses 
showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar 
disorder, schizophrenia and somatic insulinopathies through gene-sets related to 
insulin signalling and insulin receptor recycling, and positive genetic covariances 
between AN and T2DM, as well as ADHD and MetS through gene-sets related to 
insulin processing/secretion (p<2.06x10-4). Overall, our findings suggest the existence 
of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related 
diseases/traits may exert divergent pleiotropic effects. These results represent a 
starting point for a new research line on “insulinopathies” of the brain.



5

153|Insulinopathies of the brain? Genetic overlap between IR and neuropsychiatric disorders

Introduction

Mental disorders are characterised by a reduced life expectancy of approximately 
10 years (Weye et al., 2020). In addition to violent causes of death, more than 67% 
of the increase in premature mortality is due to natural causes (Walker et al., 2015). 
The increased prevalence of insulin-related somatic diseases (i.e., type 2 diabetes 
mellitus (T2DM), obesity, and metabolic syndrome (MetS)) observed in mental 
disorders, with a resulting increased cardiovascular risk, contributes significantly to 
the lower life expectancy (Momen et al., 2020).

A number of studies have investigated this higher comorbidity, focusing mainly 
on metabolic disturbances as possible consequences of unhealthy lifestyles, 
sedentary habits, or the chronic use of psychotropic medication (Grajales et al., 
2019). However, there is growing evidence for the presence of glycaemic and 
metabolic imbalances in drug-naïve acute psychiatric patients already at disease 
onset, suggesting that common pathogenic mechanisms may also be involved 
(Coello et al., 2019). Shared genetic factors may play a role, and genomic studies 
may help to unravel the biological underpinnings of the phenotypically observed 
comorbidity of neuropsychiatric disorders with somatic insulin-related diseases 
and traits.

The above-mentioned insulin-related and neuropsychiatric diagnostic groups 
consist of complex and heterogeneous diseases with a highly polygenic inheritance 
pattern; heritability estimates from twin and family studies range between 30% 
and 80% (Almgren et al., 2011; Wray et al., 2014). Large meta-analyses of genome-
wide association studies (GWASs) have identified hundreds of disease-associated 
single nucleotide polymorphisms (SNPs), each contributing with a small effect to 
the overall risk for these diseases (Howard et al., 2019). Genetic sharing has already 
been highlighted between T2DM, obesity and MetS, as expected from their highly 
interrelated pathogenesis (Lind, 2019), and recent evidence has also revealed the 
presence of substantial pleiotropy among psychiatric disorders (Cross-Disorder 
Group of the Psychiatric Genomics Consortium, 2019).

A key feature that T2DM, obesity and MetS have in common is an impaired 
response to insulin stimulation in peripheral tissues, better known as insulin 
resistance (Petersen & Shulman, 2018). Abnormalities in insulin signalling might 
also link with neuropsychiatric disorders. Indeed, beyond the anabolic function 
of insulin at the peripheral level, where it promotes the glucose uptake in tissues 
while stimulating glycogenesis and lipogenesis, this hormone can also bind 
to insulin receptors (INSRs) on the surface of both neurons and glial cells in the 
central nervous system (CNS) (Petersen & Shulman, 2018), where insulin signalling 
is regulated among others by the neurotransmitters serotonin and dopamine 
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(Mazucanti et al., 2019). In the CNS, insulin plays a key role in synaptic plasticity 
and neurotransmission, apoptosis inhibition, and neuroinflammation (Arnold et al., 
2018). Preclinical studies have suggested that an increase in the mammalian target 
of rapamycin (mTOR) activity, one of the major downstream effectors of the INSRs, 
may lead to reduced synaptic pruning, and thereby contributes to the cognitive 
inflexibility and perseverative/repetitive behaviours observed in those animals 
with mTOR genetic alterations (Hoeffer et al., 2008; Xu et al., 2019). Cognitive 
abnormalities of a similar nature were shown in TALLYHO/JngJ mice, an animal 
model of T2DM (van de Vondervoort et al., 2019).

Recently, dysregulation in insulin signalling has been suggested to contribute 
to neuropsychiatric disorders more widely. Evidence is strongest for Alzheimer's 
disease (AD) and autism spectrum disorder (ASD) (Bralten et al., 2020; Butterfield 
& Halliwell, 2019; Macklin et al., 2017; Stern, 2011; van de Vondervoort et al., 2016; 
Xiang et al., 2015). Our own recent work also suggested a link with obsessive-
compulsive disorder (OCD) (Bralten et al., 2020; van de Vondervoort et al., 2016). 
In the case of AD, it has been shown that insulin sensitivity is altered even before 
the onset of cognitive decline or β-amyloid (Aβ) accumulation in the CNS (Macklin 
et al., 2017). The hyperactivity of the phosphatidylinositol-3-kinase (PI3K)/protein 
kinase B (AKT)/mTOR cascade, mediated by the phosphorylation of INSR via insulin 
binding to the neuronal surface, leads to the inhibition of autophagy processes and 
subsequent accumulation of damaged mitochondria and misfolded proteins seen 
in AD (Butterfield & Halliwell, 2019). The same PI3K/AKT/mTOR hyperactivity is also 
involved in ASD pathogenesis (Stern, 2011), and genes within the mTOR pathway 
were also shown to associate with brain volume variability and ASD (Arenella et 
al., 2020). Furthermore, offspring of mothers who have T2DM during pregnancy 
have a higher risk of developing ASD (Xiang et al., 2015). The integration of data 
from different types of genetic studies has also implicated CNS insulin signalling 
as one of the biological mechanisms underlying OCD, where this signalling 
pathway may modulate excitatory synaptogenesis and postsynaptic dendritic 
spine formation (van de Vondervoort et al., 2016). Also obsessive-compulsive 
symptoms in the general population have been associated with genes related 
to CNS insulin signalling (Bralten et al., 2020), and shared genetic aetiologies of 
peripheral insulin-related phenotypes (i.e., T2DM, glucose levels 2 hours after an 
oral glucose challenge (2hGlu), and fasting plasma insulin (FPI)) were found with 
both obsessive-compulsive symptoms and OCD (Bralten et al., 2020).

In light of the above evidence, we aimed to investigate the extent of the 
potential genetic sharing and contribution of insulin-related gene-sets in the 
observed comorbidity of neuropsychiatric disorders having preclinical evidence 
of insulin signalling dysregulation (i.e., AD, ASD, and OCD) with somatic diseases 
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related to insulin resistance, namely MetS, obesity, and T2DM. For this purpose, we 
performed Linkage Disequilibrium SCore regression (LDSC) and stratified GeNetic 
cOVariance Analyser (GNOVA) analyses (Bulik-Sullivan et al., 2015; Lu et al., 2017). 
In addition, we explored other potential brain “insulinopathies” by estimating the 
genetic overlap between other neuropsychiatric disorders and insulin-related 
somatic phenotypes.

Methods

Input datasets
As input for the analyses, we used summary statistic data of the largest GWASs 
available at the time of conducting our analyses for the phenotypes of interest 
(see also Table 1 and the Supplementary information). We considered the 
most prevalent somatic diseases linked to insulin resistance (i.e., MetS, obesity, 
and T2DM), and neuropsychiatric disorders having preclinical evidence of insulin 
signalling dysregulation, namely AD, ASD, and OCD (Hoeffer et al., 2008; Macklin 
et al., 2017; van de Vondervoort et al., 2019). We also investigated insulin-related 
traits (i.e., 2hGlu, body mass index (BMI), fasting plasma glucose (FPG) and FPI, 
glycated haemoglobin (HbA1c), and homeostatic model assessment for insulin 
resistance (HOMA-IR)), and other six neuropsychiatric disorders, which are those 
best characterised genetically by the Psychiatric Genomic Consortium (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2019) (i.e., attention-
deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), bipolar disorder (BD), 
major depressive disorder (MDD), schizophrenia (SCZ), and Tourette’s syndrome 
(TS)). Data were downloaded from online repositories (see URLs), when publicly 
available, or requested (i.e., MetS) from the GWAS authors.

Genome-wide bivariate genetic correlation estimations
Bivariate LDSC (https://github.com/bulik/ldsc) analyses were performed to estimate 
the genetic correlation (rg) ascribed genome-wide to common variants between  
AD, ASD, OCD and MetS, obesity, and T2DM, following the software guidelines  
(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). Also through 
LDSC, exploratory analyses were carried out to estimate the extent of the genetic 
sharing between other neuropsychiatric disorders (ADHD, AN, BD, MDD, SCZ, TS, 
along with AD, ASD, and OCD) and insulin-related somatic diseases/traits (i.e., 2hGlu, 
BMI, FPG and FPI, HbA1c, HOMA-IR, along with MetS, obesity, and T2DM). Further 
details on the quality control (QC) steps and the LDSC method are provided in the 
Supplementary information. LDSC is computationally robust to sample overlaps 
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between studies (Bulik-Sullivan et al., 2015). Bonferroni correction was applied, 
accounting for the number of analyses performed (α=0.05/(9x9)=6.17x10-4).

Genetic covariance analyses stratified by functional annotations
GNOVA (https://github.com/xtonyjiang/GNOVA) was used to investigate whether 
neuropsychiatric disorders were genetically correlated to MetS, obesity, or T2DM 
specifically through nine gene-sets involved in peripheral and/or CNS insulin 
signalling (gene-set sizes ranged from 27 to 137 genes; see Tables S1-S2 for a 
complete list of genes included in each gene-set). Further details on the GNOVA 
method and the selection of the insulin signalling-related gene-sets are provided 
in the Supplementary information. GNOVA-computed covariance estimates 
are robust to sample overlaps (Lu et al., 2017). Bonferroni correction was applied 
to GNOVA results considering the nine tested gene-sets and the 27 pairwise 
combinations of three insulin-related somatic diseases and nine neuropsychiatric 
disorders for which GNOVA analyses were performed (α=0.05/(9x3x9)=2.06x10-4).

Results

Description of the input datasets
A description of the samples (with sample sizes, number of cases and controls, 
and the derived effective sample size) included in the analyses is provided 
in Table 1. Further information on the GWAS samples can be found in the 
Supplementary information.

Pairwise genome-wide genetic correlations between 
neuropsychiatric disorders and insulin-related somatic diseases 
and traits 
A genetic correlation plot depicting the LDSC analyses results is shown in Figure 1; 
details on the genetic correlation estimates (rg) for each pair and statistical 
significance are provided in Table 2. After correcting for multiple testing, negative 
genetic correlations were highlighted between OCD and MetS (rg=-0.315, 
p=3.9x10-8), OCD and obesity (rg=-0.379, p=3.6x10-5), and OCD and T2DM (rg=-0.172, 
p=3x10-4). Nominally significant genetic correlations were also found between AD 
and T2DM (rg=0.155, p=0.048), and ASD and MetS (rg=0.115, p=0.002).

When insulin-related somatic traits (i.e., 2hGlu, BMI, FPG, FPI, HbA1c, HOMA-IR) 
were considered, OCD was also found to be significantly negatively genetically 
correlated with BMI (rg=-0.284, p=2.6x10-11), but neither AD nor ASD showed 
significant correlations with the traits.
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Analyses were also extended to other neuropsychiatric disorders (i.e., ADHD, AN, BD, 
MDD, SCZ, and TS) and significant genetic correlations were found between insulin-
related diseases/traits and ADHD, AN, MDD, and SCZ (see Figure 1 and Table 2).

Figure 1. Genetic correlation plot summarising the results from the bivariate Linkage Disequilibrium 
Score regression (LDSC) analyses. 

The size of the circle is proportional to the genetic correlation estimates, going from warmer to colder 
colours as the direction of the effect changes from positive to negative. Bonferroni multiple testing 
correction was applied, correcting for the number of analyses performed (α=0.05/(9*9)=6.17e-4). 
Abbreviations: AD, Alzheimer’s disease; ASD, autism spectrum disorder; OCD, obsessive-compulsive 
disorder; ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; BD, bipolar disorder; 
MDD, major depressive disorder; SCZ, schizophrenia; TS, Tourette’s syndrome; MetS, metabolic 
syndrome; T2DM, type 2 diabetes mellitus; 2hGlu, glucose levels 2 hours after an oral glucose 
challenge; BMI, body mass index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HbA1c, 
glycated haemoglobin; HOMA-IR, homeostatic model assessment for insulin resistance.
** Statistically significant bivariate genetic correlation (p<6.17x10-4).
* Nominally significant bivariate genetic correlation (p<0.05).

Genetic covariance between neuropsychiatric disorders and insulin-
related somatic diseases stratified by insulin-related gene-sets
After Bonferroni correction, stratified GNOVA analyses highlighted significant 
negative genetic covariance between AD and obesity through the Reactome INSR 
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recycling gene-set (p=4.6x10-5), as well as between ASD and MetS through the 
Biocarta, KEGG, and PID insulin signalling pathways (p≤3.2x10-5). OCD showed 
negative genetic covariance with MetS and T2DM through the Reactome INSR 
recycling gene-set (p≤1.6x10-4).

When the other neuropsychiatric disorders were also considered, negative 
genetic covariance was found between BD and T2DM, BD and MetS, SCZ and 
MetS through the PID insulin signalling pathway (p≤2x10-5), as well as between 
AN and T2DM through the Biocarta insulin pathway (p=1.26x10-5). Moreover, 
positive genetic covariance was highlighted between AN and T2DM through the 
Reactome insulin processing gene-set (p=3.77x10-5), as well as between ADHD and 
MetS through the Reactome regulation of insulin secretion gene-set (p=1.18x10-4)  
(see Table 3; detailed results are shown in Tables S3-S11).

Discussion

In this study, we investigated the genetic overlap of AD, ASD, OCD with somatic 
insulinopathies, namely MetS, obesity and T2DM, hypothesising an important role 
for gene-sets related to insulin signalling. Our genome-wide analyses indicate 
significant global negative genetic correlations between OCD and obesity, 
T2DM, and MetS. Gene-set stratified genetic covariance analyses of specific 
insulin-related pathways helped identify a genetic link of AD, ASD, and OCD 
with somatic insulinopathies. Moreover, our exploration of other potential brain 
“insulinopathies” yielded evidence for global genetic overlap of ADHD, AN, MDD, 
and SCZ with somatic insulin-related diseases/traits, while genetic covariance at 
the level of insulin-related gene-sets was identified between ADHD, AN, BD, SCZ 
and T2DM/MetS/obesity.

The previous clinical and epidemiological studies available to date indicate 
a higher prevalence of obesity, MetS, and T2DM in patients with OCD than the 
general population (Albert et al., 2013; Isomura et al., 2018). Furthermore, a 
mouse model for T2DM showed compulsive traits, as discussed above (Macklin 
et al., 2017). We thus had hypothesised a genetic correlation between OCD and 
somatic disorders characterised by insulin resistance to exist, which we indeed 
found in this study. The negative direction of the correlation we found was 
unexpected, as it might suggest a protective role of the genetics underlying OCD 
on the chance of having T2DM, MetS and/or obesity. However, for behavioural 
traits, environmental sources of variation may operate orthogonally to genetic 
factors, masking the effect of the genetics at the phenotypic level (Hadfield et al., 
2007). Therefore, one hypothesis explaining our result can be that environmental 
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effects act in the opposite direction to genetics, causing an increased risk in the 
presence of protective genetics and resulting in variability in the phenotypic 
manifestations over time. Indeed, metabolic complications have been particularly 
associated with a longer duration of antipsychotics treatment in patients with 
OCD (Albert et al., 2013). It is also reasonable to assume that patients with more 
severe symptoms, having higher genetic load for OCD, are more likely to develop 
metabolic side effects of such treatments because they require higher doses and 
longer therapies, even though they might be genetically more protected against 
insulin-related/metabolic disturbances. The analyses considering insulin-related 
glycaemic/anthropometric traits also showed a negative correlation between OCD 
and BMI. This finding is consistent with previous evidence in smaller samples of a 
negative genetic relationship with a negative direction between OCD and body fat 
measures (Hubel et al., 2019); it also further supports the negative correlation trend 
that we observed between OCD and somatic insulinopathies. Zooming in through 
analyses of gene-sets related to insulin signalling, we found genes involved in 
the INSR recycling process involved in the genetic correlation of OCD with both 
MetS and T2DM. This molecular pathway mediates the recycling of the INSR and 
reintegration into the plasma membrane. After activation, the INSR-insulin complex 
is internalised into the cell within an endosome, and insulin is degraded, while INSR 
is dephosphorylated and reintegrated into the plasma membrane (Reactome). To 
our knowledge, this is the first study reporting involvement of the INSR recycling 
pathway in neuropsychiatric phenotypes. In this respect, it should be noted that 
endosomal recycling processes are relevant to the functioning of the brain. They 
are important for synaptic functioning and plasticity (and related glutamatergic 
neurotransmission) as well as for the maintenance of levels of membrane proteins, 
more generally (Chiu et al., 2017).

We did not observe significant genome-wide genetic correlations between AD 
and somatic insulin-related diseases, only nominally significant positive genetic 
correlations were seen with MetS and T2DM before multiple testing correction. 
Our results may add support for a predominant influence of environmental 
and epigenetic factors in the comorbidity observed between AD and somatic 
insulinopathies, although we cannot exclude the possible existence of patterns 
of local genetic correlation (Werme et al., 2021). It should be noted that ageing is 
considered the greatest risk factor for AD, and T2DM incidence also increases with 
ageing (Knopman et al., 2021). Processes linked to oxidative damage and ageing 
could trigger the onset of both diseases in a way that is partly independent from 
genetic effects (Butterfield & Halliwell, 2019). Air pollution, smoking, and low 
physical activity are also important risk factors for broadly defined dementia, and 
they also contribute to insulin resistance and cerebrovascular disease (Knopman 
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et al., 2021; Yang et al., 2020). The role of epigenetic modulation, including DNA 
methylation, histone modifications and non-coding RNAs, in the aetiopathogenesis 
of AD is also well recognised, and this may provide novel avenues for treatment in 
the upcoming years (Liu et al., 2018). A hypothesis is that the clinical heterogeneity 
of AD may have camouflaged the presence of genetic factors shared with somatic 
insulinopathies. In this regard, more deeply phenotyped samples might help 
better investigate the presence of pleiotropic effects in the future (Cummings, 
2000). Alternatively or in addition, previous evidence may point to a role for insulin 
signalling specifically in individuals carrying APOE polymorphisms, suggesting that 
new insights may be derived from stratification of the AD population according 
to APOE genotype. Indeed, oral antidiabetics, such as thiazolidinediones and 
intranasal insulin have shown differential efficacy in AD depending on the APOE-ε4 
genotype (Li et al., 2015), which is the strongest common genetic risk factor for 
late-onset AD (Yamazaki et al., 2019). Moreover, a previous study has also shown 
a strong regional genetic correlation between AD and T2DM for the genetic 
variants mapped to the apolipoprotein-E (APOE) locus (Zhu et al., 2019). However, 
the absence of genetic correlations at the genome-wide level does not preclude 
the existence of genetic sharing, as both positive and negative local genetic 
correlations may occur and potentially cancel each other out when summed at 
the genome-wide level (van Rheenen et al., 2019). In this regard, we demonstrated 
significant genetic covariance between AD and obesity at the INSR recycling 
gene-set level. Under physiological conditions, INSR is maintained in equilibrium 
between an internalising and an exposed state at the plasma membrane (Chen et 
al., 2019). Either excessive or insufficient surface INSR can lead to the development 
of insulin resistance (Chen et al., 2019). Our finding is in line with the evidence of 
an altered cellular distribution of INSRs in AD, resulting in a loss of INSRs at the 
neuronal membrane, suggesting that alterations in INSR recycling/trafficking are 
present (Moloney et al., 2010).

A role of metabolic dysregulation in ASD has been previously suggested by 
the increased risk for ASD and neurodevelopmental delays in the offspring of 
mothers who have metabolic conditions during pregnancy (Krakowiak et al., 2012). 
Nevertheless, our study did not find ASD to be significantly genetically correlated 
at the genome-wide level with either MetS, obesity or T2DM, in line with non-
significant previous reports using smaller sample sizes (Grove et al., 2019). However, 
the stratification to insulin-specific gene-sets revealed significant localised 
negative genetic covariance of ASD with MetS through genes within insulin 
signalling pathways. Although further studies will be needed to disentangle the 
biological meaning of this finding, we could speculate that the observed pathway-
level negative genetic covariance between ASD and MetS might reflect higher 
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complexity of reciprocal regulation between monoamine and insulin signalling at 
the CNS and peripheral level (Mazucanti et al., 2019). What we found at the gene-
set level may also be consistent with prior findings of enhanced insulin signalling in 
the brain of a Drosophila model of Fragile X syndrome, which represents the most 
prevalent hereditary type of intellectual disability and autism (Monyak et al., 2017).

To extend the spectrum of potential brain “insulinopathies”, LDSC analyses 
were performed considering six other neuropsychiatric disorders and diseases/
traits related to insulin resistance. Our analyses identified several additional 
genetic correlations of the somatic insulin-related diseases with psychiatric 
disorders; negative genetic correlations were seen between MetS and both AN and 
schizophrenia, and positive genetic correlations were observed for MetS with both 
ADHD and MDD. Of note, the diagnosis of MetS is made when at least three out 
of the following co-occur: high systolic blood pressure, low levels of high-density 
lipoprotein (HDL), hyperglycaemia, high levels of triglycerides, and/or increased 
waist circumference (Lind, 2019). Our findings are consistent with previous evidence 
of pairwise genetic sharing between lipidaemic traits (HDL and triglycerides), 
waist circumference and AN, ADHD, and/or MDD (Demontis et al., 2019; Howard 
et al., 2019; Watson et al., 2019; Wray et al., 2018). In line with the negative genetic 
correlations that we observed between MetS and both AN and schizophrenia, 
Mendelian randomisation (MR) studies have previously identified AN and SCZ 
as causal for decreased fat mass (Hubel et al., 2019). This finding may suggest a 
prevalent contribution of environmental factors, such as the use of antipsychotics, 
unhealthy diet and lifestyle, reduced access to medical care on the epidemiological 
evidence of an increased risk of MetS, hypertension, and dyslipidaemia in patients 
with SCZ (Vancampfort et al., 2015). We also replicated and updated previous 
evidence of genetic sharing of ADHD, AN, and MDD with T2DM, as well as of ADHD, 
AN, MDD, and SCZ with both obesity and BMI (Bulik-Sullivan et al., 2015; Demontis 
et al., 2019; Howard et al., 2019; Hubel et al., 2019; So et al., 2019; Watson et al., 
2019). With regard to SCZ and BMI, the negative direction of the genetic correlation 
corresponds to the previously reported evidence of a negative association of 
polygenic risk scores for SCZ with BMI (So et al., 2019). Exploring further the genetic 
links between these neuropsychiatric disorders and glycaemic traits linked to 
insulin resistance, we revealed a novel positive correlation between ADHD and FPG, 
as well as negative bivariate correlations between AN and both FPI and HOMA-IR 
that replicate and update previous findings (Hubel et al., 2019; Watson et al., 2019). 
A MR study had also previously shown that higher levels of FPI have a causal effect 
in reducing the risk of AN (Adams et al., 2020).

Interestingly, the local genetic covariance we have highlighted between 
neuropsychiatric disorders and somatic diseases linked to insulin resistance was 
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in most cases in the negative direction at the level of gene-sets related to insulin 
signalling, except for AN and ADHD. A negative direction means that genetic 
variability at the level of these gene-sets may result in an opposite pleiotropic effect 
on these two groups of diseases. However, the biological interpretation of these 
findings does not seem obvious at present and additional investigations at the 
gene and functional level will be necessary to clarify their biological significance.

This study comes with some strengths and limitations. The major strength is 
the investigation of the possible specific involvement of insulin-related gene-
sets at the genomic level for the first time in the phenotypically observed 
comorbidity between neuropsychiatric disorders and somatic diseases related to 
insulin resistance. GNOVA provided us with more powerful statistical inference 
and more accurate genetic covariance estimates than LDSC and helped dissect 
the shared genetic architecture of the considered complex diseases, while giving 
us greater insights into the underlying biology. We exploited the largest public 
GWAS summary statistics (up to 898,130 individuals for T2DM) and used a strict 
Bonferroni correction to avoid type-1 errors. Our study may be limited by not 
having considered in our analyses the potential effect of environmental factors 
and epigenetic mechanisms, which are likely to mediate the relationship between 
neuropsychiatric and somatic insulinopathies, as well as potential sex effects 
due to the unavailability of publicly available sex-stratified data for all the traits/
disorders tested and the loss of power for some of the phenotypes investigated. 
Another limitation is the inclusion of European-only datasets in our analyses, 
which limits the generalisability of our findings. In addition, the composition of 
insulin-related gene-sets, used as functional annotations in our stratified analyses, 
may be influenced by the current, still incomplete knowledge of the biology and 
functioning of the pathways to which they refer.

In conclusion, our study revealed the presence of genetic overlap between OCD 
and insulin-related somatic diseases, with a likely protective effect of the genetics 
underlying OCD on the chance of having MetS, obesity, and/or T2DM. However, 
environmental effects, such as psychotropic drug use, or a relatively unhealthy 
lifestyle, may act in the opposite direction to genetics, causing increased metabolic 
risk despite protective genetics. We pointed out that other neuropsychiatric 
disorders, besides OCD, represent potential brain “insulinopathies”. Two distinct 
clusters of psychiatric disorders have emerged, in which the genetics of insulin-
related traits/diseases may exert divergent pleiotropic effects: one consisting of 
AN, OCD, and SCZ, which showed negative genetic overlap with somatic insulin-
related diseases and traits, and the other one comprising ADHD, and MDD, which 
showed positive genetic overlap with insulin-related diseases and traits. Finally, we 
demonstrated that insulin-related gene-sets may be pleiotropic for neuropsychiatric 
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disorders (i.e., AN, ADHD, ASD, BD, OCD, and SCZ) and somatic insulinopathies, 
suggesting that the cumulative effect of genetic variability within insulin-related 
gene-sets on the investigated neuropsychiatric disorders except for AN and 
ADHD is in the opposite direction to the effect on somatic insulinopathies. Our 
work might open up new directions for clinical and neuropsychopharmacological 
research by introducing insulin signalling as a possible mechanism underlying the 
multimorbidity of major mental disorders and somatic diseases. Further studies are 
warranted to investigate the biological meaning of the observed correlations and 
potential non-genetic effects contributing to insulin-related multimorbidity.

URLs 
LDSC, https://github.com/bulik/ldsc; Pre-computed European 
LD scores, https://data.broadinstitute.org/alkesgroup/LDSCORE/; 
GNOVA, https://github.com/xtonyjiang/GNOVA;

GWAS summary statistics - ADHD, AN, ASD, BD, OCD, MDD, TS:  
https://www.med.unc.edu/pgc/download-results/; AD: https://ctg.cncr.nl/
software/summary_statistics; SCZ: http://walters.psycm.cf.ac.uk/; 2hGlu, FPG, FPI, 
HbA1c, HOMA-IR: https://www.magicinvestigators.org/downloads/; BMI: https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files; MSigDB: https://www.gsea-msigdb.org/gsea/msigdb/index.jsp.
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Abstract

The co-occurrence of insulin resistance (IR)-related metabolic conditions with 
neuropsychiatric disorders is a complex public health challenge. Evidence of the 
genetic links between these phenotypes is emerging, but little is currently known 
about the genomic regions and biological functions that are involved. To address 
this, we performed Local Analysis of [co]Variant Association (LAVA) using large-
scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three 
IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) 
and nine neuropsychiatric disorders. Subsequently, positional and expression 
quantitative trait locus (eQTL)-based gene mapping and downstream functional 
genomic analyses were performed on the significant loci. Patterns of negative 
and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified 
at 109 unique genomic regions across all phenotype pairs. Local correlations 
emerged even in the absence of global genetic correlations between IR-related 
conditions and Alzheimer’s disease, bipolar disorder, and Tourette’s syndrome. 
Genes mapped to the correlated regions showed enrichment in biological 
pathways integral to immune-inflammatory function, vesicle trafficking, insulin 
signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further 
prioritised 10 genetically correlated regions for likely harbouring shared causal 
variants, displaying high deleterious or regulatory potential. These variants were 
found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that 
can be targeted by supplements and already known drugs, including omega-3/6 
fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering 
drugs. Overall, our findings underscore the complex genetic landscape of IR-
neuropsychiatric multimorbidity, advocating for an integrated disease model and 
offering novel insights for research and treatment strategies in this domain.
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Introduction

Multimorbidity, defined as the co-occurrence of multiple conditions within an 
individual, poses substantial challenges to healthcare systems (Skou et al., 2022). 
An example is the observed co-occurrence of insulin resistance (IR)-related 
metabolic conditions, such as type 2 diabetes mellitus (T2DM), obesity, and 
metabolic syndrome (MetS), with neuropsychiatric disorders (Wimberley et al., 
2022). This multimorbidity contributes to more severe physical and mental health 
outcomes, leading to reduced treatment effectiveness and higher mortality rates 
(Fanelli & Serretti, 2022; Kraus et al., 2023; Possidente et al., 2023). Moreover, IR is 
associated with detrimental effects on cognitive function, potentially worsening 
the cognitive impairment observed in various neuropsychiatric disorders (Fanelli, 
Mota, et al., 2022).

IR manifests as reduced tissue responsiveness to insulin stimulation, primarily 
disrupting blood glucose homeostasis and inducing long-term micro- and 
macrovascular complications, as well as peripheral nervous system damage 
(DeFronzo et al., 2015). Such a metabolic perturbation is a distinctive feature 
of T2DM, central obesity, and MetS (DeFronzo et al., 2015). Emerging evidence 
suggests that IR shares aetiological pathways with neuropsychiatric disorders, 
including Alzheimer’s disease (AD), mood and psychotic disorders (Fanelli, Franke, 
et al., 2022; Hubel et al., 2019; Watson et al., 2019). The connection between IR-
related conditions and neuropsychiatric disorders is supported by compelling 
epidemiological data (Leutner et al., 2023; Wimberley et al., 2022). Indeed, 
bidirectional phenotypic associations have been found between these two 
nosological groups (Wimberley et al., 2022). This evidence blurs the boundaries 
between traditional disease categories, advocating for a more integrated approach 
to research and clinical management (Chwastiak et al., 2015; Fanelli & Serretti, 
2022). Consequently, a deeper comprehension of the mechanisms underlying this 
multimorbidity is essential.

Beyond shared environmental risk factors – including poor diet, sedentary 
lifestyle, and disturbed sleep (Marx et al., 2017; Ogilvie & Patel, 2018; Schuch et 
al., 2018), which could also be direct manifestations of psychopathology – shared 
genetic components have been identified (Fanelli, Franke, et al., 2022). Both 
IR-related conditions and neuropsychiatric disorders are highly heritable and 
polygenic (Mahajan et al., 2022; Trubetskoy et al., 2022), with heritability estimates, 
derived from twin and family studies, ranging from 40 to 80% (Almgren et al., 2011; 
Wray et al., 2014). Work by us and others disclosed global genetic correlations 
between neuropsychiatric disorders and IR-related conditions, indicative of shared 
genetic bases (Fanelli, Franke, et al., 2022; Hubel et al., 2019), though the effect 
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directions were not consistent across all phenotype pairs. Intriguingly, two clusters 
of neuropsychiatric disorders were identified, wherein the genetics of IR-related 
conditions showed opposite directions of genetic correlation. The first included 
attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder 
(MDD), which showed positive genetic correlations with IR-related conditions; the 
second included obsessive-compulsive disorder (OCD), anorexia nervosa (AN), 
and schizophrenia, which showed negative genetic correlations with IR-related 
conditions (Fanelli, Franke, et al., 2022). Genetic covariance was also highlighted 
within gene sets pertinent to insulin processing, secretion, and signalling, 
suggesting that several neuropsychiatric disorders could be reconceptualised 
as “insulinopathies” of the brain (Fanelli, Franke, et al., 2022). Strikingly, certain 
neuropsychiatric disorders, such as AD and bipolar disorder (BD), demonstrated no 
global genetic correlations with IR-related conditions, despite previous literature 
suggested a shared pathophysiology (Fanelli, Franke, et al., 2022; Shieh et al., 2020). 
However, global genetic correlation only encapsulates the average direction of 
genetic sharing across the genome, while the patterns of genetic correlations at 
the level of individual genomic regions can vary significantly (van Rheenen et al., 
2019). Local genetic correlation can deviate from the genome-wide average, and 
regions of strong, local genetic correlation have been reported for multiple traits 
even in the absence of genome-wide correlation (van Rheenen et al., 2019; Werme 
et al., 2022). Therefore, the absence of genome-wide genetic correlations does not 
necessarily exclude shared genetics in specific regions, suggesting the importance 
to further study the possible genetic overlap between conditions without global 
genetic correlation, such as AD and IR-related traits (Fanelli, Franke, et al., 2022). 
Importantly, dissecting the local patterns of genetic sharing could shed light on 
specific genetic factors involved in IR-neuropsychiatric multimorbidity and new 
potential therapeutic targets for both groups of conditions. Recent advances in 
bioinformatics have facilitated a more detailed exploration of the genetic overlap 
across distinct phenotypes. Traditional global genetic correlation methods, like 
Linkage Disequilibrium Score regression (LDSC), assess shared genetic architecture 
between phenotypes across the entire genome (Bulik-Sullivan et al., 2015) but may 
fail in identifying phenotype pairs that share specific genomic regions potentially 
without showing global genome-wide genetic correlation (Bulik-Sullivan et al., 
2015). Therefore, the utilisation of local genetic correlation analyses may offer more 
granular insights into shared genetic bases (Werme et al., 2022).

In this study, we aimed to dissect the genetic overlap between three IR-related 
metabolic conditions – namely, obesity, T2DM, and MetS - and nine psychiatric 
disorders by examining their pairwise patterns of local genetic correlation throughout 
semi-independent regions across the genome. Any shared genomic region was 
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further explored using positional and expression quantitative trait locus (eQTL)-
based gene mapping techniques. This was followed by a functional annotation of the 
mapped genes, enabling a deeper exploration of biological mechanisms underlying 
IR-neuropsychiatric multimorbidity. Lastly, we investigated the shared (likely) causal 
variants possibly driving the pathophysiology of this multimorbidity.

Methods

Input datasets 
We leveraged publicly available summary statistics from the largest genome-wide 
association studies (GWASs) on the three most prevalent IR-related conditions, 
namely obesity, MetS, and T2DM (n=244,890-933,970), and nine neuropsychiatric 
disorders, including AD, ADHD, AN, autism spectrum disorder (ASD), BD, MDD, 
OCD, schizophrenia, and Tourette’s syndrome (TS) (n=9,725-933,970). These 
neuropsychiatric disorders were chosen because they are the best genetically 
characterised by the Psychiatric Genomics Consortium (Cross-Disorder Group of the 
Psychiatric Genomics Consortium, 2019). Further details, including sample size of 
each GWAS, are reported in Table 1. To maintain consistency in genetic data, analyses 
were confined to individuals of European ancestry, employing the human genome 
build GRCh37/hg19 as a reference. All statistical analyses were performed using  
R v4.2.1 (2022-06-23).

Local genetic correlation analyses
We utilised the R package LAVA (Local Analysis of [co]Variant Association) (https://github.
com/josefin-werme/LAVA) to perform pairwise local genetic correlation analyses 
between the three IR-related conditions and the nine neuropsychiatric disorders 
(Werme et al., 2022). Compared to traditional global correlation analysis methods 
(Bulik-Sullivan et al., 2015), LAVA estimates the genetic correlation at smaller 
genomic loci, which provides a more fine-grained overview of the genetic overlap 
between traits. In addition to providing insight into the potentially heterogeneous 
nature of the shared association patterns across the genome, LAVA allows 
identification of the regions from which the pleiotropy is originating (Werme et 
al., 2022). Further details regarding the LAVA analytical steps are provided in the 
Supplementary information (paragraph 1.1). Given the total number of bivariate 
tests performed across all phenotype pairs, local genetic correlations were deemed 
as statistically significant at a maximum acceptable false discovery rate (FDR) of 
q=0.05, following the approach of Hindley et al. (2022).



178 | Chapter 6

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

ti
cs

 o
f g

en
om

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y 
(G

W
A

S)
 s

am
pl

es
 u

se
d 

as
 in

pu
t f

or
 L

oc
al

 A
na

ly
si

s 
of

 [C
o]

va
ri

an
t A

ss
oc

ia
ti

on
 (L

AV
A

) a
nd

 fo
llo

w
-u

p 
ge

no
m

ic
 a

na
ly

se
s 

in
cl

ud
ed

 in
 th

is
 s

tu
dy

.

Ph
en

ot
yp

e
A

ut
ho

rs
Ye

ar
PM

ID
A

nc
es

tr
y

N
Ca

se
s

Co
nt

ro
ls

N
eff

M
et

S
Li

nd
20

19
31

58
95

52
Eu

ro
pe

an
29

1,
10

7
59

,6
77

23
1,

43
0

18
9,

77
2.

81

O
be

si
ty

W
at

an
ab

e 
et

 a
l.

20
19

31
42

77
89

Eu
ro

pe
an

24
4,

89
0

9,
80

5
23

5,
08

5
37

,6
49

.6
9

T2
D

M
M

ah
aj

an
 e

t a
l.

20
22

35
55

13
07

Eu
ro

pe
an

93
3,

97
0

80
,1

54
85

3,
81

6
29

3,
10

0.
50

A
D

W
ig

ht
m

an
 e

t a
l.

20
21

34
49

38
70

Eu
ro

pe
an

76
2,

91
7

86
,5

31
67

6,
38

6
30

6,
86

6.
18

A
D

H
D

D
em

on
tis

 e
t a

l.
20

23
36

70
29

97
Eu

ro
pe

an
22

5,
53

4
38

,6
91

18
6,

84
3

12
8,

21
3.

80

A
N

W
at

so
n 

et
 a

l.
20

19
31

30
85

45
Eu

ro
pe

an
72

,5
17

16
,9

92
55

,5
25

52
,0

41
.9

1

A
SD

G
ro

ve
 e

t a
l.

20
19

30
80

45
58

Eu
ro

pe
an

46
,3

50
18

,3
81

27
,9

69
44

,3
66

.6
2

BD
M

ul
lin

s 
et

 a
l.

20
21

34
00

20
96

Eu
ro

pe
an

41
3,

46
6

41
,9

17
37

1,
54

9
15

0,
66

9.
89

O
CD

IO
CD

F-
G

C/
O

CG
A

S
20

18
28

76
10

83
Eu

ro
pe

an
9,

72
5

2,
68

8
7,

03
7

7,
78

0.
14

M
D

D
H

ow
ar

d 
et

 a
l.

20
19

30
71

89
01

Eu
ro

pe
an

50
0,

19
9

17
0,

75
6

32
9,

44
3

44
9,

85
5.

91

Sc
hi

zo
ph

re
ni

a
Tr

ub
et

sk
oy

 e
t a

l.
20

22
35

39
65

80
Eu

ro
pe

an
13

0,
64

4
53

,3
86

77
,2

58
12

6,
28

1.
98

TS
Yu

 e
t a

l.
20

19
30

81
89

90
Eu

ro
pe

an
14

,3
07

4,
81

9
9,

48
8

12
,7

83
.3

0

A
bb

re
vi

at
io

ns
: M

et
S 

m
et

ab
ol

ic
 s

yn
dr

om
e,

 T
2D

M
 t

yp
e 

2 
di

ab
et

es
 m

el
lit

us
, A

D
 A

lz
he

im
er

’s 
di

se
as

e,
 A

D
H

D
 a

tt
en

tio
n-

de
fic

it/
 h

yp
er

ac
tiv

ity
 d

is
or

de
r, 

A
N

 a
no

re
xi

a 
ne

rv
os

a,
 A

SD
 a

ut
is

m
 s

pe
ct

ru
m

 d
is

or
de

r, 
BD

 b
ip

ol
ar

 d
is

or
de

r, 
M

D
D

 m
aj

or
 d

ep
re

ss
iv

e 
di

so
rd

er
, O

CD
 o

bs
es

si
ve

-c
om

pu
ls

iv
e 

di
so

rd
er

, I
O

CD
F-

G
C/

O
CG

A
S 

In
te

rn
at

io
na

l 
O

CD
 F

ou
nd

at
io

n 
G

en
et

ic
s 

Co
lla

bo
ra

tiv
e/

O
CD

 C
ol

la
bo

ra
tiv

e 
G

en
et

ic
s 

A
ss

oc
ia

tio
n 

St
ud

ie
s,

 T
S 

To
ur

et
te

’s 
sy

nd
ro

m
e,

 P
M

ID
 P

ub
M

ed
 ID

, N
 to

ta
l s

am
pl

e 
si

ze
, N

eff
 e

ffe
ct

iv
e 

sa
m

pl
e 

si
ze

 [N
eff

 =
 4

/(
1/

Ca
se

s 
+

 1
/C

on
tr

ol
s)

].



6

179|Local genetic sharing between neuropsychiatric and IR conditions

Positional and eQTL gene mapping
The biomaRt R package (version 2.54.1) (https://doi.org/doi:10.18129/B9.bioc.
biomaRt) (Durinck et al., 2005) was used to annotate single-nucleotide 
polymorphisms (SNPs) within each genetically correlated region and positionally 
map them to genes. We used the Ensembl database (release 109, GRCh37/hg19, 
homo sapiens) as a reference for gene annotations. We defined filters to specify the 
genomic regions of interest based on their location (chromosome number, start 
and end positions).

For the eQTL-based gene mapping, the loci2path R package (version 1.3.1) 
(https://doi.org/doi:10.18129/B9.bioc.loci2path) (Xu et al., 2020) was used to 
identify eQTLs within the genetically correlated regions that may influence gene 
expression in 13 cortical, subcortical, and cerebellar brain regions (i.e., total brain 
cortex, frontal cortex BA9, hippocampus, hypothalamus, amygdala, anterior 
cingulate cortex BA24, caudate, nucleus accumbens, putamen, cervical spinal 
cord, substantia nigra, cerebellar hemisphere, cerebellum). We obtained the eQTL 
data from the Genotype-Tissue Expression (GTEx) project (GTEx V8, GRCh38/
hg38) (https://gtexportal.org/home/dataset) and restricted our analysis to brain 
tissues due to their relevance to neuropsychiatric disorders. Prior to the analysis, 
we lifted the eQTL coordinates to the GRCh37/hg19 genomic build using the 
UCSC LiftOver tool (https://genome-store.ucsc.edu) to align with the used GWAS 
summary statistics.

Functional annotation of genetically correlated regions
Functional annotation analyses were conducted separately for each phenotype 
pair where genetically correlated regions were found. We employed the 
GENE2FUNC module within the Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA) platform (Watanabe et al., 2017), using default 
parameters and multiple testing correction (Watanabe et al., 2017). This approach 
served to examine important properties of the mapped genes, such as their 
tissue-specific and temporal expression profiles, enrichment in predefined gene 
sets, potential as drug targets, and previous trait/disease associations. Detailed 
information on the methods applied for these analyses are presented in the 
Supplementary information (paragraph 1.2).

To contextualise our findings within the broader landscape of known disease 
associations, we also investigated the overrepresentation of the identified genes 
within those previously associated with traits or diseases by querying the NHGRI-
EBI GWAS Catalog (Buniello et al., 2019).
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Colocalisation analyses
To identify the specific shared causal variants within each region showing local 
genetic correlation, we conducted robust Bayesian colocalisation analyses through 
the coloc R package (Giambartolomei et al., 2014) and the Sum of Single Effects 
(SuSiE) regression framework (Wallace, 2021) (https://chr1swallace.github.io/
coloc/articles/a06_SuSiE.html). Notably, these approaches allow for simultaneous 
evaluation of multiple causal genetic variants within a genomic region and are 
therefore not limited by the single causal variant assumption that traditional 
colocalisation methods use. The input genomic regions were those showing 
evidence of local genetic correlation between each pair of IR-related condition 
and neuropsychiatric disorder. The detailed methodology is reported in the 
Supplementary information (paragraph 1.3).

Functional annotation of 95% credible sets of shared causal variants
We employed the SNPnexus web server (https://www.snp-nexus.org/) to further 
characterise the functional significance of the likely causal variants identified by 
colocalisation (Oscanoa et al., 2020). This tool integrates a wealth of genomic and 
functional annotation resources to elucidate the potential biological consequences 
of variants on gene structure, regulation, and function. The analysis encompassed 
several annotation categories, including gene annotations, regulatory elements 
(e.g., miRBASE, CpG islands), and non-coding scoring (i.e., deleteriousness Combined 
Annotation Dependent Depletion [CADD] scores), along with pathway enrichment 
analysis of credible set variants (Oscanoa et al., 2020). A detailed description of these 
steps is provided in the Supplementary information (paragraph 1.4).

Finally, the drugs/compounds that target genes mapped to likely causal variants 
were sourced from GeneCards, independent from their approved or investigational 
status. GeneCards is an online platform that gathers information from multiple 
databases including DrugBank, PharmaGKB, ClinicalTrials, DGIdb, the Human 
Metabolome Database, and Novoseek (Safran et al., 2010).
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Results

Figure 1. Local genetic correlations between neuropsychiatric and insulin resistance related conditions.

Abbreviations: AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; AN, anorexia 
nervosa; ASD, autism spectrum disorder; BD, bipolar disorder; MDD, major depressive disorder; MetS, 
metabolic syndrome, OCD, obsessive-compulsive disorder; T2DM, type 2 diabetes mellitus; SCZ, 
schizophrenia; TS, Tourette’s syndrome. 
a. �Chord diagram representing the network of local genetic correlations between insulin resistance-

related conditions and neuropsychiatric disorders. A higher width of a ribbon reflects a higher 
number of shared genetically correlated loci between two phenotypes, highlighting a substantial 
polygenic overlap and suggesting potential shared pathophysiological mechanisms between them. 
The colours of the ribbons are used purely for visual distinction and do not imply any additional 
significance or categorisation.

b. �Bar plot presenting the number of local genetic correlations identified between neuropsychiatric 
disorders and insulin resistance-related conditions. Each bar corresponds to a different 
neuropsychiatric disorder, segmented by the direction of effect of local genetic correlations, 
with blue indicating negative and red indicating positive local genetic correlations between 
neuropsychiatric disorders and insulin resistance-related conditions. The height of each bar reflects 
the quantity of local genetic correlations detected for each disorder.

c. �Network visualisation of local genetic correlations between a spectrum of neuropsychiatric 
disorders and insulin resistance-related conditions. Nodes represent distinct phenotypes for which 
local bivariate genetic correlations were evaluated. Edges connecting the nodes vary in width 
proportionally to the number of local genetic correlations identified between phenotype pairs. 
Edge colour denotes the direction of the genetic correlation estimate, with red indicating a positive 
correlation and blue indicating a negative correlation.

a
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Local patterns of genetic correlation between IR-related conditions 
and neuropsychiatric disorders
For each pair consisting of an IR-related condition and a neuropsychiatric disorder, 
bivariate local genetic correlation was evaluated in all genomic regions for which 
both phenotypes exhibited a univariate signal at p<1x10-4, resulting in a total of 
2,251 tests. Of note, only 19.6% of the regions with significant local SNP-based 
heritability (h2

SNP) for both phenotypes showed a bivariate p<0.05, indicating that 
significant local h2

SNP is often present without any local correlation signal between 
neuropsychiatric and IR-related conditions. After FDR correction, moderate to high 
degrees of local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified for 20 of 
the 27 phenotype pairs examined, across 109 unique semi-independent genomic 
regions (see Figure 1 and Table 2). Noteworthy, local genetic correlations also 
emerged between IR-related conditions and neuropsychiatric disorders that had 
not shown significant global genetic correlations, namely AD, BD, and TS (Fanelli, 
Franke, et al., 2022). In total, 128 FDR-significant local genetic correlations were 
identified, of which 75 with a positive direction of the effect and 53 with a negative 
direction (Table 2; detailed results are provided in Table S1; see also Figure 1b-
c). For 59 (46.1%) of the 128 local correlations, the 95% confidence intervals (CIs) 
for the explained variance included the value 1, consistent with a scenario where 
the local genetic signal for those phenotype pairs is entirely shared (Table 2). 
Interestingly, exclusively positive local genetic correlations were found between 
IR-related conditions and ADHD/MDD, while those detected between IR-related 
conditions and AN were all negative. No local genetic correlation was found 
between ASD and IR-related conditions. Conversely, a combination of positive 
and negative local genetic correlations was detected between all the other IR-
related and neuropsychiatric conditions (Figure 1, Table 2), of which all but MetS-
schizophrenia had no previous evidence of global genetic overlap (see Table 2).

Furthermore, fifteen out of the 109 unique regions were associated with more 
than one phenotypic pair (Table S1; we refer to these here as hotspots). The major 
hotspots showing significant bivariate local rgs between multiple phenotypic 
pairs were the chr2:59251997-60775066 (between T2DM-ADHD, MetS-AN,  
MetS-MDD), chr6:31320269-31427209 (MetS-AD, T2DM-AD, T2DM-schizophrenia), 
and chr16:29043178-31384210 genomic regions (MetS-schizophrenia, obesity-
schizophrenia, T2DM-schizophrenia) (see Table S1 and Figure S1). Notably, 11.71% 
of the genetically correlated regions detected here (15/128) are located in the 
Major Histocompatibility Complex (MHC) region (chr6:28477797-33448354). All  
rgs detected in the MHC were between T2DM/MetS and either schizophrenia, AD, or 
BP, with prevalence of a negative direction of the effect (Table S1).
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Genes underlying IR-neuropsychiatric multimorbidity
In the regions where we detected significant local genetic correlations, we 
identified a total of 1,455 distinct genes were identified through eQTL-based 
mapping, and 1,495 unique protein-coding genes through positional mapping 
across all phenotype pairs (Table S2-3). Notably, the pseudogene CYP21A1P was 
recurrently eQTL-mapped across multiple phenotype pairs (AD-T2DM, AD-MetS, 
BD-T2DM, schizophrenia-T2DM). In total, 140 genes were mapped for at least 
three phenotype pairs, indicating a potentially broader relevance in the genetic 
landscape of IR-neuropsychiatric multimorbidity (Table S3). Within this subset,  
20 genes, all located within the MHC region, were involved in immune-inflammation 
and vesicle metabolism/trafficking (e.g., HLA-B, MICA, C4A, C4B, AGER, BTNL2, HLA-
DRA, HLA-DRB1, HLA-DQA1, PSMB8, HLA-DRB5, and FLOT1), and four genes were 
involved in insulin signalling and secretion (i.e., STX1A, FLOT1, MAPK3, and PHKG2) 
(see Table S3).

Functional annotation of the identified regions
Considering the genes mapped to the regions showing local correlation,  
411 gene sets were significantly enriched (Table S4). Immune-related pathways 
were prominently represented for multiple phenotype pairs (i.e., AD-MetS/
T2DM, BD-T2DM, TS-T2DM, schizophrenia-T2DM). Other biological pathways 
related to oxygen transport, lipid metabolism (including omega-3 and omega-6 
polyunsaturated fatty acid levels (PUFAs)), embryonic/placental development, 
insulin receptor/phosphoinositide 3-kinase (PI3K), and vesicular function/secretion 
were enriched across different phenotype pairs (Table S4). Pharmacogenomic 
markers, notably genes genome-wide associated with response to metformin (i.e., 
STX1B, STX4, ZNF668), were enriched in regions shared between schizophrenia and 
MetS, obesity, and T2DM (Table S5).

In a more granular examination, we also evaluated enrichment of life-stage-
specific expression profiles for genes mapped to the genetically correlated 
regions (Tables S7-8). Specifically, regions correlated between schizophrenia and 
obesity featured genes upregulated at 19 weeks post-conception. Conversely, 
regions associated with the schizophrenia-MetS pair exhibited a distinct pattern, 
with genes showing downregulation in brain samples from individuals at age 11. 
Furthermore, regions of overlap between OCD and MetS held genes upregulated in 
early adulthood brain tissues, while the genes in the overlapping regions marking 
the OCD-obesity pair exhibited gene downregulation in late childhood.

Detailed results for gene set analysis, spatio-temporal expression specificity of 
the mapped genes, and druggable gene annotations are reported in Tables S4-S10.
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Shared causal variants between insulin resistance-related conditions 
and neuropsychiatric disorders
Of the 128 regions identified with local rg, colocalisation analyses successfully 
pinpointed the likely causal variants driving this association in 10 regions  
(see Tables S11-12). For comprehensive functional annotations of 95% credible set 
variants within these 10 regions see Tables S13-S23.

Notably, one region on chromosome 4 and two on chromosome 6 showed the 
highest posterior probability for colocalisation, linking schizophrenia with MetS 
and AD with T2DM, respectively (Tables S11-12, Fig. S2-4). The schizophrenia-MetS 
relationship implicated the rs13107325 variant in the SLC39A8 gene, which modulates 
the activity of the miRNA hsa-miR-374b-5p (Tables S12-14). For the AD-T2DM pair, 
the likely causal variants were rs9271608 and rs9275599, mapped to the HLA-DRB1 
and MTCO3P1 genes, respectively. According to GeneCards, HLA-DRB1 is targeted 
by immunosuppressive and anti-inflammatory drugs (e.g., azathioprine, lapatinib, 
interferons-β, and acetylsalicylic acid), as well as by statins and psychotropic drugs 
(e.g., carbamazepine, clozapine, and lamotrigine) (Table S23).

Further seven regions had good support for colocalisation (Supplementary 
information, paragraph 1.3); these regions showed local genetic correlations for 
the AD-T2DM, MDD-T2DM, BD-MetS, and schizophrenia-MetS pairs (Tables S11-12). 
Most of the identified variants were observed within or near genes pivotal to 
immune function, vesicle/small molecules trafficking, lipid metabolism, organ 
development, retinoic acid signalling, and DNA repair/apoptosis (Tables S17-18). 
They often had high CADD PHRED scores, suggesting highly deleterious effects 
(Tables S13). Genes mapping to these variants, like the HLA-DQB1 and FADS1/2 
genes, are targeted by existing drugs and supplements, such as antihypertensive 
drugs, omega-3/6 PUFAs, and vitamin A (Table S23).

Discussion

In this study, we examined the genetic relationship between IR-related conditions 
– specifically, obesity, T2DM, and MetS – and nine neuropsychiatric disorders 
by investigating the pairwise patterns of local genetic correlation across the 
genome. At the same time, we explored the specific genetic factors and biological 
mechanisms underlying their multimorbidity. The results presented here offer novel 
insights into the shared genetic aaetiology between these phenotypes, unveiling 
a complex pattern of both positive and negative local genetic correlations. 
For the first time, we demonstrated that even in the absence of global genetic 
correlations, significant local correlations exist (i.e., between AD, BD, TS and IR-
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related conditions). These findings expand the results of previous studies (Fanelli, 
Franke, et al., 2022; Hubel et al., 2019), with important implications for understanding 
the pathophysiology of these disorders and for developing targeted therapeutic 
interventions addressing IR-psychiatric multimorbidity. We identified 128 local 
genetic correlations across 109 unique genomic regions. Notably, the MHC region 
emerged as a particularly significant contributor in terms of shared genetic signal, 
as confirmed by enrichment in biological pathways related to immune function. In 
addition, genes mapped to the genetically correlated regions showed enrichment 
in pathways involved in lipid metabolism, insulin signalling, and vesicular function, 
among others.

Regarding the directions of the detected genetic correlations, we observed 
exclusively positive local genetic correlations for ADHD and MDD with IR-related 
conditions, indicating synergistic genetic effects that predispose to both 
neuropsychiatric symptoms and IR-related conditions. Our enrichment analyses 
of the genes mapped to these regions suggest that the genetic overlap might be 
mediated by genes involved in extracellular matrix organisation, vesicle trafficking, 
and oxygen transport/oxidative processes. These pathways are involved in both 
brain function and metabolic regulation (Dityatev et al., 2010; Rossetti et al., 2020; 
Zou et al., 2020). In particular, extracellular matrix molecules are implicated in 
synaptic plasticity and homeostasis (Dityatev et al., 2010) and may also influence 
tissue insulin sensitivity (Williams et al., 2015). Similarly, vesicle trafficking, integral 
to synaptic function and neurotransmission, could be a nexus where neuronal 
communication and insulin signalling intersect, contributing to the multimorbidity 
of the conditions (Zou et al., 2020). Conversely, we detected exclusively negative 
correlations between AN and IR-related conditions. These results align with the 
distinct phenotypic characteristics of AN, including increased insulin sensitivity 
and metabolic alterations related to undernutrition, which differ markedly from 
other neuropsychiatric disorders (Duriez et al., 2019; Ilyas et al., 2019).

While phenotypic overlap of AD and BD with IR-related conditions has been 
frequently reported (e.g., Santiago and Potashkin (2021); Wimberley et al. (2022))), 
previous genetic analyses did not find global genetic correlations between these 
phenotypes (Fanelli, Franke, et al., 2022). This may have occurred due to the 
averaging effect of global analyses. Our study, which is the first to report significant 
local genetic correlations between AD, BD, TS and IR-related conditions, suggests 
that positive and negative local correlations could neutralise each other in global 
correlation analyses, a phenomenon observed in other recent studies (Arenella et 
al., 2023; Fernandes et al., 2023). These heterogeneous patterns of genetic overlap 
could also point towards aetiologically distinct subgroups that warrant further 
exploration with deep phenotyping and functional validation. Such analyses could 
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bring us closer towards precision medicine, offering the potential for personalised 
healthcare and improved treatment success (Feczko & Fair, 2020).

Multiple genomic regions (15 out of 109) showed significant correlations for more 
than one phenotype pairs, implying a potentially more prominent and ubiquitous 
role in the IR-neuropsychiatric multimorbidity. Among the recurring regions, 
chr2:59251997-60775066, mapping to the BCL11A gene, was implicated in the 
correlation of T2DM with ADHD, MetS with AN, and MetS with MDD. BCL11A codes for 
a transcription factor essential for B cell function and haematopoiesis, as well as for 
neuronal development, regulating processes such as neurogenesis/axonogenesis, and 
neuronal migration (Bauer & Orkin, 2015; Dias et al., 2016). BCL11A variants have also 
been associated with neurodevelopmental disorders and impaired cognition, as well 
as with IR in in vivo and in vitro studies (Dias et al., 2016; Jonsson et al., 2013; Wiegreffe 
et al., 2022). Among other genes that were mapped across at least three phenotypic 
pairs, some (i.e., STX1A, FLOT1, MAPK3, and PHKG2) are pivotal in insulin signalling 
and secretion (Bagge et al., 2013; Jager et al., 2011; van de Vondervoort et al., 2016). 
These findings strengthen a molecular basis for linking neuropsychiatric disorders to 
altered insulin function (Fanelli, Franke, et al., 2022; Mota, 2024; van de Vondervoort 
et al., 2016)), which has also been tied to cognitive deficits, anhedonia, and reward 
processing alterations (Fanelli, Mota, et al., 2022; Fanelli & Serretti, 2022; Possidente et 
al., 2023).

Over 11% of the correlated genomic regions were located within the MHC region 
(chr6:28477797-33448354), where extensive pleiotropy has been demonstrated 
previously (Watanabe et al., 2019; Werme et al., 2022). This region is renowned for 
its high gene density, polymorphism, and involvement in immune-inflammatory 
responses (Matzaraki et al., 2017). The influence of the MHC region extends beyond 
autoimmune and infectious diseases susceptibility, being also associated with 
neuropsychiatric disorders, such as ASD, schizophrenia, and BD (Tamouza et al., 
2021). Our findings point to a plausible genetic link between IR-related metabolic 
dysfunction, immune-inflammatory dysfunction, and neuropsychiatric disorders. 
This is consistent with previous findings indicating that central and peripheral 
inflammation may mediate the link between IR and neuropsychiatric conditions (Chan 
et al., 2019; Viardot et al., 2012). Inflammation may also impair brain insulin signalling, 
potentially resulting in neurobehavioural consequences (Gong et al., 2019). Notably, 
most of the local genetic correlations identified within the MHC region showed a 
negative direction of effect. We cannot provide a clear explanation of this finding, 
but it may lie in the balance of pro-inflammatory and anti-inflammatory factors in 
immune response, in which MHC genes play a role (Tamouza et al., 2021). Additionally, 
MHC class I (MHC-I) molecules, traditionally associated with immune functions, have 
also been implicated in synapse pruning, a process important for refining neural 
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circuits during development (McAllister, 2014). MHC-I molecules are expressed in 
neurons and modulate microglia-mediated synapse elimination by marking less 
active synapses for phagocytosis (Deivasigamani et al., 2023; Faust et al., 2021). This 
activity-dependent mechanism shapes functional neuronal networks and has been 
implicated in pathological synapse loss in neurodegenerative conditions (Faust et 
al., 2021; Zalocusky et al., 2021). Dysregulated MHC-I signalling can lead to aberrant 
synaptic pruning, implicated in disorders such as schizophrenia and ASD (McAllister, 
2014). Hence, the dual role of MHC-encoded molecules in both immune modulation 
and synaptic plasticity, as well as the potential differential expression of genes in the 
MHC region across different tissues and the lifespan may help explain the observed 
negative genetic correlations (Shen & Zhang, 2021). Experimental validation of 
our findings will be necessary to determine the exact functional implication of the 
observed genetic associations.

Relatedly, our study identified multiple genes related to the human leukocyte 
antigen (HLA) system, innate immunity, and immunomodulation (i.e., HLA-B, HLA-
DRA, HLA-DRB1, HLA-DQA1, HLA-DRB5, MICA, C4A, C4B, AGER, PSMB8, and BTNL2), 
supporting their possible influence on IR-neuropsychiatric multimorbidity. Of 
note, immunomodulatory drugs (e.g., non-steroidal anti-inflammatory drugs and 
monoclonal antibodies) have shown some efficacy as add-on treatments in psychoses 
and MDD, and might have higher efficacy in people with IR-neuropsychiatric 
multimorbidity (Drevets et al., 2022; Jeppesen et al., 2020). Another gene recurrently 
mapped across various phenotype pairs was the CYP21A1P pseudogene, located within 
the MHC region. Intergenic recombination of CYP21A1P leads to altered glucocorticoid 
and androgen production (Carvalho et al., 2021); glucocorticoids possess anti-
inflammatory/immunosuppressive effects, and regulate glucose metabolism and 
the body’s stress response (Balsevich et al., 2019). Specifically, glucocorticoids 
counteract insulin by decreasing peripheral glucose uptake and stimulating hepatic 
gluconeogenesis, leading to IR under conditions of excessive release, such as in 
chronic stress (Fichna & Fichna, 2017). Prolonged exposure to glucocorticoids can 
induce neurotoxic effects, possibly involved in the development of psychiatric 
disorders (Chiba et al., 2012; Ding et al., 2022). These hormones also modulate the 
serotonergic system, which is strongly implicated in psychiatric disorders and insulin 
signalling (Betari et al., 2021; Prouty et al., 2019). Interestingly, gene set enrichments 
within correlated regions between schizophrenia and IR-related conditions were 
related to the response to metformin, a frontline oral medication for T2DM. This 
implies a potential overlap in therapeutic targets between schizophrenia and T2DM, 
which could lead to a reassessment of treatment strategies for these patients. Previous 
randomised-controlled trials (RCTs) confirmed the efficacy of metformin in combating 
antipsychotic-induced metabolic side effects in individuals with psychoses (Agarwal 



6

191|Local genetic sharing between neuropsychiatric and IR conditions

et al., 2021; de Silva et al., 2016), while improving psychiatric and cognitive symptoms 
in the same population (Battini et al., 2023).

Another significant finding of this study was the identification of colocalisation 
signals. Among the 128 regions demonstrating local genetic correlation, 10 regions 
were prioritised for their high posterior probabilities of harbouring the same causal 
variants shared between IR-related conditions and neuropsychiatric disorders. This 
was instrumental for further elucidating shared pathophysiological mechanisms 
and novel potential drug targets for IR-neuropsychiatric multimorbidity (Belyaeva et 
al., 2021; Karki et al., 2017). The two most likely shared causal variants were located 
in the chr4:102544804-104384534 and chr6:32586785-32629239/chr6:32682214-
32897998 regions, suggesting novel cross-links between schizophrenia and MetS, 
and AD and T2DM, respectively. The identified shared causal variant (rs13107325) 
between schizophrenia and MetS maps to the SLC39A8 gene, encoding the ZIP8 metal 
cation transporter. Previous studies demonstrated its association with altered brain 
manganese levels and protein complexity in schizophrenia, brain morphology and 
dendritic spine density, as well as a broader impact on various conditions, including 
developmental, neuropsychiatric and cardio-metabolic diseases/traits (Hermann et al., 
2021; Li et al., 2022; Mealer et al., 2020; Nebert & Liu, 2019). Our findings also highlight 
SLC39A8’s potential as a therapeutic target via zinc chloride/sulphate (Wishart et al., 
2018). Interestingly, RCTs have shown beneficial effects of zinc sulphate in reducing 
symptoms of ADHD, MDD, and SCZ (Behrouzian et al., 2022; Bilici et al., 2004; Salari et 
al., 2015), as well as improving glucose handling in prediabetes (Islam et al., 2016). In 
the AD-T2DM context, the rs9271608 variant mapping to the HLA-DRB1 gene presented 
compelling causal candidacy, pointing to the potential for immunosuppressive drugs 
such as azathioprine, lapatinib, and interferons-β to influence AD-T2DM manifestations. 
The administration of intranasal treatment with interferon-β was shown to improve 
anxious/depressive-like behaviours by modulating microglia polarisation in AD rat 
models (Farhangian et al., 2023). Of note, the rs9271608 also shows broad biological 
relevance as it is active as a promoter across numerous cell types and tissues, including 
various immune and neuronal progenitors (Zerbino et al., 2015). The remaining 
regions of notable colocalisation underpin associations between AD and T2DM, MDD 
and T2DM, BD and MetS, and schizophrenia and MetS, hinting at potential targetable 
mechanisms for current drugs and supplements, including antihypertensive drugs, 
omega-3/6 PUFAs, vitamin A (Wishart et al., 2018). Several antihypertensive drugs 
have been associated with a reduced risk of depression (Kessing et al., 2020), and 
omega-3 PUFAs showed beneficial effects on depression symptoms in a meta-analysis 
of RCTs (Liao et al., 2019). Genes associated with omega-3/omega-6 PUFAs were 
enriched when considering the regions showing correlation between BD and MetS, 
in line with their relevance in the multimorbidity. Finally, vitamin A inhibits amyloid β 
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protein deposition, tau phosphorylation, neuronal degeneration and improves spatial 
learning and memory in AD mouse models (Ono & Yamada, 2012). It is worth noting 
that a significant local genetic correlation without detectable colocalisation does not 
necessarily mean that there are no shared causal variants; this may reflect limitations 
in the power of the colocalisation analysis, particularly in scenarios with complex 
patterns of associations, which are often observed in highly polygenic traits (Werme 
et al., 2022).

Our study should be viewed considering some limitations. Although it may serve 
as a starting point by highlighting potential shared causal variants and proposing 
biological mechanisms through which shared genetic regions might impact both 
mental and metabolic health, the functional interpretation of our findings remains 
largely speculative; future in vitro and animal model studies will be necessary to 
validate our findings and provide more definitive mechanistic insights. The high LD 
in the MHC region may have led to spurious pleiotropy, not necessarily implying the 
presence of the same shared causal SNPs (Lee et al., 2021). Rare genetic variants were 
not considered, and population-specific effects may not be adequately captured by 
our analyses, which were limited to European ancestry. While the available GWAS 
summary statistics were generally obtained in samples of adequate size for this kind of 
study, the GWAS summary statistics for OCD were based on a relatively small sample 
size, potentially influencing the number of significant local genetic correlations 
detected by LAVA.

In conclusion, our study provides novel insights into the shared genetic 
underpinnings of neuropsychiatric and IR-related conditions, challenging traditional 
notions of their separate pathophysiology. Our result support a more integrated 
disease model, and the need to move beyond the conventional view of distinct 
aetiologies. The implications of our findings extend to clinical practice, emphasising the 
need for a holistic approach in the screening and management of IR-neuropsychiatric 
multimorbidity. For example, the importance of lifestyle interventions for both 
metabolic and psychiatric health, and of developing pharmacological treatments 
that target both conditions. The discovery of shared causal variants, particularly 
in genes like SLC39A8 and HLA-DRB1, opens new avenues for targeted therapeutic 
interventions. The convergence of genetic findings on mechanisms related to 
immune-inflammation, insulin signalling, lipid metabolism, vesicle trafficking, among 
others, provides a compelling direction for future research. Overall, our study not only 
unveils the shared genetic landscape of neuropsychiatric and IR-related conditions 
but also establishes a foundation for integrated research and treatment approaches, 
contributing to a paradigm shift towards comprehensive care strategies that address 
the issue of multimorbidity.
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Abstract

Psychiatric disorders frequently co-occur with insulin resistance (IR)-related 
conditions, including obesity, type 2 diabetes mellitus (T2DM), and metabolic 
syndrome (MetS). Although pairwise genetic correlations have been observed, the 
shared genetics underlying this multimorbidity remains underexplored. Here, we 
investigate the joint genetic architecture of psychiatric-IR multimorbidity, explore 
tissue-specific gene expression associations, and identify potential underlying 
biological mechanisms and repurposable drugs. We applied genomic structural 
equation modelling (SEM) to genome-wide association study (GWAS) data (N=9,725–
933,970) from five psychiatric disorders (attention-deficit/hyperactivity disorder, 
anorexia nervosa, major depressive disorder, obsessive-compulsive disorder, and 
schizophrenia) and three IR-related conditions (MetS, obesity, T2DM). Factor analyses 
revealed a 2-factor solution, where one of the factors was composed by all psychiatric 
disorders (excluding schizophrenia) and IR-related conditions (the Psych-IR 
factor), representing the shared genetics of these psychiatric and IR-conditions. 
This factor showed genetic correlations with the inferior temporal, lateral occipital, 
and total cortical brain surface areas. A multivariate GWAS of the Psych-IR factor 
identified 150 risk loci and 366 associated genes (128 novel). The significant gene-
set associations included the insulin binding and the Notch signalling pathways, 
while the gene-property tissue expression implicated the cerebellum, brain cortex, 
and pituitary gland, particularly involving the brain during prenatal development 
stages. Transcriptome-wide SEM (T-SEM) assessed tissue-specific gene expression 
associations and identified 499 genes (191 novel), including MHC-related genes. 
Drug repurposing analysis using PharmOmics suggested six potential candidates, 
including memantine and rosiglitazone. Associated genes derived from the Psych-
IR factor multivariate GWAS and T-SEM results were combined for enrichment 
analyses, which highlighted the involvement of the chr16p11.2 region, BDNF 
signalling, and lipid metabolism. The identified Psych-IR factor offers novel insights 
into the shared genetic and biological mechanisms underlying psychiatric-IR 
multimorbidity, providing a foundation for future research on precision medicine and 
prevention approaches.
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Introduction

The co-occurrence of psychiatric disorders and somatic insulin resistance  
(IR)-related conditions, such as obesity, type 2 diabetes mellitus (T2DM) and 
metabolic syndrome (MetS), is often observed (Perry et al., 2021; Wimberley et 
al., 2022). Population-based studies have demonstrated that obesity not only 
increases the risk of developing T2DM and metabolic syndrome but also elevates 
the likelihood of receiving a psychiatric diagnosis (Leutner et al., 2023). Moreover, 
large-scale Danish registry data reveal bidirectional associations between T2DM 
and various psychiatric disorders, including neurodevelopmental, mood, and 
psychotic disorders (Wimberley et al., 2022). This observed multimorbidity between  
IR-related conditions and psychiatric disorders complicates clinical trajectories 
(Kraus et al., 2023; Skou et al., 2022) and is linked to more severe clinical outcomes; 
for instance, T2DM has been associated to more severe depression and, conversely, 
depression is linked to higher rates of complications and mortality in T2DM (Fanelli 
and Serretti, 2022; Possidente et al., 2023).

Of note, IR generally refers to a reduced response to insulin stimulation on 
peripheral tissues, resulting in elevated blood glucose levels (DeFronzo et al., 
2015; Gluvic et al., 2017). However, it is increasingly evident that insulin signalling 
disruption also has significant effects on the brain (Agrawal et al., 2021). Insulin 
receptors are expressed in most brain regions (Sullivan et al., 2023), and insulin 
is involved in important brain processes like synapse formation, neuroprotection, 
and neuronal survival (Pomytkin et al., 2018). A growing body of evidence links 
IR-related conditions with cognitive deficits across multiple domains (Fanelli 
et al., 2022b; Ottomana et al., 2023) and suggests that central IR affects key 
neurotransmitter systems, such as dopamine signalling, which is involved in 
reward-seeking behaviour and cognitive function (Gruber et al., 2023). Additionally,  
IR affects brain structures that are part of the mesolimbic pathway (i.e., the ventral 
tegmental area and nucleus accumbens), as well as the hippocampus (Lyra E Silva 
et al., 2019), influencing both hedonic perceptions and cognitive functions (Fanelli 
and Serretti, 2022; Gruber et al., 2023). The prefrontal cortex is also susceptible 
to the effects of IR, which can result in impaired cognitive flexibility and working 
memory deficits (Arnold et al., 2018a; Willette et al., 2013). IR is also associated with 
brain regional atrophy in Alzheimer's disease, particularly in the bilateral parietal-
occipital junction and medial temporal regions, hippocampal and ventromedial 
prefrontal cortex volumes in bipolar depression and healthy subjects (Mansur et al., 
2021; Morris et al., 2014; Mullins et al., 2017).

While many studies attribute metabolic disturbances in psychiatric patients 
to unhealthy lifestyles, sedentary habits, or the chronic use of psychotropic 
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medications (e.g., Grajales et al. (2019)), evidence suggests that these associations 
are not merely by-products of such factors. Glycaemic and metabolic imbalances 
have been detected even in drug-naïve psychiatric patients at disorder onset, 
implying the potential involvement of shared pathogenic mechanisms (Garrido-
Torres et al., 2021). Genetic studies reinforce the hypothesis of a shared biological 
basis for this multimorbidity showing significant genetic correlations between 
several psychiatric disorders—including attention-deficit/hyperactivity disorder 
(ADHD), anorexia nervosa (AN), obsessive-compulsive disorder (OCD), major 
depressive disorder (MDD), and schizophrenia (SCZ)—and IR-related conditions 
such as MetS, obesity, and T2DM (Fanelli et al., 2022a). Subsequent local genetic 
correlation analyses further demonstrated that these genetic overlaps are not 
always evenly distributed throughout the genome highlighting the complex genetic 
landscape of IR-neuropsychiatric multimorbidity (Fanelli et al., 2025). Additionally, a 
family-based study indicated that relatives of individuals with a psychiatric disorder 
have an increased risk for T2DM (Wimberley et al., 2024). These findings suggest 
that shared underlying mechanisms are important for the multimorbidity between 
psychiatric disorders and IR-related conditions.

While bivariate genetic analyses have been instrumental for identifying shared 
genetic aetiologies between pairs of psychiatric and IR-related conditions, 
the global joint genetic architecture and biological substrates underlying the 
multimorbidity across these two groups of conditions has not been explored. To 
address this gap, we employed genomic structural equation modelling (genomic 
SEM), a novel multivariate approach that enables analysing the shared genetic 
architecture of multiple complex traits simultaneously (Grotzinger et al., 2019). This 
method allows for the identification of genetic variants associated with a common 
underlying genetic factor, shown to capture loci that are missed by traditional 
univariate genome-wide association study (GWAS) approaches (Grotzinger et al., 
2019). Given that many genetic loci identified through GWAS likely exert their 
effects via modulation of gene expression (e.g., as expression quantitative trait loci 
or eQTLs; (Westra et al., 2013)), transcriptome-wide association studies (TWASs) can 
be helpful to quantify the effect of gene expression on complex traits (Gusev et al., 
2016). Transcriptome-wide structural equation modelling (T-SEM) extends genomic 
SEM by modelling tissue-specific gene expression within a multivariate network 
of genetically overlapping traits, providing further insights into the molecular 
mechanisms involved (Grotzinger et al., 2022a). These transcriptomic results can 
also be integrated with open-source databases to identify potential, novel drug 
candidates (Y.-W. Chen et al., 2022).

In this study, we aimed to elucidate the joint genetic architecture underlying 
the multimorbidity of psychiatric disorders and somatic IR-related conditions. We 
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applied genomic SEM to explore the genetic factor structure best explaining the 
shared genetics between five psychiatric disorders and three IR-related metabolic 
conditions that have previously shown significant pairwise genetic correlations 
(Fanelli et al., 2022a). Using the genomic SEM framework, we also examined the 
genetic relationships between the identified latent multimorbidity factor and brain 
morphometry (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019), as well 
as estimated the effects of single-nucleotide polymorphisms (SNPs), genes, and 
gene sets on such a latent multimorbidity factor. Furthermore, employing T-SEM, 
we specifically investigated the association between brain-specific transcriptomic 
patterns and the identified multimorbidity factor, aiming to uncover genes whose 
tissue-specific gene expression might overlap with brain molecular signatures of 
repurposable drugs.

Methods

Input univariate GWAS summary statistics
In order to explore the joint genetic architecture underlying the multimorbidity of 
psychiatric disorders and somatic IR-related conditions, we used GWAS summary 
statistics of European ancestry datasets of five psychiatric disorders (i.e., ADHD, AN, 
MDD, OCD, and SCZ) and three somatic IR-related conditions (i.e., MetS, obesity, 
and T2DM) that showed significant pairwise genetic correlations (Fanelli et al., 
2022a) as input for the genomic factor analyses and further genomic SEM and 
T-SEM analyses (Table 1; see also Figure 1a). SNP-based heritability was estimated 
using Linkage Disequilibrium Score Regression (LDSC; (Bulik-Sullivan et al., 2015)) 
and is reported on the liability scale. For details regarding sample ascertainment, 
phenotype description, quality control, and related procedures, we refer the reader 
to the corresponding univariate GWAS original publications listed on Table 1.



206 | Chapter 7

Table 1. Contributing univariate genome-wide association study (GWAS) datasets.

Univariate 
GWAS

Cases Controls Total 
sample

Population 
prevalence

SNP-based 
heritability (SE)

GWAS 
reference

ADHD 38,691 186,843 225,534 0.087 0.213 (0.010) Demontis 
et al., 2023

AN 16,992 55,525 72,517 0.009 0.165 (0.011) Watson et 
al., 2019

MDD 170,756 329,443 500,199 0.21 0.290 (0.045) Howard et 
al., 2019

OCD 2,688 7,037 9,725 0.02 0.094 (0.004) IOCDF-GC/
OCGAS, 2018)

SCZ 53,386 77,258 130,644 0.01 0.223 (0.008) Trubetskoy 
et al., 2022

MetS 59,677 231,430 291,107 0.25 0.201 (0.011) Lind, 2019

Obesitya 9,805 235,085 244,890 0.39 0.267 (0.025) Watanabe 
et al., 2019

T2DM 80,154 853,816 933,970 0.1 0.174 (0.008) Mahajan et 
al., 2022

Note. Population prevalences were used for the liability scale conversion and were retrieved from 
their original publications and/or Grotzinger et al. (2019) for the psychiatric traits, from O’Neill and 
O’Driscoll (2015) for MetS, from World Health Organization (2018) for obesity, and from Kumar et al. 
(2024) for T2DM.
Abbreviations: ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; MDD, major 
depressive disorder; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; MetS, metabolic 
syndrome; T2DM, type 2 diabetes mellitus; SE, standard error; GWAS, genome-wide association study. 
a.GWAS ATLAS ID: 3687, UK Biobank phenotype field 41204 (41204_E66), which refers to the trait 
‘Diagnoses - secondary ICD10: E66 Overweight and obesity’.

Genomic structural equation modelling

Genomic factor analyses
A multivariate extension of LDSC (Bulik-Sullivan et al., 2015) within genomic SEM; 
(Grotzinger et al., 2019) was used to estimate genetic correlations between all 
pairwise combinations of the studied phenotypes (Figure 1a) and to generate 
three covariance matrix sets, which were based on the odd, even, or all autosomal 
chromosomes. Genomic SEM is not biased by sample overlap and is capable of 
accounting for differences in sample sizes among the univariate GWASs that are 
used as input. Standard procedures were followed and default filtering parameters 
for this munging step, such as retaining only SNPs that overlap with HapMap3 SNPs 
outside of the major histocompatibility complex (MHC) region and excluding SNPs 
with imputation quality (INFO) <0.9 and/or with minor allele frequency (MAF) <1%, 
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were applied whenever such information was available for the univariate GWAS 
summary statistics. As basis for the multivariate LDSC, we used precalculated LD 
scores derived from the 1000 Genomes (Phase 3) European reference population 
(1000 Genomes Project Consortium et al., 2015; Bulik-Sullivan et al., 2015). The 
sample prevalence for all phenotypes was set to 0.5 in the LDSC estimation step 
since we used the effective number of samples as the sample size for the munge 
step, following the instructions provided in genomic SEM GitHub page (2.1 
Calculating Sum of Effective Sample Size and Preparing GWAS Summary Statistics 
· GenomicSEM/GenomicSEM Wiki · GitHub). The assigned population prevalence of 
each phenotype can be found in Table 1.

In order to model the genomic factor structure underlying the psychiatric and 
somatic IR-related conditions investigated here, we conducted a series of factor 
analyses based on the genetic covariance matrices derived from LDSC analyses 
within genomic SEM. We first conducted exploratory factor analyses (EFA) on the 
output of the LDSC analyses with odd chromosomes using the factanal function of 
R with promax rotation, which allows factors to be correlated. We tested solutions 
up to three latent factors, while retaining factors that explained at least 20% of 
the variance. Based on the results of the EFA in odd chromosomes, we performed 
follow-up confirmatory factor analyses (CFA) for the one-factor and two-factor 
models using the genetic covariance matrix from the LDSC with even chromosomes, 
where factors were assigned to traits when their standardised loading exceeded 
0.20 in the corresponding EFA. The model uses Diagonally Weighted Least Square 
(DWLS) and was specified so that the variance of each latent factor is fixed to 1 (i.e., 
unit variance identification).

Model fit was assessed using standard measures in structural equation 
modelling, as described in Grotzinger et al. (2019), where values >0.9/0.95 for the 
comparative fit index (CFI) and <0.10/0.05 for the standardised root mean square 
residual (SRMR) were considered reflective of an acceptable/good fit model. The 
Akaike Information Criterion (AIC) is a relative fit index, which can be used to 
compare models (i.e., lower AIC values indicating better fit). Chi-square p-values are 
often significant in genomic SEM analyses due to the high power of current GWASs; 
however, chi-square estimates may still be informative for comparing competing 
models (i.e., lower chi-square values indicating better fit). Finally, the CFA model 
with best fit in even chromosomes was also assessed for all autosomes.

Genetic correlation with brain morphometry
We used genomic SEM to assess the genetic link between the identified latent 
multimorbidity factor(s) and brain morphological traits. More specifically, we 
modelled the genetic covariances and correlations between the factor and the 
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GWAS summary statistics of 1) the bilateral averages of cortical thickness and surface 
area (SA) of 34 brain regions and the total brain (N=33,992; Grasby et al. (2020)); and  
2) eight subcortical volumes (Hibar et al., 2017; Satizabal et al., 2019), namely 
nucleus accumbens (N=32,562), amygdala (N=34,431), brainstem (N=28,809), 
caudate nucleus (N=37,741), globus pallidus (N=34,413), putamen (N=37,571), 
thalamus (N=34,464), and hippocampus (N=33,536). All brain morphometry-related 
GWAS summary statistics underwent standard filtering and processing through the 
munge function of LDSC in genomic SEM, as detailed above. We refer the reader 
to the original publications Grasby et al. (2020), for cortical thickness and SA; 
Satizabal et al. (2019) and Hibar et al. (2017)  for the eight subcortical volumes) for 
details about how these brain-related univariate GWAS were performed. Bonferroni 
correction was applied to account for multiple comparisons, thus adjusting the 
significance threshold (αBonf=0.05/78 brain phenotypes=6.41x10-4).

We further computed heterogeneity statistics (Qtrait) for the associations of the 
latent factor with the brain morphological traits, as described in Grotzinger et al. 
(2022b). For each brain phenotype, the Qtrait heterogeneity index evaluates to which 
extent that trait operates through the latent factor. This is done by comparing a 
model in which the brain trait predicted the factor only to one in which it predicted 
the individual disorders/conditions that compose the latent factor. A significant 
Qtrait (P<6.41x10-4) indicates that the pattern of associations between the brain trait 
and the individual disorders/conditions is not well accounted for by the factor.

Multivariate GWAS of the multimorbidity factor
After identifying the CFA that best explained the observed genetic covariances 
among the psychiatric disorders and the IR-related somatic conditions, we used 
genomic SEM (Grotzinger et al., 2019) to conduct a multivariate GWAS, estimating 
individual SNP effects on the identified latent multimorbidity factor. Quality control 
procedures of the univariate GWAS summary statistics were performed following 
genomic SEM guidelines, which included restricting to SNPs with an INFO score 
>0.6 (when available) and to SNPs with MAF >1% in the 1000 Genomes phase 3 
European reference panel (1000 Genomes Project Consortium et al., 2015). Only 
genetic variants present in all input univariate GWAS summary statistics were 
used. For this step, we used unit loading identification to scale the latent factor(s) 
(instead of unit variance identification used in the CFA), which also allows deriving 
the effective number of samples (Neff) for the latent factor(s) (Neff was estimated as 
described in Mallard et al. (2022).

Similarly to the Qtrait statistics described above, we also performed SNP-level tests 
of heterogeneity (QSNP) to evaluate whether each SNP had consistent pleiotropic 
effects on the factor components (i.e., input disorders/conditions) that effectively 
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only operate via the shared liability (null hypothesis) or whether there was evidence 
of heterogeneity, indicating that the SNP effect is not fully mediated by the factor 
(Grotzinger et al., 2019).

Gene, gene-set, and gene-property analyses of the Psych-IR 
multivariate GWAS results
The results of the multivariate GWAS of the multimorbidity latent factor were 
submitted to Functional Mapping and Annotation of Genome-Wide Association 
Studies (FUMA; version v1.5.6; Watanabe et al. (2017)), using default parameters 
(if not otherwise specified). We used the FUMA SNP2GENE module to identify 
independent genomic risk loci, and independent genome-wide significant SNPs 
within each locus, employing the standard clumping algorithm (Watanabe et al., 
2017). After the removal of all significant QSNPs (P< 5x10-8), as well as any SNP in 
LD with those (r2>0.1, 250Kb), from the multivariate GWAS summary statistics, this 
module was also used to implement Multi-marker Analysis of Genomic Annotation 
(MAGMA; v.1.08; De Leeuw et al. (2015)) gene-based, gene-set, and gene-property 
(tissue expression) analyses. Gene-based p-values were computed for protein-
coding genes by mapping SNPs located within genes according to Ensembl v110. 
MAGMA gene-set association analysis uses the complete gene-based results, 
(thus differing from enrichment analyses of prioritised genes, described below) 
to perform one-sided (positive) association tests for 17,023 gene sets from the 
Molecular Signatures Database (MSigDB v2023.1.Hs; Liberzon et al. (2011a)). 
Bonferroni correction was used to set the genome-wide significance threshold for 
the gene-based and gene-set analyses. MAGMA gene-property tissue expression 
analyses also use the gene-based results to test the associations with highly 
expressed genes in specific tissues, while conditioning on average expression 
across all tissue types. These tissue expression analyses were performed across 30 
general tissues and 54 tissues types (GTEx v8; The GTEx Consortium et al. (2020)), as 
well as 29 different ages of brain samples and 11 general developmental stages of 
the brain (BrainSpan; Kang et al. (2011)); (for more detailed information, please see 
Watanabe et al. (2017)). We also ran the FUMA analyses on the eight GWAS summary 
statistics of the individual phenotypes that served as input for genomic SEM, 
in order to compare the significant loci and genes identified for the multivariate 
GWAS. Genomic loci and genes associated with the latent factor that did not 
overlap with those associated with the individual phenotypes were considered as 
novel/unique to the multimorbidity factor.
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Transcriptome-wide structural equation modelling (T-SEM)
T-SEM (Grotzinger et al., 2022a) was employed to investigate the effects of tissue-
specific gene expression on the multimorbidity factor representing the shared 
genetics of psychiatric disorders and IR-related conditions. This method enables 
the examination of tissue-specific gene expression within a multivariate model of 
genetically overlapping traits.

First, to ensure sufficient SNP-level overlap with the tissue-specific expression 
weights, the univariate GWAS summary statistics of the eight input phenotypes 
(Table 1) were reprocessed using the LDSC munging function, this time using the 
1000 Genomes SNPs as reference (1000 Genomes Project Consortium et al., 2015) 
(as recommended by the developers guidelines for T-SEM; https://github.com/
GenomicSEM/GenomicSEM/wiki/7.-Transcriptome-wide-SEM-(T-SEM)). The genetic 
and sampling covariance matrices of these munged summary statistics were 
estimated by multivariate LDSC as implemented in genomic SEM and are used as 
input to T-SEM (Grotzinger et al., 2019).

Univariate, summary-based TWASs were then performed using FUSION (Gusev et 
al., 2016) to test the association between predicted tissue-specific gene expression 
and each individual trait. This association was estimated as a weighted linear 
combination of GWAS Z-statistics using pre-compiled functional weights from 
external reference datasets containing both tissue-specific gene expression and 
genotype data. In particular, we used 15 tissue-specific functional weight datasets, 
including 13 referring to brain tissues (i.e., amygdala, anterior cingulate cortex, 
caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, 
hypothalamus, nucleus accumbens, putamen, cervical spinal cord C1, substantia 
nigra) and one to the pituitary gland from the GTEx v8 (The GTEx Consortium et 
al., 2020), as well as one referring to the brain prefrontal cortex from PsychENCODE 
(Gandal et al., 2018). The selection of pituitary and brain tissues for these analyses 
was supported by the tissue specificity of genes from the multivariate GWAS of the 
multimorbidity factor (described above).

The tissue-specific gene expression estimates for each gene produced by 
univariate TWASs were used to expand both the genetic covariance and sampling 
covariance estimated previously. Specifically, the read_fusion function in genomic 
SEM was employed to standardise the gene expression estimates relative to the 
phenotypic variance, thus integrating them into the LDSC genetic covariance 
matrices. We then applied the userGWAS function to evaluate the effect of gene 
expression on the previously identified factor representing the shared genetic 
liability across psychiatric disorders and IR-related conditions.

Lastly, T-SEM was used to examine the associations of tissue-specific gene 
expression with the multimorbidity latent factor. We applied a Bonferroni correction 
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to adjust for multiple testing across 16,542 unique genes, resulting in a significance 
threshold of αBonf=3.02x10-6. To identify genes with potentially trait-specific effects, 
we also computed gene heterogeneity statistics (QGene) as a chi-square difference 
test between a common pathways model (where gene expression predicts the 
multimorbidity latent factor) and an independent pathways model (where the 
gene expression only predicts specific psychiatric or IR-conditions defining the 
factor) (Grotzinger et al., 2022a). To ensure robustness, we excluded from the list 
of significantly associated genes those with significant QGene values using the same 
Bonferroni corrected threshold.

The MHC region was excluded from follow-up analyses due to its highly complex 
LD structure, which may confound genetic association signals and inflate the 
number of false-positive findings (Miretti et al., 2005). However, we conducted 
parallel T-SEM T-SEM analyses both excluding and including the MHC region to 
provide a comprehensive assessment of its potential impact on the results, and 
findings from the both T-SEM analyses are presented to ensure transparency and 
completeness in reporting.

Drug repurposing analysis
To identify potential therapeutic candidates for the psychiatric-IR multimorbidity, 
we used PharmOmics, a comprehensive online platform for drug repurposing  
(https://mergeomics.research.idre.ucla.edu/runpharmomics.php#; (Y.-W. Chen et al., 
2022)). PharmOmics is a species- and tissue-specific drug signature database that 
leverages transcriptomic data to facilitate the identification of repurposable drugs by 
comparing user-provided gene signatures for a trait of interest (i.e., the multimorbidity 
factor, in our case) with a curated database of drug-induced gene expression profiles  
(Y.-W. Chen et al., 2022). The PharmOmics database integrates transcriptomic data 
from human, mouse, and rat studies across more than 20 tissues, compiling over 
18,000 drug-induced gene signatures for 941 drugs and chemicals. This database 
was curated from multiple sources, including the Gene Expression Omnibus (GEO), 
ArrayExpress, TG-GATEs, and DrugMatrix repositories. For our analysis, we used the 
list of genes derived from significant tissue-specific gene expression associations 
from our T-SEM results as input into the PharmOmics platform ((Y.-W. Chen et al., 
2022). These genes were classified into upregulated and downregulated groups 
based on their respective T-SEM Z scores and submitted separately to PharmOmics. 
Specifically, a gene-overlap analysis was conducted (Y.-W. Chen et al., 2022) to 
determine the degree of overlap between the input gene lists (upregulated and 
downregulated genes) and the drug-induced gene signatures in the database. This 
analysis included calculating odds ratios to quantify the strength of association 
between the list of genes resulting from T-SEM and drug-specific gene expression 
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signatures in the PharmOmics database. Fisher’s exact tests were used to assess 
the statistical significance of these overlaps, determining the likelihood that the 
observed overlaps occurred by chance. A signed Jaccard score was employed 
to evaluate the direction of the overlap between the gene sets. A positive 
signed Jaccard score indicates that the drug and T-SEM gene sets overlap with 
congruent expression changes (e.g., both upregulated or both downregulated), 
while a negative signed Jaccard score suggests that the drug and T-SEM gene set 
overlap with opposite expression changes (e.g., one upregulated and the other 
downregulated). The therapeutic relevance depends on the direction of the gene 
regulation and the desired therapeutic objective. For example, if a pathway is 
upregulated in psychiatric-IR multimorbidity, a drug that induces a negative signed 
Jaccard score (indicating an opposite regulation of the overlapping genes) may be 
of therapeutic interest to counteract the disease-related up-/down-regulation.

We selected drug repurposing candidates based on the following stringent 
criteria: 1) individual pharmacological molecules already approved by the Food and 
Drug Administration (https://www.accessdata.fda.gov/) for conditions other than 
psychiatric disorders; 2) those with evidence of blood-brain barrier permeability 
(ADMET features from https://www.drugbank.com/; https://github.com/12rajnish/
DeePred-BBB); 3) drugs with available molecular signatures derived from nervous 
tissues in the PharmOmics database; 4) candidates showing consistent Jaccard 
scores and P-value significance across species, ensuring cross-species concordance 
and eliminating discordant effects; and 5) candidates with significant P-values and 
negative Jaccard scores, indicating an opposing gene regulation pattern that could 
potentially reverse disease-related molecular changes.

Enrichment analyses of prioritised genes
The significantly associated genes identified by the MAGMA gene-based analysis of 
the multivariate GWAS were combined with genes whose tissue-specific expression 
was associated with the genomic latent multimorbidity factor in T-SEM analysis 
to compose a list of prioritised genes. This combined list of genes was used as 
input for the GENE2FUNC module in FUMA (version v1.5.6; Watanabe et al. (2017)) 
to conduct enrichment analyses to test for overrepresentation of the prioritised 
genes in pre-defined gene sets from the MsigDB (v2023;(Liberzon et al., 2011b)), 
which include hallmark gene sets (MsigDB h), positional gene sets (MsigDB c1), 
curated gene sets (MsigDB c2), regulatory target gene sets (MsigDB c3), 
computational gene sets (MsigDB c4), ontology gene sets (MsigDB c5), oncogenic 
signature gene sets (MsigDB c6), immunologic signature gene sets (MsigDB c7) and 
cell type signature gene sets (MsigDB c8), as well as sets of reported genes from the 
GWAS-catalog (MacArthur et al., 2017). For the list of all gene sets tested, please see 
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(https://fuma.ctglab.nl/tutorial#gene2func). Genes located within the MHC region 
were excluded from the analyses due to the extensive high linkage disequilibrium 
pattern in the region and hypergeometric tests were used for these evaluations. The 
background gene set, against which the prioritised genes were tested, consisted 
of all other (i.e., non-prioritised) protein-coding genes and the option of excluding 
the MHC region in FUMA was selected. Multiple testing correction was performed 
using the Benjamini–Hochberg (FDR) method by default, with corrections applied 
per data category or subcategory (e.g., hallmark genes, positional genes, different 
subcategories of curated gene sets, and so on). FUMA reported gene sets with an 
adjusted PFDR<0.05 and where the number of prioritised genes overlapping with the 
gene set was greater than two.

Results

Genetic factor structure underlying psychiatric and somatic  
IR-related conditions
We formally modelled the genetic covariance structure of the five psychiatric (ADHD, 
AN, MDD, OCD, and SCZ) and three somatic IR-related phenotypes (MetS, obesity, 
and T2DM) which are genetically correlated ((Fanelli et al. (2022); and Figure 1a). 
Descriptives of the input data can be found in Table 1. Exploratory factor analyses 
suggested the two-factor solution as the best model (variance explained: 
R2(F1)=32.1%, R2(F2)=20%, R2(Total)=52.1%), since the one-factor solution explained 
only 31.4% of the variance, while the third factor in a three-factor model explained 
only 15.2% of the variance and was not retained (Table S1). Confirmatory factor 
analyses, both in the even chromosomes as in the full set of autosomes, confirmed 
that a two correlated factors model fits the data well (for all autosomes: χ2=78.559, 
df=15, Pχ2=1.28x10-10, AIC=120.559, CFI=0.978, SRMR=0.053; Table S2; see also 
Table S3) and revealed a small negative genetic correlation between the two 
factors (rg=-0.204; SE=0.043; P=2.02x10-6; Figure 1b). The first factor consists of all 
psychiatric disorders, except schizophrenia, and all somatic IR-related conditions 
investigated. This factor is hereafter referred to as the psychiatric and IR-related 
(Psych-IR) multimorbidity factor. The second factor consists of all five psychiatric 
disorders investigated, but none of the somatic ones.

Given our aim of unravelling the genetic architecture underlying the psychiatric 
and IR-related multimorbidity, subsequent results are focused on the Psych-IR 
multimorbidity factor, which was taken forward to investigate its relationship with 
brain morphometry, to conduct a multivariate GWAS, exploring it at multiple levels, 
as well as to conduct T-SEM and drug repurposing analysis.
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Figure 1. Multivariate genetic architecture of five psychiatric disorders and three somatic  
IR-related conditions. 

a. Heatmap of pairwise genetic correlations based on all autosomes estimated using LDSC regression 
within genomic SEM; b. Path diagram for the final confirmatory factor model with standardised 
parameter estimates. Circles represent the genetic components of each disorder, condition, or 
common genetic factor. One-headed arrows represent regression relationships from the independent 
variables pointing towards the dependent variables. Two-headed arrow between variables represent 
a covariance relationship. Two-headed arrows connecting the variable to itself represents residual 
variance. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; OCD, 
obsessive-compulsive disorder; MDD, major depressive disorder; SCZ, schizophrenia; MetS, metabolic 
syndrome; T2DM, type 2 diabetes mellitus.

a

b
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Genetic overlap between the Psych-IR multimorbidity factor and 
brain morphometry
We examined patterns of genomic correlations between the Psych-IR 
multimorbidity factor and brain morphometry (Figure S1). We observed significant 
negative genetic correlations between the Psych-IR multimorbidity factor and total 
SA (rg=-0.151; SE=0.033; P=4.89x10-6) and inferior temporal SA (rg=-0.183; SE=0.045; 
P=4.60x10-5), while the factor had a positive genetic correlation with lateral occipital 
SA (rg=0.113; SE=0.032; P=5.01x10-4) (Figure 2). Follow-up Qtrait analyses were 
conducted to examine whether the genetic associations between the brain traits 
and the disorders/conditions are well accounted for by the identified latent factor. 
Qtrait index analyses revealed no significant sign of heterogeneity involving the 
three significant genetically correlated brain traits, indicating that the implication 
of these brain structures are indeed via the common pathway of the Psych-IR 
multimorbidity factor (rather than independent pathways of individual psychiatric 
disorders and somatic IR-related conditions). Table S4 provides genetic correlation 
estimates and Qtrait results for all brain traits analysed.

Figure 2. Genetic correlations (rg) between the Psych-IR multimorbidity factor and brain 
morphometric traits.

Areas highlighted indicate the significant genetic correlations with total brain surface area (SA), 
lateral occipital SA, and inferior temporal SA. Visualisation was performed using the ENIGMA-Vis tool 
(Shatokhina et al., 2021).

Multivariate GWAS of the Psych-IR multimorbidity factor
Through a multivariate GWAS of the Psych-IR multimorbidity factor (Neff=622,007.6), 
we identified 11,672 genome-wide significant SNPs, which were distributed across 
168 independent risk loci (Table S5). We also performed QSNP heterogeneity tests 
in order to identify SNPs that act not through a common multimorbidity factor 
of psychiatric and IR-related somatic conditions, but directly on one or more of 
its components. There were 9,324 significant QSNPs (of which, 2,539 were genome-
wide significant SNPs for the Psych-IR factor), indicating that the effects of these 
SNPs are not fully mediated by the latent genomic factor. Since we are interested 
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in understanding the shared genetic basis of this multimorbidity, significant QSNPs 
were removed from downstream analyses (in order to reduce heterogeneity), along 
with those in LD (r2>0.1, 250Kb) with them. The final Psych-IR factor multivariate 
GWAS summary statistics contains 8,834 genome-wide significant SNPs, distributed 
across 150 independent loci (Figure 3; Figure S2). Out of the 150 independent 
genomic loci identified, 46 of them did not overlap with the genomic loci associated 
in the input univariate GWAS of the psychiatric and somatic IR-related conditions 
that compose the latent factor (Table S6).

Genes, gene sets and gene-property associations with the Psych-IR 
multimorbidity factor
Gene-based analysis identified 366 genome-wide associated genes (Figure 3). 
About one third of the associated genes (N=128) are considered novel, in the sense 
that they were not significantly associated with the individual phenotypes that 
compose the factor (i.e., genes were not significant in the individual input GWAS; 
Table S7). Gene-set analyses revealed six gene sets associated with the Psych-IR 
multimorbidity factor after Bonferroni correction for multiple testing, including 
one representing insulin binding (GOMF_INSULIN_BINDING; MsigDB M26667) and 
one implicating NOTCH signalling (REACTOME_SIGNALLING_BY_NOTCH; MsigDB 
M10189), in addition to four gene sets of general Gene Ontology (GO) Biological 
Processes (Table 2).

Table 2. Gene sets significantly associated with the Psych-IR multimorbidity factor.

Significant gene sets Ngenes P PBonf

GOBP_POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS 1,657 1.38x10-7 0.0023

GOBP_NEGATIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 1,390 1.89x10-7 0.0032

GOBP_POSITIVE_REGULATION_OF_
MACROMOLECULE_BIOSYNTHETIC_PROCESS

1,723 5.48x10-7 0.0093

REACTOME_SIGNALLING_BY_NOTCH 183 7.60x10-7 0.0129

GOBP_NEGATIVE_REGULATION_OF_NUCLEOBASE_
CONTAINING_COMPOUND_METABOLIC_PROCESS

1,316 9.03x10-7 0.0153

GOMF_INSULIN_BINDING 5 1.58x10-6 0.0268

Abbreviations: Ngenes, number of genes included in the gene set; P, MAGMA gene-set association 
P-value; PBonf, P-value after Bonferroni multiple testing correction for all the MsigDB gene sets tested.

Furthermore, MAGMA gene-property tissue expression analyses were performed 
to identify tissue specificity of the gene-based associations of the Psych-IR 
multimorbidity factor. Upon testing the relationships between the Psych-IR gene-
based association results and tissue specific gene expression profiles, there were 
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associations with the brain and pituitary general tissues types (Figure S3a). A more 
fine-grained examination of the tissue types in question revealed that the Psych-IR 
factor was associated with highly expressed genes in specific brain tissues, namely 
the cerebellum, cerebellar hemisphere, cortex, and frontal cortex Brodmann Area 
(BA) 9, as well as the pituitary gland (Figure S3b). The tissue expression analyses 
across 11 different general developmental stages of the brain implicated early, 
early-mid, and late-mid-prenatal stages (Figure S3c), while no associations 
were found across the brain samples representing 29 different ages of the brain 
(BrainSpan; Kang et al. (2011)).

Multivariate TWAS
After excluding the MHC region and removing 31 unique genes (spanning  
73 different gene-tissue pairs; Table S9) with significant QGene values, T-SEM 
identified 462 unique genes whose expressions in the brain were associated 
with the Psych-IR multimorbidity factor (a heatmap of the most significant 
genes in each tissue and across tissues is depicted in Figures S4 and S5, 
respectively; Tables S10). Among these, 188 were novel and not significant 
in any of the univariate TWASs of the input phenotypes (Tables S11). 
Among the top significant up-regulated genes, MST1R, MTCH2, RNF123, RP11-69E11.4, 
SNF8, and BMP8A were recurrent across several tissues (Table S11 and Figure S5; see 
also a Miami plot of the analysis including the MHC region in Figure 4). These genes 
are implicated in various biological processes including cell survival, migration and 
activation of macrophages (MST1R); mitochondrial function, apoptosis regulation, 
and lipid homeostasis (MTCH2); vesicle-mediated transport and and protein 
ubiquitination (SNF8, RNF123), and energy balance regulation (BMP8A). Among 
the top significant down-regulated genes, RBM6, INO80E, RPAP1, C18orf8, VPS11, 
and MAPK3 were recurrent across tissues (Table S11). These genes are involved in 
post-transcriptional modification (RBM6); chromatin remodelling (INO80E); vesicular 
trafficking (VPS11); and signal transduction (MAPK3). Of note, seven genes — 
ANKDD1B, C17orf58, CRHR1, JMY, MAPT, PAM, and POC5 — demonstrated significant 
associations with the multimorbidity factor but showed discordant expression effects 
across different brain tissues (Table S12).

In the T-SEM analysis including the MHC region, 37 additional unique genes were 
significant (Figure 4; Figures S6-S7), including three novel genes (i.e., HSD17B8, 
RPS18, UQCC2) that were not significant in any of the univariate TWASs (Table S13). 
Among this region, the expression of the HLA-DRB5 gene was the most frequently 
associated (significant across 14 tissues) with the multimorbidity factor, followed by 
MICB (12 tissues), and CYP21A2 (11 tissues) (Table S14). Among the up-regulated 
MHC genes, the most significant were HCG27 in the brain anterior cingulate cortex, 
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CYP21A2 in the putamen, and AGER in the ACC. HCG27 is a long non-coding RNA gene 
involved in various metabolic diseases; CYP21A2, a cytochrome P450 monooxygenase 
involved in mineralocorticoids and glucocorticoids biosynthesis; AGER plays a role in 
inflammatory responses and cellular signalling. Among the down-regulated MHC 
genes, the most significant were NOTCH4 in the hippocampus and cerebellum, C4A 
in the cortex, and HLA-DRB1 in the nucleus accumbens. NOTCH4, part of the Notch 
signalling pathway, is important for cell differentiation, proliferation, and apoptosis; 
C4A, a component of the classic complement pathway, is involved in immune 
responses and inflammation; HLA-DRB1, a major histocompatibility complex class 
II gene, is involved in antigen presentation and immune system functioning (Table 
S15). These top three down-regulated genes were also the most significant ones 
among the whole set of MHC-related genes.

Figure 4. Miami plot of Z statistics for the estimated gene expression effects on the Psych-IR 
multimorbidity factor. 

Z statistics are signed such that orange dots on the upper and lower half of the plot reflect genes 
whose up-regulated and down-regulated expression, respectively, is significantly associated with 
the multimorbidity factor. The light blue horizontal lines reflect the Bonferroni-corrected significance 
threshold. Genes exceeding this threshold are shown as orange dots. For genes significant in multiple 
tissues, only the most significant instance is highlighted in orange. Up to 40 unique Bonferroni-
significant genes are labelled across tissues. Genes having significant QGene statistics were not included 
in this plot.
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Potential repurposable drugs
The overlap drug repurposing analysis using the PharmOmics platform identified 
six potential repurposable drugs for the Psych-IR multimorbidity factor (Table S16). 
Among the evaluated compounds, bevacizumab emerged as a candidate in Homo 
sapiens (human) and demonstrated significant gene overlap in brain tissues. In Mus 
musculus (mouse), the analysis highlighted memantine, rosiglitazone, levodopa, 
cyclophosphamide, and ceftriaxone as leading candidates for repurposing. 
Memantine and rosiglitazone, known for their neuroprotective and anti-diabetic 
properties, respectively, showed robust overlap with the multimorbidity factor 
gene signatures. Additionally, levodopa, a precursor of dopamine and a commonly 
used drug in Parkinson’s disease, along with cyclophosphamide and ceftriaxone, 
both of which are involved in immune modulation and neuroprotection, also 
demonstrated significant overlap.

Enrichment analyses of the Psych-IR prioritised genes
There were 534 protein-coding genes used as input for the combined gene set 
enrichment analyses, comprising 215 significantly associated genes derived from 
MAGMA gene-based analysis of the Psych-IR multivariate GWAS, 179 genes derived 
from the TSEM analyses, and 140 genes that were overlapping between these two 
approaches. There were 518 genes with unique Entrez IDs, which were compared 
against a total of 18,605 unique Entrez background protein-coding genes. After 
FDR correction for multiple testing within category/subcategory, we observed 
significant enrichments in 110 pre-computed sets from MsigDB (encompassing  
104 unique gene sets) and in 201 sets of reported genes from the GWAS-Catalog 
(Table S8). More specifically, these include the significant enrichments in  
14 (MsigDB c1) positional gene sets. The most significant enrichment was in position 
chr16p11, which also had the highest proportion of overlapping genes with the 
gene set (i.e., 39 overlapping genes out of 97 in the gene set). There were also four 
significantly enriched (MsigDB c2) curated gene sets, two of which are also related 
with the chr16p11 region: the WP_16P112_PROXIMAL_DELETION_SYNDROME and 
the WP_16P112_DISTAL_DELETION_SYNDROME gene sets (both also significant 
in the analyses within the MsigDB c2:All Canonical Pathways (CP) and the MsigDB 
c2:CP/WikiPathways subcategories). Additional enrichments were found for three 
gene sets within the MsigDB c2:CP/WikiPathways subcategory, one of them related 
to the brain-derived neurotrophic factor (BDNF) signalling pathway and two related 
to familial hyperlipidaemia; one MsigDB c5:GO:molecular functions gene set; three 
MsigDB c8 cell type signatures gene sets; and 79 MsigDB c3:Transcription Factor 
targets gene sets. No significant enrichment was observed among the MsigDB h, 
MsigDB c2:BioCarta, MsigDB c2:KEGG, MsigDB c2:Reactome, MsigDB c3:microRNA 
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targets, MsigDB c4:All computational, MsigDB c4:Cancer gene neighborhoods, 
MsigDB c4:Cancer gene modules, MsigDB c5:GO:biological processes, MsigDB 
c5:GO:cellular components, MsigDB c6, and MsigDB c7 gene sets.

Discussion

This study leverages state-of-the-art multivariate genomic and transcriptomic 
methods, including genomic SEM and T-SEM, to explore the genetic architecture 
underlying the frequent co-occurrence of psychiatric disorders and somatic 
IR-related conditions. We identified a latent Psych-IR multimorbidity factor 
representing the shared genomic liability across ADHD, AN, MDD, OCD, MetS, 
obesity, and T2DM, which provides novel insights into the biological underpinnings 
of their multimorbidity. The multivariate GWAS of the Psych-IR factor revealed 
150 genomic loci and 366 associated genes, with many of these considered novel 
(i.e., not previously identified by the univariate GWASs that compose the factor). 
The insulin binding and the Notch signalling pathways were implicated with the 
Psych-IR factor. Genetic correlation analyses linked the Psych-IR multimorbidity 
factor to brain morphometry, including structures involved in visual and sensory 
processing. In addition, a series of tissue specificity analyses implicated specific 
brain areas, including the cerebellum, the brain cortex, and the pituitary gland. 
The integration of transcriptomic data by T-SEM revealed that the expression of  
462 genes in the brain and pituitary gland is associated with the multimorbidity 
factor; these included 188 not previously detected in univariate TWASs. Top up-
regulated genes, such as MST1R, MTCH2, and BMP8A, suggest roles for immune 
modulation, mitochondrial function, and energy balance, while down-regulated 
genes like RBM6, INO80E, and MAPK3 highlight disruptions in chromatin remodelling 
and signal transduction.

Our findings advance the current understanding of the genetic underpinnings 
of psychiatric and IR-related multimorbidity, building upon previous studies that 
primarily explored pairwise correlations between psychiatric disorders and IR-
related conditions (Fanelli et al., 2022a, 2025; Hübel et al., 2019), which, while 
informative, do not capture the joint genetic architecture underlying these 
multiple conditions. Our multivariate approach reveals that psychiatric disorders 
share common genetic variants and mechanisms with IR-related conditions, albeit 
with opposite loadings on the Psych-IR factor, highlighting the presence of a joint 
genetic architecture underlying the multimorbidity. Both the positive loadings for 
ADHD and MDD on the Psych-IR factor, as well as the negative loading of AN and 
OCD, are consistent with the direction of their pairwise genetic correlations (Fanelli 
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et al., 2022a). The divergent pleiotropic effect observed with AN is also consistent 
with most clinical observations for AN, which is mainly characterised by weight loss, 
as opposed to the IR-related conditions (Walsh et al., 2023; American Psychiatric 
Association, 2013). While epidemiological data showed increased co-occurrence 
of OCD and T2DM (Wimberley et al., 2022), recent familial analyses indicate that 
parental T2DM was significantly less frequent in individuals with OCD, in line with 
negative genetic correlations, and indicating that phenotypic associations might 
be explained by other factors (like psychiatric comorbidities, shared environment 
or lifestyle factors) (Wimberley et al., 2024). Despite the well-documented clinical 
overlap between schizophrenia and metabolic dysregulation, particularly in the 
context of antipsychotic medication use, schizophrenia exhibited a weaker genetic 
loading and was ultimately not included in the Psych-IR multimorbidity factor. 
This may reflect the underlying genetic complexity given that previous local 
genetic correlation analyses indicate both positive and negative genetic local 
genetic correlations between schizophrenia and IR-related conditions (Fanelli et 
al., 2025). In addition, the metabolic side effects of antipsychotic medications used 
for treating schizophrenia include significant weight gain and IR, which are well-
established but are likely driven by pharmacological mechanisms rather than by 
the genetic factors.

A key contribution of this study is the identification of genetic loci implicated 
in the psychiatric-IR multimorbidity, including novel genes that were not 
previously associated with individual psychiatric or IR-related phenotypes, while 
also reinforcing the involvement of established candidate biological pathways 
implicated in psychiatric-IR multimorbidity. In particular, among the top genes 
identified by the multivariate GWAS of the Psych-IR factor, the most significantly 
associated gene was ZMIZ1, which regulates transcription factors and interacts with 
nuclear hormone receptors. This gene shows genome-wide significant association 
also in the univariate T2DM GWAS and has recently been appointed as a novel 
regulator of brain development associated with ASD and intellectual disability 
(K. C. et al., 2024). DOC2A, located in the chr16p11 region, is involved with Ca2+-
dependent neurotransmitter release and is mainly expressed in the brain. Other 
top genes are involved with interactions of cytoskeletal elements (e.g., MACF1), 
encoding transcription factors (e.g., TRPS1), mRNA stability (e.g., PABPC4), and 
tumor suppression (e.g., RBM5, RBM6). In terms of novel genes, the top three 
genes (KCTD13, GDPD3, MAPK3) are situated in the chromosome 16p11.2 region, 
discussed in more details below. These are followed by MST1, whose receptor, 
MST1R, was the top up-regulated gene in the T-SEM results and is directly involved 
in immune-inflammatory pathways (Huang et al., 2020). Among the other T-SEM 
top up-regulated genes across several tissues, MTCH2 is involved in adipocyte 
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differentiation and energy production (Peng et al., 2024). RNF123/KPC1 and SNF8 
are linked to maintaining cellular homeostasis and regulating immunity (Kravtsova-
Ivantsiv et al., 2015; Kumthip et al., 2017). Among the top down-regulated genes, 
RBM6 and INO80E are involved in DNA repair and splicing/chromatin remodelling 
(Conaway and Conaway, 2009; Machour et al., 2021), pointing to disruptions in 
gene expression regulation. Among the novel genes, STX4, EHD4, and USP46 
participate in neurotransmission and insulin signalling, indicating a dual function 
in neuronal activity and glucose metabolism, and ZNF268, MCM9 are involved in 
transcriptional regulation and genomic stability. Collectively, the novel genes 
highlight mechanisms that intersect both central nervous system function and 
peripheral metabolic regulation.

While analyses including the MHC region need to be interpreted cautiously 
given the genetic complexity due to the extensive LD, high gene density, and 
considerable allelic diversity of this region, they also highlighted immune-related 
genes as well. Among them, HLA-DRB5 is involved in regulating immune responses 
and has been implicated in various brain-related and metabolic conditions, including 
SCZ, MDD, Parkinson’s disease, and both type 1 diabetes and T2DM (Ahmed et al., 2012; 
Jacobi et al., 2020; Santiago et al., 2023; Zhao et al., 2016). In addition, the MICB gene is a 
marker of cellular stress and tag cells for elimination triggering the activation of natural 
killer and CD8+ T cells (Derby et al., 1992) and its association might support the idea 
that cellular stress-induced immune dysregulation might be a common mechanism in 
psychiatric-IR multimorbidity. CYP21A2 is involved in the biosynthesis of glucocorticoids 
and mineralocorticoids (Slominski et al., 2020). Glucocorticoids affect neuroplasticity 
and the expression of BDNF, essential for synaptic integrity and cognitive function 
(Tsimpolis et al., 2024). These findings related to the MHC region align with previous 
evidence highlighting key genes emerging from genetic annotations of loci correlated 
between psychiatric and IR-related conditions (Fanelli et al., 2025).

Our gene-set analysis on the Psych-IR multivariate GWAS results highlighted an 
association with the insulin binding and the Notch signalling pathways, reinforcing 
the hypothesis that metabolic dysregulation is central to the shared biological 
basis underlying the multimorbidity observed between psychiatric and IR-related 
conditions. The insulin binding gene set comprises five genes, three of which - 
IDE, IGF1R, and INSR - show genome-wide significant associations themselves 
in the gene-based analyses. IDE encodes the insulin-degrading enzyme which 
has been associated with T2DM, but also plays a role in cognitive processes and 
neurodegeneration (Henderson and Poirier, 2011) INSR encodes for the insulin 
receptor and insulin binding to this receptor activates pathways such as the PI3K-
AKT/PKB pathway, responsible for most metabolic actions, and the Ras-MAPK 
pathway, which regulates gene expression and cell growth (Boucher et al., 2014). 
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Dysregulation of these pathways has been implicated in both metabolic and 
neuropsychiatric outcomes, suggesting a shared mechanistic pathway (Borrie et al., 
2017; Chen et al., 2024). IGF1R encodes the insulin-like growth factor 1 receptor, 
which is involved in neurogenesis, synaptic plasticity, and neuroprotective 
processes (Cardoso et al., 2021; Dyer et al., 2016). Although IGF1R’s role has 
been explored in relation to various cognitive functions (Cardoso et al., 2021), its 
specific link to the genetic architecture of psychiatric and metabolic comorbidity 
represents a novel finding in our study, as it was not identified as significant in any 
of the input univariate GWAS datasets. While the potential involvement of insulin 
signalling in psychiatric disorders is not a new concept (McIntyre et al., 2010), our 
findings clearly highlight the association of such a core insulin-related gene set 
with a genetic latent factor encompassing both conditions. This reinforces the need 
to explore this pathway further as a gateway for managing the co-occurrence of 
psychiatric disorders and somatic IR-related conditions.

Another gene set that showed significance to the Psych-IR factor was the Notch 
signalling pathway, which has also garnered attention for its potential role in 
both IR and the brain. Notch signalling is involved in the regulation of metabolic 
processes, particularly in the liver and adipose tissues. For instance, active Notch 
signalling correlates with IR and nonalcoholic fatty liver disease, indicating that 
Notch signalling may influence glucose metabolism through its effects on hepatic 
function (Valenti et al., 2013). Additionally, a mouse model overexpressing the 
Notch intracellular domain in adipocytes led to severe IR, thereby establishing a 
direct link between Notch signalling and metabolic dysregulation (Chartoumpekis 
et al., 2018). Noteworthy, ​Notch signalling was also involved in learning, memory, 
and social behaviour, which are often disrupted in psychiatric disorders (Salazar 
et al., 2020), and it has also been implicated in neurodevelopment, neuronal 
connectivity and neurogenesis (Zhang et al., 2018), although a direct link with 
psychiatric disorders is currently missing (Salazar et al., 2020).

Subsequently, when combining the genome-wide significant genes from the 
Psych-IR multivariate GWAS with the associated genes from the T-SEM analyses, 
additional gene sets were implicated through the significant enrichment of 
our prioritised genes. Noteworthy are the ones related to proximal and distal 
chromosome 16p11.2 deletion syndrome, the BDNF signalling pathway, and the 
ones related to familial hyperlipidaemia (types 3 and 4). Both the proximal and 
distal 16p11.2 deletion syndromes are rare genetic conditions caused by the 
deletion of around a 600kb and a 220 kb region, respectively, of chromosome 16 
(OMIM#611913 and OMIM#613444, respectively). They are both characterised 
by symptoms related to both psychiatric and IR-related phenotypes, and mild 
intellectual disability and speech problems are also frequent among individuals 
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with 16p11.2 deletion syndromes. Over 80% of the carriers of the proximal 16p11.2 
deletion exhibit psychiatric disorders and obesity is a major comorbidity, affecting 
50% of the carriers by age 7 and with a penetrance of 70% among adults (Zufferey 
et al., 2012). In a study comparing different 16p11.2 deletions, the vast majority 
of the individuals with proximal 16p11.2 deletion syndrome had developmental 
delays (85.5%), 19.4% autism spectrum disorder (ASD), 27.3% ADHD, 29.5% obesity, 
and 41% reported hyperphagia (Vos et al., 2024). In the same study, cases with 
distal 16p11.2 deletion showed the most severe obesity phenotype (73.7% obesity), 
with most cases presenting hyperphagia (61.1%), 40% intellectual disability, and 
22.2% ASD (Vos et al., 2024). The enrichment of the BDNF signalling pathway also 
highlights a potential role of BDNF in bridging metabolic and psychiatric disorders. 
During development, the protein encoded by the BDNF gene promotes neuronal 
survival and differentiation and regulates synaptic plasticity, essential for adaptive 
neuronal responses, including long-term potentiation, and homeostatic regulation 
of excitability (Park and Poo, 2013; Rutherford et al., 1998). Its involvement in 
psychiatric conditions such as MDD, SCZ, and anxiety disorders is well-documented 
(Castrén and Kojima, 2017; Molendijk et al., 2014). Beyond its neural functions, 
BDNF plays a significant role in metabolic regulation. BDNF signalling intersects 
and shares downstream mechanisms with insulin pathways through its binding to 
tyrosine kinase B (TrkB) receptor (Bathina and Das, 2015). Moreover, low BDNF levels 
are associated with glucose impairment and lipid dysregulation, further implicating 
BDNF in metabolic health (Krabbe et al., 2007; Xia et al., 2022). This interaction is 
reinforced by findings that IR promotes neuroinflammation, which can impair BDNF 
signalling, creating a vicious cycle that exacerbates both metabolic and psychiatric 
conditions (Lima Giacobbo et al., 2019; Wei et al., 2021). Interventions such as 
exercise, which increase BDNF levels, have been shown to improve both insulin 
sensitivity and cognitive function (Dadkhah et al., 2023). Therefore, pharmacological 
strategies targeting BDNF signalling pathways could offer new avenues for 
treating metabolic and psychiatric disorders concurrently. We also observed 
significant enrichment of gene sets associated with familial hyperlipidaemia types 
3 and 4. Type 3 primarily involves impaired clearance of intermediate-density 
lipoproteins (IDL) due to mutations in the APOE gene, of which the protein plays 
a role in lipid transport and metabolism (Javvaji et al., 2024). APOE is also one of 
the Psych-IR genome-wide significant genes, and the most well-known risk gene 
for Alzheimer’s disease (Jackson et al., 2024). Familial hyperlipidaemia type 4, or 
familial hypertriglyceridaemia, involves increased levels of VLDL in the blood, 
driven by both enhanced production and decreased clearance (Goyal et al., 2024). 
Dyslipidaemia is a common feature in both psychiatric conditions, such as MDD 
and SCZ, and somatic ones like MetS, where lipid abnormalities may exacerbate IR 
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by promoting chronic inflammation, oxidative stress, and endothelial dysfunction 
(Higashi, 2023; Zorkina et al., 2024). The enrichment of these gene sets suggests 
a role for lipid metabolism in the pathophysiology of the multimorbidity of 
psychiatric and IR-related conditions.

In terms of brain morphometry implication, our analysis revealed significant 
negative genetic correlations between the Psych-IR multimorbidity factor and both 
total SA and inferior temporal SA. The inferior temporal cortex is primarily involved 
in visual processing, especially object and face recognition (Conway, 2018), as well 
as the retrieval of visual memories (Mruczek and Sheinberg, 2007). This region has 
been closely linked to metabolic dysfunctions, including obesity and IR (Morris 
et al., 2014; Opel et al., 2021). For instance, a Mendelian randomisation study 
demonstrated that higher waist-hip ratio causally reduces the surface area of the 
inferior temporal cortex (Chen et al., 2023). In addition, positive genetic correlation 
was found for the Psych-IR multimorbidity factor and the lateral occipital cortex, 
which is involved in the perception of shapes and forms, as well as the processing 
of visual stimuli in a multisensory context (Zhang et al., 2004). Altered glucose 
metabolism in this region has been linked to cognitive impairments in various 
conditions, including SCZ and T2DM (Wijtenburg et al., 2019). Studies have 
demonstrated that hypoperfusion in the occipital regions, including the lateral 
occipital cortex, correlates with higher IR and deficits in visual memory performance, 
particularly in patients with T2DM (Cui et al., 2017). This aligns with findings that 
neuronal IR biomarkers are significantly associated with memory measures and 
brain glucose levels, particularly in visual processing areas like the lateral occipital 
cortex (Wijtenburg et al., 2019). Consistent with our findings, previous studies 
found that IR is associated with smaller cortical gray matter volume, but not with 
subcortical gray matter volume in individuals with MetS (Lu et al., 2021). Another 
link to the brain is found in the tissue expression specificity of the Psych-IR gene 
associations, where our findings reveal that the Psych-IR multimorbidity factor is 
significantly associated with genes highly expressed in the pituitary gland and 
brain tissues, implicating specifically the cerebellum/cerebellar hemisphere, and 
cortex/frontal cortex BA 9. While the cerebellum and cerebellar hemisphere have 
traditionally been linked to motor control, recent studies increasingly recognise 
their roles in cognitive and emotional regulation, as evidenced by studies 
linking cerebellar dysfunction to various psychiatric conditions, including mood 
disorders (Adamaszek et al., 2017; Schmahmann, 2019). Recent evidence indicates 
that individuals with high IR exhibit reduced gray matter volume and altered 
functional connectivity in the cerebellum, suggesting that IR can lead to significant 
neuroanatomical and functional connectivity changes in this region (Chen et al., 
2014; H.-Y. Zhang et al., 2024). IR also correlates with reduced glucose metabolism 
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in the cerebellum and frontal regions (Y. Chen et al., 2022). The frontal cortex, 
particularly BA 9, plays a role in executive functions, including decision-making, 
working memory, and cognitive control (Friedman and Robbins, 2022; Miller and 
Cohen, 2001), all of which are processes heavily implicated in psychiatric disorders. 
Previous work indicates that insulin signalling is essential for maintaining synaptic 
plasticity and neuronal health in the frontal cortex, and disruptions in insulin 
signalling can impair cognitive functions linked to the frontal cortex (Arnold et al., 
2018b; Fanelli et al., 2022b; Kleinridders et al., 2014). The observed association with 
gene expression in the pituitary gland might suggest a link to the hypothalamic-
pituitary-adrenal (HPA) axis, which regulates both the stress response and metabolic 
function. Dysregulation of the HPA axis is a well-established factor in psychiatric 
disorders and metabolic conditions, and might indicate a shared pathway that 
influences both groups of phenotypes and their co-occurrence (Joseph and Golden, 
2017; Stetler and Miller, 2011). Moreover, the association of gene expression with 
early, early-mid, and late-mid prenatal developmental stages suggests that the 
genetic factors underlying the Psych-IR factor may exert their effects during critical 
periods of brain development. This finding aligns with the hypothesis that prenatal 
or early-life factors can shape the long-term risk for both metabolic and psychiatric 
disorders (Edlow, 2017). Prenatal exposures, such as maternal stress, poor nutrition, 
or gestational diabetes, could interact with genetic predispositions to alter brain 
development, thereby increasing susceptibility to both psychiatric disorders and 
metabolic dysregulation in offspring (Van Lieshout et al., 2011).

From a clinical perspective, our results indicating a shared genetic aetiology 
between multiple psychiatric and psychiatric and IR-related somatic conditions 
highlights the need for a holistic approach in medicine, integrating both worlds 
in clinical care. Through the genomic approaches addressed in this manuscript 
we identified potential drug repurposing candidates, including memantine, 
rosiglitazone, levodopa, cyclophosphamide, bevacizumab, and ceftriaxone, that 
could offer possibilities for developing targeted therapeutic strategies aimed 
at addressing both psychiatric symptoms and IR. Memantine, an NMDA receptor 
antagonist, has shown efficacy in improving cognitive and negative symptoms in 
SCZ, as well as in counteracting excessive glutamate neurotransmission and related 
neurotoxicity in Alzheimer’s disease (Czarnecka et al., 2021; Zheng et al., 2018), 
and rosiglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-γ) 
agonist, enhances neuronal insulin receptor function and provides neuroprotective 
effects (McIntyre et al., 2007; Pipatpiboon et al., 2012). Cyclophosphamide, an 
immunosuppressive agent, shows promise in managing severe IR and autoimmune 
encephalitis, which often accompany psychiatric symptoms (Dinoto et al., 2022; 
Yang et al., 2017). Bevacizumab, an anti-VEGF monoclonal antibody, could 
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enhance glucose uptake via the upregulation of glucose transporters in response 
to the induced hypoxia, and it has been shown to improve cognitive function 
in a Alzheimer’s disease animal models (Heijmen et al., 2014; Kuang et al., 2017; 
M. Zhang et al., 2024). Other drug repurposing candidates might need careful 
consideration, like levodopa, used for Parkinson’s disease management due to its 
potential to exacerbate IR and disrupt glucose regulation, particularly in patients 
with pre-existing metabolic conditions (Smith et al., 2004). Ceftriaxone, a third 
generation cephalosporin antibiotic, presents challenges due to its impact on 
gut microbiota, which can lead to dysbiosis and decreased short-chain fatty acid 
production, ultimately exacerbating IR (Holota et al., 2019; Miao et al., 2021). 
Future research might prioritise the most promising candidates, which could be 
considered for further investigation in randomised-controlled trials as potential 
therapies for psychiatric-IR multimorbidity.

The strengths of this study lie in the use of large-scale GWAS datasets, 
advanced genomic SEM techniques, and the integration of transcriptomic data, 
which collectively provide a robust and comprehensive analysis of the genetic 
underpinnings of psychiatric and IR-related multimorbidity. These approaches 
allowed us to identify shared genetic factors that may not be detectable through 
traditional, univariate GWAS/TWAS analyses, thereby offering novel insights into 
the genetic and biological bases of psychiatric-IR multimorbidity. However, this 
study also has some limitations. First, our understanding of the functions of the 
identified genes and their roles in molecular pathways remains incomplete. While 
the discovery of novel loci is promising, further research is needed to elucidate 
their precise biological functions and how they contribute to the shared risk for 
psychiatric and IR-related conditions. Another limitation is the reliance on GWAS 
summary statistics derived from European ancestry populations, which may limit 
the generalisability of our findings to other populations. This issue highlights the 
need for more diverse genetic studies to ensure that our findings are applicable 
across different ethnic groups. The reliance on gene expression profiles from 
nervous tissues presents significant challenges, particularly given the often non-
linear relationships between gene expression, protein function, and therapeutic 
efficacy (Munro et al., 2024). The T-SEM approach, while powerful in identifying 
tissue-specific gene expression effects across multiple genetically correlated 
traits, operates under the assumption that gene expression effects are consistent 
across all studied traits, potentially oversimplifying the complexity of biological 
interactions (Grotzinger et al., 2022a). In this respect, we employed the QGene statistic 
in an attempt to mitigate the risk of false-positive findings that could arise from 
such assumptions (Grotzinger et al., 2022a). However, the dynamic nature of gene 
regulation, epigenetic modifications, and the impact of environmental exposures 
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can still exert tissue- or cell type-specific effects that might not be detected by our 
model (Pascual-Ahuir et al., 2020). Additionally, the drug repurposing results, while 
compelling, should be interpreted with much caution. Specific to drug repurposing, 
the relatively lower availability of human brain tissue samples remains a significant 
limitation. Moreover, the potential for off-target effects when repurposing drugs 
identified through gene expression overlaps must be carefully evaluated.

In conclusion, this study identified a common genetic factor underlying 
psychiatric and IR-related conditions, encapsulated by the Psych-IR multimorbidity 
factor. Overall, our findings suggest that the associated genetic factors are likely 
involved in pathways that regulate both brain function and metabolic processes, 
particularly during critical developmental windows. These findings have significant 
implications for our understanding of the co-occurrence between IR-related 
conditions and psychiatric disorders, providing new insights into the biological 
mechanisms that contribute to these comorbidities. Furthermore, the integration 
of genomic and transcriptomic data has identified potential candidate biomarkers 
and therapeutic targets, thereby providing the basis for the development of novel 
interventions. As research in this area continues to evolve, these findings have 
the potential to inform both scientific research and clinical practice, ultimately 
contributing to improved outcomes for patients with these co-occurring conditions.
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Overview of key findings

In this thesis, I investigated the relationship between insulin resistance (IR)-related 
conditions and neuropsychiatric disorders through a multi-layered approach 
integrating epidemiological, clinical, genomic, and transcriptomic analyses. Data 
sources included large-scale population studies, such as the UK Biobank, and well-
powered genome-wide association studies (GWASs), complemented by advanced 
statistical methods to examine potential shared genetic architecture and biological 
pathways. Across Chapters 2–7, multiple research approaches converged to 
address the overarching question: to what extent do metabolic disturbances 
associated with IR contribute to neuropsychiatric disorders, and vice versa, at 
clinical, cognitive, and molecular levels?

In the first part of this thesis, I examined the epidemiological and clinical association 
of IR-related cardio-metabolic conditions and traits with cognitive functioning in a 
large population cohort, the UK Biobank. A systematic review of published studies 
using data from this cohort (Chapter 2) documented consistent evidence that type 2 
diabetes mellitus (T2DM), obesity, hypertension, and other IR-related conditions 
correlate with poorer cognitive performance across multiple domains. The most 
consistent findings referred to IR-related associations with poorer verbal and 
numerical reasoning ability, as well as slower processing speed. These associations 
remained significant even after taking into account socio-demographic and 
lifestyle confounding variables. Potential mechanisms that could mediate the 
observed associations included neuroinflammation, cerebrovascular damage, and 
altered insulin signalling in the brain.

Expanding on this, the effects of metabolic dysfunction on psychiatric disorders, 
particularly mood disorders, were reviewed in Chapter 3. This chapter highlighted 
a bidirectional association between T2DM and major depressive disorder (MDD)/
bipolar disorder (BD) based on longitudinal data. Individuals with T2DM exhibited 
higher rates of depression with more severe symptoms, while those with MDD or 
BD had an elevated risk of developing T2DM, along with higher rates of vascular 
complications and mortality. Mendelian randomisation (MR) studies demonstrated 
a causal effect of MDD on T2DM in Europeans, while a suggestive causal association 
in the opposite direction was found in East Asians (Chapter 3). These observations 
reinforce the hypothesis that shared pathophysiological mechanisms may underlie 
both conditions, contributing to their high comorbidity. Building upon these 
epidemiological and genetic insights, in Chapter 4 I examined the potential clinical 
implications of IR-related conditions on depression treatment outcomes using 
primary care data linked to the UK Biobank. Analyses of prescription histories, IR-
related conditions, and diagnostic codes indicated that individuals with T2DM, 
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obesity, or cardiovascular diseases (CVDs) show higher odds of treatment-resistant 
depression (TRD), more frequent antidepressant switches, and longer treatment 
durations than those without IR (Chapter 4). While these findings do not establish 
causal effects, they support the potential clinical relevance of incorporating 
metabolic biomarkers such as body mass index (BMI), fasting glucose, and glycated 
haemoglobin into psychiatric assessments. Furthermore, these findings raise the 
possibility that interventions targeting insulin sensitisation could be explored as 
adjunctive treatments for mood disorders.

While clinical and epidemiologic evidence (Chapters 2, 3, and 4) indicated 
a clear link of IR-related conditions with neuropsychiatric disorders and related 
traits, it was unclear whether genetic and biological factors were of importance 
for these associations. To address the option that part of the neuropsychiatric-IR 
multimorbidity is due to shared biological mechanisms, I devoted a major part of 
this thesis to the genetic dissection of shared liability of neuropsychiatric disorders 
and IR-related conditions (Chapters 5, 6, and 7). Using publicly available summary 
statistics of relevant large-scale GWASs as input, I was able to show that psychiatric 
disorders such as MDD and attention-deficit/hyperactivity disorder (ADHD), 
display positive global genetic correlations with IR-related conditions, thereby 
supporting a shared genetic basis for the observed epidemiological overlap 
(Chapter 5). In contrast, anorexia nervosa (AN), obsessive-compulsive disorder 
(OCD), and schizophrenia showed negative genetic correlations with IR-related 
conditions and traits, suggesting possible opposite genetic influences (Chapter 5). 
Despite the robust genetic associations observed between IR-related traits and 
several neuropsychiatric disorders, an apparent exception was AD. Although 
epidemiological studies had consistently reported a strong link between AD and IR-
related metabolic disturbances (Ferreira et al., 2018), no significant global genetic 
correlation between AD and IR-related conditions was identified in these analyses. 
To explore this further, I used a more granular approach to dissect the genetic 
relationship between these conditions. I showed that for neuropsychiatric disorders 
where global genetic correlations with IR-related conditions were absent, local 
genetic analyses could find significant genetic correlations that were unobservable 
in global approaches (Chapter 6). Using Local Analysis of [co]Variant Association 
(LAVA) (Werme et al., 2022), heterogeneous local patterns of genetic overlap 
were identified across different genomic regions. Even in cases where no global 
genetic correlation was detected, local genetic correlations of opposite direction 
were observed at specific loci, indicating that shared genetic influences between 
psychiatric and metabolic conditions may be confined to discrete genomic regions 
rather than acting in a uniform manner across the genome. This regional dissection 
refined the global genetic correlation findings and demonstrated that the genetic 
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basis of psychiatric–metabolic multimorbidity is far from homogeneous, with both 
positive and negative genetic correlations observed at the locus-specific level 
(Chapter 6). Building upon these findings, in Chapter 7, I further expanded the 
genetic investigation by employing genomic SEM and T-SEM analyses to model the 
shared genetic architecture of psychiatric and IR-related conditions in a multivariate 
framework (Grotzinger et al., 2022; Grotzinger et al., 2019). I included genetic data 
of a total of five psychiatric disorders (ADHD, AN, MDD, OCD, and schizophrenia) 
and three IR-related conditions (metabolic syndrome [MetS], obesity, T2DM), for 
which global genetic correlations have previously been demonstrated (Chapter 7). 
This approach identified a latent multimorbidity factor reflecting shared genetic 
influences across psychiatric disorders—excluding schizophrenia—and IR-related 
conditions. Several novel genes that had not been found significant in any of the 
univariate GWASs and transcriptome-wide association studies (TWASs) of the 
individual disorders were identified, suggesting that the multimorbidity genetic 
factor captures biological processes that may not be fully detectable through 
single-trait analyses.

A deeper investigation of the biological pathways underlying this genetic 
overlap provided further insights into the molecular mechanisms linking psychiatric 
disorders and IR-related conditions. A major component of this shared genetic risk 
was traced to genomic regions enriched for immune-related genes, particularly 
within the major histocompatibility complex (MHC) region on chromosome 6 
(Chapter 6 and 7). Findings in Chapter 6 showed that these immune-related loci 
accounted for a substantial proportion of the genetic overlap between psychiatric 
and IR-related conditions, suggesting that dysregulated immune signalling may 
represent a core mechanism underlying this multimorbidity. The genetically 
correlated regions identified in Chapter 6 were enriched in pathways implicated 
in immune-inflammatory processes, as well as in protein/vesicle trafficking, insulin 
signalling, lipid metabolism, and oxidative phosphorylation (energy production). To 
further assess whether these local genetic correlations reflect shared causal variants 
rather than linkage disequilibrium-driven associations, colocalisation analyses were 
performed (Chapter 6). Through these analyses, I identified specific loci where 
the same variants contribute to both psychiatric and IR-related conditions. The 
most notable colocalised signals mapped to genes regulating immune response, 
lipid metabolism, protein/vesicle trafficking, organ development, retinoic acid 
signalling, and DNA repair/apoptosis. Overlapping expression quantitative trait 
loci (eQTL) signals in immune/metabolic genes were also identified, suggesting 
that gene expression modulation in these loci could play a role in shaping both 
neuropsychiatric and metabolic disease risk (Chapter 6). In parallel, gene-set 
analyses of the latent multimorbidity factor (Chapter 7) also identified specific 
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biological pathways that may serve as mechanistic links between psychiatric and 
IR-related conditions. One of the most significant findings was the involvement of 
insulin-related pathways, particularly those regulating insulin binding. Additional 
candidate insulin-related pathways were identified using bivariate gene-set 
stratified genetic covariance analyses (Chapter 5). Specifically, genetic covariance 
was found between neuropsychiatric disorders and IR-related somatic conditions 
through the insulin receptor recycling, insulin processing, and regulation of insulin 
secretion pathways (Chapter 5). These results suggest that insulin signalling may 
be an important factor contributing to psychiatric–IR multimorbidity. The Notch 
signalling pathway emerged as another significant pathway associated with the 
multimorbidity factor, implicating cell fate determination, neurogenesis, and 
metabolic regulation processes (Chapter 7). Tissue-specific analyses in Chapter 7 
provided additional insights into the neurobiological substrates of psychiatric–
IR multimorbidity. Genes associated with the multimorbidity genetic factor were 
enriched in genes expressed in the pituitary gland and brain, particularly in the 
cerebellum, cortex (including Brodmann Area 9), and frontal cortex. Among the 
most significant genes identified in the T-SEM analyses were MST1R and MAPK3, 
suggesting potential molecular mechanisms linking immune regulation, neuronal 
plasticity, and metabolic processes. Other strongly associated genes included 
MTCH2, involved in mitochondrial function and lipid homeostasis, and SNF8, which 
plays a role in vesicular transport. A complementary analysis of the transcriptomic 
data including the MHC region further highlighted other immune-related genes, 
such as HLA-DRB5 and MICB, reinforcing the potential role of immune signalling 
in psychiatric–metabolic multimorbidity. The enrichment analysis of prioritised 
genes from genomic SEM and T-SEM results identified additional pathways of 
interest (Chapter 7). Notably, the strongest enrichment was observed for genes 
located in the chromosome 16p11.2 region, a locus previously implicated in both 
psychiatric disorders and metabolic dysregulation. This region has been linked 
to neurodevelopmental disorders, obesity, and cognitive dysfunction (Chung 
et al., 2021). Additional significant enrichments included the brain-derived 
neurotrophic factor (BDNF) signalling pathway, which plays a role in synaptic 
plasticity and neuronal survival, as well as pathways involved in lipid metabolism 
and familial hyperlipidaemia.

Considering the clinical associations found between mood disorders and IR-
related conditions, an essential question explored in Chapters 3, 6, and 7 was 
whether any pharmacological interventions targeting metabolic or other pathways 
could be useful in the context of psychiatric-IR multimorbidity. This was explored 
through the review of existing evidence, as well as new exploration of druggable 
genes and drug repurposing analyses. Several medications were highlighted in 



254 | Chapter 8

these chapters, including metformin, pioglitazone, and Glucagon-like peptide-1 
receptor agonists (GLP-1RAs) (Chapter 3), which have been investigated for their 
antidepressant and pro-cognitive properties. Metformin, primarily used as an 
insulin sensitiser, has been associated with improved depressive symptoms in 
individuals with metabolic dysfunction, possibly through mechanisms related 
to neuroinflammation and mitochondrial function. Pioglitazone, a peroxisome 
proliferator-activated receptor-γ (PPAR-γ) agonist, showed potential benefits in TRD, 
with some studies indicating effects on neurogenesis and inflammatory pathways. 
GLP-1RAs, such as liraglutide, have garnered attention for their neuroprotective 
and anti-inflammatory properties, with preliminary evidence suggesting cognitive 
benefits and antidepressive effects in individuals with IR-related conditions 
(Mansur et al., 2017; Pozzi et al., 2019). These findings suggest that metabolic 
interventions may hold promise in psychiatric treatment strategies, particularly in 
cases where standard psychotropic medications have shown limited effectiveness. 
Beyond these known metabolic agents, new drug repurposing opportunities 
were identified through colocalisation analyses (Chapter 6) and transcriptome-
based drug screening (Chapter 7). Colocalisation analyses (Chapter 6) pinpointed 
genetic regions where the same causal variants likely contribute to both psychiatric 
and IR-related conditions, identifying druggable targets within immune function, 
lipid metabolism, vesicle trafficking, and DNA repair/apoptosis pathways. Among 
the genes mapped to the shared most likely causal variants, HLA-DRB1 gene 
product is already targeted by multiple drugs, including immunosuppressants 
(azathioprine, interferons-β), anti-inflammatory agents (acetylsalicylic acid, 
statins), and psychotropic drugs (carbamazepine, lamotrigine). Other products of 
genes, such as HLA-DQB1 and FADS1/2—involved in immune regulation and lipid 
metabolism, are already targeted by existing antihypertensive drugs, omega-3/6 
polyunsaturated fatty acids (PUFAs), and vitamin A, indicating potential metabolic 
and neuroimmune intervention points. To extend these findings, transcriptome-
based drug repurposing analyses (Chapter 7) identified pharmacological 
compounds with potential relevance for psychiatric–IR multimorbidity. Using the 
PharmOmics platform (Chen et al., 2022), six candidate drugs were highlighted, 
based on their ability to reverse disorder-associated gene expression signatures. In 
human data, bevacizumab was identified as a potential neurovascular modulator. 
In mouse models, the strongest candidates included memantine, rosiglitazone, 
levodopa, cyclophosphamide, and ceftriaxone. Memantine, an N-methyl-D-
aspartate (NMDA) receptor antagonist, is known for its neuroprotective properties 
and has been studied for cognitive dysfunction and treatment-resistant psychiatric 
disorders (Aljuwaiser et al., 2023). Rosiglitazone, a PPAR-γ agonist with insulin-
sensitising and anti-inflammatory effects, showed strong overlap with genetic 
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signatures of psychiatric–IR multimorbidity, aligning with previous evidence of 
possible efficacy of pioglitazone on depressive symptoms (Moulton et al., 2018). 
Levodopa, a dopamine precursor commonly used in Parkinson’s disease, emerged 
as another candidate, although its effects on glucose metabolism and IR require 
further investigation. Cyclophosphamide and ceftriaxone, both involved in 
immune modulation and neuroprotection, also demonstrated significant overlap 
with disease-relevant transcriptomic profiles. Taken together, these results suggest 
that existing metabolic and neuroimmune-modulating drugs may hold potential 
for addressing psychiatric–IR multimorbidity.

To summarise, these findings provide a coherent framework demonstrating 
convergent evidence for a bidirectional relationship between neuropsychiatric 
disorders and IR-related metabolic conditions at multiple levels. While conventional 
views often treat metabolic conditions and neuropsychiatric disorders as separate 
entities, the empirical observations and genomic findings described in this thesis 
reveal interconnected mechanisms. The identification of colocalised signals 
between neuropsychiatric disorders and IR-related conditions further refines this 
understanding, showing that some genetic variants are likely to exert a shared 
causal effect across metabolic and neuropsychiatric domains. The potential 
pharmacological relevance of these genes suggests that metabolic and antidiabetic 
and immune-targeting drugs may warrant further investigation in psychiatric 
conditions, particularly for individuals with high IR burden.

Contextualisation of findings within the existing 
literature and integration across chapters

The findings presented in Chapters 2 to 7 provide converging evidence for a 
connection between neuropsychiatric disorders and IR-related conditions across 
multiple levels, ranging from epidemiological associations to shared genetic 
architecture and transcriptomic signatures. However, this relationship is not 
uniform across disorders, nor does it follow a simple linear association. Instead, 
the results reveal substantial heterogeneity in shared genetic risk across different 
neuropsychiatric and IR-related metabolic conditions. This heterogeneity is 
particularly evident in the contrasting patterns of global versus local genetic 
correlations, several biological pathways implicated in shared risk, and the varying 
degrees to which neuropsychiatric disorders align with or diverge from IR-related 
metabolic traits at the genetic level (Chapters 5-7).
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Heterogeneity in genetic overlap between psychiatric disorders and 
metabolic dysregulation
Metabolic dysfunction emerges as a substantial determinant of psychiatric disorder 
trajectories, influencing cognitive outcomes, treatment response, and disorder 
chronicity. Observational data from Chapters 2 to 4 demonstrated that individuals 
with IR-related conditions, including T2DM, obesity, and hypertension, exhibited 
poorer cognitive performance, increased rates of TRD, and more severe mood 
disorder phenotypes. Complementing these clinical findings, genetic analyses 
from Chapters 5 to 7 demonstrated distinct patterns of genetic correlation 
between psychiatric and IR-related metabolic traits. While MDD and ADHD 
exhibited only positive genetic correlations with IR-related conditions at both 
global and local levels, the genetic relationship was more complex for AN, OCD, 
and schizophrenia. These three psychiatric disorders warrant specific attention 
because they deviate from the patterns observed in other psychiatric conditions. 
Schizophrenia presents a paradox: despite its high clinical burden of metabolic 
dysfunction (Freyberg et al., 2017; Manu et al., 2015), global genetic correlations 
indicate a protective effect, raising questions about the influence of environmental 
and pharmacological factors. In contrast, AN consistently shows negative genetic 
correlations with IR-related conditions at both the global and local levels, reflecting 
a metabolic profile that is distinct from most other psychiatric disorders. OCD, 
while also showing negative global genetic correlations, exhibits both negative 
and positive local genetic correlations. Clinical data indicate a heightened risk of 
metabolic complications in OCD (Isomura et al., 2018), suggesting that genetic 
and environmental factors interact in distinct ways across these disorders. 
Examining these contrasting patterns is important for understanding how genetic 
predisposition, medication effects, and physiological mechanisms contribute to 
metabolic variation in psychiatric conditions.

Schizophrenia, in particular, exhibited negative global genetic correlations with 
MetS and BMI, but no significant associations were observed with other IR-related 
diseases/traits (e.g., T2DM, fasting glucose, fasting insulin, glycated haemoglobin 
[HbA1c], and homeostatic model assessment for IR [HOMA-IR]). Nonetheless, clinical 
and epidemiological evidence suggests that individuals with schizophrenia are at 
increased risk of metabolic dysfunction (Freyberg et al., 2017; Manu et al., 2015), 
particularly in the context of antipsychotic treatment (Burschinski et al., 2023). This 
discrepancy raises the possibility that the protective genetic effects observed at 
the global level may be overridden by environmental and pharmacological factors, 
or that specific loci may interact with environmental exposures to increase the 
metabolic risk in patients with schizophrenia. Further supporting this hypothesis, a 
recent study identified shared genetic loci between antipsychotic-induced weight 
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gain and metabolic traits, primarily implicating loci involved in lipid pathways 
rather than insulin signalling mechanisms (Gezsi et al., 2024). This suggests that 
while genetic factors linked to schizophrenia itself may exhibit certain genetic 
protections against metabolic dysfunction, medication exposure introduces an 
additional layer of metabolic risk, with specific genetic variants (e.g., mapping to 
the PEPD and PTPRD loci) predisposing some individuals to antipsychotic-induced 
weight gain (Gezsi et al., 2024). Notably, the presence of both protective and risk-
associated genetic influences within schizophrenia is further underscored by local 
genetic correlation analyses (Chapter 6), which reveal that certain genomic regions 
contribute to metabolic risk despite an overall negative genetic correlation with 
BMI and MetS. This heterogeneous pattern of local genetic correlations contrasts 
with AN, where all local correlations were consistently negative across loci as were 
global correlations with IR-related metabolic conditions (Chapters 5 and 6). This 
suggests that while schizophrenia may involve bidirectional genetic mechanisms 
that variably influence metabolic outcomes, AN appears to be characterised by a 
distinct genetic profile that is more markedly opposed to IR.

We can speculate that the heterogeneity in genetic correlations for schizophrenia 
and IR-related conditions may reflect variability in symptom domains, as studies 
have shown that dysglycaemia is particularly associated with greater severity of 
negative symptoms and cognitive impairments in schizophrenia, while positive 
symptoms showed mixed associations (Perry et al., 2017). Further supporting 
these findings, large-scale genomic analyses have highlighted distinct metabolic 
signatures associated with schizophrenia (Meer et al., 2024; Rodevand et al., 2023). 
An extensive study assessing the genetic overlap between psychiatric disorders and 
249 circulating metabolic markers by using Linkage Disequilibrium Score Regression 
(LDSC) and bivariate Gaussian mixture modelling (MiXeR) found that MDD 
exhibited strong positive genetic correlations with lipid metabolites, amino acids, 
and inflammation-related markers, displaying a pattern similar to that observed 
between the same metabolites and T2DM, BMI and coronary artery disease. In 
contrast, schizophrenia and BD showed inverse genetic correlations with these 
metabolic traits. Notably, the overall pattern of genetic correlations across metabolic 
markers was strongly inversely related between MDD and schizophrenia (r = -0.83) 
and between MDD and BD (r = -0.74), indicating that while MDD shares genetics 
with metabolic traits, schizophrenia and BD exhibit an opposite pattern (Meer et 
al., 2024). Similarly, another study analysed genetic overlap between schizophrenia 
and CVD risk factors using MiXeR and conjunctional false discovery rate (conjFDR) 
analyses (Rodevand et al., 2023). The study identified extensive polygenic overlap 
between schizophrenia and smoking initiation and BMI, with mostly opposite 
effect directions for BMI. This could suggest that while schizophrenia may exhibit 
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an inverse genetic correlation with obesity, local genetic effects and environmental 
factors (e.g., smoking-related traits, antipsychotic-induced metabolic side effects) 
contribute to increased cardio-metabolic risk in affected individuals. Expanding on 
these insights, MR analyses further investigated the causal relationships between 
metabolic markers and psychiatric disorders (Rodevand et al., 2023). Findings 
indicated bidirectional effects between schizophrenia, MDD, and BD with specific 
metabolic markers, including docosahexaenoic acid (DHA) and glycoprotein 
acetyl—an inflammatory biomarker. However, the relationship with MDD was 
stronger than with schizophrenia and BD, with metabolic dysfunction playing a 
more pronounced role in its biological underpinnings (Meer et al., 2024).

In my work presented in Chapter 5 and 6, AN exhibited stronger and more 
consistent negative genetic correlations across IR-related traits and genomic loci 
than schizophrenia, which showed significant inverse correlations only with BMI and 
MetS. Unlike schizophrenia, where metabolic risk is influenced by both protective 
and risk-associated genetic factors and further modulated by environmental and 
pharmacological exposures, AN appears to follow a distinct genetic profile that is 
inherently opposed to the genetic risk for metabolic dysfunction (Chapter 5 to 7). 
The absence of local genetic correlations in a positive direction further supports this 
observation, suggesting that the genetic architecture of AN is more aligned with 
metabolic efficiency and insulin sensitivity rather than IR-related risk (Chapter 6). 
This genetic profile aligns with clinical and physiological findings that individuals 
with AN exhibit enhanced insulin sensitivity, increased lipid oxidation, and an 
adaptive energy conservation phenotype (Ilyas et al., 2019). Unlike other psychiatric 
disorders, where metabolic dysfunction is often associated with symptom severity 
and poorer clinical outcomes (Chapter 3 and 4), AN appears to be characterised 
by a metabolic state that is distinct from the broader psychiatric-IR multimorbidity 
spectrum (Ilyas et al., 2019; Kumar et al., 2023). These genetic findings are further 
supported by genomic SEM analyses (Chapter 7), which demonstrate that while AN 
is included in the latent factor of psychiatric-IR multimorbidity, it carries a negative 
loading. Initially, we had expected AN to form a separate factor based on the results 
of Chapter 5, which highlighted its distinct genetic correlations with metabolic 
traits. However, Chapter 7 revealed that AN clustered within the same factor as 
other psychiatric disorders linked to IR, albeit with an opposite loading. This finding 
suggests that rather than representing a completely separate genetic entity, AN 
shares underlying genetic factors with psychiatric-IR multimorbidity, but these 
factors influence AN in a direction consistent with metabolic protection rather than 
risk. These genetic findings are consistent with clinical observations in individuals 
with AN undergoing weight restoration therapy. Despite the physiological stress of 
refeeding, overt IR is typically not observed in AN, although approximately 21% of 
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individuals show elevated HOMA-IR estimates (Kim et al., 2019). Increased glucose 
reactivity has been linked to visceral adiposity during recovery, suggesting that 
body fat distribution plays a role in metabolic adaptations (Prioletta et al., 2011). 
Nonetheless, insulin sensitivity remains preserved in most individuals with AN, likely 
due to higher circulating levels of adiponectin, a hormone that enhances insulin 
action (Karczewska-Kupczewska et al., 2010). Further evidence supporting the 
genetic divergence of AN from other psychiatric disorders comes from polygenic 
analyses linking T2DM with psychiatric risk. A nationwide multigenerational 
genetics study demonstrated that psychiatric disorders and T2DM share a familial 
risk component, with first-degree relatives of individuals with psychiatric disorders 
exhibiting a significantly higher risk of T2DM (parents: HR = 1.38; grandparents: 
HR = 1.14; aunts/uncles: HR = 1.19) (Wimberley et al., 2024). However, the study 
also found an inverse association between polygenic score (PGS) for T2DM and AN, 
reinforcing the hypothesis that AN follows a metabolic trajectory distinct from IR-
related conditions, favouring enhanced insulin sensitivity rather than susceptibility 
to metabolic dysfunction (Ilyas et al., 2019; Wimberley et al., 2024). These findings 
collectively highlight that while most psychiatric disorders exhibit some degree of 
genetic overlap with IR-related traits, AN represents an exception, characterised by 
a genetic architecture opposite of IR-related metabolic dysfunction.

A disorder showing similar trends as AN in its global negative association with 
IR-related metabolic conditions is OCD. However, while AN exhibited a largely 
uniform genetic profile characterised by consistent negative correlations with IR-
related traits, OCD presented a more complex pattern. Despite negative global 
genetic correlations with IR-related metabolic conditions suggesting protection 
(Chapter 5), clinical and epidemiological evidence indicates an elevated 
prevalence of metabolic disturbances in individuals with OCD (Wimberley et 
al., 2022). One potential explanation for this discordance is the contribution of 
external, environmental influences that may interact with genetic predisposition, 
as metabolic complications have been particularly associated with prolonged 
exposure to antipsychotic medications in patients with OCD (Albert, Aguglia 
et al. 2013, Isomura, Brander et al. 2018). Local genetic correlation and gene-set 
stratified covariance analyses provided additional insights, highlighting shared 
genetic factors between OCD and IR-related conditions in specific genomic regions 
or pathways (Chapter 5 and 6). Notably, gene-set stratified covariance analyses 
implicated pathways involved in insulin receptor recycling, a process important 
for maintaining insulin sensitivity (Chapter 5). This finding suggests that genetic 
variation affecting insulin receptor turnover may contribute to the observed 
genetic relationship between OCD and IR-related traits, despite the lack of a 
positive genome-wide correlation.
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For AD, the findings described in this thesis highlight another layer of 
complexity. Although global genetic correlations between AD and IR-related 
conditions were non-significant, local genetic analyses identified significant 
regional overlaps, suggesting that positive and negative correlations at different 
loci may counterbalance each other at a global level (Chapter 5 and 6). Previous 
studies have reported strong regional genetic correlations between AD and 
T2DM, particularly for variants mapped to the APOE locus (Zhu et al., 2019). The 
absence of a genome-wide, global genetic correlation does not necessarily rule 
out biological links but instead suggests that shared mechanisms may operate 
at specific loci without a uniform direction of effect across the genome. Evidence 
from animal models supports this hypothesis, showing that transgenic mice 
carrying the APOE-ε4 allele exhibit impaired insulin signalling when exposed to a 
high-fat diet, whereas those carrying the APOE-ε3 allele do not (Zhao et al., 2017). 
Furthermore, pharmacological studies have demonstrated that the efficacy of 
insulin-modulating treatments for AD, such as thiazolidinediones and intranasal 
insulin, may depend on APOE genotype (Li et al., 2015), reinforcing the notion that 
genetic and environmental interactions influence the relationship between AD and 
IR-related conditions.

Taken together, the results observed in my thesis highlight the substantial 
heterogeneity in the genetic overlap between psychiatric disorders and IR-
related conditions. While MDD and ADHD exhibit positive genome-wide genetic 
correlations with IR-related metabolic traits, AN presents a uniformly negative 
genetic profile, reflecting genetic opposition to IR-related metabolic dysfunction 
across both global and local genetic correlation analyses. In contrast, schizophrenia, 
OCD, and AD demonstrate more complex genetic relationships with IR-related 
traits. These disorders show both positive and negative local genetic correlations, 
suggesting that specific loci contribute to metabolic risk despite an overall lack of 
or even inverse genome-wide genetic correlation. On top of genetic factors - and 
potentially over-ruling those - environmental and pharmacological factors (e.g., 
antipsychotic-induced metabolic side effects in schizophrenia and OCD) may 
further shape the observed metabolic risk in affected individuals.

Insulin signalling and immune-inflammation as core mechanisms in 
psychiatric-insulin resistance multimorbidity
Two consistent biological mechanisms emerging from my work across genomic and 
transcriptomic analyses (Chapters 5 to 7) are the involvement of insulin signalling 
and immune-inflammatory mechanisms in the co-occurrence of psychiatric and 
IR-related conditions. The involvement of insulin signalling was first identified in 
Chapter 5, where gene-set stratified genetic covariance analyses revealed that 
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neuropsychiatric disorders and IR-related conditions show genetic covariance 
at the level of specific insulin-related pathways, including those involved in 
insulin receptor recycling, insulin secretion, and processing. These findings were 
complemented by results from Chapter 6, where gene mapping within genetically 
correlated regions identified genes such as STX1A, FLOT1, MAPK3, and PHKG2, 
which play roles in insulin secretion, receptor signalling, and vesicular function 
(Bagge et al., 2013; Jager et al., 2011; van de Vondervoort et al., 2016). While 
these associations do not establish causality, they suggest a genetic link between 
insulin-related processes and psychiatric-IR multimorbidity, consistent with prior 
research on insulin signalling dysfunction in psychiatric disorders (see Chapter 1, 
section 1.1.2.1). Additional support for this relationship was observed in Chapter 7, 
where genomic SEM analyses identified a significant association between insulin 
binding gene-set, including the INSR, IGF1R, and IDE genes, and the psychiatry-IR 
multimorbidity genetic factor. INSR and IGF1R are central to insulin signalling, also 
regulating neuronal metabolism, synaptic plasticity, and neurogenesis (Boucher et 
al., 2014; Cardoso et al., 2021). IDE, which encodes the insulin-degrading enzyme, is 
not only involved in insulin metabolism but has also been implicated in cognitive 
function and neurodegeneration, suggesting a neurobiological link between 
insulin dysregulation and neuropsychiatric symptoms (Henderson & Poirier, 2011). 
These findings suggest that genetic variability in insulin signalling is potentially 
involved in the pathophysiology of psychiatric-IR multimorbidity, aligning with 
previous evidence presented in Chapter 1 regarding the involvement of insulin in 
brain functioning.

Although insulin signalling is important for psychiatric-IR multimorbidity, my 
findings in Chapters 6 and 7 indicate that it does not act in isolation. Instead, 
immune-inflammatory mechanisms appear to be an additional biological link 
between psychiatric and IR-related conditions. In this regard, colocalisation 
analyses conducted in Chapter 6 identified likely shared causal variants between 
psychiatric and IR-related conditions, which mapped to immuno-related genes 
such as HLA-DQB1 and HLA-DRB1. Moreover, transcriptomic analyses further 
reinforced the potential role of immune signalling by implicating MHC-related 
genes, including HLA-DRB5, and MICB, whose expression is associated with 
psychiatric-IR multimorbidity; this suggests that immune system dysfunction 
may be a key mechanistic bridge between psychiatric disorders and IR-related 
conditions (Chapter 7). The relationship between immune-inflammatory pathways 
and insulin function is particularly relevant given the previously established 
bidirectional links between inflammatory cytokines and IR, which has been 
implicated in both metabolic dysfunction and neuropsychiatric symptoms (Al-
Mansoori et al., 2022; Wu & Ballantyne, 2020). Interestingly, pro-inflammatory 
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cytokines, including interleukin (IL)-6 and tumor necrosis factor (TNF)-α, may also 
interfere with insulin receptor signalling by promoting serine phosphorylation of 
insulin receptor substrate proteins, leading to IR in peripheral tissues and the brain 
(Andreozzi et al., 2007; Gao et al., 2002). Findings from other large-scale studies 
further support the role of immune-inflammatory dysregulation in psychiatric-IR 
multimorbidity, although the underlying biological mechanisms have yet to be fully 
elucidated. For example, Rodevand et al. (2023) and Meer et al. (2024) identified 
immune-related pathways among shared genetic loci between psychiatric disorders 
and metabolic traits, although their analytical approaches do not allow for definitive 
mechanistic conclusions. Rodevand et al. (2023) identified genetic overlap between 
schizophrenia and metabolic traits, including lipid metabolism, blood pressure 
regulation, and T2DM-related phenotypes, with shared genetic signals in the MHC 
region. Similarly, Meer et al. (2024) identified immune-related pathways among the 
shared genetic loci between psychiatric disorders and metabolic markers, as well as 
inflammatory-related metabolic markers such as glycoprotein acetyls causally related 
with psychiatric phenotypes. Further evidence supporting the immune-inflammatory 
hypothesis comes from clinical studies showing that individuals with MDD, BD, and 
schizophrenia exhibit elevated levels of pro-inflammatory cytokines, including IL-6 
and TNF-α, which are also increased in individuals with obesity, MetS, and T2DM 
(Goldsmith et al., 2016; Liu et al., 2016; Popko et al., 2010). Chronic inflammation has 
also been linked to neurotransmitter dysregulation, synaptic plasticity impairments, 
and increased HPA axis activity, all of which contribute to psychiatric symptom 
severity and treatment resistance (Leonard, 2014; Rhie et al., 2020).

The influence of inflammation and insulin resistance on treatment 
outcomes: focus on depression
The link between immune-inflammatory dysregulation and treatment resistance 
has been particularly investigated in depression. Previous research has shown 
that elevated C-reactive protein (CRP) and IL-6 levels predict poorer response to 
antidepressants, and anti-inflammatory agents have been explored as adjunctive 
therapies for individuals with treatment-resistant symptoms (Fabbri et al., 2021). 
However, immune-inflammatory dysregulation has also been linked to symptom 
severity and treatment response in schizophrenia and BD (Murata et al., 2020). 
Findings from Chapter 3 and 4 suggest that IR-related metabolic dysfunction, 
including T2DM and obesity, may interfere with antidepressant efficacy by 
potentially exacerbating neuroinflammatory processes, potentially explaining the 
higher rates of antidepressant switching and longer treatment duration observed in 
individuals with IR-related conditions. One possible mechanism involves the direct 
effect of inflammatory cytokines on monoaminergic signalling. Elevated levels of 



8

263|General discussion

IL-6 and TNF-α have been shown to reduce serotonin synthesis by increasing the 
activity of the enzyme indoleamine 2,3-dioxygenase (IDO), which shunts tryptophan 
metabolism toward the kynurenine pathway, reducing serotonin availability while 
increasing the production of neurotoxic metabolites such as quinolinic acid (Fanelli 
et al., 2019). These metabolites act as NMDA receptor agonists, contributing to 
glutamatergic excitotoxicity, oxidative stress, and synaptic dysfunction, all of which 
have been implicated in mood disorders and antidepressant nonresponse (Fanelli 
et al., 2019). Inflammation may also impair dopaminergic transmission, involved in 
motivation and reward processing, two domains commonly affected in TRD (Felger 
& Treadway, 2017). Beyond neurotransmitter alterations, inflammatory processes 
may interfere with antidepressant mechanisms by affecting intracellular signalling 
pathways. For example, inflammatory cytokines activate the nuclear factor kappa 
B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which inhibit 
neurotrophic factor signalling, particularly BDNF and its receptor Tropomyosin 
receptor kinase B (TrkB). Reduced BDNF expression has been linked to impaired 
neuroplasticity, which is a key process involved in antidepressant efficacy (Andrade 
& Rao, 2010; Yang et al., 2020).

In the context of metabolic dysfunction, IR may amplify these neuroinflammatory 
effects. Indeed, insulin plays a role in modulating neurotrophic support and 
neurotransmission (Kleinridders et al., 2014; Stranahan et al., 2008), and IR has been 
associated with reduced hippocampal BDNF levels and impaired synaptic plasticity 
(Spinelli et al., 2019; Stranahan et al., 2008), which are involved in antidepressant 
response (Bjorkholm & Monteggia, 2016). Moreover, IR is linked with chronic low-
grade inflammation, with increased levels of pro-inflammatory cytokines (Chen et 
al., 2015; Szukiewicz, 2023), which in turn can worsen neurotransmitter imbalances 
and further impair neurotrophic signalling (Leonard, 2014). The combination of 
neuroinflammation and IR may therefore create a loop that sustains antidepressant 
nonresponse and contributes to chronicity in mood disorders. These mechanisms 
provide a biological interpretation of the observed association between 
metabolic dysfunction and reduced antidepressant efficacy. The increased 
rates of antidepressant switching and prolonged treatment duration observed 
in individuals with IR-related conditions (Chapter 4) may reflect the inability 
of standard antidepressants to effectively counteract the combined effects of 
neuroinflammation, IR, and neurotransmitter dysregulation. These findings also 
raise the possibility that anti-inflammatory or insulin-sensitising interventions 
could enhance antidepressant efficacy in individuals with coexisting psychiatric 
and metabolic disturbances, a hypothesis that warrants further investigation.

In summary, the integration of findings from this thesis, together with recent 
large-scale genomic studies, indicates that psychiatric-IR multimorbidity is 
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characterised by shared biological pathways, with substantial heterogeneity 
in shared genetic risk across psychiatric conditions and at the level of individual 
genetic loci. Local genetic correlations can contrast with global trends. The findings 
underscore that psychiatric-IR multimorbidity cannot be explained by uniform 
genetic effects but rather by a complex balance of convergent and divergent 
genetic and biological effects, in addition to environmental influences.

Vision for future research and clinical implications

The findings presented in this thesis underscore the need for a refined, biologically 
informed approach to psychiatric research and clinical practice at the intersection 
of psychiatric disorders and IR-related conditions. The results indicate that 
psychiatric-IR multimorbidity is not a uniform phenomenon but rather a spectrum 
of convergent and divergent shared genetic and effects in interplay with 
environmental factors, with common mechanisms involving metabolic, immune-
inflammatory, and neurotransmitter pathways. In this section, I will describe my view 
on three aspects I believe future research should aim to improve: 1) risk prediction, 
2) refining biological subtyping, and 3) translating genetic insights into precision 
medicine approaches. These objectives necessitate integrative methodologies 
that leverage genomics, transcriptomics, proteomics, metabolomics, and digital 
health technologies to optimise diagnosis, prevention, and treatment strategies in 
psychiatric populations with metabolic dysregulation.

Advancing risk prediction models for psychiatric-IR multimorbidity
While PGSs have demonstrated clinical utility for some medical conditions, such as 
breast cancer and T2DM (Khera et al., 2018), their predictive value in psychiatric 
disorders remains small (Lewis & Vassos, 2020). This is likely due to the highly 
multifactorial nature of psychiatric conditions and the complex contribution of 
environmental factors, including feedback loops involving gene-environment 
interplay (correlations and interactions). Conditions such as breast cancer provide 
an example where PGSs are increasingly used in risk stratification to optimise 
screening strategies. Recent findings indicate that incorporating breast cancer 
PGS alongside family history can refine early screening recommendations, 
leading to increased life-years gained and a reduction in breast cancer mortality 
(van den Broek et al., 2021). These results illustrate how polygenic risk can be 
leveraged to improve clinical outcomes and underscore the potential for similar 
applications in psychiatric and metabolic medicine. A priority for future research is 
the development of multimorbidity-based predictive models that extend beyond 
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single-disorder risk estimation. The findings presented in Chapter 7 suggest that 
a latent multimorbidity factor, identified through genomic SEM, captures shared 
polygenic risk across psychiatric and IR-related conditions. However, the clinical 
utility of this multimorbidity factor remains unexplored. One potential avenue 
for translating these findings into practice is the development of multimorbidity-
based PGS, which could improve risk stratification and inform personalised 
treatment selection. Given the substantial pleiotropy observed in psychiatric-
IR multimorbidity, such a multimorbidity-based PGS may outperform disorder-
specific PGSs by capturing genetic effects that cut across conventional diagnostic 
categories. This hypothesis is supported by previous findings indicating that PGSs 
derived from multivariate GWASs outperform those based on single-trait GWAS 
in predictive accuracy (Grotzinger et al., 2019). To establish clinical validity, future 
studies should investigate whether a multimorbidity-based PGS, integrated with 
environmental and clinical variables, improves risk stratification in psychiatric 
patients with metabolic dysfunction. This requires integrating PGS with electronic 
health records (EHRs) to assess whether individuals with high multimorbidity-
based PGS exhibit earlier disease onset, more severe clinical trajectories, increased 
treatment resistance, and/or adverse medication effects. Large-scale biobank 
datasets, such as the All of Us Research Program (All of Us Research Program et al., 
2019), could be instrumental in refining these models across diverse populations. In 
clinical psychiatry, incorporating multimorbidity-based PGS into clinical workflows 
may help guide early intervention strategies, including metabolically informed 
psychotropic prescribing or preemptive lifestyle interventions. However, realising 
the full potential of PGS in the context of psychiatric-IR multimorbidity requires 
several methodological improvements. Current PGS approaches primarily rely 
on GWAS summary statistics, which assign equal weight to associated variants 
regardless of their functional significance (Choi et al., 2020). However, risk 
prediction models could be improved by integrating functional annotations, such as 
chromatin accessibility and eQTL data, to prioritise variants with stronger biological 
relevance (Pain et al., 2021; Zhang et al., 2024). Additionally, the predictive power 
of PGS remains constrained by multiple factors, including ancestry-related biases 
and the limited sample sizes of base GWAS, which result in suboptimal polygenic 
prediction (Lewis & Vassos, 2020).

To refine risk prediction, transcriptomic stratification approaches could 
be employed. The CASTom-iGEx framework has demonstrated the utility of 
incorporating transcriptomic data to define patient subgroups with distinct 
biological profiles and clinically relevant differences (Trastulla et al., 2024). Applying 
similar strategies to psychiatric-IR multimorbidity could improve risk stratification 
by prioritising variants with functional relevance in biological pathways implicated 
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in insulin signalling and immune function, among others, as identified in this 
thesis (Chapters 5 to 7). For example, genes such as INSR, MAPK3, MST1R, and 
BDNF, identified through transcriptomic analyses as significantly associated with 
psychiatric-IR multimorbidity (Chapter 7), may warrant differential weighting 
in future PGS models. However, additional research is needed to establish 
which variants are functionally relevant before making direct claims about their 
contribution to risk prediction.

Another advancement in PGS methodology is the integration of machine 
learning approaches, which can account for nonlinear interactions, gene-gene 
interactions, and complex multivariate patterns that traditional PGS methods may 
overlook (Zhou et al., 2023). Among these approaches, deep learning-based PGS 
utilises neural network architectures to model polygenic risk, leveraging large-
scale genomic data to predict disease susceptibility. Unlike traditional PGS, which 
typically sums the weighted effects of independent variants, deep learning-based 
models can identify hidden patterns in genetic risk by incorporating epistatic 
interactions, functional annotations, and regulatory networks (Zhou et al., 2023). 
Zhou et al. (2023) demonstrated that deep learning-based PGS models significantly 
outperformed conventional PGSs in predicting AD risk, with an increase in predictive 
accuracy from AUC = 0.69 (traditional PGS) to AUC = 0.73 (deep learning-based 
PGS) (Zhou et al., 2023). The improvement was attributed to the model’s ability to 
capture polygenic risk in a nonlinear, context-dependent manner, incorporating 
interactions between genetic variants, biological pathways, and endophenotypic 
traits. This suggests that applying deep learning to multimorbidity-based PGS could 
better capture shared genetic risk between psychiatric and IR-related conditions, 
which involve multiple, overlapping biological mechanisms. Importantly, deep 
learning approaches may enable stratification of genetic risk groups with 
distinct clinical trajectories, a finding with potential relevance to psychiatric-
IR multimorbidity (Zhou et al., 2023). The model used by the authors not only 
predicted AD risk but also identified high-risk subgroups enriched for biological 
markers such as amyloid-beta and tau pathology, underscoring the potential of 
deep learning to infer disease-related endophenotypes. Given the multisystem 
involvement of psychiatric-IR multimorbidity, deep learning approaches could 
similarly refine risk prediction by identifying hidden patterns of genetic risk across 
metabolic, immune-inflammatory, and neurobiological pathways.

Despite possible methodological advancements, PGS should always be 
integrated with environmental and lifestyle data to improve clinical utility. The 
bidirectional relationship between psychiatric and metabolic conditions suggests 
that genetic predisposition interacts with modifiable risk factors, such as diet, 
physical activity, sleep disturbances, and chronic stress (Fanelli et al., 2025; Ferns, 
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2018). However, traditional PGS models do not incorporate these influences, 
which limits their predictive accuracy in clinical settings (Lewis & Vassos, 2020). 
Prior work has demonstrated that combined risk models incorporating both 
genetic and environmental factors can improve risk prediction. For instance, CVD 
prediction models that integrate PGS alongside conventional risk factors have 
shown improved predictive accuracy. Specifically, these models achieve a small but 
meaningful increase in their ability to distinguish individuals at higher vs. lower risk 
(measured as an increase in the C-index by 0.012, a metric that quantifies how well 
a model differentiates between outcomes). Additionally, integrating PGSs has led to 
a 10-12% improvement in correctly reclassifying individuals into more appropriate 
risk categories compared to models based solely on traditional predictors (Sun et 
al., 2021). Similarly, an analysis of breast cancer and CVD models demonstrated 
that environmental/clinical predictors such as BMI and smoking status contribute 
significantly to disease risk and that integrating genetic data further refines 
stratification (Dudbridge et al., 2018). While these findings illustrate the feasibility 
of multimodal prediction, their applicability to psychiatric-IR multimorbidity 
requires further validation. A multimodal risk model incorporating both genetic 
predisposition and longitudinal, real-time health data, such as actigraphy-based 
measures of physical activity, sleep patterns, and circadian rhythm stability, could 
further improve risk stratification and facilitate early identification of individuals at 
high risk for psychiatric-IR multimorbidity before clinical symptoms manifest. These 
dynamic predictors may complement genetic risk estimates, particularly given prior 
evidence that objective behavioural monitoring (e.g., actigraphy and smartphone-
based digital phenotyping) is associated with mood symptomatology and 
treatment response (Gillett et al., 2021; Scott et al., 2020; Tazawa et al., 2019). Such 
an approach could support tailored intervention strategies, including preemptive 
lifestyle modifications or personalised metabolic risk mitigation. The integration of 
multimodal assessments may have broad implications for public health by shifting 
the focus from reactive treatment to proactive disease prevention.

Translation of predictive models into clinical practice will require addressing 
several challenges, including validation in diverse populations, integration into 
EHRs, and ensuring accessibility within routine healthcare settings. To maximise 
clinical impact, multimodal risk assessments should be implemented beyond 
research settings, ensuring that primary care and mental health services incorporate 
these tools in risk stratification and early intervention strategies. Future research 
should also explore how PGS can be incorporated into clinical decision support 
systems for individualised treatment selection. Potentially, psychiatric patients with 
high genetic risk for psychiatric-IR multimorbidity may benefit from metabolically 
neutral psychotropics, augmentation with anti-inflammatory agents, or insulin-



268 | Chapter 8

sensitising drugs, whereas those with low multimorbidity risk might tolerate 
more metabolically challenging treatments. By integrating PGS-driven metabolic 
risk profiles into EHRs, clinicians could receive data-driven recommendations 
tailored to an individual’s psychiatric and metabolic risk. This could transform the 
management of psychiatric-IR multimorbidity, shifting away from trial-and-error 
prescribing towards precision medicine approaches that proactively mitigate/
prevent metabolic complications.

An important factor that must be achieved to fulfil the potential of multimorbidity-
based PGS is that it must account for both ancestral diversity and ethical considerations 
to ensure equitable clinical translation. Current polygenic prediction models are 
largely based on European-ancestry cohorts, limiting their generalizability across 
populations. Genetic findings from this thesis (Chapters 5 to 7) were derived from 
similar datasets, underscoring the need for replication in diverse ancestry groups. 
Given that PGS models underperform in non-European populations (Martin et al., 
2019), future studies should integrate multi-ancestry cohorts, deep phenotyping, 
and prospective validation to ensure that PGS models are robust, generalizable, and 
clinically actionable. Trans-ethnic approaches are essential to prevent disparities in 
risk prediction and to ensure that precision medicine benefits all populations rather 
than disproportionately favouring those of European descent.

Beyond population-specific considerations, the ethical dimensions of PGS 
implementation must also be addressed. Ensuring equitable access to genetic-
based risk assessments, preventing genetic determinism in clinical practice, and 
avoiding socioeconomic disparities in genomic medicine are critical challenges. 
PGS provides a probabilistic rather than deterministic measure of risk, yet 
misinterpretation by clinicians, patients, and policymakers may foster stigmatisation 
or fatalistic attitudes (Martin et al., 2019; Palk et al., 2019). This is particularly 
relevant in psychiatric disorders, where symptom heterogeneity, environmental 
influences, and modifiable lifestyle factors significantly shape disorder trajectories. 
If individuals at high polygenic risk for both psychiatric and metabolic conditions 
perceive their health outcomes as predetermined, they may be less likely to engage 
in preventive health behaviours. Public health strategies should therefore prioritise 
educational initiatives that emphasise the role of modifiable risk factors — 
including diet, physical activity, and stress management — to counteract potential 
misconceptions regarding genetic risk.

A further challenge lies in avoiding the reinforcement of socioeconomic 
disparities in healthcare access. If PGS-based risk stratification and early 
interventions become financially inaccessible to those in lower-resource settings, 
genomic medicine may exacerbate existing health inequities (Martin et al., 2019). 
This is particularly concerning given that psychiatric-IR multimorbidity is shaped by 
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both genetic and socioeconomic factors, including disparities in healthcare access, 
nutrition, and chronic stress exposure. To prevent the emergence of a two-tiered 
healthcare system, policymakers must prioritise the integration of PGS within 
universally accessible healthcare frameworks, ensuring that genomic medicine 
benefits all individuals, rather than being limited to affluent populations.

The challenges in genetically informed risk prediction ultimately reflect a broader 
issue in psychiatric classification: the limitations of current diagnostic categories.

Moving beyond symptom-based diagnoses: the need for biology-
informed clinical subgroups
The new evidence on the genetic overlap between neuropsychiatric and IR-related 
conditions (Chapter 5 to 7), complemented by clinical evidence of a different 
clinical trajectory of psychiatric disorders co-occurring with IR (Chapters 3 and 4), 
suggests that conventional diagnostic classifications, such as those based on 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), may be 
insufficient to fully capture the biological complexity of these disorders. Furthermore, 
unravelling the clinical heterogeneity of some psychiatric disorders, such as MDD and 
schizophrenia, among others, could potentially help optimise their treatment and 
better understand their underlying biological basis (Buch & Liston, 2021).

As discussed in Chapter 1 (section 1.1.1), psychiatric classification systems 
such as the DSM and International Classification of Diseases (ICD) have relied 
on symptom-based criteria, which, while clinically practical, do not map onto 
underlying neurobiological mechanisms. These frameworks have provided an 
essential structure for diagnosis and research, but they fail to account for the 
heterogeneous clinical presentations, high rates of multimorbidity with metabolic 
disorders, and variable treatment responses seen across psychiatric conditions. The 
findings presented in this thesis underscore the potential for a biology-informed 
approach, revealing shared genetic, metabolic, and immune-inflammatory 
pathways that challenge the conventional categorical distinction between 
psychiatric and somatic disorders.

The Research Domain Criteria (RDoC) framework (Insel et al., 2010) represents 
a shift toward redefining psychiatric disorders based on neurobiological 
dimensions rather than traditional diagnostic categories. However, RDoC 
primarily focuses on neural circuit dysfunction, while this thesis highlights the 
important roles of metabolic and immune-inflammatory pathways in psychiatric 
disorder pathophysiology. Future iterations of RDoC or similar frameworks should 
incorporate multi-omics findings, ensuring that psychiatric nosology is not 
limited to neurocircuitry alone but extends to systemic metabolic and immune 
mechanisms. By integrating genetic, transcriptomic, proteomic, and metabolomic 
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data, a revised nosology could help to reduce the artificial boundaries between 
mental and physical health, facilitating a more precise understanding of psychiatric 
disorders and enabling more targeted therapeutic strategies.

Integrating the assessment of somatic and metabolic traits into psychiatric 
practice may provide several advances, both in clinical decision-making and in 
refining disorder classification. Psychiatric symptoms are inherently subjective, 
relying on clinical interviews and self-report measures that are susceptible to 
reporting bias, variability in insight, and heterogeneity in symptom expression. 
In contrast, metabolic traits can be assessed through objective biochemical and 
physiological markers, including fasting glucose, insulin levels, HOMA-IR, lipid 
profiles (triglycerides, high-density lipoproteins [HDL], low-density lipoproteins 
[LDL]). These markers provide quantifiable data that help identify individuals with 
underlying metabolic disturbances that contribute to psychiatric symptomatology. 
Additionally, known intervention strategies for metabolic conditions, such as 
lifestyle modifications and pharmacological treatments targeting IR, could be 
repurposed for specific psychiatric subgroups. Another important consideration 
is that IR-related conditions, such as T2DM, typically develop later in life, whereas 
most psychiatric disorders emerge within early adulthood; this temporal pattern 
suggests that careful metabolic monitoring of individuals with psychiatric 
disorders, particularly those at genetic or clinical risk for metabolic dysfunction, 
could enable earlier intervention (and prevention) strategies aimed at reducing 
long-term morbidity.

If we can achieve a biologically informed classification system, this could facilitate 
the identification of specific psychiatric subtypes, such as immuno-metabolic 
depression, which has been increasingly recognised as a distinct depressive 
phenotype characterised by systemic inflammation, IR, and an increased risk for 
MetS, T2DM, and CVD (Penninx et al., 2025). Immuno-metabolic depression affects 
approximately 20–30% of individuals now diagnosed with depression, and it is 
marked by a combination of atypical depressive symptoms (hypersomnia, fatigue, 
hyperphagia), elevated inflammatory markers (CRP, IL-6, TNF-α), and metabolic 
dysfunction (dyslipidaemia, insulin and leptin resistance) (Penninx et al., 2025). 
Identifying this subgroup is of clinical importance, as it may help refine treatment 
strategies beyond standard antidepressant therapy. Recent randomised controlled 
trials (RCTs) have investigated targeted interventions for immuno-metabolic 
depression, providing mixed but informative findings. The INFLAMED trial is currently 
assessing the efficacy of the COX-2 inhibitor celecoxib as an add-on treatment for 
patients with immuno-metabolic depression features, specifically those with elevated 
CRP, atypical/energy-related symptoms of depression, and metabolic dysregulation, 
with the aim of determining whether targeting inflammation enhances antidepressant 
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response (Zwiep et al., 2023). However, prior trials such as the PREDDICT study, 
which tested celecoxib as an augmentation to the antidepressant vortioxetine and 
attempted to stratify patients based on inflammation levels, failed to demonstrate 
a consistent benefit of anti-inflammatory augmentation, suggesting that CRP alone 
may not be sufficient for identifying those who would benefit from this approach 
(Kavakbasi et al., 2024). These findings highlight the need for refined biomarkers 
that can better predict treatment response to anti-inflammatory interventions. 
Beyond pharmacological approaches, nutritional and metabolic interventions have 
also been explored as potential strategies for immuno-metabolic depression. The 
MooDFOOD trial, a large-scale RCT, investigated whether food-related behavioural 
activation therapy and multi-nutrient supplementation (omega-3 fatty acids and a 
multi-vitamin) could prevent depression onset or alleviate depressive symptoms. 
While primary outcomes showed no significant effect, secondary analyses indicated 
that food-related behavioural interventions may reduce somatic and energy-related 
depressive symptoms, aligning with the immuno-metabolic depression phenotype 
(Thomas-Odenthal et al., 2023). However, multi-nutrient supplementation did not 
demonstrate consistent benefits, and in some cases, participants reported greater 
severity of mood and energy-related symptoms following supplementation, raising 
questions about the appropriateness of generalised dietary interventions in this 
subgroup (Vreijling et al., 2021). These inconsistencies suggest that while dietary 
modifications may play a role in symptom management, nutritional interventions 
should be tailored to well-defined biological subgroups rather than applied as a 
universal strategy. The potential role of light therapy in individuals with immuno-
metabolic depression has also been explored due to its effects on circadian rhythms, 
inflammation, and metabolic pathways. However, the LiDDia trial, which investigated 
the effects of light therapy in patients with immuno-metabolic depression and 
comorbid T2DM, found no significant improvements in atypical depressive symptom 
severity, inflammatory markers, or metabolic biomarkers (Vreijling et al., 2024). 
This suggests that while light therapy is effective for seasonal affective disorder, 
its benefits may not extend to individuals with immune-metabolic depression. 
These inconsistencies in treatment efficacy highlight the need for improved 
biomarker-based stratification, moving beyond CRP alone to incorporate multi-
omics approaches, including genetic, transcriptomic, proteomic, and metabolomic 
profiling. A more comprehensive characterisation of immuno-metabolic depression 
may help delineate the biological mechanisms underlying psychiatric-metabolic 
interactions, allowing for a more precise classification of patients into biologically 
relevant subtypes.

One promising approach to achieve this is multimorbidity-based clustering 
analysis, which integrates genetic and clinical data to identify distinct psychiatric 
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subgroups with varying metabolic and inflammatory profiles. Further supporting 
the heterogeneity in psychiatric-IR interactions, such clustering analyses have 
identified distinct MDD-related subgroups with unique genetic and non-genetic risk 
profiles, some of which exhibit stronger genetic ties to inflammatory and metabolic 
pathways than others (Gezsi et al., 2024). In line with the findings described in 
this thesis, these observations suggest that psychiatric-IR comorbidity is not a 
uniform phenomenon but rather comprises biologically distinct subgroups with 
varying clinical trajectories. This underscores the importance of refining psychiatric 
classification systems by incorporating metabolic and immune-inflammatory 
profiles, alongside genetic risk markers, to better predict disorder course and 
treatment response. However, to translate these biologically defined subgroups 
into clinical practice, a deeper understanding of the molecular pathways driving 
these multimorbid conditions is necessary. Identifying the functional consequences 
of genetic variation and understanding how these interact with environmental 
exposures requires a multi-omics approach, integrating transcriptomics, 
epigenomics, proteomics, and metabolomics. These methodologies can help 
identify convergent biological mechanisms that may serve as therapeutic targets, 
thereby bridging the gap between classification and precision medicine.

Expanding -omics research to identify and validate candidate 
therapeutic targets
The genetic and transcriptomic findings presented in this thesis (Chapters 5 to 7) 
provide a strong foundation for understanding the shared biological mechanisms 
underlying neuropsychiatric disorders and IR-related conditions. However, these 
analyses alone offer only a partial view of the molecular processes contributing 
to disease. A fully integrative multi-omics approach, encompassing genomics, 
epigenomics, transcriptomics, proteomics, and metabolomics, is essential to 
develop a higher resolution understanding of multimorbidity and to further identify 
biologically relevant therapeutic targets. The need for multi-omics integration is 
particularly evident given the heterogeneity in genetic correlations and biological 
pathways identified in Chapters 5 to 7, which suggest that psychiatric-IR 
multimorbidity is influenced by multiple biological processes rather than a single 
common pathway.

A primary goal of future research should be the integration of epigenomic data 
to investigate how genetic risk factors interact with environmental influences to 
shape disorder susceptibility. While this thesis did not directly assess epigenetic 
modifications, results from Chapter 7 indicate that genes associated with psychiatric-
IR multimorbidity exhibit tissue-specific expression patterns in the brain, particularly 
in the cerebellum, frontal cortex (Brodmann Area 9), and the pituitary gland. These 
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findings suggest that genetic risk for multimorbidity may be mediated, at least 
in part, by transcriptional regulation in brain regions relevant to both psychiatric 
symptoms and metabolic function. Given that epigenetic mechanisms such as DNA 
methylation, histone modifications, and non-coding RNA regulation can influence 
gene expression without altering the underlying DNA sequence, future studies should 
explore whether metabolic dysfunction contributes to psychiatric symptoms through 
epigenetic modifications in these tissues. DNA methylation analyses in post-mortem 
brain samples and peripheral tissues (e.g., blood, adipose, liver) from individuals 
with psychiatric-IR multimorbidity could help determine whether specific epigenetic 
changes distinguish individuals who develop multimorbidity from those who do not.

Additionally, single-cell RNA sequencing (scRNA-seq) represents a promising 
approach for clarifying the cellular specificity of genetic risk factors. While the 
transcriptomic analyses presented in Chapter 7 identified significant gene 
expression associations at the tissue level, they do not resolve which specific cell 
types contribute most strongly to multimorbidity risk. Future studies should employ 
scRNA-seq to identify which cell types contribute most strongly to multimorbidity 
risk. For instance, in silico scRNA-seq analyses of publicly available transcriptomic 
datasets from the human brain, peripheral immune cells, and metabolic tissues 
can further refine the understanding of cell-type-specific effects of the identified 
psychiatric-IR multimorbidity risk variants. This approach can clarify whether the 
genetic liability for this multimorbidity is primarily driven by specific neuronal 
or glial subpopulations within the different brain areas, or by systemic immune-
metabolic dysfunction (Zhang et al., 2022).

Beyond single cell transcriptomics, proteomic and metabolomic studies will 
be important for translating genetic risk into biological function and actionable 
therapeutic targets. Psychiatric disorders and metabolic conditions are influenced 
by post-transcriptional modifications, protein-protein interactions, and metabolic 
flux alterations that are not fully captured by gene expression data alone 
(Appelman et al., 2021; Ganapathiraju et al., 2016; Khavari et al., 2024). Mass 
spectrometry-based proteomics in individuals with high genetic risk for psychiatric-
IR multimorbidity could reveal altered protein abundance and signalling networks 
in both central and peripheral tissues. For instance, targeted proteomic analyses 
of serum, cerebrospinal fluid (CSF), and brain tissue could determine whether 
inflammatory markers (e.g., IL-6, TNF-α), insulin-related proteins (e.g., INSR, IGF1R, 
IRS1), or mitochondrial regulators (e.g., oxidative phosphorylation complexes, 
PGC-1α) are disrupted in individuals with multimorbidity. These findings could 
then inform the repurposing of existing metabolic or immunomodulatory drugs to 
restore disrupted pathways.
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Metabolomics offers a complementary approach by characterising the small-
molecule metabolic changes that bridge genetic risk with disorder pathology. Given 
the central role of insulin signalling and lipid metabolism, as well as immune and 
neurotransmitter pathways in psychiatric-IR multimorbidity, future studies should 
employ untargeted and targeted metabolomics to identify circulating metabolic 
signatures predictive of multimorbidity. Key areas of interest include aberrant glucose 
handling, altered lipid profiles, and disruptions in mitochondrial-derived metabolites 
such as lactate, ATP, and ketone bodies. Additionally, longitudinal metabolomic 
profiling could identify early metabolic alterations that precede the onset of 
psychiatric symptoms, offering new opportunities for disorder prevention and early 
intervention. Several studies have demonstrated the potential of metabolomics in 
elucidating the metabolic underpinnings of psychiatric disorders and their association 
with metabolic dysregulation. For instance, a large-scale prospective cohort study 
of over 200,000 individuals demonstrated that elevated glucose and triglyceride 
levels, as well as reduced HDL, were associated with an increased long-term risk of 
depression, anxiety, and stress-related disorders (Chourpiliadis et al., 2024). Notably, 
individuals who later developed psychiatric disorders exhibited persistently higher 
levels of glucose, triglycerides, and total cholesterol for up to 20 years before 
diagnosis. Another study conducted plasma metabolomics analysis in adolescents 
with MDD, BD, and schizophrenia revealing shared and distinct metabolic alterations 
across these conditions (Yin et al., 2024). Alterations in fatty acid, steroid hormone, 
purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism 
were common across all three disorders, while schizophrenia exhibited unique 
disturbances in glycolysis, glycerophospholipid, and sphingolipid metabolism. BD 
and MDD shared alterations in lysine, cysteine, and methionine metabolism, while 
BD and SCZ overlapped in disruptions of phenylalanine, tyrosine, and aspartate 
metabolism (Yin et al., 2024). These findings highlight the potential of metabolomics 
in distinguishing psychiatric subtypes and suggest that metabolic dysfunction in 
psychiatric disorders is heterogeneous rather than uniform. Further supporting 
the link between metabolic alterations and specific psychiatric symptom profiles, 
another metabolomics study in individuals with depression identified a distinct 
metabolic signature associated with atypical depressive symptoms, particularly those 
characterised by atypical symptoms, such as hypersomnia, hyperphagia, and weight 
gain (de Kluiver et al., 2023). This atypical/energy-related symptom profile was linked 
to elevated glycoprotein acetyls, isoleucine, very-low-density lipoprotein (VLDL) 
cholesterol, and saturated fatty acid levels, alongside reduced HDL cholesterol. 
Importantly, these metabolomic alterations closely resemble those observed in 
cardiometabolic conditions, further reinforcing the shared biological pathways 
between metabolic dysfunction and specific psychiatric phenotypes.
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A major advantage of multi-omics integration is its ability to prioritise 
therapeutic targets with higher translational relevance. By integrating genomics, 
transcriptomics, proteomics, and metabolomics, researchers can prioritise targets 
that demonstrate convergent evidence across multiple biological layers. For 
instance, if a gene associated with multimorbidity shows genome-wide significance 
in GWAS, altered expression in brain transcriptomics, differential protein abundance 
in CSF, and metabolic dysregulation in patient-derived samples, it becomes a strong 
candidate for therapeutic targeting. In AD research, a deep learning framework 
called NETTAG (network topology-based deep learning framework to identify 
disease-associated genes) was developed to integrate GWAS with other -omics data. 
This integration led to the identification of gemfibrozil, an existing lipid-regulating 
drug, as a potential therapeutic agent for AD. Clinical data analysis revealed 
that gemfibrozil use was associated with a 43% reduced risk of AD compared to 
simvastatin, highlighting the power of multi-omics approaches in drug repurposing 
efforts (Xu et al., 2022). Similarly, in migraine research, a study combining GWAS 
with eQTL and proteomics data identified GSTM4 as a potential druggable gene. 
This multi-omics integration provided a comprehensive understanding of GSTM4’s 
role in migraine pathophysiology, suggesting it as a promising therapeutic target 
(Sun et al., 2024). This multi-omics prioritisation framework could reduce the failure 
rate of drug discovery efforts by ensuring that candidate targets have robust 
biological support (Kim et al., 2023; Ramos et al., 2018).

Functional validation of genetic findings of my work (Chapters 6 and 7) will 
also be indispensable for bridging the gap between association studies and 
clinical application. Identifying genetic variants associated with psychiatric-
IR multimorbidity is only the first step; their biological significance must be 
confirmed through experimental models. A central focus should be placed on key 
candidate genes and pathways identified through genomic SEM, T-SEM, and gene-
set enrichment analyses. Genes such as INSR, MST1R, MAPK3, and BDNF, among 
many others, emerged as significant contributors to the shared genetic risk for 
psychiatric-IR multimorbidity. Each of these genes plays a role in insulin signalling, 
immune function, and neuroplasticity, but their precise mechanistic contributions 
to the multimorbidity remain to be elucidated. Functional validation should begin 
with cell-based studies using CRISPR-Cas9 gene editing, iPSC-derived neurons 
and astrocytes, and high-throughput functional genomics screening. CRISPR-
Cas9 approaches offer a direct means of assessing the biological consequences 
of disorder-associated variants (Kim et al., 2024). Future studies should use 
CRISPR knockout and CRISPR activation techniques to manipulate genes such as 
INSR and MAPK3 in relevant cell models, including neuronal, glial, and pancreatic 
β-cell lineages. For example, knocking out INSR in neuronal cultures could provide 
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additional insights into how insulin receptor dysfunction contributes to synaptic 
impairments, neurotransmitter alterations, and metabolic stress responses. 
Similarly, CRISPR activation of MST1R in microglia could help clarify its role in 
neuroinflammation and whether its upregulation in psychiatric-IR multimorbidity 
reflects a compensatory or pathological mechanism. Such studies would establish 
whether genetic variants influence psychiatric-IR multimorbidity via direct cellular 
effects or through broader immune-metabolic interactions.

Complementary approaches using induced pluripotent stem cell (iPSC)-derived 
neurons, astrocytes, and microglia are also relevant for examining cell-type-specific 
effects of risk variants (Cerneckis et al., 2024). Findings from Chapter 7 demonstrated 
that several genes implicated in psychiatric-IR multimorbidity exhibit tissue-specific 
expression in the brain, particularly in the cerebellum, cortex (including Brodmann 
Area 9), and the pituitary gland. Moreover, colocalisation analyses in Chapter 6 
identified putative causal variants shared between schizophrenia, MetS, and type 
2 diabetes in regions containing immune-related genes. However, these results 
do not establish a direct mechanistic link between these genes and psychiatric-IR 
multimorbidity but rather highlight regions of interest for further investigation. 
For instance, iPSC-derived astrocytes from individuals carrying high-risk alleles in 
BDNF and MAPK3, among the top genes identified in Chapter 7, could be analysed 
for altered metabolic and inflammatory responses, providing insights into how 
metabolic dysfunction and psychiatric symptoms co-evolve. While specific studies 
on these alleles are limited, research has shown that iPSC-derived astrocytes can 
model disease-specific neuroinflammatory and metabolic alterations. For example, 
astrocytes derived from iPSCs of patients with multiple sclerosis exhibit increased 
mitochondrial fission, elevated production of superoxide, and enhanced release 
of proinflammatory chemokines, reflecting a proinflammatory state (Ghirotto et 
al., 2022). Therefore, employing iPSC-derived models of neurons, astrocytes, and 
microglia may offer a promising avenue to dissect the cell-type-specific effects of 
genetic risk variants implicated in psychiatric-IR multimorbidity.

Moving beyond in vitro studies, animal models incorporating human disorder-
associated genetic variants can be used for better understanding how the 
identified genes in Chapters 6 and 7 influence behavioural, cognitive, and 
metabolic phenotypes. The creation of mouse models harbouring psychiatric-
IR multimorbidity risk alleles could allow researchers to investigate disorder 
mechanisms in a physiologically relevant context. For example, MST1R (Macrophage 
Stimulating 1 Receptor/RON receptor; among the top up-regulated genes 
associated with the psychiatric-IR multimorbidity factor in Chapter 7) knock-in 
mice could be used to assess the impact of immune-inflammatory activation on 
insulin sensitivity, neuronal excitability, and depressive-like behaviours. Studies 
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have shown that mice lacking RON receptor signalling exhibit reduced obesity-
related pathologies, including improved glucose tolerance and insulin sensitivity, 
when subjected to a high-fat diet (Stuart et al., 2015). Similarly, mice with INSR 
deletions specifically in the brain have been employed to elucidate how central 
insulin resistance contributes to neuropsychiatric and metabolic disturbances. 
Neuronal-specific INSR knockout mice display age-dependent anxiety and 
depressive-like behaviours, accompanied by mitochondrial dysfunction and altered 
dopamine turnover in the mesolimbic system (Kleinridders et al., 2015).

In summary, while this thesis has identified genetic and transcriptomic 
associations to psychiatric-IR multimorbidity, functional validation remains a 
required next step for establishing causal mechanisms.

Bridging the gap between genetic insights and precision medicine
The findings presented in Chapters 6 and 7 indicate that psychiatric and IR-
related conditions share fundamental biological pathways, including immune-
inflammatory signalling, IR, mitochondrial dysfunction, and lipid metabolism. 
Chapter 6 identified specific genomic regions where psychiatric and IR-related 
conditions exhibit local genetic correlations, implicating genes involved in immune 
regulation, lipid metabolism, and insulin signalling. Notably, genes such as HLA-
DRB1, C4A, FLOT1, and STX1A, which were mapped within these regions, are targets 
of existing pharmacological agents, including immunosuppressants, statins, and 
certain psychotropic drugs. These findings suggest that existing pharmacological 
interventions targeting metabolic and immune-inflammatory pathways could 
be repurposed to improve psychiatric outcomes, particularly in TRD and other 
psychiatric symptoms (e.g., cognitive impairments, anhedonia, negative symptoms) 
that are poorly responsive to current psychotropic therapies.

Despite these insights, a major challenge remains identifying which patients 
would benefit most from such metabolic-targeted interventions. Multi-omics 
approaches integrating genetic, transcriptomic, proteomic, and metabolomic data 
could refine patient stratification and treatment response prediction. For instance, 
combining inflammatory and metabolic markers with PGSs may improve the 
identification of patients who are most likely to benefit from metabolic-targeted 
therapies (e.g., GLP-1RAs, metformin, statins). A precision psychiatry framework 
that aligns pharmacological interventions with genetic and metabolic risk profiles 
could move treatment selection beyond symptom-based classifications, allowing a 
more personalised approach.

As previously discussed (Chapter 8, section 8.3.2), CRP alone is an insufficient 
biomarker for predicting response to anti-inflammatory therapies, as demonstrated 
by mixed findings from RCTs such as the PREDDICT trial. However, biomarker-driven 
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RCTs have been proposed in personalised medicine to refine treatment selection 
(Park, 2022). These trials utilise biomarkers to select or stratify patients, aiming 
to predict which individuals are more likely to respond to specific interventions. 
Although such biomarker-stratified RCTs are common in other medical fields such 
oncology (LoRusso & Freidlin, 2023), their application in psychiatry is still emerging 
(Kavakbasi et al., 2024). Large-scale clinical trials should prioritise this approach, 
while evaluating whether immune- and insulin-targeting drugs may not only 
ameliorate psychiatric symptoms but also mitigate cognitive, compulsive, and 
reward-related symptoms, among others, in metabolically vulnerable individuals.

One of the most promising future directions involves therapies that simultaneously 
target psychiatric and metabolic pathways. Given that antidepressants, antipsychotics, 
and mood stabilisers frequently induce metabolic side effects (Himmerich et al., 2015), 
an integrated pharmacological approach is necessary to mitigate these effects while 
preserving psychiatric efficacy. Several combination strategies should be prioritised 
for clinical evaluation. For example, co-administration of metformin with SSRIs or 
SNRIs may enhance antidepressant response while reducing metabolic burden. 
Similarly, pairing GLP-1RAs with atypical antipsychotics may counteract weight gain 
and IR while improving cognitive outcomes (Horska et al., 2022). Preclinical and 
clinical studies should systematically test whether metabolically protective drugs 
enhance the efficacy of psychiatric treatments, particularly in individuals showing 
treatment resistance or metabolic comorbidities.

As suggested in Chapter 3, insulin-sensitising agents such as metformin and GLP-
1RAs have emerged as promising therapeutic candidates in psychiatric populations. 
Metformin has been extensively studied for its effects on glucose metabolism and 
mitochondrial function, but accumulating evidence suggests it also modulates 
neuroinflammatory pathways and enhances synaptic plasticity, processes directly 
implicated in psychiatric disorders (Cao et al., 2022). In preclinical and clinical 
studies, metformin has demonstrated efficacy in improving cognitive function, 
depressive symptoms, and antipsychotic-induced weight gain, suggesting that 
its therapeutic benefits extend beyond metabolic regulation (Dodd et al., 2022).  
GLP-1RAs (e.g., liraglutide, semaglutide) represent another promising class of 
metabolic-based interventions for psychiatric disorders. These drugs exert anti-
inflammatory, neuroprotective, and appetite-regulating effects by modulating 
insulin signalling in both central and peripheral tissues. Preclinical studies suggest 
that GLP-1RAs improve synaptic function, reduce neuroinflammation, and enhance 
neurogenesis in the hippocampus (Au et al., 2025; Detka & Glombik, 2021; Diz-
Chaves et al., 2022), processes that are disrupted in MDD and BD. Emerging 
clinical trials indicate that GLP-1RAs reduce anhedonia, cognitive deficits, and 
inflammation-associated depressive symptoms in patients with metabolic 
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dysfunction (Badulescu et al., 2024; Tempia Valenta et al., 2024). Given the evidence 
from this thesis linking IR to poorer treatment response and cognitive dysfunction 
in depression, future studies should investigate whether GLP-1RAs can improve 
psychiatric outcomes even in patients without overt metabolic disease by targeting 
central insulin signalling pathways.

Beyond pharmacological interventions, lifestyle-based therapies should be 
systematically integrated into psychiatric treatment protocols to address the metabolic 
burden of psychiatric disorders. Evidence suggests that dietary interventions, 
including the Mediterranean diet, ketogenic diet, and intermittent fasting, confer 
antidepressant and cognitive benefits by modulating neuroinflammation, insulin 
sensitivity, and neurotransmitter metabolism (Al Shamsi et al., 2024; Devranis 
et al., 2023; Gudden et al., 2021). Other specific dietary interventions have been 
investigated for their potential role in modulating neuroinflammation and cognitive 
function. A cohort study found that higher nut consumption (≥3 servings per 
week) was associated with a smaller decline in general cognitive performance over  
two years in older adults at risk of cognitive decline (Ni et al., 2023). Nuts are rich in 
unsaturated fatty acids, antioxidants, and anti-inflammatory compounds, which may 
attenuate neuroinflammation and metabolic dysregulation, making them a potential 
dietary adjunct for psychiatric-IR multimorbidity. Similarly, structured exercise 
programmes have been shown to enhance hippocampal plasticity and improve 
insulin sensitivity, making them promising adjuncts for psychiatric-IR multimorbidity 
(Patten et al., 2015). However, implementing these lifestyle interventions presents 
significant challenges, particularly for individuals with psychiatric conditions like 
ADHD, where executive dysfunction, impulsivity, and attentional deficits can impair 
adherence to structured exercise regimens. Clinical experience indicates that 
ADHD patients often struggle with time management, maintaining motivation, and 
sustaining physical activity habits—barriers that are consistent with research findings 
showing that, while exercise can improve ADHD symptoms, long-term adherence 
remains difficult (Ogrodnik et al., 2023). Given these obstacles, future studies should 
investigate whether combining pharmacological and lifestyle-based interventions 
enhances treatment response in psychiatric populations, particularly those with high 
genetic risk for psychiatric-IR multimorbidity.

A major challenge in translating these insights into clinical practice is the limited 
implementation of precision medicine approaches in psychiatry. Future clinical 
trials should prioritise biomarker-driven patient stratification to optimise treatment 
selection based on genetic, inflammatory, and metabolic risk markers. A multi-
omics approach could enable the early identification of psychiatric subgroups 
who are most likely to benefit from metabolic-based interventions, ensuring more 
targeted and individualised treatment strategies.
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Advancing an interdisciplinary, equitable, and inclusive framework 
for future research
A broader vision for future research on psychiatric-IR multimorbidity must involve 
interdisciplinary collaboration that brings together genetics/genomics experts, 
psychiatrists, endocrinologists, neuroscientists, nutritionists, and data scientists. 
The multifactorial nature of these conditions necessitates collaboration between 
different biomedical fields to unravel the shared biological mechanisms underlying 
these disorders and translate findings into effective, personalised interventions. 
Large-scale consortia have successfully implemented such interdisciplinary 
frameworks, as exemplified by the PRIME (Prevention and Remediation of Insulin 
Multimorbidity in Europe) consortium (https://prime-study.eu). PRIME has brought 
together genetic, epidemiological, and clinical data to investigate the role of 
IR in psychiatric disorders and develop personalised treatment approaches 
by integrating multi-omics data, real-world clinical evidence, and patient-
centred research. The consortium has also emphasised patient-centred research, 
incorporating the perspectives of individuals with lived experiences to align 
research priorities with patient needs.

A critical step toward implementing precision psychiatry involves the 
development of decision support systems that integrate genetic, clinical, and 
lifestyle data. These systems could refine risk prediction models and optimise 
treatment selection, improving both efficacy and patient satisfaction. Collaborative 
care models that bring together psychiatrists, endocrinologists, and primary care 
providers will further ensure that patients receive comprehensive care addressing 
both psychiatric and metabolic health.

Ensuring equity in research and clinical practice is both a scientific and ethical 
priority. Expanding recruitment efforts to include underrepresented communities 
and adapting research methodologies to account for cultural and contextual 
differences will enhance the relevance and applicability of findings. Moreover, 
developing scalable and adaptable interventions for diverse healthcare settings 
will help ensure that the benefits of precision psychiatry reach all populations, 
regardless of socioeconomic or geographic barriers.

Overall conclusions

This thesis provides a comprehensive investigation into the genetic, biological, 
and clinical links between neuropsychiatric disorders and IR-related conditions, 
offering new insights into their shared aaetiology, pathophysiological mechanisms, 
and clinical implications. Through a multidimensional approach integrating large-
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scale genetic analyses, transcriptomic profiling, and clinical epidemiology, this 
work challenges traditional compartmentalised views of psychiatric and IR-related 
somatic conditions, underscoring their shared genetics and biological mechanisms.

A key contribution of my work is the demonstration that psychiatric-IR 
multimorbidity is not a coincidental overlap of independent disorders but rather a 
manifestation of shared genetic liability. The identification of a latent multimorbidity 
factor via genomic SEM and the detection of local genetic correlations between 
psychiatric and IR-related conditions provide clear indications for potential common 
underlying biological pathways. These findings redefine the conceptual boundaries 
between psychiatric and IR-related conditions, supporting the potential usefulness 
of a biologically informed, rather than purely symptom-based, classification system. 
Furthermore, this thesis highlights the role of insulin signalling and immune-
related processes as possible fundamental axes of shared pathology, with potential 
implications for guiding novel interventions. It also illustrates how large datasets 
(e.g., UK Biobank, GWAS summary statistics) and advanced computational tools 
(e.g., LDSC, LAVA, genomic SEM, and T-SEM) may be leveraged for dissecting 
complex multimorbidity patterns, emphasising the importance of refining statistical 
approaches to capture biologically meaningful genetic overlap.

From a clinical point of view, this thesis establishes that metabolic dysfunction 
is not merely a secondary consequence of psychiatric illness or psychotropic 
treatment but can be a fundamental modifier of disorder trajectories. Findings 
from Chapters 2 to 4 indicate that IR-related conditions predict poorer psychiatric 
outcomes, including increased risk for treatment resistance, greater cognitive 
impairment, and heightened chronicity. This underscores the need for integrated 
clinical management strategies that simultaneously address both psychiatric and 
metabolic dysfunction, moving beyond conventional siloed treatment approaches.

The findings described in this thesis support the need for metabolic risk 
screening in psychiatric practice, particularly in individuals presenting with 
systemic inflammation or other early markers of metabolic dysfunction. Given the 
observed genetic overlap between psychiatric and IR-related conditions, future 
research should explore whether PGSs can contribute to risk stratification. However, 
given the current limitations of PGSs in clinical psychiatry, their direct application 
remains uncertain. Rather than advocating for immediate implementation, this 
thesis underscores the importance of validating multimorbidity-based genetic risk 
models in large, diverse clinical cohorts before they can be integrated into routine 
care. If proven robust, such tools could eventually aid in personalised treatment 
selection, guiding clinicians toward metabolically neutral psychotropic agents, 
adjunctive metabolic interventions, or anti-inflammatory strategies tailored to an 
individual’s broader health risk profile.
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From a methodological perspective, my work advances the field by leveraging 
state-of-the-art genomic and transcriptomic approaches to dissect psychiatric-IR 
multimorbidity. The application of LAVA, Genomic and transcriptome-wide SEM, 
and cross-trait gene-set enrichment analyses enables a fine-grained dissection 
of shared mechanisms. These results highlight the power of tissue-specific and 
pathway-based analyses in uncovering potential targetable biological processes 
that bridge psychiatric and metabolic dysfunction. On the genetic and molecular 
front, the findings spotlight both positive and negative genetic correlations 
between neuropsychiatric and IR-related conditions, identifying candidate genes 
and pathways for pharmacological intervention and future functional validation. 
They also provide potential clinical correlates among patients who exhibit both 
psychiatric and IR conditions, suggesting the possible utility of insulin-related 
biomarkers for tailoring interventions.

While this work makes significant strides in elucidating psychiatric-IR 
bidirectional links, it also highlights several key areas for future research. First, 
the causal pathways linking IR, inflammation, and psychiatric symptoms remain 
incompletely understood. Future research should employ multivariate MR and 
experimental validation (e.g., CRISPR gene-editing, patient-derived iPSC models) to 
dissect the mechanistic role of insulin signalling in psychiatric disorders. Second, 
the integration of multi-omics approaches—including metabolomics, proteomics, 
and epigenomics—will be important for capturing the dynamic interplay between 
genetic risk and environmental exposures. Third, translating these findings into 
clinical interventions requires rigorous, large-scale RCTs testing metabolic-
targeting therapies in psychiatric populations.

In conclusion, my work makes significant contributions to the understanding of 
psychiatric-IR multimorbidity, linking genetic, biological, and clinical perspectives 
to advance scientific knowledge and clinical practice. By emphasising the 
importance of shared genetic and biological mechanisms, integrated care models, 
and biologically informed diagnostics, it lays the groundwork for a new era of 
precision, metabolic psychiatry. Future research must now focus on translating 
these discoveries into clinical applications, ensuring that emerging genomic 
and metabolic insights inform efforts to improve outcomes for individuals with 
psychiatric disorders.
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English summary

Psychiatric disorders are prevalent mental health conditions that frequently co-
occur with insulin resistance (IR)-related somatic conditions, like obesity, type 2 
diabetes mellitus (T2DM), and metabolic syndrome (MetS). Although lifestyle factors 
and pharmacotherapeutic side effects have long been posited as the principal 
mechanisms underlying such multimorbidity, accumulating evidence indicates that 
intrinsic dysregulation of insulin signalling in the central nervous system may also 
play a role. The overarching aim of this thesis is to clarify how IR-related metabolic 
conditions intersect with psychiatric disorders from both clinical and genetic 
standpoints. By integrating epidemiological research, primary care data, and large-
scale genomic analyses, this work uncovers how IR-related conditions shape clinical 
trajectories of psychiatric disorders and share essential molecular mechanisms with 
them. Two central parts delineate this effort, beginning with in-depth clinical and 
phenotypic perspectives on psychiatric-IR multimorbidity (Part I) and advancing to 
its underlying genetic architecture and molecular mechanisms (Part II).

PART I: Clinical and phenotypic interfaces of psychiatric–insulin 
resistance multimorbidity (Chapters 2–4)
Part I provides a clinical and phenotypic framework for understanding how IR 
adversely influences cognitive function, risk for mood disorders, and treatment 
outcomes in depression. Chapter 2 systematically reviews empirical findings 
from the UK Biobank, focusing on the relationship between IR-related conditions 
and cognition. A pronounced negative impact on multiple cognitive domains—
including reasoning ability and processing speed—emerges among individuals 
with IR-related conditions, suggesting that IR might exacerbate cognitive 
deficits commonly associated with psychiatric disorders. Chapter 3 evaluates 
the bidirectional link between T2DM and mood disorders, integrating both 
evidence from longitudinal studies and Mendelian randomisation analyses. The 
results demonstrate that T2DM confers a more severe depressive course, whereas 
mood disorders in turn accelerate cardiovascular and metabolic complications 
in T2DM, likely through inflammatory and hypothalamic–pituitary–adrenal axis 
dysregulation. Chapter 4 leverages primary care records from the UK Biobank to 
address how concurrent IR conditions influence the clinical profile, antidepressant 
treatment response, and overall management of depression. Participants with IR-
related comorbidities exhibit delayed improvement under antidepressants and 
require more complex pharmacological regimens, underscoring that metabolic 
disturbances not only potentiate morbidity but also hinder therapeutic success.
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PART II: Genetic architecture and molecular mechanisms of 
psychiatric–insulin resistance multimorbidity (Chapters 5–7)
Part II shifts toward the genetic and molecular dimensions of psychiatric–IR 
multimorbidity, employing state-of-the-art genomic approaches to pinpoint shared 
biological pathways. Chapter 5 investigates genome-wide association studies 
(GWAS) to explore genetic correlations between psychiatric disorders and IR-
related conditions. These analyses reveal a spectrum of genetic relationships, with 
some disorders—such as major depressive disorder and ADHD—exhibiting positive 
genetic correlations with IR conditions and traits, while others, including anorexia 
nervosa and obsessive-compulsive disorder, demonstrate negative correlations. 
Chapter 6 further dissects these relationships through local genetic correlation 
analyses across semi-independent genomic regions, highlighting specific loci with 
pleiotropic effects. Even in the absence of global genetic correlations for some 
disorders (e.g., bipolar disorder or Alzheimer’s disease), shared regions implicate 
biological pathways related to immune-inflammatory responses, insulin receptor 
recycling, and lipid metabolism. Chapter 7 synthesises this understanding through 
genomic and transcriptome-wide structural equation modelling, uncovering a 
latent multimorbidity factor capturing shared genetic liability across psychiatric and 
IR-related phenotypes. This factor implicates pathways related to insulin binding, 
Notch signalling, and immune-inflammatory regulation, with tissue-specific gene 
expression analyses highlighting roles for the cerebellum, cortex, and pituitary 
gland. These findings point toward early neurodevelopmental and endocrine 
mechanisms underlying the observed multimorbidity. Drug repurposing analyses 
identify potential therapeutic candidates, including memantine and rosiglitazone, 
which target intersecting neuroprotective, metabolic, and immune mechanisms.

Conclusion

The collective results from Chapters 2–7 clarify that IR-related conditions 
substantially worsen psychiatric outcomes, including poorer cognition, heightened 
symptom severity, and suboptimal treatment response. Beyond clinical implications, 
genomic analyses confirm that psychiatric disorders and somatic insulinopathies 
converge on shared loci and pathways—including insulin signalling, immune 
responses, and vesicle-mediated synaptic regulation—highlighting a convergence 
that was not fully appreciated through earlier, single-phenotype approaches. These 
findings endorse the view that certain neuropsychiatric disorders can be fruitfully 
reconceptualised as “insulinopathies of the brain”, where potentially central 
insulin signalling deficits amplify risk or severity. The perspective that metabolic 
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and psychiatric pathologies are mutually reinforcing, with a partial common 
genomic basis, stimulates new strategies for prevention and care. Interventions 
targeting both metabolic health and psychiatric stability—ranging from lifestyle 
modifications to immunomodulatory and insulin-sensitising agents—appear 
promising. Future investigations should verify these candidate pathways through 
experimental models, expand sampling to multi-ethnic cohorts, and systematically 
evaluate drug repurposing options. Ultimately, this thesis contributes a cohesive 
framework for understanding and mitigating the burden of psychiatric–IR 
multimorbidity in the era of precision medicine.
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Nederlandse samenvatting (Dutch summary)

Psychiatrische aandoeningen zijn veelvoorkomende stoornissen die vaak gepaard 
gaan met somatische aandoeningen die verband houden met insulineresistentie 
(IR), zoals obesitas, type 2 diabetes mellitus (T2DM) en het metabool syndroom 
(MetS). Hoewel leefstijlfactoren en bijwerkingen van psychofarmacologische 
behandellingen lange tijd als de voornaamste verklaring voor deze multimorbiditeit 
werden beschouwd, wijst toenemend bewijs erop dat intrinsieke ontregeling van 
de insulinesignalering in het centrale zenuwstelsel hier wellicht ook een rol in kan 
spelen. Het overkoepelende doel van dit proefschrift is om de klinische en genetische 
samenhang tussen IR-gerelateerde metabole aandoeningen en psychiatrische 
aandoeningen te verduidelijken. Door epidemiologisch onderzoek, gegevens uit 
de eerstelijnszorg en grootschalige genetische analyses te combineren, draagt 
dit werk bij aan onze kennis over hoe IR-gerelateerde aandoeningen de klinische 
trajecten van psychiatrische stoornissen beïnvloeden, en essentiële moleculaire 
mechanismen met hen delen. Dit proefschrift is opgedeeld in twee delen: het 
eerste deel richt zich op de klinische en fenotypische dimensies van psychiatrische 
en IR-gerelateerde multimorbiditeit (Deel I), terwijl het tweede deel zich richt op 
de onderliggende genetische architectuur en moleculaire mechanismen (Deel II).

DEEL I: Klinische en fenotypische dimensies van psychiatrische en 
insulineresistentie multimorbiditeit (Hoofdstukken 2–4)
Deel I biedt een klinisch en fenotypisch kader voor het begrijpen van de invloed van 
IR op cognitieve functies, risico op stemmingsstoornissen en behandeluitkomsten bij 
depressie. Hoofdstuk 2 geeft een systematisch overzicht van empirische bevindingen 
in de UK Biobank en onderzoekt de relatie tussen IR-gerelateerde aandoeningen 
en cognitie. Personen met IR-gerelateerde aandoeningen vertonen minder goede 
prestaties in verschillende cognitieve domeinen, waaronder redeneervermogen 
en verwerkingssnelheid, wat suggereert dat IR cognitieve problemen, zoals vaak 
waargenomen bij psychiatrische stoornissen, kan verergeren. Hoofdstuk 3 evalueert 
de bidirectionele relatie tussen T2DM en stemmingsstoornissen, waarbij zowel 
longitudinale studies als Mendeliaanse randomisatie analyses worden geïntegreerd. De 
resultaten tonen aan dat T2DM gepaard gaat met een ernstiger beloop van depressie, 
terwijl stemmingsstoornissen op hun beurt het risico op cardiovasculaire en metabole 
complicaties bij T2DM verergeren, waarschijnlijk door ontregeling van inflammatie 
mechanismen en de hypothalamus-hypofyse-bijnier (HPA)-as. Hoofdstuk 4 maakt 
gebruik van eerstelijnszorggegevens uit het UK Biobank project om te onderzoeken 
hoe gelijktijdige IR-aandoeningen de klinische kenmerken, antidepressieve 
behandelrespons en de algemene controle over depressie beïnvloeden. Personen met 
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IR-gerelateerde comorbiditeiten vertonen een vertraagde respons op antidepressiva 
en vereisen complexere farmacologische behandellingen, wat aantoont dat 
metabole ontregeling niet alleen de ziektelast verhoogt, maar ook de effectiviteit van 
behandellingen ondermijnt.

DEEL II: Genetische architectuur en moleculaire mechanismen 
van psychiatrische en insulineresistentie multimorbiditeit 
(Hoofdstukken 5–7)
Deel II richt zich op de genetische en moleculaire dimensies van psychiatrische en 
IR-gerelateerde multimorbiditeit en maakt gebruik van geavanceerde genetische 
methodologieën om gedeelde biologische mechanismen te identificeren.  
Hoofdstuk 5 gebruikt genome-wide associatie studies (GWAS) om genetische 
correlaties tussen psychiatrische stoornissen en IR-gerelateerde aandoeningen in 
kaart te brengen. Deze analyses onthullen een spectrum aan genetische relaties, 
waarbij sommige stoornissen – zoals depressie en ADHD – positieve genetische 
correlaties met IR-gerelateerde aandoeningen en kenmerken vertonen, terwijl 
andere, zoals anorexia nervosa en obsessieve-compulsieve stoornis, negatieve 
correlaties laten zien. Hoofdstuk 6 gaat dieper in op deze relaties via lokale genetische 
correlatieanalyses in semi-onafhankelijke genetische regio’s en identificeert specifieke 
loci met pleiotrope effecten. Zelfs in afwezigheid van globale genetische correlaties 
voor sommige aandoeningen (bijv. bipolaire stoornis of de ziekte van Alzheimer), 
wijzen gedeelde genetische regio’s op biologische mechanismen die verband houden 
met ontsteking, insuline-receptor recycling en vetmetabolisme.

Hoofdstuk 7 integreert deze inzichten met behulp van genetische en 
transcriptoom-brede analyses en modellen, wat leidt tot de identificatie van een 
genetische latente multimorbiditeitsfactor die gedeelde genetische kwetsbaarheid 
over psychiatrische en IR-gerelateerde fenotypes weergeeft. Deze factor omvat 
onder andere genen die verband houden met insuline binding, Notch-signalering 
en ontsteking, met specifieke genexpressiepatronen in de kleine hersenen, cortex 
en hypofyse. Deze bevindingen suggereren dat vroege hersenontwikkeling en 
endocriene processen mogelijk bijdragen aan de waargenomen multimorbiditeit. 
Daarnaast wordt via mogelijke medicatie herbestemming-analyses een reeks 
potentiële therapeutische kandidaten geïdentificeerd, waaronder memantine en 
rosiglitazon, die mogelike neuroprotectieve, metabole en immuunmodulerende 
werkingsmechanismen kunnen combineren.
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Conclusie

De bevindingen uit de hoofdstukken 2–7 verduidelijken dat IR-gerelateerde 
aandoeningen een negatieve invloed hebben op psychiatrische uitkomsten, 
waaronder verminderde cognitieve functies, ernstigere symptomen en een 
suboptimale behandelrespons. Naast deze klinische implicaties bevestigen genetische 
analyses dat psychiatrische stoornissen en somatische insulinepathologieën 
overlappen op gedeelde genetische loci en biologische mechanismen – waaronder 
insulinesignalering, ontstekingsregulatie en synaptische transportprocessen – wat 
een diepere mate van convergentie onthult dan eerdere benaderingen gebaseerd op 
een enkel psychiatrisch fenotype konden aantonen.

Deze resultaten ondersteunen de hypothese dat bepaalde psychiatrische 
aandoeningen kunnen worden heroverwogen als ‘insulinopathieën van de 
hersenen’, waarbij mogelijk centrale insulineontregeling het risico of de ernst 
van de aandoening vergroot. Dit onderstreept dat psychiatrische en metabole 
aandoeningen elkaar wederzijds beïnvloeden en deels een gemeenschappelijke 
genetische basis delen. Deze inzichten vormen een stimulans voor de ontwikkeling 
van geïntegreerde behandelstrategieën die zowel de metabole als psychiatrische 
gezondheid verbeteren.

Preventieve en therapeutische benaderingen die metabole stabiliteit en psychiatrisch 
welzijn bevorderen – variërend van leefstijlinterventies tot immunmodulerende 
en insuline-sensibiliserende behandellingen – lijken veelbelovend. Toekomstig 
onderzoek dient deze kandidaat-mechanismen verder te valideren via experimentele 
modellen, de populaties uit te breiden naar multi-etnische cohorten en systematisch 
de mogelijkheden voor medicatie herpositionering te evalueren. Dit proefschrift 
biedt een coherente structuur voor het begrijpen van psychiatrische en –IR-
gerelateerde multimorbiditeit en draagt bij aan de ontwikkeling van gepersonalieerde 
behandellingen in de psychiatrie.
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Description of research data management

ETHICS and PRIVACY

1. Type of research
☒	� Medical-scientific research with human participants not subject to Medical 

Research Involving Human Subjects Act (non-WMO)

☒	 Medical-scientific research without human participants

2. Evaluation of research by medical ethics board (applicable to Chapter 4 only)
	� Chapter 4: Evaluated by: North West Multi-centre Research Ethics 

Committee (MREC); Approval number: 11/NW/0382; Approval date: initially 
granted in 2011, renewed in 2016 and 2021

	� Chapters 5, 6, and 7: Analysis of secondary data (genome-wide 
association study summary statistics) that does not involve individual-
level human participation

3. Privacy of participants
☒	 Data were pseudonymised (for Chapter 4 using UK Biobank data)

•	 	Pseudonymisation tool: UK Biobank’s Research Analysis Platform
•	 Methodology: Randomised unique identifiers (EIDs) assigned to 

participants and distinct for each access application
•	 Key file storage: Managed by UK Biobank, inaccessible to researchers

☒	 Data were anonymised (for GWAS summary statistics in Chapters 5-7)

DATA COLLECTION and STORAGE

4. Data Reuse 
☒	 My research reuses existing data sources

•	 Chapter 4: UK Biobank primary care records
•	 Chapter 5, 6, and 7: Summary statistics from publicly available GWAS 

on psychiatric disorders and IR-related conditions
•	 Sources: GWAS Catalog, UK Biobank, Psychiatric Genomics Consortium 

(PGC), Diabetes Genetics Replication and Meta-analysis Consortium 
(DIAGRAM), Gene Identification for ANthropometric Traits (GIANT), 
Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)
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5. Data collection and analysis
☒	� Extraction from (electronic) health records (UK Biobank primary care 

records; Chapter 4)
☒	 R-scripts (statistical analyses in all chapters)
☒	 Excel (data handling and variable preparation for analyses in Chapter 4)
☒	� GWAS summary statistics (genetic correlation and multi-omics analyses in 

Chapters 5-7)
☒	� Other statistical tools: LDSC, GNOVA, LAVA, FUMA, coloc/SuSiE, SNPNexus, 

genomic SEM, T-SEM, MAGMA, PharmOmics

Remarks:
Data in Chapter 4 were extracted from UK Biobank primary care records.  
Chapters 5, 6, and 7 utilised public GWAS summary statistics.

6. Data storage
☒	 Surfsara Snellius High Performance Computer (HPC)
☒	 Institutional workstation

DATA SHARING, ACCESS, and RE-USE

7. Data sharing, access and reuse:
☒	 Data from GWAS summary statistics (Chapters 5-7) are publicly available
☒	� Individual-level UK Biobank data (Chapter 4) is not publicly shareable and 

is available only through UK Biobank access procedures
☒	 Open Access Publications

•	 Chapters 2, 3, 4, 5 (CC BY 4.0)
DOI: 10.1016/j.neubiorev.2022.104927 (Chapter 2),
DOI: 10.1016/j.neubiorev.2023.105298 (Chapter 3)
DOI: 10.1192/bjp.2025.82 (Chapter 4)
DOI: 10.1038/s41398-022-01817-0 (Chapter 5)

•	 Chapters 6 and 7 (CC-BY-NC-ND 4.0)
DOI: 10.1038/s41398-025-03349-9 (Chapter 6)
DOI: 10.1101/2024.10.02.24314704 (Chapter 7)
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Data locations and agreed time of storage

8. Time specification of data availability

☒ �GWAS summary statistics used in this thesis (Chapters 5–7) are publicly available 
and will remain accessible indefinitely via their respective repositories.

☒ �Individual-level UK Biobank data (Chapter 4) is only accessible through UK 
Biobank access procedures and cannot be shared. UK Biobank maintains 
participant data indefinitely under its research policies, but access requires a 
separate application.

☒ �Preprint data (Chapters 7) on medRxiv will remain publicly available for the 
foreseeable future, subject to the policies of the preprint server.

☒ �Open-access publications and supplementary materials will remain available 
indefinitely under their respective licenses.

☒ �Scripts and analytical code used for genetic analyses (e.g., LDSC, LAVA, genomic 
SEM, T-SEM, and related pipelines) are available on GitHub. Scripts will remain 
available indefinitely unless repository policies change.
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psychiatry. He obtained his MD from the University of Bari “Aldo Moro” in 2016, 
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Antonio Rampino. During his medical studies, he trained in psychiatric genomics at 
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Erasmus+ program at the Medical University of Plovdiv, Bulgaria.

After completing his medical degree, he specialised in Psychiatry at the 
University of Bologna, earning his residency diploma in 2020 with cum laude 
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insulin resistance-related somatic conditions and neuropsychiatric disorders. 
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focusing on mood and psychotic disorders, treatment-resistant depression, and 
suicidal behaviour. His research on genetic predictors of antidepressant response 
and suicidal behaviour was supervised by Prof. Alessandro Serretti and Prof. 
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management for patients admitted to medical and surgical units or presenting to 
the emergency department.

Since 2023, he has been a (fixed-term) Junior Assistant Professor (RTD-A) at the 
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Plan/Next Generation EU)–funded MNESYS project (A Multiscale Integrated 
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oversees biological sample collection, manages research funding, and collaborates 
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on large-scale genomic studies. He lectures in Psychiatry at the University of 
Bologna, teaching undergraduate and postgraduate courses and supervising 
psychiatric trainees.

He was actively involved in several high-profile European research initiatives, 
including the Horizon 2020-funded PRIME (Prevention and Remediation of Insulin 
Multimorbidity in Europe) project, where he investigated the shared genetic 
architecture between insulin resistance-related conditions and major psychiatric 
disorders; PRISM2 (Psychiatric Ratings using Intermediate Stratified Markers 2) project, 
where he was responsible for imaging genomic analyses linking social behaviour 
with functional brain networks.

Since December 2024, he holds the National Scientific Qualification for the role 
of Associate Professor in Psychiatry in the Italian national academic system. This 
qualification acknowledges his scientific contributions and enables him to apply 
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Associate Editor for Frontiers in Psychiatry (Mood Disorders Section).
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Psychiatric Genetics (ISPG) Early Career Investigator Award in 2021. He is Chair of 
the ECNP Network on Suicide Research and Prevention and collaborates in multiple 
international psychiatric genomics research initiatives.
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Portfolio

Name PhD candidate: Giuseppe Fanelli
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• �9-31 March 2022 | University of Cambridge, Online - Mendelian Randomisation 
Course | Attendee
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of Neuropsychopharmacology (ECNP) Neuroimaging Network | Attendee
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2. Conferences and scientific presentations
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• �11 April 2025 | Udine, Italy - Knots and joints in psychiatry XVII edition 2025 “Mens 
sana in corpore sano: the immune-metabolic face of psychiatric disorders” | Speaker | 
Lecture: “Multimorbidity between psychiatric disorders and insulin resistance: clinical 
impact, shared genetics, and biological mechanisms”

• �11-13 December 2024 | Cologne, Germany - 6th General Assembly of the EU Horizon 
2020 project “Prevention and Remediation of Insulin Multimorbidity in Europe” 
(PRIME) | Speaker | Talk: “Insulinopathies of the brain? Genetic overlap between 
somatic insulin-related and neuropsychiatric disorders (summary of four years 
of studies)”
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• �30 September 2024 | Bari, Italy - Personalising care: the role of metabolic psychiatry 
in precision medicine | Speaker | Talk: “Insulinopathies of the brain? Genetic overlap 
between somatic insulin-related and neuropsychiatric disorders”

• �13-15 May 2024 | Bologna, Italy - 5th General Assembly of the EU Horizon 2020 project 
“Prevention and Remediation of Insulin Multimorbidity in Europe” (PRIME) | Speaker 
| Talk: “Transcriptome-wide structural equation modelling of insulin resistance - 
neuropsychiatric multimorbidity”

• �11-12 April 2024 | Deursen-Dennenburg, Netherlands - The Royal Netherlands 
Academy of Arts and Sciences (KNAW) Symposium – MindYourBody! | Plenary speaker 
| Talk: “The link of insulin resistance with mood and psychosis: insights from the clinic”

• �25 March 2024 | Istituto Superiore di Sanità (ISS), Rome, Italy - Center for Behavioural 
Sciences and Mental Health seminars | Speaker | Talk: “Insulinopathies of the brain? 
Genetic overlap between somatic insulin-related and neuropsychiatric disorders”

• �21-23 February 2024 | Rome, Italy - XXVIII National Congress of the Italian Society 
of Psychopathology (SOPSI) | Speaker | Symposium: “Physical well-being in patients 
with severe mental disorders: from genetics to personalised treatments” | Talk: 
“Insulinopathies of the brain? Genetic overlap between somatic insulin-related and 
neuropsychiatric disorders”

• �10-14 October 2023 | Montreal, Canada - World Congress of Psychiatric Genetics 
(WCPG) 2023 | Speaker | Talk: “Shared genetics linking sociability with the brain’s 
default mode network”

• �9 June 2023 | Brescia, Italy - Conference: The results of the DIAPASON project | Speaker 
| Talk: “Prescribing patterns of antipsychotic drugs and correlation with physical 
activity levels”

• �15 March 2023 | Remote - Psychiatric Genomics Consortium (PGC) Suicide Working 
Group Meeting | Speaker | Talk: “Disentangling the genetic overlap between major 
psychiatric disorders, somatic diseases and suicide attempt”

• �15-18 October 2022 | Vienna, Austria - 35th European College of 
Neuropsychopharmacology (ECNP) Congress 2022 | Speaker | Symposium: “The role of 
insulin in the comorbidity between neuropsychiatric and somatic disorders”

• �13-17 September 2022 | Florence, Italy - World Congress of Psychiatric Genetics 
(WCPG) 2022 | Poster presenter and mentor for early career researchers

• �6-8 September 2022 | Castelldefels, Barcelona, Spain - 6th extended Horizon 2020 
PRIME Steering Committee Meeting | Speaker

• �8-12 June 2022 | Virtual & Taipei, Taiwan - 33rd CINP Hybrid World Congress of 
Neuropsychopharmacology (CINP 2022) | Speaker and poster presenter | Talk: “A meta-
analysis of polygenic risk scores for mood disorders, neuroticism, and schizophrenia in 
antidepressant response”
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• �12 January 2022 | Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 
Netherlands (remote) - Neurodevelopmental Disorders (NDD) event | Speaker

• �10-14 October 2021 | Virtual - Virtual World Congress of Psychiatric Genetics (WCPG) 
2021 | Poster presenter

• �1-4 October 2021 | Lisbon, Portugal (hybrid) - 34th European College of 
Neuropsychopharmacology (ECNP) Congress Hybrid | Poster presenter

• �27-29 June 2021 | Virtual - 15th World Congress of Biological Psychiatry (WFSBP 
Congress 2021) | Speaker and poster presenter

• �28 June 2021 | Virtual - 51st Behaviour Genetics Association (BGA) Meeting 2021 | 
Poster presenter

• �25 February 2021 | Virtual - International College of Neuropsychopharmacology 
(CINP) 2021 Virtual World Congress | Poster presenter

• �11 February 2021 | Radboud University Medical Center, Nijmegen, 
Netherlands (remote) - Radboudumc Theme Discussion | Speaker | Talk: 
“Insulinopathies of the brain? Genetic overlap between somatic insulin-related and 
neuropsychiatric disorders”

3. Organising committees for conferences or workshops

• �28-30 April 2025 - “Precision Psychiatry: -omics and imaging biomarkers of major 
psychiatric disorders”, Bordeaux School of Neuroscience, Bordeaux, France

• �35th World Congress of the Collegium Internationale Neuro-Psychopharma
cologicum (CINP 2024) - May 23–26, 2024 | Tokyo, Japan - Member of the 
International Scientific Program Committee

4. Networks and affiliations

• �10/2024 – Present: European College of Neuropsychopharmacology (ECNP) 
Subnetwork “Genetics to the clinic”

• �06/2023 – Present: Chair of the European College of Neuropsychopharmacology 
(ECNP) Network on Suicide Research and Prevention

• �11/04/2022 – Present: Member of the Collegium Internationale Neuro-
Psychopharmacologicum (CINP) (Member No: 64060400)

• �01/2020 – Present: Member of the European College of Neuropsychopharmacology 
(ECNP) Network on Suicide Research and Prevention

• �10/2018 – Present: Member of the European College of Neuropsychopharmacology 
(ECNP) (Member No: M-03943)

• �09/2018 – Present: Member of the International Society of Psychiatric Genetics (ISPG)
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• �12/2024 – Present: Member of the Hierarchical Taxonomy Of Psychopathology 
(HiTOP) Society

5. Peer-reviewer activity

• �Peer-reviewer for the Journal of Affective Disorders, International Clinical 
Psychopharmacology, International Journal of Psychiatry in Clinical Practice, 
Molecular Psychiatry, Neuropsychobiology, Neuroscience & Biobehavioural 
Reviews, Personalised Medicine in Psychiatry, Progress in Neuro-
Psychopharmacology & Biological Psychiatry, Psychological Medicine, Psychiatric 
Genetics, The Lancet Psychiatry, The American Journal of Psychiatry, Translational 
Psychiatry, The International Journal of Neuropsychopharmacology, The World 
Journal of Biological Psychiatry, The British Journal of Psychiatry.

• �Symposia peer-reviewer for the International College of Neuropsychopharmacology 
(CINP) 2024 World Congress - Tokyo, Japan

• �Web of Science - Peer-review records: https://www.webofscience.com/wos/
author/record/M-4050-2019 (more than 60 verified peer-reviews)

6. Editorial board membership

• 2021 - Present: Managing Editor, International Clinical Psychopharmacology
• 2022 - Present: Review Editor for Mood Disorders, Frontiers in Psychiatry
• 2024 - Present: Associate Editor, Frontiers in Psychiatry
• �Web of Science - Editor records: https://www.webofscience.com/wos/author/

record/M-4050-2019 (more than 149 verified editor records)

7. Teaching experience

• ���2021 - Present: “Cultore della materia” in Psychiatry, University of Bologna, Italy
  �(In the Italian academic system, “Cultore della materia” is an honorary title given 

to a field expert appointed by the Faculty to serve on examination committees and 
contribute to teaching activities)

• �01/03/2023 - Present: Lecturer in Psychiatry, University of Bologna, Italy
  �University courses• 2022: Module MED-BMS22 “Vanishing boundaries between 

neurodevelopmental disorders”, Master’s in Biomedical Sciences, Radboud 
University, Nijmegen, NL
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• �2021 - 2023: Member of the examination committee for the Psychiatry course, 
Module of Mental Health Studies (Combined Unit), 1st Cycle Degree/Bachelor’s in 
Nursing, University of Bologna, Faenza, IT

• �2021 - 2023: Member of the examination committee for the Psychiatry 3 course, 
Module of First Aid (Combined Unit), 1st Cycle Degree/Bachelor’s in Health 
Professions for Rehabilitation, University of Bologna, Imola, IT

• �09/2022 - 2023: Member of the examination committee for the Psychopathology 
of Emotional Disorders, Master’s in Applied Cognitive Psychology, University of 
Bologna, Bologna, IT

• �2023 - Present: Psychiatry course, Module of Mental Health Studies (Combined Unit), 
1st Cycle Degree/Bachelor’s in Nursing, University of Bologna, Faenza, IT

• �09/2023 - Present: Doctor-Patient Relationship, Residency in Psychiatry, University 
of Bologna, Bologna, IT

• �2023 - Present: Psychiatric Clinical Interview, Residency in Psychiatry, University of 
Bologna, Bologna, IT

• �09/2023 - Present: Supervisions in Psychotherapy II, Residency in Psychiatry, 
University of Bologna, Bologna, IT

• �09/2023 - Present: Psychiatry course, Module of Mental Health Studies (Combined 
Unit), 1st Cycle Degree/Bachelor’s in Nursing, University of Bologna, Rimini 
Campus, Rimini, IT

• �09/2023 - Present: Psychiatry course, Module of Neurosciences (Combined Unit), 
1st Cycle Degree/Bachelor’s in Speech and Language Therapy (Logopaedics), 
University of Bologna, Faenza, IT

• �10/2023 - Present: Member of the examination committee for the Psychiatry 
course, Master’s in Medicine and Surgery (English language), University of Bologna, 
Bologna, IT

Invited lectures

• �08/06/2024 - Invited lecture on “Psychopharmacology and Multimorbidity”, 
Residency in Community and Primary Care Medicine, University of Modena and 
Reggio Emilia, Modena, IT

Supervision of residents in psychiatry and research fellows

• �Residents in psychiatry supervised: Actively involved in the supervision of 
14 psychiatry residents, providing guidance in clinical psychiatry, psychiatric 
genomics, and psychopharmacology research.
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• �Research fellows (Co-supervised): Co-supervised four research fellows, supporting 
them in study design, data analysis, and scientific writing.

8. Outreach and impact

Media appearances or interviews

• �Antenna Sud (Southern Italy TV broadcaster): https://www.youtube.com/ 
watch?v=_ivvQEVr8Z4

• �La Voce di Manduria (local newspaper): https://www.lavocedimanduria.it/articolo/ 
da-un-ricercatore-maruggese-lesperanze-di-cura-per-i-disturbi- 
neuropsichiatrici_77443

• � UK Science Media Center (roundups for journalists):  
https://www.sciencemediacentre.org/ expert-reaction-to-study-looking-at- 
semaglutide-liraglutide-and-suicidality/

Blogging or writing for a lay audience

• �insulin resistance is associated with worse cognitive performance: 
https://prime-study.eu/news-events/publications/insulin-resistance-is-associated- 
with-worse-cognitive-performance/
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§ = Shared last authorship 
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