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Background and rationale

Psychiatric disorders are a major cause of global disease burden, affecting
hundreds of millions of individuals annually (GBD, 2022). Epidemiological research
ranks these conditions among the leading contributors to disability-adjusted life
years (DALYs), illustrating the magnitude of their public health impact (GBD, 2022).
Beyond their contribution to functional impairment, psychiatric disorders impose
considerable societal and economic costs, including direct healthcare expenditures
and indirect losses linked to reduced productivity, unemployment, and caregiving
demands (GBD, 2022).

Psychiatric disorders encompass a wide range of conditions with heterogeneous
symptom profiles and variable clinical courses. While they are classified as distinct
diagnostic entities, substantial heterogeneity and symptom overlap complicate both
diagnosis and treatment (Zald & Lahey, 2017), and comorbidity is frequent. Their
aaetiology is multifactorial, arising from the interplay between genetic predisposition,
biological processes, and environmental influences (Panariello et al., 2022).

Psychiatric disorders do not occur in isolation. Growing evidence indicates that
individuals with psychiatric disorders experience worse overall health outcomes,
which cannot be explained by psychiatric symptoms alone. This adds an extra layer
of difficulty to understanding these conditions as well as their clinical management.

Convergence of symptomatology and transdiagnostic dimensions in
neuropsychiatric disorders

Despite differences in diagnostic criteria and clinical trajectories, psychiatric
disorders share overlapping symptom dimensions, including mood instability,
cognitive impairments, compulsivity, and alterations in social-behavioural
regulation (see also Table 1; Guineau et al. (2023); Zald and Lahey (2017)). These
transdiagnostic dimensions suggest that psychiatric conditions may not be
entirely distinct entities but rather exist along a spectrum of shared cognitive and
affective dysfunctions.

Mood instability and emotional dysregulation are observed across multiple
psychiatric conditions, including major depressive disorder (MDD), bipolar disorder
(BD), borderline personality disorder (BPD), and attention-deficit/hyperactivity
disorder (ADHD). MDD is primarily characterised by persistent low mood,
anhedonia, fatigue, and disturbances in sleep and appetite, but it is also frequently
associated with cognitive dysfunction, including impairments in attention,
executive function, and decision-making, which contribute to long-term disability
(Marx et al., 2023). BD also involves mood instability, though it is episodic in nature,
alternating between depressive and manic or hypomanic states. Manic episodes
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include elevated mood, hyperactivity, impulsivity, and, in some cases, psychotic
symptoms such as delusions of grandeur, while depressive episodes closely
resemble those of MDD (Nierenberg et al., 2023). Outside acute mood episodes,
BD is associated with persistent cognitive impairments, particularly in executive
function, which persist across illness phases (Dickinson et al., 2017). Beyond mood
disorders, emotional dysregulation in BPD and ADHD leads to heightened reactivity
to stress, impulsivity, and difficulties in modulating mood, further demonstrating
that affective instability is not limited to mood disorders (Richard-Lepouriel et al.,
2016). However, while BD is characterised by episodic mood shifts, BPD and ADHD
involve more chronic patterns of affective instability (Moukhtarian et al., 2018). This
distinction highlights the need to consider mood dysregulation not only within the
framework of mood disorders but also across conditions traditionally classified as
neurodevelopmental or personality disorders.

Beyond mood dysregulation, cognitive dysfunction represents a core
transdiagnostic feature spanning multiple disorders, including schizophrenia,
neurodevelopmental conditions, and obsessive-compulsive spectrum disorders.
Cognitive deficits are central to schizophrenia, where impairments in executive
function, working memory, and attentional control are major contributors to
functional impairment (Kahn et al.,, 2015). While delusions and hallucinations
represent hallmark positive symptoms, schizophrenia also involves negative
symptoms such as anhedonia, social withdrawal, and emotional blunting, which
significantly overlap with features observed in depressive and anxiety disorders.

Notably, cognitive inflexibility is also a shared trait across multiple conditions,
contributing to difficulties in set-shifting, problem-solving, and adapting to changing
environmental demands. This is particularly evident in neurodevelopmental
disorders such as ADHD and autism spectrum disorder (ASD), where deficits in
cognitive flexibility and executive functioning are well documented (Lord et al.,
2020; Thye et al., 2018). Individuals with ADHD frequently struggle with cognitive
rigidity, particularly in adapting to new rules or shifting between tasks, reflecting
impairments in set-shifting and response inhibition (Lord et al., 2020; Pearson et al.,
2013). Similarly, ASD is characterised by atypical social communication, repetitive
behaviours, and sensory processing abnormalities, alongside rigid cognitive patterns
that further impair adaptive functioning (Lord et al., 2020; Thye et al.,, 2018). Given
that schizophrenia shares developmental vulnerabilities with ADHD and ASD, it is
increasingly conceptualised within a neurodevelopmental framework, where early
disruptions in brain maturation, synaptic pruning, and neuroinflammatory processes
are thought to contribute to disease onset in late adolescence or early adulthood
(Owen & O'Donovan, 2017).

15



| Chapter 1

16

‘InWils paiejai-1yblam piemoy saseiq

‘(eluopayue ‘poow Moj) daw
!(s3s2433U1 pa3dIYSaL ‘sussyied
wbnoyy pibu) asy ‘(jouod
1yBI1am pue pooy 03 parejai

abew Apoq payIolsip
pue ybram buluieb jo Jesy
asuajul ‘ybram Apoq mo|

Jeuofuane pue ‘buisuiyi d1siuonRdHd sinoineyaq aAls|ndwod pue Aj3ueoyiubis 03 buipea| axejul (NV) bsorian
‘ANIqIxa Ul 9AIHUBOD ‘S3dYIpP BuIYlys-19S ERIVERITTTeTelVE suorrednad0aid |euoissasqo) a0 3110]ED JO UOIID1I1SDI DIDASS pixaiouy
(s12ysp uonuse) AAwW

‘(uonyeinbaisAp jeuonows  'sbumas o|diyNw ssoude Juasaid

‘90ud)sisiad ysey yum Aynouyip pue ‘Kunisindwi) sspuosip Ayjeuosiad 99 1snw swoldwAs ‘josuod

S9WI} uol3de3I Ul AJjIgRIIeA [eNPIAIPUI aullaplog {(saposida djuew ul A1031qIyul yHMm Sa13ndYIp
-BJJUI POSEIOU| "UOIIDIJI3S dsuodsal sinoineyaq bupel-ysu ‘AuAisinduwr) pue ‘Ayaisindwi ‘Ayanoe (@HQay) 42piosig
pue ‘|o13u0d A101IgIyul ‘uoipusnIe @ag ‘(uondeiaul [e1os ul JOJOW DAISSIIXD ‘UoIIue AuAnopiadAy

pauleisns ‘Alowaw Buom Ul sydYad

pooupiyd A[edIdAL  SIRINOYIP ‘SHOYSP UORUSNE) ASY

pauelsns ul syuswiredw|

/Hdyag-uonuany

‘padunouoid ai0w awo0d3q

S}IDYSP |BUOIIUS)IR PUB UOIIRIUSLIOSIP
|erzedsonsiA ‘sadueApe 3seasip 3y} sy
‘butuueld pue ‘uoniqiyur asuodsai
‘AN)1qixaly oA1ub0d Ul spuswiedw
S9PN|dUI UOIIUNYSAP DAIINDSXT "SaIN|ie}
|eAd11131 [BDIX3] pUE ‘sydYdp Adusny
K10631eD ‘BlWIOUE SE S)S3jIueW AloWwdW
J1jUBWS Ul S}DYIP dAIssaIboud

‘(uoissaiboid annessusbapoinau
wouj 3punsip ybnoys ‘sypysp
9AIHUBOD abe)s-A|ied) eluaiydoziyds

14uIsIp [einoiAeYaq pue
‘sisoydAsd ‘uoneyibe ‘Ayjede se
yons swordwiAs dueiydAsdoinau
pue ‘eisoube ‘eixelde ‘ejseyde
9AJ0AUl s9be)S J91eT “eiseyde
pue ‘uoeIUBLIOSIP ‘UoIdUNYSAP
9AI3NDXD Quawredw

!(JeA14321 ‘UOIIBPIOSUOD ‘BUIpPOdUD) !(ennuswapopnasd, se buisajuew Klowaw d1posida yyum (ay) aspasig

Kiowdw >1posida ul Juswiiedw] 21995 sieak o< A|jedidAL Buimols aniubod ‘Ayrede) aaw dulPap dAINUBOD aAIssa1b0Id s, Jawiayz|y
siapiosip

suoIleAlasqo aA1ubod Aiewid j9suo jesidA} sso.de swoydwAs buiddepang swoydwAs ai0) 19pJosig

‘1S1| @Al3Sneyxs

ue juasaidal Jou Op 1ng sainlea) paleys 21elisn||l suUoIpuod dulelydAsd Jaylo yum swoldwAs buiddesano jo ssjdwexa ayl (6102 ‘OHM) (LL-ADI) UOISIARY YiL L
's95e3s1Q JO UONEdYISSe|D [BUONBUIRIU 3Y) pue (€107 ‘VdY) (S-WSQA) UOHIPT Uy ‘SI9PIOSIQ [EIUSIA JO [enuely [edNsiielS pue diisoubeld ay) ul Pauljino euaid
uo paseq ale AbojorewoldwAs pue suoledyisse|d dlisoubelq ‘siaplosip dlielydAsdoinau pa1dads YiIM paleIdosse Sainies) aAINUBOd pue “1asuo jo abe pajewnsa
‘AbojoyewordwAs buiddejsano ‘suoijeisajiuewl [ed1ul]d 2102 JO MIIAIBAO ue sapinoid dqe) siy] *sadpJlosip dujerydAsdoinau Huowe depsano sidAjousyd *| ajqer



17

General introduction |

‘SSaUBAISUOASaI pJemal

pasiedw] ‘uolssiwa4 Y1im anoidwii
U9)J0 pue Juspuadap-ale)s ale
sjuswuledwi [euoiuay "uondUNy
9AIINDAX3 pue ‘s1dysp Alowsw
bunpjiom ‘paads buissadoid pamo|s

"Bunyiys-33s ul sydYSp pue ‘inwins
paje[aI-}ealy} pIeMO} seiq [euolualle
pauaiybiay ‘buriojjuow 101
SAISSIX3 “AN[1q1X3|4 9A1IUBOD pastedw)

pooy3npe 0}
2dudds3jOpE d)eT

pooyinpe Ajiea
0} 3DUS3|0pe 3}eT]

(Jlemespynm |e1D0s pue eluopayue ‘63
‘swoldwiAs anebau) ejuasydoziyds
{(s9sed 2IBAIS Ul S3IN3edy d1joydAsd
‘swoydwAs aaIssaidap paseys) ag
‘(enuawapopnasd) gy {(Syduyap
9A1IUB0D) siapIosIp A1dIXuy

‘(suoisindwod pajeai-dn) SJ ‘(3|A1s
SAIMUB0D p1bu ‘wisiuoidayiad)
NV ‘(sinoineyaq annnadail) asy

's2unyeay d13oydAsd yym yuasaid
Kew 352 2J9A3S “BUIMO|S
aAIubod pue ‘sbuljaay Ayinb
‘uoljepliejdl JoyowoydAsd
‘saduequnisip das|s ‘onbiyey
‘eJUOpaYU. ‘POOW MO| JUIISISIDd

‘A3aIxue Bupnpal je pawie
suoisindwod aanadal
pue suolissasqo buissansip
SAISNJIUI JO 9OUISAI

(aaw) 4apiosig
aAIssaidaq 1ol

(@>0) 4a3piosig
anIsindwo)
-2AISS35q0

‘elwAy3na ui 1sis1ad syoyap uonduny
9AIIND9XT 'saposida aAissaidap bulnp
uolepielal JojowoydAsd pue ‘sayeys
S1uew buunp Ayaisindwi ‘|oJ3uod
Jeuoljuaine paliedwi :uondUNsAp
9A1IUB0D JuspuUSdap-3)1e]1S-POOoIN

pooysnpe AjJea
0] 9DUIISI|OpE d)eT]

*(s2an3eay dnnoydAsd ajqissod
‘saposida anissaidap) aaw
!(soposida poow bunnp swoydwAs
s130ydAsd) eluaiydoziyds {(sydysp
leuonusne ‘Ayaisindwi) aHAV
‘(syiys poow pides ‘Ayaisindwi
‘uone|nbaisAp [euonows)
Japiosip Ayjeuosiad auipisplog

"uowIwod e das|s 1o pasau
pasnpai pue ‘Auaisindw|
'saposida a1aAss Buunp
swoldwAs dnoydAsd oy jenusyod
yum ‘uoissaidap pue ejuewodAy
/eluew Jo saposida [ed1pA)

(ag)
Jiaplosiq ipjodig

‘uoniubod [eos pue ‘(Au|iqixayy
9A11UBOD Ajiejndiied) uonduny
9A1INDAX3 ‘pulw Jo A103Y3 Ul S1dYIQ

pooypiyd Apie3

‘(bunun|g [eUOIOWS ‘|eMERIPYUM
|e120s) eluaiydoziyds ‘(sysa1aiul
papuisal ‘Aupibu aaniubod)

NV ‘(sinoineyaq aannadas pue
d1si[en3u) adO ‘(Axaisindwi
‘s1dDYap uonuale) aHAY

*S3IIAIIDL 10 S1SaI)UI
‘SINOIARYD(Q SAIMIDdRI/PIdIIISI
‘S}DLYDP UOIILIIUNWIIOD |BID0S

(@svy) sapiosia
wnpads wspny

suoneA1asqo aAnubod Kiewrid

19suo |ed1dAL

siapJosip
ssoJoe swoydwAs buiddepang

swoydwAs 310>

1apiosig

panunuo) ‘| 3jqeL



| Chapter 1

18

“U1"091 0'E AN-Ag D :95USIT "ZZOT ‘UONEZIUBBIQ Y}ESH PO :eASUSD *(1 L-(D) UOISIASI YIUDASS SI5EISIP JO UONEILISSE|D [BUONEUISIU] *(610Z) 'OHM

"UOI3RIDOSSE D1IRIYIAS URDLIBWY "§-/S :SIaPIOSIP [DIUBLW JO [DNUDW [DIIISIIDIS pUD 21350ubbId *(€107) "VdY

"UOI3IdUNYSAP DAIINDIXS pUE |0IIUOD
|euoruae pasiedwi JO 9DUIPIAD
3WOG "Uol3RIHIIU J0JOWIIOSUSS Ul
salyjewouqe pue ‘sf3 buissaiddns
usaym peo| aARIubod paseasnul
‘uoniqIyul asuodsal ul sydYaq

pooypjiyd

‘(sinoineyaq aniiadal pue
padA109193s) @SV ‘(uonuaneul
‘Kunisindwir) gHAYV ‘(soban
dAISNIUI ‘suoisindwod) DO

"suonen}dNy woldwiAs jo Juspuadapul

3s1s4ad sHdYa( "uoljew.Iojul Jo
uolesb33ul |enyxa3uod patiedwl

pue paads buissadoid pasnpay
‘uoijiubod [e1dos pue ‘Klowaw
BuispIoM ‘UoIIdUNY BAIINIBXS Ul SHOYS(Q

pooyynpe Ajea
0] 9DU3I$3|0pe 91E7]

‘(3|yoid dA1UBOd0INBU 1DUNSIP
yum ybnoy ‘uoryijone pue
elUOPAYUE ‘|eMBIPYIM |IDOS)
Aaw ‘(3>e3u0d 243 Jo aduepione
‘A3120.4d 1021 paIwi| ‘s3SI
9A1IDLIS3I ‘spudwiedw uoiHubod
|e1>0s) sy (s3ybnoyi aA1ssasqo)
ado ‘(swoidwAs onoyaAsd) ag

SuoIleAlasqo dA1ubod Aiewid

j9suo |edidAL

siapiosip
ssose swoydwAs buiddepiang

S9OU9.19})9Y
‘sabun A1oyuowsald Aq papadaid
U140 'S} [BDOA puUE Jojow (S.1) dwoipuhs
9|dinw jo sduasaid duoiyd 31321n0]
Juawredwi aARIubHod ‘(e1bOjR
‘}29y4e pajun|q ‘eluopayue
‘uolyljone) swoydwAs anpebau
pue (3ybnoyy pasiuebiosip
‘suoisn|ap ‘suoneun|jey)
swoldwAs aA13ISOd pluaiydoziyos
swoldwAs 210D 19pJosig

panunuo) ‘L s|qeL



General introduction |

Beyond cognitive rigidity, compulsivity represents another transdiagnostic
dimension with overlapping but distinct characteristics. While cognitive rigidity
refers to difficulties in adapting to new information and shifting cognitive strategies,
compulsivity is characterised by repetitive behaviours driven by an urge to reduce
distress or avoid negative outcomes (Luigjes et al., 2019). Obsessive-compulsive
disorder (OCD) exemplifies this pattern, with individuals experiencing intrusive,
distressing thoughts (obsessions) and ritualistic behaviours (compulsions) aimed
at reducing anxiety (Stein et al., 2019). However, compulsivity extends beyond
OCD and is observed in schizophrenia, eating disorders, and other psychiatric
conditions. In schizophrenia, compulsive-like behaviours often stem from cognitive
inflexibility and impaired set-shifting rather than an anxiety-driven threat response,
distinguishing them from the compulsions seen in OCD (McTeague et al., 2017;
Mushtaq et al., 2011; Norman et al.,, 2019). Similarly, anorexia nervosa (AN), a
disorder characterised by restrictive eating patterns and intense fear of weight gain,
presents with disturbances in reward processing, interoception, and compulsivity,
further illustrating cognitive-affective dysregulation and compulsivity as a shared
feature across psychiatric illness (Zipfel et al., 2015).

Although psychiatric disorders primarily affect mood, cognition, and behaviour,
neurodegenerative conditions such as Alzheimer’s disease (AD) also present with
significant psychiatric symptoms. AD is primarily characterised by progressive
memory loss and executive dysfunction, yet depressive symptoms, anxiety, apathy,
and agitation are commonly observed throughout its course (Scheltens et al.,
2021). Additionally, psychotic symptoms, such as paranoic delusions, can emerge in
later stages of AD, resembling those seen in primary psychotic disorders (Ismail et
al., 2022). This overlap suggests that cognitive and affective dysfunctions span both
psychiatric and neurodegenerative conditions, further supporting the need for a
dimensional, rather than purely categorical, understanding of mental illness.

Given these substantial areas of symptom convergence, psychiatric
comorbidity—the co-occurrence of two or more mental disorders within the same
individual—is frequently observed in clinical practice (Nordgaard et al., 2023). For
instance, BD and ADHD frequently co-occur, with studies suggesting a strong link
between these conditions (Schiweck et al., 2021). This overlap is particularly evident
in impulsivity, emotional dysregulation, and executive dysfunction, which persist
across illness phases, although impulsivity is most pronounced during manic or
hypomanic episodes in BD and represents a core trait of ADHD (Faraone et al., 2015;
Vieta et al., 2018). Similarly, OCD and Tourette's syndrome (TS) show high rates
of comorbidity, with TS often involving repetitive behaviours and intrusive urges
that may resemble compulsions but are typically driven by premonitory sensory
experiences rather than obsessive thoughts (Shitova et al., 2023). Other notable
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examples of comorbidity include MDD and anxiety disorders, which frequently
co-occur due to overlapping stress-response dysregulation and heightened
sensitivity to negative affect (Davies et al., 2023). AN is frequently comorbid with
OCD, with shared characteristics including cognitive rigidity, perfectionism, and
compulsive behaviours related to food intake and body image (Sternheim et al.,
2022). In psychotic disorders, schizophrenia and substance use disorders (SUDs)
often co-occur, with some estimates suggesting that over 25% of individuals with
schizophrenia experience a comorbid SUD (Nesvag et al., 2015). This association
is particularly problematic, as substance use can worsen psychotic symptoms,
increase relapse risk, and interfere with treatment adherence (Miller et al., 2009).

Despite its widespread recognition, psychiatric comorbidity remains a concept
in need of theoretical refinement (Nordgaard et al., 2023). Nosological frameworks
such as the Diagnostic and Statistical Manual of Mental disorders (DSM) and
International Classification of Diseases (ICD) classify neuropsychiatric disorders
as distinct categorical entities, yet substantial evidence suggests that many co-
occurring conditions may not be truly independent disease processes. Instead, they
may reflect shared pathophysiological mechanisms or transdiagnostic dimensions
of psychopathology, spanning multiple diagnostic categories (Lai et al., 2019;
Pearlson, 2015; see Table 1)..

Beyond the theoretical challenges, psychiatric comorbidity has significant
clinical implications. Individuals with multiple psychiatric diagnoses exhibit greater
symptom severity, higher rates of functional impairment, and poorer treatment
outcomes (Archer et al., 2019; Barlattani et al., 2023; Ziobrowski et al., 2021). As
for the latter, treatment of comorbid conditions often requires more complex
strategies, as different disorders may demand competing therapeutic approaches.
For instance, selective serotonin reuptake inhibitors (SSRIs) are first-line treatments
for depression and anxiety but can induce manic episodes in individuals with BD,
necessitating careful medication management (Ott, 2018). Similarly, cognitive-
behavioural therapy interventions targeting obsessive-compulsive symptoms
in ASD or AN may need to be adapted to account for the distinct cognitive and
emotional processing styles observed in individuals with these conditions (Flygare
etal., 2020).

Among the treatment challenges, therapeutic response is an additional topic
complicated by comorbidity and shared aaetiology. Despite the availability of
pharmacological and psychological treatments, response rates in psychiatric
disorders generally remain suboptimal (Howes et al., 2022; Solmi et al., 2023).
Unlike other areas of medicine, where diagnoses are often grounded in clear
pathophysiological mechanisms, psychiatric disorders continue to be classified
based on symptomatology rather than underlying aaetiology (Jablensky, 2016). This
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contributes to variability in treatment response. Indeed, a significant proportion
of individuals with mood disorders, including MDD and BD, fail to achieve
remission despite receiving guideline-concordant treatment, a phenomenon
termed treatment resistance (Solmi et al., 2023). In MDD, treatment-resistant
depression (TRD), defined as the failure to respond to at least two adequate trials of
antidepressants, affects approximately 30% of patients (McIntyre et al., 2023). TRD
is associated with greater symptom severity, higher rates of comorbid anxiety and
substance use disorders, and poorer overall functioning (Brenner et al., 2020). Similar
challenges are observed across other psychiatric conditions. For instance, up to
20-50% of individuals with schizophrenia are classified as treatment-resistant, often
requiring clozapine, a medication associated with significant metabolic side effects
(Nucifora et al., 2019). In ADHD, treatment adherence and efficacy are frequently
limited by side effects and comorbid conditions (Kamimura-Nishimura et al., 2019),
while ASD interventions often fail to address core symptoms (McCracken et al.,, 2021),
reflecting the substantial unmet therapeutic needs in these populations. Shared
disorder dimensions and comorbidity are part of the problem, as they can make
it difficult to determine whether a lack of response to treatment reflects true
pharmacological resistance or diagnostic misclassification. For instance, individuals
with BD who present with comorbid anxiety or obsessive-compulsive symptoms
may not only fail to respond to standard antidepressant treatments but may also
experience worsening mood instability (Amerio et al., 2019; Mucci et al., 2018).
Similarly, individuals with schizophrenia who exhibit persistent negative symptoms
and cognitive dysfunction despite treatment may be misdiagnosed with comorbid
depression, leading to inappropriate pharmacological interventions.

The challenges listed above highlight the urgent need for research aiming
to improve our understanding of the mechanisms underlying psychiatric
symptomatology, especially of shared pathophysiological processes. Identifying
these mechanisms is important not only for refining diagnostic classification but
also for improving treatment response predictions and developing biologically
informed therapeutic strategies (Quinlan et al., 2020). One can envisage future
hierarchical diagnostic models incorporating trait vs. state distinctions, longitudinal
symptom trajectories, and neurobiological correlates, which may enhance clinical
decision-making, but these approaches critically depend on first clarifying the
biological mechanisms linking different psychiatric conditions (Nordgaard et
al., 2023). Reliable biomarkers and mechanistically driven classifications based
on biologically meaningful entities across (and within) disorders with distinct
therapeutic responses will be needed for the development of precision medicine
approaches. Incorporating mechanistic insights from molecular ‘omics’ and
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neurobiology will be essential for improving treatment personalisation and
clinical outcomes.

Comorbidity between neuropsychiatric disorders and insulin
resistance-related conditions

While comorbidity among psychiatric disorders is well established, psychiatric
disorders also frequently co-occur with physical health conditions, leading
to psychiatric-somatic multimorbidities. Among these, the co-occurrence of
psychiatric disorders with metabolic and cardiovascular conditions is particularly
frequent (Nielsen et al., 2021; Rajan & Menon, 2017). The psychiatric-somatic
association extends beyond the impact of lifestyle factors or medication effects, as
research suggests that psychiatric and metabolic conditions might share biological
mechanisms that influence their co-occurrence and clinical outcomes (Garrido-
Torres et al., 2021).

Individuals with severe mental illness, including schizophrenia, BD, and MDD,
face a significantly reduced life expectancy, with estimates suggesting a lifespan
reduction of approximately 15 years compared to the general population (Walker
et al., 2015). A meta-analysis of mortality in psychiatric disorders found a pooled
relative risk of 2.22 for all-cause mortality, indicating the substantial public health
burden posed by these conditions (Walker et al., 2015). While suicide is a major
contributor to premature mortality, the majority of excess deaths in psychiatric
populations result from natural causes, including cardiovascular disease (CVD),
type 2 diabetes mellitus (T2DM), and also chronic respiratory conditions (Walker et
al., 2015). Importantly, psychiatric disorders are associated with a higher prevalence
of adverse health behaviours, such as physical inactivity, poor diet, smoking, and
substance use, which contribute to elevated cardiometabolicrisk (Walker et al., 2015).
In addition to lifestyle-related risks, structural barriers in healthcare access
exacerbate disparities in medical outcomes. People with psychiatric disorders
often receive suboptimal medical care, with lower rates of preventive screenings,
delayed diagnoses, and undertreatment of medical conditions (Scott & Happell,
2011). Moreover, diagnostic overshadowing — where physical symptoms are
misattributed to mental illness — further complicates appropriate medical
management (Hallyburton, 2022). This contributes to disparities in mortality
rates that persist despite advancements in medical treatments. While effective
interventions targeting psychiatric disorders exist, their impact on longevity
remains limited unless medical comorbidities are simultaneously addressed
(Walker et al., 2015).

Large-scale cohort studies have demonstrated that individuals diagnosed with
MDD, BD, schizophrenia, ADHD, and other psychiatric disorders exhibit higher rates
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of metabolic conditions, especially obesity, T2DM, and metabolic syndrome (MetS),
than the general population (Penninx & Lange, 2018; Vancampfort et al., 2015;
Wimberley et al., 2022). Likewise, metabolic conditions have been associated with
an increased risk for developing psychiatric disorders, suggesting a bidirectional
relationship potentially driven by overlapping physiological and behavioural factors
(Wimberley et al., 2022). Adverse health behaviours and other environmental
factors have been implicated in the psychiatric-metabolic comorbidity, but also
intrinsic metabolic dysfunctions have been identified as contributing factors
(Mazereel et al., 2020). Notably, metabolic dysregulation often precedes the onset of
psychiatric illness, challenging the notion that this dysregulation is a consequence
of psychotropic medication exposure (Mazereel et al., 2020). Longitudinal studies in
drug-naive individuals with psychiatric disorders have demonstrated that elevated
fasting glucose, altered lipid profiles, and insulin resistance (IR) — a condition in
which peripheral tissues become less responsive to insulin, leading to impaired
glucose regulation — can be observed before the onset of psychiatric symptoms or
the initiation of psychotropic treatment (Garrido-Torres et al., 2021). This evidence
is consistent with intrinsic biological vulnerabilities contributing to the observed
metabolic dysfunction.

While metabolic abnormalities can present prior to psychiatric illness onset,
psychotropic medications — particularly second-generation antipsychotics and
certain antidepressants, with high affinity for histamine and serotonin 2C receptors
— exacerbate metabolic risk by inducing weight gain, IR, and dyslipidaemia
(Pillinger et al., 2020; Virk et al., 2004). This pharmacologically induced metabolic
burden further compounds the risk for cardiometabolic disease, especially in
individuals with pre-existing vulnerabilities. These findings emphasise the need for
integrated treatment approaches that take into account both psychiatric symptom
management and metabolic health, rather than treating them as separate entities.

That metabolic dysfunction can present before psychiatric illness onset likely
has developmental origins. Indeed, maternal IR-related conditions, including T2DM,
gestational diabetes mellitus, and obesity, are associated with an elevated risk for
psychiatric disorders in offspring (Kong, Chen, et al., 2020; Kong, Nilsson, et al., 2020).
Large-scale cohort studies have demonstrated that prenatal exposure to maternal
metabolic dysregulation is linked to a heightened risk for ASD, ADHD, mood disorders,
and conduct disorders in children (Kong, Nilsson, et al., 2020). Additionally, maternal
pre-pregnancy obesity has been implicated in a two- to three-fold increased risk
for schizophrenia in offspring (Kong, Chen, et al., 2020). The association between
maternal obesity and offspring eating disorders has also been documented, with
prospective cohort studies showing a positive correlation between early pregnancy
BMI and eating disorder risk in offspring (Kong, Chen, et al., 2020). These findings
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highlight the potential for intergenerational transmission of metabolic and psychiatric
vulnerability, reinforcing the need for early identification of at-risk individuals.
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Figure 1. Insulin signalling in the brain: roles in neuronal and glial function.

Insulin crosses the blood-brain barrier and binds to insulin receptors on neurons, astrocytes,
and oligodendrocytes, influencing multiple neurobiological processes. In the central nervous
system, insulin plays a key role in synaptic plasticity, neurotransmission, apoptosis inhibition,
and neuroinflammation regulation. Through its interactions with neurotransmitter systems such
as serotonin and dopamine, insulin modulates neuronal survival, function, and communication,
highlighting its relevance in both cognitive processes and neuropsychiatric disorders.

Insulin signalling in the brain
The co-occurrence of psychiatric disorders and metabolic dysfunction suggests a
need to examine shared biological mechanisms, and previous literature points to a
potential involvement of insulin signalling (Milstein & Ferris, 2021). Insulin plays a
dual role in peripheral metabolism and central nervous system (CNS) function. Insulin
crosses the blood-brain barrier, and it is also produced locally in the brain, where it
binds to insulin receptors expressed on neurons and glial cells (Csajbok & Tamas, 2016).
Insulin signalling within the CNS regulates synaptic plasticity, neurotransmission,
neuroinflammation, and neuronal survival (Fanelli & Serretti, 2022) (see Figure 1).
Disruptions in brain insulin signalling can lead to dopaminergic dysfunction,
particularly affecting the mesolimbic reward circuit, which modulates hedonic
responses (Gruber et al., 2023). Such alterations may contribute to anhedonia,
characterised by a diminished ability to experience pleasure and reduced
motivation, which is a core symptom of depression that is often resistant to available
pharmacotherapies (Gruber et al.,, 2023; Martone et al.,, 2024). Insulin receptors
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are highly expressed in the mesolimbic dopamine system, including the ventral
tegmental area (VTA), nucleus accumbens (NAc), and striatum, which regulate
reward processing and motivation (Gruber et al., 2023). Under normal physiological
conditions, insulin enhances dopamine clearance by increasing dopamine transporter
(DAT) expression, while simultaneously reducing glutamatergic excitatory input,
ultimately regulating extracellular dopamine levels (Gold, 2015; Gruber et al,
2023). However, IR impairs these mechanisms. IR reduces DAT expression, leading
to excess extracellular dopamine, particularly in the NAc and striatum. Although
transient increases in dopamine might initially enhance reward sensitivity, chronic
dysregulation disrupts synaptic plasticity, blunting hedonic response (Carter &
Swardfager, 2016). Neuroimaging studies in individuals with IR consistently show
diminished responsivity of reward-related brain regions, supporting the association
between metabolic dysfunction and anhedonia (Carter & Swardfager, 2016; Gruber et
al., 2023). The phosphoinositide 3-kinase (PI3K)/Akt (protein kinase B) pathway, which
is a component of insulin signalling, regulates dopamine clearance by modulating
DAT expression and function. Experimental studies demonstrate that acute insulin
application in the VTA enhances DAT activity through PI3K and mammalian target
of rapamycin (mTOR) signalling pathways, reducing somatodendritic dopamine
levels (Fanelli et al., 2025; Gruber et al., 2023). However, chronic hyperglycaemia
and prolonged IR impair these regulatory mechanisms, leading to glutamatergic
dysregulation and neurotoxicity in the medial prefrontal cortex (mPFC), a region
implicated in mood regulation and cognitive control (Fanelli et al.,, 2025). Insulin
signalling also influences corticostriatal circuits, which regulate reward anticipation,
effort-based decision-making, and goal-directed behaviour. Disruptions in these
pathways are linked to reduced motivation, a defining feature of motivational
anhedonia (Gold, 2015). Preclinical models of diet-induced IR demonstrate deficits
in effort-based reward tasks, mirroring the behavioural phenotypes observed in
individuals with MDD (Gruber et al., 2023).

In addition to insulin, insulin-like growth factor-1 (IGF-1) plays a role in neuronal
function and mood regulation (Fanelli et al., 2025). Despite structural similarities
between insulin and IGF-1, these hormones exhibit distinct spatial distribution and
functional roles within the CNS (Werner & LeRoith, 2014). Both insulin and IGF-1
activate overlapping intracellular pathways, such as PI3K/Akt and mitogen-activated
protein kinase (MAPK) cascades, yet their receptor distribution varies, influencing
their distinct contributions to neurobiology (Fanelli et al., 2025). Insulin receptors
are abundantly expressed in the hippocampus, cerebral cortex, hypothalamus, and
cerebellum — regions involved in learning, memory, and emotional regulation.
IGF-1 receptors, while also widely distributed, are particularly concentrated in the
cortex, hippocampus, and thalamus, with moderate expression in the olfactory
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bulb, hypothalamus, and cerebellum (Fanelli et al., 2025). Experimental findings
indicate that IGF-1 promotes hippocampal neurogenesis, and reduced IGF-1
levels are associated with depressive-like behaviours in animal models (Fanelli
et al., 2025). Furthermore, IGF-1 interacts with serotonin receptors, including the
5-HT3 receptor, facilitating neurogenesis and exerting antidepressant-like effects
independent of traditional serotonin reuptake mechanisms (Fanelli et al., 2025).

An additional disorder-overarching trait associated with altered insulin-mediated
dopamine regulation is impulsivity, a defining feature of ADHD, BD, and substance
use disorders (Eckstrand et al., 2017). Insulin signalling in the striatum influences
dopamine clearance and synaptic availability, and its dysregulation leads to
heightened impulsivity in addition to impaired reward processing (Daws et al., 2011).
In individuals with IR, blunted insulin responses correlate with dopaminergic
dysfunction, potentially predisposing them to impulsivity-driven behaviours
(Eckstrand et al., 2017; Gruber et al., 2023). Beyond psychiatric conditions, insulin
dysfunction has also been linked to impulsivity in obesity, where alterations in
reward sensitivity and impulse control contribute to disinhibited eating behaviours
and compulsive reward-seeking (Sfera et al., 2017). Neuroimaging studies indicate
that individuals with high impulsivity scores exhibit structural and functional
abnormalities in the orbitofrontal cortex and prefrontal regions, areas critical for
decision-making and self-regulation (Sfera et al., 2017). These deficits, observed
in both psychiatric impulsivity and obesity-related behaviours, suggest a shared
metabolic-neurobehavioural vulnerability. Additionally, epidemiological studies
report that obese individuals display increased risk-taking behaviours, supporting
an association between metabolic dysfunction and impulsivity (Sfera et al., 2017).
The connection between IR, impulsivity, and altered reward processing extends
beyond metabolic conditions and is particularly evident in ADHD, where deficits
in impulse control manifest in difficulties with academic performance (Faraone et
al., 2015). Impaired insulin signalling may further exacerbate impulsivity in BD and
SUDs, where dysregulated reward sensitivity is a core component of the underlying
pathophysiology (Gomez-Coronado et al., 2018).

Beyond its role in reward, motivation, and impulsivity, IR has also been
implicated in cognitive inflexibility, a feature observed in ASD, schizophrenia,
OCD, and AD, as previously mentioned (Barlattani et al., 2023). This executive
dysfunction is characterised by rigid thought patterns, difficulty adapting to new
information, and repetitive behaviours. Preclinical studies suggest that IR impairs
behavioural adaptation and decision-making by altering neuronal signalling within
corticostriatal pathways, which regulate habit formation, goal-directed behaviour,
and cognitive flexibility (Sullivan et al., 2023). For example, high-fat diet-induced
IR in rodents has been shown to increase perseverative responding and reduce



General introduction |

behavioural flexibility, closely mirroring cognitive impairments observed in OCD and
ASD (Yao et al., 2023). Moreover, TALLYHO/JngJ mice, a preclinical model of T2DM,
exhibit behavioural phenotypes suggestive of compulsivity, a trait often associated
with cognitive rigidity. (Sullivan et al., 2023; van de Vondervoort et al., 2019). These
findings support the hypothesis that metabolic dysfunction may contribute to
impaired cognitive flexibility and suggest that metabolic dysregulation may be a
contributing factor to cognitive dysfunction across multiple psychiatric conditions,
underscoring the need for integrative approaches in psychiatric research.

IR is also increasingly recognised as a contributing factor to neurodegeneration.
In AD, impaired insulin signalling in the brain has gained attention, leading
some researchers to describe AD as “type 3 diabetes” due to its overlap with
T2DM in terms of insulin receptor dysfunction, glucose metabolism deficits, and
neuroinflammation (De Sousa et al., 2020; Nguyen et al., 2020). Defective insulin
signalling in AD contributes to amyloid-f aggregation, tau hyperphosphorylation,
and neuroinflammatory cascades, all of which lead to synaptic dysfunction and
neuronal loss (De Sousa et al.,, 2020; Kellar & Craft, 2020). Importantly, markers of
altered insulin signalling are detectable even in preclinical stages of AD, suggesting
arolein disease progression (Stanley et al., 2016). Given such evidence, therapeutic
approaches targeting insulin pathways have been explored: intranasal insulin
administration has been shown to improve cognitive function in individuals with
mild cognitive impairment and AD, with some studies indicating modulation of
amyloid-f levels and insulin signalling pathways (Arnold et al., 2018). Interestingly,
the cognitive benefits of intranasal insulin appear genotype-dependent, with
APOE €4 non-carriers experiencing more pronounced improvements (Arnold et al.,
2018). Neuroimaging studies have demonstrated that intranasal insulin enhances
resting-state functional connectivity in the hippocampus and increases regional
cerebral blood flow, further supporting its potential role in mitigating AD-related
neuropathology (Arnold et al., 2018). While AD provides a prominent example of
the link between insulin dysregulation and cognitive impairment, there is growing
recognition that similar mechanisms, such as neuroinflammation and disrupted
glucose metabolism, may also play roles in mood disorders, schizophrenia, and
OCD, as previously mentioned (Fernandes et al., 2022; Kapogiannis et al., 2019;
Martin et al., 2021; van de Vondervoort et al., 2016).

Although the exact mechanisms linking psychiatric and IR-related conditions
remain under investigation, existing research underscores the importance of
understanding possible shared biological pathways, of which insulin signalling is
one, more thoroughly. Investigating these mechanisms could provide a foundation
for identifying biomarkers and developing early intervention strategies to mitigate
the burden of psychiatric-metabolic multimorbidity. Considering psychiatric
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disorders within a broader framework of diseases of the body and not only of
the mind can thus contribute to refined diagnostic models, improved treatment
strategies, and better patient outcomes.

Importance of genetic studies in psychiatry and cross-disorder
findings among psychiatric disorders

Psychiatric disorders are heritable, as demonstrated by twin and family-based
studies. Estimates suggest that genetic factors explain up to 80% of the phenotypic
variability for certain psychiatric disorders (Watson et al., 2020). A way to find out
which genetic factors contribute to psychiatric disorders is to perform genome-
wide association studies (GWASs), as has been done for schizophrenia, BD, and
MDD, and many other psychiatric conditions (Howard et al., 2019; Mullins et al.,
2021; Trubetskoy et al., 2022). In GWASs, millions of common genetic variants — i.e.,
single-nucleotide polymorphisms (SNPs) with a minor allele frequency exceeding
1% in the population) — are systematically examined across the genome and tested
for allele frequency differences between individuals with a certain condition and
those without it, in order to identify susceptibility loci. While individual common
genetic variants typically exert small effects on disorder risk, their cumulative
contribution accounts for a substantial proportion of genetic liability (Trubetskoy
etal., 2022).

Two important insights have emerged from GWAS investigations in the conditions
of interest for this thesis. First, psychiatric disorders display high levels of polygenicity,
meaning that risk is conferred by numerous, possibly thousands, of variants spread
throughout the genome, each with a small effect. SNP-based heritability estimates
from GWASs indicate that common variants explain only a part of disorder liability,
e.g. approximately 8.4% of MDD liability (Major Depressive Disorder Working
Group of the Psychiatric Genomics Consortium. Electronic address & Major
Depressive Disorder Working Group of the Psychiatric Genomics, 2025) and 24% for
schizophrenia (Trubetskoy et al., 2022). The polygenic patterns also extend to IR-
related conditions, such as obesity and T2DM, which rank among the most heritable
common diseases. Twin studies estimated the heritability of adiposity measures
at 50-90% and that of T2DM at 72% (Bouchard, 2021; Willemsen et al., 2015).
Large-scale GWASs have identified multiple genomic loci associated with these
conditions and related traits (Mahajan et al., 2022; Pulit et al., 2019; Watanabe
et al., 2019). Second, extensive genetic overlap is observed among different
psychiatric disorders.

Cross-disorder genomic analyses have e.g. revealed significant positive genetic
correlations of schizophrenia with BD, as well as with MDD, albeit to a lesser extent,
suggesting shared underlying risk factors (Cross-Disorder Group of the Psychiatric
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Genomics Consortium, 2019). Similarly, moderate genetic correlation has been
observed between AN, OCD, and TS, indicating that phenotypic comorbidity in
clinical settings may, at least in part, reflect shared genetic architecture (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2019). Beyond disorder-
specific genetic relationships, a general psychopathology factor (p-factor) has been
proposed as a single latent dimension that captures shared genetic liability across
multiple psychiatric disorders (Sprooten et al., 2022). Based on structural equation
modelling (SEM) and principal component analysis, the polygenic p-factor explains
between 20% and 43% of SNP effects across disorders (Sprooten et al., 2022). This
genomic dimension reflects pleiotropic effects of common genetic variants, meaning
that many risk loci contribute to multiple disorders rather than being disorder-
specific. Building upon this framework, recent cross-disorder genomic studies using
refined statistical techniques, such as genomic SEM and transcriptome-wide SEM
(T-SEM), have further refined our understanding of shared and distinct genetic
architectures. Recent work by Grotzinger et al. (2023) applied T-SEM to analyse
13 major psychiatric disorders and identified five transdiagnostic genomic factors,
which group psychiatric disorders based on shared genetic risk: thought disorders
(schizophrenia, BD), compulsive disorders (OCD, AN, TS), internalising disorders
(MDD, anxiety disorders, post-traumatic-stress disorder), neurodevelopmental
disorders (ADHD, ASD), and SUDs (Grotzinger et al., 2023). These results support the
view that genetic psychiatric risk factors do not conform to categorical diagnostic
boundaries but rather contribute to shared biological liabilities across disorders,
challenging conventional diagnostic classifications.

Beyond disorder-specific constructs, genetic influences extend to broader traits
with transdiagnostic relevance. For instance, neuroticism and sensitivity to early-life
stress, both traits with substantial heritability, are strongly correlated with mood
and anxiety disorders (Nagel et al., 2018). This shared heritability underscores the
idea that genetic liability is distributed along continuous dimensions rather than
restricted to discrete diagnostic categories, another piece of evidence supporting
the need for a shift toward dimensional or transdiagnostic conceptualisations of
psychiatric conditions. Polygenic scores (PGSs), which are derived from large GWAS
summary statistics, provide a means to quantify genetic risk along such dimensions.
PGSs aggregate the effects of multiple common genetic variants into a single score,
estimating an individual’s genetic predisposition to a particular trait or disorder
(Kullo et al., 2022; Oliva et al., 2023). PGSs are instrumental in studying genetic
overlap among psychiatric conditions; for the time being, their predictive value
remains limited due to low variance explained and limited generalisability across
populations, with current models capturing only a small proportion of disease risk
in psychiatric disorders (Lewis & Vassos, 2020). Although PGSs have been used to
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examine transdiagnostic liability, their role in risk stratification and personalised
treatment remains under investigation (Kullo et al., 2022; Oliva et al., 2023).

GWASs have successfully been used to identify multiple psychiatric risk genomic
loci; translating these associations into biological disease mechanisms is the current
challenge. Several factors contribute to this difficulty, which include the following:
most genome-wide significant loci are located in non-coding regions, making it
unclear how they influence gene expression and neur(on)al function (Schipper &
Posthuma, 2022); moreover, pleiotropy — where a single genetic variant influences
more than one trait — complicates causal inference, making it challenging to
determine whether a specific genetic variant contributes directly to disease risk
or reflects broader transdiagnostic liability (Hemani et al., 2018). Integrative
approaches that combine genetic findings with transcriptomic, epigenomic, and
functional data are needed to infer causal mechanisms and identify biologically
relevant pathways associated with psychiatric disorders (Gallagher & Chen-Plotkin,
2018).These approaches can help refine our understanding of how genetic variation
translates into disease risk, setting the stage for more mechanistic insights into
psychiatric pathology. In addition, imaging genetics studies have provided insights
into how polygenic risk influences brain structure and function, helping to bridge
the gap between GWAS findings and neurobiological mechanisms (Gallagher &
Chen-Plotkin, 2018).

Two decades of genome-wide studies and extension into other molecular
‘omics’ approaches have advanced our understanding of genetic risk in psychiatric
disorders considerably, but many open questions remain. Among them is the
question how genetic influences extend beyond the CNS. The extent to which
psychiatric-somatic (e.g., IR-related metabolic) comorbidity reflects shared genetic
factors remains unresolved. The next steps involve exploring whether the same or
related genetic factors and related mechanistic pathways predispose individuals to
both psychiatric and IR-linked phenotypes.

Research objectives

Above, | have argued that psychiatric disorders represent a significant global
health challenge, characterised by diverse clinical manifestations and overlapping
transdiagnostic traits, substantial personal and societal costs, as well as reduced
life expectancy. High rates of comorbidity among psychiatric disorders, frequent
psychiatric-somatic comorbidity, and the high prevalence of suboptimal treatment
response and outcome complicate clinical management. This all emphasises the
urgent need for research that integrates biological, clinical, and epidemiological
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perspectives to move beyond categorical diagnostic frameworks toward a
dimensional, biological mechanism-informed understanding of psychiatric
disorders that offers room for shared symptom domains and physical comorbidities.

Addressing this need, the overarching goal of this thesis was to investigate
how psychiatric disorders and IR-related metabolic conditions influence clinical
progression, treatment response, and overall multimorbidity in patients, and
to determine whether these highly heritable neuropsychiatric and somatic
conditions share genetic risk factors and biological mechanisms. As previously
mentioned, recent insights suggest that the influence of insulin extends beyond
peripheral tissues and modulates central processes such as neurotransmission and
neuroplasticity (Milstein & Ferris, 2021). Parallel findings indicate that numerous
psychiatric conditions display considerable polygenic risk overlaps (Grotzinger,
Mallard, et al., 2022; Lee et al., 2021), which may potentially also extend to somatic
conditions like obesity and T2DM. Here, | focused on investigating how the
comorbidity between neuropsychiatric and IR-related conditions influences both
the clinical trajectory and treatment outcomes of affected individuals, and whether
the observed comorbidity reflects shared genetic and biological pathways.
My thesis addresses three core objectives, integrating clinical and genomic
methodologies to systematically investigate the intersections of psychiatric and
IR-related conditions:

Objective 1: examine the clinical burden and phenotypic
associations between psychiatric and insulin resistance-

related conditions

The first objective was to assess the clinical, cognitive, and treatment-related burden
associated with the comorbidity between psychiatric disorders and IR-related
conditions. In Chapters 2 to 4, | approached this question through systematic
reviews, longitudinal analyses, and large-scale observational studies. These
chapters evaluated how dysregulated glucose and insulin parameters coincide with
cognitive impairment, treatment resistance, and distinct symptom profiles in mood
disorders, aiming to clarify the clinical consequences of this comorbidity.

Objective 2: investigate the genetic architecture that underpins
psychiatric-insulin resistance multimorbidity

The second objective was to determine the extent to which genetic factors
contribute to the observed comorbidity between psychiatric disorders and
IR-related metabolic conditions. This was explored in Chapters 5 to 7, in which
| assessed global and regional genetic overlap between psychiatric and metabolic
traits. Additionally, latent transdiagnostic genetic factors were examined to
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determine whether shared genetic liability contributes to multimorbidity across
psychiatric and IR-related metabolic conditions.

Objective 3: identify potential biological mechanisms underlying the
comorbidity and explore therapeutic targets

through integrative genomic approaches

Third, in this thesis, | evaluated whether the convergent genetic and biological
processes — once identified — might be leveraged for improving personalised
treatment interventions. Building on novel genomic findings, in Chapters 6 and 7,
| investigated how shared genetic risk translates into dysregulated molecular
processes. Furthermore, Chapter 3 examined whether existing pharmacological
compounds, such as antidiabetic medications, could be repurposed for psychiatric
disorders. More broadly, | evaluated throughout the thesis potential druggable
targets shared between psychiatric and metabolic conditions, providing preliminary
insights into novel therapeutic interventions, which will need further validation in
future studies.

In this work, | adopted an interdisciplinary approach, systematically linking
clinical, genomic, and other -omics data to elucidate how metabolic dysfunction
intersects with the pathophysiology of psychiatric disorders. By bridging metabolic
and psychiatric research domains, | aimed to provide a deeper understanding of
the biological processes that contribute to psychiatric and IR-related metabolic
multimorbidity. My findings lay the groundwork for future studies focused on
improving risk stratification, early detection, treatment personalisation, and the
development of interventions for individuals with increased susceptibility to both
psychiatric and metabolic conditions.

General overview of methods and datasets

Different methods were adopted in this thesis to investigate the association
of metabolic conditions IR-related with psychiatric disorders and related
symptomatology. The studies described in Chapters 2 through 7 collectively draw
upon literature reviews, large-scale primary care databases, and publicly available
summary statistics from extensive GWASs. The methodological frameworks and
participant samples used across Chapters 2 through 7 are summarised here, with
detailed descriptions provided in the respective chapters.
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Systematic review approach on IR-related conditions and cognitive
functioning (Chapter 2)

A systematic review was conducted to consolidate evidence on the relationship
between IR-related somatic conditions and cognition within the UK Biobank cohort.
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 guidelines (Page et al., 2021), the review protocol was pre-registered
in PROSPERO (CRD42022335139). Comprehensive searches were performed across
PubMed, Scopus, and Web of Science using structured queries designed to capture
studies investigating the phenotypic relationship between IR-related conditions,
including T2DM, obesity, MetS, and various measures of glycaemic and lipidaemic
control, and cognitive outcomes. The search was limited to peer-reviewed studies
published up to April 2022. Included studies were assessed for quality and risk
of bias using the Newcastle-Ottawa Scale (Herzog et al., 2013; Wells et al., 2000),
ensuring a rigorous appraisal of both longitudinal and cross-sectional findings.
This systematic review established the epidemiological and cognitive correlates of
IR-related conditions in a population-based sample, providing an evidence-based
foundation for subsequent analyses.

Review of longitudinal evidence and Mendelian randomisation
studies on mood disorders and type 2 diabetes mellitus (Chapter 3)
To investigate the bidirectional relationship between mood disorders, including
MDD and BD, and T2DM, Chapter 3 reviewed evidence from longitudinal and
Mendelian randomisation (MR) studies. Longitudinal studies were prioritised
for their ability to evaluate temporal associations and provide insights into the
directionality of the relationship between these conditions. MR studies, which
leverage genetic variants strongly associated with T2DM or mood disorders as
instrumental variables, were also reviewed to explore whether these associations
might reflect underlying causal relationships. Additionally, the review included a
qualitative synthesis of studies examining how comorbid T2DM and mood disorders
impact the clinical progression of either condition, along with an evaluation of the
effects of psychotropic medications on diabetes risk and the potential therapeutic
repurposing of antidiabetic drugs for mood disorders. By integrating these lines
of evidence, this chapterexamined the relationship between mood disorders
and T2DM, with attention to causality, temporality, and potential implications
for treatment.
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Analyses on the UK Biobank primary care-linked data focusing on
IR-related conditions and depression treatment outcomes (Chapter 4)
Analyses in Chapter 4 leveraged data from the UK Biobank, a prospective cohort
study of approximately 500,000 individuals aged 40-69 years at recruitment
(2006-2010), encompassing diverse genetic, lifestyle, and clinical data (Bycroft et
al., 2018). This study specifically utilised the subset of 230,096 participants with
linked primary care records. Diagnostic and prescription codes from Read V2, CTV3,
and BNF systems were used to identify depression diagnoses, IR-related conditions
(e.g., obesity, T2DM), antidepressant prescriptions, and treatment outcomes.
Antidepressant response/resistance was operationalised based on prescription
records and antidepressants switches. Additionally, temporal relationships between
diagnoses of MDD and IR-related conditions were evaluated to distinguish between
MDD-first and IR-first scenarios. To complement phenotypic analyses, PGSs for
IR-related traits (e.g., body mass index, T2DM, fasting glucose, triglycerides,
homeostasis model assessment for IR [HOMA-IR]) were computed using PRS-CS-
auto (Ge et al., 2019). PGSs were derived using the largest GWAS summary statistics
available. Statistical models assessed the associations of IR-related conditions and
related PGSs with antidepressant treatment outcomes, adjusting for covariates
such as age, sex, socioeconomic status, smoking, and population structure (via
principal components).

Pairwise global genetic correlations and stratified genetic
covariance analyses (Chapter 5)

This analysis leveraged the largest available GWAS summary statistics to explore
shared heritable risks between neuropsychiatric disorders and IR-related conditions.
Disorders such as AD, ASD, OCD, and others were compared with IR phenotypes,
including T2DM, MetS, and obesity, as well as IR-related traits like HOMA-IR and
fasting glucose. Genome-wide genetic correlations were quantified using Linkage
Disequilibrium Score Regression (LDSC) (Bulik-Sullivan et al., 2015), a robust
method that estimates the extent of genetic liability shared across phenotypes.
To refine these findings, GNOVA (GeNetic cOVariance Analyser) (Lu et al., 2017)
was employed to perform stratified genetic covariance analyses focused on gene
sets relevant to insulin signalling. These complementary approaches provided
both global and pathway-specific insights into the genetic interplay between
psychiatric and IR-related traits, advancing the understanding of potential shared
biological mechanisms.
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Local genetic correlation, functional annotation, and colocalisation
analyses (Chapter 6)

Chapter 6 employed the Local Analysis of [co]Variant Association (LAVA) (Werme
et al., 2022) to identify genomic loci demonstrating significant local genetic
correlations between IR-related metabolic conditions (i.e., obesity, T2DM, and
MetS) and psychiatric disorders (e.g., mood disorders, OCD). Colocalisation analyses
were then conducted within these loci to assess whether shared causal variants
could explain the observed correlations. These analyses used robust Bayesian
colocalisation frameworks, such as SuSiE (Wallace, 2021), to account for multiple
causal variants within each region. GWAS summary statistics for both IR-related
conditions and psychiatric disorders were harmonised using consistent genome
builds (GRCh37/hg19) to ensure methodological rigor. Subsequent functional
annotation and gene mapping were performed using tools like Functional Mapping
and Annotation of GWASs (FUMA) (Watanabe et al., 2017) and SNPnexus (Oscanoa
et al., 2020). Gene mapping incorporated positional and expression quantitative
trait loci (eQTL) data from brain-relevant tissues, as defined by Genotype-
Tissue Expression (GTEx), to identify genes potentially driving the associations.
Furthermore, druggability analyses were integrated into the pipeline, leveraging
databases such as GeneCards, DrugBank, and Drug-Gene Interaction Database
(DGIdb) to assess whether the identified genes represented viable pharmacological
targets. This step aimed to identify candidate genes with therapeutic relevance,
expanding the translational potential of the findings.

Genomic and transcriptome-wide structural equation modelling,
and drug repurposing analyses (Chapter 7)

Chapter 7 employed genomic SEM (Grotzinger et al., 2019) to uncover latent
genetic factors underlying the shared liability between psychiatric disorders
and IR-related conditions. This multivariate framework utilised GWAS summary
statistics from five psychiatric disorders (e.g, ADHD, MDD, OCD) and three
IR-related conditions (e.g., T2DM, obesity, MetS), leveraging SNP-based heritability
estimates and genetic covariance matrices derived from LDSC. Exploratory and
confirmatory factor analyses identified a latent multimorbidity factor, reflecting
shared genetic risk across these conditions. This latent factor was then linked to
brain morphometric traits, expanding the analysis to neuroanatomical correlates
of the shared genetic architecture. T-SEM (Grotzinger, de la Fuente, et al., 2022)
extended this analysis by incorporating tissue-specific gene expression data. This
approach utilised eQTL datasets from brain regions (e.g., hippocampus, prefrontal
cortex) and the pituitary gland, as well as transcriptomic data from external
resources like GTEx and PsychENCODE. The analyses allowed the identification
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of genes whose expression in neural and peripheral tissues contributed to the
shared genetic liability. To enhance translational relevance, prioritised genes from
the multivariate GWAS and T-SEM were analysed for therapeutic potential using
PharmOmics (Chen et al., 2022), a platform for drug repurposing that integrates
transcriptomic and pharmacological data. Drugs targeting prioritised genes were
filtered based on criteria such as blood-brain barrier permeability, cross-species
concordance, and opposing gene regulation patterns to disease-related changes,
offering a framework for potential therapeutic applications.
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Abstract

Clinical and genomic studies have shown an overlap between neuropsychiatric
disorders and insulin resistance (IR)-related somatic conditions, including obesity,
type 2 diabetes, and cardiovascular diseases. Impaired cognition is often observed
among neuropsychiatric disorders, where multiple cognitive domains may be
affected. In this review, we aimed to summarise previous evidence on the relationship
between IR-related diseases/traits and cognitive performance in the large UK
Biobank study cohort. Electronic searches were conducted on PubMed, Scopus,
and Web of Science until April 2022. Eighteen articles met the inclusion criteria and
were qualitatively reviewed. Overall, there is substantial evidence for an association
between IR-related cardio-metabolic diseases/traits and worse performance on
various cognitive domains, which is largely independent of possible confoundings.
The most consistent findings referred to IR-related associations with poorer verbal
and numerical reasoning ability, as well as slower processing speed. The observed
associations might be mediated by alterations in immune-inflammation, brain
integrity/connectivity, and/or comorbid somatic or psychiatric diseases/traits. Our
findings provide impetus for further research into the underlying neurobiology and
possible new therapeutic targets.



Cognitive function and insulin resistance in UK Biobank |

Introduction

The main feature of somatic diseases and traits linked to insulin resistance (IR)
is a deficient response to insulin in peripheral tissues. IR is prominently involved
in the pathophysiology of obesity, type 2 diabetes mellitus, and cardiovascular
diseases (e.g., atherosclerosis, hypertension, coronary artery disease), as well
as related traits, such as elevated glycated haemoglobin levels, high body mass
index (BMI), and increased systolic blood pressure (Mancusi et al., 2020; Ormazabal
et al., 2018). These conditions frequently coexist and are considered modern-
day epidemics due to their increasingly high prevalence as a result of, amongst
others, unhealthy diets and sedentary lifestyle (Seidell, 2000). While the role of
IR in these somatic diseases and traits is well established (DeFronzo & Ferrannini,
1991; Mancusi et al., 2020; Ormazabal et al., 2018), it is becoming clearer that
insulin also plays an important role in the central nervous system. For example,
insulin is involved in important brain processes like neurotransmission, synaptic
plasticity, and neuroprotection (Klinedinst et al., 2019). A growing body of studies
shows evidence of both clinical and genetic overlap between IR-related somatic
diseases and neuropsychiatric disorders (Bralten et al., 2020; Fanelli et al., 2022;
(Wimberley et al., 2022). For example, many studies have linked Alzheimer’s
disease to altered insulin signalling, and some people even refer to Alzheimer’s
disease as type 3 diabetes mellitus (Kroner, 2009). In addition, studies in rat models
have shown that local administration of insulin in the hippocampus modulates
cognitive function, including spatial memory, and that selective blockade of the
insulin signalling pathway leads to dysfunction of memory abilities, as also occurs
following IR induced by a high-fat diet (McNay et al., 2010). These observations
indicate a potential role for insulin-related processes on cognitive phenotypes, like
cognitive impairment and dementia. Cognitive impairment and IR-related somatic
diseases are important contributors to reduced quality of life and life expectancy
and constitute major health and economic burdens for society (Kazukauskiene et
al., 2021). Another relevant issue is that cognitive deficits are commonly seen in
individuals with neuropsychiatric disorders and are seldom alleviated by currently
available pharmacotherapies, usually persisting even in individuals who show a
good overall response to treatment (Hori et al., 2020; Vinasi et al., 2021).

The recent availability of very large, population-based, well-phenotyped cohorts
makes it possible to extend analyses beyond clinically defined phenotypes, allowing
for a better investigation of the relationship of IR with cognition in humans. The
largest of these cohorts addressing cognition and IR-related conditions is the UK
Biobank cohort, which is a deeply phenotyped, large prospective study aimed
at studying the general health of middle-aged and older people (=40 years old)
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across the United Kingdom (Sudlow et al., 2015). From 2006 to 2010, approximately
500,000 individuals were recruited for baseline assessments, which included
detailed characterisation of sociodemographic, lifestyle, environmental factors,
medical history, physical measures, and cognition. The richness of this data
collection makes the UK Biobank study particularly useful to address the relationship
between IR-related somatic diseases and traits with cognition. Cognitive function
was initially measured by the pairs matching and reaction time tests using fully
automated, unsupervised touchscreen questionnaires. Additional cognitive tests
were later added to the baseline assessment and therefore administered only to
a subsample of participants, namely prospective memory, numeric memory, and
fluid intelligence tests. A subset of 20,000 participants was invited to repeat the
assessment of baseline measures (between 2012 and 2013), which included the
same baseline tests as cognitive measures, excluding the numeric memory test.
Several cognitive function tests (i.e., fluid intelligence, pairs matching, and numeric
memory tests) were later re-implemented as web-based questionnaires (completed
between 2014 and 2015 by around 110,000 participants), and two additional tests
were included, the trail making and the symbol digit substitution tests. Starting
in 2016 and with ongoing recruitment, a subsequent imaging assessment visit
has been introduced, where participants are also assessed on additional cognitive
domains by tests such as the tower rearranging, the matrix pattern completion, and
the trail making tests, for example. A further detailed description of the UK Biobank
cognitive tests can be found in Lyall et al. (2016).

With UK Biobank making its collected data available to the research community,
many studies had the ability to investigate the cognitive phenotypes in this cohort
in combination with somatic IR-related disorders and traits. While multiple studies
included parts of this exploration in their analyses, the literature still lacks a good
overview of the gathered information. Therefore, we performed a literature review
to identify and summarise the studies that investigated the relationship between
IR-related diseases and traits and different cognitive domains in the UK Biobank
study cohort, the largest population cohort addressing both a wide range of
cognitive measures as well as diverse IR-traits and diseases on the same individual.

Methods

Study protocol

This review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement (Page et al,,
2021). The full review protocol was registered on the international Prospective
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Register Of systematic reviews (https://www.crd.york.ac.uk/prospero, PROSPERO
ID: CRD42022335139).

Searching strategy

An electronic search of the literature was conducted on the PubMed, Scopus, and
Web of Science databases looking for studies investigating the relationship between
IR-related diseases/traits and cognitive functioning in the UK Biobank study cohort. We
used the Polyglot Search Translator tool to transform the PubMed query into formats
appropriate to other databases (Clark et al., 2020). We included papers published until
April 2022, when the databases were last searched. We used search terms related
to cognition and to IR-related traits and diseases, including terms encompassing
glycaemic and lipidaemic control/homeostasis, diabetes mellitus, obesity and obesity-
related measures, metabolic syndrome, cardiovascular disease, Cushing’s syndrome,
and polycystic ovary syndrome. The search was restricted to studies conducted using
the UK Biobank study cohort and where any of the search terms appeared in the title
or abstract. The full search queries used are provided in the Supplementary Materials.
Duplicates were removed using EndNote 20.2 (Clarivate, Philadelphia, PA).

Two reviewers (GF and NRM) independently screened the results retrieved from
the search query to identify potentially relevant studies by evaluating titles and
abstracts. The full text of the selected studies and those of uncertain relevance
were obtained and thoroughly evaluated to ascertain the pertinence of each study.
In the event of disagreement during the study selection process, a decision was
made through open discussion (and, in the case of persistent inconsistency of
judgement, with the involvement of a third reviewer (JB)).

Inclusion and exclusion criteria

Studies were included if: 1) they investigated the phenotypic relationship between
cognition and IR-related traits/diseases; 2) the analyses were conducted within the
population-based UK Biobank cohort; 3) written in English. Reasons for exclusion
were: 1) being a meta-analysis or review; 2) being a preprint (not yet peer-reviewed);
3) being a commentary, a letter, a congress abstract, or an editorial; 4) not having
the outcomes of interest measured/reported.

Study quality and risk of bias assessment

The Newcastle-Ottawa Scale (NOS) for cohort studies (Wells et al., 2000) and its
version adapted for cross-sectional studies (Herzog et al., 2013) were used to assess
the quality and risk of bias of each included study (longitudinal or cross-sectional,
respectively) by two independent reviewers (GF and NRM) (Herzog et al., 2013).
A maximum score of 9 points (NOS for cohort studies) or 10 points (NOS adapted
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for cross-sectional studies) could be assigned to a study. Studies with 0 to 4 points

were deemed to be of unsatisfactory quality, 5 to 6 points to be of adequate quality,

7 to 8 points to be of good quality, and 9 to 10 points to be of very good quality.

Regardless of the NOS score, all studies were considered for qualitative synthesis.

Any disagreements were settled through consensus among reviewers.

Table 1. Description of the cognitive function tests administered throughout the UK
Biobank study. Further information on how each test was conducted can be found at:
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026.

UK Biobank
cognitive tests

Cognitive domains ®

UK Biobank Field
ID(s) used by
reviewed studies

Cognitive assessment
time point (number
of participants with

valid data) ®
Prospective Prospective Memory Field ID: 20018 Baseline (subsample:
memory Prospective N=117,517)
memory result Repeat (subsample:
N=20,329)
Imaging (subsample:
N=48,178)
Trail Making Test, Executive function, divided Field ID: 6348 Duration  Imaging (subsample:
partA(TMT-A) § attention, visual scanning, to complete numeric N=35,663)
processing speed path (trail #1)
Trail Making Test, Executive function (and more  Field ID: 6350 Imaging (subsample:
part B (TMT-B) § specifically, set shifting/ Duration to complete N=35,663)
cognitive flexibility, and alphanumeric
working memory (short-term  path (trail #2)
memory)), divided attention,
visual scanning, conceptual
tracking, processing speed
Tower rearranging  Executive function (and Field ID: 21004 Imaging (subsample:
more specifically, planning, Number of N=34,933)
working memory (short-term  puzzles correct
memory), problem solving,
and response inhibition),
visuospatial memory,
procedural and skill learning
Numeric memory Working memory (short- Field ID: 4282 Baseline (subsample:
term memory), attention Maximum digits N=51,799)
remembered correctly  Imaging (subsample:
N=36,535)
Pairs matching Visual declarative memory Field ID: 399 Baseline (subsample:
(short-term memory) Number of incorrect N=497,791)
matches in round Repeat (subsample:
N=20,344)

Imaging (subsample:
N=48,202)
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UK Biobank
cognitive tests

Cognitive domains ®

UK Biobank Field
ID(s) used by
reviewed studies

Cognitive assessment
time point (number
of participants with
valid data) ®

Fluid intelligence Verbal and numerical Field ID: 20016 Fluid Baseline (subsample:
reasoning intelligence score (i.e,  N=165,430)
sum of the correct Repeat (subsample:
answers given) N=20,110)
Imaging (subsample:
N=47,291)
Matrix pattern Non-verbal reasoning Field ID: 6373 Imaging (subsample:
completion Number of puzzles N=35,243)

correctly solved

Reaction time

Processing speed

Field ID: 20023 Mean
time to correctly
identify matches

Field ID: 404¢ Duration
to first press of snap-
button in each round

Baseline (subsample:
N=496,590)

Repeat (subsample:
N=20,254)

Imaging (subsample:
N=47,878)

Baseline (subsample:
N=493,160)

Repeat (subsample:
N=20,265)

Imaging (subsample:
N=47,926)

Symbol digit
substitution

Processing speed, attention

Field ID: 23324
Number of symbol
digit matches
made correctly

Imaging (subsample:
N=35,264)

2Different cognitive test may correlate with one another because they can measure the same cognitive
domain or general cognitive ability. Definitions of associated cognitive domains to each test are
according to Fawns-Ritchie and Deary (2020) and Lezak (2012).
bBaseline (N=502,536), repeat assessment (N=20,346), and/or imaging assessment visit (tot N=37,102).
Maximum sample size (N) for each cognitive assessment visit and test according to UK Biobank data
Showcase: https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026).

¢Used only by Morys et al. (2021); Talboom et al. (2021).

§ The Trail Making Test difference (TMT part B - part A) score removes the speed and completion time
component from the evaluation of shifting ability; the Trail Making Test B/A ratio score (TMT part B/
part A) better captures set-switching ability.
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Figure 1. PRISMA flow diagram of the systematic review process.
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The initial literature search yielded 244 results; these articles were screened to
determine whether they met the inclusion criteria. After removing 156 duplicates,
the remaining 88 studies were screened for possible inclusion. After the title and
abstract inspection, 28 studies were selected as potentially relevant to our research
topic and their full texts were collected. Finally, after careful assessment of full texts
and discussion between reviewers, 18 pertinent studies matching the inclusion
criteria were identified and reviewed (Figure 1). The quality of the included studies,
according to the NOS assessment tool (Herzog et al., 2013; Wells et al., 2000), ranged
from adequate to very good, indicating a low risk of bias (Table 2).

Results are reported in detail in the following paragraphs, grouping evidence
regarding obesity, diabetes mellitus, and cardiovascular diseases and their related
traits. With regard to diabetes mellitus, most of the studies included in this review
did not make a clear distinction between type 2 diabetes mellitus and other (much
less prevalent) types of diabetes, such as type 1 diabetes mellitus, and gestational
diabetes mellitus, among others. Only three reviewed studies (Garfield et al., 2021;
Hagenaars et al., 2017; Whitelock et al., 2021) report having applied additional
algorithms and/or filtering inclusion criteria in order to retain as cases mainly
those with type 2 diabetes, for example by excluding cases diagnosed before
a certain age or those that started insulin therapy soon after diagnosis (features
more commonly associated with type 1 diabetes mellitus). However, despite the
lack of clear distinguishing measures by the other studies, it should be taken into
consideration that it has been reported that 90% of all confirmed cases of diabetes
mellitus in the UK population are type 2 diabetes mellitus, about 8% are type 1
diabetes mellitus, and the other forms account for the remaining 2% (Whicher et
al., 2020). Therefore, for practical and readability reasons, hereafter we will refer to
findings involving either type 2 diabetes mellitus or diabetes mellitus not otherwise
specified simply as 'diabetes’.

Obesity and related measures

BMI is the most used quantitative measure to diagnose and classify obesity. BMI
was significantly associated with performance in several cognitive domains in the
UK Biobank study. Higher BMI has been associated with worse performance on
fluid intelligence (Ferguson et al. (2020); Hagenaars et al. (2017); Olivo et al. (2019),
but not by Morys et al. (2021)), numeric memory (Morys et al., 2021; Olivo et al,,
2019), matrix pattern completion (Ferguson et al., 2020), trail making (i.e., higher
Trail Making Test B/A ratio; Olivo et al. (2019)), and symbol digit substitution
tests (Ferguson et al.,, 2020). On the other hand, no association between BMI
and prospective memory was found (Morys et al., 2021). Interestingly, the
association between BMI and numeric memory was partially mediated (9%) by
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brain white matter hyperintensity (WMH) load (Morys et al., 2021). Similarly, the
association between BMI and symbol digit substitution was found to be mediated
(approximately 19%) by WMH, along with grey matter volume and a general factor
of mean diffusivity (Ferguson et al., 2020).

Results were mixed for the association between BMI and slower reaction time,
with one study finding an association (Ferguson et al., 2020), and another one
not (Morys et al., 2021). Similarly, no consistent results were found regarding BMI
and pairs matching and tower rearranging tests. While one study found increasing
BMI associated with worse performance in the pairs matching test at the baseline
assessment (Olivo et al,, 2019), two studies examined the data collected during the
imaging assessment visit, available only from a subset of participants, and found
that BMI was associated with better performance on this test (Ferguson et al., 2020;
Morys et al., 2021). Regarding the tower rearranging test, while one study found
no association with BMI (Ferguson et al., 2020), another, using more limited sample
size, found increasing BMI associated with better performance (Morys et al., 2021).

When BMI was used to categorise individuals, those with overweight (BMI: 25 kg/m?2
to 29.9 kg/m2) or obesity (BMI =30 kg/m2) showed worse cognitive performance
compared to normal-weight individuals (BMI: 18.5 to 24.9 kg/m2). In particular,
both overweight and obesity were associated with poorer performance on fluid
intelligence, numeric memory, and pairs matching, while only obesity (but not
overweight) was associated with worse performance on the trail making (Trail
Making Test B/A ratio (Olivo et al., 2019)). Severe obesity (BMI =40 kg/m2) was
associated with worse performance on reaction time, TMT part B (but not part A),
fluid intelligence, and symbol digit substitutions (Lyall et al., 2019). The presence
of obesity, when combined with diabetes, hypertension, and frequent alcohol
use, was associated with worse performance on the pairs matching task, and this
association was found to be partially mediated by lower grey matter volume in the
posterior cingulate cortex (Suzuki et al., 2019).

Considering other continuous obesity-related measures, increasing waist-to-
hip ratio (WHR) has been associated with worse performance on fluid intelligence
and numeric memory tasks, but no association was found with reaction time,
prospective memory, pairs matching, and tower rearranging tasks (Morys et al.,
2021). The authors suggested that the association between WHR and numeric
memory and fluid intelligence were partially mediated by brain WMH load
(7% and 12%, respectively). No association was found between WHR and a
continuous latent variable representing executive function (i.e., predicting
reaction time and pairs matching performances) (Veldsman et al., 2020). Body fat
percentage, in turn, has been associated with worse numeric memory and better
pairs matching performance, while no association was found with fluid intelligence,
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reaction time, prospective memory, and tower rearranging (Morys et al., 2021). The
associations found with body fat percentage were found to be partially mediated
(9%) by WMH load.

Adipose mass is another quantitative measure related to obesity. A longitudinal
study found that more visceral and non-visceral adipose mass independently
predicted a decline in fluid intelligence performance over a period of six years, both
in men and women (Klinedinst et al., 2019). Conversely, the presence of greater
lean muscle mass favoured gains in fluid intelligence across time. Interestingly,
they show important immune system-related mediation effects as the association
between visceral adipose mass and fluid intelligence was either partially (men) or
fully (women) mediated by changes in leukocyte subpopulation counts (Klinedinst
etal, 2019).

Diabetes and related measures

Diabetes has been associated with worse performance on fluid intelligence, both
at baseline (Lyall et al., 2017) and on follow-up data from the imaging assessment
visit (Newby and Garfield, 2022). Others, however, did not find such an association
(Whitelock et al., 2021). Intriguingly, when comorbidity with hypertension was
considered, individuals with only diabetes had worse performances on fluid
intelligence than those with comorbid diabetes and hypertension (Newby and
Garfield, 2022).

Diabetes has also been repeatedly associated with slower reaction time (Garfield
et al.,, 2021; Lyall et al., 2017; Talboom et al., 2021; van Gennip et al., 2021), although
this was not always the case (Whitelock et al., 2021). These results were shown to be
independent of possible confounders, such as socio-economic and demographic
variables, depression, medications use, and BMI (Garfield et al., 2021; Lyall et al.,
2017). Furthermore, diabetes has also been associated with worse performance on
a latent executive function continuous variable, representing reaction time and pairs
matching test scores (Veldsman et al., 2020). In addition to participants with known
diabetes (i.e., self-reported, diagnosed by a doctor and/or hypoglycaemic medications
use), those classified with either prediabetes (i.e., HbATc 42-48 mmol/mol)
or undiagnosed diabetes (i.e., HbAT1c=48 mmol/mol) at baseline also showed slower
reaction time than normoglycaemic participants (i.e.,, HbA1c =35 and <42 mmol/
mol; Garfield et al. (2021)). The association between diabetes and worse reaction
time performance has been replicated using data from the imaging visit assessment
and individuals with comorbid diabetes+hypertension showed worse performance
than individuals with non-comorbid hypertension or neither diabetes nor
hypertension (Newby and Garfield, 2022). Noteworthy, another study showed that
the higher the number of cardio-metabolic risk variables found within the normal
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ranges (i.e., HbA1c, blood pressure, and BMI), the least reaction time impairment
difference was found between individuals with and without diabetes (van Gennip et
al., 2021). A machine learning approach was used to examine whether diabetes and
cardiovascular disease could predict reaction time intraindividual variability (RT-1IV)
over time (i.e., across baseline and two follow-up assessments). This was considered
a sensitive measure of cognitive change over time, with greater RT-IIV used as
an indicator of longitudinal cognitive decline. Although it was outperformed by
alternative models whose variables captured psychiatric phenotypes (i.e., anxiety
and depression models, with an area under the curve (AUC) of 0.68 and 0.63,
respectively), the 'diabetes and cardiovascular' model showed a significantly better
classification performance than randomness (AUC=0.60; Li et al. (2020)).

The results about the relationship between diabetes and the pairs matching
test, however, have been less consistent. While some reported an association
between known diabetes and better baseline performance on this test (Garfield et
al., 2021), others found an association with worse performance only when diabetes
was comorbid with hypertension (no association otherwise) (Lyall et al., 2017), and
others reported no association in smaller sample sizes from baseline (van Gennip
et al., 2021; Whitelock et al., 2021) or imaging assessment visit data (see Table 2)
(Newby and Garfield, 2022).

Interestingly, the same study that showed an outperformance of individuals with
diabetes in the pairs matching task at baseline, further combined this data with the
scores obtained during the UK Biobank follow-up assessment to address cognitive
decline (i.e., measured by regressing the follow-up scores on the baseline scores).
This longitudinal analysis indicated that participants with prediabetes and with
known diabetes might be subject to a faster deterioration rate of pairs matching
abilities than normoglycaemic individuals, suggesting a higher risk for cognitive
decline (Garfield et al., 2021).

Using baseline data, Whitelock and colleagues (2021) found that participants
with diabetes showed worse performance on numeric memory compared to
those without diabetes, while they did not differ in terms of prospective memory
performance. No differences between those with and without diabetes at the
imaging assessment visit were found on tower rearranging performance either
(Newby and Garfield, 2022).

At the imaging assessment visit, participants with diabetes performed worse
on symbol digit substitution, trail making (i.e., trail making test B-A), and matrix
pattern completion than those without diabetes (Newby and Garfield, 2022). When
comorbidity with hypertension was considered, both the group of participants with
only diabetes and those with comorbid diabetes+hypertension performed worse
on symbol digit substitution compared to those with only hypertension or none
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of these diseases (Newby and Garfield, 2022). Interestingly, when cardiovascular
confounders were considered (i.e., smoking, BMI, hypertension, high cholesterol),
the associations between diabetes and worse cognitive performance were
attenuated, in particular matrix pattern completion and symbol digit substitution
performances (Newby and Garfield, 2022). On this note, others have shown that
the association between diabetes and cognitive performance was partially
mediated (between 10 and 59%) by cardiovascular diseases (i.e., hypertension,
thromboembolism, stroke, coronary artery disease (CAD)), depressive symptoms,
and to a lesser extent by visceral obesity (i.e., WHR), possibly via immune-
inflammatory dysregulation that is commonly present in each of these three
conditions (Whitelock et al., 2021).

Lastly, the effect of diabetes and other cardio-metabolic diseases on cognition
was found to be additive, meaning that an increasing number of concomitant
cardio-metabolic diseases was associated with greater cognitive impairment
(Lyall et al., 2017). Furthermore, a latent variable composed of BMI, diabetes,
hypercholesterolaemia, hypertension, and smoking, was found to be associated
with a cognition latent variable (composed of fluid intelligence, pairs matching,
reaction time, prospective memory, and numeric memory scores). However, this
association was no longer significant after controlling for brain global efficiency, a
measure of brain network integration (Shen et al., 2020). Further investigation through
mediation analysis supported the (partially) mediating role of global efficiency in the
relationship between vascular burden and cognition (Shen et al., 2020).

Cardiovascular diseases and traits

CAD, defined as (self-reported) presence of angina and/or myocardial infarction
diagnosis, was associated with poorer performance on fluid intelligence (Hagenaars
etal., 2017; Lyall et al., 2017) and on pairs matching and reaction time tests (Lyall et
al., 2017). These associations remained significant independently from the presence
of other cardio-metabolic diseases (i.e., diabetes and/or hypertension) and after the
adjustment for socio-economic and demographic variables, depression, medication
use, and BMI (Lyall et al., 2017). In addition, stroke was also associated with worse
processing speed on the reaction time test (Talboom et al., 2021).

Hypertension has also been repeatedly associated with worse cognitive
performance. Although hypertension may have diverse underlying pathophysiology,
it has been estimated that 60-70% of hypertension cases during adulthood may be
directly attributed to adiposity and IR (Jameson et al., 2018). Furthermore, IR has been
shown to contribute to hypertension by impairing vascular peripheral resistance
and endothelial function (Mancusi et al., 2020). A history of hypertension (i.e., self-
reported having previously received hypertension diagnosis by a doctor) has been
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associated with poorer performance in fluid intelligence (Lyall et al., 2017) and slower
reaction time (Lyall et al., 2017; Talboom et al., 2021). Regarding the pairs matching
task, no association was found with a history of non-comorbid hypertension, but
associations with worse performance were observed when hypertension was
comorbid with either diabetes or CAD (Lyall et al., 2017). When taking multiple
combined measures to define hypertension (i.e., SBP =140 mmHg and diastolic blood
pressure 290 mmHg and/or use of blood pressure medication and/or self-reported
history of a hypertension diagnosis by a doctor), results replicated the associations
with fluid intelligence and reaction time and in turn also revealed an association
with worse performance on the pairs matching task (Newby et al., 2021). However,
no association was found with symbol digit substitution, matrix pattern completion,
tower rearranging, and trail making (difference between part B and part A) tasks,
for which data was acquired during the imaging assessment visit and thus was
only available from a subset of UK Biobank participants (Newby et al., 2021). Data
from hospital admission records for hypertension treatment has also been used to
classify UK Biobank participants regarding hypertension. A history of hospitalisation
for hypertension treatment was associated with lower fluid intelligence scores,
corroborating previous findings. Additionally, it was associated with reduced
prospective and numeric memories (Feng et al., 2020). Of note, this association with
prospective memory was found to be partially mediated by reduced brain functional
connectivity, which explained 11.5% of the association between hypertension and
these cognitive task results (Feng et al., 2020).

When assessing the effect of systolic blood pressure as a continuous measure
rather than a dichotomous hypertension diagnosis, (higher) SBP was associated
with (lower) fluid intelligence (Ferguson et al., 2020; Hagenaars et al., 2017) and
matrix pattern completion (Ferguson et al., 2020) scores, while no significant
association was found with reaction time, symbol digit substitution, tower
rearranging, and pairs matching tests (Ferguson et al., 2020). It is suggested that
the association between SBP and fluid intelligence is, at least partially, mediated
by differences in brain morphometry and connectivity/integrity (Ferguson et
al., 2020). Furthermore, increasing SBP was associated with a graded reduction
in performance on a continuous latent variable representing executive function
(i.e., corresponding to reaction time and pairs matching tasks) in participants not
taking antihypertensive medication (Veldsman et al., 2020). This was especially true
for mid-aged participants (44-69 years) and less so for older ones (>70 years). For
the participants taking antihypertensive medication (which can be considered as
a proxy for hypertension diagnosis), however, executive performance was stable
for the SBP range <140 mmHg, while increasing SBP above this threshold was
associated with a decline in performance (Veldsman et al., 2020).
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Discussion

This literature review aimed to summarise previous evidence on the relationship
between somatic diseases and traits linked to insulin resistance and cognitive
performance across several domains based on studies conducted in the large
population-based UK Biobank study cohort. Overall, there is substantial evidence
for an association between IR-related cardio-metabolic diseases and traits and
general worse performance on various cognitive domains, which is largely
independent of possible confounding factors, such as general socio-economic and
demographic factors and the use of medications.

Worse fluid intelligence performance consistently associated with IR-related
diseases/traits

The most consistent finding across studies within the UK biobank cohort is the
association between the presence of IR-related diseases and traits with worse
performance on fluid intelligence. This test was designed to evaluate verbal and
numerical reasoning, which refers to the ability to derive logical inferences and solve
novel problems through evaluation, abstraction, and integration of information and
hypothesis testing. Fluid intelligence was initially assessed on a subsample of UK
Biobank participants at baseline, with follow-up assessments at different time points.
Despite encompassing a smaller sample size compared to other tasks (Table 1),
it shows largely consistent findings for all the IR-related phenotypes reviewed (i.e.,
obesity, diabetes, cardiovascular disease, and their related traits), independent
of the methods and corrections for confounders applied. Verbal and numerical
reasoning have been linked to the activity of the dorsolateral and medial prefrontal
cortex (which is part of the frontal lobe) and the posterior parietal cortex in previous
studies in samples other than UK Biobank (Kolb and Wishaw, 2012). In line with
this evidence, Ferguson and colleagues reported a mediating effect of frontal
lobe volumes in the association between high SBP and poor verbal and numerical
reasoning (Ferguson et al., 2020). Noteworthy, impairment in this cognitive domain
has been associated with higher psychopathological severity across psychiatric
disorders, a recent diagnosis of specific phobia, bipolar disorder and impulse-control
disorders among adolescents (Keyes et al., 2017), and depressive symptoms in elderly
individuals (Murray et al.,, 2013). Moreover, fluid intelligence deficits significantly
contribute to worse performance in executive tasks among patients with Parkinson’s
disease, frontotemporal dementia, and schizophrenia (Roca et al., 2014).
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Slower reaction time also associated with IR-related phenotypes

Similarly, the associations between IR-related phenotypes and slower reaction time
have been quite consistent in the UK biobank literature. The reaction time task
constitutes one of the tasks with the largest sample size in the UK Biobank, being
assessed in the whole baseline cohort, in addition to the follow-up assessments.
The reaction time task measures processing speed, which is the ability to quickly
perform a variety of cognitive, perceptual, and motor processes, whose impairment
has been linked to white matter integrity (Papanicolaou, 2017). Processing speed
deficit is an important characteristic of Parkinson’s disease and several major
psychiatric disorders, such as autism spectrum disorder, mood disorders, attention-
deficit/hyperactivity disorder (ADHD), schizophrenia, obsessive-compulsive
disorder, and panic disorder (Millan et al., 2012), which in turn have been shown
to overlap (clinically and genetically) with IR-related somatic diseases (Fanelli et al.,
2022; Wimberley et al., 2022).

Better pairs matching performance: a counterintuitive finding?

A less consistent but perhaps more intriguing finding concerns the associations
with better performance on the pairs matching test for individuals with IR-related
somatic phenotypes, which was assessed at baseline for the whole cohort and
included in all cognitive reassessments. The pairs matching test assesses visual
short-term memory, which is the ability to retain information from a visual stimulus
for a short period of time after the stimulus has ceased and allows the comparison
of perceptual information of objects separated in time and space (Hollingworth &
Luck, 2008). Impairment in visual memory is a typical characteristic of Alzheimer’s
disease, and it is also commonly present in ADHD, although it has been less strongly
reported in other neuropsychiatric disorders (Millan et al., 2012). The seemingly
counterintuitive association with pairs matching outperformance was found with
higher BMI (Ferguson et al., 2020; Morys et al., 2021), body fat percentage (Morys et
al., 2021), and diabetes (Garfield et al., 2021). Although others have not replicated
these findings (see the Results section), the repeated association of IR-related
diseases and traits with better cognitive performance seems to be unique for pair
matching, but a pathophysiological explanation behind such findings does not
appear to be obvious at present. Noteworthy is the fact that the pairs matching
task did not present a good test-retest reliability between baseline and a repeat
assessment (in a subsample of 20,000 participants) about four years apart (Lyall
et al., 2016). Furthermore, an intriguing finding arises from a longitudinal study
showing that, despite a baseline association with better performance on this
test, individuals with diabetes had a steeper decline in performance on follow-up
assessment compared to individuals without diabetes (Garfield et al., 2021).
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Possible underlying mechanisms linking IR and cognition

Several mechanisms have been suggested as possibly underlying the link between
IR and cognition, including the insulin modulation of some neurotransmitter
systems (among others, the cholinergic and glutamatergic systems having a
major role in cognition), immune-inflammation and oxidative stress, and altered
hypothalamus-pituitary axis function (Butterfield & Halliwell, 2019; De Felice et
al., 2022). In particular, insulin has been implicated in the modulation of synaptic
plasticity and memory through its effects on the expression and presentation
on the plasma membrane of glutamatergic receptors (De Felice et al., 2022).
Furthermore, insulin is responsible for glucose uptake in the hippocampus and
some cortical areas through the membrane translocation of glucose transporter
type 4 (GLUT4) (Koepsell, 2020), whose inhibition was shown to hinder the
procognitive insulin's action on working memory in rats (De Felice et al., 2022). It
is also important to consider that obesity and diabetes lead to a state of systemic
inflammation with an increase in proinflammatory cytokines that is also reflected
in the brain (Lyra et al,, 2019). Here, microglia activation results in the production
of proinflammatory cytokines, such as interleukin (IL)-6, tumour necrosis factor-a,
IL-1B, which may interfere with insulin signalling (Kullmann et al., 2016).
Interestingly, a UK Biobank study showed that the association between fluid
intelligence and lean muscle or visceral adipose mass was mediated by the levels of
different leukocyte subpopulations (Klinedinst et al., 2019).

Interestingly, it has been suggested that accumulation of amyloid-p oligomers,
which is a hallmark of Alzheimer's disease neuropathology, may lead to cognitive
impairment through defective brain insulin signalling (Tumminia et al., 2018).
Animal studies have shown that impairments in insulin signalling following
intracerebroventricular infusion of amyloid-B oligomers were accompanied by
memory deficits in several behavioural tasks. In turn, IR may accelerate amyloid-8
production and brain accumulation (Tumminia et al., 2018). IR may also result in
microcirculation damage and atherosclerosis, leading to brain reduced oxygen
supply and tissue suffering, as also revealed by widespread white matter and
functional connectivity alterations, as well as regional brain volumes variations
seen in individuals with diabetes or obesity, also in UK Biobank (Ferguson et al.,
2020; Garfield et al., 2021; Hsu et al., 2012; Morys et al., 2021; Suzuki et al., 2017).
These neuroimaging correlates and cardiovascular alterations may mediate the
relationship between IR and worse cognitive performance, as repeatedly suggested
by some authors (Feng et al., 2020; Ferguson et al., 2020; Morys et al., 2021; Suzuki
et al., 2017; Whitelock et al., 2021). In fact, recent studies further suggest that
white matter integrity may mediate the link between cognitive performance and
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both variations in HbA1c levels (Repple et al., 2021) and genetic liability to type 2
diabetes (Repple et al., 2022).

Interestingly, one study in the UK Biobank also suggested that depressive
symptoms may mediate the relationship between diabetes and cognitive function
(Whitelock et al., 2021). Of note, depression and diabetes are both predisposing
factors for each other, and common molecular pathways have been proposed
(Nguyen et al,, 2018). In addition, oral hypoglycaemic medications used in diabetes,
such as liraglutide, have shown clinical usefulness in improving cognitive function
in people with depression (Fanelli & Serretti, 2022). As a result, it is possible to
speculate that biological factors common to diabetes and depression may have an
influence on cognition.

Strengths and limitations

This review should be considered in light of clear strengths and limitations. The
UK Biobank represents the largest population-based cohort where both cognitive
measures and IR-related somatic diseases and traits have been deeply phenotyped.
While large-scale Danish/Scandinavian population-based registries include
information on clinical diagnoses and prescribed medication to identify cardio-
metabolic and psychiatric conditions, they do not contain information on cognitive
measures (Schmidt et al., 2019) or only do so for a very limited subsample derived
from smaller clinical/follow-up studies on specific patient groups (e.g., patients with
dementia or diabetes) that are then linked to national registries (Fereshtehnejad et
al., 2015; Wium-Andersen et al., 2019). The richness of the phenotypes measured
in UK Biobank allows going beyond clinical comparisons and addressing the full
spectrum of phenotypes as a continuum in the general population. In order to allow
cognitive assessment of an unprecedented number of individuals under the same
protocol, some of the most widely used and clinician-rated cognitive instruments
were specifically adapted for the UK Biobank study. Thus, a possible limitation is that
the cognitive measures under the UK Biobank protocol were obtained by concise,
unsupervised touchscreen assessments and not under traditional standardised
conditions (Sudlow et al., 2015). It is important, however, to also weigh in as a clear
strength of this approach the possibility of addressing several facets of cognition
in a short period of time and that, despite the adapted nature of this protocol, the
UK Biobank tests showed overall good validity, demonstrating moderate-to-high
test-retest reliability and substantial correlation with the reference tests from which
they were derived (Fawns-Ritchie and Deary, 2020). However, it is worth considering
that the UK Biobank sample population was recruited on a voluntary basis and is
not fully representative of the general UK population. In fact, participants were
generally healthier, less likely to smoke or consume alcohol, and resided in less socio-
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economically deprived areas than non-participants (Fry et al., 2017). Nevertheless,
because of its large sample size and variety of exposure measurements, it can still
provide valid scientific inferences about the link between exposures and health
outcomes that are generalisable to other populations (Fry et al., 2017). Another
possible point of attention is that the derivation of the diabetes phenotype was
heterogeneous across different studies, sometimes pooling type 1 and type 2
diabetes mellitus, or even other types of diabetes, which have partially or entirely
different aetiopathogenetic mechanisms. This may have added noise to the results
of individual studies, contributing to some of the inconsistent findings described
in this review. Last but not least, the study design was cross-sectional in most of
the reviewed studies, limiting any interpretation of a temporal and/or causal link
between IR-related diseases and cognitive changes. Cardio-metabolic diseases may
have a deleterious impact on cerebral blood flow and, consequently, on cognitive
function, while individuals with poorer cognitive abilities may be less likely to
engage in healthy lifestyles and behaviours that prevent cardio-metabolic diseases.
Although a causal relationship between IR-related cardio-metabolic diseases and
impaired cognitive function is likely, data from the UK Biobank calls for caution
for the time being. Studies on independent cohorts are required to clarify any
causal relationship.

Directions for future research

In addition to focusing on better understanding the causal relationship
between cognitive impairment and cardio-metabolic diseases linked to IR,
both at the genomic and clinical levels, future research should also examine the
potential contribution of immune-inflammatory, oxidative, and central insulin
signalling mechanisms. Genomic research examining the pleiotropic effect of
genes implicated in insulin signalling, immune-inflammation, and HPA axis
modulation on both cognition and IR-somatic diseases might aid in unravelling
the mechanisms behind the phenotypic associations highlighted in this review.
Additional studies are also needed to further investigate the possible underlying
mechanisms (and/or alternative explanations) for the seemingly counterintuitive
findings associating IR-related conditions and better performance on visual
memory tasks. Functional analyses, possibly including (animal) modelling, could
provide further answers to the underlying pathological mechanisms involved in
the differential effects observed for specific cognitive domains. Future research
could benefit from a more homogeneous classification of participant diagnostic
groups (e.g., better distinction between type 2 diabetes mellitus cases from those
with other types of diabetes) to allow better interpretation of the findings and/or
uncovering of possible underlying biology. Furthermore, despite the lack of clear
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knowledge on the causal relationship between IR-related conditions and cognitive
performance nor the identification of (possible) shared underlying factors so far,
growing evidence suggests a potential future use of hypoglycaemic drugs, such as
metformin, proliferator-activated receptor-y (PPAR-y) agonists, and glucagon-like
peptide 1 receptor agonists (GLP1RA), in the treatment of cognitive deficits seen
in various neuropsychiatric disorders (Fanelli & Serretti, 2022; Zhang et al., 2020).
However, large-scale randomised clinical trials are required to confirm their efficacy
and safety, which could possibly also inform on the shared pathophysiological
mechanisms. Cognitive impairment is still one of the most challenging symptom
domains to tackle with available pharmacological therapy (Fanelli & Serretti,
2022). As a result, gaining a deeper understanding of the processes underlying the
reported links between IR and cognitive impairment will be critical in identifying
potential new targets for pharmacological and/or behavioural intervention in
patients with neuropsychiatric disorders.

Conclusion

In conclusion, this literature review of UK Biobank studies found substantial
evidence for an association between an overall worse performance on various
cognitive domains and cardio-metabolic traits and diseases related to insulin
resistance, such as obesity, type 2 diabetes mellitus, hypertension, and CAD, in the
general adult population. The most consistent findings are related to a detrimental
influence on measures of verbal and numerical reasoning, as well as processing
speed, while results for visual short-term memory have been mixed or indicated
enhanced performance. It has been suggested that these associations might
be mediated by alterations in immune-inflammation or white matter integrity/
connectivity or brain volumes. Considering the worldwide increasing levels of
multimorbidity and public health concerns about rising rates of cognitive decline,
our findings offer important suggestions for future research in this crucial field
and draw the attention of clinicians to the importance of primary and secondary
prevention in people with cardio-metabolic diseases.
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Abstract

Mood disorders and type 2 diabetes mellitus (T2DM) are prevalent conditions that
often co-occur. We reviewed the available evidence from longitudinal and Mendelian
randomisation (MR) studies on the relationship between major depressive disorder
(MDD), bipolar disorder and T2DM. The clinical implications of this comorbidity
on the course of either condition and the impact of antidepressants, mood
stabilisers, and antidiabetic drugs were examined. Consistent evidence indicates a
bidirectional association between mood disorders and T2DM. T2DM leads to more
severe depression, whereas depression is associated with more complications and
higher mortality in T2DM. MR studies demonstrated a causal effect of MDD on
T2DM in Europeans, while a suggestive causal association in the opposite direction
was found in East Asians. Antidepressants, but not lithium, were associated with a
higher T2DM risk in the long-term, but confounders cannot be excluded. Some oral
antidiabetics, such as pioglitazone and liraglutide, may be effective on depressive
and cognitive symptoms. Studies in multi-ethnic populations, with a more careful
assessment of confounders and appropriate power, would be important.
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Introduction

Mood disorders and type 2 diabetes mellitus (T2DM) are among the top leading
causes of disability worldwide, affecting around 4% and 6% of the population,
respectively (Dattani et al., 2021; Khan et al., 2019; Vos et al,, 2020). In addition to
their high prevalence, epidemiological studies showed that mood disorders and
T2DM often co-occur (Wimberley et al., 2022). Compared to the general population,
people with major depressive disorder (MDD) or bipolar disorder (BD) have twice the
chance of being diagnosed with T2DM (Wimberley et al., 2022). Likewise, the risk of
developing MDD or BD is almost doubled after a diagnosis of T2DM (Anderson et al.,
2001; Wang et al., 2019; Wimberley et al., 2022). This comorbidity results in high social
costs, reduced quality of life, and increased mortality (Holt et al., 2014; Molosankwe
etal, 2012).

Many biological and behavioural/environmental factors may contribute to this
comorbidity. Patients with mood disorders frequently lead an unhealthy lifestyle,
e.g., altered sleep patterns, sedentariness, poor diet, and tobacco/substance use,
which may predispose to insulin resistance and T2DM (Fanelli & Serretti, 2022).
Second-generation antipsychotics are often prescribed for mood disorders, and
they can have significant metabolic effects (Goncalves et al., 2015). In terms of
biological mechanisms, genome-wide and locus-specific patterns of genetic overlap
were found between MDD, BD and T2DM, suggesting co-heritability between these
conditions, and pointing to the existence of common aetiopathogenetic mechanisms
(Fanelli, Erdogan, et al., 2022; Fanelli, Franke, et al., 2022), as illustrated in Figure 1.
These may include alterations in insulin signalling and inflammation, as well as
hypothalamic-pituitary-adrenal (HPA) axis and gut microbiota dysregulations
(Fanelli & Serretti, 2022). Insulin signalling plays a pivotal role in the brain, where it
is involved in neuroprotection, neurogenesis, and synaptic plasticity (Nguyen et al.,
2018). Of note, insulin from the periphery can cross the blood-brain barrier, but it is
also centrally produced by the choroid plexus, and insulin receptors are present on
both neurons and astrocytes (Lyra et al., 2019). Brain insulin resistance may impact
the dopaminergic-mesolimbic reward circuit and the expression of glutamatergic
receptors in the hippocampus, with detrimental effects on cognition and hedonic
perceptions (Fanelli & Serretti, 2022). Both depressive and manic episodes were
linked to persistent low-grade inflammation and elevated levels of circulating pro-
inflammatory cytokines, such as interleukin-6 and tumour necrosis factor-a, which
can lead to affective symptoms through HPA axis hyperactivity and changes in
neurotransmission (Nguyen et al., 2018). A systemic inflammatory state, further
induced by adipose tissue accumulation and a high-fat diet, may also disrupt insulin
signalling, leading to the development of T2DM (Nguyen et al., 2018).
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Figure 1. Summary of the evidence from epidemiological and MR studies.

Meta-analyses and cohort studies corroborated the hypothesis of a bidirectional relationship between
mood disorders and T2DM. MDD predicts higher risk of subsequent T2DM, as confirmed by Mendelian
randomisation studies. Results of studies on T2DM predicting incident mood disorders are contrasting.
Many biological and behavioural/environmental factors may contribute to this correlation. The
co-occurrence of T2DM and mood disorders can lead to worse outcomes for both conditions.
Abbreviations: HPA, Hypothalamic—pituitary-adrenal; MR, Mendelian randomisation; T2DM, type 2
diabetes mellitus.

Given the considerable individual and socio-economic impact of the comorbidity
between T2DM and mood disorders, and the steadily increasing prevalence of both
these conditions in recent years (Holt et al., 2014; Molosankwe et al., 2012; World
Health Organization, 2022), it is of paramount interest to clarify the presence of
a possible causal link between them, to improve their prevention and treatment.
To achieve this objective, we reviewed the literature on the association between
mood disorders (MDD and BD) and T2DM. We specifically focused on longitudinal
studies, as these are best suited to provide information about bidirectional and
temporal relationships, and Mendelian randomisation (MR) studies, which use
single-nucleotide polymorphisms (SNPs) associated with an exposure to examine
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whether an association between the exposure and an outcome is compatible with
a causal effect (Davies et al., 2018). In addition, we provided a qualitative synthesis
of longitudinal studies on the impact of co-occurring mood disorders and T2DM,
in terms of clinical course of either condition. Finally, we evaluated the potential
beneficial or detrimental effects of psychotropic treatments in T2DM, as well as of
antidiabetic drugs in mood disorders.

Methods

An electronic search of the literature was conducted on PubMed looking for studies
investigating the relationship between T2DM and mood disorders, namely MDD
and BD, and published from inception until September 2022. We used search terms
related to mood disorders and diabetes mellitus, as well as antidepressants, mood
stabilisers, and antidiabetic medications. The search was restricted to published
only studies, written in English and conducted in human samples. The full
search query used is available as Supplementary Methods. The final search was
performed on October 3%, 2022.

The records resulting from the search query were screened to find potentially
relevant studies by inspecting titles and abstracts. The full text of the selected
studies and those of uncertain relevance were retrieved and carefully examined to
determine the pertinence of each study. Then the list of references in the included
articles was screened to identify other potentially eligible studies not captured by
the initial search. Studies whose samples consisted of patients with type 1 diabetes
mellitus were excluded, as well as commentaries, letters and editorials. We only
included longitudinal (i.e., observational studies and clinical trials), meta-analyses
of longitudinal studies, and MR studies, as these are the best suited to study the
temporality and direction of associations and possible causal effects.

The present review was narrative, as a quantitative synthesis and standardised
quality assessment of the included articles were not within the scope of this work.
The main reasons for this choice were the heterogeneity of the considered studies
and the breadth of the research questions and methodologies. However, to provide
a description of the results of our literature search, we synthesised the article
selection process in Figure S1.
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Results

The initial literature search identified 2,130 unique abstracts, out of which
232 full-text articles were evaluated to determine their eligibility. Ultimately,
84 papers were included in the review. The study selection process is summarised
in Figure S1.

Epidemiological studies

Mood Disorders predicting incident T2DM

Previous meta-analyses of prospective studies supported the hypothesis of a link
between depression and a subsequent diagnosis of T2DM (Table S1). In detail,
a meta-analysis of nine studies with a mean follow-up of 9.4 years and a total of
174,035 individuals, found a relative risk (RR) of T2DM of 1.37 in the group with
depression (95% Cl 1.14-1.63) (Knol et al., 2006). This result is similar to what was
reported by a later meta-analysis (RR 1.60, [95% Cl 1.37-1.88]) that extended the
total sample size to 222,019 individuals from 13 studies, with the same average
duration of follow-up (Mezuk et al., 2008). The inclusion of an almost doubled
total sample size did not change the result in a following meta-analysis (Rotella &
Mannucci, 2013).

Other longitudinal studies were published after the mentioned meta-analyses,
and they overall confirmed that depression increases the risk of incident T2DM in
samples with various ethnic origins and clinical characteristics. Two studies used
insurance claims/national registries in Asian samples, extracting data referred to
11,670 and 461,213 individuals, respectively, referred to ~7 years (Chen et al., 2013;
Meng et al.,, 2018). Other studies confirmed the finding, but they showed a smaller
sample size and/or shorter duration of follow-up, and/or they were performed in
samples with specific clinical characteristics. Specifically, a study prescription of
these 2981 individuals found an increased risk of incident T2DM within two years
in those with depression or anxiety, particularly in those with both conditions.
However, this association was attenuated after adjusting for risk factors of T2DM,
such as plasma triglyceride levels and lifestyle (Atlantis et al., 2012). A study on a
large cohort of 161,808 post-menopausal women reported consistent results, but it
considered elevated depressive symptoms rather than a diagnosis of MDD, with a
follow-up of 7.6 years (Ma et al., 2011). This limitation was balanced by the fact that
the study evaluated the persistence of elevated depressive symptoms (baseline
and year 3), which helped in distinguishing between transitory symptoms and
probable MDD. Interestingly, only the group with persistently elevated depressive
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symptoms (probable MDD) had an increased risk of incident T2DM after adjusting
for confounders.

Other consistent evidence from the literature highlighted the synergistic
interaction between metabolic dysregulation/prediabetes and comorbid
depressive symptoms on the risk of T2DM (Deschenes et al., 2016; Schmitz et al.,
2016). However, it should be noted that a recent study on a total of 1,766 individuals
from a German nation-wide cohort, followed for 12 years, showed no increased
risk of incident diabetes in the group with MDD (Nubel et al., 2022). The relatively
small sample size of this study represents a limitation, but as discussed in the next
section, longitudinal cohort studies are not free of potential limitations and risk of
bias, therefore results (both positive and negative) should be interpreted carefully.

Although the cumulative evidence suggests a link between depression and
incident T2DM, it is important to consider the influence of several confounding
factors on the presented results. As mentioned before, adjusting for confounders
reduced the effect size in studies that reported an association. The risk of bias
coming from confounders is often not easy to evaluate, as the available studies
were heterogeneous in terms of sample characteristics and covariates included.

Among potential confounders, undetected diabetes at baseline represents
a relevant variable. Some studies relied on self-reported diabetes at baseline
(e.g., Chen et al. (2013); Ma et al. (2011)), resulting in the risk of not controlling
appropriately for this confounder. However, the exclusion of these studies did
not change the pooled relative risk of T2DM compared to the overall estimate
in an early meta-analysis (Knol et al., 2006). Other than undetected diabetes at
baseline, there are risk factors for T2DM, such as overweight/obesity and lifestyle
(e.g., physical activity and alcohol intake), that not all studies controlled for in an
exhaustive way (Chen et al., 2013; Knol et al., 2006; Mezuk et al., 2008). Notably,
many of these risk factors are shared between depression and T2DM (Milaneschi et
al., 2020), therefore it is fundamental to adjust for them to avoid spurious or inflated
results. Concomitant medications for depression are another important variable
to take in account, as antidepressants and antipsychotics can have an impact on
metabolic parameters (Goncalves et al., 2015; Rotella & Mannucci, 2013). However,
most studies did not adjust for the prescription of these medications (Knol et al.,
2006; Mezuk et al., 2008), and those that did adjust did not consider the specific
medications but the class (e.g.,, Ma et al,, (2011). Interestingly, antidepressant
prescription was associated with an increased risk of incident T2DM, independent
of depressive symptom severity (Andersohn et al., 2009; Kivimaki et al., 2010; Rubin
et al., 2010). However, not all studies that reported an effect of antidepressant
prescription adjusted for psychopathology (Pan et al., 2012). With one exception
(Wium-Andersen et al., 2021), previous studies did not adjust for the concomitant

87




88

| Chapter 3

prescription of antipsychotics. Some antipsychotics are not rarely prescribed
in depression and the prevalence of diabetes is ~12% among people taking
antipsychotics (2-3 folds than the general population; Holt & Mitchell (2015)),
therefore this variable should be considered as covariate in future studies.

Other modulating factors have been investigated in relation to the effect of
depression on the risk of incident T2DM. Several studies considered the severity
of depression and reported higher risk in case of severe and persistent depressive
symptoms (Carnethon et al., 2003; Engum, 2007; Golden et al., 2008; Golden et al.,
2004; Ma et al., 2011; Meng et al., 2018; Windle & Windle, 2013). Data about sex-
specific correlations are contrasting - higher risk in women (Carnethon et al., 2003;
Demmer et al., 2015) or in men (Mezuk et al., 2008) or no effect of sex (Chen et al.,
2013)). Age seems to be a modulating factor, consistent with a couple of studies
that found that the risk of incident T2DM becomes lower as age increases (Chen
et al, 2013; Mezuk et al., 2008). Regarding socio-demographic factors, a lower
education level was associated with increased risk (Mezuk et al., 2008), while social
support does not seem to modify the risk of incident diabetes (Laursen et al., 2017).

Another relevant point to consider is the possible influence of unipolar vs
bipolar depression on the risk of incident T2DM, as these disorders have largely
different pathogenetic mechanisms (Johnston-Wilson et al., 2000). Unfortunately,
there is much less literature on BD in this regard and no meta-analysis to the best
of our knowledge. The available results are not univocal, and in most cases the
potential effects of confounders do not seem appropriately accounted for. One
of the available studies extracted insurance claims from a nation-wide database
in Taiwan, to test the risk of initiation of antidiabetic medications within 10 years
in people with MDD or BD at baseline vs matched controls (Bai et al., 2013). The
authors reported an increased risk in BD but not in MDD; however, they did not
control for prescription of psychotropic medications, body mass index (BMI), and
other risk factors for T2DM, such as prediabetes at baseline. Further, the incidence
of T2DM itself could have been underestimated, because the prescription of
antidiabetic medications was the primary outcome, instead of T2DM diagnosis.
Conversely, studies in the Danish registries found a similar increase in the risk of
incident diabetes in both MDD and BD (Wimberley et al., 2022; Wium-Andersen
et al, 2021). The results were confirmed when antidepressant/antipsychotic
prescription and socio-demographic variables were considered (Wium-Andersen
et al.,, 2021). However, these studies did not control for T2DM risk factors either,
such as BMI, medical comorbidities, and lifestyle at baseline (Wimberley et al., 2022;
Wium-Andersen et al., 2021). A smaller study with a 13-year follow-up included
475 patients with affective psychosis (bipolar or unipolar) and found no increased
risk of incident T2DM after controlling for several confounders, including
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medications, BMI, cholesterol, and inflammation levels (Dieset et al., 2019). Finally,
in a Swedish nation-wide cohort of 6,587,036 individuals, people with a diagnosis
of BD were found to have a ~1.5 fold increased risk of developing diabetes within
7 years, but BMI, lifestyle and medications were not considered as potential
confounders (Crump et al., 2013). Therefore, studies with positive findings were
larger but did not correct appropriately for confounding factors, the only negative
study was smaller but adjusted the analyses for confounding factors in a more
complete manner.

In conclusion, there is quite robust evidence of an increased risk of incident
T2DM in people with depression (at least MDD), but this effect may be largely
explained by shared risk factors between depression and T2DM and concomitant
medications. Overall, epidemiological studies were not able to determine if there
are depression-specific mechanisms that may link depression to the subsequent
development of diabetes.

T2DM predicting incident mood disorders

The hypothesis of an increased risk of depressive disorders in people with a
primary diagnosis of diabetes is controversial (Table S1), as available studies and
meta-analyses reported small effect sizes and they suggested that medications for
T2DM, characteristics of the disease and of individuals, lifestyle, and the modality
used for diagnosis ascertainment could largely account for/modulate the observed
(small) effects.

Two meta-analyses of longitudinal studies reported T2DM as a modest predictor
of subsequent depression, with a pooled RR of 1.15 (95% Cl 1.02-1.30) (Mezuk
et al., 2008) and OR of 1.34 (95% Cl 1.14-1.57) (Chireh et al.,, 2019). However,
sensitivity analyses to test the robustness of findings showed that these results
may be affected by confounders. Studies with clinical measures of depression
indeed reported smaller effects than those using only self-reported data, and the
exclusion of the latter group made the results no longer significant (Mezuk et al.,
2008), similar to results found when considering self-reported diabetes (Chireh et
al., 2019). Further, the exclusion of samples that had short (<5 years) follow-ups also
made the results no longer significant, suggesting that depressive symptoms may
have been undetected at baseline, at least in part of the studies (Mezuk et al., 2008).

Individual studies found sex-specific effects (higher risk of depression/higher
severity of depressive symptoms in women vs men (Jacob & Kostev, 2016; Lloyd
et al., 2020; Salinero-Fort et al., 2018; Trento et al., 2015), age-related effects (Chen
et al., 2013; Trento et al, 2015) and effects of lifestyle, medical comorbidities,
and diabetes medications (e.g., (Golden et al., 2008; Jacob & Kostev, 2016;
Salinero-Fort et al., 2018), though without univocal evidence. This underlines the
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complexity of the relationship between depression and T2DM. For example, older
age in patients with T2DM was found to have a negative impact on the severity of
depressive symptoms (Trento et al., 2015), but older age is also associated with a
longer duration of T2DM and a higher risk of having developed complications of
the disease (e.g., retinopathy, neuropathy, coronary heart disease), which were
associated with increased risk of depression (Jacob & Kostev, 2016; Lloyd et al.,
2020). However, another study reported a higher risk of depression in younger
patients (Chen et al,, 2013). In this regard, it should be noted that the latter study
considered new diagnoses of depression in patients with T2DM within a period of
7 years, while the previously mentioned work just assessed the severity of
depressive symptoms at baseline and at follow-up (after 8 years) (Trento et al., 2015),
therefore there is a substantial difference in study design.

Variables associated with T2DM severity were also suggested as modulators of
the occurrence and the persistence of depressive symptomatology, such as worse
glycaemic control (Fisher et al., 2008; Jacob & Kostev, 2016; Maraldi et al., 2007).
Several lifestyle factors were also associated with a greater risk of depression,
including physical inactivity (Lloyd et al., 2020; Salinero-Fort et al., 2018), higher BMI
and unhealthy eating habits (Lloyd et al., 2020; Schmitz et al., 2013). Consistently with
these findings, high levels of stress and reduced perceived health status were found
to be markers of incident depression (Lloyd et al.; 2020). The association with the risk
of incident depression or depressive mood seems stronger in subjects with treated
vs untreated diabetes, especially in the case of insulin therapy, which could be a sign
of worst glycaemic control or more severe complications/comorbidities (Golden et al.,
2008; Lloyd et al., 2020; Pan et al., 2010). In addition, the psychological burden linked
to the management of a complex therapy may contribute to depressed mood (Golden
et al, 2008). On the contrary, another study demonstrated that the prescription of
insulin and oral antidiabetic drugs did not affect the risk of depression (Jacob and
Kostev, 2016).

The literature is much scarcer for incident BD in T2DM. To the best of our knowledge,
there are only two large studies in population-based cohorts. An earlier study in a
Taiwanese population-based cohort (~800,000 individuals) reported a 2.62-fold higher
risk of a mood disorder (both MDD and BD) in patients with diabetes not taking any
oral antidiabetic medication, but not in those taking an antidiabetic medication
(Wahlqgvist et al., 2012). A more recent study in the Danish registries confirmed
increased odds of BD in patients with previous T2DM (hazard ratio [HR]=2.25, 95%
Cl 2.08-2.43), with an effect size comparable to that observed for incident MDD. The
analyses were adjusted for sex, birth year, and family history of both mood disorders
and T2DM, but they did not consider possible confounding and/or mediating effects
of psychotropic medications and/or lifestyle (Wimberley et al., 2022).
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Based on the discussed evidence, we can conclude that the relationship
between T2DM and incident MDD and BD is complex and likely affected by
multiple modulators. As discussed, a replicated finding was a higher risk of incident
depression in women with T2DM compared to men. However, the most recent
meta-analysis of incident depression in T2DM did not stratify the analyses by sex
(Chireh et al., 2019), and a previous one did not identify sex effects (Mezuk et al.,
2008), but it did not include the recent studies that highlighted the described
higher risk in women (see above). This reflects the general difficulty in taking into
account all the variables that modulate the link between T2DM and depression in
epidemiological studies.

Mendelian randomisation studies

Several MR studies tested the two-way causal association between MDD and T2DM
(Table S2), but none between BD and T2DM. A causal effect of MDD on T2DM was
found by two well-powered two-sample MR studies, using summary statistics of
genome-wide associations studies, including only subjects of European ancestry
and a random-effect inverse-variance weighted (IVW) method (OR=1.22, 95%
Cl 1.09-1.36, and OR=1.26, 95% Cl 1.10-1.43) (Tang et al., 2020; Tao et al., 2022).
This effect was robust to sensitivity analyses that excluded possible horizontal
pleiotropic effects, except for the less efficient Egger-MR —it frequently produces less
precise estimates and suffers from a significant loss of power —, where the direction
of the effect was nevertheless maintained. No causal association was shown in the
opposite direction (T2DM > MDD) by the same studies (Tang et al., 2020; Tao et
al., 2022). This negative finding is in line with an MR study using population-based
individual-level data from a Scottish sample (N = 19,858) (Clarke et al., 2017). To
the best of our knowledge, only one MR study reported a causal association of
T2DM with MDD, using individual-level data from East-Asian ancestry subjects
(N=11,506) (Xuan et al., 2018). The results showed a probable causal effect of T2DM
on MDD (OR=1.83,95% Cl 1.25 - 2.70, and OR=1.57, 95% Cl 1.04-2.37, derived using
the Wald-type estimator with unweighted and weighted genetic scores for T2DM,
respectively). The findings were confirmed by excluding pleiotropic variants and
using the IVW method but not the Egger-MR, where the association was found to
be non-significant and in the opposite direction (Xuan et al., 2018).

Overall, there is robust evidence of a causal effect of MDD on the risk of T2DM
in European populations, while a causal effect in the opposite direction was found
only by one study in East-Asian subjects, and it needs replication by more powerful
studies. Further studies on ethnically diverse samples would be important.
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Effects of mood disorders/T2DM comorbidity on the course of

either condition

Given the chronic/relapsing nature of both mood disorders and T2DM, it is
intriguing to better understand whether their co-occurrence may worsen the
course of either condition.

Many prospective studies have explored depression trajectories in the
context of T2DM, with the general conclusion that T2DM leads to a greater
chronicity of depression, and worse depressive symptoms over time (Table S1).
In this regard, an 8-year follow-up study found that patients with T2DM on
insulin treatment experienced a mild but significant worsening of depressive
symptomatology over time (Trento et al., 2015). This was corroborated by a 5-year
study, showing that most patients with T2DM had low and persistent depressive
symptoms, with a gradual worsening in 7.5% of cases (Whitworth et al., 2017). A
lifetime history of MDD, followed by female sex, higher BMI, and younger age, were
the strongest predictors for persistent depressive symptoms in T2DM (Whitworth
et al.,, 2017). A number of social and clinical factors were also associated with
the recurrence or relapse of depressive symptomatology in T2DM; for example,
lack of home ownership, diabetes treatment complexity or dissatisfaction with
antidepressant medications (de Groot et al., 2015), as well as poor control of
glycaemic parameters (Ell et al., 2012; Maraldi et al., 2007). A recent study indicated
that MDD occurring either before or after the diagnosis of T2DM may significantly
increase the risk of dying by suicide (Huang et al., 2022).

No longitudinal studies investigated the relationship between T2DM and
the clinical course and treatment outcomes of BD. Only one study conducted in
the population-based Danish registries showed that women but not men with
treatment-resistant depression (TRD) had a higher prevalence of a previous
diabetes diagnosis than those without TRD. The risk of subsequent diabetes instead
was increased for both sexes in individuals with TRD, after adjusting for the age at
first antidepressant prescription and the number of other medical comorbidities
(Madsen et al.,, 2021). However, there is still no longitudinal research investigating
whether the presence of T2DM in BD or MDD may impact on treatment effects or
may be related to specific symptom patterns.

Considering the consequences of depression on diabetes, many studies found
that it may be associated with worse medical outcomes, e.g., more severe
cardiovascular complications, and higher all-cause mortality (Table S1). This
association may be at least partly mediated by poorer glycaemic control, which
effect, despite small, may increase the risk of complications. An association
between depressive symptoms and increased glycated haemoglobin (HbA1c)
values was indeed observed in elderly patients at risk of depression or having



Clinical insights into the cross-link between mood disorders and type 2 diabetes |

depression, in a longitudinal 1-year study (Sirirak et al., 2022). A sex-specific effect
of MDD on glycaemic changes in T2DM was also suggested, with females but not
males being less likely to return to normal glycaemic values (Nubel et al., 2022).
However, studies on larger samples found no association between mood symptoms
or lifetime MDD/BD and worse glycaemic control in T2DM (Aikens et al., 2009; Ismail
et al., 2017; Speerforck et al., 2019; Whitworth et al., 2017).

As discussed, the effect of depression on glycaemic control seems negligible, but it
may still considerably increase the risk of complications. In a cohort of elderly Mexican
Americans, diabetes with comorbid depression predicted a greater risk of vascular
complications, higher disability and mortality, as well as an earlier occurrence of these
negative outcomes (Black et al., 2003). The risk of adverse outcomes increased with
the severity of depression (Black et al., 2003). A number of other studies replicated
these findings and showed that MDD in T2DM may increase the risk of advanced
macrovascular complications, such as stroke, myocardial infarction, and heart failure
(Ismail et al., 2017; Lin et al., 2010; Novak et al., 2016; Scherrer, Garfield, Chrusciel,
et al, 2011), as well as microvascular complications, such as proliferative retinopathy
and end-stage renal disease, compared to non-depressed patients with T2DM or
patients with either diagnosis (Lin et al., 2010; Novak et al., 2016). Not surprisingly,
in a 12-year follow-up study, baseline diabetes mellitus and lifetime moderate MDD
were associated with an intensified antidiabetic treatment at follow-up (Speerforck
et al., 2019). This was not found in diabetic patients with lifetime mild or severe MDD
or lifetime BD (Speerforck et al., 2019). Most importantly, several studies confirmed
a synergistic effect of comorbid depression and T2DM on increased mortality,
even after controlling for sociodemographic, other health, and lifestyle variables
(Huang et al.,, 2022; Jung et al.,, 2021; Naicker et al., 2017; Novak et al., 2016; Prigge
et al,, 2022; Sullivan et al., 2012; Zhang et al.,, 2005). The increased mortality in the
presence of this comorbidity exceeded the sum of the risk associated with diabetes
and depression alone (Prigge et al., 2022). Likewise, longitudinal studies focusing
on BD and comorbid T2DM have corroborated these findings. In a 7-year follow-up
study, subjects with BD had a higher risk of dying by a diabetes-specific cause than
the general population, particularly in females (Crump et al.,, 2013). Additionally,
there was an association between BD and premature mortality for diabetes mellitus
(Crump et al., 2013). A more than 60% increase in the RR of mortality was also shown
in patients with newly diagnosed BD and previous diabetes mellitus during a 3-year
follow-up (Pan et al., 2016).
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Do antidepressants and mood stabilisers impact on incident

T2DM risk?

Many population-based studies found that individuals taking antidepressants
have an increased risk of incident T2DM, especially in the long-term, as confirmed
by a meta-analysis including studies with a mean follow-up of 5.8 years (OR 1.31,
95% Cl 1.18-1.45) (Ma et al., 2011; Pan et al.,, 2010; Rotella & Mannucci, 2013).
The association was stronger for selective serotonin reuptake inhibitors (SSRI)
and multiple antidepressant users, while non-significant for other classes of
antidepressants (mainly tricyclic antidepressants (TCAs)) in a study on middle-aged
women followed for ~10 years; however, this could be due to the higher frequency
of SSRIs prescription vs other classes (Pan et al., 2010). Another long follow-up
study including individuals of both sexes found that those taking antidepressants
were more likely to develop T2DM, regardless of the antidepressant class/molecule;
participants were free of diabetes and cardiovascular diseases at baseline (Pan
et al., 2012). However, the association was attenuated after adjusting for cardio-
metabolic risk factors and BMI (Pan et al., 2012). The link between long-term use
of antidepressants and increased diabetes risk was confirmed for both TCAs and
SSRIs in other studies (Andersohn et al., 2009; Kivimaki et al., 2010; Rubin et al.,
2010). Depressed patients on moderate-to-high daily doses of antidepressants
for more than 24 months showed a nearly doubled risk of diabetes vs non-users,
and this effect was independent of depression severity (Andersohn et al., 2009).
In an 18-year study including ~6,000 middle-aged individuals, antidepressant
use was associated with incident diabetes defined as use of antidiabetics or self-
reported diagnosis, but not with diabetes detected during screenings of blood
biomarkers or with increased glucose levels over time (Kivimaki et al., 2011). The
analyses were adjusted for socio-demographic variables, other cardiovascular risk
factors and medication use. These findings suggest that the association between
antidepressant use and incident T2DM may be at least partly explained by the
more frequent healthcare service use in patients with depression (Tusa et al., 2019),
which increases the probability that T2DM is early diagnosed. This observation,
together with the difficulty in adjusting for all the factors associated with long-term
antidepressant use (e.g., lifestyle) suggests caution in concluding there may be an
association with incident T2DM risk.

The evidence is scarcer regarding the use of lithium or valproate and the risk of
incident T2DM. Existing studies do not show an increased risk of diabetes in patients
taking lithium vs other mood stabilisers, taken individually or in combination, but
the evidence is limited by a short duration of treatment or follow-up and the lack of
a treatment-free/placebo control group (not feasible due to ethical reasons). In an
early study, 460 patients with BD in long-term treatment with lithium were followed
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for a period between 6 months and 6 years; there was no increase in diabetes
mellitus risk, as observed by fasting blood glucose measurement, although weight
gain was observed (Vestergaard & Schou, 1987). More recently, in a cohort of
~7,000 patients with BD, those receiving lithium showed no difference in the rate of
T2DM compared to those treated with valproate, olanzapine, or quetiapine (Hayes
et al., 2016). However, the median treatment duration was 1.48 years, which was
a relevant limitation as T2DM develops typically in the longer term (Hayes et al.,
2016). Lithium in combination with antipsychotics or anticonvulsants showed no
evidence of increased cardiometabolic risk in patients with BD (Kohler-Forsberg et
al., 2022); however, also this study had a relatively short follow-up (24 weeks).

Positive effects of treatments for depression and diabetes on

either condition

The identification of effective treatment strategies for both mood disorders and
T2DM is pivotal given the high comorbidity between the two conditions, as well
as the common risk factors and aetiopathogenetic mechanisms (Fanelli & Serretti,
2022). Early studies investigated which drugs among those approved for MDD or
BD had the best efficacy in patients with T2DM (e.g., Gulseren et al. (2005)). More
recently, precision medicine and the development of a systemic vision of psychiatric
disorders have become highly important. For example, several studies investigated
the repurposing of antidiabetic drugs for treating mood disorders, as many of them
cross the blood-brain barrier (Heneka et al., 2005; Kastin et al., 2002; Labuzek et al.,
2010). An overview of studies on this topic is described in Table S3.

Antidepressants and mood-stabilisers

As expected, treatment with antidepressants showed an effect on depressive
symptoms in samples of depressed patients with comorbid T2DM or altered
glycaemic status (Table $3). The available clinical trials did not find differences in
the decrease of depressive symptoms within 12 weeks when comparing an SSRI vs
another SSRI (Gulseren et al., 2005; Khazaie et al., 2011). Two trials reported a higher
benefit of agomelatine over an SSRI (sertraline or paroxetine) on depression scores
after 12-16 weeks of treatment (Kang et al., 2015; Karaiskos et al., 2013). However,
these studies did not provide an estimation of power to support sample size choice,
and the statistical significance of the difference between the considered drugs
seems doubtful. Other studies compared an antidepressant (SSRI or nortriptyline)
vs placebo, and confirmed the benefit of the active treatment on depressive
symptoms (Lustman et al., 2000; Lustman et al., 1997), despite one negative
6-month study on a small sample treated with sertraline (Echeverry et al., 2009). A
couple of studies investigated the potential benefits of paroxetine in patients with
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T2DM and subthreshold-mild depressive symptoms, finding no benefits on quality
of life in the short term (10 weeks) or after 6 months (Paile-Hyvarinen et al., 2003,
2007). A recent network meta-analysis found that escitalopram, agomelatine and
paroxetine have evidence of higher benefit on depression severity in patients with
T2DM vs placebo, with escitalopram raking first; on the other hand, nortriptyline
had a large but non-significant effect (Srisurapanont et al., 2022).

Data about antidepressant efficacy on glycaemic control (HbA1c) are conflicting.
Although long-term antidepressant use was suggested to increase incident T2DM
risk (see the previous paragraph), SSRIs may improve glycaemic control after
12 weeks, with similar benefits of citalopram and fluoxetine (Khazaie et al., 2011) and
higher effect of sertraline over placebo at month 6 (Echeverry et al., 2009). However,
no benefits over placebo were reported for citalopram (Nicolau et al., 2013), or no
improvement in patients receiving fluoxetine or paroxetine (Gulseren et al., 2005).
The results of a recent meta-analysis are helpful to interpret these conflicting
results (Srisurapanont et al., 2022). The paper found that vortioxetine, escitalopram,
agomelatine, sertraline, fluoxetine, and paroxetine reduced HbA1c significantly
more than placebo, with vortioxetine ranking first, followed by escitalopram and
agomelatine. The meta-analysis also reported that the hypoglycaemic benefits
of agomelatine and vortioxetine were drawn from two trials with a moderate risk
of bias. Interestingly, an open-label trial conducted in 93 patients with comorbid
T2DM and MDD demonstrated that bupropion hydrochloride improved glycaemic
control, BMI, as well as diabetes self-care in the acute phase (10 weeks), and this
effect persisted during the maintenance phase (24 weeks) (Lustman et al., 2007).
The improvement in glycaemic control in both the short- and medium-term was
suggested to be potentially mediated by improvements in mood, although the
findings must be interpreted with caution given the lack of a control arm and
randomisation, as well as the small sample size (Lustman et al., 2007). Of note,
in a large cohort of 93,653 individuals with depression, SSRIs, TCAs and other
antidepressants prescribed for at least 12 weeks reduced the risk of incident
myocardial infarction within a period of 8 years, with HRs ranging from 0.50 to 0.66
(Scherrer, Garfield, Lustman, et al., 2011).

To summarise, the available evidence suggests that antidepressants are effective
in treating depression in patients with T2DM, and some antidepressants may have
positive effects on glycaemic control, in the short term. Escitalopram seems to have
good support for both depressive symptoms and glycaemic control. The positive
impact of effectively treating depression in the long term should also be considered.
Unfortunately, the studies that investigated the potential effects of mood stabilisers
on HbA1c levels and T2DM complications are much scarcer. In patients with BD, mood
stabilisers (including lithium) and antidepressants, in monotherapy or combination,
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were associated with a decrease in HbA1c levels vs no psychotropic medication,
independent from having a diagnosis of diabetes (Castilla-Puentes, 2007). On the
contrary, antipsychotics in monotherapy or in combination with a mood stabiliser are
known to have a negative effect on glycaemic control, while lithium monotherapy
may be slightly better than lithium combination with another mood stabiliser
(Castilla-Puentes, 2007; Kohler-Forsberg et al.,, 2022; Kuperberg et al., 2022).

Antidiabetic medications

Insulin

Insulin receptor knockout mice have depressive-like behaviours, and both
depression and cognitive symptoms were associated with low insulin-like growth
factor-1 in the elderly (Mueller et al., 2018). Therefore, it was hypothesised that
insulin may have effects on both depressive and cognitive symptoms, particularly
in the elderly. A previous study tested this hypothesis in type 2 diabetic elderly
patients with poor glycaemic control, by randomising them to continuing oral
medication, switching to insulin twice-a-day or basal insulin (Hendra & Taylor,
2004). The group that switched to basal insulin showed a decrease in depressive
symptoms at months 1 and 3, though not at month 6; however, the study included
only 19 patients per arm and the clinical significance and reproducibility of results
seem doubtful. Another small study in elderly patients with poorly controlled T2DM
adopted a similar design (though not randomised), with one group continuing oral
medication and another switching to insulin. This study reported benefits on well-
being and mood in the group that switched to insulin, however, as outlined, the
study had relevant limitations (Reza et al., 2002).

Other studies tested intranasal insulin effects on mood and cognitive function in
healthy individuals (Benedict et al., 2004), in euthymic BD (McIntyre et al., 2012) or
in treatment-resistant depression (TRD) (Cha et al., 2017). These studies were also
limited by small sample sizes. The first study reported an improvement in mood
and memory after 8 weeks (vs placebo) in healthy individuals, consistently with the
results of the second, which found an improvement in executive functioning in BD
patients at week 8. On the contrary, the latter study did not find benefits on mood
or neurocognitive functioning in TRD.

In conclusion, there is currently poor evidence in support of a possible effect of
insulin on mood and neurocognitive functioning, since the results come from small
and heterogeneous samples (Table S3).
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Metformin

Metformin, a biguanide compound, is a commonly prescribed hypoglycaemic
agent. Two recent meta-analyses of randomised clinical trials (RCTs) found
metformin to have a neutral effect on mood symptomatology compared to placebo
and inferior to active controls (Moulton et al., 2018; Nibber et al., 2022). Among the
RCTs included in these meta-analyses, only one found metformin to be effective
on depressive symptomatology, mainly by improving cognition (Guo et al., 2014).
This result is in line with the meta-analytic finding that metformin was superior
to placebo in improving cognitive function in patients with cognitive impairment
(Nibber et al., 2022).

A recent randomised placebo-controlled study not included in the cited meta-
analyses tested adjunctive metformin in a group of non-diabetic patients with
treatment-resistant BD and insulin resistance (Calkin et al., 2022). The study
reported a significant improvement in depression and anxiety, as well as in insulin
resistance, although gastro-intestinal side effects were common.

In conclusion, metformin does not show consistent benefits on depressive
symptoms (Table S3), and a relevant point for future research would be to test if
it may improve specific depressive symptoms (e.g., cognitive symptoms) rather
than the whole depressive spectrum. Another hypothesis worth further study is
the possible preventing effects of oral antidiabetics on the development of mood
disorders. This was suggested by a population-based study showing that the
combination of metformin and sulfonylurea may reduce the risk of mood disorders
in patients with T2DM, despite metformin alone did not show a protective role
(Wahlqvist et al., 2012).

Thiazolidinediones

Thiazolidinediones, also known as peroxisome proliferator-activated receptor-y
(PPAR-y) agonists, are oral hypoglycaemic agents that ameliorate insulin sensitivity
by enhancing fatty acids storage and adipocytes differentiation (Raymond et al.,
2014). A first meta-analysis included four RCTs and tested pioglitazone in MDD
or BD, showing benefits vs control treatments, on both remission (OR 3.3, 95% Cl
1.4-7.8) and symptom improvement (mean difference=2.8, 95% Cl 1.4-4.3) (Colle
et al, 2017). The benefit of pioglitazone on depressive symptomatology either
alone or as an add-on treatment was confirmed by a following larger meta-analysis
(Moulton et al., 2018). Interestingly, the improvement in depressive symptoms was
predicted by the female sex, but not by the severity of depressive symptoms or
by glycaemic control at baseline (Moulton et al., 2018). A significant reduction of
depressive symptoms was also reported in three open-label studies, two testing
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pioglitazone and one rosiglitazone (Kemp et al., 2012; Kemp et al., 2014; Rasgon et
al., 2010). However, a double-blind placebo-controlled RCT (not included in the cited
meta-analyses) failed to demonstrate the antidepressant effects of pioglitazone in
38 outpatients with bipolar depression, but it was limited by lack of power and the
concurrent use of other psychotropic medications (Aftab et al., 2019).

Overall, there is suggestive evidence for a positive effect of pioglitazone on
depressive symptomatology, regardless of a mood disorder diagnosis (Table S3).
However, previous meta-analyses suffer from high heterogeneity, and future
studies should include more homogeneous populations, particularly in terms of
psychiatric diagnosis.

Glucagon-like peptide-1 receptor agonists (GLP-1RAs)
Most studies on the neuropsychiatric effects of glucagon-like peptide (GLP-1)
receptor agonists (GLP-1RAs) were conducted on animal models (e.g., (Chaves
Filho et al., 2020). A previous meta-analysis considered the effect of GLP-1RAs on
depression rating scales and found GLP-1RAs to be superior in reducing depression
compared to control treatments, meta-analysing data that included both depressed
and non-depressed patients with diabetes (Pozzi et al., 2019). Limitations of these
results are the small number of included studies, the possibility of severe bias found
for some studies, and the high heterogeneity.

As outlined for other anti-diabetic treatments, cognitive dysfunction represents
a possible target symptom for GLP-1RAs as well. A four-week open-label trial tested
the effectiveness of liraglutide on a sample of 19 non-diabetic patients with MDD
or BD and below-average cognitive performance (Mansur et al., 2017). The results
are clearly preliminary, but it is encouraging that a significant improvement in
depressive symptoms and executive functions was observed, with no correlation
with levels of glycaemia or insulin resistance (Table S3).

Dipeptidyl peptidase-4 inhibitors

Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral antidiabetics, also known
as gliptins, which act by blocking the degradation of the incretin hormones (Kasina
& Baradhi, 2022). These hormones regulate glycaemic homeostasis after food intake
by increasing insulin secretion (Kasina & Baradhi, 2022). DPP-4 inhibitors also have
anti-apoptotic, anti-inflammatory, and immunomodulatory actions on multiple
tissues (Kasina & Baradhi, 2022). These mechanisms seem very promising in terms
of a possible antidepressant effect; however, all the available studies provided
negative results. An RCT in 44 middle-aged patients with T2DM assessed the effect
of sitagliptin, a DPP-4 inhibitor, and found it was inferior to placebo in alleviating
depressive symptoms at week 12 (Moulton et al.,, 2021). The RCT had, however, several
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limitations, including an inadequate sample size, the exclusion of patients with
very poor glycaemic control, and the use of a self-reported measure of depressive
symptoms (Moulton et al., 2021). An observational study in 10 elderly patients
with T2DM evaluated the effect of the DPP-4 inhibitor vildagliptin, as an add-on to
metformin, with no evidence of benefits on depressive or cognitive symptoms at
month 11 vs baseline (Tasci et al., 2013). Another RCT compared the DPP-4 inhibitor
linagliptin to glimepiride, a hypoglycaemic drug of the sulphonylurea class, and
found no differences on cognition, in 3163 middle-aged patients with T2DM, over a
median of ~6 years of follow-up (Biessels et al., 2021).

Overall, there is currently no evidence to support the use of DPP-4 inhibitors for
the treatment of depressive and cognitive symptoms (Table $3); however, there are
only three available studies, two of them showed a small sample size, and each of
them had a different design.

Non-pharmacological interventions
A Cochrane meta-analysis found a non-significant effect of psychological
interventions vs usual care (including pharmacological treatment when indicated)
on glycaemic control in individuals with both depression and diabetes, in the short-,
medium- and long-term (Baumeister et al., 2012). This meta-analysis also outlined
that the quality of the available evidence was low, and it was not possible to evaluate
the impact of psychological interventions on the risk of diabetes complications.

When looking at individual studies, the evidence is heterogeneous.
Psychotherapy (in particular cognitive-behavioural therapy [CBT]), combined with
pharmacological treatment and/or lifestyle modifications, was associated with a
higher rate of response in terms of depressive symptomatology, both in the short-
(10-12 weeks) and medium-term (6-12 months) (de Groot et al., 2019; Huang et al.,
2016; Lustman et al., 1998; Piette et al., 2011; Safren et al., 2014). Only a part of
these studies also showed a benefit of the intervention on glycaemic control (de
Groot et al., 2019; Huang et al., 2016; Safren et al., 2014). However, these studies
were generally limited in sample size (<100 participants in most cases) and were
heterogeneous in terms of inclusion criteria, type of intervention and type of
control. For example, some studies compared CBT with diabetes self-management
training (Lustman et al., 1998), or other forms of enhanced usual care (e.g.,
educational and self-help material (Piette et al., 2011)), while others used just usual
care as control (e.g., Huang et al. (2016)).

On the other hand, psychoeducation or behavioural activation vs treatment
as usual or other forms of enhanced treatment (e.g., physical exercise) does not
seem to provide benefits in diabetic patients with subthreshold depression or
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depression, according to previous studies in small samples (Pibernik-Okanovic et
al., 2009; Pibernik-Okanovic et al., 2015; Schneider et al., 2016).

A recent meta-analysis (32 RCTs, including a total of 3,543 patients) contributed
to clarify the cumulative evidence (van der Feltz-Cornelis et al., 2021). The
results supported the efficacy of group-based therapy, psychotherapy, and
collaborative care on glycaemic control in patients with diabetes and depressive
symptomatology, with moderate heterogeneity among studies. High baseline
depression and high baseline HbAT1c were associated with a greater reduction in
HbA1c. However, the meta-analysis also outlined that most studies had some risk
of bias, mostly unclear reporting about randomisation and blinding. Moreover, the
control group considered in each study was variable (e.g., waiting list, usual care).
Another limitation of this and the meta-analysis discussed above (Baumeister et
al., 2012) was the inclusion of RCTs of both type 1 and T2DM, despite the fact that
these have different pathogenesis and treatment.

Discussion

Summary of findings
Meta-analyses and cohort studies corroborated the hypothesis of a bidirectional
relationship between mood disorders and T2DM (Figure 1). MDD predicts a higher
risk of subsequent T2DM, as confirmed by Mendelian randomisation studies,
and this appears the finding with the strongest support emerging from this
review. Evidence is scarcer for BD predicting the risk of incident T2DM, and the
risk of confounding effects could not be excluded. Studies on T2DM predicting
subsequent mood disorders outline a possible association, but show conflicting
results, and further investigations are needed, particularly in patients with BD.
Independently from possible causal links, the available studies clearly
demonstrated that the co-occurrence of T2DM and MDD can lead to worse outcomes
for both conditions. T2DM leads to greater depression treatment resistance, chronicity,
and more severe symptoms, while MDD leads to worse medical outcomes and higher
mortality in T2DM. Both T2DM and mood disorders are associated with detrimental
consequences on cognitive functioning and an increased risk of dementia (G. Fanelli
et al,, 2022; Jorm, 2000). Therefore, the promotion of a healthy lifestyle represents
a clinical priority, with the Mediterranean diet and physical exercise having strong
support for the prevention of both conditions (Strasser & Fuchs, 2015). The early
detection and treatment of impaired glucose tolerance in patients with mood
disorders are of similar importance, as well as of anxiety, depressed/irritable mood, or
sleep alterations in patients with T2DM (Benasi et al., 2021).
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Psychopharmacological treatments may contribute to an increased risk of
developing T2DM in patients with mood disorders, particularly in the long term,
and itis advisable to avoid combination therapies. However, certain antidepressants
and mood stabilisers showed efficacy in treating mood symptoms in patients with
T2DM, and they may also have beneficial effects on glycaemic control at least in
the short term. Interestingly, promising results from clinical trials showed potential
antidepressant benefits of hypoglycaemic drugs.

Modulators of the bidirectional association between mood disorders
and T2DM

There are multiple confounders that should be taken into account when considering
the bidirectional association between mood disorders and T2DM. As noted, these
include cardiometabolic risk factors, such as cigarette smoking, which is frequent
in mood disorders (Otte et al., 2016). MDD, particularly the atypical subtype, is
often characterised by sedentary behaviour and increased appetite, leading to
overweight/obesity (Otte et al., 2016). Patients with BD have disrupted circadian
rhythms and a high rate of alcohol and substance consumption (Hunt et al., 2016).
Several medical comorbidities may affect mood and increase the risk of T2DM,
such as obesity, Cushing’s disease, polycystic ovary syndrome, and hypothyroidism
(Diez & Iglesias, 2012; Golden, 2007; Kolhe et al., 2022). Further, mood disorders
are characterised by low adherence to pharmacological and non-pharmacological
medical prescriptions, which may increase the likelihood of incident T2DM (Grenard
et al., 2011). On the other hand, the prescription of some medications for mood
disorders can increase the risk of metabolic alterations. Long-term treatment with
antipsychotics, especially second-generation ones, increases the risk of T2DM
(Burghardt et al., 2018; Vancampfort et al., 2016). Almost all the included studies
considered some of the discussed confounders and provided adjusted analyses
that substantially confirmed the initial results. However, as previously discussed, we
noticed a high heterogeneity in the factors each study adjusted for.

Given the metabolic effects of some psychotropic drugs, another significant topic
discussed in this review was the possible effect of antidepressant prescriptions in
modaulating the link between mood disorders and T2DM. The prescription of more
than one antidepressant and for a longer period was associated with a higher risk
of T2DM (Pan et al., 2010), corroborating the importance of preferring monotherapy
when possible. On the other hand, antidepressant combinations prescribed over a
long period could indicate a more severe form of depression, e.g., with chronicity
and recurrence, which are predictors of T2DM (Andersohn et al., 2009; Rubin et al.,
2010). Another issue that suggests the complexity of the illustrated relationship is
the finding that antidepressant users may seek medical attention more frequently



Clinical insights into the cross-link between mood disorders and type 2 diabetes | 103

than untreated or non-depressed people, increasing the likelihood of being
diagnosed with medical conditions, including T2DM (Kivimaki et al., 2010). As
previously stated, it is necessary to consider all the potential confounders and
be cautious in stating that antidepressants may have a role in increasing the risk
of diabetes.

Possible effects of medications for mood disorders and T2DM on the
comorbid condition
Previous studies hypothesised that antidepressant prescription in patients with

T2DM may ameliorate not only depression but also glycaemic control, despite
conflicting data. Unfortunately, most antidepressant clinical trials excluded patients
with T2DM, while those designed for comorbid mood disorders and T2DM are only
a few and had small sample sizes. According to a meta-analysis of observational
and cross-sectional studies in patients with T2DM and depression, individual
characteristics may influence the probability of receiving an antidepressant
prescription, such as sex, ethnicity, concurrent medications and comorbidities
(Jeffery et al., 2021). Keeping in mind these limitations and modulating factors,
the available evidence suggests that some SSRIs (particularly escitalopram),
agomelatine, vortioxetine, and bupropion may have a positive impact on glycaemic
control and in the prevention of cardiovascular complications, at least in the short-
term (Lustman et al., 2007; Srisurapanont et al., 2022) (Figure 2).

Lithium is another medication that may have a positive effect in patients with
mood disorders at risk of T2DM (Figure 2). Lithium acts on several molecular
intracellular effectors of insulin signalling (Campbell et al., 2022). Indeed, lithium
decreases the signalling of the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/
Akt) pathway, by inhibiting the phosphatidylinositol cycle (Pl-cycle) upstream and
glycogen synthase kinase-3 (GSK3) downstream (Campbell et al., 2022). Insulin
resistance and related hyperinsulinaemia lead to chronic GSK3( overactivation,
which negatively impacts on glycidic metabolism and energy production at the
mitochondrial level (Campbell et al., 2022). Lithium could therefore be considered
an insulin sensitiser for cells, as suggested also by animal studies (Lee & Kim, 2007;
Rossetti, 1989). Markers of insulin resistance should be considered as possible
predictors of lithium response in future studies.

Insulin signalling plays a critical role in the energy metabolism of both neurons
and glia, in brain areas involved in mood regulation and cognition (Lyra et al.,
2019), therefore antidiabetic medications may exert effects also in the brain
(Figure 2). While insulin does not seem to improve mood, a procognitive action
was hypothesised. Metformin was broadly tested for preventing or reducing the
metabolic side effects of antipsychotics (Vancampfort et al., 2019) and it may
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modulate the blood-brain barrier function with neuroprotective benefits (Takata
et al., 2013). Nevertheless, clinical studies do not provide conclusive results on
possible antidepressant or procognitive effects. On the other hand, encouraging
evidence is available for PPAR-y receptor agonists. Thiazolidinediones' activation
of central PPAR-y receptors protects neurons from oxidative stress and apoptosis,
and it enhances mitochondrial energy generation (Hauner, 2002; Villapol,
2018). GLP-1RAs enhance neurogenesis via the 5' adenosine monophosphate-
activated protein kinase (AMPK)-pathway and have very preliminary evidence of
antidepressant benefits (Andreozzi et al., 2016). Intriguingly, thiazolidinediones
and GLP-1RAs exhibit anti-inflammatory effects, attributed to a downregulation of
pro-inflammatory genes (Kothari et al., 2016).

MOOD
DISORDERS
PPAR-Y AGONISTS
GLP-1R AGONISTS
METFORMIN
2 ¢ INSULIN
B .. DPP<4INHIBITORS
PSYCHOTROPIC MEDICATIONS ANTIDIABETIC MEDICATIONS
(\ ANTIDEPRESSANTS Q?
| |
LITHIUM
TYPE 2

DIABETES MELLITUS

Figure 2. Effects of treatments for depression and diabetes on either condition.

Antidepressants, namely escitalopram, agomelatine, vortioxetine, and bupropion, may have a
positive impact on glycaemic control, at least in the short-term, but the prescription of more than one
antidepressant and for a long period may increase the risk of T2DM. Suggestive evidence indicates that
lithium may improve glycaemic control, possibly by directly acting on the insulin signalling pathway.
As shown at the top right of this figure, it has been hypothesised that drugs commonly prescribed
for T2DM also exert effects on the brain. GLP-1R agonists and PPAR-y agonists, such as liraglutide
and pioglitazone, have shown promise in relation to their possible antidepressant effects. There is
little evidence to support a possible effect of insulin and metformin on mood and neurocognitive
functioning. No evidence supported the use of DPP-4 inhibitors for the treatment of depressive
and cognitive symptoms. Abbreviations: PPAR-y, peroxisome proliferator-activated receptor-y;
GLP-1R=glucagon-like peptide-1 receptor; DPP-4, dipeptidyl peptidase-4; T2DM, type 2 diabetes mellitus.
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Limitations of the available studies

This review aimed to provide a comprehensive overview on the topic of interest;
however, the reviewed studies showed several limitations that should be
considered. Longer follow-ups would have been useful to intercept all cases of
incident T2DM, which have typically an insidious onset, to better analyse the course
of these chronic/relapsing conditions, and to detect the effects of medications
on depressive and metabolic symptoms. The heterogeneous presentations of
both mood disorders and T2DM should be better considered, to reduce the risk
of stratification, and to disentangle possible differences due to disease subtypes
(e.g., MDD with atypical vs melancholic features, BD type 1 vs 2), various disease
stages (e.g., acute or remission phases, depressive or manic phases, earlier or later
stages of T2DM), presence or absence of complications and/or other comorbidities.
Another issue that came up as a possible limitation was the use of self-reported
questionnaires for the diagnosis of depression in many studies, and the prescription
of antidepressants as a proxy for depression in a few studies (e.g., (Ismail et
al., 2017; Ma et al.,, 2011). Likewise, in several studies T2DM was self-reported or
assessed using records of antidiabetic treatments (e.g., (Atlantis et al., 2010; Bai et
al., 2013), which could result in an underestimation of the incidence of diabetes.
Some studies did not differentiate between type 1 and type 2 diabetes. However,
>95% of all diagnosed cases of diabetes are T2DM (World Health Organization,
2022). Finally, as previously outlined, common confounding variables, such as
lifestyle and medication use, were not systematically considered in previous
research, and some important topics were only marginally or not investigated. It is
worth noting that, despite the evidence of brain insulin resistance being involved
in BD aetiopathology (Mansur et al., 2021), there are no or few studies in BD for
all the areas considered in this review. The paucity of studies could be explained
by the lower prevalence of BD than MDD (Dattani et al., 2021), and the common
use of screening and self-reported questionnaires in population studies, which
have low positive predictive values for BD (Smith et al., 2011). Since cross-sectional
studies have found that people with comorbid T2DM are more likely to experience
a chronic course of BD, as well as rapid cycling, and are less prone to respond to
lithium (Calkin et al., 2022; Calkin et al., 2015), future prospective studies should
aim to elucidate the complex relationship between T2DM and BD and to treat more
effectively these disabling forms of BD.

Conclusion

Epidemiological studies and meta-analyses consistently suggested an increased
risk of incident T2DM in mood disorders and vice versa, with possible sex-specific
effects. However, the evidence was less strong for the effect of T2DM on incident
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depression, and these associations may be subject to undetected confounders.
T2DM leads to greater treatment resistance, chronicity and more severe symptoms
of depression, and depression leads to worse medical outcomes, micro- and
macrovascular complications, and higher mortality in T2DM. Some antidepressants
may improve glycaemic control in the short term; however, they may be associated
with metabolic alterations in the long-term. Lithium may have protective effects on
metabolic parameters vs other treatment options, but long-term studies are lacking.
The use of some oral antidiabetics, such as thiazolidinediones and GLP-1RAs, may
be beneficial in treating depressive and cognitive symptoms in mood disorders.
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Abstract

Major depressive disorder (MDD) and insulin resistance (IR)-related conditions are
major contributors to global disability. Their co-occurrence complicates clinical
outcomes, increasing mortality and symptom severity. In this study, we investigated
the association of IR-related conditions and related polygenic scores (PGSs) with MDD
clinical profile and treatment outcomes, using primary care records from UK Biobank.
We identified MDD cases and IR-related conditions, as well as measures of depression
treatment outcomes (e.g., resistance) from the records. Clinical-demographic variables
were derived from self-reports, and IR-related PGSs were calculated using PRS-CS.
Univariable analyses were conducted to compare socio-demographic and clinical
variables of MDD cases with (IR+) and without lifetime IR-related conditions. Multiple
regressions were performed to identify factors, including IR-related PGSs, potentially
associated with treatment outcomes, adjusting for confounders. Among 30,919 MDD
cases, 51.95% were IR+. These had more antidepressant prescriptions and classes
utilisation and longer treatment duration than patients without IR-related conditions
(p<0.001). IR+ participants showed distinctive depressive profiles, characterised by
concentration issues, loneliness and inadequacy feelings, which varied according
to the timing of MDD diagnosis relative to IR-related conditions. After adjusting for
confounders, IR-related conditions (i.e., cardiovascular diseases, hypertension, non-
alcoholic fatty liver disease, obesity/overweight, prediabetes, and type 2 diabetes
mellitus) were associated with antidepressant non-response/resistance and longer
treatment duration, particularly when MDD preceded IR-related conditions. No
significant PGS associations were found with antidepressant treatment outcomes.
Our findings support an integrated treatment approach, prioritising both psychiatric
and metabolic health, and public health strategies aimed at early intervention and
prevention of IR in MDD.
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Introduction

Major depressive disorder (MDD) and insulin resistance (IR)-related conditions rank
among the leading causes of disability worldwide, and their incidence continues to
grow to epidemic proportions (GBD, 2020). IR, which is characterised by diminished
cellular response to insulin in muscles, fat, and liver, is a common feature
underlying cardio-metabolic conditions like type 2 diabetes mellitus (T2DM),
obesity, dyslipidaemia, and cardiovascular diseases (CVDs) (James et al., 2021).
These conditions are increasingly recognised as significant risk factors for
psychiatric disorders, notably MDD (Possidente et al., 2023).

The epidemiological link between MDD and IR-related conditions has been
well-established (Rajan et al., 2020; Wimberley et al., 2022). The risk for IR-related
conditions is higher among patients with MDD, and, in turn, people with T2DM and
obesity have up to 4-fold higher risk for MDD (Possidente et al., 2023). Comorbidity
with IR-related conditions in individuals with MDD adversely affects the clinical
trajectory of depression, resulting in increased severity, greater chronicity, and
higher mortality rates (Fanelli & Serretti, 2022; Possidente et al., 2023).

Recent studies have identified shared genetics and pathophysiological
mechanisms between IR and MDD, including dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis, chronic low-grade inflammation, alterations in the gut
microbiota, and neurotransmitter systems, suggesting a bi-directional relationship
where each condition may influence the onset of the other (Fanelli, Franke, et al., 2022;
Fanelli & Serretti, 2022; Possidente et al., 2023). In MDD, chronic stress induces
HPA axis hyperactivation, resulting in sustained cortisol elevation that promotes
gluconeogenesis, impairs insulin-mediated glucose uptake in peripheral tissues, and
elevates circulating free fatty acids, thereby contributing to IR (Fanelli et al., 2025).
Concurrently, MDD-associated inflammation can disrupt insulin receptor signalling
and contribute to metabolic dysfunction (Fanelli et al., 2025; Possidente et al., 2023).
On the other hand, IR within the central nervous system impairs synaptic plasticity
and affects mood-regulating neurotransmitter systems (Fanelli et al., 2025;
Possidente et al., 2023). These shared pathophysiological mechanisms have also
been linked to resistance to treatments (Borgiani et al., 2024; Murphy et al., 2017).
The first exploration of insulin’s effects in psychiatric disorders was unfortunately
linked to insulin shock therapy, introduced in the mid-20th century as a treatment
for severe psychiatric conditions; this approach was abandoned by the 1970s, due
to the lack of therapeutic rationale and risks of prolonged hypoglycaemia and other
side effects (Freudenthal & Moncrieff, 2022). As discussed above, in recent years,
the study of IR in psychiatric disorders has been based on solid scientific evidence
coming from both epidemiological and neurobiological studies.
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Traditional antidepressant drugs are a cornerstone of MDD management. They
address imbalances of distinct neurotransmitter systems but display inconsistent
treatment efficacy. About 60% of treated individuals, in fact, do not reach complete
clinical remission after a full course of treatment (De Carlo et al., 2016). This
variability in response is partly attributed to the high clinical and pathophysiological
heterogeneity of MDD, which is not restricted to monoamine system abnormalities
(Oliva et al., 2023); one of the most studied MDD subgroups is characterised by
metabolic disturbances, and it has been named immune-metabolic depression
(Milaneschi et al., 2020). The presence of IR-related conditions in patients with MDD
results in significant clinical challenges. The altered inflammatory and endocrine
profile in these patients might reduce the effectiveness of standard antidepressant
therapies, contributing to treatment-resistant depression (TRD) (Murphy et al., 2017).
Therefore, understanding the influence of IR and related conditions on antidepressant
response is essential for developing personalised treatment strategies, which is
a key goal for precision psychiatry (van Dellen, 2024). Some antidepressants, like
monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs), may
exacerbate metabolic disturbances, further complicating treatment (Fanelli &
Serretti, 2022). This necessitates a careful balancing, to weight the expected benefits
on mental health against the potential metabolic risks.

Genomic studies have highlighted the role of genetic predisposition in the
development of both MDD and IR, hinting to their shared genetic aaetiology
(Fanelli, Franke, et al., 2022). Polygenic scores (PGSs) quantify the cumulative effect
of genetic variants associated with a particular trait or disease; they are a promising
approach for studying the clinical/genetic heterogeneity and treatment response
in depression (Oliva et al., 2023), heralding personalised medicine approaches
based on individual genetic profiles.

Despite growing evidence supporting a link between IR and MDD, there is still a
paucity of large-scale studies comprehensively exploring the association between
IR-related conditions and treatment outcomes in MDD (Kraus et al., 2023; Madsen
et al.,, 2021). Particularly, the temporal relationship between the onset of IR-related
conditions and MDD, and how this sequence influences the clinical course of MDD
and response to treatment, is not well-understood. This gap in knowledge hinders
possible considerations for developing more well-tolerated and effective treatment
strategies for patients with MDD and comorbid IR-related conditions.

The present study investigated whether IR-related conditions and their PGSs are
associated with the clinical course of MDD or response to antidepressant treatment,
considering also which condition was diagnosed earlier. This study leveraged data
from the UK Biobank (UKB) cohort linked to primary care records, providing the
opportunity to examine these relationships in a large population cohort.
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Methods

UK Biobank cohort and linked primary care data

This study utilises data from the UKB, which is a large-scale, prospective cohort
study providing extensive genetic, lifestyle, and health data from approximately
500,000 individuals across the UK, aged between 40 and 69 years at recruitment
(2006-2010) (Bycroft et al., 2018). Primary care data were available for ~45% of
the cohort (230,096 participants), reflecting regional and provider variability (UK
Biobank, 2019). Missing or incomplete data were not imputed.

The UKB includes genotypes for 488,377 participants, who were genotyped using
the Applied Biosystems UK BIiLEVE and UK Biobank Axiom Arrays (Thermo Fisher
Scientific Inc., Waltham, MA, USA) (Bycroft et al., 2018). Detailed methodologies for
DNA extraction, genotyping, quality control, and imputation in UKB are reported
elsewhere (UK Biobank, 2019).

As part of the UKB’s comprehensive data collection, primary care data have been
obtained for 230,096 participants, forming the basis of our study (UK Biobank,
2019). This subset includes electronic health records (EHRs) sourced from English,
Scottish, and Welsh General Practitioner practices, employing various primary
care information systems (EMIS, Vision, TPP). The records include dates and
codes for primary care clinical events (e.g., consultations, diagnoses, referrals to
specialists, or prescriptions events) coded using Read version 2 (V2) and Clinical
Terms Version 3 (CTV3 or V3), the British National Formulary (BNF), and/or the
Dictionary of Medicines and Devices (dm+d) (UK Biobank, 2019). These codes
were used to identify MDD and IR-related conditions, the time at first diagnosis,
and antidepressant prescriptions. In cases where prescription or diagnosis dates
were missing or implausible (e.g., 01/01/1901, 07/07/2037), diagnostic codes
were excluded from temporal analyses but retained for non-temporal analyses to
maximise sample size, and prescription records were not considered for deriving
treatment outcome variables. Potential biases arising from missing or incomplete
primary care data are addressed in the Discussion section.

Ethics Statement

The authors assert that all procedures contributing to this work comply with the
ethical standards of the relevant national and institutional committees on human
experimentation and with the Helsinki Declaration of 1975, as revised in 2013. All
procedures involving human subjects/patients were approved by the Northwest
Multi-centre Research Ethics Committee (MREC) with approval number 11/NW/0382.



126 | Chapter 4

Target population: MDD cases with or without IR-related conditions
We focused on a subset of UKB participants having at least one diagnostic
record for a unipolar depressive disorder and at least one prescription code for
an antidepressant medication, excluding those with bipolar, psychotic, and/
or substance use disorders. These data were extracted according to the steps
described in a previous work (Fabbri et al., 2021).

Similarly, IR-related conditions were defined based on diagnostic records. We
considered the presence of at least one primary care Read code for coronary artery
disease (CAD), cerebral ischaemia, CVDs, dyslipidaemia, polycystic ovary syndrome
(PCOS), familiar dyslipidaemia, gestational diabetes, hypertension, non-alcoholic
fatty liver disease (NAFLD), obesity/overweight, T2DM, and Cushing’s disease. Read
V2 and CTV3 codes used for the extraction of IR-related conditions are reported in
Tables S1-2. These IR-related conditions were selected based on their established
contribution to or pathogenic association with metabolic dysregulations commonly
seen in IR (da Silva et al., 2020; Hill et al., 2021; James et al., 2021).

Outcomes of interest

The outcomes of interest were: 1) antidepressant non-response, defined as >1 switch
between different antidepressant drugs, with each drug prescribed for at least six
consecutive weeks to avoid drug switches due to side effects. We considered a time
interval between consecutive prescriptions of no more than 14 weeks to ensure
that treatment had not been suspended, following another recent study (Fabbri et
al., 2021); 2) TRD, defined as >2 switches between different antidepressant drugs,
with each drug prescribed at least for six consecutive weeks, to ensure an adequate
duration of treatment before switching, and a time interval between prescriptions
shorter than 14 weeks (Fabbri et al.,, 2021); 3) overall treatment time, used as
proxy for MDD chronicity and calculated as the sum of time windows between
two consecutive antidepressant prescriptions (if the time interval between two
consecutive prescriptions was shorter than 14 weeks, otherwise it was considered a
time window free from antidepressants).

Polygenic risk scores computation

PGSs were estimated in the UKB using PRS-CS-auto, a Bayesian method that applies
continuous shrinkage priors on single-nucleotide polymorphism (SNP) effect sizes,
bypassing the need to preselect a GWAS P-threshold for SNP inclusion (Ge et al.,
2019). GWAS summary statistics used for the construction of PGSs were those for
body mass index (BMI), CAD, T2DM, fasting plasma glucose (FPG), glucose levels
2 hours after an oral glucose challenge (2hGlu), glycated haemoglobin (HbA1C),
high density lipoproteins (HDL), HOMA-IR, low density lipoproteins (LDL), and
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triglycerides (TGL). GWAS summary statistics were selected based on the largest
GWAS sample size available excluding UKB to avoid sample overlap between the
input and target samples (Table S3).

Statistical analysis
We compared individuals with MDD having or not having IR-related comorbidities,
also considering stratifying individuals based on the temporal sequence of MDD-
first diagnosis relative to IR-related condition-first diagnosis, according to primary
care records.

Univariable analyses were conducted using two-sample Student’s t-test and

Pearson’s chi-square test, as appropriate, to examine differences in demographic,
socio-economic, clinical, and lifestyle factors between individuals affected by
MDD with and without IR-related conditions. The variables assessed included the
age at MDD onset, follow-up duration, mean age during follow-up, patterns of
antidepressant prescription, psychological symptoms, and treatment outcomes
(see Table S4 for information on variables and their coding). A subsequent one-
way Analysis of Variance (ANOVA) was used to compare these variables across three
defined groups of individuals: MDD without IR-related conditions (IR-), MDD after
an IR-related condition diagnosis (MDD-after-IR), MDD diagnosis preceding IR-
related conditions (MDD-before-IR). Post hoc analyses, employing Tukey’s Honestly
Significant Difference (HSD) test, were conducted to identify differences between
group pairs.

To examine the association of IR-related conditions and their PGSs with
treatment outcomes, we used multivariable linear or logistic regression models.
These analyses were adjusted for assessment centre, mean age during follow-
up, follow-up duration, sex, smoking status, Townsend deprivation index, and
population principal components (the latter only for PGS analyses). PGS analyses
were carried out in European individuals only (identified as in Fabbri et al. (2021)).

We quantified the variance explained in treatment non-response or resistance
using Nagelkerke's pseudo-R%. For models with overall treatment time as a
continuous outcome, the variance was quantified using R%. The Hosmer-Lemeshow
X test was employed to evaluate the goodness of fit of logistic regression models,
with p=0.05 suggesting no significant difference between observed and predicted
values, suggesting an adequate model fit. While the pseudo-R® in this study are
anticipated to be low due to the multifactorial nature of depression treatment
outcomes, and IR-related traits, goodness-of-fit metrics of the Hosmer-Lemeshow
test can ensure that the predictions are reliable within the observed data.

This study was hypothesis-driven, building on prior evidence and well-
established biological links between MDD and IR-related conditions. Although not
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pre-registered, the analysis plan and the selection of the variables analysed was
informed by previous literature (Fabbri et al., 2021; Possidente et al., 2023; Rashidian
et al., 2021). To minimise the risk of type | errors due to multiple testing, a stringent
Bonferroni correction was applied (a=0.0006), accounting for 27 predictors and
three treatment outcomes.

All analyses were performed in R version 4.3.2 (2023-10-31), with data cleaning
and manipulation streamlined by the tidyverse 2.0 R package.

Results

Socio-demographics characteristics of the sample

Our study included 30,919 individuals with MDD, among whom 16,063 (51.95%)
had a lifetime history of insulin resistance (IR)-related conditions (Table S5). The
mean age during follow-up was 56.12 years (SD=8.35), with males comprising
31.8% of the cohort. A predominant majority (N=29,581; 95.67%) were of European
descent. The most prevalent IR-related conditions included hypertension (N=9,499;
30,74%), obesity/overweight (N=5,243; 16.97%), CVDs (N=3,650; 11.81%), T2DM
(N=3,092; 10.01%), and CAD (N=2,450; 7.92%) (Table S5). Of the cohort, 6,357
individuals (20.56%) received the first MDD diagnosis following an IR-related
diagnosis. Conversely, 9,483 (30.67%) had MDD before any IR-related condition,
and 14,856 (48.05%) had no history of IR-related conditions (Table S5).

Univariable analyses revealed significant socio-demographic differences among
patients with MDD when stratified by the presence or absence of lifetime IR-related
conditions (Table 1). Patients with lifetime IR-related conditions were older and were
more frequently male compared to those without IR-related conditions (Table 1).
These patients also reported lower levels of education and lower socioeconomic
status, as indicated by the Townsend Deprivation Index and household income
(Table 1). Stratification by IR-related diagnosis timing relative to MDD onset
confirmed these findings (Tables S7-S8).

MDD clinical profile and insulin resistance

Individuals in the MDD IR+ group had a higher mean age at depression first diagnosis
and longer duration of follow-up (Table 1). This group exhibited more frequently
characteristics suggestive of unhealthy lifestyle, including higher rates of smoking
and lower levels of moderate physical activity, but also lower alcohol intake frequency
compared to the IR- group (Table 1). The IR+ group also showed higher prevalence of
long-term illnesses and disability, as well as higher BMI (Table 1). BMI was highest in
the MDD-after-IR group, followed by the MDD-before-IR group (Table S9).
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Depressive symptoms and traits also varied between the groups. The IR+ group
reported more feelings of loneliness and being fed-up, but reduced rumination over
embarrassing situations, the latter especially in the MDD-after-IR group (Table 1;
Tables S7-S8). Patients in the IR+ MDD-after-IR subgroup were characterised by
fewer feelings of nervousness, worry/anxiety, guilt, and sensitivity to hurt, but
increased feelings of inadequacy and concentration difficulties when compared to
IR- individuals (Table S8). In contrast, those with pre-existing MDD exhibited higher
levels of neuroticism compared to IR- individuals (Table S7).

Prescription patterns

IR+ individuals had a higher rate of antidepressant prescriptions per follow-up year,
used more drug classes, and had more frequent antidepressant switches than those
without any lifetime IR-related condition (Table 1). There were also differences
in the prevalence of prescribed antidepressant classes between the groups.
Specifically, individuals prescribed serotonin antagonist and reuptake inhibitors
(SARIs - nefazodone and trazodone), serotonin-norepinephrine reuptake inhibitors
(SNRIs - duloxetine and venlafaxine), tetracyclic antidepressants (i.e., mirtazapine),
and tricyclic antidepressants (TCAs) were more numerous in the IR+ group,
while the opposite was found for selective serotonin reuptake inhibitors (SSRIs);
however, the number of prescriptions of individual antidepressants, including
SSRIs, was higher in the IR+ group (Table 1). After stratifying the sample based
on the timing of the first diagnosis of IR-related conditions in relation to the first
MDD diagnosis, the higher antidepressant prescription and use of more different
antidepressant classes was particularly evident in individuals having MDD onset
before IR-related conditions (Tables S7-S8). A higher number of antidepressant
switches and prescriptions of SARIs and SNRIs was found in patients with MDD
preceding IR-related diagnoses versus the IR- group, but not in those with later
MDD diagnosis (Tables S7-S8). Among individuals diagnosed with MDD following,
but not preceding, an IR-related condition, a higher proportion were prescribed
SSRIs compared to IR- individuals (Tables S7-S8). No differences were observed
in antipsychotic use as adjunct treatments or other antidepressant classes among
the groups.
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Treatment Outcomes

IR+ patients had overall longer treatment duration and poorer outcomes, including
higherrates of TRD and non-response, than IR- counterparts (Table 1). After adjusting
for confounders, specific IR-related conditions (i.e,, CVDs, CAD, hypertension,
NAFLD, obesity/overweight, prediabetes, and T2DM) were associated with increased
odds of TRD and antidepressant non-response (Figure 1a-b; Table S10a-b).
This pattern was consistent in the overall sample and in the subgroup of patients
who developed MDD prior to each specific IR-related condition, but not in those who
developed MDD after IR-related conditions (Table S11). Regarding the chronicity
of MDD, proxied by the overall treatment time, a similar result was observed. The

presence of IR-related conditions was associated with longer overall treatment time
in the entire sample (Figure 1c; Table S10c), especially in individuals diagnosed
with MDD before the IR-related condition (Tables S11). Conversely, in patients
who developed MDD after IR diagnoses, a general association of poorer treatment
outcomes and overall treatment time with the presence of any IR-related condition,
rather than with specific IR-related conditions, was observed (Table S12).

We did not identify any association between the PGSs of IR-related diseases/traits
and treatment outcomes or overall treatment time; we found nominal associations
(p<0.05) with the PGSs of CAD, triglycerides, and BMI in certain subgroups defined
by diagnosis timing (Tables $13-S15). The R*/Nagelkerke’s pseudo-R* values
for models predicting treatment outcomes ranged from 1.3 to 3.9%, reflecting
the complexity of multifactorial traits like depression treatment outcomes and
IR-related conditions. Despite this, the Hosmer-Lemeshow ¥’ test indicated an
acceptable fit for most models (Tables S10-15), supporting the validity of the
observed associations.
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Any IR-related condition
T2DM A

Obesity 4

Prediabetes
Hypertension

CVDs
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NAFLD A

Rare IR-related conditions
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Gestational diabetes

Figure 1a. Associations between insulin resistance-related conditions and treatment-resistant

depression.

Odds ratios (ORs) along with their 95% confidence intervals are depicted for each insulin resistance-
related conditions. Statistical significance is represented using different symbols: stars (%) for
statistically significant results (p < 0.0006), triangles (A) for nominally significant results (p < 0.05),
and crosses (X) for non-significant results (p > 0.05). The findings are arranged in a gradient based
on significance, with the most statistically significant results at the top, and non-significant results
at the bottom of the plot. Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary
syndrome; MetS, metabolic syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type

2 diabetes mellitus.
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Figure 1b. Associations between insulin resistance-related conditions and antidepressant non-
response.

Odds ratios (ORs) along with their 95% confidence intervals are depicted for each insulin resistance-
related conditions. Statistical significance is represented using different symbols: stars (%) for
statistically significant results (p < 0.0006), triangles (A) for nominally significant results (p < 0.05),
and crosses (X) for non-significant results (p > 0.05). The findings are arranged in a gradient based
on significance, with the most statistically significant results at the top, and non-significant results
at the bottom of the plot. Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary
syndrome; MetS, metabolic syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type
2 diabetes mellitus.
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Figure 1c. Associations between insulin resistance-related conditions and overall treatment time

in MDD.

B's and standard errors are depicted for each insulin resistance-related condition. Statistical
significance is represented using different symbols: stars (%) for statistically significant results
(p < 0.0006), triangles (A) for nominally significant results (p < 0.05), and crosses (X) for non-
significant results (p > 0.05). The findings are arranged in a gradient based on significance, with the
most statistically significant results at the top, and non-significant results at the bottom of the plot.
Abbreviations: CVDs, cardiovascular diseases; PCOS, polycystic ovary syndrome; MetS, metabolic
syndrome; NAFLD, non-alcoholic steatohepatitis liver disease; T2DM, type 2 diabetes mellitus.
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Discussion

Overview of main findings

This study, leveraging primary care-linked data from the UK Biobank, investigated
the associations between IR-related conditions and treatment outcomes,
prescription patterns, and clinical profiles of patients with MDD. Our analyses
revealed a high prevalence of IR-related conditions among individuals with a history
of MDD, emphasising the need to integrate metabolic health into psychiatric care.
Those with IR-related comorbidities showed a later age at first MDD diagnosis,
were less often females, and exhibited more unhealthy lifestyle factors. Our study

is the first to utilise a large, real-world primary care sample with EHRs and genetic
information, demonstrating the increased complexity in managing depression in
this population. This complexity is evidenced by a higher number of antidepressant
prescriptions, switches, and number of classes ever used among those with IR-
related comorbidities. Most notably, the presence of IR-related conditions was
associated with a higher likelihood of TRD, antidepressant non-response, and
prolonged treatment duration, particularly when MDD preceded the onset of IR-
related conditions.

Prevalence of IR-conditions in depression: mechanisms and
unhealthy lifestyle

The high prevalence of hypertension, obesity/overweight, CVDs, and T2DM within
our MDD sample aligns with existing research, underscoring the influence of these
comorbidities on mental health (Kangethe et al., 2021; Kraus et al., 2023; Possidente
et al.,, 2023; Wimberley et al., 2022). Metabolic dysregulation and MDD share
overlapping pathophysiological mechanisms, including chronic inflammation,
impaired insulin signalling, neuroendocrine dysfunction, and oxidative stress
(e.g., Milaneschi et al. (2020)). These disturbances contribute to depressive
symptomatology by disrupting neural circuits related to reward, verbal/numerical
reasoning, and processing speed (Fanelli, Mota, et al., 2022; Milaneschi et al., 2019),
thereby exacerbating core depressive symptoms such as anhedonia and cognitive
dysfunction and hindering treatment response (Martone et al., 2024). Furthermore,
behavioural and affective symptoms of depression may foster unhealthy lifestyle,
predisposing individuals to IR-related conditions. This underscores the necessity of
integrated treatment approaches.

The higher prevalence of unhealthy behaviours, such as smoking and reduced
physical activity, in the IR+ group resonates with existing evidence linking lifestyle
factors to both depression and metabolic disturbances (Kandola et al., 2019). This
observation, coupled with the evidence indicating poorer treatment outcomes
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in the same group, highlights the potential benefits of incorporating lifestyle
interventions in MDD management (Kandola et al., 2019). However, lower alcohol
intake frequency was noted, which aligns with certain clinical characteristics of the
IR+ group. Given the comorbidities and more complex medication regimens in this
group, it is likely that they prudently reduced alcohol intake for medical reasons
(as form of tertiary prevention and to avoid possible pharmacokinetic interactions
with their medications (Chan & Anderson, 2014)). The link between chronic health
conditions like MDD and IR and lower SES is likely bi-directional. The risk of chronic
diseases is increased in groups with lower SES (Sommer et al., 2015), but at the same
time these conditions negatively impact wellbeing and social/work functioning,
escalating medical expenses (Cabral et al., 2019).

Distinct clinical and emotional profiles

Our study also suggests that individuals with a lifetime history of both MDD and
IR-related conditions exhibit a distinct clinical profile of depression. The higher
mean age at MDD first diagnosis in the IR+ group could possibly result from an
intersection of age-related reduction in insulin sensitivity, lifestyle, and psychosocial
stressors inherent to aging, such as social isolation. Age-related factors, including
chronic health challenges, retirement, and shifts in social roles, may contribute to
the simultaneous emergence of depression and IR-related conditions (Stenholm
et al., 2014). The prevalent feelings of loneliness and being fed-up in the MDD IR+
group resonate with the heightened susceptibility to perceived social isolation
associated with atypical depression (Lojko & Rybakowski, 2017). This subtype of
depression, frequently connected with inflammatory and metabolic disturbances,
may also be reflected in the elevated BMI observed in the same group, consistent
with the weight gain characteristic of atypical depression (Lojko & Rybakowski,
2017). The distinctive emotional profiles observed in relation to the timing of MDD-
onset versus IR-related diagnoses provide potential hints for targeted preventive
interventions. Higher neuroticism in individuals with pre-existing MDD suggests
that these patients might have personality characteristics that could predispose
not only to depression but also to metabolic changes. Neuroticism, characterised
by a tendency towards anxiety, depression, and emotional instability, is a well-
established risk factor for developing both mood disorders and cardio-metabolic
conditions (Lee et al, 2022). Conversely, the reduced presence of classical
anxiety-related symptoms, coupled with increased feelings of inadequacy and
difficulty concentrating in the MDD-after-IR subgroup, could reflect the negative
psychological impact of experiencing a chronic cardio-metabolic condition before
depression. Living with a chronic IR-related condition may lead to adaptation
to some emotional responses, shifting from anxiety and worry to feelings of



Insulin resistance and poorer treatment outcomes in depression | 139

inadequacy and difficulty concentrating. This could be attributed to the constant
coping and management demands of a chronic physical illness, which may lead to
a sense of cognitive overload and being overwhelmed.

Prescription patterns and IR-related comorbidities

An increased prescription of SSRIs, SARIs, SNRIs, tetracyclic, and tricyclic
antidepressants in the IR+ group was found, suggesting a more challenging
treatment course. This is confirmed by the higher frequency of antidepressant
switches and the use of a wider array of antidepressant classes, particularly in patients
with MDD preceding IR-related diagnoses. The metabolic side effect profiles of these

antidepressant classes warrant careful consideration. SSRIs are typically preferred
for their relatively favourable side effect profile, especially in patients with comorbid
medical conditions (Gold et al., 2020). SSRIs have been shown to improve glycaemic
control in adults with comorbid MDD and T2DM in short-term studies, and have no
long-term deleterious effects on glycaemic homeostasis (Possidente et al., 2023).
Conversely, SNRIs, tetracyclic, and tricyclic antidepressants, despite their efficacy,
are associated with significant cardio-metabolic side effects, such as hypertension,
weight gain, and dyslipidaemia (Gold et al., 2020; Serretti & Mandelli, 2010), posing
potential exacerbation risks in the presence of underlying IR predisposition. The use
of TCAs in these patients, often a choice of last resort due to their lower tolerability,
suggests a clinical pivot towards more pharmacodynamically complex treatment
options when first-line treatments fail. Conversely, a less frequent use of some
antidepressant classes in the MDD-after-IR group likely reflects clinicians’ attention
to the metabolic side effects of certain antidepressants, and a consequently more
conservative approach. Overall, these findings emphasise the importance of a
personalised treatment strategy for MDD, especially for individuals with a personal
or familiar history of IR-related conditions. Antidepressant selection must carefully
weigh the risk/benefit ratio, prioritising patient safety and overall health in the
context of pre-existing or heightened risk of IR.

IR-related conditions and treatment outcomes in depression

The association between [R-related conditions and higher odds of poorer
treatment outcomes and overall treatment duration supports the hypothesis that
metabolic dysregulation may be linked with difficult-to-treat depression. The
association with poorer treatment outcomes was particularly evident when MDD
diagnosis preceded IR-related conditions. This trajectory may suggest that the
neurobiological and behavioural effects of depression, including stress-related
hormonal imbalances and reduced physical activity, may predispose individuals
to metabolic disturbances, which likely worsen treatment response (Horstmann &
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Binder, 2011; Milaneschi et al., 2020; Milaneschi et al., 2019). Chronic inflammation
and oxidative stress, which are associated with IR, can impair serotonin signalling
and synaptic plasticity, processes involved in antidepressant response (Mehdi et
al., 2023; Milaneschi et al., 2020; Pilar-Cuellar et al., 2013). Notably, the observed
higher prescription of antidepressants and diverse pharmacological classes in IR+
individuals raises questions about the potential of pharmacotherapy in triggering
or worsening IR-related conditions; indeed, patients with difficult-to-treat MDD may
be more frequently exposed to medications with metabolic side effects (Serretti
& Mandelli, 2010). On the other hand, the observation in our sample that a broad
phenotype of IR pathology — defined by the presence of any IR-related condition
rather than specific ones - is linked to worse treatment outcomes when IR precedes
MDD, may support a direct influence of metabolic health on psychiatric treatment
effectiveness. Of note, the larger sample size of the cumulative IR phenotype likely
increased the statistical power of this analysis, thus revealing associations not
apparent in more narrowly defined groups. However, future research is needed
to clarify whether IR-related conditions primarily aggravate depressive symptoms
through metabolic dysregulation or directly impair antidepressant efficacy, as the
current study design does not establish causality.

Polygenic scores and future directions

Our study did not identify significant associations between PGSs for IR-related
conditions and treatment outcomes, although nominal associations were observed
with PGS for CAD, TG, and BMI in certain subgroups. The multifactorial nature of
treatment outcomes, with relatively modest contribution of common genetic
variants (Pain et al., 2022), and methodological limitations may have impacted on the
possibility to reach statistical significance for these results. For example, the used PGS
approach was not biologically informed, i.e., it did not prioritise SNPs based on their
known or predicted functional impact, which may improve PGS prediction accuracy
(Sharew et al.,, 2024). Consistently with our findings, previous studies reported limited
explanatory power of PGSs for IR-related conditions in antidepressant treatment
outcomes. For instance, PGSs for CAD and BMI explained only 1.3% and 0.8% of SSRI
treatment response variance, respectively, with notable cohort-specific and quartile-
dependent differences in effect sizes (Amare et al., 2019). In one cohort, associations
were evident only among individuals in the highest PGS quartile, while intermediate
quartiles showed stronger effects in another (Amare et al,, 2019). Similarly, research
on PGSs for T2DM and depression has shown that significant associations were
particularly evident in early-onset cases or only nominally significant across
ancestrally diverse cohorts (Fanelli et al., 2025).
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In addition to lifestyle modifications, addressing inflammatory-metabolic
dysfunctions of MDD with new pharmacological interventions offers promising
opportunities. Anti-inflammatory agents, such as anti-interleukin-6 antibodies, and
tumor necrosis factor-a inhibitors have shown potential in alleviating depressive
symptoms, particularly in individuals with elevated inflammatory biomarkers
(Fanelli et al., 2025; Wittenberg et al., 2020). Similarly, glucagon-like peptide-1
receptor agonists (GLP-1 RAs), like liraglutide, offer dual benefits by improving
glycaemic control and reducing systemic inflammation, with preliminary evidence
of antidepressant effects (Fanelli et al., 2025; Possidente et al., 2023). Integrating
these pharmacological interventions with precision psychiatry tools, such as

multivariable models incorporating more advanced PGS approaches, could
optimise treatment personalisation.

Strengths and limitations

This study should be viewed in the context of its strengths and limitations. The
strengths of this study lie in its large sample size and the use of a comprehensive
dataset from the UK Biobank. The inclusion of primary care data enriched the
findings, providing a real-world perspective on the management of MDD in
relation to IR-related conditions. However, its observational nature precludes causal
inferences, and generalisability of the findings may be limited to similar healthcare
settings. While the results demonstrate a strong association between IR-related
conditions and poorer treatment outcomes in MDD, they cannot determine whether
IR-related conditions primarily aggravate MDD, directly contribute to resistance, or
result from prolonged treatment resistance and pharmacological burden. Future
longitudinal and experimental studies are required to disentangle the temporal and
causal dynamics between IR conditions, MDD severity, and treatment outcomes.
The demographic composition of the UK Biobank, predominantly consisting of
females, older individuals, and those of higher socioeconomic status, does not
mirror the general UK population (Fry et al., 2017). Additionally, our analysis relied
on proxy measures such as antidepressant switches for treatment non-response/
resistance. While these proxies are well-established in the literature (Lage et al.,
2022; Wigmore et al., 2020), they depend on the completeness of EHRs and are not
direct measures of treatment response. The interpretation of our results should
consider possible biases introduced by missing data, such as gaps in prescription or
diagnosis dates. Furthermore, our analysis did not consider prescription dosages,
nor did it differentiate based on symptom severity or MDD phase (acute vs. non-
acute). Regarding PGS calculation, to prevent results inflation we could not use
some of the larger GWAS whose sample was overlapping with our target UK Biobank
sample. While our findings demonstrate statistically significant associations
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between various IR-related conditions and treatment outcomes in depression, the
predictive impact of these associations, as indicated by Nagelkerke’s pseudo-R?
and R? values, was limited. This aligns with expectations for complex, multifactorial
conditions like MDD and IR-related traits, where a substantial portion of variance
arises from unmeasured genetic, environmental, and clinical factors. Nonetheless,
the Hosmer-Lemeshow test results (p>0.05 in most models) indicated acceptable
model fit, supporting the validity of the observed associations. Future research
should incorporate other variables and advanced modelling approaches to better
capture the full complexity of biopsychosocial factors that contribute to depression
treatment outcomes.

Conclusion

In conclusion, this study highlights a substantial prevalence of IR-related conditions
among individuals with a history of MDD, highlighting a demographic profile
characterised by later age of MDD onset, a propensity towards unhealthy lifestyle,
and a distinct clinical profile. Notably, the presence of IR-related conditions was
associated with heightened complexity in managing depression, as evidenced by
an increase in antidepressant prescriptions, treatment non-response/resistance,
and prolonged treatment duration, particularly when MDD diagnosis preceded
IR-related diagnoses. These results advocate for careful antidepressant selection,
mindful of potential metabolic adverse effects. Overall, these insights endorse
the implementation of a holistic care model that surpasses traditional psychiatric
management, incorporating metabolic assessments and lifestyle interventions to
improve outcomes in patients with MDD. It is important for healthcare providers
to regularly monitor metabolic health in patients with MDD, as the early detection/
treatment of IR-related conditions hold the potential to enhance psychiatric
and physical outcomes, particularly in patients with persistent or treatment-
resistant MDD.
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Abstract

The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity,
and type 2 diabetes mellitus (T2DM), is higher in Alzheimer’s disease (AD), autism
spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of
insulin signalling has been implicated in these neuropsychiatric disorders, and shared
genetic factors might partly underlie this observed multimorbidity. We investigated
the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by
estimating pairwise global genetic correlations using the summary statistics of the
largest available genome-wide association studies for these phenotypes. Having
tested these hypotheses, other potential brain “insulinopathies” were also explored
by estimating the genetic relationship of six additional neuropsychiatric disorders
with nine insulin-related diseases/traits. Stratified covariance analyses were then
performed to investigate the contribution of insulin-related gene-sets. Significant
negative genetic correlations were found between OCD and MetS (rg:-0.315,
p=3.9x10%), OCD and obesity (rg=-0.379, p=3.4x10"), and OCD and T2DM (rg=-0.172,
p=3x10%). Significant genetic correlations with insulin-related phenotypes were also
found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD),
major depressive disorder, and schizophrenia (p<6.17x10%). Stratified analyses
showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar
disorder, schizophrenia and somatic insulinopathies through gene-sets related to
insulin signalling and insulin receptor recycling, and positive genetic covariances
between AN and T2DM, as well as ADHD and MetS through gene-sets related to
insulin processing/secretion (p<2.06x10*). Overall, our findings suggest the existence
of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related
diseases/traits may exert divergent pleiotropic effects. These results represent a
starting point for a new research line on “insulinopathies” of the brain.
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Introduction

Mental disorders are characterised by a reduced life expectancy of approximately
10 years (Weye et al., 2020). In addition to violent causes of death, more than 67%
of the increase in premature mortality is due to natural causes (Walker et al., 2015).
The increased prevalence of insulin-related somatic diseases (i.e., type 2 diabetes
mellitus (T2DM), obesity, and metabolic syndrome (MetS)) observed in mental
disorders, with a resulting increased cardiovascular risk, contributes significantly to
the lower life expectancy (Momen et al., 2020).

A number of studies have investigated this higher comorbidity, focusing mainly
on metabolic disturbances as possible consequences of unhealthy lifestyles,
sedentary habits, or the chronic use of psychotropic medication (Grajales et al.,
2019). However, there is growing evidence for the presence of glycaemic and
metabolic imbalances in drug-naive acute psychiatric patients already at disease
onset, suggesting that common pathogenic mechanisms may also be involved
(Coello et al., 2019). Shared genetic factors may play a role, and genomic studies
may help to unravel the biological underpinnings of the phenotypically observed
comorbidity of neuropsychiatric disorders with somatic insulin-related diseases
and traits.

The above-mentioned insulin-related and neuropsychiatric diagnostic groups
consist of complex and heterogeneous diseases with a highly polygenic inheritance
pattern; heritability estimates from twin and family studies range between 30%
and 80% (Almgren et al., 2011; Wray et al., 2014). Large meta-analyses of genome-
wide association studies (GWASs) have identified hundreds of disease-associated
single nucleotide polymorphisms (SNPs), each contributing with a small effect to
the overall risk for these diseases (Howard et al., 2019). Genetic sharing has already
been highlighted between T2DM, obesity and MetS, as expected from their highly
interrelated pathogenesis (Lind, 2019), and recent evidence has also revealed the
presence of substantial pleiotropy among psychiatric disorders (Cross-Disorder
Group of the Psychiatric Genomics Consortium, 2019).

A key feature that T2DM, obesity and MetS have in common is an impaired
response to insulin stimulation in peripheral tissues, better known as insulin
resistance (Petersen & Shulman, 2018). Abnormalities in insulin signalling might
also link with neuropsychiatric disorders. Indeed, beyond the anabolic function
of insulin at the peripheral level, where it promotes the glucose uptake in tissues
while stimulating glycogenesis and lipogenesis, this hormone can also bind
to insulin receptors (INSRs) on the surface of both neurons and glial cells in the
central nervous system (CNS) (Petersen & Shulman, 2018), where insulin signalling
is regulated among others by the neurotransmitters serotonin and dopamine
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(Mazucanti et al., 2019). In the CNS, insulin plays a key role in synaptic plasticity
and neurotransmission, apoptosis inhibition, and neuroinflammation (Arnold et al.,
2018). Preclinical studies have suggested that an increase in the mammalian target
of rapamycin (mTOR) activity, one of the major downstream effectors of the INSRs,
may lead to reduced synaptic pruning, and thereby contributes to the cognitive
inflexibility and perseverative/repetitive behaviours observed in those animals
with mTOR genetic alterations (Hoeffer et al., 2008; Xu et al., 2019). Cognitive
abnormalities of a similar nature were shown in TALLYHO/JngJ mice, an animal
model of T2DM (van de Vondervoort et al., 2019).

Recently, dysregulation in insulin signalling has been suggested to contribute
to neuropsychiatric disorders more widely. Evidence is strongest for Alzheimer's
disease (AD) and autism spectrum disorder (ASD) (Bralten et al., 2020; Butterfield
& Halliwell, 2019; Macklin et al., 2017; Stern, 2011; van de Vondervoort et al., 2016;
Xiang et al., 2015). Our own recent work also suggested a link with obsessive-
compulsive disorder (OCD) (Bralten et al., 2020; van de Vondervoort et al., 2016).
In the case of AD, it has been shown that insulin sensitivity is altered even before
the onset of cognitive decline or 3-amyloid (AB) accumulation in the CNS (Macklin
et al., 2017). The hyperactivity of the phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (AKT)/mTOR cascade, mediated by the phosphorylation of INSR via insulin
binding to the neuronal surface, leads to the inhibition of autophagy processes and
subsequent accumulation of damaged mitochondria and misfolded proteins seen
in AD (Butterfield & Halliwell, 2019). The same PI3K/AKT/mTOR hyperactivity is also
involved in ASD pathogenesis (Stern, 2011), and genes within the mTOR pathway
were also shown to associate with brain volume variability and ASD (Arenella et
al., 2020). Furthermore, offspring of mothers who have T2DM during pregnancy
have a higher risk of developing ASD (Xiang et al., 2015). The integration of data
from different types of genetic studies has also implicated CNS insulin signalling
as one of the biological mechanisms underlying OCD, where this signalling
pathway may modulate excitatory synaptogenesis and postsynaptic dendritic
spine formation (van de Vondervoort et al, 2016). Also obsessive-compulsive
symptoms in the general population have been associated with genes related
to CNS insulin signalling (Bralten et al., 2020), and shared genetic aetiologies of
peripheral insulin-related phenotypes (i.e., T2DM, glucose levels 2 hours after an
oral glucose challenge (2hGlu), and fasting plasma insulin (FPI)) were found with
both obsessive-compulsive symptoms and OCD (Bralten et al., 2020).

In light of the above evidence, we aimed to investigate the extent of the
potential genetic sharing and contribution of insulin-related gene-sets in the
observed comorbidity of neuropsychiatric disorders having preclinical evidence
of insulin signalling dysregulation (i.e., AD, ASD, and OCD) with somatic diseases
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related to insulin resistance, namely MetS, obesity, and T2DM. For this purpose, we
performed Linkage Disequilibrium SCore regression (LDSC) and stratified GeNetic
cOVariance Analyser (GNOVA) analyses (Bulik-Sullivan et al., 2015; Lu et al., 2017).
In addition, we explored other potential brain “insulinopathies” by estimating the
genetic overlap between other neuropsychiatric disorders and insulin-related
somatic phenotypes.

Methods

Input datasets

As input for the analyses, we used summary statistic data of the largest GWASs
available at the time of conducting our analyses for the phenotypes of interest
(see also Table 1 and the Supplementary information). We considered the
most prevalent somatic diseases linked to insulin resistance (i.e., MetS, obesity,
and T2DM), and neuropsychiatric disorders having preclinical evidence of insulin
signalling dysregulation, namely AD, ASD, and OCD (Hoeffer et al., 2008; Macklin
et al., 2017; van de Vondervoort et al., 2019). We also investigated insulin-related
traits (i.e., 2hGlu, body mass index (BMI), fasting plasma glucose (FPG) and FPI,
glycated haemoglobin (HbA1c), and homeostatic model assessment for insulin
resistance (HOMA-IR)), and other six neuropsychiatric disorders, which are those
best characterised genetically by the Psychiatric Genomic Consortium (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2019) (i.e., attention-
deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), bipolar disorder (BD),
major depressive disorder (MDD), schizophrenia (SCZ), and Tourette’s syndrome
(TS)). Data were downloaded from online repositories (see URLs), when publicly
available, or requested (i.e., MetS) from the GWAS authors.

Genome-wide bivariate genetic correlation estimations

Bivariate LDSC (https://github.com/bulik/Idsc) analyses were performed to estimate
the genetic correlation (rg) ascribed genome-wide to common variants between
AD, ASD, OCD and MetS, obesity, and T2DM, following the software guidelines
(https://github.com/bulik/Idsc/wiki/Heritability-and-Genetic-Correlation). Also through
LDSC, exploratory analyses were carried out to estimate the extent of the genetic
sharing between other neuropsychiatric disorders (ADHD, AN, BD, MDD, SCZ, TS,
along with AD, ASD, and OCD) and insulin-related somatic diseases/traits (i.e., 2hGlu,
BMI, FPG and FPI, HbA1c, HOMA-IR, along with MetS, obesity, and T2DM). Further
details on the quality control (QC) steps and the LDSC method are provided in the

Supplementary information. LDSC is computationally robust to sample overlaps
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between studies (Bulik-Sullivan et al., 2015). Bonferroni correction was applied,
accounting for the number of analyses performed (a=0.05/(9x9)=6.17x10-4).

Genetic covariance analyses stratified by functional annotations
GNOVA (https://github.com/xtonyjiang/GNOVA) was used to investigate whether
neuropsychiatric disorders were genetically correlated to MetS, obesity, or T2DM

specifically through nine gene-sets involved in peripheral and/or CNS insulin
signalling (gene-set sizes ranged from 27 to 137 genes; see Tables S1-S2 for a
complete list of genes included in each gene-set). Further details on the GNOVA
method and the selection of the insulin signalling-related gene-sets are provided
in the Supplementary information. GNOVA-computed covariance estimates
are robust to sample overlaps (Lu et al., 2017). Bonferroni correction was applied
to GNOVA results considering the nine tested gene-sets and the 27 pairwise
combinations of three insulin-related somatic diseases and nine neuropsychiatric
disorders for which GNOVA analyses were performed (a=0.05/(9x3x9)=2.06x10).

Results

Description of the input datasets

A description of the samples (with sample sizes, number of cases and controls,
and the derived effective sample size) included in the analyses is provided
in Table 1. Further information on the GWAS samples can be found in the
Supplementary information.

Pairwise genome-wide genetic correlations between
neuropsychiatric disorders and insulin-related somatic diseases

and traits

A genetic correlation plot depicting the LDSC analyses results is shown in Figure 1;
details on the genetic correlation estimates (rg) for each pair and statistical
significance are provided in Table 2. After correcting for multiple testing, negative
genetic correlations were highlighted between OCD and MetS (r,=-0.315,
p=3.9x10%), OCD and obesity (rg:—0.379, p=3.6x10"), and OCD and T2DM (rg:-0.1 72,
p=3x10"*). Nominally significant genetic correlations were also found between AD
and T2DM (rg=0.155, p=0.048), and ASD and MetS (rg=0.115, p=0.002).

When insulin-related somatic traits (i.e., 2hGlu, BMI, FPG, FPI, HbA1c, HOMA-IR)
were considered, OCD was also found to be significantly negatively genetically
correlated with BMI (r,=-0.284, p=2.6x10""), but neither AD nor ASD showed
significant correlations with the traits.
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Analyses were also extended to other neuropsychiatric disorders (i.e,, ADHD, AN, BD,
MDD, SCZ, and TS) and significant genetic correlations were found between insulin-
related diseases/traits and ADHD, AN, MDD, and SCZ (see Figure 1 and Table 2).
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Figure 1. Genetic correlation plot summarising the results from the bivariate Linkage Disequilibrium
Score regression (LDSC) analyses.

The size of the circle is proportional to the genetic correlation estimates, going from warmer to colder
colours as the direction of the effect changes from positive to negative. Bonferroni multiple testing
correction was applied, correcting for the number of analyses performed (0=0.05/(9%9)=6.17e-4).
Abbreviations: AD, Alzheimer’s disease; ASD, autism spectrum disorder; OCD, obsessive-compulsive
disorder; ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; BD, bipolar disorder;
MDD, major depressive disorder; SCZ, schizophrenia; TS, Tourette’s syndrome; MetS, metabolic
syndrome; T2DM, type 2 diabetes mellitus; 2hGlu, glucose levels 2 hours after an oral glucose
challenge; BMI, body mass index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HbA1c,
glycated haemoglobin; HOMA-IR, homeostatic model assessment for insulin resistance.

** Statistically significant bivariate genetic correlation (p<6.17x10%).

* Nominally significant bivariate genetic correlation (p<0.05).

Genetic covariance between neuropsychiatric disorders and insulin-
related somatic diseases stratified by insulin-related gene-sets

After Bonferroni correction, stratified GNOVA analyses highlighted significant
negative genetic covariance between AD and obesity through the Reactome INSR
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recycling gene-set (p=4.6x10%), as well as between ASD and MetS through the
Biocarta, KEGG, and PID insulin signalling pathways (p<3.2x107%). OCD showed
negative genetic covariance with MetS and T2DM through the Reactome INSR
recycling gene-set (p<1.6x10%).

When the other neuropsychiatric disorders were also considered, negative
genetic covariance was found between BD and T2DM, BD and MetS, SCZ and
MetS through the PID insulin signalling pathway (p<2x107%), as well as between
AN and T2DM through the Biocarta insulin pathway (p=1.26x10%). Moreover,
positive genetic covariance was highlighted between AN and T2DM through the
Reactome insulin processing gene-set (p=3.77x10?), as well as between ADHD and
MetS through the Reactome regulation of insulin secretion gene-set (p=1.18x10"%)
(see Table 3; detailed results are shown in Tables S3-S11).

Discussion

In this study, we investigated the genetic overlap of AD, ASD, OCD with somatic
insulinopathies, namely MetS, obesity and T2DM, hypothesising an important role
for gene-sets related to insulin signalling. Our genome-wide analyses indicate
significant global negative genetic correlations between OCD and obesity,
T2DM, and MetS. Gene-set stratified genetic covariance analyses of specific
insulin-related pathways helped identify a genetic link of AD, ASD, and OCD
with somatic insulinopathies. Moreover, our exploration of other potential brain
“insulinopathies” yielded evidence for global genetic overlap of ADHD, AN, MDD,
and SCZ with somatic insulin-related diseases/traits, while genetic covariance at
the level of insulin-related gene-sets was identified between ADHD, AN, BD, SCZ
and T2DM/MetS/obesity.

The previous clinical and epidemiological studies available to date indicate
a higher prevalence of obesity, MetS, and T2DM in patients with OCD than the
general population (Albert et al., 2013; Isomura et al., 2018). Furthermore, a
mouse model for T2DM showed compulsive traits, as discussed above (Macklin
et al., 2017). We thus had hypothesised a genetic correlation between OCD and
somatic disorders characterised by insulin resistance to exist, which we indeed
found in this study. The negative direction of the correlation we found was
unexpected, as it might suggest a protective role of the genetics underlying OCD
on the chance of having T2DM, MetS and/or obesity. However, for behavioural
traits, environmental sources of variation may operate orthogonally to genetic
factors, masking the effect of the genetics at the phenotypic level (Hadfield et al.,
2007). Therefore, one hypothesis explaining our result can be that environmental
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effects act in the opposite direction to genetics, causing an increased risk in the
presence of protective genetics and resulting in variability in the phenotypic
manifestations over time. Indeed, metabolic complications have been particularly
associated with a longer duration of antipsychotics treatment in patients with
OCD (Albert et al., 2013). It is also reasonable to assume that patients with more
severe symptoms, having higher genetic load for OCD, are more likely to develop
metabolic side effects of such treatments because they require higher doses and
longer therapies, even though they might be genetically more protected against
insulin-related/metabolic disturbances. The analyses considering insulin-related
glycaemic/anthropometric traits also showed a negative correlation between OCD
and BMI. This finding is consistent with previous evidence in smaller samples of a
negative genetic relationship with a negative direction between OCD and body fat
measures (Hubel et al., 2019); it also further supports the negative correlation trend
that we observed between OCD and somatic insulinopathies. Zooming in through
analyses of gene-sets related to insulin signalling, we found genes involved in
the INSR recycling process involved in the genetic correlation of OCD with both
MetS and T2DM. This molecular pathway mediates the recycling of the INSR and
reintegration into the plasma membrane. After activation, the INSR-insulin complex
is internalised into the cell within an endosome, and insulin is degraded, while INSR
is dephosphorylated and reintegrated into the plasma membrane (Reactome). To
our knowledge, this is the first study reporting involvement of the INSR recycling
pathway in neuropsychiatric phenotypes. In this respect, it should be noted that
endosomal recycling processes are relevant to the functioning of the brain. They
are important for synaptic functioning and plasticity (and related glutamatergic
neurotransmission) as well as for the maintenance of levels of membrane proteins,
more generally (Chiu et al.,, 2017).

We did not observe significant genome-wide genetic correlations between AD
and somatic insulin-related diseases, only nominally significant positive genetic
correlations were seen with MetS and T2DM before multiple testing correction.
Our results may add support for a predominant influence of environmental
and epigenetic factors in the comorbidity observed between AD and somatic
insulinopathies, although we cannot exclude the possible existence of patterns
of local genetic correlation (Werme et al., 2021). It should be noted that ageing is
considered the greatest risk factor for AD, and T2DM incidence also increases with
ageing (Knopman et al., 2021). Processes linked to oxidative damage and ageing
could trigger the onset of both diseases in a way that is partly independent from
genetic effects (Butterfield & Halliwell, 2019). Air pollution, smoking, and low
physical activity are also important risk factors for broadly defined dementia, and
they also contribute to insulin resistance and cerebrovascular disease (Knopman
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et al., 2021; Yang et al., 2020). The role of epigenetic modulation, including DNA
methylation, histone modifications and non-coding RNAs, in the aetiopathogenesis
of AD is also well recognised, and this may provide novel avenues for treatment in
the upcoming years (Liu et al., 2018). A hypothesis is that the clinical heterogeneity
of AD may have camouflaged the presence of genetic factors shared with somatic
insulinopathies. In this regard, more deeply phenotyped samples might help
better investigate the presence of pleiotropic effects in the future (Cummings,
2000). Alternatively or in addition, previous evidence may point to a role for insulin
signalling specifically in individuals carrying APOE polymorphisms, suggesting that
new insights may be derived from stratification of the AD population according
to APOE genotype. Indeed, oral antidiabetics, such as thiazolidinediones and
intranasal insulin have shown differential efficacy in AD depending on the APOE-¢4
genotype (Li et al., 2015), which is the strongest common genetic risk factor for

late-onset AD (Yamazaki et al., 2019). Moreover, a previous study has also shown
a strong regional genetic correlation between AD and T2DM for the genetic
variants mapped to the apolipoprotein-E (APOE) locus (Zhu et al., 2019). However,
the absence of genetic correlations at the genome-wide level does not preclude
the existence of genetic sharing, as both positive and negative local genetic
correlations may occur and potentially cancel each other out when summed at
the genome-wide level (van Rheenen et al., 2019). In this regard, we demonstrated
significant genetic covariance between AD and obesity at the INSR recycling
gene-set level. Under physiological conditions, INSR is maintained in equilibrium
between an internalising and an exposed state at the plasma membrane (Chen et
al., 2019). Either excessive or insufficient surface INSR can lead to the development
of insulin resistance (Chen et al., 2019). Our finding is in line with the evidence of
an altered cellular distribution of INSRs in AD, resulting in a loss of INSRs at the
neuronal membrane, suggesting that alterations in INSR recycling/trafficking are
present (Moloney et al., 2010).

A role of metabolic dysregulation in ASD has been previously suggested by
the increased risk for ASD and neurodevelopmental delays in the offspring of
mothers who have metabolic conditions during pregnancy (Krakowiak et al., 2012).
Nevertheless, our study did not find ASD to be significantly genetically correlated
at the genome-wide level with either MetS, obesity or T2DM, in line with non-
significant previous reports using smaller sample sizes (Grove et al., 2019). However,
the stratification to insulin-specific gene-sets revealed significant localised
negative genetic covariance of ASD with MetS through genes within insulin
signalling pathways. Although further studies will be needed to disentangle the
biological meaning of this finding, we could speculate that the observed pathway-
level negative genetic covariance between ASD and MetS might reflect higher
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complexity of reciprocal regulation between monoamine and insulin signalling at
the CNS and peripheral level (Mazucanti et al., 2019). What we found at the gene-
set level may also be consistent with prior findings of enhanced insulin signalling in
the brain of a Drosophila model of Fragile X syndrome, which represents the most
prevalent hereditary type of intellectual disability and autism (Monyak et al., 2017).

To extend the spectrum of potential brain “insulinopathies”, LDSC analyses
were performed considering six other neuropsychiatric disorders and diseases/
traits related to insulin resistance. Our analyses identified several additional
genetic correlations of the somatic insulin-related diseases with psychiatric
disorders; negative genetic correlations were seen between MetS and both AN and
schizophrenia, and positive genetic correlations were observed for MetS with both
ADHD and MDD. Of note, the diagnosis of MetS is made when at least three out
of the following co-occur: high systolic blood pressure, low levels of high-density
lipoprotein (HDL), hyperglycaemia, high levels of triglycerides, and/or increased
waist circumference (Lind, 2019). Our findings are consistent with previous evidence
of pairwise genetic sharing between lipidaemic traits (HDL and triglycerides),
waist circumference and AN, ADHD, and/or MDD (Demontis et al., 2019; Howard
et al., 2019; Watson et al., 2019; Wray et al., 2018). In line with the negative genetic
correlations that we observed between MetS and both AN and schizophrenia,
Mendelian randomisation (MR) studies have previously identified AN and SCZ
as causal for decreased fat mass (Hubel et al., 2019). This finding may suggest a
prevalent contribution of environmental factors, such as the use of antipsychotics,
unhealthy diet and lifestyle, reduced access to medical care on the epidemiological
evidence of an increased risk of MetS, hypertension, and dyslipidaemia in patients
with SCZ (Vancampfort et al., 2015). We also replicated and updated previous
evidence of genetic sharing of ADHD, AN, and MDD with T2DM, as well as of ADHD,
AN, MDD, and SCZ with both obesity and BMI (Bulik-Sullivan et al., 2015; Demontis
et al,, 2019; Howard et al.,, 2019; Hubel et al., 2019; So et al., 2019; Watson et al.,
2019). With regard to SCZ and BMI, the negative direction of the genetic correlation
corresponds to the previously reported evidence of a negative association of
polygenic risk scores for SCZ with BMI (So et al., 2019). Exploring further the genetic
links between these neuropsychiatric disorders and glycaemic traits linked to
insulin resistance, we revealed a novel positive correlation between ADHD and FPG,
as well as negative bivariate correlations between AN and both FPI and HOMA-IR
that replicate and update previous findings (Hubel et al., 2019; Watson et al., 2019).
A MR study had also previously shown that higher levels of FPI have a causal effect
in reducing the risk of AN (Adams et al., 2020).

Interestingly, the local genetic covariance we have highlighted between
neuropsychiatric disorders and somatic diseases linked to insulin resistance was
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in most cases in the negative direction at the level of gene-sets related to insulin
signalling, except for AN and ADHD. A negative direction means that genetic
variability at the level of these gene-sets may result in an opposite pleiotropic effect
on these two groups of diseases. However, the biological interpretation of these
findings does not seem obvious at present and additional investigations at the
gene and functional level will be necessary to clarify their biological significance.
This study comes with some strengths and limitations. The major strength is
the investigation of the possible specific involvement of insulin-related gene-
sets at the genomic level for the first time in the phenotypically observed
comorbidity between neuropsychiatric disorders and somatic diseases related to
insulin resistance. GNOVA provided us with more powerful statistical inference
and more accurate genetic covariance estimates than LDSC and helped dissect
the shared genetic architecture of the considered complex diseases, while giving

us greater insights into the underlying biology. We exploited the largest public
GWAS summary statistics (up to 898,130 individuals for T2DM) and used a strict
Bonferroni correction to avoid type-1 errors. Our study may be limited by not
having considered in our analyses the potential effect of environmental factors
and epigenetic mechanisms, which are likely to mediate the relationship between
neuropsychiatric and somatic insulinopathies, as well as potential sex effects
due to the unavailability of publicly available sex-stratified data for all the traits/
disorders tested and the loss of power for some of the phenotypes investigated.
Another limitation is the inclusion of European-only datasets in our analyses,
which limits the generalisability of our findings. In addition, the composition of
insulin-related gene-sets, used as functional annotations in our stratified analyses,
may be influenced by the current, still incomplete knowledge of the biology and
functioning of the pathways to which they refer.

In conclusion, our study revealed the presence of genetic overlap between OCD
and insulin-related somatic diseases, with a likely protective effect of the genetics
underlying OCD on the chance of having MetS, obesity, and/or T2DM. However,
environmental effects, such as psychotropic drug use, or a relatively unhealthy
lifestyle, may act in the opposite direction to genetics, causing increased metabolic
risk despite protective genetics. We pointed out that other neuropsychiatric
disorders, besides OCD, represent potential brain “insulinopathies” Two distinct
clusters of psychiatric disorders have emerged, in which the genetics of insulin-
related traits/diseases may exert divergent pleiotropic effects: one consisting of
AN, OCD, and SCZ, which showed negative genetic overlap with somatic insulin-
related diseases and traits, and the other one comprising ADHD, and MDD, which
showed positive genetic overlap with insulin-related diseases and traits. Finally, we
demonstrated that insulin-related gene-sets may be pleiotropic for neuropsychiatric
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disorders (i.e., AN, ADHD, ASD, BD, OCD, and SCZ) and somatic insulinopathies,
suggesting that the cumulative effect of genetic variability within insulin-related
gene-sets on the investigated neuropsychiatric disorders except for AN and
ADHD is in the opposite direction to the effect on somatic insulinopathies. Our
work might open up new directions for clinical and neuropsychopharmacological
research by introducing insulin signalling as a possible mechanism underlying the
multimorbidity of major mental disorders and somatic diseases. Further studies are
warranted to investigate the biological meaning of the observed correlations and
potential non-genetic effects contributing to insulin-related multimorbidity.

URLs

LDSC, https://github.com/bulik/lIdsc; Pre-computed European
LD scores, https://data.broadinstitute.org/alkesgroup/LDSCORE/;
GNOVA, https://github.com/xtonyjiang/GNOVA;

GWAS summary statistics - ADHD, AN, ASD, BD, OCD, MDD, TS:
https://www.med.unc.edu/pgc/download-results/; AD: https://ctg.cncr.nl/
software/summary_statistics; SCZ: http://walters.psycm.cf.ac.uk/; 2hGlu, FPG, FPI,
HbA1c, HOMA-IR: https://www.magicinvestigators.org/downloads/; BMI: https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files; MSigDB: https://www.gsea-msigdb.org/gsea/msigdb/index.jsp.
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Abstract

The co-occurrence of insulin resistance (IR)-related metabolic conditions with
neuropsychiatric disorders is a complex public health challenge. Evidence of the
genetic links between these phenotypes is emerging, but little is currently known
about the genomic regions and biological functions that are involved. To address
this, we performed Local Analysis of [co]Variant Association (LAVA) using large-
scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three
IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome)
and nine neuropsychiatric disorders. Subsequently, positional and expression
quantitative trait locus (eQTL)-based gene mapping and downstream functional
genomic analyses were performed on the significant loci. Patterns of negative
Prpr<0.05) were identified
at 109 unique genomic regions across all phenotype pairs. Local correlations

and positive local genetic correlations (|rg|=0.21-1,

emerged even in the absence of global genetic correlations between IR-related
conditions and Alzheimer’s disease, bipolar disorder, and Tourette’s syndrome.
Genes mapped to the correlated regions showed enrichment in biological
pathways integral to immune-inflammatory function, vesicle trafficking, insulin
signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further
prioritised 10 genetically correlated regions for likely harbouring shared causal
variants, displaying high deleterious or regulatory potential. These variants were
found within or in close proximity to genes, such as SLC39A8 and HLA-DRBI, that
can be targeted by supplements and already known drugs, including omega-3/6
fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering
drugs. Overall, our findings underscore the complex genetic landscape of IR-
neuropsychiatric multimorbidity, advocating for an integrated disease model and
offering novel insights for research and treatment strategies in this domain.
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Introduction

Multimorbidity, defined as the co-occurrence of multiple conditions within an
individual, poses substantial challenges to healthcare systems (Skou et al., 2022).
An example is the observed co-occurrence of insulin resistance (IR)-related
metabolic conditions, such as type 2 diabetes mellitus (T2DM), obesity, and
metabolic syndrome (MetS), with neuropsychiatric disorders (Wimberley et al.,
2022). This multimorbidity contributes to more severe physical and mental health
outcomes, leading to reduced treatment effectiveness and higher mortality rates
(Fanelli & Serretti, 2022; Kraus et al., 2023; Possidente et al., 2023). Moreover, IR is
associated with detrimental effects on cognitive function, potentially worsening
the cognitive impairment observed in various neuropsychiatric disorders (Fanelli,
Mota, et al., 2022).

IR manifests as reduced tissue responsiveness to insulin stimulation, primarily
disrupting blood glucose homeostasis and inducing long-term micro- and
macrovascular complications, as well as peripheral nervous system damage

(DeFronzo et al.,, 2015). Such a metabolic perturbation is a distinctive feature
of T2DM, central obesity, and MetS (DeFronzo et al., 2015). Emerging evidence
suggests that IR shares aetiological pathways with neuropsychiatric disorders,
including Alzheimer’s disease (AD), mood and psychotic disorders (Fanelli, Franke,
et al., 2022; Hubel et al., 2019; Watson et al., 2019). The connection between IR-
related conditions and neuropsychiatric disorders is supported by compelling
epidemiological data (Leutner et al., 2023; Wimberley et al., 2022). Indeed,
bidirectional phenotypic associations have been found between these two
nosological groups (Wimberley et al., 2022). This evidence blurs the boundaries
between traditional disease categories, advocating for a more integrated approach
to research and clinical management (Chwastiak et al.,, 2015; Fanelli & Serretti,
2022). Consequently, a deeper comprehension of the mechanisms underlying this
multimorbidity is essential.

Beyond shared environmental risk factors - including poor diet, sedentary
lifestyle, and disturbed sleep (Marx et al., 2017; Ogilvie & Patel, 2018; Schuch et
al., 2018), which could also be direct manifestations of psychopathology - shared
genetic components have been identified (Fanelli, Franke, et al., 2022). Both
IR-related conditions and neuropsychiatric disorders are highly heritable and
polygenic (Mahajan et al., 2022; Trubetskoy et al., 2022), with heritability estimates,
derived from twin and family studies, ranging from 40 to 80% (Almgren et al., 2011;
Wray et al., 2014). Work by us and others disclosed global genetic correlations
between neuropsychiatric disorders and IR-related conditions, indicative of shared
genetic bases (Fanelli, Franke, et al., 2022; Hubel et al., 2019), though the effect
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directions were not consistent across all phenotype pairs. Intriguingly, two clusters
of neuropsychiatric disorders were identified, wherein the genetics of IR-related
conditions showed opposite directions of genetic correlation. The first included
attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder
(MDD), which showed positive genetic correlations with IR-related conditions; the
second included obsessive-compulsive disorder (OCD), anorexia nervosa (AN),
and schizophrenia, which showed negative genetic correlations with IR-related
conditions (Fanelli, Franke, et al., 2022). Genetic covariance was also highlighted
within gene sets pertinent to insulin processing, secretion, and signalling,
suggesting that several neuropsychiatric disorders could be reconceptualised
as “insulinopathies” of the brain (Fanelli, Franke, et al., 2022). Strikingly, certain
neuropsychiatric disorders, such as AD and bipolar disorder (BD), demonstrated no
global genetic correlations with IR-related conditions, despite previous literature
suggested a shared pathophysiology (Fanelli, Franke, et al., 2022; Shieh et al., 2020).
However, global genetic correlation only encapsulates the average direction of
genetic sharing across the genome, while the patterns of genetic correlations at
the level of individual genomic regions can vary significantly (van Rheenen et al.,
2019). Local genetic correlation can deviate from the genome-wide average, and
regions of strong, local genetic correlation have been reported for multiple traits
even in the absence of genome-wide correlation (van Rheenen et al., 2019; Werme
et al,, 2022). Therefore, the absence of genome-wide genetic correlations does not
necessarily exclude shared genetics in specific regions, suggesting the importance
to further study the possible genetic overlap between conditions without global
genetic correlation, such as AD and IR-related traits (Fanelli, Franke, et al., 2022).
Importantly, dissecting the local patterns of genetic sharing could shed light on
specific genetic factors involved in IR-neuropsychiatric multimorbidity and new
potential therapeutic targets for both groups of conditions. Recent advances in
bioinformatics have facilitated a more detailed exploration of the genetic overlap
across distinct phenotypes. Traditional global genetic correlation methods, like
Linkage Disequilibrium Score regression (LDSC), assess shared genetic architecture
between phenotypes across the entire genome (Bulik-Sullivan et al., 2015) but may
fail in identifying phenotype pairs that share specific genomic regions potentially
without showing global genome-wide genetic correlation (Bulik-Sullivan et al.,
2015). Therefore, the utilisation of local genetic correlation analyses may offer more
granular insights into shared genetic bases (Werme et al., 2022).

In this study, we aimed to dissect the genetic overlap between three IR-related
metabolic conditions - namely, obesity, T2DM, and MetS - and nine psychiatric
disorders by examining their pairwise patterns of local genetic correlation throughout
semi-independent regions across the genome. Any shared genomic region was
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further explored using positional and expression quantitative trait locus (eQTL)-
based gene mapping techniques. This was followed by a functional annotation of the
mapped genes, enabling a deeper exploration of biological mechanisms underlying
IR-neuropsychiatric multimorbidity. Lastly, we investigated the shared (likely) causal
variants possibly driving the pathophysiology of this multimorbidity.

Methods

Input datasets

We leveraged publicly available summary statistics from the largest genome-wide
association studies (GWASs) on the three most prevalent IR-related conditions,
namely obesity, MetS, and T2DM (n=244,890-933,970), and nine neuropsychiatric
disorders, including AD, ADHD, AN, autism spectrum disorder (ASD), BD, MDD,
OCD, schizophrenia, and Tourette’s syndrome (TS) (n=9,725-933,970). These
neuropsychiatric disorders were chosen because they are the best genetically

characterised by the Psychiatric Genomics Consortium (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2019). Further details, including sample size of
each GWAS, arereported in Table 1. To maintain consistency in genetic data, analyses
were confined to individuals of European ancestry, employing the human genome
build GRCh37/hg19 as a reference. All statistical analyses were performed using
Rv4.2.1 (2022-06-23).

Local genetic correlation analyses
We utilised the R package LAVA (Local Analysis of [co]Variant Association) (https://github.
com/josefin-werme/LAVA) to perform pairwise local genetic correlation analyses

between the three IR-related conditions and the nine neuropsychiatric disorders
(Werme et al., 2022). Compared to traditional global correlation analysis methods
(Bulik-Sullivan et al., 2015), LAVA estimates the genetic correlation at smaller
genomic loci, which provides a more fine-grained overview of the genetic overlap
between traits. In addition to providing insight into the potentially heterogeneous
nature of the shared association patterns across the genome, LAVA allows
identification of the regions from which the pleiotropy is originating (Werme et
al., 2022). Further details regarding the LAVA analytical steps are provided in the
Supplementary information (paragraph 1.1). Given the total number of bivariate
tests performed across all phenotype pairs, local genetic correlations were deemed
as statistically significant at a maximum acceptable false discovery rate (FDR) of
=0.05, following the approach of Hindley et al. (2022).
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Positional and eQTL gene mapping
The biomaRt R package (version 2.54.1) (https://doi.org/doi:10.18129/B9.bioc.
biomaRt) (Durinck et al, 2005) was used to annotate single-nucleotide

polymorphisms (SNPs) within each genetically correlated region and positionally
map them to genes. We used the Ensembl database (release 109, GRCh37/hg19,
homo sapiens) as a reference for gene annotations. We defined filters to specify the
genomic regions of interest based on their location (chromosome number, start
and end positions).

For the eQTL-based gene mapping, the loci2path R package (version 1.3.1)
(https://doi.org/doi:10.18129/B9.bioc.loci2path) (Xu et al., 2020) was used to
identify eQTLs within the genetically correlated regions that may influence gene
expression in 13 cortical, subcortical, and cerebellar brain regions (i.e., total brain
cortex, frontal cortex BA9, hippocampus, hypothalamus, amygdala, anterior
cingulate cortex BA24, caudate, nucleus accumbens, putamen, cervical spinal
cord, substantia nigra, cerebellar hemisphere, cerebellum). We obtained the eQTL
data from the Genotype-Tissue Expression (GTEx) project (GTEx V8, GRCh38/
hg38) (https://gtexportal.org/home/dataset) and restricted our analysis to brain
tissues due to their relevance to neuropsychiatric disorders. Prior to the analysis,
we lifted the eQTL coordinates to the GRCh37/hg19 genomic build using the
UCSC LiftOver tool (https://genome-store.ucsc.edu) to align with the used GWAS
summary statistics.

Functional annotation of genetically correlated regions

Functional annotation analyses were conducted separately for each phenotype
pair where genetically correlated regions were found. We employed the
GENE2FUNC module within the Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA) platform (Watanabe et al., 2017), using default
parameters and multiple testing correction (Watanabe et al., 2017). This approach
served to examine important properties of the mapped genes, such as their
tissue-specific and temporal expression profiles, enrichment in predefined gene
sets, potential as drug targets, and previous trait/disease associations. Detailed
information on the methods applied for these analyses are presented in the
Supplementary information (paragraph 1.2).

To contextualise our findings within the broader landscape of known disease
associations, we also investigated the overrepresentation of the identified genes
within those previously associated with traits or diseases by querying the NHGRI-
EBI GWAS Catalog (Buniello et al., 2019).
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Colocalisation analyses

To identify the specific shared causal variants within each region showing local
genetic correlation, we conducted robust Bayesian colocalisation analyses through
the coloc R package (Giambartolomei et al., 2014) and the Sum of Single Effects
(SuUSIiE) regression framework (Wallace, 2021) (https://chriswallace.github.io/
coloc/articles/a06 SuSiE.html). Notably, these approaches allow for simultaneous
evaluation of multiple causal genetic variants within a genomic region and are

therefore not limited by the single causal variant assumption that traditional
colocalisation methods use. The input genomic regions were those showing
evidence of local genetic correlation between each pair of IR-related condition
and neuropsychiatric disorder. The detailed methodology is reported in the
Supplementary information (paragraph 1.3).

Functional annotation of 95% credible sets of shared causal variants
We employed the SNPnexus web server (https://www.snp-nexus.org/) to further

characterise the functional significance of the likely causal variants identified by
colocalisation (Oscanoa et al., 2020). This tool integrates a wealth of genomic and
functional annotation resources to elucidate the potential biological consequences
of variants on gene structure, regulation, and function. The analysis encompassed
several annotation categories, including gene annotations, regulatory elements
(e.g., miRBASE, CpG islands), and non-coding scoring (i.e., deleteriousness Combined
Annotation Dependent Depletion [CADD] scores), along with pathway enrichment
analysis of credible set variants (Oscanoa et al., 2020). A detailed description of these
steps is provided in the Supplementary information (paragraph 1.4).

Finally, the drugs/compounds that target genes mapped to likely causal variants
were sourced from GeneCards, independent from their approved or investigational
status. GeneCards is an online platform that gathers information from multiple
databases including DrugBank, PharmaGKB, ClinicalTrials, DGIdb, the Human
Metabolome Database, and Novoseek (Safran et al.,, 2010).
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Results
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Figure 1. Local genetic correlations between neuropsychiatric and insulin resistance related conditions.

Abbreviations: AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; AN, anorexia
nervosa; ASD, autism spectrum disorder; BD, bipolar disorder; MDD, major depressive disorder; MetS,
metabolic syndrome, OCD, obsessive-compulsive disorder; T2DM, type 2 diabetes mellitus; SCZ,
schizophrenia; TS, Tourette’s syndrome.

a. Chord diagram representing the network of local genetic correlations between insulin resistance-
related conditions and neuropsychiatric disorders. A higher width of a ribbon reflects a higher
number of shared genetically correlated loci between two phenotypes, highlighting a substantial
polygenic overlap and suggesting potential shared pathophysiological mechanisms between them.
The colours of the ribbons are used purely for visual distinction and do not imply any additional
significance or categorisation.

b. Bar plot presenting the number of local genetic correlations identified between neuropsychiatric
disorders and insulin resistance-related conditions. Each bar corresponds to a different
neuropsychiatric disorder, segmented by the direction of effect of local genetic correlations,
with blue indicating negative and red indicating positive local genetic correlations between
neuropsychiatric disorders and insulin resistance-related conditions. The height of each bar reflects
the quantity of local genetic correlations detected for each disorder.

c. Network visualisation of local genetic correlations between a spectrum of neuropsychiatric
disorders and insulin resistance-related conditions. Nodes represent distinct phenotypes for which
local bivariate genetic correlations were evaluated. Edges connecting the nodes vary in width
proportionally to the number of local genetic correlations identified between phenotype pairs.
Edge colour denotes the direction of the genetic correlation estimate, with red indicating a positive
correlation and blue indicating a negative correlation.
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Local patterns of genetic correlation between IR-related conditions
and neuropsychiatric disorders

For each pair consisting of an IR-related condition and a neuropsychiatric disorder,
bivariate local genetic correlation was evaluated in all genomic regions for which
both phenotypes exhibited a univariate signal at p<1x10# resulting in a total of
2,251 tests. Of note, only 19.6% of the regions with significant local SNP-based
heritability (hZSNP)
significant local h?

for both phenotypes showed a bivariate p<0.05, indicating that
o 15 Often present without any local correlation signal between
neuropsychiatric and IR-related conditions. After FDR correction, moderate to high
degrees of local genetic correlations (|rg|=0.21-1, Ppr<0.05) were identified for 20 of
the 27 phenotype pairs examined, across 109 unique semi-independent genomic
regions (see Figure 1 and Table 2). Noteworthy, local genetic correlations also
emerged between IR-related conditions and neuropsychiatric disorders that had
not shown significant global genetic correlations, namely AD, BD, and TS (Fanelli,
Franke, et al., 2022). In total, 128 FDR-significant local genetic correlations were
identified, of which 75 with a positive direction of the effect and 53 with a negative
direction (Table 2; detailed results are provided in Table S1; see also Figure 1b-
c). For 59 (46.1%) of the 128 local correlations, the 95% confidence intervals (Cls)
for the explained variance included the value 1, consistent with a scenario where
the local genetic signal for those phenotype pairs is entirely shared (Table 2).
Interestingly, exclusively positive local genetic correlations were found between
IR-related conditions and ADHD/MDD, while those detected between IR-related
conditions and AN were all negative. No local genetic correlation was found
between ASD and I[R-related conditions. Conversely, a combination of positive
and negative local genetic correlations was detected between all the other IR-
related and neuropsychiatric conditions (Figure 1, Table 2), of which all but MetS-
schizophrenia had no previous evidence of global genetic overlap (see Table 2).

Furthermore, fifteen out of the 109 unique regions were associated with more
than one phenotypic pair (Table S1; we refer to these here as hotspots). The major
hotspots showing significant bivariate local rgs between multiple phenotypic
pairs were the chr2:59251997-60775066 (between T2DM-ADHD, MetS-AN,
MetS-MDD), chr6:31320269-31427209 (MetS-AD, T2DM-AD, T2DM-schizophrenia),
and chr16:29043178-31384210 genomic regions (MetS-schizophrenia, obesity-
schizophrenia, T2DM-schizophrenia) (see Table S1 and Figure S1). Notably, 11.71%
of the genetically correlated regions detected here (15/128) are located in the
Major Histocompatibility Complex (MHC) region (chr6:28477797-33448354). All
rys detected in the MHC were between T2DM/MetS and either schizophrenia, AD, or
BP, with prevalence of a negative direction of the effect (Table S1).
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Genes underlying IR-neuropsychiatric multimorbidity

In the regions where we detected significant local genetic correlations, we
identified a total of 1,455 distinct genes were identified through eQTL-based
mapping, and 1,495 unique protein-coding genes through positional mapping
across all phenotype pairs (Table S2-3). Notably, the pseudogene CYP21ATP was
recurrently eQTL-mapped across multiple phenotype pairs (AD-T2DM, AD-MetS,
BD-T2DM, schizophrenia-T2DM). In total, 140 genes were mapped for at least
three phenotype pairs, indicating a potentially broader relevance in the genetic
landscape of IR-neuropsychiatric multimorbidity (Table S3). Within this subset,
20 genes, all located within the MHC region, were involved in immune-inflammation
and vesicle metabolism/trafficking (e.g., HLA-B, MICA, C4A, C4B, AGER, BTNL2, HLA-
DRA, HLA-DRB1, HLA-DQA1, PSMB8, HLA-DRB5, and FLOTT), and four genes were
involved in insulin signalling and secretion (i.e., STXTA, FLOT1, MAPK3, and PHKG?2)
(see Table S3).

Functional annotation of the identified regions

Considering the genes mapped to the regions showing local correlation,
411 gene sets were significantly enriched (Table S4). Inmune-related pathways
were prominently represented for multiple phenotype pairs (i.e, AD-MetS/
T2DM, BD-T2DM, TS-T2DM, schizophrenia-T2DM). Other biological pathways
related to oxygen transport, lipid metabolism (including omega-3 and omega-6
polyunsaturated fatty acid levels (PUFAs)), embryonic/placental development,
insulin receptor/phosphoinositide 3-kinase (PI3K), and vesicular function/secretion
were enriched across different phenotype pairs (Table S4). Pharmacogenomic
markers, notably genes genome-wide associated with response to metformin (i.e.,
STX1B, STX4, ZNF668), were enriched in regions shared between schizophrenia and
MetS, obesity, and T2DM (Table S5).

In a more granular examination, we also evaluated enrichment of life-stage-
specific expression profiles for genes mapped to the genetically correlated
regions (Tables S7-8). Specifically, regions correlated between schizophrenia and
obesity featured genes upregulated at 19 weeks post-conception. Conversely,
regions associated with the schizophrenia-MetS pair exhibited a distinct pattern,
with genes showing downregulation in brain samples from individuals at age 11.
Furthermore, regions of overlap between OCD and MetS held genes upregulated in
early adulthood brain tissues, while the genes in the overlapping regions marking
the OCD-obesity pair exhibited gene downregulation in late childhood.

Detailed results for gene set analysis, spatio-temporal expression specificity of
the mapped genes, and druggable gene annotations are reported in Tables S4-S10.
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Shared causal variants between insulin resistance-related conditions
and neuropsychiatric disorders

Of the 128 regions identified with local s colocalisation analyses successfully
pinpointed the likely causal variants driving this association in 10 regions
(see Tables S11-12). For comprehensive functional annotations of 95% credible set
variants within these 10 regions see Tables S13-S23.

Notably, one region on chromosome 4 and two on chromosome 6 showed the
highest posterior probability for colocalisation, linking schizophrenia with MetS
and AD with T2DM, respectively (Tables S11-12, Fig. S2-4). The schizophrenia-MetS
relationship implicated the rs13107325 variant in the SLC39A8 gene, which modulates
the activity of the miRNA hsa-miR-374b-5p (Tables S12-14). For the AD-T2DM pair,
the likely causal variants were rs9271608 and rs9275599, mapped to the HLA-DRB1
and MTCO3P1 genes, respectively. According to GeneCards, HLA-DRBT is targeted
by immunosuppressive and anti-inflammatory drugs (e.g., azathioprine, lapatinib,
interferons-B, and acetylsalicylic acid), as well as by statins and psychotropic drugs
(e.g., carbamazepine, clozapine, and lamotrigine) (Table $23).

Further seven regions had good support for colocalisation (Supplementary
information, paragraph 1.3); these regions showed local genetic correlations for
the AD-T2DM, MDD-T2DM, BD-MetS, and schizophrenia-MetS pairs (Tables S11-12).
Most of the identified variants were observed within or near genes pivotal to
immune function, vesicle/small molecules trafficking, lipid metabolism, organ
development, retinoic acid signalling, and DNA repair/apoptosis (Tables S17-18).
They often had high CADD PHRED scores, suggesting highly deleterious effects
(Tables S13). Genes mapping to these variants, like the HLA-DQB1 and FADS1/2
genes, are targeted by existing drugs and supplements, such as antihypertensive
drugs, omega-3/6 PUFAs, and vitamin A (Table $23).

Discussion

In this study, we examined the genetic relationship between IR-related conditions
- specifically, obesity, T2DM, and MetS - and nine neuropsychiatric disorders
by investigating the pairwise patterns of local genetic correlation across the
genome. At the same time, we explored the specific genetic factors and biological
mechanisms underlying their multimorbidity. The results presented here offer novel
insights into the shared genetic aaetiology between these phenotypes, unveiling
a complex pattern of both positive and negative local genetic correlations.
For the first time, we demonstrated that even in the absence of global genetic
correlations, significant local correlations exist (i.e., between AD, BD, TS and IR-
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related conditions). These findings expand the results of previous studies (Fanelli,
Franke, et al., 2022; Hubel et al.,, 2019), with important implications for understanding
the pathophysiology of these disorders and for developing targeted therapeutic
interventions addressing IR-psychiatric multimorbidity. We identified 128 local
genetic correlations across 109 unique genomic regions. Notably, the MHC region
emerged as a particularly significant contributor in terms of shared genetic signal,
as confirmed by enrichment in biological pathways related to immune function. In
addition, genes mapped to the genetically correlated regions showed enrichment
in pathways involved in lipid metabolism, insulin signalling, and vesicular function,
among others.

Regarding the directions of the detected genetic correlations, we observed
exclusively positive local genetic correlations for ADHD and MDD with IR-related
conditions, indicating synergistic genetic effects that predispose to both
neuropsychiatric symptoms and IR-related conditions. Our enrichment analyses
of the genes mapped to these regions suggest that the genetic overlap might be
mediated by genes involved in extracellular matrix organisation, vesicle trafficking,
and oxygen transport/oxidative processes. These pathways are involved in both
brain function and metabolic regulation (Dityatev et al., 2010; Rossetti et al., 2020;
Zou et al, 2020). In particular, extracellular matrix molecules are implicated in
synaptic plasticity and homeostasis (Dityatev et al., 2010) and may also influence
tissue insulin sensitivity (Williams et al., 2015). Similarly, vesicle trafficking, integral
to synaptic function and neurotransmission, could be a nexus where neuronal
communication and insulin signalling intersect, contributing to the multimorbidity
of the conditions (Zou et al., 2020). Conversely, we detected exclusively negative
correlations between AN and IR-related conditions. These results align with the
distinct phenotypic characteristics of AN, including increased insulin sensitivity
and metabolic alterations related to undernutrition, which differ markedly from
other neuropsychiatric disorders (Duriez et al., 2019; Ilyas et al., 2019).

While phenotypic overlap of AD and BD with IR-related conditions has been
frequently reported (e.g., Santiago and Potashkin (2021); Wimberley et al. (2022))),
previous genetic analyses did not find global genetic correlations between these
phenotypes (Fanelli, Franke, et al., 2022). This may have occurred due to the
averaging effect of global analyses. Our study, which is the first to report significant
local genetic correlations between AD, BD, TS and IR-related conditions, suggests
that positive and negative local correlations could neutralise each other in global
correlation analyses, a phenomenon observed in other recent studies (Arenella et
al., 2023; Fernandes et al., 2023). These heterogeneous patterns of genetic overlap
could also point towards aetiologically distinct subgroups that warrant further
exploration with deep phenotyping and functional validation. Such analyses could
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bring us closer towards precision medicine, offering the potential for personalised
healthcare and improved treatment success (Feczko & Fair, 2020).

Multiple genomic regions (15 out of 109) showed significant correlations for more
than one phenotype pairs, implying a potentially more prominent and ubiquitous
role in the IR-neuropsychiatric multimorbidity. Among the recurring regions,
chr2:59251997-60775066, mapping to the BCL11A gene, was implicated in the
correlation of T2DM with ADHD, MetS with AN, and MetS with MDD. BCL11A codes for
a transcription factor essential for B cell function and haematopoiesis, as well as for
neuronal development, regulating processes such as neurogenesis/axonogenesis, and
neuronal migration (Bauer & Orkin, 2015; Dias et al., 2016). BCL11A variants have also
been associated with neurodevelopmental disorders and impaired cognition, as well
as with IR in in vivo and in vitro studies (Dias et al., 2016; Jonsson et al., 2013; Wiegreffe
et al.,, 2022). Among other genes that were mapped across at least three phenotypic
pairs, some (i.e,, STXTA, FLOT1, MAPK3, and PHKG2) are pivotal in insulin signalling
and secretion (Bagge et al.,, 2013; Jager et al.,, 2011; van de Vondervoort et al., 2016).
These findings strengthen a molecular basis for linking neuropsychiatric disorders to
altered insulin function (Fanelli, Franke, et al., 2022; Mota, 2024; van de Vondervoort
et al,, 2016)), which has also been tied to cognitive deficits, anhedonia, and reward
processing alterations (Fanelli, Mota, et al., 2022; Fanelli & Serretti, 2022; Possidente et
al., 2023).

Over 11% of the correlated genomic regions were located within the MHC region
(chr6:28477797-33448354), where extensive pleiotropy has been demonstrated
previously (Watanabe et al, 2019; Werme et al., 2022). This region is renowned for
its high gene density, polymorphism, and involvement in immune-inflammatory
responses (Matzaraki et al., 2017). The influence of the MHC region extends beyond
autoimmune and infectious diseases susceptibility, being also associated with
neuropsychiatric disorders, such as ASD, schizophrenia, and BD (Tamouza et al.,
2021). Our findings point to a plausible genetic link between IR-related metabolic
dysfunction, immune-inflammatory dysfunction, and neuropsychiatric disorders.
This is consistent with previous findings indicating that central and peripheral
inflammation may mediate the link between IR and neuropsychiatric conditions (Chan
et al,, 2019; Viardot et al,, 2012). Inflammation may also impair brain insulin signalling,
potentially resulting in neurobehavioural consequences (Gong et al., 2019). Notably,
most of the local genetic correlations identified within the MHC region showed a
negative direction of effect. We cannot provide a clear explanation of this finding,
but it may lie in the balance of pro-inflammatory and anti-inflammatory factors in
immune response, in which MHC genes play a role (Tamouza et al., 2021). Additionally,
MHC class | (MHC-I) molecules, traditionally associated with immune functions, have
also been implicated in synapse pruning, a process important for refining neural
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circuits during development (McAllister, 2014). MHC-I molecules are expressed in
neurons and modulate microglia-mediated synapse elimination by marking less
active synapses for phagocytosis (Deivasigamani et al., 2023; Faust et al., 2021). This
activity-dependent mechanism shapes functional neuronal networks and has been
implicated in pathological synapse loss in neurodegenerative conditions (Faust et
al., 2021; Zalocusky et al., 2021). Dysregulated MHC-I signalling can lead to aberrant
synaptic pruning, implicated in disorders such as schizophrenia and ASD (McAllister,
2014). Hence, the dual role of MHC-encoded molecules in both immune modulation
and synaptic plasticity, as well as the potential differential expression of genes in the
MHC region across different tissues and the lifespan may help explain the observed
negative genetic correlations (Shen & Zhang, 2021). Experimental validation of
our findings will be necessary to determine the exact functional implication of the
observed genetic associations.

Relatedly, our study identified multiple genes related to the human leukocyte
antigen (HLA) system, innate immunity, and immunomodulation (i.e.,, HLA-B, HLA-
DRA, HLA-DRB1, HLA-DQA1, HLA-DRB5, MICA, C4A, C4B, AGER, PSMB8, and BTNL2),
supporting their possible influence on IR-neuropsychiatric multimorbidity. Of
note, immunomodulatory drugs (e.g., non-steroidal anti-inflammatory drugs and
monoclonal antibodies) have shown some efficacy as add-on treatments in psychoses
and MDD, and might have higher efficacy in people with IR-neuropsychiatric
multimorbidity (Drevets et al., 2022; Jeppesen et al., 2020). Another gene recurrently
mapped across various phenotype pairs was the CYP21ATP pseudogene, located within
the MHC region. Intergenic recombination of CYP21A1P leads to altered glucocorticoid
and androgen production (Carvalho et al., 2021); glucocorticoids possess anti-
inflammatory/immunosuppressive effects, and regulate glucose metabolism and
the body’s stress response (Balsevich et al., 2019). Specifically, glucocorticoids
counteract insulin by decreasing peripheral glucose uptake and stimulating hepatic
gluconeogenesis, leading to IR under conditions of excessive release, such as in
chronic stress (Fichna & Fichna, 2017). Prolonged exposure to glucocorticoids can
induce neurotoxic effects, possibly involved in the development of psychiatric
disorders (Chiba et al., 2012; Ding et al., 2022). These hormones also modulate the
serotonergic system, which is strongly implicated in psychiatric disorders and insulin
signalling (Betari et al., 2021; Prouty et al.,, 2019). Interestingly, gene set enrichments
within correlated regions between schizophrenia and IR-related conditions were
related to the response to metformin, a frontline oral medication for T2DM. This
implies a potential overlap in therapeutic targets between schizophrenia and T2DM,
which could lead to a reassessment of treatment strategies for these patients. Previous
randomised-controlled trials (RCTs) confirmed the efficacy of metformin in combating
antipsychotic-induced metabolic side effects in individuals with psychoses (Agarwal
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et al, 2021; de Silva et al., 2016), while improving psychiatric and cognitive symptoms
in the same population (Battini et al., 2023).

Another significant finding of this study was the identification of colocalisation
signals. Among the 128 regions demonstrating local genetic correlation, 10 regions
were prioritised for their high posterior probabilities of harbouring the same causal
variants shared between IR-related conditions and neuropsychiatric disorders. This
was instrumental for further elucidating shared pathophysiological mechanisms
and novel potential drug targets for IR-neuropsychiatric multimorbidity (Belyaeva et
al., 2021; Karki et al., 2017). The two most likely shared causal variants were located
in the chr4:102544804-104384534 and chr6:32586785-32629239/chr6:32682214-
32897998 regions, suggesting novel cross-links between schizophrenia and MetS,
and AD and T2DM, respectively. The identified shared causal variant (rs13107325)
between schizophrenia and MetS maps to the SLC39A8 gene, encoding the ZIP8 metal
cation transporter. Previous studies demonstrated its association with altered brain
manganese levels and protein complexity in schizophrenia, brain morphology and
dendritic spine density, as well as a broader impact on various conditions, including

developmental, neuropsychiatric and cardio-metabolic diseases/traits (Hermann et al.,
2021; Li et al., 2022; Mealer et al., 2020; Nebert & Liu, 2019). Our findings also highlight
SLC39A8’s potential as a therapeutic target via zinc chloride/sulphate (Wishart et al.,
2018). Interestingly, RCTs have shown beneficial effects of zinc sulphate in reducing
symptoms of ADHD, MDD, and SCZ (Behrouzian et al., 2022; Bilici et al., 2004; Salari et
al., 2015), as well as improving glucose handling in prediabetes (Islam et al., 2016). In
the AD-T2DM context, the rs9271608 variant mapping to the HLA-DRB1 gene presented
compelling causal candidacy, pointing to the potential for immunosuppressive drugs
such as azathioprine, lapatinib, and interferons- to influence AD-T2DM manifestations.
The administration of intranasal treatment with interferon-f was shown to improve
anxious/depressive-like behaviours by modulating microglia polarisation in AD rat
models (Farhangian et al., 2023). Of note, the rs9271608 also shows broad biological
relevance as it is active as a promoter across numerous cell types and tissues, including
various immune and neuronal progenitors (Zerbino et al., 2015). The remaining
regions of notable colocalisation underpin associations between AD and T2DM, MDD
and T2DM, BD and MetS, and schizophrenia and MetS, hinting at potential targetable
mechanisms for current drugs and supplements, including antihypertensive drugs,
omega-3/6 PUFAs, vitamin A (Wishart et al., 2018). Several antihypertensive drugs
have been associated with a reduced risk of depression (Kessing et al., 2020), and
omega-3 PUFAs showed beneficial effects on depression symptoms in a meta-analysis
of RCTs (Liao et al., 2019). Genes associated with omega-3/omega-6 PUFAs were
enriched when considering the regions showing correlation between BD and MetS,
in line with their relevance in the multimorbidity. Finally, vitamin A inhibits amyloid 8
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protein deposition, tau phosphorylation, neuronal degeneration and improves spatial
learning and memory in AD mouse models (Ono & Yamada, 2012). It is worth noting
that a significant local genetic correlation without detectable colocalisation does not
necessarily mean that there are no shared causal variants; this may reflect limitations
in the power of the colocalisation analysis, particularly in scenarios with complex
patterns of associations, which are often observed in highly polygenic traits (Werme
et al., 2022).

Our study should be viewed considering some limitations. Although it may serve
as a starting point by highlighting potential shared causal variants and proposing
biological mechanisms through which shared genetic regions might impact both
mental and metabolic health, the functional interpretation of our findings remains
largely speculative; future in vitro and animal model studies will be necessary to
validate our findings and provide more definitive mechanistic insights. The high LD
in the MHC region may have led to spurious pleiotropy, not necessarily implying the
presence of the same shared causal SNPs (Lee et al., 2021). Rare genetic variants were
not considered, and population-specific effects may not be adequately captured by
our analyses, which were limited to European ancestry. While the available GWAS
summary statistics were generally obtained in samples of adequate size for this kind of
study, the GWAS summary statistics for OCD were based on a relatively small sample
size, potentially influencing the number of significant local genetic correlations
detected by LAVA.

In conclusion, our study provides novel insights into the shared genetic
underpinnings of neuropsychiatric and IR-related conditions, challenging traditional
notions of their separate pathophysiology. Our result support a more integrated
disease model, and the need to move beyond the conventional view of distinct
aetiologies. The implications of our findings extend to clinical practice, emphasising the
need for a holistic approach in the screening and management of IR-neuropsychiatric
multimorbidity. For example, the importance of lifestyle interventions for both
metabolic and psychiatric health, and of developing pharmacological treatments
that target both conditions. The discovery of shared causal variants, particularly
in genes like SLC39A8 and HLA-DRB1, opens new avenues for targeted therapeutic
interventions. The convergence of genetic findings on mechanisms related to
immune-inflammation, insulin signalling, lipid metabolism, vesicle trafficking, among
others, provides a compelling direction for future research. Overall, our study not only
unveils the shared genetic landscape of neuropsychiatric and IR-related conditions
but also establishes a foundation for integrated research and treatment approaches,
contributing to a paradigm shift towards comprehensive care strategies that address
the issue of multimorbidity.
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Abstract

Psychiatric disorders frequently co-occur with insulin resistance (IR)-related
conditions, including obesity, type 2 diabetes mellitus (T2DM), and metabolic
syndrome (MetS). Although pairwise genetic correlations have been observed, the
shared genetics underlying this multimorbidity remains underexplored. Here, we
investigate the joint genetic architecture of psychiatric-IR multimorbidity, explore
tissue-specific gene expression associations, and identify potential underlying
biological mechanisms and repurposable drugs. We applied genomic structural
equation modelling (SEM) to genome-wide association study (GWAS) data (N=9,725-
933,970) from five psychiatric disorders (attention-deficit/hyperactivity disorder,
anorexia nervosa, major depressive disorder, obsessive-compulsive disorder, and
schizophrenia) and three IR-related conditions (MetS, obesity, T2DM). Factor analyses
revealed a 2-factor solution, where one of the factors was composed by all psychiatric
disorders (excluding schizophrenia) and IR-related conditions (the Psych-IR
factor), representing the shared genetics of these psychiatric and IR-conditions.
This factor showed genetic correlations with the inferior temporal, lateral occipital,
and total cortical brain surface areas. A multivariate GWAS of the Psych-IR factor
identified 150 risk loci and 366 associated genes (128 novel). The significant gene-
set associations included the insulin binding and the Notch signalling pathways,
while the gene-property tissue expression implicated the cerebellum, brain cortex,
and pituitary gland, particularly involving the brain during prenatal development
stages. Transcriptome-wide SEM (T-SEM) assessed tissue-specific gene expression
associations and identified 499 genes (191 novel), including MHC-related genes.
Drug repurposing analysis using PharmOmics suggested six potential candidates,
including memantine and rosiglitazone. Associated genes derived from the Psych-
IR factor multivariate GWAS and T-SEM results were combined for enrichment
analyses, which highlighted the involvement of the chr16p11.2 region, BDNF
signalling, and lipid metabolism. The identified Psych-IR factor offers novel insights
into the shared genetic and biological mechanisms underlying psychiatric-IR
multimorbidity, providing a foundation for future research on precision medicine and
prevention approaches.
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Introduction

The co-occurrence of psychiatric disorders and somatic insulin resistance
(IR)-related conditions, such as obesity, type 2 diabetes mellitus (T2DM) and
metabolic syndrome (MetS), is often observed (Perry et al., 2021; Wimberley et
al., 2022). Population-based studies have demonstrated that obesity not only
increases the risk of developing T2DM and metabolic syndrome but also elevates
the likelihood of receiving a psychiatric diagnosis (Leutner et al., 2023). Moreover,
large-scale Danish registry data reveal bidirectional associations between T2DM
and various psychiatric disorders, including neurodevelopmental, mood, and
psychotic disorders (Wimberley et al., 2022). This observed multimorbidity between
IR-related conditions and psychiatric disorders complicates clinical trajectories
(Kraus et al., 2023; Skou et al., 2022) and is linked to more severe clinical outcomes;
for instance, T2DM has been associated to more severe depression and, conversely,
depression is linked to higher rates of complications and mortality in T2DM (Fanelli
and Serretti, 2022; Possidente et al., 2023).

Of note, IR generally refers to a reduced response to insulin stimulation on
peripheral tissues, resulting in elevated blood glucose levels (DeFronzo et al.,
2015; Gluvic et al., 2017). However, it is increasingly evident that insulin signalling

disruption also has significant effects on the brain (Agrawal et al., 2021). Insulin
receptors are expressed in most brain regions (Sullivan et al., 2023), and insulin
is involved in important brain processes like synapse formation, neuroprotection,
and neuronal survival (Pomytkin et al., 2018). A growing body of evidence links
IR-related conditions with cognitive deficits across multiple domains (Fanelli
et al, 2022b; Ottomana et al., 2023) and suggests that central IR affects key
neurotransmitter systems, such as dopamine signalling, which is involved in
reward-seeking behaviour and cognitive function (Gruber et al., 2023). Additionally,
IR affects brain structures that are part of the mesolimbic pathway (i.e., the ventral
tegmental area and nucleus accumbens), as well as the hippocampus (Lyra E Silva
et al,, 2019), influencing both hedonic perceptions and cognitive functions (Fanelli
and Serretti, 2022; Gruber et al., 2023). The prefrontal cortex is also susceptible
to the effects of IR, which can result in impaired cognitive flexibility and working
memory deficits (Arnold et al., 2018a; Willette et al., 2013). IR is also associated with
brain regional atrophy in Alzheimer's disease, particularly in the bilateral parietal-
occipital junction and medial temporal regions, hippocampal and ventromedial
prefrontal cortex volumes in bipolar depression and healthy subjects (Mansur et al.,
2021; Morris et al., 2014; Mullins et al., 2017).

While many studies attribute metabolic disturbances in psychiatric patients
to unhealthy lifestyles, sedentary habits, or the chronic use of psychotropic
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medications (e.g., Grajales et al. (2019)), evidence suggests that these associations
are not merely by-products of such factors. Glycaemic and metabolic imbalances
have been detected even in drug-naive psychiatric patients at disorder onset,
implying the potential involvement of shared pathogenic mechanisms (Garrido-
Torres et al.,, 2021). Genetic studies reinforce the hypothesis of a shared biological
basis for this multimorbidity showing significant genetic correlations between
several psychiatric disorders—including attention-deficit/hyperactivity disorder
(ADHD), anorexia nervosa (AN), obsessive-compulsive disorder (OCD), major
depressive disorder (MDD), and schizophrenia (SCZ)—and IR-related conditions
such as MetS, obesity, and T2DM (Fanelli et al., 2022a). Subsequent local genetic
correlation analyses further demonstrated that these genetic overlaps are not
always evenly distributed throughout the genome highlighting the complex genetic
landscape of IR-neuropsychiatric multimorbidity (Fanelli et al., 2025). Additionally, a
family-based study indicated that relatives of individuals with a psychiatric disorder
have an increased risk for T2DM (Wimberley et al., 2024). These findings suggest
that shared underlying mechanisms are important for the multimorbidity between
psychiatric disorders and IR-related conditions.

While bivariate genetic analyses have been instrumental for identifying shared
genetic aetiologies between pairs of psychiatric and IR-related conditions,
the global joint genetic architecture and biological substrates underlying the
multimorbidity across these two groups of conditions has not been explored. To
address this gap, we employed genomic structural equation modelling (genomic
SEM), a novel multivariate approach that enables analysing the shared genetic
architecture of multiple complex traits simultaneously (Grotzinger et al., 2019). This
method allows for the identification of genetic variants associated with a common
underlying genetic factor, shown to capture loci that are missed by traditional
univariate genome-wide association study (GWAS) approaches (Grotzinger et al.,
2019). Given that many genetic loci identified through GWAS likely exert their
effects via modulation of gene expression (e.g., as expression quantitative trait loci
or eQTLs; (Westra et al., 2013)), transcriptome-wide association studies (TWASs) can
be helpful to quantify the effect of gene expression on complex traits (Gusev et al.,
2016). Transcriptome-wide structural equation modelling (T-SEM) extends genomic
SEM by modelling tissue-specific gene expression within a multivariate network
of genetically overlapping traits, providing further insights into the molecular
mechanisms involved (Grotzinger et al., 2022a). These transcriptomic results can
also be integrated with open-source databases to identify potential, novel drug
candidates (Y.-W. Chen et al., 2022).

In this study, we aimed to elucidate the joint genetic architecture underlying
the multimorbidity of psychiatric disorders and somatic IR-related conditions. We
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applied genomic SEM to explore the genetic factor structure best explaining the
shared genetics between five psychiatric disorders and three IR-related metabolic
conditions that have previously shown significant pairwise genetic correlations
(Fanelli et al., 2022a). Using the genomic SEM framework, we also examined the
genetic relationships between the identified latent multimorbidity factor and brain
morphometry (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019), as well
as estimated the effects of single-nucleotide polymorphisms (SNPs), genes, and
gene sets on such a latent multimorbidity factor. Furthermore, employing T-SEM,
we specifically investigated the association between brain-specific transcriptomic
patterns and the identified multimorbidity factor, aiming to uncover genes whose
tissue-specific gene expression might overlap with brain molecular signatures of
repurposable drugs.

Methods

Input univariate GWAS summary statistics

In order to explore the joint genetic architecture underlying the multimorbidity of
psychiatric disorders and somatic IR-related conditions, we used GWAS summary
statistics of European ancestry datasets of five psychiatric disorders (i.e., ADHD, AN,
MDD, OCD, and SCZ) and three somatic IR-related conditions (i.e.,, MetS, obesity,
and T2DM) that showed significant pairwise genetic correlations (Fanelli et al.,
2022a) as input for the genomic factor analyses and further genomic SEM and
T-SEM analyses (Table 1; see also Figure 1a). SNP-based heritability was estimated
using Linkage Disequilibrium Score Regression (LDSC; (Bulik-Sullivan et al., 2015))
and is reported on the liability scale. For details regarding sample ascertainment,
phenotype description, quality control, and related procedures, we refer the reader
to the corresponding univariate GWAS original publications listed on Table 1.
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Table 1. Contributing univariate genome-wide association study (GWAS) datasets.

Univariate Cases Controls Total Population SNP-based GWAS
GWAS sample  prevalence heritability (SE) reference
ADHD 38,691 186,843 225,534 0.087 0.213 (0.010) Demontis
etal, 2023
AN 16,992 55,525 72,517 0.009 0.165 (0.011) Watson et
al, 2019
MDD 170,756 329,443 500,199 0.21 0.290 (0.045) Howard et
al, 2019
OCD 2,688 7,037 9,725 0.02 0.094 (0.004) I0CDF-GC/
OCGAS, 2018)
SCz 53,386 77,258 130,644 0.01 0.223 (0.008) Trubetskoy
etal., 2022
MetS 59,677 231,430 291,107 0.25 0.201 (0.011) Lind, 2019
Obesity? 9,805 235,085 244,890 0.39 0.267 (0.025) Watanabe
etal., 2019
T2DM 80,154 853,816 933,970 0.1 0.174 (0.008) Mahajan et
al., 2022

Note. Population prevalences were used for the liability scale conversion and were retrieved from
their original publications and/or Grotzinger et al. (2019) for the psychiatric traits, from O’Neill and
O’Driscoll (2015) for MetS, from World Health Organization (2018) for obesity, and from Kumar et al.
(2024) for T2DM.

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; MDD, major
depressive disorder; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; MetS, metabolic
syndrome; T2DM, type 2 diabetes mellitus; SE, standard error; GWAS, genome-wide association study.
2GWAS ATLAS ID: 3687, UK Biobank phenotype field 41204 (41204_E66), which refers to the trait
‘Diagnoses - secondary ICD10: E66 Overweight and obesity".

Genomic structural equation modelling

Genomic factor analyses

A multivariate extension of LDSC (Bulik-Sullivan et al., 2015) within genomic SEM;
(Grotzinger et al.,, 2019) was used to estimate genetic correlations between all
pairwise combinations of the studied phenotypes (Figure 1a) and to generate
three covariance matrix sets, which were based on the odd, even, or all autosomal
chromosomes. Genomic SEM is not biased by sample overlap and is capable of
accounting for differences in sample sizes among the univariate GWASs that are
used as input. Standard procedures were followed and default filtering parameters
for this munging step, such as retaining only SNPs that overlap with HapMap3 SNPs
outside of the major histocompatibility complex (MHC) region and excluding SNPs
with imputation quality (INFO) <0.9 and/or with minor allele frequency (MAF) <1%,
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were applied whenever such information was available for the univariate GWAS
summary statistics. As basis for the multivariate LDSC, we used precalculated LD
scores derived from the 1000 Genomes (Phase 3) European reference population
(1000 Genomes Project Consortium et al., 2015; Bulik-Sullivan et al., 2015). The
sample prevalence for all phenotypes was set to 0.5 in the LDSC estimation step
since we used the effective number of samples as the sample size for the munge
step, following the instructions provided in genomic SEM GitHub page (2.1
Calculating Sum of Effective Sample Size and Preparing GWAS Summary Statistics

- GenomicSEM/GenomicSEM Wiki - GitHub). The assigned population prevalence of

each phenotype can be found in Table 1.

In order to model the genomic factor structure underlying the psychiatric and
somatic IR-related conditions investigated here, we conducted a series of factor
analyses based on the genetic covariance matrices derived from LDSC analyses
within genomic SEM. We first conducted exploratory factor analyses (EFA) on the
output of the LDSC analyses with odd chromosomes using the factanal function of
R with promax rotation, which allows factors to be correlated. We tested solutions
up to three latent factors, while retaining factors that explained at least 20% of
the variance. Based on the results of the EFA in odd chromosomes, we performed
follow-up confirmatory factor analyses (CFA) for the one-factor and two-factor

models using the genetic covariance matrix from the LDSC with even chromosomes,
where factors were assigned to traits when their standardised loading exceeded
0.20 in the corresponding EFA. The model uses Diagonally Weighted Least Square
(DWLS) and was specified so that the variance of each latent factor is fixed to 1 (i.e.,
unit variance identification).

Model fit was assessed using standard measures in structural equation
modelling, as described in Grotzinger et al. (2019), where values >0.9/0.95 for the
comparative fit index (CFI) and <0.10/0.05 for the standardised root mean square
residual (SRMR) were considered reflective of an acceptable/good fit model. The
Akaike Information Criterion (AIC) is a relative fit index, which can be used to
compare models (i.e., lower AIC values indicating better fit). Chi-square p-values are
often significant in genomic SEM analyses due to the high power of current GWASs;
however, chi-square estimates may still be informative for comparing competing
models (i.e., lower chi-square values indicating better fit). Finally, the CFA model
with best fit in even chromosomes was also assessed for all autosomes.

Genetic correlation with brain morphometry

We used genomic SEM to assess the genetic link between the identified latent
multimorbidity factor(s) and brain morphological traits. More specifically, we
modelled the genetic covariances and correlations between the factor and the
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GWAS summary statistics of 1) the bilateral averages of cortical thickness and surface
area (SA) of 34 brain regions and the total brain (N=33,992; Grasby et al. (2020)); and
2) eight subcortical volumes (Hibar et al., 2017; Satizabal et al., 2019), namely
nucleus accumbens (N=32,562), amygdala (N=34,431), brainstem (N=28,809),
caudate nucleus (N=37,741), globus pallidus (N=34,413), putamen (N=37,571),
thalamus (N=34,464), and hippocampus (N=33,536). All brain morphometry-related
GWAS summary statistics underwent standard filtering and processing through the
munge function of LDSC in genomic SEM, as detailed above. We refer the reader
to the original publications Grasby et al. (2020), for cortical thickness and SA;
Satizabal et al. (2019) and Hibar et al. (2017) for the eight subcortical volumes) for
details about how these brain-related univariate GWAS were performed. Bonferroni
correction was applied to account for multiple comparisons, thus adjusting the
significance threshold (a,_ ~=0.05/78 brain phenotypes=6.41x10").

We further computed heterogeneity statistics (Q__) for the associations of the

trait:
latent factor with the brain morphological traits, as described in Grotzinger et al.
(2022b). For each brain phenotype, the Q

extent that trait operates through the latent factor. This is done by comparing a

«. Neterogeneity index evaluates to which
model in which the brain trait predicted the factor only to one in which it predicted
the individual disorders/conditions that compose the latent factor. A significant
Qtrait
and the individual disorders/conditions is not well accounted for by the factor.

(P<6.41x10*) indicates that the pattern of associations between the brain trait

Multivariate GWAS of the multimorbidity factor
After identifying the CFA that best explained the observed genetic covariances
among the psychiatric disorders and the IR-related somatic conditions, we used
genomic SEM (Grotzinger et al., 2019) to conduct a multivariate GWAS, estimating
individual SNP effects on the identified latent multimorbidity factor. Quality control
procedures of the univariate GWAS summary statistics were performed following
genomic SEM guidelines, which included restricting to SNPs with an INFO score
>0.6 (when available) and to SNPs with MAF >1% in the 1000 Genomes phase 3
European reference panel (1000 Genomes Project Consortium et al., 2015). Only
genetic variants present in all input univariate GWAS summary statistics were
used. For this step, we used unit loading identification to scale the latent factor(s)
(instead of unit variance identification used in the CFA), which also allows deriving
the effective number of samples (N_.) for the latent factor(s) (N . was estimated as
described in Mallard et al. (2022).

Similarly to the Q,,; statistics described above, we also performed SNP-level tests

of heterogeneity (Q,,,) to evaluate whether each SNP had consistent pleiotropic

SNP
effects on the factor components (i.e., input disorders/conditions) that effectively
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only operate via the shared liability (null hypothesis) or whether there was evidence
of heterogeneity, indicating that the SNP effect is not fully mediated by the factor
(Grotzinger et al., 2019).

Gene, gene-set, and gene-property analyses of the Psych-IR
multivariate GWAS results

The results of the multivariate GWAS of the multimorbidity latent factor were
submitted to Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA; version v1.5.6; Watanabe et al. (2017)), using default parameters
(if not otherwise specified). We used the FUMA SNP2GENE module to identify
independent genomic risk loci, and independent genome-wide significant SNPs
within each locus, employing the standard clumping algorithm (Watanabe et al.,
2017). After the removal of all significant Q,,,. (P< 5x10-8), as well as any SNP in
LD with those (r2>0.1, 250Kb), from the multivariate GWAS summary statistics, this
module was also used to implement Multi-marker Analysis of Genomic Annotation
(MAGMA; v.1.08; De Leeuw et al. (2015)) gene-based, gene-set, and gene-property
(tissue expression) analyses. Gene-based p-values were computed for protein-
coding genes by mapping SNPs located within genes according to Ensembl v110.

MAGMA gene-set association analysis uses the complete gene-based results,
(thus differing from enrichment analyses of prioritised genes, described below)
to perform one-sided (positive) association tests for 17,023 gene sets from the
Molecular Signatures Database (MSigDB v2023.1.Hs; Liberzon et al. (2011a)).
Bonferroni correction was used to set the genome-wide significance threshold for
the gene-based and gene-set analyses. MAGMA gene-property tissue expression
analyses also use the gene-based results to test the associations with highly
expressed genes in specific tissues, while conditioning on average expression
across all tissue types. These tissue expression analyses were performed across 30
general tissues and 54 tissues types (GTEx v8; The GTEx Consortium et al. (2020)), as
well as 29 different ages of brain samples and 11 general developmental stages of
the brain (BrainSpan; Kang et al. (2011)); (for more detailed information, please see
Watanabe et al. (2017)). We also ran the FUMA analyses on the eight GWAS summary
statistics of the individual phenotypes that served as input for genomic SEM,
in order to compare the significant loci and genes identified for the multivariate
GWAS. Genomic loci and genes associated with the latent factor that did not
overlap with those associated with the individual phenotypes were considered as
novel/unique to the multimorbidity factor.
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Transcriptome-wide structural equation modelling (T-SEM)

T-SEM (Grotzinger et al., 2022a) was employed to investigate the effects of tissue-
specific gene expression on the multimorbidity factor representing the shared
genetics of psychiatric disorders and IR-related conditions. This method enables
the examination of tissue-specific gene expression within a multivariate model of
genetically overlapping traits.

First, to ensure sufficient SNP-level overlap with the tissue-specific expression
weights, the univariate GWAS summary statistics of the eight input phenotypes
(Table 1) were reprocessed using the LDSC munging function, this time using the
1000 Genomes SNPs as reference (1000 Genomes Project Consortium et al., 2015)
(as recommended by the developers guidelines for T-SEM; https://github.com/
GenomicSEM/GenomicSEM/wiki/7.-Transcriptome-wide-SEM-(T-SEM)). The genetic
and sampling covariance matrices of these munged summary statistics were

estimated by multivariate LDSC as implemented in genomic SEM and are used as
input to T-SEM (Grotzinger et al., 2019).

Univariate, summary-based TWASs were then performed using FUSION (Gusev et
al., 2016) to test the association between predicted tissue-specific gene expression
and each individual trait. This association was estimated as a weighted linear
combination of GWAS Z-statistics using pre-compiled functional weights from
external reference datasets containing both tissue-specific gene expression and
genotype data. In particular, we used 15 tissue-specific functional weight datasets,
including 13 referring to brain tissues (i.e.,, amygdala, anterior cingulate cortex,
caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus,
hypothalamus, nucleus accumbens, putamen, cervical spinal cord C1, substantia
nigra) and one to the pituitary gland from the GTEx v8 (The GTEx Consortium et
al., 2020), as well as one referring to the brain prefrontal cortex from PsychENCODE
(Gandal et al., 2018). The selection of pituitary and brain tissues for these analyses
was supported by the tissue specificity of genes from the multivariate GWAS of the
multimorbidity factor (described above).

The tissue-specific gene expression estimates for each gene produced by
univariate TWASs were used to expand both the genetic covariance and sampling
covariance estimated previously. Specifically, the read_fusion function in genomic
SEM was employed to standardise the gene expression estimates relative to the
phenotypic variance, thus integrating them into the LDSC genetic covariance
matrices. We then applied the userGWAS function to evaluate the effect of gene
expression on the previously identified factor representing the shared genetic
liability across psychiatric disorders and IR-related conditions.

Lastly, T-SEM was used to examine the associations of tissue-specific gene
expression with the multimorbidity latent factor. We applied a Bonferroni correction
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to adjust for multiple testing across 16,542 unique genes, resulting in a significance
threshold of a,  =3.02x10. To identify genes with potentially trait-specific effects,

we also computed gene heterogeneity statistics (Q. ) as a chi-square difference

Gene
test between a common pathways model (where gene expression predicts the
multimorbidity latent factor) and an independent pathways model (where the
gene expression only predicts specific psychiatric or IR-conditions defining the
factor) (Grotzinger et al., 2022a). To ensure robustness, we excluded from the list
of significantly associated genes those with significant Q__ _ values using the same
Bonferroni corrected threshold.

The MHC region was excluded from follow-up analyses due to its highly complex
LD structure, which may confound genetic association signals and inflate the
number of false-positive findings (Miretti et al., 2005). However, we conducted
parallel T-SEM T-SEM analyses both excluding and including the MHC region to
provide a comprehensive assessment of its potential impact on the results, and
findings from the both T-SEM analyses are presented to ensure transparency and
completeness in reporting.

Drug repurposing analysis
To identify potential therapeutic candidates for the psychiatric-IR multimorbidity,

we used PharmOmics, a comprehensive online platform for drug repurposing
(https://mergeomics.research.idre.ucla.edu/runpharmomics.php#; (Y.-W. Chen et al,,
2022)). PharmOmics is a species- and tissue-specific drug signature database that
leverages transcriptomic data to facilitate the identification of repurposable drugs by
comparing user-provided gene signatures for a trait of interest (i.e., the multimorbidity
factor, in our case) with a curated database of drug-induced gene expression profiles
(Y.-W. Chen et al., 2022). The PharmOmics database integrates transcriptomic data
from human, mouse, and rat studies across more than 20 tissues, compiling over
18,000 drug-induced gene signatures for 941 drugs and chemicals. This database
was curated from multiple sources, including the Gene Expression Omnibus (GEO),
ArrayExpress, TG-GATEs, and DrugMatrix repositories. For our analysis, we used the
list of genes derived from significant tissue-specific gene expression associations
from our T-SEM results as input into the PharmOmics platform ((Y.-W. Chen et al.,
2022). These genes were classified into upregulated and downregulated groups
based on their respective T-SEM Z scores and submitted separately to PharmOmics.
Specifically, a gene-overlap analysis was conducted (Y.-W. Chen et al., 2022) to
determine the degree of overlap between the input gene lists (upregulated and
downregulated genes) and the drug-induced gene signatures in the database. This
analysis included calculating odds ratios to quantify the strength of association
between the list of genes resulting from T-SEM and drug-specific gene expression
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signatures in the PharmOmics database. Fisher’s exact tests were used to assess
the statistical significance of these overlaps, determining the likelihood that the
observed overlaps occurred by chance. A signed Jaccard score was employed
to evaluate the direction of the overlap between the gene sets. A positive
signed Jaccard score indicates that the drug and T-SEM gene sets overlap with
congruent expression changes (e.g., both upregulated or both downregulated),
while a negative signed Jaccard score suggests that the drug and T-SEM gene set
overlap with opposite expression changes (e.g., one upregulated and the other
downregulated). The therapeutic relevance depends on the direction of the gene
regulation and the desired therapeutic objective. For example, if a pathway is
upregulated in psychiatric-IR multimorbidity, a drug that induces a negative signed
Jaccard score (indicating an opposite regulation of the overlapping genes) may be
of therapeutic interest to counteract the disease-related up-/down-regulation.

We selected drug repurposing candidates based on the following stringent
criteria: 1) individual pharmacological molecules already approved by the Food and
Drug Administration (https://www.accessdata.fda.gov/) for conditions other than
psychiatric disorders; 2) those with evidence of blood-brain barrier permeability
(ADMET features from https://www.drugbank.com/; https://github.com/12rajnish/
DeePred-BBB); 3) drugs with available molecular signatures derived from nervous
tissues in the PharmOmics database; 4) candidates showing consistent Jaccard

scores and P-value significance across species, ensuring cross-species concordance
and eliminating discordant effects; and 5) candidates with significant P-values and
negative Jaccard scores, indicating an opposing gene regulation pattern that could
potentially reverse disease-related molecular changes.

Enrichment analyses of prioritised genes

The significantly associated genes identified by the MAGMA gene-based analysis of
the multivariate GWAS were combined with genes whose tissue-specific expression
was associated with the genomic latent multimorbidity factor in T-SEM analysis
to compose a list of prioritised genes. This combined list of genes was used as
input for the GENE2FUNC module in FUMA (version v1.5.6; Watanabe et al. (2017))
to conduct enrichment analyses to test for overrepresentation of the prioritised
genes in pre-defined gene sets from the MsigDB (v2023;(Liberzon et al., 2011b)),
which include hallmark gene sets (MsigDB h), positional gene sets (MsigDB c1),
curated gene sets (MsigDB c2), regulatory target gene sets (MsigDB c3),
computational gene sets (MsigDB c4), ontology gene sets (MsigDB c¢5), oncogenic
signature gene sets (MsigDB c6), immunologic signature gene sets (MsigDB c7) and
cell type signature gene sets (MsigDB ¢8), as well as sets of reported genes from the
GWAS-catalog (MacArthur et al., 2017). For the list of all gene sets tested, please see
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(https://fuma.ctglab.nl/tutorial#gene2func). Genes located within the MHC region
were excluded from the analyses due to the extensive high linkage disequilibrium
pattern in the region and hypergeometric tests were used for these evaluations. The
background gene set, against which the prioritised genes were tested, consisted
of all other (i.e., non-prioritised) protein-coding genes and the option of excluding
the MHC region in FUMA was selected. Multiple testing correction was performed
using the Benjamini-Hochberg (FDR) method by default, with corrections applied
per data category or subcategory (e.g., hallmark genes, positional genes, different
subcategories of curated gene sets, and so on). FUMA reported gene sets with an
adjusted P_.<0.05 and where the number of prioritised genes overlapping with the
gene set was greater than two.

Results

Genetic factor structure underlying psychiatric and somatic
IR-related conditions

We formally modelled the genetic covariance structure of the five psychiatric (ADHD,
AN, MDD, OCD, and SCZ) and three somatic IR-related phenotypes (MetS, obesity,
and T2DM) which are genetically correlated ((Fanelli et al. (2022); and Figure 1a).

Descriptives of the input data can be found in Table 1. Exploratory factor analyses
suggested the two-factor solution as the best model (variance explained:
R2(F1)=32.1%, R%(F2)=20%, R*(Total)=52.1%), since the one-factor solution explained
only 31.4% of the variance, while the third factor in a three-factor model explained
only 15.2% of the variance and was not retained (Table S1). Confirmatory factor
analyses, both in the even chromosomes as in the full set of autosomes, confirmed
that a two correlated factors model fits the data well (for all autosomes: x>=78.559,
df=15, Px?>=1.28x10-10, AlIC=120.559, CFI=0.978, SRMR=0.053; Table S2; see also
Table S3) and revealed a small negative genetic correlation between the two
factors (rg:-0.204; SE=0.043; P=2.02x10-6; Figure 1b). The first factor consists of all
psychiatric disorders, except schizophrenia, and all somatic IR-related conditions
investigated. This factor is hereafter referred to as the psychiatric and IR-related
(Psych-IR) multimorbidity factor. The second factor consists of all five psychiatric
disorders investigated, but none of the somatic ones.

Given our aim of unravelling the genetic architecture underlying the psychiatric
and IR-related multimorbidity, subsequent results are focused on the Psych-IR
multimorbidity factor, which was taken forward to investigate its relationship with
brain morphometry, to conduct a multivariate GWAS, exploring it at multiple levels,
as well as to conduct T-SEM and drug repurposing analysis.
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Figure 1. Multivariate genetic architecture of five psychiatric disorders and three somatic
IR-related conditions.

a. Heatmap of pairwise genetic correlations based on all autosomes estimated using LDSC regression
within genomic SEM; b. Path diagram for the final confirmatory factor model with standardised
parameter estimates. Circles represent the genetic components of each disorder, condition, or
common genetic factor. One-headed arrows represent regression relationships from the independent
variables pointing towards the dependent variables. Two-headed arrow between variables represent
a covariance relationship. Two-headed arrows connecting the variable to itself represents residual
variance. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; AN, anorexia nervosa; OCD,
obsessive-compulsive disorder; MDD, major depressive disorder; SCZ, schizophrenia; MetS, metabolic
syndrome; T2DM, type 2 diabetes mellitus.
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Genetic overlap between the Psych-IR multimorbidity factor and
brain morphometry

We examined patterns of genomic correlations between the Psych-IR
multimorbidity factor and brain morphometry (Figure S1). We observed significant
negative genetic correlations between the Psych-IR multimorbidity factor and total
SA (rg:-0.1 51; SE=0.033; P=4.89x10°) and inferior temporal SA (rg:-0.1 83; SE=0.045;
P=4.60x107), while the factor had a positive genetic correlation with lateral occipital
SA (rg=0.1 13; SE=0.032; P=5.01x10") (Figure 2). Follow-up Q,
conducted to examine whether the genetic associations between the brain traits

L« analyses were

and the disorders/conditions are well accounted for by the identified latent factor.
Qtrait
three significant genetically correlated brain traits, indicating that the implication

index analyses revealed no significant sign of heterogeneity involving the

of these brain structures are indeed via the common pathway of the Psych-IR
multimorbidity factor (rather than independent pathways of individual psychiatric
disorders and somatic IR-related conditions). Table S4 provides genetic correlation

estimates and Q___ results for all brain traits analysed.

trait

Total brain SA >

rg= -.151 (.033) p=4.89E-06

Lateral occipital SA ' """" - Inferior temporal SA

rg=.113 (.032) p=5.01E-04 rg= -.183 (.045) p=4.60E-05

Figure 2. Genetic correlations (rg) between the Psych-IR multimorbidity factor and brain
morphometric traits.

Areas highlighted indicate the significant genetic correlations with total brain surface area (SA),
lateral occipital SA, and inferior temporal SA. Visualisation was performed using the ENIGMA-Vis tool
(Shatokhina et al., 2021).

Multivariate GWAS of the Psych-IR multimorbidity factor

Through a multivariate GWAS of the Psych-IR multimorbidity factor (N_.=622,007.6),
we identified 11,672 genome-wide significant SNPs, which were distributed across
168 independent risk loci (Table S5). We also performed Qe
in order to identify SNPs that act not through a common multimorbidity factor

heterogeneity tests

of psychiatric and IR-related somatic conditions, but directly on one or more of

its components. There were 9,324 significant Q (of which, 2,539 were genome-

SNPs

wide significant SNPs for the Psych-IR factor), indicating that the effects of these
SNPs are not fully mediated by the latent genomic factor. Since we are interested
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in understanding the shared genetic basis of this multimorbidity, significant Q.
were removed from downstream analyses (in order to reduce heterogeneity), along
with those in LD (r*>0.1, 250Kb) with them. The final Psych-IR factor multivariate
GWAS summary statistics contains 8,834 genome-wide significant SNPs, distributed
across 150 independent loci (Figure 3; Figure S2). Out of the 150 independent
genomic loci identified, 46 of them did not overlap with the genomic loci associated
in the input univariate GWAS of the psychiatric and somatic IR-related conditions

that compose the latent factor (Table S6).

Genes, gene sets and gene-property associations with the Psych-IR
multimorbidity factor

Gene-based analysis identified 366 genome-wide associated genes (Figure 3).
About one third of the associated genes (N=128) are considered novel, in the sense
that they were not significantly associated with the individual phenotypes that
compose the factor (i.e., genes were not significant in the individual input GWAS;
Table S7). Gene-set analyses revealed six gene sets associated with the Psych-IR
multimorbidity factor after Bonferroni correction for multiple testing, including
one representing insulin binding (GOMF_INSULIN_BINDING; MsigDB M26667) and
one implicating NOTCH signalling (REACTOME_SIGNALLING_BY_NOTCH; MsigDB
M10189), in addition to four gene sets of general Gene Ontology (GO) Biological
Processes (Table 2).

Table 2. Gene sets significantly associated with the Psych-IR multimorbidity factor.

Significant gene sets N P P

genes Bonf

GOBP_POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS 1,657 1.38x107 0.0023

GOBP_NEGATIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 1,390 1.89x107 0.0032

GOBP_POSITIVE_REGULATION_OF _ 1,723 5.48x107 0.0093

MACROMOLECULE_BIOSYNTHETIC_PROCESS

REACTOME_SIGNALLING_BY_NOTCH 183  7.60x107 0.0129

GOBP_NEGATIVE_REGULATION_OF_NUCLEOBASE_ 1,316 9.03x107 0.0153

CONTAINING_COMPOUND_METABOLIC_PROCESS

GOMPF_INSULIN_BINDING 5 1.58x10° 0.0268
Abbreviations: Ngenes, number of genes included in the gene set; P, MAGMA gene-set association
P-value; P, ., P-value after Bonferroni multiple testing correction for all the MsigDB gene sets tested.

Furthermore, MAGMA gene-property tissue expression analyses were performed
to identify tissue specificity of the gene-based associations of the Psych-IR
multimorbidity factor. Upon testing the relationships between the Psych-IR gene-
based association results and tissue specific gene expression profiles, there were
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associations with the brain and pituitary general tissues types (Figure S3a). A more
fine-grained examination of the tissue types in question revealed that the Psych-IR
factor was associated with highly expressed genes in specific brain tissues, namely
the cerebellum, cerebellar hemisphere, cortex, and frontal cortex Brodmann Area
(BA) 9, as well as the pituitary gland (Figure S3b). The tissue expression analyses
across 11 different general developmental stages of the brain implicated early,
early-mid, and late-mid-prenatal stages (Figure S3c), while no associations
were found across the brain samples representing 29 different ages of the brain
(BrainSpan; Kang et al. (2011)).

Multivariate TWAS

After excluding the MHC region and removing 31 unique genes (spanning
73 different gene-tissue pairs; Table S$9) with significant Qe values, T-SEM
identified 462 unique genes whose expressions in the brain were associated
with the Psych-IR multimorbidity factor (a heatmap of the most significant
genes in each tissue and across tissues is depicted in Figures S4 and S5,
respectively; Tables $S10). Among these, 188 were novel and not significant
in any of the univariate TWASs of the input phenotypes (Tables S11).
Among the top significant up-regulated genes, MST1R, MTCH2, RNF123, RP11-69E11.4,
SNF8, and BMP8A were recurrent across several tissues (Table S11 and Figure S5; see
also a Miami plot of the analysis including the MHC region in Figure 4). These genes
are implicated in various biological processes including cell survival, migration and
activation of macrophages (MST1R); mitochondrial function, apoptosis regulation,
and lipid homeostasis (MTCH2); vesicle-mediated transport and and protein
ubiquitination (SNF8, RNF123), and energy balance regulation (BMP8A). Among
the top significant down-regulated genes, RBM6, INO8OE, RPAP1, C18orf8, VPSI11,
and MAPK3 were recurrent across tissues (Table S11). These genes are involved in
post-transcriptional modification (RBM6); chromatin remodelling (INO8OE); vesicular
trafficking (VPS17); and signal transduction (MAPK3). Of note, seven genes —
ANKDD1B, C170rf58, CRHR1, JMY, MAPT, PAM, and POC5 — demonstrated significant
associations with the multimorbidity factor but showed discordant expression effects
across different brain tissues (Table $12).

In the T-SEM analysis including the MHC region, 37 additional unique genes were
significant (Figure 4; Figures S6-S7), including three novel genes (i.e., HSD17BS,
RPS18, UQCC2) that were not significant in any of the univariate TWASs (Table S13).
Among this region, the expression of the HLA-DRB5 gene was the most frequently
associated (significant across 14 tissues) with the multimorbidity factor, followed by
MICB (12 tissues), and CYP21A2 (11 tissues) (Table S14). Among the up-regulated
MHC genes, the most significant were HCG27 in the brain anterior cingulate cortex,
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CYP21A2 in the putamen, and AGER in the ACC. HCG27 is a long non-coding RNA gene
involved in various metabolic diseases; CYP21A2, a cytochrome P450 monooxygenase
involved in mineralocorticoids and glucocorticoids biosynthesis; AGER plays a role in
inflammatory responses and cellular signalling. Among the down-regulated MHC
genes, the most significant were NOTCH4 in the hippocampus and cerebellum, C4A
in the cortex, and HLA-DRBT1 in the nucleus accumbens. NOTCH4, part of the Notch
signalling pathway, is important for cell differentiation, proliferation, and apoptosis;
C4A, a component of the classic complement pathway, is involved in immune
responses and inflammation; HLA-DRB1, a major histocompatibility complex class
Il gene, is involved in antigen presentation and immune system functioning (Table
S15). These top three down-regulated genes were also the most significant ones
among the whole set of MHC-related genes.
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Figure 4. Miami plot of Z statistics for the estimated gene expression effects on the Psych-IR
multimorbidity factor.

Z statistics are signed such that orange dots on the upper and lower half of the plot reflect genes
whose up-regulated and down-regulated expression, respectively, is significantly associated with
the multimorbidity factor. The light blue horizontal lines reflect the Bonferroni-corrected significance
threshold. Genes exceeding this threshold are shown as orange dots. For genes significant in multiple
tissues, only the most significant instance is highlighted in orange. Up to 40 unique Bonferroni-
significant genes are labelled across tissues. Genes having significant Q___statistics were not included
in this plot.

Gene



220 | Chapter 7

Potential repurposable drugs

The overlap drug repurposing analysis using the PharmOmics platform identified
six potential repurposable drugs for the Psych-IR multimorbidity factor (Table S16).
Among the evaluated compounds, bevacizumab emerged as a candidate in Homo
sapiens (human) and demonstrated significant gene overlap in brain tissues. In Mus
musculus (mouse), the analysis highlighted memantine, rosiglitazone, levodopa,
cyclophosphamide, and ceftriaxone as leading candidates for repurposing.
Memantine and rosiglitazone, known for their neuroprotective and anti-diabetic
properties, respectively, showed robust overlap with the multimorbidity factor
gene signatures. Additionally, levodopa, a precursor of dopamine and a commonly
used drug in Parkinson’s disease, along with cyclophosphamide and ceftriaxone,
both of which are involved in immune modulation and neuroprotection, also
demonstrated significant overlap.

Enrichment analyses of the Psych-IR prioritised genes

There were 534 protein-coding genes used as input for the combined gene set
enrichment analyses, comprising 215 significantly associated genes derived from
MAGMA gene-based analysis of the Psych-IR multivariate GWAS, 179 genes derived
from the TSEM analyses, and 140 genes that were overlapping between these two
approaches. There were 518 genes with unique Entrez IDs, which were compared
against a total of 18,605 unique Entrez background protein-coding genes. After
FDR correction for multiple testing within category/subcategory, we observed
significant enrichments in 110 pre-computed sets from MsigDB (encompassing
104 unique gene sets) and in 201 sets of reported genes from the GWAS-Catalog
(Table S8). More specifically, these include the significant enrichments in
14 (MsigDB c1) positional gene sets. The most significant enrichment was in position
chr16p11, which also had the highest proportion of overlapping genes with the
gene set (i.e., 39 overlapping genes out of 97 in the gene set). There were also four
significantly enriched (MsigDB c2) curated gene sets, two of which are also related
with the chr16p11 region: the WP_16P112_PROXIMAL_DELETION_SYNDROME and
the WP_16P112_DISTAL_DELETION_SYNDROME gene sets (both also significant
in the analyses within the MsigDB c2:All Canonical Pathways (CP) and the MsigDB
c2:CP/WikiPathways subcategories). Additional enrichments were found for three
gene sets within the MsigDB c2:CP/WikiPathways subcategory, one of them related
to the brain-derived neurotrophic factor (BDNF) signalling pathway and two related
to familial hyperlipidaemia; one MsigDB c5:GO:molecular functions gene set; three
MsigDB ¢8 cell type signatures gene sets; and 79 MsigDB c3:Transcription Factor
targets gene sets. No significant enrichment was observed among the MsigDB h,
MsigDB c2:BioCarta, MsigDB c2:KEGG, MsigDB c2:Reactome, MsigDB c3:microRNA
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targets, MsigDB c4:All computational, MsigDB c4:Cancer gene neighborhoods,
MsigDB c4:Cancer gene modules, MsigDB ¢5:GO:biological processes, MsigDB
¢5:GO:cellular components, MsigDB c¢6, and MsigDB c7 gene sets.

Discussion

This study leverages state-of-the-art multivariate genomic and transcriptomic
methods, including genomic SEM and T-SEM, to explore the genetic architecture
underlying the frequent co-occurrence of psychiatric disorders and somatic
IR-related conditions. We identified a latent Psych-IR multimorbidity factor
representing the shared genomic liability across ADHD, AN, MDD, OCD, MetS,
obesity, and T2DM, which provides novel insights into the biological underpinnings
of their multimorbidity. The multivariate GWAS of the Psych-IR factor revealed
150 genomic loci and 366 associated genes, with many of these considered novel
(i.e., not previously identified by the univariate GWASs that compose the factor).
The insulin binding and the Notch signalling pathways were implicated with the
Psych-IR factor. Genetic correlation analyses linked the Psych-IR multimorbidity
factor to brain morphometry, including structures involved in visual and sensory
processing. In addition, a series of tissue specificity analyses implicated specific
brain areas, including the cerebellum, the brain cortex, and the pituitary gland.
The integration of transcriptomic data by T-SEM revealed that the expression of
462 genes in the brain and pituitary gland is associated with the multimorbidity
factor; these included 188 not previously detected in univariate TWASs. Top up-
regulated genes, such as MST1R, MTCH2, and BMP8A, suggest roles for immune
modulation, mitochondrial function, and energy balance, while down-regulated
genes like RBM6, INO8OE, and MAPK3 highlight disruptions in chromatin remodelling
and signal transduction.

Our findings advance the current understanding of the genetic underpinnings
of psychiatric and IR-related multimorbidity, building upon previous studies that
primarily explored pairwise correlations between psychiatric disorders and IR-
related conditions (Fanelli et al.,, 2022a, 2025; Hubel et al., 2019), which, while
informative, do not capture the joint genetic architecture underlying these
multiple conditions. Our multivariate approach reveals that psychiatric disorders
share common genetic variants and mechanisms with IR-related conditions, albeit
with opposite loadings on the Psych-IR factor, highlighting the presence of a joint
genetic architecture underlying the multimorbidity. Both the positive loadings for
ADHD and MDD on the Psych-IR factor, as well as the negative loading of AN and
OCD, are consistent with the direction of their pairwise genetic correlations (Fanelli
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et al., 2022a). The divergent pleiotropic effect observed with AN is also consistent
with most clinical observations for AN, which is mainly characterised by weight loss,
as opposed to the IR-related conditions (Walsh et al., 2023; American Psychiatric
Association, 2013). While epidemiological data showed increased co-occurrence
of OCD and T2DM (Wimberley et al., 2022), recent familial analyses indicate that
parental T2DM was significantly less frequent in individuals with OCD, in line with
negative genetic correlations, and indicating that phenotypic associations might
be explained by other factors (like psychiatric comorbidities, shared environment
or lifestyle factors) (Wimberley et al., 2024). Despite the well-documented clinical
overlap between schizophrenia and metabolic dysregulation, particularly in the
context of antipsychotic medication use, schizophrenia exhibited a weaker genetic
loading and was ultimately not included in the Psych-IR multimorbidity factor.
This may reflect the underlying genetic complexity given that previous local
genetic correlation analyses indicate both positive and negative genetic local
genetic correlations between schizophrenia and IR-related conditions (Fanelli et
al., 2025). In addition, the metabolic side effects of antipsychotic medications used
for treating schizophrenia include significant weight gain and IR, which are well-
established but are likely driven by pharmacological mechanisms rather than by
the genetic factors.

A key contribution of this study is the identification of genetic loci implicated
in the psychiatric-IR multimorbidity, including novel genes that were not
previously associated with individual psychiatric or IR-related phenotypes, while
also reinforcing the involvement of established candidate biological pathways
implicated in psychiatric-IR multimorbidity. In particular, among the top genes
identified by the multivariate GWAS of the Psych-IR factor, the most significantly
associated gene was ZMIZ1, which regulates transcription factors and interacts with
nuclear hormone receptors. This gene shows genome-wide significant association
also in the univariate T2DM GWAS and has recently been appointed as a novel
regulator of brain development associated with ASD and intellectual disability
(K. C. et al., 2024). DOC2A, located in the chr16p11 region, is involved with Ca?*-
dependent neurotransmitter release and is mainly expressed in the brain. Other
top genes are involved with interactions of cytoskeletal elements (e.g.,, MACFT),
encoding transcription factors (e.g.,, TRPS7), mRNA stability (e.g.,, PABPC4), and
tumor suppression (e.g., RBM5, RBM6). In terms of novel genes, the top three
genes (KCTD13, GDPD3, MAPK3) are situated in the chromosome 16p11.2 region,
discussed in more details below. These are followed by MST1, whose receptor,
MSTIR, was the top up-regulated gene in the T-SEM results and is directly involved
in immune-inflammatory pathways (Huang et al., 2020). Among the other T-SEM
top up-regulated genes across several tissues, MTCH2 is involved in adipocyte
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differentiation and energy production (Peng et al., 2024). RNF123/KPC1 and SNF8
are linked to maintaining cellular homeostasis and regulating immunity (Kravtsova-
Ivantsiv et al., 2015; Kumthip et al., 2017). Among the top down-regulated genes,
RBM6 and INOS8OE are involved in DNA repair and splicing/chromatin remodelling
(Conaway and Conaway, 2009; Machour et al., 2021), pointing to disruptions in
gene expression regulation. Among the novel genes, STX4, EHD4, and USP46
participate in neurotransmission and insulin signalling, indicating a dual function
in neuronal activity and glucose metabolism, and ZNF268, MCM9 are involved in
transcriptional regulation and genomic stability. Collectively, the novel genes
highlight mechanisms that intersect both central nervous system function and
peripheral metabolic regulation.

While analyses including the MHC region need to be interpreted cautiously
given the genetic complexity due to the extensive LD, high gene density, and
considerable allelic diversity of this region, they also highlighted immune-related
genes as well. Among them, HLA-DRBS5 is involved in regulating immune responses
and has been implicated in various brain-related and metabolic conditions, including
SCZ, MDD, Parkinson’s disease, and both type 1 diabetes and T2DM (Ahmed et al., 2012;
Jacobi et al., 2020; Santiago et al., 2023; Zhao et al., 2016). In addition, the MICB geneis a
marker of cellular stress and tag cells for elimination triggering the activation of natural

killer and CD8+ T cells (Derby et al., 1992) and its association might support the idea
that cellular stress-induced immune dysregulation might be a common mechanism in
psychiatric-IR multimorbidity. CYP21A2 is involved in the biosynthesis of glucocorticoids
and mineralocorticoids (Slominski et al., 2020). Glucocorticoids affect neuroplasticity
and the expression of BDNF, essential for synaptic integrity and cognitive function
(Tsimpolis et al., 2024). These findings related to the MHC region align with previous
evidence highlighting key genes emerging from genetic annotations of loci correlated
between psychiatric and IR-related conditions (Fanelli et al., 2025).

Our gene-set analysis on the Psych-IR multivariate GWAS results highlighted an
association with the insulin binding and the Notch signalling pathways, reinforcing
the hypothesis that metabolic dysregulation is central to the shared biological
basis underlying the multimorbidity observed between psychiatric and IR-related
conditions. The insulin binding gene set comprises five genes, three of which -
IDE, IGF1R, and INSR - show genome-wide significant associations themselves
in the gene-based analyses. IDE encodes the insulin-degrading enzyme which
has been associated with T2DM, but also plays a role in cognitive processes and
neurodegeneration (Henderson and Poirier, 2011) INSR encodes for the insulin
receptor and insulin binding to this receptor activates pathways such as the PI3K-
AKT/PKB pathway, responsible for most metabolic actions, and the Ras-MAPK
pathway, which regulates gene expression and cell growth (Boucher et al., 2014).
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Dysregulation of these pathways has been implicated in both metabolic and
neuropsychiatric outcomes, suggesting a shared mechanistic pathway (Borrie et al.,
2017; Chen et al., 2024). IGF1R encodes the insulin-like growth factor 1 receptor,
which is involved in neurogenesis, synaptic plasticity, and neuroprotective
processes (Cardoso et al., 2021; Dyer et al, 2016). Although IGF1R’s role has
been explored in relation to various cognitive functions (Cardoso et al., 2021), its
specific link to the genetic architecture of psychiatric and metabolic comorbidity
represents a novel finding in our study, as it was not identified as significant in any
of the input univariate GWAS datasets. While the potential involvement of insulin
signalling in psychiatric disorders is not a new concept (Mclntyre et al., 2010), our
findings clearly highlight the association of such a core insulin-related gene set
with a genetic latent factor encompassing both conditions. This reinforces the need
to explore this pathway further as a gateway for managing the co-occurrence of
psychiatric disorders and somatic IR-related conditions.

Another gene set that showed significance to the Psych-IR factor was the Notch
signalling pathway, which has also garnered attention for its potential role in
both IR and the brain. Notch signalling is involved in the regulation of metabolic
processes, particularly in the liver and adipose tissues. For instance, active Notch
signalling correlates with IR and nonalcoholic fatty liver disease, indicating that
Notch signalling may influence glucose metabolism through its effects on hepatic
function (Valenti et al., 2013). Additionally, a mouse model overexpressing the
Notch intracellular domain in adipocytes led to severe IR, thereby establishing a
direct link between Notch signalling and metabolic dysregulation (Chartoumpekis
et al., 2018). Noteworthy, Notch signalling was also involved in learning, memory,
and social behaviour, which are often disrupted in psychiatric disorders (Salazar
et al., 2020), and it has also been implicated in neurodevelopment, neuronal
connectivity and neurogenesis (Zhang et al., 2018), although a direct link with
psychiatric disorders is currently missing (Salazar et al., 2020).

Subsequently, when combining the genome-wide significant genes from the
Psych-IR multivariate GWAS with the associated genes from the T-SEM analyses,
additional gene sets were implicated through the significant enrichment of
our prioritised genes. Noteworthy are the ones related to proximal and distal
chromosome 16p11.2 deletion syndrome, the BDNF signalling pathway, and the
ones related to familial hyperlipidaemia (types 3 and 4). Both the proximal and
distal 16p11.2 deletion syndromes are rare genetic conditions caused by the
deletion of around a 600kb and a 220 kb region, respectively, of chromosome 16
(OMIM#611913 and OMIM#613444, respectively). They are both characterised
by symptoms related to both psychiatric and IR-related phenotypes, and mild
intellectual disability and speech problems are also frequent among individuals
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with 16p11.2 deletion syndromes. Over 80% of the carriers of the proximal 16p11.2
deletion exhibit psychiatric disorders and obesity is a major comorbidity, affecting
50% of the carriers by age 7 and with a penetrance of 70% among adults (Zufferey
et al,, 2012). In a study comparing different 16p11.2 deletions, the vast majority
of the individuals with proximal 16p11.2 deletion syndrome had developmental
delays (85.5%), 19.4% autism spectrum disorder (ASD), 27.3% ADHD, 29.5% obesity,
and 41% reported hyperphagia (Vos et al., 2024). In the same study, cases with
distal 16p11.2 deletion showed the most severe obesity phenotype (73.7% obesity),
with most cases presenting hyperphagia (61.1%), 40% intellectual disability, and
22.2% ASD (Vos et al., 2024). The enrichment of the BDNF signalling pathway also
highlights a potential role of BDNF in bridging metabolic and psychiatric disorders.
During development, the protein encoded by the BDNF gene promotes neuronal
survival and differentiation and regulates synaptic plasticity, essential for adaptive
neuronal responses, including long-term potentiation, and homeostatic regulation
of excitability (Park and Poo, 2013; Rutherford et al.,, 1998). Its involvement in
psychiatric conditions such as MDD, SCZ, and anxiety disorders is well-documented
(Castrén and Kojima, 2017; Molendijk et al., 2014). Beyond its neural functions,
BDNF plays a significant role in metabolic regulation. BDNF signalling intersects
and shares downstream mechanisms with insulin pathways through its binding to

tyrosine kinase B (TrkB) receptor (Bathina and Das, 2015). Moreover, low BDNF levels
are associated with glucose impairment and lipid dysregulation, further implicating
BDNF in metabolic health (Krabbe et al.,, 2007; Xia et al., 2022). This interaction is
reinforced by findings that IR promotes neuroinflammation, which can impair BDNF
signalling, creating a vicious cycle that exacerbates both metabolic and psychiatric
conditions (Lima Giacobbo et al.,, 2019; Wei et al.,, 2021). Interventions such as
exercise, which increase BDNF levels, have been shown to improve both insulin
sensitivity and cognitive function (Dadkhah et al., 2023). Therefore, pharmacological
strategies targeting BDNF signalling pathways could offer new avenues for
treating metabolic and psychiatric disorders concurrently. We also observed
significant enrichment of gene sets associated with familial hyperlipidaemia types
3 and 4. Type 3 primarily involves impaired clearance of intermediate-density
lipoproteins (IDL) due to mutations in the APOE gene, of which the protein plays
a role in lipid transport and metabolism (Javvaji et al., 2024). APOE is also one of
the Psych-IR genome-wide significant genes, and the most well-known risk gene
for Alzheimer’s disease (Jackson et al., 2024). Familial hyperlipidaemia type 4, or
familial hypertriglyceridaemia, involves increased levels of VLDL in the blood,
driven by both enhanced production and decreased clearance (Goyal et al., 2024).
Dyslipidaemia is a common feature in both psychiatric conditions, such as MDD
and SCZ, and somatic ones like MetS, where lipid abnormalities may exacerbate IR
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by promoting chronic inflammation, oxidative stress, and endothelial dysfunction
(Higashi, 2023; Zorkina et al., 2024). The enrichment of these gene sets suggests
a role for lipid metabolism in the pathophysiology of the multimorbidity of
psychiatric and IR-related conditions.

In terms of brain morphometry implication, our analysis revealed significant
negative genetic correlations between the Psych-IR multimorbidity factor and both
total SA and inferior temporal SA. The inferior temporal cortex is primarily involved
in visual processing, especially object and face recognition (Conway, 2018), as well
as the retrieval of visual memories (Mruczek and Sheinberg, 2007). This region has
been closely linked to metabolic dysfunctions, including obesity and IR (Morris
et al., 2014; Opel et al., 2021). For instance, a Mendelian randomisation study
demonstrated that higher waist-hip ratio causally reduces the surface area of the
inferior temporal cortex (Chen et al., 2023). In addition, positive genetic correlation
was found for the Psych-IR multimorbidity factor and the lateral occipital cortex,
which is involved in the perception of shapes and forms, as well as the processing
of visual stimuli in a multisensory context (Zhang et al., 2004). Altered glucose
metabolism in this region has been linked to cognitive impairments in various
conditions, including SCZ and T2DM (Wijtenburg et al., 2019). Studies have
demonstrated that hypoperfusion in the occipital regions, including the Ilateral
occipital cortex, correlates with higher IR and deficits in visual memory performance,
particularly in patients with T2DM (Cui et al., 2017). This aligns with findings that
neuronal IR biomarkers are significantly associated with memory measures and
brain glucose levels, particularly in visual processing areas like the lateral occipital
cortex (Wijtenburg et al., 2019). Consistent with our findings, previous studies
found that IR is associated with smaller cortical gray matter volume, but not with
subcortical gray matter volume in individuals with MetS (Lu et al., 2021). Another
link to the brain is found in the tissue expression specificity of the Psych-IR gene
associations, where our findings reveal that the Psych-IR multimorbidity factor is
significantly associated with genes highly expressed in the pituitary gland and
brain tissues, implicating specifically the cerebellum/cerebellar hemisphere, and
cortex/frontal cortex BA 9. While the cerebellum and cerebellar hemisphere have
traditionally been linked to motor control, recent studies increasingly recognise
their roles in cognitive and emotional regulation, as evidenced by studies
linking cerebellar dysfunction to various psychiatric conditions, including mood
disorders (Adamaszek et al., 2017; Schmahmann, 2019). Recent evidence indicates
that individuals with high IR exhibit reduced gray matter volume and altered
functional connectivity in the cerebellum, suggesting that IR can lead to significant
neuroanatomical and functional connectivity changes in this region (Chen et al,,
2014; H.-Y. Zhang et al., 2024). IR also correlates with reduced glucose metabolism
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in the cerebellum and frontal regions (Y. Chen et al., 2022). The frontal cortex,
particularly BA 9, plays a role in executive functions, including decision-making,
working memory, and cognitive control (Friedman and Robbins, 2022; Miller and
Cohen, 2001), all of which are processes heavily implicated in psychiatric disorders.
Previous work indicates that insulin signalling is essential for maintaining synaptic
plasticity and neuronal health in the frontal cortex, and disruptions in insulin
signalling can impair cognitive functions linked to the frontal cortex (Arnold et al.,
2018b; Fanelli et al., 2022b; Kleinridders et al., 2014). The observed association with
gene expression in the pituitary gland might suggest a link to the hypothalamic-
pituitary-adrenal (HPA) axis, which regulates both the stress response and metabolic
function. Dysregulation of the HPA axis is a well-established factor in psychiatric
disorders and metabolic conditions, and might indicate a shared pathway that
influences both groups of phenotypes and their co-occurrence (Joseph and Golden,
2017; Stetler and Miller, 2011). Moreover, the association of gene expression with
early, early-mid, and late-mid prenatal developmental stages suggests that the
genetic factors underlying the Psych-IR factor may exert their effects during critical
periods of brain development. This finding aligns with the hypothesis that prenatal
or early-life factors can shape the long-term risk for both metabolic and psychiatric
disorders (Edlow, 2017). Prenatal exposures, such as maternal stress, poor nutrition,
or gestational diabetes, could interact with genetic predispositions to alter brain
development, thereby increasing susceptibility to both psychiatric disorders and
metabolic dysregulation in offspring (Van Lieshout et al.,, 2011).

From a clinical perspective, our results indicating a shared genetic aetiology
between multiple psychiatric and psychiatric and IR-related somatic conditions
highlights the need for a holistic approach in medicine, integrating both worlds
in clinical care. Through the genomic approaches addressed in this manuscript
we identified potential drug repurposing candidates, including memantine,
rosiglitazone, levodopa, cyclophosphamide, bevacizumab, and ceftriaxone, that
could offer possibilities for developing targeted therapeutic strategies aimed
at addressing both psychiatric symptoms and IR. Memantine, an NMDA receptor
antagonist, has shown efficacy in improving cognitive and negative symptoms in
SCZ, as well as in counteracting excessive glutamate neurotransmission and related
neurotoxicity in Alzheimer’s disease (Czarnecka et al., 2021; Zheng et al., 2018),
and rosiglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-y)
agonist, enhances neuronal insulin receptor function and provides neuroprotective
effects (Mclntyre et al., 2007; Pipatpiboon et al., 2012). Cyclophosphamide, an
immunosuppressive agent, shows promise in managing severe IR and autoimmune
encephalitis, which often accompany psychiatric symptoms (Dinoto et al., 2022;
Yang et al., 2017). Bevacizumab, an anti-VEGF monoclonal antibody, could
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enhance glucose uptake via the upregulation of glucose transporters in response
to the induced hypoxia, and it has been shown to improve cognitive function
in a Alzheimer’s disease animal models (Heijmen et al., 2014; Kuang et al.,, 2017;
M. Zhang et al., 2024). Other drug repurposing candidates might need careful
consideration, like levodopa, used for Parkinson’s disease management due to its
potential to exacerbate IR and disrupt glucose regulation, particularly in patients
with pre-existing metabolic conditions (Smith et al., 2004). Ceftriaxone, a third
generation cephalosporin antibiotic, presents challenges due to its impact on
gut microbiota, which can lead to dysbiosis and decreased short-chain fatty acid
production, ultimately exacerbating IR (Holota et al., 2019; Miao et al., 2021).
Future research might prioritise the most promising candidates, which could be
considered for further investigation in randomised-controlled trials as potential
therapies for psychiatric-IR multimorbidity.

The strengths of this study lie in the use of large-scale GWAS datasets,
advanced genomic SEM techniques, and the integration of transcriptomic data,
which collectively provide a robust and comprehensive analysis of the genetic
underpinnings of psychiatric and IR-related multimorbidity. These approaches
allowed us to identify shared genetic factors that may not be detectable through
traditional, univariate GWAS/TWAS analyses, thereby offering novel insights into
the genetic and biological bases of psychiatric-IR multimorbidity. However, this
study also has some limitations. First, our understanding of the functions of the
identified genes and their roles in molecular pathways remains incomplete. While
the discovery of novel loci is promising, further research is needed to elucidate
their precise biological functions and how they contribute to the shared risk for
psychiatric and IR-related conditions. Another limitation is the reliance on GWAS
summary statistics derived from European ancestry populations, which may limit
the generalisability of our findings to other populations. This issue highlights the
need for more diverse genetic studies to ensure that our findings are applicable
across different ethnic groups. The reliance on gene expression profiles from
nervous tissues presents significant challenges, particularly given the often non-
linear relationships between gene expression, protein function, and therapeutic
efficacy (Munro et al., 2024). The T-SEM approach, while powerful in identifying
tissue-specific gene expression effects across multiple genetically correlated
traits, operates under the assumption that gene expression effects are consistent
across all studied traits, potentially oversimplifying the complexity of biological
interactions (Grotzinger et al., 2022a). In this respect, we employed the Q__ _ statistic
in an attempt to mitigate the risk of false-positive findings that could arise from
such assumptions (Grotzinger et al., 2022a). However, the dynamic nature of gene
regulation, epigenetic modifications, and the impact of environmental exposures
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can still exert tissue- or cell type-specific effects that might not be detected by our
model (Pascual-Ahuir et al., 2020). Additionally, the drug repurposing results, while
compelling, should be interpreted with much caution. Specific to drug repurposing,
the relatively lower availability of human brain tissue samples remains a significant
limitation. Moreover, the potential for off-target effects when repurposing drugs
identified through gene expression overlaps must be carefully evaluated.

In conclusion, this study identified a common genetic factor underlying
psychiatric and IR-related conditions, encapsulated by the Psych-IR multimorbidity
factor. Overall, our findings suggest that the associated genetic factors are likely
involved in pathways that regulate both brain function and metabolic processes,
particularly during critical developmental windows. These findings have significant
implications for our understanding of the co-occurrence between IR-related
conditions and psychiatric disorders, providing new insights into the biological
mechanisms that contribute to these comorbidities. Furthermore, the integration
of genomic and transcriptomic data has identified potential candidate biomarkers
and therapeutic targets, thereby providing the basis for the development of novel
interventions. As research in this area continues to evolve, these findings have
the potential to inform both scientific research and clinical practice, ultimately
contributing to improved outcomes for patients with these co-occurring conditions.
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Overview of key findings

In this thesis, | investigated the relationship between insulin resistance (IR)-related
conditions and neuropsychiatric disorders through a multi-layered approach
integrating epidemiological, clinical, genomic, and transcriptomic analyses. Data
sources included large-scale population studies, such as the UK Biobank, and well-
powered genome-wide association studies (GWASs), complemented by advanced
statistical methods to examine potential shared genetic architecture and biological
pathways. Across Chapters 2-7, multiple research approaches converged to
address the overarching question: to what extent do metabolic disturbances
associated with IR contribute to neuropsychiatric disorders, and vice versa, at
clinical, cognitive, and molecular levels?

Inthefirstpartofthisthesis,lexamined the epidemiologicaland clinicalassociation
of IR-related cardio-metabolic conditions and traits with cognitive functioning in a
large population cohort, the UK Biobank. A systematic review of published studies
using data from this cohort (Chapter 2) documented consistent evidence that type 2
diabetes mellitus (T2DM), obesity, hypertension, and other IR-related conditions
correlate with poorer cognitive performance across multiple domains. The most
consistent findings referred to IR-related associations with poorer verbal and
numerical reasoning ability, as well as slower processing speed. These associations
remained significant even after taking into account socio-demographic and
lifestyle confounding variables. Potential mechanisms that could mediate the
observed associations included neuroinflammation, cerebrovascular damage, and
altered insulin signalling in the brain.

Expanding on this, the effects of metabolic dysfunction on psychiatric disorders,
particularly mood disorders, were reviewed in Chapter 3. This chapter highlighted
a bidirectional association between T2DM and major depressive disorder (MDD)/
bipolar disorder (BD) based on longitudinal data. Individuals with T2DM exhibited
higher rates of depression with more severe symptoms, while those with MDD or
BD had an elevated risk of developing T2DM, along with higher rates of vascular
complications and mortality. Mendelian randomisation (MR) studies demonstrated
a causal effect of MDD on T2DM in Europeans, while a suggestive causal association
in the opposite direction was found in East Asians (Chapter 3). These observations
reinforce the hypothesis that shared pathophysiological mechanisms may underlie
both conditions, contributing to their high comorbidity. Building upon these
epidemiological and genetic insights, in Chapter 4 | examined the potential clinical
implications of IR-related conditions on depression treatment outcomes using
primary care data linked to the UK Biobank. Analyses of prescription histories, IR-
related conditions, and diagnostic codes indicated that individuals with T2DM,



General discussion | 251

obesity, or cardiovascular diseases (CVDs) show higher odds of treatment-resistant
depression (TRD), more frequent antidepressant switches, and longer treatment
durations than those without IR (Chapter 4). While these findings do not establish
causal effects, they support the potential clinical relevance of incorporating
metabolic biomarkers such as body mass index (BMI), fasting glucose, and glycated
haemoglobin into psychiatric assessments. Furthermore, these findings raise the
possibility that interventions targeting insulin sensitisation could be explored as
adjunctive treatments for mood disorders.

While clinical and epidemiologic evidence (Chapters 2, 3, and 4) indicated
a clear link of IR-related conditions with neuropsychiatric disorders and related
traits, it was unclear whether genetic and biological factors were of importance
for these associations. To address the option that part of the neuropsychiatric-IR
multimorbidity is due to shared biological mechanisms, | devoted a major part of
this thesis to the genetic dissection of shared liability of neuropsychiatric disorders
and IR-related conditions (Chapters 5, 6, and 7). Using publicly available summary
statistics of relevant large-scale GWASs as input, | was able to show that psychiatric
disorders such as MDD and attention-deficit/hyperactivity disorder (ADHD),
display positive global genetic correlations with IR-related conditions, thereby
supporting a shared genetic basis for the observed epidemiological overlap
(Chapter 5). In contrast, anorexia nervosa (AN), obsessive-compulsive disorder
(OCD), and schizophrenia showed negative genetic correlations with IR-related

conditions and traits, suggesting possible opposite genetic influences (Chapter 5).
Despite the robust genetic associations observed between IR-related traits and
several neuropsychiatric disorders, an apparent exception was AD. Although
epidemiological studies had consistently reported a strong link between AD and IR-
related metabolic disturbances (Ferreira et al., 2018), no significant global genetic
correlation between AD and IR-related conditions was identified in these analyses.
To explore this further, | used a more granular approach to dissect the genetic
relationship between these conditions. | showed that for neuropsychiatric disorders
where global genetic correlations with IR-related conditions were absent, local
genetic analyses could find significant genetic correlations that were unobservable
in global approaches (Chapter 6). Using Local Analysis of [co]Variant Association
(LAVA) (Werme et al., 2022), heterogeneous local patterns of genetic overlap
were identified across different genomic regions. Even in cases where no global
genetic correlation was detected, local genetic correlations of opposite direction
were observed at specific loci, indicating that shared genetic influences between
psychiatric and metabolic conditions may be confined to discrete genomic regions
rather than acting in a uniform manner across the genome. This regional dissection
refined the global genetic correlation findings and demonstrated that the genetic
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basis of psychiatric-metabolic multimorbidity is far from homogeneous, with both
positive and negative genetic correlations observed at the locus-specific level
(Chapter 6). Building upon these findings, in Chapter 7, | further expanded the
genetic investigation by employing genomic SEM and T-SEM analyses to model the
shared genetic architecture of psychiatric and IR-related conditions in a multivariate
framework (Grotzinger et al.,, 2022; Grotzinger et al., 2019). | included genetic data
of a total of five psychiatric disorders (ADHD, AN, MDD, OCD, and schizophrenia)
and three IR-related conditions (metabolic syndrome [MetS], obesity, T2DM), for
which global genetic correlations have previously been demonstrated (Chapter 7).
This approach identified a latent multimorbidity factor reflecting shared genetic
influences across psychiatric disorders—excluding schizophrenia—and IR-related
conditions. Several novel genes that had not been found significant in any of the
univariate GWASs and transcriptome-wide association studies (TWASs) of the
individual disorders were identified, suggesting that the multimorbidity genetic
factor captures biological processes that may not be fully detectable through
single-trait analyses.

A deeper investigation of the biological pathways underlying this genetic
overlap provided further insights into the molecular mechanisms linking psychiatric
disorders and IR-related conditions. A major component of this shared genetic risk
was traced to genomic regions enriched for immune-related genes, particularly
within the major histocompatibility complex (MHC) region on chromosome 6
(Chapter 6 and 7). Findings in Chapter 6 showed that these immune-related loci
accounted for a substantial proportion of the genetic overlap between psychiatric
and IR-related conditions, suggesting that dysregulated immune signalling may
represent a core mechanism underlying this multimorbidity. The genetically
correlated regions identified in Chapter 6 were enriched in pathways implicated
in immune-inflammatory processes, as well as in protein/vesicle trafficking, insulin
signalling, lipid metabolism, and oxidative phosphorylation (energy production). To
further assess whether these local genetic correlations reflect shared causal variants
rather than linkage disequilibrium-driven associations, colocalisation analyses were
performed (Chapter 6). Through these analyses, | identified specific loci where
the same variants contribute to both psychiatric and IR-related conditions. The
most notable colocalised signals mapped to genes regulating immune response,
lipid metabolism, protein/vesicle trafficking, organ development, retinoic acid
signalling, and DNA repair/apoptosis. Overlapping expression quantitative trait
loci (eQTL) signals in immune/metabolic genes were also identified, suggesting
that gene expression modulation in these loci could play a role in shaping both
neuropsychiatric and metabolic disease risk (Chapter 6). In parallel, gene-set
analyses of the latent multimorbidity factor (Chapter 7) also identified specific
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biological pathways that may serve as mechanistic links between psychiatric and
IR-related conditions. One of the most significant findings was the involvement of
insulin-related pathways, particularly those regulating insulin binding. Additional
candidate insulin-related pathways were identified using bivariate gene-set
stratified genetic covariance analyses (Chapter 5). Specifically, genetic covariance
was found between neuropsychiatric disorders and IR-related somatic conditions
through the insulin receptor recycling, insulin processing, and regulation of insulin
secretion pathways (Chapter 5). These results suggest that insulin signalling may
be an important factor contributing to psychiatric-IR multimorbidity. The Notch
signalling pathway emerged as another significant pathway associated with the
multimorbidity factor, implicating cell fate determination, neurogenesis, and
metabolic regulation processes (Chapter 7). Tissue-specific analyses in Chapter 7
provided additional insights into the neurobiological substrates of psychiatric—
IR multimorbidity. Genes associated with the multimorbidity genetic factor were
enriched in genes expressed in the pituitary gland and brain, particularly in the
cerebellum, cortex (including Brodmann Area 9), and frontal cortex. Among the
most significant genes identified in the T-SEM analyses were MSTITR and MAPK3,
suggesting potential molecular mechanisms linking immune regulation, neuronal
plasticity, and metabolic processes. Other strongly associated genes included
MTCH_2, involved in mitochondrial function and lipid homeostasis, and SNF8, which
plays a role in vesicular transport. A complementary analysis of the transcriptomic

data including the MHC region further highlighted other immune-related genes,
such as HLA-DRB5 and MICB, reinforcing the potential role of immune signalling
in psychiatric-metabolic multimorbidity. The enrichment analysis of prioritised
genes from genomic SEM and T-SEM results identified additional pathways of
interest (Chapter 7). Notably, the strongest enrichment was observed for genes
located in the chromosome 16p11.2 region, a locus previously implicated in both
psychiatric disorders and metabolic dysregulation. This region has been linked
to neurodevelopmental disorders, obesity, and cognitive dysfunction (Chung
et al., 2021). Additional significant enrichments included the brain-derived
neurotrophic factor (BDNF) signalling pathway, which plays a role in synaptic
plasticity and neuronal survival, as well as pathways involved in lipid metabolism
and familial hyperlipidaemia.

Considering the clinical associations found between mood disorders and IR-
related conditions, an essential question explored in Chapters 3, 6, and 7 was
whether any pharmacological interventions targeting metabolic or other pathways
could be useful in the context of psychiatric-IR multimorbidity. This was explored
through the review of existing evidence, as well as new exploration of druggable
genes and drug repurposing analyses. Several medications were highlighted in
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these chapters, including metformin, pioglitazone, and Glucagon-like peptide-1
receptor agonists (GLP-1RAs) (Chapter 3), which have been investigated for their
antidepressant and pro-cognitive properties. Metformin, primarily used as an
insulin sensitiser, has been associated with improved depressive symptoms in
individuals with metabolic dysfunction, possibly through mechanisms related
to neuroinflammation and mitochondrial function. Pioglitazone, a peroxisome
proliferator-activated receptor-y (PPAR-y) agonist, showed potential benefits in TRD,
with some studies indicating effects on neurogenesis and inflammatory pathways.
GLP-1RAs, such as liraglutide, have garnered attention for their neuroprotective
and anti-inflammatory properties, with preliminary evidence suggesting cognitive
benefits and antidepressive effects in individuals with IR-related conditions
(Mansur et al.,, 2017; Pozzi et al., 2019). These findings suggest that metabolic
interventions may hold promise in psychiatric treatment strategies, particularly in
cases where standard psychotropic medications have shown limited effectiveness.
Beyond these known metabolic agents, new drug repurposing opportunities
were identified through colocalisation analyses (Chapter 6) and transcriptome-
based drug screening (Chapter 7). Colocalisation analyses (Chapter 6) pinpointed
genetic regions where the same causal variants likely contribute to both psychiatric
and IR-related conditions, identifying druggable targets within immune function,
lipid metabolism, vesicle trafficking, and DNA repair/apoptosis pathways. Among
the genes mapped to the shared most likely causal variants, HLA-DRB1 gene
product is already targeted by multiple drugs, including immunosuppressants
(azathioprine, interferons-f), anti-inflammatory agents (acetylsalicylic acid,
statins), and psychotropic drugs (carbamazepine, lamotrigine). Other products of
genes, such as HLA-DQB1 and FADS1/2—involved in immune regulation and lipid
metabolism, are already targeted by existing antihypertensive drugs, omega-3/6
polyunsaturated fatty acids (PUFAs), and vitamin A, indicating potential metabolic
and neuroimmune intervention points. To extend these findings, transcriptome-
based drug repurposing analyses (Chapter 7) identified pharmacological
compounds with potential relevance for psychiatric-IR multimorbidity. Using the
PharmOmics platform (Chen et al., 2022), six candidate drugs were highlighted,
based on their ability to reverse disorder-associated gene expression signatures. In
human data, bevacizumab was identified as a potential neurovascular modulator.
In mouse models, the strongest candidates included memantine, rosiglitazone,
levodopa, cyclophosphamide, and ceftriaxone. Memantine, an N-methyl-D-
aspartate (NMDA) receptor antagonist, is known for its neuroprotective properties
and has been studied for cognitive dysfunction and treatment-resistant psychiatric
disorders (Aljuwaiser et al., 2023). Rosiglitazone, a PPAR-y agonist with insulin-
sensitising and anti-inflammatory effects, showed strong overlap with genetic
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signatures of psychiatric-IR multimorbidity, aligning with previous evidence of
possible efficacy of pioglitazone on depressive symptoms (Moulton et al., 2018).
Levodopa, a dopamine precursor commonly used in Parkinson’s disease, emerged
as another candidate, although its effects on glucose metabolism and IR require
further investigation. Cyclophosphamide and ceftriaxone, both involved in
immune modulation and neuroprotection, also demonstrated significant overlap
with disease-relevant transcriptomic profiles. Taken together, these results suggest
that existing metabolic and neuroimmune-modulating drugs may hold potential
for addressing psychiatric-IR multimorbidity.

To summarise, these findings provide a coherent framework demonstrating
convergent evidence for a bidirectional relationship between neuropsychiatric
disorders and IR-related metabolic conditions at multiple levels. While conventional
views often treat metabolic conditions and neuropsychiatric disorders as separate
entities, the empirical observations and genomic findings described in this thesis
reveal interconnected mechanisms. The identification of colocalised signals
between neuropsychiatric disorders and IR-related conditions further refines this
understanding, showing that some genetic variants are likely to exert a shared
causal effect across metabolic and neuropsychiatric domains. The potential
pharmacological relevance of these genes suggests that metabolic and antidiabetic
and immune-targeting drugs may warrant further investigation in psychiatric
conditions, particularly for individuals with high IR burden.

Contextualisation of findings within the existing
literature and integration across chapters

The findings presented in Chapters 2 to 7 provide converging evidence for a
connection between neuropsychiatric disorders and IR-related conditions across
multiple levels, ranging from epidemiological associations to shared genetic
architecture and transcriptomic signatures. However, this relationship is not
uniform across disorders, nor does it follow a simple linear association. Instead,
the results reveal substantial heterogeneity in shared genetic risk across different
neuropsychiatric and IR-related metabolic conditions. This heterogeneity is
particularly evident in the contrasting patterns of global versus local genetic
correlations, several biological pathways implicated in shared risk, and the varying
degrees to which neuropsychiatric disorders align with or diverge from IR-related
metabolic traits at the genetic level (Chapters 5-7).
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Heterogeneity in genetic overlap between psychiatric disorders and
metabolic dysregulation

Metabolic dysfunction emerges as a substantial determinant of psychiatric disorder
trajectories, influencing cognitive outcomes, treatment response, and disorder
chronicity. Observational data from Chapters 2 to 4 demonstrated that individuals
with IR-related conditions, including T2DM, obesity, and hypertension, exhibited
poorer cognitive performance, increased rates of TRD, and more severe mood
disorder phenotypes. Complementing these clinical findings, genetic analyses
from Chapters 5 to 7 demonstrated distinct patterns of genetic correlation
between psychiatric and IR-related metabolic traits. While MDD and ADHD
exhibited only positive genetic correlations with IR-related conditions at both
global and local levels, the genetic relationship was more complex for AN, OCD,
and schizophrenia. These three psychiatric disorders warrant specific attention
because they deviate from the patterns observed in other psychiatric conditions.
Schizophrenia presents a paradox: despite its high clinical burden of metabolic
dysfunction (Freyberg et al., 2017; Manu et al,, 2015), global genetic correlations
indicate a protective effect, raising questions about the influence of environmental
and pharmacological factors. In contrast, AN consistently shows negative genetic
correlations with IR-related conditions at both the global and local levels, reflecting
a metabolic profile that is distinct from most other psychiatric disorders. OCD,
while also showing negative global genetic correlations, exhibits both negative
and positive local genetic correlations. Clinical data indicate a heightened risk of
metabolic complications in OCD (Isomura et al., 2018), suggesting that genetic
and environmental factors interact in distinct ways across these disorders.
Examining these contrasting patterns is important for understanding how genetic
predisposition, medication effects, and physiological mechanisms contribute to
metabolic variation in psychiatric conditions.

Schizophrenia, in particular, exhibited negative global genetic correlations with
MetS and BMI, but no significant associations were observed with other IR-related
diseases/traits (e.g., T2DM, fasting glucose, fasting insulin, glycated haemoglobin
[HbA1c], and homeostatic model assessment for IR [HOMA-IR]). Nonetheless, clinical
and epidemiological evidence suggests that individuals with schizophrenia are at
increased risk of metabolic dysfunction (Freyberg et al., 2017; Manu et al.,, 2015),
particularly in the context of antipsychotic treatment (Burschinski et al., 2023). This
discrepancy raises the possibility that the protective genetic effects observed at
the global level may be overridden by environmental and pharmacological factors,
or that specific loci may interact with environmental exposures to increase the
metabolic risk in patients with schizophrenia. Further supporting this hypothesis, a
recent study identified shared genetic loci between antipsychotic-induced weight
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gain and metabolic traits, primarily implicating loci involved in lipid pathways
rather than insulin signalling mechanisms (Gezsi et al., 2024). This suggests that
while genetic factors linked to schizophrenia itself may exhibit certain genetic
protections against metabolic dysfunction, medication exposure introduces an
additional layer of metabolic risk, with specific genetic variants (e.g., mapping to
the PEPD and PTPRD loci) predisposing some individuals to antipsychotic-induced
weight gain (Gezsi et al., 2024). Notably, the presence of both protective and risk-
associated genetic influences within schizophrenia is further underscored by local
genetic correlation analyses (Chapter 6), which reveal that certain genomic regions
contribute to metabolic risk despite an overall negative genetic correlation with
BMI and MetS. This heterogeneous pattern of local genetic correlations contrasts
with AN, where all local correlations were consistently negative across loci as were
global correlations with IR-related metabolic conditions (Chapters 5 and 6). This
suggests that while schizophrenia may involve bidirectional genetic mechanisms
that variably influence metabolic outcomes, AN appears to be characterised by a
distinct genetic profile that is more markedly opposed to IR.

We can speculate that the heterogeneity in genetic correlations for schizophrenia
and IR-related conditions may reflect variability in symptom domains, as studies
have shown that dysglycaemia is particularly associated with greater severity of
negative symptoms and cognitive impairments in schizophrenia, while positive
symptoms showed mixed associations (Perry et al., 2017). Further supporting

these findings, large-scale genomic analyses have highlighted distinct metabolic
signatures associated with schizophrenia (Meer et al., 2024; Rodevand et al., 2023).
An extensive study assessing the genetic overlap between psychiatric disorders and
249 circulating metabolic markers by using Linkage Disequilibrium Score Regression
(LDSC) and bivariate Gaussian mixture modelling (MiXeR) found that MDD
exhibited strong positive genetic correlations with lipid metabolites, amino acids,
and inflammation-related markers, displaying a pattern similar to that observed
between the same metabolites and T2DM, BMI and coronary artery disease. In
contrast, schizophrenia and BD showed inverse genetic correlations with these
metabolic traits. Notably, the overall pattern of genetic correlations across metabolic
markers was strongly inversely related between MDD and schizophrenia (r = -0.83)
and between MDD and BD (r = -0.74), indicating that while MDD shares genetics
with metabolic traits, schizophrenia and BD exhibit an opposite pattern (Meer et
al., 2024). Similarly, another study analysed genetic overlap between schizophrenia
and CVD risk factors using MiXeR and conjunctional false discovery rate (conjFDR)
analyses (Rodevand et al., 2023). The study identified extensive polygenic overlap
between schizophrenia and smoking initiation and BMI, with mostly opposite
effect directions for BMI. This could suggest that while schizophrenia may exhibit
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an inverse genetic correlation with obesity, local genetic effects and environmental
factors (e.g., smoking-related traits, antipsychotic-induced metabolic side effects)
contribute to increased cardio-metabolic risk in affected individuals. Expanding on
these insights, MR analyses further investigated the causal relationships between
metabolic markers and psychiatric disorders (Rodevand et al., 2023). Findings
indicated bidirectional effects between schizophrenia, MDD, and BD with specific
metabolic markers, including docosahexaenoic acid (DHA) and glycoprotein
acetyl—an inflammatory biomarker. However, the relationship with MDD was
stronger than with schizophrenia and BD, with metabolic dysfunction playing a
more pronounced role in its biological underpinnings (Meer et al., 2024).

In my work presented in Chapter 5 and 6, AN exhibited stronger and more
consistent negative genetic correlations across IR-related traits and genomic loci
than schizophrenia, which showed significant inverse correlations only with BMI and
MetS. Unlike schizophrenia, where metabolic risk is influenced by both protective
and risk-associated genetic factors and further modulated by environmental and
pharmacological exposures, AN appears to follow a distinct genetic profile that is
inherently opposed to the genetic risk for metabolic dysfunction (Chapter 5 to 7).
The absence of local genetic correlations in a positive direction further supports this
observation, suggesting that the genetic architecture of AN is more aligned with
metabolic efficiency and insulin sensitivity rather than IR-related risk (Chapter 6).
This genetic profile aligns with clinical and physiological findings that individuals
with AN exhibit enhanced insulin sensitivity, increased lipid oxidation, and an
adaptive energy conservation phenotype (llyas et al., 2019). Unlike other psychiatric
disorders, where metabolic dysfunction is often associated with symptom severity
and poorer clinical outcomes (Chapter 3 and 4), AN appears to be characterised
by a metabolic state that is distinct from the broader psychiatric-IR multimorbidity
spectrum (llyas et al., 2019; Kumar et al., 2023). These genetic findings are further
supported by genomic SEM analyses (Chapter 7), which demonstrate that while AN
is included in the latent factor of psychiatric-IR multimorbidity, it carries a negative
loading. Initially, we had expected AN to form a separate factor based on the results
of Chapter 5, which highlighted its distinct genetic correlations with metabolic
traits. However, Chapter 7 revealed that AN clustered within the same factor as
other psychiatric disorders linked to IR, albeit with an opposite loading. This finding
suggests that rather than representing a completely separate genetic entity, AN
shares underlying genetic factors with psychiatric-IR multimorbidity, but these
factors influence AN in a direction consistent with metabolic protection rather than
risk. These genetic findings are consistent with clinical observations in individuals
with AN undergoing weight restoration therapy. Despite the physiological stress of
refeeding, overt IR is typically not observed in AN, although approximately 21% of
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individuals show elevated HOMA-IR estimates (Kim et al., 2019). Increased glucose
reactivity has been linked to visceral adiposity during recovery, suggesting that
body fat distribution plays a role in metabolic adaptations (Prioletta et al., 2011).
Nonetheless, insulin sensitivity remains preserved in mostindividuals with AN, likely
due to higher circulating levels of adiponectin, a hormone that enhances insulin
action (Karczewska-Kupczewska et al., 2010). Further evidence supporting the
genetic divergence of AN from other psychiatric disorders comes from polygenic
analyses linking T2DM with psychiatric risk. A nationwide multigenerational
genetics study demonstrated that psychiatric disorders and T2DM share a familial
risk component, with first-degree relatives of individuals with psychiatric disorders
exhibiting a significantly higher risk of T2DM (parents: HR = 1.38; grandparents:
HR = 1.14; aunts/uncles: HR = 1.19) (Wimberley et al., 2024). However, the study
also found an inverse association between polygenic score (PGS) for T2DM and AN,
reinforcing the hypothesis that AN follows a metabolic trajectory distinct from IR-
related conditions, favouring enhanced insulin sensitivity rather than susceptibility
to metabolic dysfunction (llyas et al., 2019; Wimberley et al., 2024). These findings
collectively highlight that while most psychiatric disorders exhibit some degree of
genetic overlap with IR-related traits, AN represents an exception, characterised by
a genetic architecture opposite of IR-related metabolic dysfunction.

A disorder showing similar trends as AN in its global negative association with
IR-related metabolic conditions is OCD. However, while AN exhibited a largely
uniform genetic profile characterised by consistent negative correlations with IR-
related traits, OCD presented a more complex pattern. Despite negative global
genetic correlations with IR-related metabolic conditions suggesting protection
(Chapter 5), clinical and epidemiological evidence indicates an elevated
prevalence of metabolic disturbances in individuals with OCD (Wimberley et
al., 2022). One potential explanation for this discordance is the contribution of
external, environmental influences that may interact with genetic predisposition,
as metabolic complications have been particularly associated with prolonged
exposure to antipsychotic medications in patients with OCD (Albert, Aguglia
et al. 2013, Isomura, Brander et al. 2018). Local genetic correlation and gene-set
stratified covariance analyses provided additional insights, highlighting shared
genetic factors between OCD and IR-related conditions in specific genomic regions
or pathways (Chapter 5 and 6). Notably, gene-set stratified covariance analyses
implicated pathways involved in insulin receptor recycling, a process important
for maintaining insulin sensitivity (Chapter 5). This finding suggests that genetic
variation affecting insulin receptor turnover may contribute to the observed
genetic relationship between OCD and IR-related traits, despite the lack of a
positive genome-wide correlation.



260 | Chapter 8

For AD, the findings described in this thesis highlight another layer of
complexity. Although global genetic correlations between AD and IR-related
conditions were non-significant, local genetic analyses identified significant
regional overlaps, suggesting that positive and negative correlations at different
loci may counterbalance each other at a global level (Chapter 5 and 6). Previous
studies have reported strong regional genetic correlations between AD and
T2DM, particularly for variants mapped to the APOE locus (Zhu et al.,, 2019). The
absence of a genome-wide, global genetic correlation does not necessarily rule
out biological links but instead suggests that shared mechanisms may operate
at specific loci without a uniform direction of effect across the genome. Evidence
from animal models supports this hypothesis, showing that transgenic mice
carrying the APOE-€4 allele exhibit impaired insulin signalling when exposed to a
high-fat diet, whereas those carrying the APOE-£3 allele do not (Zhao et al., 2017).
Furthermore, pharmacological studies have demonstrated that the efficacy of
insulin-modulating treatments for AD, such as thiazolidinediones and intranasal
insulin, may depend on APOE genotype (Li et al., 2015), reinforcing the notion that
genetic and environmental interactions influence the relationship between AD and
IR-related conditions.

Taken together, the results observed in my thesis highlight the substantial
heterogeneity in the genetic overlap between psychiatric disorders and IR-
related conditions. While MDD and ADHD exhibit positive genome-wide genetic
correlations with IR-related metabolic traits, AN presents a uniformly negative
genetic profile, reflecting genetic opposition to IR-related metabolic dysfunction
across both global and local genetic correlation analyses. In contrast, schizophrenia,
OCD, and AD demonstrate more complex genetic relationships with IR-related
traits. These disorders show both positive and negative local genetic correlations,
suggesting that specific loci contribute to metabolic risk despite an overall lack of
or even inverse genome-wide genetic correlation. On top of genetic factors - and
potentially over-ruling those - environmental and pharmacological factors (e.g.,
antipsychotic-induced metabolic side effects in schizophrenia and OCD) may
further shape the observed metabolic risk in affected individuals.

Insulin signalling and immune-inflammation as core mechanisms in
psychiatric-insulin resistance multimorbidity

Two consistent biological mechanisms emerging from my work across genomic and
transcriptomic analyses (Chapters 5 to 7) are the involvement of insulin signalling
and immune-inflammatory mechanisms in the co-occurrence of psychiatric and
IR-related conditions. The involvement of insulin signalling was first identified in
Chapter 5, where gene-set stratified genetic covariance analyses revealed that
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neuropsychiatric disorders and IR-related conditions show genetic covariance
at the level of specific insulin-related pathways, including those involved in
insulin receptor recycling, insulin secretion, and processing. These findings were
complemented by results from Chapter 6, where gene mapping within genetically
correlated regions identified genes such as STXTA, FLOT1, MAPK3, and PHKG2,
which play roles in insulin secretion, receptor signalling, and vesicular function
(Bagge et al., 2013; Jager et al.,, 2011; van de Vondervoort et al., 2016). While
these associations do not establish causality, they suggest a genetic link between
insulin-related processes and psychiatric-IR multimorbidity, consistent with prior
research on insulin signalling dysfunction in psychiatric disorders (see Chapter 1,
section 1.1.2.1). Additional support for this relationship was observed in Chapter 7,
where genomic SEM analyses identified a significant association between insulin
binding gene-set, including the INSR, IGF1R, and IDE genes, and the psychiatry-IR
multimorbidity genetic factor. INSR and IGF1R are central to insulin signalling, also
regulating neuronal metabolism, synaptic plasticity, and neurogenesis (Boucher et
al., 2014; Cardoso et al,, 2021). IDE, which encodes the insulin-degrading enzyme, is
not only involved in insulin metabolism but has also been implicated in cognitive
function and neurodegeneration, suggesting a neurobiological link between
insulin dysregulation and neuropsychiatric symptoms (Henderson & Poirier, 2011).
These findings suggest that genetic variability in insulin signalling is potentially
involved in the pathophysiology of psychiatric-IR multimorbidity, aligning with

previous evidence presented in Chapter 1 regarding the involvement of insulin in
brain functioning.

Although insulin signalling is important for psychiatric-IR multimorbidity, my
findings in Chapters 6 and 7 indicate that it does not act in isolation. Instead,
immune-inflammatory mechanisms appear to be an additional biological link
between psychiatric and IR-related conditions. In this regard, colocalisation
analyses conducted in Chapter 6 identified likely shared causal variants between
psychiatric and IR-related conditions, which mapped to immuno-related genes
such as HLA-DQB1 and HLA-DRB1. Moreover, transcriptomic analyses further
reinforced the potential role of immune signalling by implicating MHC-related
genes, including HLA-DRB5, and MICB, whose expression is associated with
psychiatric-IR multimorbidity; this suggests that immune system dysfunction
may be a key mechanistic bridge between psychiatric disorders and IR-related
conditions (Chapter 7). The relationship between immune-inflammatory pathways
and insulin function is particularly relevant given the previously established
bidirectional links between inflammatory cytokines and IR, which has been
implicated in both metabolic dysfunction and neuropsychiatric symptoms (Al-
Mansoori et al.,, 2022; Wu & Ballantyne, 2020). Interestingly, pro-inflammatory
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cytokines, including interleukin (IL)-6 and tumor necrosis factor (TNF)-a, may also
interfere with insulin receptor signalling by promoting serine phosphorylation of
insulin receptor substrate proteins, leading to IR in peripheral tissues and the brain
(Andreozzi et al., 2007; Gao et al., 2002). Findings from other large-scale studies
further support the role of immune-inflammatory dysregulation in psychiatric-IR
multimorbidity, although the underlying biological mechanisms have yet to be fully
elucidated. For example, Rodevand et al. (2023) and Meer et al. (2024) identified
immune-related pathways among shared genetic loci between psychiatric disorders
and metabolic traits, although their analytical approaches do not allow for definitive
mechanistic conclusions. Rodevand et al. (2023) identified genetic overlap between
schizophrenia and metabolic traits, including lipid metabolism, blood pressure
regulation, and T2DM-related phenotypes, with shared genetic signals in the MHC
region. Similarly, Meer et al. (2024) identified immune-related pathways among the
shared genetic loci between psychiatric disorders and metabolic markers, as well as
inflammatory-related metabolic markers such as glycoprotein acetyls causally related
with psychiatric phenotypes. Further evidence supporting the immune-inflammatory
hypothesis comes from clinical studies showing that individuals with MDD, BD, and
schizophrenia exhibit elevated levels of pro-inflammatory cytokines, including IL-6
and TNF-a, which are also increased in individuals with obesity, MetS, and T2DM
(Goldsmith et al., 2016; Liu et al., 2016; Popko et al., 2010). Chronic inflammation has
also been linked to neurotransmitter dysregulation, synaptic plasticity impairments,
and increased HPA axis activity, all of which contribute to psychiatric symptom
severity and treatment resistance (Leonard, 2014; Rhie et al., 2020).

The influence of inflammation and insulin resistance on treatment
outcomes: focus on depression

The link between immune-inflammatory dysregulation and treatment resistance
has been particularly investigated in depression. Previous research has shown
that elevated C-reactive protein (CRP) and IL-6 levels predict poorer response to
antidepressants, and anti-inflammatory agents have been explored as adjunctive
therapies for individuals with treatment-resistant symptoms (Fabbri et al., 2021).
However, immune-inflammatory dysregulation has also been linked to symptom
severity and treatment response in schizophrenia and BD (Murata et al., 2020).
Findings from Chapter 3 and 4 suggest that IR-related metabolic dysfunction,
including T2DM and obesity, may interfere with antidepressant efficacy by
potentially exacerbating neuroinflammatory processes, potentially explaining the
higher rates of antidepressant switching and longer treatment duration observed in
individuals with IR-related conditions. One possible mechanism involves the direct
effect of inflammatory cytokines on monoaminergic signalling. Elevated levels of
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IL-6 and TNF-a have been shown to reduce serotonin synthesis by increasing the
activity of the enzyme indoleamine 2,3-dioxygenase (IDO), which shunts tryptophan
metabolism toward the kynurenine pathway, reducing serotonin availability while
increasing the production of neurotoxic metabolites such as quinolinic acid (Fanelli
et al., 2019). These metabolites act as NMDA receptor agonists, contributing to
glutamatergic excitotoxicity, oxidative stress, and synaptic dysfunction, all of which
have been implicated in mood disorders and antidepressant nonresponse (Fanelli
et al., 2019). Inflammation may also impair dopaminergic transmission, involved in
motivation and reward processing, two domains commonly affected in TRD (Felger
& Treadway, 2017). Beyond neurotransmitter alterations, inflammatory processes
may interfere with antidepressant mechanisms by affecting intracellular signalling
pathways. For example, inflammatory cytokines activate the nuclear factor kappa
B (NF-kB) and mitogen-activated protein kinase (MAPK) pathways, which inhibit
neurotrophic factor signalling, particularly BDNF and its receptor Tropomyosin
receptor kinase B (TrkB). Reduced BDNF expression has been linked to impaired
neuroplasticity, which is a key process involved in antidepressant efficacy (Andrade
& Rao, 2010; Yang et al., 2020).

In the context of metabolic dysfunction, IR may amplify these neuroinflammatory
effects. Indeed, insulin plays a role in modulating neurotrophic support and
neurotransmission (Kleinridders et al., 2014; Stranahan et al., 2008), and IR has been
associated with reduced hippocampal BDNF levels and impaired synaptic plasticity
(Spinelli et al., 2019; Stranahan et al., 2008), which are involved in antidepressant
response (Bjorkholm & Monteggia, 2016). Moreover, IR is linked with chronic low-
grade inflammation, with increased levels of pro-inflammatory cytokines (Chen et
al., 2015; Szukiewicz, 2023), which in turn can worsen neurotransmitter imbalances
and further impair neurotrophic signalling (Leonard, 2014). The combination of
neuroinflammation and IR may therefore create a loop that sustains antidepressant
nonresponse and contributes to chronicity in mood disorders. These mechanisms
provide a biological interpretation of the observed association between
metabolic dysfunction and reduced antidepressant efficacy. The increased
rates of antidepressant switching and prolonged treatment duration observed
in individuals with IR-related conditions (Chapter 4) may reflect the inability
of standard antidepressants to effectively counteract the combined effects of
neuroinflammation, IR, and neurotransmitter dysregulation. These findings also
raise the possibility that anti-inflammatory or insulin-sensitising interventions
could enhance antidepressant efficacy in individuals with coexisting psychiatric
and metabolic disturbances, a hypothesis that warrants further investigation.

In summary, the integration of findings from this thesis, together with recent
large-scale genomic studies, indicates that psychiatric-IR multimorbidity is
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characterised by shared biological pathways, with substantial heterogeneity
in shared genetic risk across psychiatric conditions and at the level of individual
genetic loci. Local genetic correlations can contrast with global trends. The findings
underscore that psychiatric-IR multimorbidity cannot be explained by uniform
genetic effects but rather by a complex balance of convergent and divergent
genetic and biological effects, in addition to environmental influences.

Vision for future research and clinical implications

The findings presented in this thesis underscore the need for a refined, biologically
informed approach to psychiatric research and clinical practice at the intersection
of psychiatric disorders and IR-related conditions. The results indicate that
psychiatric-IR multimorbidity is not a uniform phenomenon but rather a spectrum
of convergent and divergent shared genetic and effects in interplay with
environmental factors, with common mechanisms involving metabolic, immune-
inflammatory, and neurotransmitter pathways. In this section, | will describe my view
on three aspects | believe future research should aim to improve: 1) risk prediction,
2) refining biological subtyping, and 3) translating genetic insights into precision
medicine approaches. These objectives necessitate integrative methodologies
that leverage genomics, transcriptomics, proteomics, metabolomics, and digital
health technologies to optimise diagnosis, prevention, and treatment strategies in
psychiatric populations with metabolic dysregulation.

Advancing risk prediction models for psychiatric-IR multimorbidity

While PGSs have demonstrated clinical utility for some medical conditions, such as
breast cancer and T2DM (Khera et al., 2018), their predictive value in psychiatric
disorders remains small (Lewis & Vassos, 2020). This is likely due to the highly
multifactorial nature of psychiatric conditions and the complex contribution of
environmental factors, including feedback loops involving gene-environment
interplay (correlations and interactions). Conditions such as breast cancer provide
an example where PGSs are increasingly used in risk stratification to optimise
screening strategies. Recent findings indicate that incorporating breast cancer
PGS alongside family history can refine early screening recommendations,
leading to increased life-years gained and a reduction in breast cancer mortality
(van den Broek et al., 2021). These results illustrate how polygenic risk can be
leveraged to improve clinical outcomes and underscore the potential for similar
applications in psychiatric and metabolic medicine. A priority for future research is
the development of multimorbidity-based predictive models that extend beyond
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single-disorder risk estimation. The findings presented in Chapter 7 suggest that
a latent multimorbidity factor, identified through genomic SEM, captures shared
polygenic risk across psychiatric and IR-related conditions. However, the clinical
utility of this multimorbidity factor remains unexplored. One potential avenue
for translating these findings into practice is the development of multimorbidity-
based PGS, which could improve risk stratification and inform personalised
treatment selection. Given the substantial pleiotropy observed in psychiatric-
IR multimorbidity, such a multimorbidity-based PGS may outperform disorder-
specific PGSs by capturing genetic effects that cut across conventional diagnostic
categories. This hypothesis is supported by previous findings indicating that PGSs
derived from multivariate GWASs outperform those based on single-trait GWAS
in predictive accuracy (Grotzinger et al., 2019). To establish clinical validity, future
studies should investigate whether a multimorbidity-based PGS, integrated with
environmental and clinical variables, improves risk stratification in psychiatric
patients with metabolic dysfunction. This requires integrating PGS with electronic
health records (EHRs) to assess whether individuals with high multimorbidity-
based PGS exhibit earlier disease onset, more severe clinical trajectories, increased
treatment resistance, and/or adverse medication effects. Large-scale biobank
datasets, such as the All of Us Research Program (All of Us Research Program et al.,
2019), could be instrumental in refining these models across diverse populations. In
clinical psychiatry, incorporating multimorbidity-based PGS into clinical workflows

may help guide early intervention strategies, including metabolically informed
psychotropic prescribing or preemptive lifestyle interventions. However, realising
the full potential of PGS in the context of psychiatric-IR multimorbidity requires
several methodological improvements. Current PGS approaches primarily rely
on GWAS summary statistics, which assign equal weight to associated variants
regardless of their functional significance (Choi et al., 2020). However, risk
prediction models could be improved by integrating functional annotations, such as
chromatin accessibility and eQTL data, to prioritise variants with stronger biological
relevance (Pain et al., 2021; Zhang et al., 2024). Additionally, the predictive power
of PGS remains constrained by multiple factors, including ancestry-related biases
and the limited sample sizes of base GWAS, which result in suboptimal polygenic
prediction (Lewis & Vassos, 2020).

To refine risk prediction, transcriptomic stratification approaches could
be employed. The CASTom-iGEx framework has demonstrated the utility of
incorporating transcriptomic data to define patient subgroups with distinct
biological profiles and clinically relevant differences (Trastulla et al., 2024). Applying
similar strategies to psychiatric-IR multimorbidity could improve risk stratification
by prioritising variants with functional relevance in biological pathways implicated
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in insulin signalling and immune function, among others, as identified in this
thesis (Chapters 5 to 7). For example, genes such as INSR, MAPK3, MSTIR, and
BDNF, identified through transcriptomic analyses as significantly associated with
psychiatric-IR multimorbidity (Chapter 7), may warrant differential weighting
in future PGS models. However, additional research is needed to establish
which variants are functionally relevant before making direct claims about their
contribution to risk prediction.

Another advancement in PGS methodology is the integration of machine
learning approaches, which can account for nonlinear interactions, gene-gene
interactions, and complex multivariate patterns that traditional PGS methods may
overlook (Zhou et al., 2023). Among these approaches, deep learning-based PGS
utilises neural network architectures to model polygenic risk, leveraging large-
scale genomic data to predict disease susceptibility. Unlike traditional PGS, which
typically sums the weighted effects of independent variants, deep learning-based
models can identify hidden patterns in genetic risk by incorporating epistatic
interactions, functional annotations, and regulatory networks (Zhou et al., 2023).
Zhou et al. (2023) demonstrated that deep learning-based PGS models significantly
outperformed conventional PGSs in predicting AD risk, with an increase in predictive
accuracy from AUC = 0.69 (traditional PGS) to AUC = 0.73 (deep learning-based
PGS) (Zhou et al., 2023). The improvement was attributed to the model’s ability to
capture polygenic risk in a nonlinear, context-dependent manner, incorporating
interactions between genetic variants, biological pathways, and endophenotypic
traits. This suggests that applying deep learning to multimorbidity-based PGS could
better capture shared genetic risk between psychiatric and IR-related conditions,
which involve multiple, overlapping biological mechanisms. Importantly, deep
learning approaches may enable stratification of genetic risk groups with
distinct clinical trajectories, a finding with potential relevance to psychiatric-
IR multimorbidity (Zhou et al., 2023). The model used by the authors not only
predicted AD risk but also identified high-risk subgroups enriched for biological
markers such as amyloid-beta and tau pathology, underscoring the potential of
deep learning to infer disease-related endophenotypes. Given the multisystem
involvement of psychiatric-IR multimorbidity, deep learning approaches could
similarly refine risk prediction by identifying hidden patterns of genetic risk across
metabolic, immune-inflammatory, and neurobiological pathways.

Despite possible methodological advancements, PGS should always be
integrated with environmental and lifestyle data to improve clinical utility. The
bidirectional relationship between psychiatric and metabolic conditions suggests
that genetic predisposition interacts with modifiable risk factors, such as diet,
physical activity, sleep disturbances, and chronic stress (Fanelli et al., 2025; Ferns,
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2018). However, traditional PGS models do not incorporate these influences,
which limits their predictive accuracy in clinical settings (Lewis & Vassos, 2020).
Prior work has demonstrated that combined risk models incorporating both
genetic and environmental factors can improve risk prediction. For instance, CVD
prediction models that integrate PGS alongside conventional risk factors have
shown improved predictive accuracy. Specifically, these models achieve a small but
meaningful increase in their ability to distinguish individuals at higher vs. lower risk
(measured as an increase in the C-index by 0.012, a metric that quantifies how well
a model differentiates between outcomes). Additionally, integrating PGSs has led to
a 10-12% improvement in correctly reclassifying individuals into more appropriate
risk categories compared to models based solely on traditional predictors (Sun et
al., 2021). Similarly, an analysis of breast cancer and CVD models demonstrated
that environmental/clinical predictors such as BMI and smoking status contribute
significantly to disease risk and that integrating genetic data further refines
stratification (Dudbridge et al., 2018). While these findings illustrate the feasibility
of multimodal prediction, their applicability to psychiatric-IR multimorbidity
requires further validation. A multimodal risk model incorporating both genetic
predisposition and longitudinal, real-time health data, such as actigraphy-based
measures of physical activity, sleep patterns, and circadian rhythm stability, could
further improve risk stratification and facilitate early identification of individuals at
high risk for psychiatric-IR multimorbidity before clinical symptoms manifest. These

dynamic predictors may complement genetic risk estimates, particularly given prior
evidence that objective behavioural monitoring (e.g., actigraphy and smartphone-
based digital phenotyping) is associated with mood symptomatology and
treatment response (Gillett et al., 2021; Scott et al., 2020; Tazawa et al., 2019). Such
an approach could support tailored intervention strategies, including preemptive
lifestyle modifications or personalised metabolic risk mitigation. The integration of
multimodal assessments may have broad implications for public health by shifting
the focus from reactive treatment to proactive disease prevention.

Translation of predictive models into clinical practice will require addressing
several challenges, including validation in diverse populations, integration into
EHRs, and ensuring accessibility within routine healthcare settings. To maximise
clinical impact, multimodal risk assessments should be implemented beyond
research settings, ensuring that primary care and mental health services incorporate
these tools in risk stratification and early intervention strategies. Future research
should also explore how PGS can be incorporated into clinical decision support
systems for individualised treatment selection. Potentially, psychiatric patients with
high genetic risk for psychiatric-IR multimorbidity may benefit from metabolically
neutral psychotropics, augmentation with anti-inflammatory agents, or insulin-
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sensitising drugs, whereas those with low multimorbidity risk might tolerate
more metabolically challenging treatments. By integrating PGS-driven metabolic
risk profiles into EHRs, clinicians could receive data-driven recommendations
tailored to an individual’s psychiatric and metabolic risk. This could transform the
management of psychiatric-IR multimorbidity, shifting away from trial-and-error
prescribing towards precision medicine approaches that proactively mitigate/
prevent metabolic complications.

An important factor that must be achieved to fulfil the potential of multimorbidity-
based PGSis thatit mustaccount for both ancestral diversity and ethical considerations
to ensure equitable clinical translation. Current polygenic prediction models are
largely based on European-ancestry cohorts, limiting their generalizability across
populations. Genetic findings from this thesis (Chapters 5 to 7) were derived from
similar datasets, underscoring the need for replication in diverse ancestry groups.
Given that PGS models underperform in non-European populations (Martin et al.,
2019), future studies should integrate multi-ancestry cohorts, deep phenotyping,
and prospective validation to ensure that PGS models are robust, generalizable, and
clinically actionable. Trans-ethnic approaches are essential to prevent disparities in
risk prediction and to ensure that precision medicine benefits all populations rather
than disproportionately favouring those of European descent.

Beyond population-specific considerations, the ethical dimensions of PGS
implementation must also be addressed. Ensuring equitable access to genetic-
based risk assessments, preventing genetic determinism in clinical practice, and
avoiding socioeconomic disparities in genomic medicine are critical challenges.
PGS provides a probabilistic rather than deterministic measure of risk, yet
misinterpretation by clinicians, patients, and policymakers may foster stigmatisation
or fatalistic attitudes (Martin et al, 2019; Palk et al., 2019). This is particularly
relevant in psychiatric disorders, where symptom heterogeneity, environmental
influences, and modifiable lifestyle factors significantly shape disorder trajectories.
If individuals at high polygenic risk for both psychiatric and metabolic conditions
perceive their health outcomes as predetermined, they may be less likely to engage
in preventive health behaviours. Public health strategies should therefore prioritise
educational initiatives that emphasise the role of modifiable risk factors —
including diet, physical activity, and stress management — to counteract potential
misconceptions regarding genetic risk.

A further challenge lies in avoiding the reinforcement of socioeconomic
disparities in healthcare access. If PGS-based risk stratification and early
interventions become financially inaccessible to those in lower-resource settings,
genomic medicine may exacerbate existing health inequities (Martin et al., 2019).
This is particularly concerning given that psychiatric-IR multimorbidity is shaped by
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both genetic and socioeconomic factors, including disparities in healthcare access,
nutrition, and chronic stress exposure. To prevent the emergence of a two-tiered
healthcare system, policymakers must prioritise the integration of PGS within
universally accessible healthcare frameworks, ensuring that genomic medicine
benefits all individuals, rather than being limited to affluent populations.

The challenges in genetically informed risk prediction ultimately reflect a broader
issue in psychiatric classification: the limitations of current diagnostic categories.

Moving beyond symptom-based diagnoses: the need for biology-
informed clinical subgroups
The new evidence on the genetic overlap between neuropsychiatric and IR-related
conditions (Chapter 5 to 7), complemented by clinical evidence of a different
clinical trajectory of psychiatric disorders co-occurring with IR (Chapters 3 and 4),
suggests that conventional diagnostic classifications, such as those based on
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), may be
insufficient to fully capture the biological complexity of these disorders. Furthermore,
unravelling the clinical heterogeneity of some psychiatric disorders, such as MDD and
schizophrenia, among others, could potentially help optimise their treatment and
better understand their underlying biological basis (Buch & Liston, 2021).

As discussed in Chapter 1 (section 1.1.1), psychiatric classification systems
such as the DSM and International Classification of Diseases (ICD) have relied

on symptom-based criteria, which, while clinically practical, do not map onto
underlying neurobiological mechanisms. These frameworks have provided an
essential structure for diagnosis and research, but they fail to account for the
heterogeneous clinical presentations, high rates of multimorbidity with metabolic
disorders, and variable treatment responses seen across psychiatric conditions. The
findings presented in this thesis underscore the potential for a biology-informed
approach, revealing shared genetic, metabolic, and immune-inflammatory
pathways that challenge the conventional categorical distinction between
psychiatric and somatic disorders.

The Research Domain Criteria (RDoC) framework (Insel et al., 2010) represents
a shift toward redefining psychiatric disorders based on neurobiological
dimensions rather than traditional diagnostic categories. However, RDoC
primarily focuses on neural circuit dysfunction, while this thesis highlights the
important roles of metabolic and immune-inflammatory pathways in psychiatric
disorder pathophysiology. Future iterations of RDoC or similar frameworks should
incorporate multi-omics findings, ensuring that psychiatric nosology is not
limited to neurocircuitry alone but extends to systemic metabolic and immune
mechanisms. By integrating genetic, transcriptomic, proteomic, and metabolomic
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data, a revised nosology could help to reduce the artificial boundaries between
mental and physical health, facilitating a more precise understanding of psychiatric
disorders and enabling more targeted therapeutic strategies.

Integrating the assessment of somatic and metabolic traits into psychiatric
practice may provide several advances, both in clinical decision-making and in
refining disorder classification. Psychiatric symptoms are inherently subjective,
relying on clinical interviews and self-report measures that are susceptible to
reporting bias, variability in insight, and heterogeneity in symptom expression.
In contrast, metabolic traits can be assessed through objective biochemical and
physiological markers, including fasting glucose, insulin levels, HOMA-IR, lipid
profiles (triglycerides, high-density lipoproteins [HDL], low-density lipoproteins
[LDL]). These markers provide quantifiable data that help identify individuals with
underlying metabolic disturbances that contribute to psychiatric symptomatology.
Additionally, known intervention strategies for metabolic conditions, such as
lifestyle modifications and pharmacological treatments targeting IR, could be
repurposed for specific psychiatric subgroups. Another important consideration
is that IR-related conditions, such as T2DM, typically develop later in life, whereas
most psychiatric disorders emerge within early adulthood; this temporal pattern
suggests that careful metabolic monitoring of individuals with psychiatric
disorders, particularly those at genetic or clinical risk for metabolic dysfunction,
could enable earlier intervention (and prevention) strategies aimed at reducing
long-term morbidity.

If we can achieve a biologically informed classification system, this could facilitate
the identification of specific psychiatric subtypes, such as immuno-metabolic
depression, which has been increasingly recognised as a distinct depressive
phenotype characterised by systemic inflammation, IR, and an increased risk for
MetS, T2DM, and CVD (Penninx et al., 2025). Immuno-metabolic depression affects
approximately 20-30% of individuals now diagnosed with depression, and it is
marked by a combination of atypical depressive symptoms (hypersomnia, fatigue,
hyperphagia), elevated inflammatory markers (CRP, IL-6, TNF-a), and metabolic
dysfunction (dyslipidaemia, insulin and leptin resistance) (Penninx et al., 2025).
Identifying this subgroup is of clinical importance, as it may help refine treatment
strategies beyond standard antidepressant therapy. Recent randomised controlled
trials (RCTs) have investigated targeted interventions for immuno-metabolic
depression, providing mixed but informative findings. The INFLAMED trial is currently
assessing the efficacy of the COX-2 inhibitor celecoxib as an add-on treatment for
patients with immuno-metabolic depression features, specifically those with elevated
CRP, atypical/energy-related symptoms of depression, and metabolic dysregulation,
with the aim of determining whether targeting inflammation enhances antidepressant
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response (Zwiep et al, 2023). However, prior trials such as the PREDDICT study,
which tested celecoxib as an augmentation to the antidepressant vortioxetine and
attempted to stratify patients based on inflammation levels, failed to demonstrate
a consistent benefit of anti-inflammatory augmentation, suggesting that CRP alone
may not be sufficient for identifying those who would benefit from this approach
(Kavakbasi et al., 2024). These findings highlight the need for refined biomarkers
that can better predict treatment response to anti-inflammatory interventions.
Beyond pharmacological approaches, nutritional and metabolic interventions have
also been explored as potential strategies for immuno-metabolic depression. The
MooDFOOD trial, a large-scale RCT, investigated whether food-related behavioural
activation therapy and multi-nutrient supplementation (omega-3 fatty acids and a
multi-vitamin) could prevent depression onset or alleviate depressive symptom:s.
While primary outcomes showed no significant effect, secondary analyses indicated
that food-related behavioural interventions may reduce somatic and energy-related
depressive symptoms, aligning with the immuno-metabolic depression phenotype
(Thomas-Odenthal et al., 2023). However, multi-nutrient supplementation did not
demonstrate consistent benefits, and in some cases, participants reported greater
severity of mood and energy-related symptoms following supplementation, raising
questions about the appropriateness of generalised dietary interventions in this
subgroup (Vreijling et al., 2021). These inconsistencies suggest that while dietary
modifications may play a role in symptom management, nutritional interventions

should be tailored to well-defined biological subgroups rather than applied as a
universal strategy. The potential role of light therapy in individuals with immuno-
metabolic depression has also been explored due to its effects on circadian rhythms,
inflammation, and metabolic pathways. However, the LiDDia trial, which investigated
the effects of light therapy in patients with immuno-metabolic depression and
comorbid T2DM, found no significant improvements in atypical depressive symptom
severity, inflammatory markers, or metabolic biomarkers (Vreijling et al., 2024).
This suggests that while light therapy is effective for seasonal affective disorder,
its benefits may not extend to individuals with immune-metabolic depression.
These inconsistencies in treatment efficacy highlight the need for improved
biomarker-based stratification, moving beyond CRP alone to incorporate multi-
omics approaches, including genetic, transcriptomic, proteomic, and metabolomic
profiling. A more comprehensive characterisation of immuno-metabolic depression
may help delineate the biological mechanisms underlying psychiatric-metabolic
interactions, allowing for a more precise classification of patients into biologically
relevant subtypes.

One promising approach to achieve this is multimorbidity-based clustering
analysis, which integrates genetic and clinical data to identify distinct psychiatric
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subgroups with varying metabolic and inflammatory profiles. Further supporting
the heterogeneity in psychiatric-IR interactions, such clustering analyses have
identified distinct MDD-related subgroups with unique genetic and non-genetic risk
profiles, some of which exhibit stronger genetic ties to inflammatory and metabolic
pathways than others (Gezsi et al.,, 2024). In line with the findings described in
this thesis, these observations suggest that psychiatric-IR comorbidity is not a
uniform phenomenon but rather comprises biologically distinct subgroups with
varying clinical trajectories. This underscores the importance of refining psychiatric
classification systems by incorporating metabolic and immune-inflammatory
profiles, alongside genetic risk markers, to better predict disorder course and
treatment response. However, to translate these biologically defined subgroups
into clinical practice, a deeper understanding of the molecular pathways driving
these multimorbid conditions is necessary. Identifying the functional consequences
of genetic variation and understanding how these interact with environmental
exposures requires a multi-omics approach, integrating transcriptomics,
epigenomics, proteomics, and metabolomics. These methodologies can help
identify convergent biological mechanisms that may serve as therapeutic targets,
thereby bridging the gap between classification and precision medicine.

Expanding -omics research to identify and validate candidate
therapeutic targets

The genetic and transcriptomic findings presented in this thesis (Chapters 5 to 7)
provide a strong foundation for understanding the shared biological mechanisms
underlying neuropsychiatric disorders and IR-related conditions. However, these
analyses alone offer only a partial view of the molecular processes contributing
to disease. A fully integrative multi-omics approach, encompassing genomics,
epigenomics, transcriptomics, proteomics, and metabolomics, is essential to
develop a higher resolution understanding of multimorbidity and to further identify
biologically relevant therapeutic targets. The need for multi-omics integration is
particularly evident given the heterogeneity in genetic correlations and biological
pathways identified in Chapters 5 to 7, which suggest that psychiatric-IR
multimorbidity is influenced by multiple biological processes rather than a single
common pathway.

A primary goal of future research should be the integration of epigenomic data
to investigate how genetic risk factors interact with environmental influences to
shape disorder susceptibility. While this thesis did not directly assess epigenetic
modifications, results from Chapter 7 indicate that genes associated with psychiatric-
IR multimorbidity exhibit tissue-specific expression patterns in the brain, particularly
in the cerebellum, frontal cortex (Brodmann Area 9), and the pituitary gland. These
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findings suggest that genetic risk for multimorbidity may be mediated, at least
in part, by transcriptional regulation in brain regions relevant to both psychiatric
symptoms and metabolic function. Given that epigenetic mechanisms such as DNA
methylation, histone modifications, and non-coding RNA regulation can influence
gene expression without altering the underlying DNA sequence, future studies should
explore whether metabolic dysfunction contributes to psychiatric symptoms through
epigenetic modifications in these tissues. DNA methylation analyses in post-mortem
brain samples and peripheral tissues (e.g., blood, adipose, liver) from individuals
with psychiatric-IR multimorbidity could help determine whether specific epigenetic
changes distinguish individuals who develop multimorbidity from those who do not.

Additionally, single-cell RNA sequencing (scRNA-seq) represents a promising
approach for clarifying the cellular specificity of genetic risk factors. While the
transcriptomic analyses presented in Chapter 7 identified significant gene
expression associations at the tissue level, they do not resolve which specific cell
types contribute most strongly to multimorbidity risk. Future studies should employ
scRNA-seq to identify which cell types contribute most strongly to multimorbidity
risk. For instance, in silico scRNA-seq analyses of publicly available transcriptomic
datasets from the human brain, peripheral immune cells, and metabolic tissues
can further refine the understanding of cell-type-specific effects of the identified
psychiatric-IR multimorbidity risk variants. This approach can clarify whether the
genetic liability for this multimorbidity is primarily driven by specific neuronal

or glial subpopulations within the different brain areas, or by systemic immune-
metabolic dysfunction (Zhang et al., 2022).

Beyond single cell transcriptomics, proteomic and metabolomic studies will
be important for translating genetic risk into biological function and actionable
therapeutic targets. Psychiatric disorders and metabolic conditions are influenced
by post-transcriptional modifications, protein-protein interactions, and metabolic
flux alterations that are not fully captured by gene expression data alone
(Appelman et al., 2021; Ganapathiraju et al., 2016; Khavari et al., 2024). Mass
spectrometry-based proteomics in individuals with high genetic risk for psychiatric-
IR multimorbidity could reveal altered protein abundance and signalling networks
in both central and peripheral tissues. For instance, targeted proteomic analyses
of serum, cerebrospinal fluid (CSF), and brain tissue could determine whether
inflammatory markers (e.g., IL-6, TNF-a), insulin-related proteins (e.g., INSR, IGF1R,
IRST), or mitochondrial regulators (e.g., oxidative phosphorylation complexes,
PGC-1qa) are disrupted in individuals with multimorbidity. These findings could
then inform the repurposing of existing metabolic or immunomodulatory drugs to
restore disrupted pathways.
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Metabolomics offers a complementary approach by characterising the small-
molecule metabolic changes that bridge genetic risk with disorder pathology. Given
the central role of insulin signalling and lipid metabolism, as well as immune and
neurotransmitter pathways in psychiatric-IR multimorbidity, future studies should
employ untargeted and targeted metabolomics to identify circulating metabolic
signatures predictive of multimorbidity. Key areas of interest include aberrant glucose
handling, altered lipid profiles, and disruptions in mitochondrial-derived metabolites
such as lactate, ATP, and ketone bodies. Additionally, longitudinal metabolomic
profiling could identify early metabolic alterations that precede the onset of
psychiatric symptoms, offering new opportunities for disorder prevention and early
intervention. Several studies have demonstrated the potential of metabolomics in
elucidating the metabolic underpinnings of psychiatric disorders and their association
with metabolic dysregulation. For instance, a large-scale prospective cohort study
of over 200,000 individuals demonstrated that elevated glucose and triglyceride
levels, as well as reduced HDL, were associated with an increased long-term risk of
depression, anxiety, and stress-related disorders (Chourpiliadis et al., 2024). Notably,
individuals who later developed psychiatric disorders exhibited persistently higher
levels of glucose, triglycerides, and total cholesterol for up to 20 years before
diagnosis. Another study conducted plasma metabolomics analysis in adolescents
with MDD, BD, and schizophrenia revealing shared and distinct metabolic alterations
across these conditions (Yin et al., 2024). Alterations in fatty acid, steroid hormone,
purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism
were common across all three disorders, while schizophrenia exhibited unique
disturbances in glycolysis, glycerophospholipid, and sphingolipid metabolism. BD
and MDD shared alterations in lysine, cysteine, and methionine metabolism, while
BD and SCZ overlapped in disruptions of phenylalanine, tyrosine, and aspartate
metabolism (Yin et al., 2024). These findings highlight the potential of metabolomics
in distinguishing psychiatric subtypes and suggest that metabolic dysfunction in
psychiatric disorders is heterogeneous rather than uniform. Further supporting
the link between metabolic alterations and specific psychiatric symptom profiles,
another metabolomics study in individuals with depression identified a distinct
metabolic signature associated with atypical depressive symptoms, particularly those
characterised by atypical symptoms, such as hypersomnia, hyperphagia, and weight
gain (de Kluiver et al., 2023). This atypical/energy-related symptom profile was linked
to elevated glycoprotein acetyls, isoleucine, very-low-density lipoprotein (VLDL)
cholesterol, and saturated fatty acid levels, alongside reduced HDL cholesterol.
Importantly, these metabolomic alterations closely resemble those observed in
cardiometabolic conditions, further reinforcing the shared biological pathways
between metabolic dysfunction and specific psychiatric phenotypes.
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A major advantage of multi-omics integration is its ability to prioritise
therapeutic targets with higher translational relevance. By integrating genomics,
transcriptomics, proteomics, and metabolomics, researchers can prioritise targets
that demonstrate convergent evidence across multiple biological layers. For
instance, if a gene associated with multimorbidity shows genome-wide significance
in GWAS, altered expression in brain transcriptomics, differential protein abundance
in CSF, and metabolic dysregulation in patient-derived samples, it becomes a strong
candidate for therapeutic targeting. In AD research, a deep learning framework
called NETTAG (network topology-based deep learning framework to identify
disease-associated genes) was developed to integrate GWAS with other -omics data.
This integration led to the identification of gemfibrozil, an existing lipid-regulating
drug, as a potential therapeutic agent for AD. Clinical data analysis revealed
that gemfibrozil use was associated with a 43% reduced risk of AD compared to
simvastatin, highlighting the power of multi-omics approaches in drug repurposing
efforts (Xu et al., 2022). Similarly, in migraine research, a study combining GWAS
with eQTL and proteomics data identified GSTM4 as a potential druggable gene.
This multi-omics integration provided a comprehensive understanding of GSTM4's
role in migraine pathophysiology, suggesting it as a promising therapeutic target
(Sun et al., 2024). This multi-omics prioritisation framework could reduce the failure
rate of drug discovery efforts by ensuring that candidate targets have robust
biological support (Kim et al., 2023; Ramos et al., 2018).

Functional validation of genetic findings of my work (Chapters 6 and 7) will
also be indispensable for bridging the gap between association studies and
clinical application. Identifying genetic variants associated with psychiatric-
IR multimorbidity is only the first step; their biological significance must be
confirmed through experimental models. A central focus should be placed on key
candidate genes and pathways identified through genomic SEM, T-SEM, and gene-
set enrichment analyses. Genes such as INSR, MST1R, MAPK3, and BDNF, among
many others, emerged as significant contributors to the shared genetic risk for
psychiatric-IR multimorbidity. Each of these genes plays a role in insulin signalling,
immune function, and neuroplasticity, but their precise mechanistic contributions
to the multimorbidity remain to be elucidated. Functional validation should begin
with cell-based studies using CRISPR-Cas9 gene editing, iPSC-derived neurons
and astrocytes, and high-throughput functional genomics screening. CRISPR-
Cas9 approaches offer a direct means of assessing the biological consequences
of disorder-associated variants (Kim et al.,, 2024). Future studies should use
CRISPR knockout and CRISPR activation techniques to manipulate genes such as
INSR and MAPK3 in relevant cell models, including neuronal, glial, and pancreatic
B-cell lineages. For example, knocking out INSR in neuronal cultures could provide
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additional insights into how insulin receptor dysfunction contributes to synaptic
impairments, neurotransmitter alterations, and metabolic stress responses.
Similarly, CRISPR activation of MSTTR in microglia could help clarify its role in
neuroinflammation and whether its upregulation in psychiatric-IR multimorbidity
reflects a compensatory or pathological mechanism. Such studies would establish
whether genetic variants influence psychiatric-IR multimorbidity via direct cellular
effects or through broader immune-metabolic interactions.

Complementary approaches using induced pluripotent stem cell (iPSC)-derived
neurons, astrocytes, and microglia are also relevant for examining cell-type-specific
effects of risk variants (Cerneckis et al., 2024). Findings from Chapter 7 demonstrated
that several genes implicated in psychiatric-IR multimorbidity exhibit tissue-specific
expression in the brain, particularly in the cerebellum, cortex (including Brodmann
Area 9), and the pituitary gland. Moreover, colocalisation analyses in Chapter 6
identified putative causal variants shared between schizophrenia, MetS, and type
2 diabetes in regions containing immune-related genes. However, these results
do not establish a direct mechanistic link between these genes and psychiatric-IR
multimorbidity but rather highlight regions of interest for further investigation.
For instance, iPSC-derived astrocytes from individuals carrying high-risk alleles in
BDNF and MAPK3, among the top genes identified in Chapter 7, could be analysed
for altered metabolic and inflammatory responses, providing insights into how
metabolic dysfunction and psychiatric symptoms co-evolve. While specific studies
on these alleles are limited, research has shown that iPSC-derived astrocytes can
model disease-specific neuroinflammatory and metabolic alterations. For example,
astrocytes derived from iPSCs of patients with multiple sclerosis exhibit increased
mitochondrial fission, elevated production of superoxide, and enhanced release
of proinflammatory chemokines, reflecting a proinflammatory state (Ghirotto et
al., 2022). Therefore, employing iPSC-derived models of neurons, astrocytes, and
microglia may offer a promising avenue to dissect the cell-type-specific effects of
genetic risk variants implicated in psychiatric-IR multimorbidity.

Moving beyond in vitro studies, animal models incorporating human disorder-
associated genetic variants can be used for better understanding how the
identified genes in Chapters 6 and 7 influence behavioural, cognitive, and
metabolic phenotypes. The creation of mouse models harbouring psychiatric-
IR multimorbidity risk alleles could allow researchers to investigate disorder
mechanisms in a physiologically relevant context. For example, MSTTR (Macrophage
Stimulating 1 Receptor/RON receptor; among the top up-regulated genes
associated with the psychiatric-IR multimorbidity factor in Chapter 7) knock-in
mice could be used to assess the impact of immune-inflammatory activation on
insulin sensitivity, neuronal excitability, and depressive-like behaviours. Studies
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have shown that mice lacking RON receptor signalling exhibit reduced obesity-
related pathologies, including improved glucose tolerance and insulin sensitivity,
when subjected to a high-fat diet (Stuart et al., 2015). Similarly, mice with INSR
deletions specifically in the brain have been employed to elucidate how central
insulin resistance contributes to neuropsychiatric and metabolic disturbances.
Neuronal-specific INSR knockout mice display age-dependent anxiety and
depressive-like behaviours, accompanied by mitochondrial dysfunction and altered
dopamine turnover in the mesolimbic system (Kleinridders et al., 2015).

In summary, while this thesis has identified genetic and transcriptomic
associations to psychiatric-IR multimorbidity, functional validation remains a
required next step for establishing causal mechanisms.

Bridging the gap between genetic insights and precision medicine
The findings presented in Chapters 6 and 7 indicate that psychiatric and IR-
related conditions share fundamental biological pathways, including immune-
inflammatory signalling, IR, mitochondrial dysfunction, and lipid metabolism.
Chapter 6 identified specific genomic regions where psychiatric and IR-related
conditions exhibit local genetic correlations, implicating genes involved in immune
regulation, lipid metabolism, and insulin signalling. Notably, genes such as HLA-
DRB1, C4A, FLOT1, and STXTA, which were mapped within these regions, are targets
of existing pharmacological agents, including immunosuppressants, statins, and
certain psychotropic drugs. These findings suggest that existing pharmacological
interventions targeting metabolic and immune-inflammatory pathways could
be repurposed to improve psychiatric outcomes, particularly in TRD and other
psychiatric symptoms (e.g., cognitive impairments, anhedonia, negative symptoms)
that are poorly responsive to current psychotropic therapies.

Despite these insights, a major challenge remains identifying which patients
would benefit most from such metabolic-targeted interventions. Multi-omics
approaches integrating genetic, transcriptomic, proteomic, and metabolomic data
could refine patient stratification and treatment response prediction. For instance,
combining inflammatory and metabolic markers with PGSs may improve the
identification of patients who are most likely to benefit from metabolic-targeted
therapies (e.g., GLP-1RAs, metformin, statins). A precision psychiatry framework
that aligns pharmacological interventions with genetic and metabolic risk profiles
could move treatment selection beyond symptom-based classifications, allowing a
more personalised approach.

As previously discussed (Chapter 8, section 8.3.2), CRP alone is an insufficient
biomarker for predicting response to anti-inflammatory therapies, as demonstrated
by mixed findings from RCTs such as the PREDDICT trial. However, biomarker-driven
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RCTs have been proposed in personalised medicine to refine treatment selection
(Park, 2022). These trials utilise biomarkers to select or stratify patients, aiming
to predict which individuals are more likely to respond to specific interventions.
Although such biomarker-stratified RCTs are common in other medical fields such
oncology (LoRusso & Freidlin, 2023), their application in psychiatry is still emerging
(Kavakbasi et al., 2024). Large-scale clinical trials should prioritise this approach,
while evaluating whether immune- and insulin-targeting drugs may not only
ameliorate psychiatric symptoms but also mitigate cognitive, compulsive, and
reward-related symptoms, among others, in metabolically vulnerable individuals.

One of the most promising future directions involves therapies that simultaneously
target psychiatricand metabolic pathways. Given that antidepressants, antipsychotics,
and mood stabilisers frequently induce metabolic side effects (Himmerich et al.,, 2015),
an integrated pharmacological approach is necessary to mitigate these effects while
preserving psychiatric efficacy. Several combination strategies should be prioritised
for clinical evaluation. For example, co-administration of metformin with SSRIs or
SNRIs may enhance antidepressant response while reducing metabolic burden.
Similarly, pairing GLP-1RAs with atypical antipsychotics may counteract weight gain
and IR while improving cognitive outcomes (Horska et al., 2022). Preclinical and
clinical studies should systematically test whether metabolically protective drugs
enhance the efficacy of psychiatric treatments, particularly in individuals showing
treatment resistance or metabolic comorbidities.

As suggested in Chapter 3, insulin-sensitising agents such as metformin and GLP-
1RAs have emerged as promising therapeutic candidates in psychiatric populations.
Metformin has been extensively studied for its effects on glucose metabolism and
mitochondrial function, but accumulating evidence suggests it also modulates
neuroinflammatory pathways and enhances synaptic plasticity, processes directly
implicated in psychiatric disorders (Cao et al., 2022). In preclinical and clinical
studies, metformin has demonstrated efficacy in improving cognitive function,
depressive symptoms, and antipsychotic-induced weight gain, suggesting that
its therapeutic benefits extend beyond metabolic regulation (Dodd et al., 2022).
GLP-1RAs (e.g., liraglutide, semaglutide) represent another promising class of
metabolic-based interventions for psychiatric disorders. These drugs exert anti-
inflammatory, neuroprotective, and appetite-regulating effects by modulating
insulin signalling in both central and peripheral tissues. Preclinical studies suggest
that GLP-1RAs improve synaptic function, reduce neuroinflammation, and enhance
neurogenesis in the hippocampus (Au et al., 2025; Detka & Glombik, 2021; Diz-
Chaves et al., 2022), processes that are disrupted in MDD and BD. Emerging
clinical trials indicate that GLP-1RAs reduce anhedonia, cognitive deficits, and
inflammation-associated depressive symptoms in patients with metabolic
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dysfunction (Badulescu et al., 2024; Tempia Valenta et al., 2024). Given the evidence
from this thesis linking IR to poorer treatment response and cognitive dysfunction
in depression, future studies should investigate whether GLP-1RAs can improve
psychiatric outcomes even in patients without overt metabolic disease by targeting
central insulin signalling pathways.

Beyond pharmacological interventions, lifestyle-based therapies should be
systematically integrated into psychiatric treatment protocols to address the metabolic
burden of psychiatric disorders. Evidence suggests that dietary interventions,
including the Mediterranean diet, ketogenic diet, and intermittent fasting, confer
antidepressant and cognitive benefits by modulating neuroinflammation, insulin
sensitivity, and neurotransmitter metabolism (Al Shamsi et al., 2024; Devranis
et al, 2023; Gudden et al., 2021). Other specific dietary interventions have been
investigated for their potential role in modulating neuroinflammation and cognitive
function. A cohort study found that higher nut consumption (=3 servings per
week) was associated with a smaller decline in general cognitive performance over
two years in older adults at risk of cognitive decline (Ni et al., 2023). Nuts are rich in
unsaturated fatty acids, antioxidants, and anti-inflammatory compounds, which may
attenuate neuroinflammation and metabolic dysregulation, making them a potential
dietary adjunct for psychiatric-IR multimorbidity. Similarly, structured exercise
programmes have been shown to enhance hippocampal plasticity and improve
insulin sensitivity, making them promising adjuncts for psychiatric-IR multimorbidity
(Patten et al.,, 2015). However, implementing these lifestyle interventions presents
significant challenges, particularly for individuals with psychiatric conditions like
ADHD, where executive dysfunction, impulsivity, and attentional deficits can impair
adherence to structured exercise regimens. Clinical experience indicates that
ADHD patients often struggle with time management, maintaining motivation, and
sustaining physical activity habits—barriers that are consistent with research findings
showing that, while exercise can improve ADHD symptoms, long-term adherence
remains difficult (Ogrodnik et al., 2023). Given these obstacles, future studies should
investigate whether combining pharmacological and lifestyle-based interventions
enhances treatment response in psychiatric populations, particularly those with high
genetic risk for psychiatric-IR multimorbidity.

A major challenge in translating these insights into clinical practice is the limited
implementation of precision medicine approaches in psychiatry. Future clinical
trials should prioritise biomarker-driven patient stratification to optimise treatment
selection based on genetic, inflammatory, and metabolic risk markers. A multi-
omics approach could enable the early identification of psychiatric subgroups
who are most likely to benefit from metabolic-based interventions, ensuring more
targeted and individualised treatment strategies.
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Advancing an interdisciplinary, equitable, and inclusive framework
for future research

A broader vision for future research on psychiatric-IR multimorbidity must involve
interdisciplinary collaboration that brings together genetics/genomics experts,
psychiatrists, endocrinologists, neuroscientists, nutritionists, and data scientists.
The multifactorial nature of these conditions necessitates collaboration between
different biomedical fields to unravel the shared biological mechanisms underlying
these disorders and translate findings into effective, personalised interventions.
Large-scale consortia have successfully implemented such interdisciplinary
frameworks, as exemplified by the PRIME (Prevention and Remediation of Insulin
Multimorbidity in Europe) consortium (https://prime-study.eu). PRIME has brought
together genetic, epidemiological, and clinical data to investigate the role of
IR in psychiatric disorders and develop personalised treatment approaches
by integrating multi-omics data, real-world clinical evidence, and patient-
centred research. The consortium has also emphasised patient-centred research,
incorporating the perspectives of individuals with lived experiences to align
research priorities with patient needs.

A critical step toward implementing precision psychiatry involves the
development of decision support systems that integrate genetic, clinical, and
lifestyle data. These systems could refine risk prediction models and optimise
treatment selection, improving both efficacy and patient satisfaction. Collaborative
care models that bring together psychiatrists, endocrinologists, and primary care
providers will further ensure that patients receive comprehensive care addressing
both psychiatric and metabolic health.

Ensuring equity in research and clinical practice is both a scientific and ethical
priority. Expanding recruitment efforts to include underrepresented communities
and adapting research methodologies to account for cultural and contextual
differences will enhance the relevance and applicability of findings. Moreover,
developing scalable and adaptable interventions for diverse healthcare settings
will help ensure that the benefits of precision psychiatry reach all populations,
regardless of socioeconomic or geographic barriers.

Overall conclusions

This thesis provides a comprehensive investigation into the genetic, biological,
and clinical links between neuropsychiatric disorders and IR-related conditions,
offering new insights into their shared aaetiology, pathophysiological mechanisms,
and clinical implications. Through a multidimensional approach integrating large-
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scale genetic analyses, transcriptomic profiling, and clinical epidemiology, this
work challenges traditional compartmentalised views of psychiatric and IR-related
somatic conditions, underscoring their shared genetics and biological mechanisms.

A key contribution of my work is the demonstration that psychiatric-IR
multimorbidity is not a coincidental overlap of independent disorders but rather a
manifestation of shared genetic liability. The identification of a latent multimorbidity
factor via genomic SEM and the detection of local genetic correlations between
psychiatric and IR-related conditions provide clear indications for potential common
underlying biological pathways. These findings redefine the conceptual boundaries
between psychiatric and IR-related conditions, supporting the potential usefulness
of a biologically informed, rather than purely symptom-based, classification system.
Furthermore, this thesis highlights the role of insulin signalling and immune-
related processes as possible fundamental axes of shared pathology, with potential
implications for guiding novel interventions. It also illustrates how large datasets
(e.g., UK Biobank, GWAS summary statistics) and advanced computational tools
(e.g., LDSC, LAVA, genomic SEM, and T-SEM) may be leveraged for dissecting
complex multimorbidity patterns, emphasising the importance of refining statistical
approaches to capture biologically meaningful genetic overlap.

From a clinical point of view, this thesis establishes that metabolic dysfunction
is not merely a secondary consequence of psychiatric illness or psychotropic
treatment but can be a fundamental modifier of disorder trajectories. Findings
from Chapters 2 to 4 indicate that IR-related conditions predict poorer psychiatric
outcomes, including increased risk for treatment resistance, greater cognitive
impairment, and heightened chronicity. This underscores the need for integrated
clinical management strategies that simultaneously address both psychiatric and
metabolic dysfunction, moving beyond conventional siloed treatment approaches.

The findings described in this thesis support the need for metabolic risk
screening in psychiatric practice, particularly in individuals presenting with
systemic inflammation or other early markers of metabolic dysfunction. Given the
observed genetic overlap between psychiatric and IR-related conditions, future
research should explore whether PGSs can contribute to risk stratification. However,
given the current limitations of PGSs in clinical psychiatry, their direct application
remains uncertain. Rather than advocating for immediate implementation, this
thesis underscores the importance of validating multimorbidity-based genetic risk
models in large, diverse clinical cohorts before they can be integrated into routine
care. If proven robust, such tools could eventually aid in personalised treatment
selection, guiding clinicians toward metabolically neutral psychotropic agents,
adjunctive metabolic interventions, or anti-inflammatory strategies tailored to an
individual’s broader health risk profile.
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From a methodological perspective, my work advances the field by leveraging
state-of-the-art genomic and transcriptomic approaches to dissect psychiatric-IR
multimorbidity. The application of LAVA, Genomic and transcriptome-wide SEM,
and cross-trait gene-set enrichment analyses enables a fine-grained dissection
of shared mechanisms. These results highlight the power of tissue-specific and
pathway-based analyses in uncovering potential targetable biological processes
that bridge psychiatric and metabolic dysfunction. On the genetic and molecular
front, the findings spotlight both positive and negative genetic correlations
between neuropsychiatric and IR-related conditions, identifying candidate genes
and pathways for pharmacological intervention and future functional validation.
They also provide potential clinical correlates among patients who exhibit both
psychiatric and IR conditions, suggesting the possible utility of insulin-related
biomarkers for tailoring interventions.

While this work makes significant strides in elucidating psychiatric-IR
bidirectional links, it also highlights several key areas for future research. First,
the causal pathways linking IR, inflammation, and psychiatric symptoms remain
incompletely understood. Future research should employ multivariate MR and
experimental validation (e.g., CRISPR gene-editing, patient-derived iPSC models) to
dissect the mechanistic role of insulin signalling in psychiatric disorders. Second,
the integration of multi-omics approaches—including metabolomics, proteomics,
and epigenomics—will be important for capturing the dynamic interplay between
genetic risk and environmental exposures. Third, translating these findings into
clinical interventions requires rigorous, large-scale RCTs testing metabolic-
targeting therapies in psychiatric populations.

In conclusion, my work makes significant contributions to the understanding of
psychiatric-IR multimorbidity, linking genetic, biological, and clinical perspectives
to advance scientific knowledge and clinical practice. By emphasising the
importance of shared genetic and biological mechanisms, integrated care models,
and biologically informed diagnostics, it lays the groundwork for a new era of
precision, metabolic psychiatry. Future research must now focus on translating
these discoveries into clinical applications, ensuring that emerging genomic
and metabolic insights inform efforts to improve outcomes for individuals with
psychiatric disorders.
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English summary

Psychiatric disorders are prevalent mental health conditions that frequently co-
occur with insulin resistance (IR)-related somatic conditions, like obesity, type 2
diabetes mellitus (T2DM), and metabolic syndrome (MetS). Although lifestyle factors
and pharmacotherapeutic side effects have long been posited as the principal
mechanisms underlying such multimorbidity, accumulating evidence indicates that
intrinsic dysregulation of insulin signalling in the central nervous system may also
play a role. The overarching aim of this thesis is to clarify how IR-related metabolic
conditions intersect with psychiatric disorders from both clinical and genetic
standpoints. By integrating epidemiological research, primary care data, and large-
scale genomic analyses, this work uncovers how IR-related conditions shape clinical
trajectories of psychiatric disorders and share essential molecular mechanisms with
them. Two central parts delineate this effort, beginning with in-depth clinical and
phenotypic perspectives on psychiatric-IR multimorbidity (Part ) and advancing to
its underlying genetic architecture and molecular mechanisms (Part II).

PART I: Clinical and phenotypic interfaces of psychiatric-insulin
resistance multimorbidity (Chapters 2-4)

Part | provides a clinical and phenotypic framework for understanding how IR
adversely influences cognitive function, risk for mood disorders, and treatment
outcomes in depression. Chapter 2 systematically reviews empirical findings
from the UK Biobank, focusing on the relationship between IR-related conditions
and cognition. A pronounced negative impact on multiple cognitive domains—
including reasoning ability and processing speed—emerges among individuals
with IR-related conditions, suggesting that IR might exacerbate cognitive
deficits commonly associated with psychiatric disorders. Chapter 3 evaluates
the bidirectional link between T2DM and mood disorders, integrating both
evidence from longitudinal studies and Mendelian randomisation analyses. The
results demonstrate that T2DM confers a more severe depressive course, whereas
mood disorders in turn accelerate cardiovascular and metabolic complications
in T2DM, likely through inflammatory and hypothalamic—pituitary-adrenal axis
dysregulation. Chapter 4 leverages primary care records from the UK Biobank to
address how concurrent IR conditions influence the clinical profile, antidepressant
treatment response, and overall management of depression. Participants with IR-
related comorbidities exhibit delayed improvement under antidepressants and
require more complex pharmacological regimens, underscoring that metabolic
disturbances not only potentiate morbidity but also hinder therapeutic success.
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PART II: Genetic architecture and molecular mechanisms of
psychiatric-insulin resistance multimorbidity (Chapters 5-7)

Part Il shifts toward the genetic and molecular dimensions of psychiatric-IR
multimorbidity, employing state-of-the-art genomic approaches to pinpoint shared
biological pathways. Chapter 5 investigates genome-wide association studies
(GWAS) to explore genetic correlations between psychiatric disorders and IR-
related conditions. These analyses reveal a spectrum of genetic relationships, with
some disorders—such as major depressive disorder and ADHD—exhibiting positive
genetic correlations with IR conditions and traits, while others, including anorexia
nervosa and obsessive-compulsive disorder, demonstrate negative correlations.
Chapter 6 further dissects these relationships through local genetic correlation
analyses across semi-independent genomic regions, highlighting specific loci with
pleiotropic effects. Even in the absence of global genetic correlations for some
disorders (e.g., bipolar disorder or Alzheimer’s disease), shared regions implicate
biological pathways related to immune-inflammatory responses, insulin receptor
recycling, and lipid metabolism. Chapter 7 synthesises this understanding through
genomic and transcriptome-wide structural equation modelling, uncovering a
latent multimorbidity factor capturing shared genetic liability across psychiatricand
IR-related phenotypes. This factor implicates pathways related to insulin binding,
Notch signalling, and immune-inflammatory regulation, with tissue-specific gene
expression analyses highlighting roles for the cerebellum, cortex, and pituitary
gland. These findings point toward early neurodevelopmental and endocrine
mechanisms underlying the observed multimorbidity. Drug repurposing analyses
identify potential therapeutic candidates, including memantine and rosiglitazone,
which target intersecting neuroprotective, metabolic, and immune mechanisms.

Conclusion

The collective results from Chapters 2-7 clarify that IR-related conditions
substantially worsen psychiatric outcomes, including poorer cognition, heightened
symptom severity, and suboptimal treatment response. Beyond clinical implications,
genomic analyses confirm that psychiatric disorders and somatic insulinopathies
converge on shared loci and pathways—including insulin signalling, immune
responses, and vesicle-mediated synaptic regulation—highlighting a convergence
that was not fully appreciated through earlier, single-phenotype approaches. These
findings endorse the view that certain neuropsychiatric disorders can be fruitfully
reconceptualised as “insulinopathies of the brain”, where potentially central
insulin signalling deficits amplify risk or severity. The perspective that metabolic
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and psychiatric pathologies are mutually reinforcing, with a partial common
genomic basis, stimulates new strategies for prevention and care. Interventions
targeting both metabolic health and psychiatric stability—ranging from lifestyle
modifications to immunomodulatory and insulin-sensitising agents—appear
promising. Future investigations should verify these candidate pathways through
experimental models, expand sampling to multi-ethnic cohorts, and systematically
evaluate drug repurposing options. Ultimately, this thesis contributes a cohesive
framework for understanding and mitigating the burden of psychiatric-IR
multimorbidity in the era of precision medicine.
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Nederlandse samenvatting (Dutch summary)

Psychiatrische aandoeningen zijn veelvoorkomende stoornissen die vaak gepaard
gaan met somatische aandoeningen die verband houden met insulineresistentie
(IR), zoals obesitas, type 2 diabetes mellitus (T2DM) en het metabool syndroom
(MetS). Hoewel leefstijlifactoren en bijwerkingen van psychofarmacologische
behandellingen lange tijd als de voornaamste verklaring voor deze multimorbiditeit
werden beschouwd, wijst toenemend bewijs erop dat intrinsieke ontregeling van
de insulinesignalering in het centrale zenuwstelsel hier wellicht ook een rol in kan
spelen. Het overkoepelende doel van dit proefschriftis om de klinische en genetische
samenhang tussen IR-gerelateerde metabole aandoeningen en psychiatrische
aandoeningen te verduidelijken. Door epidemiologisch onderzoek, gegevens uit
de eerstelijnszorg en grootschalige genetische analyses te combineren, draagt
dit werk bij aan onze kennis over hoe IR-gerelateerde aandoeningen de klinische
trajecten van psychiatrische stoornissen beinvlioeden, en essentiéle moleculaire
mechanismen met hen delen. Dit proefschrift is opgedeeld in twee delen: het
eerste deel richt zich op de klinische en fenotypische dimensies van psychiatrische
en IR-gerelateerde multimorbiditeit (Deel 1), terwijl het tweede deel zich richt op
de onderliggende genetische architectuur en moleculaire mechanismen (Deel II).

DEEL I: Klinische en fenotypische dimensies van psychiatrische en
insulineresistentie multimorbiditeit (Hoofdstukken 2-4)

Deel | biedt een klinisch en fenotypisch kader voor het begrijpen van de invlioed van
IR op cognitieve functies, risico op stemmingsstoornissen en behandeluitkomsten bij
depressie. Hoofdstuk 2 geeft een systematisch overzicht van empirische bevindingen
in de UK Biobank en onderzoekt de relatie tussen IR-gerelateerde aandoeningen
en cognitie. Personen met IR-gerelateerde aandoeningen vertonen minder goede
prestaties in verschillende cognitieve domeinen, waaronder redeneervermogen
en verwerkingssnelheid, wat suggereert dat IR cognitieve problemen, zoals vaak
waargenomen bij psychiatrische stoornissen, kan verergeren. Hoofdstuk 3 evalueert
de bidirectionele relatie tussen T2DM en stemmingsstoornissen, waarbij zowel
longitudinale studies als Mendeliaanse randomisatie analyses worden geintegreerd. De
resultaten tonen aan dat T2DM gepaard gaat met een ernstiger beloop van depressie,
terwijl stemmingsstoornissen op hun beurt het risico op cardiovasculaire en metabole
complicaties bij T2DM verergeren, waarschijnlijk door ontregeling van inflammatie
mechanismen en de hypothalamus-hypofyse-bijnier (HPA)-as. Hoofdstuk 4 maakt
gebruik van eerstelijnszorggegevens uit het UK Biobank project om te onderzoeken
hoe gelijktijdige IR-aandoeningen de klinische kenmerken, antidepressieve
behandelrespons en de algemene controle over depressie beinvloeden. Personen met
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IR-gerelateerde comorbiditeiten vertonen een vertraagde respons op antidepressiva
en vereisen complexere farmacologische behandellingen, wat aantoont dat
metabole ontregeling niet alleen de ziektelast verhoogt, maar ook de effectiviteit van
behandellingen ondermijnt.

DEEL II: Genetische architectuur en moleculaire mechanismen
van psychiatrische en insulineresistentie multimorbiditeit
(Hoofdstukken 5-7)
Deel Il richt zich op de genetische en moleculaire dimensies van psychiatrische en
IR-gerelateerde multimorbiditeit en maakt gebruik van geavanceerde genetische
methodologieén om gedeelde biologische mechanismen te identificeren.
Hoofdstuk 5 gebruikt genome-wide associatie studies (GWAS) om genetische
correlaties tussen psychiatrische stoornissen en IR-gerelateerde aandoeningen in
kaart te brengen. Deze analyses onthullen een spectrum aan genetische relaties,
waarbij sommige stoornissen — zoals depressie en ADHD - positieve genetische
correlaties met IR-gerelateerde aandoeningen en kenmerken vertonen, terwijl
andere, zoals anorexia nervosa en obsessieve-compulsieve stoornis, negatieve
correlaties laten zien. Hoofdstuk 6 gaat dieper in op deze relaties via lokale genetische
correlatieanalyses in semi-onafhankelijke genetische regio’s en identificeert specifieke
loci met pleiotrope effecten. Zelfs in afwezigheid van globale genetische correlaties
voor sommige aandoeningen (bijv. bipolaire stoornis of de ziekte van Alzheimer),
wijzen gedeelde genetische regio’s op biologische mechanismen die verband houden
met ontsteking, insuline-receptor recycling en vetmetabolisme.

Hoofdstuk 7 integreert deze inzichten met behulp van genetische en

transcriptoom-brede analyses en modellen, wat leidt tot de identificatie van een
genetische latente multimorbiditeitsfactor die gedeelde genetische kwetsbaarheid
over psychiatrische en IR-gerelateerde fenotypes weergeeft. Deze factor omvat
onder andere genen die verband houden met insuline binding, Notch-signalering
en ontsteking, met specifieke genexpressiepatronen in de kleine hersenen, cortex
en hypofyse. Deze bevindingen suggereren dat vroege hersenontwikkeling en
endocriene processen mogelijk bijdragen aan de waargenomen multimorbiditeit.
Daarnaast wordt via mogelijke medicatie herbestemming-analyses een reeks
potentiéle therapeutische kandidaten geidentificeerd, waaronder memantine en
rosiglitazon, die mogelike neuroprotectieve, metabole en immuunmodulerende
werkingsmechanismen kunnen combineren.



300 | Appendix

Conclusie

De bevindingen uit de hoofdstukken 2-7 verduidelijken dat IR-gerelateerde
aandoeningen een negatieve invloed hebben op psychiatrische uitkomsten,
waaronder verminderde cognitieve functies, ernstigere symptomen en een
suboptimale behandelrespons. Naast deze klinische implicaties bevestigen genetische
analyses dat psychiatrische stoornissen en somatische insulinepathologieén
overlappen op gedeelde genetische loci en biologische mechanismen — waaronder
insulinesignalering, ontstekingsregulatie en synaptische transportprocessen — wat
een diepere mate van convergentie onthult dan eerdere benaderingen gebaseerd op
een enkel psychiatrisch fenotype konden aantonen.

Deze resultaten ondersteunen de hypothese dat bepaalde psychiatrische
aandoeningen kunnen worden heroverwogen als ‘insulinopathieén van de
hersenen;, waarbij mogelijk centrale insulineontregeling het risico of de ernst
van de aandoening vergroot. Dit onderstreept dat psychiatrische en metabole
aandoeningen elkaar wederzijds beinvloeden en deels een gemeenschappelijke
genetische basis delen. Deze inzichten vormen een stimulans voor de ontwikkeling
van geintegreerde behandelstrategieén die zowel de metabole als psychiatrische
gezondheid verbeteren.

Preventieve en therapeutische benaderingen die metabole stabiliteit en psychiatrisch
welzijn bevorderen - variérend van leefstijlinterventies tot immunmodulerende
en insuline-sensibiliserende behandellingen - lijken veelbelovend. Toekomstig
onderzoek dient deze kandidaat-mechanismen verder te valideren via experimentele
modellen, de populaties uit te breiden naar multi-etnische cohorten en systematisch
de mogelijkheden voor medicatie herpositionering te evalueren. Dit proefschrift
biedt een coherente structuur voor het begrijpen van psychiatrische en -IR-
gerelateerde multimorbiditeit en draagt bij aan de ontwikkeling van gepersonalieerde
behandellingen in de psychiatrie.
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Description of research data management
ETHICS and PRIVACY

1. Type of research
= Medical-scientific research with human participants not subject to Medical
Research Involving Human Subjects Act (non-WMO)

= Medical-scientific research without human participants

2. Evaluation of research by medical ethics board (applicable to Chapter 4 only)
Chapter 4: Evaluated by: North West Multi-centre Research Ethics
Committee (MREC); Approval number: 11/NW/0382; Approval date: initially
granted in 2011, renewed in 2016 and 2021

Chapters 5, 6, and 7: Analysis of secondary data (genome-wide
association study summary statistics) that does not involve individual-
level human participation

3. Privacy of participants
= Data were pseudonymised (for Chapter 4 using UK Biobank data)
« Pseudonymisation tool: UK Biobank’s Research Analysis Platform
« Methodology: Randomised unique identifiers (EIDs) assigned to
participants and distinct for each access application
- Key file storage: Managed by UK Biobank, inaccessible to researchers

= Data were anonymised (for GWAS summary statistics in Chapters 5-7)
DATA COLLECTION and STORAGE

4, Data Reuse
E3] My research reuses existing data sources
- Chapter 4: UK Biobank primary care records
- Chapter 5, 6, and 7: Summary statistics from publicly available GWAS
on psychiatric disorders and IR-related conditions
« Sources: GWAS Catalog, UK Biobank, Psychiatric Genomics Consortium
(PGC), Diabetes Genetics Replication and Meta-analysis Consortium
(DIAGRAM), Gene Identification for ANthropometric Traits (GIANT),
Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)
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5. Data collection and analysis

&
&
&
&

Ed|

Extraction from (electronic) health records (UK Biobank primary care
records; Chapter 4)

R-scripts (statistical analyses in all chapters)

Excel (data handling and variable preparation for analyses in Chapter 4)
GWAS summary statistics (genetic correlation and multi-omics analyses in
Chapters 5-7)

Other statistical tools: LDSC, GNOVA, LAVA, FUMA, coloc/SuSiE, SNPNexus,
genomic SEM, T-SEM, MAGMA, PharmOmics

Remarks:

Data in Chapter 4 were extracted from UK Biobank primary care records.

Chapters 5, 6, and 7 utilised public GWAS summary statistics.

6. Data storage

&
&

Surfsara Snellius High Performance Computer (HPC)
Institutional workstation

DATA SHARING, ACCESS, and RE-USE

7. Data sharing, access and reuse:

&
&

ES|

Data from GWAS summary statistics (Chapters 5-7) are publicly available
Individual-level UK Biobank data (Chapter 4) is not publicly shareable and
is available only through UK Biobank access procedures
Open Access Publications
Chapters 2, 3,4, 5 (CCBY 4.0)

DOI: 10.1016/j.neubiorev.2022.104927 (Chapter 2),

DOI: 10.1016/j.neubiorev.2023.105298 (Chapter 3)

DOI: 10.1192/bjp.2025.82 (Chapter 4)

DOI: 10.1038/541398-022-01817-0 (Chapter 5)

Chapters 6 and 7 (CC-BY-NC-ND 4.0)
DOI: 10.1038/541398-025-03349-9 (Chapter 6)
DOI: 10.1101/2024.10.02.24314704 (Chapter 7)
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Data locations and agreed time of storage

8. Time specification of data availability

Xl GWAS summary statistics used in this thesis (Chapters 5-7) are publicly available
and will remain accessible indefinitely via their respective repositories.

X Individual-level UK Biobank data (Chapter 4) is only accessible through UK
Biobank access procedures and cannot be shared. UK Biobank maintains
participant data indefinitely under its research policies, but access requires a
separate application.

X Preprint data (Chapters 7) on medRxiv will remain publicly available for the
foreseeable future, subject to the policies of the preprint server.

Xl Open-access publications and supplementary materials will remain available
indefinitely under their respective licenses.

X Scripts and analytical code used for genetic analyses (e.g., LDSC, LAVA, genomic
SEM, T-SEM, and related pipelines) are available on GitHub. Scripts will remain
available indefinitely unless repository policies change.
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Curriculum vitae

Giuseppe Fanelli is a medical doctor specialised in psychiatry with a research
background in psychiatric genomics, neuropsychobiology, and precision
psychiatry. He obtained his MD from the University of Bari “Aldo Moro” in 2016,
graduating cum laude (110/110) with a thesis on glutamatergic polygenic risk
scores for schizophrenia and their association with cognitive function and brain
activity in healthy individuals, supervised by Prof. Alessandro Bertolino and Prof.
Antonio Rampino. During his medical studies, he trained in psychiatric genomics at
the Psychiatric Neuroscience Group of the University of Bari and participated in an
Erasmus+ program at the Medical University of Plovdiv, Bulgaria.

After completing his medical degree, he specialised in Psychiatry at the
University of Bologna, earning his residency diploma in 2020 with cum laude
distinction (110/110). His thesis investigated the genetic relationship between
insulin resistance-related somatic conditions and neuropsychiatric disorders.
During his specialisation, he worked in inpatient and outpatient psychiatric settings,
focusing on mood and psychotic disorders, treatment-resistant depression, and
suicidal behaviour. His research on genetic predictors of antidepressant response
and suicidal behaviour was supervised by Prof. Alessandro Serretti and Prof.
Chiara Fabbri. He also trained at Radboud University Medical Center (Nijmegen,
Netherlands), where he joined the Multifactorial Research Group, Department of
Human Genetics, as a Visiting Researcher (2019-2020) under the supervision of
Prof. Barbara Franke and Dr. Janita Bralten.

Between 2021 and 2023, he was a Research Fellow at the University of Bologna,
focusing on genetic predictors of antidepressant response, suicidal behaviour,
and psychiatric multimorbidity. His role included genomic and clinical analyses,
postgraduate supervision, and teaching in psychiatry. During this period, he also
worked as a private psychiatrist in an outpatient setting, providing diagnostic
assessment, pharmacological management, and psychotherapeutic support for
patients with various psychiatric disorders. Additionally, he served as a psychiatry
consultant at Bologna General Hospital “Maggiore”, offering counselling and clinical
management for patients admitted to medical and surgical units or presenting to
the emergency department.

Since 2023, he has been a (fixed-term) Junior Assistant Professor (RTD-A) at the
University of Bologna, working on the PNRR (National Recovery and Resilience
Plan/Next Generation EU)-funded MNESYS project (A Multiscale Integrated
Approach to the Study of the Nervous System in Health and Disease). His research
integrates genetic and clinical data to advance precision medicine in psychiatry. He
oversees biological sample collection, manages research funding, and collaborates
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on large-scale genomic studies. He lectures in Psychiatry at the University of
Bologna, teaching undergraduate and postgraduate courses and supervising
psychiatric trainees.

He was actively involved in several high-profile European research initiatives,
including the Horizon 2020-funded PRIME (Prevention and Remediation of Insulin
Multimorbidity in Europe) project, where he investigated the shared genetic
architecture between insulin resistance-related conditions and major psychiatric
disorders; PRISM2 (Psychiatric Ratings using Intermediate Stratified Markers 2) project,
where he was responsible for imaging genomic analyses linking social behaviour
with functional brain networks.

Since December 2024, he holds the National Scientific Qualification for the role
of Associate Professor in Psychiatry in the Italian national academic system. This
qualification acknowledges his scientific contributions and enables him to apply
for tenured professorship positions at Italian universities.

He serves as Managing Editor for International Clinical Psychopharmacology and
Associate Editor for Frontiers in Psychiatry (Mood Disorders Section).

He has received multiple research awards, including the European College
of Neuropsychopharmacology (ECNP) Excellence Award in 2024 and 2020, the
World Federation of Societies of Biological Psychiatry (WFSBP) Young Investigator
Award in 2021, the Collegium Internationale Neuro-Psychopharmacologicum
(CINP) Student Encouragement Award in 2022, and the International Society of
Psychiatric Genetics (ISPG) Early Career Investigator Award in 2021. He is Chair of

the ECNP Network on Suicide Research and Prevention and collaborates in multiple
international psychiatric genomics research initiatives.



308 | Appendix

Portfolio

Name PhD candidate: Giuseppe Fanelli
Graduate School: Donders Graduate School
PhD period: 01-01-2021 - 01-01-2025

1. Courses & workshops

+ 6-16 June 2022 | University of Colorado Boulder (Virtual Course) - 2022 International
Statistical Genetics Workshop on Statistical Genetic Methods for Human Complex
Traits | Attendee

+ 16 May & 7 June 2024 | Radboudumc Health Academy (Virtual Course) - Scientific
Integrity Course for PhD Candidates | Attendee

< 9-31 March 2022 | University of Cambridge, Online - Mendelian Randomisation
Course | Attendee

« August 2020 | Virtual - Online Machine Learning School by the European College
of Neuropsychopharmacology (ECNP) Neuroimaging Network | Attendee

« May 2020 | Radboud University Medical Center, Nijmegen, Netherlands (remote) -
Presentation Skills Course | Attendee

« April 2020 | Radboud University Medical Center, Nijmegen, Netherlands (remote) -
Grant Writing and Presenting for Funding Committees | Attendee

2. Conferences and scientific presentations

+ 28-30 April 2025 | Bordeaux, France — ECNP School on “Precision Psychiatry: -omics
and imaging biomarkers of major psychiatric disorders” by the ECNP Networks
on Pharmacogenomics and transcriptomics & Suicide Research and Prevention
| Organiser of the ECNP School and Chair | Symposium: “Suicidality under the lens:
neuroimaging, genetic, and biologic evidence”; Facilitator | Practical on “Imaging
genomics of suicide”

« 11 April 2025 | Udine, Italy - Knots and joints in psychiatry XVIl edition 2025 “Mens
sana in corpore sano: the immune-metabolic face of psychiatric disorders” | Speaker |
Lecture: “Multimorbidity between psychiatric disorders and insulin resistance: clinical
impact, shared genetics, and biological mechanisms”

< 11-13 December 2024 | Cologne, Germany - 6th General Assembly of the EU Horizon
2020 project “Prevention and Remediation of Insulin Multimorbidity in Europe”

(PRIME) | Speaker | Talk: “Insulinopathies of the brain? Genetic overlap between

somatic insulin-related and neuropsychiatric disorders (summary of four years

of studies)”
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+ 30 September 2024 | Bari, Italy - Personalising care: the role of metabolic psychiatry
in precision medicine | Speaker | Talk: “Insulinopathies of the brain? Genetic overlap
between somatic insulin-related and neuropsychiatric disorders”

+13-15 May 2024 | Bologna, Italy - 5th General Assembly of the EU Horizon 2020 project
“Prevention and Remediation of Insulin Multimorbidity in Europe” (PRIME) | Speaker
| Talk: “Transcriptome-wide structural equation modelling of insulin resistance -
neuropsychiatric multimorbidity”

+11-12 April 2024 | Deursen-Dennenburg, Netherlands - The Royal Netherlands
Academy of Arts and Sciences (KNAW) Symposium — MindYourBody! | Plenary speaker
| Talk: “The link of insulin resistance with mood and psychosis: insights from the clinic”

« 25 March 2024 | Istituto Superiore di Sanita (ISS), Rome, Italy - Center for Behavioural
Sciences and Mental Health seminars | Speaker | Talk: “Insulinopathies of the brain?
Genetic overlap between somatic insulin-related and neuropsychiatric disorders”

+21-23 February 2024 | Rome, Italy - XXVIII National Congress of the Italian Society
of Psychopathology (SOPSI) | Speaker | Symposium: “Physical well-being in patients

Talk:

“Insulinopathies of the brain? Genetic overlap between somatic insulin-related and

with severe mental disorders: from genetics to personalised treatments”

neuropsychiatric disorders”

+10-14 October 2023 | Montreal, Canada - World Congress of Psychiatric Genetics
(WCPG) 2023 | Speaker | Talk: “Shared genetics linking sociability with the brain’s
default mode network”

9 June 2023 | Brescia, Italy - Conference: The results of the DIAPASON project | Speaker
| Talk: “Prescribing patterns of antipsychotic drugs and correlation with physical
activity levels”

15 March 2023 | Remote - Psychiatric Genomics Consortium (PGC) Suicide Working
Group Meeting | Speaker | Talk: “Disentangling the genetic overlap between major
psychiatric disorders, somatic diseases and suicide attempt”

+15-18 October 2022 | Vienna, Austria - 35th European College of
Neuropsychopharmacology (ECNP) Congress 2022 | Speaker | Symposium: “The role of
insulin in the comorbidity between neuropsychiatric and somatic disorders”

+13-17 September 2022 | Florence, Italy - World Congress of Psychiatric Genetics
(WCPG) 2022 | Poster presenter and mentor for early career researchers

+ 6-8 September 2022 | Castelldefels, Barcelona, Spain - 6th extended Horizon 2020
PRIME Steering Committee Meeting | Speaker

+8-12 June 2022 | Virtual & Taipei, Taiwan - 33rd CINP Hybrid World Congress of
Neuropsychopharmacology (CINP 2022) | Speaker and poster presenter | Talk: “A meta-
analysis of polygenic risk scores for mood disorders, neuroticism, and schizophrenia in
antidepressant response”
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+ 12 January 2022 | Donders Institute for Brain, Cognition and Behaviour, Nijmegen,
Netherlands (remote) - Neurodevelopmental Disorders (NDD) event | Speaker

+ 10-14 October 2021 | Virtual - Virtual World Congress of Psychiatric Genetics (WCPG)
2021 | Poster presenter

+1-4 October 2021 | Lisbon, Portugal (hybrid) - 34th European College of
Neuropsychopharmacology (ECNP) Congress Hybrid | Poster presenter

+27-29 June 2021 | Virtual - 15th World Congress of Biological Psychiatry (WFSBP
Congress 2021) | Speaker and poster presenter

+ 28 June 2021 | Virtual - 57st Behaviour Genetics Association (BGA) Meeting 2021 |
Poster presenter

« 25 February 2021 | Virtual - International College of Neuropsychopharmacology
(CINP) 2021 Virtual World Congress | Poster presenter

«11 February 2021 | Radboud University Medical Center, Nijmegen,
Netherlands (remote) - Radboudumc Theme Discussion | Speaker | Talk:
“Insulinopathies of the brain? Genetic overlap between somatic insulin-related and
neuropsychiatric disorders”

3. Organising committees for conferences or workshops

+28-30 April 2025 - “Precision Psychiatry: -omics and imaging biomarkers of major
psychiatric disorders”, Bordeaux School of Neuroscience, Bordeaux, France

«35th World Congress of the Collegium Internationale Neuro-Psychopharma-
cologicum (CINP 2024) - May 23-26, 2024 | Tokyo, Japan - Member of the
International Scientific Program Committee

4. Networks and affiliations

+10/2024 - Present: European College of Neuropsychopharmacology (ECNP)
Subnetwork “Genetics to the clinic”

+06/2023 - Present: Chair of the European College of Neuropsychopharmacology
(ECNP) Network on Suicide Research and Prevention

< 11/04/2022 - Present: Member of the Collegium Internationale Neuro-
Psychopharmacologicum (CINP) (Member No: 64060400)

+01/2020 - Present: Member of the European College of Neuropsychopharmacology
(ECNP) Network on Suicide Research and Prevention

- 10/2018 - Present: Member of the European College of Neuropsychopharmacology
(ECNP) (Member No: M-03943)

- 09/2018 - Present: Member of the International Society of Psychiatric Genetics (ISPG)
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+12/2024 - Present: Member of the Hierarchical Taxonomy Of Psychopathology
(HIiTOP) Society

5. Peer-reviewer activity

- Peer-reviewer for the Journal of Affective Disorders, International Clinical
Psychopharmacology, International Journal of Psychiatry in Clinical Practice,
Molecular Psychiatry, Neuropsychobiology, Neuroscience & Biobehavioural
Reviews, Personalised Medicine in Psychiatry, Progress in Neuro-
Psychopharmacology & Biological Psychiatry, Psychological Medicine, Psychiatric
Genetics, The Lancet Psychiatry, The American Journal of Psychiatry, Translational
Psychiatry, The International Journal of Neuropsychopharmacology, The World
Journal of Biological Psychiatry, The British Journal of Psychiatry.

- Symposia peer-reviewer for the International College of Neuropsychopharmacology
(CINP) 2024 World Congress - Tokyo, Japan
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6. Editorial board membership

+ 2021 - Present: Managing Editor, International Clinical Psychopharmacology

2022 - Present: Review Editor for Mood Disorders, Frontiers in Psychiatry

+ 2024 - Present: Associate Editor, Frontiers in Psychiatry

+Web of Science - Editor records: https://www.webofscience.com/wos/author/
record/M-4050-2019 (more than 149 verified editor records)
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- 2021 - Present: “Cultore della materia” in Psychiatry, University of Bologna, Italy
(In the Italian academic system, “Cultore della materia” is an honorary title given
to a field expert appointed by the Faculty to serve on examination committees and
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+01/03/2023 - Present: Lecturer in Psychiatry, University of Bologna, Italy
University coursess 2022: Module MED-BMS22 “Vanishing boundaries between
neurodevelopmental disorders”, Master's in Biomedical Sciences, Radboud
University, Nijmegen, NL
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Nursing, University of Bologna, Faenza, IT
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Module of First Aid (Combined Unit), 1st Cycle Degree/Bachelor’s in Health
Professions for Rehabilitation, University of Bologna, Imola, IT

+09/2022 - 2023: Member of the examination committee for the Psychopathology
of Emotional Disorders, Master's in Applied Cognitive Psychology, University of
Bologna, Bologna, IT

2023 - Present: Psychiatry course, Module of Mental Health Studies (Combined Unit),
1st Cycle Degree/Bachelor’s in Nursing, University of Bologna, Faenza, IT

- 09/2023 - Present: Doctor-Patient Relationship, Residency in Psychiatry, University
of Bologna, Bologna, IT
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- 08/06/2024 - Invited lecture on “Psychopharmacology and Multimorbidity”,
Residency in Community and Primary Care Medicine, University of Modena and
Reggio Emilia, Modena, IT

Supervision of residents in psychiatry and research fellows

- Residents in psychiatry supervised: Actively involved in the supervision of

14 psychiatry residents, providing guidance in clinical psychiatry, psychiatric
genomics, and psychopharmacology research.
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« Research fellows (Co-supervised): Co-supervised four research fellows, supporting
them in study design, data analysis, and scientific writing.

8. Outreach and impact

Media appearances or interviews

«Antenna Sud (Southern Italy TV broadcaster): https://www.youtube.com/
watch?v=_ivvQEVr874

« La Voce di Manduria (local newspaper): https://www.lavocedimanduria.it/articolo/
da-un-ricercatore-maruggese-lesperanze-di-cura-per-i-disturbi-
neuropsichiatrici_77443

« UK Science Media Center (roundups for journalists):
https://www.sciencemediacentre.org/ expert-reaction-to-study-looking-at-
semaglutide-liraglutide-and-suicidality/

Blogging or writing for a lay audience
<insulin  resistance is associated with worse cognitive performance:

https://prime-study.eu/news-events/publications/insulin-resistance-is-associated-
with-worse-cognitive-performance/




314 | Appendix

List of publications

Peer-reviewed publications with major contribution
(first, second, or last author)

# = Shared first authorship

§ = Shared last authorship

Arenella, M., Fanelli, G., Kiemeney, L. A., McAlonan, G., Murphy, D. G., & Bralten, J.
(2023). Genetic relationship between the immune system and autism. Brain Behav
Immun Health, 34, 100698. https://doi.org/10.1016/j.bbih.2023.100698

Borgiani, G., Possidente, C., Fabbri, C., Oliva, V., Bloemendaal, M., Arias Vasquez, A.,
Dinan, T. G., Vieta, E., Menchetti, M., De Ronchi, D., Serretti, A., & Fanelli, G. (2025).
The bidirectional interaction between antidepressants and the gut microbiota:
are there implications for treatment response? Int Clin Psychopharmacol, 40(1),
3-26. https://doi.org/10.1097/yic.0000000000000533

Fanelli, G., Benedetti, F., Kasper, S., Zohar, J., Souery, D., Montgomery, S., Albani, D.,
Forloni, G., Ferentinos, P, Rujescu, D., Mendlewicz, J., Serretti, A., & Fabbri, C. (2021).
Higher polygenic risk scores for schizophrenia may be suggestive of treatment non-
response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry,
108, 110170. https://doi.org/10.1016/j.pnpbp.2020.110170

Fanelli, G., Benedetti, F, Wang, S. M., Lee, S. J,, Jun, T. Y., Masand, P. S., Patkar, A. A,,
Han, C., Serretti, A., Pae, C. U., & Fabbri, C. (2019). Reduced CXCL1/GRO chemokine
plasma levels are a possible biomarker of elderly depression. J Affect Disord, 249,
410-417. https://doi.org/10.1016/j.jad.2019.02.042

Fanelli, G., Benedetti, F, Wang, S. M., Lee, S. J., Jun, T. Y., Masand, P. S., Patkar, A.
A., Han, C,, Serretti, A., Pae, C. U., & Fabbri, C. (2020). Reduced plasma Fetuin-A is a
promising biomarker of depression in the elderly. Eur Arch Psychiatry Clin Neurosci,
270(7), 901-910. https://doi.org/10.1007/500406-019-01090-1

Fanelli, G., Domschke, K., Minelli, A.,Gennarelli, M., Martini, P., Bortolomasi, M., Maron,
E., Squassina, A., Kasper, S., Zohar, J., Souery, D., Montgomery, S., Albani, D., Forloni,
G., Ferentinos, P, Rujescu, D., Mendlewicz, J., De Ronchi, D., Baune, B. T.,...Fabbri, C.
(2022). A meta-analysis of polygenic risk scores for mood disorders, neuroticism,
and schizophrenia in antidepressant response. Eur Neuropsychopharmacol, 55, 86-
95. https://doi.org/10.1016/j.euroneuro.2021.11.005



List of publications | 315

Fanelli, G., Franke, B., De Witte, W., Ruisch, I. H., Haavik, J., van Gils, V., Jansen, W. J.,
Vos, S. J. B, Lind, L., Buitelaar, J. K., Banaschewski, T., Dalsgaard, S., Serretti, A., Mota,
N.R., Poelmans, G., & Bralten, J. (2022). Insulinopathies of the brain? Genetic overlap
between somatic insulin-related and neuropsychiatric disorders. Transl Psychiatry,
12(1), 59. https://doi.org/10.1038/s41398-022-01817-0

Fanelli, G.”, Mota, N. R.*, Salas-Salvadd, J., Bull6, M., Fernandez-Aranda,
F.. Camacho-Barcia, L., Testa, G., Jiménez-Murcia, S., Bertaina-Anglade, V.,
Franke, B., Poelmans, G., van Gils, V., Jansen, W. J.,, Vos, S. J. B., Wimberley, T.,
Dalsgaard, S., Barta, C. Serretti, A., Fabbri, C., & Bralten, J. (2022). The link
between cognition and somatic conditions related to insulin resistance in the
UK Biobank study cohort: a systematic review. Neurosci Biobehav Rev, 143,
104927. https://doi.org/10.1016/j.neubiorev.2022.104927

Fanelli, G., Raschi, E., Hafez, G., Matura, S., Schiweck, C., Poluzzi, E., & Lunghi, C.
(2025). The interface of depression and diabetes: treatment considerations. Transl
Psychiatry, 15(1), 22. https://doi.org/10.1038/s41398-025-03234-5

Fanelli, G., & Serretti, A. (2019). The influence of the serotonin
transporter gene 5-HTTLPR polymorphism on suicidal behaviours: a
meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry, 88, 375-
387. https://doi.org/10.1016/j.pnpbp.2018.08.007

Fanelli, G., & Serretti A. (2022). Depression, antidepressants, and

insulin resistance: which link? Eur Neuropsychopharmacol, 60,
4-6. https://doi.org/10.1016/j.euroneuro.2022.04.011

Fanelli, G., Sokolowski, M., Wasserman, D., Kasper, S., Zohar, J., Souery, D,
Montgomery, S., Albani, D., Forloni, G., Ferentinos, P., Rujescu, D., Mendlewicz, J., De
Ronchi, D., Serretti, A., & Fabbri, C. (2022). Polygenic risk scores for neuropsychiatric,
inflammatory, and cardio-metabolic traits highlight possible genetic overlap with
suicide attempt and treatment-emergent suicidal ideation. Am J Med Genet B
Neuropsychiatr Genet, 189(3-4), 74-85. https://doi.org/10.1002/ajmg.b.32891

Fanelli, G., Bralten, J., Franke, B., Mota, N. R., Atti, A. R., De Ronchi, D., Monteleone,
A. M., Grassi, L., MNESYS - Mood and Psychosis Sub-Project (Spoke 5), Serretti, A., &
Fabbri, C. (2025). Insulin resistance and poorer treatment outcomes in depression:
evidence from UK Biobank primary care data. Br J Psychiatry, 1-10. Advance online
publication. https://doi.org/10.1192/bjp.2025.82



316 | Appendix

Fanelli, G.*, Robinson, J.*, Fabbri, C., Bralten, J., Roth Mota, N., Arenella, M.,
Sprooten, E., Franke, B., Kas, M., Andlauer, T. F,, & Serretti, A. (2025). Shared genetics
linking sociability with the brain's default mode network. Psychol Med, 55,
e157. https://doi.org/10.1017/50033291725000832

Fanelli, G., Franke, B., Fabbri, C., Werme, J.,, Erdogan, I., De Witte, W., Poelmans, G.,
Ruisch, I. H., Reus, L. M., van Gils, V., Jansen, W. J,, Vos, S. J. B., Alam, K. A., Martinez,
A., Haavik, J., Wimberley, T., Dalsgaard, S., Fothi, A., Barta, C., Fernandez-Aranda, F,,
... Bralten, J. (2025). Local patterns of genetic sharing between neuropsychiatric
and insulin resistance-related conditions. Translational psychiatry, 15(1),
145. https://doi.org/10.1038/s41398-025-03349-9

Lippi, M., Fanelli, G., Fabbri, C, De Ronchi, D. & Serretti, A. (2022). The
dilemma of polypharmacy in psychosis: is it worth combining partial
and full dopamine modulation? Int Clin Psychopharmacol, 37(6), 263-
275. https://doi.org/10.1097/yic.0000000000000417

Olgiati, P, Fanelli, G. Atti, A. R, De Ronchi, D, & Serretti, A. (2022).
Clinical correlates and prognostic impact of binge-eating symptoms
in  major depressive disorder. Int Clin Psychopharmacol, 37(6), 247-
254. https://doi.org/10.1097/yic.0000000000000422

Olgiati, P, Fanelli, G., & Serretti, A. (2022). Obsessive-compulsive symptoms in
major depressive disorder correlate with clinical severity and mixed features. Int Clin
Psychopharmacol, 37(4), 166-172. https://doi.org/10.1097/yic.0000000000000396

Olgiati, P, Fanelli, G., & Serretti, A. (2023a). Age or age of onset: which is the best
criterion to classify late-life depression? Int Clin Psychopharmacol, 38(4), 223-
230. https://doi.org/10.1097/yic.0000000000000472

Olgiati, P, Fanelli, G., & Serretti, A. (2023b). Clinical correlates and prognostic
implications of severe suicidal ideation in major depressive disorder. Int Clin
Psychopharmacol, 38(4), 201-208. https://doi.org/10.1097/yic.000000000000046 1

Oliva, V., Fanelli, G., Kasper, S., Zohar, J., Souery, D., Montgomery, S., Albani, D.,
Forloni, G., Ferentinos, P, Rujescu, D., Mendlewicz, J., De Ronchi, D., Fabbri, C., &
Serretti, A. (2023). Melancholic features and typical neurovegetative symptoms of
major depressive disorder show specific polygenic patterns. J Affect Disord, 320,
534-543. https://doi.org/10.1016/j.jad.2022.10.003



List of publications | 317

Oliva, V., Fanelli, G., Kasper, S., Zohar, J., Souery, D., Montgomery, S., Albani, D.,
Forloni, G., Ferentinos, P.,, Rujescu, D., Mendlewicz, J., Kas, M. J., De Ronchi, D., Fabbri,
C., & Serretti, A. (2022). Social withdrawal as a trans-diagnostic predictor of short-
term remission: a meta-analysis of five clinical cohorts. Int Clin Psychopharmacol,
37(2), 38-45. https://doi.org/10.1097/yic.0000000000000384

Oliva, V., Fanelli, G., Zamparini, M., Zarbo, C., Rocchetti, M., Casiraghi, L., Starace,
F., Martinelli, A., Serretti, A., & de Girolamo, G. (2023). Patterns of antipsychotic
prescription and accelerometer-based physical activity levels in people with
schizophrenia spectrum disorders: a multicenter, prospective study. Int Clin
Psychopharmacol, 38(1), 28-39. https://doi.org/10.1097/yic.0000000000000433

Panariello, F., Fanelli, G., Fabbri, C., Atti, A. R., De Ronchi, D., & Serretti, A. (2022).
Epigenetic Basis of Psychiatric Disorders: A Narrative Review. CNS Neurol Disord Drug
Targets, 21(4), 302-315. https://doi.org/10.2174/1871527320666210825101915

Possidente, C., Fanelli, G., Serretti, A., & Fabbri, C. (2023). Clinical insights into the
cross-link between mood disorders and type 2 diabetes: A review of longitudinal
studies and Mendelian randomisation analyses. Neurosci Biobehav Rev, 152,
105298. https://doi.org/10.1016/j.neubiorev.2023.105298

Scala, M., Del Rocio Gonzalez Soltero, M., Bellido Esteban, A., Biscaia Fernandez, J.
M., Romero-Ferreiro, V., Serretti, A., Fanelli, G.§, & Rodriguez-Jimenez, R. (2025).
Oropharyngeal microbiota in patients with psychotic disorders: A scoping review

on compositional and functional alterations. Prog Neuropsychopharmacol Biol
Psychiatry, 137, 111288. https://doi.org/10.1016/j.pnpbp.2025.111288

Scala, M., Fanelli, G., De Ronchi, D., Serretti, A., & Fabbri, C. (2023). Clinical specificity
profile for novel rapid acting antidepressant drugs. Int Clin Psychopharmacol, 38(5),
297-328. https://doi.org/10.1097/yic.0000000000000488

Peer-reviewed publications from collaborations

Bartova, L., Fugger, G., Dold, M., Kautzky, A., Bairhuber, I, Kloimstein, P, Fanelli, G.,
Zanardi, R., Weidenauer, A., Rujescu, D., Souery, D. Mendlewicz, J., Zohar, J.,
Montgomery, S., Fabbri, C., Serretti, A., & Kasper, S. (2024). The clinical perspective
on late-onset depression in European real-world treatment settings. Eur
Neuropsychopharmacol, 84,59-68. https://doi.org/10.1016/j.euroneuro.2024.03.007



318 | Appendix

Bartova, L., Fugger, G., Dold, M., Kautzky, A., Fanelli, G., Zanardi, R., Albani, D.,
Weidenauer, A., Rujescu, D., Souery, D., Mendlewicz, J.,, Montgomery, S., Zohar, J.,
Fabbri, C., Serretti, A., & Kasper, S. (2023). Real-world characteristics of European
patients receiving SNRIs as first-line treatment for major depressive disorder. J
Affect Disord, 332, 105-114. https://doi.org/10.1016/j.jad.2023.03.068

Chiera, M., Draghetti, S., De Ronchi, D., Scaramelli, A. R., Fabbri, C., Fanelli,
G., & Serretti, A. (2023). Hyperthyroidism and depression: a clinical case of
atypical thyrotoxicosis manifestation. Int Clin Psychopharmacol, 38(4), 269-
272. https://doi.org/10.1097/yic.0000000000000438

De Donatis, D., Verrastro, M., Fanelli, G., Fabbri, C.,, Maniscalco, I., Hart, X.,
Schoretsanitis, G., Mercolini, L., Ferri, R., Lanuzza, B., Serretti, A., Conca, A., & Florio,
V. (2024). Mirtazapine blood levels and antidepressant response. Int J Psychiatry
Clin Pract, 28(2), 102-106. https://doi.org/10.1080/13651501.2024.2409654

Fico, G., Oliva, V., De Prisco, M., Giménez-Palomo, A., Sagué-Vilavella, M., Gomes-
da-Costa, S., Garriga, M., Solé, E., Valenti, M., Fanelli, G., Serretti, A., Fornaro,
M., Carvalho, A. F, Vieta, E.,, & Murru, A. (2022). The U-shaped relationship
between parental age and the risk of bipolar disorder in the offspring: A
systematic review and meta-analysis. Eur Neuropsychopharmacol, 60, 55-
75. https://doi.org/10.1016/j.euroneuro.2022.05.004

Fugger, G., Bartova, L., Dold, M., Fabbri, C., Fanelli, G., Zanardi, R., Kautzky, A., Zohar,
J., Souery, D., Mendlewicz, J.,, Montgomery, S., Rujescu, D., Serretti, A., & Kasper, S.
(2022). Evidence on sociodemographic and clinical correlates of antidepressant
combination or augmentation with second-generation antipsychotics in
major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 114,
110480. https://doi.org/10.1016/j.pnpbp.2021.110480

Fugger, G., Bartova, L., Fabbri, C., Fanelli, G., Dold, M., Swoboda, M. M. M., Kautzky,
A., Zohar, J., Souery, D., Mendlewicz, J.,, Montgomery, S., Rujescu, D., Serretti,
A., & Kasper, S. (2022). The sociodemographic and clinical profile of patients
with major depressive disorder receiving SSRIs as first-line antidepressant
treatment in European countries. Eur Arch Psychiatry Clin Neurosci, 272(4), 715-
727. https://doi.org/10.1007/s00406-021-01368-3



List of publications | 319

Fugger, G., Bartova, L., Fabbri, C., Fanelli, G., Zanardi, R., Dold, M., Kautzky, A.,
Rujescu, D., Souery, D., Mendlewicz, J., Zohar, J., Montgomery, S., Serretti, A., & Kasper,
S. (2022). The sociodemographic and clinical phenotype of European patients with
major depressive disorder undergoing first-line antidepressant treatment with
NaSSAs. J Affect Disord, 312, 225-234. https://doi.org/10.1016/j.jad.2022.06.004

Kraus, C., Kautzky, A. Watzal, V., Gramser, A., Kadriu, B., Deng, Z. D., Bartova,
L., Zarate, C. A, Jr, Lanzenberger, R., Souery, D., Montgomery, S., Mendlewicz,
J., Zohar, J., Fanelli, G., Serretti, A., & Kasper, S. (2023). Body mass index and
clinical outcomes in individuals with major depressive disorder: Findings
from the GSRD European Multicenter Database. J Affect Disord, 335, 349-
357. https://doi.org/10.1016/j.jad.2023.05.042

Laplace, B., Wong, W. L. E., Menchetti, M., De Ronchi, D., Fusar-Poli, P, Fanelli, G.,
MNESYS - Mood and Psychosis Sub-Project (Spoke 5), Serretti, A., Lewis, C. M.,
& Fabbri, C. (2025). Factors associated with drug-drug interactions involving
citalopram in the UK Biobank. Br J Psychiatry Open, 1-8. Advance online
publication. https://doi.org/10.1192/bjo.2025.10060.

Luca,A. Luca,M.,Kasper,S.,Zohar,J.,Souery,D.,Montgomery,S., Ferentinos, P.,Rujescu,
D., Mendlewicz, J., Zanardi, R., Ferri, R., Lanuzza, B., Pecorino, B., Baune, B. T., Fanelli,
G., Fabbri, C., & Serretti, A. (2025). Mild motor signs and depression: more than just
medication side effects? European archives of psychiatry and clinical neuroscience.
Advance online publication. https://doi.org/10.1007/s00406-025-02015-x

Luca, A., Luca, M., Kasper, S., Pecorino, B., Zohar, J., Souery, D., Montgomery, S.,
Ferentinos, P, Rujescu, D., Messina, A., Zanardi, R., Ferri, R., Tripodi, M., Baune,
B. T., Fanelli, G., Fabbri, C.,, Mendlewicz, J., & Serretti, A. (2024). Anhedonia is
associated with a specific depression profile and poor antidepressant response. Int
J Neuropsychopharmacol, 27(12). https://doi.org/10.1093/ijnp/pyae055

Luca, M., Luca, A., Messina, A., Bartova, L., Kasper, S., Zohar, J., Souery, D., Montgomery,
S., Ferentinos, P, Rujescu, D., Mendlewicz, J., Zanardi, R., Ferri, R, Lanuzza, B.,
Benedetti, F., Pecorino, B., Baune, B. T., Fanelli, G., Fabbri, C., & Serretti, A. (2025).
Specific symptomatology profile associated with treatment resistant depression: A
multicentric study from the Group for the Study of Resistant Depression with a focus
on sex. J Affect Disord, 375, 249-255. https://doi.org/10.1016/j.jad.2025.01.120



320 | Appendix

Martone, A., Possidente, C., Fanelli, G., Fabbri, C., & Serretti, A. (2024). Genetic
factors and symptom dimensions associated with antidepressant treatment
outcomes: clues for new potential therapeutic targets? Eur Arch Psychiatry Clin
Neurosci. https://doi.org/10.1007/500406-024-01873-1

Oliva, V., De Prisco, M., Fico, G., Possidente, C., Fortea, L., Montejo, L., Anmella, G.,
Hidalgo-Mazzei, D., Grande, I., Murru, A., Fornaro, M., de Bartolomeis, A., Dodd,
A., Fanelli, G., Fabbri, C., Serretti, A., Vieta, E., & Radua, J. (2023). Correlation
between emotion dysregulation and mood symptoms of bipolar disorder:
A systematic review and meta-analysis. Acta Psychiatr Scand, 148(6), 472-
490. https://doi.org/10.1111/acps.13618

Oliva, V., De Prisco, M., Pons-Cabrera, M. T., Guzman, P, Anmella, G., Hidalgo-
Mazzei, D., Grande, |, Fanelli, G., Fabbri, C., Serretti, A., Fornaro, M., lasevoli, F., de
Bartolomeis, A., Murru, A., Vieta, E., & Fico, G. (2022). Machine Learning Prediction
of Comorbid Substance Use Disorders among People with Bipolar Disorder. J Clin
Med, 11(14). https://doi.org/10.3390/jcm11143935

Oliva, V., Lippi, M., Paci, R., Del Fabro, L., Delvecchio, G., Brambilla, P., De Ronchi,
D., Fanelli, G., & Serretti, A. (2021). Gastrointestinal side effects associated with
antidepressant treatments in patients with major depressive disorder: A systematic
review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry, 109,
110266. https://doi.org/10.1016/j.pnpbp.2021.110266

Oliva, V., Possidente, C., De Prisco, M., Fico, G., Anmella, G., Hidalgo-Mazzei, D.,
Murru, A., Fanelli, G., Fabbri, C,, Fornaro, M., de Bartolomeis, A., Solmi, M., Radua, J.,
Vieta, E., & Serretti, A. (2024). Pharmacological treatments for psychotic depression:
a systematic review and network meta-analysis. Lancet Psychiatry, 11(3), 210-
220. https://doi.org/10.1016/52215-0366(24)00006-3

Oliva, V., Possidente, C., Fanelli, G., Domschke, K. Minelli, A. Gennarelli,
M., Martini, P, Bartolomasi, M., Squassina, A. Pisanu, C., Kasper, S., Zohar,
J., Souery, D., Montgomery, S., Albani, D., Forloni, G., Ferentinos, P, Rujescu,
D., Mendlewicz, J., Baune, B. T., Vieta, E. Serretti, A.,, & Fabbri, C. (2025).
Predicted plasma proteomics from genetic scores and treatment outcomes
in major depression: a meta-analysis. Eur Neuropsychopharmacol, 96, 17-
27. https://doi.org/10.1016/j.euroneuro.2025.05.004



List of publications | 321

Rampino, A., Taurisano, P, Fanelli, G., Attrotto, M., Torretta, S., Antonucci, L. A,
Miccolis, G., Pergola, G., Ursini, G.,, Maddalena, G., Romano, R., Masellis, R., Di
Carlo, P, Pignataro, P, Blasi, G., & Bertolino, A. (2017). A Polygenic Risk Score of
glutamatergic SNPs associated with schizophrenia predicts attentional behaviour
and related brain activity in healthy humans. Eur Neuropsychopharmacol, 27(9),
928-939. https://doi.org/10.1016/j.euroneuro.2017.06.005

Rossetti, M. G., Perlini, C., Abbiati, V., Bonivento, C., Caletti, E., Fanelli, G., Lanfredi,
M., Lazzaretti, M., Pedrini, L., Piccin, S., Porcelli, S., Sala, M., Serretti, A., Bellani, M., &
Brambilla, P.(2022).Theltalian version of the Brief Assessment of Cognitionin Affective
Disorders: performance of patients with bipolar disorder and healthy controls.
Compr Psychiatry, 117, 152335. https://doi.org/10.1016/j.comppsych.2022.152335

Ruisch, I. H.,, Widomska, J., De Witte, W., Mota, N. R., Fanelli, G., Van Gils, V.,
Jansen, W. J,, Vos, S. J. B, Féthi, A., Barta, C., Berkel, S., Alam, K. A., Martinez, A.,
Haavik, J., O'Leary, A., Slattery, D., Sullivan, M., Glennon, J., Buitelaar, J. K,...
Poelmans, G. (2024). Molecular landscape of the overlap between Alzheimer's
disease and somatic insulin-related diseases. Alzheimers Res Ther, 16(1),
239. https://doi.org/10.1186/s13195-024-01609-2

Scala, M., Fabbri, C., Fusar-Poli, P, Di Lorenzo, G., Ferrara, M., Amerio, A., Fusar-
Poli, L., Pichiecchio, A., Asteggiano, C., Menchetti, M., De Ronchi, D., Fanelli, G.,
& Serretti, A. (2024). The revival of psilocybin between scientific excitement,
evidence of efficacy, and real-world challenges. CNS Spectr, 29(6), 570-
584. https://doi.org/10.1017/5s1092852924002268

Scala, M., Sanchez-Reolid, D., Sdnchez-Reolid, R., Fernandez-Sotos, P, Romero-
Ferreiro, V., Alvarez-Mon, M., Lahera, G., Fanelli, G., Serretti, A., Fabbri,
C., Fernandez-Caballero, A. & Rodriguez-Jimenez, R. (2024). Differences
in emotion recognition between nonimmersive versus immersive virtual
reality: preliminary findings in schizophrenia and bipolar disorder. Int Clin
Psychopharmacol. https://doi.org/10.1097/yic.0000000000000576

van Gils, V., Rizzo, M., Coté, J., Viechtbauer, W., Fanelli, G., Salas-Salvado, J.,
Wimberley, T., Bullé, M., Fernandez-Aranda, F., Dalsgaard, S., Visser, P. J., Jansen,
W. J., & Vos, S. J. B. (2024). The association of glucose metabolism measures
and diabetes status with Alzheimer's disease biomarkers of amyloid and
tau: A systematic review and meta-analysis. Neurosci Biobehav Rev, 159,
105604. https://doi.org/10.1016/j.neubiorev.2024.105604



322 | Appendix

Wimberley, T., Brikell, 1., Astrup, A., Larsen, J. T., Petersen, L. V., Albifana, C.,
Vilhjédlmsson, B. J,, Bulik, C. M., Chang, Z., Fanelli, G., Bralten, J., Mota, N. R., Salas-
Salvadé, J., Fernandez-Aranda, F., Bullo, M., Franke, B., Barglum, A., Mortensen, P. B.,
Horsdal, H. T., & Dalsgaard, S. (2024). Shared familial risk for type 2 diabetes mellitus
and psychiatric disorders: a nationwide multigenerational genetics study. Psychol
Med, 54(11), 2976-2985. https://doi.org/10.1017/s0033291724001053

Wimberley, T., Horsdal, H. T., Brikell, I., Laursen, T. M., Astrup, A., Fanelli, G., Bralten,
J., Poelmans, G., Gils, V. V., Jansen, W. J., Vos, S. J. B., Bertaina-Anglade, V., Camacho-
Barcia, L., Mora-Maltas, B., Fernandez-Aranda, F., Bonet, M. B., Salas-Salvado, J.,
Franke, B., & Dalsgaard, S. (2022). Temporally ordered associations between type 2
diabetes and brain disorders - a Danish register-based cohort study. BMC Psychiatry,
22(1), 573. https://doi.org/10.1186/s12888-022-04163-z

Pre-prints and submitted publications

Abondio, P#, Fanelli, G.*, Baldini, V., Bacalini, M. G., Kasper, S., Zohar, J., Souery,
D., Montgomery, S., Albani, D., Forloni, G., Ferentinos, P, Rujescu, D., Mendlewicz,
J., Serretti, A., Monteleone, A. M., Grassi, L., MNESYS - Mood and Psychosis Sub-
Project (Spoke 5), Atti, A. R., Menchetti, M., Fabbri, C., & De Ronchi, D. Polygenic
predisposition to transdiagnostic symptom dimensions and treatment outcomes
across psychiatric disorders.

De Prisco, M., Oliva, V., Miola, A., Fornaro, M., Dragioti, E., Croatto, G., Carvalho, A.
F., Berk, M., Nikolitch, K., Saraf, G., Yatham, L., Keramatian, K., Shorr, R., Frye, M.,
Balwinder, S., Krinitski, D., Hgjlund, M., Serretti, A., Fanelli, G., Gomes, F. A., Hansen,
A. S., Nielsen, R. E., Fusar-Poli, P.,, Paribello, P., Manchia, M., Bahji, A., Vazquez, G.,
Siafis, S., Leucht, S., Yildiz, A., Delorme, R., Schaffer, A., Stubbs, B., Rubaiyat, R., Vieta,
E., Correll, C. U., Moher, D., Cortese, S., Radua, J., Fiedorowicz, J. G., Gosling, C., &
Solmi, M. Evidence-based interventions for bipolar disorder (EBI-BD): an Umbrella-
Review, Evaluation, Analysis, and Communication Hub (U-REACH) project in bipolar
disorder across phases and age groups.

Fanelli, G., Chatwin, H., Holde, K., Demontis, D., Barglum, A. D., Mortensen, P. B.,
Vilhjédlmsson, B. J., Bulik, C. M., Serretti, A., Fabbri, C., Petersen, L. V., & Dalsgaard, S.
(2024). School performance gaps in adolescents with psychiatric disorders are not
mitigated by polygenic predisposition to higher educational attainment.



List of publications | 323

Mota, N. R. ¥ Fanelli, G.!, Erdogan, |, Klein, M. Sprooten, E. Féthi, A,
Ruisch, I. H., Poelmans, G., Alam, K. A., Haavik, J.,, Wimberley, T., Arenella, M.,
Serretti, A., Fabbri, C., Franke, B., & Bralten, J. (2024). The multivariate genetic
architecture of psychiatric and insulin resistance multimorbidity. medRxiv,
2024.2010.2002.24314704. https://doi.org/10.1101/2024.10.02.24314704

Rovny, M., Sprooten, E., llioska, I., Fanelli, G., Marquand, A. F,, Fabbri, C., & Franke,
B. (2024). Resting-state brain connectivity and sociability: a whole-brain affair.
PsyArXiv. https://doi.org/10.31234/0sf.io/9yfvp

Sakic, B., Erdogan, I, Fanelli, G., Arenella, M. Mota, N. R, & Bralten, J.
(2024). Unravelling the joint genetic architecture between psychiatic
and  insulin-related  traits in  the general population. medRxiv,
2024.2010.2004.24314905. https://doi.org/10.1101/2024.10.04.24314905

Scala, M., Fanelli, G., Fabbri, C., & Serretti, A. Efficacy and real-world effectiveness of
asenapine for aggressive behaviours: a systematic review.

Tempia Valenta, S., Atti, A. R., Marcolini, F., Rossi Grauenfels, D., Giovannardi, G.,
Fanelli, G., & De Ronchi, D. (2024). The gut microbiome’s role in bulimia nervosa
and binge eating disorder: etiological insights and therapeutic implications from a
scoping review. [Under revision in Neuroscience Applied].

Wagner, E., Mortazavi, M., Poddighe, L., Baldwin, D. S., Masdrakis, V., Castle, D. J.,
Serretti, A., Oliva, V., Fanelli, G., Fornaro, M., Shin, J. |, Colman, I., Semchishen, S. N.,
Nicholls, S. G., Anderson, K. K., Wang, J. L., Brietzke, E., Sabé, M., Cortese, S., Hasan,
A., Chang, W. C.,, Myran, D., Correll, C. U., Connor, S., Hgjlund, M., Solmi, M. (2024).
All-cause and cause-specific mortality, and suicide attempt risk in anxiety and

stress-related disorders: a systematic review, meta-analysis and meta-regression
analysis of 178 studies. [Revision submitted to World Psychiatry].



324 | Appendix

Acknowledgements

This work has marked an intense and transformative phase of my life. It took
shape during years of professional growth, personal transitions, and times of
disorientation—balanced by determination and the perseverance to stay on course
toward my goals. If it exists now in its final form, it is because of those who stood by
me, each in their own way.

To Annamaria, my partner in life—this work carries traces of your quiet strength.
You were there even when | was elsewhere with my thoughts, when work absorbed
more of me than | wished. Thank you for your patience, your calm, your unwavering
support. They say that behind every successful man there is a great woman—but
you have never stood behind me. You walked beside me, often one step ahead,
holding things together when | could not. This would not have been possible
without you.

To my beautiful daughter, Chiara—you are what truly matters, and the deepest
source of joy and meaning in my life. Watching you grow has given shape to a
different kind of purpose—one that surpasses any academic goal. Your presence
has sustained me more than you will ever know. This work carries within it a part of
you, and | thank you for the light you bring into every one of my days.

Barbara and Janita—thank you for taking me by the hand when | needed
guidance the most. You helped me when life put me to the test, never failing to offer
your human as well as professional support. Through your example, | understood
what it means to lead in science with generosity and humility. What | take from
this experience is not only a way of doing research, but a way of being in research.
Great science is born not only from ideas, but from inspiration—and from people
who find purpose in helping others grow and find their own path. You will remain
reference points in my future, for your depth of thought and your ability to inspire
those around you to move forward with confidence.

Alessandro, thank you for making this journey possible. You opened the first
door to academic life in Italy and showed me its inner workings. You gave me
space to grow and a framework within which to find my own direction, teaching
me to keep in mind the fundamental path—the “Logos"—that should always guide
us through this profession. To Chiara, thank you for your precision, for keeping
discussions anchored to what was feasible, and for providing different perspectives
along the way.

To Nina—thank you for being a close collaborator and a trusted companion in
thought and writing. From intense late-night exchanges to shared questions and
revisions, your presence gave this work structure, methodological accuracy, and
rhythm. You taught me to document my work with care, to challenge my results



Acknowledgements | 325

from every angle, and to try disproving them before accepting their validity. You
became a steady source of perspective in both academic life and beyond. Your
friendship is something | know | can rely on, and your life advice has often been the
most meaningful.

Martina and Yingjie, thank you for walking this path with me. We shared doubts,
hopes, frustrations, and small victories. Having you as fellow travellers made this
long road less solitary and more bearable.

This work was carried out as part of the research tasks of the EU-funded
PRIME project, which offered me the chance to grow within a truly collaborative
environment. Through it, | found friendships and research partners across Europe.
The PRIME consortium was composed of generous, highly competent, and
approachable researchers—a demonstration that excellent science can thrive in a
collegial and welcoming context.

To those who, knowingly or not, created obstacles: | owe you a different kind
of gratitude. You helped me see more clearly what | never want to become. From
you, | learned how trust can be broken, and how science deteriorates where dignity
has no place and power becomes the only aim. | also learned what can destroy a
research group: the lack of mutual regard and the hunger for control. This, too, has
shaped me.

To all colleagues, collaborators, friends, and silent presences who, in various
ways, have been part of this process—thank you.

This work is not mine alone. It carries the fingerprints of those who stood close,

whether by offering support, challenging my views, or simply being there, and I am
grateful for each of you.



326 | Appendix

Information page about the Donders Graduate School

For a successful research Institute, it is vital to train the next generation of
scientists. To achieve this goal, the Donders Institute for Brain, Cognition and
Behaviour established the Donders Graduate School in 2009. The mission of the
Donders Graduate School is to guide our graduates to become skilled academics
who are equipped for a wide range of professions. To achieve this, we do our
utmost to ensure that our PhD candidates receive support and supervision of the
highest quality.

Since 2009, the Donders Graduate School has grown into a vibrant community
of highly talented national and international PhD candidates, with over 500 PhD
candidates enrolled. Their backgrounds cover a wide range of disciplines, from
physics to psychology, medicine to psycholinguistics, and biology to artificial
intelligence. Similarly, their interdisciplinary research covers genetic, molecular,
and cellular processes at one end and computational, system-level neuroscience
with cognitive and behavioural analysis at the other end. We ask all PhD candidates
within the Donders Graduate School to publish their PhD thesis in de Donders Thesis
Series. This series currently includes over 600 PhD theses from our PhD graduates
and thereby provides a comprehensive overview of the diverse types of research
performed at the Donders Institute. A complete overview of the Donders Thesis
Series can be found on our website: https://www.ru.nl/donders/donders-series.

The Donders Graduate School tracks the careers of our PhD graduates carefully.
In general, the PhD graduates end up at high-quality positions in different sectors,
for a complete overview see https://www.ru.nl/donders/destination-our-former-
phd. A large proportion of our PhD alumni continue in academia (>50%). Most of
them first work as a postdoc before growing into more senior research positions.
They work at top institutes worldwide, such as University of Oxford, University of
Cambridge, Stanford University, Princeton University, UCL London, MPI Leipzig,
Karolinska Institute, UC Berkeley, EPFL Lausanne, and many others. In addition, a
large group of PhD graduates continue in clinical positions, sometimes combining
it with academic research. Clinical positions can be divided into medical doctors,
for instance, in genetics, geriatrics, psychiatry, or neurology, and in psychologists,
for instance as healthcare psychologist, clinical neuropsychologist, or clinical
psychologist. Furthermore, there are PhD graduates who continue to work
as researchers outside academia, for instance at non-profit or government
organisations, or in pharmaceutical companies. There are also PhD graduates
who work in education, such as teachers in high school, or as lecturers in higher
education. Others continue in a wide range of positions, such as policy advisors,
project managers, consultants, data scientists, web- or software developers,



Donders Graduate School | 327

business owners, regulatory affairs specialists, engineers, managers, or IT architects.
As such, the career paths of Donders PhD graduates span a broad range of sectors
and professions, but the common factor is that they almost all have become
successful professionals.

For more information on the Donders Graduate School, as well as past and
upcoming defences please visit: http://www.ru.nl/donders/graduate-school/phd/.




7

89465"15123

6

9 >




	Chapter 1
	General Introduction
	1.1 Background and rationale
	1.2 Research objectives
	1.3 General overview of methods and datasets

	Chapter 2
	Clinical and Phenotypic Interfaces of Psychiatric–Insulin Resistance Multimorbidity
	Abstract
	Introduction
	Methods
	Results
	Discussion 
	References

	Chapter 3
	Clinical insights into the cross-link between mood disorders and type 2 diabetes: a review of longitudinal studies and Mendelian randomisation analyses
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References

	Chapter 4
	Insulin resistance and poorer treatment outcomes in depression: evidence from UK Biobank primary care data
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References
	PART II
	Genetic architecture and molecular mechanisms of psychiatric–insulin resistance multimorbidity

	Chapter 5
	Insulinopathies of the brain? genetic overlap between somatic insulin-related and neuropsychiatric disorders
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References

	Chapter 6
	Local patterns of genetic sharing challenge the boundaries between neuropsychiatric and insulin resistance-related conditions
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References

	Chapter 7
	The multivariate genetic architecture of psychiatric and insulin resistance multimorbidity
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References

	Chapter 8
	General discussion
	Overview of key findings
	Contextualisation of findings within the existing literature and integration across chapters
	Vision for future research and clinical implications
	Overall conclusions
	References

	Appendix
	English summary
	Nederlandse samenvatting (Dutch summary)
	Description of research data management
	Curriculum vitae
	Portfolio
	 List of publications 
	Acknowledgements
	Information page about the Donders Graduate School


