
No Time to Spare:
Adversarial Machine Learning at

Training and Inference Time

Xiaoyun Xu Radboud
Dissertation
Series

Institute for Computing and
Information Sciences

N
O

 TIM
E

 TO
 S

PA
R

E
: A

D
V

E
R

S
A

R
IA

L M
A

C
H

IN
E

 LE
A

R
N

IN
G

 AT TR
A

IN
IN

G
 A

N
D

 IN
FE

R
E

N
C

E
 TIM

E
X

iaoyun X
u

No Time to Spare: Adversarial Machine
Learning at Training and Inference Time

Xiaoyun Xu

No Time to Spare: Adversarial Machine Learning at Training and Inference Time
Xiaoyun Xu

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Xiaoyun Xu
Cover: Proefschrift AIO | Guntra Laivacuma
Printing: DPN Rikken/Pumbo

ISBN: 9789465152103
DOI: 10.54195/9789465152103
Free download at: https://doi.org/10.54195/9789465152103

© 2025 Xiaoyun Xu

This is an Open Access book published under the terms of Creative Commons Attribution-
Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license
allows reusers to copy and distribute the material in any medium or format in unadapted
form only, for noncommercial purposes only, and only so long as attribution is given to
the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

No Time to Spare: Adversarial Machine
Learning at Training and Inference Time

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

maandag 12 januari 2026
om 12:30 uur precies

door

Xiaoyun Xu

geboren op 5 januari 1995
te Sichuan, China

Promotor:

Prof. dr. L. Batina

Copromotor:

Dr. S. Picek

Manuscriptcommissie:

Prof. dr. M. Loog (voorzitter)
Prof. dr. ing. D. Jakobovic (Sveučilište u Zagrebu, Kroatië)
Dr. L. Mariot (Universiteit Twente)
Prof. L.Y. Chen (Université de Neuchâtel, Zwitserland)
Prof. Z. Zhao (Xi’an Jiaotong University, China)

No Time to Spare: Adversarial Machine
Learning at Training and Inference Time

Dissertation to obtain the degree of doctor
from Radboud University Nijmegen,

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,
according to the decision of the Doctorate Board

to be defended in public on

Monday, January 12, 2026
at 12:30 pm

by

Xiaoyun Xu

born on January 5, 1995
in Sichuan, China

Supervisor:

Prof. dr. L. Batina

Co-supervisor:

Dr. S. Picek

Manuscript Committee:

Prof. dr. M. Loog (chair)
Prof. dr. ing. D. Jakobovic (University of Zagreb, Croatia)
Dr. L. Mariot (University of Twente)
Prof. L.Y. Chen (University of Neuchâtel, Switzerland)
Prof. Z. Zhao (Xi’an Jiaotong University, China)

Contents

Title page i

Table of Contents vii

1 Introduction 1
1.1 Background 2

1.1.1 Overview of Machine Learning and Its Security Risks 2
1.1.2 Evasion Attacks 6
1.1.3 Defenses Against Evasion Attacks 8
1.1.4 Backdoor Attacks 10
1.1.5 Defenses Against Backdoor Attacks 11

1.2 Motivation 13
1.3 Thesis Contributions and Outline 14
1.4 List of Publications 19

I Inference-Time Adversarial Machine Learning 21

2 Information Bottleneck in Adversarial Training 23
2.1 Introduction 23
2.2 Related Work 26
2.3 Methodology 26

2.3.1 Threat Model 27
2.3.2 Mutual Information Loss 27
2.3.3 Removing Unnecessary Features 29

2.4 Experimental Evaluation 31
2.4.1 Adversarial Robustness Results with Adversarial Training 32
2.4.2 Robustness Without Adversarial Training 33
2.4.3 Discussion and Future Work 34

2.5 Conclusions 35
2.6 Appendix 36

2.6.1 Ablation Study 36

2.6.2 Adaptive Attack Evaluation 37

3 Information Bottleneck in Adversarial Pre-training 39
3.1 Introduction 39
3.2 Related Work 43

3.2.1 Masked Image Modeling - MIM 43
3.2.2 Mutual Information - MI 43
3.2.3 Information Bottleneck - IB 44
3.2.4 Vision Transformer 44
3.2.5 Adversarial Attacks on ViTs 45
3.2.6 Adversarial Defense 45
3.2.7 Self-Supervised Adversarial Pre-Training 46

3.3 MIMIR 46
3.3.1 Threat Model 46
3.3.2 Design Intuition 47
3.3.3 Design Details 47
3.3.4 Theoretical Justification 50

3.4 Experiments 52
3.4.1 Experimental Setup 52
3.4.2 Main Results 54
3.4.3 Ablation Study 56
3.4.4 Training Epochs Evaluation Study 59
3.4.5 Adaptive Attacks 60
3.4.6 Visualization of the Loss Landscape 62
3.4.7 Fine-tuning with Natural Images 63
3.4.8 Efficiency 64

3.5 Discussion and Limitations 64
3.6 Conclusions 65
3.7 Appendix 65

3.7.1 Datasets 65
3.7.2 Decoder Hyperparameters 66
3.7.3 Details of Training Hyperparameters 66
3.7.4 Results on CNN 67
3.7.5 Data Augmentation Evaluation 67
3.7.6 Dropout is Important for Deeper Architecture 67
3.7.7 Mutual Information and HSIC 68

II Training-Time Adversarial Machine Learning 71

4 Adversarial Perturbation for Backdoor Detection 73
4.1 Introduction 73
4.2 Related Work 75
4.3 Proposed Method 76

4.3.1 Threat Model 76
4.3.2 Defense Overview 77
4.3.3 Targeted UAP 77
4.3.4 UAP Optimization 78

4.4 Evaluation 79
4.4.1 Experimental Setup 79
4.4.2 Experimental Results 81
4.4.3 Stronger Backdoor Attacks 82
4.4.4 Time Consumption 82
4.4.5 Discussion 82

4.5 Limitations 84
4.6 Conclusions and Future Work 84
4.7 Appendix 84

4.7.1 Detection Results on VGG-16 84
4.7.2 GTSRB 84
4.7.3 Details of the Basic Model 85

5 Adversarial Neuron Noise for Backdoor Detection 87
5.1 Introduction 87
5.2 Related Work 90
5.3 BAN Method 91

5.3.1 The Pipeline of Training Backdoor Models 91
5.3.2 Threat Model 92
5.3.3 Detection with Neuron Noise 92
5.3.4 Improving BTI-DBF 94
5.3.5 Backdoor Defense 94

5.4 Experimental Results 95
5.4.1 The Performance of Backdoor Detection 96
5.4.2 The Performance of Backdoor Defense 97
5.4.3 Defense against All-To-All Attacks 98
5.4.4 Evaluation under Adaptive Attack 99
5.4.5 Analysis on Prominent Features 99

5.5 Limitations 99
5.6 Conclusions and Future Work 100
5.7 Appendix 100

5.7.1 Datasets 100
5.7.2 Backdoor Models 101
5.7.3 Defense Baselines 101
5.7.4 BAN Settings 102
5.7.5 Additional Experimental Results 103

6 Backdoor Stealthiness in Parameter Space 109
6.1 Introduction 110
6.2 Related Work 112

6.2.1 Preliminaries on Backdoor Training 112
6.2.2 Backdoor Attacks 113
6.2.3 Backdoor Defenses 115

6.3 Comprehensive Backdoor Stealthiness 117
6.3.1 Threat Model 117
6.3.2 Lack of Parameter-Space Stealthiness 117
6.3.3 Grond for Comprehensive Stealthiness 119

6.4 Experimental Evaluation 121
6.4.1 Experimental Setup 122
6.4.2 Main Results on Backdoor Mitigation 123
6.4.3 Backdoor Analysis 125
6.4.4 ABI Improves Common Backdoor Attacks 126
6.4.5 Backdoor Detection 127
6.4.6 Comparison with Supply-Chain Attacks 127
6.4.7 Ablation Study 128

6.5 Stronger Defenders and Additional Analysis 130
6.5.1 Proactivate Defense 130
6.5.2 Visualization 131

6.6 Conclusions & Future Work 131
6.7 Appendix 132

6.7.1 Additional Details about Experimental Settings 132
6.7.2 Datasets 132
6.7.3 Backdoor Attacks 132
6.7.4 Attack Summary 133
6.7.5 Backdoor Defenses 133
6.7.6 Hyperparameters for Training Surrogate Models 134

6.7.7 Hyperparameters for the Inversed Backdoor Feature Loss 134
6.7.8 Detection of backdoor input 135
6.7.9 Different Architectures with Different Surrogate Models 136
6.7.10 Adversarial Backdoor Injection Does Not Impact Backdoor

Effectiveness in Case of No Defense. 136
6.7.11 Further TAC analysis 136
6.7.12 Examples of Poisoned Images 137

7 Discussion and Future Work 139
7.1 Disscusion 139
7.2 Outlook and Future Work 140

List of Notations 143

Bibliography 145

Summary 167

Samenvatting 169

Research Data Management 173

Acknowledgments 175

Curriculum Vitae 177

Chapter 1. Introduction 1

Chapter 1

Introduction

Machine Learning (ML) has revolutionized the way we approach complex problems,
enabling breakthroughs in areas such as autonomous vehicles [1], financial analy-
sis [2], medical analytics [3], and ChatGPT [4]. Its ability to learn patterns from
data and make accurate predictions has made it an indispensable tool in modern
technology. However, despite its remarkable capabilities, ML has vulnerabilities.
One of the most pressing challenges in the field is its susceptibility to adversarial
ML attacks, where malicious actors exploit weaknesses in ML models to manipulate
their behavior.

Adversarial ML aims to explore the vulnerabilities of ML technologies. Those
attacks can take various forms, but two of the most prominent are evasion at-
tacks [5, 6, 7] and backdoor attacks [8, 9, 10, 11]. In evasion attacks, an adversary
crafts carefully designed inputs, often imperceptible to humans, to deceive a trained
model during inference, causing it to make incorrect predictions. For example,
adding subtle noise to an image might cause a facial recognition system to misiden-
tify a person. On the other hand, backdoor attacks involve poisoning the training
data or model to embed a hidden trigger. Once activated, the model behaves as
intended, but when the trigger is present, it produces malicious outputs. These
attacks highlight the fragility of ML systems and the need for robust defenses.

To mitigate these threats, researchers have developed a range of common defenses.
These include adversarial training (AT) [12], where models are trained on adver-
sarial examples to improve their resilience, and defensive distillation [13], which
involves training a model to be less sensitive to small input perturbations. Other
approaches include input preprocessing [14], anomaly detection [15], and formal ver-

2 Chapter 1

ification methods [16] to ensure model robustness. Despite these efforts, adversarial
ML remains an ongoing arms race, as attackers continually devise new strategies to
bypass defenses.

This thesis investigates the fundamental principles underlying evasion and back-
door attacks, focusing on developing robust defense mechanisms to counteract these
threats. By integrating insights from both evasion and backdoor attack domains,
we demonstrate the significant overlaps between these two areas of adversarial ML.
These overlaps serve as a foundation for proposing effective and efficient defense
strategies that address vulnerabilities across multiple attack vectors. In this in-
troduction, we present the essential background and motivation for our research,
highlighting its critical importance in advancing the field of ML security. Follow-
ing this, we provide an overview of the structure and contributions of this thesis,
outlining the key themes and methodologies explored in subsequent chapters.

1.1 Background

1.1.1 Overview of Machine Learning and Its Security Risks

ML is a branch of artificial intelligence (AI) that focuses on developing algorithms
capable of learning patterns from data and making data-driven decisions without
explicit programming [17]. ML algorithms can be broadly categorized into super-
vised and unsupervised learning paradigms based on data availability and learning
objectives.

Architectures of Machine Learning. Classical ML has its roots in statistics
and early AI research. In 1805, Legendre introduced the method of least squares,
later forming the basis of linear regression [18]. In the 1950s, Alan Turing raised the
question of machine intelligence [19], Arthur Samuel built a self-learning checkers
program [20], and Rosenblatt proposed the perceptron, an early neural network [21].
After periods of slow progress, breakthroughs like backpropagation in the 1980s [22],
support vector machines in the 1990s [23].

Recently, Deep Learning (DL) architectures have gotten more attention due to
their promising performance on various tasks, such as Convolutional Neural Net-
works (CNNs) [24, 25, 26, 27], Recurrent Neural Networks (RNNs) [28, 29, 30], and
Transformer Architectures [31, 32, 33]. The basis of these structures is the Feed-
forward Neural Networks (FNNs), also known as multilayer perceptrons (MLPs),

Chapter 1. Introduction 3

consisting of input, hidden, and output layers [22]. MLPs introduced the concept
of learning hierarchical representations using non-linear activation functions. An
MLP with L layers can be mathematically represented as:

h(0) = x,

h(l) = f (l)
(

W(l)h(l−1) + b(l)
)

, for l = 1, 2, . . . , L

Where:

• x is the input vector.
• W(l) is the weight matrix of layer l.
• b(l) is the bias vector of layer l.
• f (l) is the activation function (e.g., ReLU, sigmoid).
• h(l) is the output of layer l.

The final output is:
y = h(L)

Designed specifically for structured grid data, CNNs introduced local connectivity,
weight sharing, and pooling operations [24], making them highly effective for visual
tasks. Landmark architectures such as AlexNet [25], VGG [26], ResNet [27], and
ConvNext [34] demonstrated the scalability and power of CNNs for large-scale image
recognition tasks.

For sequence modeling, RNNs [28] introduced temporal recurrence to capture de-
pendencies over time. However, issues of vanishing gradients were mitigated by
advanced architectures such as Long Short-Term Memory (LSTM) [29] and Gated
Recurrent Units (GRUs) [30], which introduced gating mechanisms to preserve long-
term information.

The Transformer model [35] revolutionized sequence modeling by replacing recur-
rence with attention mechanisms, enabling parallelization and capturing long-range
dependencies more effectively. Since its inception, variants such as BERT [31],
GPT [36], and ViT [32] have established new benchmarks in natural language pro-
cessing and computer vision.

Learning Paradigms of Machine Learning. Supervised ML refers to the al-
gorithm that learns from labeled training data to make predictions or decisions.

4 Chapter 1

The goal is to train a model that can generalize patterns from known examples
to accurately predict outcomes for new, unseen data. Notable approaches include
handwritten digit recognition [24], ImageNet classification [25, 27], etc.

Unsupervised ML discovers hidden patterns or structures in unlabeled data with-
out predefined outcomes. Unlike supervised learning, there are no target labels.
The algorithm explores the data on its own to find meaningful insights. Early un-
supervised ML technologies explored clustering (e.g., K-Means [37], Hierarchical
Clustering [38], and Density-Based Clustering [39]) and dimensionality reduction
(e.g., Principal Components Analysis [40] and t-SNE [41]). Recent works focus
on unsupervised ML for pre-training, such as Contrastive Learning [42], Masked
Language Modeling [31], and Masked Image Modeling [43].

The Stages of Machine Learning. The ML workflow consists of two primary
phases: training (model learning) and inference (model prediction). In the training
phase, the goal is to teach the model to recognize patterns in data by optimizing its
parameters. The model’s parameters are tuned while training to align the model’s
output with the ground truth as much as possible. This is achieved by minimizing
the loss function, which quantifies the difference between the model’s output and
the ground truth. More specifically, the optimization of the model’s parameters is
guided by the gradient of the loss function, so that the loss is minimized in the di-
rection where the loss value decreases fastest. This process is commonly conducted
on a small random subset (batch) of training data, i.e., Mini-Batch Gradient De-
scent [44]. However, training a well-performing model suffers from difficulties such
as the gradient explosion [45] and overfitting [46]. These problems can be allevi-
ated to a certain extent with, e.g., batch normalization [47] for gradient explosion,
dropout [46] for overfitting.

Once the model is trained, it is expected to perform deterministically at the in-
ference stage and then can be deployed to different tasks according to users’ re-
quirements. A necessary step is to stop operations that introduce uncertainty. For
example, the dropout at the training stage stops the activation value of a neuron
with a certain probability, which helps to train a more generalizable model [46]. In
the inference time, dropout must be closed to maintain the same output for the
same input.

Security Risks From Adversarial Machine Learning. The boom in ML has
also attracted attacks from malicious adversaries. According to adversaries’ capa-

Chapter 1. Introduction 5

bilities, attacks can occur in two stages (training and inference) of ML.

In the training stage, adversaries attempt to introduce abnormality into the model’s
parameters, which results in malicious behaviors of the victim model. These attacks
can be divided into backdoor and poisoning attacks according to the adversaries’
goal. The backdoor attack [8, 10, 11] refers to injecting a secret functionality
into the victim model that is activated through malicious inputs that contain the
trigger. The poisoning attack [48, 49, 50] refers to introducing shortcuts in the
training data such that the model learns the shortcuts instead of patterns of the
data. These attacks are usually achieved by introducing poisoned data points in
the training data, but adversaries can also inject a backdoor by directly editing the
model’s weights [51].

In the inference stage, adversaries attempt to mislead the well-trained model (eva-
sion attack [5, 7]) or extract privacy information from the model (membership in-
ference [52, 53] and model stealing attacks [54, 55]). The evasion attack refers to
manipulating input data at inference time to cause an ML model to make incorrect
predictions, while keeping the input visually/functionally similar to benign data.
The membership inference attack refers to determining whether a data point
was used to train a target model or not. Model stealing attacks (also called
model extraction attacks) occur when an adversary reconstructs or approximates
a target ML model by querying its predictions [54] or using side-channel informa-
tion [55]. Unlike backdoor and poisoning attacks (which corrupt training data),
attacks at inference time exploit vulnerabilities in deployed models without altering
their parameters.

Among these security risks raised by malicious adversaries, evasion and backdoor
attacks are considered the most prominent and practical problems, as other attack
methods are limited by significant drawbacks [56, 57, 58]. For threats during the
training time, the poisoning attacks require poisoning the whole training set (100%
of poisoning rate). A poisoning rate below 100% (even 90%) will result in a sig-
nificant decrease in attack effectiveness for the poisoning attack [56]. In contrast,
backdoor attacks can perform well even at a very low poisoning rate [57]. For threats
at the inference time, membership inference attacks cannot give reliable evidence
of data usage in the training [58]. Model stealing attacks may require physical ac-
cess to the devices where the model is deployed [55]. In contrast, evasion attacks
can be achieved by slightly perturbing the input of the model at both black-box
and white-box settings. Therefore, this thesis focuses on the backdoor attacks for

6 Chapter 1

training time and evasion attacks for inference time.

1.1.2 Evasion Attacks

Evasion attacks [7, 6, 5], commonly referred to as adversarial attacks, involve the
application of imperceptible adversarial perturbations to the original input of a
target ML model, specifically a neural network in this context. These perturbations
generate adversarial examples designed to deceive the victim model.

Consider an L-layer neural network Fθ tasked with classification in a dY -dimensional
space, and a training dataset D = {(xi, yi)}n

i=1 in a dX -dimensional space. The
primary objectives of adversarial attacks can be delineated as follows:

• Misleading the Network: The generated perturbation δ should effectively
mislead the network by maximizing the cross-entropy loss LCE . This can be
formalized as:

max
δ∈S

LCE(θ, xi + δ, yi), (1.1)

where xi ∈ RdX and yi ∈ {0, 1}dY , θ represents the parameters of the neural
network, and LCE denotes the standard cross-entropy loss. The perturba-
tion aims to reduce the model’s confidence in the ground truth labels while
increasing confidence in incorrect labels, thereby amplifying the loss between
the adversarial outputs and the true labels.

• Preserving Similarity: The adversarial examples should remain as similar
as possible to the original clean examples. This is achieved by constraining δ

to a small domain, defined as:

S = B(xi, r) = {δ ∈ RdX : ∥δ∥∞ ≤ r}, (1.2)

where S represents the l∞-ball of radius r centered at xi in RdX . The similarity
between xi and xi + δ can be quantified using various norms, such as l0, l2,
and l∞.

When employing these attacks to generate adversarial examples for training pur-
poses, the learning objective is formulated as a min-max optimization problem:

min
θ

max
δ∈S

LCE(θ, xi + δ, yi). (1.3)

This objective seeks to minimize the worst-case loss over the set of possible perturba-

Chapter 1. Introduction 7

tions, thereby enhancing the robustness of the model against adversarial examples.

White-box Evasion Attacks. The concept of evasion attacks first appeared in [6],
which proposed a formal framework and algorithms against the adversarial spam
detection domain. Then, the evasion attacks were popularized by Biggio et al. [5]
and Szegedy et al. [7] in image classification. The key to such an attack is to find
the perturbation that can mislead the victim model, i.e., Eq. (1.1).

The adversary has full access to the model and training data in the white-box set-
ting. A straightforward way is then to search for the adversarial perturbation by
the gradient of the victim model, i.e., gradient-based methods. Fast Gradient Sign
Method (FGSM) [59] is one of the most representative works that use the gradi-
ent of image pixels to create adversarial perturbations. More specifically, FGSM
computes the gradient of Eq. (1.1) for one step and linearizes the gradient (i.e., the
sign of the gradient) to obtain an optimal max-norm constrained perturbation. The
perturbation is constrained by a constant for imperceptibility. To find more general
perturbations for AT, Projected Gradient Descent (PGD) [12] extends FGSM to
multiple iterations, i.e., calculating the gradient multiple times with a smaller step
size than FGSM. PGD also introduced a random initialization of the perturbation,
further exploring a larger search space. In addition to the above iterative gradient-
based methods, the adversary can design a more specific objective to find the per-
turbation via an optimization process [7, 60] or generate adversarial perturbations
with generative adversarial networks [61, 62, 63] and diffusion models [64, 65, 66].

Black-box Evasion Attacks. The requirements of white-box access to the model
and training data may not always be available, and black-box access is more practi-
cal for conducting successful attacks. Black-box attacks consist of query-based and
transfer-based attacks.

Query-based attacks involve repeatedly querying the target model to generate ad-
versarial perturbations based on the model’s responses, which may include either the
final decision (referred to as hard-label attacks) or the confidence scores (referred
to as soft-label attacks). In hard-label attacks, the adversary typically employs
random search methods, which involve iteratively updating the perturbation direc-
tion through random exploration or heuristic adjustments. The critical challenge
lies in determining the optimal search direction, which can be addressed using ran-
dom walk [67], evolutionary algorithms [68], estimating the normal vector to the
decision boundary [69], or discrete optimization methods [70]. Alternatively, the ad-

8 Chapter 1

versary may estimate the gradient based on the model’s decisions, enabling the use
of gradient-free methods to solve the perturbation optimization problem [71, 72].
In soft-label attacks, similar random search [73, 74, 75] and gradient estimation
methods [76, 77, 78] can be applied. However, soft-label attacks are generally more
likely to succeed than hard-label attacks, as the availability of confidence scores
provides additional information to locate the decision boundary more effectively.
Furthermore, the adversary can integrate query-based feedback with the surrogate
model to reduce the number of queries required [79, 80], thereby increasing the
attack’s efficiency.

Transfer-based attacks, on the other hand, aim to deceive the target model by lever-
aging perturbations generated from a locally accessible surrogate model to which the
adversary has white-box access. The primary challenge in these attacks is to prevent
the perturbation from overfitting to the surrogate model, ensuring its transferabil-
ity to other unknown models. To enhance transferability, the adversary can utilize
benign samples to mitigate overfitting [81, 82] and employ gradient-based tech-
niques [83, 84] to escape suboptimal local maxima. Additionally, feature-level at-
tacks [85, 86], which target the intermediate feature representations of the surrogate
model, can further improve transferability. Another strategy involves creating an
ensemble of surrogate models to generate more transferable perturbations [87, 88].
These approaches collectively highlight the sophisticated methodologies employed
in transfer-based attacks to achieve adversarial success across diverse models.

1.1.3 Defenses Against Evasion Attacks

Defenses against evasion attacks can be broadly categorized into three approaches:
(1) training robust models, (2) purifying potential adversarial perturbations during
the pre-processing stage, and (3) enhancing robustness through architectural mod-
ifications. However, pre-processing purification methods often significantly degrade
image quality, leading to reduced performance on clean data [89, 14, 90]. Similarly,
architectural modifications can introduce obfuscated gradients, which may inadver-
tently create new vulnerabilities [91, 92, 93]. Given these limitations, this thesis
focuses on developing robust models through training strategies. Among these, one
of the most straightforward and effective methods is to leverage adversarial exam-
ples as feedback during training, a technique commonly referred to as Adversarial
Training (AT). This approach aims to improve model robustness by explicitly incor-
porating adversarial examples into the training process, thereby enabling the model
to learn to resist such attacks.

Chapter 1. Introduction 9

Effectiveness of Adversarial Training (AT). AT was initially developed to en-
hance the robustness of ML models during the learning process. In the context of
supervised classification, for instance, the defender generates adversarial examples
and incorporates them as supplementary training data with their corresponding
correct labels. A critical aspect of this approach is the generation of generalized ad-
versarial examples, which, when used effectively alongside clean data, can improve
the model’s robustness against adversarial attacks. Goodfellow et al. [59] introduced
a method that integrates the Cross-Entropy (CE) loss computed on FGSM adversar-
ial examples and their correct labels into the objective function, i.e., FGSM-based
AT. While FGSM-based AT optimizes the model using both adversarial and clean
examples, its one-step generation process is insufficient to defend against more so-
phisticated iterative attacks, such as the PGD attack. PGD AT [12] addresses this
limitation by generating more generalized adversarial examples through multiple it-
erations and random initialization. However, AT often leads to a notable decline in
the model’s performance on clean data and is prone to overfitting. To address this,
TRADES [94] proposes a theoretically grounded upper bound on the discrepancy
between adversarial and clean error rates, enabling the design of an AT method
that balances robustness and accuracy. Additionally, to mitigate overfitting, de-
fenders can leverage externally generated data, such as that produced by GANs
or diffusion models, to enhance both robustness and accuracy [95, 96, 97]. Recent
advancements [98] demonstrate that improved generative models further augment
the effectiveness of AT.

Efficiency of Adversarial Training. Another critical consideration for defenders
is the efficiency of AT, as generating adversarial examples and incorporating addi-
tional loss terms are computationally intensive processes. Free-AT [99] addresses
this challenge by reusing gradient information computed during model parame-
ter updates, thereby eliminating the overhead associated with adversarial example
generation. Fast-AT [100] demonstrates that employing a one-step FGSM approach
with random initialization of perturbations and a larger step size can achieve per-
formance comparable to PGD-based AT while significantly reducing computational
time. Furthermore, Haizhong et al. [101] observed that adversarial examples gen-
erated in one training epoch often remain effective in subsequent epochs. This
insight allows for the reuse of adversarial examples across multiple training epochs,
substantially reducing the overall training time. These advancements collectively
contribute to making AT more practical and scalable for real-world applications.

10 Chapter 1

1.1.4 Backdoor Attacks

Backdoor attacks compromise the integrity of ML models by ensuring that the
model behaves normally on benign inputs but misclassifies inputs containing a spe-
cific trigger into a target class. The trigger can manifest as a visible pattern inserted
into the input space or as a property that alters the feature representation of the
input in the feature space. Ultimately, regardless of the specific attack method,
the parameters of the backdoored model in the parameter space are modified. To
implant a backdoor, attackers typically assume control over a small portion of the
training data in the poison training scenario [8, 9, 102]. In the supply-chain setting,
where backdoored models are provided to users, attackers also control the train-
ing process [103, 11, 104, 10, 105]. Additionally, backdoors can be introduced by
directly modifying the model’s weights [106, 51, 107, 108].

Input-space attacks. Traditional backdoor attacks often employ simple patterns
as triggers. For instance, BadNets [8] uses a fixed patch, while Blend [9] incor-
porates a Hello Kitty pattern into images. These non-stealthy triggers introduce
abnormal data into the training set, making them susceptible to detection by hu-
man inspectors or defensive mechanisms [109, 110]. To enhance stealthiness, more
sophisticated triggers have been developed to achieve invisibility in the input space.
For example, IAD [11] introduces dynamic triggers that vary across inputs, while
WaNet [10] proposes warping-based triggers that evade human inspection. BppAt-
tack (Bpp) [105] leverages image quantization and dithering to create impercepti-
ble changes. Although these methods successfully bypass traditional defenses [110],
they still introduce separable features that can be detected by feature-space de-
fenses [111, 112].

Feature-space attacks. Recognizing the vulnerability of input-space attacks to
feature-space defenses, backdoor attacks have evolved to achieve greater stealth in
the feature space. These attacks often assume additional control over the training
process. For instance, [103, 113, 114, 115] design new loss functions to minimize the
disparity between the backdoor and benign features. Beyond loss function modifi-
cations, TACT [116] and SSDT [117] highlight that source-specific attacks - where
only specified source classes are poisoned - help obscure differences between benign
and backdoor features. Additionally, [118] proposes Adaptive-Blend (Adap-Blend)
and Adaptive-Patch (Adap-Patch), which obscure feature differences by (1) includ-
ing poisoned samples with correct labels, (2) using asymmetric triggers (stronger
triggers at inference), and (3) employing trigger diversification during training.

Chapter 1. Introduction 11

Supply-chain attacks. Supply-chain attacks have garnered significant attention
due to their applicability in real-world scenarios where backdoored models are dis-
tributed as final products. In these attacks, adversaries control both the training
data and the training process. Notably, feature-space attacks [103, 119, 115, 113,
120, 121, 114, 122, 117] that assume control over the training process are a subset
of supply-chain attacks, as their output is a backdoored model. Beyond training
control, another category of supply-chain attacks involves directly modifying the
model’s weights in the parameter space, known as parameter-space attacks. Tech-
niques such as T-BFA [123], TBT [124], and ProFlip [125] explore altering suscep-
tible bits of DNN parameters stored in memory (e.g., DRAM) to inject backdoors.
SRA [107] and handcrafted backdoors [51] directly modify subsets of model param-
eters to increase the logits of the target class. However, these methods typically
require a local benign dataset to guide the selection of parameters for modification.
Data-free backdoor attacks [126] eliminate the need for benign data by using substi-
tute data unrelated to the main task for fine-tuning. DFBA [108] further advances
this approach by proposing a retraining-free, data-free backdoor attack that injects
a backdoor path - a single neuron from each layer except the output layer - into the
victim model.

1.1.5 Defenses Against Backdoor Attacks

Backdoor defenses can be categorized into two primary strategies: detection and
mitigation. Detection involves identifying whether a model has been compromised
(model detection) [110, 127, 113, 128, 112]. Model detection techniques analyze the
intrinsic properties or behavioral anomalies of the model to uncover hidden back-
doors. Mitigation aims to neutralize the backdoor effect in compromised models.
This can be achieved through (1) pruning-based defenses, which remove backdoor-
related neurons or channels [129, 130, 131, 132], or (2) fine-tuning-based defenses,
which erase the backdoor trigger by retraining the model on sanitized data or
incorporating adversarial unlearning objectives [133, 134, 135, 112]. Recent ad-
vancements propose proactive defenses [136, 137, 138], leveraging the defender’s
home-field advantage∗ to preemptively detect or suppress potential backdoors dur-
ing model development.

Backdoor detection. Backdoor trigger reverse engineering, also referred to as
trigger inversion, is widely regarded as one of the most practical defenses for back-
door detection due to its applicability in both poisoning training and supply-chain

∗The defender retains full control over the system and can monitor or modify the training
process.

12 Chapter 1

scenarios [111, 128, 112, 139]. As a post-training method, trigger inversion operates
by identifying potential backdoor triggers within a specific model. If a trigger is
successfully identified, the model is deemed backdoored, and the discovered trigger
can subsequently be used to unlearn the backdoor. This process is implemented
as an optimization procedure that leverages the model and a local benign dataset.
For instance, Neural Cleanse (NC) [110] pioneered trigger inversion by optimizing
a mask and pattern in the input space that could mislead the model into predicting
a target class. This optimization is repeated across all classes, and the model is
flagged as backdoored if an outlier trigger significantly smaller than those for other
classes is detected. While NC-like methods are effective against fixed-patch trigger
attacks, such as BadNets [8] and Blend [9], they often fail against input-stealthy
attacks like WaNet [10]. To overcome this challenge, FeatureRE [111] shifted the
trigger inversion process from the input space to the feature space. Unicorn [128]
further advanced this approach by introducing a transformation function capable
of handling attacks in other spaces, such as numerical space [105].

Backdoor Mitigation. Backdoor mitigation techniques primarily encompass fine-
tuning and pruning, both of which have demonstrated efficacy without requiring
prior knowledge of backdoor triggers. Pruning-based approaches focus on identify-
ing and eliminating neurons associated with backdoor functionality. Fine-Pruning
(FP) [129] removes inactive neurons when processing benign inputs and subse-
quently fine-tunes the pruned network. Adversarial Neuron Pruning (ANP) [130]
identifies backdoor-related neurons by introducing adversarial noise to neuron weights,
thereby activating the backdoor. Recovery-based Neuron Pruning (RNP) [132] em-
ploys an unlearning and recovery process on benign data, leveraging the recovery
phase to suppress backdoor neurons while preserving the model’s performance on
benign tasks. In contrast to these approaches, which rely on benign data, Channel
Lipschitz Pruning (CLP) [131] directly analyzes the Channel Lipschitzness Constant
of the network and removes channels with high Lipschitz constants in a data-free
manner.

Traditional fine-tuning as a defense mechanism typically relies on trigger inversion
methods to reconstruct the trigger and subsequently unlearn it. For example, BTI-
DBF(U) [112] fine-tunes backdoor models using triggers reconstructed through their
inversion algorithm. However, there is no assurance that the reconstructed trigger
accurately represents the true backdoor trigger. Recent studies have explored fine-
tuning without explicit trigger information, instead leveraging prior human knowl-
edge. For instance, FT-SAM [133] identifies a positive correlation between the

Chapter 1. Introduction 13

weight norms of neurons and backdoor-related neurons. Consequently, they pro-
pose a fine-tuning approach that adjusts the large outliers in weight norms using
Sharpness-Aware Minimization (SAM). I-BAU [134] adopts a min-max fine-tuning
framework akin to adversarial training, where the inner maximization seeks pertur-
bations that mislead the model, and the outer minimization maintains the model’s
performance on benign data.

1.2 Motivation
The motivation for this study stems from two interconnected research imperatives.
First, the protection of trained models against evasion attacks is a pressing concern
in the field of ML security. Evasion attacks, which involve carefully crafted adver-
sarial perturbations to mislead models, undermine the reliability and robustness of
deployed systems. Safeguarding models against such attacks is critical to ensuring
their trustworthiness, particularly in high-stakes applications such as cybersecurity,
autonomous systems, and healthcare. Developing effective countermeasures to mit-
igate evasion threats is, therefore, a fundamental objective of this work. Adversarial
training (AT) is considered one of the most promising strategies against evasion at-
tacks. Existing works about AT focus on empirically improving robustness (such as
the better combination of hyper-parameters [140, 141] or data augmentation [98])
or new end-to-end AT methods to solve existing problems [142, 143]. However,
these methods remain computationally intensive and often struggle to generalize
across diverse settings, particularly when applied to state-of-the-art architectures.
In Part I (Chapters 2 and 3), this thesis aims to explore the better generalizability
and time-consumption of AT from the perspective of information theory and self-
supervised training. By leveraging theoretical insights, the aim is to develop more
scalable and adaptable AT methods that can effectively enhance model robustness
across various scenarios.

Second, the representation of adversarial perturbations provides valuable insights
for enhancing backdoor defenses. Adversarial perturbations often uncover subtle
patterns and vulnerabilities within a model’s decision boundaries, which can be
leveraged to identify and neutralize backdoor triggers. By utilizing these represen-
tations, it becomes possible to design more precise and effective defense mechanisms
that specifically target backdoor-related features, thereby improving the model’s re-
silience against such threats. This approach not only strengthens the security of ML
systems but also advances our understanding of the intricate relationship between
adversarial robustness and backdoor vulnerabilities. Existing research primarily fo-

14 Chapter 1

cuses on defenses operating in the input space [110, 144] or feature space [111, 128],
ignoring the potential relevance of adversarial perturbations. In Part II (Chap-
ters 4, 5, and 6), this thesis investigates the development of effective and efficient
defenses by leveraging adversarial perturbations, aiming to bridge this gap and pro-
vide a novel perspective on backdoor defense. In addition, Chapter 6 explores the
dual role of adversarial representations in enhancing backdoor attacks and analyzing
their underlying mechanisms. Existing backdoor attacks focus on input invisibility
or inseparability in feature space to improve the stealthiness of backdoor attacks,
neglecting the fact that backdoor behaviors are ultimately embedded within the
parameters of the backdoored model. By strategically incorporating adversarial
perturbations and parameter space techniques into backdoor attacks, we aim to
uncover the fundamental reasons for their success and identify potential weaknesses
in existing defenses.

This thesis provides a comprehensive perspective on the relationship between ad-
versarial and backdoor threats, enabling the development of more robust models
capable of withstanding both types of attacks. Ultimately, this work contributes to
advancing the theoretical and practical understanding of ML security, paving the
way for more resilient and trustworthy systems.

1.3 Thesis Contributions and Outline
This thesis focuses on adversarial ML and makes several significant contributions
in two directions, which are outlined in Figure 1.1:

• In Part I, we explore how information bottleneck can improve adversar-
ial training in both supervised and self-supervised training paradigms. We
propose novel training methods for adversarial robustness with explainable
theoretical proofs. We also provided SOTA empirical performance in the
experiment and obtained the Top-1 result on the most famous benchmark,
RobustBench [145], in the field of adversarial robustness.

• In Part II, we explore the connection between adversarial perturbation and
backdoor attacks. We propose two backdoor detection methods, including
applying adversarial perturbation in the input space to improve backdoor de-
tection performance and detecting backdoors according to adversarial noise in
the parameter space for more effective and efficient detection. With parameter
space defenses, we show that correct backdoor attacks designed to be stealthy

Chapter 1. Introduction 15

Part One: Adversarial Attack

(Inference-Time Security Risk)

Chapter 2: Supervised AT

Chapter Í: SelfÛSupervised AT

Information Bottleneck Filter Out Adversarial

information at Standard Training

Information Bottleneck Filter Out Adversarial

information at PreÛtraining

Part T64: 0ackd44r Attack

(Trainin(-Time Security Risk)

Chapter]: Adversarial

Perturbation (Input Space) for

Backdoor Detection

Chapter �: Adversarial

Perturbation (Parameter Space)

for Backdoor Detection

Adversarial Perturbation on Input Pixels Improve

the Convergence of Trigger Reverse Engineering

Adversarial Perturbation on Neuron Weights

Activates Backdoor Effect

Chapter 6: Backdoor

Stealthiness in Parameter Space

Adversarial Perturbation Builds

Stealthier Backdoor

Figure 1.1: The structure of the thesis consists of two parts about inference-time and
training-time risk (introduction and discussion chapters are omitted). The first part
(Part I) contains two chapters (Chapter 2 and 3) about how we introduce informa-
tion bottleneck into traditional supervised AT for standard training and self-supervised
AT for pre-training. The second part (Part II) contains three chapters (Chapter 4, 5,
and 6) about how we use our experience in adversarial attacks for more effective and
efficient backdoor detection, and improving the stealthiness of backdoor.

can be easily spotted. Therefore, we propose a novel backdoor attack method
to explore achieving comprehensive stealthiness against backdoor defenses.

In Chapter 2, we investigate the relationship between adversarial perturbations
and their learned representations in the feature space from the perspective of the
information bottleneck theory. Our analysis reveals that compressing redundant
information in the input space enhances the robustness of deep learning models.
Building on this insight, we propose a novel AT method, namely IB-RAR, to defend
against evasion attacks. IB-RAR improves the accuracy by an average of 2.66%
against five adversarial attacks on three benchmark datasets (CIFAR-10, CIFAR-
100, and Tiny-ImageNet) compared to baseline methods. In addition, IB-RAR also
reaches an accuracy of 35.86% against PGD without adversarial training, while
standard-trained models have almost 0% accuracy. This chapter is based on the
following paper:

• Xiaoyun Xu, Guilherme Perin, Stjepan Picek. IB-RAR: Information Bottleneck
as Regularizer for Adversarial Robustness. IEEE/IFIP International Conference on

16 Chapter 1

Dependable Systems and Networks Workshops (DSN-W), 2023.

The author’s contribution: The author of this thesis contributed to the
formulation and conception of this work, writing and engineering work,
including implementing the code and running the experiments. Guilherme
Perin and Stjepan Picek contributed to the interpretation of research data
and writing.

In Chapter 3, we further extend the information bottleneck to a self-supervised
paradigm. We propose a theoretically grounded adversarial pre-training method,
MIMIR, in self-supervised form and demonstrate improved performance on clean
and adversarial examples. Our method also provides a foundation for future research
aimed at developing more robust and interpretable machine-learning models. Specif-
ically, we applied the self-supervised method called mask image modeling to adver-
sarial training. We provide theoretical justification with the upper and lower bounds
of mutual information, which intuitively explains why MIMIR achieves improved
performance. We conducted extensive experiments on three benchmark datasets
(CIFAR-10, Tiny-ImageNet, and ImageNet-1K), and MIMIR achieves 3.98% higher
robustness on ViT-B and ImageNet-1K compared to the current SOTA method.
In particular, MIMIR achieved the Top-1 robustness in the Robustbench. In addi-
tion, we also proposed two adaptive attacks against MIMIR, i.e., when the attacker
knows the design of MIMIR. MIMIR shows stable robustness against adaptive at-
tacks. This chapter is based on the following paper:

• Xiaoyun Xu, Shujian Yu, Zhuoran Liu, Stjepan Picek. MIMIR: Masked Image
Modeling for Mutual Information-based Adversarial Robustness. arXiv preprint.

The author’s contribution: The author of this thesis contributed to the
formulation and conception of this work, writing and engineering work,
including implementing the code and running the experiments. Stjepan
Picek helped design the MIMIR AT methods, and Zhuoran Liu helped
design the two adaptive attacks. Regarding the theoretical justification,
the author of this thesis derives the lower bound, and the upper bound is
derived by Shujian Yu. All co-authors contributed to the interpretation of
research data and writing.

In Chapter 4, we explore the sensitivity of backdoored models to adversarial ex-
amples. Our findings indicate that adversarial examples can exploit the covert

Chapter 1. Introduction 17

functionality injected by backdoor attacks to generate more subtle and effective
perturbations. Specifically, we propose a backdoor detection method, USB, that
utilizes adversarial examples to boost the reverse engineering of backdoor triggers.
USB determines that a trained model is backdoored if there is an outlier among the
reversed triggers. USB can detect stronger backdoor triggers for both patch-based
(BadNet and Latent) and non-patch-based (InputAware Dynamic) backdoors. We
conducted experiments on 240 models to assess our approach. We compared USB
with NC and TABOR methods, and USB provides competitive performance on
various datasets. This chapter is based on the following paper:

• Xiaoyun Xu, Oguzhan Ersoy, Behrad Tajalli, Stjepan Picek. Universal soldier: Us-
ing universal adversarial perturbations for detecting backdoor attacks. IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W), 2024.

The author’s contribution: The author of this thesis contributed to the for-
mulation and conception of this work, writing and engineering work, includ-
ing implementing the code and running the experiments. Behrad Tajalli
helped design the experiment for an advanced attack (WaNet). Oguzhan
Ersoy and Stjepan Picek contributed to designing the USB method, the
interpretation of research data, and writing.

In Chapter 5, we investigate the impact of adversarial perturbations on neuron
weights, which directly activate the backdoor functionality without the need for
trigger inversion. Specifically, the proposed method, BAN, is 1.37× (on CIFAR-10)
and 5.11× (on ImageNet200) more efficient with an average 9.99% higher detect
success rate than the state-of-the-art defense BTI-DBF against five representative
attacks, including BadNets, Blend, WaNet, IAD, and Bpp. We also exploit the neu-
ron noise to further design a simple yet effective fine-tuning defense for removing
the backdoor, such that we build a workable framework. Our work highlights the
utility of analyzing neuron weights in the parameter space for understanding back-
door behavior and underscores the importance of the parameter space in developing
advanced defense methodologies. This chapter is based on the following paper:

• Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, Shujian Yu, Stjepan Picek. BAN:
Detecting Backdoors Activated by Adversarial Neuron Noise. Advances in Neural
Information Processing Systems (NeurIPS), 2024.

18 Chapter 1

The author’s contribution: The author of this thesis contributed to the
formulation and conception of this work, writing and engineering work,
including implementing the code and running the experiments. Stjepan
Picek helped design the BAN detection and fine-tuning. Zhuoran Liu and
Stefanos Koffas helped visualize the experimental results and demonstrate
the method structure. All co-authors contributed to the interpretation of
research data and writing.

In Chapter 6, we conduct a systematic analysis of 12 representative backdoor
attacks and 17 defenses. We identify a critical blind spot: current backdoor attacks,
despite being designed to be stealthy against backdoor defenses, often fail when
confronted with diverse practical defense mechanisms. This vulnerability arises
because the injected backdoor inevitably introduces prominent backdoor-related
neurons, which are detectable by advanced defenses. To address this limitation, we
propose a novel backdoor attack incorporating an adversarial backdoor injection
module inspired by AT. This module ensures stealthiness across the input, feature,
and parameter spaces, enabling the attack to maintain robustness against a wide
range of representative defense methods. All 12 baseline attacks failed against at
least a part of the 17 defenses on the three benchmark datasets. Our method is
the only one that can sustain against all the defenses. We further validate the
effectiveness of the adversarial backdoor injection module by integrating it with the
other 10 attacks. We also propose an adaptive defense that knows the design of our
method to verify its robustness. This chapter is based on the following paper:

• Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, Stjepan Picek. Towards Backdoor
Stealthiness in Model Parameter Space. ACM Conference on Computer and Com-
munications Security (CCS), 2025.

The author’s contribution: The author of this thesis contributed to the
formulation and conception of this work, writing and engineering work,
including implementing the code and running the experiments. Zhuoran
Liu and Stefanos Koffas contributed to the analysis of adaptive defense and
supply chain attacks. All co-authors contributed to the interpretation of
research data and writing.

In Chapter 7, we conclude our findings in adversarial ML. We hope our research
raises awareness of risks in ML applications. We also emphasize the key points of

Chapter 1. Introduction 19

proposing effective and efficient defenses in future work.

1.4 List of Publications
This thesis is built on several publications co-authored by the author during the
Ph.D study, as indicated.

Xiaoyun Xu, Guilherme Perin, Stjepan Picek. IB-RAR: Information Bottleneck as Reg-
ularizer for Adversarial Robustness. IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2023. [Chapter 2]

Xiaoyun Xu, Shujian Yu, Zhuoran Liu, Stjepan Picek. MIMIR: Masked Image Modeling
for Mutual Information-based Adversarial Robustness. arXiv preprint. [Chapter 3]

Xiaoyun Xu, Oguzhan Ersoy, Behrad Tajalli, Stjepan Picek. Universal soldier: Using uni-
versal adversarial perturbations for detecting backdoor attacks. IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), 2024. [Chap-
ter 4]

Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, Shujian Yu, Stjepan Picek. BAN: Detect-
ing Backdoors Activated by Adversarial Neuron Noise. Advances in Neural Information
Processing Systems (NeurIPS), 2024. [Chapter 5]

Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, Stjepan Picek. Towards Backdoor Stealth-
iness in Model Parameter Space. ACM Conference on Computer and Communications
Security (CCS), 2025. [Chapter 6]

Other Publications during the Ph.D Study

Xiaoyun Xu, Stjepan Picek. Poster: Boosting Adversarial Robustness by Adversarial
Pre-training. ACM Conference on Computer and Communications Security (CCS), 2023.

Zhuoran Liu, Senna van Hoek, Péter Horváth, Dirk Lauret, Xiaoyun Xu, Lejla Batina.
Real-world Edge Neural Network Implementations Leak Private Interactions Through
Physical Side Channel. arXiv preprint.

Part I

Inference-Time Adversarial
Machine Learning

21

Chapter 2. Information Bottleneck in Adversarial Training 23

Chapter 2

Information Bottleneck in Adversarial
Training

This chapter proposes a novel method, IB-RAR, which uses Information Bottleneck (IB)
to strengthen adversarial robustness for both adversarial training and non-adversarial-
trained methods. We first use the IB theory to build regularizers as learning objectives in
the loss function. Then we filter out unnecessary features of intermediate representation
according to their Mutual Information (MI) with labels, as the network trained with IB
provides easily distinguishable MI for its features. Experimental results show that IB-
RAR can be naturally combined with adversarial training and provides consistently better
accuracy on new adversarial examples. The IB-RAR method improves the accuracy by an
average of 2.66% against five adversarial attacks for ResNet-18, wide ResNet-28-10, and
VGG-16, trained with three adversarial training benchmarks and the CIFAR-10, CIFAR-
100, and Tiny ImageNet datasets. In addition, IB-RAR also provides good robustness
for undefended methods, such as training with cross-entropy loss only. Finally, without
adversarial training, the VGG-16 network trained using IB-RAR on the CIFAR-10 dataset
reaches an accuracy of 35.86% against PGD examples, while using all layers reaches 25.61%
accuracy.

2.1 Introduction
Deep learning networks are vulnerable to adversarial attacks [7, 5]. Neural network pre-
dictions can be easily fooled by subtle adversarial perturbations, while the input remains
visually imperceptible to humans. Such perturbations can be generated by specific al-
gorithms, such as Fast Gradient Sign Method (FGSM) [59], projected gradient descent
(PGD) [12], and Carlini & Wagner (CW) [60]. The main goal of these algorithms is to
find as small perturbations as possible that mislead the prediction model. This potential
vulnerability raises concerns about the reliability of practical deep learning applications,

24 Chapter 2

especially in security-sensitive fields, such as vulnerability detection [146], drug discov-
ery [147], and financial market predictions [148].

Previous works have proposed many possible causes for successful adversarial attacks.
Goodfellow et al. [59] argued that the adversarial examples are generated by the excessive
linearity behavior of DNNs in high-dimensional spaces. Ilyas et al. [149] have demonstrated
that adversarial attacks can arise from features (can be well-generalized) instead of bugs
(do not generalize due to effects of poor statistical concentration). The features may be
robust or not robust. Non-robust features can be easily manipulated by imperceptible
noise, while robust features will not. Still, the community needs to reach a consensus on
the underlying reason for the prevalence of adversarial examples.

To further analyze the impact of adversarial examples, IB is used as a learning objective to
improve adversarial robustness [150, 151]. The IB is supposed to find the optimal trade-off
between compression of input X and prediction of Y by MI (I(·)) [152]. IB provides both
performance and adversarial robustness when embedded into the learning objective. Intu-
itively, this is because X is mapped to Y through intermediate representation T (outputs
of hidden layers). Compression of X (I(X, T)) naturally removes the noise in X and makes
it difficult to transfer small perturbations via the bottleneck. However, computing mutual
information is difficult in practice, especially when dealing with high-dimensional data.
To address this problem, Alemi et al. [150] proposed Variational Information Bottleneck
(VIB). They used the internal representation of a certain intermediate layer as a stochastic
encoding T of the input data X. They aimed to learn the most informative representation
T about the target Y , measured by the mutual information between their corresponding
encoding values. Their experiments also showed that VIB is robust to overfitting and
adversarial attacks. Ma et al. [153] proposed the HSIC Bottleneck and replaced mutual
information with Hilbert Schmidt Independence Criterion (HSIC). They used the HSIC
bottleneck as a learning objective for every layer of the network, which is an alternative
to the conventional CE loss and back-propagation. Wang et al. [151] proposed HBaR,
which combined HSIC Bottleneck of all hidden layers and back-propagation to improve
both adversarial robustness and accuracy of clean data.

These IB-related methods use one layer (VIB) or all layers (HBaR) by default to build IB
in their learning objectives, but we find that the IB of each layer has a different impact on
robustness (see Table 2.3). Deeper layers usually provide more robustness with IB. The
reason is that shallower layers usually generate representations with noise that are not
informative enough to be distinguishable (see Figure 2.1). Therefore, MI computed from
shallower layers is less meaningful than from deeper layers. We aim to compute mutual
information (MI) between intermediate layers and their inputs or between intermediate
layers and their targets. Then the MI is embedded into the loss function according to IB.
We summarize the following two questions about applying IB as a learning objective:

Chapter 2. Information Bottleneck in Adversarial Training 25

• Which intermediate layers do we need to use? To address question 1), we propose
using only robust layers to compute MI that is then used to apply IB in the loss
function. We refer to robust layers as layers providing obviously higher accuracy
than the network trained with only CE loss under PGD attack (since PGD provides
good robustness against various attacks, as discussed later). To reduce the impact
of adversarial training, we evaluate the performance of robust layers without ad-
versarial training. This chapter empirically shows that compared to training with
cross-entropy (CE) only, each layer of the network provides different degrees of ro-
bustness when applying IB as a learning objective. Then, using robust layers for IB
objective upgrades robustness to adversarial attacks.

• Can the representation of the non-robust layers be further improved? To address
question 2), we compute a mask to remove unnecessary feature channels of con-
volutional layers, as the outputs of non-robust layers are extracted by subsequent
convolutional layers. When the network is trained with the loss function with IB and
learns more informative features, some features are not relevant to the classification
or target as they are not informative enough.

Our evaluation consists of two parts: (1) Combining our method with state-of-the-art
adversarial training methods, e.g., PGD [12], TRADES [94], and MART [154]. Experi-
mental results show that our method can improve the robustness of adversarial training
methods. (2) Combining without adversarial training methods. Experimental results show
that our method provides robustness compared to other IB-related techniques and plain
CE. We also find that the robustness of VGG-16 mainly comes from the last convolutional
block and the first two fully connected layers when using our method. When using these
three layers to compute MI, the IB-RAR method provides higher accuracy on adversarial
examples than using all layers. Ablation study results reveal which part of our method
provides robustness and the connection among them. In addition, applying IB as a learn-
ing objective also accelerates training convergence according to experimental results. Our
implementation is available at https://github.com/xiaoyunxxy/IB-RAR/.
Our main contributions are:

• We apply IB as a regularizer to improve robustness and natural accuracy (on clean
data), and we remove unnecessary features based on the regularized network.

• We show that our method can be naturally embedded into state-of-the-art adversar-
ial training methods. Our method improves accuracy on adversarial examples by an
average of 2.66% against five adversarial attacks for ResNet-18, wide ResNet-28-10,
and VGG-16 in Tables 2.1 and 2.2.

• We show that our method can improve robustness for weaker methods, like plain
stochastic gradient descent (SGD) trained with the CE loss function only. With-

26 Chapter 2

Figure 2.1: t-SNE [155] visualization for the first convolutional block (left) and the penul-
timate fully connected layer (right) of CIFAR-10 with VGG-16. Different colors refer to
different classes.

out adversarial training, the VGG-16 network trained using our method reaches an
accuracy of 35.86% against PGD examples, while using all layers reaches 25.61%.

2.2 Related Work
The IB is supposed to find the optimal trade-off between compression of input X and
prediction of Y [152]. Empirically, IB provides both performance and adversarial robust-
ness when embedded into the learning objective. Alemi et al. [150] proposed Variational
Information Bottleneck (VIB). They use the internal representation of a certain interme-
diate layer as a stochastic encoding Z of the input data x. They aim to learn the most
informative representation Z about the target Y , measured by the mutual information
between their corresponding encoding values. Their experiments also showed that VIB is
robust to overfitting and adversarial attacks. Ma et al. [153] proposed the HSIC Bottleneck
and replaced mutual information with Hilbert Schmidt Independence Criterion (HSIC).
They used the HSIC bottleneck as a learning objective for every layer of the network, an
alternative to the conventional CE loss and back-propagation. Wang et al. [151] proposed
HBaR, which combined HSIC Bottleneck of all hidden layers and back-propagation to im-
prove both adversarial robustness and accuracy of clean data. Previous works tend to use
one layer (such as VIB) or all layers (such as HSIC Bottleneck and HBaR) for variants of
IB, but we find that the IB of each layer has a different impact on robustness. As such,
using partial layers will increase the robustness against adversarial attacks, as discussed
in Section 2.3.

2.3 Methodology
We first propose using IB as a regularizer for the learning objective, which also helps the
network to learn better generalization of training data [152]. Specifically, we embed mutual
information from intermediate representations to inputs X and targets Y . However, the
outputs of convolutional layers contain independent feature channels. Then, we find that

Chapter 2. Information Bottleneck in Adversarial Training 27

IB-regularized feature channels generalize better than not using IB. Thus, we propose
filtering out low correlation feature channels among well-generalized features according to
their mutual information to their label. Note that the IB regularizer is the foundation of
the filtering process. Figure 2.2 shows the structure of our method.

2.3.1 Threat Model
Adversary Goals. This chapter focuses on adversarial attacks on image classifiers. The
adversary aims to create imperceptible perturbations for the input image, so the network
misclassifies perturbed images. The experiments investigate untargeted individual adver-
sarial attacks (the input can be misled to any label).

Adversary Knowledge. Our evaluation is conducted under white-box accessibility. The
adversary has complete knowledge of the target network and its parameters. The adversary
also has full access to the training data of the target network. The adversary knows the
defense method, so IB-RAR is also evaluated by a specifically designed adaptive attack
discussed in Appendix Section 2.6.2.

Adversary Capabilities. The adversary can perturb the input to well-trained networks
when the perturbation is imperceptible. Following previous research, imperceptibility is
defined as the distance from the perturbed image to its original copy. The distance is
formalized as ln-norm, i.e., ||δ||n ≤ r.

2.3.2 Mutual Information Loss
Problem Setup: We consider an L-layer neural network Fθ for classification in dY -
dimensional space, and training dataset D = {(xi, yi)}n−1

i=0 in dX -dimensional space, where
xi ∈ RdX and yi ∈ {0, 1}dY . The xi refers to an example from training data, and we use X

to indicate a batch of training data in this section. A network assigns to xi one element in
{0, 1}dY . The training aims to minimize the difference between predicted results and the
ground truth, which is quantified by the standard CE loss: LCE(θ, Fθ(xi), yi). Tl indicates
the output of lth layer to describe the intermediate representation of a network. The IB
is embedded as a learning objective by the following loss function:

min
θ

L = LCE + α

L∑
l=1

I(X, Tl) − β

L∑
l=1

I(Y, Tl), (2.1)

where α and β are two real numbers to control the trade-off between compression of input
X and prediction of Y [152].

Specifically, the second term α
∑

l
I(X, Tl) minimizes the relevance between inputs and

intermediate features as the loss is supposed to decrease. Decreasing I(X, Tl) compresses

28 Chapter 2

Algorithm 2.1 Training with loss based on IB
Input: training data D, network Fθ with parameters θ, batch size m, learning rate

a, loss LCE , optimizer SGD
Output: optimized weights θ

while Maximum epoch not reached do
Sample X, a batch of data from D
Forward: Calculate Fθ(X) and T = {Tl|0 ≤ l < L}
Tlast = Tlast ∗ mask
Calculate

∑L
l=1 I(X, Tl) and

∑L
l=1 I(Y, Tl)

Calculate loss as in Eq. (2.1)
Backward: update θ by : θ ← θ − a∇L

end while

input to an efficient representation, which naturally removes noise and irrelevant informa-
tion from X in Tl [152]. The term X refers to a batch of inputs at each iteration while
training. The third term β

∑
l
I(Y, Tl) maximizes the relevance to the ground truth. The

term Y refers to a batch of labels corresponding to X. All hidden layer outputs are embed-
ded in the loss through summations. Because the compression measured with I(X, Tl) also
indicates a loss of useful information about Y (as this information is indiscriminate to all
content in input X), I(Y, Tl) becomes necessary to guarantee the accuracy on clean data.
Algorithm 2.1 describes how to train a network with our proposed loss from Eq. (2.1). The
mask and Tlast are discussed in Section 2.3.3. As the computation of mutual information
is difficult, we use HSIC [156] as an alternative plan for I(·).

Combination with adversarial training: In addition to training with clean data, the
IB loss from Eq. (2.1) can also be easily combined with adversarial training as follows:

Ladv = max
δ∈S

LCE(θ, Fθ(X + δ), X)

min
θ

Ladv + α

L∑
l=1

I(X, Tl) − β

L∑
l=1

I(Y, Tl).
(2.2)

This way, it is easy to perform adversarial training by replacing the loss in Algorithm 2.1
with Eq. (2.2). Here, the adversarial perturbation is generated with the PGD algorithm,
as it has been shown robust to various attacks [12].

Selection of Robust Layers: While other IB-related methods use one layer (such as
VIB [150]) or all layers (such as HSIC Bottleneck [153] and HBaR [151]), we find that
deploying IB to different hidden layers will provide different robustness (see Table 2.3).
Using a part of hidden layers for IB can get higher adversarial robustness than all layers
or a single layer. We refer to this part of the layers as robust layers. To distinguish robust
layers from others, we apply IB to each hidden layer and train an independent network

30 Chapter 2

Table 2.2: Top-1 Natural accuracy (in %) on clean examples and adversarial accuracy
(in %) on adversarial examples. The adversarial examples are generated with PGD, CW,
FGSM, FAB, and NIFGSM on CIFAR-10 and CIFAR-100. In the methods part, PGD,
TRADES, and MART are benchmark methods. The “method (IB-RAR)” refers to bench-
marks combined with our method. Each result is the average of three runs.

CIFAR-10 with ResNet-18

Methods
Inputs Natural PGD CW FGSM FAB NIFGSM

PGD 75.05 45.21 74.09 48.60 42.26 49.71
PGD (IB-RAR) 75.10 45.55 74.10 48.83 42.74 50.03

TRADES 73.04 45.91 72.16 48.51 42.59 49.92
TRADES (IB-RAR) 73.07 46.13 72.16 48.85 42.74 50.09

MART 72.96 46.17 72.00 49.19 41.62 50.34
MART (IB-RAR) 76.85 48.92 75.78 52.52 45.01 54.72

CIFAR-100 with WRN-28-10

PGD 39.88 9.74 13.66 16.85 10.28 14.53
PGD (IB-RAR) 37.68 16.60 15.98 19.44 14.85 19.48

TRADES 39.38 10.44 14.69 17.60 10.42 15.38
TRADES (IB-RAR) 36.41 19.18 16.67 20.69 16.61 21.95

MART 39.91 12.30 14.29 17.85 11.73 16.57
MART (IB-RAR) 40.65 23.44 17.96 24.46 19.24 26.41

(unnecessary) features have a large negative effect on the last convolutional layer, which
should be discarded.

Structurally, a network Fθ trained with our MI loss is given by the concatenation of L

hidden layers outputs Fθl . The network’s output is the output of the last layer in the
network, i.e., FθL . Each layer uses the output of the previous layer as input. We consider
Fθ has C kernels to extract multiple feature channels at the last convolution layer:

Fθlast (x) = Tlast = {fc|1 ≤ c ≤ C}.

Following, we compute a mask based on the MI values of each feature channel:

Tlast = Tlast ∗ mask

mask = {ϕc|1 ≤ c ≤ C}

ϕc =

{
1, I(fc, Y) ≥ thr

0, otherwise.

(2.3)

Then the mask is used to filter the feature channels. Channels with MI less than the
threshold thr are removed. The threshold is decided according to the sorted MI values of

Chapter 2. Information Bottleneck in Adversarial Training 31

these feature channels. Empirically, we use a small threshold to eliminate 5% of all feature
channels. In other words, the MI values of that 5% of feature channels are lower than the
MI values of all other channels. The threshold is the maximum of MI values of that 5%
of feature channels. The application of the mask is shown in Algorithm 2.1. Note that
removing unnecessary features is built on our MI loss, as it requires non-robust features
to be more distinct from other features concerning MI values. Experimental evidence can
be found in the ablation study, row (5) of Table 2.5.

2.4 Experimental Evaluation
Following prior literature, experiments are conducted with four standard datasets: CIFAR-
10 [158], SVHN [159], CIFAR-100 [158], and Tiny ImageNet [160]. We use VGG-16 [26] for
CIFAR-10, SVHN, and Tiny ImageNet. We use ResNet-18 [27] for CIFAR-10, SVHN. We
use WideResNet-28-10 [161] for CIFAR-100. The implementation is built with PyTorch
and Torchattacks [162] frameworks.

Algorithms: We evaluate our method with the following adversarial learning algorithms:
Projected Gradient Descent (PGD) [12], TRADES [94], and MART [154]. Clean examples
are not used for PGD adversarial training but are used in TRADES and MART for evalua-
tion following previous works. We combine our method with these algorithms and compare
them against the performance of the original algorithms. In addition, we also compare
our method to non-adversarial training algorithms: Cross-Entropy, HSIC Bottleneck as
Regularizer (HBaR) [151], and Variational Information Bottleneck (VIB) [150].

Metrics: We evaluate accuracy on natural inputs (Test Acc., i.e., accuracy on clean
data) and adversarial examples (Adv. Acc.) for all algorithms. The adversarial examples
are generated by: (1) PGDn [12], the PGD attack with n steps in optimization; (2)
FGSM [59]; (3) CW [60]; (4) FAB [163]; (5) NIFGSM [164]. We set parameters for attacks
(implemented with Torchattacks) following the prior literature: step size = 2/255 (alpha),
r = 8/255 (eps, the limitation for perturbation δ), default steps= 10, and CW steps =
200. We use the following hyperparameters for all training:

• StepLR: lr = 0.01, step_size=20, gamma=0.2.
• Optimizer: SGD, weight_decay=1e-2.
• Maximum epoch: 60.
• Batch size: 100.

Adaptive Evaluation. To demonstrate the effectiveness of IB-RAR as a defense, we
provide two levels of adaptive evaluation: (1) To demonstrate that the success of IB-
RAR is not limited to a few cases and that the attack algorithms converged, we use
multiple attacks and iteration steps. The results of adversarial robustness are shown in

32 Chapter 2

Table 2.1, Table 2.2, and Figure 2.3. (2) We assume that the adversary designs a new
attack specifically targeted to IB-RAR, as the adversary has full knowledge of IB-RAR
and white-box access to the network, which is discussed in Appendix Section 2.6.2.

2.4.1 Adversarial Robustness Results with Adversarial Train-
ing

We show that our method reaches better adversarial robustness along with state-of-the-art
adversarial training benchmarks. Different regularizers (α and β in L) are evaluated to find
the optimal hyperparameters. We also find that our method can boost the convergence of
the network.

Accuracy on Adversarial Examples. Tables 2.1 and 2.2 show test accuracy and
adversarial accuracy results on CIFAR-10, CIFAR-100, and Tiny ImageNet, respectively.
PGD refers to adversarial training with PGD examples. Results for SVHN are in Appendix
due to space limitation. TRADES and MART are baseline methods mentioned in the
experimental setting. The “method (IB-RAR)” refers to using our method to improve the
baseline method, i.e., using the mutual information loss in Eq. (2.2) and using the mask
in Eq. (2.3) to remove unnecessary feature channels.

Combined with all benchmark methods, our method improves adversarial robustness com-
pared to baselines. In Table 2.1, our method also improves the test accuracy on clean
examples, especially for TRADES and MART. Note that we use clean examples to com-
pute MI in Eq. (2.2). Suppose we use adversarial examples to compute MI, i.e., using
I(X + δ, Tl) to build the IB objective in the loss. In that case, the performance increases
when defending against the PGD attack (or keeping almost the same performance) but
decreases the performance against other attacks.

FGSM PGD

1

PGD

10

PGD

20

PGD

30

PGD

40

PGD

50

0

10

20

30

40

50

CIFAR-10 by VGG16

HBaR

VIB

CE

IB-RAR(all)

IB-RAR(rob)

CW

10

CW

20

CW

30

CW

40

CW

50

0

10

20

30

40

50

CIFAR-10 by VGG16

HBaR

VIB

CE

IB-RAR(all)

IB-RAR(rob)

NF

1

NF

3

NF

5

NF

7

NF

9

NF

10

NF

20

0

10

20

30

40

50

60

CIFAR-10 by VGG16

HBaR

VIB

CE

IB-RAR(all)

IB-RAR(rob)

0 10 20 30 40 50 60

40

50

60

70

80

90

CIFAR-10 by VGG16

HBaR

VIB

CE

IB-RAR(all)

IB-RAR(rob)

Figure 2.3: CIFAR-10 with VGG-16: comparison of our method and IB-based baselines.
The performance is evaluated under different optimization steps of (a) PGD attacks, (b)
CW attacks, (c) NIFGSM attacks, and (d) clean data. The IB-RAR(rob) refers to our
method, which uses IB regularizers for only robust hidden layers. The IB-RAR(all) refers
to using IB regularizers for all hidden layers. The accuracy on clean data at the last
epoch is IB-RAR(rob) 91.33%, IB-RAR(all) 91.97%, HBaR 91.93%, VIB 90.52%, CE only
89.88%. Each result is the average of three runs.

Chapter 2. Information Bottleneck in Adversarial Training 33

2.4.2 Robustness Without Adversarial Training
Using Partial Layers is Better We empirically show that using partial layers to compute
IB loss is better, as shown by results provided in Table 2.3. We deploy MI loss (Eq. (2.1)) to
every layer of VGG-16 and use CIFAR-10 for training, as there are both convolutional and
fully connected layers in the VGG structure. Each row in Table 2.3 shows the performance
of a network, which is trained by computing IB loss (Eq. (2.1)) for a single block of VGG-
16.

Clearly, the robustness mainly comes from Conv Block 5 (the fifth convolutional block in
VGG-16), FullyC 1 (the first fully connected layer in VGG-16), and FullyC 2. We refer to
Conv Block 5, FullyC 1, and FullyC 2 as robust layers, as they provide obvious robustness
compared to other layers. Using all layers to build the two regularizers for MI loss degrades
its robustness compared to using robust layers. Based on MI loss, we further improve its
robustness on other convolutional blocks by filtering out unnecessary feature channels,
see row (2) and row (6) in Table 2.5 for comparison. Compared to using all layers or
other single layers, our method provides the best accuracy (35.86%) under the PGD10 (10
iteration steps for the PGD algorithm) attack. This is achieved by the defender without
any prior knowledge of adversarial examples.

This phenomenon also occurs in other networks trained with other datasets, i.e., every
single hidden layer can provide a different degree of adversarial robustness when computing
the MI of the intermediate representation for the IB objective. Their behaviors are similar
but not the same. For example, when VGG-16 is trained with SVHN, the last four layers
provide adversarial accuracy, i.e., Conv Block 4 (6.44%), Conv Block 5 (16.83%), FullyC
1 (8.97%), and FullyC 2 (9.98%). When training ResNet-18 with SVHN, the last layer
provides higher adversarial accuracy (6.13%) than other layers. The accuracy of trained
VGG-16 and ResNet-18 with CE only and the SVHN dataset is lower than 1%. Based on
our observations, the robust layers will be the last few layers of the network.

Comparison with Other IB-related Methods Figure 2.3 shows that our method
achieves the best robustness compared to other IB-based baselines when training without
adversarial examples. Specifically, we compare our method with CE, HBaR [151], and
VIB [150] under the same conditions. CE refers to training with only cross-entropy loss
function, i.e., no defense on this baseline.

We obtain improved accuracy on clean data compared to VIB and CE only. Our method
achieves the natural accuracy for IB-RAR(rob) of 91.33%, IB-RAR(all) of 91.97%, while
HBaR, VIB, and CE only achieve 91.93%, 90.52%, and 89.88%, respectively.

We use a progressively increasing number of steps to make sure the attacks are converged.
Under PGD, CW, and NIFGSM attacks, our method continuously shows better accuracy

34 Chapter 2

Layer Adv. acc. Test acc.

Conv Block 1 0.04 89.32

Conv Block 2 0.05 90.17

Conv Block 3 0.02 90.53

Conv Block 4 0.01 89.66

Conv Block 5 8.25 89.58

FullyC 1 9.85 91.04

FullyC 2 3.27 90.97

All Layers 25.61 91.96

Rob. Layers 35.86 90.97

Table 2.3: The Adv. Acc. and Test Acc. of using a single layer to compute MI in Eq. (2.1)
for our method. The Adv. Acc. is evaluated under our default PGD attack. The network
is VGG-16 trained with CIFAR-10. Rob (robust) Layers refers to using outputs of Block
5, FullyC 1, and FullyC 2.

compared to baselines.

2.4.3 Discussion and Future Work
One possible explanation for why our method works is that there are shared features
among different classes of training data. Shared features refer to the similar characteristics
of objects in two classes of data. For example, cats and dogs are very similar, while cats
and airplanes are not so similar in terms of shape. Clusters in Figure 2.4(a) also show the
similarity between classes in terms of distance. The MI loss and mask reduce that shared
feature and increase the distance among classes in Figure 2.4.

In addition, to check whether similar classes tend to be classified as each other, we evaluate
the number of times the network predicted the adversarial example as a specific class (top-4
classes) The test set of CIFAR-10 is used to generate the adversarial examples, containing
1000 images for each class. In Table 2.4, cars are thought to be the truck 681 times. The
highest number of classifications of the truck class is also the car class, i.e., 427 times. Such
a bidirectional tendency also exists in other classes. The network learned the most often
shared features from these pairs compared to other classes. It is easier for the adversary to
find imperceptible perturbations of similar pairs, as their distance in classification should
be close to each other.

This intuitive idea can be a starting point for future work that could investigate, for
instance, the following aspect. Currently, our method builds the IB objective by using
inputs, outputs, and intermediate network representations. It is not specifically designed
for adversarial perturbation or shared features. The straightforward next step is distilling
shared features for every class, since the shared features could help adversarial attack

Chapter 2. Information Bottleneck in Adversarial Training 35

algorithms find small enough perturbations. Then, according to distilled features, the
network can learn well-generalized features but discard shared features. As discarding
shared features may also result in the loss of useful information for the class, a key problem
might be controlling the trade-off between discarding shared features and retaining enough
information for generalization.

2.5 Conclusions
This chapter proposes an improved IB-based loss function to improve adversarial robust-
ness and a feature channel mask to remove unnecessary features. We first use IB as a
regularizer to improve robustness on fully connected layers and learn better generaliza-
tion of input data. Based on a well-generalized network, we remove less relevant feature
channels of convolutional layers according to the MI between these channels and the true
labels. We also discuss that using partial layers for MI loss improves robustness against
adversarial attacks. Our experimental results show that our method consistently improves
the adversarial robustness of state-of-the-art adversarial training technologies. The IB-
RAR method improves accuracy by an average of 2.66% against five adversarial attacks
for all networks in Tables 2.1 and 2.2, compared to three adversarial training benchmarks.
IB-RAR can also provide modest robustness to weaker methods without prior knowledge
of adversarial examples. Our findings also show that our method increases the accuracy of
clean data, as the noise in input data is removed. Finally, our experimental evaluation re-
sults demonstrate that our method can enhance the robustness against various adversarial
attacks.

Target class Predicted results

plane : bird-352 ship-247 deer-156 truck-110

car : truck-681 ship-166 plane-55 frog-24

bird : deer-260 frog-259 dog-141 plane-120

cat : dog-415 deer-173 bird-144 frog-134

deer : bird-285 frog-196 cat-169 horse-147

dog : cat-299 frog-208 bird-169 horse-143

frog : cat-411 bird-240 deer-187 dog-63

horse : dog-335 deer-335 truck-82 bird-75

ship : plane-280 bird-196 truck-181 deer-116

truck : car-427 ship-192 horse-135 plane-101

Table 2.4: The adversarial example classification tendency table of CIFAR-10 trained
with VGG-16. The target class column is the ground truth. The rest of each row is the
prediction results and the class count. Class count refers to the number of times an input
of the target class was classified as that class.

36 Chapter 2

CIFAR-10 with VGG-16 CIFAR-10 with ResNet-18

Methods
Inputs Natural PGD NIFGSM FGSM Natural PGD NIFGSM FGSM

(1) LCE 89.99 0.10 0.18 11.80 92.19 0.00 0.00 5.22

(2) L 92.03 12.39 13.90 43.49 93.32 3.85 4.71 40.46

(3) LCE + α
∑L

l=1
I(X, Tl) 41.69 0.16 0.20 9.98 10.00 10.00 10.00 10.00

(4) LCE − β
∑L

l=1
I(Y, Tl) 91.50 0.06 0.99 31.66 92.75 0.00 0.00 8.90

(5) LCE + F C 89.41 0.16 0.14 12.89 92.41 0.00 0.01 4.26

(6) L + F C (IB-RAR) 91.50 35.86 37.44 55.92 93.13 5.37 6.09 39.34

Table 2.5: Ablation study for our method. We remove a part of our method one by one
in each row. We evaluate the their natural test accuracy (in%) and adversarial robustness
(in%) against PGD10, NIFGSM10, and FGSM.

2.6 Appendix

2.6.1 Ablation Study
We conduct an ablation study to verify the effectiveness of the proposed mutual informa-
tion loss and the mask to remove the unnecessary feature channels. Here, we refer to them
as L and F C. The results are shown in Table 2.5. The network in a row (1) of Table 2.5
is trained with CE loss function only. It gets almost zero accuracies on PGD and CW
attacks and very low accuracy on FGSM, as training with CE only does is vulnerable.
The network trained with mutual information loss, row (2) of L, gains modest accuracy
under adversarial attack, but it is lower than our method, i.e., the last row ((L) + F C).
We also evaluate the regularizer terms (I(X, Tl) and I(Y, Tl)) in mutual information loss.
Removing the enhancement of I(Y, Tl), row (3), dramatically degrades the accuracy of
clean data because decreasing only I(X, Tl) removes both useful information and noise in
inputs. Removing the penalty of I(X, Tl), row (4), gets a good network and slightly higher
accuracy on clean data and adversarial examples compared to training with only CE loss
in row (1). The reason is that increasing I(Y, Tl) will increase the relevance between in-
termediate results (outputs of hidden layers) and their labels. The LCE + F C in a row (5)
does not improve the robustness because the network trained with CE loss only does not
learn a well-generalized representation in the sense of mutual information.

To further support our experiments, we illustrate the correlation between the features
generated with our method and baselines by using a 2D t-SNE plot [155]. In the case of
clean examples as shown in Figures 2.4(a) and 2.4(b), which are trained with CE loss only
(row (1) in Table 2.5) and our method (row (6) in Table 2.5). The accuracy (PGD) of the
network in Figure 2.4(b) only increases by 2.04% (see specific values in Table 2.5) compared
to the network in Figure 2.4(a). However, it sustains better-clustered results, and a more
obvious distance is maintained between clusters because the two regularizers in Eq. (2.1)
remove noise in input and unnecessary features in the output of hidden layers. Figure 2.4(c)

Chapter 2. Information Bottleneck in Adversarial Training 37

75 50 25 0 25 50 75

75

50

25

0

25

50

75

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

(a) Plain

75 50 25 0 25 50 75

75

50

25

0

25

50

75

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

(b) IB-RAR

75 50 25 0 25 50 75 100

100

75

50

25

0

25

50

75

100

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

(c) TRADES

80 60 40 20 0 20 40 60 80

75

50

25

0

25

50

75

100

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

(d) TRADES(IB-
RAR)

Figure 2.4: The results of t-SNE [155] for CIFAR-10 with VGG-16. Each cluster indicates
a 2-dimensional feature representation. The feature representation is extracted from the
VGG-16 network.

Method PGD-AD10 PGD10 PGD-AD100 PGD100

plain (IB-RAR) 15.38 35.86 22.64 31.37

AT 45.06 42.26 44.71 42.01

AT (IB-RAR) 45.97 45.03 45.60 44.60

Table 2.6: Results of IB-RAR against adaptive white-box attacks (10 steps or 100 steps)
on CIFAR-10 with VGG-16. PGD-AD refers to the adaptive attack.

shows interacted clusters. Figure 2.4(d) for our method shows better-clustered results
compared to clusters in Figure 2.4(c).

2.6.2 Adaptive Attack Evaluation
Since IB-RAR provides a new loss function, we examine customized attacks where the
adversary takes advantage of the knowledge of IB-RAR. As the learning objective of IB-
RAR is to minimize +α

∑L

l=1 I(X, Tl)−β
∑L

l=1 I(Y, Tl) along with CE loss in Eq. (2.1) and
Eq. (2.2), a natural idea is using PGD to maximize it. We propose a white-box attack: the
adversary uses L, i.e., Eq. (2.1), as a loss function to implement the PGD algorithm. To
ensure that the attack converges, we use 10 and 100 steps for PGD attacks. Table 2.6 shows
the attack results. The adaptive attack is effective because it decreases the accuracy of the
network without adversarial training, i.e., plain (IB-RAR), but the network still retains
better robustness compared to training with CE only. When combined with adversarial
training, the adaptive attack does not decrease the accuracy because its robustness comes
from adversarial training and IB-RAR. If the adversary attack is specifically designed to
target IB-RAR, it will weaken the attack performance of attacking adversarial training. On
the contrary, an adaptive attack targeting adversarial training will weaken the ability to
attack IB-RAR. The results demonstrate that IB-RAR is robust to the adaptive white-box
attack.

Chapter 3. Information Bottleneck in Adversarial Pre-training 39

Chapter 3

Information Bottleneck in Adversarial
Pre-training

Vision Transformers (ViTs) have emerged as a fundamental architecture and serve as the
backbone of modern vision-language models. Despite their impressive performance, ViTs
exhibit notable vulnerability to evasion attacks, necessitating the development of special-
ized Adversarial Training (AT) strategies tailored to their unique architecture. While
a direct solution might involve applying existing AT methods to ViTs, our analysis re-
veals significant incompatibilities, particularly with state-of-the-art (SOTA) approaches
such as Generalist [165] (CVPR 2023) and DBAT [142] (USENIX Security 2024). This
chapter presents a systematic investigation of adversarial robustness in ViTs and pro-
vides a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-
supervised pre-training. Specifically, we show that MI between the adversarial example
and its latent representation in ViT-based autoencoders should be constrained via de-
rived MI bounds. Building on this insight, we propose a self-supervised AT method,
MIMIR, that employs an MI penalty to facilitate adversarial pre-training by masked im-
age modeling with autoencoders. Extensive experiments on CIFAR-10, Tiny-ImageNet,
and ImageNet-1K show that MIMIR can consistently provide improved natural and ro-
bust accuracy, where MIMIR outperforms SOTA AT results on ImageNet-1K. Notably,
MIMIR demonstrates superior robustness against unforeseen attacks and common cor-
ruption data and can also withstand adaptive attacks where the adversary possesses full
knowledge of the defense mechanism. Our code and trained models are publicly available:
https://github.com/xiaoyunxxy/MIMIR.

3.1 Introduction
ViTs [32] and their variants [33, 166] have achieved substantial progress and serve as foun-
dational components in modern vision-language models. Prominent multimodal frame-

40 Chapter 3

works, including CLIP [167], BLIP [168], and Mini-GPT4 [169], typically employ ViTs
as their image encoders. However, similar to convolutional neural networks (CNNs),
attention-based models provide limited robustness against evasion attacks [170, 171, 172,
173, 174]. Evasion attacks [5, 7] (also known as adversarial attacks), where well-trained
deep models are fooled by introducing human-imperceptible perturbations to inputs, re-
main a persistent challenge in deep learning security. In 2024, the National Institute
of Standards and Technology (NIST) explicitly listed adversarial attacks as a significant
threat to AI systems, and pointed out the importance of conducting robustness testing
and mitigation, such as adversarial training and formal verification, when deploying AI
tools [175]. Nevertheless, improving adversarial robustness remains a difficult task. SOTA
methods, such as [140, 176, 177], achieve only marginal robustness gains, commonly below
2% compared with those before them.

So far, Adversarial Training (AT) is widely recognized as the most practically effective
defense [173, 172, 141] against evasion attacks. AT operates by augmenting the training
dataset with adversarially perturbed samples [12], yet introduces two key limitations: (1)
substantial computational overhead due to the generation of adversarial examples during
training [12], and (2) a potential degradation in natural accuracy [178]. Numerous methods
have been proposed to mitigate these challenges. Techniques such as FreeAT [99] optimize
efficiency by reusing gradient information during adversarial example generation, while
FastAT [100] employs an improved Fast Gradient Sign Method (FGSM) to accelerate
training. TRADES [94], SCORE [143], Generalist [165], and DBAT [142] explore how to
achieve the best trade-off between natural and robust accuracy. Additionally, pre-training
strategies have also been leveraged to enhance the performance of AT [179, 140].

Applying existing AT methods to ViTs presents unique challenges due to the fundamental
differences between attention-based architectures and CNNs. Unlike CNNs, ViTs lack in-
ductive biases [32], including locality, two-dimensional neighborhood structure, and trans-
lation equivariance. These biases are inherent to CNNs as prior knowledge, enabling
efficient learning with limited data, whereas ViTs typically require larger training datasets
to achieve comparable generalization performance [32]. Consequently, AT for ViTs en-
tails significantly higher computational costs. Initial research on AT for ViTs explored
their unique attention mechanism. For instance, robustness can be improved by randomly
dropping gradients according to attention [172] or improving training efficiency by drop-
ping low-attention image embeddings [173]. The majority of recent works have focused
on adapting CNN-based AT methodologies to ViTs, given AT’s success in building ro-
bust CNNs. Unfortunately, standard CNN AT techniques are not fully transferable to
ViTs. Empirical studies [170, 141] reveal that strong data augmentations (such as Ran-
daugment [180], CutMix [181], and MixUp [182], which improve robustness in CNNs)
often degrade AT performance for ViTs. To mitigate this, recent work [170] suggests pro-
gressively increasing augmentation intensity (e.g., distortion magnitudes in RandAugment

Chapter 3. Information Bottleneck in Adversarial Pre-training 41

or the sampling probability of MixUp/CutMix) during training. Furthermore, SOTA AT
strategies, such as Generalist [165] and DBAT [142], are less effective when applied to ViTs
(see Table 3.1), and there is a lack of evaluation on large datasets, such as ImageNet-1K,
which further limits their generalizability.

Pre-training has emerged as a complementary approach to ViT AT, with studies showing
that adversarial fine-tuning of naturally pre-trained models can enhance robustness [172,
140]. AdvXL [183] notably advanced this paradigm by developing efficient AT for web-
scale datasets. However, the mechanisms underlying pre-training’s effectiveness are not
fully understood, and results are inconsistent across implementations. For instance, models
pre-trained on ImageNet-21K using SimMIM [184] demonstrate comparable performance
to scratch-trained counterparts, while CLIP [167] pre-training has been shown to degrade
performance in some configurations [185].

While previous methods of ViT AT, such as [140, 141, 170], focus on searching for bet-
ter combinations of training hyperparameters, they suffer from performance drops across
different architectures and datasets. In contrast, we aim for a generalizable method via
pre-training. Specifically, this work presents a systematic investigation of self-supervised
pre-training for ViT robustness through the lens of Mutual Information (MI) and Informa-
tion Bottleneck (IB) theory. IB introduces a joint objective of simultaneously minimizing
the MI between inputs and latent features while maximizing the MI between labels and
latent features to mitigate the impact of the adversarial noise in the inputs. Regarding
the ViT AT, we develop a novel theoretical justification for self-supervised autoencoders,
demonstrating that reducing MI between inputs and latent features enhances ViT robust-
ness. Based on this finding, we propose a theoretically grounded adversarial pre-training
method, Masked Image Modeling for Mutual Information-based Adversarial Robustness
(MIMIR∗). Specifically, we convert Masked Image Modeling (MIM) into an effective and
efficient adversarial pre-training method. The basic idea is to predict the masked content
of inputs, which is a self-supervised learning task. The effectiveness of MIMIR is analyzed
and guaranteed by our theoretical justification. The efficiency comes from discarding the
masked content (75% of image patches are discarded in our experiments), which greatly re-
duces the computing requirements. Figure 6.1 provides an illustrative diagram of MIMIR.

We validate MIMIR’s effectiveness through extensive experiments on CIFAR-10 [158],
Tiny-ImageNet [186], and ImageNet-1K [187], showing consistent improvements in both
natural and adversarial accuracy. In addition, we test the generalizability of MIMIR
by combining MIMIR with three MIM methods for three representative architectures,
including MAE [43] for ViTs, Group Window Attention [188] for hierarchical transformer
(Swin [33]), and SparK [189] for CNN (ConvNext [34]), where MIMIR outperforms SOTA
AT methods on ImageNet-1K.

∗Mimir is a figure in Norse mythology, renowned for his knowledge and wisdom.

42 Chapter 3

encoder+ decoder

…

𝐼𝐼(𝑥𝑥 + 𝛿𝛿, 𝑧𝑧)

𝛿𝛿

𝑥𝑥

𝑥𝑥𝑟𝑟𝑟𝑟

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:
+ mask tokens

Masked patches

Figure 3.1: Diagram illustrating the working mechanism of MIMIR. In the pre-training,
adversarial perturbations δ are generated and added to natural images x to create adver-
sarial images x+δ, as shown on the left. Patches of generated adversarial images are fed as
training data to the ViT-based autoencoder, where the output of the decoder xre and the
natural input image x are used to calculate the loss. In particular, we propose using MI
(I(x+δ, z)) as an additional penalty to compose the pre-training loss of MIMIR, as shown
in the bottom right. After pre-training, a trained encoder is combined with a randomly
initialized classification layer as the final model that is further fine-tuned for classification
tasks.

Our main contributions are:

• By revising the current ViT AT strategies, we point out that ViT adversarial pre-
training methods compromise natural accuracy and lack a systematic study. To this
end, we provide a theoretical analysis using adversarial examples and the Mutual
Information penalty. The theoretically grounded MI bounds motivate us to decrease
the MI between adversarial examples and the learned latent representation.

• Based on the findings of our analysis, we propose a self-supervised defense – MIMIR
against adversarial attacks on ViTs. We evaluate MIMIR using multiple architec-
tures on three datasets under various adversarial attacks, demonstrating its effec-
tiveness. We also provide results with the latest CNN architecture, ConvNext [34],
showcasing the performance of MIMIR even on architectures different from ViTs.

• We show MIMIR is resistant to two adaptive attacks where the adversary is aware
of MIMIR’s design. We build a PGD-fea attack that increases the distance between
features extracted from natural and adversarial examples. Moreover, we build a
PGD-MI attack that includes the MI penalty as the learning objective to find ad-
versarial examples.

Chapter 3. Information Bottleneck in Adversarial Pre-training 43

3.2 Related Work

3.2.1 Masked Image Modeling - MIM
MIM refers to a self-supervised pre-training framework that aims to reconstruct pre-defined
targets, such as discrete tokens [190], raw RGB pixels [43, 191], or features [192]. The
final goal is to use the pre-trained model as a starting point for downstream fine-tuning.
The downstream tasks include, for instance, classification and object detection. More
specifically, to build a high-performance ViT fe without a classification layer, we consider
fe as an encoder to extract discriminative input features. Then, we design a lightweight
decoder fd, which uses the output of fe as its input. The goal of fd is to reconstruct
the original inputs (let us consider MAE [43] as an example). The aim is to decrease the
distance between the input x and xre = fd ◦ fe(x). After the encoder fe and decoder fd

are trained, we use fe plus a manually initialized classification layer as the starting point
of fine-tuning.

3.2.2 Mutual Information - MI
MI measures the mutual dependence between two random variables, X and Y [193, 194].
It quantifies the amount of information contained in one random variable about another
random variable or the reduced uncertainty of a random variable when another random
variable is known. It can be written as:

I(X, Y) =
∫

Y

∫

X
P(X,Y)(x, y) log

(
P(X,Y)(x, y)

P(X)(x)P(Y)(y)

)
, (3.1)

where P(X,Y) is the joint probability density function of X and Y. P(X) and P(Y) are the
marginal probability density function of X and Y . MI can be equivalently expressed as:

I(X, Y) = H(X) − H(X|Y). (3.2)

Estimating the exact MI is not easy, as it is difficult to precisely estimate PX,Y or PX

and PY in high-dimensional space [195, 196]. In practice, DIB [197] suggested using the
matrix-based Renyi’s α-order entropy Iα [198, 199] to estimate MI, which avoids density
estimation and variational approximation. An alternative way is the Hilbert-Schmidt
Independence Criterion (HSIC) [156], which is a kernel-based dependence measure defined
in a reproducing kernel Hilbert space (RKHS) and usually used as a surrogate of MI. Details
about definitions and empirical estimators of Iα and HSIC are provided in Appendix 3.7.7.
In this chapter, we evaluate both Iα and HSIC as our MI measurements.

44 Chapter 3

3.2.3 Information Bottleneck - IB
The IB concepts were first proposed in [200] and further developed for deep learning
in [201, 152]. It has been widely used to improve adversarial robustness [202, 150, 197,
151]. IB describes the generalization of a deep network in two phases: 1) empirical error
minimization (ERM) and 2) representation compression [152]. For a network with input x

and label y, there is an intermediate representation tl for each layer l, i.e., the output of l-th
layer. The IB principle aims to keep more relevant information in tl about target y while
decreasing the irrelevant information about input x. The information between intermediate
representation tl and input x or label y is quantified by MI, denoted by I(·). During neural
network training, in the ERM phase, the model increases shared information between tl

with respect to both x and y. Afterward, in the compression phase, the model decreases
information contained in tl about x but preserves (or even increases) information about
y. The reduction of I(x, tl) can be interpreted as a way of reducing noise or compressing
irrelevant or redundant features in x. At the end of the training, the model strikes a
trade-off that maximizes I(y, tl) and minimizes I(x, tl). Formally, the IB minimizes the
following Lagrangian:

L = I(x, tl) − βI(y, tl), (3.3)

where β is a Lagrange multiplier that controls the trade-off between predicting y and
compressing x.

3.2.4 Vision Transformer
The transformers [35] were first proposed in natural language processing (NLP). With
the mechanism of global self-attention, transformers can effectively capture the non-local
relationships among all text tokens [203, 204, 205]. A substantial effort is done to apply
the transformer and self-attention mechanism in computer vision [32, 206, 166]. The pio-
neering work, ViT [32], demonstrated that the pure transformer architecture can achieve
competitive performance on various tasks. ViT also reveals that transformers lack in-
ductive biases [32]. For example, locality, two-dimensional neighborhood structure, and
translation equivariance are inherent to CNNs but not applicable to ViTs [32]. Due to this
shortcoming, ViTs usually require large-scale training to get competitive performance, such
as pre-training on ImageNet-21K [187] and JFT-300M [207]. To alleviate the ViT’s need
for large datasets, DeiT [208] introduced a teacher-student strategy to distill knowledge
from a teacher CNN for a student ViT. In the MIM field, MAE [43] uses a masked autoen-
coder with a lightweight decoder as a visual representation learner. Its learning objective
is to reconstruct the original image by the decoder while using masked images as input to
the autoencoder. The advantage is that MAE can randomly discard 75% image patches
when pre-training under ImageNet-1K [187], which means more efficient training.

Chapter 3. Information Bottleneck in Adversarial Pre-training 45

3.2.5 Adversarial Attacks on ViTs
The concept of adversarial attacks first appeared in [6], which proposed a formal framework
and algorithms against the adversarial spam detection domain. Then, the adversarial
attacks were popularized by Biggio et al. [5] and Szegedy et al. [7] in image classification.
The generation of adversarial examples depends on the model’s gradient or estimated
gradient in the black box situation [209]. Therefore, adversarial attacks can be easily
applied to transformers by using the gradient of attention blocks with respect to the inputs.
This also raises the question of whether transformers are more robust than CNNs. Benz et
al. [210] found that CNNs are less robust than ViTs due to their shift-invariant property.
Bhojanapalli et al. [211] found that ResNet models are more robust than transformers at
the same model size under FGSM attack, but under PGD [12] attack, transformer models
show better robustness. As ViTs process the input image as a sequence of patches, Gu
et al. [174] found that ViTs are more robust than CNNs to naturally corrupted patches
because the attention mechanism is helpful in ignoring naturally corrupted image patches.
The later work [170] revealed that CNNs could be as robust as ViTs against adversarial
attacks if CNNs are trained with proper hyperparameters.

3.2.6 Adversarial Defense
PGD [12] adversarial training is considered as one of the most effective defenses for CNNs
and can withstand adaptively designed attacks [91]. However, PGD AT is harmful to
the accuracy of clean data. Generalist [165] solves this problem by formulating different
training strategies for robust and natural generalization separately. DBAT [142] solves the
decrease in natural accuracy by adding dummy classes [212] to the classification space.

Due to the difference between CNNs and ViTs, there have been some recent efforts to
explore new adversarial training approaches for ViTs [172, 141, 173]. Mo et al. [172]
presented a new adversarial training strategy based on the following observations: 1) pre-
training with natural data can provide better robustness after adversarial fine-tuning, 2)
gradient clipping is necessary for adversarial training, and 3) using SGD as the optimizer
is better than Adam. Debenedetti et al. [141] also presented an improved training strategy
for ViTs by evaluating different combinations of data augmentation policies. They found
that weak data augmentation and large weight decay are better than previous canonical
training approaches. As adversarial training is time-consuming, AGAT [173] leverages the
attention score while training to discard non-critical image patches after every layer. Unlike
previous works, we provide a different training paradigm by using MIM for adversarial pre-
training. Our method is efficient as we discard 75% image patches while pre-training. Our
method is effective as we eliminate the information of adversarial perturbations from two
information sources of natural and adversarial inputs. We also provide theoretical proof
that the information of adversarial perturbations is eliminated.

46 Chapter 3

3.2.7 Self-Supervised Adversarial Pre-Training
Self-supervised learning [213, 214, 43, 215] refers to extracting meaningful representation
from unlabeled data, which can be used for downstream recognition tasks. Self-supervised
methods are beneficial for out-of-distribution detection on difficult, near-distribution out-
liers [179], which leads to using self-supervised training to improve adversarial robust-
ness [216, 179, 217, 218, 219, 220]. The basic idea is to build a min-max learning object
similar to traditional adversarial training in Eq. (1.3). With the development of self-
supervision technologies, more advanced technologies, such as contrastive learning and
MAE [43], are applied to adversarial pre-training. For example, Jiang et al. [217] consid-
ered using two adversarial samples or combining one adversarial sample and one natural
sample to learn a consistent representation in contrastive learning. In more recent work,
You et al. [221] proposed NIM De3 to denoise adversarial perturbations. However, the mo-
tivation of these works relies on complex self-supervised pre-training technologies, making
it more difficult to understand the inner mechanisms or provide theoretical results. MIMIR
not only provides better performance but also provides intuitive insights with theoretical
motivation.

3.3 MIMIR

3.3.1 Threat Model
Adversary’s goal. The attacker aims to fool the trained model with both non-targeted
and targeted attacks. The goal is to decrease the overall classification accuracy (non-
targeted) or compel the model to recognize any inputs as a specific target (targeted).
Meanwhile, the adversarial perturbations applied to the input should be invisible so that
they will not be easily detected. During the training phase, the model optimizes its param-
eters to minimize the loss between predicted outputs and true labels, thereby enhancing
classification accuracy. In contrast, the adversary’s objective is to develop algorithms that
generate perturbations capable of maximizing this loss. For a targeted attack, the at-
tacker decreases the loss between the output and the specified target label. To maintain
the imperceptibility of the perturbations, the magnitude of the adversarial modifications is
constrained by the l∞ norm, ensuring that the alterations to the input data remain within
a visually indistinguishable range.

Adversary knowledge. The attacker has white-box access to the model, including train-
ing data, architectures, hyperparameters, and model weights. The attacker can implement
iterative attacks and unlimited queries to update adversarial examples multiple times in
white and black-box settings. Adversarial examples can be created according to model
architectures, parameters, the gradients of loss function, and datasets. In addition, we
also consider adaptive adversaries who are also aware of potential defenses. The adversary
can design new attacks for a specific model according to the design details of the defense

Chapter 3. Information Bottleneck in Adversarial Pre-training 47

method.

Defender’s goal. From the defender’s perspective, the main goal is to train a robust
model against potential adversarial attacks. The defender considers the following four
objectives:

• The defender aims to prevent the performance of natural data from decreasing sig-
nificantly but allows a slight drop of natural accuracy for a trade-off in exchange for
robustness.

• The defense method should provide a notable improvement compared to models
without defenses when subjected to various adversarial attacks, especially to adap-
tive attacks that are aware of the details of the defense method.

• The defense method should be efficient and scalable to large datasets like ImageNet-
1K [187].

3.3.2 Design Intuition
MIM has been proven useful as a pre-training method for ViTs on various tasks [222,
43, 192, 190]. To train a powerful model using MIM, one can mask out a part of the
foreground of inputs and reconstruct it using the model. Masking out the foreground
instead of the background reduces discriminative information in visible information to the
model. Reconstructing foreground parts is harder than background and helps the model
learn more discriminative information [223]. Inspired by this phenomenon, we aim to
build a more difficult task by adding adversarial perturbations to natural inputs. The
adversarial perturbations increase the distance between the input and the reconstruction
target. If we can reconstruct natural inputs from adversarial examples, it means the
features learned by the model are robust against adversarial attacks. In other words,
we want the encoder to learn a latent representation that does not carry information
concerning adversarial perturbations while enabling the decoder to reconstruct the natural
image. Note that simply masking out all foreground does not make sense, as it would render
the reconstruction of meaningful content infeasible. From the perspective of IB, there is a
bottleneck between the encoder and decoder. Our adversarial pre-training task contains
two information sources: the natural data x and the adversarial perturbations δ. As the
information flows through the bottleneck, adversarial information from δ is eliminated.
The natural information from x is maintained because of the reconstruction of the target
x.

3.3.3 Design Details
Autoencoder. MIMIR consists of an encoder fe and a decoder fd aligned with the
general design of MAE [43]. As with other autoencoders, the encoder extracts discrim-
inative features z from inputs x. The decoder reconstructs original inputs according to

48 Chapter 3

Algorithm 3.1 MIMIR Pre-training
Input: training data D, number of epochs E, encoder fe, decoder fd, network

parameters θ, Lmse, λ.
Output: optimized weights θ

1: for e = 0 → E − 1 do
2: x ← sample_batch(D)
3: δ ← random_initialization
4: xre ← fd ◦ fe(x + δ)
5: δ ← max

δ∈S
Lmse(x + δ, xre)

6: Forward:
7: z ← fe(x + δ)
8: xre ← fd(z)
9: loss ← Lmse(x, xre) + λI(x + δ, z)

10: Backward:
11: θ ← θ − α∇loss
12: end for

the discriminative features. Following the design of ViT [32], the input x is separated into
non-overlapping image patches. We randomly mask out a part of the patches and use
the remaining patches as inputs for the following process in the encoder. This random
masking process uses uniform distribution to prevent potential sampling bias, such as all
foreground information being masked, as it becomes infeasible to find the reconstruction
target. Thus, we aim to keep a part of the foreground as a hint for reconstruction. The
information of masked content is recorded as mask tokens m, not used by the encoder
but reserved for later use by the decoder. Each token is a learned vector indicating the
presence of a masked patch to be predicted. The mask token is shared by all inputs of the
decoder. Like unmasked patches, mask tokens are also assigned corresponding positional
embeddings to be in the correct location in the reconstructed image. We emphasize that
mask tokens are not used in the encoder part.

To train a ViT, we use the same transformer blocks as ViT to build the encoder. The
encoder only processes the visible patches, making training much more efficient. When
converting to other architectures, such as ConViT [166], we use corresponding transformer
blocks to build the encoder. The decoder accepts the encoded visible image patches and
mask tokens as inputs. The decoder is built using the same transformer blocks as the
encoder instead of using ViT [32] transformer blocks for all. Then, the decoder is followed
by a fully connected layer, which outputs the same number of patches as the original
image.

Adversarial Pre-training Target. The training target is to extract discriminative
features from visible image patches by the encoder and then reconstruct the invisible
patches by the decoder. Therefore, we need a differentiable measurement to quantify the

Chapter 3. Information Bottleneck in Adversarial Pre-training 49

distance between the original image and the reconstructed results. Following the original
MAE [43], this distance is measured by Mean Squared Error (MSE). To create a more
difficult reconstruction task, we apply adversarial perturbations δ on the inputs of the
encoder. Thus, the adversarial perturbations are also masked along with the image upon
input into the encoder. The decoder reconstructs the original natural inputs by using
the latent features z extracted from adversarial examples. The outputs of decoder xre

and x are used to calculate the MSE loss (Lmse), which is further used to optimize the
model. Note that the reconstruction differs from the original MAE; we do not use the
encoder inputs as reconstruction targets. Formally, the pre-training process (described in
Algorithm 3.1) can be written as follows:

z = fe(x + δ), xre = fd(z),

Lmse(x, xre) = (x − xre)2.
(3.4)

MI as Penalty. Inspired by IB, we show in Section 3.3.4 that MI between latent rep-
resentation and adversarial examples decreases as the accuracy on adversarial examples,
i.e., I(x + δ, z) is decreasing while training. Motivated by this finding, we directly use
I(x + δ, z) as a penalty in our final loss function:

lossmi = Lmse(x, xre) + λI(x + δ, z), (3.5)

where λ is a regularizer for the MI penalty. We use I(x + δ, z) instead of I(x, z) as a
penalty. This is because x → x + δ → z follows the Markov chain since z is extracted
from x + δ. According to Data Processing Inequality (DPI) [224], I(x, z) ≤ I(x + δ, z).
I(x + δ, z) is closer to z on the Markov chain.

Generating Adversarial Examples. To conduct the adversarial pre-training, we need
an attack that finds proper adversarial perturbations δ. As the autoencoder does not
provide classification outputs, it is not possible to directly use existing adversarial attacks,
such as PGD [12]. Nevertheless, it is feasible to design a new algorithm to find δ by
maximizing lossmse in Eq. (3.4). As the feature z is extracted from only visible image
patches, we only attack the visible patches. We do not add any perturbations to mask
tokens since the outputs of the autoencoder are only impacted by visible patches. Then,
the adversarial pre-training learning objective can be written as:

Ladv = max
δ∈S

Lmse(fd ◦ fe(x + δ), x),

min
θ

Ladv + λI(x + δ, z),
(3.6)

where θ are the autoencoder parameters. After the autoencoder is trained, we discard
the decoder and initialize a classification layer for the encoder to build a complete model.
Finally, the complete model is fine-tuned by AT methods.

50 Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0

p

e

0

1

2

3

I
(
x
+

,
z
)

lower bound

upper bound

Figure 3.2: The example plots for the lower and upper bounds on the MI in Proposi-
tions 3.3.2 and 3.3.3. The entropy (H(·)) is chosen uniformly at random from a set of 10
classes. The lower bound reaches its minimum at pe = 0.9.

3.3.4 Theoretical Justification
Next, we provide theoretical justification showing that MI between the adversarial example
and its latent representation, i.e., I(x + δ, z), should be constrained. Let F denote any
classifier trained on natural samples with desirable prediction accuracy, which may suffer
from adversarial attacks. We begin our analysis by first presenting Lemma 3.3.1.

Lemma 3.3.1 Let F (x + δ) and F (xre) denote, respectively, the predicted labels of adver-
sarial sample x + δ and reconstructed sample xre, we have:

I(F (x + δ), F (xre)) ≤ I(F (x + δ), xre) ≤ I(x + δ, z). (3.7)

Proof. There are two Markov chains:

x + δ → F (x + δ),

z → xre → F (xre),
(3.8)

which implies that F (x + δ) is an indirect observation of x + δ, whereas both F (xre) and
xre are indirect observations of z.

By the data processing inequality (DPI), we have

I(x + δ, z) ≥ I(F (x + δ), z), (3.9)

and
I(F (x + δ), z) ≥ I(F (x + δ), xre) ≥ I(F (x + δ), F (xre)). (3.10)

□

Chapter 3. Information Bottleneck in Adversarial Pre-training 51

Now, we define pe as the probability that the predicted label of x + δ by F is not equal
to that of xre, i.e., pe = P(F (x + δ) ̸= F (xre)). Intuitively, our autoencoder is trained to
recover only natural sample x without any interference from δ. Hence, a relatively large
value of pe is expected. In the following, we establish the connection between pe and
I(x + δ, z) with both lower and upper bounds, showing that minimizing I(x + δ, z) also
encourages a large value of pe.

Proposition 3.3.2 Let H(·) denote the information entropy and Hb(pe) = −pe log2 pe −
(1 − pe) log2(1 − pe) be the binary entropy, we have:

H(F (x + δ)) − Hb(pe) − pe log(|F (x + δ)| − 1) ≤ I(x + δ, z), (3.11)

where |F (x + δ)| is the total number of categories.†

Proof. By the chain rule of MI, we have

I(F (x + δ), F (xre)) = H(F (x + δ)) − H(F (x + δ)|F (xre)). (3.12)

By applying Fano’s inequality [225, 226], we obtain:

H(F (x + δ)|F (xre)) ≤ Hb(pe) + pe log(|F (x + δ)| − 1). (3.13)

Adding I(F (x + δ), F (xre)) to both sides of Eq. (3.13):

H(F (x + δ)) − Hb(pe) − pe log(|F (x + δ)| − 1)

≤ I(F (x + δ), F (xre))

≤ I(x + δ, z).

(3.14)

The last line of Eq. (3.14) is by Lemma 3.3.1. □

Therefore, we obtain a lower bound of I(x+δ, z). If we use CIFAR-10 (|F (x+δ)| = 10) and
assume the predicted labels F (x + δ) follow a uniform distribution, we can visualize the
lower bound as a function of pe as shown in Figure 3.2, from which we observe an obvious
monotonic inverse relationship between I(x+δ) and pe in the range pe ∈ [0, 0.9]. In fact, we
can also obtain an upper bound, under the assumption that I(F (x + δ), xre) ≈ I(x + δ, z),
i.e., there is no information loss in the two Markov chains in Eq. (3.8).

†For instance, for CIFAR-10, |F (x + δ)| = 10.

52 Chapter 3

Proposition 3.3.3 If I(F (x + δ), xre) ≈ I(x + δ, z), we have:

I(x + δ, z) ≲ H(F (xre)) − 2pe, (3.15)

in which the notation “≲" refers to less than or approximately equal.

Proof. By the Hellman-Raviv inequality [227, 228], we have:

2pe ≤ H(F (x + δ)|xre)

= H(F (x + δ)) − I(F (x + δ), xre)

≈ H(F (x + δ)) − I(x + δ, z).

(3.16)

□

Similar to the lower bound, the upper bound also indicates I(x + δ, z) is inversely propor-
tional to pe as shown in Figure 3.2. In fact, apart from the above-mentioned lower and
upper bounds, there exists an alternative and intuitive way to understand the mechanism
of minimizing I(x + δ, z). For simplicity, let us assume the natural data x and adversarial
perturbations δ are independent‡, then:

I(x + δ, z) = I(x, z) + I(δ, z). (3.17)

According to [230], minimizing the expected reconstruction error between natural sample x

and corrupted input x+δ amounts to maximizing a lower bound of the mutual information
I(x, z), even though z is a function of the corrupted input. Therefore, by minimizing
I(x + δ, z), the network is forced to minimize I(δ, z) (since I(x, z) is maximized). In other
words, only the adversarial information about δ has been removed from z when minimizing
I(x + δ, z). This also explains the robustness of z.

3.4 Experiments

3.4.1 Experimental Setup
We evaluate MIMIR on three datasets: ImageNet-1K [187], Tiny-ImageNet [186], and
CIFAR-10 [158], with three commonly used ViT architectures with multiple scales: ViT [32],
ConViT [166] and CaiT [206]. In addition, we also evaluate MIMIR on the modern CNN
architecture, ConvNext [34] in Appendix 3.7.4. Details of datasets are provided in Ap-
pendix 3.7.1. Hyperparameters of the decoder are included in Appendix 3.7.2.

‡This assumption is mild for certain scenarios, such as when considering universal or image-
agnostic perturbations [229].

Chapter 3. Information Bottleneck in Adversarial Pre-training 53

Training Setup. We train models from scratch for all experiments. Following MAE [43],
we do pre-training by MIMIR for 800 epochs. Please note that we also compare our MIMIR
+ fine-tuning paradigm with the End2End paradigm. The End2End paradigm refers to
the supervised training of a model from scratch without self-supervised pre-training. To
compare between End2End and pre-training + fine-tuning, the standard training schedule
is pre-training 800 epochs + fine-tuning 100 epochs versus End2End training 300 epochs
in the existing works [43, 184, 231].

The number of warmup epochs is 40 for pre-training. We use AdamW [232] as an optimizer
for both pre-training and fine-tuning. We apply the cosine decay as the learning rate
schedule. At pre-training, MIMIR uses the 1-step PGD to generate adversarial examples
for all three datasets. The perturbation budget is ϵ = 8, α = 10. For the fine-tuning
stage, we use the 10-step PGD AT with perturbation bound ϵ = 8, α = 2 for CIFAR-10
and Tiny-ImageNet. For ImageNet-1K, we use 1-step PGD with random initialization for
better efficiency. The perturbation bound is ϵ = 4 for ImageNet-1K. We also use a 2-
step APGD with a longer fine-tuning schedule to compare with SOTA works in Table 3.3.
Details on training hyperparameters are provided in Appendix 3.7.3.

As discussed in Section 3.4.3, strong data augmentation is harmful to adversarial training
at a common training schedule (50 or 100 epochs for fine-tuning) but helpful to a longer
fine-tuning schedule. We only use weak augmentations, including random resized crops and
random horizontal flips for 50 or 100 epochs of fine-tuning. For experiments in Table 3.3,
we use strong augmentation for 300 epochs of fine-tuning, including weak augmentations,
CutMix [181], MixUp [182], and Randaugment [180].

Evaluation Metrics. We use natural accuracy and robust accuracy as evaluation
metrics. Natural accuracy refers to the accuracy of natural and unmodified inputs. The
robust accuracy measures the accuracy under the AutoAttack (AA) [233]. AutoAttack is
an ensemble of diverse parameter-free attacks, including white-box and black-box attacks.
In our experiments, we use the standard version of AutoAttack that contains four attacks,
including APGD-ce [233], APGD-t [233], FAB-t [163], and Square [234]. The perturbation
budgets are ϵ = 8 for CIFAR-10 and Tiny-ImageNet, ϵ = 4 for ImageNet-1K.

Training stability. Due to the high computation cost, we cannot report the standard
deviation for all experiments. To show that our method MIMIR has low variances, we
train ViT-S on CIFAR-10 three times with different random seeds, running pre-training
400 epochs and fine-tuning 50 epochs. The natural accuracy is 86.07 ± 0.16 %. The
adversarial accuracy under the 20-step PGD20 (l∞, ϵ = 8/255) is 47.24 ± 0.12 %.

54 Chapter 3

3.4.2 Main Results
We first explore different AT methods and MIMIR for ViT on CIFAR-10, demonstrating
the fundamental incompatibility between conventional AT approaches and ViT architec-
tures. Following this baseline evaluation, we scale our investigation to the more challenging
ImageNet-1K dataset, demonstrating the generalizability and scalability of our proposed
MIMIR framework. The subsequent sections present comprehensive experimental results
across three benchmark datasets: CIFAR-10, Tiny-ImageNet, and ImageNet-1K. This
multi-scale evaluation strategy allows a thorough analysis of MIMIR’s effectiveness under
varying conditions, from smaller to large-scale visual recognition tasks.

CIFAR-10. Table 3.1 shows the performance of End2End adversarial training from
scratch and Pre-training (MIMIR) + Fine-tuning on ViT-S trained on CIFAR-10. We
provide the performance of 6 established or SOTA AT methods on CIFAR-10, indicating
that traditional AT training strategies are not applicable to ViTs. Importantly, our exper-
imental results also demonstrate that MIMIR can substantially improve all AT methods.
The reason is that training ViTs from scratch is known to be difficult [32, 235] and even
more difficult for adversarial training [172]. For example, robust accuracy is lower than 30%
on ViT-B without pre-training [172]. In contrast, MIMIR provides a more straightforward
methodology and avoids this difficulty by switching to pre-training with a theoretically
grounded MIM learning task.

Table 3.1: Comparison between End2End AT and Pre-training (MIMIR) + Fine-tuning
using ViT-S on CIFAR-10.

Training AT Method Natural PGD AA

End2End

AT [12] 75.36 32.84 26.17
Fast AT [100] 76.81 32.57 21.41
TRADES [94] 74.96 32.12 24.90
MART [154] 72.42 24.47 23.45
Generalist [165] 60.88 14.44 11.20
DBAT [142] 68.32 18.83 5.25

MIMIR
Pre-training

AT [12] 88.11↑12.75 56.63↑23.79 53.18↑27.01
Fast AT [100] 87.22↑10.41 49.17↑16.6 35.89↑14.48
TRADES [94] 88.19↑13.23 56.42↑24.3 51.70↑26.8
MART [154] 80.55↑8.13 50.81↑26.34 39.92↑16.47
Generalist [165] 88.81↑27.93 37.85↑23.41 33.67↑22.47
DBAT [142] 88.56↑20.24 41.08↑22.25 24.59↑19.34

Time Consumption (End2End vs. Pre-training(PT)+Fine-tuning(FT)). Note
that we follow the standard way to compare End2End and MIMIR (Pre-training + Fine-
tuning) training methods by fixing the training schedule, following existing works [43, 184,
231, 236, 189], where we include pre-training 800 epochs + fine-tuning 100 epochs versus
supervised End2End training of 300 epochs. The reason for having a larger number of pre-
training epochs is that self-supervised pre-training is much more efficient (see Table 3.12 in
Section 3.4.8) than End2End training, and the pre-trained backbone can be used multiple

Chapter 3. Information Bottleneck in Adversarial Pre-training 55

times for various fine-tuning tasks. For example, in Table 3.1, the 6 End2End AT methods
cost 300 × 6 = 1800 fine-tuning epochs. MIMIR costs 800 pre-training epochs + 100 × 6
fine-tuning epochs, i.e., we only conduct the pre-training once for results in Table 3.1.
MIMIR pre-training epoch is more efficient than a fine-tuning epoch by discarding 75% of
image patches.

More specifically, Table 3.2 shows the total time consumption of End2End vs. Pre-
training+Fine-tuning on three architectures with ImageNet-1K. Although MIMIR takes
more training epochs, its pre-training+fine-tuning paradigm still costs less time than
End2End adversarial training and gains much better performance on both natural and
adversarial examples. Additional time consumption results with different datasets can be
found in Table 3.12 in Section 3.4.8.

Table 3.2: Time consumption of End2End vs. Pre-training+Fine-tuning.
Arch GPU AT Method Epochs Hours

ViT-S 4 A6000 PGD10 300 187.64
4 A6000 MIMIR(PT)+PGD10(FT) 800(PT)+100(FT) 123.76

ViT-B 4 A6000 PGD10 300 451.39
4 A6000 MIMIR(PT)+PGD10(FT) 800(PT)+100(FT) 263.77

Swin-L 4 H100 PGD3 300 180.14
4 H100 MIMIR(PT)+PGD3(FT) 800(PT)+100(FT) 168.20

ImageNet-1K. Table 3.3 compares MIMIR with previous works concerning adversar-
ial robustness on ImageNet-1K (l∞, ϵ = 4/255), which follows the evaluation of common
standardized RobustBench [145]. Similar to other works [141, 185, 140], we consider sim-
pler AT methods (i.e., PGD and APGD AT) instead of the latest AT methods, such as
Generalist [165] and DBAT [142]. Indeed, since the latest methods introduce tailored
components for CNNs to improve their adversarial robustness, they might not be effective
for ViTs. The number of parameters, training epochs, steps in the inner maximization of
AT, and clean and robust accuracy are reported to provide a more detailed understanding
of the performance. The robust accuracy is evaluated by AutoAttack on the Robust-
Bench [145] validation set (5,000 images). We divide the models into: small (≈ 22M) and
large (≈ 86M) models, corresponding to ViT-S and ViT-B. Experimental results demon-
strate that MIMIR outperforms all previous works across various training setups.

MIMIR with Various Architectures. In Table 3.4, we show that MIMIR can be ap-
plied to diverse architectures. Specifically, we use three representative options, including
ViT+convolutional blocks (CVST) [140], the latest CNN architecture (ConvNext [34]),
and a hierarchical vision transformer (Swin [33]). The ViT+CVST refers to using Con-
vStem [238] to replace the patch embedding in ViTs with a convolutional block. The
ViT+CVST shows improved robustness compared to pure ViT models in [140].

56 Chapter 3

Table 3.3: Comparison with SOTA results on ImageNet-1K under ϵ = 4/255. The “Adv.
Steps” refers to attack steps for generating adversarial examples for AT. The results of [183]
are evaluated using 20-step PGD (AutoAttack is designed as a more powerful alternative
to PGD), which is marked as † in the table. Although AdvXL only uses 20 epochs, it costs
more time due to the huge datasets for pre-training and fine-tuning.
Architecture Params (M) FT FT Epoch Adv. Steps Source Natural AA

ResNet-50 25.0 PGD 100 1 Aug warm-up [170] 67.44 35.54
DeiT-S 22.1 PGD 100 1 Aug warm-up [170] 66.62 36.56
DeiT-S 22.1 PGD 110 1 Light Recipe [141] 66.80 37.90
ViT-S 22.1 PGD 120 3 EasyRobust [237] 66.43 39.20
ViT-S 22.1 PGD 300 3 AT [185] 70.7 43.7

RobArch-S 26.1 PGD 110 3 RobArch [176] 70.17 44.14
ViT-S 22.1 APGD 300 2 Pre+AT [140] 69.22 44.04
ViT-S 22.1 PGD 100 3 MIMIR 68.08 41.88
ViT-S 22.1 PGD 300 3 MIMIR 71.52 45.90
ViT-S 22.1 APGD 300 2 MIMIR 71.00 46.10
ViT-S 22.1 APGD 300 3 MIMIR 70.96 46.16

ViT-B 86.6 ARD+PRM 10 5 ARD+PRM [172] 69.10 34.62
Swin-B 87.7 ARD+PRM 10 5 ARD+PRM [172] 74.36 38.61
ViT-B 86.6 PGD 120 3 EasyRobust [237] 70.64 43.04
Swin-B 87.7 PGD 120 3 EasyRobust [237] 75.05 47.42

RobArch-L 104 PGD 100 3 RobArch [176] 73.44 48.94
ViT-B 86.6 PGD 300 3 AT [185] 74.7 49.7
ViT-B 86.6 PGD 20 3 AdvXL [183] 73.4 53.0†
ViT-B 86.6 APGD 300 2 Pre+AT [140] 74.10 50.30
ViT-B 86.6 PGD 100 3 MIMIR 75.68 52.96
ViT-B 86.6 PGD 300 3 MIMIR 76.98 53.84
ViT-B 86.6 APGD 100 2 MIMIR 74.40 51.92
ViT-B 86.6 APGD 100 3 MIMIR 74.08 51.24
ViT-B 86.6 APGD 300 2 MIMIR 76.32 54.28
Swin-B 87.7 PGD 150 3 MIMIR 76.62 55.90

As CNN and hierarchical architecture cannot accept variable-length inputs, MIMIR is
not directly compatible with ConvNext and Swin. To adapt MIMIR to the hierarchical
Swin Transformer, we implemented Masked Image Modeling using Group Window At-
tention [188], which groups image patches within each local window of arbitrary size and
performs masked self-attention in each group. To apply MIMIR to ConvNext, we use
SparK [189] for CNN to handle irregular and randomly masked input images, which is
achieved by sparse convolution. MIMIR achieves better or comparable results compared
to SOTA results on RobustBench [145].

3.4.3 Ablation Study
Step by step ablation. Table 3.5 provides an ablation study to verify the design choices
of MIMIR. The ablation uses 100 epochs of 1-step PGD (PGD1) AT as the baseline.
Then, we apply end-to-end clean ImageNet-1K pre-training (weights available in timm

library§) as initialization of AT. After that, we replace the clean pre-training with MAE,
adv MAE, and MIMIR step by step. The adv MAE refers to using adversarial examples
but not using the MI I(x + δ, z) in the loss. The pre-training schedule is 800 epochs.

§https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/
vision_transformer.py

Chapter 3. Information Bottleneck in Adversarial Pre-training 57

Table 3.4: Comparsion with SOTA ImageNet-1K results on RobustBench [145] with dif-
ferent architectures. †: The CVST modules are also pre-trained with MIMIR.

Architecture Method FT Epoch Natural AutoAttack

ViT-S+CVST
[140] 300 72.56 48.08

MIMIR 300 72.72 48.44
MIMIR† 300 73.02 48.09

ViT-B+CVST
[140] 250 76.30 54.66

MIMIR 300 76.72 54.04
MIMIR† 300 76.32 55.08

ConvNext-T [140] 300 72.40 48.60
MIMIR 300 72.50 48.76

Swin-B [185] 300 76.16 56.16
MIMIR 150 76.62 55.90

Swin-L [185] 300 78.92 59.56
MIMIR 100 78.62 59.68

We also use stronger adversarial fine-tuning for better performance, including 2-step PGD
(PGD2), APGD (APGD2) FT, and a longer fine-tuning schedule (300 epochs). Please
note that a longer training schedule does not guarantee better results [172]. Our results
indicate that MIMIR outperforms baselines and can be further improved under the long
training schedule. In addition, MIMIR is also efficient and increases less than 5% of
time consumption on ImageNet-1K compared to MAE, which is shown in Table 3.12 in
Section 3.4.8.

Table 3.5: Ablation of pre-training (PT) and fine-tuning (FT) methods on ImageNet-1K.
(†: catastrophic over-fitting [100] due to 1-step AT when fine-tuning, which can be fixed
by 2-step AT. The fixed natural and robust accuracy are 69.96 and 36.90, respectively.)

Architecture Training Recipe Natural AA

ViT-S

PGD1 FT w/o PT 66.02 31.40
clean PT + PGD1 FT 67.04 33.70
MAE PT + PGD1 FT 69.98 35.64
adv MAE PT + PGD1 FT 68.24 19.32†
MIMIR PT + PGD1 FT 71.02 37.22
MIMIR PT + PGD2 FT 70.78 38.16
MIMIR PT + APGD2 FT 68.78 42.86
100 → 300 epochs FT 71.00 46.10

MI measure. In Section 3.3.4, we provide lower and upper bound (Eq. (3.11)) of
I(x + δ, z). According to the two bounds, I(x + δ, z) is supposed to decrease while the
autoencoder learns to reconstruct the natural image x. This motivates us to directly em-
bed I(x + δ, z) as a minimizing learning objective. In this chapter, we use Iα [197] and
HSIC [153] as estimators (detailed definitions in Appendix 3.7.7). Table 3.6 demonstrates
the performance with different values of λ. According to the results, we use HSIC with
λ = 1e − 05 for all other experiments.

58 Chapter 3

Table 3.6: Comparison between HSIC [156] and Iα [197] using ViT-T on CIFAR-10. Mod-
els are pre-trained 800 epochs and adversarially fine-tuned with 10-step PGD for 50 epochs.

Pre-train λ Estimator Natural PGD

MIMIR 0.001 HSIC 69.63 43.17
MIMIR 0.001 Iα 75.00 46.11
MIMIR 1e-05 HSIC 76.30 47.60
MIMIR 1e-05 Iα 75.53 46.75
MIMIR 1e-06 HSIC 74.90 46.19
MIMIR 1e-06 Iα 74.60 45.66

Table 3.7: Comparison between different pre-training settings. All models are pre-trained
for 800 epochs and then fine-tuned with 10-step PGD for 50 epochs using ViT-T on CIFAR-
10.

Pre-train λ Estimator Natural PGD

MAE 0.0 - 69.02 42.31
adv MAE (1-step) 0.0 - 74.69 46.28
adv MAE (10-step) 0.0 - 73.96 45.77
MIMIR 1e-05 HSIC 76.30 47.60

1-step is better than 10-step of AT in pre-training. We also show that MIMIR
outperforms original MAE [43] and adv MAE with different PGD steps (to generate ad-
versarial examples for training). MAE in Table 3.7 refers to using the original MAE for
pre-training and then fine-tuning with 10-step PGD. The adv MAE refers to using adver-
sarial examples without the MI I(x + δ, z) in loss. The adv MAE (10-steps) refers to using
the 10-step PGD algorithm (ϵ = 8, α = 2) to generate adversarial examples at pre-training.
The adv MAE provides higher accuracy than MAE, which supports our statement that
using adversarial examples in Masked Image Modeling creates a more difficult reconstruc-
tion task. This more difficult task further improves the performance of downstream models
(see also Table 3.10). We use the default learning rate (i.e., 5.0e − 4) of MAE, so there is
a performance drop in experiments in Tables 3.6 and 3.7 since AT prefers larger learning
rates for CIFAR-10 as shown in Table 3.17 in the appendix.

Data augmentation is not always harmful. As mentioned in previous works [170,
141], strong data augmentation makes the training samples too difficult to learn by ViTs
while conducting adversarial training. However, we show that data augmentation is not
harmful when the training schedule is extended. According to this finding, we apply
strong data augmentation in our experiments with a longer fine-tuning schedule, such as
our results in Table 3.3.

The strong data augmentation refers to the combination of Randaugment [180], Cut-
Mix [181], and MixUp [182]. In this section, we evaluate two different solutions to ease
this problem. First, we only use simple data augmentation for adversarial training, in-
cluding random crop (or random resize crop for ImageNet-1K) and random horizontal flip

Chapter 3. Information Bottleneck in Adversarial Pre-training 59

Table 3.8: Data augmentation with longer fine-tuning schedule.
Arch Epoch Augmentation Natural PGD20

ViT-B 800
Weak Augmentation 89.90 60.26
+ CutMix [181],MixUp [182] 91.01 60.62
+ Randaugment [180] 90.19 62.75

0 20 40

epochs

1.0

1.5

2.0

l
o
s
s

train loss

0 20 40

epochs

40

60

80

a
c
c
u
r
a
c
y

test acc.

weak aug

warmup aug

aug

Figure 3.3: Training loss and natural accuracy of ViT-S with three different data augmen-
tations on CIFAR-10.

(“weak aug”). Second, we use a 10-epoch warmup procedure for strong data augmentation.
The warmup of Randaugment is implemented by progressively increasing the distortion
magnitude from 1 to 9 (“warmup aug”). For CutMix and MixUp, we warm up by increas-
ing the mixup probability from 0.5 to 1.0. As shown in Figure 3.3, “weak aug” provides
the best accuracy. The “warmup aug” shows a slightly improved accuracy compared to
fusing strong augmentation. Therefore, we provide a different result from [170] on the
smaller dataset CIFAR-10, i.e., we show that weak augmentation is better than warmup
augmentation. Even data augmentation with reduced amplitude is still difficult to learn
at the beginning of adversarial training. Although strong augmentation is harmful to a
normal training schedule, we show in Table 3.8 that CutMix [181], MixUp [182], and Ran-
daugment [180] increase the accuracy of adversarial training when training with a longer
schedule, e.g., 800 epochs of fine-tuning. We conjecture that combining data and strong
augmentations is helpful but difficult for adversarial training to learn. Thus, more epochs
are needed to learn meaningful representation. Loss and accuracy curves can be found in
Appendix 3.7.5. Due to the longer schedule, we use patch size 4 to reduce training time.

3.4.4 Training Epochs Evaluation Study
Pre-training epoch. Our experiments so far are based on 800-epoch pre-training. In
Figure 3.4, we show the influence of different numbers of epochs. We use ViT-T and ViT-S
as the models for CIFAR-10, ViT-S, and ViT-B for Tiny-ImageNet. We fine-tune each
model for 50 epochs after MIMIR pre-training. Both adversarial and natural accuracy
are improved with a longer training schedule. On CIFAR-10, the improvement of ViT-T
is more significant than that of ViT-S. On Tiny-ImageNet, the increase is more obvious.
Therefore, a longer pre-training schedule obviously increases performance.

60 Chapter 3

200 400 600 800

epochs

80

85

a
c
c
u
r
a
c
y

CIFAR-10

200 400 600 800

epochs

46

48

50

52

P
G
D

2
0

a
c
c
u
r
a
c
y

CIFAR-10

200 400 600 800

epochs

60.0

62.5

65.0

a
c
c
u
r
a
c
y

Tiny-ImageNet

200 400 600 800

epochs

26

27

P
G
D

2
0

a
c
c
u
r
a
c
y

Tiny-ImageNet

ViT-S

ViT-B

Figure 3.4: Natural and adversarial accuracy of ViT-S and ViT-B with different numbers
of pre-train epochs under a 20-step PGD attack. The performance increases as the number
of pre-train epochs increases.

5 10 100

epochs

50

60

70

80

90

a
c
c
u
r
a
c
y

Natural

5 10 100

epochs

20

30

40

50

P
G

D

2
0

a
c
c
u
r
a
c
y

Robust

CIFAR

Tiny

ImageNet

Figure 3.5: Natural and adversarial accuracy of ViT-S adversarially fine-tuned for 5 or 10
epochs on CIFAR-10, Tiny-ImageNet, and ImageNet-1K.

Fine-tuning epoch. To show that the performance of the final model is largely attributed
to MIMIR pre-training, we do a very short fine-tuning for pre-trained models. This is to
train the randomly initialized classification layer since we do not have the classification
layer at pre-training. Therefore, we evaluate the pre-training performance. In Figure 3.5,
we show that MIMIR pre-training plus 5 or 10 epochs of fine-tuning is enough to achieve
similar performance compared to 100-epoch fine-tuning.

3.4.5 Adaptive Attacks
We evaluate MIMIR against adaptive adversaries following common practices [239]. Adap-
tive adversaries possess the capability to devise targeted attacks specifically tailored to
exploit the mechanisms of MIMIR, particularly if they have prior knowledge of its archi-
tecture and defensive strategies. For example, the adversary may attack feature space [240,
241] since MIMIR trains the backbone to extract robust features. Here, the backbone refers
to the ViT model without the classification layer, i.e., the encoder of MIMIR.

We provide two adaptive attacks specifically designed against MIMIR. First, we introduce
the PGD Mutual Information attack (PGD-MI), which utilizes the MI I(x + δ, z) to gen-
erate adversarial examples, as I(x + δ, z) is used in MIMIR pre-training as a penalty in
the loss. PGD-MI attacks the model by directly increasing the MI I(x + δ, z). Specifically,
we add the MI loss into the PGD algorithm:

max
δ∈S

LCE(xi + δ, yi) + λI(x + δ, z). (3.18)

Chapter 3. Information Bottleneck in Adversarial Pre-training 61

Table 3.9: Adversarial accuracy by adaptive attacks. The models are pre-trained for 800
epochs by MIMIR and fine-tuned for 100 epochs by 1-step PGD AT.

Dataset Model PGD20 PGD-MI100 PGD-fea100

CIFAR-10
ConViT-S 56.35 56.16 78.52

ViT-S 56.63 56.31 78.41
ViT-B 58.14 57.85 80.49

Tiny-ImageNet
ConViT-S 26.39 26.29 58.50

ViT-S 26.37 26.18 57.36
ViT-B 25.41 25.05 58.90

ImageNet-1K
ConViT-S 53.86 53.84 72.10

ViT-S 54.56 54.55 72.27
ViT-B 55.41 55.36 73.51

Table 3.10: Natural accuracy of MAE and MIMIR (800 epochs pre-training for both) that
are fine-tuned on natural images.

Architecture Pre-train CIFAR-10 Tiny ImageNet

ViT-B MAE 96.79 73.38 82.92
MIMIR 96.91 75.43 83.20

ConViT-S MAE 94.95 69.03 78.37
MIMIR 95.38 70.40 79.21

ViT-S MAE 95.95 70.00 77.45
MIMIR 95.95 71.14 78.69

where the value of λ in MIMIR pre-training is available to adversaries.

Second, we introduce a PGD feature attack (PGD-fea) that directly attacks the feature
extracted by ViT backbones following [240]. In particular, we attack the feature extractor
from the backbones after the adversarial fine-tuning. The PGD-fea attack increases the
Euclidean distance between features extracted from natural and adversarial examples. We
implement it using the PGD algorithm:

max
δ∈S

Lmse(fe(x), fe(x + δ)). (3.19)

Both PGD-MI and PGD-fea are optimized for 100 steps to ensure the attacking algorithm
converges. The perturbation budget is the same as the previous evaluation, i.e., ϵ = 8/255
for CIFAR-10 and Tiny-ImageNet, and ϵ = 4/255 for ImageNet-1K. Table 3.9 demonstrates
the adaptive evaluation results for PGD-MI and PGD-fea attacks, showing that MIMIR
is robust against adaptive attacks on benchmark datasets.

62 Chapter 3

MAE ViT-S MIMIR ViT-SMIMIR ConViT-S MAE ConViT-S

Figure 3.6: The loss landscapes of MIMIR and MAE pre-trained models.

MAE ViT-S MIMIR ViT-SMIMIR ConViT-S MAE ConViT-S

Figure 3.7: The loss heatmap of MIMIR and MAE pre-trained models.

3.4.6 Visualization of the Loss Landscape
To show that the robustness of MIMIR-trained models does not stem from gradient mask-
ing, we plot the loss landscape [242] in Figure 3.6. The loss landscape is the visualization
of the loss function as parameters change. The basic idea is to plot the loss around the
optimal parameters. Formally, we consider in the 2D case,

fl(α, β) = L(θ∗ + αθ1 + βθ2), (3.20)

where θ1 and θ2 are two direction vectors, α and β are two arguments of fl. In practice, we
use the parameters of trained models, i.e., θ∗. The landscapes of all models are smooth,
i.e., the gradient at a certain point is clear and can also be easily estimated by local average
gradients, which means the gradient is not masked or obfuscated. For completeness, we
also provide the corresponding loss heatmap (Figure 3.7) and accuracy at every epoch
(Figure 3.8).

MAE ViT-S MIMIR ViT-SMIMIR ConViT-S MAE ConViT-S

Figure 3.8: The loss and accuracy plots of MIMIR and MAE pre-trained models.

Chapter 3. Information Bottleneck in Adversarial Pre-training 63

Table 3.11: Natural and adversarial accuracy of ViT-S that is fine-tuned for 5 or 50 epochs
with natural images.

Fine-tune Dataset Pre-train Natural PGD

5 epochs

CIFAR-10 MIMIR 93.22 0.55
MAE 93.16 0.01

Tiny-ImageNet MIMIR 63.65 0.00
MAE 62.21 0.00

ImageNet-1K MIMIR 72.45 0.20
MAE 69.47 0.02

50 epochs

CIFAR-10 MIMIR 95.95 0.28
MAE 95.95 0.29

Tiny-ImageNet MIMIR 71.14 0.00
MAE 70.00 0.00

ImageNet-1K MIMIR 78.69 0.18
MAE 77.45 0.05

3.4.7 Fine-tuning with Natural Images
In Table 3.10, we show the results of MIMIR and the original MAE [43] with the same
hyperparameters. We fine-tune for 50 epochs for CIFAR-10 and Tiny-ImageNet, 100
epochs for ImageNet-1K. The results in Table 3.10 are reported with 800 pre-training
epochs. The blr used in Table 3.10 is 0.001. The fine-tuning batch size is 512 for CIFAR-10
and Tiny-ImageNet and 1024 for ImageNet-1K. We use weak data augmentation (“weak
aug”), which includes random crop and random horizontal flip. Surprisingly, MIMIR
outperforms MAE when fine-tuning with natural data.

According to Table 3.10 and 3.11, MIMIR consistently shows improved performance on
natural data. Although the models in Table 3.11 show poor robustness due to fine-tuning
on natural data, MIMIR pre-trained ones provide slightly better robustness. We want to
clarify that poor robustness is expected when fine-tuning with natural data. First, it is
known that standard training on natural data learns non-robust features [149], which hurts
performance under adversarial attacks. Second, MIMIR pre-training is implemented using
MSE loss plus an MI penalty between natural inputs and adversarial images. The adver-
sarial perturbations and MI penalty help MIMIR create a more difficult and discriminative
learning task to learn meaningful and robust features. This process does not include the
classification layer of the final model. Therefore, MIMIR still needs a trivial fine-tuning
process for superior performance on natural data and adversarial inputs. In other words,
the superior performance of our experiments comes from the combination of MIMIR and
the trivial fine-tuning process. In our case, we use the simplest PGD adversarial training
and plain training on natural data.

64 Chapter 3

Table 3.12: The average time consumption on 4 GPUs. The “mem.” refers to GPU
memory usage. The total time is estimated based on time consumption on a single epoch.
The training schedule for PGD10 and FastAT is 300 epochs. The training schedule for
MAE and MIMIR is 800 epochs.

CIFAR-10 [158] Tiny-ImageNet [186] ImageNet-1K [187]
Architecture Method time[H] mem.[GB] time[H] mem.[GB] time[H] mem.[GB]

ViT-S

PGD10 AT 12.44 2.54×4 25.5 3.99×4 187.64 12.5×4
FastAT 3.61 2.54×4 5.64 4.03×4 46.29 10.4×4
MAE 3.58 3.24×4 7.33 3.27×4 59.91 11.1×4

MIMIR 4.09 3.12×4 8.89 3.18×4 61.22 11.1×4

ViT-B

PGD10 AT 30.1 5.39×4 85.18 8.30×4 451.39 22.1×4
FastAT 10.23 5.36×4 15.02 8.34×4 113.44 19.8×4
MAE 11.78 5.95×4 23.67 5.95×4 109.09 17.0×4

MIMIR 13.11 6.08×4 27.11 6.11×4 113.31 17.0×4

ConViT-S

PGD10 AT 36.88 6.64×4 74.75 12.19×4 552.21 32.5×4
FastAT 8.88 5.86×4 15.27 10.62×4 119.27 26.4×4
MAE 7.33 10.6×4 15.0 10.61×4 135.49 27.5×4

MIMIR 10.0 10.4×4 20.0 10.54×4 135.8 28.3×4

3.4.8 Efficiency
We provide an analysis of the efficiency of MIMIR. Table 3.12 provides the total time con-
sumption and memory usage of different adversarial training methods, which are evaluated
on four A6000 GPUs. MIMIR is more efficient than 10-step PGD but slightly less efficient
than FastAT, with higher robust accuracy than both 10-step PGD and FastAT. Note that
FastAT could easily overfit [100], and our experiments on CIFAR-10 (see Table 3.1) also
indicate that FastAT has converged and tends to overfit from around 300 epochs. Thus,
we only provide the training time of FastAT with 300 epochs, which represents the best
performance of FastAT. Further, we provide the training time of MAE in Table 3.12, which
shows that the extra training time consumption introduced by the calculation MI between
x + δ and z is small. In sum, MIMIR introduces limited computational overhead on the
current most efficient method FastAT, while outperforming 10-step PGD and FastAT in
robust accuracy.

3.5 Discussion and Limitations
Across our experiments, we have observed the promising performance of MIMIR. Following
the principle of IB, we can intuitively consider a bottleneck between the encoder and
decoder. As the reconstruction output is constrained by natural data x, the bottleneck
will filter out information from adversarial perturbations δ. We provide a theoretical
guarantee of this bottleneck in Section 3.3.4. In Eq. (3.5), we embed this bottleneck as a
learning object to further improve the performance, which also confirms the correctness of
our theoretical guarantee in Section 3.3.4. Table 3.7 shows that our method works better
than related works even without embedding the bottleneck in Eq. (3.5). With the two

Chapter 3. Information Bottleneck in Adversarial Pre-training 65

information sources of x and δ, the model is trained to learn the robust features from x

and forget the information of δ under the constraint of the reconstruction target.

While MIMIR shows better performance, there are still certain limitations. MIMIR is
a pre-training method. An adversarial fine-tuning is necessary to build the final robust
model. Thus, the shortcomings of traditional adversarial training cannot be completely
avoided. In our experiments, we utilize the simple PGD algorithm for fine-tuning, but
one can further improve MIMIR pre-trained models with more advanced approaches. In
addition, MIMIR follows the design of MAE, and we also utilize the characteristic that
ViTs can process variable-length inputs. Therefore, current MIMIR cannot directly handle
pyramid-based ViTs and CNNs. While it is not trivial, we apply MIMIR to the latest
CNN architecture (see Appendix 3.7.4) by sparse convolution from SparK [189]. However,
the sparse convolution is not as efficient as dropping patch embeddings. We leave these
limitations to future work.

3.6 Conclusions
This chapter provides a novel theoretical MI analysis on ViT adversarial training, show-
ing that MI between the adversarial example and its latent representation in ViT-based
autoencoders should be constrained by utilizing the MI bounds. Based on this finding,
we propose MIMIR as a theoretically grounded pre-training method to improve adver-
sarial robustness for ViTs. MIMIR uses adversarial examples as inputs and natural data
as the reconstruction target. In this way, the information from the adversarial perturba-
tions is decreased by the bottleneck, while the information from natural data is preserved
while reconstructing the target. Our experimental results show that MIMIR substantially
improves adversarial robustness compared to recent related works on various benchmark
datasets.

3.7 Appendix

3.7.1 Datasets
We use three commonly used datasets to evaluate MIMIR: CIFAR-10 [158], TinyIma-
geNet [186], and ImageNet-1K [187]. CIFAR-10 [158] comprises 50,000 images with size
3 × 32 × 32 in 10 classes. ImageNet-1K [187] is the most commonly used dataset for
the evaluation of ViTs and their variants, which is composed of more than 1.2 million
high-resolution images in 1,000 classes. In our experiments, images from ImageNet-1K are
resized to 3×224×224. For completeness, we also include Tiny-ImageNet [186] as a medium
size dataset between CIFAR-10 [158] and ImageNet-1K [187]. Tiny-ImageNet [186] con-
tains 100,000 images with size 3 × 64 × 64 in 200 classes.

66 Chapter 3

3.7.2 Decoder Hyperparameters
We use transformer blocks but fewer layers as the backbone of the decoder. For CIFAR-10,
we use the patch size of 2, 4 for Tiny-ImageNet, and 16 for ImageNet-1K. Table 3.13 shows
the hyperparameters of decoder architectures. For different ViT architectures, we use the
transformer blocks of the respective architectures to build the encoder.

Table 3.13: Model architectures of the encoder and decoder.
Model Layers Hidden size MLP ratio Heads

ViT-T (encoder) 12 192 4 3
decoder 2 128 4 16

3.7.3 Details of Training Hyperparameters
In Tables 3.14 and 3.15, we provide the default hyperparameters used in our experiments.
We use different patch sizes for different datasets: patch size 2 for CIFAR-10, 4 for Tiny-
ImageNet, and 16 for ImageNet-1K. Using smaller patch sizes increases the time con-
sumption when calculating self-attention, but MIMIR pre-training discards 75% patches,
making it still efficient. Due to the depth and comparatively small embedding size of CaiT,
we use a different drop path and layer-wise decay when fine-tuning (for ImageNet-1K). For
CaiT-XXS24, we use 0.95 and 0.15 as layer-wise decay and dropout, and 0.85 and 0.35
for CaiT-S36. We also apply the stochastic depth decay rule [243] to CaiT. CaiT-S36
models are only fine-tuned for 50 epochs due to time consumption, and it is sufficient to
get superior results. The batch size to fine-tune CaiT is 512 due to the limitation of GPU
memory. Other hyperparameters are consistent with Tables 3.14 and 3.15.

In addition, we use elucidating diffusion model (EDM) data as a data augmentation. Gen-
erative data is usually used to improve adversarial training [98, 244, 97, 96]. Specifically,
we use 5 million generated CIFAR-10 data and 1 million Tiny-ImageNet data provided
by [98]. The EDM data is applied to experiments with CIFAR-10 and Tiny-ImageNet but
not to ImageNet-1K.

Table 3.14: Pre-training hyperparameters.
Config Value

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1 = 0.9, β2 = 0.95
batch size 512(CIFAR-10, Tiny), 2,048 (ImageNet-1K)
learning rate schedule cosine decay
warmup epochs 40
training epochs 800
augmentation RandomResizedCrop, RandomHorizontalFlip

Chapter 3. Information Bottleneck in Adversarial Pre-training 67

Table 3.15: Fine-tuning hyperparameters.
Config Value

optimizer AdamW
base learning rate 0.5e-2 (CIFAR-10), 1e-3 (ImageNet-1K, Tiny)
weight decay 0.05
optimizer momentum β1 = 0.9, β2 = 0.999
layer-wise lr decay 0.65
batch size 128 (CIFAR-10), 256 (Tiny), 1,024 (ImageNet-1K)
learning rate schedule cosine decay
warmup epochs 10
training epochs 100
augmentation RandomResizedCrop, RandomHorizontalFlip
drop path 0.1

3.7.4 Results on CNN
We also apply our MIMIR pre-training to CNN architecture. In Table 3.16, we report the
performance of MIMIR pre-training (400 epochs) + APGD fine-tuning (300 epochs) on the
modern CNN architecture, ConvNext [34]. Compared to the current SOTA work [141, 140],
we achieve comparable or better performance.

Note that the original MIMIR is not compatible with CNN because MIMIR utilizes the
feature that ViT accepts variable-length inputs to perform masked image modeling. How-
ever, CNNs only accept fixed-length inputs. To solve this problem, we use SparK [189] for
CNN to handle irregular and randomly masked input images, which is achieved by sparse
convolution.

Table 3.16: Results on ConvNext.
Architecture Method Adv. Step Natural AA

ConvNext-T
[141] 1 71.60 44.40
[140] 2 72.40 48.60

MIMIR 2 72.50 48.76

3.7.5 Data Augmentation Evaluation
Figure 3.9 demonstrates the loss and accuracy while training with different augmentations.
“no mix” refers to using only weak augmentation, including RandomResizedCrop and
RandomHorizontalFlip. “+mix” refers to using MixUp (0.8) and CutMix (1.0). “+aug”
refers to using MixUp (0.8), CutMix (1.0), and Randaugment (rand-m9-mstd0.5-inc1).

3.7.6 Dropout is Important for Deeper Architecture
We also consider applying our method to deeper ViTs (i.e., CaiT [206]). CaiT is designed
for deeper high-capacity transformers that benefit from depth. Simply increasing the depth
may cause training failure of ViTs [206]. The CaiT solves this problem by LayerScale and
class-attention. In adversarial training, training deeper networks is even more difficult.

68 Chapter 3

Table 3.17: Different learning rates. Fine-tuned for 50 epochs.
Dataset Models LR Natural PGD10

CIFAR-10 ViT-T

5.0e-4 76.30 47.60
1.0e-3 80.69 49.56
1.0e-2 85.62 48.78
5.0e-2 85.12 50.30
1.0e-1 84.51 50.40

0 250 500 750

epochs

1.0

1.5

2.0

2.5

l
o
s
s

train loss

0 250 500 750

epochs

20

40

60

80

a
c
c
u
r
a
c
y

test acc.

+mix

no mix

+aug

Figure 3.9: The training results of using different data augmentations with 800 epochs.

The dropout has a significant impact on robustness. In Table 3.18, we show the results
using MIMIR with different dropout values.

3.7.7 Mutual Information and HSIC
MI measures the mutual dependence between two random variables, X and Y . It can be
decomposed as:

I(X, Y) = H(X) − H(X|Y),

= H(Y) − H(Y |X),

= H(X) + H(Y) − H(X, Y),

(3.21)

where H(X) and H(Y) are the information entropies, H(X|Y) and H(Y |X) are the con-
ditional entropies, and H(X, Y) is the joint entropy of X and Y .

Table 3.18: The experimental results on CaiT-S36. The “SDD” refers to the stochastic
depth decay rule [243].

Dropout Layer Decay LR ϵ = 2/255

Natural PGD

0.1 0.65 72.68 35.60
0.1+SDD 0.65 73.06 38.88

0.2 0.75 75.41 43.99
0.25 0.75 71.46 48.86
0.25 0.85 76.43 53.49

0.25+SDD 0.85 75.92 56.53
0.35+SDD 0.85 76.05 56.78

Chapter 3. Information Bottleneck in Adversarial Pre-training 69

Unfortunately, estimating MI in high-dimensional space is difficult since it involves a pre-
cise estimation of the underlying data distribution P(X,Y) or P(X) and P(Y). To address
this issue, the deterministic information bottleneck (DIB) [197] uses the recently proposed
matrix-based Rényi’s α-entropy functional Iα [198, 199], which suggests similar quantities
to I(X, Y) in terms of the normalized eigenspectrum of the Hermitian matrix of the pro-
jected data in the reproducing kernel Hilbert space (RKHS), but avoids density estimation.

Specifically, given N pairs of samples (xi, yi)N
i=1 (in our setup, N refers to the mini-batch

size), we can obtain two Gram (or kernel) matrices Kx and Ky, for variables X and
Y , respectively, with (Kx)i,j = κx(xi, xj), (Ky)i,j = κy(yi, yj), in which κx and κy are
corresponding kernel functions. The information entropy of X can be expressed as:

Hα(X) = 1
1 − α

log2
(
tr(K̃x

α)
)

(3.22)

= 1
1 − α

log2

(
N∑

i=1

λi(K̃x)α

)
,

where K̃ is the normalized version of K, i.e., K̃ = K/tr(K), and λi(K̃) denotes the i-th
eigenvalue of K̃.

Further, the joint entropy for X and Y can be expressed as:

Hα(X, Y) = Hα

(
Kx ◦ Ky

tr(Kx ◦ Ky)

)
, (3.23)

where Kx ◦ Ky denotes the Hadamard product between the matrices Kx and Ky.

Given Eqs. (3.22) and (3.23), the matrix-based Rényi’s α-order mutual information Iα(X; Y)
in analogy of Shannon’s MI is given by:

Iα(X; Y) = Hα(X) + Hα(Y) − Hα(X, Y). (3.24)

Throughout this chapter, we use the radial basis function (RBF) kernel κ(xi, xj) =
exp(− ∥xi−xj ∥2

2σ2) with kernel width σ to obtain the Gram matrices.

The Hilbert–Schmidt Independence Criterion (HSIC) [156] is also a kernel-based depen-
dence measure and is usually used as a surrogate of MI. Formally, the HSIC is defined as

70 Chapter 3

the squared norm of the cross-covariance operator ||CXY ||2:

HSICPX,Y (X, Y)

= ||CXY ||2

= Exyx′y′ [κx(x, x′)κy′ (y, y′)]

+ Exx′ [κx(x, x′)]Eyy′ [κy(y, y′)]

− 2Exy[Ex′ [κx(x, x′)]Ey′ [κy(y, y′)]],

(3.25)

where κx and κy are kernel functions, E is the expectation, x′ and y′ are independent
copies of x and y, respectively.

Given N pairs of samples (xi, yi)N
i=1, the empirical estimator of HSIC is given by:

HSICPX,Y (X, Y) = 1
N2 tr (KxHHyH) , (3.26)

(Kx)i,j = κx(xi, xj), (Ky)i,j = κy(yi, yj), and H = I − 1
N
��

T is the centering matrix.

Part II

Training-Time Adversarial
Machine Learning

71

Chapter 4. Adversarial Perturbation for Backdoor Detection 73

Chapter 4

Adversarial Perturbation for Backdoor
Detection

A deep learning model may be poisoned and still perform as expected when receiving a
clean input, but will misclassify when receiving a backdoored input. This is similar to uni-
versal adversarial perturbations (UAP). Indeed, UAPs are input-agnostic perturbations
capable of misleading a well-trained model. We observe an intuitive phenomenon: UAPs
generated from backdoored models need fewer perturbations than UAPs from clean mod-
els for a successful attack. UAPs from backdoored models tend to exploit the shortcut
from all classes to the target class, built by the backdoor. Based on this finding, this
chapter propose a backdoor detection method called Universal Soldier for Backdoor De-
tection (USB). With it, we can reverse engineer potential backdoor triggers via UAPs.
Experiments on 240 models show that USB effectively detects the injected backdoor and
provides comparable or better results than state-of-the-art methods.

4.1 Introduction
Deep learning technologies are subject to security attacks like backdoor attacks [8, 9]. The
backdoor attack commonly poisons a small part of the training data with a specific trigger
to build a covert link between the trigger and the target label. The infected model behaves
normally on clean inputs, but if the covert link is activated by an input with the trigger,
the model will output an attacker-desired target label. The backdoor attack poses urgent
security concerns when users outsource model training to third parties, such as Machine
Learning as a Service (MLaaS) [245], BigML [246], or when users reuse pre-trained models
from online platforms like Caffe Model Zoo [247] and Model Zoo [248].

There have been several proposals to detect backdoor attacks [110, 127, 144] by analyzing
well-trained models. In particular, reverse engineering approaches, such as Neural Cleanse

74 Chapter 4

Random UAP (backdoored) UAP (clean)NC Optimized Pattern

Figure 4.1: The random point is barely updated by NC.

(NC) [110], aim to reconstruct the trigger. However, such methods may capture the unique
features of the target class instead of the trigger [127]. Both class features and triggers
can lead a backdoored model to the target class. Reverse engineering decides whether
there is a backdoor based on the size (L1 norm) of the reconstructed triggers for every
class. If the difference between the unique class features and the trigger is not particularly
large concerning size, reverse engineering may not generate the trigger; see Fig. 4.4 as an
example. Furthermore, these methods work well against patch-based triggers (e.g., a fixed
square as a trigger), such as BadNet [8], but may fail under non-patch-based attacks (see
Tab. 4.3), such as Input-Aware Dynamic backdoor attack (IAD) [11]. The reason is that
reverse engineering usually starts from a random point, which is very different from triggers
designed by more advanced attacks, and NC-style methods only optimize the mask (for
details, see Sect. 4.2) without directly updating trigger patterns. In Fig. 4.1, we show the
pattern updated by NC from random noise. Therefore, it is difficult for NC-style methods
to generate attack-specific triggers. Moreover, NC-style methods also need a significant
amount of data (the whole training set) to perform the optimization with a larger number
of iterations [110].

This chapter presents a novel detection mechanism (USB) that does not suffer from the
aforementioned issues. More specifically, we investigate an inference-time defense requiring
only a small amount of clean data. To avoid using the class’s unique feature as a trigger,
we utilize the similarities between backdoor attacks and adversarial attacks, especially
universal adversarial perturbations (UAP) [229]. The UAP effectively fools the victim
model on any inputs because it captures the correlations among different regions of the
decision boundary [229]. We conjecture that UAP can also capture the feature of backdoor
neurons, resulting in smaller perturbations; see Fig. 4.1. This is because UAP utilizes the
normals to the decision boundary in different regions of the decision space, i.e., the UAP
finds the shortest path to cross the decision boundary. Backdoored models build shortcuts
from all classes to the targeted class by the trigger. Therefore, UAPs from backdoored
models are smaller than UAPs from clean models. USB requires less iterations and data,
as we directly use UAP to capture the potential backdoor. As UAP can be generalized
across different networks, we only need to generate UAP once for similar models, greatly
reducing the time requirement.

We evaluated USB on 240 models (150 on CIFAR-10 [158] with ResNet-18 [27], 45 on

Chapter 4. Adversarial Perturbation for Backdoor Detection 75

ImageNet [187] with Efficientnet-B0 [249], and 45 on CIFAR-10 [250] with VGG-16 [26]).
As the results indicate, USB outperforms the latest detection techniques [110, 127]. Our
contributions are summarized as follows:

• We propose a novel detection method, USB, that utilizes the similarities between
backdoors and UAPs. We show that a UAP with the same target as a backdoor at-
tack is smaller than UAPs with a different target from the backdoor attack regarding
the L1 norm.

• USB can detect stronger backdoor triggers for both patch-based (BadNet and La-
tent) and non-patch-based (Input-Aware Dynamic) backdoors. Existing methods
tend to conduct reverse engineering from random noise, which may not work under
advanced attacks. Our reversing process uses the target UAP as the starting point
for initialization to avoid the local optimal triggers, as the UAP is closer to potential
triggers.

• We conduct experiments on 240 models to assess our approach. We compare USB
with the NC and TABOR methods and USB provides competitive performance on
various datasets compared to state-of-the-art methods.

4.2 Related Work
Training-time Defenses. Training-time defenses refer to defenses that are conducted
during the training of the model, including detecting poisoned data points in training
data [109], reducing the impact of poisoned data on training the model by differential pri-
vacy [251], input pre-processing [252], and randomized smoothing [253]. These methods
take advantage of the difference between clean and poisoned data concerning the victim
model. For a clean sample that originally belongs to the target class, the model recognizes
it as the target class because the sample contains the features of the target class. For a
poisoned sample, the backdoored model extracts trigger features for classification. How-
ever, training-time defenses require access to training data, which may not be feasible in
cases where the model is pre-trained by a third party.

Inference-time Defenses. Inference-time defenses refer to defenses with access to the
pre-trained model and a certain amount of clean data, including detection by reverse en-
gineering of the backdoor trigger [110, 127, 254], pruning [130], and machine unlearning
to remove the backdoor [110]. The pruning and machine unlearning aim to remove the
backdoor by directly modifying the victim model, while the reverse engineering conducts
detection and reconstructs the backdoor trigger. Reverse engineering methods, such as
NC [110] and TABOR [144], take advantage of the behavioral characteristics of the back-
door itself. The backdoor builds a shortcut from within regions of the space belonging to
each label into the region belonging to the target. For backdoored models, transforming
input features of any class into features of the target class requires less perturbation than

Chapter 4. Adversarial Perturbation for Backdoor Detection 77

inputs of backdoored models to a single target class.

Algorithm 4.2 Updating of targeted UAP.
Input: Data points X, target class t, victim model f , UAP v, Maximum iteration

number m, learning rate lr
Output: Updated UAP v′ = pattern × mask

1: Initialize trigger by v : trigger = pattern × mask = v
2: for i = 0 to m do
3: x ⊆ X
4: x′ = x × (1 − mask) + pattern × mask
5: output = f(x′)
6: L = L(output, t) − SSIM(x, x′) + normL1(mask)
7: Backward loss L to update mask and pattern
8: mask : mask ← mask − lr × ∇mask
9: pattern : pattern ← pattern − lr × ∇pattern

10: v′ = pattern × mask
11: end for

4.3.2 Defense Overview
Our method consists of two main processes to detect whether there is a backdoor in the
targeted model. First, we generate a targeted UAP for the victim model. The UAP
is supposed to capture special neurons that can easily lead to misclassification. Then,
we use an optimization process to update the UAP so that it can focus on the most
important part. This “most important part” refers to the part of UAP most likely to
cause misclassification. We generate and optimize targeted UAPs for every class of the
model. We check whether there is an outlier smaller than the others from these UAPs to
decide if the model is backdoored or not. Fig. 4.2 illustrates the framework of our defense.

4.3.3 Targeted UAP
To work in the all-to-one setting, we modify the algorithm from [229] to generate targeted
UAP, which misleads all inputs to the targeted class. Let us assume a well trained deep
learning model f and K entries of training data D = {(xi, yi)}K−1

0 where xi ∈ RdX and
yi ∈ {0, 1}N . N is the number of classes, and dX is the input dimension. The targeted
UAP algorithm aims to find a perturbation vector v that misleads the model f on most of
the data points in D to a target class t. We use a very small number of data points X to
work in a more realistic situation. Empirically, a size smaller than 1% of D can be enough
for X. Then, the perturbation v should satisfy the following two constraints to ensure
practicality. First, the generated perturbation v should successfully mislead the model f ,

78 Chapter 4

i.e., the error rate should be larger than the desired threshold e:

Err(X + v) := 1
K

K−1∑
i=0

ri ≥ e,

where ri =

{
1, f(xi + v) ̸= f(xi)

0, f(xi + v) = f(xi).

Second, the perturbation v should be imperceptible. Specifically, the norm of v should be
smaller than the limit δ:

Plp,δ(v, △vi) = arg min
△vi

∥v + △vi∥2, s.t.∥△vi∥p ≤ δ.

In Alg. 4.1, we iteratively go through every data point in X to update UAP from scratch.
At each iteration, the algorithm searches for the minimal perturbation that sends xi + v

to the target class. Then, the error rate of inputting X + v to f should be larger than the
desired threshold e so that v is effective as a targeted UAP. This is feasible by solving the
following optimization problem:

△vi ← arg min
r

∥r∥2 s.t.f(xi + v + r) = t.

Following the algorithm in [229], this search optimization is implemented by DeepFool [255].

4.3.4 UAP Optimization
UAP is a collection of normals∗ to the decision boundary in different regions [229], including
but not only the regions where the trigger is located. Therefore, we further update the
targeted UAP through an optimization phase. The optimization objective is formalized as
a loss function:

L = Lce(output, t) − SSIM(x, x′) + normL1(mask), (4.1)

where Lce refers to the cross-entropy loss. The structural similarity index measure (SSIM)
measures the similarity between images [256].

The details are provided in Alg. 4.2. The optimization achieves two goals: (1) it makes
the targeted UAP focus on more important pixels, and (2) it ensures that the UAP can
mislead the victim model. The first goal is embedded in the loss by a trigger and a mask,
i.e., minimizing the mask by decreasing normL1(mask). At the beginning of Alg. 4.2, the
trigger and mask are initialized by the targeted UAP. The trigger is a copy of the UAP,
and the mask has the same shape as the trigger. In every iteration, the algorithm takes
a batch of data from X instead of using the whole X. The next iteration will use the

∗Minimal distance from the region to the decision boundary.

Chapter 4. Adversarial Perturbation for Backdoor Detection 79

Model Acc. ASR Method Reversed Trigger Model Detection Target Class Detection
L1 norm Clean Backdoored Correct Correct Set Wrong

Clean 85.38 N/A
NC 51.59 50 0 N/A N/A N/A

TABOR 55.09 50 0 N/A N/A N/A
USB 48.99 50 0 N/A N/A N/A

Backdoored
(2×2 trigger) 83.43 95.04

NC 8.72 5 45 44 1 0
TABOR 9.26 5 45 44 1 0

USB 9.83 1 49 45 4 0

Backdoored
(3×3 trigger) 83.59 97.57

NC 8.89 2 48 48 0 0
TABOR 10.06 3 47 47 0 0

USB 12.02 1 49 49 0 0

Table 4.1: Detection evaluation on CIFAR-10 where each case consists of 50 trained models.

data after x in order. Thus, all data in the X will be used. The purpose is to reduce the
running time of each iteration. When initializing, elements in the mask are set to one,
such that the first x′ (line 4 in Alg. 4.2) equals x + v. Then, the trigger and mask will be
updated according to the gradients generated on the trigger and mask during computation.
Note that f will not be modified in Alg. 4.2. This optimization may introduce excessive
perturbations, so we use SSIM to keep x + v similar to the original image x. Finally, we
decrease cross-entropy loss between output (f(x′)) and target class (t) for the second goal.

Detection. Based on the above discussion, we can generate targeted UAPs for all classes
to detect whether a model has a backdoor. Given a model f that may have been injected
with a backdoor, we generate N targeted UAPs corresponding to every class, i.e., {vi}N−1

0 .
Then, these UAPs are optimized by Alg. 4.2 to locate the position of the potential trigger.
We use {v′

i}N−1
0 to indicate optimized UAPs. As mentioned before, misleading a back-

doored model to the target class needs a smaller perturbation compared to the untarget
classes. Therefore, if f is backdoored on class tb, the size of v′

tb
will be smaller than other

UAPs in {v′
i}N−1

0 . The size of UAPs is quantified by the L1 norm. Empirically, the L1

norm of the targeted UAP for the backdoored class is more than one order of magnitude
smaller than that of targeted UAPs for other classes without a backdoor. For example,
for a ResNet-18 model with a BadNet backdoor on class 0, the L1 norm v′

0 generated by
USB is 4.49, and the average L1 norm of the other classes is 53.76.

4.4 Evaluation
We provide the experimental results for USB and compare them with NC [110] and TA-
BOR [144], which are the typical state-of-the-art methods. Experiments are conducted
with TrojanZoo [257]. We use different random seeds for every trained model.

4.4.1 Experimental Setup
Models, Datasets, and Backdoor. We use ResNet-18 [27] and VGG-16 [26] for CIFAR-
10 [250], and Efficientnet-B0 [249] for ImageNet [187]. We use BadNet [8], Latent Back-

80 Chapter 4

Original NC TABOR USB

C
IF
A
R
-1
0

Im
ag
eN
et

Im
ag
eN
et

Figure 4.3: Examples of the original and reversed triggers by NC, TABOR, and USB for
CIFAR-10 and ImageNet.

(a) 2×2 (b) NC (c) TABOR (d) USB

Figure 4.4: An example visualization of the original and reversed triggers by NC, TABOR,
and USB for CIFAR-10.

door [258], and IAD [11] to inject backdoor into victim models. The triggers are generated
in different positions and random colors.

Hyperparameters. For Alg. 4.1, we set the desired error rate to e = 0.6. X contains
300 data points. In our experiments, these are the minimum hyperparameters to obtain
effective UAPs. The δ is set to 10, following experiments in [229] to ensure the UAP is
imperceptible.

For Alg. 4.2, the maximum iteration number is m = 500. The learning rate (lr) is lr = 0.1,
and the optimizer is Adam (for detection) with beta = (0.5, 0.9). The hyperparameters
to train clean and backdoored models are: batch size=96, lr=0.01, epoch=50, poison
percent=0.01. Hyperparameters not mentioned are the default ones from TrojanZoo [257].

Evaluation. Following the previous work in [254], we designed two metrics to evaluate
the defense performance: model detection and target class detection. We check whether a
model is correctly identified as a clean or backdoored model. Then, for backdoored models,

Chapter 4. Adversarial Perturbation for Backdoor Detection 81

Model Acc. ASR Method Reversed Trigger Model Detection Target Class Detection
L1 norm Clean Backdoored Correct Correct Set Wrong

Backdoored
(20×20 trigger) 70.94 76.67

NC 276.78 0 15 14 1 0
TABOR 271.83 0 15 12 2 1

USB 461.32 0 15 14 1 0

Backdoored
(25×25 trigger) 69.7 78.46

NC 347.48 0 15 13 2 0
TABOR 341.47 2 13 13 0 0

USB 547.56 0 15 15 0 0

Backdoored
70.91 80.02

NC 396.72 1 14 14 0 0
TABOR 406.1 3 12 12 0 0

USB 621.0 1 14 14 0 0

Table 4.2: Detection evaluation on ImageNet where each case consists of 15 trained models.
The apple is a backdoor trigger.

we check whether reverse engineering correctly identifies the target class. In Tab. 4.1, 4.2,
and 4.3, Clean and Backdoored under Model Detection refer to the cases whether the
detection identifies a model as clean or backdoored. For Target Class Detection, we have
three categories: (i) Correct means the detection method identifies the true target class
of a backdoored model, (ii) Correct Set refers to the case where the detection method
identifies multiple backdoors on different classes, including the true target class, and (iii)
Wrong refers to the case where the detection method successfully identifies a backdoored
model but with wrong target class(es).

Model Acc. ASR Method Reversed Trigger Model Detection Target Class Detection
L1 norm Clean Backdoored Correct Correct Set Wrong

Clean 91.59 N/A
NC 40.78 15 0 N/A N/A N/A

TABOR 48.53 14 1 0 0 1
USB 47.53 15 0 N/A N/A N/A

Latent Backdoor
(4×4 trigger) 87.20 99.66

NC 19.71 4 11 10 1 0
TABOR 20.68 4 11 11 0 0

USB 12.37 1 14 13 1 0

Input Aware
Dynamic

(32×32 trigger)
89.46 90.43

NC 0.0 15 0 N/A N/A N/A
TABOR 1.8 15 0 N/A N/A N/A

USB 0.13 0 15 15 0 0

Table 4.3: Detection evaluation by stronger backdoor attacks on VGG-16 trained with
CIFAR-10.

4.4.2 Experimental Results
This section considers BadNets only as the attack method. Tab. 4.1 shows the detection
results for CIFAR-10 (We also provide results on VGG architecture, Tab. 4.5, and GTSRB
dataset, Tab. 4.6, in the appendix). For the backdoored models, USB achieves a higher
accuracy (98%) for detecting backdoored models compared to NC (93%) and TABOR
(92%). We believe that the misclassifications in NC and TABOR are caused by capturing
the class’s unique features rather than the trigger, illustrated in Fig. 4.4. We show more
reversed triggers in Fig. 4.3 and Fig. 4.6 in the Appendix.

As ImageNet contains a large number of images, it is difficult to train many models on

82 Chapter 4

it. Thus, we use a subset of ImageNet, which contains ten classes. Each class has 1301
images. Tab. 4.2 shows the results for detecting backdoors for Efficientnet-B0 [249] trained
with the subset of ImageNet [187]. Due to the larger image size and model architecture,
we use 500 images for data points X in Alg. 4.1 and 4.2.

4.4.3 Stronger Backdoor Attacks
Tab. 4.3 shows detection results on Latent Backdoor [258] and IAD attack [11]. The
trigger size for Latent Backdoor is 4 × 4 × 3. Due to the IAD attack’s characteristics,
we use 32 × 32 × 3 trigger size (the size of input images). The motivation is to show the
generalization of USB under stronger attacks besides BadNets [8], especially since IAD is
non-patch-based. IAD also generates different triggers according to different inputs.

According to Tab. 4.3, NC and TABOR show worse performance compared to detection
results for BadNets, while USB still precisely detects most of the backdoored models. NC
and TABOR do not work under the IAD attack, but USB detects such backdoors with
the true target class. The reason is that NC-style methods do not directly optimize the
pattern of the trigger. Indeed, they mainly optimize the mask that will be applied to the
pattern. Moreover, IAD attacks design subtle triggers with specific features related to
inputs, which is more difficult for an optimization procedure from random points.

4.4.4 Time Consumption
NC and TABOR require a large number of iterations to conduct detection. We evaluate the
time consumption of NC, TABOR, and USB when conducting detection with Efficientnet-
B0 on ImageNet. When detecting backdoored models with 20 × 20 triggers, the average
time consumption (in seconds) for NC, TABOR, and USB are 1,154.02, 2,129.40, and
267.12, respectively. USB requires less time when reverse engineering the potential triggers.
Although USB needs to generate targeted UAP, the UAP can be used for different models
with similar architectures [229], as observed in our experiments. Thus, we only need to
generate it once. Tab. 4.4 shows the details of time consumption compared to NC and
TABOR.

4.4.5 Discussion
To explain USB, we analyze triggers reversed from every class using MNIST and a simple
CNN architecture (see Appendix 4.7.3 for details) with two convolutional layers and two
fully connected layers. We remove the constraint on the mask size to search for as powerful
features as possible. We replace L in Alg. 4.2 by: L = Lce(output, t) − SSIM(x, x′).
Under this setting, we train a backdoored model with BadNet. Then, we conduct reverse
engineering for all classes. According to results in Fig. 4.5, the optimization with the loss
L tends to learn unique class features for the clean class and the trigger features for the

Chapter 4. Adversarial Perturbation for Backdoor Detection 83

Model Method GPU Time [m:s] in every class
0 1 2 3 4 5 6 7 8 9

Backdoored
(20×20 trigger)

NC 23:16 24:18 24:32 23:39 24:48 23:35 23:15 23:34 23:41 24:10
TABOR 33:54 37:24 34:19 35:51 33:59 36:45 34:23 36:47 35:4 36:23

USB 4:26 4:26 4:27 4:30 4:26 4:26 4:26 4:26 4:26 4:26

Backdoored
(25×25 trigger)

NC 23:35 24:38 25:11 24:3 24:58 24:19 24:29 23:54 24:29 23:6
TABOR 48:23 47:24 48:48 48:41 48:38 47:41 48:27 49:10 48:48 47:45

USB 4:44 4:42 4:44 4:44 4:49 4:48 4:48 4:54 4:50 4:45

NC 19:1 18:22 20:47 18:5 18:48 21:27 18:54 18:30 20:26 17:57
TABOR 48:52 47:16 49:0 48:39 48:54 47:40 48:34 48:55 48:55 47:50

USB 4:27 4:26 4:27 4:30 4:26 4:26 4:26 4:26 4:26 4:25

Table 4.4: Running time results of backdoor detection for Efficientnet-B0 [249]. Each
result is the average of detection on 15 models.

Figure 4.5: USB reverse engineering for 10 classes on MNIST. The true backdoor target is
class 1. The first one is the clean image carrying the trigger. The rest are reversed triggers
from class 0 to 9.

backdoor class. This is expected as we only have a backdoor on the target class, i.e., class
1. In this simplified situation, for clean classes without backdoors, only the unique class
features allow the model to recognize that an input belongs to the class. For the class
injected with the backdoor, the model will recognize the input as the backdoor target
based on the unique feature of the target and the feature of the backdoor trigger.

Reverse engineering requires a choice between the unique class feature and the feature of
the backdoor trigger. Regarding relatively simple features, the trigger feature is stronger
than class features when training with poisoned data. Reverse engineering can find a small
perturbation with strong features enough to mislead the model according to the learning
objectives in the loss function. However, in scenarios such as training with GTSRB or
larger datasets, there might be strong features that can generate perturbations with a
similar size to backdoor triggers. This is why NC, Tabor, and USB provide more incorrect
results when using GTSRB as training data in Tab. 4.6.

84 Chapter 4

4.5 Limitations
Although USB works effectively in detecting backdoors, there are still limitations. First,
the optimized triggers are directly related to the data X used by the optimization process.
Generating these triggers relies on the gradient when inputting an image from X and
trigger to the model. Therefore, if the data X is collected from a different distribution
from the training data, existing detection methods, including USB, NC, and TABOR,
may fail. This is also why we try to use less data in USB. Second, it might be difficult to
generate targeted UAP for every class when the number of classes is high. For example,
ImageNet contains 1,000 classes. It is more time-consuming to generate perturbation for
inputs of all classes to the target class when the number of classes is large.

This limitation could be the starting point of future work. Currently, our algorithm
(Alg. 4.1) only searches for small perturbations to generate targeted UAP. This can mislead
the victim model. If we can directly search for targeted UAP according to the backdoored
neurons in the model, the number of iterations for searching can be significantly reduced.
In addition, reverse engineering naturally requires less data if it has knowledge about
backdoor-related neurons, which helps solve the first limitation. A key problem for future
work could be identifying those special neurons.

4.6 Conclusions and Future Work
This chapter proposes USB to detect potential backdoors. USB uses targeted UAP to
capture sensitive features created by backdoors. We further optimize the UAP to generate
the backdoor trigger. We run extensive experiments on several datasets to evaluate our
method. Among the 175 backdoored models on several datasets, we successfully identified
171 backdoored ones and outperformed state-of-the-art methods. Further investigation is
needed regarding optimizing UAP according to backdoored neurons in the victim model,
which can significantly reduce the optimization time.

4.7 Appendix

4.7.1 Detection Results on VGG-16
In Tab. 4.5, we show the results of detecting backdoors for VGG-16 models trained with
CIFAR-10. We use the same experimental settings as that in the experiment section. We
also study Latent Backdoor [258] beside BadNet attack.

4.7.2 GTSRB
The results for GTSRB are shown in Tab. 4.6. On clean models, USB, NC, and TABOR
all have incorrect results, as the number of classes in GTSRB is significantly larger than

Chapter 4. Adversarial Perturbation for Backdoor Detection 85

Model Acc. ASR Method Reversed Trigger Model Detection Target Class Detection
L1 norm Clean Backdoored Correct Correct Set Wrong

Clean 91.59 N/A
NC 40.78 15 0 N/A N/A N/A

TABOR 48.53 14 1 0 0 1
USB 47.53 15 0 N/A N/A N/A

Backdoored
(2×2 trigger) 88.28 99.39

NC 5.43 0 15 14 1 0
TABOR 5.32 0 15 15 0 0

USB 3.5 0 15 15 0 0

Backdoored
(3×3 trigger) 88.30 99.77

NC 6.60 1 14 13 1 0
TABOR 6.98 0 15 14 1 0

USB 7.0 0 15 14 1 0

Table 4.5: Detection evaluation on VGG-16 trained with CIFAR-10 where each case con-
sists of 15 trained models.

Model Acc. ASR Method Reversed Trigger Model Detection Target Class Detection
L1 norm Clean Backdoored Correct Correct Set Wrong

Clean 83.96 N/A
NC 181.17 12 3 N/A N/A N/A

TABOR 185.21 13 2 N/A N/A N/A
USB 39.8 12 3 N/A N/A N/A

Backdoored
(2×2 trigger) 80.85 85.06

NC 13.36 0 15 13 2 0
TABOR 37.02 0 15 13 2 0

USB 10.86 3 12 12 0 0

Backdoored
(3×3 trigger) 80.24 93.52

NC 14.78 0 15 13 2 0
TABOR 15.11 0 15 13 2 0

USB 12.02 2 13 13 0 0

Table 4.6: Detection evaluation on ResNet-18 trained with GTSRB where each case con-
sists of 15 trained models.

that of CIFAR-10. Compared to the L1 norm of NC and TABOR, USB provides a much
smaller norm value because the reversed trigger is optimized from the targeted UAP.

4.7.3 Details of the Basic Model
To reduce the impact of complex features and many model parameters, we use MNIST and
a basic CNN architecture with two convolutional layers (followed by the ReLU activation
function and a 2D average pooling layer) and two fully connected layers. The input
channel, output channel, and kernel size for the two convolutional layers are (1, 16, 5) and
(16, 32, 5). The input and output channels for the two fully connected layers are (512,
512) and (512, 10). The model is trained using batch size=128, epochs=40, and poisoned
rate=0.05.

86 Chapter 4

USB

TABOR

NC

Figure 4.6: Reversed triggers from class 0 to 9.

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 87

Chapter 5

Adversarial Neuron Noise for Backdoor
Detection

Backdoor attacks on deep learning represent a recent threat that has gained significant
attention in the research community. Backdoor defenses are mainly based on backdoor
inversion, which has been shown to be generic, model-agnostic, and applicable to practical
threat scenarios. State-of-the-art backdoor inversion recovers a mask in the feature space
to locate prominent backdoor features, where benign and backdoor features can be disen-
tangled. However, it suffers from high computational overhead, and we also find that it
overly relies on prominent backdoor features that are highly distinguishable from benign
features. To tackle these shortcomings, this chapter improves backdoor feature inversion
for backdoor detection by incorporating extra neuron activation information. In particular,
we adversarially increase the loss of backdoored models with respect to weights to acti-
vate the backdoor effect, based on which we can easily differentiate backdoored and clean
models. Experimental results demonstrate our defense, BAN, is 1.37× (on CIFAR-10)
and 5.11× (on ImageNet200) more efficient with an average 9.99% higher detect success
rate than the state-of-the-art defense BTI-DBF. Our code and trained models are publicly
available at https://github.com/xiaoyunxxy/ban.

5.1 Introduction
Deep neural networks (DNNs) are known to be vulnerable to backdoor attacks, a setting
where the attacker trains a malicious DNN to perform well on normal inputs but behave
inconsistently when receiving malicious inputs that are stamped with triggers [8]. The
malicious model is obtained by training with poisoned data [8, 9], by tampering with the
training process [259, 104], or by directly altering the model’s weights [51]. Backdoors
are proposed for various domains, from computer vision [8, 259, 9, 10, 105, 11] to graph
data [260] and neuromorphic data [261]. Still, backdoors in computer vision received most

88 Chapter 5

of the attention of the research community, which also means there is a significant variety
of triggers. For instance, a trigger can be a pixel patch [8], an existing image [259], dynamic
perturbation [11], or image warping [10]. Various backdoor attacks target different stages
of the machine learning model pipeline, inducing several threat scenarios in which defenses
are developed by exploiting different knowledge.

Trigger inversion is a principled method that makes minimal assumptions about the back-
door attacks in the threat model [111, 128, 112], and it has clear advantages to training-
time [136] or run-time defenses [117, 262, 263]. Input space trigger inversion is first in-
troduced by Neural Cleanse (NC) [110], where potential triggers for all target classes are
reversed by minimizing the model loss of clean inputs. Median absolute deviations of re-
versed triggers from all classes are then calculated to detect triggers. More recently, input
space trigger inversion methods have been shown to be ineffective against feature space
backdoor attacks [10, 111]. To address this problem, FeatureRE [111] proposes a detection
method using feature space triggers. The authors observe that features of backdoored and
benign inputs are separable in the feature space by hyperplanes. Unicorn [128] formally
defines and analyzes different spaces for trigger inversion problems. An invertible input
space transformation function is proposed to map the input space to others, such as fea-
ture space, and to reconstruct the backdoor triggers. These trigger inversion methods can
be considered as an optimization problem for the targeted class. They optimize the input
images to mislead the model under various constraints and recover strong triggers in dif-
ferent spaces. The state-of-the-art trigger inversion method, BTI-DBF [112], increases the
inversion efficiency by relaxing the dependency of trigger inversion on the target labels.
BTI-DBF trains a trigger generator by minimizing the differences between benign samples
and their generated poisoned version in decoupled benign features while maximizing the
differences in remaining backdoor features. Feature space trigger inversion defenses are
generic and effective against most backdoor attacks. However, we show that BTI-DBF
may fail against BadNets, as its backdoor is not prominent in the feature space (see Sec-
tion 5.3.4). In addition, existing works still suffer from huge computational overhead and
overly rely on prominent backdoor features.

To resolve this shortcoming, we propose a backdoor defense called detecting Backdoors
activated by Adversarial neuron Noise (BAN). Our defense is inspired by the finding that
backdoored models are more sensitive to adversarial noise than benign models [264, 265],
and neuron noise can be adversarially manipulated to indicate backdoor activations [130].
Specifically, BAN generates adversarial neuron noise, where the weights of the victim
model are adversarially perturbed to maximize the classification loss on a clean data set.
Simultaneously, trigger inversion is conducted in the victim model’s feature space to cal-
culate the mask for benign and backdoor features. Clean inputs with masked feature
maps are then fed to the adversarially perturbed model, based on the outputs of which
backdoored models can be differentiated. Figure 5.1 presents a t-SNE visualization of the

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 89

Backdoor:

Benign:

Neuron noise increasing Targeted label

𝜖𝜖 = 0.0 𝜖𝜖 = 0.2𝜖𝜖 = 0.1 𝜖𝜖 = 0.3

Figure 5.1: The feature plots of backdoor and benign models with neuron noise using
ResNet18 on CIFAR-10. The darker blue represents the target label. As noise increases,
the backdoor model identifies more inputs from each class as the target label. The clean
model has fewer errors, and there is no significant increase in the number of misclassifica-
tions to the target class.

feature space for backdoored and clean models when they are perturbed with different lev-
els of adversarial neuron noise. It can be observed that the backdoored model misclassifies
parts of the data from all classes as the target class when the adversarial neuron noise
increases, while the clean model has fewer misclassifications under the same level of noise.
By leveraging the induced difference, BAN can successfully detect and mitigate backdoor
attacks in both input and feature space.

We make the following contributions:

• We find a generalization shortcoming in current trigger inversion-based detection
methods (FeatureRE [111], Unicorn [128], BTI-DBF [112]). In particular, feature
space detections overly rely on highly distinguishable prominent backdoor features.
We provide an in-depth analysis of trigger inversion-based backdoor defenses, show-
ing that prominent backdoor features that are exploited by state-of-the-art defenses
to distinguish feature space backdoors may not be suitable for the identification of
input space backdoors.

• We propose detecting Backdoors activated by Adversarial neuron Noise (BAN) to
mitigate this generalization shortcoming by introducing neuron noise into feature
space trigger inversion. BAN includes an adversarial learning process to incor-
porate neuron activation information into the inversion-based backdoor detection.
Experimental results demonstrate that BAN is 1.37× (on CIFAR-10) and 5.11×
(on ImageNet200) more efficient with a 9.99% higher detect success rate than the
state-of-the-art defense BTI-DBF [112].

• We also exploit the neuron noise to further design a simple yet effective defense for
removing the backdoor, such that we build a workable framework.

90 Chapter 5

5.2 Related Work
Attacks. Backdoor attacks [8, 259, 104, 10, 11, 105, 266, 267, 268, 269] refer to injecting
a secret functionality into the victim model that is activated through malicious inputs
that contain the trigger. To this end, substantial research has been proposed by poisoning
a small percentage of training data using small and static triggers [8, 9, 259]. Early
attacks generate backdoors in input space, where BadNets [8] is the first backdoor attack
in DNNs. Blend [9] proposed three injection strategies to blend translucent images into
inputs of DNNs as triggers. The authors controlled the transparency of the trigger to
allow the trade-off between strength of attack and invisibility. Although these attacks
work well, their triggers are still perceptible to humans and can be easily detected by
backdoor defenses, such as Activation Clustering (AC) [109] and NC [110].

Dynamic and imperceptible triggers [10, 11, 105, 267], including feature space backdoor
triggers [268, 11], are explored to bypass both human observers and input space defenses.
IAD [11] designs input-specific triggers. To evaluate the uniqueness of dynamic triggers,
the authors designed a cross-trigger test to determine whether the trigger of one input is
reusable to others. WaNet [10] proposes warping-based triggers, which are unnoticeable
and smooth in the input space. Bpp [105] exploits vulnerabilities in the human visual
system and, by using image quantization and dithering, introduces invisible triggers that
are stealthier than previous attacks.

Adaptive backdoor attacks [103, 118, 117] are built to systematically evaluate defenses,
where attacks discourage the indistinguishability of latent representations of poisoned and
benign inputs in the feature space. Adap-Blend [118] divides the trigger image into 16
pieces and randomly applies only 50% of the trigger during data poisoning. They use the
full trigger image at inference time to mislead the poisoned model. Source-Specific and
Dynamic-Triggers (SSDT) [117] considers the combination of source-specific and dynamic-
trigger backdoors. Only the inputs from victim classes (source) with the dynamic triggers
are classified to the target labels, which encourages the generalization of more diverse
trigger patterns from different inputs. In this chapter, we evaluate BAN against various
types of attacks, including input space, feature space, and adaptive attacks, to provide a
systematic evaluation resembling practical threats.

Defenses. Trigger inversion-based backdoor defense is considered one of the most practical
and general defenses against backdoors [111, 128, 112]. The recovered trigger is used
to determine whether the model is backdoored. For example, NC [110] reverses input
space triggers to detect backdoors by selecting significantly smaller triggers in size. Other
methods, such as ABS [127] and FeatureRE [111], usually determine whether there is a
backdoor based on the attack success rate of the trigger. More specifically, given a DNN
model f and a small set of clean data Dc = {xn, yn}N

n=1, NC recovers the potential trigger

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 91

by solving the following objective:

min
m,t

L(f((1 − m) ⊙ x + m ⊙ t), yt) + λ|m|, (5.1)

where (x, y) ∈ Dc and m is the trigger mask, t is the trigger pattern, where ⊙ is the
element-wise product, and yt is the target label. The mask m determines whether the
pattern will replace the pixel. L is the cross-entropy loss function. Most prior works [144,
270, 127, 111, 128] follow this design to conduct trigger inversion for all possible target
labels. For example, Tabor [144] adds more constraints to the NC optimization problem
according to the overly large (large size triggers but no overlaps with the true trigger) and
overlaying (overlap the true trigger but with redundant noise) problem of NC. Moving
from input space to feature, FeatureRE [111] utilizes feature space constraint according
to an observation that neuron activation values representing the backdoor behavior are
orthogonal to others. Unicorn [128] proposes a transformation function that projects from
the input space to other spaces, such as feature space [10] and numerical space [105]. Then,
the authors conduct trigger inversion in different spaces.

Unlike previous NC-style methods, recent works [112, 271] explore different optimization
objectives to avoid the time-consuming optimization for all possible target classes or to
avoid the fixed mask-pattern design as advanced attacks utilize more complex and dy-
namic triggers. BTI-DBF [112] takes advantage of the prior knowledge that benign and
backdoored features are decoupled in the feature space. It distinguishes them by the
optimization objective, where benign features contribute to the correct predictions and
backdoored features lead to wrong predictions. Based on the decoupled features, BTI-
DBF trains a trigger generator by minimizing the difference between benign samples and
their generated version according to the benign features and maximizing the difference
according to the backdoored features. Feature space backdoor defenses are developed
based on the fact that backdoor features are highly distinguishable from benign features.
However, this finding is not consistently valid for input space attacks where the feature
difference is small (See Sections 5.3.4).

5.3 BAN Method

5.3.1 The Pipeline of Training Backdoor Models
For brevity, consider an L-layer fully connected network f (similar principles apply to
convolutional networks) that has l = l1 + l2 + · · ·+ lL neurons. xn ∈ Rdx and yn ∈ {0, 1}dy

are the nth image and its label in dx and dy dimensional spaces, respectively. The attacker
creates a poisoned dataset Dp by poisoning generators GX and GY for a subset of the
whole training dataset, i.e., Dp = Dc ∪ Db. Dc is the original clean data. Db is the
poisoned backdoor data, Db = {(x′, y′)|x′ = GX(x), y′ = GY (y), (x, y) ∈ D − Dc}. In all-
to-one attacks, GY (y) = yt, yt is the attacker-specified target class. In our experiments, we

92 Chapter 5

consider the dirty-label attack. In all-to-all attacks, ususally GY (y) = (y+1) [112, 10, 105],
which is also what we chose in our experiments. In the training stage, the backdoor is
injected into the model by training with Dp, i.e., minimizing the training loss on Dp to
find the optimal weights and bias (w∗, b∗):

min
w,b

LDp (w, b) = E
(x,y)∈Dp

ℓ(f(x; w, b), y), (5.2)

where ℓ(·, ·) is the cross-entropy. In the inference stage, the backdoored model predicts an
unseen input x̂ as its true label ŷ but predicts GX(x̂) as GY (ŷ): f(GX(x̂); w, b) = GY (ŷ).

5.3.2 Threat Model
Attacker’s goal. We consider the attacker to be the pre-trained model’s provider. The
attacker aims to inject stealthy backdoors into the pre-trained models. The pre-trained
models perform well on clean inputs but predict the attacker-chosen target label when
receiving backdoor inputs.

Attacker knowledge. The attacker has white-box access to the model, including training
data, architectures, hyperparameters, and model weights.

Defender’s goal and knowledge. The main goal is to detect whether a given model
is backdoored and then remove the potential backdoor according to the detection results.
Following [111, 128, 112], we assume the defender has white-box access to the model and
holds a few local clean samples. However, the defender does not have access to the training
data and has no knowledge of the backdoor trigger.

5.3.3 Detection with Neuron Noise
Based on previous findings that adversarial noise can activate backdoors [264, 130, 265],
we design a two-step method for backdoor detection. First, we search for noise on neurons
that can activate the potential backdoor. Then, we decouple the benign and backdoored
features using a learnable mask of the latent feature (the output before the final classifi-
cation layer).

Neuron Noise. In backdoor models, there are two types of neurons: benign and back-
door [127]. The backdoor neurons build a shortcut from GX(x) to GY (y). Neuron noise
is generated noise added to neurons to maximize model loss on clean samples in an adver-
sarial manner [12]. The noise on benign neurons evenly misleads prediction to all classes,
while the noise on backdoor neurons tends to mislead prediction to the target label due
to the backdoor shortcut, as shown in Figure 5.1. Therefore, backdoor models with noise
behave differently from benign models with noise, as there are no backdoor neurons in the
benign models.

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 93

Given the jth neuron connecting the ith layer and (i − 1)th layer, we denote its weight
and bias with wij and bij , respectively. Neuron noise can be added to the neuron by
multiplying its weight and bias with a small number: (1 + δij)wij and (1 + ξij)bij . Then,
the output of the neuron is:

hij = σ
(
(1 + δij)w⊤

ijh(i−1) + (1 + ξij)bij

)
, (5.3)

where h(i−1) is the output of the previous layer and σ(·) is the nonlinear function (activa-
tion). The noise on all neurons are represented by δ = [δ1,1, · · · , δl1,1, · · · , δ1,L, · · · , δlL,L]
and ξ = [ξ1,1, · · · , ξl1,1, · · · , ξ1,L, · · · , ξlL,L]. The δ and ξ are optimized via a maximization
to increase the cross-entropy loss on the clean data:

max
δ,ξ∈S

LDc ((1 + δ) ⊙ w, (1 + ξ) ⊙ b),

S = B(w; ϵ) = {δ ∈ Rl|δ ≤ ϵ},

(5.4)

where S is the ball function of the radius ϵ in the l dimensional space. δ and ξ share
the ball function S as the maximum noise size. The maximization in Eq. (5.4) can be
solved by PGD [12] algorithm with a random start, as PGD can better explore the entire
searching space to mitigate local minima [12].

Benign IAD Blend WaNet Bpp BadNets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy w/ and w/o feature mask

w/o mask

w/ mask

Figure 5.2: Model’s clean accu-
racy with (red dots) and with-
out (blue dots) the mask de-
fined in Eq. (5.6). Only the
backdoored models are affected
by the noise.

Feature Decoupling with Mask. The neuron noise
activates the backdoor (see Figure 5.1) and misleads the
predictions to the target label. However, the perfor-
mance has high variance when searching for noise mul-
tiple times, which we conjecture is caused by random
initialization. Therefore, inspired by [112], we further
introduce a feature decoupling process to enhance the
effect of noise on backdoored features but maintain a
decreased effect on benign features. Specifically, the net-
work f is decomposed into g = f1 ◦ · · · ◦ fL−1 and fL,
where fL−1 extracts the latent features from x, while
fL is the classification layer. Then, we use a mask m
on top of the latent feature g(x) to decouple benign and
backdoored features. The optimization objective can be
written as:

min
m

L(fL ◦ (g(x) ⊙ m), y) − L(fL ◦ (g(x) ⊙ (1 − m)), y) + λ1|m|, (5.5)

where ⊙ is the element-wise product. This optimization divides the latent features into
two parts through the mask while maintaining a relatively small size of m. Note that the
regularizer for m in Eq. (5.5) is necessary. Otherwise, m will become a dense matrix full of
ones to focus on the positive part of Eq. (5.5) because maintaining only the positive part

94 Chapter 5

(without penalty of |m|) already satisfies the optimization objective. Finally, we apply the
negative mask (1 − m) on top of latent feature of f to enhance the backdoor effect. The
final output is:

fL ◦
(

g
(
x; (1 + δ) ⊙ w, (1 + ξ) ⊙ b

)
⊙ (1 − m)

)
. (5.6)

In Figure 5.2, the blue dots show the accuracy after adding noise to the model. The red
dots show the accuracy (with noise) while applying the feature mask to the model using
Eq. (5.6). Our feature masks do not affect the performance of benign models. However, we
see that the performance is significantly decreased for backdoored models. This decrease
is caused by the model only using backdoor features (through the negative mask), which
means the backdoor is activated more frequently. Finally, a suspect model is determined
backdoored if the prediction using Eq. (5.6) has a high attack success rate. For all-to-
one attacks, the misclassification will be concentrated into one label, which is the target
label. For all-to-all attacks, we can do the same as for all-to-one attacks but evaluate the
prediction for each class independently.

5.3.4 Improving BTI-DBF
This section shows that the most recent work, BTI-DBF [112], may fail to capture the
backdoor features by its decoupling method in Table 5.2. We show how to patch BTI-
DBF using a simple solution. The BTI-DBF is the original version, and BTI-DBF* is our
improved version. The main pipeline of BTI-DBF consists of two steps: (1) decoupling
benign and backdoor features and (2) trigger inversion by minimizing the distance between
benign features and maximizing the distance between backdoor features. We found that
the defense’s first step may introduce errors in the decoupled features. Similar to our
Eq. (5.5), the decoupling of BTI-DBF can be written as:

min
m

L(fL ◦ (g(x) ⊙ m), y) − L(fL ◦ (g(x) ⊙ (1 − m)), y). (5.7)

However, this equation has no constraints on the feature mask m. Overall, the optimization
objective is to decrease the loss. Obviously, BTI-DBF’s decoupling encourages the norm of
the mask to increase so that the loss will focus on the positive part and ignore the negative
part because the negative part goes against the overall objective. Finally, the mask will be
a dense matrix that is full of ones. The fL ◦ (g(x) ⊙ (1 − m)) is ignored due to multiplying
by zero. We propose a simple solution to fix the problem by adding a regularizer of the size
of the mask to the loss, i.e., we use our Eq. (5.5) as the first step of BTI-DBF*. According
to Table 5.2, BTI-DBF* successfully overcomes BTI-DBF’s shortcomings.

5.3.5 Backdoor Defense
After determining whether a suspect model is backdoored, we can fine-tune the backdoored
model to remove the backdoor. However, standard fine-tuning using clean data does not
effectively remove the backdoor because it does not activate it. Therefore, we propose

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 95

using optimized neuron noise to fine-tune the model. In the optimization of the neuron
noise, the objective is to increase the loss of L(f(x), y). We consider both the benign and
backdoor neurons to contribute to the increase in loss when optimizing the noise. Indeed,
on benign neurons, the neuron noise misleads f to any result other than the true label
y, while the noise misleads f to the target label GY (y) on backdoor neurons. Therefore,
a straightforward method is to decrease the loss between the noise output and the true
label. The loss for our noise fine-tuning can be written as:

min
w,b

L(f(x; w, b), y) + λ2L(f(x; (1 + δ) ⊙ w, (1 + ξ) ⊙ b), y). (5.8)

5.4 Experimental Results
Datasets and Architectures. The datasets for our experiments include CIFAR-10 [250],
GTSRB [272], Tiny-ImageNet [273], and a subset of ImageNet-1K [187]. The ImageNet
subset contains 200 classes, which is referred to as ImageNet200. BAN is evaluated using
three architectures: ResNet18 [27], VGG16 [26], and DenseNet121 [274]. Please refer to
Appendix 5.7.1 for more details.

Attack Baselines. Our experiments are conducted using seven attacks: BadNets [8],
Blend [9], WaNet [10], IAD [11], BppAttack [105], Adap-Blend [118], and SSDT [117],
which are commonly used in other works [112, 111, 128, 275, 276]. The BadNets [8] and
Blend [9] are designed for the input space. WaNet [10], IAD [11], and BppAttack [105] are
designed for feature space. Adap-Blend [118] and SSDT [117] (for adaptive evaluation) are
state-of-the-art attacks that have been recently introduced to bypass backdoor defenses.
The main idea of Adap-Blend [118] and SSDT [117] is to obscure the latent separation in
features of benign and backdoor samples. More details can be found in Appendix 5.7.2.

BadNets WaNet IAD Bpp

0

1

2

3

m
a
s
k

l
o
s
s

Loss with positive or negative mask

benign

backdoored

Figure 5.3: BadNets features
are weaker when using the mask
to disentangle the benign and
backdoor features. Defenses
that are biased towards large
differences may not work in
cases like BadNets.

Defense Baselines. BAN is compared to five represen-
tative methods: Neural Cleanse (NC) [110], Tabor [144],
FeatureRE [111], Unicorn [128], and BTI-DBF [112]. NC
and Tabor are designed for input space attacks, while
the other three are designed for feature space and deal-
ing with the latest advanced attacks. BAN uses only
1% and 5% of training data for detection and defense,
respectively. Note that the data used for our defense
is not used for training models, i.e., the defender has
no knowledge of the model to be defended. More details
can be found in Appendices 5.7.3 and 5.7.4. We use bold
font to denote the best results.

96 Chapter 5

Table 5.1: The detection results under different model architectures on CIFAR-10. The
“Bd.” refers to the number of models the defense identifies as backdoored. The “Acc.”
refers to detection success accuracy. The best results are marked in bold. BTI-DBF*
refers to an improved version (details in Section 5.3.4).

Model Attack NC Tabor FeatureRE Unicorn BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc.

ResNet18

No Attack 0 100% 0 100% 2 90% 6 70% 0 100% 0 100%
BadNets 20 100% 20 100% 14 70% 18 90% 18 90% 20 100%

Blend 20 100% 20 100% 20 100% 19 95% 20 100% 18 90%
WaNet 11 55% 8 40% 15 75% 20 100% 18 90% 20 100%

IAD 0 0% 0 0% 15 75% 11 55% 20 100% 20 100%
Bpp 0 0% 1 5% 12 60% 17 85 % 20 100% 20 100%

VGG16

No Attack 0 100% 0 100% 3 85% 6 70% 6 70% 0 100%
BadNets 18 90% 16 80% 13 65% 16 80% 18 90% 19 95%

Blend 19 95% 19 95% 16 80% 18 90% 16 80% 17 85%
WaNet 10 50% 9 45% 12 60% 18 90% 16 80% 20 100%

IAD 0 0% 0 0% 8 40% 17 85% 20 100% 20 100%
Bpp 9 45% 10 50% 5 25% 15 75% 14 70% 18 90%

DenseNet121

No Attack 0 100% 0 100% 5 75% 8 60% 3 85% 0 100%
BadNets 18 90% 20 100% 19 95% 15 75% 17 85% 20 100%

Blend 20 100% 20 100% 12 60% 18 90% 19 95% 20 100%
WaNet 13 65% 10 50% 20 100% 17 85% 14 70% 19 95%

IAD 0 0% 0 0% 14 70% 16 80% 14 70% 19 95%
Bpp 0 0% 0 0% 16 80% 8 40% 16 80% 20 100%

Average 60.56% 59.17% 72.5% 78.61% 86.39% 97.22%

5.4.1 The Performance of Backdoor Detection
Main Results. In Table 5.1, BAN shows better results on CIFAR-10 than all baselines,
especially on advanced attacks. Results on other datasets are presented in Appendix 5.7.5.
We note that the advanced detection methods (FeatureRE, Unicorn, and BTI-DBF) per-
form worse than NC on simple attacks (BadNets and Blend). We hypothesize this is
because the backdoor features generated by BadNets are less obvious on feature channels
than advanced attacks in the feature space, such as WaNet and IAD. Figure 5.3 shows
that BadNets features are weaker than features from advanced attacks using the feature
mask in Eq. (5.5). Specifically, we optimize the feature mask to disentangle the benign
and backdoor features for four attacks. Then, we compute two cross-entropy loss values
using the positive mask (m) and the negative mask (1 − m) for benign and backdoor
features, respectively. The average loss values and standard deviation for four models for
each attack are plotted in Figure 5.3. The negative loss value of BadNets is much smaller
than others, which means BadNets features are weaker than others with regard to mis-
leading the model to the backdoor target. Recent defenses usually add more regularizers
to their losses and optimization objectives to counteract powerful backdoor attacks. These
regularizers encourage the capturing of strong features but omit weak ones. Thus, recent
advanced detections can perform worse on BadNets than NC.

Time consumption. BAN is efficient and scalable as we do not iterate over all target
classes. Figure 5.4 demonstrates that BAN uses substantially less time than all baselines.

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 97

BAN is also more scalable for larger architectures or datasets. BIT-DBF (76.90s) is 1.37×
slower than BAN (55.95s) on CIFAR-10 with ResNet18, and BIT-DBF (5,792.51s) without
pre-training is 5.11× slower than ours (1,132.85s) on ImageNet200 with ResNet18. Fea-
tureRE (297.74s) is 5.32× slower than ours on CIFAR-10 with ResNet18, and it (6,053.62s)
is 45.14× slower on CIFAR-10 with DenseNet121 than ours (134.10s).

CIFAR-10 Tiny-ImageNet ImageNet200

Ours BTI-DBF BTI-DBF (w/ pre) NC FeatureRE Tabor Unicorn

Figure 5.4: Time consumption of detection baselines on ResNet18 (in seconds) for all three
datasets. BAN uses significantly less time than the baselines.

Table 5.2: The detection results of BTI-DBF and BTI-DBF* using ResNet18 and CIFAR-
10.

Attack BTI-DBF BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

No Attack 0 100% 0 100% 0 100%
BadNets 5 25% 18 90% 20 100%

Blend 0 0% 20 100% 18 90%
WaNet 7 35% 18 90% 20 100%

IAD 19 95% 20 100% 20 100%
Bpp 20 100% 20 100% 20 100%

5.4.2 The Performance of Backdoor Defense
A complete backdoor defense framework should include both detection and defense. The
goal of defense is to decrease the attack success rate (ASR) of backdoor triggers. Detection
before the defense is also necessary because the defense usually decreases the performance
on benign inputs [277, 112, 111, 275, 278]. In Section 5.3.5, we propose a simple and effec-
tive fine-tuning method using the noise that activates the backdoor. Table 5.3 compares
BAN with three baselines: plain fine-tuning, FeatureRE [111], and BTI-DBF(U) [112].
Plain fine-tuning refers to training the backdoor model using the same hyperparameters as
BAN but without the noise loss in Eq. (5.8). The FeatureRE [111] and BTI-DBF(U) [112]
refer to the defense methods from the respective paper. We use default hyperparameters
for FeatureRE [111] and BTI-DBF(U) [112]. For plain fine-tuning and BAN, we use a
small learning rate (0.005) to avoid jumping out of the current optimal parameters of the
well-trained model. Then, we use λ2 (0.5) for Eq. (5.8) for the trade-off between robust-
ness against backdoor and clean accuracy. We fine-tune for a short schedule of 25 epochs,
as the model is well-trained. Table 5.8 in Appendix 5.7.4 shows defense performance with
standard deviation on different hyperparameters, which supports our choice. Tables 5.3

98 Chapter 5

Table 5.3: Defense against 5 attacks using ResNet18. BA refers to benign accuracy on
clean data.

Attack No defense Fine-tuning FeatureRE BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 93.37 99.41 92.93 87.81 93.15 99.79 91.26 13.12 92.06 1.97
Blend 94.60 100.00 93.07 99.99 93.20 39.28 91.86 100.00 92.72 4.10
WaNet 93.57 99.37 93.05 1.10 93.67 0.03 90.30 4.89 92.05 0.91

IAD 93.17 97.88 94.11 0.46 92.73 0.0 89.54 1.59 92.78 1.48
Bpp 94.29 99.93 93.85 4.46 94.21 98.13 90.61 2.73 92.54 2.58

Average 93.80 99.32 93.40 38.76 93.39 47.45 90.71 24.47 92.43 2.21

Table 5.4: Defense of backdoor attacks on Tiny-ImageNet and ImageNet200 using
ResNet18.

Dataset Attack No defense Fine-tuning BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR

Tiny-ImageNet
WaNet 58.32 99.85 51.53 1.3 39.49 0.96 50.69 0.86

IAD 58.54 99.32 51.86 1.72 38.79 0.60 50.04 0.76
Bpp 60.63 99.89 57.72 0.15 46.84 0.40 57.66 0.10

ImageNet200
WaNet 77.01 99.74 66.71 0.78 63.47 1.0 69.95 0.58

IAD 76.72 99.75 69.91 0.42 64.33 1.24 72.18 1.30
Bpp 78.56 99.88 70.89 0.82 67.02 3.10 72.59 2.68

and 5.4 demonstrate that our fine-tuning method effectively removes the backdoor while
preserving high accuracy in benign inputs. We provide a comparison between our find-
tuning with ANP [130] in Table 5.12, Appendix 5.7.5, as ANP uses the neuron noise for
pruning backdoor neurons.

5.4.3 Defense against All-To-All Attacks
Previous works [111, 128] usually only consider all-to-one attacks, which limits the applica-
tion in practical situations. In this section, we evaluate our fine-tuning method under three
all-to-all attacks: WaNet-All [10], IAD-All [11], and Bpp-All [105]. FeatureRE is designed
for all-to-one attacks, so we use target label 0 here for FeatureRE. FeatureRE is included
to show that the all-to-one defense does not work in the all-to-all setting. BAN is capable
of handling all-to-all attacks because we directly explore the neurons themselves instead
of optimizing for the potential targeted label. Table 5.5 demonstrates the effectiveness of
our method.

Table 5.5: Defense against all-to-all backdoor attacks. BA refers to benign accuracy on
clean data.

Attack No defense Fine-tuning FeatureRE BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR BA ASR

WaNet-All 93.60 91.86 92.65 18.03 93.33 91.96 91.30 1.72 92.29 1.11
IAD-All 92.96 90.62 93.19 3.72 93.06 91.20 91.36 3.72 92.31 1.13
Bpp-All 94.45 84.68 93.90 1.58 94.32 83.87 90.16 2.05 93.23 1.38

Average 93.67 89.05 93.25 7.78 93.57 89.01 90.94 2.49 92.61 1.21

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 99

5.4.4 Evaluation under Adaptive Attack
Attackers may design a specific attack for defense when they know its details [239]. In
this section, we evaluate BAN against two attacks that attempt to bypass the difference
between backdoor and benign features: Adap-Blend [118] and SSDT attack [117]. Both
Adap-Blend [118] and SSDT attack [117] try to obscure the difference between benign and
backdoor latent features. Adap-Blend [118] achieves it by randomly applying 50% of the
trigger to poison the training data, while SSDT attack [117] utilizes source-specific and
dynamic-triggers to reduce the impact of triggers on samples from non-victim classes. The
source-specific attack refers to backdoor triggers that mislead the model to the target class
only when applied to victim class samples. Table 5.6 demonstrates our approach is resistant
to these two attacks, while other methods fail. The reason is that the backdoor features of
SSDT are close to benign features in the feature space. It is difficult for other methods to
distinguish between backdoor and benign features created by SSDT. Our detection method
directly analyzes the model itself using neuron noise, which captures the difference between
backdoor and benign models concerning parameters. See Appendix 5.7.5 for the mitigation
results of our method against these adaptive attacks.

Table 5.6: The detection results under adaptive attacks on using CIFAR-10 and ResNet18.
Attack NC Tabor FeatureRE Unicorn BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc.

Adap-Patch 18 90% 15 75% 17 85% 20 100% 20 100% 20 100%
SSDT 0 0% 0 0% 0 0% 0 0% 20 100% 20 100%

5.4.5 Analysis on Prominent Features
We provide additional analysis of the phenomenon that backdoor features are more promi-
nent for advanced attacks (WaNet, IAD, and Bpp) than weaker attacks (BadNets, Blend).
Table 5.7 demonstrates that previous decoupling methods cannot easily pick up backdoor
features from weak attacks, such as BadNets. In particular, when detecting without the
L1 regularizer (i.e., w/o norm), the negative feature loss of BadNets is high with a very
large L1 mask norm, while the Bpp has an even higher negative loss with a much smaller
mask norm. The high negative loss of BadNets is actually from the sparse feature mask
rather than backdoor features, i.e., there are too many zeros in (1 - m). This indicates
that BadNet backdoor features are less prominent than Bpp features, making it more
challenging to decouple BadNets features.

5.5 Limitations
Similar to existing works [110, 127, 144, 111, 128, 112], BAN assumes a local small and
benign dataset. This scenario is common, considering that benign samples are available on-
line, and the model provider may provide some samples to verify the model’s performance.
In addition, our fine-tuning with neuron noise may slightly decrease the performance in be-

100 Chapter 5

Table 5.7: Loss values when feeding the benign or backdoor features into the final classi-
fication layer. The mask is optimized using Eq. (5.5) (w/ norm) or Eq. (5.7) (w/o norm).
The shape of the feature mask is 512 × 4 × 4, so the maximal L1 norm is 8192.

Attack BA ASR L1 mask norm Positive loss Negative loss

BadNets (w/ norm) 93.47 99.71 2258.90 0.21 0.26
BadNets (w/o norm) 93.47 99.71 8054.45 0.14 2.17

Blend (w/ norm) 94.60 100.00 2084.62 0.15 0.20
Blend (w/o norm) 94.60 100.00 8117.90 0.04 2.22

WaNet (w/ norm) 93.88 99.63 7400.97 0.06 2.34
WaNet (w/o norm) 93.88 99.63 7702.56 0.05 2.39

IAD (w/ norm) 93.82 99.64 7898.91 0.03 2.25
IAD (w/o norm) 93.82 99.64 7895.16 0.03 2.25

Bpp (w/ norm) 94.56 99.97 7147.68 0.09 2.80
Bpp (w/o norm) 94.56 99.97 7260.31 0.09 2.78

nign inputs, similar to other defense methods [111, 112, 277, 130, 136, 110, 278]. However,
BAN provides better performance and requires less time consumption.

5.6 Conclusions and Future Work
This chapter proposes an effective yet efficient backdoor defense, BAN, that utilizes the
adversarial neuron noise and the mask in the feature space. BAN is motivated by the
observation that traditional defenses outperformed the latest feature space defenses on
input space backdoor attacks. To this end, we provide an in-depth analysis showing that
feature space defenses are overly dependent on prominent backdoor features. Experimental
studies demonstrate BAN’s effectiveness and efficiency against various types of backdoor
attacks. We also show BAN’s resistance to potential adaptive attacks. Future studies
could explore a more practical detection method without assuming access to local benign
samples and better strategies for decoupling features because a fixed mask in the feature
is not always aligned with the benign and backdoor features.

5.7 Appendix
Broader Impacts. This chapter proposes a complete defense that includes detecting and
removing DNN backdoors. We believe our approach has a positive impact on the security
of DNNs. A possible negative impact is overconfidence in robustness against backdoor
attacks, as there is no theoretical guarantee that it will always remove the backdoor.

5.7.1 Datasets
CIFAR-10. The CIFAR-10 [250] contains 50,000 training images and 10,000 testing
images with the size of 3 × 32 × 32 in 10 classes.

GTSRB. The GTSRB [272] contains 39,209 training images and 12,630 testing images in

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 101

43 classes. In our experiments, the images are resized to 3 × 32 × 32.

Tiny-ImageNet. Tiny-ImageNet [273] contains 100,000 training images and 10,000 test-
ing images with the size 3 × 64 × 64 in 200 classes.

ImageNet. ImageNet [187] contains over 1.2 million high-resolution images in 1,000
classes. Our experiments use a subset of the full ImageNet dataset, i.e., 200 randomly
selected classes. Each class has 1300 training images and 50 testing images. The ImageNet
images are scaled to 3 × 224 × 224.

5.7.2 Backdoor Models
BAN and defense baselines are evaluated using seven well-known attacks: BadNets [8],
Blend [9], WaNet [10], IAD [11], BppAttack [105], Adap-Blend [118], and SSDT [117].

For all backdoored models, we use SGD with a momentum of 0.9, weight decay of 5×10−4,
and a learning rate of 0.01. We train for 200 epochs, and the learning rate is divided by
10 at the 100th and 150th epochs. Same to [130], we use 90% of the training data for
training backdoor models and 10% for the validation set.

BadNets. We use a 3 × 3 pattern to build the backdoor trigger. The poisoning rate is
5%.

Blend. We use the random Gaussian noise and the blend ratio of 0.2 for backdoor training.
The poisoning rate is 5%.

Adap-Blend. We use the “hellokitty_32.png” and blend ratio of 0.2 to build triggers.
The poisoning rate is 5%.

SSDT. SSDT is a Source-Specific attack, which only misleads the victim classes to the
targeted class. We use class 1 as the victim and class 0 as the target class.

For other attacks and hyperparameters not mentioned, we use the default settings from
the papers or their official open-source implementations.

5.7.3 Defense Baselines
BAN is compared with five representative methods, including Neural Cleanse (NC) [110],
Tabor [144], FeatureRE [111], Unicorn [128], and BTI-DBF [112]. In this section, we
describe the hyperparameters of these defenses.

NC and Tabor. We use the implementation and default hyperparameters from Trojan-

102 Chapter 5

Masked feature

ASRClean input

: Adversarial neuron noise

Figure 5.5: Illustrative diagram of BAN

Zoo [257] for NC and Tabor. 1% of the training set is used to conduct 100 epochs of the
trigger inversion. The learning rate is 0.01.

FeatureRE. We first tried the default hyperparameters from the FeatureRE paper, but
they could not work even for BadNets. We assume this is because the constraints, including
feature mask size and similarity between original images and trigger images, are limited
to a very small size. Therefore, we relaxed the constraints on masks and norms to find
stronger triggers, including loss std bound=1.2, p loss bound=0.2, loss std bound=1.2,
mask size=0.06, and learning rate=0.001. We use 1% of the training set and run FeatureRE
for 400 epochs for each class.

Unicorn. The default hyperparameters for Unicorn are too powerful in our case, and
the recovered triggers can mislead any model to the target label when applied to inputs.
Every model, including benign models, is thought of as backdoored. Therefore, we slightly
increase the thread values of the constraints on Unicorn optimization to find proper trig-
gers, including loss std bound=0.5, SSIM loss bound=0.1, and mask size=0.01. We use
1% of the training set and run Unicorn 40 epochs for each class.

BTI-DBF. We follow the default settings in the BTI-DBF [112] paper. Note that BTI-
DBF uses 5% of training samples for defenses.

5.7.4 BAN Settings
Detection. We use epsilon (ϵ) to limit the noise added to neurons. Otherwise, the model
weights are destroyed by the noise. The ϵ values are 0.3, 0.3, 0.2, and 0.1 for CIFAR-10,
GTSRB, Tiny-ImageNet, and ImageNet200, respectively. ϵ values are decided according
to the size of the images. We use a smaller ϵ for larger datasets. We use the 30-step
PGD algorithm to solve the optimization in Eq. (5.4) to find the noise, i.e., δ and ξ. We
use SGD and the learning rate of ϵ/30 for the PGD optimization. Then, we use Adam
and the learning rate of 0.01 to search for 20 epochs for the feature mask using Eq. (5.5).

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 103

Table 5.8: Ablation of hyperparameters for our defense. Each entry is the average of 5
runs.

Attack LR Epoch λ2
Ours

BA ASR

Bpp

0.005 25 0.2 93.26 ± 0.14 2.53 ± 0.93
0.005 25 0.5 92.64 ± 0.19 2.28 ± 0.72
0.005 25 0.8 92.19 ± 0.13 2.89 ± 0.94
0.005 25 1.0 92.04 ± 0.29 2.74 ± 0.49

0.005 10 0.5 92.97 ± 0.29 2.62 ± 0.44
0.005 50 0.5 92.57 ± 0.09 2.80 ± 0.73
0.005 75 0.5 92.51 ± 0.16 2.34 ± 0.17

0.001 25 0.5 93.57 ± 0.17 2.89 ± 1.01
0.010 25 0.5 91.99 ± 0.22 2.52 ± 0.64
0.020 25 0.5 90.05 ± 0.37 1.91 ± 0.55

The λ1 for Eq. (5.5) equals 0.75. The two optimizations above use 1% of the training set.
Note that this 1% of data is not used to train the backdoor models. The elements in the
mask are clamped into continuous values between 0 and 1. In Figure 5.5, we present an
illustrative diagram of BAN.

Defense. Our defense uses Eq. (5.8) to remove the backdoor. Due to limited access to
benign samples and time consumption, we only use 5% of the training data and 25 epochs
for our fine-tuning. The trade-off hyperparameter (λ2) is 0.5. Then, we use the most
commonly used hyperparameters for the optimizer. We use SGD with momentum=0.9,
weight decay=5e-4, and learning rate=0.005 as the optimizer. The plain fine-tuning uses
the same hyperparameters as BAN.

Table 5.8 shows the ablation results on fine-tuning epochs, λ2, and learning rate. Con-
sidering both performances on benign accuracy and removing the backdoor, our hyperpa-
rameters (LR=0.005, λ2=0.5 and epoch=25) show the best results.

5.7.5 Additional Experimental Results
The Performance under Different Datasets. Table 5.9 shows the detection results
using two larger datasets, Tiny-ImageNet and Imagenet200. The ImageNet200 is a subset
of ImageNet-1K. We train 10 models for each case, 60 models in total. BAN still performs
well under the two larger datasets. In addition, BAN is also scalable in terms of time
consumption. To conduct backdoor detection on ResNet18 models trained using CIFAR-
10, Tiny-ImageNet, and ImageNet200, BAN takes around 55, 129, and 1,120 seconds,
respectively. We do not apply other baselines (except for BTI-DBF) to larger datasets due
to high computational requirements. For example, FeatureRE costs more than 2 hours for
detection in one class of ImageNet200 (default settings), meaning FeatureRE needs more
than 400 hours for a full detection on ImageNet200.

104 Chapter 5

Table 5.9: The detection results using ResNet18 under different datasets.
Dataset Attack BTI-DBF BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

Tiny-ImageNet
No Attack 0 100% 0 100% 0 100%

WaNet 4 40% 6 60% 10 100%
IAD 9 90% 8 80% 10 100%

ImageNet200
No Attack 3 70% 0 100% 0 100%

WaNet 6 60% 9 90% 10 100%
IAD 10 100% 10 100% 10 100%

Dection on GTSRB. Table 5.10 shows the detection success rate for BAN on GTSRB.
Notice that NC and BTI-DBF* perform worse against advanced attacks, while BAN pre-
cisely detects all backdoor models.

Defense of Adaptive Attacks. Table 5.11 shows the fine-tuning results using our
defense method against the two adap-blend and SSDT. The results show that fine-tuning
with neuron noise can remove the backdoor with a slight decrease in clean accuracy.

Table 5.10: The detection results on GT-
SRB with ResNet18.

Attack NC BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

BadNets 20 100% 20 100% 20 100%
WaNet 8 40% 18 90% 20 100%

IAD 0 0% 20 100% 20 100%
Bpp 13 65% 14 70% 20 100%

Table 5.11: Fine-tuning for adaptive at-
tacks.

Attack No defense Ours

BA ASR BA ASR

Adap-Patch 94.20 99.75 90.45 10.24
SSDT 93.86 90.30 93.29 0.90

Comparsion with ANP. ANP [130] uses a similar neuron noise for pruning backdoor
neurons. Their optimization objective includes neuron noise and neuron mask. The neuron
noise is optimized to fool the network, while the mask controls a trade-off for clean cross-
entropy loss. We compare our fine-tuning with ANP in Table 5.12. The hyperparameters
of ANP are the default from the original paper.

Table 5.12: Comparison with ANP [130] on CIFAR-10 using ResNet18.

Defense BadNets Blend WaNet IAD Bpp

BA ASR BA ASR BA ASR BA ASR BA ASR

No defense 93.37 99.41 94.60 100 93.57 99.37 92.83 97.10 94.29 99.93
ANP 93.16 2.13 94.17 97.24 93.06 13.84 92.50 0.44 93.80 4.77
Ours 92.26 2.04 92.61 1.04 92.18 0.87 92.36 1.47 92.82 2.16

Different Poisoning Rates. BAN is effective against BadNets with different poisoning
rates, as shown in Table 5.13. We use BadNets because it is relatively weak at a low
poisoning rate (i.e., hard to be mitigated), while more advanced attacks may still be
strong at a low poisoning rate.

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 105

Table 5.13: The performance of BAN fine-tuning under different poisoning rates of Bad-
Nets using CIFAR-10.

Poisoning Rate BA ASR Positive loss Negative loss Mitigated BA Mitigated ASR

0.01 93.48 98.69 0.38 0.17 92.07 2.73
0.05 93.37 99.41 0.37 0.35 92.06 1.97
0.10 90.98 100.00 0.35 2.06 90.29 2.17
0.15 90.32 100.00 0.39 2.23 90.16 1.71
0.20 89.34 100.00 0.44 2.43 90.39 1.01
0.25 88.09 100.00 0.56 2.81 89.55 1.54
0.30 86.09 100.00 0.62 3.13 88.83 1.08
0.40 82.39 100.00 0.67 3.51 88.75 1.67
0.50 77.83 99.97 0.84 4.27 86.87 3.56

Against Backdoors on the MLP. We evaluate the defense performance on a simple
model architecture. In particular, a 4-layer multilayer perception (MLP) is trained with
benign samples and with BadNets. Table 5.14 demonstrates that BAN is effective on
MLP, where the “num. to target” refers to the number of samples (in 5000 validation
samples) that are classified as the backdoor target after our detection. We also find that
the positive feature loss (i.e., benign feature loss) is very close to the negative loss (i.e.,
potential backdoor feature loss), which indicates that the backdoor features are more
challenging to decouple from benign ones.

Table 5.14: The performance of BAN on the 4-layer MLP.
MLP BA ASR Positve loss Negative loss Num. to target Mitigated BA Mtigated ASR

Benign 53.24 - 1.95 2.29 419 - -
BadNets 47.04 100.00 2.03 2.34 3607 45.13 7.11

Discussion about Relationship between the Neuron Noise and Lipschitz Con-
tinuity. A small trigger that changes the output of a benign input into a malicious target
label can be related to the high Lipschitz constant [131] and a neural network with high
robustness tends to have a lower local Lipschitz constant. Moreover, a larger local Lips-
chitz constant implies steeper output around trigger-inserted points, leading to a smaller
trigger effective radius making trigger inversion less effective [279]. Thus, the concepts of
adversarial activation noise and Lipschitz continuity are related, and the local Lipschitz
constant can serve as an upper bound for the trigger’s effective influence.

In addition, introducing theoretical tools like the Lipschitz constant for a backdoor defense
may also be very tricky in practice because it needs approximation for implementation.
For example, [131] evaluates the channel-wise Lipschitz constant by its upper bound but
does not thoroughly discuss the relationship between the channel-wise Lipschitz constant
and the network-wise Lipschitz constant, where the theorem of Lipschitz continuity really
relies on. Recent work also mentions that empirically estimating the Lipschitz constant
is hard from observed data, which usually leads to overestimation [280]. Methods relying
on Lipschitz continuity may not require heavy computational load and are also related to

106 Chapter 5

our approach. Our method emphasizes more on fine-tuning with the guidance of neuron
noise, rather than tuning the trained model.

Choosing the λ1. As discussed in the method section, the mask norm (L1 norm) with
lambda in Eq. (5.5) is to ensure that the optimization objective is decoupling between
benign and backdoor features. Without the constraint of the mask norm in Eq. (5.5), the
optimization objective will be simply increasing the mask norm unless there are extremely
strong backdoor features. The λ1 value selection is implemented by checking the value of
the mask norm. Table 5.15 provides an example of λ1 selection on CIFAR-10, where the
maximal mask norm is 8192. It can be observed that the mask is almost full of ones when
λ1 is smaller than 0.7, and the negative feature loss (backdoor feature) is high, based on
which we can pick a value of λ1 greater than 0.7. Note that the selection is unaware of
potential backdoors.

Table 5.15: Feature loss values with different λ1
λ1 Mask norm Positive loss Negative loss

0.0 8188.62 0.27 2.30
0.1 8188.75 0.28 2.30
0.2 8184.30 0.27 2.30
0.3 8175.50 0.29 2.30
0.4 8152.40 0.25 2.30
0.5 8131.26 0.27 2.29
0.6 8055.07 0.21 2.27
0.7 7898.25 0.26 2.24
0.8 596.85 0.99 0.23
0.9 22.08 2.33 0.28

Swin Transformer. Table 5.16 provides experimental results of a 12-layer Swin trans-
former [33] on CIFAR-10. For BadNets and Blend, we train the backdoored network
using Adam as the optimizer. For WaNet, IAD, and Bpp, we use the default setting. All
backdoored models can be detected by BAN.

Table 5.16: Results on Swin Transformer.
Attack No defense FT BTI-DBF(U) BAN Fine-tune

BA ASR BA ASR BA ASR BA ASR

BadNets 86.7 97.43 82.23 44.07 85.21 99.99 83.92 2.91
Blend 85.46 100.00 80.13 100.00 83.9 100.00 79.18 26.20
WaNet 78.25 31.03 75.63 2.3 73.83 2.61 75.28 3.1
IAD 76.35 88.71 74.58 54.63 74.29 61.16 76.26 9.8
Bpp 79.19 63.74 75.35 12.99 74.66 11.04 74.25 6.91

Clean Label Attack. We provide a clean-label backdoor experiment following Label-
Consistent Backdoor (LC) [266], where we take default hyperparameters. Table 5.17
demonstrates the detection performance of 20 models, where we randomly select one model
from the 20 for the mitigation experiment. Experimental results demonstrate that BAN
is also effective against the clean-label attack.

Chapter 5. Adversarial Neuron Noise for Backdoor Detection 107

Table 5.17: Clean label attack on CIFAR-10.
Attack BA ASR Detection Success Accuracy Mitigated BA Mitigated ASR

LC [266] 92.72 100.00 90.00 89.27 6.16

Table 5.18: Results on different target classes on CIFAR-10.

Target
No defense BAN Fine-tune

BA ASR BA ASR

0 93.41 100.00 92.57 1.56
1 93.51 100.00 92.53 0.84
2 93.54 99.99 91.49 1.08
3 93.59 99.99 92.14 1.93
4 93.84 99.98 92.13 1.49
5 93.52 100.00 91.84 3.29
6 93.46 100.00 92.48 0.93
7 93.56 100.00 92.36 0.73
8 93.57 99.89 92.31 0.58
9 93.36 100.00 91.65 2.40

Semantically Similar Classes. We provide an additional analysis on image form seman-
tically similar classes. From ImageNet200, we select class n02096294 (Australian terrier)
as the target class, since there are 19 kinds of terriers in our ImageNet200 datasets, such
as n02094433 (Yorkshire terrier) and n02095889 (Sealyham terrier). We train 10 backdoor
networks using BadNets with different target classes. Table 5.18 demonstrates that BAN
is effective against the backdoor regardless of semantically similar classes.

Chapter 6. Backdoor Stealthiness in Parameter Space 109

Chapter 6

Backdoor Stealthiness in Parameter Space

Backdoor attacks maliciously inject covert functionality into machine learning models,
which has been considered a security threat. The stealthiness of backdoor attacks is a
critical research direction, focusing on adversaries’ efforts to enhance the resistance of
backdoor attacks against defense mechanisms. Recent research on backdoor stealthiness
focuses mainly on indistinguishable triggers in input space and inseparable backdoor rep-
resentations in feature space, aiming to circumvent backdoor defenses that examine these
respective spaces. However, existing backdoor attacks are typically designed to resist a
specific type of backdoor defense without considering the diverse range of defense mech-
anisms. Based on this observation, this chapter pose a natural question: Are current
backdoor attacks truly a real-world threat when facing diverse practical defenses? To an-
swer this question, we examine 12 common backdoor attacks that focus on input-space or
feature-space stealthiness and 17 diverse representative defenses. Surprisingly, we reveal
a critical blind spot that backdoor attacks designed to be stealthy in input and feature
spaces can be mitigated by examining backdoored models in parameter space. To in-
vestigate the underlying causes behind this common vulnerability, we study the char-
acteristics of backdoor attacks in the parameter space. Notably, we find that input-
and feature-space attacks introduce prominent backdoor-related neurons in parameter
space, which are not thoroughly considered by current backdoor attacks. Taking com-
prehensive stealthiness into account, we propose a novel supply-chain attack called Grond.
Grond limits the parameter changes by a simple yet effective module, Adversarial Back-
door Injection (ABI), which adaptively increases the parameter-space stealthiness during
the backdoor injection. Extensive experiments demonstrate that Grond outperforms all
12 backdoor attacks against state-of-the-art (including adaptive) defenses on CIFAR-10,
GTSRB, and a subset of ImageNet. In addition, we show that ABI consistently im-
proves the effectiveness of common backdoor attacks. Our code is publicly available:
https://github.com/xiaoyunxxy/parameter_backdoor.

110 Chapter 6

6.1 Introduction
While deep neural networks (DNNs) have achieved excellent performance on various tasks,
they are vulnerable to backdoor attacks. Backdoor attacks insert a secret functionality
into a model, which is activated by malicious inputs during inference. Such inputs contain
an attacker-chosen property that is called the trigger. Backdoored DNNs can be created
by training with poisoned data [8, 9, 10, 266]. More powerful and stealthy backdoors can
also be injected through the control of a training process [103, 104, 121, 114, 107, 117, 113],
or by direct weights modification of the victim model [51, 108].

In early backdoor attacks [8, 9, 259], triggers could induce noticeable changes that human
inspectors or anomaly detectors [109, 110, 127] could easily spot. To enhance the ability to
remain undetected against such defenses (i.e., achieve input-space stealthiness), smaller or
more semantic-aware triggers are designed [10, 281, 105]. Input-space stealthy backdoor
attacks usually need to change labels of poisoned samples to the target class (i.e., dirty-
label), which makes detection easier [109]. To this end, another line of backdoor attacks
poisons the training data without changing the labels [266, 57] (i.e., clean-label), improving
backdoor stealthiness.

Despite the stealthiness concerning input images and labels, it has been widely observed
that existing backdoor attacks introduce separable representations in the feature space,
which can be exploited to develop backdoor defenses [111, 118, 135, 133, 112]. For
example, featureRE [111] utilizes feature separability and designs a feature space con-
straint to reverse engineer the backdoor trigger. In response to feature-space defenses,
state-of-the-art (SOTA) backdoor attacks focus on eliminating the separability in the fea-
ture space [117, 118, 279, 103] to increase the feature-space stealthiness, i.e., the unde-
tectability against feature-space defenses. Considering a different threat model, supply-
chain backdoor attacks assume control over the training or directly modify the model’s
weights [121, 51, 108], and the backdoored model is provided as a service or as the final
product. For example, supply-chain attacks could introduce a penalty to the training
loss that decreases the distance between the backdoor and benign features to increase
feature-space stealthiness [103, 113, 115, 114].

An important observation is that most backdoor attacks are designed to be stealthy to
resist a specific type of defense. For example, WaNet [10] and Bpp [105] design impercep-
tible triggers to bypass input-space defenses (such as NC [110]), but introduce significant
separability in the feature space [111]. Adap-Patch [118] avoids feature separability but
uses patch-based triggers, which a human inspector can detect. More critically, current
backdoor attacks are barely evaluated against parameter-space defenses [133, 282, 139,
130, 131, 132]. This oversight is significant because backdoor behaviors are ultimately
embedded in and reflected by the parameters of the backdoored model, which is the fi-

Chapter 6. Backdoor Stealthiness in Parameter Space 111

Table 6.1: A summary of the existing defenses evaluated in this chapter. “Proactively
training” refers to the strategy that the defender could proactively control the training on
poisoned training data to produce a clean model without a backdoor in it. Additionally,
all the defenses have been tested against the all-to-one attack, so we omitted it from the
attack assumptions. A summary of backdoor attacks is provided in Table 6.12.

Defense Defense Task Threat Model Attack

Input Model Mitigation Black-box Clean data Proactively A2A Dynamic

Model
Inspection

NC [110]
Tabor [144]

FeatureRE [111]
Unicorn [128]

BTI-DBF [112]

Input
Inspection

Scale-up [263]
IBD-PSC [283]

CT [137]

Pruning
FP [129]

ANP [130]
CLP [131]
RNP [132]

Fine-tune

vanilla FT
FT-SAM [133]

I-BAU [134]
FST [135]

BTI-DBF(U) [112]

the item is not supported by the defense; the item is supported by the defense.

nal product of any backdoor attack. As such, there is a lack of systematic evaluation of
backdoor attacks against the latest parameter-space defenses.

To this end, in this chapter, we first systematically analyze 12 attacks against 17 back-
door defenses. All evaluated defenses and their characteristics, including detection and
mitigation, are summarized in Table 6.1. Surprisingly, our experiments demonstrate that
parameter-space defenses can easily mitigate SOTA stealthy backdoor attacks (including
supply-chain attacks), indicating that existing stealthy backdoor attacks fail to provide
parameter-space stealthiness and, as a result, still need substantial improvement to be
stealthy in the model’s parameter space. More importantly, our analysis reveals that even
though some backdoor attacks can resist several defenses, bypassing all defense types is
far from trivial.

To explore whether it is possible to make backdoor attacks stealthy simultaneously against
diverse defenses, we propose a novel attack called Grond that considers comprehensive
stealthiness, meaning that a backdoor attack is stealthy in the input, the feature, and
the parameter space of the model. Grond achieves the input space stealthiness by using
adversarial perturbations as the trigger. To achieve parameter-space stealthiness, we pro-
pose a novel Adversarial Backdoor Injection module that adaptively injects the backdoor
during the backdoor training to achieve parameter space stealthiness. We also show that
the feature-space stealthiness is a by-product of input- and parameter-space stealthiness

112 Chapter 6

with empirical results in Figures 6.3 and 6.6. Specifically, guided by our Trigger-Activated
Change (TAC) analysis, we leverage the Lipschitz continuity of neuron activations to find
backdoor-related suspicious and sensitive neurons. Then, we conduct pruning on these
neurons to eliminate the backdoor effect. As a result, the backdoor is associated with
neurons throughout the DNN rather than just focusing on a few prominent neurons after
Adversarial Backdoor Injection, as illustrated in Figure 6.1.

We make the following contributions:

• We revisit SOTA backdoor attacks regarding their stealthiness, showing that most
attacks are designed to increase input-space indistinguishability or/and feature-space
inseparability without considering parameter-space stealthiness. Based on this find-
ing, we examine common backdoor attacks and reveal a critical blind spot regard-
ing real-world scenarios: SOTA stealthy backdoor attacks are highly vulnerable to
parameter-space defenses.

• To investigate the underlying reasons behind this common vulnerability of backdoor
attacks, we take a closer look at the backdoor characteristics in the parameter space,
showing that input- and feature-space attacks introduce prominent backdoor-related
neurons, which cannot be avoided by current backdoor attacks.

• To accomplish comprehensive stealthiness, we propose a novel backdoor attack,
Grond, that considers input, feature, and parameter-space defenses. Extensive ex-
periments demonstrate that Grond outperforms SOTA attacks against four pruning-
and five fine-tuning-based defenses on CIFAR-10, GTSRB, and ImageNet200. More-
over, we demonstrate that Grond is resistant against five model detection defenses,
two input detection defenses, and a proactive defense.

• We verify the effectiveness of the Adversarial Backdoor Injection module by binding
it with other attacks. Experimental results demonstrate that Adversarial Backdoor
Injection could substantially improve the parameter-space robustness of most com-
mon backdoor attacks.

6.2 Related Work
In this section, we introduce the background and provide relevant literature on backdoors.

6.2.1 Preliminaries on Backdoor Training
This chapter considers a C-class classification problem with an L-layer CNN network
f = fL ◦ · · · f1. Suppose that D = {(xi, yi)}N

i=1 is the original training data, containing
N samples of xi ∈ Rdc×dh×dw and its label y ∈ {1, 2, . . . , C}. dc, dh, and dw are the
number of input channels, the height, and the width of the image, respectively. The
attacker chooses a target class t and creates a partially poisoned dataset Dp by poisoning
generators Gx and Gy, i.e., Dp = Dc ∪ Db. Dc is the benign data from original dataset,

Chapter 6. Backdoor Stealthiness in Parameter Space 113

+

Adversarial Backdoor Injection

Reduce the prominent weightsProminent backdoor neurons

Backdoored Model

Stealthy backdoor
on more neurons

UPGD

Backdoor Neurons Increase Backdoor Neurons Decrease

Figure 6.1: Diagram illustrating the working mechanism of Grond. On the left, universal
PGD (UPGD) perturbation is generated as backdoor patterns to be injected. In the
middle, ABI is applied where perturbed samples are iteratively used to train the model, and
the model parameters are pruned to limit the magnitude of prominent backdoored weights.
On the right, the output backdoored model that considers comprehensive stealthiness
is deployed, where 1) the triggers are invisible, 2) the features of trigger samples are
inseparable, and 3) the backdoored model weights are hardly distinguishable from benign
model weights. Perturbations generated by UPGD are scaled up 10× for visualization.

Db = {(x′, y′)|x′ = Gx(x), y′ = Gy(y), (x, y) ∈ D − Dc}. In the clean-label setting,
Gy(y) = y. For the dirty-label attacks, Gy(y) = t. In the training stage, the backdoor is
inserted into f by minimizing the loss on Dp:

min
θ

LDp (θ) = E
(x,y)∈Dp

ℓ(f(x;θ), y). (6.1)

In the inference stage, the trained f performs well on benign data x̂, but predicts Gx(x̂)
as Gy(ŷ).

6.2.2 Backdoor Attacks
Backdoor attacks compromise the integrity of the victim model so that the model performs
naturally on benign inputs but is misled to the target class by inputs containing the
backdoor trigger. The trigger can be a visible pattern inserted into the model’s input in
the input space or a property that affects the feature representation of the model’s input
in the feature space. Eventually, however, the backdoored model’s parameters in the
parameter space will be altered regardless of the exact backdoor attack (see Figure 6.2).
To insert a backdoor, the attacker is assumed to only control a small portion of the training
data under the poison training scenario [8, 9, 102]. In the supply-chain setting (backdoor
models provided to users), the attacker also control the training process [103, 11, 104,
10, 105]. Moreover, the backdoor can also be created by directly modifying the model’s
weights [106, 51, 107, 108].

Input-space attacks. Traditional attacks typically use simple patterns as their triggers.
For example, BadNets [8] uses a fixed patch, and Blend [9] mixes a Hello Kitty pattern

114 Chapter 6

into the images as the trigger. These non-stealthy triggers introduce abnormal data into
training data and can be easily detected by human inspectors or defenses [109, 110]. To
improve the stealthiness, various triggers are proposed to achieve invisibility in the input
space. IAD [11] designed a dynamic solution in which the triggers vary among different
inputs. WaNet [10] proposed the warping-based trigger, which is invisible to human in-
spection. Bpp [105] used image quantization and dithering as the trigger, which makes
imperceptible changes to images. Although these methods successfully build invisible trig-
gers and bypass traditional defenses [110], they still introduce separable features and can
be detected by feature-space defenses [111, 112]. These input-invisible attacks can be even
more noticeable than input-visible attacks (BadNet, Blend) in the feature space [139]. We
conjecture this is because they have less modification on input pixels than input-visible
attacks. Therefore, input-invisible attacks require more influential features to achieve a
successful attack.

Feature-space attacks. Knowing the vulnerability of input-space attacks against feature-
space defenses, backdoor attacks are improved for feature-space stealthiness. A common
threat model of this attack type is to assume additional control over the training process.
For example, [103, 113, 114] directly designed loss functions to minimize the difference
between the backdoor and benign features. [115] formulated the difference between back-
door and benign features by Wasserstein-2 distance and used the difference as a regular-
ization constraint in backdoor training. Aside from design loss penalties, TACT [116] and
SSDT [117] point out that source-specific (poison only the specified source classes) attack
helps to obscure the difference in features between benign and backdoor samples. In ad-
dition, [118] proposed Adap-Blend and Adap-Patch, which obscures benign and backdoor
features by 1) including poisoned samples with the correct label, 2) asymmetric triggers
(using a stronger trigger at inference time), and 3) trigger diversification (using diverse
variants of the trigger during training). Unfortunately, existing attacks lack systematic
evaluation against the latest defenses. For example, Adap-Blend can be thoroughly mit-
igated by recent works [133, 112, 139]. SSDT can be mitigated by traditional defenses,
such as fine-pruning [129] and vanilla fine-tuning according to Tables 6.2 and 6.3. In sum-
mary, feature-space attacks usually introduce visible triggers and cannot defeat the latest
defenses.

Supply-chain attacks. Supply-chain attacks are getting more attention due to their
potential in real-world applications where backdoored models are provided as the final
product to users. In supply-chain attacks, adversaries could control both training data and
the training process. Note that feature-space attacks [103, 119, 115, 113, 120, 121, 114,
122, 117] with the assumption of control over the training process are a subset of supply-
chain attacks, as their output is the backdoor model. In addition to training control,
another kind of supply-chain attack directly adjusts the model’s weights in parameter
space to introduce a backdoor, i.e., parameter-space attack. T-BFA [123], TBT [124],

Chapter 6. Backdoor Stealthiness in Parameter Space 115

and ProFlip [125] explore modifying a sequence of susceptible bits of DNN parameters
stored in the main memory (e.g., DRAM) to inject backdoor. SRA [107] and handcrafted
Backdoor [51] directly modify a subset of models’ parameters to increase the logits of the
target class. However, these attacks require a local benign dataset to guide the search of
the subset of parameters to be modified. Data-free backdoor [126] releases the requirement
of benign data by collecting substitute data irrelevant to the main task and fine-tuning
using the substitute data. DFBA [108] further proposes a retraining-free and data-free
backdoor attack by injecting a backdoor path (a single neuron from each layer except
the output layer) into the victim model. Supply-chain attacks focus on increasing the
backdoor effectiveness without comprehensively considering parameter-space defenses. We
argue that supply-chain backdoor attacks should also take parameter-space stealthiness
into account.

6.2.3 Backdoor Defenses
Backdoor defenses can be classified into detection and mitigation. Detection refers to
determining whether a model is backdoored (model detection) [110, 127, 113, 128, 112] or
a given input is applied with a trigger (input detection) [284, 263, 117]. Mitigation refers
to erasing the backdoor effect from the victim model by pruning the backdoor-related
neurons (pruning-based defenses) [129, 130, 131, 132] or unlearning the backdoor trigger
(fine-tuning-based defenses) [133, 134, 135, 112]. In addition, recent works [136, 137, 138]
also consider the home-field advantage∗ to design more powerful proactive defenses.

Backdoor detection. Backdoor trigger reverse engineering (also known as trigger inver-
sion) is considered one of the most practical defenses for backdoor detection as it can be
applied to both poisoning training and supply-chain scenarios [111, 128, 112, 139], i.e., it
is a post-training method. Specifically, trigger inversion works by searching for a poten-
tial backdoor trigger for a specific model. The model is determined as backdoored if a
trigger is found, and the trigger can be used to unlearn the backdoor. The searching is
implemented as an optimization process corresponding to the model and a local benign
dataset. For example, NC [110] firstly proposes trigger inversion for detection by optimiz-
ing the mask and pattern in the input space that can mislead the victim to the target
class. This optimization is repeated for all classes. The model is considered backdoored if
an outlier significantly smaller than triggers for all other classes exists. Tabor [144] designs
better optimization objects due to overly large (large size triggers but no overlaps with the
true trigger) and overlaying (overlap the true trigger but with redundant noise) problems
of NC. Although methods similar to NC perform well against fixed patch trigger attacks,
such as BadNets [8] and Blend [9], they may not be effective against input-stealthy attacks
like WaNet [10]. To address this problem, FeatureRE [111] moves trigger inversion from
input space to feature space. Unicorn [128] further proposes a transformation function

∗The defender has full control of the system and could access the training process.

116 Chapter 6

for attacks in other spaces, such as numerical space [105]. Recent works [112, 139] focus
on exploring new optimization objectives addressing the inefficiency problem of previous
trigger inversion methods due to optimization over all classes. BTI-DBF [112] trains a
trigger generator by maximizing the backdoor feature difference between benign samples
and their generated version (by the trigger generator) and minimizing the benign feature
difference. BAN [139] optimizes the noise on neuron weights rather than input pixels to
activate the potential backdoor, which further improves both effectiveness and efficiency.

Backdoor mitigation. Backdoor mitigation consists of fine-tuning and pruning, which
are effective and do not assume knowledge of backdoor triggers. Pruning methods aim
to find and remove backdoor-related neurons. FP [129] eliminates dormant neurons on
benign inputs and then fine-tunes the pruned network. ANP [130] searches for backdoor-
related neurons by adding adversarial noise to neuron weights to activate the backdoor.
RNP [132] uses an unlearning and recovering process on benign data to expose backdoor
neurons, as the recovering will force the backdoor neurons to be silent for the main benign
task. Unlike these pruning methods guided by benign data, CLP [131] directly analyses
the Channel Lipschitzness Constant of the network and prunes the high Lipschitz constant
channels in a data-free manner.

Traditional fine-tuning as defense usually needs trigger inversion methods to recover the
trigger and then unlearn the trigger. For example, BTI-DBF(U) [112] fine-tunes backdoor
models using triggers recovered by their inversion algorithm. However, there is no guar-
antee that the recovered trigger is the true trigger for the backdoor. Recent works also
consider fine-tuning without the trigger information but with prior human knowledge. For
example, FT-SAM [133] observes a positive correlation between the weight norm of neu-
rons and backdoor-related neurons. Then, they propose a fine-tuning method to revise the
large outliers of weight norms using Sharpness-Aware Minimization (SAM). I-BAU [134]
forms a min-max fine-tuning similar to adversarial training, where the inner maximizing
searches for perturbations that mislead the model and the outer minimizing is to keep the
model’s capability on benign data. FST [135] assumes the backdoor and benign features
should be disentangled and actively shifting features while fine-tuning by encouraging the
discrepancy between the original backdoor model and the fine-tuned model.

Proactive defense. Several methods have been proposed to exploit the home-field ad-
vantage. ABL [136] proposes two techniques to avoid learning the backdoor task while
training on the poisoned data: 1) trapping the loss value of each example around a certain
threshold because backdoor tasks are learned much faster than the main task, and its loss
decreases much faster. The samples with lower loss are recorded as poisoned samples; 2)
unlearning the backdoor with the recorded poisoned samples. CT [137] detects poisoned
samples in the training set by introducing confusing batches of benign data with ran-
domly modified labels. The confusing batches with random labeling corrupt the benign

Chapter 6. Backdoor Stealthiness in Parameter Space 117

correlations between normal semantic features and semantic labels, so the inference model
trained with confusing batches and the poisoned dataset will find it hard to distinguish
benign samples. However, the correlation between the backdoor trigger and the target
label remains intact, as the confusing batches contain no trigger. Therefore, samples with
correctly predicted labels by the inference model are considered poisoned. PDB [138]
proactively injects a defensive backdoor into the model during training, which overrides
the potential backdoor to be injected by the poisoned training data. In summary, proactive
defenses assume a stronger defender for better defensive performance.

6.3 Comprehensive Backdoor Stealthiness
In this section, we first introduce the threat model (Section 6.3.1). Then, we analyze the
behavior of neurons of backdoored models, suggesting that stealthy input- and feature-
space backdoor attacks can be identified in parameter space (Section 6.3.2). Then, to
achieve comprehensive stealthiness, we propose Grond that includes backdoor generation
and Adversarial Backdoor Injection (Section 6.3.3).

6.3.1 Threat Model
Attacker’s goal. The attacker provides pre-trained models to users. The aim is to inject
backdoors into the pre-trained model so that the model performs well on clean inputs but
predicts the attacker-chosen target label when receiving inputs with a backdoor trigger,
i.e., an all-to-one attack.

Attacker’s knowledge. The attacker has white-box access to the training processes,
the training data, and the model weights, i.e., the supply-chain threat model. During
inference, the backdoor trigger is imperceptible to human inspectors.

Attacker’s capabilities. The attacker can train a well-performed surrogate model to
generate UPGD, which is used to perturb the victim model’s input. Additionally, the
attacker can alter the model’s weights during training. Table 6.12 in Appendix 6.7.4
shows that the threat model of Grond is aligned with baseline attacks.

6.3.2 Lack of Parameter-Space Stealthiness
As introduced in the related work, early backdoor attacks that introduce noticeable changes
in either input [8, 9] or feature space [10, 11] have been empirically shown powerful, even
with very low poisoning rates [8, 57]. Focusing on the backdoor-introduced noticeable
changes, backdoor defenses are improved to distinguish backdoor patterns in either input
or feature space [111, 282]. Meanwhile, backdoor attacks are optimized to increase stealth-
iness in input [10] or feature space [118]. However, regardless of the implementation of
input- or feature-space attack logic, backdoor behaviors are eventually embedded in the

118 Chapter 6

backdoored model’s parameters. For this reason, it is important to investigate whether
backdoor attacks introduce visible changes in the parameter space of the attacked models
that can be used by the parameter-space defenses.

Taking this observation into consideration, we ran an initial experiment to understand the
behavior of neurons of backdoored models. We use the Trigger Activated Change (TAC)
values [131] to quantify the relevance of a neuron to the backdoor behavior according to
the difference when the network accepts benign and backdoor inputs. A higher TAC value
indicates that the neuron is strongly relevant for backdoor behaviors. Specifically, TAC is
defined as:

TAC(k)
l (Dc) = 1

|Dc|
∑
x∈Dc

||f (k)
l (x) − f

(k)
l (Gx(x))||2, (6.2)

where f
(k)
l is the kth channel of the lth layer. Gx(x) is the poisoned sample. Dc consists

of a few benign samples. Note that TAC can only be used to analyze backdoor behaviors
and cannot be deployed as a practical defense, as it requires access to backdoor triggers,
which is unrealistic in practice.

TAC analysis of different backdoor attacks is shown in Figure 6.2, where each dot rep-
resents the TAC value for one of the 512 individual neurons. We can observe that the
TAC values of neurons of backdoored models are substantially higher than those of benign
models. In particular, neurons with higher TAC values contribute more to the backdoor
behavior. The working mechanism of pruning- and fine-tuning-based backdoor defenses
can be understood as targeting and eliminating neurons with TAC values that are substan-
tially higher than those of others. Our observations from the TAC analysis suggest that
backdoor attacks are designed to be stealthy in input space, and feature space can, in fact,
be identified in parameter space, making them susceptible to parameter-space defenses.
Our experimental analysis further substantiates this assumption (See Section 6.4). Thus,
we conclude that current backdoor attacks may not be robust against parameter-space
defenses.

Figure 6.2: TAC [131] analysis of different backdoor attacks on 512 neurons. The y axis
contains the TAC values, and the x axis depicts the index of neurons. Higher TAC values
suggest a stronger relation between corresponding neurons and the backdoor effect.

Chapter 6. Backdoor Stealthiness in Parameter Space 119

6.3.3 Grond for Comprehensive Stealthiness
To address the vulnerabilities identified in the parameter space, we propose a stealthy back-
door attack, Grond, that considers comprehensive stealthiness, i.e., stealthiness in input,
feature, and parameter space. Grond includes two key parts: UPGD trigger generation
and Adversarial Backdoor Injection (ABI).

Backdoor trigger generation for input-space stealthiness. We use imperceptible
adversarial perturbations to generate imperceptible backdoor triggers inspired by adver-
sarial example studies [285, 102]. We modify the original PGD algorithm to generate a
universal PGD (UPGD) perturbation as the backdoor trigger. UPGD contains non-robust
but generalizable semantic information [286], which correlates with the benign functions
of the victim model and shortens the distance between poisoned data and the target clas-
sification region [102]. Consequently, backdoor patterns tend to make fewer prominent
changes to the victim network.

Similar to [57, 102], UPGD is generated on a well-trained surrogate model trained on
the clean training set. The architecture and parameters of the surrogate model do not
necessarily need to be the same as the victim model (see Table 6.15 in Appendix 6.7.9).
UPGD is optimized following the PGD [12] algorithm to decrease the surrogate model’s
cross-entropy loss that takes as inputs the adversarial examples (the poisoned samples in
our case) and the target class label. This procedure is described formally in Algorithm 6.1.
The δ is the generated UPGD that will be used as a backdoor trigger; thus, Gx(x) = x+δ.
S is the ball function with the radius ϵ, and the small ϵ guarantees the imperceptibility of
the backdoor trigger as it controls the perturbation’s magnitude.

The backdoor is injected during training by poisoning some training data from the target
class, i.e., applying the UPGD trigger to the training data. In the inference stage, our
backdoor is activated by the same trigger. The motivation for our small-size trigger (ϵ = 8)
is imperceptibility.

Adversarial Backdoor Injection for parameter-space stealthiness. Backdoor neu-
rons (i.e., trigger-related neurons) regularly show higher activation values for inputs that
contain the trigger, which results in powerful performance [127, 111, 282]. To this end,
backdoor training needs to substantially increase the magnitude of parameters of backdoor
neurons [130, 132, 131], which harms the parameter-space stealthiness of backdoor attacks.

One way to find the sensitive neurons with higher activation values is to analyze the
Lipschitz continuity of the network. Leveraging this fact, we introduce a novel backdoor
training mechanism, Adversarial Backdoor Injection, to increase the parameter-space back-
door stealthiness. Specifically, each neuron’s Upper bound of Channel Lipschitz Condition
(UCLC [131]) is calculated, based on which the weights of these suspicious neurons are set

120 Chapter 6

Algorithm 6.1 UPGD Generation Algorithm
Input: Surrogate model fθsur , training data D, perturbation budget ϵ, the number

of iteration I, the target class t.
Output: UPGD δ

1: S = B(δ; ϵ) = {δ ∈ Rdc×dh×dw : ||δ||∞ ≤ ϵ}
2: δ ← random_initialization ∧δ ∈ S
3: for i ∈ (0, I − 1) do
4: x ← sample_batch(D)
5: LD(θ) = E

(x,y)∈D
ℓ(fθsur

(x + δ;θ), t),

6: δ ← min
δ∈S

LD(θ)
7: end for

to the mean of all neurons’ weights in the corresponding layer after every training epoch.
In our implementation, we use the weights before every batch normalization as the neuron
weights corresponding to the channel setting in UCLC. We prune neurons by substituting
their weights with the mean ones because pruning to zeros makes the training unable to
converge in our experiments. Formally, the kth parameter of the lth layer, θ(k)

l , is updated
as follows:

θ
(k)
l :=

{
mean(θl), σ(θ(k)

l) > mean(σ(θl)) + u × std(σ(θl))

θ
(k)
l , otherwise,

(6.3)

where u is a fixed threshold and σ is the UCLC value of the given weights. The measure for
quantifying backdoor relevance can be changed from UCLC to others, such as the distance
of neuron outputs when receiving benign and backdoor inputs, where a larger distance
means the neuron is more relevant to backdoor behaviors and can be pruned. We use
the modified UCLC for training efficiency as UCLC is data-free, which does not require
calculation based on the outputs of neurons.

In adversarial training [12], adversarial examples are introduced during training to in-
crease the model’s robustness during inference. Similarly, during the Adversarial Back-
door Injection, we use backdoor defenses to increase the resistance of backdoor attacks to
parameter-space defenses. At the end of each training epoch, Adversarial Backdoor Injec-
tion prunes the trained model to decrease the weights of backdoor neurons. Iteratively,
backdoored neurons spread across the whole model instead of forming a few prominent
backdoor neurons, as illustrated in Figure 6.1.

Feature-space stealthiness. We hypothesize that feature-space stealthiness is a by-
product of parameter-space and input-space stealthiness since the variation of feature
maps is strongly correlated with model parameters and inputs. Figures 6.3 and 6.6 show
that Grond can substantially increase the feature-space stealthiness. Detailed experimental

Chapter 6. Backdoor Stealthiness in Parameter Space 121

Table 6.2: Pruning-based mitigations against backdoored ResNet18 on CIFAR-10. BA
refers to benign accuracy on clean data, ASR to attack success rate, and PR to the
poisoning rate of the training set. The average drop of BA and ASR is also shown with
downward arrows compared to the performance without any defense. Red marks indicate
the attack failed to resist the defense with an ASR lower than 60%, and green means that
the ASR is higher than 60%.

Attack No Defense FP [129] ANP [130] CLP [131] RNP [132] Average

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets [8] 93.13 100 92.42 71.71 91.6 1.06 88.99 49.02 84.04 13.82 89.26 ↓3.87 33.90 ↓66.1
Blend [9] 94.42 100 93.08 99.99 93.57 0.33 90.3 0.54 94.63 57.98 92.89 ↓1.53 39.71 ↓60.29

WaNet [10] 93.60 99.37 92.96 4.60 91.08 0.49 91.53 2.12 92.86 3.17 92.11 ↓1.49 2.59 ↓96.78
IAD [11] 92.88 97.10 91.96 1.22 92.84 0.71 92.24 0.74 92.72 0.42 92.44 ↓0.44 0.77 ↓96.33

AdvDoor [102] 93.97 100 93.37 98.69 91.46 28.83 89.22 6.13 90.17 44.60 91.05 ↓2.92 44.56 ↓55.44
Bpp [105] 94.19 99.93 93.38 18.89 92.96 2.97 93.37 1.89 92.2 5.79 92.98 ↓1.21 7.39 ↓92.54
LC [266] 94.31 100 92.22 93.57 91.02 24.43 90.96 0.38 82.70 33.60 89.23 ↓5.08 37.99 ↓62.01

Narcissus [57] 93.58 99.64 93.49 96.54 89.76 49.18 93.19 97.82 91.10 94.59 91.88 ↓1.7 84.53 ↓15.11
SSDT [117] 93.70 90.30 93.41 0.80 93.88 0.60 93.66 1.20 93.99 3.30 93.74 ↑0.04 1.47 ↓88.83

Adap-Blend [118] 92.74 99.67 92.06 95.50 86.48 67.73 92.49 99.62 78.63 1.56 87.42 ↓5.32 66.10 ↓33.57

Grond (PR=5%) 93.43 98.04 93.09 99.73 91.43 94.01 93.29 87.89 91.83 85.22 92.41 ↓1.02 91.71 ↓6.33
Grond (PR=1%) 94.26 93.51 93.31 96.32 92.94 91.48 94.33 87.56 92.13 94.87 93.18 ↓1.08 92.56 ↓0.95

Grond (PR=0.5%) 94.36 92.91 93.32 90.96 93.87 84.04 94.52 86.82 91.99 84.63 93.43 ↓0.93 86.61 ↓6.3

analysis can be found in Section 6.4.2.

Table 6.3: Fine-tuning-based mitigations against backdoored ResNet18 on CIFAR-10.
Attack vanilla FT FT-SAM[133] I-BAU[134] FST[135] BTI-DBF[112] Average

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets [8] 91.07 43.96 92.01 2.84 90.87 97.48 92.4 13.10 91.26 13.12 91.52 ↓2.06 34.10 ↓65.9
Blend [9] 91.64 99.61 92.52 1.73 91.84 8.84 93.4 100 91.86 100 92.25 ↓2.17 62.04 ↓37.96

WaNet [10] 91.11 0.99 90.89 1.03 87.98 0.81 92.17 0.04 90.3 4.89 90.49 ↓3.11 1.55 ↓97.82
IAD [11] 90.83 2.16 92.18 2.87 88.4 15.68 91.29 0.0 89.54 1.59 90.45 ↓2.43 4.46 ↓92.64

AdvDoor [102] 91.25 68.68 92.18 1.23 89.29 16.99 91.06 99.99 90.25 100 90.81 ↓3.16 57.38 ↓42.62
Bpp [105] 91.36 3.4 91.38 1.00 92.06 6.46 93.23 26.83 90.61 2.73 91.73 ↓2.46 8.08 ↓91.85
LC [266] 90.26 88.52 91.46 1.91 85.87 5.11 91.8 13.11 90.71 4.37 90.02 ↓4.29 22.60 ↓77.4

Narcissus [57] 91.70 92.91 91.76 23.98 91.48 51.74 90.06 54.22 90.94 98.11 91.19 ↓2.39 64.19 ↓35.45
SSDT [117] 93.74 0.70 93.15 0.60 90.27 3.10 92.85 0.2 90.79 1.40 92.16 ↓1.54 1.20 ↓89.10

Adap-Blend [118] 92.42 98.73 91.23 22.4 85.38 37.31 90.91 1.19 89.17 7.09 89.82 ↓2.92 33.34 ↓66.33

Grond (PR=5%) 91.75 94.28 92.02 80.07 90.39 93.92 93.27 99.92 91.88 99.00 91.86 ↓1.57 93.44 ↓4.6
Grond (PR=1%) 91.41 85.52 92.83 79.17 87.89 91.34 93.21 96.59 90.66 88.69 91.20 ↓3.06 88.26 ↓5.25

Grond (PR=0.5%) 91.42 82.96 92.34 76.92 89.83 79.68 93.44 92.71 90.39 91.83 91.48 ↓2.88 84.82 ↓8.09

6.4 Experimental Evaluation
This section contains the main experimental results and analysis. Section 6.4.1 covers the
datasets, baseline attacks, and defenses used in our experiments. Section 6.4.2 evaluates
common backdoor attacks and Grond against pruning- and fine-tuning-based defenses.
Section 6.4.3 provides an in-depth backdoor analysis, followed by Section 6.4.4, which
explores how ABI can enhance common attacks. Section 6.4.5 covers backdoor model and
input detection results, and Section 6.4.6 provides a comparison to supply-chain attacks.
Finally, Section 6.4.7 covers the ablation study.

122 Chapter 6

Table 6.4: Backdoor performance of Grond and baseline attacks on ImageNet200 and
GTSRB.

Datasets Attack No Defense FT-SAM [133] I-BAU [134] CLP [131] Average

BA ASR BA ASR BA ASR BA ASR BA ASR

IN200

BadNets [8] 80.65 91.03 79.89 2.21 70.28 26.06 70.74 64.86 73.64 ↓7.01 31.04 ↓59.99
Blend [9] 80.70 95.63 80.19 0.39 76.13 30.81 80.02 23.38 78.78 ↓1.92 18.19 ↓77.44

WaNet [10] 81.24 99.97 80.41 0.66 75.67 47.27 77.18 99.78 77.75 ↓3.49 49.24 ↓50.73
IAD [11] 79.74 99.98 75.49 0.68 77.44 15.18 76.97 84.49 76.63 ↓3.11 33.45 ↓66.53

AdvDoor [102] 80.72 100 79.52 98.90 74.03 61.31 77.90 100 77.15 ↓3.57 86.74 ↓13.26
Bpp [105] 81.36 92.74 79.37 1.05 76.53 3.21 80.10 2.34 78.67 ↓2.69 2.19 ↓90.55

Narcissus [57] 81.73 81.28 80.00 83.37 77.03 56.19 80.99 86.37 79.34 ↓2.39 75.31 ↓5.97
SSDT [117] 75.45 100 78.19 76.00 76.26 22.00 76.02 94.00 76.82 ↑1.37 64.00 ↓36.00

Grond 80.92 94.11 79.05 95.05 76.89 87.75 80.29 93.83 78.74 ↓2.18 92.21 ↓1.9

GTSRB

BadNets [8] 97.19 100 95.57 0.48 92.02 29.22 96.38 0.47 94.66 ↓2.53 10.06 ↓89.94
Blend [9] 95.92 100 93.36 0.21 92.64 38.27 93.21 0.00 93.07 ↓2.85 12.83 ↓87.17

WaNet [10] 98.69 99.77 92.18 0.45 91.25 0.00 90.14 18.14 91.19 ↓7.50 6.19 ↓93.58
IAD [11] 99.08 99.65 92.72 0.10 90.11 0.35 98.08 14.63 93.64 ↓5.44 5.03 ↓94.62

AdvDoor [102] 95.80 99.99 93.94 32.26 92.67 38.20 90.09 66.39 92.23 ↓3.57 45.62 ↓54.37
Bpp [105] 98.69 99.93 91.27 0.00 92.61 0.23 97.16 2.29 93.68 ↓5.01 0.84 ↓99.09

Narcissus [57] 95.60 97.18 93.61 54.55 92.87 80.74 93.99 97.60 93.49 ↓2.11 77.63 ↓19.55
SSDT [117] 96.02 77.78 93.11 0.00 90.82 0.00 94.65 19.31 92.86 ↓3.16 6.44 ↓71.34

Grond 95.83 95.36 93.80 71.84 93.13 94.30 91.28 93.19 92.74 ↓3.09 86.44 ↓8.92

6.4.1 Experimental Setup
Datasets and Architectures. We follow the common settings in existing backdoor
attacks and defenses and conduct experiments on CIFAR-10 [250], GTSRB [272], and
a subset of ImageNet [187] with 200 classes and 1,300 images per class (ImageNet200).
More details about the datasets can be found in Appendix 6.7.2. The primary evaluation
is performed using ResNet18 [27]. Moreover, we evaluate Grond using four additional
architectures, VGG16 [26], DenseNet121 [274], EfficientNet-B0 [249], and one recent ar-
chitecture InceptionNeXt [287] (see Table 6.15 in Appendix 6.7.9).

Attack Baselines. Grond is compared with 12 representative attacks: BadNets [8],
Blend [9], WaNet [10], IAD [11], AdvDoor [102], BppAttack [105], LC [266], Narcissus [57],
Adap-Blend [118], SSDT [117], DFST [121], and DFBA [108]. The default poisoning
rate is set at 5% (of the training set) for all attacks following previous work [112, 139].
Additionally, Grond is evaluated under various poisoning rates to provide a thorough
analysis of its effectiveness. Following related works, the training schedule for attacks
is 200 epochs when using CIFAR10 and GTSRB, and 100 epochs for ImageNet200. We
use 1,000 images as the validation set to select the best-performing checkpoint. More
implementation details and reasoning are provided in Appendix 6.7.3.

Defense Baselines. We evaluate Grond and baseline attacks with 17 defenses, includ-
ing four pruning-based methods (FP [129], ANP [130], CLP [131], and RNP [132]),
five fine-tuning-based methods (vanilla FT, FT-SAM [133], I-BAU [134], FST [135],
and BTI-DBF(U) [112]), five backdoor model detections (NC [110], Tabor [144], Fea-

Chapter 6. Backdoor Stealthiness in Parameter Space 123

tureRE [111], Unicorn [128], and BTI-DBF [112]), two backdoor input detections
(Scale-up [263] and IBD-PSC [283]), and a proactive defense CT [137]. Following their
default settings, BTI-DBF [112] and FP [129] use 5% of training data, and other defenses
use 1% of training data for detection or mitigation. CLP is a data-free backdoor pruning
tool that uses no clean data. CT has access to the complete training set without knowing
which samples are poisoned and is also able to interact with the model during training.
Backdoor defense details and hyperparameters can be found in Appendix 6.7.5.

6.4.2 Main Results on Backdoor Mitigation
All evaluated backdoor attacks are ineffective to at least one parameter-space backdoor
defense on the CIFAR-10, as demonstrated in Tables 6.2 and 6.3. It suggests that com-
mon backdoor attacks designed to be stealthy in input and feature spaces are vulnerable
to parameter-space defenses. Given that all backdoor behaviors are embedded in param-
eters of backdoored models, this finding suggests that future backdoor attacks should
take parameter-space defenses into account as a standard step to evaluate comprehensive
stealthiness.

Not surprisingly, Grond’s attack performance is better than all baseline attacks when con-
sidering evaluated backdoor defenses since Grond is designed to consider comprehensive
stealthiness. On four pruning-based mitigations, Grond achieves 7.18% absolute higher
ASR on average than the best backdoor attack, Narcissus. On five fine-tuning mitiga-
tions that show more powerful defense capability than pruning-based mitigations, Grond
achieves 29.25% absolute higher ASR on average than Narcissus. In addition, Grond
bypasses the five model detection and two input-space detections (see Section 6.4.5).

Pruning-based mitigation. We take a closer look at the details of pruning-based back-
door mitigation experiments in Table 6.2, presenting the results of all attacks against four
pruning-based defenses. BadNets and Blend perform better on average than input-space
stealthy attacks, e.g., WaNet and Bpp, because input-space stealthy attacks introduce
significant separability in the feature space (see Figure 6.3). Across all pruning-based de-
fenses, FP performs the worst, as expected, since it follows regular model pruning practice
and is not a tailored backdoor pruning method.

Fine-tuning-based mitigations. Table 6.3 presents the backdoor performance against
five fine-tuning-based defenses. In general, fine-tuning-based defenses are more effective
than pruning-based defenses. For example, Narcissus and Adap-Blend can achieve ASRs
higher than 60% against three out of four pruning-based defenses but are much less ef-
fective against most fine-tuning-based methods. FT-SAM is the most effective across all
defenses, as shown in Tables 6.2 and 6.3, being able to compromise the effectiveness of all
attack baselines. One important reason is that FT-SAM adopts Sharpness-Aware Mini-

124 Chapter 6

mization [288] to adjust the outlier of weight norm (large norms) to remove the potential
backdoor. Larger weights of neurons are introduced by existing attacks to guarantee a
high ASR [127], which also causes large differences when receiving benign and backdoor
inputs (see Figure 6.4). Grond can bypass FT-SAM, as expected, since it deliberately
decreases the weights of backdoor neurons, compromising the core working mechanism of
FT-SAM.

On ImageNet200 and GTSRB. Real-world classification tasks may involve more cate-
gories, such as GTSRB (43 classes) and ImageNet200 (200 classes), and the percentage of
each class in the dataset will commonly be much less than 10%. We target InceptionNext-
Small on Imagenet200 and ResNet18 on GTSRB. The l∞ norm perturbation budget of
UPGD is ϵ = 16 for GTSRB and ϵ = 8 for ImageNet200 to achieve imperceptible pertur-
bations. Table 6.4 demonstrates that Grond is still effective on datasets with more classes
and higher resolutions, especially against the most powerful parameter-space defense, FT-
SAM.

B

e

n

i

g

n

B

a

d

N

e

t

s

B

l

e

n

d

W

a

N

e

t

I

A

D

A

d

v

D

o

o

r

B

p

p

L

C

N

a

r

c

i

s

s

u

s

S

S

D

T

A

d

a

p

-

B

l

e

n

d

G

r

o

n

d

(

5

%

)

G

r

o

n

d

(

1

%

)

G

r

o

n

d

(

0

.

5

%

)

0

1

2

3

M
a
s
k

l
o
s
s

Benign

Backdoored

Figure 6.3: Benign and inversed backdoor feature loss (Eq. (6.4)) for all baseline attacks.
Large backdoored loss indicates that the backdoor is prominent in the feature space.

Figure 6.4: We show the performance of pruning neurons with high TAC values using
different thresholds. The left column is BadNets, and the right is Grond.

Chapter 6. Backdoor Stealthiness in Parameter Space 125

6.4.3 Backdoor Analysis
Adaptive backdoor analysis by TAC pruning. Backdoor triggers are essential for
calculating TAC values, making our TAC-based analysis highly adaptive to evaluating
backdoor attacks. We directly utilize the trigger information to build a new pruning
method based on the TAC analysis. In particular, we prune neurons with high TAC values
in the backdoored model. Figure 6.4 shows the pruning results of Grond and BadNets, and
TAC analysis for other attacks are in Appendix 6.7.11. The first row of Figure 6.4 provides
the pruning results. The second row contains the TAC values plots of neurons in the 4th

layer (the layer before the classification head) of ResNet18. For BadNets, the backdoor
and benign behaviors of baseline attacks can be disentangled by pruning neurons with high
TAC values. However, for Grond, pruning neurons with high TAC values decreases benign
accuracy, which means the backdoor neurons are not easily distinguishable from benign
neurons without harming benign performance. The analysis supports our statement that
Grond spreads the backdoor to more neurons instead of a few prominent ones. We provide
a sorted TAC value plot in Figure 6.9 in the appendix, showing the prominent neurons
with high TAC values are quite limited in Grond.

Backdoor analysis by feature space inversion. We also provide a feature space
analysis for different attacks by using a feature mask to decouple the benign and backdoor
features following BTI-DBF [112] and BAN [139]. The decoupling assumes that benign
features related to the correct prediction introduce a lower loss, and the backdoor features
related to backdoor prediction introduce a higher loss. In particular, the benign and
inversed backdoor features are decoupled as follows:

min
m

∑
(x,y)∈Dl

[
L

(
fL ◦ (g(x) ⊙ m), y

)
− L

(
fL ◦ (g(x) ⊙ (1 − m), y)

)
+ λ|m|

]
, (6.4)

where g = fL−1 ◦· · · f1, without the classification head. m is the learned feature mask, and
Dl is a small set of benign samples with correct labels. As validated with BTI-DBF [112]
and BAN [139], benign and backdoor features can be decoupled by the mask m, after
which backdoor features will introduce a substantially higher loss with respect to the
ground truth label. More details can be found in Appendix 6.7.7.

Decoupled benign feature loss and backdoor feature loss of all evaluated attacks are demon-
strated in Figure 6.3, where benign feature loss is represented by the first term in Eq. (6.4)
and backdoor feature loss by the second term. It can be observed that several backdoor
attacks introduce prominent backdoor features, such as WaNet, IAD, and Bpp, which re-
sult in substantially higher backdoor feature loss than benign feature loss. In contrast,
several backdoor attacks introduce less prominent backdoor features, including AdvDoor,
Narcissus, Adap-Blend, and Grond. Revisiting Tables 6.2, 6.3, and 6.4, attacks that intro-
duce prominent backdoor features are more susceptible to backdoor defenses than attacks
with less prominent backdoor features. Both TAC and feature space inversion analyses

126 Chapter 6

further confirm that Grond provides comprehensive stealthiness.

6.4.4 ABI Improves Common Backdoor Attacks
In this section, we show that our Adversarial Backdoor Injection (ABI) strategy general-
izes to all evaluated common backdoor attacks. We combine the ABI module with baseline
attacks to improve their resistance against parameter-space defenses. Figure 6.5 demon-
strates that ABI is effective for all attacks when evaluating against the parameter-space
defense ANP, where ASRs increase after adversarial injection, especially for BadNets,
Blend, AdvDoor, Narcissus, and Adap-Blend. The improvement for feature space attacks
(WaNet, IAD, and Bpp) is incremental. We speculate that feature space attacks rely too
much on prominent features as their modification in the input space is minor. To activate
the backdoor with such minor input modifications, the prominent features are required in
the feature space. In addition, Figure 6.8 in Appendix 6.7.10 shows the results of ABI
without defense, demonstrating that it does not harm in general the BA and ASR when
no defense is applied. Following our finding, we suggest that future backdoor attacks can
use ABI to increase parameter-space stealthiness.

B

a

d

N

e

t

s

B

l

e

n

d

W

a

N

e

t

I

A

D

A

d

v

D

o

o

r

B

p

p

L

C

N

a

r

c

i

s

s

u

s

S

S

D

T

A

d

a

p

-

B

l

e

n

d

0

20

40

60

80

100

A
C

C

a
n
d

A

S
R

ACC ACC (Adversarial Backdoor Injection) ASR ASR (Adversarial Backdoor Injection)

Figure 6.5: BA and ASR of backdoor attacks before and after ABI against parameter-
space defense ANP.

Table 6.5: Backdoor detection performance on CIFAR-10. 20 ResNet18 models are trained
at each poisoning rate. Bd. refers to the number of models determined as backdoor models.
Acc. refers to the detection accuracy.

Defense PR=5% PR=1% PR=0.5%

Bd. Acc. Bd. Acc. Bd. Acc.

NC [110] 5 25% 2 10% 1 5%
Tabor [144] 5 25% 2 10% 0 0%

FeatureRE [111] 0 0% 0 0% 0 0%
Unicorn [128] 0 0% 0 0% 0 0%

BTI-DBF [112] 3 15% 5 25% 3 15%

Chapter 6. Backdoor Stealthiness in Parameter Space 127

Table 6.6: Comparsion with supply-chain attacks.

Attack No Defense CLP [131] FT-SAM [133]

BA ASR BA ASR BA ASR

DFST [121] 95.23 100 92.43 3.53 94.70 0.00
DFBA [108] 88.99 100 88.96 9.57 86.03 5.24
SSDT [117] 93.70 90.30 93.66 1.20 93.15 0.60

Grond 93.43 98.04 93.29 87.89 92.02 80.07

6.4.5 Backdoor Detection
Following previous works [112, 139], we choose five representative backdoor model detec-
tions for evaluation. The model detection refers to determining whether a given model
is backdoored. We use 20 models for each poisoning rate with different random seeds.
Then, we report the number of models detected as backdoor models out of the 20. Ta-
ble 6.5 shows that all detections fall short when detecting Grond. In particular, NC [110],
Tabor [110], and BTI-DBF [112] can detect a small part of backdoored models, while
FeatureRE [111] and Unicorn cannot detect any of them. For featureRE [111], we con-
jecture it is over-dependent on the separability in the feature space, but Grond does not
rely on prominent backdoor features according to Figure 6.3. For Unicorn [128], the false
positive rate is high, and it tends to report every class as the backdoor target, even on
models trained with benign data only. Except for model detection, Grond can also bypass
input-space detections as demonstrated in Appendix 6.7.8.

6.4.6 Comparison with Supply-Chain Attacks
Supply-chain backdoor attacks assume the adversary could directly manipulate models’
parameters or control the backdoor training process for more powerful and stealthy back-
doors. The backdoored model is provided as a service or final product to end users.
Supply-chain backdoor attacks are attracting increasing industry and research community
attention because of their stealthiness and significant real-world impact [51].

Sharing a similar threat model to supply-chain attacks, we compare Grond and three
state-of-the-art supply-chain attacks, where these attacks are also designed to be robust
against backdoor defenses. In particular, DFST [121] proposes to include a controlled
detoxification technique in the training process, which restrains the model from picking
up simple features. DFBA [108] directly modifies a few parameters of a classifier to
inject a backdoor. SSDT [117] introduces additional terms in the loss for the Source-
Specific and Dynamic-Triggers (i.e., SSDT) attack, which obscures the difference between
normal samples and malicious samples. Table 6.6 shows that supply-chain attacks can
also be defeated by existing backdoor defenses. The ASR of DFST [121], DFBA [108], and
SSDT [117] are decreased to less than 10% while the BA drop is less than 3%.

128 Chapter 6

Table 6.7: Comparsion with different strategies for the generation of backdoor triggers.

Strategy No Defense CLP [131] FT-SAM [133]

BA ASR BA ASR BA ASR

Random noise 94.24 1.28 94.13 0.97 93.90 1.84
PGD 94.77 69.33 92.57 46.63 92.40 24.56

UPGD 93.43 98.04 93.29 87.89 92.02 80.07

Table 6.8: Ablation study for Grond.

Arch Method No Defense CLP [131] FT-SAM [133]

BA ASR BA ASR BA ASR

ResNet18 UPGD 93.86 98.61 91.15 3.97 91.80 51.77
+ABI 93.43 98.04 93.29 87.89 92.02 80.07

InceptionNeXt UPGD 87.81 96.81 87.72 96.57 87.06 2.37
+ABI 87.06 96.86 86.93 96.87 86.50 92.02

6.4.7 Ablation Study
Trigger generation. To explore the influence of trigger patterns, we employ and evaluate
three types of triggers: random noise, PGD perturbation, and UPGD perturbation, using
ResNet18 on CIFAR-10. The random noise is sampled from a uniform distribution, and
the PGD employs a projected gradient descent to generate sample-wise perturbations [12].
The generation of UPGD is described in Algorithm 6.1. All three triggers are limited
to 8/255 (l∞ norm) for imperceptibility and use the same training settings described in
Table 6.11 in Appendix 6.7.3.

We show in Table 6.7 that random noise is ineffective as a backdoor trigger, with an ASR
around 1%, even if no defense is applied. The sample-wise PGD perturbation is more
effective than random noise and shows (limited) robustness against CLP and FT-SAM.
UPGD generates the most effective backdoor trigger with an ASR higher than 80% after
CLP and FT-SAM, and we speculate that the reason is that UPGD exploits features from
the target class, similar to Narcissus [57].

Adversarial backdoor injection is critical. There are two components in Grond: the
UPGD trigger generation and Adversarial Backdoor Injection. We conduct an ablation
study with two architectures on CIFAR-10 to analyze the impact of the ABI component.
As shown in Table 6.8, after removing the ABI component, CLP or FT-SAM can defend
against the clean-label attack with the UPGD trigger. Thus, the Adversarial Backdoor
Injection is the key component in maintaining the effectiveness of backdoor attacks against
parameter-space defenses.

Dirty-label Grond. Grond works well in a clean-label setting that uses an invisible

Chapter 6. Backdoor Stealthiness in Parameter Space 129

Table 6.9: Evaluation of dirty-label Grond using ResNet18 on CIFAR-10.
Dirty-Label

Grond
No Defense CLP [131] FT-SAM [133]

BA ASR BA ASR BA ASR

PR=5% 91.60 100 91.41 100 90.24 0.00
PR=1% 93.64 100 91.13 40.83 91.20 46.97

PR=0.5% 94.35 100 91.84 97.03 91.77 99.04

Table 6.10: Evaluation with the proactive defense, CT [137], under different poisoning
rates (PR).

Attack PR ACC ASR Recall FPR

BadNets
[8]

5% 93.18 99.96 2500/2500 1568/47500
2.5% 93.35 99.83 1250/1250 518/48750
1% 93.30 100 500/500 73/49500

0.5% 93.43 100 250/250 5/49750
0.3% 93.63 99.94 150/150 222/49850

Adap-Patch
[118]

5% 93.28 100 1808/2500 116/47500
2.5% 93.68 100 1088/1250 20/48750
1% 93.73 100 494/500 570/49500

0.5% 93.31 100 160/250 154/49750
0.3% 93.26 100 86/150 3825/49850

Grond

5% 93.84 99.41 2499/2500 671/47500
2.5% 93.81 95.83 115/1250 7220/48750
1% 94.09 92.48 208/500 6690/49500

0.5% 94.36 92.91 90/250 6738/49750
0.3% 94.22 90.10 29/150 6349/49850

trigger and does not change the original labels of the poisoned samples. However, as we
use the supply-chain threat model (the attacker has access to the training process), we
could also explore the effect of a dirty-label backdoor attack. A dirty-label threat model
could simplify the backdoor by poisoning samples from any class while the clean-label is
limited to a single class.

As shown in Table 6.9, Grond with a dirty-label threat model can still perform well and
even with a higher ASR than the clean-label setting. However, dirty-label Grond is less
robust than clean-label Grond against backdoor defenses because it is less stealthy. For
example, FT-SAM [133] can decrease the ASR of dirty-label Grond (PR=5%) from 100%
to 0%. When PR=1%, both CLP [131] and FT-SAM [133] can decrease the ASR from
100% to below 50%. We conjecture this is because the dirty-label setting obfuscates the
benign semantics of images to their true labels, as the poisoned samples in each class have
been assigned the backdoor target label. In contrast, in a clean-label setting, only the
target class is poisoned.

130 Chapter 6

Poisoned Sample Benign Sample Target Class

BadNets Blend WaNet IAD SSDT

AdvDoor Narcissus Adap-blend OursOurs (without ABI)

Figure 6.6: Examples of feature visualization of Grond and baseline attacks.

6.5 Stronger Defenders and Additional Analysis
This section dives deeper into stronger defenses and analysis of Grond. We evaluate Grond
against a proactive defense in Section 6.5.1. Then, we provide analyses of Grond by Grad-
CAM (defense) and feature spaces of different backdoor attacks in Section 6.5.2.

6.5.1 Proactivate Defense
Real-world powerful defenders could take more initiative by intervening proactively in the
attack process and exploiting poisoned data. We evaluate Grond against the state-of-
the-art proactive defense, CT [137], that detects poisoned samples in the training data.
Specifically, CT considers data from the original poisoned training data as regular batches
and introduces randomly labeled benign data as confusing batches. Then, CT performs
normal supervised training on both regular and confusing batches to produce an inference
model, aiming to corrupt benign semantic features and correlations with correct labels in
the inference model by confusing batches. The backdoor effect remains in the inference
model because there is no trigger information in the confusing batches, and correctly
predicted samples by the inference model are recorded as poisoned.

We apply CT to our adversarial backdoor injection process. Table 6.10 presents the detec-
tion results on two baseline attacks (BadNets [8] and Adap-Patch [118]) and Grond. CT
is effective against the two baseline attacks, where most poisoned samples in the training
set are detected with a relatively low false positive rate. However, CT is not capable of
detecting Grond when the poisoning rate is lower than 5% due to a high false positive rate
and low recall. To understand why CT is not effective against Grond, we recall the main
idea of CT is to corrupt benign semantic features and their correct label but not corrupt
backdoor semantic features. However, Grond utilizes the benign semantic features of the
target class to generate UPGD perturbation as the trigger. CT’s mechanism also corrupts
the backdoor features of Grond. Therefore, CT cannot effectively detects Grond poisoned
samples.

Chapter 6. Backdoor Stealthiness in Parameter Space 131

OriginalClean Poisoned

Figure 6.7: Examples of Grad-CAM activation map with ImageNet200 images by clean
and Grond models. The first column is Grad-CAM maps with clean images, and the third
column is Grad-CAM maps with Grond-poisoned images.

6.5.2 Visualization
Grad-CAM cannot spot the trigger area of Grond. Grad-CAM [289] was originally
designed to visualize the network’s preference when taking an input image. In backdoor
defense research, Grad-CAM is leveraged to highlight the important areas in order to
detect the potential backdoor trigger area [290]. Figure 6.7 shows the activated area of a
clean model and Grond backdoored model using Grad-CAM. The activated area of Grond
backdoored model is indistinguishable from the clean model, so the Grad-CAM-based
defense [290] is also ineffective against Grond.

t-SNE visualization of feature space. Figure 6.6 shows the latent feature (feature
space of the last convolutional layers) from Grond backdoor models with and without
adversarial backdoor injection in 2-D space and other baselines attacks by t-SNE [291].
The poisoning rate for all is 0.5%. WaNet cannot achieve satisfactory ASR at this very low
poisoning rate, so we use the default setting according to their open-source implementation.
Specifically, we perform dimensionality reduction for the activation of the last convolutional
layers by t-SNE. The model architecture is ResNet18 and trained on CIFAR-10. Each class
of samples forms a tight cluster, and Grond poisoned samples are better mixed with the
target class samples when the model is trained with adversarial backdoor injection.

6.6 Conclusions & Future Work
This chapter studies whether backdoor attacks can resist diverse practical defenses and
provides an affirmative answer: current common stealthy backdoor attacks are vulnerable
to parameter-space defenses. We further explore how to increase the stealthiness of back-
door attacks against parameter-space defenses. We propose a novel supply-chain backdoor

132 Chapter 6

attack, Grond, that considers comprehensive stealthiness, including input, feature, and
parameter-space stealthiness. Grond achieves state-of-the-art performance by leveraging
adversarial examples and adaptively limiting the backdoored model’s parameter changes
during the backdoor injection to improve the stealthiness. We also show that Grond’s
Adversarial Backdoor Injection can consistently improve other backdoor attacks against
parameter space defenses. We suggest that future backdoor attacks should be evaluated
against parameter-space defense. We also recommend that backdoor research explore Ad-
versarial Backdoor Injection to enhance parameter-space stealthiness.

6.7 Appendix

6.7.1 Additional Details about Experimental Settings

6.7.2 Datasets
CIFAR-10. The CIFAR-10 [250] contains 50,000 training images and 10,000 testing
images with the size of 3 × 32 × 32 in 10 classes.

GTSRB. The GTSRB [272] contains 39,209 training images and 12,630 testing images in
43 classes. In our experiments, the images are resized to 3 × 32 × 32.

ImageNet200. ImageNet [187] contains over 1.2 million high-resolution images in 1,000
classes. In our experiments, we randomly select 200 classes from the ImageNet dataset
as our ImageNet200 dataset. Each class has 1,300 training images and 50 testing images.
The ImageNet images are resized to 3 × 224 × 224.

6.7.3 Backdoor Attacks
Our attack is compared with 12 well-known and representative attacks: BadNets [8],
Blend [9], WaNet [10], IAD [11], AdvDoor [102], BppAttack [105], LC [266], Narcissus [57],
Adap-Blend [118], SSDT [117], DFST [121], and DFBA [108].

Like Narcissus, our attack uses the class bird (CIFAR10) as the target class. For Ima-
geNet200, we use the stingray as the target class. The Grond poisoning rate (ImageNet200)
used for results in Table 6.4 is 0.5%. For GTSRB, we use the speed limit (50) as the target
class. The Grond poisoning rate (GTSRB) used for results in Table 6.4 is 1.74%. AdvDoor
uses the same trigger and target class as ours. More details are provided in Table 6.11.
For other attacks and hyperparameters not mentioned, we use the default setting from the
original papers or open-source implementations.

Chapter 6. Backdoor Stealthiness in Parameter Space 133

Table 6.11: The backdoor training settings.
Config Value

Optimizer SGD,
AdamW (InceptionNeXt)

Weight decay 5 × 10−4

learning rate 0.01
epoch 200 (GTSRB, CIFAR10), 100 (ImageNet200)

learning rate schedule MultiStepLR (100, 150) for CIFAR10 and GTSRB,
CosineAnnealingLR for ImageNet200

poison rate 0.05
u in Eq. (6.3) 3.0
BadNets trigger 3 × 3
Blend trigger random Gaussian noise and blend ratio 0.2
Adap-Blend trigger “hellokitty_32.png” and blend ratio of 0.2
Narcissus trigger size ϵ = 16 for both inference and training

6.7.4 Attack Summary
In Table 6.12, we summarize the attacks evaluated in this chapter and compare them with
Grond. Grond is the only one that achieves stealthiness in input, feature, and parameter
spaces.

Table 6.12: A summary of attacks evaluated in this chapter. SS refers to Source Specific.
Attack Threat Model Trigger Type Trigger Strategy Stealthy Level

Data Label Training Patch Blend Dynamic A2A SS Input Feature Parameter

BadNets
Blend
WaNet

IAD
AdvDoor

Bpp
LC

Narcissus
SSDT

Adap-Blend
DFST
DFBA

Grond

the item is not supported by the defense; the item is supported by the defense.

6.7.5 Backdoor Defenses
We evaluate our attack and baseline attacks against 17 defenses, including 4 pruning-
based methods (FP [129], ANP [130], CLP [131], and RNP [132]), 5 fine-tuning-based
methods (vanilla FT, FT-SAM [133], I-BAU [134], FST [135], and BTI-DBF(U) [112]),
5 backdoor model detections (NC [110], Tabor [144], FeatureRE [111], Unicorn [128],
and BTI-DBF [112]), 2 backdoor input detections (Scale-up [263] and IBD-PSC [283]),
and a proactive detection CT [137].

134 Chapter 6

ANP†, CLP‡, RNP§, FST¶, BTI-DBF‖, BTI-DBF(U)‖, FeatureRE∗∗, Unicorn††.
We use the implementation and default hyperparameters from their open-source code.

FP‡‡, vanilla FT§§, FT-SAM¶¶, I-BAU∗∗∗. We use the implementation and default
hyperparameters from BackdoorBench [292]. For FT-SAM on ImageNet200, the default
setting will decrease benign accuracy to 0.465, so we reduce its training schedule to 25
epochs. Please note that the experiments on CIFAR10 with FT-SAM usually converge
within 20 epochs in our experiments. Thus, decreasing the training schedule is not harmful
to the defense performance.

NC††† and Tabor‡‡‡. We use the implementation from TrojanZoo [257]. 1% training set
and 100 epoch are used for trigger inversion.

Scale-up§§§, IBD-PSC¶¶¶. We use the implementation and default hyperparameters
from BackdoorBox [293].

CT. We use the open-source code implementation. We reduced the number of distillation
iterations to 200 for efficiency reasons.

6.7.6 Hyperparameters for Training Surrogate Models
Table 6.13 provides the hyperparameters for training surrogate models to generate UPGD.

6.7.7 Hyperparameters for the Inversed Backdoor Feature
Loss

Following the settings in BTI-DBF [112] and BAN [139], we use Adam and the learning
rate of 0.01 to search for 20 epochs for the feature mask in Eq. (6.4). The optimization of

†https://github.com/csdongxian/ANP_backdoor/tree/main
‡https://github.com/rkteddy/channel-Lipschitzness-based-pruning
§https://github.com/bboylyg/RNP
¶https://github.com/AISafety-HKUST/Backdoor_Safety_Tuning
‖https://github.com/xuxiong0214/BTIDBF/tree/master

∗∗https://github.com/RU-System-Software-and-Security/FeatureRE/tree/main
††https://github.com/RU-System-Software-and-Security/UNICORN
‡‡https://github.com/SCLBD/BackdoorBench/blob/main/defense/fp.py
§§https://github.com/SCLBD/BackdoorBench/blob/main/defense/ft.py

¶¶https://github.com/SCLBD/BackdoorBench/blob/main/defense/ft-sam.py
∗∗∗https://github.com/SCLBD/BackdoorBench/blob/main/defense/i-bau.py
†††https://github.com/ain-soph/trojanzoo/blob/main/trojanvision/defenses/backdoor/

model_inspection/neural_cleanse.py
‡‡‡https://github.com/ain-soph/trojanzoo/blob/main/trojanvision/defenses/backdoor/

model_inspection/tabor.py
§§§https://github.com/THUYimingLi/BackdoorBox/blob/main/core/defenses/SCALE_UP.py

¶¶¶https://github.com/THUYimingLi/BackdoorBox/blob/main/core/defenses/IBD_PSC.py

Chapter 6. Backdoor Stealthiness in Parameter Space 135

Table 6.13: The settings for training surrogate models.
Config Value

Optimizer SGD, AdamW (InceptionNeXt)
Weight decay 5 × 10−4

learning rate 0.01 (CIFAR10, GTSRB), 0.001 (ImageNet200)
epoch 200 (GTSRB, CIFAR10), 100 (ImageNet200)

learning rate schedule MultiStepLR (100, 150) for CIFAR10 and GTSRB,
CosineAnnealingLR for ImageNet200

the mask uses 1% of training data. The λ is 0.72. The elements in the mask are limited
to continuous values between 0 and 1.

Table 6.14: Input-space detection results.

Attack Scale-up [263] IBD-PSC [283]

TPR FPR AUC F1 TPR FPR AUC F1

BadNets [8] 81.93 32.90 0.7627 0.7524 100 7.90 0.9996 0.9606
Blend [9] 99.32 38.74 0.8681 0.8275 100 0.90 1.00 0.9953
Adap-Blend [118] 68.72 18.99 0.7621 0.7297 53.95 11.77 0.8731 0.6495

Grond (PR=5%) 24.40 17.69 0.5463 0.3409 0.00 10.33 0.5698 0.0
Grond (PR=1%) 18.39 17.96 0.4879 0.2656 0.00 5.82 0.0626 0.0
Grond (PR=0.5%) 7.05 16.19 0.4034 0.1113 0.00 4.82 0.1087 0.0

Table 6.15: Grond against defenses using different architectures on CIFAR-10 with a
poisoning rate of 5%. The surrogate indicates the architecture used to generate UPGD as
the trigger.

Victim Surrogate No Defense FT-SAM [133] I-BAU [134] FST [135]

BA ASR BA ASR BA ASR BA ASR

VGG16 ResNet18 92.69 95.31 92.72 78.42 90.10 14.53 89.12 92.68
VGG16 92.57 90.10 92.22 95.14 90.20 76.51 91.72 90.58

DenseNet121 ResNet18 92.39 95.62 90.98 23.88 86.73 48.14 90.77 88.94
DenseNet121 92.38 81.07 91.10 16.91 90.90 54.76 91.13 71.29

EfficienNet-B0 ResNet18 87.7 96.23 84.05 71.07 87.64 95.41 82.07 97.67
EfficienNet-B0 86.92 92.61 83.77 71.17 86.93 92.13 82.45 68.72

InceptionNeXt ResNet18 85.07 91.83 85.07 2.17 85.25 91.67 82.78 3.82
InceptionNeXt 85.54 96.24 85.64 90.14 85.49 97.21 83.92 97.29

6.7.8 Detection of backdoor input
Backdoor input detection is a defense technique that determines whether or not a given
input includes a backdoor trigger. We show that Grond-generated backdoor samples can
resist established backdoor detection methods. Table 6.14 shows the input-space detection
results using Scale-up [263] and IBD-PSC [283]. We report the True Positive Rate (TPR),
False Positive Rate (FPR), AUC, and F1 score in Table 6.14 for baseline attacks and Grond,
where Scale-up and IBD-PSC are effective against three baseline attacks but cannot detect
Grond-generated backdoor samples.

136 Chapter 6

6.7.9 Different Architectures with Different Surrogate Mod-
els

We evaluate Grond with four additional victim architectures in Table 6.15: VGG16,
DenseNet121, EfficienNet-B0, and InceptionNeXt-Tiny. In addition, as Grond requires
a surrogate model to generate UPGD as the backdoor trigger, we provide the results when
UPGD is generated using different architectures for the surrogate model. For each archi-
tecture, UPGD is generated by either the victim architecture or ResNet18 to perform our
attack. In Table 6.15, we use the three most powerful defenses according to Tables 6.2
and 6.3. Regardless of the model’s architectures or the architectures for UPGD, Grond
bypasses most defenses. This is because the UPGD contains semantic information of the
target class and can be transferred among different architectures [285]. In a few cases, using
UPGD generated by the same architecture shows better attack performance. For example,
conducting Grond on InceptionNeXt-Tiny with UPGD generated by InceptionNeXt-Tiny
shows ASRs above 90%, but also a much lower ASR when using UPGD generated by
ResNet18. We conjecture that transferring UPGD from ResNet18 to InceptionNeXt-Tiny
is more difficult than transferring it to other architectures due to the large convolution
kernel design of InceptionNeXt.

6.7.10 Adversarial Backdoor Injection Does Not Impact Back-
door Effectiveness in Case of No Defense.

Figure 6.8 shows additional Adversarial Backdoor Injection results against models without
defense. We show that Adversarial Backdoor Injection does not influence the backdoor
effectiveness in general when no defense is applied.

B

a

d

N

e

t

s

B

l

e

n

d

W

a

N

e

t

I

A

D

A

d

v

D

o

o

r

B

p

p

L

C

N

a

r

c

i

s

s

u

s

S

S

D

T

A

d

a

p

-

B

l

e

n

d

0

20

40

60

80

100

A
C

C

a
n
d

A

S
R

ACC ACC (Adversarial Backdoor Injection) ASR ASR (Adversarial Backdoor Injection)

Figure 6.8: The attack performance (no defense) when combined with Adversarial Back-
door Injection.

6.7.11 Further TAC analysis
For clearer demonstration, we also provide sorted TAC value plots in Figure 6.9, which
sorts the TAC values in Figure 6.2. Figure 6.9 demonstrates the existence of prominent
neurons, and Grond is more stealthy.

Chapter 6. Backdoor Stealthiness in Parameter Space 137

Figure 6.9: TAC plots of sorted TAC values, which show the prominent neurons of baseline
attacks. The y axis contains the TAC values, and the x axis is the index of neurons.
Prominent neurons are not found in our attack.

Poisoned

Clean

Residual

Figure 6.10: Examples of poisoned ImageNet200 images by Grond. We only poison training
images from the class “stingray” in our experiments with ImageNet200.

6.7.12 Examples of Poisoned Images
Figure 6.10 shows four training images from ImageNet200 when applied with UPGD.
Please note the images are only meant to demonstrate imperceptible trigger and poison-
ing perturbations. In our experiments, we only poison training images from the class
“stingray” to inject the backdoor. The first row depicts poisoned images, while the second
contains clean ones. Finally, the third row contains the residual of the first two rows.
Notice that Grond does not introduce any visible difference to the clean images.

Chapter 7. Discussion and Future Work 139

Chapter 7

Discussion and Future Work

7.1 Disscusion
This thesis investigates the challenges and opportunities associated with adversarial ma-
chine learning technologies, with a particular emphasis on evasion attacks and backdoor
attacks. We have examined the underlying mechanisms that enable evasion and backdoor
attacks and have pursued robust defense strategies against these threats through the lens
of the Information Bottleneck principle. Additionally, our research reveals an intriguing re-
lationship between evasion and backdoor attacks. While evasion attacks pose a significant
risk to system security, they may also enhance resilience against backdoor attacks under
certain conditions. This duality underscores the complex interplay between adversarial
threats and defensive mechanisms in machine learning systems.

Chapter 2. This chapter investigates the enhancement of adversarial training efficacy
through the lens of the Information Bottleneck (IB) theory within a supervised learning
framework. We empirically validate that integrating IB principles into training objectives
improves robustness by systematically filtering non-essential information from adversarial
perturbations. This is achieved through two primary mechanisms: (1) employing IB as
a regularization term to suppress perturbation-related information and (2) pruning fea-
tures with minimal relevance to label discrimination. Comprehensive empirical evaluations
across diverse datasets and attack scenarios confirm the effectiveness of the IB framework
in fortifying adversarial robustness.

Chapter 3. Shifting focus to self-supervised pre-training, this chapter introduces a rig-
orous theoretical framework grounded in Information Bottleneck principles to analyze ad-
versarial pre-training. We demonstrate that constraining the mutual information between
adversarial examples and their latent representations—via derived mutual information
bounds—is critical for robustness. Building on this insight, we propose MIMIR, a theo-

140 Chapter 7

retically grounded pre-training methodology designed to optimize adversarial robustness.
Extensive experimentation validates that MIMIR significantly outperforms conventional
approaches, underscoring the utility of IB-driven constraints in self-supervised learning
paradigms.

Chapter 4. This chapter explores the intrinsic relationship between adversarial pertur-
bations and backdoor attacks in the input space. We reveal that models compromised by
backdoors exhibit heightened sensitivity to adversarial perturbations, a vulnerability that
inversely correlates with their susceptibility to backdoor triggers. Leveraging this obser-
vation, we propose a novel detection mechanism that exploits adversarial perturbations
to identify potential backdoors. Experimental results demonstrate that this approach
achieves high detection accuracy while maintaining computational efficiency, offering a
practical defense against input-space backdoor threats.

Chapter 5. By extending the investigation to the parameter space, this chapter estab-
lishes a connection between adversarial perturbations and backdoor effects through the
lens of neural network interpretability. We identify that backdoor behaviors are strongly
correlated with a subset of salient neurons exhibiting pronounced sensitivity to adversarial
noise applied to their weights. Capitalizing on this finding, we develop a backdoor de-
tection framework by using the backdoor effect on those backdoor neurons. Our method
directly activates these prominent backdoor neurons, achieving superior computational ef-
ficiency compared to conventional gradient-based detection approaches while maintaining
competitive accuracy.

Chapter 6. This chapter investigates the role of adversarial perturbations in enhancing
the stealthiness of backdoor attacks. We propose a multi-faceted strategy: (1) in the
input space, adversarial perturbations are harnessed as imperceptible backdoor triggers,
and (2) in the parameter space, adversarial training-inspired techniques are employed to
conceal backdoor injections. Our experiments reveal that stealthiness in the feature space
naturally emerges as a consequence of input- and parameter-space optimizations, as fea-
ture map variations are intrinsically linked to model parameters and inputs. The results
demonstrate that adversarial perturbations enable comprehensive stealthiness across mul-
tiple operational dimensions, challenging conventional detection paradigms.

7.2 Outlook and Future Work
Building upon the empirical and theoretical insights derived from this thesis, we propose
the following research directions for future investigation, which hold the potential to ad-
vance the development of robust machine learning systems within the domain of adversarial
machine learning.

Chapter 7. Discussion and Future Work 141

New Paradigm of Adversarial Training. Current adversarial training primarily
focuses on empirically tuning the training recipe [141, 140] or heavy data augmenta-
tion [95, 98] by synthetic data (from GAN or diffusion models). While these techniques
have significantly enhanced robustness, they often compromise generalization performance
and computational efficiency. In Chapter 2 and Chapter 3, we explore the effectiveness
of IB-based theoretical frameworks in improving robustness and extend these principles
to self-supervised training paradigms. Our work establishes a foundational understanding
of how IB principles and pre-training strategies can be leveraged to enhance robustness,
demonstrating that robust representations learned through self-supervised pre-training are
highly beneficial for downstream robustness tasks.

Future research can investigate the potential tailored pre-training approaches for better
generalization and efficiency of the downstream requirements of robustness. To improve
generalization, tailored pre-training methods should aim to avoid task-specific representa-
tions, thereby enhancing the model’s resilience to unseen adversarial threats. For efficiency,
self-supervised or unsupervised learning tasks during the pre-training phase offer opportu-
nities to design scalable algorithms that are not constrained by the availability of labeled
data. Such advancements could pave the way for more adaptable and resource-efficient
adversarial training frameworks, bridging the gap between robustness, generalization, and
computational practicality.

Multimodal Robustness. Recent advancements in vision-language models (VLMs) have
established them as versatile task solvers in multimodal applications, yet they remain
susceptible to adversarial machine learning attacks, as highlighted in [294]. Current defense
strategies predominantly rely on adversarial fine-tuning [295, 296], which involves fine-
tuning pre-trained VLMs using adversarial examples on specific datasets. However, these
approaches often compromise the model’s generalization capabilities on unseen datasets
and degrade performance on clean data. In Chapter 3, we explored the integration of
robustness during the pre-training phase, offering a promising alternative to address these
limitations.

Future research could extend these findings by investigating adversarial pre-training meth-
ods in a multimodal context. One promising direction is leveraging existing robust pre-
trained models, as pre-training VLM from scratch is computationally intensive. For in-
stance, a more resource-efficient approach could involve freezing the image encoder with,
for example, our MIMIR-trained weights while training the text encoder and the projec-
tion layer that bridges the image and text modalities. This strategy not only reduces
computational costs but also provides a practical pathway to achieving multimodal ro-
bustness. Such approaches could significantly enhance the affordability and scalability of
robust multimodal systems, enabling their deployment in real-world applications.

142 Chapter 7

Extension of the Parameter Space Method. Current research on backdoor attacks
and defenses predominantly concentrates on the input and feature spaces, with efforts
directed toward designing imperceptible triggers [10], mitigating feature-space separabil-
ity [118], and detecting backdoors based on feature-space anomalies [111]. However, in
Chapter 6, we demonstrate that, irrespective of the attack logic implemented in the input
or feature space, backdoor behaviors are ultimately encoded within the parameters of the
compromised model. This finding underscores the necessity of considering parameter-space
dynamics when designing both novel defenses and attacks.

Future research should explore the identification of specific patterns associated with backdoor-
related neurons without relying on information from the training data, as access to such
data is often impractical in real-world scenarios. This approach could pave the way for
data-free and task-free defense mechanisms, enabling their application to any white-box
model. By focusing on parameter-space behaviors, such strategies could provide a more
universal and adaptable framework for detecting and mitigating backdoor threats, signifi-
cantly advancing the field of backdoor defense.

List of Notations 143

List of Notation

CNN Convolutional Neural Network
ViT Vision Transformer
AT Adversarial Training
ML Machine Learnin
AI Artificial Intelligence
PCA Principal Component Analysis
t-SNE t-distributed Stochastic Neighbor Embedding
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
UPGD Universal PGD
GAN Generative Adversarial Network
NC Neural Cleanse
FP Fine-Pruning
ANP Adversarial Neuron Pruning
RNP Recovery-based Neuron Pruning
CLP Channel Lipschitz Pruning
UCLC Upper bound of Channel Lipschitz Condition
SAM Sharpness-Aware Minimization
MI Mutual Information
IB Information Bottleneck
CW Carlini, and Wagner
HSIC Hilbert Schmidt Independence Criterion
VIB Variational Information Bottleneck
SGD Stochastic Gradient Descent
CE Cross Entropy
SOTA State-Of-The-Art
RKHS Reproducing Kernel Hilbert Space
ERM Empirical Error Minimization
MSE Mean Squared Error
DPI Data Processing Inequality
AA AutoAttack
UAP Universal Adversarial Perturbations
MLaaS Machine Learning as a Service
IAD Input-Aware Dynamic backdoor attack
SSIM Structural Similarity Index Measure
AC Activation Clustering
Adap-Blend Adaptive-Blend
Adap-Patch Adaptive-Patch
Bpp BppAttack
TAC Trigger Activated Change
BFA Bit-Flip-based adversarial weight Attack
T-BFA Targeted BFA
TBT Targeted Bit Trojan
TACT Targeted Contamination Attack

144 List of Notations

DRAM Dynamic Random-Access Memory
SRA Subnet Replacement Attack
DFBA Data Free Backdoor Attacks
DFST Deep Feature Space Trojan
BTI-DBF Backdoor Trigger Inversion via Decoupling Benign Features
CT Confusion Training
PDB Proactive Defensive Backdoor
ABI Adversarial Backdoor Injection
ACC Accuracy
BA Benign Accuracy
ASR Attack Success Rate
PR Poisoning Rate
LC Label Consistent
TPR True Positive Rate
FPR False Positive Rate
AUC Area Under Curve

BIBLIOGRAPHY 145

Bibliography

[1] Yongqian Xiao, Xinglong Zhang, Xin Xu, Xueqing Liu, and Jiahang Liu. Deep
neural networks with koopman operators for modeling and control of autonomous
vehicles. IEEE Transactions on Intelligent Vehicles, 2023.

[2] Zexin Hu, Yiqi Zhao, and Matloob Khushi. A survey of forex and stock price
prediction using deep learning. Applied System Innovation, 2021.

[3] Christian Tchito Tchapga, Thomas Attia Mih, Aurelle Tchagna Kouanou, Theophile
Fozin Fonzin, Platini Kuetche Fogang, Brice Anicet Mezatio, and Daniel Tchiotsop.
Biomedical image classification in a big data architecture using machine learning
algorithms. Journal of Healthcare Engineering, 2021.

[4] OpenAI. Chatgpt. Version 4, Large language model, 2025. Accessed: 2025-01-22.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Machine Learning and Knowledge Discovery in Databases, 2013.

[6] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adver-
sarial classification. In International Conference on Knowledge Discovery and Data
Mining, 2004.

[7] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations, 2014.

[8] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Eval-
uating backdooring attacks on deep neural networks. In IEEE Access, 2019.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor
attacks on deep learning systems using data poisoning. 2017.

[10] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based back-
door attack. In International Conference on Learning Representations, 2021.

[11] Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In Advances in
Neural Information Processing Systems, 2020.

[12] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

146 BIBLIOGRAPHY

[13] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks.
In IEEE Symposium on Security and Privacy, 2016.

[14] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James
Storer. Protecting jpeg images against adversarial attacks. In Data Compression
Conference, 2018.

[15] Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of
adversarial examples. In Advances in Neural Information Processing Systems, 2018.

[16] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via
randomized smoothing. In International Conference on Machine Learning, 2019.

[17] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[18] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes: avec un supplément contenant divers perfectionnemens de ces méthodes et
leur application aux deux comètes de 1805. Courcier, 1806.

[19] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing test:
Philosophical and methodological issues in the quest for the thinking computer. 2007.

[20] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 1959.

[21] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 1958.

[22] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 1986.

[23] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
1995.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 1998.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, 2012.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

[28] Jeffrey L Elman. Finding structure in time. Cognitive science, 1990.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 1997.

BIBLIOGRAPHY 147

[30] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder–decoder for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing, 2014.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2019.

[32] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In International Conference on Computer Vision, 2021.

[34] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A convnet for the 2020s. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, 2017.

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. OpenAI preprint, 2018.

[37] James MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, 1967.

[38] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 1967.

[39] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Interna-
tional Conference on Knowledge Discovery and Data Mining, 1996.

[40] Harold Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. Journal of educational psychology, 1933.

[41] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 2008.

[42] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
Conference on Machine Learning, 2020.

148 BIBLIOGRAPHY

[43] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

[44] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[45] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 2010.

[46] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[47] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, 2015.

[48] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen
Wang. Unlearnable examples: Making personal data unexploitable. In International
Conference on Learning Representations, 2021.

[49] Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and
Tom Goldstein. Adversarial examples make strong poisons. In Advances in Neural
Information Processing Systems, 2021.

[50] Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: On
the learning preference of deep neural networks. In International Conference on
Learning Representations, 2023.

[51] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted backdoors in
deep neural networks. 2022.

[52] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian
Tramèr. Membership inference attacks from first principles. In IEEE Symposium on
Security and Privacy, 2022.

[53] Matthew Jagielski, Milad Nasr, Katherine Lee, Christopher A. Choquette-Choo,
Nicholas Carlini, and Florian Tramer. Students parrot their teachers: Member-
ship inference on model distillation. In Advances in Neural Information Processing
Systems, 2023.

[54] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction {APIs}. In USENIX security sym-
posium, 2016.

[55] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN: Reverse
engineering of neural network architectures through electromagnetic side channel.
In USENIX Security Symposium, 2019.

BIBLIOGRAPHY 149

[56] Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut squeezing: Coun-
tering perturbative availability poisons with compression. In International Confer-
ence on Machine Learning, 2023.

[57] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi
Jia. Narcissus: A practical clean-label backdoor attack with limited information. In
ACM SIGSAC Conference on Computer and Communications, 2023.

[58] Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Membership infer-
ence attacks cannot prove that a model was trained on your data. IEEE Conference
on Secure and Trustworthy Machine Learning, 2024.

[59] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In International Conference on Learning Representations,
2015.

[60] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy, 2017.

[61] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
Generating adversarial examples with adversarial networks. In International Joint
Conference on Artificial Intelligence, 2018.

[62] Surgan Jandial, Puneet Mangla, Sakshi Varshney, and Vineeth Balasubramanian.
Advgan++: Harnessing latent layers for adversary generation. In International
Conference on Computer Vision Workshops, 2019.

[63] Debayan Deb, Jianbang Zhang, and Anil K. Jain. Advfaces: Adversarial face syn-
thesis. In IEEE International Joint Conference on Biometrics, 2020.

[64] Haotian Xue, Alexandre Araujo, Bin Hu, and Yongxin Chen. Diffusion-based adver-
sarial sample generation for improved stealthiness and controllability. In Advances
in Neural Information Processing Systems, 2023.

[65] Xuelong Dai, Kaisheng Liang, and Bin Xiao. Advdiff: Generating unrestricted adver-
sarial examples using diffusion models. In Aleš Leonardis, Elisa Ricci, Stefan Roth,
Olga Russakovsky, Torsten Sattler, and Gül Varol, editors, European Conference on
Computer Vision, 2024.

[66] Jin Li, Ziqiang He, Anwei Luo, Jian-Fang Hu, Z. Jane Wang, and Xiangui Kang.
Advad: Exploring non-parametric diffusion for imperceptible adversarial attacks. In
Advances in Neural Information Processing Systems, 2024.

[67] Wieland Brendel *, Jonas Rauber *, and Matthias Bethge. Decision-based adver-
sarial attacks: Reliable attacks against black-box machine learning models. In In-
ternational Conference on Learning Representations, 2018.

[68] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun
Zhu. Efficient decision-based black-box adversarial attacks on face recognition. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

150 BIBLIOGRAPHY

[69] Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai.
Geoda: A geometric framework for black-box adversarial attacks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[70] Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label
adversarial attack. In International Conference on Knowledge Discovery and Data
Mining, 2020.

[71] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui
Hsieh. Query-efficient hard-label black-box attack: An optimization-based approach.
In International Conference on Learning Representations, 2019.

[72] Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-
Jui Hsieh. Sign-opt: A query-efficient hard-label adversarial attack. In International
Conference on Learning Representations, 2020.

[73] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Wein-
berger. Simple black-box adversarial attacks. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

[74] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: a query-efficient black-box adversarial attack via random search. In
European conference on computer vision, 2020.

[75] Jie Li, Rongrong Ji, Hong Liu, Jianzhuang Liu, Bineng Zhong, Cheng Deng, and
Qi Tian. Projection and probability-driven black-box attack. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020.

[76] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial
attacks with limited queries and information. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

[77] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-
box adversarial attacks with bandits and priors. In International Conference on
Learning Representations, 2019.

[78] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signSGD via zeroth-order
oracle. In International Conference on Learning Representations, 2019.

[79] Yan Feng, Baoyuan Wu, Yanbo Fan, Li Liu, Zhifeng Li, and Shu-Tao Xia. Boosting
black-box attack with partially transferred conditional adversarial distribution. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[80] Fei Yin, Yong Zhang, Baoyuan Wu, Yan Feng, Jingyi Zhang, Yanbo Fan, and Yu-
jiu Yang. Generalizable black-box adversarial attack with meta learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

[81] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transfer-
able adversarial examples by translation-invariant attacks. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019.

BIBLIOGRAPHY 151

[82] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Nesterov
accelerated gradient and scale invariance for adversarial attacks. In International
Conference on Learning Representations, 2020.

[83] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018.

[84] Xiaosen Wang, Jiadong Lin, Han Hu, Jingdong Wang, and Kun He. Boosting adver-
sarial transferability through enhanced momentum. British Machine Vision Confer-
ence, 2021.

[85] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim.
Enhancing adversarial example transferability with an intermediate level attack. In
IEEE/CVF International Conference on Computer Vision, 2019.

[86] Zhibo Wang, Hengchang Guo, Zhifei Zhang, Wenxin Liu, Zhan Qin, and Kui Ren.
Feature importance-aware transferable adversarial attacks. In International Confer-
ence on Computer Vision, 2021.

[87] Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Koushik Sen.
Lgv: Boosting adversarial example transferability from large geometric vicinity. In
European Conference on Computer Vision, 2022.

[88] Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, and Alan Yuille.
Learning transferable adversarial examples via ghost networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 2020.

[89] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Coun-
tering adversarial images using input transformations. In International Conference
on Learning Representations, 2018.

[90] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Ani-
mashree Anandkumar. Diffusion models for adversarial purification. In International
Conference on Machine Learning, 2022.

[91] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples. In Interna-
tional Conference on Machine Learning, 2018.

[92] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer en-
coding: One hot way to resist adversarial examples. In International conference on
learning representations, 2018.

[93] Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by
k-winners-take-all. In International Conference on Learning Representations, 2020.

[94] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International Conference on Machine Learning, 2019.

152 BIBLIOGRAPHY

[95] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles,
and Timothy Mann. Fixing data augmentation to improve adversarial robustness.
arXiv preprint arXiv:2103.01946, 2021.

[96] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei
Calian, and Timothy A Mann. Improving robustness using generated data. In
Advances in Neural Information Processing Systems, 2021.

[97] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia
Wiles, and Timothy Mann. Data augmentation can improve robustness. In Advances
in Neural Information Processing Systems, 2021.

[98] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan.
Better diffusion models further improve adversarial training. In International Con-
ference on Machine Learning, 2023.

[99] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial
training for free! In Advances in Neural Information Processing Systems, 2019.

[100] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting
adversarial training. In International Conference on Learning Representations, 2020.

[101] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Ef-
ficient adversarial training with transferable adversarial examples. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[102] Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang.
Advdoor: adversarial backdoor attack of deep learning system. In ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

[103] Reza Shokri et al. Bypassing backdoor detection algorithms in deep learning. In
IEEE European Symposium on Security and Privacy, 2020.

[104] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning mod-
els. In USENIX Security, 2021.

[105] Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient
trojan attacks against deep neural networks via image quantization and contrastive
adversarial learning. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[106] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep
neural network. In IEEE International Conference on Computer-Aided Design, 2017.

[107] Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong Yang, and Kai Bu. Towards
practical deployment-stage backdoor attack on deep neural networks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[108] Bochuan Cao, Jinyuan Jia, Chuxuan Hu, Wenbo Guo, Zhen Xiang, Jinghui Chen,
Bo Li, and Dawn Song. Data free backdoor attacks. In Advances in Neural Infor-
mation Processing Systems, 2024.

BIBLIOGRAPHY 153

[109] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks
on deep neural networks by activation clustering. 2018.

[110] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In IEEE Symposium on Security and Privacy, 2019.

[111] Zhenting Wang, Kai Mei, Hailun Ding, Juan Zhai, and Shiqing Ma. Rethinking the
reverse-engineering of trojan triggers. In Advances in Neural Information Processing
Systems, 2022.

[112] Xiong Xu, Kunzhe Huang, Yiming Li, Zhan Qin, and Kui Ren. Towards reliable and
efficient backdoor trigger inversion via decoupling benign features. In International
Conference on Learning Representations, 2024.

[113] Zhendong Zhao, Xiaojun Chen, Yuexin Xuan, Ye Dong, Dakui Wang, and Kaitai
Liang. Defeat: Deep hidden feature backdoor attacks by imperceptible perturba-
tion and latent representation constraints. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[114] Nan Zhong, Zhenxing Qian, and Xinpeng Zhang. Imperceptible backdoor attack:
From input space to feature representation. In International Joint Conference on
Artificial Intelligence, 2022.

[115] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input
and latent modification. In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2021.

[116] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the vari-
ant: Statistical analysis of DNNs for robust backdoor contamination detection. In
USENIX Security, 2021.

[117] Xiaoxing Mo, Yechao Zhang, Leo Yu Zhang, Wei Luo, Nan Sun, Shengshan Hu,
Shang Gao, and Yang Xiang. Robust backdoor detection for deep learning via
topological evolution dynamics. In IEEE Symposium on Security and Privacy, 2024.

[118] Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Re-
visiting the assumption of latent separability for backdoor defenses. In International
Conference on Learning Representations, 2023.

[119] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for
deep neural network by mixing existing benign features. In ACM SIGSAC Confer-
ence on Computer and Communications, 2020.

[120] Yankun Ren, Longfei Li, and Jun Zhou. Simtrojan: Stealthy backdoor attack. In
IEEE International Conference on Image Processing, 2021.

[121] Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space
trojan attack of neural networks by controlled detoxification. 2021.

154 BIBLIOGRAPHY

[122] Pengfei Xia, Hongjing Niu, Ziqiang Li, and Bin Li. Enhancing backdoor attacks
with multi-level mmd regularization. 2023.

[123] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and
Deliang Fan. T-bfa: Targeted bit-flip adversarial weight attack. 2022.

[124] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural network
attack with bit trojan. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[125] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip: Targeted
trojan attack with progressive bit flips. In International Conference on Computer
Vision, 2021.

[126] Peizhuo Lv, Chang Yue, Ruigang Liang, Yunfei Yang, Shengzhi Zhang, Hualong
Ma, and Kai Chen. A data-free backdoor injection approach in neural networks. In
USENIX Security, 2023.

[127] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu
Zhang. Abs: Scanning neural networks for back-doors by artificial brain stimulation.
In ACM SIGSAC Conference on Computer and Communications, 2019.

[128] Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. UNICORN: A unified back-
door trigger inversion framework. In International Conference on Learning Repre-
sentations, 2023.

[129] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In Research in Attacks, In-
trusions, and Defenses, 2018.

[130] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored
deep models. In Advances in Neural Information Processing Systems, 2021.

[131] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal
based on channel lipschitzness. In European Conference on Computer Vision, 2022.

[132] Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-
Gang Jiang. Reconstructive neuron pruning for backdoor defense. In International
Conference on Machine Learning, 2023.

[133] Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-
tuning based backdoor defense with sharpness-aware minimization. In International
Conference on Computer Vision, 2023.

[134] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial
unlearning of backdoors via implicit hypergradient. In International Conference on
Learning Representations, 2022.

[135] Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purifi-
cation through feature shift tuning. In Advances in Neural Information Processing
Systems, 2023.

BIBLIOGRAPHY 155

[136] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-
backdoor learning: Training clean models on poisoned data. In Advances in Neural
Information Processing Systems, 2021.

[137] Xiangyu Qi, Tinghao Xie, Jiachen T. Wang, Tong Wu, Saeed Mahloujifar, and
Prateek Mittal. Towards a proactive ML approach for detecting backdoor poison
samples. In USENIX Security, 2023.

[138] Shaokui Wei, Hongyuan Zha, and Baoyuan Wu. Mitigating backdoor attack by in-
jecting proactive defensive backdoor. In Advances in Neural Information Processing
Systems, 2024.

[139] Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, Shujian Yu, and Stjepan Picek. BAN:
Detecting backdoors activated by neuron noise. In Advances in Neural Information
Processing Systems, 2024.

[140] Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial
training for imagenet: Architectures, training and generalization across threat mod-
els. In Advances in Neural Information Processing Systems, 2023.

[141] Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train
robust vision transformers. In IEEE Conference on Secure and Trustworthy Machine
Learning, 2023.

[142] Matan Levi and Aryeh Kontorovich. Splitting the difference on adversarial training.
In USENIX Security, 2024.

[143] Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and
accuracy could be reconcilable by (proper) definition. In International Conference
on Machine Learning, 2022.

[144] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and Dawn Song. Towards
inspecting and eliminating trojan backdoors in deep neural networks. In IEEE In-
ternational Conference on Data Mining, 2020.

[145] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti,
Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robust-
bench: a standardized adversarial robustness benchmark. In Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[146] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep
learning based vulnerability detection: Are we there yet. IEEE Transactions on
Software Engineering, 2021.

[147] Junshui Ma, Robert P. Sheridan, Andy Liaw, George E. Dahl, and Vladimir Svet-
nik. Deep neural nets as a method for quantitative structure–activity relationships.
Journal of Chemical Information and Modeling, 2015.

[148] Thomas Fischer and Christopher Krauss. Deep learning with long short-term mem-
ory networks for financial market predictions. European Journal of Operational Re-
search, 2018.

156 BIBLIOGRAPHY

[149] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. In
Advances in Neural Information Processing Systems, 2019.

[150] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep vari-
ational information bottleneck. In International Conference on Learning Represen-
tations, 2017.

[151] Zifeng Wang, Tong Jian, Aria Masoomi, Stratis Ioannidis, and Jennifer Dy. Revis-
iting hilbert-schmidt information bottleneck for adversarial robustness. In Advances
in Neural Information Processing Systems, 2021.

[152] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural net-
works via information. CoRR, 2017.

[153] Wan-Duo Kurt Ma, J. P. Lewis, and W. Bastiaan Kleijn. The hsic bottleneck:
Deep learning without back-propagation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

[154] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan
Gu. Improving adversarial robustness requires revisiting misclassified examples. In
International Conference on Learning Representations, 2019.

[155] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 2008.

[156] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
statistical dependence with hilbert-schmidt norms. In Algorithmic Learning Theory,
2005.

[157] Junho Kim, Byung-Kwan Lee, and Yong Man Ro. Distilling robust and non-robust
features in adversarial examples by information bottleneck. In Advances in Neural
Information Processing Systems, 2021.

[158] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[159] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

[160] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
2015.

[161] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference, 2016.

[162] Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

BIBLIOGRAPHY 157

[163] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with
a fast adaptive boundary attack. In International Conference on Machine Learning,
2020.

[164] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Nesterov
accelerated gradient and scale invariance for adversarial attacks. In International
Conference on Learning Representations, 2020.

[165] Hongjun Wang and Yisen Wang. Generalist: Decoupling natural and robust gener-
alization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

[166] Stéphane D’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli,
and Levent Sagun. Convit: Improving vision transformers with soft convolutional
inductive biases. In International Conference on Machine Learning, 2021.

[167] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision. In International Conference on Machine Learning, 2021.

[168] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping
language-image pre-training for unified vision-language understanding and gener-
ation. In ICML, 2022.

[169] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-
4: Enhancing vision-language understanding with advanced large language models.
In ICLR, 2024.

[170] Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are transformers more robust
than cnns? In Advances in Neural Information Processing Systems, 2021.

[171] Ahmed Aldahdooh, Wassim Hamidouche, and Olivier Deforges. Reveal of
vision transformers robustness against adversarial attacks. arXiv preprint
arXiv:2106.03734, 2021.

[172] Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, and Yisen Wang. When ad-
versarial training meets vision transformers: Recipes from training to architecture.
In Advances in Neural Information Processing Systems, 2022.

[173] Boxi Wu, Jindong Gu, Zhifeng Li, Deng Cai, Xiaofei He, and Wei Liu. Towards
efficient adversarial training on vision transformers. In European Conference on
Computer Vision, 2022.

[174] Jindong Gu, Volker Tresp, and Yao Qin. Are vision transformers robust to patch
perturbations? In European Conference on Computer Vision, 2022.

[175] Apostol Vassilev, Alina Oprea, Alie Fordyce, and Hyrum Anderson. Adversarial ma-
chine learning: A taxonomy and terminology of attacks and mitigations. Technical
report, National Institute of Standards and Technology (NIST), 2024.

158 BIBLIOGRAPHY

[176] ShengYun Peng, Weilin Xu, Cory Cornelius, Kevin Li, Rahul Duggal, Duen Horng
Chau, and Jason Martin. Robarch: Designing robust architectures against adver-
sarial attacks, 2023.

[177] Yatong Bai, Mo Zhou, Vishal M. Patel, and Somayeh Sojoudi. MixedNUTS:
Training-free accuracy-robustness balance via nonlinearly mixed classifiers. TMLR,
2024.

[178] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang.
Adversarial training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

[179] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-
supervised learning can improve model robustness and uncertainty. In Advances in
Neural Information Processing Systems, 2019.

[180] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Advances in Neural
Information Processing Systems, 2020.

[181] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with
localizable features. In International Conference on Computer Vision, 2019.

[182] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In International Conference on Learning Rep-
resentations, 2018.

[183] Zeyu Wang, Xianhang Li, Hongru Zhu, and Cihang Xie. Revisiting adversarial train-
ing at scale. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

[184] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[185] Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng
Chen, Yuan He, Hui Xue, and Shibao Zheng. A comprehensive study on robustness
of image classification models: Benchmarking and rethinking. International Journal
of Computer Vision, 2024.

[186] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

[187] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2009.

[188] Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, and Toshihiko Ya-
masaki. Green hierarchical vision transformer for masked image modeling. In Ad-
vances in Neural Information Processing Systems, 2022.

BIBLIOGRAPHY 159

[189] Keyu Tian, Yi Jiang, qishuai diao, Chen Lin, Liwei Wang, and Zehuan Yuan. De-
signing BERT for convolutional networks: Sparse and hierarchical masked modeling.
In International Conference on Learning Representations, 2023.

[190] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of
image transformers. In International Conference on Learning Representations, 2022.

[191] Xiang Li, Wenhai Wang, Lingfeng Yang, and Jian Yang. Uniform masking:
Enabling mae pre-training for pyramid-based vision transformers with locality.
arXiv:2205.10063, 2022.

[192] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph
Feichtenhofer. Masked feature prediction for self-supervised visual pre-training. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[193] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[194] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua
Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation.
In International Conference on Machine Learning, 2018.

[195] Liam Paninski. Estimation of entropy and mutual information. Neural Computation,
2003.

[196] Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its
applications in machine learning. IEEE Journal on Selected Areas in Information
Theory, 2020.

[197] Xi Yu, Shujian Yu, and José C. Príncipe. Deep deterministic information bottleneck
with matrix-based entropy functional. In International Conference on Acoustics,
Speech, and Signal Processing, 2021.

[198] Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C. Principe. Measures of en-
tropy from data using infinitely divisible kernels. IEEE Transactions on Information
Theory, 2015.

[199] Shujian Yu, Luis Gonzalo Sanchez Giraldo, Robert Jenssen, and Jose C Principe.
Multivariate extension of matrix-based renyi’s alpha-order entropy functional. IEEE
transactions on pattern analysis and machine intelligence, 2019.

[200] Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bot-
tleneck method. CoRR, 2000.

[201] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck
principle. In 2015 IEEE Information Theory Workshop (ITW), 2015.

[202] Xiaoyun Xu, Guilherme Perin, and Stjepan Picek. Ib-rar: Information bottleneck
as regularizer for adversarial robustness. In International Conference on Dependable
Systems and Networks Workshops, 2023.

[203] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. In North

160 BIBLIOGRAPHY

American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, 2019.

[204] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

[205] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-
length context. In Annual Meeting of the Association for Computational Linguistics,
2019.

[206] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé
Jégou. Going deeper with image transformers. In International Conference on Com-
puter Vision, 2021.

[207] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. In International Conference
on Computer Vision, 2017.

[208] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Herve Jegou. Training data-efficient image transformers and distillation
through attention. In International Conference on Machine Learning, 2021.

[209] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adver-
sarial attacks with limited queries and information. In International Conference on
Machine Learning, 2018.

[210] Philipp Benz, Soomin Ham, Chaoning Zhang, Adil Karjauv, and In So Kweon.
Adversarial robustness comparison of vision transformer and mlp-mixer to cnns. In
British Machine Vision Conference, 2021.

[211] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Un-
terthiner, and Andreas Veit. Understanding robustness of transformers for image
classification. In International Conference on Computer Vision, 2021.

[212] Binghui Chen, Weihong Deng, and Haifeng Shen. Virtual class enhanced discrimi-
native embedding learning. In Advances in Neural Information Processing Systems,
2018.

[213] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020.

BIBLIOGRAPHY 161

[214] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

[215] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
Conference on Machine Learning, 2020.

[216] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang
Wang. Adversarial robustness: From self-supervised pre-training to fine-tuning. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[217] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training
by adversarial contrastive learning. In Advances in Neural Information Processing
Systems, 2020.

[218] Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. When does
contrastive learning preserve adversarial robustness from pretraining to finetuning?
In Advances in Neural Information Processing Systems, 2021.

[219] QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, and Di He. De-
noising masked autoencoders help robust classification. In International Conference
on Learning Representations, 2023.

[220] Sylvestre-Alvise Rebuffi, Olivia Wiles, Evan Shelhamer, and Sven Gowal. Adver-
sarially self-supervised pre-training improves accuracy and robustness. ICLR 2023
Workshop DG Poster, 2023.

[221] Zunzhi You, Daochang Liu, and Chang Xu. Beyond pretrained features: Noisy image
modeling provides adversarial defense. arXiv preprint arXiv:2302.01056, 2023.

[222] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine
Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion. Journal of machine
learning research, 2010.

[223] Haochen Wang, Kaiyou Song, Junsong Fan, Yuxi Wang, Jin Xie, and Zhaoxiang
Zhang. Hard patches mining for masked image modeling. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023.

[224] Normand J Beaudry and Renato Renner. An intuitive proof of the data processing
inequality. arXiv preprint arXiv:1107.0740, 2011.

[225] Robert M Fano. The transmission of information. Massachusetts Institute of Tech-
nology, Research Laboratory of Electronics . . . , 1949.

[226] Orhan Ocal, Oguz H. Elibol, Gokce Keskin, Cory Stephenson, Anil Thomas, and
Kannan Ramchandran. Adversarially trained autoencoders for parallel-data-free
voice conversion. In International Conference on Acoustics, Speech, and Signal Pro-
cessing, 2019.

[227] M. Hellman and J. Raviv. Probability of error, equivocation, and the chernoff bound.
IEEE Transactions on Information Theory, 1970.

162 BIBLIOGRAPHY

[228] Gavin Brown. An information theoretic perspective on multiple classifier systems.
In International Workshop on Multiple Classifier Systems, 2009.

[229] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2017.

[230] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In Interna-
tional Conference on Machine Learning, 2008.

[231] Jihao Liu, Xin Huang, Jinliang Zheng, Yu Liu, and Hongsheng Li. Mixmae: Mixed
and masked autoencoder for efficient pretraining of hierarchical vision transformers.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[232] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Inter-
national Conference on Learning Representations, 2019.

[233] Croce Francesco and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In International Conference on
Machine Learning, 2020.

[234] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: A query-efficient black-box adversarial attack via random search. In
European Conference on Computer Vision, 2020.

[235] Haoran Zhu, Boyuan Chen, and Carter Yang. Understanding why vit trains badly
on small datasets: An intuitive perspective. arXiv preprint arXiv:2302.03751, 2023.

[236] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So
Kweon, and Saining Xie. Convnext v2: Co-designing and scaling convnets with
masked autoencoders. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[237] Xiaofeng Mao, Yuefeng Chen, Xiaodan Li, Gege Qi, Ranjie Duan, Rong Zhang, and
Hui Xue. Easyrobust: A comprehensive and easy-to-use toolkit for robust computer
vision. https://github.com/alibaba/easyrobust, 2022.

[238] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollar, and Ross Gir-
shick. Early convolutions help transformers see better. In Advances in Neural In-
formation Processing Systems, 2021.

[239] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On
adaptive attacks to adversarial example defenses. In Advances in Neural Information
Processing Systems, 2020.

[240] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. Adversarial manip-
ulation of deep representations. In International Conference on Learning Represen-
tations, 2016.

BIBLIOGRAPHY 163

[241] Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Who’s afraid of adversarial
queries? the impact of image modifications on content-based image retrieval. In
International Conference on Multimedia Retrieval, 2019.

[242] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. In Advances in Neural Information Processing
Systems, 2018.

[243] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep
networks with stochastic depth. In European Conference on Computer Vision, 2016.

[244] ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal,
Mansi Phute, Jason Martin, and Duen Horng Chau. Robust principles: Architectural
design principles for adversarially robust cnns. arXiv preprint arXiv:2308.16258,
2023.

[245] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. Mlaas: Machine
learning as a service. In International Conference on Machine Learning and Appli-
cations, 2015.

[246] BigML. Bigml.com. https://bigml.com, 2011. Accessed: 2023-01-18.

[247] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In ACM International Conference on Multimedia, 2014.

[248] Jing Yu Koh. Tensorflow model zoo. https://modelzoo.co/, 2018. Accessed: 2023-
01-18.

[249] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, 2019.

[250] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[251] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-
private learners: Attacks and defenses. International Joint Conference on Artificial
Intelligence, 2019.

[252] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In Encyclopedia of
Cryptography, Security and Privacy, 2017.

[253] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified
robustness to label-flipping attacks via randomized smoothing. In International
Conference on Machine Learning, 2020.

[254] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun
Zhu. Black-box detection of backdoor attacks with limited information and data. In
International Conference on Computer Vision, 2021.

[255] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A
simple and accurate method to fool deep neural networks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2016.

164 BIBLIOGRAPHY

[256] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
2004.

[257] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng,
and Ting Wang. Trojanzoo: Towards unified, holistic, and practical evaluation of
neural backdoors. In IEEE European Symposium on Security and Privacy, 2022.

[258] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. Latent backdoor at-
tacks on deep neural networks. In ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[259] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. In Annual Network And
Distributed System Security Symposium, 2018.

[260] Jing Xu, Stefanos Koffas, Oğuzhan Ersoy, and Stjepan Picek. Watermarking graph
neural networks based on backdoor attacks. In IEEE European Symposium on Se-
curity and Privacy, 2023.

[261] Gorka Abad, Oguzhan Ersoy, Stjepan Picek, and Aitor. Urbieta. Sneaky spikes:
Uncovering stealthy backdoor attacks in spiking neural networks with neuromorphic
data. In Annual Network And Distributed System Security Symposium, 2024.

[262] Yinshan Li, Hua Ma, Zhi Zhang, Yansong Gao, Alsharif Abuadbba, Minhui Xue,
Anmin Fu, Yifeng Zheng, Said F. Al-Sarawi, and Derek Abbott. Ntd: Non-
transferability enabled deep learning backdoor detection. 2024.

[263] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu.
SCALE-UP: An efficient black-box input-level backdoor detection via analyzing
scaled prediction consistency. In International Conference on Learning Represen-
tations, 2023.

[264] Xiaoyun Xu, Oguzhan Ersoy, Behrad Tajalli, and Stjepan Picek. Universal soldier:
Using universal adversarial perturbations for detecting backdoor attacks. In Inter-
national Conference on Dependable Systems and Networks Workshops, 2024.

[265] Junfeng Guo, Ang Li, and Cong Liu. AEVA: Black-box backdoor detection using
adversarial extreme value analysis. In International Conference on Learning Repre-
sentations, 2022.

[266] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent back-
door attacks. 2019.

[267] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible
and robust backdoor attacks. In International Conference on Computer Vision, 2021.

[268] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invis-
ible backdoor attack with sample-specific triggers. In International Conference on
Computer Vision, 2021.

BIBLIOGRAPHY 165

[269] M. Barni, K. Kallas, and B. Tondi. A new backdoor attack in cnns by training
set corruption without label poisoning. In IEEE International Conference on Image
Processing, 2019.

[270] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng,
Shiqing Ma, and Xiangyu Zhang. Backdoor scanning for deep neural networks
through k-arm optimization. In International Conference on Machine Learning,
2021.

[271] Hang Wang, Zhen Xiang, David J Miller, and George Kesidis. Mm-bd: Post-training
detection of backdoor attacks with arbitrary backdoor pattern types using a maxi-
mum margin statistic. In IEEE Symposium on Security and Privacy, 2024.

[272] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmark-
ing machine learning algorithms for traffic sign recognition. 2012.

[273] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. 2015.

[274] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2017.

[275] Hong Zhu, Yue Zhao, Shengzhi Zhang, and Kai Chen. Neuralsanitizer: Detecting
backdoors in neural networks. 2024.

[276] Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Pra-
teek Mittal. Towards a proactive {ML} approach for detecting backdoor poison
samples. In USENIX Security, 2023.

[277] Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-
tuning based backdoor defense with sharpness-aware minimization. In International
Conference on Computer Vision, 2023.

[278] Mingli Zhu, Shaokui Wei, Hongyuan Zha, and Baoyuan Wu. Neural polarizer: A
lightweight and effective backdoor defense via purifying poisoned features. In Ad-
vances in Neural Information Processing Systems, 2023.

[279] Rui Zhu, Di Tang, Siyuan Tang, Guanhong Tao, Shiqing Ma, Xiaofeng Wang, and
Haixu Tang. Gradient shaping: Enhancing backdoor attack against reverse engi-
neering. In Annual Network And Distributed System Security Symposium, 2024.

[280] Erh-Chung Chen, Pin-Yu Chen, I Chung, Che-Rung Lee, et al. Data-driven lips-
chitz continuity: A cost-effective approach to improve adversarial robustness. arXiv
preprint arXiv:2406.19622, 2024.

[281] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible
and robust backdoor attacks. In International Conference on Computer Vision, 2021.

[282] Weilin Lin, Li Liu, Shaokui Wei, Jianze Li, and Hui Xiong. Unveiling and miti-
gating backdoor vulnerabilities based on unlearning weight changes and backdoor
activeness. In Advances in Neural Information Processing Systems, 2024.

166 BIBLIOGRAPHY

[283] Linshan Hou, Ruili Feng, Zhongyun Hua, Wei Luo, Leo Yu Zhang, and Yiming Li.
IBD-PSC: Input-level backdoor detection via parameter-oriented scaling consistency.
In International Conference on Machine Learning, 2024.

[284] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and
Surya Nepal. Strip: a defence against trojan attacks on deep neural networks. In
annual computer security applications conference, 2019.

[285] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2017.

[286] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2019.

[287] Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang. Inceptionnext: When in-
ception meets convnext. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

[288] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-
aware minimization for efficiently improving generalization. In International Con-
ference on Learning Representations, 2021.

[289] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In International Conference on Computer
Vision, 2017.

[290] Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, and Xue Lin. Defending against back-
door attack on deep neural networks. 2020.

[291] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. 2008.

[292] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan,
and Chao Shen. Backdoorbench: A comprehensive benchmark of backdoor learning.
In Advances in Neural Information Processing Systems, 2022.

[293] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. BackdoorBox: A
python toolbox for backdoor learning. In ICLR Workshop, 2023.

[294] Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan LI, Ngai-Man (Man)
Cheung, and Min Lin. On evaluating adversarial robustness of large vision-language
models. In Advances in Neural Information Processing Systems, 2023.

[295] Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Under-
standing zero-shot adversarial robustness for large-scale models. In International
Conference on Learning Representations, 2023.

[296] Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided
fine-tuning for zero-shot adversarial robustness. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2024.

Summary 167

Summary

Machine learning models, particularly those based on convolutional neural networks (CNNs)
and transformer architectures, have demonstrated remarkable success across a wide range
of everyday applications. However, these models exhibit significant vulnerabilities to adver-
sarial learning attacks, which pose serious threats to their reliability and security. Among
the most prominent types of adversarial attacks are evasion attacks (also referred to as
adversarial attacks) and backdoor attacks, each exploiting different aspects of machine
learning systems.

Evasion attacks are executed during the inference phase by introducing imperceptible
perturbations to input data. These perturbations are typically optimized using gradient
information in white-box settings, where the attacker has full knowledge of the model’s
architecture and parameters. In black-box settings, where only the model’s outputs (such
as logits or predicted labels) are accessible, attackers rely on these outputs to craft adver-
sarial examples. Another black-box method is to generate adversarial perturbations on a
surrogate model and then transfer them to the target model. Despite their subtlety, such
perturbations can significantly degrade model performance, leading to incorrect predic-
tions.

Backdoor attacks, on the other hand, involve compromising the model during its training
phase. This is achieved either by poisoning the training dataset with malicious samples
containing embedded triggers or by directly manipulating the model’s weights. During
inference, the presence of these triggers activates the backdoor, causing the model to
exhibit predetermined malicious behavior. Backdoor attacks are particularly potent due
to their flexibility in diverse attack scenarios, including all-to-one, all-to-all, and N -to-
N mappings, where the attacker can control the model’s responses to specific inputs.
Compared to evasion attacks, backdoor attacks often demonstrate superior performance
in terms of stealth and effectiveness, as they leverage prior access to the training process
and model parameters.

Machine learning models’ susceptibility to adversarial attacks remains a critical challenge.
Addressing these vulnerabilities requires continued research into robust defense mecha-
nisms to ensure the security and reliability of machine learning systems in real-world
applications. This thesis focuses on the defense mechanism of adversarial attacks and the
fundamental reason for adversarial machine learning. The goal is to build more effective

168 Summary

and efficient defenses based on an in-depth analysis of the nature of adversarial attacks.

In Part I, we delve into the relationship between adversarial perturbations and their learned
representations in the feature space, adopting the lens of the information bottleneck the-
ory. Our analysis uncovers a critical insight: compressing redundant information in the
input space significantly enhances the robustness of deep learning models. Leveraging this
finding, we propose novel adversarial training methods that are theoretically grounded and
specifically designed to defend against evasion attacks. These methods not only demon-
strate substantially improved performance but also lay the groundwork for future research
focused on developing more robust and interpretable machine learning models.

In Part II, we shift our focus to the sensitivity of backdoored models to adversarial exam-
ples. Our research reveals that adversarial examples can exploit the hidden functionality
injected by backdoor attacks, creating more subtle and potent perturbations. Based on
this finding, we introduce an innovative backdoor trigger inversion method that activates
the backdoor without requiring prior knowledge of the trigger. Furthermore, we investigate
how adversarial perturbations influence neuron weights, which can directly activate the
backdoor functionality without the need for trigger inversion. This breakthrough enables
more efficient and effective backdoor detection and mitigation strategies by bypassing the
need to recover the trigger. This chapter highlights the significance of analyzing neuron
weights in the parameter space to understand backdoor behavior and underscores the
potential of parameter space analysis in advancing defense mechanisms.

In addition, Chapter 6 systematically examines existing backdoor attacks and defenses,
identifying a critical blind spot: While current backdoor attacks are designed to be stealthy,
they often fail against diverse practical defense mechanisms. This vulnerability stems
from the fact that injected backdoors inevitably introduce detectable backdoor-related
neurons. To address this limitation, we propose a novel backdoor attack that incorporates
an adversarial backdoor injection module inspired by adversarial training principles. This
module ensures stealthiness across the input, feature, and parameter spaces, making the
attack robust against a wide range of defense methods. We validate the effectiveness of this
module by integrating it with other attack frameworks, demonstrating its versatility and
resilience. This chapter emphasizes the importance of multi-space stealthiness in designing
advanced backdoor attacks and highlights the evolving nature of the adversarial landscape.

Based on our findings, we emphasize the importance of raising awareness among machine
learning practitioners about the risks posed by adversarial machine learning. We recom-
mend that users prioritize the adoption of defense mechanisms before deploying machine
learning technologies in critical applications.

Samenvatting 169

Samenvatting

Machine learning-modellen, met name die gebaseerd op convolutionele neurale netwerken
(CNN’s) en transformerarchitecturen, hebben opmerkelijk succes geboekt in een breed
scala aan alledaagse toepassingen. Deze modellen vertonen echter aanzienlijke kwetsbaar-
heden voor adversarial learning-aanvallen, die een ernstige bedreiging vormen voor hun
betrouwbaarheid en veiligheid. Tot de meest voorkomende vormen van adversarial attacks
behoren evasion attacks (ook wel adversarial attacks genoemd) en backdoor attacks, die
elk verschillende aspecten van machine learning-systemen misbruiken.

Ontwijkingsaanvallen worden uitgevoerd tijdens de inferentiefase door onmerkbare versto-
ringen in de invoergegevens te introduceren. Deze verstoringen worden doorgaans geopti-
maliseerd met behulp van gradiëntinformatie in white-box-omgevingen, waar de aanvaller
volledige kennis heeft van de architectuur en parameters van het model. In black-box-
omgevingen, waar alleen de uitvoer van het model (zoals logits of voorspelde labels) toe-
gankelijk is, vertrouwen aanvallers op deze uitvoer om vijandige voorbeelden te creëren.
Een andere black-box-methode is het genereren van vijandige verstoringen op een surro-
gaatmodel en deze vervolgens over te brengen naar het doelmodel. Ondanks hun subtiliteit
kunnen dergelijke verstoringen de modelprestaties aanzienlijk verslechteren, wat leidt tot
onjuiste voorspellingen.

Backdoor-aanvallen daarentegen, houden in dat het model tijdens de trainingsfase wordt
gecompromitteerd. Dit wordt bereikt door de trainingsdataset te vergiftigen met kwaad-
aardige samples die ingebouwde triggers bevatten, of door de gewichten van het model
rechtstreeks te manipuleren. Tijdens de inferentie activeert de aanwezigheid van deze
triggers de backdoor, waardoor het model vooraf bepaald kwaadaardig gedrag vertoont.
Backdoor-aanvallen zijn bijzonder krachtig vanwege hun flexibiliteit in diverse aanvals-
scenario’s, waaronder all-to-one, all-to-all en N -to-N mappings, waarbij de aanvaller de
reacties van het model op specifieke invoer kan bepalen. Vergeleken met ontwijkingsaan-
vallen vertonen backdoor-aanvallen vaak superieure prestaties op het gebied van stealth
en effectiviteit, omdat ze gebruikmaken van eerdere toegang tot het trainingsproces en
modelparameters.

De kwetsbaarheid van machine learning-modellen voor vijandige aanvallen blijft een cru-
ciale uitdaging. Het aanpakken van deze kwetsbaarheden vereist voortdurend onderzoek
naar robuuste verdedigingsmechanismen om de veiligheid en betrouwbaarheid van machine

170 Samenvatting

learning-systemen in praktijktoepassingen te waarborgen. Dit proefschrift richt zich op het
verdedigingsmechanisme tegen vijandige aanvallen en de fundamentele reden voor vijandig
machine learning. Het doel is om effectievere en efficiëntere verdedigingsmechanismen te
ontwikkelen op basis van een diepgaande analyse van de aard van vijandige aanvallen.

In Deel I verdiepen we ons in de relatie tussen adversariële verstoringen en hun geleerde
representaties in de feature space, waarbij we de lens van de informatiebottlenecktheorie
gebruiken. Onze analyse onthult een cruciaal inzicht: het comprimeren van redundante
informatie in de invoerruimte verbetert de robuustheid van deep learning-modellen aan-
zienlijk. Op basis van deze bevinding stellen we nieuwe adversariële trainingsmethoden
voor die theoretisch onderbouwd zijn en specifiek ontworpen zijn om te verdedigen tegen
ontwijkingsaanvallen. Deze methoden laten niet alleen aanzienlijk verbeterde prestaties
zien, maar leggen ook de basis voor toekomstig onderzoek gericht op de ontwikkeling van
robuustere en beter interpreteerbare machine learning-modellen.

In Deel II verleggen we onze focus naar de gevoeligheid van backdoored modellen voor ad-
versariële voorbeelden. Ons onderzoek laat zien dat adversariële voorbeelden de verborgen
functionaliteit van backdoor-aanvallen kunnen benutten, waardoor subtielere en krachti-
gere verstoringen ontstaan. Op basis van deze bevinding introduceren we een innovatieve
methode voor het omkeren van backdoor-triggers, die de backdoor activeert zonder dat
voorafgaande kennis van de trigger vereist is. Verder onderzoeken we hoe vijandige versto-
ringen de neurongewichten beïnvloeden, waardoor de backdoor-functionaliteit direct kan
worden geactiveerd zonder dat trigger-inversie nodig is. Deze doorbraak maakt efficiëntere
en effectievere backdoor-detectie- en mitigatiestrategieën mogelijk door de noodzaak om
de trigger te herstellen te omzeilen. Dit hoofdstuk benadrukt het belang van het ana-
lyseren van neurongewichten in de parameterruimte om backdoor-gedrag te begrijpen en
onderstreept het potentieel van parameterruimte-analyse bij het ontwikkelen van verdedi-
gingsmechanismen.

Daarnaast onderzoekt hoofdstuk 6 systematisch bestaande backdoor aanvallen en verde-
diging, waarbij een cruciale blinde vlek wordt geïdentificeerd: hoewel huidige backdoor-
aanvallen ontworpen zijn om onopvallend te zijn, falen ze vaak tegen diverse praktische
verdedigingsmechanismen. Deze kwetsbaarheid komt voort uit het feit dat geïnjecteerde
backdoors onvermijdelijk detecteerbare backdoor-gerelateerde neuronen introduceren. Om
deze beperking aan te pakken, stellen we een nieuwe backdoor-aanval voor die een vijan-
dige backdoor-injectiemodule integreert, geïnspireerd op de principes van vijandige trai-
ning. Deze module zorgt voor onopvallendheid in de invoer-, kenmerk- en parameterruim-
ten, waardoor de aanval bestand is tegen een breed scala aan verdedigingsmethoden. We
valideren de effectiviteit van deze module door deze te integreren met andere aanvals-
frameworks, waarmee we de veelzijdigheid en veerkracht ervan aantonen. Dit hoofdstuk
benadrukt het belang van stealthiness in meerdere ruimtes bij het ontwerpen van geavan-

Samenvatting 171

ceerde backdoor-aanvallen en belicht de veranderende aard van het vijandige landschap.

Op basis van onze bevindingen benadrukken we het belang van het vergroten van het
bewustzijn onder machine learning-professionals over de risico’s van vijandig machine
learning. We raden gebruikers aan om prioriteit te geven aan de implementatie van verde-
digingsmechanismen voordat ze machine learning-technologieën implementeren in kritieke
applicaties.

172 Samenvatting

Research Data Management 173

Research Data Management

This thesis research has been carried out under the research data management policy of
the Institute for Computing and Information Science of Radboud University, The Nether-
lands.∗

The following research datasets have been produced during this PhD research:

• Chapter 2: Xu, X. (Radboud University); Perin, dr. G. (Leiden University); Picek,
dr. S. (Radboud University) (2023): IB-RAR: Information Bottleneck as Regularizer
for Adversarial Robustness. GitHub. https://github.com/xiaoyunxxy/IB-RAR

• Chapter 3: Xu, X. (Radboud University); Yu, dr. S. (Vrije Universiteit Amster-
dam); Liu, Z. (Radboud University); Picek, dr. S. (Radboud University) (2023):
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Ro-
bustness. GitHub. https://github.com/xiaoyunxxy/MIMIR

• Chapter 4: Xu, X. (Radboud University); Ersoy, dr. O. (Radboud University); Ta-
jalli, B. (Radboud University); Picek, dr. S. (Radboud University) (2024): Universal
Soldier: Using Universal Adversarial Perturbations for Detecting Backdoor Attacks.
GitHub. https://github.com/xiaoyunxxy/usb

• Chapter 5: Xu, X. (Radboud University); Liu, Z. (Radboud University); Koffas,
S. (Delft University of Technology); Yu, dr. S. (Vrije Universiteit Amsterdam);
Picek, dr. S. (Radboud University) (2024): BAN: Detecting Backdoors Activated
by Adversarial Neuron Noise. GitHub. https://github.com/xiaoyunxxy/ban

• Chapter 6: Xu, X. (Radboud University); Liu, Z. (Radboud University); Koffas,
S. (Delft University of Technology); Picek, dr. S. (Radboud University) (2025):
Towards Backdoor Stealthiness in Model Parameter Space. GitHub. https://

github.com/xiaoyunxxy/parameter_backdoor

∗https://www.ru.nl/en/institute-for-computing-and-information-sciences/research,
last accessed: 2025-03-31.

174 Research Data Management

Acknowledgments 175

Acknowledgments

Even to this day, I am still not entirely certain about what career I want to pursue with
genuine passion in my life. Finding the answer to this question has been quite challenging
for me. However, I believe that on the path of doing research, I may be able to discover this
answer. When I first somewhat naively decided to pursue a Ph.D., I didn’t fully understand
what it truly entailed. It has been through this very process of doctoral studies that I’ve
gradually explored and learned. Reflecting on my journey so far, I’ve come to recognize the
kinds of things I truly enjoy and have received some positive feedback along the way. None
of this would have been possible without the tremendous support I’ve received throughout
this journey.

First and foremost, I would like to express my sincere gratitude to my supervisor, Stjepan
Picek, for his help and guidance throughout my PhD. This thesis and my understanding of
scientific research would be very different from what they are now without your mentorship.
Thank you for your meticulous instruction, patience, and encouragement. You not only
helped me with the technical details of my research but also taught me how to collaborate
effectively to tackle broader scientific challenges. I still remember that you helped me
establish connections with other people. In my first project on information bottleneck and
adversarial training, you introduced Guilherme Perin to me, as he has a lot of experience
with information bottleneck. My sincere thanks also go to Guilherme for sharing his
knowledge with me.

I also want to say thanks to my promoter, Prof. dr. L. Batina, and members of my
manuscript committee, Prof. dr. M. Loog, Prof. dr. ing. D. Jakobovic, Dr. L. Mariot,
Prof. L.Y. Chen, Prof. Z. Zhao. Thank you for your availability and insightful feedback.

Living in a country so far away from home can often feel lonely and challenging. I want
to thank all my friends, both back in my hometown and here in the Netherlands, for their
companionship and encouragement. I want to give a special thank you to my wife, Siyu,
for standing by my side and sharing every moment of this journey with me. Finally, I owe
my deepest gratitude to my parents for their unwavering support, which has allowed me
to pursue my dreams without worry.

176 Acknowledgments

Curriculum Vitae 177

Curriculum Vitae

Xiaoyun Xu was born in Guangyuan, Sichuan, China. He received his Bachelor’s degree in
Software Engineering from the University of Electronic Science and Technology of China
(UESTC), Chengdu, Sichuan in 2017. He received his Master’s degree in Advanced Com-
puting from the University of Bristol in 2018. After that, Xiaoyun Xu commenced his
career journey at the Institute of Software, Chinese Academy of Sciences in Beijing, as a
researcher. His research topic includes Knowledge Graph, Vulnerability Exploitation, and
Software Supply Chain. In 2022, Xiaoyun Xu joined the Digital Security Group, Institute
for Computing and Information Sciences at Radboud University, as a PhD student, under
the supervision of Prof. dr. L. Batina and Dr. S. Picek. His PhD research focuses on
Adversarial Machine Learning, especially on evasion attacks and backdoor attacks. He
has published a number of research papers in academic conference proceedings, includ-
ing NeurIPS, CCS, and DSN. He regularly serves as a reviewer for academic conferences,
including NeurIPS, ICLR, CCS, SaTML, and BMVC.

N
O

 TIM
E

 TO
 S

PA
R

E
: A

D
V

E
R

S
A

R
IA

L M
A

C
H

IN
E

 LE
A

R
N

IN
G

 AT TR
A

IN
IN

G
 A

N
D

 IN
FE

R
E

N
C

E
 TIM

E
X

iaoyun X
u

9 789465 152103

	Cover
	Colofon
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Thesis Contributions and Outline
	1.4 List of Publications

	Part I Inference-Time AdversarialMachine Learning
	Chapter 2 Information Bottleneck in AdversarialTraining
	2.1 Introduction
	2.2 Related Work
	2.3 Methodology
	2.4 Experimental Evaluation
	2.5 Conclusions
	2.6 Appendix

	Chapter 3 Information Bottleneck in AdversarialPre-training
	3.1 Introduction
	3.2 Related Work
	3.3 MIMIR
	3.4 Experiments
	3.5 Discussion and Limitations
	3.6 Conclusions
	3.7 Appendix

	Part II Training-Time AdversarialMachine Learning
	Chapter 4 Adversarial Perturbation for BackdoorDetection
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Method
	4.4 Evaluation
	4.5 Limitations
	4.6 Conclusions and Future Work
	4.7 Appendix

	Chapter 5 Adversarial Neuron Noise for BackdoorDetection
	5.1 Introduction
	5.2 Related Work
	5.3 BAN Method
	5.4 Experimental Results
	5.5 Limitations
	5.6 Conclusions and Future Work
	5.7 Appendix

	Chapter 6 Backdoor Stealthiness in Parameter Space
	6.1 Introduction
	6.2 Related Work
	6.3 Comprehensive Backdoor Stealthiness
	6.4 Experimental Evaluation
	6.5 Stronger Defenders and Additional Analysis
	6.6 Conclusions & Future Work
	6.7 Appendix

	Chapter 7 Discussion and Future Work
	7.1 Disscusion
	7.2 Outlook and Future Work

	List of Notation
	Bibliography
	Summary
	Samenvatting
	Research Data Management
	Acknowledgments
	Curriculum Vitae
	Cover

