
Radboud
Dissertation
Series

O
N

 TH
E

 P
R

E
D

IC
TIV

E
 A

N
D

 E
X

P
LA

N
ATIV

E
 R

O
LE

S
 O

F D
E

E
P

 N
E

U
R

A
L N

E
TW

O
R

K
S

 IN
 N

E
U

R
O

S
C

IE
N

C
E

A
m

r Fouad A
bdelham

id Farahat
7

6
4

On the predictive and explanative
roles of deep neural networks  

in neuroscience

Amr Fouad Abdelhamid Farahat



On the predictive and explanative
roles of deep neural networks in

neuroscience

Amr Fouad Abdelhamid Farahat



On the predictive and explanative roles of deep neural networks 
in neuroscience
Amr Fouad Abdelhamid Farahat

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS 
Postbus 9100, 6500 HA Nijmegen, The Netherlands 
www.radbouduniversitypress.nl 

Design: Amr Fouad Abdelhamid Farahat
Cover: Amr Fouad Abdelhamid Farahat
Printing: DPN Rikken/Pumbo

ISBN: 9789465151625
DOI: 10.54195/9789465151625 
Free download at: https://doi.org/10.54195/9789465151625

© 2025 Amr Fouad Abdelhamid Farahat

This is an Open Access book published under the terms of Creative Commons 
Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This 
license allows reusers to copy and distribute the material in any medium or format in 
unadapted form only, for noncommercial purposes only, and only so long as attribution 
is given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.



On the predictive and explanative roles of deep neural
networks in neuroscience

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

woensdag 22 oktober 2025
om 10.30 uur precies

door

Amr Fouad Abdelhamid Farahat
geboren op 09 juli 1991
te Dakahlyia (Egypte)



Promotoren
Dr. M.A. Vinck
Prof. dr. P.H.E. Tiesinga

Manuscriptcommissie
Prof. dr. M.A.J. van Gerven
Prof. dr. G. Roig (Goethe Universität Frankfurt am Main, Duitsland)
Dr. A. Ingrosso



Promotoren
Dr. M.A. Vinck
Prof. dr. P.H.E. Tiesinga

Manuscriptcommissie
Prof. dr. M.A.J. van Gerven
Prof. dr. G. Roig (Goethe Universität Frankfurt am Main, Duitsland)
Dr. A. Ingrosso

Table of Contents
Chapter 1 General Introduction 9

Chapter 2 A novel feature-scrambling approach reveals the capacity of
convolutional neural networks to learn spatial relations 21

Chapter 3 Neural responses in early, but not late, visual cortex are well
predicted by random-weight CNNs with sufficient model complexity 51

Chapter 4 Diagnosing Epileptogenesis with Deep Anomaly Detection 83

Chapter 5 Summary and General Discussion 103

Appendicies

A1 Data management 115

A2 Abbreviations 117

A3 Bibliography 119

A4 Dutch Summary 143

A5 Acknowledgement | Dankwoord 145

A6 Curriculum Vitae 147

A7 Donders Graduate School 149

5



6



6

Chapter 1
General Introduction





"You should not let your method become your theory."

— Paul Cisek

In 2012, a convolutional deep neural network (DNN) model achieved a break-
through victory in the ImageNet object recognition competition, reducing the
error rate from 26.3% to 15.1% (Krizhevsky et al., 2012). Twelve years later, DNNs
have revolutionized many scientific fields, serving as powerful tools for analyz-
ing complex, high-dimensional data (Bianchini et al., 2020; Egger et al., 2021).
Their impact is particularly notable in biomedical research, where the inherent
complexity of the data makes DNNs exceptionally valuable. The 2024 Nobel
Prize in Chemistry, awarded for AlphaFold (a DNN that predicts protein structure
from amino acid sequences (Jumper et al., 2021)), exemplifies this impact, with
profound implications for drug discovery (Borkakoti & Thornton, 2023; F. Ren et al.,
2023). DNNs also predict gene expression from DNA (Avsec et al., 2021) and
generate novel proteins with therapeutic potential (Ferruz et al., 2022). In medical
imaging, they classify skin lesions (Manole et al., 2024), screen mammograms for
breast cancer (McKinney et al., 2020), and detect lung cancer (Gorenstein et al.,
2023; Hroub et al., 2024) and brain tumors (Nazir et al., 2021). In neuroscience,
DNNs analyze large-scale neural data (Stringer & Pachitariu, 2024) and aid in
diagnosing brain disorders (Valliani et al., 2019). The ability of DNNs to handle vast
amounts of data from different modalities is particularly well-suited to developing
biomarkers for neurodegenerative and psychiatric conditions.

Beyond data analysis, DNNs, partially inspired by the brain (McCulloch & Pitts, 1943;
Rosenblatt, 1958; Rumelhart et al., 1986), are increasingly used as computational
models of brain information processing (Cichy & Kaiser, 2019; Doerig et al., 2023;
Richards et al., 2019). Their performance rivals human capabilities in cognitive
tasks like object recognition (He et al., 2016a), speech recognition (Graves et al.,
2013), language understanding and generation (Touvron et al., 2023), navigation
(Graves et al., 2016), and game playing (Mnih et al., 2015; Silver et al., 2016). They
have also proven to be the best current models for predicting brain activity across
cognitive domains, including vision (Cichy et al., 2016; Güçlü & Van Gerven, 2015;
D. L. K. Yamins et al., 2014), audition (Kell et al., 2018), language (AlKhamissi et al.,
2024; Caucheteux & King, 2022), and decision-making/control (Botvinick et al.,
2020; Dabney et al., 2020). These capabilities make them attractive candidates
for modeling brain function.
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However, despite their success, DNNs face an "interpretability crisis" – they are
often considered "black boxes" due to their complex, multi-layered architectures
with potentially billions of parameters (Xua & Yang, 2024). This opacity raises
concerns about their value in providing new insights into neuroscience (Bowers et
al., 2023; Chirimuuta, 2021; Kay, 2018). Therefore, to effectively leverage DNNs as
computational models, rigorous study design is essential. We must move beyond
predictive power and investigate how these models produce behavior (Baker
et al., 2018; Brendel & Bethge, 2019; Geirhos et al., 2018, 2019). Furthermore,
comparing DNN and brain representations requires careful consideration of the
properties of the representations (Biscione et al., 2024; Jacob et al., 2021) and the
similarity metrics used (Soni et al., 2024).

Deep Neural Networks

DNNs, a subset of machine learning algorithms, are composed of interconnected
"artificial neurons." Each neuron computes a weighted sum of its inputs, applying
a non-linear activation function to produce an output. The weights correspond to
the strength of the connections between the neurons. the neurons are organized
into layers: an input layer, at least one hidden layer, and an output layer. This
layered structure enables DNNs to extract hierarchical features from inputs, with
complexity increasing at deeper layers. DNNs with at least one hidden layer
are universal function approximators, capable of approximating any continuous
function given appropriate input-output mappings (Hornik et al., 1989). Two main
types of DNNs exist: feedforward networks, where neurons receive inputs only
from the preceding layer, and recurrent networks, where neurons possess hidden
states updated over time through recurrent connections (Goodfellow et al., 2016).
A key advantage of DNNs is their architectural flexibility, allowing modification
of learned inductive biases by manipulating neuron connectivity. A particularly
successful example is the Convolutional Neural Network (CNN) (LeCun et al., 1998,
2015).

The architectural bias of CNNs (Fig. 1.1) contributes significantly to their success
with spatially structured data (e.g., images). Each convolutional layer neuron
connects only to a small input region (its "receptive field"), enabling efficient de-
tection of local patterns – a design mimicking the visual cortex (Hubel, Wiesel,
et al., 1959). Weight sharing across spatial locations creates a feature map and
provides translation equivariance: translating the input correspondingly translates
the output. Combined with pooling operations (which downsample feature maps
by selecting the maximum or average value within a local window, inspired by
complex cells in the visual cortex (Fukushima et al., 1983)), CNNs achieve transla-
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Figure 1.1. CNN architecture. A CNN typically comprises a series of convolutional
layers, combined with pooling operations and non-linear activation functions.
Adapted from (González-Rodríguez & Plasencia-Salgueiro, 2021).

tion invariance: the output is invariant to a feature’s location. Parameter sharing
also improves efficiency, reducing overfitting risk and promoting generalization.

CNNs excel at processing structured data (images, time-series) due to these
inductive biases (local connectivity, translation invariance, hierarchical feature
learning), enabling them to capture spatial or temporal relationships effectively.
This leads to their success in tasks like object detection (S. Ren et al., 2015), image
classification (He et al., 2016b; Krizhevsky et al., 2012), semantic segmentation
(Guo et al., 2018), and time-series forecasting (Bai et al., 2018; Hewage et al.,
2020).

While standard discriminative CNNs, optimized for classification or regression, learn
mappings from input space to output labels, generative models like autoencoders
learn compressed, latent representations of input data (Ballard, 1987; Kingma &
Welling, 2013). An encoder maps the input to a lower-dimensional latent space,
while a decoder reconstructs the original input from the latent representation. This
makes autoencoders valuable for unsupervised learning, including anomaly de-
tection (An & Cho, 2015; C. Zhou & Paffenroth, 2017) and dimensionality reduction
(W. Wang et al., 2014). The learned latent representation captures the underlying
data structure and salient features without explicit labels.
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Prediction and Explanation: A Dual Role for DNNs in Neu-
roscience

As noted, DNNs serve both as tools for analyzing neural data and as computational
models of brain function. It is crucial, however, to distinguish between these
roles. A trade-off exists between a model’s predictive power and the scientific
understanding it provides (Chirimuuta, 2021). Highly accurate, complex, non-linear
DNNs may lack the explanatory power of simpler, interpretable models (e.g., linear
models). With millions or billions of interconnected parameters, understanding
how a DNN arrives at its predictions is challenging, leading to the "black box"
label. While excelling at the "what" question (prediction), they struggle with "why"
and "how" questions (explanation). Neuroscientists thus seemingly face a choice
between models that predict well and those that explain well. However, some
researchers challenge this strict trade-off, distinguishing between understanding
the model and using the model to understand a phenomenon (Kästner & Crook,
2023; Lawler & Sullivan, 2021). Even a complex, unintelligible model can provide
valuable insights. For instance, post-hoc techniques like feature visualization (Olah
et al., 2017) or saliency methods (Simonyan et al., 2013; Sundararajan et al.,
2017; Zeiler & Fergus, 2014) can be employed to explain the models. However,
these methods may not offer more causal understanding than simpler associative
approaches (e.g., visualizing maximally activating examples) (Borowski et al.,
2021; Zimmermann et al., 2021), and they can be unreliable (Adebayo et al., 2018;
Kindermans et al., 2019; Rudin, 2019).

In some neuroscience applications, predictive power may outweigh explanation
(Boon & Knuuttila, 2009). DNNs have improved decoding accuracy in brain-
computer interfaces (BCIs) (Farahat et al., 2019; Lawhern et al., 2018). Recently,
an RNN decoded speech from invasively recorded neural activity, enabling an ALS
patient to communicate at 62 words/minute, approaching natural conversation
speed (160 words/minute) (Willett et al., 2023). A similar algorithm allowed a
tetraplegic patient to control three finger groups for reaching and holding targets
(Willsey et al., 2025). DeepLabCut, a DNN-based method, accurately estimates
animal poses, quantifying behavior in neuroscience studies (Lauer et al., 2022;
Mathis et al., 2018). DNNs are also applied to neuroimaging data to discover
diagnostic biomarkers for neurological and psychiatric disorders (Calhoun et al.,
2021).

However, when used as computational models of brain function, DNNs are ex-
pected to provide explanatory value beyond data fitting. A critical question
is whether they offer this explanatory value despite being intricate black boxes
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(Chirimuuta, 2021; Cichy & Kaiser, 2019; Kästner & Crook, 2023; Kay, 2018). Simple
mathematical models facilitate understanding by explicitly defining variables
and interactions. This is infeasible in DNNs with millions of non-linearly interacting
parameters. However, high-level, abstract parameters (architecture, objective
function, training dataset, learning rules) can describe DNN models (Cichy &
Kaiser, 2019; Richards et al., 2019). Although post-hoc explanation methods are
still developing, they may improve with better theoretical understanding of DNN
learning and generalization. It is also important to recognize that simple, inter-
pretable models may be insufficient to capture the complexity of the brain and its
supported behaviors (Wichmann & Geirhos, 2023). Therefore, models of the brain
are unlikely to fulfill all desired criteria, often involving trade-offs between realism,
precision, and generality (Levins, 1966; Matthewson, 2011). Modelers will often
have make strategic choices, prioritizing certain properties based on research
goals. Therefore, a pluralistic approach, developing multiple models with different
assumptions, is also beneficial. Model assessment should be multidimensional,
going beyond a single accuracy metric (e.g. neural prediciton or classification
accuracy) and developing multiple metrics to address the model’s strengths and
limitations (Wichmann & Geirhos, 2023).

CNNs as Models of the Primate Visual System

Figure 1.2. Correspondence of CNN layers and brain areas in the ventral stream
of the macaque visual system. Adapted from (Zhuang et al., 2021).

Due to their biological inspiration, human or superhuman performance on vision
tasks, and superior predictive power, CNNs are strong candidates for computa-
tional models of the primate visual system (Kriegeskorte, 2015; Lindsay, 2021). The
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stacking of convolutional layers, non-linearities, and pooling operations mirrors
the feedforward path in the primate ventral visual stream: V1 → V2 → V4 → IT
(Fig. 1.2). Deeper network layers and higher brain areas have larger receptive
fields and represent more complex features. When CNNs optimized for object
recognition were presented with the same stimuli as macaques or humans, their
layer representations successfully predicted activity in ventral stream areas (Ca-
dena et al., 2019; Güçlü & Van Gerven, 2015; Seeliger et al., 2018; D. L. K. Yamins
et al., 2014). Crucially, the hierarchy of layers best predicting different brain areas
mirrored the ventral stream’s hierarchy: early/intermediate layers best predicted
V1; deeper layers best predicted IT. These studies used linear regression to predict
brain activity as a linear combination of CNN representations, using correlation or
explained variance to measure CNN-brain similarity. Representational similarity
analysis (RSA) yielded similar conclusions (Khaligh-Razavi & Kriegeskorte, 2014).
RSA assesses representational similarity by creating a representational dissimilarity
matrix (RDM) for each source (CNN layer or brain recording), capturing how
dissimilar different stimuli are in the population space (Kriegeskorte et al., 2008).
RDMs are then compared using correlational measures (e.g., Kendall correlation).
Because RDM dimensions are independent of the representational space’s di-
mensionality, RSA facilitates comparing different models or recording modalities.
While different similarity metrics may yield consistent hierarchical mappings, recent
work highlights discrepancies in conclusions drawn from different metrics (Kornblith
et al., 2019; Soni et al., 2024). Metrics employing linear regression, for example,
can be influenced by its inductive biases, such as predictors dimensionality or
the ratio between dependent variable dimensionality and sample size of the test
set (Canatar et al., 2024; Elmoznino & Bonner, 2024; Schaeffer et al., 2024). These
findings underscore the need for careful consideration of similarity metrics.

Beyond predicting neural activity, it is crucial to compare the behavioral responses
of CNNs and biological brains. Although CNNs could predict object-level image
classification behavior in primates, they did not account for image-level behavior
within object recognition tasks (Geirhos et al., 2020; Rajalingham et al., 2018). Un-
like human object recognition, which is robust to orientation changes (Biederman,
1987), DNNs exhibit substantial performance drops when classifying objects in
unusual poses (Abbas & Deny, 2023; Alcorn et al., 2019; Dong et al., 2022). Com-
pared to humans in recognizing challenging images (e.g., noise-distorted), DNNs
underperformed in accuracy and error consistency (Geirhos et al., 2018, 2021).
DNNs are also susceptible to adversarial attacks: small, human-imperceptible
image perturbations can cause misclassification (Szegedy, 2013). These findings
relate to observations that DNNs rely more on object surface characteristics, fail-
ing to recognize objects based solely on global shape (e.g., silhouettes) (Baker
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& Elder, 2022; Baker et al., 2018, 2020), unlike humans (Baker & Kellman, 2018;
Biederman, 1987; Biederman & Ju, 1988; Landau et al., 1988). On cue-conflict
datasets (images manipulated via style transfer (Gatys et al., 2016) so an object
carries another object’s texture), humans reliably classified based on shape; DNNs
relied more on texture (Geirhos et al., 2019). These findings challenge DNNs’ ca-
pacity as computational models of the primate visual system (Bowers et al., 2023;
Wichmann & Geirhos, 2023) and urge a multidimensional assessment approach,
rather than relying solely on one-dimensional predictive benchmarks (Biscione
et al., 2024; Jacob et al., 2021).

DNNs for Diagnosing Brain Disorders

Figure 1.3. Representation learning in generative modeling. Adapted from (Seiler
& Ritter, 2024).

Brain disorders (neurological and psychiatric, e.g., epilepsy, Alzheimer’s, depres-
sion) accounted for over 15% of the global health burden in 2021, surpassing
cancer and cardiovascular diseases (Lei & Gillespie, 2024), and are projected to
increase by 22% by 2050, affecting over 4.9 billion people. In Europe, one-third of
the population suffered from at least one brain disorder in 2010, costing nearly 800
billion euros annually (DiLuca & Olesen, 2014).

Early diagnosis of brain disorders is paramount for improving patient outcomes.
Timely detection facilitates prompt intervention, potentially slowing progression,
managing symptoms, and preventing complications. For example, early Alzheimer’s
diagnosis allows for lifestyle adjustments that may mitigate cognitive decline. In
epilepsy, early diagnosis and treatment can prevent seizures, avoiding injuries
or fatalities. Early detection can also reduce medical costs by slowing disease
progression and reducing the risk of disabilities. However, early diagnosis is chal-
lenging. Early brain changes can begin years before symptomatic manifestation
and can be subtle, making them difficult to detect with non-invasive techniques
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like magnetic resonance imaging (MRI), computed Tomography (CT) and scalp
electroencephalography (EEG). Invasive diagnostics (brain biopsy, intracranial
EEG) carry risks. Symptom overlap between disorders also hinders early diagno-
sis. For example, 24% of Parkinson’s disease (PD) diagnoses are incorrect, often
overlapping with progressive supranuclear palsy (PSP), multiple system atrophy
(MSA), and Alzheimer’s disease (Hughes et al., 1992). American Academy of
Neurology (AAN) guidelines recommend neuroimaging techniques like MRI and
single-photon emission computed tomography (SPECT) to differentiate between
PD, essential tremor (ET), and MSA, but this requires expert supervision (Pahwa &
Lyons, 2010; Suchowersky et al., 2006). Therefore, developing multiple biomarkers
for diagnosis and follow-up is an active research area (Hansson, 2021).

DNNs are poised to significantly impact early brain disorder diagnosis. Their ability
to detect subtle patterns in large, complex datasets offers opportunities for timely
and accurate prediction of disease-related brain changes. Various neuroimaging
modalities (structural: sMRI, Diffusion Tensor Imaging (DTI); functional: fMRI, EEG,
positron emission tomography (PET)) provide essential information for physicians for
identifying and distinguishing disorders (Shoeibi et al., 2022, 2023). DNNs’ ability to
automatically learn features from raw data at different levels of abstraction makes
them more suitable than conventional machine learning for fusing multi-modal
data (Acosta et al., 2022; Gao et al., 2020; Stahlschmidt et al., 2022).

However, protecting patient data privacy is a top priority in healthcare limiting
the availability of disease data. Even with consent, medical datasets are often
imbalanced (Johnson & Khoshgoftaar, 2019), biasing learning in discriminative
DNNs. Although this poses a challenge to unlocking the full potential of clinical
applications of DNNs, it offers an opportunity for unsupervised training methods
using only voluntarily collected data from healthy subjects. Besides predictive
and discriminative tasks, DNNs excel at learning data distributions for generative
modeling (Goodfellow et al., 2014; Makhzani et al., 2015). DNNs can be trained to
generate synthetic data retaining the statistics of real-world healthy or disease
data (Seiler & Ritter, 2024; R. Wang et al., 2023), addressing data scarcity and
imbalance. Pinaya et al., 2022 used latent diffusion models (Rombach et al.,
2021) to generate 100,000 high-fidelity 3D T1w MRI brain images, conditioned on
covariates like age and sex. Generative adversarial networks (GANs) (Goodfellow
et al., 2014) used to synthesize training data improved CNN tumor detection
performance (Han et al., 2019). Lin et al., 2021 used reversible GANs (van der
Ouderaa & Worrall, 2019) to translate the cheap MRI images to the more expensive
PET images, using both to diagnose AD. Using synthetic PET images improved AD
diagnosis over MRI images alone, matching performance with MRI and real PET
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them more suitable than conventional machine learning for fusing multi-modal
data (Acosta et al., 2022; Gao et al., 2020; Stahlschmidt et al., 2022).

However, protecting patient data privacy is a top priority in healthcare limiting
the availability of disease data. Even with consent, medical datasets are often
imbalanced (Johnson & Khoshgoftaar, 2019), biasing learning in discriminative
DNNs. Although this poses a challenge to unlocking the full potential of clinical
applications of DNNs, it offers an opportunity for unsupervised training methods
using only voluntarily collected data from healthy subjects. Besides predictive
and discriminative tasks, DNNs excel at learning data distributions for generative
modeling (Goodfellow et al., 2014; Makhzani et al., 2015). DNNs can be trained to
generate synthetic data retaining the statistics of real-world healthy or disease
data (Seiler & Ritter, 2024; R. Wang et al., 2023), addressing data scarcity and
imbalance. Pinaya et al., 2022 used latent diffusion models (Rombach et al.,
2021) to generate 100,000 high-fidelity 3D T1w MRI brain images, conditioned on
covariates like age and sex. Generative adversarial networks (GANs) (Goodfellow
et al., 2014) used to synthesize training data improved CNN tumor detection
performance (Han et al., 2019). Lin et al., 2021 used reversible GANs (van der
Ouderaa & Worrall, 2019) to translate the cheap MRI images to the more expensive
PET images, using both to diagnose AD. Using synthetic PET images improved AD
diagnosis over MRI images alone, matching performance with MRI and real PET
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images.

Besides generating synthetic data, generative models learn low-dimensional
latent representations summarizing key factors underlying data structure (Higgins
et al., 2017) (Fig. 1.3). Applying these techniques to neuroimaging data could
uncover disease subtypes when applied to cross-sectional data (Yang et al.,
2021) or different stages when applied to longitudinal data (Couronné et al.,
2021). Moreover, generative networks that accurately model brain scans cannot
account for anomalous sample variability in their latent space (Schlegl et al.,
2017). Thus, they can be used for unsupervised screening for deviations from the
normative distribution (e.g., lesions) (Bengs et al., 2021; Nguyen et al., 2021). Thus,
both discriminative and generative DNNs applied to neuroimaging data have the
potential to transform early diagnostics of challenging brain disorders.
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Thesis Outline
This thesis further examines the trade-off between prediction and explanation
when employing complex, opaque models like DNNs in various neuroscience
applications, both as scientific tools and as models of natural behavior and
biological computations.

In Chapter 2, I develop a model explanation technique to uncover the extent to
which object recognition CNNs can learn spatial relationships between features.
Learning spatial relations is crucial for CNNs to develop shape representations.
The nature of object representations learned by CNNs is central to discussions of
CNNs as models of human object recognition and of neural activity prediction in
the primate ventral stream.

In Chapter 3, I systematically manipulate the architecture and training of simple
CNN models to predict neural activity in early and late visual areas in humans
and non-human primates. Using control experiments and a multidimensional
model assessment, I gain insights into what enables CNNs to successfully model
different stages of the visual hierarchy, without necessarily explaining the models
themselves.

In Chapter 4, I develop a deep anomaly detection framework for early diagnosis
of epileptogenesis, the process of a healthy brain transforming into an epileptic
one after injury. The framework serves as a proof-of-concept screening tool,
scanning EEG signals for anomalous segments and integrating evidence over time
to improve sensitivity. Importantly, the framework is designed and validated for
clinical routines. It employs an opaque, non-interpretable DNN generative model.
In Chapter 5, I discuss why a lack of interpretability should not preclude adopting
similar systems in neurological applications.

In Chapter 5, I summarize my findings and discuss them in the context of the
prediction-explanation trade-off in complex, opaque models like DNNs.
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Abstract
Convolutional neural networks (CNNs) are one of the most successful computer
vision systems to solve object recognition. Furthermore, CNNs have major appli-
cations in understanding the nature of visual representations in the human brain.
Yet it remains poorly understood how CNNs actually make their decisions, what
the nature of their internal representations is, and how their recognition strategies
differ from humans. Specifically, there is a major debate about the question of
whether CNNs primarily rely on surface regularities of objects, or whether they
are capable of exploiting the spatial arrangement of features, similar to humans.
Here, we develop a novel feature-scrambling approach to explicitly test whether
CNNs use the spatial arrangement of features (i.e. object parts) to classify objects.
We combine this approach with a systematic manipulation of effective receptive
field sizes of CNNs as well as minimal recognizable configurations (MIRCs) analysis.
In contrast to much previous literature, we provide evidence that CNNs are in fact
capable of using relatively long-range spatial relationships for object classification.
Moreover, the extent to which CNNs use spatial relationships depends heavily on
the dataset, e.g. texture vs. sketch. In fact, CNNs even use different strategies
for different classes within heterogeneous datasets (ImageNet), suggesting CNNs
have a continuous spectrum of classification strategies. Finally, we show that
CNNs learn the spatial arrangement of features only up to an intermediate level
of granularity, which suggests that intermediate rather than global shape features
provide the optimal trade-off between sensitivity and specificity in object classifi-
cation. These results provide novel insights into the nature of CNN representations
and the extent to which they rely on the spatial arrangement of features for object
classification.
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Introduction
The development of Convolutional Neural Networks (CNNs) has led to a revolution
in the field of computer vision (Krizhevsky et al., 2012; LeCun et al., 2015). Machine
vision using CNNs has been able to rival human performance in object recognition
tasks on large-scale datasets such as ImageNet (He et al., 2016a). Moreover, a
series of recent works have shown that CNN activations can be used to predict
neural activity in the ventral stream of the primate visual system known to be
responsible for object recognition (Cadieu et al., 2014; D. L. K. Yamins et al.,
2014; D. L. Yamins & DiCarlo, 2016). Therefore, there has been a growing interest
in developing behavioral benchmarks that evaluate similarities and differences
between CNN models and human vision (Geirhos et al., 2018, 2021; Rajalingham
et al., 2018). Crucial to the behavior of these artificial and biological vision systems
is their internal representation of objects. The ability of humans to recognize
objects based on their abstract shapes (Baker & Kellman, 2018; Biederman & Ju,
1988; Landau et al., 1988) suggests that the internal representations of objects
in the brain must reflect the global structure of objects (Barenholtz & Tarr, 2006;
Biederman, 1987). An abstract representation of the global shape of an object
requires the encoding of the spatial relations between the set of its local features
or parts (Barenholtz & Tarr, 2006; Biederman, 1987). Accordingly, in order to
understand the biases that govern the strategies of CNNs performing object
recognition, it is central to determine the spatial extent of the diagnostic features
CNNs use for object recognition. Moreover, it is equally important to investigate
the role that spatial relations play in the construction of these diagnostic features.

Recent studies have shown inconsistent conclusions regarding the reliance of
CNNs trained for object recognition on sets of local features or a global represen-
tation of objects (Baker & Elder, 2022; Baker et al., 2018, 2020; Brendel & Bethge,
2019; Geirhos et al., 2019; Jo & Bengio, 2017; Kubilius et al., 2016; Ritter et al., 2017;
Tartaglini et al., 2022). Some studies have shown that CNNs trained for object
recognition are biased towards surface statistical regularities (texture) (Baker &
Elder, 2022; Baker et al., 2018, 2020; Geirhos et al., 2019; Jo & Bengio, 2017). In
these studies, CNNs were tested on image datasets that included, for example,
low-frequency filtered images (Jo & Bengio, 2017), shape-texture cue conflict
stimuli using style transfer (Gatys et al., 2016; Geirhos et al., 2019), deformed
silhouettes and other abstract shape images (Baker & Elder, 2022; Baker et al.,
2018) and simple geometric shapes (Baker et al., 2020). However, other studies
reached different conclusions using other image manipulations or different evalu-
ation methods (Kubilius et al., 2016; Ritter et al., 2017; Tartaglini et al., 2022). We
reckoned that these different conclusions may be due to the hypothesis-driven
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approach resulting from the choice of the nature of the stimulus datasets and the
object classes represented in them. For this reason, we developed a framework
for training and testing CNNs that enables us to inspect the shape representations
of CNNs by separately controlling the granularity of CNN features (local vs. global)
and the spatial relations between them. This approach allows us to take on the
question of to what extent the CNN architecture constrains their capacity to learn
shape representations and whether CNNs use the spatial relations among features
for object recognition.

Previous work has shown that grid-based image scrambling can be used to iden-
tify brain areas sensitive to global configurations of objects (Grill-spector et al.,
1998), expressing characteristic decreases in neural activity with the degree of
image scrambling (Grill-spector et al., 1998; Rainer et al., 2002; Vogels, 1999).
Image scrambling, however, disrupts not only the spatial relations between ob-
ject parts but also the shape of the parts themselves (Margalit et al., 2017). To
disentangle these two effects, we developed a feature-scrambling approach
that allows us to spatially scramble the pretrained features of CNNs with restricted
effective receptive fields (ERFs) (Brendel & Bethge, 2019) without introducing the
confounding factors of an image-based scrambling approach. The ERF of a CNN
is defined as the set of all pixels that can influence the activity of a unit in its last
convolutional layer (Le & Borji, 2017). These features represent diagnostic parts of
the objects at the ERF level of granularity. After that, we feed these scrambled
features to a follow-up CNN that spatially integrates these features and is trained
to recognize the class of objects. Recent work suggests that CNNs with restricted
ERF sizes can achieve a performance similar to regular CNNs on ImageNet (Bren-
del & Bethge, 2019). However, it remains unclear whether these models use the
same strategies as regular CNNs to solve the task. Notably, the approximation
of regular CNNs performance on ImageNet with CNNs with restricted ERFs im-
plies that CNNs rely on a classification strategy that pools local evidence from
separate locations in the image without learning the spatial relations between
them. This observation would predict, for instance, that training a follow-up CNN
on the pretrained features of a CNN with restricted ERFs should minimally affect
performance. It would also predict that spatially scrambling the pretrained input
features to the follow-up CNN would not lead to a significant difference in per-
formance to training with the right spatial arrangement of the features. In this
work, we tested these predictions on different datasets that comprise texture-rich
and texture-less images to examine whether CNNs employ different classification
strategies for different datasets. Furthermore, we examined to what extent CNNs
with smaller ERFs develop representations similar to CNNs with larger ERFs. Finally,
we performed a minimal recognizable configuration (MIRC) analysis (Ullman et al.,
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Blocks Residual
Units

Feature
Maps Stride Filter Sizes

ERF11 ERF23 ERF47 ERF95 ERF227
Block 1 2 128 2 3,3 3,5 3,5 3,5 5,5
Block 2 3 256 2 1,1,1 3,1,1 3,3,5 3,3,5 5,5,5
Block 3 3 512 2 1,1,1 1,1,1 1,1,1 3,3,3 5,5,5
Block 4 2 1024 1 1,1 1,1 1,1 1,1 5,5

Table 2.1: Architecture details for our ResNets of different ERFs.

2016) to quantify the minimal image patch sizes required by CNNs to achieve
correct classification.

Methods

Datasets

We trained CNNs on three datasets with different feature characteristics: the
Sketchy, Animals, and ImageNet datasets. The Sketchy dataset contains 75,471
human-drawn sketches spanning 125 classes (Sangkloy et al., 2016). Each sketch
is a textureless, black-and-white bitmap graphic that only contains information
about the contours of objects without any surface proprieties, and sketches have
a high degree of intra-class variability (Fig. 2.1c). The Animals dataset consists of
37,322 color images spanning 50 classes (Xian et al., 2019) (Fig. 2.1b). The well-
known ImageNet dataset contains 1.2M color images across 1000 classes (Deng
et al., 2009) that span different animals and man-made artifacts.

Models

We created residual CNNs (He et al., 2016a) with ERFs of variable sizes (Table 2.1)
by changing the size of the filters of different residual units across layers (Brendel
& Bethge, 2019). The residual CNNs consist of 4 blocks that contain 2, 3, 3, and 2

residual units, respectively. Each residual unit consists of 3 convolutional layers: The
first and last layers always have filters of size 1× 1 and the filter size of the middle
layer varies according to Table 2.1. Adjusting the filter size of the residual units
results in models with ERFs of either 11, 23, 47, 95, or 227 pixels squared in the last
layer. We refer to these models by their ERF sizes, writing ERF23 for a network with
an ERF of size 23× 23 pixels. Note that since our input images are always of size
224 × 224 pixels, only the model ERF227 has units in the last convolutional layer
with ERFs covering the entire image, before features are globally averaged across
spatial locations in the penultimate layer.
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Feature-scrambling approach

For the feature-scrambling approach, we build CNN models that are composed
of two sub-networks, a base network and a follow-up network (Fig. 2.1d). The
base network transforms the image to high-level feature maps of a given size
by being trained on image classification in a standalone way. These pretrained
features are then fed into a follow-up network. The follow-up network then further
transforms these feature maps in a series of convolutional layers. Finally, features
are pooled in a location-discarding way in a global average pooling layer and
then a Softmax classification layer. This approach allows us to independently
examine the granularity of features used by CNNs for object recognition and to
determine to what extent the spatial relations among them contribute to their
performance.

We used networks with different ERFs as base networks. We trained them separately
for image classification and then detached the fully connected classification layer
and the global average pooling layer of the trained network and used it with
frozen weights as the base network in our feature-scrambling approach. Subse-
quently, we attached the follow-up network such that it receives the features of
the pretrained base networks as inputs in either a scrambled or unscrambled way.
Specifically, for the unscrambled case, we passed the feature maps unchanged
to the follow-up network. For the scrambled case, we generated random indices
once and used them to permute the feature vectors across spatial locations. The
follow-up network is a residual block formed of four residual units. We differentiated
between two types of follow-up networks: with or without spatial aggregation:
(1) A follow-up network with spatial aggregation has a stride of 2 for its first two
residual units and filter size 3 × 3 for all its residual units. (2) A follow-up network
without spatial aggregation is formed exclusively of convolutional layers with filter
size 1 × 1 and no down-sampling. In summary, for each of our base networks
(ERF11, ERF23, ERF47, ERF95, and ERF227), we trained 3 models depending upon:
(1) the type of the follow-up network (with or without spatial aggregation); (2)
scrambling the features between the two sub-networks or not.

The considered models can be summarized as follows:

• Base: only the base network trained in a standalone way.

• Base + Follow-up without scrambling: the model is formed of the pretrained
base network plus the follow-up network with spatial aggregation and with-
out feature-scrambling.

• Base + 1× 1 Follow-up without scrambling: the model is formed of the pre-

25



trained base network plus the follow-up network without spatial aggregation
and without feature-scrambling. This model serves as a control for the signifi-
cance of increasing the ERF of the model by adding the follow-up network.

• Base + Follow-up with scrambling: the model is formed of the pretrained
base network and the follow-up network with spatial aggregation and with
global feature-scrambling during training.

Additionally, the Base + Follow-up without scrambling models were tested while the
input features to the follow-up network were randomly scrambled either globally
or locally.

Training

All simulations were performed using the TensorFlow library (Martín Abadi et al.,
2015). We used stochastic gradient descent with momentum = 0.9 to update
the weights with initial learning rate = 0.01 for the first 10 epochs followed by
exponential decay for the rest of training. For the ImageNet dataset, we trained
for 50 epochs, and for the animals and Sketchy datasets, we trained for 75 epochs.

During training, for non-square images, we first cropped the central square portion
of the image with the shortest dimension of the image to keep the aspect ratio
of the objects constant before resizing the images to 256 × 256 pixels. We then
applied minimal data augmentation in the form of random right and left horizontal
flipping of the images, followed by random cropping of 224× 224-pixel patches
used for training. During testing, after centrally cropping the images, we resized
them to 256× 256 pixels, and then we cropped the central 224× 224-pixel patch.

Representational similarity analysis (RSA)

We used RSA to investigate the representations of the CNNs of different ERFs (Nili
et al., 2014). To avoid the results being biased to the number of classes in each
dataset, we sampled 50 random classes from each dataset (the lowest number
of classes in the three datasets). Then we sampled 8 random images from each
class for a total of 400 images, ran them through all the models of different ERFs,
and extracted the activations of the last convolutional layer of each residual unit
(n = 10), the global average pooling layer (GAP) and the Softmax layer. For the
Sketchy and Animals datasets, we averaged the layers’ RDMs across 5 repetitions
of random initialization. We created the representation dissimilarity matrix (RDM)
for each layer by computing the pairwise correlation distance for its activations
(400 × 400 matrix). Next, we computed a second-order RDM for all the layers
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of the models (60 × 60 matrix) by computing the correlation distance between
the upper triangle of the layers’ RDMs. For visualization purposes, we used multi-
dimensional scaling (MDS) to reduce the dimensionality of the second-order RDM
to two dimensions.

Minimal recognizable configurations analysis (MIRC)

We adopted the MIRC analysis (Ullman et al., 2016) previously used for humans
for CNNs. MIRC analysis is a recursive process that search for the smallest image
patches that still yield a correct classification result. MIRC analysis starts with a
given, correctly classified image of class c. Starting from the whole image as one
patch, four descendant patches are created from each patch. Each descendant
batch spans 75% of the height and width of the patch at the previous level starting
from one of the four corners (Fig. 2.4a). Each patch is then upsampled using
bilinear interpolation to 224× 224 pixels to match the input size of the models. The
recursive subdivision process continues for each patch as long as the patch is still
correctly classified as belonging to class c. Subdivision stops once the classification
of a patch is no longer correct. This process defines a tree structure and the leaves
of the tree are the MIRCs. The level of a leaf node in the tree is referred to as the
level of the MIRC it represents. By construction, the higher the MIRC level, the
smaller the patch of the image used for classification.

Results

Feature scrambling during training and testing

We trained CNNs of different ERF sizes on three different datasets: the Sketchy (Sangk-
loy et al., 2016), the Animals (Xian et al., 2019) (Fig. 2.1a-b), and the ImageNet (Deng
et al., 2009) dataset. Example ERFs of five models are shown in Fig. 2.1g. We note
that the ERF is a theoretical upper limit on the set of pixels that can activate a
given unit, and that not all pixels of the ERF necessarily activate the corresponding
deep unit, depending on connection weights. We found that CNN performance
increased with ERF size for both the Sketchy and Animal datasets, with a visible
saturation for larger ERFs. However, CNN performance depended more strongly
on the ERF size for the Sketchy dataset than for the Animals dataset (Fig. 2.1c).
Because changing the filter sizes across models will also induce changes in the
number of trainable parameters in the models and consequentially their expres-
sive capacity, we performed a control experiment in which we created wide
networks with small ERFs but matched the number of parameters of the network

27



a b c

Dog
    Base

CNN Follow-up
CNN

scramble 
across
spatial 
locations

pretrained mdels 
of di�erent ERFs

With (3x3) or
without (1x1) 

spatial aggregation

yes
no

e

d

f

g

%
 c

ha
ng

e 
in

 a
cc

ur
ac

y

%
 c

ha
ng

e 
in

 a
cc

ur
ac

y

Figure 2.1. Feature scrambling during training and testing. (a, b) Example images
for the Animals and Sketchy datasets, respectively. (c) CNN performance as
a function of the ERF, separately for the Sketchy and Animals datasets. (d) A
schematic for the feature-scrambling approach. (e) Effects of adding the follow-
up network to the pretrained base networks either with spatial aggregation without
scrambling (left), with spatial aggregation with scrambling (right), or without spatial
aggregation (middle). (f) Effect of global and local feature-scrambling on the
testing performance of the base + follow-up models with spatial aggregation
without scrambling. (g) A schematic depicting the ERF of random artificial neurons
in the last convolutional layer of models of different ERFs.

with the largest ERF (ERF227). We found a slight increase in accuracy, but the
models still showed a substantial reduction in performance compared to the
corresponding network with a large ERF (Fig. A.S2.1).

The dependence of the classification performance on ERF size suggests that the
network’s ERF has a major impact on object recognition, especially for textureless
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Figure 2.1. Feature scrambling during training and testing. (a, b) Example images
for the Animals and Sketchy datasets, respectively. (c) CNN performance as
a function of the ERF, separately for the Sketchy and Animals datasets. (d) A
schematic for the feature-scrambling approach. (e) Effects of adding the follow-
up network to the pretrained base networks either with spatial aggregation without
scrambling (left), with spatial aggregation with scrambling (right), or without spatial
aggregation (middle). (f) Effect of global and local feature-scrambling on the
testing performance of the base + follow-up models with spatial aggregation
without scrambling. (g) A schematic depicting the ERF of random artificial neurons
in the last convolutional layer of models of different ERFs.
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models still showed a substantial reduction in performance compared to the
corresponding network with a large ERF (Fig. A.S2.1).

The dependence of the classification performance on ERF size suggests that the
network’s ERF has a major impact on object recognition, especially for textureless
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Figure 2.2. (a, b) The 20 least (in blue) and most (in yellow) scrambling-sensitive
ImageNet classes for the models ERF11 (a) and ERF23 (b). (c) Scrambling ratios of
the 20 least (left) and most (right) scrambling-sensitive ImageNet classes for models
of different ERFs. High and low values of the scrambling ratio indicate that feature-
scrambling has minor and major effects on class performance, respectively. (d)
Number of the intersecting classes for the 20 least (left) and most (right) scrambling-
sensitive ImageNet classes among models of different ERFs. (e) f1 performance
scores of ImageNet classes for ERF11 and ERF23 models against ERF227 model. In
blue and yellow are respectively the least and most scrambling-sensitive classes.
(f) f1 performance scores of ImageNet classes for the base model vs. base model
after adding the follow-up network. In blue and yellow are respectively the least
and most scrambling-sensitive classes.

datasets such as the Sketchy dataset. One explanation for the observed perfor-
mance increase could be that CNNs with large ERFs can learn to exploit relatively
large-scale features, which are especially important for texture-less datasets. How-
ever, the comparison between networks with large ERFs and small ERFs does not
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yet provide direct evidence that CNNs with large ERFs rely on large-scale shape
features. For example, it is possible that the pooling in large ERFs does not take
into account the spatial configuration among the features. Instead, the network
might just accumulate local evidence in a different manner than networks with
smaller ERFs. This reasoning suggests that in order to investigate the network’s
sensitivity to the spatial configuration of features, it is necessary to distort (i.e.
scramble) the spatial arrangement of features and then test the impact of this
distortion. Importantly, this scrambling should be done at the level of the network
features rather than at the image level, as the latter often leads to confounding
high-contrast image artifacts. Specifically, we took the following approach:

1) We trained a network with a small ERF size on an object recognition task. We
call this the base CNN, which was not further modified.

2) We then trained a follow-up network, which received input from the last convolu-
tional layer of the pretrained base CNN. These pretrained input features represent
diagnostic features of certain granularity depending on the ERF of the base CNN
i.e. object parts at different scales. The follow-up network has an ERF that covers
the entire image. We observed that adding the follow-up network led to an
increase in performance compared to the base network. Consistent with the ERF
survey experiment (Fig. 2.1c), the increase in performance was relatively small
for the ImageNet and Animals datasets but was large for the Sketchy dataset for
base networks with smaller ERFs (Fig. 2.1e, left panel). Absolute performances are
shown in Fig. A.S2.2.

3) To rule out the possibility that the observed performance increase for such
stacked networks was just caused by increasing the depth of the model by
appending the follow-up network, we trained a follow-up network that consisted
only of 1 × 1 convolutions without strides to prevent spatial aggregation. We
observed only a slight increase in accuracy for all datasets (Fig. 2.1e middle),
which shows that spatial aggregation of inputs was crucial for the observed
performance boost (Fig. 2.1e left).

4) To examine whether the spatial configuration of features mattered, we trained
the same follow-up networks after spatially scrambling the features in the last
convolutional layer of the base network. We used a fixed spatial permutation (i.e.
scrambling) of these features that was constant during training. We observed
a smaller increase in performance for the Sketchy dataset for ERFs 11 and 23
(Fig. 2.1e right). Furthermore, no further increase in accuracy could be observed
for the Animals and ImageNet datasets in this case (Fig. 2.1e right). Taken to-
gether, these findings suggest that CNNs can learn to utilize the configuration of
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spatially distant features when constructing more complex features in subsequent
layers, especially for datasets in which shape is expected to be critical for object
classification.

5) As a complementary approach to the fixed scrambling during training, we also
performed random feature scrambling during testing. As before, the scrambling
was again done at the last convolutional layer of the base network. As predicted,
we observed a general decrease in the accuracy of the models with spatial
aggregation (base + follow-up) when the features were globally scrambled during
testing (Fig. 2.1f left). This effect depended strongly on the dataset, with a relatively
weak effect for the Animals dataset and a very strong effect for the Sketchy
dataset. Moreover, the performance reduction was particularly pronounced for
models with small ERFs that exclusively encode local features of fine granularity
before the scrambling is done. It is worth noting that this effect cannot be simply
explained by the type of the dataset (sketches versus natural images) since the
reduction in performance varied substantially between the Animals and ImageNet
datasets, even though both consist of natural images.

6) As a control, we also performed a “local” scrambling, in which the features
were scrambled only at neighboring locations. The reduction in performance with
local scrambling was much weaker compared to global scrambling, indicating
that the loss of performance with global scrambling is due to the distortion of the
global configuration of the features, not the confounding effects of the scrambling
process itself.

Together, these results highlight the importance of the granularity of features and
their spatial configurations for object recognition, especially for datasets in which
texture is less informative. In other words, models with larger ERF can extract more
coarse-grained features, which are more diagnostic for the object class, i.e. have
higher accuracy and are less susceptible to scrambling. These coarse-grained
features are diagnostic on their own and do not need to be spatially integrated
to construct more complex features in subsequent layers (the follow-up network).
However, the granularity of these features differs between datasets.

Variability of classification strategies between classes in
ImageNet

Depending on the dataset, we observed different effects of ERF sizes and feature
scrambling on network classification performance. Changing the ERF size had the
weakest effect on performance for the Animals dataset and the strongest effect
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Figure 2.3. (a) Representation trajectories for five CNNs with different ERFs trained
on 3 different datasets. For the Sketchy and Animals datasets, we averaged the
layers’ RDMs (Representational Dissimilarity Matrices) of 5 training iterations of each
model of a certain ERF size before computing the second-order RDM of all layers.
LC: last convolutional layer. GAP: Global Average Pooling layer. ERF number
indicates the classification layer of the corresponding model. (b) Each column
shows three examples from the ImageNet dataset for three bird classes. (c) RDMs
of the global average pooling (GAP) and Softmax layers for the models ERF11
and ERF227 computed separately on the 20 least and most feature-scrambling
sensitive ImageNet classes as estimated using the ERF11 model and the feature-
scrambling approach. We sampled 20 images randomly from each class so each
RDM is 400× 400 (better viewed digitally). (d) The amount of explained variance
(R2) by the GAP and Softmax layers’ RDMs of models with different restricted
ERFs in the RDMs of the ERF227 model. (e) The amount of explained variance
(R2) by the GAP and Softmax layers’ RDMs of models with different restricted
ERFs after adding the follow-up network in the RDMs of the ERF227 model. (f)
Percentage change in the amount of explained variance by RDMs of models
with different restricted ERFs in the RDMs of the ERF227 model after adding the
follow-up network that increases the ERF of the models to cover the whole image.
(g) The distributions of the difference in explained variance by ERF11 model RDMs
in ERF227 model RDMs between scrambling-sensitive and scrambling-insensitive
classes. RDMs were computed by randomly sampling images separately from the
scrambling-sensitive and scrambling-insensitive classes. The number of repetitions
is 100.

for the sketches dataset, with ImageNet in between (Fig. 2.1e left). The strongest
effect of feature scrambling was observed on the Sketchy dataset, followed by
ImageNet and then the Animals dataset, which was least affected by feature
scrambling (Fig. 2.1f left). These findings can be explained by the image statistics
in the different datasets. Two extremes are given by the Animals and Sketchy
dataset: While images in the Animals dataset can already be classified using
local textural features, pictures in the Sketchy dataset require the integration of
spatially distant features for classifications. For ImageNet, the classification may
allow for different class-specific strategies (e.g., animals vs. man-made artifacts).
To test the hypothesis that CNNs use different classification strategies for different
ImageNet classes, we used the feature-scrambling approach described above.
As a measure of how CNN classification performance is affected by global feature
scrambling, we consider the scrambling ratio as the ratio of class f1 scores before
and after scrambling. A high scrambling ratio indicates that a class is not sensitive
to feature scrambling (which we call scrambling-insensitive), and a low value
indicates sensitivity to scrambling (which we call scrambling-sensitive). This ranks
the classes according to their sensitivity to the global spatial feature configuration
in the last CNN layer of the base network (Fig. 2.2a-c). For this analysis, we only
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considered classes that the model reliably classified before scrambling (f1 > 0.75).

As hypothesized, the least scrambling-sensitive classes predominantly express
characteristic surface patterns (texture) such as the rapeseed, brain coral, and
zebra classes (Fig. 2.2a and b in blue for base models ERF11 and ERF23 respec-
tively). Scrambling-sensitive classes, on the other hand, were not found to express
such characteristics textures, such as the water tower, electric locomotive, and
horse cart classes (Fig. 2.2a and b in yellow for base models ERF11 and ERF23
respectively). We hypothesized that the variability in scrambling sensitivity was
due to the intrinsic properties of the classes and their performance at low ERFs,
rather than to the scrambling operation itself. In fact, we found that classes with
high scrambling sensitivity only exhibited this high sensitivity for models with small
ERFs (Fig. 2.2c right). However, the scrambling sensitivity of classes was found to
be mostly independent of ERF size (Fig. 2.2c left). To confirm that this effect is a
consequence of the heterogeneity of the ImageNet dataset and not the ordering
process, we repeated the same analysis for the Animals dataset and did not
observe such substantial variability in the scrambling ratios among classes, e.g., for
the base model ERF11, scrambling ratios ranged from 0.05 to 0.91 and from 0.61 to
0.96 for ImageNet and Animals datasets respectively. We furthermore found that
the set of the least scrambling-sensitive classes is mostly consistent across models
(Fig. 2.2d left). This is in contrast to the set of the most scrambling-sensitive classes
(Fig. 2.2d right). Thus, the performance of scrambling-sensitive classes depends
more on the models’ ERFs and, therefore, relies on features of coarser granularity.

Therefore, we hypothesized that the scrambling ratio should predict the perfor-
mance increase from the ERF11 to the ERF227 network (Fig. A.S2.2), as well as
the performance increase obtained by adding the follow-up network to the pre-
trained base network (Fig. A.S2.2 and Fig. 2.1e). Indeed, the performance increase
for ERF227 compared to ERF11 and ERF23 was greater for scrambling-sensitive
than for scrambling-insensitive classes (Fig. 2.2e). Specifically, the performance (f1
score) of the model ERF227 on the 20 most scrambling-sensitive classes was higher
than that of all other models (ERF11, ERF23, ERF47, and ERF95) in a statistically
significant way according to the Wilcoxon signed-rank test. In contrast, for the
20 least scrambling-sensitive classes, the performance of the ERF227 model was
only significantly higher than the models ERF11, ERF23, and ERF47, but not ERF95.
Similarly, the performance increase caused by the addition of a follow-up network
was larger for scrambling-sensitive classes than for scrambling-insensitive classes
(Fig. 2.2f). In particular, increasing the ERF of the models by adding the follow-up
network led to a statistically significant increase in the performance of the 20 most
scrambling-sensitive classes for the models ERF11, ERF23, ERF47, and ERF95. For the
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20 least scrambling-sensitive classes, it only led to a statistically significant increase
in performance for the models ERF11 and ERF23.

Representation Similarity Analysis

Next, we investigated the role of ERF size on the classification strategies used by
CNNs. We used representation similarity analysis (RSA) (Nili et al., 2014) to test
whether CNNs of different ERF sizes develop comparable representations, reflect-
ing similar or different classification strategies (Fig. 2.3a-c; see section ). For each
layer, we computed a representation dissimilarity matrix (RDM) by computing the
pairwise correlation distance on the activations resulting from different images.
We then computed the dissimilarity (using the pairwise correlation distance) of
the RDMs between all layers of all models, thus indicating the similarity of the rep-
resentations between different layers of different models. To facilitate visualization,
we employed multi-dimensional scaling to reduce the dimensionality of the RDM
so that each point in the 2-d space represents a layer in a model and connected
the layers of each model with a solid line of a different color (Fig. 2.3a). We
observed that models with comparable ERFs are closer in the low dimensional
space (Fig. 2.3a), indicating that the distances among the corresponding layers
of the models depend on the models’ ERF.

To further investigate whether CNNs with small ERFs use classification strategies
similar to those of standard CNNs with large ERFs, we correlated the RDMs for
all models with the RDM for the ERF 227 model. Specifically, we computed the
variance explained (R2) between the RDMs of the ERF227 model and the RDMs
of the models with smaller ERFs (Fig. 2.3d). This was done separately for the
Global Average Pooling (GAP) and Softmax layers for the three datasets. For both
GAP and Softmax, we observed a gradual increase in the amount of explained
variance with ERF size, i.e., models with small ERFs are more dissimilar to the
ERF227 model. Moreover, the amount of explained variance depended on the
dataset: The Sketchy dataset had the lowest amount of explained variance for
models with small ERF, followed by ImageNet and the Animals datasets. This result
agrees with the differences between datasets in terms of the models’ classification
performance (Fig. 2.1e). We repeated the same analysis after adding the follow-
up networks to the base models, which in each case increased the ERF to cover
the whole image (e.g. 235pixels2 for ERF11 base model) (Fig. 2.3e). We noticed an
increase in the amount of explained variance after adding the follow-up network,
especially on the Sketchy dataset and for the models with small ERFs (Fig. 2.3f).
Again, there was only a minor and intermediate increase for the animals and
ImageNet databases, respectively. This supports the notion that CNNs can deploy
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Figure 2.4. (a) Illustration of the MIRC procedure. Each image patch yields
four descendants. Each descendant is a 75% crop from one of the four image
patch corners. Each green numbered descendant patch corresponds to the red
equivalently numbered corner of the parent patch (See section ). (b) Example
MIRCs for three different images (first row) of the zebra class from three datasets
(Sketchy, ImageNet, and Animals) for the models ERF227 (second row) and model
ERF11 (third row). The MIRCs shown are the MIRCs with the highest probability
among the MIRCs of the highest level of that image. (c, d, e) Distribution of the
maximum MIRC level for each correctly classified image in the test dataset for
the Sketchy, ImageNet, and Animals datasets, respectively for the base networks
of different ERF sizes (c), after adding the follow-up network without scrambling
(d), and after adding the follow-up network with the spatial scrambling of its input
features (e). For the Sketchy and Animals datasets, the histograms are averaged
over 5 training iterations. The shaded area represents the standard deviation. The
high frequency of images with MIRCs of level 10 in the Animals dataset is because
of the images that belong to the classes that the models usually predict when the
correct class cannot be identified. 36
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maximum MIRC level for each correctly classified image in the test dataset for
the Sketchy, ImageNet, and Animals datasets, respectively for the base networks
of different ERF sizes (c), after adding the follow-up network without scrambling
(d), and after adding the follow-up network with the spatial scrambling of its input
features (e). For the Sketchy and Animals datasets, the histograms are averaged
over 5 training iterations. The shaded area represents the standard deviation. The
high frequency of images with MIRCs of level 10 in the Animals dataset is because
of the images that belong to the classes that the models usually predict when the
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different classification strategies depending on their ERF.

Furthermore, according to our feature-scrambling analysis, CNN classification
strategies should also differ among object classes even within the same model.
Therefore, we hypothesized that the explained variance between ERF11 and
ERF227 should differ between the scrambling-sensitive and scrambling-insensitive
classes. In particular, we expected that the explained variance should be smaller
for scrambling-sensitive classes because, for those classes, one expects more
spatial integration. For that purpose, we selected the 20 most and least scrambling-
sensitive classes of the ImageNet dataset as determined by our feature-scrambling
approach for the base model ERF11 (Fig. 2.2a), randomly selected 20 images
from each class, passed them through the models ERF11 and ERF227, computed
the RDMs of the GAP and Softmax layers for each model (ERF11, ERF227) and
condition (scrambling-sensitive, scrambling-insensitive) separately (Fig. 2.3c). We
repeated the process 100 times and each time we calculated the variance
explained in model ERF227 RDMs by model ERF11 RDMs for both conditions. We
subtracted the variance explained in the condition of the scrambling-insensitive
classes from the variance explained in the condition of the scrambling-sensitive
classes to create a distribution of the difference in the variance explained by
model ERF11 in model ERF227 between the scrambling-sensitive and scrambling-
insensitive classes (Fig. 2.3g). Indeed, we observed the expected difference
(Fig. 2.3g). Additionally, by visual inspection, the difference between the RDMs
of the models ERF11 and ERF227 calculated on the scrambling-sensitive classes is
especially pronounced in the off-diagonal part of the matrix, which represents
the similarity among the inter-class pairs of images (Fig. 2.3c left two columns).
We hypothesized that the reason behind this difference is that the ERF11 model
extracts lower-level features that are not indicative of a specific class, but rather
shared among multiple classes. For example, we observe these blocks of low
dissimilarity in Fig. 2.3c (most lower left panel) between the class jacamar and the
classes bee-eater and hummingbird, which have shared color and local features
(Example samples of each of the three classes are shown in Fig. 2.3b). Together,
these results further support our conclusion that the granularity of features used
by CNNs (which in terms are determined by their ERF sizes) plays a crucial role
in their ability to perform object recognition. Moreover, the granularity of the
CNN features is determined not only by its ERF but also by the statistics of the
images in the datasets, separately for each class. Although more coarse-grained
features can be more reliable for object recognition, they are only exploited by
CNNs when needed e.g. the Sketchy dataset and scrambling-sensitive classes
in ImageNet. This agrees with the simplicity bias in CNNs (and more generally all
neural networks) when trained with a gradient-based learning rule: Networks tend
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to become selective to the easiest (and most local) features that allows them to
solve the classification task at hand.

Minimal recognizable configurations (MIRCs) analysis

The results so far suggest that CNNs recognize objects based on features that
vary in their granularity depending on the dataset and the object class. For
datasets and object classes that have relatively little or no texture information,
CNNs can learn to construct diagnostic features of coarser granularity from more
fine-grained features by exploiting the spatial relations between them. This raises
the following questions: 1) What is the spatial extent of these coarse features and
spatial relations learned by CNNs? 2) What is the advantage of more coarse-
grained features over more fine-grained features for object recognition? The
feature-scrambling results shown above indicate that even for the Sketchy dataset,
increasing the ERF of the base models beyond 47 × 47 had a limited effect on
performance. This result suggests that the features required for reliably recognizing
objects are still predominantly local, i.e., they span maximally about 4-5% of the
image.

To further test the reliability of the features utilized by models of different ERFs and
visualize them in the image space, we performed a MIRC analysis. MIRC analysis
tests the ability of the models to categorize images based on localized image
patches by searching for the minimal (i.e. smallest) feature configurations in the
image that are still correctly recognizable by the models. We searched for the
MIRCs of each image in the test dataset of the Sketchy and Animals datasets, and
randomly sampled one-third of the images in the test dataset of the ImageNet
dataset. For each image, we cropped 75% of the image starting from each corner
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predict its object class. We repeated the process for each descendant that was
correctly classified by the model until we reached the image that was correctly
identified by the model but had no correctly classified descendants. This image
was declared a MIRC and its level in the search tree defines its size, i.e. the deeper
(higher) the level, the smaller the image patch.

In Fig. 2.4b, we show examples of MIRCs generated from three different images
for the zebra class from the three datasets and their deepest MIRCs that have
the highest classification probabilities using the ERF227 and ERF11 models. These
examples show that on the one hand, the ERF227 model was able to classify the
image with high classification probability by relying exclusively on relatively local
features, i.e. the zebra’s face or stripes. On the other hand, the ERF11 model
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to become selective to the easiest (and most local) features that allows them to
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required larger image patches for successful classification, especially on the
Sketchy dataset. This seems to indicate that the model with the larger ERF actually
requires a much smaller part of the image to reach the correct classification as
compared to the model with the smaller ERF.

To verify whether this finding holds in general, we computed the histograms of
the deepest MIRC levels for each image for all datasets and models (Fig. 2.4c-e).
We observed for the base models a dependence between ERF size and maximal
MIRC levels, i.e., the larger the ERF size of the CNN, the higher its maximal MIRC
levels (i.e. a smaller part of the image was sufficient to classify) (Fig. 2.4c). By
contrast, networks with smaller ERFs typically cover a larger part of the image or the
entire image for classification. We found this dependence to be dataset-specific.
The difference between ERF227 and ERF11 was largest for the Sketchy dataset
and smallest for the Animals dataset. The difference between ERF227 and models
with smaller ERFs was reduced after adding the follow-up network without spatially
scrambling the features (Fig. 2.4d). However, the difference was not affected
when a follow-up network was added after spatially scrambling the features
during training (Fig. 2.4e). The effect of feature-scrambling on the distribution
of the levels of MIRCs demonstrates the different strategies CNNs can employ
for object recognition. On the one hand, spatial integration of features without
scrambling led the follow-up networks to be able to construct and be selective
to more reliable coarse-grained features than the base models. Subsequently,
these models (base + follow-up) had smaller MIRCs than their base models. On
the other hand, spatially scrambling the features before feeding them to the
follow-up networks prevented them from exploiting the spatial relations between
the features to construct more reliable coarse-grained features. Therefore, the
follow-up networks were only able to learn the set of more fine-grained features
that correlates with the target class. Subsequently, these models retained the
relatively large-sized MIRCs of their base models.

To visualize the features required for recognizing a certain class, we obtained
latent representations for all MIRCs of all images of a given class using the model.
We then used the k-means algorithm to group the latent representations into 5
clusters. In Fig. A.S2.3, we show examples for the horse and eyeglasses classes of
the Sketchy dataset for the model ERF227. For each cluster, we show the eight
MIRCs that are the closest to the cluster center and originate from distinct images.
We observe that each cluster is composed of MIRCs that represent visually similar
features. For example, we observe clusters representing hair, the side view of the
head, and leg features for the horse class S2.3. For the eyeglasses class, we can
identify a cluster containing double-lined frames, one for thin frames, and one for
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reflective glass features.

Discussion
Despite the exceptional performance of CNNs in object recognition tasks (He
et al., 2016a; Krizhevsky et al., 2012), the nature of their representations is still poorly
understood. One aspect of the learned object representations in CNNs is whether
they are capable of encoding the global shape of objects. Global shape repre-
sentations describe objects in the form of both their diagnostic features and the
spatial arrangement of these features (Barenholtz & Tarr, 2006; Biederman, 1987)
in contrast to models in which the presence of these features can serve alone
as evidence for object identity without encoding the spatial relations between
them (Edelman, 1993; Wallis & Rolls, 1997). There exists a wide range of visual
features e.g. contours, textures, colors, or object parts. We used features of pre-
trained CNNs of restricted ERFs to represent the diagnostic local features (Brendel
& Bethge, 2019). By comparing the two conditions of training a follow-up network
on top of these local features either with or without scrambling of the spatial loca-
tions of the features, we could assess the amount of additional information that
CNNs can extract by exploiting the spatial relations between features. Moreover,
by examining the MIRCs of CNNs, we were able to evaluate the spatial extent of
spatial relations learned by CNNs for object recognition.

It has recently been reported that CNN representations may be mostly local (Baker
et al., 2020; Brendel & Bethge, 2019) and consequently more biased toward object
surface regularities (Geirhos et al., 2019; Jo & Bengio, 2017) than the global form of
objects. This led to the hypothesis that they might not be capable of representing
spatial relationships among features (Baker & Elder, 2022; Baker et al., 2018). In
contrast to conclusions drawn in other works, our analysis allows us to provide the
following more nuanced view: (1) We provide evidence that CNNs are capable of
using relatively long-range spatial relationships for object classification, especially
for textureless datasets (such as sketches). This finding is supported by several
analyses, including a new scrambling approach in which we perturbed spatial
relations between features within the CNN, and a systematic investigation of how
CNN performance is impacted by different effective receptive field sizes. (2) We
show that CNNs use different strategies for different datasets, rather than one
unified strategy (e.g. pooling evidence based on local texture). Notably, we
found that classification strategies can vary even between classes within the
same dataset. These strategies differ in the granularity of the features used and
in the degree of reliance on the spatial relations between them. This suggests
that there is a continuous spectrum of CNN strategies, ranging from exclusive
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reliance on local features (insensitive to spatial relations, found for example for
the Animals dataset and the scrambling-insensitive classes in ImageNet) to a
stronger reliance on spatial relations (for example for the Sketchy dataset and the
scrambling-sensitive classes in ImageNet). (3) We furthermore show to what extent
spatial relations among features are used by CNNs to perform object recognition
tasks. In particular, we provide evidence that the spatial arrangement of features
is used only to construct features up to an intermediate level of granularity. That
is, we did not find evidence of spatial integration in CNNs that allows them to
capture the global shape of the objects in the datasets tested.

One possible explanation for a bias towards local features is the locality of the
convolution operation (Baker et al., 2020). However, our finding that CNNs learned
features of intermediate granularity for classification agrees with another possible
explanation, namely that a bias to local features and not to global shape is a
consequence of the optimization process for object classification (G. Malhotra et
al., 2022). Specifically, from an information-theoretic perspective, features of inter-
mediate granularity are the most informative for image classification tasks (Ullman
et al., 2002). The idea is that, on the one hand, very complex features could be
highly diagnostic because their presence gives high confidence about the class
identity. However, on the other hand, these complex features may not be suffi-
ciently sensitive (i.e. they do not exist in each exemplar) to be generalizable across
exemplars of an object class. By contrast, very simple features would generalize
better, but in addition would also lead to more false positives (i.e. lower speci-
ficity). Thus, features of intermediate complexity can provide an optimal trade-off
between sensitivity and specificity (Ullman et al., 2002). Interestingly, it has been
shown that randomly initialized CNNs display an increase in the representational
structure similarity from early to late layers between different levels of abstraction
of visual stimuli (photos, drawings, and sketches) (Singer et al., 2022). However,
after training CNNs on ImageNet, they showed a drop in the representational
structure similarity in later layers after peaking in the intermediate layers which
consequently led to lower classification performance on drawings and sketches.
These results show that the optimization process and not the CNN architecture
steers the representations to be biased to more local features that are optimal
for solving its objective function. Along the same lines, prepending regular CNNs
with a fixed non-trainable bank of Gabor filters led to better out-of-distribution
generalization to line drawings, silhouettes, robustness to noise corruptions (Evans
et al., 2022) and adversarial attacks (Dapello et al., 2020). These findings further
suggest that similar to the sketchy dataset, limiting the amount of surface informa-
tion through the Gabor filters led the CNNs to depend on more coarse-grained
features that were more robust to pixel corruptions and more generalizable to
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different visual domains.

The bias towards local features can also be related to the idea of simplicity bias
of neural networks, which states that neural networks preferentially extract the
simplest features needed to solve a given task (G. Malhotra et al., 2020; Shah et al.,
2020). Consistent with this explanation, our MIRC analysis showed that models
with small ERFs that by design are only capable of extracting simpler fine-grained
features require larger patches of images for correct object recognition (because
they have lower specificity). In contrast, models with larger ERFs that are capable
of extracting more coarse-grained and more specific features were able to assign
objects to their corresponding correct classes based on smaller image patches.
Therefore, our results suggest that optimization for object recognition is unlikely to
yield bias to the global shape of objects, even if the models have the capacity to
learn it. A similar principle may hold for human vision, as it has been shown that in
humans shape bias can be task- and context-dependent (Cimpian & Markman,
2005; Diesendruck & Bloom, 2003; Yoshida & Smith, 2003).

Our results have major implications for the ongoing discussion concerning shape
and texture representation in CNNs, and whether certain biases exist. There is little
consensus about the extent to which CNNs are texture- or shape-biased. Some
studies have suggested that CNNs are shape-biased (Kubilius et al., 2016; Ritter
et al., 2017; Tartaglini et al., 2022), whereas others have suggested that CNNs
are strongly texture-biased (Baker & Elder, 2022; Baker et al., 2018, 2020; Geirhos
et al., 2019). Here, instead of using a shape-texture dichotomy to understand the
nature of CNN representations, we have used the dichotomy of local vs. global
features. We argue that this dichotomy is useful for two reasons: 1) It can be
quantified without specific interpretations of what constitutes texture or shape, as
we showed with our feature-scrambling approach. In fact, our approach does
not test specific assumptions about the nature of the representations because
we do not perform specific image manipulations to provide evidence for either
texture or shape bias. Rather, we manipulate the network architecture and
the spatial arrangement of the representations to determine the locality of the
features. 2) It is flexible in that it allows local features to be both shape-like or
texture-like. This means that the shape-texture dichotomy only maps partially to
the global-local dichotomy. For example, this dichotomy is able to account for
the existence of highly diagnostic shape features of fine granularity that are highly
specific and sensitive (e.g., the nose of a dog). Indeed, when ranking ImageNet
classes according to their scrambling sensitivity, it is not always obvious that the
scrambling-sensitive classes would map to shape classes as would be intuitively
expected. A possible explanation for previous inconsistent findings with respect to
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shape and texture is that the respective studies made very specific manipulations
that did not generalize beyond these examples. For example, the texture bias
observed in CNNs trained on ImageNet when tested on shape-texture cue conflict
stimuli (Geirhos et al., 2019) was significantly reduced when the background of the
images was removed (Tartaglini et al., 2022). Our findings suggest an explanation
for these observations, in that the fine-grained (texture) features are less reliable
than the more coarse-grained (shape) features, and therefore need to cover a
large portion of the image to be diagnostic. Removing them from the background
reduced their predictive power and led CNNs to be more shape-biased (Tartaglini
et al., 2022) (on this specific test set). Another example is that many studies used
silhouette stimuli to test shape bias in CNNs (Baker & Elder, 2022; Geirhos et al.,
2019; Kubilius et al., 2016) and reached different conclusions. However, they used
different datasets containing different classes. According to our results, this is
expected since CNNs employ different classification strategies per object class
and consequently will lead to variable classification performances on silhouette
stimuli if the classes are different.

Given that CNN models are currently used as models of brain activity, specifically
for the ventral stream of the visual system, which is believed to be responsible for
object recognition (Cadieu et al., 2014; Cichy et al., 2016; D. L. K. Yamins et al.,
2014; D. L. Yamins & DiCarlo, 2016), it is important to understand the represen-
tations they develop and how they deviate from the brain. Although humans
rely mostly on complex shape cues for object recognition (Landau et al., 1988),
recent evidence has shown that the categorical organization of the entire ventral
stream can be explained by mid-level features that do not include intact objects
and do not convey any semantic information (Ayzenberg & Behrmann, 2022a;
Henderson et al., 2022; Jagadeesh & Gardner, 2022; Long et al., 2018). More-
over, albeit it is likely that humans rely on more than one mechanism to object
recognition (Peissig & Tarr, 2007; Smith, 2009), some of these mechanisms might
only depend on patchy diagnostic local features (Ullman et al., 2001) especially
given the fact that humans are capable of recognizing familiar objects from local
image patches (Ullman et al., 2016) and these image patches evoke responses in
higher-order category-selective visual areas (Holzinger et al., 2019). Furthermore,
it has been reported that human children’s ability to recognize objects based on
their global shape begins to develop only at 18-24 months of age (Pereira & Smith,
2009; Yee et al., 2012). Before that, they are capable of recognizing objects based
solely on their local features. In general, it has been shown that categorization of
objects in humans relies on combinations of different perceptual and high-level
semantic mental object representations constructed to model human similarity
judgments (Hebart et al., 2020). These results bear a resemblance to our findings

43



of the heterogeneity of CNNs classification strategies across different datasets
and different classes in ImageNet. The heterogeneity of CNN classification strate-
gies across datasets also agrees with the observations in the literature that CNNs
trained for object recognition rely on higher and wider distributions of spatial fre-
quencies than CNNs trained on face recognition and consequently exhibited less
robustness to blurring (Jang & Tong, 2021) and it is believed that humans recognize
faces holistically as a whole in contrast to objects that can be recognized as a
set of independent features (Grand et al., 2004; Tanaka & Simonyi, 2016). Our
results, therefore, provide additional evidence for the hypothesis that features of
intermediate granularity which are optimal for object recognition (Ullman et al.,
2001, 2002) could be shared between CNNs and the ventral stream of the visual
cortex (Henderson et al., 2022; Jagadeesh & Gardner, 2022; Long et al., 2018).

In summary, we showed here that although CNNs do not exploit global shape
representations to perform object recognition, they can learn to utilize distributed
feature constellations if this is required for solving the object classification task at
hand. Looking ahead, we hypothesize that developing new tasks and objective
functions to train CNNs instead of object recognition might lead to biases more
aligned with humans. Reinforcement learning (RL) is a candidate objective
function because it has been suggested that manual exploration may be a key
factor in the development of shape bias in children (Pereira et al., 2010; Soska
& Johnson, 2008) and it has been shown that action planning using RL leads
to divergent representation than supervised and unsupervised learning (Lindsay
et al., 2021). Moreover, neural agents that are trained to communicate efficiently
i.e. be optimal on the trade-off between informativity and complexity of the
messages used were shown to exhibit shape bias (Portelance et al., 2021). Future
investigations of such novel objective functions can not only lead to more effective
biases and representations in such networks but also shed more light on how the
observed human biases emerge.

Conclusions
We provide evidence that CNNs have the capacity to learn the spatial relations
between features for object recognition. Specifically, the spatial arrangement of
features is exploited by CNNs to build more coarse-grained features that are more
reliable for object classification. Notably, the capacity of CNNs to learn the spatial
arrangement of features varies according to the dataset and according to the
class within the same dataset. We noticed, however, that CNNs employ the spatial
configuration of features to build more coarse-grained features only up to an
intermediate degree of granularity and do not exploit the global shape of objects.
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The reason for this is that features of intermediate granularity are more likely to be
optimal in the trade-off between sensitivity and specificity i.e. generalizable and
yet reliable.
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Appendix
Controlling for the number of parameters of the models. We performed a control
analysis to verify that the performance differences observed in our study among
CNNs of different ERFs can be attributed indeed to their ERFs and not the number
of model parameters. We trained a wider model of small ERF (11 × 11 pixels)
but with matched the number of parameters to the model with the largest ERF
(227× 227 pixels). For both the Animals and Sketchy datasets, we observed a slight
increase in the classification performance of the models by increasing the number
of parameters. However, a small ERF model with a large number of parameters
did not reach the performance of the model with the largest ERF, indicating the
importance of the ERF to the models’ performance. Furthermore, for the Sketchy
dataset, the performance of the wider model with ERF = 11 × 11 did not even
reach the performance of the regular model with ERF = 15 × 15 pixels. This is in
line with our other results showing the reliance of the performance of CNNs on
their ERF size, especially for the Sketchy dataset. Note that in the manuscript,
we included several additional controls, e.g. scrambling during training, a 1× 1

follow-up network, and local scrambling, which further show the importance of
ERF size.

a b

Figure S2.1. A control experiment in which we trained a wide model that has a
small ERF (11 pixels), while matching the number of parameters of the model with
the largest ERF (227 pixels). The numbers shown in the figure are the ERF of the
corresponding models in pixels.

46



Appendix
Controlling for the number of parameters of the models. We performed a control
analysis to verify that the performance differences observed in our study among
CNNs of different ERFs can be attributed indeed to their ERFs and not the number
of model parameters. We trained a wider model of small ERF (11 × 11 pixels)
but with matched the number of parameters to the model with the largest ERF
(227× 227 pixels). For both the Animals and Sketchy datasets, we observed a slight
increase in the classification performance of the models by increasing the number
of parameters. However, a small ERF model with a large number of parameters
did not reach the performance of the model with the largest ERF, indicating the
importance of the ERF to the models’ performance. Furthermore, for the Sketchy
dataset, the performance of the wider model with ERF = 11 × 11 did not even
reach the performance of the regular model with ERF = 15 × 15 pixels. This is in
line with our other results showing the reliance of the performance of CNNs on
their ERF size, especially for the Sketchy dataset. Note that in the manuscript,
we included several additional controls, e.g. scrambling during training, a 1× 1

follow-up network, and local scrambling, which further show the importance of
ERF size.

a b

Figure S2.1. A control experiment in which we trained a wide model that has a
small ERF (11 pixels), while matching the number of parameters of the model with
the largest ERF (227 pixels). The numbers shown in the figure are the ERF of the
corresponding models in pixels.

46

a

b

Figure S2.2. (a): Classification accuracy for CNN models of different ERFs under
different training conditions of the feature-scrambling approach (Fig. 2.1c). (b):
Classification accuracy of the base models with spatial aggregation without
scrambling under different testing conditions (global and local scrambling).
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a b

Figure S2.3. Clustering of all the MIRCs of the horse (a) and eyeglasses (b) classes
(Sketchy dataset) in the representational space of the model ERF227 Each panel
shows the eight closest MIRCs, generated from unique test images, in the repre-
sentational space to the center of one cluster.
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Abstract
Convolutional neural networks (CNNs) were inspired by the organization of the pri-
mate visual system, and in turn have become effective models of the visual cortex,
allowing for accurate predictions of neural stimulus responses. While training CNNs
on brain-relevant object-recognition tasks may be an important pre-requisite to
predict brain activity, the CNN’s brain-like architecture alone may already allow
for accurate prediction of neural activity. Here, we evaluated the performance of
both task-optimized and brain-optimized convolutional neural networks (CNNs) in
predicting neural responses across visual cortex, and performed systematic archi-
tectural manipulations and comparisons between trained and untrained feature
extractors to reveal key structural components influencing model performance.
For human and monkey area V1, random-weight CNNs employing the ReLU
activation function, combined with either average or max pooling, significantly
outperformed other activation functions. Random-weight CNNs matched their
trained counterparts in predicting V1 responses. The extent to which V1 responses
can be predicted correlated strongly with the neural network’s complexity, which
reflects the non-linearity of neural activation functions and pooling operations.
However, this correlation between encoding performance and complexity was
significantly weaker for higher visual areas that are classically associated with ob-
ject recognition, such as monkey IT. To test whether this difference between visual
areas reflects functional differences, we trained neural network models on both
texture discrimination and object recognition tasks. Consistent with our hypothesis,
model complexity correlated more strongly with performance on texture discrimi-
nation than object recognition. Our findings indicate that random-weight CNNs
with sufficient model complexity allow for comparable prediction of V1 activity
as trained CNNs, while higher visual areas require precise weight configurations
acquired through training via gradient descent.

51



Introduction
The development of convolutional neural networks (CNNs) was originally inspired
by features of the primate visual system, such as its hierarchical organization
(Felleman & Van Essen, 1991; Vezoli et al., 2021) and localized receptive fields
(RFs) with repeated feature kernels across space (Fukushima et al., 1983; Hubel,
Wiesel, et al., 1959; LeCun et al., 1989). CNNs, and deep neural networks (DNNs)
in general, have in turn become effective models of the primate visual ventral
stream, allowing for relatively accurate prediction of neural responses to novel,
natural stimuli (Cadena et al., 2019; Güçlü & Van Gerven, 2015; Khaligh-Razavi
& Kriegeskorte, 2014; D. L. K. Yamins et al., 2014; Zhuang et al., 2021). The effi-
cacy of task-optimized CNNs in predicting a given brain area’s neural responses
(henceforth referred to as "encoding performance") is thought to depend on
several factors, such as the network architecture, the objective function, training
dataset and learning rules used for training(Cichy & Kaiser, 2019; Doerig et al.,
2023; Richards et al., 2019).

Although earlier work postulated that CNNs can effectively predict neural activ-
ity because they are trained on ecologically relevant object recognition tasks
(Cadieu et al., 2014; Mehrer et al., 2021), the effect of training may differ sub-
stantially between hierarchical levels of the primate ventral stream. It stands to
reason that training networks on a diet of natural images with an objective func-
tion probing for invariant image classification (e.g. supervised object recognition
(D. L. K. Yamins et al., 2014) or contrastive self-supervised learning (Zhuang et al.,
2021)) is important for predicting neural activity in higher regions of the primate
ventral stream, given their high degree of functional specialization (Cadieu et al.,
2014; DiCarlo et al., 2012; Hung et al., 2005; Rust & DiCarlo, 2010). Indeed, several
studies highlight the importance of training objectives and datasets in predict-
ing the activity in higher primate ventral stream regions, while suggesting that
differences in architecture between trained CNNs have a smaller influence on
explaining responses throughout the primate ventral stream (Conwell et al., 2024;
Storrs et al., 2021; Zhuang et al., 2021). Yet, it is less clear to what extent training
CNNs is essential for predicting activity in early visual areas of the primate cortex,
which show much less functional specialization and may be involved in a wider
range of functions beyond object recognition including scene segmentation (Self
et al., 2013), motion processing (Gur & Snodderly, 2007), and salience detection
(Li, 2002). While CNNs trained for object recognition outperform traditional models
like linear-nonlinear Poisson models and Gabor filters in predicting macaque V1
responses to natural images (Cadena et al., 2019; Simoncelli et al., 2004; Willmore
et al., 2008), this superior prediction may be either due to the CNN’s architecture
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(Cadieu et al., 2014; Mehrer et al., 2021), the effect of training may differ sub-
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2021)) is important for predicting neural activity in higher regions of the primate
ventral stream, given their high degree of functional specialization (Cadieu et al.,
2014; DiCarlo et al., 2012; Hung et al., 2005; Rust & DiCarlo, 2010). Indeed, several
studies highlight the importance of training objectives and datasets in predict-
ing the activity in higher primate ventral stream regions, while suggesting that
differences in architecture between trained CNNs have a smaller influence on
explaining responses throughout the primate ventral stream (Conwell et al., 2024;
Storrs et al., 2021; Zhuang et al., 2021). Yet, it is less clear to what extent training
CNNs is essential for predicting activity in early visual areas of the primate cortex,
which show much less functional specialization and may be involved in a wider
range of functions beyond object recognition including scene segmentation (Self
et al., 2013), motion processing (Gur & Snodderly, 2007), and salience detection
(Li, 2002). While CNNs trained for object recognition outperform traditional models
like linear-nonlinear Poisson models and Gabor filters in predicting macaque V1
responses to natural images (Cadena et al., 2019; Simoncelli et al., 2004; Willmore
et al., 2008), this superior prediction may be either due to the CNN’s architecture
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or the used training objective. A recent study showed that the RF size of neurons
in object-recognition trained CNNs was an important determinant of encoding
performance, suggesting that the CNN’s architecture does play an important role
for predicting V1 activity (Miao & Tong, 2024).

Furthermore, it is plausible that differences between trained and untrained CNNs
in predicting neural activity depend strongly on the initial architecture of the CNN
with random weights. Recent studies showed that the generalization capacity
of DNNs can be attributed to their loss landscapes upon initialization dictated
by their architectural design (Chiang et al., 2022; Ramasinghe et al., 2022). In
particular, random-weight DNNs can show strong differences in the complexity of
input/output functions dependent on e.g. the non-linear activation function used
in the network (Teney et al., 2024). It is possible that training CNNs steers them
towards a certain non-linear complexity matching neural complexity, thereby
masking initial differences in architecture, but that a random-weight CNN with an
appropriate RF size and non-linear complexity may already allow for accurate
prediction of brain activity.

Here, we systematically test whether certain architectural components contribute
to CNNs’ ability to encode neural data of early and high visual areas in primates’
brains. Specifically, we constructed CNN models with a linear readout to predict
neural data and investigated when training the convolutional filters is necessary
for good encoding performance versus only training the linear readouts for an
otherwise random-weight CNN.

Results

Neural encoding performance of VGG16 model

We analyzed three neural datasets: (1) Firing rates of 166 V1 neurons from two
macaques, recorded while the animals passively viewed natural and texture
images (Cadena et al., 2019); (2) activity from 168 multi-unit sites in the IT cortex
of two macaque monkeys, passively viewing 3200 grayscale images (Cadieu
et al., 2014); and (3) the fMRI Natural Scenes Dataset (NSD) (Allen et al., 2022),
comprising fMRI responses from 8 human subjects viewing thousands of color
natural images. Neural activity was predicted by linearly transforming the three-
dimensional activation maps of each convolutional layer in the VGG16 model
into a one-dimensional vector representing neural activity (either firing rates for
macaque datasets or voxel activations for the human fMRI dataset). See sup-
plementary Fig. S3.1 For a visual illustration of the models. The weights of this
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Figure 3.1. Encoding performance of VGG16 model. (a) Encoding performance
of a linear readout optimized on top of the representations of the convolutional
layers of VGG16 model either upon random initialization (in red) or pretraiend
on ImageNet dataset for object recognition (in blue) for two neural datasets
recorded from the early visual cortex V1 (left) or the higher visual area IT (right)
in macaques. (b) same as a but for two early visual cortex ROIs (V1v and V1d)
or higher visual areas (VO1 and VO2) in huamn fMRI data. (c) The normalized
encoding performance of the best performing layer for V1 and IT brain areas
in macaques tracked over training time on ImageNet dataset from random
initialization till full convergence. Each line is the average of 3 training iterations.

linear transformation were fitted on 80% of the dataset and tested on the remain-
ing held-out test set. The "encoding performance" for each VGG16 layer was
quantified as the median Pearson correlation between the predicted and actual
neural responses across all neuronal sites. Consistent with previous findings, the
layers of the ImageNet-trained VGG16 model could predict a substantial amount
of variance in neural responses to unseen (i.e. test-set) stimuli in both early and
higher visual areas of the macaque and human brain (Fig. 3.1).

Next, we investigated the influence of object recognition training on the encoding
performance. When the VGG16 model was initialized with random weights,
thereby omitting task training, its ability to predict primate V1 responses showed
only minor differences compared to the ImageNet-trained VGG16 model (Fig.
3.1; difference trained vs. random-weight CNNs: 0.009 for macaque V1, 0.008 for
human V1v, 0.012 for human V1d). By contrast, a substantial decrease in encoding
performance was observed when predicting responses in higher visual areas using
random-weight CNNs (inferotemporal cortex (IT) in macaque and ventral occipital
areas (VO1 and VO2) in humans (Fig. 3.1; difference trained vs. random-weight
CNNs: 0.132 for macaque IT, 0.138 for human VO1, and 0.176 for human VO2).
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Figure 3.1. Encoding performance of VGG16 model. (a) Encoding performance
of a linear readout optimized on top of the representations of the convolutional
layers of VGG16 model either upon random initialization (in red) or pretraiend
on ImageNet dataset for object recognition (in blue) for two neural datasets
recorded from the early visual cortex V1 (left) or the higher visual area IT (right)
in macaques. (b) same as a but for two early visual cortex ROIs (V1v and V1d)
or higher visual areas (VO1 and VO2) in huamn fMRI data. (c) The normalized
encoding performance of the best performing layer for V1 and IT brain areas
in macaques tracked over training time on ImageNet dataset from random
initialization till full convergence. Each line is the average of 3 training iterations.

linear transformation were fitted on 80% of the dataset and tested on the remain-
ing held-out test set. The "encoding performance" for each VGG16 layer was
quantified as the median Pearson correlation between the predicted and actual
neural responses across all neuronal sites. Consistent with previous findings, the
layers of the ImageNet-trained VGG16 model could predict a substantial amount
of variance in neural responses to unseen (i.e. test-set) stimuli in both early and
higher visual areas of the macaque and human brain (Fig. 3.1).

Next, we investigated the influence of object recognition training on the encoding
performance. When the VGG16 model was initialized with random weights,
thereby omitting task training, its ability to predict primate V1 responses showed
only minor differences compared to the ImageNet-trained VGG16 model (Fig.
3.1; difference trained vs. random-weight CNNs: 0.009 for macaque V1, 0.008 for
human V1v, 0.012 for human V1d). By contrast, a substantial decrease in encoding
performance was observed when predicting responses in higher visual areas using
random-weight CNNs (inferotemporal cortex (IT) in macaque and ventral occipital
areas (VO1 and VO2) in humans (Fig. 3.1; difference trained vs. random-weight
CNNs: 0.132 for macaque IT, 0.138 for human VO1, and 0.176 for human VO2).
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The loss in encoding performance for IT was statistically much larger than for V1
(Mann-Whitney U rank test p ≪ 0.001). We found qualitatively similar results using
other popular convolutional models such as Resnet50 (He et al., 2016b), Inception
(Szegedy et al., 2015), and DenseNet (Huang et al., 2016) (see supplementary Fig.
S3.3).

To examine the impact of ImageNet training on the encoding performance of
VGG16, we quantified the encoding performance across each training epoch,
starting with randomly initialized weights and progressing to full convergence
(Fig. 3.1c). Although the network’s performance on object recognition improved
monotonically with training, the encoding performance showed a markedly dif-
ferent profile: Starting from the first epoch, the encoding performance for V1
declined notably after the initial training epoch compared to the randomly ini-
tialized weights. Hence, training on the object recognition initially decreases the
encoding performance, i.e. the ability to predict V1 activity. The encoding perfor-
mance for V1 only recovered upon reaching full convergence. For IT, however,
the encoding performance mostly showed a monotonic increase from the first
towards the last training epochs.

Together, these findings indicate that training a CNN architecture (VGG16) on
object recognition is not essential for predicting primate V1 activity, as random-
weight CNNs demonstrate comparable performance to trained CNNs.

Simple convolutional models for encoding early and
higher visual areas

To further investigate the efficacy of randomly initialized networks in predicting
neural responses, we constructed simpler CNN models, systematically changed
their architecture and training, and then evaluated their neural encoding per-
formance across various brain regions in macaques and humans. We varied
network depth between shallow (2 layers) and deeper (4 layers) architectures,
while adjusting convolutional kernel sizes to maintain consistent receptive field
sizes across models (see Methods and supplementary Fig. S3.2). Additionally, we
evaluated average and maximum pooling operations and four distinct activation
functions (ReLU, ELU, Tanh, and Linear). In this case, we optimized the neural
network weights and a linear readout to directly predict neural activity, rather
than training on an object recognition task (see Methods), similar to a previous
study that developed a shallow neural-network model to predict V1 activity (Du
et al., 2024).
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Figure 3.2. Encoding performance of simple convolutional models on early and
higher visual areas of macaques and human brains. (a) Encoding performance of
shallow (2 layers) and deeper (4 layers) convolutional models each manipulated
to have effective receptive field of either 28 or 52 pixels2 fully trained on neural
data from early (V1, V1v, and V1d) and higher (IT, VO1, and VO2) visual brain
areas of macaques and humans. Each model has 8 variants: 2 different pooling
strategies (average pooling and maximum pooling) and 4 different activation
functions (ReLU, ELU, Tanh, and Linear). (b) Encoding performance of the best
performing fully trained models from a (in blue) – the 2-layer 28× 28 models for V1,
V1v, and V1d brain areas and the 28× 28 4-layer models for IT, VO1, and VO2 brain
areas – and their randomly initialized counterparts (in red). In the latter case, only
the linear readout was trained on top of the randomly initialized weights. Each
line is the average of 5 training iterations.

For the trained models, we observed that, with the exception of linear networks,
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Figure 3.2. Encoding performance of simple convolutional models on early and
higher visual areas of macaques and human brains. (a) Encoding performance of
shallow (2 layers) and deeper (4 layers) convolutional models each manipulated
to have effective receptive field of either 28 or 52 pixels2 fully trained on neural
data from early (V1, V1v, and V1d) and higher (IT, VO1, and VO2) visual brain
areas of macaques and humans. Each model has 8 variants: 2 different pooling
strategies (average pooling and maximum pooling) and 4 different activation
functions (ReLU, ELU, Tanh, and Linear). (b) Encoding performance of the best
performing fully trained models from a (in blue) – the 2-layer 28× 28 models for V1,
V1v, and V1d brain areas and the 28× 28 4-layer models for IT, VO1, and VO2 brain
areas – and their randomly initialized counterparts (in red). In the latter case, only
the linear readout was trained on top of the randomly initialized weights. Each
line is the average of 5 training iterations.

For the trained models, we observed that, with the exception of linear networks,
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all models achieved comparable performance for the V1 area in both macaques
and humans (Fig. 3.2a). Specifically, linear networks employing average pool-
ing exhibited poor encoding performance, while different non-linear activation
functions or linear networks utilizing max pooling operations yielded higher and
comparable V1 encoding performance. The V1 encoding performance was com-
parable between shallow and deep CNNs. The performance of the models in
predicting responses from higher visual areas (IT, VO1, and VO2) was comparable
across non-linear activation functions but improved for deep compared to shallow
networks. In sum, when convolutional filters are optimized, the architectural bias of
the models is subtle, i.e., the performance difference between different activation
functions and pooling mechanisms is almost negligible (except for linear networks
with average pooling).

We then evaluated the performance of the networks when only the linear read-
out was optimized, while the convolutional filters were frozen at their randomly
initialized weights. For these and subsequent analyses, unless otherwise speci-
fied, we focused on shallow 2-layer networks for the early visual cortex and the
deeper 4-layer networks for higher visual areas. The comparison of the encoding
performance of models with trained convolutional layers to those with randomly
initialized weights showed that random ReLU networks approached the perfor-
mance of their trained counterparts in predicting V1 responses for both macaques
and humans (Fig. 3.2b). The differences between random and trained ReLU net-
works were 0.045 for the average pooling models and 0.068 for the maximum
pooling models. Compared to V1, there was a much greater difference in encod-
ing performance in higher visual areas (IT, VO1, VO2; Fig. 3.2b). The differences
between random and trained ReLU networks were 0.214 for the average pooling
models and 0.196 for the maximum pooling models. In contrast to fully trained
networks, networks with randomly initialized convolutional weights showed sub-
stantial differences in V1 encoding performance across the activation functions,
especially those using average pooling operations (Fig. 3.2b; s = 0.106 for random
nonlinear models and s = 0.009 for trained nonlinear models).

In summary, random ReLU networks achieved significantly higher encoding per-
formance than other random networks for both early and higher visual cortices.
Furthermore, random networks with max pooling operations exhibited substantially
higher performance than their counterparts with average pooling, except for
ReLU networks, which achieved comparable encoding performance in both
scenarios. However, the difference between the best performing random ar-
chitecture and its trained counterpart was substantially smaller for early visual
cortex in comparison to higher visual areas. In conclusion, we identified the
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ReLU activation function and maximum pooling as key architectural components
that significantly contribute to the V1 encoding performance of CNNs. This is
evidenced by the comparable performance achieved by randomly initialized
models that incorporate these components as compared to their fully trained
counterparts.

Complexity of deep neural networks explains their V1
encoding performance
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Figure 3.3. Distributions of encoding models’ complexity across neurons. Each
distribution across neurons represent the complexity (see methods) of a certain
model configuration (with respect to the pooling strategy and activation function)
trained on V1 (upper row) and IT (lower row) data. Only linear readout was trained
on top of random convolutional features (left column) or the model was fully
trained (right column). Each distribution is the average of 5 training iterations.
The corresponding distributions for the human fMRI models are in supplementary
Figure S3.2.

We showed that random-weight CNNs varied substantially in their encoding per-
formance of brain responses as a function of the non-linear activation function
and pooling strategies, especially for early visual cortex (Fig. 3.2b). However,
after having trained the CNNs to predict neural activity, they showed compara-
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We showed that random-weight CNNs varied substantially in their encoding per-
formance of brain responses as a function of the non-linear activation function
and pooling strategies, especially for early visual cortex (Fig. 3.2b). However,
after having trained the CNNs to predict neural activity, they showed compara-
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ble performance across the nonlinear activation functions. Recent studies have
shown that random-weight neural networks represent functions of different com-
plexities depending on their architectural components such as their activation
functions (Chiang et al., 2022; Ramasinghe et al., 2022; Teney et al., 2024). We
thus wondered whether complexity may explain the encoding performance of
random-weight CNNs.

We approximated the function implemented by each output node in each model
using a set of Chebyshev polynomials (see Methods). Complexity was then
quantified as the average of the polynomial orders, weighted by their coefficients
(Teney et al., 2024). Fig. 3.3 shows the complexity distribution of output nodes
in our models of V1 and IT responses, with both random-weight and trained
convolutional kernels (analyses of fMRI models, see supplementary Fig. S3.4).

The random-weight CNNs with a low V1 and IT encoding performance (linear, ELU,
Tanh with average pooling) generally showed low complexities as compared to
their trained counterparts. By contrast, the random-weight CNNs with high V1
and IT encoding performance, such as ReLU and models with max pooling, had
higher complexities than the random-weight CNNs with a low encoding perfor-
mance. Finally, there was a greater overlap among the complexity distributions
of models with trained convolutions than those with random convolutions, which
is a consequence of the fact that the networks were optimized for the same
target function. That is, training CNNs with a different architecture makes their
complexity more homogeneous. For V1, random-weight CNNs with a comparable
complexity to the trained counterparts also have similar encoding performance,
suggesting that model complexity is a main driver of encoding performance. By
contrast, for IT, there are major differences in encoding performance between
random-weight and trained models despite similar complexity, suggesting that
the specific configuration of weights is an additional important factor for IT.

We explored the relationship between model complexities and their encoding per-
formance by plotting the median of the complexity distribution of each model’s
output nodes against its encoding performance (Fig. 3.4). To quantify the rela-
tionship between complexity and encoding performance, we fitted a quadratic
function. We found a systematic relationship between the median complex-
ity of the models and their encoding performance for V1 in both humans and
macaques (Explained variance was 86%, 81%, and 84% for the areas V1, V1v, and
V1d respectively). For higher visual areas, the relationship was substantially weaker
(Explained variance was 63%, 57%, and 55% for the areas IT, VO1, and VO2 respec-
tively). Specifically, while random-weight models with similar model complexity as
trained counterparts had comparable encoding performance for V1, there was
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major increase in encoding performance for IT. Together, these results suggests
that for V1, complexity alone explains encoding performance, while for higher
visual areas, the precise configurations of connection weights discovered through
gradient descent are crucial for strong encoding performance. To further test the
dependence of encoding performance on the precise configuration of weights,
we shuffled the weights of all convolutional kernels of all layers of the trained mod-
els across all dimensions (space, input channels and output channels), freezing
the weights, and subsequently retraining the linear readout. For a fair comparison,
the deeper models (4 convolutional layers) were used for both early and higher
visual areas. As anticipated, a much stronger decrease in encoding performance
was observed for the shuffled models in higher visual areas compared to area V1
for both macaque (Fig. 3.6a) and human (Fig. 3.6b) brains.

Precise configuration of convolutional weights is critical
for object recognition but not texture discrimination

Next, we investigated what kind of visual computations / tasks can be performed
by random-weight CNNs, and which tasks are strongly dependent on training. To
this end, we created a Texture-MNIST dataset for which two different tasks can be
defined (Fig. 3.5b). Texture-MNIST is a dataset in which every sample is an MNIST
digit filled with a texture batch (see Methods). Texture batches are randomly
sampled from 10 high-quality texture images. We trained the 4-layer models to
predict either the object (digit) identity or the texture patch identity. Similar to the
neural data, we either trained only the readout, leaving the convolutional layers
frozen at their randomly initialized state, or we trained both the readout and the
convolutional layers. We observed that random-weight ReLU networks, with either
average or maximum pooling, outperformed all other random-weight networks in
predicting the correct identity of the texture class and the digit class (Fig. 3.5a).
However, random-weight ReLU networks achieved almost the same performance
as the trained networks on the texture discrimination task, while there was a major
difference in performance for digit recognition task.

Similar to the neural data, we also investigated the dependence of task perfor-
mance on the complexity of the models. We found that the complexity of the
models showed a very strong relationship with texture discrimination accuracy (ex-
plained variance 95%) but not for digit recognition accuracy (explained variance
32%). These findings demonstrate that object recognition performance requires
a precise optimization of convolutional kernels, while texture discrimination can
already be subserved by random-weight neural networks. We further confirmed
this observation by shuffling the weights of the optimized convolutional kernels
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then retraining the readout. Object recognition performance showed a stronger
decrease than the texture discrimination performance (Fig. 3.6c).
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Figure 3.5. Texture discrimination and digit recognition performance on the Texture-
MNIST dataset. (a) Performance of our 4-layer models trained on the Texture-MNIST
dataset to either predict the texture identity (MNIST Texture) or the digit identity
(MNIST Digit). Only the linear classification layer was trained (in red) or the full
convolutional model was trained (in blue). Each line is the average of 5 training
iterations. (b) Examples of the Texture-MNIST dataset. (c) The relationship between
the median complexity of the mdoels and their texture discrimination accuracy
(left) and digit recogntion accuracy (right).

Trained networks develop similar orientation selectivity
to V1

We demonstrated that the representations of random-weight CNNs, with an
architectural bias that entails sufficient model complexity, suffice for encoding
the responses of early visual cortex in macaques and humans. However, it is
well-established that V1 neurons exhibit selectivity for certain features, such as
the orientation of a bar or grating stimulus (Hubel, Wiesel, et al., 1959). We sought
to determine whether random-weight CNNs also possess such feature tuning. To
test this, we generated Gabor patches of varying orientations and phases and
presented them to the neural networks to assess their orientation selectivity, and
then compared the selectivity distributions to experimental V1 data (Fig. 3.7a).
We analyzed the central neurons in the last convolutional layer (i.e. those with a
receptive field in the center of the image) of the random-weight neural networks
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Trained networks develop similar orientation selectivity
to V1

We demonstrated that the representations of random-weight CNNs, with an
architectural bias that entails sufficient model complexity, suffice for encoding
the responses of early visual cortex in macaques and humans. However, it is
well-established that V1 neurons exhibit selectivity for certain features, such as
the orientation of a bar or grating stimulus (Hubel, Wiesel, et al., 1959). We sought
to determine whether random-weight CNNs also possess such feature tuning. To
test this, we generated Gabor patches of varying orientations and phases and
presented them to the neural networks to assess their orientation selectivity, and
then compared the selectivity distributions to experimental V1 data (Fig. 3.7a).
We analyzed the central neurons in the last convolutional layer (i.e. those with a
receptive field in the center of the image) of the random-weight neural networks
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Figure 3.6. Effect of shuffling the convolutional weights on the neural encoding
performance and classification accuracy. For each fully trained model, we
shuffled the convolutional weights in the model and retrained the linear readout
to predict the neural responses and to classify the texture/digit identity. Then we
calculated the ratio between the performance of the model after shuffling and its
performance before shuffling. (a) The distribution of the encoding performance
ratio for all models across different configurations for the macaque brain areas.
(b) same as (a) but for the fMRI human brain areas. (c) same as (a) but for the
models trained for texture discrimination and digit recognition.

and the networks trained to predict V1 activity. To compute the activation for
each orientation, we averaged across all the different phases of the Gabor stimuli.
In Fig. 3.7b, we show the four most orientation-selective neurons in each trained
model (for random models, see supplementary Fig. S3.5a). We then quantified the
neurons’ orientation selectivity by calculating the circular variance of their tuning
curves. Circular variance is a measure used to quantify the dispersion of data
points around a circle, with a lower value indicating more concentrated responses,
and thus, higher selectivity (Mazurek et al., 2014) (see Methods). We compared
the circular variance distribution of the artificial neurons in the models (Fig. 3.7c
for trained models and supplementary Fig. S3.5b for random-weight models) with
the circular variance distribution of V1 neurons recorded from alert macaque
monkeys (Gur et al., 2005). To this end, we quantified the difference between
distributions using the Wasserstein (i.e. Earth Mover) distance, which we term
the "V1 deviation score" (lower scores indicate more similarity). Random-weight
ReLU networks exhibited the lowest median circular variance among random-
weight models (Fig. 3.7d), i.e. they were the most orientation-selective. Moreover,
random-weight ReLU models also demonstrated the lowest V1 deviation score
among all random-weight networks (Fig. 3.7e). Furthermore, training the models
on V1 data led to stronger orientation selectivity (i.e. a lower median circular
variance) for all the models except the linear ones (Fig. 3.7d). Moreover, training
the models on V1 data also led to lower V1 deviation scores for all of the models
except the linear ones (Fig. 3.7e), with trained ReLU models being the most similar
to the V1 orientation selectivity distribution. To examine whether the V1 deviation
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Figure 3.7. See next page

scores decreased because the networks were specifically trained to predict V1,
we also tested the orientation selectivity of the models trained on IT data. We
found that IT trained models were less orientation-selective than V1 trained models
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scores decreased because the networks were specifically trained to predict V1,
we also tested the orientation selectivity of the models trained on IT data. We
found that IT trained models were less orientation-selective than V1 trained models
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Figure 3.7. Orientation selectivity of random and trained models (a) Examples of
the Gabor patches that were represented to the models. (b) Tuning curves of
the most orientation selective artificial neuron in the last convolutional layer of
each model configuration trained on the V1 data. For the randomly initialized
models see supplementary figure S3.2a. (c) Distributions of the circular variance
of the artificial neurons of the last convolutional layer of each model configuration
trained on the V1 data. For the randomly initialized models see supplementary
figure S3.2b. (d) Median circular variance of the artificial neurons of the last
convolutional layer of random and V1 trained models of different configurations
averaged across 5 iterations. Error bars are the standard deviation. (e) V1 devi-
ation scores of the random and V1 trained models averaged across 5 iterations.
Error bars are the standard deviation. (f) The relationship between V1 deviation
score and the V1 encoding performance for all the models that varied in their
activation functions, pooling strategies, and their random initializations. Spearman
correlation = −0.87, p ≪ 0.001.

(supplementary Fig. S3.6a), and had higher V1 deviation scores (supplementary
Fig. S3.6b).

To examine if networks with more similar orientation tuning to V1 also better pre-
dicted V1 activity (on another dataset), we examined the relationship between
both variables across random and trained models (Fig. 3.7f). We found a strong
negative monotonic relationship (Spearman correlation = −0.87) between the
V1 deviation score and V1 encoding performance, suggesting that the more
similar the orientation selectivity of the models is to that of V1 neurons, the better
the models are at predicting V1 responses (on another dataset). However, it is
also worth noting that although trained networks demonstrated small variation in
their V1 encoding performance, they showed high variability in their V1 deviation
score (Fig. 3.7f), suggesting that having similar orientation selecting to V1 neurons
is not a strong requirement for the model to be able to effectively encode V1
responses.

Discussion
We investigated the factors contributing to the success of CNNs in predicting
responses within the visual cortex in both macaques and humans. We demon-
strate that, unlike higher visual areas, accurate prediction of early visual cortex
responses does not necessarily depend on the optimization of convolutional ker-
nels via training. Instead, architectural components, such as pooling strategies
and activation functions, play a crucial role. Specifically, we found that the ReLU
activation function and maximum pooling were the most critical components
for achieving high encoding performance for early visual cortex, even in the
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absence of optimization of the convolutional kernels based on a task or neural
data. Furthermore, we observed that random-weight CNNs exhibited substantial
variability in the complexity of the functions they represented, depending on their
architectural components. Notably, the CNN’s complexity explained significantly
more variance in the encoding performance in early visual cortex compared
to higher visual areas. These findings held true across electrophysiological data
from macaques and fMRI data from humans. Additionally, model complexity
explained significantly more variance in performance on a texture discrimination
task than on a digit (object) recognition task using the same dataset. This suggests
that precise configuration of convolutional kernels is more essential for object
recognition and, consequently, more critical for predicting responses in higher
visual areas. Importantly, our results indicate that training the full convolutional
models masked the effect of architectural bias, as the variability in encoding
performance across different model configurations decreased significantly after
training. However, when employing an alternative metric for aligning models with
experimental V1 data – namely, the circular variance distribution of the model’s
artificial neurons as a proxy for their orientation selectivity – a different picture
emerged: Trained models exhibited significant variability in their alignment with
V1 orientation selectivity, despite displaying low variability in their V1 encoding
performance. Overall, our findings indicate that random-weight CNNs with suffi-
cient model complexity allow for comparable prediction of V1 activity as trained
CNNs, while higher visual areas require precise weight configurations acquired
through training via gradient descent.

Our work highlights the importance of random-weight controls to reveal architec-
tural bias. According to the deep learning framework for neuroscience (Richards
et al., 2019), various deep neural network models, trained under specific con-
straints regarding their architecture, objective function, and training data, can
serve as tests for specific hypotheses about brain function (Cichy & Kaiser, 2019;
Doerig et al., 2023; Dwivedi et al., 2021; Zhuang et al., 2021). The degree to which
these models’ representations of complex natural stimuli align with brain responses
can provide evidence for certain hypotheses, such as the necessity of recurrent
connections for cortical information processing (Kietzmann et al., 2019; Kubilius
et al., 2019). However, it has been shown that multiple models with different
architectures, trained similarly, or multiple models with the same architecture,
trained differently, can achieve similar performance in predicting neural data
(Conwell et al., 2024; Storrs et al., 2021). Further investigations revealed that task
optimization increased the effective dimensionality (Del Giudice, 2021) of CNNs
representations. This increase in dimensionality correlated with their encoding
performance of higher visual brain areas (Elmoznino & Bonner, 2024). A recent
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study showed that substantially scaling the dimensionality of random CNNs, but
not transformers or fully connected networks, led to a comparable encoding per-
formance of higher visual areas to ImageNet-trained AlexNet model suggesting a
strong contribution of architecture bias to DNN encoding performance of neural
data (Kazemian et al., 2024). In the present work we showed that scaling the
complexity of random CNNs, in the low-dimensional regime, leads to a compara-
ble encoding performance for lower, but not higher visual areas. Moreover, it has
been shown that layers of task-optimized VGG19 and Alexnet models with match-
ing receptive field sizes yielded similar V1 encoding performance despite having
different depths i.e. different numbers of nonlinear transformations suggesting
the significance of receptive field size in predicting V1 data (Miao & Tong, 2024).
These findings underscore the necessity of implementing appropriate controls
when employing task-optimized or brain-optimized DNNs for predicting neural
activity. Specifically, the use of random-weight models with variable architec-
tural components is crucial to reveal the architectural biases of neural encoding
models.

Beyond the hypothesized neural factors influencing the neural encoding per-
formance of DNNs, their success in predicting brain data could originate from
non-neural, biologically implausible design choices implemented by researchers.
For instance, the emergence of grid-like representations in DNNs optimized for
path integration has been shown to depend on specifically designed readout
mechanisms (Schaeffer et al., 2022). Moreover, numerous studies have demon-
strated that the measured similarity between models and the brain can be highly
dependent on the chosen similarity metric (Davari et al., 2022; Soni et al., 2024).
Specifically, neural predictability scores based on linear regression can be heavily
influenced by the inductive biases of linear regression, the dimensionality of the
model representations, or the ratio of the number of stimuli in the benchmarking
dataset to the dimensionality of the model representations (Bowers et al., 2023;
Canatar et al., 2024; Elmoznino & Bonner, 2024; Schaeffer et al., 2024). When we
assessed the brain alignment of V1 models using two independent scores: encod-
ing performance on one dataset and V1 deviation score on another dataset, we
found large difference in the variability of both scores despite correlating with
each other. Therefore, consistent with the existing literature, our findings high-
light the importance of moving beyond single metrics of model-brain alignment.
Instead, our findings highlight the importance of a multidimensional model as-
sessment approach that enables the dissection of the similarities and differences
between computational models and the brain (Biscione et al., 2024; Jacob et al.,
2021; Rajesh et al., 2024; Wichmann & Geirhos, 2023). This holds true in particular
considering that many of these similarity measures are correlational (Bowers et al.,
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2023), and models with high prediction scores can still operate in qualitatively
different ways than the brain (Baker et al., 2018; Farahat et al., 2023; Geirhos
et al., 2018, 2019; Wichmann & Geirhos, 2023). This multidimensional approach will
facilitate more targeted model improvement and informed hypothesis generation
in future research.

By systematically manipulating the architectural components of the models and
comparing the performance of randomly initialized models with their fully trained
counterparts, we identified the essential components that underpin neural encod-
ing, raising the question to what extent they mimic the architecture of visual cortex.
The ReLU activation function emerged as a key factor in generating visual repre-
sentations that supported the most efficient encoding performance, considering
the number of trainable parameters. The ReLU activation function was introduced
to DNNs as a more biologically plausible alternative to Sigmoid and Tanh functions,
given its one-sided nature (outputting zero for negative inputs) and its promotion
of sparse representations (Attwell & Laughlin, 2001; Douglas et al., 1995; Glorot
et al., 2011). Indeed, ReLU networks, even with random convolutions, not only
exhibited the best encoding performance for V1 but also displayed the smallest
distance to the orientation selectivity distribution of V1 neurons. Importantly, while
models fully fitted to predict V1 data, with ReLU, ELU, or Tanh activation functions,
exhibited similar encoding performance, they still displayed substantial variability
in their similarity to V1 orientation selectivity, with ReLU networks being the most
V1-like. This result demonstrates that the combined application of multiple model
assessment metrics and systematic architectural manipulations enables the identi-
fication of key, potentially biologically plausible architectural components that
contribute significantly to neural encoding performance. Furthermore, the fact
that non-linearities with sufficient model complexity are a major factor in pre-
dicting neural activity fits with the general idea that non-linearities are a central
component of cortical inter-areal interactions beyond mere linear information
transmission (DiCarlo et al., 2012; Vinck et al., 2023).

Beyond examining the encoding performance and tuning properties of the mod-
els’ representations, it is imperative to understand the computational advantages
of models’ representations in supporting visual tasks. We demonstrated that
random-weight CNN representations, which were sufficient for predicting early
visual cortex responses, performed well in discriminating between texture fami-
lies compared to their trained counterparts. Conversely, these random-weight
representations were considerably worse than fully trained models in invariantly
classifying the identity of digits within images. Studies have shown that V1 activity,
in particular superficial cortex, exhibits selectivity for texture statistics, albeit less
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2023), and models with high prediction scores can still operate in qualitatively
different ways than the brain (Baker et al., 2018; Farahat et al., 2023; Geirhos
et al., 2018, 2019; Wichmann & Geirhos, 2023). This multidimensional approach will
facilitate more targeted model improvement and informed hypothesis generation
in future research.
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comparing the performance of randomly initialized models with their fully trained
counterparts, we identified the essential components that underpin neural encod-
ing, raising the question to what extent they mimic the architecture of visual cortex.
The ReLU activation function emerged as a key factor in generating visual repre-
sentations that supported the most efficient encoding performance, considering
the number of trainable parameters. The ReLU activation function was introduced
to DNNs as a more biologically plausible alternative to Sigmoid and Tanh functions,
given its one-sided nature (outputting zero for negative inputs) and its promotion
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random-weight CNN representations, which were sufficient for predicting early
visual cortex responses, performed well in discriminating between texture fami-
lies compared to their trained counterparts. Conversely, these random-weight
representations were considerably worse than fully trained models in invariantly
classifying the identity of digits within images. Studies have shown that V1 activity,
in particular superficial cortex, exhibits selectivity for texture statistics, albeit less
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pronounced than in a higher visual area, LM (Bolaños et al., 2024; Ziemba et al.,
2019). In humans, texture discrimination task-learning has been shown to induce
local changes within the early visual cortex without requiring the recruitment of
higher visual areas (Schwartz et al., 2002). Additionally, a decoder trained on
macaque V1 population activity elicited by texture samples could discriminate
between 15 different texture families (Ziemba et al., 2016). In contrast, several stud-
ies have demonstrated that IT neurons possess the tolerance to identity-preserving
transformations that is essential for object recognition (Hung et al., 2005; Rust &
DiCarlo, 2010).

The efficacy of random features in machine learning has been well-documented,
often rivaling hand-crafted or even learned features across various learning
tasks (Gallicchio & Scardapane, 2020; Rahimi & Recht, 2008a; Scardapane &
Wang, 2017). Random-weight CNNs were shown to be frequency-selective and
translation-invariant which explains their superior performance over random non-
convolutional networks on image classification tasks (Saxe et al., 2011). Moreover,
only training a small fraction of the convolutional weights or only training the
batch normalization layers in random-weight CNNs led to object recognition
performance competitive with their trained counterparts (Frankle et al., 2021;
Rosenfeld & Tsotsos, 2019). Furthermore, the structure of a random generator
CNN can capture significant low-level image statistics even without any learning.
This inherent structure acts as a prior, making random-weight CNNs useful for vari-
ous image processing tasks such as image restoration, denoising, inpainting and
super-resolution (Ulyanov et al., 2018). These findings emphasize the significant
contribution of convolution and pooling operations, independent of learning, in
visual processing tasks. Consequently, it is plausible that random features with the
right convolutional architectural bias could effectively model the representations
found in V1, considering the diverse range of visual tasks that V1 supports. One
hypothesis is that V1 comprises an array of neurons representing high-dimensional,
non-linear random basis functions, capable of supporting a diverse set of down-
stream functions (Rahimi & Recht, 2007, 2008a, 2008b). In addition to our results
that showed that random-weight ReLU networks exhibit orientation-selective neu-
rons, previous research on biologically plausible recurrent models of mouse V1
demonstrated the emergence of orientation selectivity even when both feedfor-
ward and recurrent connections are randomly initialized (Hansel & van Vreeswijk,
2012; Pattadkal et al., 2018).

Our findings contribute to the growing body of literature that emphasizes the
importance of conducting controlled experiments to systematically investigate
the architectural and training components that contribute to the neural encod-
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ing performance of computational models. Moreover, our results underscore
the necessity of developing comprehensive batteries of neural and perceptual
metrics to facilitate more informed conclusions about the similarities between
computational models and the brain (Biscione et al., 2024; Jacob et al., 2021).
Finally, considering the computational benefits of the models’ representations
that support the prediction of brain responses is valuable, as it helps formulate
hypotheses regarding the functional roles of different brain areas (Cichy & Kaiser,
2019; Dwivedi et al., 2021).

Methods

Datasets

V1 monkey dataset

We used a public dataset that consists of neural activity recordings from 166
neurons across different layers of V1 brain area in two monkeys (Cadena et al.,
2019). The monkeys were shown 7,250 images, each presented 1-4 times for a
duration of 60 milliseconds. Each image was displayed within a circular window
spanning 2 degrees of visual angle, with the edges gradually fading out to blend
with the surroundings.

IT monkey dataset

We used a publicly available IT monkey dataset which consists of neural recordings
from 168 multiunit sites within the inferotemporal (IT) cortex of two macaque
monkeys (Cadieu et al., 2014). The monkeys were presented with 3,200 unique
grayscale images, each showing one of 64 objects from eight categories. These
images were designed to mimic real-world visual scenes by placing the cropped
object images onto various natural image backgrounds at different positions,
orientations, and sizes.

fMRI human dataset

The Natural Scenes Dataset (NSD) is a publicly available fMRI dataset that captures
the brain activity of eight human participants as they viewed thousands of natural
images (9,000–10,000 distinct color natural images for each subject repeated up
to 3 trials) (Allen et al., 2022). The images were taken from the Microsoft Common
Objects in Context (COCO) database square-cropped and presented at a size
of 8.4° x 8.4°. We used the regions of interest (ROI) V1v and V1d manually drawn
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based on the results of a population receptive field (pRF) experiment, and the
higher-order ROIs VO1 and VO2, defined using a visual probabilistic atlas.

Texture-MNIST dataset

We created the Texture-MNIST dataset to probe different models’ texture and
shape discrimination abilities. We created binary masks from the MNIST dataset,
resized and overlaid them over 64× 64 patches of texture randomly copped from
a high-resolution texture image unique for each digit class. Using this dataset, we
can train our models to either predict the class of the object (digit) or the class of
the texture of each image.

Models

We used simple DNN models consisting of a convolutional block and a linear
readout. The convolutional block included two and four convolutional layers for
the shallow and deeper models respectively. Each convolutional layer is followed
by a batch normalization layer and an activation function. To maintain an efficient
number of trainable parameters we used depthwise separable convolutions in all
convolutional layers except for the first one (Du et al., 2024). Furthermore, shallow
models had 16 and 256 feature maps in their 2 convolutional layers, whereas
deeper models had feature maps that progressively increased from 16 to 32,
64, and finally 256 across the network depth. For the shallow models, we had
a pooling layer after each activation function and for the deeper models, we
had the pooling layer after every other activation layer. For the shallow models,
convolutional layers had either filter size of 9 × 9 or 17 × 17 pixels, leading to an
effective receptive field of the models of 28 × 28 or 52 × 52 respectively. For the
deeper models, we had filter sizes of 5 × 5 or 9 × 9 pixels leading to the same
effective receptive fields as the sallow models (see supplementary Fig. S3.1 for an
illustration of the detailed architecture of the shallow and deep 28× 28 models).
We tested a variety of activation functions including ReLU, ELU, Tanh, and Linear.
Moreover, we considered average and maximum pooling operations, each with
a pooling window of 2× 2 pixels.

The three-dimensional activation maps of the convolutional block were trans-
formed to the neural responses through a linear readout factorized using three
one-dimensional weight vectors wc, wx, and wy for the channels, and two spatial
dimensions respectively. For the image classification tasks, global average pooling
was applied to the three-dimensional activation maps to obtain the feature vector
used for classification.

71



Complexity measurement

To calculate the complexity of the function represented by a neural network, we
evaluate the network on a regularly sampled grid in its input space (Teney et al.,
2024). Our networks were trained with input normalized to the range from −1 to 1.
Therefore, we sampled 100 corners in the hypercube [−1, 1]d, where d is the input
dimension of the network. We sampled 50 points regularly on each of the 100 lines
connecting each corner with its succeeding corner and evaluated the network
at each sample input point.

Let x be the regularly sampled line in the range [−1, 1], and y be the activation of
a certain output node evaluated at the data points lying on that line in the input
space hypercube. We compute the coefficients c of Chebyshev polynomials that
fit the data (x, y) by minimizing the least square error:

E =
n∑

i=1

(
yi −

d∑
k=0

ckTk(xi)

)2

where k is the polynomial order and Tk(xi) is the k−th Chebyshev polynomial
evaluated at the i-th input xi. The Chebyshev polynomials Tk(x) are recursively
defined as:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x)

We define the complexity metric as the average of the polynomial orders weighted
by their corresponding Chebyshev coefficients:

ComplexityChebychev =

∑d
k=0 ckk∑d
k=0 ck

For each output node, we average the 100 complexity metrics from the 100 lines
to obtain one complexity measurement per one output node.

Comparison to experimental V1 data

To go beyond regression, we tested the alignment of the artificial neurons in our
models with experimental data recorded from the V1 area by comparing their
orientation selectivity distributions. We presented the models with Gabor patches
of different orientations and phases (Kong et al., 2022). Orientations were sampled
at 10◦ steps in the range from 0◦ to 180◦ and 20 phases were sampled evenly from
0◦ to 360◦. The spatial frequency of the Gabor patches was chosen to allow the
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receptive field of the model neurons to contain two cycles i.e. for the receptive
field of 28× 28 pixels and input size of 128× 128 pixels, we used a spatial frequency
of 9.142 cycles/image. Specifically, we generated the Gabor patches according
to the formula:

f(x, y;σ, λ, ψ, θ, γ) = exp

(
−x′2 + γ2y′

2

2σ2

)
cos

(
2πx′

λ
+ ψ

)

and [
x′

y′

]
=

[
cos θ sin θ

− sin θ cos θ

][
x

y

]

where σ = 20 pixels is the standard deviation of the Gaussian envelope which
controls the size of the Gabor patch, λ is the wavelength of the sinusoidal factor in
pixels, ψ is the phase offset of the sinusoidal factor, θ is the orientation of the Gabor
patch in radians and γ = 1 is the spatial aspect ratio, specifying the ellipticity of
the support of the Gabor function.

We calculated the orientation tuning curves of the center location of every
artificial neuron at the last convolutional layer of our models. The tuning curves
were scaled to the range from 0 to 1 to avoid negative responses in activation
functions such as Tanh, Elu, and Linear. To establish a baseline for artificial neuron
responses, the minimum response value across the V1 test set was determined.
This minimum value was then used in the scaling of the tuning curves. Then
we followed the analysis steps mentioned in (Gur et al., 2005) to calculate the
orientation selectivity distribution of the V1 neurons recorded from awake monkeys.
Briefly, we linearly interpolated the tuning curves with 1◦ steps, then smoothed
them with a Hanning filter with a 7◦ half-width at half-height. We then quantified
the orientation selectivity of neurons from the tuning curves by calculating the
circular variance (CV) (Mazurek et al., 2014). The circular variance was calculated
from the smoothed tuning curves resampled at regular 15◦ intervals according to
the equation:

CV = 1−
|
∑

k rke
i2θk |∑

k rk

where θk is the orientation in radians and rk is the corresponding response.

For each model, we simulated 100 in-silico electrophysiology experiments by
randomly sampling with replacement 339 neurons from its last convolutional layer.
We calculated their CV as described. From each experiment, we compared the
distribution of CV with the corresponding distribution obtained from 339 V1 neurons
recorded from alert macaques (Figure 3 in (Gur et al., 2005)) by calculating a V1
deviation score and then averaging the scores over the 100 experiments to obtain
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one score per model. The V1 deviation score was computed as the Wasserstein
distance between the distribution of circular variance of the model’s neurons and
the corresponding distribution of experimental V1 neurons.
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Figure S3.1. VGG16 encoding models. (a) On top of the three-dimensional
feature maps of each convolutional layer (gray rectangles), we trained a linear
readout (arrows) to predict the neural responses of a certain brain area. We
used ImageNet-trained VGG16 model and randomly-initialized variants. (b) Linear
readout was factorized into 3 one-dimensional weight vectors wc, wx, and wy for
the channels and the two spatial dimensions respectively.

75



Convolution
+ BN 

+  Activation function
Pooling Pooling

Readout

Wc

Wy

Wx

St
im

ul
us

N
eu

ra
l

Re
sp

on
se

s

Convolutional Block
Convolution
+ BN 

+  Activation function

Convolution
+ BN 

+  Activation function
Pooling Pooling

Convolution
+ BN 

+  Activation function

Convolution
+ BN 

+  Activation function

Convolution
+ BN 

+  Activation function

St
im

ul
us

N
eu

ra
l

Re
sp

on
se

s

Wc

Wy

Wx

a

b

16

16 256

256

3

128

120

60

54

26

3 16 32

32 64 256
256

128

124

120

60

56

52

26

9 x 9

9 x 9

5 x 5 5 x 5

5 x 5

5 x 5

Figure S3.2. Architecture of CNNs used for encoding neural responses. All models
are formed of a convolutional block and a linear readout. Readout is factorized
into three one-dimensional vectors (wc, wx, and wy) that transform the channels
and the two spatial dimensions of the feature maps of the last convolutional
layer into neural activity. (a) The convolutional block of shallow models used
for encoding early visual cortex activity is formed of two convolutional layers
with 9 × 9 filter sizes. Each layer is followed by a batch normalization (BN) layer,
an activation function (ReLU, ELU, Tanh, or linear), and a pooling layer of 2 × 2
window size and stride = 2 (maximum or average pooling). (b) The convolutional
block of the deeper models used for encoding higher visual areas is formed of
4 convolutional layers with 5 × 5 filter sizes. Each layer is followed by a batch
normalization (BN) layer and an activation function (ReLU, ELU, Tanh, or linear).
Every other layer is followed by a pooling layer of 2× 2 window size and stride = 2
(maximum or average pooling). The spatial resolution of feature maps is printed
on top of each block of feature maps. Number of feature maps (channels) is
printed at the bottom. All convolutional layers are depthwise separable except
for the first one. The effective receptive field of neurons in the feature maps of the
last convolutional layer of both models is 28× 28 pixels.
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window size and stride = 2 (maximum or average pooling). (b) The convolutional
block of the deeper models used for encoding higher visual areas is formed of
4 convolutional layers with 5 × 5 filter sizes. Each layer is followed by a batch
normalization (BN) layer and an activation function (ReLU, ELU, Tanh, or linear).
Every other layer is followed by a pooling layer of 2× 2 window size and stride = 2
(maximum or average pooling). The spatial resolution of feature maps is printed
on top of each block of feature maps. Number of feature maps (channels) is
printed at the bottom. All convolutional layers are depthwise separable except
for the first one. The effective receptive field of neurons in the feature maps of the
last convolutional layer of both models is 28× 28 pixels.

76

0.0

0.2

0.4

0.6
IT

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1v

imagenet
random

0.0

0.2

0.4

0.6
VO2

imagenet
random

0.0

0.2

0.4

0.6
IT

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1

imagenet
random

0.0

0.2

0.4

0.6
VO2

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1v

imagenet
random

0.0

0.2

0.4

0.6
IT

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1

imagenet
random

0.0

0.2

0.4

0.6

En
co

di
ng

 P
er

fo
rm

an
ce V1v

imagenet
random

0.0

0.2

0.4

0.6
VO2

imagenet
random

a

b

c

RESNET50 Layer Depth

INCEPTIONV3 Layer Depth

DENSENET121 Layer Depth

Figure S3.3. Encoding performance of popular convolutional architectures. (a)
Encoding performance of a linear readout optimized on top of the representations
of the convolutional layers of RESNET50 model either upon random initialization
(in red) or pretraiend on ImageNet dataset for object recognition (in blue) for
four neural datasets: Two electrophysiological datasets recorded from macaques:
the early visual cortex V1 and the higher visual area IT and two fMRI datasets
recorded from humans: the early visual cortex V1v and the higher visual area VO2.
(b) same as a but for INCEPTIONV3 model. (c) same as a but for DENSENET121
model.
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Figure S3.4. Distributions of encoding models’ output nodes complexity. Each
distribution represent the complexity of output nodes (see methods) of a certain
model configuration (with respect to the pooling strategy and activation function)
trained on human V1v, V1d (upper two rows), VO1 and VO2 (lower two rows) data.
Only linear readout was trained on top of random convolutional features (left
column) or the model was fully trained (right column). Each distribution is the
average of 3 training iterations.
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Figure S3.5. Orientation selectivity of random models. (a) Tuning curves of the
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model configuration upon random initialization. (b) Distributions of the circular
variance of the artificial neurons of the last convolutional layer of each model
configuration upon random initialization.
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Figure S3.6. (a) Median circular variance of the artificial neurons of the last con-
volutional layer of V1 trained and IT trained models of different configurations
averaged across 5 iterations. Error bars are the standard deviation. (b) V1 devia-
tion scores of V1 trained and IT trained models averaged across 5 iterations. Error
bars are the standard deviation.
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Abstract
We propose a general framework for diagnosing brain disorders from Electroen-
cephalography (EEG) recordings, in which a generative model is trained with
EEG data from normal healthy brain states to subsequently detect any systematic
deviations from these signals. We apply this framework to the early diagnosis of
latent epileptogenesis prior to the first spontaneous seizure. We formulate the early
diagnosis problem as an unsupervised anomaly detection task. We first train an
adversarial autoencoder to learn a low-dimensional representation of normal EEG
data with an imposed prior distribution. We then define an anomaly score based
on the number of one-second data samples within one hour of recording whose
reconstruction error and the distance of their latent representation to the origin of
the imposed prior distribution exceed a certain threshold. Our results show that in
a rodent epilepsy model, the average reconstruction error increases as a function
of time after the induced brain injury until the occurrence of the first spontaneous
seizure. This hints at a protracted epileptogenic process that gradually changes
the features of the EEG signals over the course of several weeks. Overall, we
demonstrate that unsupervised learning methods can be used to automatically
detect systematic drifts in brain activity patterns occurring over long time periods.
The approach may be adapted to the early diagnosis of other neurological or
psychiatric disorders, opening the door for timely interventions.
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Introduction
Epilepsy is a very common neurological disorder. Nearly 1% of the world’s pop-
ulation will develop epilepsy at some point in their lives. Roughly 30% of these
epilepsies will become drug-resistant (Kwan & Brodie, 2000), i.e., seizures cannot
be controlled through medications. Epilepsy is often triggered by an initial brain in-
jury, which is followed by a clinically silent so-called latent phase, during which the
brain is undergoing a cascade of structural and functional changes. This process
where the healthy brain transforms into an epileptic brain capable of generating
spontaneous recurring seizures is called epileptogenesis (Löscher, 2019; Pitkänen
& Engel, 2014). Importantly, the longer an epilepsy has been established, the more
resistant to treatment it will be. Therefore, to issue early medical interventions and
provide the potential epilepsy patients a better chance of living seizure-free lives,
it may be helpful to identify epileptogenesis already before the first spontaneous
seizure (FSS), which defines the beginning of an established epilepsy (Moshé et al.,
2015).

EEG is a popular tool to measure brain activity at a high temporal resolution and it
is often used in clinical settings and animal research (Löscher, 2019). The task of
detecting epileptogenesis during the latent period, where there are no seizures
yet, with EEG is very challenging and under-researched (Engel Jr & Pitkänen, 2020;
Pitkänen et al., 2016), since it is often clinically silent. One contributing factor is that
the data during this latent epileptogenesis phase is hard to acquire, especially in
human patients. Usually, patients receive medical care only after experiencing
at least one seizure. In animal epilepsy models, it is possible to acquire EEG data
before the onset of the chronic seizures. However, due to a lack of well-established
EEG biomarkers and well-annotated datasets, detecting epileptogenesis prior to
the first spontaneous seizure remains a big challenge (Engel Jr & Pitkänen, 2020;
Pitkänen et al., 2016).

Recent advances in machine learning (ML) offer promising directions for epilepsy
research and have delivered encouraging results including seizure forecasting in
canines with epilepsy (Nejedly et al., 2019), seizure forecasting and cyclic control
in human patients (Stirling et al., 2021), epilepsy detection in clinical routine
EEG data (Uyttenhove et al., 2020), as well as epileptogenesis detection and
staging in animal epilepsy models (Lu et al., 2020a, 2020b). Specifically, there
have been several studies on biomarker discovery for identifying epileptogenesis
focusing on high-frequency-oscillations (HFOs) (Bragin et al., 2004; Burnos et al.,
2014), dynamics of theta band activity (Milikovsky et al., 2017), asymmetry of
background EEG (Bentes et al., 2018), and nonlinear dynamics of EEG signals (Rizzi
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et al., 2019).

Generally, applying supervised ML to medical diagnosis problems is often ham-
pered by the lack of large amounts of labeled training data. Therefore, we here
consider a fully unsupervised learning framework that does not require any an-
notated data. Rather, the idea is to train a model to capture the statistics of
normal healthy brain activity and use the model to subsequently detect system-
atic deviations from the healthy state. In our case, the types and the frequency
of anomalous signals indicating the progression of epileptogenesis are not ac-
cessible and unpredictable during training. The signals are gradually evolving,
which reflects the underlying changes taking place in the brain, evolving from a
healthy brain to an epileptic one. This nature of the data renders a large amount
of overlapping features between the healthy phase and the epileptogenic phase,
which imposes grave difficulties for anomaly detection.

Inspired by the work from Schlegl et al. (2017) and Makhzani et al. (2015), we
propose an adversarial autoencoder (AAE) network for anomaly detection in
epilepsy progression. AAEs proposed by Makhzani et al. (2015) impose a prior
distribution on to the latent codes learned by the encoder through the adversarial
training. Here, we propose a flexible framework that makes use of different loss
terms such as the reconstruction loss and the distance of the encoding distribution
to the prior distribution to compute different anomaly scores.

Here, we would like to emphasize on one fundamental difference between our
work and other works on seizure detection and prediction, i.e., there is no seizure
yet in the data of interest in our work. We focus on detecting slow changes in
brain activities before the very first unprovoked epileptic seizure aiming for early
diagnosis of epilepsy (Fisher, 2015). This is a much more challenging problem that
has only been recently addressed, but never with unsupervised methods (to the
best of our knowledge).

Specifically, our contributions can be summarized as follows:

• We present an unsupervised adversarial autoencoder framework for detect-
ing slowly evolving anomalies in brain activity.

• We validate our approach with data from a rodent epilepsy model and
demonstrate good discriminative ability of signals from different phases of
the epileptogenesis process.
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Generalizable Insights about Machine Learning in the
Context of Healthcare

In medical applications, massive amounts of data have been collected, how-
ever, obtaining expert annotations is extremely expensive and often infeasible.
Especially, during the early disease progression phase, e.g., the case of early
diagnosis of epilepsy, where the background normal activities are dominating
the collected data and only gradual changes of certain features are involved.
Our approach provides the opportunity of modeling the normal (healthy) data in
an easy-to-acquire clinical setting and of detecting the slow evolution of disease
progression in the collected query data. We emphasize that our framework is very
general and could be applied to other neurological and psychiatric disorders,
supporting early diagnosis and intervention. Moreover, our ablation studies show
the significance of using adverserial training to further restrict the prior distribution
of the latent space of the autoencoders trained on normal (healthy) EEG data.
It led the autoencoders to learn an approximation to the normal (healthy) data
distribution that maximized the separability between the normal (healthy) and
anomalous (unhealthy) data.

Related Work
Early diagnosis of epilepsy holds great potential, since it might enable timely treat-
ments that could potentially alter or even halt the disease progression. However,
analysing large scale EEG data to discover bio-markers of epilepsy progression
is very challenging. Recently, there has been an increasing interest in this area.
For example, Rizzi et al. (2019) applied nonlinear dynamics analysis of EEG signals
via recurrence quantification analysis. They found a significant decrease of the
so-called embedding dimension in early epileptogenesis that correlates with the
severity of the ongoing epileptogenesis. Buettner et al. (2019) identified two fre-
quency sub-bands that are mostly effective in separating a healthy group from
an epilepsy group with classic signal processing methods. Applying ML meth-
ods, Lu et al. (2020b) investigated the usage of raw EEG time series to distinguish
mildly-injured and epileptogenic brain signals and demonstrated the potential of
DNN-based methods in epileptogenesis detection. Furthermore, they extended
the methods for staging the progression of epilepsy before the manifestation of
the first spontaneous seizure (Lu et al., 2020a). In contrast to these supervised
methods, we here propose an unsupervised anomaly detection approach, where
the model is only trained with EEG signals that have been recorded prior to the
disease-inducing injury in a rodent epilepsy model.
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Anomaly detection (AD) describes a class of problems to detect samples that
do not conform to the regularities of the training data. It can be addressed in a
supervised learning, semi-supervised learning, or unsupervised learning fashion
given the availability (or not) of sample labels (Gu et al., 2019). It can also be
viewed as a one-class learning problem, where the training data are deemed
to be the one class of interest. The models are trained to learn a classification
boundary, either on a hyperplane (Schölkopf et al., 2001), or a hypersphere (Ruff et
al., 2018; Tax & Duin, 2004) to separate anomalies from the nominal data (Ruff et al.,
2019; Shen et al., 2020). Various AD methods are based on an encoder-decoder
framework. In this framework, the model consists of two parts: an encoder and
a decoder. The encoder maps the input into a lower-dimensional latent space
representation, which the decoder uses to output a reconstructed version of the
input. The reconstruction error between input and its reconstruction is usually used
as the anomaly score, i.e., samples with high reconstruction error are deemed to
be anomalous (P. Malhotra et al., 2016; B. Zhou et al., 2019). In addition, the error
between the encoded latent vectors of the original input as well as that of the
reconstructed input can be incorporated when defining the anomaly score (Kim
et al., 2019). In the case where the knowledge of the anomalies is not accessible
or is unpredictable during training, one can impose a regularizer on the learned
latent distribution. Abati et al. (2019) propose to equip a deep autoencoder
with a parametric density estimator, where the latent vector is generated in an
autoregressive fashion. The overall model is trained to minimize the reconstruction
error between the input and the output of the decoder network, as well as the
log-likelihood of generating the latent vectors given the learned encoder network.

Adverserial autoencoders (AAEs) proposed by Makhzani et al. (2015) extend this
notion of anomaly by imposing a prior distribution over the learned posterior by
an encoder network through adversarial training. Specifically, an autoencoder is
trained to reconstruct the input with low error, and an adversarial training process is
applied to match the learned posterior distribution of the latent representation of
the autoencoder to a prior distribution. One of the benefits of the AAE framework
is the flexibility in choosing the prior distributions (Makhzani et al., 2015). The
difference between AAEs and variational autoencoders (VAEs) is that VAEs use a
KL-divergence term to impose a prior distribution on the latent code distribution,
however AAEs achieve this by the adversarial training procedure. Schlegl et al.
(2017) proposed a deep convolutional generative adversarial network trained
to capture a manifold of normal anatomical variability in optical coherence
tomography images of the retina based on the weighted sum of residual loss,
a measure of reconstruction error, and discrimination loss. In Pidhorskyi et al.
(2018), the proposed model consists of auto-encoders under the adversarial
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training paradigm. Specifically, the probability distribution of the normal samples
is learned through the encoder-decoder framework, and the anomaly score is
computed through the evaluation of the probability of the test sample, i.e., normal
samples will achieve high probabilities and anomalies will exhibit low probabilities.

It is common that the aforementioned methods assume that during the training
there are no anomalous samples. However, in our case, we do not enforce this
assumption, and in fact, we expect during the training phase, the model will
encounter close-to-anomalous samples due to the nature of the experiment
setup. Whilst many anomaly detection problems require label information during
training (Gu et al., 2019; Tax & Duin, 2004), our method is completely unsupervised.

Dataset
The dataset used in this study stems from intracranial EEG recordings with a single
depth electrode from a rodent mesial temporal lope epilepsy with hioppocampal
sclerosis (mTLE-HS) model, where epilepsy is induced by electrical perforant path-
way stimulation (PPS) (Costard et al., 2019; Norwood et al., 2011). Two groups of
animals were considered by Costard et al., 2019: (1) PPS-stimulated rats, which de-
veloped epilepsy after an average epileptogenesis duration of 24 days (standard
deviation 15 days), (2) control rats that had the depth electrode implantation as
in the PPS group, but did not undergo the PPS and did not develop seizures by
the end of recording (recording time was limited by the lifetime of the battery of
the wireless transmitter). Continuous EEG recordings were obtained from the time
of implantation of the depth electrodes. On average, a week of pre-stimulation
(baseline) period was recorded for all rats. The EEG was recorded at the sampling
rate of 512 Hz and band-pass filtered between 0.5 Hz and 176 Hz. Additionally, a
notch filter at 50 Hz was applied to all the recordings.

The animal cohort used in this study consists of seven PPS-stimulated rats and
three control rats. It is worth noting that during the data acquisition, there are
several sources of noise in the signals: (1) electronic interference to the wireless
transmission, which results in occasional extremely high amplitude peaks, (2)
data loss during the transmission, which results in unchanging values for certain
periods. To handle the these problems, we applied an outlier filtering method
from MATLAB: filloutliers 1 with the parameters method = ’pchip’; movmethod

= ’movmedian’; window = 50. Furthermore, we discarded the segments that have
more than 20% data loss, which resulted in around 5% of the total recordings being
discarded. Due to lack of annotations of artifacts such as movements, muscle

1https://www.mathworks.com/help/matlab/ref/filloutliers.html
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Figure S4.1. (a) Timeline of the experiment for the stimulated group (top) and the
control group (bottom). Perforant pathway stimulation (PPS) is only performed
on the PPS group but not the control group.(b) Proposed network structure. The
backbone is a standard autoencoder, where the encoder Encx encodes the
input into a latent representation z and the decoder Decx reconstructs the input
from the vector z. Disz is a discriminator that distinguishes whether a sample z is
from the encoded representation or drawn from the prior distribution q(z).

twitching, chewing, etc., we do not discard them specifically. The time span of
the experiment and the different phases are shown in Fig. S4.1a.

Methods
In this section, we describe the proposed adversarial autoencoder-based anomaly
detection method in detail. The main idea is to train our model with only normal
data from the training animals and measure the deviation of the test animal data
from the learned distribution with an anomaly score based on two performance
metrics: reconstruction error and distance of the latent code to the origin of the
prior distribution. Code will be available online2 for reproducability.

Proposed Model

We formulate our task as an unsupervised anomaly detection problem by learning
only the distribution of the baseline EEG data through an adversarial autoencoder
(AAE). The AAE is composed of three sub-networks: encoder, decoder, and
discriminator (Fig. S4.1b). The encoder is trained to map the input data into a
lower-dimensional latent space p(z|X), which the decoder uses to reconstruct the
input p(X|z). By being trained to discriminate between true samples from the prior
distribution and the fake samples generated by the encoder, the discriminator
generates a teaching signal to the encoder to generate a latent code that
matches the prior distribution. This adversarial loss serves two purposes: first it acts
as a regularizer for the training and second it is used as an additional performance

2https://github.com/amr-farahat/Epileptogenesis
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Figure S4.2. Receiver operating characteristic (ROC) curve for classifying baseline
versus epileptogenesis periods for each animal in our dataset (n = 10). We show
here the ROC curve for the 0.8R anomaly score which is a weighted average
of the R and D based anomaly scores. We use the count of supra-threshold
one-second segments within one hour as an anomaly score. The threshold is
selected to be the 99th percentile of the training distribution of reconstruction
errors and distances to the origin of the prior distribution of the latent space for
the R and D based anomaly scores, respectively.

metric as we explain later. Specifically, the discriminator is trained with the loss
function:

LDis = − log(Dis(z))− log(1−Dis(E(X))) , (4.1)

where z are the true samples from the prior distribution and X are the data
samples. On the other hand, the encoder and the decoder are trained with the
loss function:

LAE = ∥X−Dec(Enc(X))∥2 (4.2)

and the encoder/generator is trained with the loss function:

LGen = − log(Dis(Enc(X))) . (4.3)

Input data are one-second EEG segments collected as described in Section
"Dataset". The encoder model is a residual convolutional neural network (He et al.,
2016a) that consists of two blocks each composed of four residual units. Each
residual unit is formed of two convolutional layers with kernel size = 3× 3 followed
by batch normalization (Ioffe & Szegedy, 2015) and RELU activation functions. The
number of kernels gradually doubles from 64 to 512 every two residual units and
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the signal gets downsampled at the beginning of each block with stride = 2. At
last, we have a convolutional layer with a kernel of size 1×1 to collapse the feature
maps into the 128-dimensional latent code. The decoder model follows the same
architecture, but with the use of transposed convolutions to upsample the latent
code into the original 512-dimensional input size. The discriminator model is a
fully connected network formed of two hidden layers each with 1000 units and
followed by a leaky RELU activation function with α = 0.2. The output layer is
formed of one unit with a sigmoid activation function for binary classification.

The model is trained in two phases: a reconstruction phase and a regularization
phase. In the reconstruction phase, both the encoder and the decoder are
updated to minimize the reconstruction loss (Equation 4.2). In the regularization
phase, the discriminator is first updated to distinguish between the true samples
drawn from the prior distribution and the samples generated by the encoder
(Equation 4.1). Then, the encoder/generator is updated to fool the discrimina-
tor (Equation 4.3). We balance the contributions of both LAE and LGen to the
trainable weights of the encoder/generator by a weighting parameter that we
set to 0.99 and 0.01 respectively. All parts of the model are updated with the
Adam optimizer (Kingma & Ba, 2014) with base learning rate = 0.0002, β1 = 0.5 and
β2 = 0.999. The prior distribution is a multivariate normal distribution with µ = 0 and
σ = 0.1 (see more in Section "Ablation"). We used MATLAB for preprocessing the
data and used python for creating and training the models (specifically using the
TensorFlow library (Martín Abadi et al., 2015)) and performing the post-hoc analysis
of the results. It takes approximately 1.5 hours to train one epoch of 330-360 hours
of EEG data.

After training, the AAE can be used to scan the query data to look for deviations
from the training data distribution. In the data space, anomalous data are
expected to have high reconstruction errors. On the other hand, depending on
the nature of the changes in the brain activity due to the disease process (global
or local changes in the signal), anomalous data can be expected to either lie
in the the low or high probability density areas of the prior distribution used for
training (Schreyer et al., 2019). For that reason, we additionally test the value of
using the distance of the latent code to the origin of the prior distribution to define
anomalous data.

Cross-validation Scheme

We adopt a leave-one-out (LOO) cross-validation scheme where we iterate
over the list of all animals (seven PPS rats and three control rats) and in each
iteration, we withhold the data from the test animal completely and train the
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model on the normal data collected from all other (nine) animals. Since we aim
for the model to capture the features of a normal EEG signal, we only use the
data from the baseline period of the PPS groups. Additionally, we include the
data from the control animals from the entire recording period. Note that it is
shown that in longitudinal EEG recordings, various noise sources will be introduced
due to the degradation of the implanted depth electrodes and changes in
the electrode-tissue interface near the electrode (Kappenman & Luck, 2010;
Straka et al., 2018). Hence, it is important to include the data from the control
animals covering weeks of recording time in order to make sure that the model
utilizes epileptogenesis-related features for discriminating between baseline and
epileptogenesis periods and not the artifacts induced by the long-term recording.
Specifically, we randomly selected 30 hours from the baseline period of each PPS
animal and 75 hours from the whole recording period from each control animal to
create the training dataset for each test animal in a LOO cross-validation scheme.

Detection Process

After training the full model on the training data from 9 out of 10 animals, we tested
the ability of the trained model to distinguish between baseline and epileptogen-
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same time simulate a clinical setting, we compute the number of suprathreshold
segments within a certain time window (T = one hour), for both the baseline
and the epileptogenesis data of the test animal and consider this number as the
anomaly score (S).

SR(T ) =

n
i=1

IRi (4.6)

where

IRi =



1 if R(xi) > λR

0 otherwise
(4.7)

and

SD(T ) =

n
i=1

IDi (4.8)

where

IDi =



1 if D(xi) > λD

0 otherwise
(4.9)

where n is the number of one-second segments in time window T , e.g., 3600 in
one hour.

Consequently, we evaluate the ability of this aggregated anomaly score to dis-
tinguish between baseline and epileptogenesis data by computing the receiver
operating characteristic (ROC) curve and calculating the area under the curve
(AUC). We compute the ROC-AUC with the aggregated R and D metrics. More-
over, we investigate whether a weighted average of both anomaly scores would
lead to better classification results.

Results

Epileptogenesis Detection

The main goal of this study is to investigate the potential of using electrical brain
activity in an unsupervised way for predicting brain disorders and follow their de-
velopment as the brain activity deviates from its baseline distribution. We trained
an AAE on the baseline intracranial EEG data collected from PPS rats before
stimulation and from control rats in a leave-one-out cross-validation scheme. For
each test animal, we used the corresponding model to scan its whole data and
record the average reconstruction error for each one-second segment in the
data space. Additionally, we recorded the distance of the latent code to the
origin of its prior distribution. We considered different metrics to compute the
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Figure S4.3. Average area under the curve (AUC) for the PPS animals and control
animals for different definitions of the anomaly score and different models. (a)
Standard convolutional autoencoder (CAE). (b,c) Adversarial CAE with different
prior distributions. (d) Principal Component Analysis (PCA). In each panel, R
denotes the reconstruction error metric, D denotes the metric based on distance
of the latent code to the origin of its prior distribution. The remaining columns
consider weighted averages of R and D; the weight of R is indicated. The asterisks
above the bars denote that the difference between PPS and control animals
is statistically significant according to a Mann–Whitney U test (*:p < 0.05 FDR-
adjusted for multiple comparisons.)

anomaly score: the reconstruction error in the data space (R) and the distance
to the origin of the Gaussian prior distribution in the latent space (D). Using each
of these metrics, we computed an anomaly score by counting the number of
supra-threshold segments within one hour. The threshold was computed as the
99th percentile of the training distribution of this metric. We randomly sampled
1000 hours from each of the baseline and the epileptogenesis periods of the test
animal, computed the anomaly scores for them, and calculated the receiver
operating characteristic (ROC) curve for discriminating between the two periods
for each test animal in the dataset. We also computed additional anomaly scores
as the weighted averages of the anomaly scores computed based on the R
and D metrics which we denote xR where x ∈ [0, 1] and represents the weight
assigned to the R-based anomaly score where the D-based metric is assigned
the weight 1−x (see Fig. S4.2 for the ROC curve based on the 0.8R metric as it was
our best performing anomaly score and Fig. S4.3c for the average area under the
curve (AUC) for all anomaly scores). We observe that control animals have their
ROC curves around the diagonal which is expected since they were not exposed
to PPS and therefore there should not be a significant difference between their
baseline and hypothetical epileptogenesis periods. On the other hand, while
there is variability among PPS animals, all their ROC curves lie above the diagonal,
which denotes above chance discrimination performance. This is also reflected in
the significant difference between the average AUC of PPS and control animals
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(Fig. S4.3c first two bars). Contrarily, we note that the anomaly score based on the
D metric alone does not show a difference between animal groups (Fig. S4.3c
third and fourth bars), which means it is not a good metric for computing the
anomaly score for discriminating between baseline and epileptogenesis periods.
Next in the ablation study, we examine the value of the adversarial loss as a
regularizer.

Ablation Study

In Fig. S4.3c, we noticed that the discriminative ability of the model using only the
R metric is better than that with only the D metric. This is reflected in the AUC from
control animals being around the chance level for the R metric and significantly
above the chance level for the D metric. This suggests that the differences
between the normal and anomalous data in the data space are too subtle for
the encoder to push them into the low-density areas in the lower-dimensional
latent space.

To further investigate the relevance of different loss components of the proposed
method to the final epileptogenesis detection task, we performed ablation studies.
To this end, we trained a standard convolutional autoencoder (CAE) (Fig. S4.3a)
and an adverserial CAE with a standard Gaussian prior distribution (σ = 1.0) (Fig.
S4.3b) rather than our proposed method with σ = 0.1 (Fig. S4.3c). We notice that
even though the D metric did not prove useful alone for computing an anomaly
score that maximizes the separability between baseline and epileptogenesis
periods, adding the adversarial loss acted indirectly as a regularizer that boosted
the discriminability of the R-based anomaly score as evident by the high variability
of the average AUC of the PPS and control animal groups in case of the standard
CAE (Fig. S4.3a first two columns). Average AUC of PPS animals improved from
0.82 with std = 0.13 to 0.85 with std = 0.08. Additionally, using the weighted
average of both R and D based anomaly scores improved the average AUC
of PPS animals from 0.85 with std = 0.08 to 0.89 with std = 0.06 (0.8R) but only
when training with prior distribution with σ = 0.1 while there was no improvement
for the standard CAE or when training with prior distribution with σ = 1.0. This
can be explained by the fact that at the beginning of training with standardized
inputs and random weights, the encoder already produces a latent code that
approximates samples from a standard Gaussian distribution. Consequently, the
discriminator does not get the chance to learn the prior distribution and send
a teaching signal to the encoder/generator. Therefore, making the problem
harder for the encoder/generator by restricting the standard deviation of the prior
distribution has a better regularizing effect on the trained models.
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Figure S4.4. Fraction of one-second segments that exceeds the median of the
training distribution of reconstruction errors (supra-median fractions) for each ani-
mal in our dataset (n = 10) for the baseline (a) and epileptogenesis (b) periods.
Comparing supra-median fractions between the first (early) and last (late) day of
the baseline (c) and epileptogenesis (d) periods for each animal in our dataset
(n = 10). Average percentage of change between early and late supra-median
fractions for each animals group (PPS or control) for baseline (e) and epileptogen-
esis (f) periods.
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Moreover, we compared to a linear baseline for reconstruction-based anomaly
detection by using Principal component analysis (PCA) to reduce the dimension-
ality of the data to 128 components and then project back to the data space and
compute a reconstruction error. We merely obtain average AUC for PPS animals
of 0.82 with std = 0.11 which does not show statistically significant difference to the
control group AUCs (Fig. S4.3d). This is comparable to the standard CAE results,
but falls short to our best achieved results with the adversarial CAE with a gaussian
prior distribution with σ = 0.1 (Average AUC = 0.89 with std = 0.06).

Time Course of Epileptogenesis

We have shown so far that the R-based anomaly score was successful at dif-
ferentiating between EEG signals recorded during the baseline period and the
epileptogenesis period after PPS. Next, we examined what the temporal evolution
of reconstruction errors of the EEG signal can reveal about the epileptogenesis
process. For each full 24-hour day in the baseline and epileptogenesis periods,
we computed the fraction of one-second segments that have a reconstruction
error that exceeds the median of the reconstruction error training distribution
(fraction of daily supra-median segments in Fig. S4.4). We notice that the time
course of supra-median fractions is complex and variable across animals in both
periods. However, it is less variable in the baseline period specifically when we
consider the difference between the control and PPS animal groups (Fig. S4.4a
and quantified in Fig. S4.4c by contrasting the first and the last full-days of the
whole period). On the one hand, all animals tend to have either stable or slightly
increasing daily supra-median fractions across the whole baseline period. On the
other hand, in the epileptogenesis period (Fig. S4.4b and quantified in Fig. S4.4c),
control animals tend to have stable or decreasing daily supra-median fractions.
This is in contrast to PPS animals, which mostly, with the exception of only one
animal (PPS 7), have increasing daily supra-median fractions. Additionally, we
computed the percentage change in the daily supra-median fractions between
the first and last day for baseline and epileptogenesis periods for each animal
in our dataset. Looking at the averages across animal groups for each period
(Fig. S4.4e and f), we observe that both animal groups have comparable per-
centage change in daily supra-median fractions in the baseline period (p-value is
0.18 with Mann–Whitney U test). In contrast, PPS animals show significantly higher
percentage change than control animals in daily supra-median fractions during
the epileptogenesis period (p-value is 0.02 with Mann–Whitney U test). These results
show that the epileptogenesis process causes alternations to the brain that are
reflected in its electrical activity, which is in turn reflected in the ability of the
model to reconstruct this electrical signal. These changes in brain activity get
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progressively stronger and consequently, the reconstruction errors increase.

Discussion
Machine learning techniques have been transforming many domains of inves-
tigation, in particular those that require detecting patterns in vast amounts of
data. Healthcare applications have been at the top of the list of these domains,
specifically when it comes to diagnosing diseases or rehabilitating patients by
training machine learning models on labeled biomedical data like X-Rays (Ra-
jpurkar et al., 2017), magnetic resonance imaging (MRI) (Lundervold & Lundervold,
2019), EEG (Farahat et al., 2019; Lu et al., 2020a), and electrocardiograms (ECG)
(Hannun et al., 2019). Machine learning algorithms trained on large amounts of
data can discover new patterns in the data, e.g., diagnostic biomarkers, that
may be too subtle to be detected by humans. However, one problem is that the
data collected in the medical domain are usually imbalanced. There is a scarcity
of abnormal data that corresponds to certain diseases and disorders relative to
normal data from healthy subjects. Also, collecting data from patients is subject
to regulations that protect the privacy of the patients which makes it harder to
obtain.

One potential approach to overcome this problem of scarcity of abnormal data
is to leverage the abundance of normal data by training machine learning
models to learn the distribution of normal data and then survey the query data
for deviations from this learned distribution. Clinically, this approach can work as
a screening procedure for individuals with risk factors who can then be further
evaluated by professionals. Technically, this approach has the advantage of only
requiring the relatively cheap data of healthy subjects. However, this approach is
challenging when the deviations from normal data caused by the disease process
are subtle (especially early in the disease) and develop gradually over a long
period of time, which is the case in epileptogenesis.

In this study, we have given a proof of concept that such an approach can
be implemented through an adversarial convolutional autoencoder model. We
trained the model on normal EEG data collected from a rodent epilepsy model
and used it in an anomaly detection paradigm to screen the data of test animals
to discriminate between the data collected before and after PPS, i.e., to detect
a developing epilepsy. The anomaly scores were computed based on how the
reconstructed signal deviates from the original signal and could be viewed as
a proxy of how the epileptogenesis process develops over time after PPS. This is
important as anticipating epilepsy before the FSS could urge medical intervention
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that significantly improves the patients’ long-term quality of life (Moshé et al.,
2015). Note that we chose the time window of our anomaly score computation
to be one hour — which is clinically feasible — to act as a simulation for a clinical
routine.

Limitations The main goal of this study was to test the potential of an unsupervised
deep anomaly detection paradigm in detecting subtle changes in brain electrical
activity as a consequence of a brain-altering disease process. Despite the success
of the approach, it still falls short of a fully supervised approach. In particular, using
the same dataset, a previous supervised approach achieved an average AUC =
0.93 for distinguishing between baseline and epileptogenesis in PPS rats (Lu et al.,
2020a), in contrast to 0.89 for our approach. This is expected as in our approach,
the model does not have access to any epileptogenesis data. Another difference
is that the authors of that study used five-second segments instead of one-second
segments used here. However, we also experimented with five-second segments
and obtained similar results. Nevertheless, given the advantages of our approach
mentioned earlier, it is worth pursuing and with further advances in unsupervised
and self-supervised learning techniques, we expect further improvements.

Another limitation of our approach is that we computed anomaly scores on
relatively short one-second (or five-second) EEG segments. While our approach
aggregates these scores over longer periods of one hour, it does not look for
patterns at these longer time scales. This choice was motivated by the fact that
identified frequency bands that effectively differentiate healthy subjects from
epileptics in the epileptogenesis period lay above 1 Hz (Buettner et al., 2019).
However, we can not exclude the possibility that there is additional valuable
information in lower frequency bands that are not usually considered in EEG
analysis.

A final limitation is the relatively small number of individuals considered in this study.

Outlook In the future, we plan to pursue two broad directions with this approach.
First, we aim to translate the results to human patients at risk of developing epilepsy.
Second, we would like to test the generality of the approach by applying it to other
neurological or psychiatric disorders. In particular, several psychiatric disorders are
characterized by the alternation of episodes of different “states”. Examples are
bipolar disorder or schizophrenia. Detecting transitions between these states early
and automatically could improve the management of such disorders. Critically
for both research directions is to investigate the applicability of the approach to
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non-invasive surface EEG recordings.
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Chapter 5
Summary and General Discussion





Summary
In Chapter 1, I introduced DNNs as pivotal tools for analyzing complex, high-
dimensional data across scientific fields, including neuroscience. DNNs serve a
dual role: as powerful analytical tools and as computational models of brain
systems (e.g., CNNs for the primate visual system). However, a trade-off exists
between a model’s predictive power and its ability to provide insight into the un-
derlying phenomenon; replacing a complex biological system with a "black box"
model may not enhance understanding. Therefore, modelers must strategically
select model types based on whether prediction or explanation is prioritized for a
given research question.

In Chapter 2, I investigated whether CNNs utilize spatial relationships between
features for object recognition, employing a novel feature-scrambling approach.
CNNs with restricted Effective Receptive Fields (ERFs) were trained on various
datasets (Sketchy, Animals, ImageNet). Pretrained features from these CNNs
were spatially scrambled and fed into a follow-up network. This follow-up network
was trained for object recognition, allowing assessment of the impact of spatial
scrambling on performance. Minimal Recognizable Configurations (MIRC) analysis
quantified the minimal image patch sizes necessary for correct classification.
The results demonstrated that CNNs are capable of using spatial relationships
between features for object classification, particularly for textureless datasets
like sketches. The extent of this reliance on spatial relationships depends on the
dataset and even varies between classes within heterogeneous datasets (e.g.,
ImageNet). However, CNNs learn the spatial arrangement of features only up to
an intermediate level of granularity, not capturing the global shape holistically. This
limitation may stem from optimization pressures, as intermediate features offer an
optimal balance between sensitivity and specificity, crucial for object recognition.

In Chapter 3, I explored the relative importance of network architecture and
training in enabling CNNs to predict neural responses in the primate visual cor-
tex, focusing on early (V1) and higher visual areas (IT, VO). The study compared
task-optimized CNNs (trained for object recognition on ImageNet) and brain-
optimized CNNs (trained directly to predict neural activity) with random-weight
CNNs (without convolutional filter training). For V1, random-weight CNNs with
ReLU activations and max pooling achieved performance comparable to trained
networks in predicting neural responses, unlike higher visual areas (IT, VO). This
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suggests that, for V1, the architecture itself, specifically its non-linear complexity, is
a primary factor in encoding visual information, and convolutional filter training is
less critical. In contrast, higher visual areas require the precise weight configura-
tions learned through training to effectively encode complex visual information.
Furthermore, model complexity, quantified using Chebyshev polynomials, cor-
related strongly with V1 encoding performance for both random and trained
networks. Random-weight ReLU networks exhibited orientation selectivity similar
to V1 neurons, and training on V1 data further enhanced this selectivity, indicating
that the inherent structure of ReLU networks can capture basic visual features like
orientation tuning, even without explicit training. Random-weight networks per-
formed surprisingly well on a texture discrimination task, nearing the performance
of trained networks. However, for object recognition (digit recognition), trained
networks were significantly superior, suggesting that random networks suffice for
simpler visual tasks like texture processing, while object recognition necessitates
task-specific training.

In Chapter 4, I proposed a novel, unsupervised deep learning framework for the
early diagnosis of epileptogenesis (the process of developing epilepsy) using
EEG recordings. An Adversarial Autoencoder (AAE) was trained on EEG data
representing healthy brain states. The model learned to reconstruct normal brain
activity and represent it in a lower-dimensional latent space. Subsequently, when
presented with new EEG data, the model’s reconstruction error and the distance
of the latent representation from the learned normal distribution were used as
anomaly scores. The model successfully detected subtle, gradual changes in EEG
signals associated with epileptogenesis before the first spontaneous seizure. The
value of this unsupervised approach, compared to supervised methods, lies in
its independence from labeled epileptic activity data, making it practical when
disease data are scarce. This framework could be adapted for the early diagnosis
of other neurological and psychiatric disorders characterized by gradual changes
in brain activity.
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"Unfortunately, nature seems unaware of our intellectual
need for convenience and unity, and very often takes

delight in complication and diversity."

— Santiago Ramón y Cajal

Prioritizing accurate predictions over model explanation
in DNN models for neurological screening

In Chapter 1, I introduced the trade-off between a model’s prediction accuracy
and its interpretability: the ability to explain its predictions/decisions is often
inversely correlated with its predictive performance (Chirimuuta, 2021). Highly
predictive models, like DNNs, tend to be non-linear, complex, and consequently
opaque (i.e., "black boxes"). Ideally, we should strive for models that are both
highly predictive and highly interpretable, especially in high-stakes scenarios like
medical diagnostics. High accuracy can improve patient outcomes through
correct diagnoses, while interpretability builds trust and supports clinical decision-
making (Rudin, 2019; Yoon et al., 2022). However, when a trade-off is unavoidable,
the prioritization of prediction accuracy or interpretability becomes a debatable
issue.

Some researchers argue that interpretability is essential for deploying computa-
tional models in healthcare (Kundu, 2021; Rudin, 2019; Yoon et al., 2022). Inter-
pretability is crucial for identifying and mitigating biases in data and algorithms,
which can perpetuate health inequities. It also builds trust, facilitates clinical
acceptance, aids in error auditing, improves model development efficiency, and
is critical for establishing accountability in cases of model failures. Some even
argue against using black-box models in high-stakes scenarios, even with post-hoc
explanations, claiming these explanations are often inaccurate and incomplete
(Rudin, 2019). For instance, saliency maps might highlight image regions relevant
for a classifier but not how those regions are used and integrated within the model.

Conversely, other researchers argue that explaining model decisions is not strictly
necessary for adopting computational models in healthcare (Durán & Jongsma,
2021; Kawamleh, 2023; London, 2019). They argue that model reliability trumps
explainability in establishing trust (Durán & Formanek, 2018). Reliability can be
assessed through indicators like verification/validation, robustness analysis, a his-
tory of successful implementations, and expert knowledge (Durán & Formanek,
2018; Durán & Jongsma, 2021). Therefore, model developers should prioritize em-
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pirical validation on diverse datasets, across different populations and hospitals,
to mitigate biases (McKinney et al., 2020; Ting et al., 2017). Manipulating and
corrupting datasets can also test model robustness and identify failure scenarios.
Furthermore, clinical decision-making often relies on correlational evidence even
when the underlying causal mechanisms of a disease or intervention are unknown.
In this sense, some routine medical practices are not fundamentally different from
opaque machine learning models (London, 2019). Randomized controlled trials
(RCTs) can provide evidence for the efficacy of complex, opaque models, just as
they do for many medical interventions, without requiring a full explanation of their
mechanisms (Hernström et al., 2025). Moreover, clinicians often trust and operate
machines they cannot fully explain (e.g., MRI machines) (Durán & Jongsma, 2021).
Just as post-hoc explanations of complex models are criticized, similar critiques
apply to doctors providing post-hoc justifications for their decisions, which may rely
on intuitive judgment and unconscious biases (Carruthers, 2011; Kawamleh, 2023).
Expert radiologists, for example, often struggle to articulate rule-based explana-
tions for their diagnoses (Hegdé & Bart, 2018; Kawamleh, 2023; Sevilla & Hegde,
2017). Therefore, demanding higher explainability standards for computational
models than for human experts may be unreasonable.

However, clinical practices are diverse. Prioritizing either prediction accuracy or
interpretability likely depends on the specific clinical context, the stakes, and the
model’s intended use. Whether models are designed to replace physicians or
merely aid their decision-making also influences the required level of explainability.
For example, in ethically sensitive areas like resource allocation (e.g., organ trans-
plants), interpretability is paramount for accountability, fairness, and transparency.
In contrast, for screening and triage, the primary goal is efficient and accurate
identification of individuals needing further attention, reducing the burden on
the healthcare system (Hernström et al., 2025; McKinney et al., 2020; Ting et al.,
2017). Here, high sensitivity is crucial to avoid missing potential cases. A highly
accurate black-box model, even with limited interpretability, can be valuable,
especially if experts review positive cases. Indeed, when primary care providers
were surveyed, they valued sensitivity most when considering black-box AI models
for breast cancer screening (Hendrix et al., 2021). They did not prefer a radiolo-
gist confirming the diagnosis of all images over confirming only the likely positive
images suggested by the model. This illustrates a framework where DNN models
collaborate with, rather than replace, humans in screening workflows. Recent RCT
results show that this approach improved early breast cancer detection, reduced
workload, and did not increase false positives (Hernström et al., 2025).

Similarly, in Chapter 4, I introduced a DNN-based proof-of-concept framework for
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screening EEG signals for early signs of post-traumatic epilepsy during its develop-
ment. Due to the relative scarcity of disease data compared to normal data, the
model was not trained in a supervised manner to discriminate between normal
and disease EEG signals. Instead, a generative adversarial convolutional autoen-
coder learned the normative distribution of intracranial EEG data across multiple
rodent subjects. The model could then flag EEG segments as anomalous based
on their reconstruction errors. To improve sensitivity, crucial in clinical screening
(Hendrix et al., 2021), evidence of anomalous segments was aggregated over
a one-hour period, which is clinically feasible. Crucially, the model was built
with the intended clinical application in mind: 1) One-dimensional convolutions
were used to fit the time-series EEG data. 2) Unsupervised anomaly detection
training leveraged the relatively abundant and easily obtainable normal data.
3) Evidence aggregation over an extended time (one hour) improved sensitivity.
Multiple anomaly scores were evaluated to identify the most accurate. 4) Tempo-
ral progression of the fraction of anomalous data points was assessed, mirroring
common medical practice of repeated measurements to confirm diagnoses (e.g.,
multiple high blood pressure readings for hypertension diagnosis). 5) The model
was validated using a leave-one-out cross-validation scheme, testing generaliz-
ability across individuals in the population. 6) A simpler, more interpretable PCA
model was compared. However, its lower accuracy led to prioritizing the higher
accuracy of the less interpretable model. Finally, any clinical finding, whether
from a complex opaque model or a simple interpretable lab measurement, must
be contextualized and integrated with other clinical findings (medical history,
symptoms, other diagnostics) before making a clinical decision. Therefore, as
long as the DNN model outputs are integrated into clinical workflows under hu-
man physician supervision, their explainability should not be a barrier to clinical
adoption.

Explanation of biological and artificial visual intelligence
using DNNs

As argued above, researchers must be aware of the prediction-explanation trade-
off and develop models accordingly. If the goal is understanding brain function,
model interpretability is naturally essential. However, accurately predicting re-
sponses of a complex organ like the brain and the complex behaviors it supports
(e.g., object recognition) may be impossible with simple, interpretable models
(Wichmann & Geirhos, 2023). Therefore, employing complex, opaque models
is often unavoidable. Similar to the argument for integrating multiple clinical
findings, including outputs from complex models, scientific understanding of a
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phenomenon depends on integrating information from multiple sources. Therefore,
we can distinguish between model explanation and model-induced explanation
(Kästner & Crook, 2023; Lawler & Sullivan, 2021).

In model explanation, the model’s content is the explanation; the explanation of
the phenomenon is found directly within the model’s structure and inner workings.
For example, if a DNN predicts neural activity or performs object recognition, a
model explanation approach would focus on deciphering the internal mech-
anisms, parameters, and computations that transform input stimuli into neural
activity or behavioral output (e.g., object class). Achieving complete model
explanation for highly non-linear, complex DNNs is challenging, if not impossible
(Lipton, 2016; Rudin, 2019). Even if a trained DNN were converted into math-
ematical equations, those equations would likely be unintelligible to humans
(Chirimuuta, 2021).

In model-induced explanation, the relevant explanatory information is indepen-
dent of the model itself. The model acts as a tool or mediator to uncover under-
standing, but that understanding isn’t necessarily contained within the model
(Kästner & Crook, 2023; Lawler & Sullivan, 2021). Using the same example of a DNN
trained to predict neural activity or perform object recognition, a model-induced
explanation approach would focus on generating questions or suggesting hy-
potheses about the modeled phenomenon that can be further validated using
other methods. Essentially, researchers move beyond understanding the black-box
model to illuminate the real black box – the brain itself.

Texture and shape bias of CNNs as examples of model explanations

CNNs excel at object recognition. However, uncovering the perceptual dimen-
sions (e.g., shape, texture, color) CNNs utilize for categorization has been an open
research question. Initially, it was assumed that CNNs primarily used shape infor-
mation, as suggested by feature visualization techniques (LeCun et al., 2015; Olah
et al., 2017; Zeiler & Fergus, 2014), which often showed object parts as the most
activating features in deep layers. More recent, hypothesis-driven techniques
yielded conflicting results (Baker et al., 2018; Brendel & Bethge, 2019; Geirhos et al.,
2019; Kubilius et al., 2016; Ritter et al., 2017; Tartaglini et al., 2022).

For example, Ritter et al., 2017 used a dataset inspired by cognitive psychology
experiments, with image triplets (probe, shape-match, color-match), to test shape
bias. Shape bias was estimated by the proportion of shape labels assigned to the
probe, calculated using distances in the CNN representation space. This study
concluded that ImageNet-trained CNNs exhibited a strong shape bias. Another
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study used images with texture-shape cue conflict images, generated using style
transfer (Gatys et al., 2016), to quantify shape bias in both humans and CNNs
(Geirhos et al., 2019). Shape bias was measured as the percentage of trials where
participants/models responded with the shape category. This study found that
ImageNet-trained CNNs - unlike humans - were strongly biased towards texture.
A more recent study replicated both approaches with modifications (Tartaglini
et al., 2022). By decreasing the opacity of background texture in cue-conflict
stimuli, they found that removing the influence of background texture resulted in
a preference for shape over texture. Moreover, using image triplets with texture-
match probes instead of color-match probes and manipulating stimulus size, they
found shape bias for small stimuli, decreasing with increasing size. These conflicting
results highlight the fragility and incompleteness of post-hoc model explanation
techniques, as conclusions can depend on subtle design choices. Moreover,
these studies often make an implicit, and likely incorrect, assumption equating
texture with local features and shape with global features.

In Chapter 2, I developed a novel feature-scrambling approach to address CNN
object representations in a hypothesis-free manner. The goal was to determine
the granularity of learned features sufficient for reasonable object recognition and
whether CNNs could combine finer-grained features to create coarser-grained
features in a way sensitive to spatial relations. Importantly, this approach did
not involve manipulated stimuli or special datasets that could predetermine the
observed bias. It also did not assume what constitutes shape or texture, but
rather tested how CNNs integrate features along their depth and whether spatial
relations are crucial for this integration. That is because encoding spatial relations
between features is essential for the emergence of shape object representations
(Biederman, 1987; J. Hummel & Biederman, 2002; J. Hummel, 2013). Analysis
revealed that CNNs can use spatial relations to integrate fine-grained features,
constructing coarser-grained ones. However, the extent of this integration de-
pends on the dataset and object class. It was also limited to an intermediate
level of granularity, not capturing the object’s global form, even for textureless
datasets (e.g., sketches). These results were validated using another explainability
technique, MIRCs. MIRC analysis showed that CNNs could correctly recognize
natural objects and sketches from partial image crops that did not include the
objects’ global forms. These intermediate features are optimal for object recogni-
tion, balancing sensitivity and specificity (Ullman et al., 2002). These findings help
reconcile previous conflicting conclusions, suggesting that human shape represen-
tations may not be an emergent property of optimizing for object recognition (G.
Malhotra et al., 2022) and might not originate in the ventral visual stream, which
is primarily associated with object recognition (Ayzenberg & Behrmann, 2022a,

109



2022b; Jagadeesh & Gardner, 2022; Long et al., 2018). The intermediate features
CNNs learn could be combinations of local shape and texture features. When
texture covers the entire image in texture-shape cue conflict stimuli, texture-based
evidence overwhelms local shape features, leading the CNN to classify based on
texture. Removing the background allows local shape features (edges, contours)
to provide relatively stronger evidence for their associated class.

In summary, modeling complex behaviors like object recognition necessitates
complex, opaque models like DNNs. We can still gain insights into how DNNs
perform these tasks using novel post-hoc explanation techniques. However, re-
searchers must recognize that post-hoc explanations can be incomplete and
deficient. Their results must be integrated within a broader literature to yield
valuable insights.

Model-induced explanations of the importance of both architecture
and training in modeling different stages of the visual hierarchy

Modeling the mapping from high-dimensional input stimuli to high-dimensional
neural activity requires complex, non-linear models like DNNs. But how can we
learn about brain computations by replacing one black box (the brain) with
another (the model)? Can DNN models induce understanding of the modeled
system despite being complex and opaque? (Kästner & Crook, 2023; Lawler &
Sullivan, 2021).

Cadena et al., 2019 used an ImageNet-trained VGG19 model to predict V1 neural
responses in macaques, achieving better performance than traditional models
like linear-non-linear Poisson models and Gabor filter banks. The best predictive
layer was conv3_1, five non-linear transformations from the input. Two conclusions
could be drawn: First, V1 neurons might perform more complex computations
than previously thought. However, a more recent study showed that with an
AlexNet model, the first layer was the best predictor of V1 responses, suggesting
that V1 prediction might not require as many non-linear transformation steps (Miao
& Tong, 2024). The key difference is that AlexNet uses larger convolutional filters,
increasing receptive fields faster along the network’s depth. Du et al., 2024 similarly
found that model performance saturated after only two convolutional layers when
training simple CNNs directly on V1 data. These findings challenge the conclusion
that modeling V1 computations requires many non-linear transformations.

Second, object recognition training might be important for predicting V1 activity.
However, the study lacked a random-weight CNN control to validate this. In
Chapter 3, I showed that random-weight VGG16 models performed comparably
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to their ImageNet-trained counterparts in predicting V1 neural data, suggesting
that Cadena et al., 2019’s findings can be largely explained by CNN architec-
ture, not object recognition training. Similar to Cadena et al., 2019, Du et al.,
2024 did not report random-weight CNN control model performance besides
their models directly trained on V1 data. Surprisingly, I found that simple 2-layer
CNNs trained directly on V1 neural data did not considerably outperform their
random-weight counterparts on held-out test data, particularly when using ReLU
activations instead of ELU as Du et al., 2024. This highlights ReLU’s importance in
providing the appropriate architectural bias for efficient V1 response modeling,
given the number of trainable parameters. Importantly, random-weight ReLU
CNNs performed comparably to trained counterparts in predicting V1 responses
in macaques and humans, but not in higher visual areas (IT, VO). This indicates
that the relative contribution of architecture and training varies across the visual
hierarchy, aligning with the idea that higher areas perform more specialized,
task-dependent computations.

Thus, careful control experiments, accounting for potential confounding factors,
can provide insights into brain computations, even with opaque models. We
learned that V1 computations can be approximated by relatively shallow (2-layer)
random-weight CNNs with pooling and ReLU activations. It was possible to identify
the critical components (e.g. ReLU) and show that training the convolutional filters
was not essential. However, fully training models with different architectures (e.g.,
ELU or Tanh) yielded comparable neural encoding performance, highlighting
a limitation of relying on a single metric like prediction accuracy. Therefore, I
adopted a multidimensional assessment approach, going beyond neural response
prediction. I evaluated model neuron orientation selectivity and compared it to
that of an independent set of experimental V1 neurons. I found high variability in
V1 deviation scores, contrasting with the low variability of V1 prediction accuracy.
ReLU models were the most V1-like in both orientation selectivity and prediction
accuracy. Random-weight ReLU models V1 deviation scores were comparable
to those of fully trained models with other activation functions, providing further
evidence that basic V1 features (like orientation tuning) can emerge without task-
specific training. These findings support the idea that ReLU activations are crucial
for V1 computation modeling, especially considering their biologically-inspired
history (Glorot et al., 2011). I also showed that ReLU random-weight CNNs are
functionally relevant, significantly outperforming other random-weight models in
visual tasks like texture discrimination, often associated with early visual cortex
(Bolaños et al., 2024; Schwartz et al., 2002; Ziemba et al., 2016, 2019).

In summary, in Chapter 3, I showed that even opaque DNNs can be powerful
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tools for generating hypotheses and providing insights into brain computations.
The key is to iteratively eliminate confounding factors in control experiments to
pinpoint critical architectural and training components. Moreover, researchers
should move beyond a single brain alignment score like prediction accuracy and
adopt multiple metrics computed on independent neural datasets. Furthermore,
neuroscience research could benefit from shifting focus from explaining the best
predictive model to using multiple models and alignment metrics to generate and
eliminate hypotheses about the structure and function of the brain area under
investigation.

Conclusions and future directions

I presented studies investigating the trade-off between prediction and expla-
nation when using complex and opaque DNNs in neuroscience. I argued that
researchers should be aware of this trade-off, but that this does not mean sacri-
ficing DNNs’ predictive power for simpler, less accurate, but more interpretable
models, simply for the sake of interpretability. This applies to both basic neuro-
science research and neurological clinical applications. Rigorously validated,
complex, opaque DNNs can be useful on their own, as in screening for neurolog-
ical disorders. They can also be used to induce understanding, either through
post-hoc model explanation techniques or by shifting focus to understanding the
phenomenon itself, using models as tools for generating questions and hypotheses.

112



tools for generating hypotheses and providing insights into brain computations.
The key is to iteratively eliminate confounding factors in control experiments to
pinpoint critical architectural and training components. Moreover, researchers
should move beyond a single brain alignment score like prediction accuracy and
adopt multiple metrics computed on independent neural datasets. Furthermore,
neuroscience research could benefit from shifting focus from explaining the best
predictive model to using multiple models and alignment metrics to generate and
eliminate hypotheses about the structure and function of the brain area under
investigation.

Conclusions and future directions

I presented studies investigating the trade-off between prediction and expla-
nation when using complex and opaque DNNs in neuroscience. I argued that
researchers should be aware of this trade-off, but that this does not mean sacri-
ficing DNNs’ predictive power for simpler, less accurate, but more interpretable
models, simply for the sake of interpretability. This applies to both basic neuro-
science research and neurological clinical applications. Rigorously validated,
complex, opaque DNNs can be useful on their own, as in screening for neurolog-
ical disorders. They can also be used to induce understanding, either through
post-hoc model explanation techniques or by shifting focus to understanding the
phenomenon itself, using models as tools for generating questions and hypotheses.

112

Appendicies



114



114

A1 Data management

Ethical Approval
No ethical approval was required as no data collection was performed as part of
the presented thesis.

Findability and Accessibility
All the data is stored permanently in servers at The Ernst Struengmann Institute (ESI)
for Neuroscience in Cooperation with Max Planck Society and Frankfurt Institute
for Advanced Studies (FIAS). All data used in Chapters 2 and Chapter 3 are public
and can be accessed online through links in the publications cited. Data used in
chapter 4 can be requested from the collaborators cited in the chapter.

Interoperability and Reusability
Data is publicly available and code used for training the models and analyzing
the data in chapter 4 is available at https://github.com/amr-farahat. The code
for chapters 2 and 3 will be available soon in the same github account of the
author. All scripts used Python programming language with standard libraries such
as Numpy, Scipy, Matplotlib and Tensorflow for constructing and training DNNs.
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A2 Abbreviations
AAE = Adversarial Autoencoder

AD = Anomaly Detection

AUC = Area Under the Curve

BCI = Brain Computer Interface

BL = Baseline

CAE = Convolutional Autoencoder

CNN = Convolutional Neural Network

CT = Computer Tomography

DNN = Deep Neural Network

DTI = Diffusion Tensor Imaging

EEG = Electroencephalography

ELU = Exponential Linear Unit

EPG = Epileptogenesis

ERF = Effective Receptive Field

ET = Essential Tremor

fMRI = functional Magnetic Resonance Imaging

GAN = Generative Adversarial Network

GAP = Global Average Pooling

IT = Inferotemporal

LOO = Leave One Out

MDS = Multidimensional Scaling
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MIRC = Minimal Recognizable Configuration

MRI = Magnetic Resonance Imaging

MSA = Multiple System Atrophy

NSD = Natural Scenes Dataset

PCA = Principal Component Analysis

PD = Parkinson Disease

PET = Positron Emission Tomography

PPS = Perforant Pathway Stimulation

PSP = Progressive Supranuclear Palsy

RDM = Representational Dissimilarity Matrix

ReLU = Rectified Linear Unit

ROC = Receiver Operating Characteristic

RSA = Representational Similarity Analysis

SPECT = Single-Photon Emission Computed Tomography

Tanh = Hyperbolic Tangent

V1 = Primary Visual Cortex

VO = Ventral Occipital
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A4 Dutch Summary
Deze dissertatie onderzoekt de toepassing van diepe neurale netwerken (DNN’s)
in de neurowetenschappen, waarbij de nadruk ligt op de afweging tussen voor-
spellend vermogen en verklarend inzicht. Het onderzoek benadrukt een aantal
belangrijke bevindingen. Ten eerste heeft een nieuwe, niet gesuperviseerde
leerbenadering met behulp van een Adversarial Autoencoder (AAE) met succes
vroege tekenen van epileptogenese gedetecteerd in EEG-opnamen, waarmee
het potentieel van DNN’s voor proactieve diagnose wordt aangetoond, zelfs wan-
neer gelabelde gegevens schaars zijn. Ten tweede toonden experimenten met
Convolutionele Neurale Netwerken (CNN’s) aan dat ze ruimtelijke relaties tussen
kenmerken gebruiken voor objectherkenning, vooral bij textuurloze beelden, maar
dat ze de algemene vorm niet op een holistische manier vastleggen. Deze bevin-
ding helpt ons uit te zoeken hoe deze modellen “zien” en toont een praktische
toepassing van post-hoc modelinzicht. Ten derde onderzocht het onderzoek
wat belangrijker is voor het nabootsen van verschillende delen van de visuele
cortex: de structuur van het netwerk of de training die het krijgt. Voor het vroege
visuele gebied (V1) was de inherente complexiteit van zelfs willekeurig geïni-
tialiseerde netwerken verrassend effectief in het voorspellen van reacties, terwijl
gebieden op een hoger niveau (IT, VO) specifieke training nodig hadden. Dit
onderscheid laat zien hoe verschillende hersengebieden kunnen vertrouwen op
verschillende computationele strategieën, een inzicht dat werd verkregen door
het model vergelijkend te gebruiken en zonder volledige uitleg van het model
zelf. Concluderend stelt deze dissertatie dat DNN’s waardevolle hulpmiddelen
zijn in de neurowetenschappen, niet alleen voor voorspellingen, maar ook voor
het verkrijgen van meer inzicht. Hoewel het onderzoek erkent dat complexe
modellen “zwarte dozen” kunnen zijn, benadrukt het dat zorgvuldige validatie
ons in staat stelt om ze effectief te gebruiken. Deze modellen kunnen krachtige
voorspellers zijn (zoals in vroege ziektedetectie) en, wat cruciaal is, hulpmiddelen
die ons helpen nieuwe vragen te genereren en ons begrip van de hersenen te
vergroten, waarbij onze focus verschuift van het volledig transparant maken van
de modellen zelf naar het beter begrijpen van de hersenen.
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