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Summary

Information systems provide users with tailored information services by collecting,
processing, and managing data from diverse sources. Two important, representa-
tive, modern intelligent information systems are retrieval systems, which take a
user query as input to provide query-relevant information, and recommender sys-
tems, which take user-item interaction logs as input to provide related personalized
recommendations. The current advancement of intelligent information systems is
substantially driven by machine learning, especially deep learning, where models
are built on large-scale data sets.

Accumulated externally sourced data is an essential part of the data used in building
intelligent systems, where user-contributed media content and interactions are taken
to represent users’ preferences and to model patterns. The current state-of-the-
art commercial intelligent systems are primarily advanced by leveraging externally
sourced content with the help of machine learning. However, the data-driven nature
of these systems gives rise to issues and opportunities for both owners and users of
intelligent information systems. On the one hand, system owners cannot guarantee
the integrity and quality of externally sourced data, so publicly accessible systems
may encounter unknown data-caused threats. Such threats, when exploited by
malicious parties, could severely harm the end users and owners of information
systems. On the other hand, users may be unaware of and disagree with how
intelligent systems are using and benefiting from their data, especially when they
are not certain about their willingness to consent. Misuse of externally sourced data
could also potentially harm the users and, later, the owners in the long term.

Adversarial machine learning studies the threats to machine learning models, where
most attacks focus on data modifications by exploiting the models’ data dependency.
This thesis focuses on implications that arise for intelligent information systems
because these systems make use of data that is drawn from the outside and can
be modified by a user standing outside of the system using adversarial machine
learning. The issues arise for all possible di�erent types of input and they fall into
two categories. First, from the system owner’s perspective, adversarial machine
learning can give rise to security issues. Second, from the user’s perspective, it
can represent opportunities for users to improve their privacy or protect their data.
Each chapter in this thesis takes one of the two perspectives on adversarial machine
learning in intelligent information systems.

In Chapter 2, from the system owner’s perspective, we explore the influence of ex-
ternally sourced adversarial items in the background collections of recommender
systems. We investigate the threats to representative recommender systems that



use images to address the cold start, including systems with existing countermea-
sures. In particular, we look into the practical vulnerabilities of visually-aware
recommender systems by conducting adversarial item promotion in di�erent threat
scenarios where adversaries have gradually less knowledge of the system. We demon-
strate that adversarial images targeting the recommendation ranking mechanism
may open recommender systems to potential adversarial threats.

In Chapter 3, from the user’s perspective, we show that users can protect their
data by poisoning, but special attention needs to be paid to stronger adversaries.
In particular, we revise the methodologies of availability poisoning for data misuse
protection and find that poisoning samples are surrogate-dependent. According to
this finding, we introduce a series of compression-based mitigation methods and
demonstrate their e�ectiveness against di�erent types of poisoning methods. In ad-
dition, we conduct an in-depth analysis of poisons’ dependency on di�erent training
stages of surrogate models and provide an analysis of possible adaptive poisoning
methods against compression-based mitigation methods. We show that availability
poisoning is fragile but still promising in mitigating the misuse of externally sourced
data for training.

In Chapter 4, from the user’s perspective, we examine and mitigate the privacy risks
of externally sourced profiles against bag-based attribute profiling. We provide ex-
periments showing that deep bag-based profile-level classifiers pose a strong privacy
threat. Especially, bag-based classifiers that use early or intermediate fusion are
potentially more dangerous than approaches that use late fusion, i.e., predict at the
item level before aggregating to reach a final prediction. We introduce three piv-
oting additions to resist bag-based profiling, which we study under di�erent threat
scenarios. We show that it is possible for users to resist bag-based attribute profiling
by adversarially adding pivoting additions to existing profiles.

In Chapter 5, from the user’s perspective, we investigate the influence of externally
sourced adversarial image queries on content-based image information retrieval sys-
tems. We propose an unsupervised method to generate adversarial image queries
that misdirect content-based image retrieval models. We demonstrate the influences
of adversarial queries against local, global, and neural feature-based image retrieval
systems. We show that the similarity between images in an intelligent information
retrieval system can be adjusted in a guided manner to change the results that
match a given image query, which benefits users’ privacy. Adversarial queries ben-
efit the privacy of users who want to share the image content with others but wish
to withhold the semantics.

Based on our findings, we suggest that system owners revisit the necessity of lever-
aging externally sourced data, and we suggest that users pay attention to potential
privacy risks caused by private data exploitation and take the initiative. We empha-
size the uncertainty of data collection outside information systems and recommend
future research directions to combat privacy and security threats.
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Samenvatting

Informatiesystemen bieden gebruikers op maat gemaakte informatiediensten door
gegevens uit verschillende bronnen te verzamelen, verwerken en beheren. Twee
belangrijke, representatieve, moderne intelligente informatiesystemen zijn retrieval-
systemen, die een gebruikersquery als invoer nemen om relevante informatie te
bieden, en aanbevelingssystemen, die interactielogboeken van gebruikers en items als
invoer nemen om gerelateerde gepersonaliseerde aanbevelingen te doen. De huidige
ontwikkeling van intelligente informatiesystemen wordt grotendeels gedreven door
machine learning, in het bijzonder deep learning, waarbij modellen worden gebouwd
op grootschalige datasets.

Opgebouwde extern verzamelde gegevens vormen een essentieel onderdeel van de
data die wordt gebruikt bij het ontwikkelen van intelligente systemen, waarbij door
gebruikers aangeleverde media-inhoud en interacties worden beschouwd als repre-
sentatief voor gebruikersvoorkeuren en worden ingezet om patronen te modelleren.
De huidige geavanceerde commerciële intelligente systemen zijn voornamelijk tot
stand gekomen door gebruik te maken van externe inhoud in combinatie met ma-
chine learning. Het datagestuurde karakter van deze systemen brengt echter zowel
problemen als kansen met zich mee voor eigenaren en gebruikers van intelligente
informatiesystemen. Enerzijds kunnen systeemeigenaren de integriteit en kwaliteit
van extern verkregen gegevens niet garanderen, waardoor openbaar toegankelijke
systemen geconfronteerd kunnen worden met onbekende, door data veroorzaakte
bedreigingen. Dergelijke bedreigingen, indien uitgebuit door kwaadwillende par-
tijen, kunnen ernstige schade toebrengen aan zowel eindgebruikers als eigenaren
van informatiesystemen. Anderzijds zijn gebruikers zich mogelijk niet bewust van,
of niet akkoord met, de wijze waarop intelligente systemen hun gegevens gebruiken
en hier voordeel uit halen, vooral wanneer ze onzeker zijn over hun bereidheid om
hierin bij te dragen.

Adversarial machine learning onderzoekt bedreigingen voor machine learning mo-
dellen, waarbij de meeste aanvallen zich richten op het manipuleren van gegevens
door gebruik te maken van de afhankelijkheid van modellen van die gegevens. Dit
proefschrift richt zich op de implicaties voor intelligente informatiesystemen die ge-
gevens van buitenaf gebruiken en die kunnen worden gewijzigd door een externe
gebruiker via adversarial machine learning. Deze problematiek doet zich voor bij
alle mogelijke soorten invoergegevens en kan worden onderverdeeld in twee cate-
gorieën. Ten eerste kan adversarial machine learning, vanuit het perspectief van
de systeemeigenaar, leiden tot beveiligingsproblemen. Ten tweede kan het vanuit
gebruikersperspectief juist mogelijkheden bieden om de privacy van gebruikers te
verbeteren of hun gegevens beter te beschermen. Elk hoofdstuk in dit proefschrift



behandelt een van deze twee perspectieven op adversarial machine learning binnen
intelligente informatiesystemen.

In hoofdstuk 2 onderzoeken we, vanuit het perspectief van de systeemeigenaar,
de invloed van extern aangeleverde adversarial items binnen de achtergrondcollec-
ties van aanbevelingssystemen. We analyseren bedreigingen voor representatieve
aanbevelingssystemen die afbeeldingen gebruiken om het cold-start-probleem aan
te pakken, inclusief systemen met bestaande tegenmaatregelen. In het bijzonder
bestuderen we de praktische kwetsbaarheden van visueel-georiënteerde aanbeve-
lingssystemen door middel van adversarial item-promotie binnen verschillende drei-
gingsscenario’s, waarin aanvallers geleidelijk steeds minder kennis van het systeem
hebben. We tonen aan dat adversarial afbeeldingen, gericht op het beïnvloeden van
het aanbevelings-rangschikkingsmechanisme, aanbevelingssystemen kunnen bloot-
stellen aan potentiële bedreigingen.

In hoofdstuk 3 laten we vanuit gebruikersperspectief zien dat gebruikers hun gege-
vens kunnen beschermen door middel van poisoning, waarbij bijzondere aandacht
nodig is voor sterkere tegenstanders. We herzien hierbij met name de methodolo-
gieën van availability poisoning voor bescherming tegen gegevensmisbruik, en tonen
aan dat poison-voorbeelden afhankelijk zijn van surrogaatmodellen. Op basis van
deze bevinding introduceren we een reeks compressiegebaseerde mitigatiemetho-
den en demonstreren we de e�ectiviteit daarvan tegenover verschillende poisoning-
aanvallen. Daarnaast voeren we een diepgaande analyse uit naar de afhankelijkheid
van poison-gegevens ten opzichte van verschillende trainingsfasen van surrogaatmo-
dellen en geven we een analyse van mogelijke adaptieve poisoning-methoden die zijn
gericht tegen compressiegebaseerde mitigatiestrategieën. We tonen aan dat availa-
bility poisoning kwetsbaar is, maar desondanks veelbelovend blijft als methode om
misbruik van extern verkregen gegevens voor trainingsdoeleinden tegen te gaan.

In hoofdstuk 4 bestuderen en verminderen we, vanuit gebruikersperspectief, de
privacyrisico’s van extern verkregen gebruikersprofielen bij zogeheten bag-based
attribute profiling. We tonen door middel van experimenten aan dat diepe, op
“bags” gebaseerde profielclassificatiemodellen aanzienlijke privacybedreigingen vor-
men. Vooral classificatiemethoden die gebruikmaken van vroege of tussentijdse
fusie (“early/intermediate fusion”) zijn potentieel gevaarlijker dan methoden die
gebruikmaken van late fusie (“late fusion”), dat wil zeggen methoden die eerst op
itemniveau voorspellingen doen en deze daarna aggregeren tot een finale voorspel-
ling. We introduceren drie pivot-gebaseerde toevoegingen om weerstand te bieden
tegen bag-based profiling, die we vervolgens analyseren in verschillende dreigings-
scenario’s. We laten zien dat gebruikers zich kunnen beschermen tegen bag-based
attribute profiling door op adversariële wijze pivot-toevoegingen aan bestaande pro-
fielen te doen.

In hoofdstuk 5 onderzoeken we, vanuit gebruikersperspectief, de invloed van extern
verkregen adversarial beeldqueries op inhoud gebaseerde beeldinformatiesystemen.
We stellen een niet-gesuperviseerde methode voor om adversarial beeldqueries te
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genereren die modellen voor content-based beeldretrieval misleiden. We demon-
streren hierbij de invloed van adversarial queries op beeldinformatiesystemen in
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van gebruikers die beeldinhoud met anderen willen delen, maar daarbij toch de
semantische betekenis willen verbergen.
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verwegen of het gebruik van extern verkregen gegevens noodzakelijk is. Daarnaast
adviseren wij gebruikers zich bewust te zijn van potentiële privacyrisico’s die voort-
komen uit misbruik van persoonlijke gegevens, en hierbij proactief maatregelen te
tre�en. We benadrukken de onzekerheid van gegevensverzameling buiten infor-
matiesystemen en bevelen toekomstige onderzoeksrichtingen aan om privacy- en
veiligheidsbedreigingen te bestrijden.
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Introduction

Intelligent information systems provide tailored services to users to fulfill their in-
formation needs. Current state-of-the-art information systems, including retrieval
and recommender systems, are driven to a substantial degree by machine learning
models built on large-scale data sets. These large-scale data sets mainly consist of
externally sourced data including media content and behavioral data.

Adversarial machine learning studies the threats to machine learning models. We
focus on data modification methods guided by adversarial machine learning. In
the thesis, we take two perspectives: the system owner’s perspective and the user’s
perspective. From the system owner’s perspective, adversarial data modification
is a threat that can compromise the availability and integrity of intelligent sys-
tems. Systems that overly rely on externally sourced data are especially vulnerable.
From the user’s perspective, adversarial data modification is a promising method
to combat potential privacy threats in order to decrease harm. The risks include
unauthorized data usage, data usage without users’ consent, and profiling users’
private attributes, for purposes that users do not agree with.

This thesis brings together intelligent information systems and adversarial machine
learning, to gain understanding into the implications of adversarial machine learning
from the system owner’s perspective and the user’s perspective. In this introduction,
we motivate the importance of the topic, present the necessary background, and
provide and overview of the rest of the thesis.

1.1 Intelligent Information Systems
Intelligent information systems collect, process, and manage data to provide tai-
lored information services. Information retrieval and recommender systems are
widely deployed information systems that filter externally sourced data to fulfill
users’ information needs. Information retrieval systems collect and organize task-
related content items to create a background collection. In a search session, users
issue queries, and then similarity-based ranking scores between the queries and
the background collection items are calculated, based on which relevant items are
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returned to users. Recommender systems process user-item interactions to build
personalization models that provide filtered recommendations to users. In a recom-
mendation session, the recommender system takes users’ behavioral data as input
to return personalized recommended items.

Users use smart devices to create multimedia content and share it through the web
where information systems are deployed as fundamental elements. On the system
side, the scale of externally sourced media content is rapidly growing, and more data
needs to be managed in the information system. On the user side, the exploding
amount of accumulated multimedia data makes it harder for end-users to discover
the contents they need. For these reasons, retrieval and recommender systems
have become important in providing end-users with the content they are interested
in. To this end, intelligent information systems need some key components to
process the externally sourced data, including semantic extraction and personalized
filtering [144]. Current state-of-the-art intelligent information systems advance due
to good management of large-scale externally sourced data and exploitation of this
data for machine learning.

Learning-based intelligent information systems include different modules to pro-
cess media data. Previously, media processing modules of information systems are
knowledge-based feature extractors, e.g., SIFT [115] and GIST [129], where learning
models are trained on engineered features. Deep neural networks depend heavily
on large-scale data sets, so an intelligent information system’s critical driving force
is shifting to data. Externally sourced data, which is usually collected from outside
sources, is consistently growing in importance as the most widely available data
resource for system development. In the next sections, we explain how externally
sourced data helps, but also the harms that it can introduce.

1.2 Externally Sourced Data Helps
Several types of externally sourced data, such as externally sourced media content
and behavioral data, can enter the information system in different stages [166].
When users interact with information systems, condensed information needs, user-
system interactions, user profiles, users’ uploaded content, and other externally
sourced information are stored, processed, and analyzed to model users’ intent and
preferences and to learn common data patterns.

Externally sourced data is critical because it represents users’ preferences. On
the one hand, users share their data with the service providers, including profiles,
search queries, uploaded content, interaction history, etc, when interacting with
information systems. Based on the collection of personalized user-related data,
user-specific tailored services can be provided [176; 35; 150], which can improve
user satisfaction, engagement, and retention.

On the other hand, service providers can train large data-driven models on publicly
available externally sourced data to improve the general system performance [148;
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147; 164]. Better systems can provide more accurate information service that fulfills
users’ information needs.

In general, users are willing to interact with intelligent information systems in return
for high-quality services, and the systems keep updating themselves based on exter-
nally sourced data to model the users’ interests better. Such a mechanism, boosted
by learning models, is seen as important to keep improving service providers’ profits
and users’ engagement. Externally sourced data has become an indispensable part
of the development of learning-based information systems.

At the same time, systems are becoming greedy for externally sourced data because
system performance is highly correlated with the scale of collected data. For exam-
ple, fine-grained personalized information systems, such as recommender systems,
need more private session data to provide accurate, personalized services [158].
Chatbot applications need more web-scraped corpora to train the large language
models [2].

1.3 Externally Sourced Data Harms
From the system owner’s perspective, exploiting externally sourced data can be
harmful, compromising the availability and integrity of data-driven information
systems. For example, a poisoning attack can be conducted to manipulate a small
proportion of commonly used data sets if the integrity check is missing in the future
download [19]. Malicious parties can manipulate part of the data set to mislead
the information system. The security of information systems is important when
exploiting externally sourced data from the system owner’s perspective.

From the user’s perspective, the learning algorithm’s data-driven and black-box na-
ture also makes it difficult for users, the people who provide the data, to gain insight
into intelligent information systems’ decision-making process. Users may disagree
with their assigned collective tag in the system. For example, in a recommender
system, users can conjecture that they receive recommendations based on similar
users but may disagree with the group that defines the similarity. Users may also
not agree with the information systems to profile other users using models built on
their generated content. A prime example is the Facebook Cambridge Analytica
data scandal [79] where the externally sourced data was used for the purposes that
the data generators are unaware of and possibly harmed.

Malicious machine learning further worsens the situation by scraping and exploit-
ing data on the web. Users may disagree with the design purposes of malicious
systems that exploit their data. For example, Flickr users who share images on
social media may not agree with the potential that their data could be used in
military applications [55]. Meanwhile, users may not be aware of the sensitive re-
dundant information in the media they share. For example, the personality trait of
a user can be predicted based on a set of externally sourced images. This lack of
transparency between the users’ intents and the information about users exploited
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by the system leads to a trust illusion for users that only non-sensitive, non-harmful
information is shared with the information systems for purposes they agree with.

Conventional methods attempt to address the problem from the service provider
side. For example, bias-aware algorithms are deployed in practical information
systems [58]. ICT law is advancing to protect users [95]. Adversarial machine
learning is promising to empower users to protect themselves. It holds promise to
complement and support both legal and technical approaches to protecting privacy.
In this thesis, we study the potential adversarial machine learning methods that
modify externally sourced data entering the information systems. From the system
owner’s perspective we look at the threats posed by adversarial machine learning.
From the user’s perspective, we look at the potential of adversarial machine learning
to push back against the potential harms caused to users by information systems
exploiting externally sourced data.

1.4 Adversarial Machine Learning
Adversarial machine learning investigates the vulnerabilities of machine learning
algorithms to malicious inputs that are designed to deceive or manipulate these
algorithms. Adversarial machine learning research typically focuses on studying the
security and robustness of machine learning algorithms. In this thesis, adversarial
machine learning provides the opportunity to explore the influence of externally
sourced data on information systems, focusing on investigating systems’ security
and improving users’ privacy.

Several heuristic methods explored the influence of externally sourced data on in-
formation systems [64], e.g., the bandwagon methods. With the development of
learning-based information systems, adversarial machine learning sheds light on in-
vestigating the impacts of externally sourced data. Current adversarial machine
learning methods that modify data can be categorized as evasion and poisoning.
Evasion methods take place in the inference stage of the machine learning model.
A specifically modified input can confidently deceive the trained model into making
a wrong prediction, while the modifications to the input are mostly non-suspicious
to humans. Given the classification model information, an adversarial example
generated by an iterative evasion method PGD [118] can be formulated as,

xt+1 = Π
!
xt + – · sign(ÒxL(F (xt; ◊), y))

"
(1.1)

where ◊ represents the parameters of the classifier F . L is the model loss, t is the
number of iterations, y is the classification target, and xt is the adversarial example
at step t. – represents the step size, and Π is the projection function. Adversarial
data can be generated with respect to a surrogate model loss that can be formulated
to represent users’ or attackers’ intents.
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Poisoning methods take place in the training stage of a machine learning model,
where the training data of a learning model is modified to achieve pre-defined goals.
Specifically, backdoor or availability poisoning manipulates training data by adding
triggers or noise to undermine the model’s performance.

Given a classification model, availability poisoning samples can be generated by
solving the following objective,

max
”

E(x,y)≥D

5
L

!
F (x; ◊Õ(”)), y

" 6
(1.2)

s.t. ◊Õ(”) = argmin
◊

ÿ

(xi,yi)œS

L(F (xi + ”i; ◊), yi), Î”Îp Æ ‘, (1.3)

where ◊Õ(”) represents the parameters of the poisoned classifier F . ” denotes the
additive perturbations whose Lp norm is restricted by ‘.1 L is the model loss, which
takes as input a pair of model output F (xi; ◊) and the corresponding label yi. S
represents the training set, and D is the test set. Availability poisoning modifies
training data to influence the performance of learning models on real-world input
data, which can be used by users who do not authorize the usage of their data for
training.

Externally sourced data can be adversarially modified following the guidance from
the pre-defined objective. Such modification could be made imperceptible to hu-
mans but effective against learning models that are working as the core of an in-
formation system [215]. Transfer learning-based techniques can gradually decrease
the modifications’ dependencies on a specific learning model to increase its general
utility [216].

We show that the adversarial machine learning techniques, even at an early stage
of development as a protection tool, is a promising solution to narrow the gap of
control between information system owners and users. From the information system
owner’s perspective, adversarial machine learning can be used to attack the system,
but it can also be used to help to distill the specific data systems need, strengthening
the system’s robustness and explainability. From the user’s perspective, adversarial
machine learning helps data processors strategically modify their data to eliminate
what they don’t want to expose to improve privacy. Leveraging adversarial machine
learning, this thesis focuses on externally sourced data and explores the influence
of adversarial data modification in different stages of information systems.

1Note that Eq. 1.3 is relevant for Ch. 3 and occurs again as Eq. 3.2. Note that there is a
small di�erence in the two, namely, in Eq. 1.3 the specification of the ” constraint and also the
parameterization of theta is explicit and in Eq. 3.2 it is left implicit.



6 Chapter 1

User interaction
representation

Indexed interaction
 representation

Training data

Representation/
content annotation

algorithm

Background
data collection

Background collection
representation/annotations

Indexed background
collection 

Ranker

Chapter 2

Chapter 3

Chapter 4

Chapter 5
Query/

User interaction

User Profile

S
ys

te
m

 o
w

ne
r's

pe
rs

pe
ct

iv
e

U
se

r's
 

pe
rs

pe
ct

iv
e

Figure 1.1: Working diagram intelligent information system indicating the stages where
externally sourced data can enter the system. From the system owner’s perspective, system
security, we discuss the influence of adversarial background data (Chapter 2). From the
user’s perspective, we discuss privacy protection by training data modification (Chapter
3), profile modification (Chapter 4), and query modification (Chapter 5).

Externally sourced data is both a threat to the system owner and an opportunity
for users. We examine the security and privacy threats caused by dependence
on externally sourced data at each of the four stages of the information system’s
pipeline at which data can enter the system. Figure 2.1 presents an overall working
diagram of an information system illustrating the data processing stages where
externally sourced data can enter the system. Different data entry stages discussed
in this thesis are marked with corresponding chapter numbers. Externally sourced
data are linked to different system modules where the data is processed. In this
thesis, we examine information systems from the system owner’s perspective and
user’s perspective using adversarial machine learning and explore the influence of
externally sourced data in each stage when these data enter information systems.

Publicly-available externally sourced data can be used directly as background col-
lections. For example, uploaded images on social media platforms and item descrip-
tions in the recommender system can be retrieved or recommended as background
items. Chapter 2 takes the system owner’s perspective to look at the externally
sourced background collection in information systems. We show that externally
sourced background collection data can be exploited to compromise the integrity
of recommender systems by promoting specific target items. Chapter 3 takes
the user’s perspective to look at externally sourced data that are used as training
data to build representation models, where we investigate the potential of avail-
ability poisoning for data privacy protection. In addition, externally sourced data
represent users’ characteristics, where specific data can be used for profiling and
personalization. For example, externally sourced (media) profiles and user interac-
tions (e.g., queries and clicks) can be used to predict user attributes. Chapter 4
takes the user’s perspective to look into the user profile that includes media content,
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and Chapter 5 takes the user’s perspective to focus on externally sourced image
queries, where we explore the adversarial examples to protect the item semantics
and private attributes that are predictable from user-soured data.

1.5 Thesis Scope
This thesis focuses on issues that arise for intelligent information systems because
these systems make use of data that is drawn externally and can be modified by
a user standing outside of the system using adversarial machine learning. Issues
arise for all possible different types of input and fall into two categories. First,
they can represent security issues for the system’s owner, and second, they can
represent opportunities for users to improve their privacy or protect their data.
In this section, we introduce the thesis scope in more detail, chapter by chapter,
following the overview in Figure 2.1.

1.5.1 On Background Collection Data
Leveraging the fact that the systems heavily depend on the data, adversaries can
modify their data to achieve pre-defined goals. In particular, adversaries can mali-
ciously modify the background collection data to shift the system outputs.

In Chapter 2, from the system owner’s perspective, we focus on the background
collection data in a multimedia recommender system. We look at malicious mer-
chants who want to promote their goods on the e-commerce platform, assuming
three different kinds of malicious merchants based on their knowledge levels. By
gradually decreasing merchants’ knowledge levels, we investigate insider, expert,
and black-box semantic attacks. All attacks are evaluated on recommender systems
with three representative re-rankers: a neural feature-based similarity model pre-
trained on ImageNet, a Collaborative-Filtering model leveraging visual features,
and an end-to-end learning-based neural model. We demonstrate that using images
to address cold start opens recommender systems to potential threats with clear,
practical implications.

1.5.2 On Training Data
A huge amount of externally sourced data is publicly available on the web. Users
can adversarially modify their data to decrease the data utility for unauthorized
model training.

In Chapter 3, from the user’s perspective, we explore the influence of the train-
ing data modification on the image annotation model. We first revisit availability
poisoning (i.e., unlearnable examples) techniques, where labeled training data can
be made unexploitable in supervised learning. By introducing compression-based
pre-processing techniques, we show the possibilities of recovering the effectiveness of
unlearnable examples in model training. We also provide an adaptive study on our
compression-based methods and point out that availability poisoning is a promising
method to mitigate misuse of externally sourced data for training purposes.
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1.5.3 On Interaction Data
Externally sourced media content is archived and analyzed to provide and improve
information services. In information systems, user profile information can be used
for recognition purposes, where the predicted profile semantics can be further used
as auxiliary information to increase the system performance. Users can sanitize their
data before interaction to decrease the chance of being profiled. Media content can
be modified according to user preferences without influencing the data’s original
social and sharing utility.

In Chapter 4, from the user’s perspective, we explore how to pivot existing profiles
against bag-based attribute profiling models. We point out the privacy threat posed
by deep bag-based multiple-instance learning classifiers. Such classifiers can be used
to infer privacy-sensitive attributes from sets of images posted online. We propose
an adversarial machine learning approach to produce “pivoting additions” that can
help users resist these classifiers by posting additional images, without requiring
them to delete images. In particular, untouched adversarially selected natural im-
ages can resist profiling even in cases where the user has nearly no information
about the privacy attack.

In Chapter 5, from the user’s perspective, we further explore the influence of ad-
versarial image query on different types of content-based image retrieval systems.
As shown in Figure 2.1, search queries represent part of the information need from
users. Our work on adversarial queries makes contributions to both understand-
ing the working mechanism of modifications against content-based image retrieval
systems and hiding user intent against malicious retrieval systems. Specifically, we
propose a new unsupervised feature space retrieval attack, perturbations for image
retrieval error (PIRE), for neural feature-based image retrieval model and evaluate
it against three representative content-based image retrieval systems. Given an im-
age query, PIRE generates adversarial perturbations by maximizing the Euclidean
distance between the perturbed query image and original query image in feature
space. We demonstrate that adversarial queries generated by PIRE are effective
against neural, local, and global feature-based image retrieval systems.

1.6 List of Publications and Contributions
The author has published the following work during the Ph.D study. The remaining
chapters in this thesis are based on the publications, as indicated.

This thesis consists of four chapters based on collaborative works. In each chapter, I
have contributed to the formulation and conception of the work, the implementation
of software, carrying out experiments, the interpretation of research data, and the
writing.
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Chapter 2

Security Threats by Adversarial
Background Collection

E-commerce platforms provide their customers with ranked lists of recommended
items matching the customers’ preferences. Merchants on e-commerce platforms
would like their items to appear as high as possible in the top-N of these ranked
lists. In this work, we demonstrate how unscrupulous merchants can create item
images that artificially promote their products, improving their rankings. Recom-
mender systems that use images to address the cold start problem are vulnerable
to this security risk. We describe a new type of attack, Adversarial Item Promo-
tion (AIP), that strikes directly at the core of Top-N recommenders: the ranking
mechanism itself. Existing work on adversarial images in recommender systems
investigates the implications of conventional attacks, which target deep learning
classifiers. In contrast, our AIP attacks are embedding attacks that seek to push
features representations in a way that fools the ranker (not a classifier) and directly
leads to item promotion. We introduce three AIP attacks insider attack, expert
attack, and semantic attack, which are defined with respect to three successively
more realistic attack models. Our experiments evaluate the danger of these attacks
when mounted against three representative visually-aware recommender algorithms
in a framework that uses images to address cold start. We also evaluate potential
defenses, including adversarial training and find that common, currently-existing,
techniques do not eliminate the danger of AIP attacks. In sum, we show that using
images to address cold start opens recommender systems to potential threats with
clear practical implications.

This Chapter is published as Zhuoran Liu and Martha Larson. Adversarial item promotion:
Vulnerabilities at the core of top-n recommenders that use images to address cold start. The Web
Conference (WWW), 2021
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2.1 Introduction
Visually-aware recommender systems [119; 71; 91] incorporate image information
into their ranking mechanism. This information helps to address the challenge of
cold start since it compensates for insufficient interactions associated with new users
or items. In this work, we show how the use of image content for cold start opens
visually-aware recommenders to vulnerability.
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Figure 2.1: The cooperative cold item image and its corresponding adversarial cold item
image (top) are each injected into the candidate set, which is generated by a first-stage
ranker (here, BPR). In the personalized ranked list generated by the visually-aware second-
stage ranker (here, DVBPR) the advesarial item (right) lands much higher than the cooper-
ative item (left). (Diagram shows a real example. The adversarial item image is generated
by our INSA attack with ‘ = 32 and epoch = 5 explained in detail in Section 2.4.1).



14 Chapter 2

2.1 Introduction
Visually-aware recommender systems [119; 71; 91] incorporate image information
into their ranking mechanism. This information helps to address the challenge of
cold start since it compensates for insufficient interactions associated with new users
or items. In this work, we show how the use of image content for cold start opens
visually-aware recommenders to vulnerability.

Florsheim Men's 
Welter Bike Slip Slip-On

Timberland Men’s Altamont 
Fisherman Sandal

Skechers Men's Go Walk 2

Men's Born Full - Grain 
Leather Donjon Carmel

Born Men's 
Herschel Sandal

Timberland Watercrest
Fisherman Sandal

Clarks Men's Swing Sky
Fisherman Sandal

Clarks Men's Shiply Step
Slip-On Loafer

Rockport Men's Palm 
Street Fisherman Sandal

O'Neill Men's 
Southport, Khaki

Dockers Men's 
Bootie Slipper

Florsheim Men's 
Welter Bike Slip Slip-On

Timberland Men’s Altamont 
Fisherman Sandal

Skechers Men's Go Walk 2

Men's Born Full - Grain 
Leather Donjon Carmel

Born Men's 
Herschel Sandal

Timberland Watercrest
Fisherman Sandal

Clarks Men's Swing Sky
Fisherman Sandal

Clarks Men's Shiply Step
Slip-On Loafer

Rockport Men's Palm 
Street Fisherman Sandal

O'Neill Men's 
Southport, Khaki

Adversarial  
item image

Cooperative 
item image

Cold item 
injection

Candidate  
items for  
ranking

Personalized 
item  
ranking

Dockers Men's 
Bootie Slipper

Figure 2.1: The cooperative cold item image and its corresponding adversarial cold item
image (top) are each injected into the candidate set, which is generated by a first-stage
ranker (here, BPR). In the personalized ranked list generated by the visually-aware second-
stage ranker (here, DVBPR) the advesarial item (right) lands much higher than the cooper-
ative item (left). (Diagram shows a real example. The adversarial item image is generated
by our INSA attack with ‘ = 32 and epoch = 5 explained in detail in Section 2.4.1).

Chapter 2. Security Threats by Adversarial Background Collection 15

The vulnerability is due to adversarial examples, which are samples deliberately
designed to cause a machine learning system to make mistakes. The computer vision
community has developed an in-depth understanding of how adversarial images can
be used to attack classifiers, starting with [9; 184]. Classifier-targeted adversarial
images can have an impact on recommender systems that leverage image content, as
has been demonstrated by TAaMR [37]. However, until now, recommender system
researchers have not considered how images can be modified to create adversarial
items that attack visually-aware Top-N recommender systems by directly targeting
the ranker, rather than a classifier.

We expose the vulnerability of visually-aware recommender systems to adversarial
items by presenting a series of attacks and by experimentally assessing the threat
that they pose. We also examine possible defenses. Adversarial training has been
proposed in order to improve the general performance of multimedia recommender
systems. The dominant approach is currently AMR [185]. Our experiments show
that AMR is not sufficient to defend against our adversarial attacks. Further,
other common defenses, such as image compression also fall short. In sum, the
vulnerabilities of visually-aware recommender systems that we investigate here are
serious and require further attention of the research community.

Our work is part of the long tradition of research devoted to the security and
robustness of recommender system algorithms [132; 100; 121; 16; 105; 48; 30; 47;
186]. Most work, however, focuses on vulnerabilities related to user profiles. Early
work looked at shilling [100], which uses fake users. Shilling was later generalized to
profile injection attacks [121] or poisoning attack [105]. In our work, in contrast, we
are looking at attackers who are able to manipulate items directly, and, specifically,
to choose item images. In other words, instead of looking at profile-related attacks
we are looking at an item representation attacks. Concretely, the risk of such attacks
presents itself in the case of e-commerce platforms that sell the items of individual
merchants, e.g., e-commerce or customer to customer (C2C) marketplaces. The
merchants create their own item description, including images. We show that if
such merchants act unscrupulously they can artificially promote their items and
compromise the security of the recommender system.

Figure 2.1 illustrates the mechanics of the attack that we consider in this work,
called an Adversarial Item Promotion (AIP) attack. On the left, we see personalized
item ranking for a user when the recommender system is not under attack (i.e., the
cold start item is a “cooperative item”). On the right, we see the ranking when
the recommender system is under attack by an unscrupulous merchant, who has
used a manipulated image in an item representation (i.e., the cold start item is an
“adversarial item”). This setup reflects the way that recommender system platform
would add a certain number of cold items to the personalized ranked lists of users
in order to allow the items to start accumulating interactions. We choose a two-
stage recommender, since they are used in industry [34; 195]. With the two stage
recommender, we ensure that the adversarial cold item is competing against selected
candidate items that are already very relevant to the user.
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We provide a short walk-through of Figure 2.1, which illustrates the attack at the
level of a single cold item and a single user. A set of “candidate items for ranking” for
that user has been selected using a conventional personalized Top-N recommender.
Then the cold item is injected into that set. Finally, a visually-aware personalized
Top-N recommender is used to rank the candidate item set before it is presented to
the user. We see that in the case of the cooperative image (left), the cold item lands
somewhere in the ranked list, but probably not at the top. In contrast, in the case
of the adversarial image (right), the cold item lands at the top of the personalized
item ranking.

The overall impact of the attack depends on the accumulated effect of the attack
over all users, and not just a single instance of the attack shown in Figure 2.1. It
is important to understand that the final rank position of the cooperative vs. ad-
versarial item will be different for each instance of the attack. However, in general,
if the adversarial item of an unscrupulous merchant lands consistently farther to-
wards the top of users’ personalized recommendation lists than it deserves to, then,
at large scale, the merchant will accrue considerable benefit.

We choose to focus on the cold-start problem because of its importance for recom-
mender systems. However, there is also another reason. A straightforward, practical
approach to blocking adversarial image promotion attacks on non-cold-start items
is to prevent merchants from being able to change images once their items have
started to accumulate interactions. Cold start is the most important moment of
opportunity for a merchant to introduce an adversarial image into a representation.
Every item starts in some way cold, and the issue particularly extreme in C2C
marketplaces selling many unique items.

With this work, we make the following contributions:

• We propose three Adversarial Item Promotion (AIP) attacks on the ranking
mechanism of visually-aware recommender systems in a cold item scenario and
experimentally assess their impact. The attacks correspond to three different
levels of knowledge and we test them using two real-world data sets.

• We show that there is no easy defense against AIP attacks. The currently
dominant adversarial training, as well as conventional defenses such as com-
pression, are not sufficient to eliminate the vulnerability.

• We release an implementation of our attacks and defenses that allows for
testing and extension.

This work follows the standard procedure for security research. First, we specify
a framework including the types of attacks expected (attack models), the systems
to be attacked, and a means of measuring the impact of the attacks. Then, we
propose attacks for each attack model and evaluate their success. The systems that
we attack are representative of visually-aware recommender systems, i.e., a visual
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feature-based similarity model (AlexRank) based on AlexNet [97], a Collaborative-
Filtering (CF) model leveraging visual features (VBPR [71]), and state-of-the-art
learning-based neural model (DVPBR [91]). Finally, we turn to the analysis of
possible defenses and close with a conclusion and outlook.

2.2 Related Work
2.2.1 Robustness of Recommender System
In this section, we review previous work on recommender robustness. Note that this
work focused on user profiles, not image content. O’Mahony et al. [132] introduce
the definition of recommender system robustness and present several attacks to iden-
tify characteristics that influence robustness. Lam and Riedl [100] explore shilling
attacks in recommender systems by evaluating recommendation performance under
different scenarios. In particular, they find that new or obscure items are more espe-
cially susceptible to attack, and they suggest that obtaining ratings from a trusted
source for these items could make them less vulnerable. Mobasher et al. [121] pro-
pose a formal framework to characterize different recommender system attacks, and
they also propose an approach to detect attack profiles. In [121] and [16], evalua-
tion metrics, e.g., hit rate for item and prediction shift, for the robustness of recom-
mender systems are discussed. Recently, instead of model-agnostic profile injection
attacks, poisoning attacks that leverage exact recommendation model information
have been proposed. Li et al. [105] propose poisoning attacks on factorization-based
CF algorithms that approximate the gradient based on first-order KKT conditions.
Christakopoulou and Banerjee [30] propose a generative approach to generate fake
user profiles to mount profile injection attacks. Fang et al. propose poisoning at-
tacks to graph-based recommender systems [48]. They also propose to generate fake
user-item interactions based on influence function [47]. Tang et al. [186] propose
effective transfer-based poisoning attacks against recommender systems, but they
mention that their approach is less effective on cold items. Our “item representa-
tion attack” is distinct from a “profile injection attack” or “poisoning attack”, but
both kinds of attacks have similar impacts, namely, pushing items that have been
targeted for promotion.

2.2.2 Visually-aware Recommender System
Visually-aware recommender systems incorporate visual information into their rec-
ommendation ranking mechanism. Originally, visually-aware recommenders relied
on image content retrieval to make preference predictions. Given a query image,
Kalantidis et al. [90] gather segmentation parts and retrieve visually similar items
within each of the predicted classes. Later, semantic information of images is
also incorporated to improve retrieval performance. Jagadeesh et al. [82] collect
a large-scale dataset, Fashion-136K, with detailed annotations and propose sev-
eral retrieval-based approaches to recommend a matching item based on the query
image.

Beyond image retrieval-based recommendation approaches, user-item interactions
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are leveraged in visually-aware recommenders. IBR [119] models human notions
of similarity by considering alternative or complementary items. Algorithms also
incorporate the visual signal into CF models so as to exploit user feedback and visual
features simultaneously, e.g., VBPR [71] and Fashion DNA [13]. Recently, with
the advances in computational resources, learning-based neural frameworks have
been proposed and achieve state of the art performance on fashion recommendation
(DVBPR [91]) and reciprocal recommendations (ImRec [126]). In our work, to
comprehensively evaluate AIP attacks in different recommenders, we select three
representatives: an image-retrieval-based similarity model, a CF model leveraging
visual features and a learning-based neural model.

2.2.3 Adversarial Machine Learning
Adversarial examples are data samples that are deliberately designed in order to
mislead machine learning algorithms [9; 184]. A limited amount of work, as men-
tioned above, has addressed adversarial images for recommender systems. The
work most closely related to our own [37] looks only at classification-based issues.
Di Noia et al. [37] propose Targeted Adversarial Attack against Multimedia Rec-
ommender Systems (TAaMR), and they use two classification-based adversarial
attacks, namely Fast Gradient Sign Method (FGSM) [184] and Projected Gradient
Descent (PGD) [98], to evaluate two visually-aware recommender systems. In con-
trast to [37], we show that the problem of adversarial examples in recommender
system goes beyond the problem of classifier-targeted adversarial examples.

Adversarial training is a promising techniques to tackle adversarial examples [118].
As stated in Section 2.1, research on adversarial training in visually-aware recommn-
der systems has, until this point, focused on improving general performance. Specif-
ically, AMR [185] aims to improve recommendation with adversarial training (cf.
Section 2.7.1 for details) and considers the robustness of recommender systems per-
turbations in system-internal representations. In contrast, our goal is to investigate
security vulnerability originating from an external adversary who attacks item im-
ages. We show that simple adversarial training (i.e., AMR) is not a guarantee for
robustness against AIP attacks (cf. Section 2.7.1).

2.3 Background and Framework
This section introduces the background and framework in which the attack models
are developed and evaluated. Figure 2.2 gives the overview of the setup. As intro-
duced in Section 2.1, we use a two-stage approach. The first-stage recommender gen-
erates a personalized set of candidate items. For this purpose, we choose Bayesian
Personalized Ranking (BPR) [158], a representative CF model that is trained on the
user-item interaction data. We use the visually-aware second-stage recommender to
make a comparison between the cold start of a cooperative item and an adversarial
item.

In this section, we first present our three attack models (Section 2.3.1), which
are the basis for three specific AIP attacks, INSA, EXPA, and SEMA, explained in



18 Chapter 2

are leveraged in visually-aware recommenders. IBR [119] models human notions
of similarity by considering alternative or complementary items. Algorithms also
incorporate the visual signal into CF models so as to exploit user feedback and visual
features simultaneously, e.g., VBPR [71] and Fashion DNA [13]. Recently, with
the advances in computational resources, learning-based neural frameworks have
been proposed and achieve state of the art performance on fashion recommendation
(DVBPR [91]) and reciprocal recommendations (ImRec [126]). In our work, to
comprehensively evaluate AIP attacks in different recommenders, we select three
representatives: an image-retrieval-based similarity model, a CF model leveraging
visual features and a learning-based neural model.

2.2.3 Adversarial Machine Learning
Adversarial examples are data samples that are deliberately designed in order to
mislead machine learning algorithms [9; 184]. A limited amount of work, as men-
tioned above, has addressed adversarial images for recommender systems. The
work most closely related to our own [37] looks only at classification-based issues.
Di Noia et al. [37] propose Targeted Adversarial Attack against Multimedia Rec-
ommender Systems (TAaMR), and they use two classification-based adversarial
attacks, namely Fast Gradient Sign Method (FGSM) [184] and Projected Gradient
Descent (PGD) [98], to evaluate two visually-aware recommender systems. In con-
trast to [37], we show that the problem of adversarial examples in recommender
system goes beyond the problem of classifier-targeted adversarial examples.

Adversarial training is a promising techniques to tackle adversarial examples [118].
As stated in Section 2.1, research on adversarial training in visually-aware recommn-
der systems has, until this point, focused on improving general performance. Specif-
ically, AMR [185] aims to improve recommendation with adversarial training (cf.
Section 2.7.1 for details) and considers the robustness of recommender systems per-
turbations in system-internal representations. In contrast, our goal is to investigate
security vulnerability originating from an external adversary who attacks item im-
ages. We show that simple adversarial training (i.e., AMR) is not a guarantee for
robustness against AIP attacks (cf. Section 2.7.1).

2.3 Background and Framework
This section introduces the background and framework in which the attack models
are developed and evaluated. Figure 2.2 gives the overview of the setup. As intro-
duced in Section 2.1, we use a two-stage approach. The first-stage recommender gen-
erates a personalized set of candidate items. For this purpose, we choose Bayesian
Personalized Ranking (BPR) [158], a representative CF model that is trained on the
user-item interaction data. We use the visually-aware second-stage recommender to
make a comparison between the cold start of a cooperative item and an adversarial
item.

In this section, we first present our three attack models (Section 2.3.1), which
are the basis for three specific AIP attacks, INSA, EXPA, and SEMA, explained in

Chapter 2. Security Threats by Adversarial Background Collection 19

Section 2.4. Then, we present the three representative visually-aware recommenders
that we attack (Section 2.3.2). Finally, we explain the dimensions along which we
evaluate the impact of the attacks (Section 2.3.3).

Table 2.1: The three AIP attack models characterized by the knowledge to which the
attacker has access for each.

Attack model General Knowledge Visual feature
extraction model Embeddings

High knowledge
cf. INSA (Section 2.4.1) ◊

Medium knowledge
cf. EXPA (Section 2.4.2) ◊ ◊

Low knowledge
cf. SEMA (Section 2.4.3) ◊

Cooperative item Adversarial item

INSA
EXPA
SECA

AIP attacks

Rank
list

Rank
list

Compare metrics

BPR Candidate set

Personalized
ranker

AlexRank VBPR DVBPR

Visually-aware ranker

Figure 2.2: Setup for attack and attack evaluation.

2.3.1 Attack Models
We define three attack model following the three dimensions relevant for trustworthy
recommender systems [121]. The Intent dimension captures the objective of the
attacker. All our models use ‘push’ intent, i.e., attackers are merchants who want
their items promoted to higher ranks in users’ personalized recommendation lists.
The Knowledge dimension captures how much information the attacker has about
the system being attacked. Defining knowledge levels is common in adversarial
machine learning research [9; 20]. Our three attack models correspond to three
different levels of knowledge: high, medium, and low. The Scale dimension captures
the scope of the interference. In all our attack models, we assume an attack with
minimum scale, e.g., only a single item is attacked at any given moment. Such a
small-scale attack is least likely to be noticed. It is clear that the harm caused by
the attack will increase with scale.
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Table 2.1 summarizes our attack models in terms of the level of knowledge involved.
For our high-knowledge attack model we assume that the attacker is an insider at
the recommender system platform and has access to the user embeddings of the
trained recommender model. This scenario is not particularly realistic, but it is
important because it demonstrates an upper bound for the potential damage that
can be inflicted by an AIP attack.

The medium- and low-knowledge attack models are more realistic and assume that
the attacker has general knowledge of the market in which the recommender system
operates. In particular, the attacker must be able to identify (by observing sales
trends or advertising) at least one item that sells well on the platform. We refer
to this item as a hook item. The attack is strongest when the hook item image
is an image used by the recommender, but it could also be an image of the item
acquired elsewhere. As will be explained in Section 2.4, the adversarial item will
use the hook item to pull itself up in the ranked list. In the medium-knowledge
attack model, in addition to general knowledge, the attacker must have access to
the pre-trained visual feature extractor used by the visually-aware recommender
systems. Recommender systems leveraging a pre-trained visual feature extractor are
prevalent in both academic research and industry, e.g., [119; 71; 103; 59; 145; 161].
These models are often released as publicly available resources in transfer learning.
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In this section, we introduce the three representative visually-aware recommender
systems that we will attack in our experiments: the visual feature-based similar-
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learning-based neural approach (DVBPR). We chose these recommenders because
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2.3.2.1 AlexRank

Image-content-retrieval-based recommendation is a nearest neighbor approach that
ranks items by visual feature similarity of product images. Such methods are
commonly used as baseline approaches in visually-aware recommender system re-
search [91]. Here we use the output of the second fully-connected layer of AlexNet [97]
as the visual feature of item images. Given an image of item i, the average Euclidean
distance between the visual feature of item i and all items that user u has inter-
acted with is calculated, so smaller distance means higher preference prediction.
Equation 2.1 show the calculation of similarity predictor:
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jœI+
u

≠ÎΦf (Xi) ≠ Φf (Xj)Î2

|I+
u |

, (2.1)

where I+
u is the set of items that user u has interacted with, and Xi, Xj represent

images of item i and j. Φf is the pre-trained model for image feature extraction.
The final ranking of item i for user u is solely determined by preference score pu,i.
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2.3.2.2 VBPR

Extended from BPR [158], VBPR [71] incorporates visual features into the CF
model. By leveraging image features of pre-trained CNN models, VBPR improves
the recommendation performance of BPR. The preference prediction of VBPR is
described in Equation 2.2:

pu,i = – + —u + —i + “
T
u “i + ◊

T
u (EΦf (Xi)), (2.2)

where ◊u is the user content embedding, and E is the parameter for the visual
feature. Φf (Xi) represents the visual feature of item Xi from pre-trained model
Φf , and –, —u and —i are user, item biases and global offset term. “u and “i

represent the latent interaction-based embeddings for user and item. For model
learning, VBPR adopts the pairwise ranking optimization framework from BPR.
The training triples set Ds is described in Equation 2.3:

Ds = {(u, i, j)|u œ U · i œ I+
u · j œ I/I+

u } (2.3)

where U and I represent the user and item sets, i represents the interacted item,
and j represents the non-interacted item. A bootstrap sampling of training triples
is used for model training. The optimization objective of VBPR is described in
Equation 2.4:

argmin
�

ÿ

(u,i,j)œDs

≠ ln ‡(pu,i ≠ pu,j) + ⁄�||Θ||2 (2.4)

where Θ represents all model parameters and ⁄� is the weight of regularization
term.

2.3.2.3 DVBPR

DVBPR [91] is a concise end-to-end model whose visual feature extractor is trained
directly in a pair-wise manner. DVBPR achieves the state-of-the-art performance on
several data sets for visually-aware recommendations [91]. The preference prediction
of DVBPR is described in Equation 2.5:

pu,i = ◊
T
u Φe(Xi), (2.5)

where ◊u is the user content embedding, and Φe(Xi) is the item content embedding
where the CNN model Φe is trained directly in a pair-wise manner.

2.3.3 Attack Evaluation Dimensions
We evaluate attacks according to the aspects of integrity and availability distin-
guished in machine learning security [6]. Our main concern is the ability of the
attack to compromise the integrity of the recommender system, which is related to
the success of the ‘push’ intent of our attack models (cf. Section 2.3.1). We measure
the ability of our attacks to raise the rank of cold-start items such that adversarial
cold start items land higher than the corresponding cooperative cold start items in
users’ personalized recommendation lists. Specifically, we report the change in rank
of cold-start items with prediction shift and change in hit rate (cf. Section 2.5.2).
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In addition, we measure availability, which is related to whether the recommender
system remains useful to other merchants and to customers while under attack. For
this purpose, we use ‘ordinary’ test items. (We adopt the test items defined by
the data sets.) We calculate change in hit rate when a ordinary test item is in a
candidate set with a cooperative cold item and when the same ordinary test item
is in a candidate set with an adversarial cold item.

We also consider the extent to which the attack is noticeable to the human eye. As
attacks increase in strength, perturbations become visible in images and adversarial
images can be identified by experts who know what they were looking for. However,
e-commerce platforms are so large and the turnover of items so fast that it is impos-
sible to manually vet all of the images representing items, cf. the known difficulty
of filtering item collections for banned or unsafe products [8]. For these reason,
strong attacks (i.e., larger image perturbations) are quite realistic. By focusing our
experiments on strong attacks, we can evaluate the extent of the vulnerability of
the system. We also carry out additional experiments that demonstrate the effect
of an attack increasing in strength from weak to strong. In this way, we shed light
on what might happen if user clicks are affected by an impression of low quality
due to the presence of perturbations in images. Our additional experiments show
that the success of the attack is not dependent on a highly noticeable change to the
image appearance.

2.4 Adversarial Item Promotion Attacks
In this section, we introduce three adversarial item promotion (AIP) attacks corre-
sponding to the three attack models previously introduced (cf. Section 2.3.1).

2.4.1 Insider Attack (INSA)
The high-knowledge attack model assumes the attacker has insider access to the
user embeddings of the trained model (see Section 2.3.1). Some visually-aware
recommenders (e.g., AlexRank) only use visual embedding (feature) to build nearest
neighbor-based recommender, and other recommenders (e.g., DVBPR) model the
visual content embedding together with user content embedding using dot product
in a CF manner (cf. Section 2.3.2). For instance, in DVBPR, the inner product of
user embedding ◊u and item embedding Φe(Xi) represents the preference of user u

on item i.

We propose an insider attack (INSA) in which the attacker can modify the em-
beddings of item images in order to increase the predicted preference score that
solely determines the recommendation ranking. Specifically, INSA changes item
embeddings by adding perturbations ” on the item images. The perturbations are
optimized iteratively such that the strength of preference for the item is maximized
over all user profiles. In this work, the magnitude of ” is restricted by LŒ norm,
which represents the maximum value of ” and is commonly used in computer vision
research to measure imperceptibility [184; 20]. Formally, given a product image Xi

of item i, we optimize perturbations ” to increase the preference pu,i of all users
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on item i. The optimization objectives for different recommenders are specified in
Equation 2.6:

AlexRank: argmax
”

ÿ

uœU

ÿ

jœI+
u

≠ÎΦf (Xi + ”) ≠ Φf (Xj)Î2

|I+
u |

VBPR: argmax
”

ÿ

uœU
◊

T
u (EΦf (Xi + ”))

DVBPR: argmax
”

ÿ

uœU
exp (◊T

u Φe(Xi + ”))

(2.6)

Φ : Xi æ ◊i is the feature extraction or embedding model where ◊i represents
the content embedding for item i. ◊u represents the user content embedding. The
optimization can be implemented by mini-batch gradient descent, and it stops when
certain conditions are met, e.g., it reaches certain number of iterations.

2.4.2 Expert Attack (EXPA)
The medium-knowledge attack model assumes that the attacker can select a hook
(i.e., popular) item. It also assumes that the attacker has access to the visual
feature extraction model (see Section 2.3.1) and has the expertise needed to use it
in a transfer learning pipeline. We propose an expert attack (EXPA) in which the
attacker uses the hook item to mark the region of item space to which the adversarial
item should be moved. Specifically, the EXPA attack generates perturbations added
to the cooperative item in order to create the adversarial item by decreasing the
representation distance to the hook item.

Formally, generating an adversarial item image by EXPA is described in Equa-
tion 2.7:

argmin
”

ÎΦ(Xi + ”) ≠ Φ(Xhook)Î2, (2.7)

where Φ is the feature extraction or embedding model. The EXPA attack leverages
the same mechanism as the targeted visual feature attack proposed by [160]. The
novelty of EXPA is its use of a hook image that moves the adversarial image in image
space in a way that makes it rise in personalized recommendation lists. Note that
the hook image itself is not necessarily present in candidate set, which is selected
by BPR, and thereby also not necessarily in the recommendation lists.

Algorithm 2.1 describes the process to generate adversarial product images with
INSA and EXPA. Xi is the original image of cold item, and Xhook is the hook
item. Φ is the neural network that extracts embeddings or features from the image
content. Our aim is to find perturbations ” that could increase the personalized
preference predictions by optimization through all user content embeddings (INSA)
or targeting a hook item (EXPA). The magnitude of perturbations can be adjusted
by ”. To make sure that the output images are valid with respect to standard image
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Algorithm 2.1 Adversarial Item Promotion Attack
Input:

X: cold item image, Xhook: hook item image
”: adversarial perturbations, ‘: LŒ norm bound
Φ: neural network, ◊: user content embedding
K: number of iterations, A: attack to mount (INSA or EXPA)
Output:

X
Õ
: adversarial product image

1: Initialize xÕ
0 Ω X, Û xÕ

k represents adversarial image in iteration
k

2: ” Ω 0

3: for k Ω 1 to K do

4: if A is INSA then

5: AlexRank: ” Ω argmax
”

q
uœU

q
jœI+

u

≠Î�f (xÕ
k≠1+”)≠�f (Xj )Î2

|I+
u |

6:
7: VBPR: ” Ω argmax

”

q
uœU ◊T

u (EΦf (xÕ
k≠1 + ”))

8:
9: DVBPR: ” Ω argmax

”

q
uœU exp (◊T

u Φe(xÕ
k≠1 + ”)) Û Eq.(2.6)

10: else if A is EXPA then

11: ” Ω argmin
”

ÎΦ(xÕ
k≠1 + ”) ≠ Φ(Xhook)Î2 Û Eq.(2.7)

12: else

13: break
14: end if

15: ” Ω clip(”, ≠‘, ‘) Û Make sure that the magnitude of perturba-
tions are in pre-defined LŒ norm range

16: xÕ
k Ω xÕ

k≠1 + ”
17: xÕ

k Ω clip(xÕ
k + ”, 0, 1) Û Ensure perturbed image stays in valid im-

age range
18: end for

19: xÕ
k Ω quantize(xÕ

k) Û Ensure xÕ
k is valid in the 8-bit image format

20: return X
Õ

Ω xÕ
k is the adversarial item image

encoding format, a clip function restricts adversarial item image in range [0, 1], and
a quantization function ensures that the output image can be saved in the 8-bit
format. The resulting adversarial image XÕ is the summation of the original image
and the clipped perturbations.

2.4.3 Semantic Attack (SEMA)
The low-knowledge attack model assumes nothing beyond general knowledge needed
to choose hook items (see Section 2.3.1). We propose a semantic attack (SEMA)
uses the semantic content of the image, i.e., what is shown in the image, in order
to achieve the promotion of items. The attack differs considerably from INSA
and EXPA, which add perturbations to existing images without changing what the
images depict.

Figure 2.3 c-SEMA illustrates the semantic attack that we will test here, which we
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INSA EXPA

� = 4 � = 8 � = 16 � = 32 � = 4 � = 8 � = 16 � = 32

DVBPR

AlexRank

VBPR

Original c-SEMA n-SEMA

Figure 2.3: Examples of adversarial item images by different approaches. INSA attack is
based on Equation 2.6. EXPA, c-SEMA and n-SEMA select a popular item, e.g., Levi’s
501 jeans, as the hook item. c-SEMA applies simple co-depiction approach, and n-SEMA
incorporates the target item in a more natural way. More details about the influence of ‘
on recommendation performance can be found in Section 2.6.2

call compositing semantic attack (c-SEMA). With c-SEMA, the attacker creates
an adversarial image by editing the original image into the hook item image as an
inset. Here, the c-SEMA attack is promoting a pair of shoes and the hook item is
the jeans. A text (here, “match your jeans/coat”) can be included to contribute to
the impression that the composite image is a fair-play attempt to raise the interest
of potential customers.

Figure 2.3 n-SEMA shows another type of semantic attack, which we call natural
semantic attack (n-SEMA). Here, the integration of the hook item is natural. n-
SEMA images can be created in a photo studio or a professional photo editor. We do
not test them here, since creation is time consuming and we are using a cold test set
of 1000 item images. However, an unscrupulous merchant would have the incentive
to invest the time to create n-SEMA images. One highly successful adversarial item
image could already lead to increased buyers and increased profit.

The semantic attack is particularly interesting for two reasons. SEMA achieves the
change in image embeddings needed to push an adversarial image close to a hook
image in image space by manipulating the depicted content of the image. First, this
means that there are no limits on the quality of a SEMA adversarial image. Contrast
c-SEMA and n-SEMA with the INSA and EXPA photos in Figure 2.3. The item is
visible in the image, and consumers who decide to purchase the product will not find
that they have been misled. However, not all of the images are crisp, and stronger
attacks introduce artifacts affecting the perceived image quality. Second, the impact
of a SEMA image attack is not dependent on the algorithm used by the recommender
systems. In fact, SEMA images can effectively attack any recommender system
using visual features, and not just systems using neural embedding as studied here.
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Table 2.2: Statistics of the data sets
#Users #Items #Interactions

Amazon Men 34244 110636 254870
Tradesy.com 33864 326393 655409

2.5 Experimental Setup
In this section, we first introduce data sets used for our experiments (Section 4.4.1)
and introduce the details of evaluation setup including metrics (Section 2.5.2).
Then, we describe implementation of experiments (Section 2.5.3).

2.5.1 Data
2.5.1.1 Data statistics

We perform our experiments on two data sets: Men’s Clothing in Amazon.com
and Tradesy.com, which are publicly available and widely used in visually-aware
recommender system research. The statistics of the two data sets are described
in Table 2.2. The Men’s Clothing category is an important subset of the Ama-
zon.com data set, where the effectiveness of visual features has been validated in
previous work [119; 71; 91]. Tradesy.com is a C2C second-hand clothing trading
website where users can buy and sell fashion items. The nature of the Tradesy.com
inventory makes visually-aware cold item recommendation crucial, because of its
“one-off” characteristics. For both datasets, one descriptive image is available for
each item, and we follow the protocol of [91] and treat users’ review histories as
implicit feedback. For each user, one item is selected among all interacted items as
the test item, so we have the same number of test items as the number of users.

2.5.1.2 Cold test item election

To validate the effectiveness of the attacks in cold start scenario, in each of Amazon
Men and Tradesy.com data sets, we randomly select 1000 cold test items that no
user has interacted with and leave them out as the cold test set. These cold items
are excluded from the training process. Later, they are injected as cold-start items
into the candidate item set before feeding the set into the visually-aware ranker.

2.5.2 Evaluation Metrics
The change in rank of cold-start items is measured by the prediction shift and the
change in hit rate (HR@N), following the evaluation metrics for top-N recommender
system robustness [121] and [16]. Equation 2.8 defines the average prediction shift
∆pi

for item i and also the mean average prediction shift for a set of test items
∆set. Our results will report |∆set| and the direction separately for clarity. p

Õ
u,i is

the post-attack predictor score and pu,i is the original predictor score for item i.
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Itest represents the set of test items.

∆pi
=

ÿ

uœU

(pÕ
u,i ≠ pu,i)

|U| ∆set =
ÿ

iœItest

∆pi

|Itest| , (2.8)

Equation 2.9 defines the average hit rate HRi@N for item i in terms of Hu,i@N

for item i for user u. The mean average hit rate HR@N for test items averages
HRi@N over the test set. ∆HR@N is the change in mean average hit rate, where
HR

Õ

i@N is the post-attack hit rate for item i. Our results will report |∆HR@N | and
the direction separately for clarity.

HRi@N =
ÿ

uœU

Hu,i@N

|U| HR@N =
ÿ

iœItest

HRi@N

|Itest|

∆HR@N =
ÿ

iœItest

HR
Õ

i@N ≠ HRi@N

|Itest|

(2.9)

It is important to note that low metric values can still result in large impact due to
the large number of users involved. For example, in Amazon Men, an increase of
0.01 on HR@5 means that adversarial cold items are pushed into the top-5 list of
about 340 users.

2.5.3 Implementation
In the first stage, we use BPR to generate a candidate set of top 1000 items that
are selected by personalized preference ranking. Note that we use a set, which
means that the original rank order is not taken into account by the visually-aware
ranker. Then we inject the ordinary test item in the top 1000 candidate set and
get a set of 1001 items for each user. To compare before and after the attack,
we inject one cooperative cold item or its corresponding adversarial cold item in
the candidate set. So, for each cold-start item, we have two sets of 1002 items,
which each include one test item and also include either one cooperative or one
adversarial cold item. We use our three visual ranking models, AlexRank, VBPR,
and DVBPR (see Section 2.3.2), to rank the 1002 items and evaluate with respect
to both integrity and availability (see Section 2.3.3).

2.5.3.1 Model training

We implement BPR, AlexRank, VBPR, and DVBPR in PyTorch [137]. For the
first stage model BPR, we set the number of factors to 64. Stochastic Gradient
Desecent (SGD) is used to optimize BPR with learning rate 0.01 for Amazon Men
and 0.5 for Tradesy.com, where the weight decay for L2 penalty is set to 0.001
on both data sets. The feature dimension of AlexRank is 2048, and the embed-
ding length of both VBPR and DVBPR is 100. A grid search of learning rate in
{0.1, 0.01, 0.001, 0.005} and weight decay in {0.001, 0.0001, 0.0001} is conducted for
both VBPR and DVBPR to select hyperparameters, and we select the model with
best validation performance.
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2.5.3.2 AIP attacks

If not specifically mentioned, the maximal size of perturbations ‘ for AIP attacks
is set to 32. In INSA, the number of epochs is set to 10 to control the attacking
time, and our implementation takes about 2 hours to generate 1000 adversarial item
images on a single NVIDIA RTX 2080Ti GPU. We use the Adam optimizer with
the learning rate of 0.001 for DVBPR and 0.0001 for both VBPR and AlexRank.
In EXPA, the hook items are “Levi’s Men’s 501 Original Fit Jean” in Amazon Men
and a gray coat in Tradesy.com. These two products are most commonly interacted
items in training data of these two data sets. Recall, however, that hooks can be
chosen without direct access to interaction statistics. We use a Adam optimizer
with a learning rate of 0.01 in EXPA, and the number of iterations is set as 5000.
In c-SEMA, we resize the hook item image and paste it on the right side of the
cooperative item image as shown in Figure 2.3. To make the combination more
natural, we also add a text description. More implementation details can be found
in our released code.

2.6 Experimental Results
In this section, we carry out experimental analysis of our attacks using two real-
world data sets (Section 2.6.1) and also investigate the influence of hyperparameter
selections (Section 2.6.2). Finally, we analyze and discuss classification-based attack
(Section 2.6.3).

2.6.1 Attack Evaluation

Table 2.3: Absolute mean average prediction shifts of adversarial cold items |∆set| on
Amazon Men (AM) and Tradesy.com (TC), where ø represents positive prediction shift
(score increased) and ¿ represents negative prediction shift (score decreased). Positive
shift means a successful attack.

AlexRank VBPR DVBPR
INSA EXPA c-SEMA INSA EXPA c-SEMA INSA EXPA c-SEMA

AM ø16.13 ø15.94 ø11.1 ø3.27 ø3.16 ø0.88 ø13.54 ø4.80 ø4.82
TC ø26.89 ¿0.67 ¿3.44 ¿0.79 ø1.60 ø1.45 ø3.64 ø1.89 ø1.19

We mount AIP attacks and assess their effects with respect to our metrics (cf.
Section 2.5.1.2). Table 2.3 shows the absolute mean average prediction shift |∆set|
for adversarial cold items vs. cooperative items. The upwards arrow represents
a positive prediction shift, meaning that the attack has successfully promoted the
item. We see that for nearly all combinations of AIP attack and visually-aware
recommender system the attack is successful. The high-knowledge attack, INSA,
achieves a larger shift than EXPA and c-SEMA. c-SEMA is surprisingly successful,
given the very minimal amount of knowledge that it requires. Note that it is only
meaningful to compare the size of the prediction shift for the same recommender
system and the same data set.
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2.5.3.2 AIP attacks

If not specifically mentioned, the maximal size of perturbations ‘ for AIP attacks
is set to 32. In INSA, the number of epochs is set to 10 to control the attacking
time, and our implementation takes about 2 hours to generate 1000 adversarial item
images on a single NVIDIA RTX 2080Ti GPU. We use the Adam optimizer with
the learning rate of 0.001 for DVBPR and 0.0001 for both VBPR and AlexRank.
In EXPA, the hook items are “Levi’s Men’s 501 Original Fit Jean” in Amazon Men
and a gray coat in Tradesy.com. These two products are most commonly interacted
items in training data of these two data sets. Recall, however, that hooks can be
chosen without direct access to interaction statistics. We use a Adam optimizer
with a learning rate of 0.01 in EXPA, and the number of iterations is set as 5000.
In c-SEMA, we resize the hook item image and paste it on the right side of the
cooperative item image as shown in Figure 2.3. To make the combination more
natural, we also add a text description. More implementation details can be found
in our released code.

2.6 Experimental Results
In this section, we carry out experimental analysis of our attacks using two real-
world data sets (Section 2.6.1) and also investigate the influence of hyperparameter
selections (Section 2.6.2). Finally, we analyze and discuss classification-based attack
(Section 2.6.3).

2.6.1 Attack Evaluation

Table 2.3: Absolute mean average prediction shifts of adversarial cold items |∆set| on
Amazon Men (AM) and Tradesy.com (TC), where ø represents positive prediction shift
(score increased) and ¿ represents negative prediction shift (score decreased). Positive
shift means a successful attack.

AlexRank VBPR DVBPR
INSA EXPA c-SEMA INSA EXPA c-SEMA INSA EXPA c-SEMA

AM ø16.13 ø15.94 ø11.1 ø3.27 ø3.16 ø0.88 ø13.54 ø4.80 ø4.82
TC ø26.89 ¿0.67 ¿3.44 ¿0.79 ø1.60 ø1.45 ø3.64 ø1.89 ø1.19

We mount AIP attacks and assess their effects with respect to our metrics (cf.
Section 2.5.1.2). Table 2.3 shows the absolute mean average prediction shift |∆set|
for adversarial cold items vs. cooperative items. The upwards arrow represents
a positive prediction shift, meaning that the attack has successfully promoted the
item. We see that for nearly all combinations of AIP attack and visually-aware
recommender system the attack is successful. The high-knowledge attack, INSA,
achieves a larger shift than EXPA and c-SEMA. c-SEMA is surprisingly successful,
given the very minimal amount of knowledge that it requires. Note that it is only
meaningful to compare the size of the prediction shift for the same recommender
system and the same data set.
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A negative mean average prediction shift does not necessarily mean that an attack
is unsuccessful since it is the rank position and not the preference prediction score
that translates into benefit for the attacker. We go on to examine hit rate related
metrics.

Table 2.4(a) presents results in terms of the mean average hit rate HR@5. The first
two rows report the original situation: the hit rate for the cooperative (i.e., not
adversarial) version of the cold items and the hit rate for the ordinary test items in
the case that no adversarial items have been added to the candidate set. The rest of
the table reports on attacks. Cases marked with úú indicate a statistically significant
difference between the original situation and the case of the attack (item-level paired
sample t-test p < 0.01).

First, we consider “Integrity”, namely, the success of the attacks in pushing items.
It can be observed in Table 2.4 that in nearly all cases the hit rate for the adversarial
version of the cold items exceeds that of the cooperative version of the cold items,
meaning that all AIP attacks are generally effective. For INSA, the impact of the
attack is dramatic. The cooperative cold item makes it to one of the top-5 position
in the lists of only 35 users (averaged over the three recommender system), but
after the attack, the adversarial cold item makes it into the top-5 position of over
20,000 users. Since INSA uses the most knowledge, it is not surprising that it is
the most effective attack. However, even with much less knowledge, both EXPA
and c-SEMA pose serious threats. For example, for Amazon Men, c-SEMA pushes
cold items into the top-5 list of 582 users in the case of DVBPR. We also calculated
HR@10 and HR@20 for all conditions. These are not reported here since the trends
were overwhelming the same as for HR@5.

Next, we turn to discuss “Availability”, namely, the extent to which promotion
occurs at the expense of other items, which at scale can impede the functioning of
the entire recommender system. In Table 2.4, we see that INSA has a strong impact
on availability than EXPA and c-SEMA.

Notice that the different performance of EXPA and c-SEMA on Amazon Men and
Tradesy.com is not solely attributable to the adversarial attack itself, since the
selection of the hook item also has an impact. For Tradesy.com, the HR@5 for the
selected hook item (which is a gray coat) is originally rather low, so after EXPA or
c-SEMA, the rank cannot increase dramatically. In general, we observe that AIP
attacks are more damaging to integrity than to availability. However, in real-world
situations it would be important to study cases involving the simultaneous presence
of multiple adversarial items.
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Figure 2.4: 2-D visualization of item embedding by pre-trained DVBPR model (#factors
= 100) for randomly selected 1000 items in Amazon Men data set, cooperative item 1•
embedding and its corresponding adversarial item embedding. Attacks include generated
images by INSA 2•, EXPA 3•, c- SEMA 4• and n- SEMA 5•.

In order to directly illustrate the magnitude of the impact of AIP attacks on in-
tegrity, we report the change in mean average hit rate |∆HR@5| in Table 2.5(a).
Again, the expected large effect of INSA can be observed. Also, again, the c-SEMA
attack is surprisingly effective, given the minimal knowledge it involves. Remember
that the recommender system platforms we are concerned about are enormous, and
even a small boost in average rank of the magnitude of that afforded by c-SEMA
could translate in to a substantial increase in interactions and profit.

Figure 2.4 shows a 2-D visualization (using t-SNE [192]) of the image space defined
by the DVBPR item embeddings. It allows us to directly observe the influences of
different AIP attacks. The position of the original cold image (i.e., a cooperative
image) is shown by 1•. We can see that it is positioned next to items with which
it is visually similar. The attacks move this image to the other positions. The
hook item is a pair of jeans. We can see that EXPA, c-SEMA, and n-SEMA push
the cold item to a cluster related to the hook item. Note that it is difficult to
reason about the position of INSA, since it is optimized with respect to all user
embeddings. Here the n-SEMA image is manually generated using photo-editing
software, in particular, after cropping and rotation, the shoes to be promoted are
edited into the hook image. However, recall that in the real world an image could
easily be taken of a model wearing both items.
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2.6.2 Influence of Hyperparameters
Choice of the hyperparameters can influence the impact of the attack. Here, we take
a look at the two most important hyperparameters, embedding length and attack
strength (‘).

To study the impact of embedding length, we gradually reduce the embedding length
and measure HR@5. Specifically, we conduct experiments for different numbers of
factors (for VBPR in {20, 50, 100} and for DVBPR in {10, 30, 50, 100}) with same
adversarial budget (i.e., same iterations and learning rates). Results are presented
in Figure 2.5 for VBPR and DVBPR. We discovered that the embedding length is
quite important, with evidence pointing towards systems using shorter embedding
length being more vulnerable to AIP attacks. This finding is valuable since without
this knowledge a visually-aware recommender systems might use short embeddings
to save storage.

(a) DVBPR (Amazon Men) (b) DVBPR (Tradesy.com)

(c) VBPR (Amazon Men) (d) VBPR (Tradesy.com)

Figure 2.5: HR@5 of cooperative cold items and adversarial cold items by INSA/EXPA
with different number of factors in VBPR and DVBPR on Amazon Men’s Clothing and
Tradesy.com data set.

To study the impact of attack strength we vary the magnitude of ‘ and measure
HR@5. We carry out experiments with ‘ in {4, 8, 26, 32} for INSA and EXPA on
subset of 100 cold item images. Results are presented in Table 2.6 for all three
visually-aware recommender systems. We found that increasing ‘ from 4 to 32
leads to improved adversarial effects, but large perturbation size is not necessary
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To study the impact of attack strength we vary the magnitude of ‘ and measure
HR@5. We carry out experiments with ‘ in {4, 8, 26, 32} for INSA and EXPA on
subset of 100 cold item images. Results are presented in Table 2.6 for all three
visually-aware recommender systems. We found that increasing ‘ from 4 to 32
leads to improved adversarial effects, but large perturbation size is not necessary
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in most cases for a successful attack. Comparably, DVBPR is more sensitive to the
magnitude of ‘ than the other two approaches. Recall that EXPA has sensitivities
to the choice of the hook item.

Figure 2.3 provides examples that correspond to different levels of ‘. This figure
confirms that it is not necessary for the adversarial modifications to be highly
noticeable in an image in order for an attack to be effective.

Table 2.6: Average HR@5 of a subset of 100 adversarial cold test items by INSA/EXPA
with different magnitude of ‘ in DVBPR and VBPR for Amazon Men’s Clothing and
Tradesy.com data set. (cf. Figure 2.3 for adversarial item images with different ‘)

Amazon Men Tradesy.com
Attack Cooperative cold ‘ = 4 ‘ = 8 ‘ = 16 ‘ = 32 Cooperative cold ‘ = 4 ‘ = 8 ‘ = 16 ‘ = 32

AlexRank INSA 0.0023 0.7856 0.8180 0.8258 0.8297 0.0054 0.9280 0.9351 0.9381 0.9400
EXPA 0.0036 0.0035 0.0036 0.0036 0.0020 0.0000 0.0000 0.0000

VBPR INSA 0.0018 0.2932 0.3159 0.3498 0.3599 0.0025 0.0734 0.0755 0.0815 0.0842
EXPA 0.0008 0.0075 0.0135 0.0167 0.0005 0.0009 0.0009 0.0009

DVBPR INSA 0.0007 0.0049 0.0391 0.3706 0.7039 0.0018 0.0015 0.0194 0.1116 0.2731
EXPA 0.0021 0.0088 0.0313 0.0554 0.0025 0.0076 0.0291 0.0397

2.6.3 Classifier-targeted Adversarial Images

Table 2.7: |∆HR@5| before and after TAaMR attack: Cold items (attack is successful if
HR@5 rises) and ordinary test items (successful attacks cause a drop in HR@5) .

Amazon Men Tradesy.com
AlexRank VBPR DVBPR AlexRank VBPR DVBPR

Integrity
dimension

FGSM adversarial cold vs.
cooperative cold ¿ 0.0010 ø 0.0014 ø 0.0070 ¿ 0.0002 ø 0.0183 ¿ 0.0008

PGD20 adversarial cold vs.
cooperative cold ø 0.0100 ¿ 0.0011 ¿ 0.0005 ø 0.0019 ¿ 0.0014 ¿ 0.0004

Availability
dimension

FGSM ordinary test vs.
ordinary test ø<< 0.0001 ¿<< 0.0001 ø 0.0016 ¿<< 0.0001 ¿<< 0.0001 ø<< 0.0001

PGD20 ordinary test vs.
ordinary test ¿<< 0.0001 ø<< 0.0001 ø 0.0016 ø<< 0.0001 ¿<< 0.0001 ø<< 0.0001

In Section 2.1, we pointed out that previous work on the vulnerability of recom-
mender systems that use images has focused on classifier-targeted adversarial exam-
ples, which are already well studied in the computer vision literature. In contrast,
our EXPA and INSA approaches target the ranking mechanism, and attack the
user content embedding. In this section, we confirm that our attack poses a greater
threat than the classifier-targeted attack TAaMR [37]. The TAaMR attack works
by calculating the most popular class of items using the data set on which the rec-
ommender system was trained. As such, it can be considered an insider attack,
which, like our INSA, requires knowledge that would only be available inside the
company running the recommender system platform. TAaMR also requires access
to a visual feature extraction model, like our EXPA. It uses this model as a source
of class definitions and to create images that are adversarial with respect to the
most popular class. For our experiments we create class-targeted adversarial ex-
amples using two approaches from the computer vision literature, FGSM [63] and
PGD [98], on pre-trained AlexNet [97]. We use the training data to calculate the
most popular item classes. There are ‘jersey, T-shirt, tee shirt’ (9468 interactions)
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for Amazon Men and ‘suit, suit of clothes’ (19841 interactions) for Tradesy.com.
The inventory of classes is taken from ImageNet [36], as in [37]. Table 2.7 shows the
change in mean average HR@5 for FGSM and PGD20 attack. Generally, PGD20
has larger impacts on the AlexRank, and FGSM is more effective on VBPR. Both
attacks have little impact on DVBPR, because the architecture of AlexNet is fairly
distinct from the CNN-F architecture [23] in DVBPR. Although it uses information
comparable to that used by INSA and EXPA, the adversarial impact is on par with
the c-SEMA attack (cf. Table 2.5). This experiment shows the importance of AIP
attacks, which directly attacks the user content embeddings and thereby the ranker.

2.7 Defense
2.7.1 Adversarial Training
AMR (Adversarial Multimedia Recommendation) [185] uses the preference predic-
tion function from VBPR (cf. Equation 2.2) and adds on-the-fly adversarial infor-
mation to the training process. Recall it was proposed to improve recommendation
performance, but here we will study its potential for defending against AIP attacks.
The optimization of AMR is implemented by mini-batch gradient descent. In each
step, given a subset Da of Ds (cf. Equation 2.3), AMR first perturbs the Θ to
increase the loss:

ΘÕ = argmax
�

ÿ

(u,i,j)œDa

≠ ln ‡(pu,i ≠ pu,j) (2.10)

In AMR, adversarial perturbations with respect to parameters are calculated by
model gradients and added to current parameters in each step. Then it feeds forward
the visual features, calculates combined loss, and back-propagates to update the
parameters of the model. Specifically, p

Õ
u,i and p

Õ
u,j are calculated by the model

with perturbed parameters ΘÕ (cf. Equation 2.2). Then, model parameters are
updated by back-propagation based on the combined normal and adversarial loss:

argmin
�

ÿ

(u,i,j)œDa

≠ ln ‡(pu,i ≠ pu,j) ≠ ⁄adv ln ‡(pÕ
u,i ≠ p

Õ
u,j) + ⁄�||Θ||2 (2.11)

where ⁄adv is the weight hyperparameter for adversarial loss. To train AMR, we
adopt the same hyperparameters from VBPR and set ⁄adv = 1.

Table 2.4(b) presents the HR@5 of AMR under AIP attacks and Table 2.5(b)
presents the mean average hit rate changes. Although AMR increases the general
performance by including adversarial information into training process, the HR@5
jumps noticeably when AIP attacks are applied, which means AMR is vulnerable
to AIP attacks. Our finding here is consistent with recent research in the machine
learning community [18; 191], which shows that achieving adversarial robustness is
non-trivial.
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Table 2.8: Visualization of the level at which a defense is successful at lowering the HR@5
of an adversarial cold item equal or less the average HR@5 of a cooperative cold item. For
JPEG compression, levels are specified as compression percents and for bit depth reduction
levels are specified as number of bits with which the image is encoded. (N: Amazon.com;
F: Tradesy.com)

JPEG compression Bit depth reduction
90 70 50 30 10 7 6 5 4 3 2

AlexRank INSA
EXPA N

VBPR INSA
EXPA NF NF

DVBPR INSA F
EXPA N NF

2.7.2 Defense by Image Compression
In the computer vision literature, simple defenses have been shown to be effective
against adversarial images that cause neural classifiers to misclassify [66; 33; 44;
207]. Here, we evaluated two common defenses: JPEG compression and bit depth
reduction in order to test whether they are effective against AIP attacks. These
are known to be able to erase the effect of image perturbations. We carried out an
evaluation by applying progressively stronger versions of the defense to the 100-item
subset of our larger test set that was previously selected. We do not evaluate SEMA,
since the semantic attack does not involve perturbations and if these defenses would
destroy the effectiveness of SEMA they would destroy the usefulness of all images
to the recommender system.

In Table 2.8, we visualize the level of strength of defense that must be applied to
the adversarial image in order for its rank to be lowered to the average HR@5 of a
cooperative image. If the defenses presented effective protection against adversarial
item images then we would expect the N and F to appear consistently to the far
left in the boxes. This is clearly not the case. We see in Table 2.8 that INSA is
more difficult to defeat than EXPA, which is expected because it leverages insider
knowledge. However, EXPA is clearly not easy to beat across the board. It is
important to note that this test is a strong one. If these defenses would be applied
in practice, they would need to be applied to all images and not just adversarial
images. Image content becomes indistinguishable as compression increases, and
an image 10% the size of the original image or encoded with only 2-3 bits can be
expected to contain little to no item information.

2.8 Conclusion and Outlook
This work has investigated the vulnerability at the core of Top-N recommenders that
use images to address cold start. We have shown that Adversarial Item Promotion
(AIP) attacks allow unscrupulous merchants to artificially raise the rank of their
products when a visually-aware recommender system is used for candidate ranking.
Our investigation has led us to conclude that AIP attacks are a potential threat with
clear practical implications. Compared with existing profile injection attacks [132;
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100; 121; 16] and poisoning attacks [105; 48; 30; 47; 185] that promote items by
injecting fake profiles, AIP only needs to modify the descriptive image of the item.
Effective AIP attacks are easy to mount, as demonstrated by the minimal scale
attack that we have studied here (cf. attack model in Section 2.3.1). In short, our
work reveals that the promise of hybrid recommender systems to provide a higher
degree of robustness [121] is not an absolute, and that we must proceed with caution
when using images to address cold start.

Future work should dive more deeply into connection between adversarial items
and user experience with the recommender system. One aspect is the relevance
of adversarial items to users. Like any cold start item, users click an adversarial
cold start item because it piques their interest. As an adversarial item accumulates
more clicks, and enters more users’ personalized lists, the main issue may be not be
relevance, but rather fair competition with other potentially relevant items.

Another aspect related to user experience is the impact of image quality. If users
have sensitivities that cause them to avoid products with images affected by pertur-
bations, then attackers would need to back off to weaker attacks that make perturba-
tions unnoticeable. In this case, defenses such as adversarial training could be more
effective. More work is needed to understand approaches such as SEMA, which do
not involve trading off image quality and attack strength. Alternatively, approaches
that make adversarial images effective yet non-suspicious, such as [215; 89], can also
be studied.

Future work must develop effective defenses against AIP attacks. An approach that
easily comes to mind is the use a gatekeeper classifier to flag adversarial images
at the moment that merchants upload them. It is clear that for SEMA such a
classifier would be difficult to build, since SEMA attacks are created in a natural
manner and are indistinguishable from cooperative images. For INSA and EXPA,
a gateway filter could be built if the exact specifications of the adversarial attack,
including the parameter settings, were known. However, we need to be aware that
in the worst case scenario where the information of the gatekeeper is available (i.e.,
white-box scenario), variants on INSA and EXPA can still bypass such a classifier
by constructing new loss functions [20].

We have shown in our work (cf. Section 2.7.1) that simply incorporating on-the-
fly adversarial information into model training cannot guarantee a robust recom-
mender. In addition, adversarial training requires strict hypothesis about the attack
strength (‘) [118], and it also needs vast computational resources in practice [205].
Therefore, building a robust visually-aware recommender system is non-trivial and
needs more research attention.

Future work must look at the impact of multipliers. If a single item has multiple
descriptive images, attacks are more likely to go unnoticed, in particular seman-
tic attacks that require no perturbations. Further, multiple merchants (or fake
merchant profiles) could collaborate in a collusion attack. Finally, we note that al-
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though, here, we have focused on e-commerce, entertainment recommender systems
are vulnerable: an adversarial signal could be embedded into a thumbnail or the
content itself. In sum, AIP attacks constitute an important, practical risk of using
images in recommender systems and serious challenges remain to be addressed.
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Chapter 3

Privacy Improvement by Availability
Poisons

Perturbative availability poisons (PAPs) add small changes to images to prevent
their use for model training. Current research adopts the belief that practical and
effective approaches to countering PAPs do not exist. In this work, we argue that
it is time to abandon this belief. We present extensive experiments showing that
12 state-of-the-art PAP methods are vulnerable to Image Shortcut Squeezing (ISS),
which is based on simple compression. For example, on average, ISS restores the
CIFAR-10 model accuracy to 81.73%, surpassing the previous best preprocessing-
based countermeasures by 37.97% absolute. ISS also (slightly) outperforms adver-
sarial training and has higher generalizability to unseen perturbation norms and also
higher efficiency. Our investigation reveals that the property of PAP perturbations
depends on the type of surrogate model used for poison generation, and it explains
why a specific ISS compression yields the best performance for a specific type of PAP
perturbation. We further test stronger, adaptive poisoning, and show it falls short of
being an ideal defense against ISS. Overall, our results demonstrate the importance
of considering various (simple) countermeasures to ensure the meaningfulness of
analysis carried out during the development of PAP methods.

This Chapter is published as Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut
squeezing: Countering perturbative availability poisons with compression. International Con-
ference on Machine Learning (ICML), 2023.
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Figure 3.1: An illustration of our Image Shortcut Squeezing (ISS) for countering pertur-
bative availability poisons (PAPs). The model accuracy is reduced by PAPs but is then
restored by our ISS. Results are reported for EM [76] poisons on CIFAR-10.

3.1 Introduction
The ever-growing amount of data that is easily available online has driven the
tremendous advances of deep neural networks (DNNs) [167; 102; 70; 14]. However,
online data may be proprietary or contain private information, raising concerns
about unauthorized use. Perturbative availability poisons (PAPs) are recognized
as a promising approach to data protection and recently a large number of PAP
methods have been proposed that add perturbations to images which block training
by acting as shortcuts [175; 76; 52; 51]. As illustrated by Figure 4.3 (a)æ(b), the
high test accuracy of a DNN model is substantially reduced by PAPs.

Existing research has shown that PAPs can be compromised to a limited extent
by preprocessing-based-countermeasures, such as data augmentations [76; 52] and
pre-filtering [52; 26]. However, a widely adopted belief is that no approaches exist
that are capable of effectively countering PAPs. Adversarial training (AT) has been
proven to be a strong countermeasure [187; 200]. However, it is not considered
to be a practical one, since it requires a large amount of computation and also
gives rise to a non-negligible trade-off in test accuracy of the clean (non-poisoned)
model [118; 213]. Further, AT trained with a specific Lp norm is hard to generalize
to other norms [190; 99].

In this work, we challenge the belief that it is impossible to counter PAP methods
both easily and effectively by demonstrating that they are vulnerable to simple
compression. First, we categorize 12 PAP methods into three categories with respect
to the surrogate models they use during poison generation: slightly-trained [49; 76;
211; 57; 193], fully-trained [175; 187; 52; 26], and surrogate-free [203; 210; 163].
Then, we analyze perturbations/shortcuts that are learned with these methods
and demonstrate that they are strongly dependent on features that are learned in
different training stages of the model. Specifically, we find that the methods using
a slightly-trained surrogate model prefer low-frequency shortcuts, while those using
a fully-trained model prefer high-frequency shortcuts.
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Building on this new understanding, we propose Image Shortcut Squeezing (ISS),
a simple, compression-based approach to countering PAPs. As illustrated by Fig-
ure 4.3 (b)æ(c), the low test accuracy of the poisoned DNN model is restored by
our ISS to be close to the original accuracy. In particular, grayscale compression is
used to eliminate low-frequency shortcuts, and JPEG compression is used to elim-
inate high-frequency shortcuts. We also show that our understanding of high vs.
low frequency can also help eliminate surrogate-free PAPs [203; 210; 163]. Our ISS
substantially outperforms previously studied data augmentation and pre-filtering
countermeasures. ISS also achieves comparable results to adversarial training and
has three main advantages: 1) generalizability to multiple Lp norms, 2) efficiency,
and 3) low trade-off in clean model accuracy (see Section 3.4.2 for details).

We further test the performance of ISS against potentially stronger PAP methods
that are aware of ISS and can be adapted to it. We show that they are not ideal
against our ISS. Overall, we hope our study can inspire more meaningful analy-
ses of PAP methods and encourage future research to evaluate various (simple)
countermeasures when developing new PAP methods.

In sum, we make the following main contributions:

• We identify the strong dependency of the perturbation frequency patterns on
the nature of the surrogate model. Based on this new insight, we show that
12 existing perturbative availability poison (PAP) methods are indeed very
vulnerable to simple image compression.

• We propose Image Shortcut Squeezing (ISS), a simple yet effective approach
to countering PAPs. ISS applies image compression operations, such as JPEG
and grayscale, to poisoned images for restoring the model accuracy.

• We demonstrate that ISS outperforms existing data augmentation and pre-
filtering countermeasures by a large margin and is comparable to adversarial
training but is more generalizable to multiple Lp norms and more efficient.

• We explore stronger, adaptive poisons against our ISS and provide interesting
insights into understanding PAPs, e.g., about the model learning preference
of different perturbations.

3.2 Related Work
3.2.1 Perturbative Availability Poison (PAP)
Perturbative availability poison (PAP) has been extensively studied. TensorClog
(TC) [175] optimizes the poisons by exploiting the parameters of a pre-trained
surrogate to cause the gradient to vanish. Deep Confuse (DC) [49] collects the
training trajectories of a surrogate classifier for learning a poison generator, which
is computationally intensive. Error-Minimizing (EM) poisons [76] minimizes the
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classification errors of images on a surrogate classifier with respect to their original
labels in order to make them “unlearnable examples”. The surrogate is also alter-
natively updated to mimic the model training dynamics during poison generation.
Hypocritical (HYPO) [187] follows a similar idea to EM but uses a pre-trained sur-
rogate rather than the above bi-level optimization. Targeted Adversarial Poisoning
(TAP) [52] also exploits a pre-trained model but minimizes classification errors of
images with respect to incorrect target labels rather than original labels.

Robust Error-Minimizing (REM) [57] improves the poisoning effects against adver-
sarial training (with a relatively small norm) by replacing the normally-trained sur-
rogate in EM with an adversarially-trained model. Similar approaches [198; 200] on
poisoning against adversarial training are also proposed. The usability of poisoning
is also validated in scenarios requiring transferability [157] or involving unsupervised
learning [68; 214].

There are also studies focusing on revising the surrogate, e.g., Self-Ensemble Protec-
tion [26], which aggregates multiple training model checkpoints, and NTGA [211],
which adopts the generalized neural tangent kernel to model the surrogate as Gaus-
sian Processes [80]. ShortcutGen (SG) [193] learns a poison generator based on a
randomly initialized fixed surrogate and shows its efficiency compared to the earlier
generative method, Deep Confuse.

Different from all the above methods, recent studies also explore surrogate-free
PAPs [45; 210; 163]. Intuitively, simple patterns, such as random noise [76] and
semantics (e.g., MNIST-like digits) [45], can be used as learning shortcuts when
they form different distributions for different classes. Very recent studies also syn-
thesize more complex, linear separable patterns to boost the poisoning performance
based on sampling from a high dimensional Gaussian distribution [210] and fur-
ther refining it by introducing the autoregressive process [163]. One Pixel Shortcut
(OPS) specifically explores the model vulnerability to sparse poisons and shows that
perturbing only one pixel is sufficient to generate strong poisons [203].

In the domain of facial recognition, PAP methods, e.g., Fawkes [173] and LowKey [28],
have also been studied. However, their protection algorithms closely resemble the
PAPs as discussed above. Specifically, Fawkes adopts a feature-layer loss similar
to SEP and a robust surrogate model similar to REM, to boost transferability.
LowKey adopts ensemble surrogate models similar to SEP and a pre-processing
step similar to TAP, to boost transferability and imperceptibility.

In this work, we evaluate our ISS against 12 representative PAP methods as pre-
sented above. In particular, we consider poisons constrained by different Lp norms.
Because of their technical similarity to two of the 12 approaches, we do not consider
Fawkes and LowKey in our evaluation.
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3.2.2 PAP Countermeasures
As mentioned in Section 3.1, existing research has mainly relied on adversarial
training (AT) for countering PAPs [187; 200]. However, AT is not practical due
to the requirement of large computations and the non-negligible trade-off in test
accuracy of the clean model [118; 213]. In addition, image preprocessing, e.g., data
augmentations [76; 52] and pre-filtering [52; 26], also show substantial effects but
not comparable to AT. In the domain of face recognition, countermeasures are also
discussed but either require stronger assumptions or lack a concrete algorithm [149].
See more discussions in Appendix 3.6.4.

In this work, we compare our ISS against existing countermeasures and particularly
highlight its generalizability to unknown norms [190; 99] and simplicity.

3.2.3 Adversarial Perturbations and Countermeasures
Simple image compressions, such as JPEG, bit depth reduction, and smoothing,
are effective for countering adversarial perturbations based on the assumption that
they are inherently high-frequency noise [44; 32; 207]. Other image transformations
commonly used for data augmentations, e.g., resizing, rotating, and shifting, are also
shown to be effective [204; 188; 42]. However, such image pre-processing operations
may be bypassed when the attacker is aware of them and then adapted to them [18].
Differently, adversarial training (AT) is effective against adaptive attacks and is
considered to be the most powerful defense so far [191].

Besides (training-time) data poisons, adversarial perturbations can also be used
for data protection, but at inference time. Related research has explored person-
related recognition [127; 128; 165; 152] and social media mining [101; 106; 114]. An
overview of inference-time data protection in images is provided by [130].

Our ISS is based on compression. We specifically evaluate its compression effects
in Section 3.4.6.

3.3 Analysis of Perturbative Availability Poisons
3.3.1 Problem Formulation
We formulate the problem of countering perturbative availability poisons (PAPs)
in the context of image classification. There are two parties involved, the data
protector and exploiter. The data protector poisons their own images to prevent
them from being used by the exploiter for training a well-generalizable classifier.
Specifically, here the poisoning is achieved by adding imperceptible perturbations.
The data exploiter is aware that their collected images may contain poisons and so
apply countermeasures to ensure their trained classifier is still well-generalizable.
The success of the countermeasure is measured by the accuracy of the classifier on
clean test images, and the higher, the more successful.



44 Chapter 3

Slightly-trained surrogates Surrogate-free

EM REM HYPO TAPDC SG TC LSP OPSARNTGAClean SEP
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Figure 3.2: Poisoned CIFAR-10 images with corresponding perturbations. Perturbations
are re-scaled to [0, 1] for visualization.

Formally stated, the protector aims to make a classifier F generalize poorly on the
clean image distribution D, from which the clean training set S is sampled:

max
”

E(x,y)≥D
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!
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(3.1)

s.t. ◊Õ(”) = argmin
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L(F (xi + ”i; ◊(”), yi), (3.2)

where ◊(”) represents the parameters of the poisoned classifier, F , where ” denotes
the additive perturbations with ‘ as the Lp bound. L(·; ·) is the cross-entropy loss,
which takes as input a pair of model output F (xi; ◊) and the corresponding label
yi.

The exploiter aims to counter the poisons by applying a countermeasure C to restore
the model accuracy even when it is trained on poisoned data P:

min
◊

ÿ

(xi,yi)œP

L(F (C(xi + ”i); ◊), yi). (3.3)

3.3.2 Categorization of Existing PAP Methods
We carried out an extensive survey of existing PAP methods, which allowed us to
identify three categories of them regarding the type of their used surrogate clas-
sifiers. These three categories are: Generating poisons 1) with a slightly-trained
surrogate, 2) with a fully-trained surrogate, and 3) in a surrogate-free manner.
Table 4.2 provides an overview of this categorization. In the first category, the
surrogate is at its early training stage. Existing methods in this category either
fixes [211; 193] or alternatively updates [49; 76; 57] the surrogate during optimizing
the poisons. In the second category, the surrogate has been fully trained. Existing
methods in this category fix the surrogate [175; 187; 52; 26] but in principle, it
may also be possible that the model is alternatively updated. In the third category,
no surrogate is used but the poisons are synthesized by sampling from Gaussian
distributions [210; 163] or optimized with a perceptual loss [203].
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Table 3.1: Categorization of existing PAP methods.
PAP Methods Surrogate Model

DC [49]

Slightly-Trained
NTGA [211]
EM [76]
REM [57]
SG [193]
TC [175]

Fully-TrainedHYPO [187]
TAP [52]
SEP [26]
LSP [210]

Surrogate-FreeAR [163]
OPS [203]

1 2 3 30 60

Error  
min.

Error  
max.

Error  
min.

Error  
max.

Epoch

Figure 3.3: Perturbation visualizations for poisons generated using surrogate at its various
training epochs. Perturbations with LŒ = 8 (top) and L2 = 1 (bottom) are shown. Both
the error minimizing and maximizing losses are considered. Perturbations at later epochs
exhibit higher frequency.

3.3.3 Frequency-based Interpretation of Perturbations
Poisoned CIFAR-10 images and their corresponding perturbations for the 12 meth-
ods are visualized in Figure 3.2. As can be seen, the four methods that adopt a
fully-trained surrogate tend to generate perturbations in patterns having a high
spatial frequency. This is consistent with the common finding in the adversarial
example literature that adversarial perturbations are normally high-frequency [65].
In contrast, the five methods that adopt a slight-trained surrogate exhibit spatially
low-frequency patterns but large differences across color channels.
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We hypothesize that the above phenomenon can be explained by the frequency prin-
ciple [151; 208; 117], that is, deep neural networks often fit target functions from low
to high frequencies during training. Accordingly, the poisons optimized against a
slightly-trained model capture low-frequency patterns while those optimized against
a fully-trained model capture high-frequency patterns [151; 208; 117]. In order to
validate this hypothesis, we further try optimizing poisons using either the error-
minimizing or error-maximizing loss against the surrogate at its various training
epochs. We visualize the resulting poisoned images and their corresponding pertur-
bations in Figure 3.3. As can be been, the spatial frequency of the perturbations
gets increasingly higher as the surrogate goes to a later training epoch.

Different from those surrogate-based methods, the three surrogate-free methods
have full control of the perturbation patterns they aim to synthesize. However,
we notice that they still follow our frequency-based interpretation of perturbation
patterns. Specifically, the perturbations of LSP [210] are uniformly upsampled
from a Gaussian distribution and so exhibit patch-based low-frequency patterns.
On the other hand, the perturbations of AR [163] are generally based on sliding
convolutions over the image and so exhibit texture-based high-frequency patterns.
OPS [203] perturbations only contain one pixel and so can be treated as an extreme
case of high-frequency patterns.

3.3.4 Our Image Shortcut Squeezing
Based on the above new frequency-based interpretation, we propose Image Shortcut
Squeezing (ISS), a simple, image compression-based countermeasure against PAPs.
We rely on different compression operations suitable for eliminating different types
of perturbations. Overall, a specific compression operation is applied to the C(·) in
Eq. 3.3.

For perturbations with low frequency but large differences across color channels, we
use grayscale transformation to suppress such color differences. We expect grayscale
transformation to not sacrifice too much the test accuracy of a clean model because
color information is known to contribute little to the DNNs’ performance in differ-
entiating objects [206]. For perturbations with high frequency, we follow existing
research on eliminating adversarial perturbations to use common image compres-
sion operations, such as JPEG and bit depth reduction (BDR) [44; 32; 207]. We
expect grayscale transformation to not sacrifice too much the test accuracy of a
clean model because DNNs are known to be resilient to small amounts of image
compression, e.g., JPEG with a higher quality factor than 10 [41].

3.4 Experiments
In this section, we evaluate our Image Shortcut Squeezing (ISS) and other counter-
measures against 12 representative PAP methods. We focus our experiments on the
basic setting in which the surrogate (if it is used) and target models are the same
and the whole training set is poisoned. We also explore more challenging poisoning
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scenarios with unseen target models or partial poisoning (poisoning a randomly
selected proportion or a specific class).

3.4.1 Experimental Settings
Datasets and models. We consider three datasets: CIFAR-10 [96], CIFAR-
100 [96], and a 100-class subset of ImageNet [36]. If not mentioned specifically, on
CIFAR-10 and CIFAR-100, we use 50000 images for training and 10000 images for
testing. For the ImageNet subset, we select 20% images from the first 100 classes
of the official ImageNet training set for training and all corresponding images in
the official validation set for testing. If not mentioned specifically, ResNet-18 (RN-
18) [70] is used as the surrogate model and target model. To study transferability,
we consider target models with diverse architectures: ResNet-34 [70], VGG-19 [178],
DenseNet-121 [75], MobileNet-V2 [162], and ViT [43].

Training and poisoning settings. We train the CIFAR-10/100 models for 60
epochs and the ImageNet models for 100 epochs. We use SGD with a momentum
of 0.9, a learning rate of 0.025, and cosine weight decay. We adopt the torchvision
transforms module for implementing Grayscale, JPEG, and bit depth reduction
(BDR) in our Image Shortcut Squeezing (ISS). We consider 12 representative ex-
isting poisoning methods as listed in Table 4.2 under various Lp norm bounds. A
brief description of 12 methods can be found in Appendix 3.6.1. Specifically, we
follow existing work and use LŒ = 8, L2 = 1.0, and L0 = 1.

3.4.2 Evaluation in the Common Scenario
We first evaluate our ISS against 12 representative poisoning methods in the com-
mon scenario where the surrogate and target models are the same and the whole
training dataset is poisoned. Experimental results on CIFAR-10 shown in Table 3.2
demonstrate that ISS can substantially restore the clean test accuracy of poisoned
models in all cases. Consistent with our new insight in Section 3.3.3, grayscale
yields the best performance in countering methods that rely on low-frequency per-
turbations with large color differences (see more results by other color compression
methods on EM in Appendix 3.6.3). In contrast, JPEG and BDR are the best
against methods that rely on high-frequency perturbations. Additional results for
other hyperparameters of JPEG and BDR in Table 3.13 of Appendix 3.6.2 show
that milder settings yield worse results. In addition, we can also apply ISS without
determining the specific poisons by directly using Gray+JPEG. The results demon-
strate that this combination is globally effective against all 12 PAP methods, with
only a small decrease in clean model accuracy.
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Table 3.3: Additional results on CIFAR-10 with larger perturbation norms: L2 = 2.0 for
LSP and LŒ = 16 for the rest.

Poisons w/o Cutout CutMix Mixup Gray JPEG AT

Clean 94.68 95.10 95.50 95.01 92.41 88.65 84.99

EM 16.33 14.0 13.41 20.22 60.85 63.44 61.58
REM 24.89 25.0 22.85 29.51 42.85 76.59 80.14
HYPO 58.3 54.22 48.26 57.27 45.38 85.07 84.90
TAP 10.98 10.96 9.46 17.97 6.94 84.19 83.35
SEP 3.84 8.90 15.79 9.27 5.70 84.35 84.07

LSP 19.07 19.87 20.89 26.99 82.47 83.01 84.59

Table 3.4: Additional results on CIFAR-100.
Poisons w/o Cutout CutMix Mixup Gray JPEG

Clean 77.44 76.72 80.50 78.56 71.79 57.79

EM 7.25 6.70 7.03 10.68 67.46 56.01
REM 9.37 12.46 10.40 15.05 57.27 55.77
TC 57.52 60.56 59.19 59.77 47.93 58.94
TAP 9.00 10.30 8.73 19.16 8.84 83.77

SEP 3.21 3.21 3.98 7.49 2.10 58.18

LSP 3.06 4.43 6.12 5.61 44.62 53.49

AR 3.01 2.85 3.49 2.19 24.99 57.87

OPS 23.78 57.98 56.03 22.71 32.62 54.92

Table 3.5: Additional results on ImageNet subset. Following their original papers, NTGA
and DC are tested with only two classes.

Poisons w/o Cutout CutMix Mixup Gray JPEG

Clean 62.04 61.14 65.100 64.32 58.24 58.20

EM 31.52 30.42 42.98 21.44 49.78 49.88

REM 11.12 11.62 12.50 17.62 44.70 18.16
TAP 24.64 23.00 18.72 28.62 24.30 44.74

LSP 26.32 27.64 17.22 2.5 31.42 30.78

NTGA 70.79 63.42 70.53 68.42 83.42 76.58
DC 65.00 - - - 85.00 74.00

3.4.3 Evaluation in Challenging Scenarios
Partial poisoning. In practical scenarios, it is common that only a proportion of
the training data can be poisoned. Therefore, we follow existing work [52; 77] to
test such partial poisoning settings. We poison a certain proportion of the training
data and mix it with the rest clean data for training the target model.
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Specifically, we test two partial poisoning settings: first, randomly selecting a certain
proportion of the images, and, second, selecting a specific class. In the first setting,
as shown in Table 3.6, the poisons are effective only when a very large proportion
of the training data is poisoned. For example, on average, even when 80% of data
are poisoned, the model accuracy is only reduced by about 10 %. In the second
setting, we choose to poison all training samples from class automobile on CIFAR-
10. Table 3.7 demonstrates that almost all poisoning methods are very effective
in the full poisoning setting. In both settings, our ISS is effective against all PAP
methods.

Table 3.6: Clean test accuracy (%) of CIFAR-10 target models under different poisoning
proportions. TC is tested with LŒ = 26.

Poisons ISS 0.1 0.2 0.4 0.6 0.8 0.9

DC
w/o 94.29 94.26 93.20 91.66 87.19 80.14
Gray 92.73 92.57 92.37 91.51 90.49 89.50
JPEG 84.89 85.26 84.43 83.61 83.02 82.69

EM
w/o 94.37 93.63 92.62 91.07 86.63 79.57
Gray 92.60 92.62 92.52 92.23 90.96 89.69
JPEG 84.61 84.79 84.96 84.86 84.93 84.40

REM
w/o 94.39 94.56 94.37 94.43 94.19 81.39
Gray 92.63 92.81 92.78 92.82 92.73 86.62
JPEG 84.64 85.53 84.82 85.37 85.38 82.44

SG
w/o 94.47 94.40 93.46 91.21 87.75 83.40
Gray 92.81 92.65 91.90 90.65 88.44 85.26
JPEG 84.94 84.61 84.11 82.66 80.76 79.38

TC
w/o 93.81 94.09 93.70 93.59 93.02 91.47
Gray 91.98 92.38 92.03 91.96 91.03 87.71
JPEG 85.24 85.01 85.23 85.28 85.23 84.37

HYPO
w/o 93.94 94.43 93.34 92.56 90.64 89.35
Gray 92.59 92.39 91.37 90.06 88.03 86.37
JPEG 85.61 85.18 85.39 85.21 85.25 85.10

TAP
w/o 94.09 93.94 92.75 91.27 88.42 85.98
Gray 92.62 91.94 90.73 89.26 85.93 83.18
JPEG 85.24 84.42 84.86 84.98 84.51 84.36

SEP
w/o 94.12 93.45 92.76 91.22 87.82 85.01
Gray 92.57 92.04 91.09 89.25 86.31 82.95
JPEG 85.27 85.27 85.25 84.71 84.07 84.80

LSP
w/o 94.69 94.42 92.81 91.38 88.07 82.26
Gray 93.12 92.56 92.67 92.20 90.78 89.65
JPEG 85.01 84.58 84.88 83.49 83.27 81.67

AR
w/o 94.66 94.38 93.82 91.80 88.42 82.36
Gray 92.85 92.69 92.53 91.24 89.88 85.35
JPEG 85.37 84.75 85.35 85.35 85.07 87.27

OPS
w/o 94.47 94.11 92.61 91.49 87.19 82.65
Gray 92.65 92.27 91.36 89.34 85.24 81.37
JPEG 84.75 84.88 84.55 83.98 82.87 81.33
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Table 3.7: Partial poisoning for class automobile on CIFAR-10. TC is tested with LŒ =
26.

Poisons w/o Gray JPEG BDR

DC 1.60 69.00 88.30 52.20
NTGA 51.70 94.20 90.40 75.30
EM 0.10 48.60 94.30 9.60
REM 0.80 34.40 90.40 2.50
SG 27.75 88.39 78.59 70.05
TC 0.50 0.20 92.50 37.20
HYPO 4.00 3.00 94.90 56.80
TAP 0.00 0.10 93.90 38.10
SEP 0.00 0.00 94.70 15.50
LSP 67.30 86.90 95.10 83.20
AR 97.70 97.60 94.60 95.10
OPS 28.90 28.50 93.60 72.10

Transferability to unseen models. In realistic scenarios, the protector may not
know the details of the target model. In this case, the transferability of the poisons is
desirable. Table 3.8 demonstrates that all PAP methods achieve high transferability
to diverse model architectures and our ISS is effective against all of them. It is also
worth noting that there is no clear correlation between the transferability and the
similarity between the surrogate and target models. For example, transferring from
ResNet-18 to ViT is not always harder than to other CNN models.

3.4.4 Adaptive Poisons to ISS
In the adversarial example literature, image compression operations can be bypassed
when the attacker is adapted to them [177; 18]. Similarly, we evaluate strong
adaptive poisons against our ISS using two PAP methods, EM (LŒ) and LSP (L2).
We assume that the protector can be adapted to grayscale and/or JPEG in our ISS.
Specifically, for EM, we add a differentiable JPEG compression module [177] and/or
a differentiable grayscale module into its bi-level poison optimization process. For
LSP, we increase the patch size to 16◊16 to decrease high-frequency features so
that JPEG will be less effective, and we make sure the pixel values are the same for
three channels to bypass grayscale.

Table 3.9 demonstrates that for EM, the adaptive grayscale poisons are effective
against grayscale, but adaptive JPEG-10 noises are not effective against JPEG. As
hinted by [177], using an ensemble of JPEG with different quality factors might
be necessary for better adaptive poisoning. We also implement BPDA [3] with
the same JPEG quality factor (i.e., JPEG-10) and find that our ISS still ensures
a very high model accuracy, i.e., 83.70 %. For LSP, we observe that even though
adaptive LSP is more effective against the combination of JPEG and grayscale than
the other two individual compressions, it is insufficient to serve as a good adaptive
protector. On the other hand, adaptive LSP also fails against the model without



52 Chapter 3

ISS, indicating that the additional operations (grayscale and larger patches) largely
constrain its poisoning effects.

Table 3.8: Clean test accuracy (%) of CIFAR-10 target models in the transfer setting.
Note that AR, LSP, and OPS are surrogate-free. Four CNN models (ResNet-34, VGG-
19, DenseNet-121, and MobileNet-V2) and one ViT are considered as the target model.
TensorClog (TC) is tested with LŒ = 26.

Poisons ISS R34 V19 D121 M2 ViT

DC
w/o 18.06 16.59 16.05 17.81 24.09
Gray 83.13 80.32 83.93 78.78 44.83
JPEG 82.64 80.34 83.38 80.30 53.35

NTGA
w/o 40.19 47.13 16.67 40.75 31.82
Gray 71.84 76.89 64.07 62.28 58.25
JPEG 67.00 72.17 73.76 70.18 53.00

EM
w/o 29.96 34.70 30.61 30.10 18.84
Gray 86.97 87.03 84.84 82.81 63.28
JPEG 84.21 82.46 84.86 82.20 56.33

REM
w/o 25.88 29.04 28.31 24.08 32.22
Gray 75.20 77.99 70.53 66.21 63.00
JPEG 82.35 80.70 81.74 80.01 56.13

SG
w/o 29.64 48.5 28.88 30.75 18.11
Gray 86.53 87.12 86.07 81.34 42.22
JPEG 79.57 77.78 79.77 75.87 56.27

TC
w/o 87.71 85.47 78.04 78.51 69.86
Gray 78.48 75.14 66.72 62.39 61.86
JPEG 84.56 82.66 83.95 82.60 55.51

HYPO
w/o 80.64 81.59 81.48 78.27 67.49
Gray 75.25 76.65 74.29 69.81 53.02
JPEG 85.55 83.39 85.03 83.95 55.17

TAP
w/o 7.89 8.59 8.64 10.02 41.32
Gray 9.38 11.51 8.77 8.29 42.49
JPEG 84.42 81.95 84.28 82.24 57.35

SEP
w/o 3.11 6.70 4.41 5.29 25.56
Gray 4.00 5.40 4.20 4.70 22.23
JPEG 84.64 83.38 84.55 83.25 56.94

LSP
w/o 15.98 17.39 19.79 17.32 26.65
Gray 71.10 82.11 73.06 70.61 53.36
JPEG 79.57 78.72 79.66 76.79 60.41

AR
w/o 21.31 19.78 13.54 16.08 22.91
Gray 70.54 76.92 67.35 62.01 53.22
JPEG 85.62 83.95 85.46 83.50 54.88

OPS
w/o 37.06 36.3 40.03 27.35 30.25
Gray 44.29 42.21 38.32 38.71 21.77
JPEG 82.84 80.70 82.83 80.42 62.93
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3.4.5 Adaptive Poisons to ISS
In the adversarial example literature, image compression operations can be bypassed
when the attacker is adapted to them [177; 18]. Similarly, we evaluate strong
adaptive poisons against our ISS using two PAP methods, EM (LŒ) and LSP (L2).
We assume that the protector can be adapted to grayscale and/or JPEG in our ISS.
Specifically, for EM, we add a differentiable JPEG compression module [177] and/or
a differentiable grayscale module into its bi-level poison optimization process. For
LSP, we increase the patch size to 16◊16 to decrease high-frequency features so
that JPEG will be less effective, and we make sure the pixel values are the same for
three channels to bypass grayscale.

Table 3.9 demonstrates that for EM, the adaptive grayscale poisons are effective
against grayscale, but adaptive JPEG-10 noises are not effective against JPEG. As
hinted by [177], using an ensemble of JPEG with different quality factors might
be necessary for better adaptive poisoning. We also implement BPDA [3] with
the same JPEG quality factor (i.e., JPEG-10) and find that our ISS still ensures
a very high model accuracy, i.e., 83.70 %. For LSP, we observe that even though
adaptive LSP is more effective against the combination of JPEG and grayscale than
the other two individual compressions, it is insufficient to serve as a good adaptive
protector. On the other hand, adaptive LSP also fails against the model without
ISS, indicating that the additional operations (grayscale and larger patches) largely
constrain its poisoning effects.

Given that the protector may have full knowledge of our ISS, we believe that better-
designed adaptive poisons can bypass our ISS in the future.

Table 3.9: Clean test accuracy (%) of four different target models under EM poisoning
and its adaptive variants on CIFAR-10. Results are reported for LŒ = 8 and Table 3.14
in Appendix reports results of EM for LŒ = 16, which follow the same pattern.

Poisons w/o Gray JPEG G&J Ave.

EM 21.05 93.01 81.50 83.06 69.66
EM-Gray 17.81 16.60 76.71 74.16 46.32

EM-JPEG 17.11 89.18 83.11 82.85 68.06
EM-G&J 48.93 46.29 69.48 66.26 57.74

LSP 19.07 82.47 83.01 79.05 65.90
LSP-G&J 93.01 90.34 84.38 82.13 87.47

3.4.6 Further Analyses
Working Mechanism of ISS. Here we illustrate the working mechanism of our
ISS by ensuring that the poisons are the exact factor that is used by the poisoned
model for prediction. To this end, we follow [52] to use poisoned images to both train
and test the model. In this case, if the test accuracy (on poisoned images) is high,
it demonstrates that the perturbations in the poisoned images are actually learned
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Figure 3.4: Relative model preference of different poisons.

by the model. In addition, we also train and test the model on poisoned images but
differently, the testing (poisoned) images are pre-processed using our ISS. In this
case, if the test accuracy (on poisoned images) decreases, it demonstrates that ISS
can suppress the perturbations at inference time. The results in Table 3.10 validate
our hypotheses.

Table 3.10: Test accuracy (%) on clean, poisoned, and ISS-preprocessed poisoned test sets
of models that are trained on different poisons.

Test/ Poisons DC NTGA EM REM SG TC HYPO TAP SEP LSP AR OPS

Clean 17.96 - 16.77 26.04 37.50 87.86 73.06 11.63 4.91 15.29 16.37 17.50
Poisoned 97.20 97.85 99.85 99.97 96.72 93.79 99.98 100.0 99.99 100.0 99.94 99.83
Poisoned+ISS 11.17 24.86 11.89 20.68 25.39 24.16 16.68 11.33 10.13 10.06 13.83 12.61

Relative Model Preference of di�erent poisons. We explore the relative
model preference of low-frequency vs. high-frequency poisons. This scenario is
practically interesting because the same online data might be poisoned by differ-
ent methods. Inspired by the experiments on the model preference of MNIST vs.
CIFAR data in [171], we simply add up the EM and TAP perturbations for each
image. The perturbation norm is doubled accordingly. For example, for perturba-
tions with LŒ = 8, the composite perturbations range from ≠16 to 16. We train a
model (using the original image labels) on the composite perturbations of EM and
TAP and test it on either EM or TAP perturbations.

As shown in Figure 3.4, the model converges fast and reaches a high test accuracy
on EM but not on the TAP. It indicates that TAP perturbations are less preferred
than EM perturbations by the model during training.

ISS for a combination of di�erent types of poisons. We create poisons
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Figure 3.4: Relative model preference of different poisons.

by the model. In addition, we also train and test the model on poisoned images but
differently, the testing (poisoned) images are pre-processed using our ISS. In this
case, if the test accuracy (on poisoned images) decreases, it demonstrates that ISS
can suppress the perturbations at inference time. The results in Table 3.10 validate
our hypotheses.

Table 3.10: Test accuracy (%) on clean, poisoned, and ISS-preprocessed poisoned test sets
of models that are trained on different poisons.

Test/ Poisons DC NTGA EM REM SG TC HYPO TAP SEP LSP AR OPS

Clean 17.96 - 16.77 26.04 37.50 87.86 73.06 11.63 4.91 15.29 16.37 17.50
Poisoned 97.20 97.85 99.85 99.97 96.72 93.79 99.98 100.0 99.99 100.0 99.94 99.83
Poisoned+ISS 11.17 24.86 11.89 20.68 25.39 24.16 16.68 11.33 10.13 10.06 13.83 12.61

Relative Model Preference of di�erent poisons. We explore the relative
model preference of low-frequency vs. high-frequency poisons. This scenario is
practically interesting because the same online data might be poisoned by differ-
ent methods. Inspired by the experiments on the model preference of MNIST vs.
CIFAR data in [171], we simply add up the EM and TAP perturbations for each
image. The perturbation norm is doubled accordingly. For example, for perturba-
tions with LŒ = 8, the composite perturbations range from ≠16 to 16. We train a
model (using the original image labels) on the composite perturbations of EM and
TAP and test it on either EM or TAP perturbations.

As shown in Figure 3.4, the model converges fast and reaches a high test accuracy
on EM but not on the TAP. It indicates that TAP perturbations are less preferred
than EM perturbations by the model during training.

ISS for a combination of di�erent types of poisons. We create poisons
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by combining the two well-known low-frequency and high-frequency methods, i.e.,
EM and TAP. Specifically, we take the average of the perturbations of these two
methods. As shown in Table 3.11, our ISS is still effective against this combination.

Table 3.11: Clean test accuracy (%) of models trained on CIFAR-10 poisons that is a
combination of low-frequency poison EM and high-frequency TAP.

Poisons/ISS w/o Gray JPEG

EM 21.05 93.01 81.50
TAP 8.17 9.11 83.87
EM+TAP 36.07 18.93 84.62

ISS for both training and testing. Our ISS only applies to the training data for
removing the poisons. However, in this case, it may cause a possible distribution
shift between the training and test data. Here we explore such a shift by comparing
ISS with another variant that applies compression to both the training and test
data. Table 3.12 demonstrates that in most cases, these two versions of ISS do not
lead to substantial differences.

Table 3.12: Clean test accuracy (%) for ISS (Gray and JPEG), which applies compression
only to training data or to both training and test data (denoted with suffix-TT).

Poisons Gray-TT Gray JPEG-TT JPEG

Clean 92.62 92.41 79.56 85.38

DC 83.79 93.07 79.41 81.84

NTGA 65.42 74.32 62.84 69.49

EM 90.75 93.01 78.96 81.50

REM 73.38 92.84 79.39 82.28

SG 88.26 86.42 72.96 79.49

TC 76.41 75.88 79.42 83.69

HYPO 75.20 61.86 79.63 85.60

TAP 9.53 9.11 78.65 83.87

SEP 2.93 3.57 79.28 84.37

LSP 76.23 75.77 68.73 78.69

AR 68.95 69.37 79.26 85.38

OPS 46.53 42.44 76.87 82.53

3.5 Conclusion and Outlook
In this work, we challenge the common belief that there are no practical and ef-
fective countermeasures to perturbative availability poisons (PAPs). Specifically,
we show that 12 state-of-the-art PAP methods can be substantially countered by
Image Shortcut Squeezing (ISS), which is based on simple compression. ISS outper-
forms other previously studied countermeasures, such as data augmentations and
adversarial training. Our in-depth investigation leads to a new insight that the
property of PAP perturbations depends on the type of surrogate model used during
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poison generation. We also show the ineffectiveness of adaptive poisons to ISS. We
hope that further studies could consider various (simple) countermeasures during
the development of new PAP methods.

For future work, on the countermeasure side, we would further improve ISS on
the trade-off between its effectiveness and the decrease of clean model accuracy by
exploring other (simple) accuracy-preserving operations. In addition, to achieve a
countermeasure that is more effective against unknown poisons, it would be promis-
ing to explore more advanced combination strategies of operations or conduct au-
tomatic attack identification and then apply attack-specific operations. On the
protection side, we encourage future work to develop effective (adaptive) protection
methods against our ISS and other potential countermeasures.

3.6 Appendix
3.6.1 Brief Descriptions of Implemented PAP Methods

• Deep Confuse (DC) [49]: Perturbations are generated from a U-Net [159]
on CIFAR-10 and encoder-decoder model on two-class ImageNet. The gen-
erators are trained on the output of a pseudo-updated classifier, where the
classification model is first trained on clean data and then trained on adver-
sarial data to update the generator. We use the implementation from the
official GitHub repository.

• Neural Tangent Generalization Attacks (NTGA) [211] (target model-
agnostic): NTGA uses Neural Tangent Kernels to approximate target net-
works and then leverages the approximation to generate perturbations. We
use the poisons provided in the official GitHub repository.

• Error-Minimizing perturbations (EM) [77]: Bi-level optimizing error-
minimizing perturbations after certain steps of training on perturbed samples
that are from the last iteration. The surrogate model is trained on-the-fly
with perturbed training samples. We use the implementation from the official
GitHub repository.

• Robust Error-Minimizing perturbations (REM) [57]: Same as EM,
but the model is adversarially trained and the perturbations generation is
equipped with expectation over transformation technique (EOT) [4]. We use
the implementation from the official GitHub repository.

• Shortcut generator (SG) [193]: Perturbations are generated from a ResNet-
like encoder-decoder model from [125]. Different from another generative poi-

https://github.com/kingfengji/DeepConfuse
https://github.com/lionelmessi6410/ntga
https://github.com/HanxunH/Unlearnable-Examples/
https://github.com/fshp971/robust-unlearnable-examples/
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methods against our ISS and other potential countermeasures.

3.6 Appendix
3.6.1 Brief Descriptions of Implemented PAP Methods

• Deep Confuse (DC) [49]: Perturbations are generated from a U-Net [159]
on CIFAR-10 and encoder-decoder model on two-class ImageNet. The gen-
erators are trained on the output of a pseudo-updated classifier, where the
classification model is first trained on clean data and then trained on adver-
sarial data to update the generator. We use the implementation from the
official GitHub repository.

• Neural Tangent Generalization Attacks (NTGA) [211] (target model-
agnostic): NTGA uses Neural Tangent Kernels to approximate target net-
works and then leverages the approximation to generate perturbations. We
use the poisons provided in the official GitHub repository.

• Error-Minimizing perturbations (EM) [77]: Bi-level optimizing error-
minimizing perturbations after certain steps of training on perturbed samples
that are from the last iteration. The surrogate model is trained on-the-fly
with perturbed training samples. We use the implementation from the official
GitHub repository.

• Robust Error-Minimizing perturbations (REM) [57]: Same as EM,
but the model is adversarially trained and the perturbations generation is
equipped with expectation over transformation technique (EOT) [4]. We use
the implementation from the official GitHub repository.

• Shortcut generator (SG) [193]: Perturbations are generated from a ResNet-
like encoder-decoder model from [125]. Different from another generative poi-

https://github.com/kingfengji/DeepConfuse
https://github.com/lionelmessi6410/ntga
https://github.com/HanxunH/Unlearnable-Examples/
https://github.com/fshp971/robust-unlearnable-examples/
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soning Deep Confuse, the discriminator model is randomly initialized without
training. We use the CIFAR-10 poisons (version ‘SG’) provided by the authors
by private communication.

• TensorClog (TC) [175]: A second-order derivative with respect to training
data is calculated to iteratively optimize the perturbations to minimize the
gradients of model loss with respect to the weights of model layers. We use
the implementation from the official GitHub repository for poisons (LŒ = 26)
on CIFAR-10. We also use the implementation from https://github.com/l

hfowl/adversarial_poisons for poisons (LŒ = 8, 16) on CIFAR-10.

• Hypocritical perturbations (HYPO) [187]: Similar to EM, but the error-
minimizing perturbations are generated on a pre-trained surrogate model
which is trained on clean data. We use the implementation from the offi-
cial GitHub repository.

• Targeted Adversarial Poisoning (TAP) [52]: Targeted adversarial exam-
ples by PGD [118] and Spatial Transformer Networks (STN) module [81]. The
poisoning target labels are different from the original labels, but the target
labels are the same for poisoning images whose clean versions are from the
same class. We use the implementation from the official GitHub repository.

• Self-Ensemble Protection (SEP) [26] SEP ensembles intermediate check-
points when training on the clean training set to create perturbations. SEP
is currently the state-of-the-art protection on CIFAR-10. We use the imple-
mentation from the official GitHub repository.

• Linear separable Synthetic Perturbations (LSP) [210]: Linearly sep-
arable Gaussian samples are listed by order and then up-scaled to the size
of the image. Perturbations that are sampled from the same Gaussian are
added to the same class. We use the implementation from the official GitHub
repository.

• AutoRegressive poisoning (AR) [163] Autoregressive process generates
perturbations that CNN favors during training. We use the CIFAR-10 poisons
provided by the authors in the official GitHub repository.

• One Pixel Shortcut (OPS) [203]: OPS generates one pixel shortcut by
searching the pixel that creates the most significant mean pixel value change
for all images from one class. The perturbations are dataset-dependent.

https://github.com/JC-S/TensorClog_Public
https://github.com/TLMichael/Delusive-Adversary
https://github.com/lhfowl/adversarial_poisons
https://github.com/Sizhe-Chen/SEP
https://github.com/dayu11/Availability-Attacks-Create-Shortcuts/
https://github.com/psandovalsegura/autoregressive-poisoning
https://github.com/cychomatica/One-Pixel-Shotcut
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Table 3.13: JPEG with different quality factors and BDR with different bit depth.

Poisons w/o JPEG Compression Bit depth reduction
10 30 50 70 90 2 3 4 5 6

Clean (no poison) 94.68 85.38 89.49 90.80 91.85 93.06 88.65 92.22 93.45 94.46 94.55

DC [49] 16.30 81.84 79.35 69.69 58.53 34.79 61.10 27.03 17.34 16.42 15.11
NTGA [211] 42.46 69.49 66.83 64.28 60.19 53.24 62.58 53.48 47.30 44.39 43.29
EM [76] 21.05 81.50 70.48 54.22 42.23 21.98 36.46 24.99 22.57 21.54 20.60
REM [57] 25.44 82.28 77.73 71.19 63.39 37.89 40.77 28.81 28.39 25.38 26.49
SG [193] 33.05 79.49 77.15 74.49 73.03 70.76 69.32 58.03 47.33 31.67 31.56
HYPO [187] 71.54 85.45 89.14 90.16 88.10 70.66 83.17 80.33 76.91 73.22 72.05
TAP [52] 8.17 83.87 84.82 77.98 57.45 11.97 45.99 18.29 14.16 8.590 7.38
SEP [26] 3.85 84.37 87.57 82.25 59.09 8.06 43.48 10.01 7.89 4.99 3.66
LSP [210] 15.09 78.69 42.11 33.99 29.19 26.66 48.27 29.56 25.14 16.88 14.27
AR [163] 13.28 85.15 89.17 86.11 80.01 54.41 31.54 12.64 11.66 9.96 12.99
OPS [203] 36.55 82.53 79.01 68.58 59.81 53.02 53.76 48.46 46.79 38.44 42.27

Table 3.14: Clean test accuracy (%) of target models under EM poisoning and its adaptive
variants on CIFAR-10. Results are reported for LŒ = 16.

Poisons w/o Gray JPEG G&J Ave.

EM 19.32 80.60 84.32 82.12 66.59
EM-Gray 10.01 12.14 50.14 52.07 31.09
EM-JPEG 21.63 64.83 68.21 81.22 58.97
EM-G&J 19.71 22.68 28.94 30.51 25.46

3.6.2 Hyperparameters for Di�erent Countermeasures
If not explicitly mentioned, we use JPEG with a quality factor of 10 and bit depth
reduction (BDR) with 2 bits. For grayscale compression, we use the torchvision
implementation where the weighted sum of three channels are first calculated and
then copied to all three channels. For adversarial training (AT), PGD-10 is used
with a step size of 2

255 , where the model is trained on CIFAR-10 for 100 epochs.
We use a kernel size of 3 for both median, mean, and Gaussian smoothing (with a
standard deviation of 0.1).

3.6.3 Color Channel Di�erence Mitigation Methods on EM
We show that grayscale compression is a special case where the weighted sum of
different channels are used. Table 3.16 demonstrates that other approaches that
reduce color channel differences can also be applied to counter poisons.

3.6.4 PAP Countermeasures in Facial Recognition
In the domain of facial recognition, [149] propose two countermeasures against two
PAP methods, Fawkes [173] and LowKey [28]. Their first countermeasure is based
on robust training via data augmentation and assumes that an additional clean
pre-trained model is available to the data exploiter. In contrast, our work explores
robust training, via adversarial training, but does not assume the exploiter has
access to additional (clean) data and model. Table 3.15 demonstrates that models

https://pytorch.org/vision/stable/generated/torchvision.transforms.Grayscale
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https://pytorch.org/vision/stable/generated/torchvision.transforms.Grayscale
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trained by their robust training on one type of poison would not generalize to others,
limiting the effectiveness of the robust data augmentation against PAPs.

Their second countermeasure is more conceptual, which is to “wait for better facial
recognition systems to be developed in the future.” This method clearly depends
on the potential progress of future models and obviously cannot act as an effective
solution at this moment. In contrast, our ISS requires no change to the existing
model but only applies pre-processing operations.
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Chapter 4

Privacy Improvement by Pivoted Profiles

Bag-based classification is a supervised machine learning method that makes a pre-
diction based on a bag of items. Unfortunately, it can be misused as an attribute
profiling attack, where the attacker’s objective is to infer a privacy-sensitive attribute
of a target user from that user’s shared social media profile, i.e., a bag of images
or other media. Despite this threat, existing studies on profiling attacks are lim-
ited to the item-level perspective, i.e., attack and defense of a single item. In this
work, we move obfuscation defenses against attribute profiling beyond the existing
single-item research to study the multi-item, bag-based case, which is more practi-
cally relevant because it considers the full attack surface. Defense against bag-based
profiling is difficult, because, in general, content shared on social media can never
be completely deleted. For this reason, we study defenses that involve extensions,
referred to as pivoting additions, to existing profiles, which aim to change (i.e.,
pivot) the output of the bag-based classifier without removing items contained in the
original profile. We propose three different pivoting additions: Adversarial Noise
(AdvN), Adversarially Perturbed Items (AdvPI), and Natural Items (NatI). We ex-
perimentally demonstrate the ability of these pivoting additions to compromise the
performance of three deep bag-based classifiers, representing late-, intermediate- and
early-fusion approaches. Overall, our work provides an introduction to the risk of
bag-based profiling and a systematic study of defenses.

This Chapter is under review as Resisting Bag-based Attribute Profiling by Adding Items to
Existing Media Profiles. IEEE Transactions on Information Forensics and Security. Preliminary
version was published at Conference on User Modeling, Adaptation and Personalization (UMAP),
2021.
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4.1 Introduction
Machine learning classifiers can infer potentially privacy-sensitive information from
images that users post online. Particularly concerning is work that infers attributes
that would not be readily evident to a person casually inspecting the images, such as
personality [170] and depression [155]. Recent research has addressed this risk using
adversarial techniques. Building on the initial discovery of adversarial images [9; 63],
these techniques take an privacy-by-obfuscation approach [128; 101; 173]. Specifi-
cally, they create versions of items that have been modified so that machine learning
classifiers are fooled, i.e., the accuracy with which a classifier can infer a privacy-
sensitive attribute is drastically reduced to near zero or to the point of being no
better than a random decision. Adversarial examples have been studied in white-
box [21], gray-box [194], and black-box [135] threat models, which differ in the
amount of information that targets users, who are seeking to protect themselves,
can access about the classifier being used to infer their privacy-sensitive attributes.

Given the importance of online privacy, it is surprising that until now all research
on adversarial images for privacy protection has taken an item-level perspective. In
other words, until now, research has focused on studying attacks and defenses of
individual images posted by users. This focus has been present since early work,
represented by e.g., [67; 202; 127; 29; 128; 101; 173; 172], in which individual images
are modified and the ability of the change to block inference is measured, without
considering multiple images posted by a single user.

In this work, we introduce the profile-level perspective and investigate how privacy-
sensitive attributes can be inferred from a user’s profile containing multiple media
items and how adversarial techniques make it possible to resist this inference. We are
specifically interested in attributes, like personality and emotion, that are not easily
observable by a person manually inspecting the profile. We are also specifically
interested in cases in which the evidence for the attribute is assumed to be spread
out over multiple items in the profile and not concentrated in one or two. For
example, we are not interested in attacks that seek to determine whether a user
has ever met with a particular person by identifying a clear image of that user with
that person in the user’s profile.

Our goal of moving research beyond the item-level perspective to the profile-level
perspective is important for two reasons. First, it is not particularly realistic to
assume that the attack surface is limited to a single media item. Instead profilers,
who aim to infer privacy-sensitive information of target users, can acquire multiple
items, or an entire profile, creating a set that potentially contains more information
than a single item alone. Profilers working from the inside of an online platform
can acquire such a set by accumulating images or other media, including items a
user has deleted. Profilers with no inside access to an online platform can do it
by scraping posted content. User linking between platforms [139] and authorship
attribution [183] can potentially expand the number of items available via scraping.
Our concern is that an attacker can exploit information in the set of items using
bag-based attribute profiling carried out with multiple instance learning (MIL). Bag-
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Figure 4.1: Pivoting additions are additional items added to an existing profile, which
we consider an unordered set of items, or “bag”. In this work, we demonstrate that such
additions can resist bag-based attribute profiling carried out by a deep bag-based classifier,
and deletion of existing items is not necessarily required.

based attribute profiling takes an unordered set of items (i.e., a bag of items) as input
and returns a prediction of the value of a profile-level privacy-sensitive attribute.

Second, the item-level perspective assumes that the user protects all of their images
or other media before uploading them. The dominant view in the literature, rep-
resented e.g., by [149], is that users who have already uploaded unprotected items
are irreversibly exposed. We agree that it is necessary to assume that deleting
items that have already been posted is not a reliable way to protect privacy, since
these items may be retained indefinitely on servers or already have been scraped.
However, in this work, we argue that it is time to drop the assumption that the
existence of already-uploaded images is incompatible with obfuscation approaches
to privacy protection. Instead, we demonstrate that the profile-based perspective
opens up the possibility that users wishing to resist attribute profiling extend their
currently existing profiles by posting additional items, as illustrated in Fig. 4.1. We
refer to the added images as pivoting additions because they are extensions to the
profile that are intending to shift or “pivot" the prediction of the profiling classifier,
with the aim of changing a correct prediction into an incorrect one.

This work makes three main contributions:

• We introduce the profile-level perspective for studying the use of adversarial
examples in online privacy, including a definition of the threat models in the
white-box, gray-box, and near-black-box scenarios.

• We demonstrate that deep bag-based classifiers using early or intermediate
fusion are potentially more dangerous, than approaches that use late fusion,
i.e., predict at the item level before aggregating to reach a final prediction.

• We introduce three pivoting additions to resist bag-based profiling, which we
study under different threat scenarios. Our experiments and analysis demon-
strate that it is possible for users to resist bag-based attribute profiling by
adding items to existing profiles.
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The three pivoting additions that we propose gradually increase the level of stealth,
i.e., how obvious it is that the user has pivoted the profile. The first approach, Ad-
versarial Noise (AdvN) addition, adds items consisting solely of noise, which allows
us to demonstrate the upper bound of the protection that can be achieved if stealth
is not an issue. The second approach, Adversarially Perturbed Item (AdvPI), adds
adversarial perturbed items, which is an extension of current single item-level per-
turbation approaches from adversarial machine learning [101; 128] to newer MIL
classifiers. To our knowledge, AdvN and AdvPI represent the first time that opti-
mization of the bag-level MIL model loss has been used to create adversarial profiles.
The AdvPI pivot is less easily noticeable than AdvN, yet technically speaking, could
still be distinguished. The third approach, Natural Item (NatI), adds adversarial
items which are not perturbed but rather selected. This approach follows the trend
of naturalness in the item-level adversarial image literature [196; 217]. Since the
pivoting addition consists of entirely untouched images, only the posting user knows
that a pivot has taken place. Further, natural image additions can be expected to
remain more effective than modification-based additions if the attacker applies a
typical approach to negate the effects of pertubation, such as compression [207].

This work builds on a previous short work [113] in which we introduced the problem
of bag-based attribute profiling and presented a framework for defining the problem
along with a single white box defense against late-fusion bag-based classification.
Compared to our previous work, this work studies the problem systematically, in-
vestigating three different defenses in white-box, gray-box, and near-black-box sce-
narios against late-, intermediate- and early-fusion bag-based classification.

4.2 Related Work
In this section, we cover the relevant literature most closely related to our work.
In Section 4.2.1, we discuss attribute profiling and the obfuscation defenses that
have been proposed to resist it. As mentioned, the previous work has focused on
the item-level perspective. Moving from item level to the profile level requires con-
sidering attacks by recently-developed deep bag-based Multiple Instance Learning
approaches, which attack multiple media items at once. These are covered in Sec-
tion 4.2.2.

4.2.1 Obfuscation Defenses against Attribute Profiling
Attribute profiling attacks use machine-learning classifiers to infer sensitive at-
tributes of a user based on that user’s content, especially publicly available so-
cial media posts. Many attributes can be considered privacy-sensitive, including
personality traits, sexual orientation, geo-location, political views, and occupa-
tions [10; 29]. When users post content (i.e., text, images, video) on social media,
they may be unaware that their private attributes can be inferred from their posts,
which do not seem to be privacy sensitive [169]. Note that a profiling attack is dif-
ferent from a model inversion attack. In model inversion, the adversary has access
to a machine learning model and is targeting users in the data that was used to
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train that model [53; 54; 120]. In a profiling attack, the target users data is not
assumed to be part of the training data.

To carry out a profiling attack, a profiler first trains a model on a data set of user
profiles that have been annotated with privacy-sensitive attributes. Often, both
the training data and ground truth attribute labels can be scraped from online
sources. Then, using the trained model, the profiler can make predictions on target
users for whom values of sensitive attributes are unknown. Numerous authors have
demonstrated the threat of attribute profiling on the basis of social media data [69;
61; 86; 60; 62; 94; 22; 219]. However, these authors study profiles that consist of
interactions and not of media items, that are of interest to us here.

In this work, we focus on obfuscation defenses. As such, our work contributes to
research on obfuscation approaches to privacy [15]. We follow in the footsteps of
authors who have applied adversarial machine learning to create image modifications
that protect users against profiling attacks [88; 127; 128; 101; 173; 172; 201; 154; 202;
67; 29; 111; 199; 85; 180]. These have included work that has studied protection
against social media analysis [154; 101], face recognition [127; 173; 201], person
recognition [127], and object detection [111], where the main focus is to protect
single item [88; 101] or interaction data used to train recommender systems [199;
85; 180]. We, instead, focus on profile-level privacy to protect against attribute
inference attacks on profiles consisting of multiple media items.

Early work also explored different scenarios defined in terms of threat models speci-
ficying the amount of information that a target user can access about the attack
that they are defending against. Studies start with a white box scenario, in which
the target user has full information about the profiler, in order to demonstrate
the potential of adversarial machine learning to offer protection [111]. Then, gray
box [154] and black box [173] scenarios are studied to demonstrate the level of pro-
tection that can be provided in more realistic settings. Following previous work,
we test our proposed pivoting in threat model scenarios that gradually reduce the
assumptions on the knowledge that the target user has about the attacker.

4.2.2 Deep Bag-based Multiple Instance Learning
In the general case, multiple instance learning (MIL) designates approaches to a
class of problems in which items occur in sets and the ground truth is labeled with
a set-level label. Bag-based MIL is an approach that addresses a subset of the
overall MIL problems, namely the case in which items occur in unordered sets in
the ground truth, called bags, and the predicted output must also be at bag level. In
this work, the attribute inference attacks we studied are carried out with bag-based
MIL because we take user profiles to be unordered sets of items and because the
attacker targets a single user-level attribute. Bag-based MIL can be characterized
by the level at which the information from the individual items is combined to make
the bag-level decision. Here, we discuss late fusion, and then early and intermediate
fusion.
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Late fusion first classifies the individual items in the profile, and then combines
the item-level decisions into a bag-level decision. Common late fusion strategies
include voting and pooling [17]. For voting, each item is labeled by a classifier, and
the labels are combined with majority vote, while for pooling item-level scores are
aggregated first and only then converted to a label for the bag. In this work, we
choose Majority Vote (MV) [170; 113] as a representative deep learning late fusion
method. The item-level predictions are first made by a CNN classifier and then
the predictions are combined by way of majority vote. In practical scenarios, it is
sometimes impossible to annotate all items in the training bags [27]. In this case, a
bag-level annotation can be projected to the item level for training [169], which is
the approach that we adopt here when training the MV classifier.

Early fusion combines representations at the item level, including raw inputs or
unimodal features, into a unified representation [181]. Previous early fusion methods
are mainly based on average or max pooling of representations [50; 17]. Recently,
learning-based aggregation methods have become prevalent due to the flexibility of
the learning-based aggregation module [50]. In this work, we chose a state-of-the-
art method with average pooling, Deep Sets [212] as representative of early fusion.
Deep Sets incorporates the aggregation functions into the learning.

Intermediate fusion. Like early fusion, intermediate fusion involves combining
representations before the final classification model [11]. However, the representa-
tions are at a higher level of abstraction than with early fusion. Compared to early
fusion, intermediate fusion provides an extra layer of flexibility. Only a limited
number of intermediate fusion approaches exist for deep bag-based MIL. The dom-
inant use of self-attention in deep bag-based MIL is Set Transformer (SetT) [104],
which models the inter-relationships between item embeddings. We choose SetT
here as representative of intermediate fusion. Interpretability in intermediate fu-
sion approaches to deep bag-based MIL has been addressed by Attention-based
deep Multiple Instance Learning (AttMIL) [78]. This approach trains an auxiliary
network that provides interpretable weights that are used to calculate weighted av-
erages in the aggregation layer. In this work, we carry out experiments with AttMIL
because its interpretible weights allow us to gain insight in to the way that attention
is distributed before and after the pivoting additions.

4.3 Threat Model
In this section we present the threat model, i.e., the characterization of the profiler
(attacker) and the target user (protector) that we adopt in this work. We provide
a description and motivation for each of the three scenarios that we study, white
box, gray box, and near-black box.

Specification of profiler. The objective of the profiler is to acquire the values of a
specific private attribute y for each of a set of target users Utarget = {u1, u2, ..., uR}.
For each target user, the profiler has obtained possession (i.e., by theft or scraping)
of a user profile u, which we consider to be a bag of N items {x1, x2, ..., xN }.
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The profiler has collected additional resources (i.e., again by theft or scraping) in
order to train a bag-based classifier. The resources consist of a set of user profiles
Utrain = {u1, u2, ..., uM } again each containing N items {x1, x2, ..., xN }. For each
user in Utrain, the profiler also has the corresponding privacy-sensitive attribute
{y1, y2, ..., yM }. Using this data, the profiler trains a deep bag-based classifier,
f◊ : u æ y, where ◊ represents parameters of the model f . As previously mentioned,
for our late-fusion approach, which requires instance-level labels, we assume the
profiler projects the profile-level attribute label y to the level of the individual item
x, by assigning every x in the profile u the same label y.

The profiler attacks by using f◊ to infer the value of the privacy sensitive attribute
for each target user u in Utarget. Note that technically it is possible for the profiler
to leverage the unlabeled target users to improve f◊, using a unsupervised approach.
However, we leave this possibility to be studied in future work. In our experiments,
we also consider proactive profilers, who are aware of the pivoting additions in order
to study the effectiveness of profiler countermeasures (Section 4.7.5).

Specification of target user. The objective of the target user is to prevent the
profiler from inferring the value of a specific privacy-sensitive attribute. The target
user has some level of knowledge of the attack, making the threat model either
white-box, gray-box or near-black-box, as described in “Threat model scenarios"
just below.

The defense of the target user is a pivot-based obfuscation approach. We assume
that the target users were unaware of the risks when they began sharing on social
media, but subsequently realized the danger of attribute profiling after they had
already posted a number of items. Users have no guarantee that items deleted from
their profiles are no longer available to the profiler, since their data may already have
been scraped. Also, they may be reluctant to delete since it might draw attention
to specific items. For this reason, users protect their profiles by a pivoting addition,
i.e., by adding new items, without modifying or deleting existing items. We consider
the case that there is only a single pivot, i.e., the user does not alternate between
the original posting behavior and posting images from the pivoting addition.

Threat model scenarios. We study three specific scenarios within the overall
threat model: white box, gray box, and near-black box. These scenarios represent
three versions of the threat model that are progressively more realistic in terms of
what target users know about the attack that they are trying to defend themselves
against. For each scenario, we assume that the user has knowledge of which attribute
the profiler is trying to acquire.

White box: The target users have full access to the attack classifier that the profiler
used for attribute profiling. Under these white box assumptions, defense is the
easiest and attack is the hardest. We include this case in our experiments because
it represents an upper bound on the success of a pivoting addition.
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Gray box: The target users have access to some (i.e., a subset) of the data (i.e., the
user profiles) that the profiler used to train the attack classifier. They also have
knowledge of the architecture of the classifier and train their own classifier. This
scenario can be considered to correspond to the case in which the target user makes
an educated guess as to the profiles that the profiler has collected from training or
does not have sufficient resources to obtain an exact version of the profiler’s training
data.

Near-black box: The target users do not have knowledge of the architecture of the
attack classifier and do not have access to any of the profiles that the attacker used
to train the classifier. However, the target users can download publicly-available
pre-trained feature extractors that have been trained on other data. Because there
is a limited number of large-scale data sets (e.g., ImageNet) suitable for training
such feature extractors, it is plausible that the feature extractors used by the target
user and the profiler are trained on the same data. In our work, we make this
assumption. Because the protector and the attacker use a feature extractor trained
on the same data, we refer to this scenario as near-black box rather than black box.

4.4 Bag-based Profiling
In this section, we introduce the data sets used in our experiments (Section 4.4.1)
and describe how we implement the deep bag-based classifiers that we use to study
attribute profiling attacks (Section 4.4.2). Note that these classifiers have not pre-
viously been used in the literature of attribute profiling attacks. For this reason, we
first demonstrate their effectiveness (Section 4.4.3) before moving on to studying
the use of pivoting additions for defense.

4.4.1 Data Sets
In our work, we make use of two data sets consisting of image profiles, Personality
Profile and Emotion Profile, which are used for our main experiments. We also
make use of one data set consisting of speech profiles, Speech Gender Profile, which
is used for an additional experiment that demonstrates the applicability of pivoting
extensions beyond visual data. Our profile data sets are composed using items from
existing data sets, which is common practice of multiple instance learning (MIL)
research [78; 104]. This practice is particularly important when studying privacy-
sensitive attributes since there are a limited number of publicly available data sets
annotated with privacy sensitive attributes that have been collected based on ethical
standards. Also due to data availability limitations, the profiles that we use in our
experiments are relatively short (10-20 items). Short profiles are not unrealistic
since a large number of users do post a limited number of images online or profilers
might also have access to only a limited number of items. Also, in the case of the
speech content we investigate gender, which in many contexts is not a particularly
privacy sensitive attribute. This decision is made because gender information is
available and gender is often used as a surrogate for more sensitive attributes in
privacy research, as in e.g., [180]. Examples items from the profile data sets are
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shown in Figure 4.2 and the data set properties are summarized in Table 4.1. In
this section, we describe each data set in turn.

Personality Profile. The Personality Profile data set contains profiles annotated
with five personalities that were composed of images from the PsychoFlickr data
set [170]. The PsychoFlickr data set contains images from 300 Flickr users who
agreed that their images could be used for research and were asked to fill the self-
assessment version of the BFI-10. Our Personality Profile data set consists of five
subsets, one for each personality trait in the PsychoFlickr data set, namely each
of the Big Five OCEAN personality traits: Openness (O), Conscientiousness

(C), Extraversion (E), Agreeableness (A), and Neuroticism (N) [153]. First,
for each personality trait we isolate the users in the data who self-reported the
strongest and weakest association with that trait (i.e., the first quartile and the
fourth quartile). This leaves us with approximately 75 positive and 75 negative users
for this personality traits, each with 200 images. The user numbers are approximate
due to ties in user scores at the quartile boundaries. Then, we break each the images
for each user into 10 smaller, disjoint, user profiles each containing 20 images. The
result is one data subset for each profile trait that contains about 750 profiles
positive for that trait and about 750 profiles negative for that trait.

Emotion Profile. The Emotion Profile data set contains image profiles annotated
with five emotion labels that were composed from two data sets, Emotion6 [138]
and the data set of [209]. The Emotion6 [138] data set contains images annotated
with six emotion classes and is annotated via human intelligence task on Amazon
Mechanical Turk. The data set of [209] consist of continuous images from eight
emotion classes collected from Flickr and Instagram by keywords matching. After
collection, the emotion labels are verified via human intelligence task on Amazon
Mechanical Turk.

Our Emotion Profile data set consists of five subsets, one for each emotion, namely:
anger, disgust, fear, joy, and sadness. Specially, the subsets were created as
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from [209].

The subsets were composed by first selecting 1380 images for each emotion, where
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138 profiles from the target emotion and 138 profiles randomly sampled from other
emotions.
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Table 4.1: Overview of data sets used in our experiments. The Personality Profile data
and the Emotion Profile data each consist of five data subsets, one for each profile class.

# Profiles # Items per
profile Item type Private Attribute

Personality Profile (O) 1560 20 Image Personality trait
Personality Profile (C) 1570 20 Image Personality trait
Personality Profile (E) 1540 20 Image Personality trait
Personality Profile (A) 1570 20 Image Personality trait
Personality Profile (N) 1570 20 Image Personality trait

Emotion Profile (Anger) 276 10 Image Emotion
Emotion Profile (Disgust) 276 10 Image Emotion
Emotion Profile (Fear) 276 10 Image Emotion
Emotion Profile (Joy) 276 10 Image Emotion
Emotion Profile (Sadness) 276 10 Image Emotion

Speech Gender Profile 80 20 Spoken Audio Binary Gender

not users. In contrast to the Personality Profile data, in the Emotion Profile data
the images in the profiles that we define were not originally all posted by the same
user.

Speech Gender Profile. The Speech gender profile data set used for our study
contains short speech recordings and the privacy sensitive attribute is gender. Our
Speech Profile data set is constructed from the test development and sets of the
widely-used LibriSpeech [133] data set. For each speaker in the test and development
set, 2 seconds of speech consisting of 20 recordings are included in their profiles as
items. The Speech Gender Profile data set includes 80 distinct speakers. We use this
data set to provide a demonstration that our pivoting additions are able to protect
profiles containing other media beyond speech in Section 4.7.2, which supplements
our main experiments on the image data.
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Figure 4.2: Media item examples from Personality Profile, Emotion Profile, and Speech
Gender Profile data sets. Personality Profile and Emotion Profile consist of images, while
Speech Gender Profile consists of spoken audio clips.
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Table 4.2: Deep-bag based classifiers used for attribute profiling attack. The classifiers
are chosen to be representative of the different fusion stages. AttMIL is not directly
comparable since it does not leverage ILSVRC2012 data [36].

Approach Method Fusion stage Additional Resources

MV majority vote Late Pre-trained model
Deep Sets [212] Average pooling Early Pre-trained features

SetT [104] self-attention Intermediate Pre-trained features

AttMIL [78] Weighted average
pooling

intermediate
(Interpretable) none

4.4.2 Implementation of Bag-based Profiling Models
We carry out experiments using four representative deep bag-based classifiers for
profiling, which are summarized in Table 4.2. The models were chosen so that they
cover the different categories of approach (late, early, and intermediate fusion). Our
main focus is on MV, Deep Sets, and SetT, for which we leverage pre-training on
the ILSVRC20212 [36]. We also study AttMIL in order gain insight into how the
attention of the model is shifted to the pivoting addition, i.e., to the images that
are added to extend the profile and resist profiling attack. AttMIL is separated by
a dashed line in Table 4.2 because the different in training resources means that its
performance is not directly comparable to the others. We first study the effective-
ness of the approaches in carrying out an attribute profiling attack (Section 4.4.3).
For each classification task, we randomly select 80% profiles of each data set for
training, 10% for validation, and 10% for testing. Note that we use accuracy as
the evaluation metric since binary classes are well-balanced in all profile data sets.
Then, we test our pivoting additions as defense against Deep Sets, SetT and AttMIL
(Section 4.6), but not MV since our experiments show it is not an effective attack
on image profiles.

Majority Vote (MV) is a late-fusion method also studied in [113]. For the image
experiments, we fine-tune ResNet-50 [70] on the Personality Profile or the Emo-
tion Profile data set, and for the speech experiment, we train a vanilla X-Vector
model [182] on the Speech Gender Profile data set. Recall that bag-level ground
truth is projected to item level for this purpose. When testing the profiling attack,
the deep bag-based classifier makes predictions on one profile by majority vote over
the predictions for all items in this profile.

Deep Sets [212] is an early-fusion method that includes a fully connected encoder
and decoder to aggregate features of the items in a bag. Deep Sets aggregates
the individual transformed representations into a single set representation using
a permutation-invariant function that is either mean or max pooling similar to
traditional methods. The feature transformation network is trained to aid the
aggregation. Formally, Deep Sets can be represented in the following:



72 Chapter 4

f({x1, . . . , xn}) = fl(mean({„(x1), . . . , „(xn)})). (4.1)

where „ represents the transformation network that outputs item representation
before aggregation and fl represents the bag-level aggregation. The aggregation
function, here, mean, is considered in the training process, which helps Deep Sets
outperform two-stage approaches in which feature extraction and aggregation are
done in separate stages.

In our implementation, as the input of the encoder, image features are extracted
from a pre-trained VGG-16 [178] feature extractor pre-trained on ILSVRC2012 [36],
and speech features are extracted from a pre-trained speech transformer WaveLM [25].

SetT [104] is an intermediate fusion method that incorporates several modules
for self-attention. SetT treats each item as an individual element and utilizes self-
attention across all items in a bag. The SetT approach facilitates the modeling of
the relationships between different items, highlighting each element’s significance
by considering its relation to the other elements within the set. Formally, SetT is
represented as,

f({x1, . . . , xn}) = fl(attention({„(x1), . . . , „(xn)})) (4.2)

where attention represents self-attention layer and „ represents fully-connected lay-
ers that transforms input before attention, and fl represents the bag-level aggrega-
tion Self-Attention is calculated on extracted features and then fed to fully con-
nected layers to calculate logits. Like Deep Sets, in our implementation, image fea-
tures are extracted from a pre-trained VGG-16 [178] feature extractor and speech
features are extracted from a pre-trained transformer WaveLM [25].

AttMIL [78] is an interpretable intermediate fusion method that includes two
neural networks, where one model extracts features from items and the other assigns
aggregation weights to all items in the bag. Formally, AttMIL can be formulated
as,

f({x1, . . . , xn}) = fl(
ÿ

({a1„(x1), . . . , an„(xn)})) (4.3)

ai =
exp{w€ tanh

!
V„(xi)€"

}
Nÿ

j=1
exp{w€ tanh

!
V„(xj)€

"
}

, (4.4)

where w and V are trainable parameters, and ai are weights calculated for the ith
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Table 4.3: Bag-based classification accuracy on our Personality Profiles data set. (20
images per profile.)

Methods O C E A N Avg.

MV 57.69 67.52 55.19 58.60 57.96 59.39
Deep Sets 84.62 67.52 75.97 61.78 76.43 73.26
SetT 69.87 77.07 66.88 61.78 68.79 68.89
AttMIL 58.33 67.52 51.30 69.43 71.97 63.71

Table 4.4: Bag-based classification accuracy on our Emotion Profiles data set. (10 images
per profile.)

Methods Anger Disgust Fear Joy Sadness Avg.

MV 53.57 60.71 50.00 85.71 50.00 59.28
Deep Sets 100.00 100.00 78.57 100.00 100.00 95.71
SetT 96.43 100.00 78.57 100.00 96.43 94.29
AttMIL 57.14 89.29 64.29 82.14 60.71 70.71

item.

The auxiliary attention module, determined by w and V, provides normalized
weights for all items for one input bag, whereby a larger weight indicates more
contribution of an item. In contrast to SetT, AttMIL must be trained in an end-to-
end fashion. Because AttMIL does not leverage a pre-trained model, the amount
of training data is critical. In this work, we carry out experiments with AttMIL
because its interpretible weights allow us to gain insight into the way that attention
is distributed before and after the pivoting additions.

Implementation details. We train all deep bag-based classifiers on one NVIDIA
RTX 3090 GPU. For MV, we train ResNet-50 [70] for 30 epochs on Personality
Profile and Emotion Profile and X-Vector for 20 epochs on Speech Gender Profile.
For Deep Sets, both the encoder and decoder have four fully connected layers, and
for SetT, we employ a multi-head transformer. We use the VGG-16 [178] pre-
trained on ILSVRC2012 as the feature extractor for both Deep Sets and SetT. In
optimization, SGD is implemented with a learning rate of 0.1, a momentum of 0.9,
and cosine weight decay.

4.4.3 Performance of Bag-based Profiling
Table 4.3 and Table 4.4 show the classification accuracy for the Personality Profile
data and the Emotion Profile data. We observe that early (Deep Sets) and interme-
diate fusion (SetT) outperform late fusion (i.e., majority vote), although all three
approaches leverage pre-trained features. Further, Deep Sets substantially outper-
forms SetT. Our interpretable intermediate fusion approach (AttMIL) outperforms
late fusion (majority vote).

Overall, these experiments demonstrate that majority vote is outperformed by the
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newer deep bag-based classifiers. For this reason, in the rest of the work, we set
majority vote aside and study the other classifiers. Also, we analyze AttMIL sep-
arately from Deep Sets an SetT because it differs in the amount of training data
that it uses, i.e., it does not use pre-trained features, and its performance is not
directly comparable. Were more training data available, AttMIL could possibly be
improved. However, we take the performance level achieved by AttMIL to be ade-
quate for our purpose of using AttMIL to study the affect of the pivoting addition
on the distribution of attention (Section 4.7.1).

4.5 Pivoting Additions
In this section, we introduce three types of pivoting additions, Adversarial Noise
(AdvN), Adversarially Perturbed Items (AdvPI), and Natural Items (NatI), and
describe how we test them under the white-box, gray-box, and near-black-box sce-
narios, which were defined in Section 4.3. An illustration of the three pivoting
additions is provided in Figure 4.3. The pivoting additions change the inference of
the classifier. In white, gray, and near-black-box scenarios, our main experiments
are with pivoting extensions that double the profile length, i.e., we add 20 pivoting
items in profiles on the Personality Profile and 10 pivoting items in the Emotion
Profile data sets. We provide an analysis on the impact of varying the number of
pivoting items in Section 4.7.4.

4.5.1 Adversarial Machine Learning-based Pivoting Additions
Adversarial Noise (AdvN) addition leverages optimization methods to generate
items consisting of adversarial noise to add to the existing profile. Noise additions
are generated by maximizing profile-level model loss leveraging adversarial machine
learning techniques [87]. As mentioned, to our knowledge, we are the first to apply
these techniques to bag-based MIL classifiers.

White-box and gray-box scenarios: Target users generate adversarial noise items
by increasing the surrogate model loss with respect to the pivoting addition in an
iterative manner, considering the existing items in the user profile. Specifically, the
loss is calculated on the profile consisting of original and randomly generated images,
and the randomly generated items are updated to generate adversarial examples.
Existing items in the profile are not touched. Formally, AdvN can be formulated
as,

u
t+1
ú = Π(ut

ú + – sign(ÒuúL(◊, uú, y))) (4.5)

where L is the profile-level model loss, uú is the pivoting addition, Π is the projection
function, and t is the number of iterations. Also, – is the step size, and ◊ represents
the model parameters.

We use Projected Gradient Descent (PGD) [118] to create pivoting items because
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User's profile 

Profile extended with pivoting additions

Personality (Openess): not certain
Emotion (Anger): not certain

Attribute inference:
-> Personality (Openess): negative

-> Emotion (Anger): positive

...

Adversarial noise addition (AdvN)

...

Adversarially perturbed image (AdvPI) addition

Personality (Openess): not certain
Emotion (Anger): negative

...

Natural image (NatI) addition

Personality (Openess): not certain
Emotion (Anger): negative

Attribute inference:
-> Personality (Openess): negative

-> Emotion (Anger): positive

...

Figure 4.3: Illustration of the three proposed pivoting additions. The original user profile
contains several images and is classified as negative for Openness personality and positive
for Anger emotion. The predictions are changed AdvN and AdvPI use adversarial tech-
niques to create or modify the images in the pivoting addition and NatI exploits the model
loss to select the additional images from a set of unmodified images.

PGD is an iterative approach to generate adversarial noise, which has been shown
to be effective in different applications [191]. Several hyper-parameters need to be
specified in PGD, including the step size, the number of iterations, and Lp norm
restrictions on perturbations. Previous research shows that a sufficient number of
iterations is important when testing PGD [216], so we use PGD with 100 iterations
in all experiments. In the white-box scenario, users have access to the attack clas-
sifier of the attacker, while in the gray-box scenario, users have access to only 50%
of the training data and the architecture of the attack classifier.
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Near-black-box scenario: Target users use a pre-trained feature extractor as a sur-
rogate feature extractor. Features are extracted for all profile items, and then
pivoting additions are generated by minimizing the cosine similarity between the
existing profile and the items in the addition. Our approach is inspired by feature-
level adversarial perturbations that modify the sample-wise similarity [160; 112].
Specifically, all pivoting addition items are optimized together to minimize the co-
sine similarity between the profile and the pivoting additions. Again, existing items
in the profile are left untouched. The optimization can be formulated as,

uú = argmin
uú

CosineSimilarity(z◊(u), z◊(uú)) (4.6)

where z◊ is the feature extraction model, u represents original items, and uú repre-
sents pivoting additions.

In our experiment, target users use ResNet-50 [70] pre-trained on ILSVRC2012 as
the surrogate feature extractor to generate pivoting images and a Wave2Vec [70]
pre-trained on 960 hours of LibriSpeech data to generate pivoting audios. Note that
the profiling classifiers, Deep Sets and Set Transformer, also use publicly available
feature extractors that are trained on ILSVRC2012 data.

Adversarially Perturbed Image (AdvPI) addition follows the same optimiza-
tion as AdvN. The only difference is that in AdvPI, uú in Equation 4.5 and 4.6 is not
noise but rather ordinary items that are selected randomly (i.e., images or speech
clips). As can been seen in Figure 4.3, AdvPI samples are less perceptible than
AdvN to human observers because the additional items have recognizable content.

4.5.2 Natural Image Additions
Natural Image (NatI) additions do not create or modify the content of pivot-
ing addition items. Instead, NatI selects items from a collection of natural (i.e.,
ordinary and unmodified) items that the user might potentially wish to post. In
our experiments, we use the validation set of ILSVRC2012 [36] as the background
collection set to pick natural images for the image pivoting additions. We use the
LibriSpeech “test-other” data set [133] as the background collection set to pick
natural audio clips for speech pivoting additions. Recall, that the three pivoting
additions progress in stealth from AdvN to AdvPI to NatI, with NatI being the
most stealth, i.e., the pivoting addition is not visible to the human eye and not
detectable by a classifier trained to identify image modifications.

White-box and gray-box scenarios: Target users make use of the same surrogate
model as used with AdvN and AdvPI for the white-box and gray-box scenarios.
For NatI, items from the background collection are first fed to the surrogate model
and items with the highest or lowest predicted confidence are selected to create
positive and negative sets of candidate items. Note that although the model is a
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Table 4.5: Average profiling accuracy (%) on the image profile data sets after pivoting
under the white-box scenario. The difference from the original average accuracy (absolute
%) is shown in parentheses.

Data set Pivots Deep Sets SetT AttMIL

Personality
Profile

AdvN 0.00 (-73.26) 0.00 (-68.89) 7.81 (-55.90)
AdvPI 0.00 (-73.26) 0.00 (-68.89) 6.14 (-58.57)
NatI 48.02 (-25.24) 31.44 (-37.45) 20.61 (-44.10)

Emotion
Profile

AdvN 0.00 (-95.71) 0.00 (-94.29) 25.00 (-45.71)
AdvPI 0.00 (-95.71) 0.00 (-94.29) 19.29 (-51.42)
NatI 42.86 (52.85) 34.29 (60.00) 31.86 (-38.85)

bag-based classifier, it is capable of classifying individual items (since they are a
bag of one). Given a profile and its label, the NatI pivoting addition is created by
randomly selecting items from the candidate set with the opposite label.

Near-black-box scenario: Target users make use of the same pre-trained feature
extractor as they use with AdvN and AdvPI in the black-box scenario, i.e., ResNet-
50 [70] for images and a pre-trained Wave2Vec [70] model for speech. The feature
extractor calculates features for all items in the target profile and all items in the
background collection, based on which natural items are selected. Specifically, given
one target profile, the cosine similarity between each natural item in the background
collection and the target profile set is calculated. Natural items that have the lowest
cosine similarity scores are selected as pivoting additions.

4.6 Main Experimental Results
This section contains the main experimental results and analysis of our pivoting
additions. We report on experiments with image profiles, i.e., Personality Profiles
and Emotion Profiles. Section 4.6.1 covers the white- and gray-box scenarios and
Section 4.6.2 covers the most realistic near-black-box scenario.

4.6.1 White-box and Gray-box Pivoting Additions
Table 4.5 and Table 4.6 present white-box and gray-box results for the Personal-
ity Profile data set and the Emotion Profile data set. Looking first at Deep Sets
and SetT, AdvN and AdvPI are both effective because they are able to drop the
accuracy of the classifier substantially, in most cases to near random performance
(i.e., 50) or below. In the white-box scenario, AdvN and AdvPI did not decrease
the accuracy of AttMIL to 0, because gradients vanish for profiles with very high
prediction confidence. In theory, the white-box can be improved by adopting ad-
justed gradients [3], but we use the same PGD implementations for all bag-based
deep classifiers for fair comparisons. In the gray-box scenario, as expected, AdvN,
which adds optimized noise, is more effective than AdvPI, which adds perturbed
images. In the item-level adversarial example literature, it is typical that perturba-
tive approaches are effective at fooling a classifier [101]. However, we observe that
for profile-level AttMIL, a priori, it is not obvious that adding adversarial pertur-



78 Chapter 4

Table 4.6: Average profiling accuracy (%) on the image profile data sets after pivoting
under the gray-box scenario. The difference from the original average accuracy (absolute
%) is shown in parentheses.

Data set Pivots Deep Sets SetT AttMIL

Personality
Profile

AdvN 12.21 (-61.05) 31.17 (-37.72) 41.56 (-22.15)
AdvPI 51.95 (-21.31) 58.70 (-10.19) 63.45 (-0.26)
NatI 48.40(24.86) 35.16(34.73) 21.10 (-42.61)

Emotion
Profile

AdvN 7.86 (-87.85) 8.57 (-85.72) 27.14 (-43.57)
AdvPI 33.57 (-62.14) 40.71 (-53.58) 32.86 (-37.85)
NatI 46.43 (49.28) 46.43 (49.28) 48.57 (-22.14)

Table 4.7: Average profiling accuracy (%) on the image profile data sets after pivoting
under the near-black-box scenario. The difference from the original average accuracy
(absolute %) is shown in parentheses.

Data set Pivots Deep Sets SetT AttMIL

Personality
Profile

AdvN 55.33 (-17.93) 58.67 (-10.22) 36.80 (-26.91)
AdvPI 60.33 (-12.93) 67.33 (-1.56) 39.40 (-24.31)
NatI 54.00 (-19.26) 53.80 (-15.09) 43.20 (-20.51)

Emotion
Profile

AdvN 72.14 (-23.57) 83.57 (-10.72) 42.20 (-28.51)
AdvPI 65.71 (-30.00) 74.00 (-20.29) 49.29 (-21.42)
NatI 62.14 (-33.57) 74.29 (-20.00) 39.28 (-31.43)

bations will help, since we do not replace the original profile images, but only add
images. Recall, we also restrict our addition to a doubling of the original profile
length. NatI is effective, given its stealth. We see all three pivoting additions resist
AttMIL attacks.

Next, we compare the white-box and gray-box scenarios. Recall that the architec-
ture of the gray-box surrogate attack model is the same as the white-box surrogate
model, except that it is trained on 50% of the original data (randomly selected).
Given that the protector has radically less of the attacker’s data and profiling classi-
fier, gray-box protection is effective. Note that it is to be expected that the defense
has a certain level of sensitivity to the exact nature of the surrogate, e.g., training
data sets. For NatI, we see protection is generally less effective in the gray-box case,
but still able to drop the performance level to around 50.

4.6.2 Near-Black-box Pivoting Addition
Table 4.7 contains the near-black-box results for the Personality Profile Emotion
Profile data sets. These results demonstrate that our pivoting additions are effec-
tive when users have no exact knowledge of the deep bag-based classifier used for
attack. All methods are effective and can shift the predictions of the bag-based clas-
sifier substantially, and often below random. Interestingly, NatI outperforms AdvN
and AdvPI in decreasing the profiling accuracy. For AdvN and AdvPI, pivoting
additions are transferable, which accords with the research on the transferability
of adversarial examples [218]. Also, note that the NatI pivoting extensions are
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of adversarial examples [218]. Also, note that the NatI pivoting extensions are
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Figure 4.4: Examples of pivoting additions on Emotion Profile data set. The original
emotion prediction on the profile is “anger” by a binary bag-based classifier. Pivoting
additions are added to decrease the prediction confidence.

the same for all attacks, and for Speech Profile data set, NatI selects audios from
same-gender speakers. Note that NatI additions are effective across different models
making NatI the most generic of the three pivoting additions.

In order to provide a concrete impression of the pivoting additions that our ap-
proaches generate, we provide examples in Figure 4.4 and Figure 4.5. These exam-
ples illustrate that stealth increases from AdvN to AdvPI to NatI, i.e., from pure
noise to natural images. Figure 4.4 shows some Emotion Profile images that pivot
the prediction of Deep Sets away from the correct class anger. Here we have the
impression that NatI is selecting wildlife and pet images. However, in general it
is difficult to give an interpretation about the kinds of images that will pivot the
classifier. This point is important because it means that visual inspection does
not lead to the impression that a profile has been pivoted. Figure 4.5 shows some
Personality Profile images that pivot the prediction away from Openness (O) in
the near-black-box scenario. Here there is no clear pattern. In fact, the presence
of wildlife and pets might simply reflect the images available in the background
collection.
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Figure 4.5: Examples of pivoting additions on Personality Profile data set. The original
personality trait prediction is “openness” by a binary bag-based classifier. Pivoting addi-
tions are added to decrease the prediction confidence.

Table 4.8: Profiling accuracy (%) on Speech Gender Profile data set after pivoting under
the near-black box scenario. The test set of the Speech Gender Profile consists of 8 profiles.
The difference from the original accuracy (absolute %) is shown in parentheses.

Pivots Deep Sets SetT AttMIL

AdvN 50.00 (-50.00) 50.00 (-50.00) 37.50 (-62.50)
AdvPI 62.50 (-37.50) 50.00 (-50.00) 37.50 (-62.50)
NatI 37.50 (-62.50) 37.50 (-62.50) 62.50 (-37.50)

4.7 Additional Results and Analysis
This section dives deeper into the analysis of adversarial additions. First, in Sec-
tion 4.7.1, we take a closer look at the impact of the adversarial additions by analyz-
ing AttMIL, our interpretable intermediate fusion approach. Then, in Section 4.7.2,
we provide a demonstration that our pivoting additions can be used on other media
beyond images, namely, speech data. Finally, in Sections 4.7.3 and 4.7.4 return to
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Figure 4.5: Examples of pivoting additions on Personality Profile data set. The original
personality trait prediction is “openness” by a binary bag-based classifier. Pivoting addi-
tions are added to decrease the prediction confidence.
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the near-black box scenario. The test set of the Speech Gender Profile consists of 8 profiles.
The difference from the original accuracy (absolute %) is shown in parentheses.
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This section dives deeper into the analysis of adversarial additions. First, in Sec-
tion 4.7.1, we take a closer look at the impact of the adversarial additions by analyz-
ing AttMIL, our interpretable intermediate fusion approach. Then, in Section 4.7.2,
we provide a demonstration that our pivoting additions can be used on other media
beyond images, namely, speech data. Finally, in Sections 4.7.3 and 4.7.4 return to
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Figure 4.6: Examples of pivoting additions on Speech Gender Profile data set. Pivoting
additions are added to the profile to decrease the confidence of original gender predictions.

Table 4.9: Average accumulated attention weights (%) of near-black-box pivoting addition
items on Emotion Profile data. Accumulated attention is calculated as the averaged sum-
mation of assigned weights for all pivoting items across all profiles. The difference from
the original average accuracy (absolute %) is shown in parentheses.

Pivots Profiling
accuracy(%)

Accumulated
attention (%)

Random Noise 61.20 (-9.51) 27.88
AdvN 42.20 (-28.51) 58.78
AdvPI 49.29 (-21.42) 58.65
NatI 39.28 (-31.43) 43.01

images to study the robustness of pivoting additions in two practical edge cases and
Section 4.7.5 examines proactive profilers, who have knowledge of the defense.

4.7.1 Attention Analysis on AttMIL
In this section, we use AttMIL, which assigns aggregation weights to all items in
the bag (See Section 4.4.2), in order to gain insight into the impact of the pivoting
addition on the attack classifier. We carry out experiments on the Emotion Profile
data set and also focus on the near-black-box scenario, since it is the most realistic.
Table 4.9 demonstrates that pivoting additions alter the distribution of attention
of items, with the items in profile extension receiving proportionally more atten-
tion than the items in the original profile. Interestingly, NatI, which provides the
strongest protection demonstrates the least pull of attention towards the images in
the extension. This property of NatI could be advantageous because it makes it
more difficult for the attacker to examine the attention weights to conclude that a
pivot has taken place.

4.7.2 Applicability on Speech-based Gender Classification
In this section, we turn to the speech data. Results on the Speech Gender Profile
data set are shown in Table 4.8. Spectrograms of pivoting speech items are shown in
Figure 4.6. For NatI, we observe that audio from a speaker of the same gender can
also be used to pivot the prediction of deep bag-based gender classifier, indicating
that the pivoting addition has the potential to be made non-suspicious to human
listeners.
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Figure 4.7: Examples “strong items” in the Personality Profile data set for the Openess
class.

Table 4.10: Profiling accuracy (%) for user profiles with strong items (i.e., items with high
prediction confidence) on Personality Profile and Emotion Profile data sets. The difference
from the original average accuracy (absolute %) is shown in parentheses.

Data set Pivots Deep Sets SetT AttMIL

Personality
Profile

AdvN 83.20 (-16.80) 76.40 (-23.60) 92.8 0(-4.00)
AdvPI 85.60 (-13.40) 75.20 (-24.80) 96.80 (-0.00)
NatI 71.60 (-28.40) 66.80 (-33.20) 67.60 (-32.40)

Emotion
Profile

AdvN 96.00 (-4.00) 98.00 (-2.00) 68.00 (-10.00)
AdvPI 100.00 (-0.00) 100.00 (-0.00) 68.00 (-10.00)
NatI 80.00 (-20.00) 90.00 (-10.00) 68.00 (-10.00)

4.7.3 Profiles with “Strong” Items
In the profiling attack, deep bag-based classifiers predict attributes of a profile by
considering all items in the profile. The influence of pivoting additions on the
deep bag-based classifier is not uniform across all different profiles. We conduct a
case study where users’ profiles contain “strong items” predicted as positive by a
classifier with high prediction confidence. When a profile contains “strong items”,
we call such profiles “strong profiles” and hypothesize that the pivoting additions
will be less effective. We measure the confidence by cross-entropy loss to select
strong profiles. In particular, we calculate the profile-level loss for all profiles and
only implement the near-black-box pivoting additions on “strong” profiles that have
lower losses. For both Personality Profile and Emotion Profile data sets, profiles
with the top 30% high confidence items are defined as “strong” profiles. Table 4.10
demonstrates that “strong profiles” are less sensitive to pivoting additions, but are
still influenced to a degree. We see that NatI is more effective than AdvN and
AdvPI for “strong profiles”.

Based on the most accurate model, Deep Sets, on the Personality Profile data
set, we show in Figure 4.7 examples of images from “strong profiles” for Openness
prediction. The “strongest profile” includes more outdoor images with an open
environment.

4.7.4 Number of Addition Samples in NatI
We further look at the influence of different numbers of additions in NatI on the
deep bag-based classifier. Each profile has 10 images in the Emotion Profile data set.
Figure 4.8 demonstrates that the effectiveness of NatI is correlated with the number
of added images. In particular, black box NatI is more effective than the other
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Figure 4.7: Examples “strong items” in the Personality Profile data set for the Openess
class.

Table 4.10: Profiling accuracy (%) for user profiles with strong items (i.e., items with high
prediction confidence) on Personality Profile and Emotion Profile data sets. The difference
from the original average accuracy (absolute %) is shown in parentheses.
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AdvPI 100.00 (-0.00) 100.00 (-0.00) 68.00 (-10.00)
NatI 80.00 (-20.00) 90.00 (-10.00) 68.00 (-10.00)

4.7.3 Profiles with “Strong” Items
In the profiling attack, deep bag-based classifiers predict attributes of a profile by
considering all items in the profile. The influence of pivoting additions on the
deep bag-based classifier is not uniform across all different profiles. We conduct a
case study where users’ profiles contain “strong items” predicted as positive by a
classifier with high prediction confidence. When a profile contains “strong items”,
we call such profiles “strong profiles” and hypothesize that the pivoting additions
will be less effective. We measure the confidence by cross-entropy loss to select
strong profiles. In particular, we calculate the profile-level loss for all profiles and
only implement the near-black-box pivoting additions on “strong” profiles that have
lower losses. For both Personality Profile and Emotion Profile data sets, profiles
with the top 30% high confidence items are defined as “strong” profiles. Table 4.10
demonstrates that “strong profiles” are less sensitive to pivoting additions, but are
still influenced to a degree. We see that NatI is more effective than AdvN and
AdvPI for “strong profiles”.

Based on the most accurate model, Deep Sets, on the Personality Profile data
set, we show in Figure 4.7 examples of images from “strong profiles” for Openness
prediction. The “strongest profile” includes more outdoor images with an open
environment.

4.7.4 Number of Addition Samples in NatI
We further look at the influence of different numbers of additions in NatI on the
deep bag-based classifier. Each profile has 10 images in the Emotion Profile data set.
Figure 4.8 demonstrates that the effectiveness of NatI is correlated with the number
of added images. In particular, black box NatI is more effective than the other
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Figure 4.8: Averaged profiling accuracy (%) on five Emotion Profile data sets when different
numbers of pivoting items are added to profiles. The effectiveness of pivoting additions is
correlated with the number of added items.

two approaches for both models. We can also observe that SetT is less sensitive to
pivoting additions than Deep Sets. The effectiveness of the deep bag-based classifier
is negatively correlated with the number of pivoting items.

4.7.5 Proactive Profilers
In this section, we extend the threat model specification to include the assumption
that the profiler is proactive, i.e., has knowledge of the pivoting additions.

Back-off as a countermeasure Profilers who suspect their target users have pivoted
can back off, using less recent items in the profiles for the attribute inference at-
tack. We carry out a test of the backoff strategy on the Emotion Profile data set.
Figure 4.9 illustrates the performance as the attacker backs off to using less and
less, older and older data within the target user’s profile. When the profile has
been pivoted (orange line), the accuracy increases. However, when the profile has
not been pivoted (blue line), it decreases. These results suggest that in order to
use back-off to counteract a pivoting addition, it is necessary to be able to actually
predict whether and when a user has pivoted, which would be particularly chal-
lenging in the NatI case where the pivoting addition is composed of natural images.
Assuming all profiles are pivoted does not increase the overall success of the attack.
Also, back-off may not be applicable in a realistic scenario in which case users use
multiple pivots.

Training on data augmented with pivoted profiles Profilers that suspect that profiles
have been pivoted can also use adversarial training, i.e, train their bag-based clas-
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Figure 4.9: Averaged profiling accuracy (%) on five Emotion Profile data sets when different
steps of backoff are implemented as mitigation to pivoting addition. Back off means that
the profiler drops recent training items across all profiles. The blue curve represents
the accuracy on normal profiles, and the orange curve represents the accuracy on pivoted
profiles. Note that in this case, we assume original profiles are mixed with pivoted profiles,
and the accuracies represent the influence of backoff on these two different groups of
profiles.

Table 4.11: Accuracy (%) of profiling models trained on pivoted profiles to predict the
emotion “anger” on Emotion Profile data set. The profiling model is a binary deep bag-
based classifier that predicts the level of “anger”.

Deep
Sets SetT

Original classier (non-pivoted) 84.62 69.87
Original classier (NatI) 52.00 51.00

Adversarially-trained classifier (non-pivoted) 71.15 67.23
Adversarially-trained classifier (NatI) 61.00 54.00

sifiers on privoted profiles. Table 4.11 presents experimental results that show that
adversarial training can increase the robustness of the deep bag-based classifier to
pivots, but compromises the performance on non-pivoted profiles.

4.8 Conclusion and Outlook
In this work, we have studied the use of deep bag-based classifiers for attribute
profiling attacks and proposed obfuscating profile extensions that are capable of
offering resistance. Because, to our knowledge, we are first to study profiling attacks
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from the profile-level perspective, we have focused on systematic coverage of core
cases, leaving exploration of the entire scope of the threat and possible defenses to
future work. The key dimensions of attribute profiling attacks were outlined in our
initial short work [113], in the form of a framework for defining the problem, and
can help to guide future research directions. In this section, we discuss a selection
of aspects we see as important to obtaining a broad understanding of bag-based
attribute profiling, from both the attacker and the defender perspectives.

4.8.1 Patterns within Profiles
We expect a wide range of differences in the way that the evidence for a specific
privacy sensitive attribute is distributed over user profiles. For this reason, we
expect that the most effective bag-based classifier will different depending on the
nature of the profile. In Section 4.1, we stated that in this work we assume that
evidence for the privacy-sensitive attribute is spread over multiple images in the
profile, rather being focused in a single image. Future work can investigate cases in
which the evidence is distributed across a profile in a variety of ways. With respect
to image profiles, both the proportion of profile images containing evidence and the
clarity (or detectability) of such evidence are important dimensions of variation to
consider.

Future work should also investigate the case in which the temporal order of items
within the profile contains information relevant for profiling. For example, tempo-
ral ordering would be important if the attacker is trying to infer whether a user
has suffered a serious illness or a traumatic life event. In this case, relevant MIL
classifiers are no longer bag-based, but are rather classifiers that take the ordering
of instances into account.

4.8.2 Knowledge of Patterns within Profiles
Future work should expand the threat model to include knowledge of the patterns
within the target profiles. The late-fusion approach did not perform well given the
focus of our work on profiles with diffuse evidence. However, it may be appropriate if
the profiler knows that evidence is focused in one or more clear images, for example,
if the attacker is trying to acquire knowledge of whether a person has ever visited
a particular location.

Similarly, the knowledge of the target user is also important. If target users are
aware of the importance of patterns within profiles, they might take action to ob-
fuscate these patterns. For example, instead of a single pivot, they might switch
between pivoted or non-pivoted examples to throw the profiler off track.

When developing new pivoting additions, it is important to keep in mind which
characteristics of the profile that the user wishes to maintain and how radical of
a change they will tolerate. For example, in the NatI approach studied here, the
user creates the pivot by selecting images they would have posted anyway, leading
to a minimal disruption in their sharing activity. To obfuscate privacy-sensitive
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information that is localized within the profile, like location, a user could choose
a pivot that contains images of them at locations that they did not visit, which
introduces deniability. However, they might not be willing to change their sharing
activity in this way since it could be perceived on social media as duplicitous,
undermining social relationships.

4.8.3 More Sophisticated Attacks and Defenses
Moving forward, we expect that profilers will use increasingly sophisticate attacks.
Previously we have mentioned that profilers can leverage unannotated profiles to
develop semi-supervised deep bag-based classifiers. Target users could also develop
data poisoning approaches to make their data less useful for profiling attacks. In
sum, this work has laid the groundwork for a rich variety of follow-up work. Con-
tinued investigates will provide additional insight on how to protect users in real
world cases in which profile-level attacks and not item-level attacks are the threat.
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Chapter 5

Privacy Improvement by Adversarial
Queries

An adversarial query is an image that has been modified to disrupt content-based
image retrieval (CBIR), while appearing nearly untouched to the human eye. This
work presents an analysis of adversarial queries for CBIR based on neural, local,
and global features. We introduce an innovative neural image perturbation approach,
called Perturbations for Image Retrieval Error (PIRE), that is capable of blocking
neural-feature-based CBIR. PIRE differs significantly from existing approaches that
create images adversarial with respect to CNN classifiers because it is unsupervised,
i.e., it needs no labeled data from the data set to which it is applied. Our ex-
perimental analysis demonstrates the surprising effectiveness of PIRE in blocking
CBIR, and also covers aspects of PIRE that must be taken into account in practi-
cal settings, including saving images, image quality and leaking adversarial queries
into the background collection. Our experiments also compare PIRE (a neural ap-
proach) with existing keypoint removal and injection approaches (which modify local
features). Finally, we discuss the challenges that face multimedia researchers in the
future study of adversarial queries.

This Chapter is published as Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Who’s afraid
of adversarial queries? The impact of image modifications on content-based image retrieval. In-
ternational Conference on Multimedia Retrieval (ICMR). 2019.
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Figure 5.1: A successful query image (top left) and the corresponding adversarial query
(top right). The two are visually nearly identical to the human eye. A CBIR system ranks
relevant results high for the original image query and low for the adversarial query.

5.1 Introduction
Recently, researchers working on deep learning for image classification have started
to study adversarial images intensively and to develop techniques to create them [184;
63; 123; 21; 122; 124]. Their work defines an adversarial example to be an image
that a human can easily interpret, but that a CNN-based classifier assigns to an
unexpected class. Typically, adversarial examples are created by taking an image
that is correctly classified by a classifier, and perturbing the pixels. The pertur-
bations are small, such that humans can look at the modified image and judge it
to be nearly untouched. The perturbations are also carefully chosen, such that the
modified image is no longer classified correctly, but rather is moved over the deci-
sion boundary of the classifier and is classified incorrectly. Generally, an image set
labeled with the target classes is used to train the perturbations.

In this work, we extend the idea of adversarial examples from image classification to
content-based image retrieval (CBIR). We define an adversarial query as an image
that a human can easily interpret, but that causes a CBIR system unexpected
difficulties. The principle is illustrated by the example in Figure 5.1. The adversarial
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5.1 Introduction
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to study adversarial images intensively and to develop techniques to create them [184;
63; 123; 21; 122; 124]. Their work defines an adversarial example to be an image
that a human can easily interpret, but that a CNN-based classifier assigns to an
unexpected class. Typically, adversarial examples are created by taking an image
that is correctly classified by a classifier, and perturbing the pixels. The pertur-
bations are small, such that humans can look at the modified image and judge it
to be nearly untouched. The perturbations are also carefully chosen, such that the
modified image is no longer classified correctly, but rather is moved over the deci-
sion boundary of the classifier and is classified incorrectly. Generally, an image set
labeled with the target classes is used to train the perturbations.

In this work, we extend the idea of adversarial examples from image classification to
content-based image retrieval (CBIR). We define an adversarial query as an image
that a human can easily interpret, but that causes a CBIR system unexpected
difficulties. The principle is illustrated by the example in Figure 5.1. The adversarial
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query resembles the original image as closely as possible.

The fundamental difference between creating adversarial examples in the case of
image classification and creating adversarial queries in the case of CBIR is the in-
formation available for guiding the image modifications. In contrast to classification
systems, which assume a set of discrete classes, CBIR systems are designed to han-
dle arbitrary queries and unconstrained background collections. Specifically, in the
deep learning image classification scenario, adversarial modifications are informed
by class boundaries. Decision boundary information is lacking in the CBIR sce-
nario. As such, in the CBIR scenario, there is no obvious direction, or directions, in
which to move an image in pixel space in order to create a query that is adversarial
with respect to the CBIR system. In order to address this challenge, we propose an
approach called Perturbations for Image Retrieval Error (PIRE).

PIRE is able to generate perturbations without needing guiding information (i.e.,
PIRE requires no class labels, or relevance judgments from the data set to which
it is applied). PIRE perturbs images such that they can still be interpreted to the
human eye, but that they no longer can be used as successful queries for CBIR.

In sum, this work makes the following contributions: (1) We explain why it is
important to study adversarial queries. (2) We present PIRE, our neural pertur-
bation approach to creating adversarial queries, and experimentally demonstrate
its impact on different CBIR systems (i.e., systems using neural, local, and global
features). (3) We discuss and analyze practical aspects of adversarial queries. The
work is organized as follows: after introducing the importance of adversarial queries
in Section 5.2, we present the relevant related work in Section 5.3. Section 5.4 de-
scribes the framework in which we carry out our experiments. Then, Sections 5.5
and 5.6 present our experiments and analyses. Finally, Section 5.7 pulls everything
together, and provides an outlook on future work.

5.2 Why study Adversarial Queries?
The study of adversarial image examples is motivated by specific threat models.
Informally defined, a threat model expresses what we should be worried about, i.e.,
the dangers that a specific system or technology must be able to ward off. Adversar-
ial image queries play a role in widely different threat models, which are described
in this section. Section 5.2.1 looks at adversarial queries as being dangerous. From
this perspective, the practical application of our research is understanding attacks
on CBIR systems in order to defend against them. Section 5.2.2 looks at adversarial
queries as being protective. From this perspective, the practical application of our
research is preventing, or at least disincentivizing, harmful use of CBIR.

5.2.1 Threat of image modification technology
The assumption behind many widely-adopted threat models is that modified images
are a source of danger. Here, we discuss three familiar examples of such threat
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models. First, researchers working on image classification are generally worried
about scenarios in which modified images cause misclassification. This threat model
applies, for example, to scenarios in which computer vision technology is used by
self-driving cars [46]. Adversarial image queries are relevant to such threat models
since memory-based image classifiers are generally based on CBIR systems. Second,
researchers working on keypoint removal and injection are generally worried about
scenarios in which modified images cause the identification of duplicate or near-
duplicate images to be blocked. Such work, e.g., [40], [39] and [38], is carried
out in the use scenario of preventing copyright violation and image forgery via
copy-move. Third, researchers working on image forensics also care about the post-
processing operations, such as resampling [143], double JPEG compression [140] and
denoising [93], since they are of interest in a forensic examination of an image and
can affect forensic methods in various ways [93]. If we consider these threat models,
then our reason for studying adversarial queries is to understand how modified
images can harm image matching systems.

5.2.2 Threat of image retrieval technology
The assumption behind another more recently emerging class of threat models is
that the multimedia retrieval system itself is a source of danger. These retrieval-
specific threat models are commonly adopted by researchers working on multimedia
privacy. The specific threat is a privacy violation, specifically, harm that people suf-
fer caused by malicious actors who misuse an existing retrieval system (for example
an online image search engine) or who build their own retrieval system to search in
a collection of misappropriated images. This danger was first articulated by [56],
who described the threat of ‘cybercasing’: criminals using online search engines to
mine the Web for users whose online sharing behavior reveals that they own valu-
able items, and when they are away on vacation. The concern has been recently
grown stronger because of high profile data breaches, e.g., [7], which have made
clear that sharing images in ‘private’ mode is not a perfect solution for protection.
Unscrupulous actors can implement their own CBIR system if they can get their
hands on enough data. The interesting and surprising aspect of retrieval-specific
threat models is that giving people access to image modification technology actually
would help them to protect themselves against those seeking to misuse their im-
ages. Instead of a danger, image modification is a form of protection. If we consider
retrieval-specific threat models, then our reason for studying adversarial queries is
to understand the conditions under which the matching ability of CBIR systems
can be blocked.

A recent investigation concerned with the threat of cybercasing [29] examines the
potential of image enhancements to block the inference of the geo-location of the
photos that users take and post online. Our work differs from [29] in that we focus
specifically on CBIR and we consider image queries that are explicitly designed
to be adversarial. However, we adopt the same threat model, and we focus our
investigation on a CBIR problem that is related to location because it involves
images of buildings in cities.
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5.3 Related Work
We first cover work on neural adversarial examples for image classification and then
work on blocking local-feature-based CBIR.

5.3.1 Adversarial examples and classification
Research on adversarial examples in the deep learning community was launched
by [184], who demonstrated the possibility of constructing images adversarial with
respect to a convolutional neural network image classifier (which we will refer to
as the ’CNN-model’). As mentioned in the introduction, the basic mechanism used
to create adversarial examples is to perturb pixels to construct a misclassified im-
age while at the same time minimizing the distance between the original image
(input image) and adversarial image. Work on adversarial examples started with
‘whitebox’ approaches, which have full knowledge of the CNN-model that they are
attempting to delude. The Fast Gradient Sign Method (FGSM) [63] makes use of
the gradient of the model with respect to the input image. It increases the model’s
loss on the input image given the correct class label by perturbing it in the as-
cending direction of the gradient. DeepFool [123] extends FGSM with more precise
control over the size of the perturbations. For both FGSM and DeepFool, the per-
turbations are specific to the input image, and the correct class label of that image
is known. Comparatively, PIRE only operates on neural features without accessing
any ground truth (e.g., relevance judgements) of the CBIR system.

Subsequently, researchers have worked to extend ‘whitebox’ methods so that they
require less information about the input images and less information about the
CNN-model. Universal Adversarial Perturbations (UAP) [122] took a first step in
this direction. UAP produces perturbations that do not require prior knowledge
of the input images, however it does need a labeled training set. UAP adversar-
ial examples have been shown to have an adversarial effect on CNN-models other
than the one originally used to generate the perturbations. The ‘universal’ in UAP
means that the perturbations are generated to be effective for a majority of images,
although in practice they fail for a subset of images. Another whitebox method that
is universal in this respect is Fast Feature Fool (FFF) [124], which generates adver-
sarial images by calculating the maximal spurious activations in each convolutional
layer while constraining the size of perturbations. FFF, like UAP, produces pertur-
bations without knowledge of the images to be modified. However, whereas UAP
requires training data, FFF can make use of the CNN-model with no additional
training needed.

Currently, ‘blackbox’ techniques, which can create images adversarial to an arbi-
trary CNN-model remain elusive. Attempts at ‘blackbox’ solutions leverage existing
‘whitebox’ solutions. An ensemble method has been proposed, which creates ex-
amples that are adversarial with respect to a number of known CNN-models, and
then tests them against a blackbox model [110]. Also, reconstruction methods have
been proposed, namely [136] and [134], which probe the blackbox model with test
examples, and then train substitute models that mimic the real model.
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In our work, we focus on the case where we have access to the trained CNN-model
used by the CBIR system at the moment at which we create our adversarial queries.
However, we point out that our approach is not a completely ‘whitebox’ approach.
Labeled training data is used to pre-train and fine-tune the CNN-model, but PIRE
is ultimately applied to images from a third semantically related, but yet completely
unseen, data set. For this reason, we refer to our approach as unsupervised, and
not requiring class labels.

5.3.2 Keypoint Removal and Injection (KR&I)
In order to provide a complete picture of the behavior of adversarial queries, we
consider not only neural features, but also local features. We focus on SIFT-based
methods because they are representative of local-feature-based CBIR and also due
to the rich literature on SIFT KR&I. The first work to consider influences of KR&I
in SIFT-based CBIR systems was [40], [39] and [38]. Here, blocking CBIR means
blocking the retrieval of exact duplicate or near duplicate images. In contrast, we
are interested in blocking the retrieval of images containing the same subject matter
as the query, without a specific focus on matching duplicates or near duplicates.

Other KR&I work is not directly connected to CBIR, but focuses on image foren-
sics and multimedia security. With security issues in mind, [74] proposed to mod-
ify SIFT features while simultaneously keeping image quality. Later the authors
proposed an optimization-based approach [116]. Combining multiple techniques,
Classification-based Attack (CLBA) [31] proposed to use an iterative procedure to
apply different methods on keypoints in different classes. [109] proposed SIFT
keypoint removal and injection methods which remove keypoints with minimized
distortion on the processed image. Recently, [108] proposed Removal via Directed
Graph Construction (RDG) method to remove SIFT keypoints for colour images
while maintaining high visual quality.

5.4 Experimental Framework
Figure 5.2 depicts the framework in which we carry out our experimental analysis.
Our experiments test different combinations of image modification approach and
CBIR system. The top of the figure shows the query modification step, which
either uses PIRE or KR&I. The bottom of the figure shows the image retrieval
step, which uses a CBIR system based on either neural, local, or global features.
In this section, we describe the design choices that we use for implementing the
framework, before introducing PIRE in detail.

5.4.1 Content-based Image Retrieval Systems
A CBIR system accepts an image as a query and returns a list of relevant images
as a result. The images are drawn from a larger collection, which we refer to
as the background collection. In a basic CBIR system, such as the one we adopt
here, ranking occurs by comparing the vector representing the query image with the
vectors representing each of the images in the background collection. The results list
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Figure 5.2: Our experimental analysis tests combinations of query modifications (Top)
and CBIR systems (bottom). Blue boxes are neural-representation approaches and green
boxes are local-feature approaches.

consists of the images from the background collection ranked in order of closeness
to the query. CBIR systems are differentiated by the features that they use to
create the image feature vectors. As previously mentioned, in our experiments we
use neural, local, and global features. We describe each in turn.

Neural representations are compact representations that are extracted from an im-
age using a pre-trained, and possibly then also fine-tuned, CNN-model. For our
experiments, we need the currently best available neural representations, and for
this reason we adopt GeM [146]. GeM is a fully convolutional CNN-model with
a Generalized-Mean pooling layer. Using GeM as a feature extractor achieves the
current state of the art on the data sets that we will use for our experiments, Ox-
ford5k [141] and Paris6k [142], which are described in more detail below. We chose
to use the structure of ResNet-101. GeM discards the fully-connected layer and
replaces the average pooling layer of ResNet-101 with a Generalized-Mean pooling
layer. The model is pre-trained on ImageNet and fine-tuned using a data set that
consists of 120k Flickr images provided in [146] following a structure-from-motion
(SfM) pipeline. The fine-tuning data set is a subset the data set of [168], which
contains 7.4 million images from Flickr with keywords of landmarks, cities and
countries across the world. The subset excludes Oxford and Paris.
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GeM has been shown to outperform previous state-of-the-art approaches, which we
mention here briefly for completeness. First, [174] used off-the-shelf neural networks.
To improve retrieval performance, Neural Codes [5] used a fine-tuned CNN-model
for neural feature extraction. Finally, [189] proposed regional maximum activation
of convolutions (R-MAC) to improve image retrieval by adding an additional pooling
layer to CNN-model.

The representations that are used by local-feature-based CBIR systems are generally
Bag-of-Visual-Word (BoVW) models, dating back to [179]. Codebooks containing
a certain number of visual words are trained on extracted SIFT features. We adopt
a classic BoVW model with Hamming Embedding (HE) [83], which provides binary
signatures that refine the visual-word-based matching. Following [83], we extract
SIFT feature of images and train codebooks of size 20,000. Binary signatures of
length 64 are used in the HE setting, and the threshold is set to 24. Note that the
basic BoVW system that we adopt performs competitively with approaches such
as VLAD in [84]. For this reason, we are confident that it meets the needs of the
experiments we perform here. We save more detailed investigation of techniques
such as geometric matching and query expansion for future work.

The representations used by a global-feature-based CBIR system capture informa-
tion about overall image texture and image color, rather than information about
specific keypoints. Color histograms and Edge histograms (MPEG-7 descriptors)
are commonly used for extracting global features. For our experiments we adopt two
widely-used global feature representations: Color and Edge Directivity Descriptor
(CEDD) [24], which combines image color and texture information, and GIST [129],
which extracts a holistic image representation reflecting the shape of a scene.

We perform experiments with two types of image queries: whole image queries
(designated WI) and bounding box queries (designated BB). The BB queries use
only the content of a bounding box that focuses on the main subject matter of the
image. This bounding box is pre-defined (it is included with the queries in the data
sets). We use BB queries in order to make our work comparable to other papers
who test on the same data sets.

To evaluate, we compare the quality of the results list returned using the original
image as a query with the results list returned by adversarial query (i.e., the modified
image). We adopt mean average precision (mAP), a standard information retrieval
evaluation metric, to measure results list quality. An image modification approach
is successful if we observe a decrease in mAP when we move from the original
query to the modified query. Finally, to evaluate visual quality, we use structural
similarity (SSIM) [197], which assesses the degradation of structural information to
be presumed related to the human-perceived quality.

5.4.2 Data
We perform our experiments on two data sets: Oxford5k and Paris6k, which are
publicly available and widely used in CBIR research. Because so much work has
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been done on these data sets, what constitutes state-of-the-art performance is well
understood, and we can be certain that when we test the blocking effects of adver-
sarial queries on CBIR, we are testing a strong CBIR system. The Oxford5k data
set consists of 5063 images and includes 55 standard queries representing different
views/parts of 11 Oxford buildings. Paris6k data set consists of 6412 images and
also includes 55 standard queries from 11 different Paris landmarks. Both data sets
include distractor images, which are not related to any of the queries in data set.

5.5 Neural-Feature-based CBIR
In this section, we propose a simple yet effective algorithm, Perturbations for Im-
age Retrieval Error (PIRE), which blocks neural-feature-based CBIR by perturbing
pixels of the image query.

5.5.1 Adversarial Queries with PIRE
The basic innovation of PIRE is to modify the original image by pushing its feature
representation away from the original position in feature space. Specifically, PIRE
maximizes the distance between the feature representation of the original image
and that of the modified image, while at the same time limiting the overall size
of the permutation. Recall that PIRE is designed with the assumption that the
CNN-model (GeM [146] in this work) is available, and it aims to modify the input
image with perturbations that are barely perceptible to the human eye.

PIRE is presented in Algorithm 5.1. x represents the image query, and v represents
the perturbation vector. We start with a random perturbation feature vector that
has the same size of the image and update it by optimizing the following objective
function:

maximize Îf(x) ≠ f(x + v)Î2
2 (5.1)

subject to ÎvÎŒ Æ ‘

This optimization process will stop when the iterative conditions are met. We create
the final perturbation using a multiplicative factor, here, set to 10, to guarantee
that the perturbations are retained when the image is saved in an 8-bit format. We
return to address this factor in more detail in Section 5.5.2.1.

In each iteration, the perturbation vector is updated using the Adam optimization
algorithm [92]. In our experiments we look at the impact of T, the number of
rounds iterated. When the iterative conditions are met, perturbation vector vi is
the calculated perturbation vector.

In order to test PIRE, we apply it to all the query images of our data sets to create
adversarial images, which are then saved. Table 5.1 reports results for the original
queries and for adversarial queries created with PIRE (T = 500). It can be seen
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Algorithm 5.1 Perturbations for Image Retrieval Error (PIRE)
Input:
x: Image query; f :Neural feature function; T : Iteration limit; ‘ Perturbation
vector range;
Output:
xÕ : Adversarial image query x + 10 ú vi

1: w, h = size(x1);
2: i = 1;
3: Generate a random matrix v0(w◊h) ;
4: while i < T do
5: Calculate the distance between original image x and perturbed image x +

vi≠1;
6: vi = argmaxv Î(f(x) ≠ f(x + vi≠1))Î2

2;
7: Project vi into a LŒ norm sphere;

vi = clip(vi, ≠‘, ‘);
8: i = i + 1;
9: end while

10: Return perturbed image query;
11: return x + 10 ú vi;

Table 5.1: Performance (mAP) of neural-feature-based CBIR (GeM [146]) on Oxford5k
and Paris6k data sets before and after original PIRE (10 ú v) modification with T=500
iterations.

Oxford5k
(BB)

Paris6k
(BB)

Original 78.39 87.27
PIRE (T = 500) 5.51 9.34

that the mAP drops dramatically, indicating that PIRE is highly successful. Note
that here we report bounding box (BB) queries only, and we are not yet concerned
with the visual appearance of queries. As we will in Section 5.5.2, the choice of T
allows us to control the trade off between PIRE’s adversarial effect and its visual
impact.

5.5.2 Adversarial Queries in Practice
5.5.2.1 Saving queries

In order for PIRE to be used in practice, it is necessary that adversarial queries
remain adversarial when they are saved. When saving an image in JPEG format
(uint8), float values that do not fit into 8 bits are approximated. This means that
the perturbations that PIRE adds to an image should not be so small that they
disappear when the image is saved. In [21], a method based on greed search was
proposed to avoid the rounding effects discussed above. Saving images is obviously
important, and so in Algorithm 5.1, on the last line, we use a multiplicative factor
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Table 5.2: Performance (mAP) of neural-feature-based CBIR (GeM [146]) on Oxford5k
and Paris6k data sets before and after query modification by PIRE (p(v)) (T=200 and
T=500).

Oxford5k
(BB / WI)

Paris6k
(BB / WI)

Original 78.39/74.42 87.27/87.26
PIRE (T = 200) 22.98/18.00 34.49/26.53
PIRE (T = 500) 3.93/2.31 10.53/7.18

10 in order to make sure that our perturbations survive rounding.
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large perturbations lead to artifacts that are visually obvious. To tackle this issue,
we propose a refinement to PIRE. The refinement adds a function p(vi) that mag-
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is an actual query from the Oxford5k data set tested with respect to our neural-
feature-based CBIR system. The original query image achieves an AP of 93.95 and
for the adversarial query (created with refined PIRE T=500) the AP plunges to
3.77. The PIRE results in the rest of the work are for refined PIRE.

5.5.2.2 Viewing queries
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with different levels of perturbation. Specifically, we prepared adversarial image
queries with refined PIRE for two different representative values of the threshold
T, which controls the number of iterations used to calculate the perturbations.
Table 5.2 shows that adversarial image query generated with fewer rounds (T=200)
still strongly decreases the performance of neural-feature-based CBIR.

In Figure 5.3, we present example queries to illustrate the contrast between PIRE
using different values of the threshold on the number of iterations (T=200 and
T=500). In order to quantify the relative difference in impact on the visual ap-
pearance, we report SSIM values in Table 5.3. Although more iterations lower the
SSIM, the quality is still acceptable at both levels. In addition, we compared the
SSIM value of the original PIRE (10 ú v) and the refined PIRE (p(v)). SSIM on
BB queries from Oxford5k (T = 200) went from 0.757 (PIRE) to 0.801 (refined
PIRE). For BB queries on Paris6k (T = 200) results went from 0.690 (PIRE) to
0.771 (refined PIRE).
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Original PIRE (T=200) PIRE (T=500)

AP = 99.99 AP = 77.31 AP = 2.96

Figure 5.3: Examples of original image queries vs. adversarial queries generated using
PIRE with different number of iterations (T=200 and T=500). Fewer iterations lead to
less visible perturbations. (Best viewed on screen with magnification.)

Table 5.3: Average image quality (SSIM values) of adversarial queries from Oxford5k and
Paris6K data sets generated by PIRE. (The SSIM value of the original query equals 1;
BB= Bounding Box and WI=Whole Image.)

Oxford5k
(BB / WI)

Paris6k
(BB / WI)

PIRE (T=200) 0.801/0.754 0.793/0.771
PIRE (T=500) 0.738/0.687 0.727/0.716

5.5.2.3 Protecting queries

Next, we demonstrate that PIRE has potential to cause a drop in the mAP of a
CBIR system when the neural network used for indexing is unknown. We used a
new neural network architecture, VGG-GeM, as the basis for generating adversarial
queries with PIRE. We tested these queries against our original neural-feature-based
CBIR system, which uses ResNet-GeM. We observed a mAP drop from 74.42 to
2.91 (Oxford5k), and from 87.26 to 9.39 (Paris6k) (T=500; cf. Table 5.2). We note
that when VGG-GeM is used for both PIRE and retrieval, the effect is comparable
to when ResNet-GeM is used for both PIRE and retrieval. We do not investigate
VGG-GeM in more detail here, since the SSIM is ca. 0.15 lower for PIRE queries
created with VGG-GeM than for PIRE queries created with ResNet-GeM. Our
conclusion here is that PIRE has the potential to lower mAP without access to
information on the architecture used for indexing. This conclusion is consistent with
a further set of exploratory CBIR experiments we carried out with Google Images
(https://images.google.com). The details of this system are unknown to us, but
we assume that advanced neural representations are used, and that the background
collection (index) is very large. We found the existence of a unexpectedly high
number of cases in which the results returned by Google Images are impacted by
PIRE. Future work on the investigation of nature of this impact promises to yield
further interesting insight.

5.5.2.4 Editing Queries

Simple image transformations, such as resizing and cropping, may destroy the spe-
cific structure of adversarial perturbations. This effect was pointed out by [204]
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Table 5.4: Performance (mAP) of neural-feature-based CBIR (GeM [146]) on the Oxford5k
data set with bounding box queries and different resizing/cropping settings. Original image
queries are compared with PIRE adversarial queries.

Resizing 50% 80% 100% 150% 200%
Original 65.09 74.31 78.39 71.30 62.03
PIRE (T = 500) 55.91 41.41 3.93 16.08 12.06
Cropping 100% 90% 80% 60% 40%
Original 78.39 76.01 76.01 69.54 46.89
PIRE (T = 500) 3.93 24.13 27.26 25.81 10.35

for image classification. Here, we use the Oxford5k data set to test the robustness
of the perturbations generated by our PIRE against resizing and cropping of the
adversarial query. These transformations obviously will also affect the performance
of the original queries, so we report results for those as well.

For image resizing, we implement upscaling and downscaling operations, resulting in
resized image queries with 200%, 150%, 80% and 50% of the original size. From the
results, which are reported in Table 5.4, it can be observed that upscaling has only a
small influence on PIRE (i.e., PIRE mAP remains lower than original mAP), while
downscaling has larger influence (i.e., PIRE mAP and original mAP are closer).
We suspect that the effect of adversarial queries lies in the subtle perturbation of
the original pixels, downscaling changes most of the perturbed pixels. On the other
hand, upscaling only interpolates new pixels between the perturbed pixels and for
this reason does not impact the structure of perturbation as strongly.

For image cropping, we apply four different settings, i.e., 40%, 60%, 80% and 90%
of the original size. From the results, which are also reported in Table 5.4, we can
observe that image cropping has more impact than resizing on the original perfor-
mance of CBIR, which we attribute to the loss of image content. However, PIRE
remains effective, and causes substantial performance drops in different settings of
image cropping.

5.5.2.5 Leaking queries

If PIRE is used in practice, it can be expected that some images that have been
perturbed with PIRE find their way (i.e., “leak") into the background collection.
We use one query from each of our data sets (christ-church-4 for Oxford5k and
triomphe-3 for Paris6k) to explore what happens when not only queries, but also
background images are perturbed with PIRE. For each query, we replace all its orig-
inal relevant images (i.e., the ones labeled good or ok) in the background collection
with adversarial versions using PIRE (T=200). We test two cases: one in which
the image queries are perturbed with exactly the same setting of PIRE (T=200),
and one in which they are perturbed with a different setting (T=500).
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Table 5.5: Impact of PIRE on the performance (AP) of neural-feature-based CBIR
(GeM [146]) for two specific queries before and after replacing the relevant images for
these queries in the background collection.

Background Query christ-church-4 triomphe-3
Original Original 93.88 89.52
Original PIRE (T=200) 2.83 7.39
Replaced PIRE (T=200) 34.52 48.85
Replaced PIRE (T=500) 22.43 36.42

The results, reported in Table 5.5, demonstrate that adversarial queries can still
maintain an adversarial effect when the relevant background images have been per-
turbed. If the relevant background images are perturbed with a different T than
the adversarial query, the adversarial effect is stronger (mAP is lower) than when
they are perturbed with the same T. These results suggest that adversarial queries
leaking into the background collection might diminish, but will not negate, the
adversarial effect over time. An approach to maintaining the strength of the adver-
sarial effect would be to promote the use of diverse perturbation settings.

5.6 CBIR beyond Neural Features
In order to understand the larger implications of adversarial queries, we now turn
to look at local and global image features.

5.6.1 Local-feature-based CBIR
Here, we test PIRE against the SIFT-based CBIR system introduced in Section 5.4.1,
and compare it to existing KR&I-modifications that have been developed to block
retrieval with local features.

5.6.1.1 KR&I-modification

We use the central methods from previous work to remove and inject SIFT key-
points. From [39], we test Removal with Minimum local Distortion (RMD) and
Local Smoothing (LS), as well as the Forge new keypoints with Minimum local
Distortion (FMD) method, which is representative of keypoint injection. In addi-
tion, we also test Removal via Directed Graph Construction (RDG) [108], a SIFT
keypoint removal method that explicitly addresses visual quality.

We carry out experiments with SIFT-based CBIR on the original queries, on queries
modified with five different KR&I methods, and on adversarial queries created with
PIRE. Results are presented in Table 5.6. Only two KR&I methods (RMD + LS
and LS + FMD) achieve substantial success in lowering the mAP compared to the
mAP of the original queries, and some increase it (by unintentionally streamlining
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LS + FMD

Oxford5k Paris6k

Color 
Recovered

Original

Figure 5.4: Examples of SIFT KR&I: original image queries with specific-region enlarge-
ments (top row), gray-scale images modified with LS + FMD (middle row), and the color
recovered version of the modified images (bottom row).

Table 5.6: Performance (mAP) of SIFT-based CBIR on Oxford5k and Paris6k data sets:
original queries and after modification with KR&I and PIRE. (BB=Bounding Box and
WI=Whole Image.)

Oxford5k
(BB / WI)

Paris6k
(BB / WI)

Original 52.57/51.59 45.46/44.63
RDG 53.00/51.08 44.45/44.44
RMD 53.81/53.02 44.47/45.23
RMD + LS 42.54/46.90 32.75/33.60
FMD 54.20/51.77 42.38/44.58
LS + FMD 41.23/42.21 29.86/32.64
PIRE (T = 500) 40.90/44.05 39.23/40.73

the visual word vocabulary). Interestingly, PIRE (T=500), although it is designed
to be adversarial with respect to neural-feature-based CBIR, shows a blocking effect
with respect to SIFT-based CBIR. For the Oxford5k data set, this effect is on par
with the best of KR&I methods. We point out that KR&I methods maintain a
better image quality than PIRE, as can be seen from Table 5.7, which reports SSIM
for RMD + LS and LS + FMD.

5.6.1.2 SIFT color recovery

Since, essentially, SIFT features are extracted from single-channel images, in gen-
eral, KR&I-modifications can only be applied to gray-scale images. However, be-
cause we are interested in visual appearance, we would like to compare color versions
of KR&I-modified images. To this end, we propose a naive method to recover color
after KR&I modification. Color recovery also allows us to make a fair comparison
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Table 5.7: Average image quality (SSIM values) of adversarial queries from Oxford5k and
Paris6K data sets generated by KR&I methods. (The SSIM value of the original query
equals 1; BB= Bounding Box and WI=Whole Image.)

Oxford5k
(BB / WI)

Paris6k
(BB / WI)

LS + FMD 0.917/0.938 0.953/0.971
RMD + LS 0.915/0.940 0.952/0.972

between the impact of PIRE and KR&I modification on global-feature-based CBIR
in Section 5.6.2.

Given an original color image Irgb with three channels Ir,Ig and Ib, its gray-scale
version Igray can be calculated by the widely-used formula Igray = 0.30úIr +0.59ú
Ig + 0.11 ú Ib. A successful recovery method should guarantee that the restored
color image Îrgb can be transformed back to the modified gray-scale image Imod

without the loss of modification effects, i.e., Imod = 0.30 ú Îr + 0.59 ú Îg + 0.11 ú Îb.
In order to recover the color information, we multiply the pixel at each location (i,j)
by the same ratio – for the three channels of the original image Irgb. The process
can be formalized as

–(i, j) = Imod(i, j)/Igray(i, j)
{Îc(i, j)|c œ {r, g, b}} = –(i, j) ú {Ic(i, j)|c œ {r, g, b}}

Figure 5.4 provides a impression of the image quality after modification with LS +
FMD, using two example queries. For each example, details in the red square are
enlarged and shown alongside the whole image query. Our simple color recovery
method appears to achieve its aim well. We can observe that artifacts are present
in the gray-scale modified images. These are echoed in the color-recovered images.

5.6.2 Global-Feature-based CBIR
Finally, we turn to investigating global-feature-based CBIR, using the CEDD and
GIST systems described in Section 5.4.1. CEDD is a low computational-cost feature
that incorporates color and texture information in a histogram, while GIST features
can represent perceptual dimensions (naturalness, openness, roughness, expansion
and ruggedness) of a semantic scene by encoding coarsely localized information in
the energy spectrum of an image [108].

The results in Table 5.8 reveal that image modifications operating on local fea-
tures (LS + FMD) do not block global-feature-based CBIR. However, our PIRE
adversarial queries have a quite strong blocking effect on CEDD-based CBIR and
a quite noticeable blocking effect on GIST-based CBIR. These results are interest-
ing since PIRE was not trained to block global-feature-based retrieval. In order to
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Table 5.8: Performance (mAP) of global-feature-based CBIR (Whole image queries): orig-
inal queries, PIRE (T=500), KR&I modification, and Gaussian noise baseline.

Oxford5k
(CEDD / GIST)

Paris6k
(CEDD / GIST)

Original 10.77/19.29 9.61/18.30
LS+FMD 10.67/18.58 9.92/17.86
PIRE (T=500) 2.54/14.71 5.06/12.11
Gaussian Noise 10.68/14.71 8.27/9.93

understand their implications, we must know whether PIRE is acting specifically
to disrupt pixel patterns that are important for global-feature-based CBIR, or it is
merely acting as a sophisticated method of introducing noise throughout the image,
which then has a blocking effect because it makes the overall image quality worse.
To this end, we carry out a baseline experiment using queries modified with Gaus-
sian noise. Specifically, we generate noise for each image query such that the result
is a SSIM value similar to the one caused by PIRE. (On average, for Oxford5k, SSIM
equals 0.687 for PIRE, and 0.652 for Gaussian noise; for Paris6k, SSIM equals 0.716
for PIRE, and 0.708 for Gaussian noise.)

As shown in Table 5.8, Gaussian noise degrades performance in the case of GIST-
based CBIR. We assume that the reason is that GIST extraction is based on spectral
information, with which high-frequency noise interferes, and that PIRE is having a
similar effect.

More interesting is how PIRE degrades the performance of CEDD-based CBIR.
Our explanation for these results is that CEDD captures texture information, and
that the structural perturbations generated by PIRE interfere with texture more
effectively than the random changes of Gaussian noise. For completeness, we confirm
that this effect does not account for the ability of PIRE to block neural-feature-
based CBIR. In Table 5.2, we saw that PIRE (T = 500) drops the mAP of a neural-
based CBIR system from 74.42 to 2.31 for the Oxford5k data set (Whole Image
queries). Here, the effect of Gaussian noise contrasts with the effect of PIRE. If
Gaussian Noise instead of PIRE is used to modify the query, the drop is from 74.42
to only 71.45. Behavior on the Paris6k data set and with Bounding Box queries is
comparable.

5.7 Conclusion and Outlook
This work has made the case for studying adversarial queries in content-based image
retrieval. We have proposed a new algorithm called PIRE, which is a neural per-
turbation approach for creating adversarial queries. In contrast to previous work
on adversarial examples, PIRE does not require supervision (i.e., no labels from
the data set to which it is applied) and is for this reason suited for image retrieval
scenarios. Our experimental analysis of PIRE and of other, more traditional, ap-
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proaches for blocking image matching with keypoint injection and removal (KR&I)
has provided valuable insight into adversarial queries. We summarize these insights
in terms of their implications for different groups of researchers.

Researchers in deep learning: Our work opens interesting topics in CBIR for re-
searchers in deep learning. First, improvements on PIRE can be explicitly designed
to generate queries that are adversarial with respect to a CBIR system for which
little or no information is available, i.e., that uses arbitrary neural representations.
Next, we point out again that the data set used to fine-tune our CNN-model is
semantically related to the data set to which PIRE is applied. Specifically, the
fine-tuning data depicts buildings, but not specifically in our cities. In the future,
the impact of this semantic relationship both on CBIR performance and on the
ability of PIRE to block CBIR performance should be better understood. We also
point to [107], work on universal perturbations for image retrieval that came to
our attention while preparing the camera-ready version of this work. Future work
should further develop the ideas of [107], such as universal perturbations (PIRE is
image specific) and pseudo-supervision.

Researchers interested in local and global features: Our experimental analysis sug-
gests that neural perturbations have potential to block local-feature-based CBIR
and global-feature-based CBIR, opening interesting paths for future work. Our
results with a neural-feature-based CBIR system show that adversarial queries cre-
ated with neural perturbations lose their blocking ability after certain edits. KR&I
approaches may not have these weakness.

Multimedia privacy researchers: Not everyone who is able to deploy CBIR on a
large collection of users’ images can be expected to have the users’ best interests in
mind, and actors with ill intent are an inevitable risk. Our results suggest that ad-
versarial queries are a promising topic of study for multimedia privacy researchers.
Note that modest reductions in CBIR performance may already be enough to dein-
centivize malicious actors from abusing CBIR systems. However, much research
still lies ahead. In order to implement privacy protection, it is necessary to ap-
ply modifications not only to query images, but also to images in the background
collection. Our experimental results suggest that more work should be devoted to
understanding the rate at which image modifications need to change dynamically
in order to block CBIR over time. Finally, in order for users to adopt image modi-
fications to protect their privacy, it is necessary to pay close attention to the visual
acceptability of the modified images. Future work must focus both on minimizing
the visual impact of perturbations, as well as understanding how to make visual
changes that are acceptable to the user, in cases in which it is necessary to make
visible changes.

In closing, we return to question in the work’s title: ‘Who’s afraid of adversarial
queries?’ Depending on the threat model that a researcher adopts, adversarial
queries might be considered part of the problem or part of the solution, and at first
consideration might be more or less scary. However, our overall answer is that no
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In closing, we return to question in the work’s title: ‘Who’s afraid of adversarial
queries?’ Depending on the threat model that a researcher adopts, adversarial
queries might be considered part of the problem or part of the solution, and at first
consideration might be more or less scary. However, our overall answer is that no
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one should be afraid of adversarial queries, since they are important to understand
and open up interesting new research questions.
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Chapter 6

Conclusion and Outlook

6.1 Wrap-up
This thesis has focused on challenges and opportunities brought by adversarial
machine learning to intelligent information systems from both the system owner’s
perspective and the user’s perspective. We have studied cases in which the sys-
tem outputs are influenced by externally sourced data from outside of the system.
Adversarial data modifications on externally sourced data can compromise system
security, but they also hold the potential to improve user privacy.

In Chapter 2, from the system owner’s perspective, we demonstrated that when
externally sourced background collection of a recommender system is adversarially
modified, the output recommendations can be manipulated for malicious purposes.
In the two-stage recommender constituted by a collaborative filtering algorithm
with a visual re-ranker, we systematically showed that merchants can promote cer-
tain items by using adversarial machine learning under white-box, gray-box, and
black-box settings. We also showed that existing countermeasures are ineffective in
mitigating adversarial item promotion. Adversarial item promotion constitutes a
practical threat to real-world recommender systems that use images to address cold
start.

In Chapter 3, from the system user’s perspective, we looked at visual feature rep-
resentation models in intelligent information systems. Visual representation models
pre-trained on large-scale datasets can be used in information systems in an off-
the-shelf manner as the core of the image content processing module. Using the
adversarial data poisoning method, we looked at how externally sourced data can
influence the representation performance of the pre-trained model. In particular,
we conducted a systematic study to demonstrate that compression methods can
mitigate the current perturbative adversarial poisoning methods that compromise
representation models’ availability. From the users’ perspective, we showed that
availability poisoning is a promising method to mitigate misuse of user-originated
data for training.
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In Chapter 4, from the system user’s perspective, we studied the use of deep
bag-based classifiers for attribute profiling attacks and proposed obfuscating profile
extensions that are capable of offering resistance. We formulated a threat model for
bag-based user profiling from the perspectives of different groups of users. Assum-
ing that users are protecting specific attributes, we showed that pivoting additions
can resist private attribute inference by extending existing profiles. Questioning the
assumption that the existence of already uploaded items is incompatible with ob-
fuscation approaches to privacy protection, pivoting additions provided users with
a promising solution to improve privacy on social media. Especially, adversari-
ally selected non-touched natural items can effectively improve users’ privacy while
simultaneously being non-suspicious to human observers.

In Chapter 5, from the system user’s perspective, we showed that adversarial
queries could solely misdirect the performance of the image retrieval systems. We
discussed cases where adversarial queries could be treated differently, covering the
common concerns when applying adversarial queries. In addition, we showed that
adversarial queries created on neural-feature models can transfer to image retrieval
systems built on global and local features. Adversarial queries can affect the per-
formance of content-based image retrieval systems by mismatching the query and
background images. Adversarial queries can improve privacy against content-based
image retrieval systems, where users’ intents are maintained but extracted semantics
are mismatched.

6.2 Outlook
In this section, we share our reflections regarding the security concerns and privacy
opportunities associated with intelligent information systems and make suggestions
for future research and practice.

6.2.1 Important Next Steps
Adversarial training. In this thesis, we have discussed adversarial examples
from the user and the system point of view. To gain deeper understanding in both
cases, it is important to carry out research on minimizing the impact of adversarial
approaches. Although we study adversarial training techniques in Chapter 2 from
the system owner’s perspective and Chapter 3 from the user’s perspective, this
work needs to be continued moving forward due to the emerging gap between the
state-of-the-art attacks and current countermeasures.

From the system owner’s perspective, one promising defense to explore against in-
formation system attacks is adversarial training [118], which has been extensively
studied in mitigating evasion attacks in computer vision. Adversarially-trained
models are designated to be more robust to adversarially perturbed inputs than
regular models. Adversarial training on information system models has been shown
to be promising in improving regular retrieval [185] or recommendation [72] perfor-
mance but has not been thoroughly discussed with regards to its ability to improve
the robustness of information systems.
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Future work could investigate dedicated adversarial training methods for informa-
tion systems, especially focusing on solving the model performance and robust-
ness trade-off. For example, for recommender systems that leverage media content,
adversarially-trained multimedia feature extractors can substitute a conventionally-
trained feature extractor, which could potentially benefit the robustness of recom-
menders against adversarially-perturbed or corrupted media content.

Future work could also explore detection strategies to filter out malicious content
before it enters the systems. However, other perspectives on data filtering are also
interesting. Adversarially-trained models have also been shown to provide more
robust representations than regular models, which could be exploited by future work
to build information systems that are less dependent on privacy-sensitive aspects of
user data. In particular, features that are both spurious and privacy-sensitive can
be spotted and removed from the externally-sourced data, which benefit both the
system owners for system security and users for privacy.

Practical adversaries. Privacy and security threats can be realized differently
when adversaries’ capabilities are different. In this thesis, we have studied strong
white-box adversaries and weaker, but more realistic, gray-box adversaries. Specifi-
cally, in Chapter 2, from the system owner’s perspective, we showed that adversarial
merchants can exploit the information about popular items for adversarial item pro-
motion, and in Chapter 4, from the user’s perspective, we showed that users can
generate adversarial queries that transfer to unknown retrieval systems. In short,
this thesis has made a step towards practical adversaries that could occur in real-
world situations. However, our work has remained to a great extent focused on the
machine learning algorithm itself and the full range of possibilities for adversaries
in the real world stretches far beyond what was have considered here.

Real-world adversaries can comprehensively exploit available information to further
boost the adversarial effectiveness. Future work can explore model extraction to
facilitate the adversarial tasks, where the adversary queries the target system to
build a system surrogate. For example, regarding both adversarial item promotion
in Chapter 2 and adversarial queries in Chapter 4, target information systems can
return results based on the exact queries/interactions.

From the system owner’s perspective, real-world adversaries can exploit all avail-
able resources to substantially harm the information system security. For example,
strong adversaries could reverse engineer the ranking mechanism of the informa-
tion systems by carefully selected queries [131]. When the system is deployed on
the edge, physical probing on information systems is also feasible by exploiting
different physical side channels [73].

From the user’s perspective, users can exploit queries/interactions and outputs pairs
to build a surrogate model to improve their privacy. For example, users can log their
interactions with the system. Together with the service-provided tags [156], users
could analyze and pivot their behaviors to change the unintended personalization
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tags from the service provider.

Natural adversarial items. Natural item-based obfuscations have the potential
for privacy improvement with the advantage of being robust against mitigation and
being non-suspicious. In this thesis, we took first steps to explore the influence of
natural adversarial items on intelligent information systems. In Chapter 2, from
the system owner’s perspective, we explored semantic attacks that blend a part of a
popular item image with the image of a regular item in by image editing. In Chapter
5, from the user’s perspective, we added natural non-touched items to user profiles to
obfuscate bag-based attribute profiling. These examples demonstrate the potential
of natural adversarial items to improve privacy protection, and complement other
obfuscation-based protections.

From the system owner’s perspective, figuring out the factors that differentiate nat-
ural adversarial items from regular items could defend against adversarial attack
with natural items. However, the system owners should respect user’s wishes to
make privacy-sensitive information less readily available to be exploited by infor-
mation systems.

From the user’s perspective, future research could systematically analyze failure
cases of information systems, in order to determine the characteristics of natural
adversarial items given different types of information systems. It would also be
important to study the patterns of naturally occurring groups of the natural ad-
versarial items. Based on the findings, stronger privacy improvements that are
non-suspicious and robust can be developed.

6.2.2 Moving Further With the System View
This thesis has studied adversarial machine learning with a system view. In other
words, our threat models, attacks, and countermeasures take the entire system into
account, and not just the machine learning algorithms in individual system mod-
ules. Future work on adversarial machine learning should move forward studying
this system view in order to remain as close as possible to real-world issues and
opportunities. We close the thesis by discussing areas of future work in which the
system view can help further develop adversarial machine learning approaches to
protect user privacy.

Privacy improvement by collaboration between users. Current adversar-
ial machine learning-based privacy improvement research mainly assumes that the
protector is acting alone. In Chapters 4 and 5, we discussed cases where one query
is adversarially modified or one user profile is adversarially extended, which pro-
vides a basic understanding of the formulated problem. Privacy improvements by
collaboration between users are still to be explored.

Future research can investigate the potential of interconnections between users for
privacy improvement. In the social profiling case, multiple users can modify their
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profiles to bypass the profiling algorithm or even influence the future training of
profiling algorithms. In addition, when more users show a similar changing pattern,
it will be challenging for the system to differentiate normal patterns from pivoting
patterns. Consequently, mitigation against profile pivoting will be non-trivial since
similar patterns occur with multiple users, making it hard to localize the outliers.

Privacy improvement by considering multiple modalities. For privacy im-
provements, this thesis mainly focused on a single modality, i.e., image. Adversarial
modifications on single modality show the potential for privacy improvement but
resemble less the practical threat scenarios where samples belonging to different
modalities can be used together for profiling. For example, the social profiling of
user profiles in Chapter 5 could exploit images, text, and interactions to improve
its effectiveness.

Data modification-based privacy improvements could consider leveraging all dif-
ferent modalities to mitigate profiling. Profile images can be used together with
text to mitigate the profiling. At the same time, interconnections between differ-
ent modalities could be considered to further improve the effectiveness of privacy
improvement. For example, the level of coherence between images and surrounding
textual descriptions could be an important indicator for personalization, based on
which users could deliberately create image-caption pairs that obfuscate.

Toward dynamic adversarial modifications This thesis has discussed the influ-
ence of adversarially-modified data entering different processing stages of informa-
tion systems. Initial discussions on mitigation techniques have also been provided.
For example, we have shown in Chapter 3 that adaptive poisoning samples can by-
pass the compression-based defenses provided by the system owner. We also show
in Chapter 5 that adversarially pivoted profiles can be slightly counteracted when
the system owner implements some countermeasures.

Such static one-step mitigation is useful with clear practical implications. However,
regarding adaptive adversaries, we should study scenarios simulating the potential
dynamics between two parties. For instance, the availability poisons in Chapter 3
can be discussed with respect to more detailed threat models to show the potential
under different adversaries’ knowledge-level assumptions, providing deeper insight
into real-world implications.

6.2.3 Final Word
Summarizing our outlook, we believe that externally sourced data should be man-
aged so that users are informed and empowered to impact all parts of the system
that are directly or indirectly based on their provided data. The first step is to
provide users with details about how information systems depend on their data [1].
Making the data exploitation transparent can help users understand their willing-
ness to contribute to the development of the system. The second step is to allow
users to remove their data and the corresponding influences of their data on the in-
formation system, where machine unlearning [12] technique is a promising direction



112 Chapter 6

to explore for information systems. We also believe that the dynamic and active
interactions between users and information system owners could eventually benefit
both parties, improving user’s privacy and system’s security and utility.
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