
Radboud
Dissertation
Series

RETHINKING ANOMALY DETECTION:
FROM THEORY TO PRACTICE

Roel Christiaan BoumanInstitute for Computing
and Information Sciences

R E T H I N K I N G A N O M A LY D E T E C T I O N : F R O M T H E O RY T O
P R A C T I C E

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 15 april 2025
om 12:30 uur precies

door

Roel Christiaan Bouman
geboren op 14 december 1993

te Gendringen

R E T H I N K I N G A N O M A LY D E T E C T I O N : F R O M T H E O RY T O
P R A C T I C E

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 15 april 2025
om 12:30 uur precies

door

Roel Christiaan Bouman
geboren op 14 december 1993

te Gendringen

colophon

Roel Bouman
Rethinking Anomaly Detection: From Theory to Practice

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Proefschrift AIO/Guus Gijben
Cover image: Guntra Laivacuma
Printing: DPN Rikken/Pumbo

ISBN: 9789465150765
DOI: 10.54195/9789465150765
Free download at: https://doi.org/10.54195/9789465150765

© 2025 Roel Bouman

This is an Open Access book published under the terms of Cre-
ative Commons Attribution-Noncommercial-NoDerivatives Interna-
tional license (CC BY-NC-ND 4.0). This license allows reusers to copy
and distribute the material in any medium or format in unadapted
form only, for noncommercial purposes only, and only so long as at-
tribution is given to the creator, see http://creativecommons.org/

licenses/by-nc-nd/4.0/.

R E T H I N K I N G A N O M A LY D E T E C T I O N : F R O M T H E O RY T O
P R A C T I C E

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 15 april 2025
om 12:30 uur precies

door

Roel Christiaan Bouman
geboren op 14 december 1993

te Gendringen

Promotor

Prof. dr. Tom M. Heskes

Manuscriptcommissie

Prof. dr. Marco Loog
Prof. dr. Kerstin Bunte (Rijksuniversiteit Groningen)
Prof. dr. Thomas H.W. Bäck (Universiteit Leiden)

R E T H I N K I N G A N O M A LY D E T E C T I O N : F R O M T H E O RY T O
P R A C T I C E

Dissertation to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,
according to the decision of the Doctorate Board

to be defended in public on

Tuesday, April 15, 2025
at 12:30 p.m.

by

Roel Christiaan Bouman
born on December 14, 1993

in Gendringen (the Netherlands)

Supervisor

Prof. dr. Tom M. Heskes

Manuscript Committee

Prof. dr. Marco Loog
Prof. dr. Kerstin Bunte (University of Groningen)
Prof. dr. Thomas H.W. Bäck (Leiden University)

S U M M A RY

The field of anomaly detection is growing at an increasing pace. New
algorithms and applications are numerous. Yet, the fundamentals of
anomaly detection are more rarely studied than anomaly detection is
applied. In this thesis, we aim to provide guidelines on which algo-
rithms actually perform well in practice, whether the autoencoders,
one of the most popular methods, for anomaly detection are actually
reliable, and lastly we present a novel use case of anomaly detection
on the improvement load estimation on the Dutch power grid.

There are many algorithms for performing anomaly detection, and
even more applications. If we want to perform anomaly detection, it is
imperative to know which methods to use. In order to provide guide-
lines on this, we have performed the largest comparative study on
real-world data to date. We find that actually only a few algorithms
are needed in order to get satisfactory results on most data. We specif-
ically find that k-nearest neighbors and extended isolation forest are
able to detect the most commonly occurring types of anomalies.

Beyond traditional tabular applications we see an increasing num-
ber of studies and applications where autoencoders are used to detect
anomalies. As a neural network architecture, autoencoders are most
notably used to detect anomalies in fields, such as computer vision,
where their ability to extract features is essential. In recent years, re-
searchers have started questioning the assumptions behind how au-
toencoders detect anomalies. We study these assumptions in detail
and definitively conclude that there are no guarantees that these as-
sumptions hold in practice. This means that autoencoders are unreli-
able anomaly detectors.

We further apply our knowledge on anomaly detection to the en-
ergy domain. With the energy transition in full swing, we need to
take every possible step in order to maximize our current use of the
power grid. We combine anomaly detection through reliable methods
such as statistical process control and binary segmentation in order
to detect measurement errors and the rerouting of power in load mea-
surements. By filtering these errors and rerouting, or switch, events
we can acquire more reliable load estimates of the power grid in the
Netherlands. By acquiring better load estimates through interpretable
methods we can reduce unused capacity of the power grid, allowing
for the much-needed leeway we need during the energy transition.

vii

S A M E N VAT T I N G

Anomaly detection, soms vertaald als anomaliedetectie, is een klein,
doch toenemend belangrijk, deel van de kunstmatige intelligentie.
Nieuwe algoritmen en toepassingen zijn ontelbaar. Toch worden de
basisbeginselen van anomaly detection minder vaak bestudeerd dan
dat het wordt toegepast. In deze dissertatie streven we ernaar om on-
derzoekers houvast te bieden over welke algoritmen in de praktijk
daadwerkelijk goed werken, en of autoencoders – een van de meest
populaire methoden voor anomaly detection – daadwerkelijk betrouw-
baar zijn. Tot slot presenteren we een nieuwe toepassing van anomaly
detection voor het verbeteren van de capaciteitsinschattingen in het
Nederlandse elektriciteitsnet.

Er zijn veel algoritmen beschikbaar voor het uitvoeren van anomaly
detection. Als we dit willen doen, is het belangrijk om te weten welke
methoden we moeten gebruiken. Om hier richtlijnen voor te bieden,
hebben we het grootste vergelijkende onderzoek tot nu toe uitge-
voerd. We concluderen dat slechts een paar algoritmen nodig zijn om
in de meeste gevallen goede resultaten te behalen. Specifiek vinden
we dat de k-nearest neighbors en extended isolation forest algoritmen de
meest voorkomende typen anomalieën kunnen detecteren.

Naast traditionele tabulaire toepassingen zijn er een groeiend aan-
tal studies en toepassingen waarin autoencoders worden gebruikt om
anomalieën te detecteren. Neurale netwerken zoals autoencoders wor-
den vooral gebruikt voor anomaly detection in vakgebieden zoals au-
tomatische beeldherkenning. In de afgelopen jaren zijn onderzoekers
echter de aannames achter hoe autoencoders anomalieën detecteren in
twijfel gaan trekken. Wij onderzoeken deze aannames in detail en
concluderen definitief dat er geen garanties zijn dat deze aannames
in de praktijk standhouden. Dit betekent dat autoencoders onbetrouw-
bare anomaliedetectoren zijn.

We passen onze kennis van anomaly detection verder toe in de ener-
giesector. In het kader van de energietransitie moeten we alle mo-
gelijke stappen ondernemen om ons huidige gebruik van het elek-
triciteitsnet te maximaliseren. We combineren anomaly detection door
middel van betrouwbare methoden zoals statistical process control met
binary segmentation om meetfouten en verschakelingen in belasting-
metingen te detecteren. Door deze fouten en verschakelingen te fil-
teren, kunnen we betrouwbaardere capaciteitsinschattingen van het
elektriciteitsnet in Nederland verkrijgen. Door betere inschattingen te
verkrijgen via interpreteerbare methoden, kunnen we ongebruikte ca-
paciteit van het elektriciteitsnet verminderen, wat extra ruimte biedt
die we nodig hebben tijdens de energietransitie.

viii

C O N T E N T S

1 introduction 1
1.1 What is Anomaly Detection? 1

1.1.1 What Is an Anomaly and Where Is It Applied? 1
1.1.2 Applications 2

1.2 Some Gaps in the Field of Anomaly Detection 3
1.3 An In-depth Look at Anomaly Detection 4

1.3.1 Anomaly detection paradigms 4
1.3.2 Model Evaluation and Optimization 6
1.3.3 Types of Data 9
1.3.4 Common Methods 10

1.4 Contributions 20
1.4.1 Unsupervised Anomaly Detection Algorithms

on Real-world Data: How Many Do We Need? 20
1.4.2 Autoencoders for Anomaly Detection are Unre-

liable 21
1.4.3 Acquiring Better Load Estimates by Combining

Anomaly and Change Point Detection in Power
Grid Time Series Measurements 21

References 22
2 comparing unsupervised anomaly detection al-

gorithms 29
2.1 Introduction 29
2.2 Background 32

2.2.1 Unsupervised Anomaly Detection 32
2.2.2 Types of Anomalies 32

2.3 Materials and Methods 35
2.3.1 Algorithms 35
2.3.2 Data 36
2.3.3 Evaluation Procedure 38
2.3.4 Reproducibility 40

2.4 Results 40
2.4.1 Overall Algorithm Performance 40
2.4.2 Clustering Algorithms and data sets 43
2.4.3 Performance on Global and Local Problems 45

2.5 Discussion 46
2.6 Conclusion 51
References 52

3 autoencoders for anomaly detection are unre-
liable 59
3.1 Introduction 59
3.2 Related Work 60
3.3 Background 62

ix

x contents

3.3.1 Anomaly Detection 62
3.4 Out-of-Bounds Reconstruction 62

3.4.1 Anomaly Detection Using the Reconstruction Loss 63
3.4.2 PCA 63
3.4.3 Linear Autoencoders 65
3.4.4 Non-Linear Autoencoders 66
3.4.5 Convolutional Autoencoders 68

3.5 Conclusion 73
References 74

4 acquiring better load estimates 79
4.1 Introduction 79
4.2 Materials and Methods 82

4.2.1 Data 82
4.2.2 Preprocessing 86
4.2.3 Algorithms and Optimization 87
4.2.4 Evaluation and Optimization 95
4.2.5 Implementation and Reproducibility 98

4.3 Results 99
4.4 Discussion 106
4.5 Conclusion 108
References 109

5 discussion and outlook 115
5.1 Regarding the Evaluation of New Unsupervised Algo-

rithms 115
5.1.1 Constructing Benchmarks with Distinct Data-

sets Belonging to Train and Test Categories 116
5.1.2 Regular Contests for Anomaly Detection 116

5.2 What Do We Actually Know About Methods? 117
References 117

appendix to chapter 2 119
AUC Scores for Each Algorithm-data set Combination 119
Nemenyi Post-hoc Analysis Results 119

appendix to chapter 3 125
Linear Networks with Bias Terms 125
References 126

appendix to chapter 4 127
Evaluated and Best Hyperparameters 127
AUC-ROC performance of each method 127

publications 133
acknowledgments 135

L I S T O F F I G U R E S

Figure 1 Examples of anomaly properties. 33
Figure 2 Performance boxplots of each algorithm-dataset

combination. 41
Figure 3 Clustered heatmap of the ROC/AUC perfor-

manec of each algorithm. 44
Figure 4 Performance boxplots of each algorithm-dataset

combination, only local datasets. 46
Figure 5 Performance boxplots of each algorithm-dataset

combination, only global datasets. 49
Figure 6 Reconstruction loss contour plots of non-linear

autoencoders on 3 distinct datasets. 69
Figure 7 Plots of the contours of the reconstruction loss

of autoencoders applied on MNIST. 72
Figure 8 Schematic illustration of a switch event. 81
Figure 9 Example plot of normal measured and bottom-

up load. 84
Figure 10 Example plot of measured and bottom-up load

with anomalies. 85
Figure 11 Histogram of the length of the events and anoma-

lies over all datasets. 86
Figure 12 Plot of the one-sided threshold optimization

procedure. 99
Figure 13 Bar plots of the F1.5, recall, and precision of

each method per length category. 100
Figure 14 Plot of the results of the best sequential BS+SPC

model on station “042". 103
Figure 15 Scatter plots of the ground truth maximum load

vs. the predicted maximum load. 104
Figure 16 Scatter plots of the ground truth minimum load

vs. the predicted minimum load. 105
Figure 17 Bar plot of the AUC-ROC performance of each

method. 128

xi

L I S T O F TA B L E S

Table 1 Overview of the algorithms used in the com-
parison. 37

Table 2 Summary of the datasets used in the compari-
son. 39

Table 3 Significant differences between algorithms on
all datasets. 42

Table 4 Significant differences between algorithms on
local datasets. 47

Table 5 Significant differences between algorithms on
global datasets. 48

Table 6 The distribution of event lengths over the train,
test, and validation splits. 96

Table 7 AUC values for each algorithm-data set com-
bination, part 1. 120

Table 8 AUC values for each algorithm-data set com-
bination, part 2. 121

Table 9 P-values from Nemenyi post-hoc analysis for
all datasets. 122

Table 10 P-values from Nemenyi post-hoc analysis for
the local datasets. 123

Table 11 P-values from Nemenyi post-hoc analysis for
the global datasets. 124

Table 12 Evaluated hyperparameters. 128
Table 13 Best hyperparameters for each method, part

1. 129
Table 14 Best hyperparameters for each method, part

2. 130

xii

L I S T O F A L G O R I T H M S

Algorithm 1 Preprocessing procedure 88
Algorithm 2 bottomUpMissing 88
Algorithm 3 repeatedMeasurements 89
Algorithm 4 Statistical process control 90
Algorithm 5 Isolation forest per station 91
Algorithm 6 Single isolation forest over all stations 91
Algorithm 7 Binary segmentation 92
Algorithm 8 findReferenceValue 93
Algorithm 9 thresholdScores (one-sided) 97
Algorithm 10 thresholdScores (two-sided) 98

xiii

1
INTRODUCT ION

In this introduction, we will provide an overview of what anomaly de-
tection is, applications of anomaly detection, what current gaps there
are in the field, a more detailed overview of methods and considera-
tions, and how we have aimed to fill the gaps in anomaly detection.

1.1 what is anomaly detection?

Anomaly detection, also commonly known as outlier detection or
more rarely deviation detection, is the process of identifying data
points that deviate significantly from the majority of the data. These
data points, or anomalies, may, for example, represent rare events or
measurements, such as fraud, network intrusions, equipment failures,
rare cancer cells, or other significant events. Anomaly detection plays
an increasingly crucial role in a wide range of applications across var-
ious fields, especially when the data cannot be used for more typical
machine learning tasks such as classification or regression.

1.1.1 What Is an Anomaly and Where Is It Applied?

Anomalies are data points that are in some way dissimilar to normal
data. In many cases anomalies are also more heterogeneous than the
normal data. Generally we consider some m-by-n dataset X ∈ Rn

in which we want to detect one or more anomalous samples a = xi,
which are sufficiently anomalous, i.e., fanomaly score(a) > δ, according
to some chosen “anomalousness” criterion function. Dissimilarity, or
anomalousness, in the context of anomalies can mean a variety of
things and is generally domain or application dependent. Anoma-
lies can, for example, be far away from all normal data, or occupy a
region of low density. The method of characterization is quite differ-
ent between different types anomaly detection algorithms, meaning
some methods are better at detecting distinct types of anomalies. In
Chapter 2 we therefore propose a new taxonomy of anomaly proper-
ties. Rather than define anomalies by binary properties, we instead
ascribe non-exclusive continuous properties which can be used to
give a more detailed description of different types of anomalies. An
overview of many of the common methods and approaches used in
anomaly detection can be found in Section 1.3.4.

1

2 introduction

1.1.2 Applications

Anomaly detection is done across a variety of domains, as long as
identification of rare samples or patterns is of potential benefit.

In finance, anomaly detection is often employed for fraud detec-
tion and market analysis. Banks can for example use it to identify
unauthorized transactions, money laundering, or identity theft by
monitoring transaction behaviors in real time [2, 26]. Detecting ir-
regular trading activities or sudden market shifts through anomaly
detection provides early warnings of potential market disruptions or
investment opportunities, assisting traders and analysts in making
informed decisions [1, 20]. In financial auditing, anomaly detection
may be employed as a preselection mechanism to detect suspicious
or fraudulent activity in accounting statements [30].

Healthcare can similarly benefit from anomaly detection in for ex-
ample disease outbreak detection, medical diagnostics, and disease
monitoring. Epidemiologists can spot unusual patterns in patient data
that might indicate disease outbreaks, allowing for faster responses
and containment measures [58]. In medical diagnostics, anomalies in
imaging data or patient vitals can signal the presence of diseases or
conditions supporting doctors in making accurate diagnoses [16]. In
disease monitoring anomaly detection can be used to monitor the
presence of rare disease specific cells [17].

In cybersecurity, anomaly detection is used for network intrusion
detection and user behavior analysis. Network traffic can be moni-
tored to spot unusual patterns indicative of security breaches, such as
unauthorized access or malware infections, enabling organizations to
mitigate cyber attacks [32]. Additionally, analyzing user behavior for
anomalies like unusual login times or access to sensitive data helps
identify insider threats or compromised accounts, enhancing informa-
tion system security [43].

Anomaly detection is an essential step in performing predictive
maintenance and quality/process control [14, 29]. By analyzing sen-
sor data from equipment, signs of wear, malfunctions, or failures can
be identified before they occur, allowing for just-in-time, rather than
scheduled, maintenance and reducing downtime. Detecting anoma-
lies in production processes or product quality ensures defective prod-
ucts are identified and corrected early, maintaining high standards
and minimizing waste [42].

Environmental monitoring employs anomaly detection in climate
monitoring and wildlife conservation. It identifies significant changes
or events in environmental data, such as temperature, precipitation,
or pollution levels, providing early warnings for timely responses
to climate change effects [12] or natural disasters [27]. Monitoring
wildlife populations or behaviors for anomalies aids conservation ef-
forts by identifying threats like poaching [6], or disease outbreaks [25].

1.2 some gaps in the field of anomaly detection 3

The energy sector utilizes anomaly detection in for example smart
grid monitoring [46]. It can aid in identifying power outages [40], or
energy theft [59], helping maintain a stable and efficient energy sup-
ply whilst aiding in the energy transition. With the rapid advent of
the energy transition, planning grid expansions is becoming increas-
ingly important to make optimal use of the existing network with
limited available resources. In Chapter 4 we discuss an application of
change-point detection and anomaly detection to acquire better load
estimates to facilitate grid expansion planning.

In the semiconductor industry, anomaly detection can help ensure
the quality and reliability of integrated circuits and semiconductor de-
vices. The complex manufacturing processes, including photolithog-
raphy, etching, and deposition, can produce defects from even minor
deviations. Real-time monitoring systems detect these irregularities
early, allowing manufacturers to intervene promptly, reduce waste,
improve yields, and maintain high product quality [33, 55].

In additive manufacturing, or 3D printing, anomaly detection is
crucial for maintaining precision and integrity in produced compo-
nents. The layer-by-layer construction process must be meticulously
monitored to identify inconsistencies, temperature fluctuations, or
material defects. Continuous anomaly detection enables immediate
predictive discarding or corrective actions, minimizing defects and
material wastage, ensuring the final products meet required speci-
fications, and supporting the advancement of reliable, high-quality
additive manufacturing [53, 54].

1.2 some gaps in the field of anomaly detection

In the past few years we have identified several unresolved issues,
open questions, points for improvements, and novel applications in
anomaly detection. In this work we summarize our main contribu-
tions. In this section, we will pose the research questions, which we
summarily answer in Section 1.4. In the remaining chapters, we an-
swer each of these questions in more detail.

There is a clear need to know which anomaly detection algorithms
perform well in practice. Computational resources and time of re-
searchers and domain experts is scarce, so any guideline which can
help decide “where to start” is quickly invaluable for anyone apply-
ing anomaly detection. A large part of the anomaly detection research
is focused on new applications and the introduction of new methods,
but little comparative research has been performed in order to estab-
lish the actual efficacy of algorithms. What research has been done is
often either outdated, small-scale, or on synthesized data. This leads
us to the following research questions:

1. Which anomaly detection algorithms perform well on
real-world data?

4 introduction

One of the most popular methods for anomaly detection, especially
in deep learning, is the autoencoder, which we explain in more detail
in Section 1.3.4.7. The autoencoder is a neural network which can be
used to detect anomalies. An autoencoder learns an encoder, which
finds a lower-dimensional representation of the input data, and an
decoder which aims to reconstruct the input data from this represen-
tation. After training the autoencoder on normal data or a mixture
of normal and anomalous data, we can use the reconstruction loss to
determine whether something is an anomaly or not. A higher recon-
struction loss is in this case assumed to be indicative of an anomaly.
Recent works have however questioned this assumption. We then ask:

2. Is it reasonable to assume that anomalies are harder to
reconstruct than normal data?

Beyond comparative and theoretical research there exists a plethora
of new applications for anomaly detection. One such a novel applica-
tion can be found within the energy domain. Due to the energy transi-
tion it is becoming increasingly important to make strategic decisions
on grid expansion planning based on accurate data. However, mea-
sured load data is often contaminated with switch events and mea-
surement errors. Filtering these is a laborious and time-consuming
manual task, prone to human error. Presented with this problem, we
wondered:

3. Can anomaly detection be used to automate and im-
prove the filtering procedure in power grid load measure-
ments?

1.3 an in-depth look at anomaly detection

We will now consider anomaly detection more in-depth. We will dis-
cuss several common paradigms of applying anomaly detection, as
well as many of the most frequently used anomaly detection meth-
ods. We will assume the reader is familiar with basic concepts of
statistics, data science, and machine learning. Many of the methods
and concepts we describe find uses beyond anomaly detection, but
for the sake of brevity we will not consider these in detail.

1.3.1 Anomaly detection paradigms

The type and quality of available data is one of the major driving
forces in determining which anomaly detection algorithms can be
applied. In general we discern between: supervised anomaly detec-
tion, where labels of both anomalies and normal data are available;
unsupervised anomaly detection, where no labels are available; and
semi-supervised anomaly detection, where labels are available only

1.3 an in-depth look at anomaly detection 5

for normal data. These different paradigms are explained in more
detail in the following sections.

In some cases, labels are available, but of low quality due to what
is called label noise [18]. This refers to the phenomenon where data
has been labelled, but is in many cases labelled incorrectly. When
label noise is prevalent, one has to be more conservative in which
paradigm to apply, meaning unsupervised is often preferred over su-
pervised anomaly detection.

1.3.1.1 Supervised anomaly detection

Supervised anomaly detection, a part of supervised learning, is the
process of learning from data in which each measurement is con-
nected to a target variable, which a learning algorithm will try to
predict. When this target variable is categorical, we generally call the
task “classification", while for continuous target variables we call the
process “regression". Depending on the body of literature, target vari-
ables might also be called “dependent variables", or “outputs" [23].
Within classification, the supervised anomaly detection problem often
suffers from class imbalance, and might be called rare class classifica-
tion [24]. This means that not all classes are equally represented in the
dataset. Multi-class problems in this paradigm are generally distilled
to problems with only two classes: normal and anomalous. Often,
the normal class is represented in most measurements, while anoma-
lies are exceedingly rare [45]. When analyzing this type of data with
classification algorithms, extra care has to be taken to circumvent the
class imbalance problem [36], either through steps like under or over-
sampling, or using algorithms which can natively deal with the data
imbalance. We generally represent the data in supervised anomaly
detection in the form of a matrix and a vector, the matrix contain-
ing the measurement data X = {Xnormal,Xanomalous}, and the vector y

containing the labels, 0 for normal data, and 1 for anomalies.
An important assumption in supervised anomaly detection is that

even though anomalies are rare, they are homogeneous enough to
be modelled, meaning that anomalies share similar characteristics.
When future anomalies might exhibit new characteristics, for exam-
ple when there are new modes of failure, or unprecedented events,
semi-supervised anomaly detection is a better choice of paradigm.

1.3.1.2 Unsupervised anomaly detection

In unsupervised anomaly detection, there are no labels present or
they are of low quality due to label noise. In many cases, labels are
not freely available, for example, due to missing annotations of data,
or because anomaly detection is applied as a more exploratory re-
search step. When labels are absent, or when labels are unreliable
due to label noise, unsupervised anomaly detection is the only op-

6 introduction

tion. Unsupervised anomaly detection is characterized by having no
discernible “train” and “test” steps. Instead, we only consider a sin-
gle dataset X = {Xnormal,Xanomalous}, where we are uncertain which
samples are anomalous and which are not.

In contrast to supervised learning, unsupervised algorithms can-
not discern between variables with and without predictive power for
anomalousness. This means that each variable used as input has to
be carefully selected, and vetted if expert knowledge deems it to be
likely to be noise [57].

1.3.1.3 Semi-Supervised Anomaly Detection

Semi-supervised anomaly detection algorithms learn from labeled
normal data to ideally increase their performance over their unsu-
pervised counterparts. The dataset includes a small labeled subset
of normal data used for training, Xtrain = Xtrain, normal, and a large
unlabeled subset, Xunlabeled containing both anomalies and normal
data which is generally not used for training. The labeled data can be
used to learn a model of the normal data. Generally, semi-supervised
anomaly detection can be seen as a subset of one-class classification,
where the normal data is treated as the modeled class, and anoma-
lies are all samples that do not fit the model [52]. The term novelty
detection is nowadays mostly being used to denote anomaly detec-
tion in general, but historically mostly refers to the semi-supervised
setting [52].

1.3.2 Model Evaluation and Optimization

To gauge the performance of anomaly detection algorithms in prac-
tice, we often have to employ specific strategies to estimate how well
models can detect anomalies in unseen data. Most of these strategies
are dependent on the availability of the labels, and therefore differ
significantly between the different anomaly detection paradigms.

1.3.2.1 Evaluation Metrics

Evaluation metrics are crucial for assessing the performance of ano-
maly detection models. In this section we provide an overview of the
most commonly used evaluation metrics. As nearly all anomaly de-
tection applications handle imbalanced data, meaning normal data is
much more common than anomalous data, we will only discuss those
metrics that are useful on that type of data.

precision and recall Precision and recall are metrics com-
monly used in the context of imbalanced datasets. The precision is
the ratio of true positive predictions to the total positive predictions.

1.3 an in-depth look at anomaly detection 7

High precision indicates that the model makes few false positive er-
rors.

Precision =
True Positives

True Positives + False Positives

Recall, also called Sensitivity or True Positive Rate, is the ratio of
true positive predictions to the total actual positives. High recall indi-
cates that the model captures most of the actual anomalies.

Recall =
True Positives

True Positives + False Negatives

fβ-score The Fβ-score is a generalization of the F1-score that al-
lows different weights to be assigned to precision and recall. It is par-
ticularly useful when the importance of precision and recall differs.
The parameter β determines the weight of recall in the combined
score. When β = 1, the Fβ-score is equivalent to the F1-score, giving
equal weight to precision and recall. When β > 1, recall is weighted
more heavily, and when β < 1, precision is weighted more heavily.

Fβ-Score = (1+β2) · Precision · Recall
β2 · Precision + Recall

area under the receiver operating characteristic curve
The Receiver Operating Characteristic, or ROC, curve is a graphical
representation of the trade-off between the true positive rate, or recall,
and the false positive rate at various threshold settings. The Area Un-
der the Curve, or AUC, provides a single value that summarizes the
performance of the model across all thresholds. An AUC of 1 indi-
cates perfect performance, while an AUC of 0.5 suggests a model
that performs no better than random guessing.

area under the precision-recall curve Similar to the ROC
curve, the Precision-Recall curve plots precision against recall for
different threshold values. This is particularly informative for im-
balanced datasets, as it focuses on the performance of the positive
(anomalous) class. The Area Under the Precision-Recall Curve pro-
vides an aggregate measure of the model’s performance across all
thresholds.

1.3.2.2 Supervised Anomaly detection

In supervised anomaly detection, we often discern between sepa-
rate “train”, “test”, and “validation” steps in which the data is split
into subsets, generally using schemes like holdout or cross-validation.
This allows for tuning the hyperparameters of the method, and for
getting an estimate of the generalization performance of the model.

8 introduction

In supervised anomaly detection the problem is similar to super-
vised classification, with the exception that the problem is almost
always binary; data is either normal, or anomalous. A train set is
used to learn the model parameters so it can subsequently be applied
to new data. The validation set is unseen data, i.e., not used during
training, on which the learned model is applied in order to acquire
a prediction of anomaly scores. When models trained with different
hyperparameters are applied on the validation set, the best hyperpa-
rameters can be selected by choosing those hyperparameters which
yield the highest performance metric on the validation set. To get an
estimate of how well the model with the selected hyperparameters
performs on unseen data, we need an unbiased estimate. We acquire
this by evaluating the model on the test data. In some cases we only
consider a train and a test set, and forgo the validation set. In that
case, we can only optimize the hyperparameters or get an estimate of
the model performance on unseen data, but not both.

Holdout validation is one of the more commonly employed to split
the data into subsets. Holdout validation involves constructing the
subsets by dividing the total collection of data according to certain
predefined sizes of subsets. Typically, the training set is the largest
set, and the test and validation sets are smaller. A simple example is
when we split a dataset of 200 samples so that the training, validation,
and test set each make up 60%, 20%, and 20% of the total data. In this
way, we would end up with a train set of 120 samples, and validation
and test sets of 40 samples each.

Holdout validation is sensitive to fluctuations in the evaluation
measure due to the random splitting of the data. In order to allevi-
ate this issue, cross-validation is often employed. In cross-validation,
we repeatedly perform splits, and average the results over various
splits. In this way we can acquire a more accurate estimate of the
model performance. Typical strategies for cross-validation are k-fold
cross-validation, and leave-p-out cross-validation. We will not con-
sider these strategies in more detail in this treatise.

1.3.2.3 Semi-Supervised Anomaly Detection

Semi-supervised anomaly detection, although it can use similar vali-
dation schemes as supervised methods, faces the challenge of having
labeled normal data but no labeled anomalies. The train set that is
used to learn the model parameters generally contains only normal
data. When one wants to optimize hyperparameters or gauge gener-
alization performance, anomalies are needed in the validation or test
set. In practice, these labels might not always be available, making
actual optimization difficult.

In absence of labels we can use on internal, model-dependent, eval-
uation metrics such as reconstruction error or other types of model fit
during validation. Using proxy measures such as the aforementioned

1.3 an in-depth look at anomaly detection 9

might however not necessarily lead to a better model performance in
terms of the chosen metrics.

1.3.2.4 Unsupervised Anomaly Detection

In unsupervised anomaly detection presents unique challenges tradi-
tional model tuning and validation are exceedingly difficult due to
the absence of labels.

Like the semi-supervised case, we might use model-dependent in-
ternal criteria for evaluation and optimization. Some researchers have
proposed model-independent unsupervised criteria, or "internal eval-
uation strategies," to allow for optimization [19, 39, 41]. These include
metrics such as the silhouette score for clustering algorithms or the
reconstruction loss for autoencoders. However, comparative research
has found that many of these strategies are not practically useful due
to their inability to consistently correlate with actual anomaly detec-
tion performance [37].

Because model selection, optimization, or evaluation is impossible
in those cases where labels are absent, it is important to choose a
generally well-performing method. In supervised classification, large
scale comparison studies have been performed [15]. Large scale com-
parison studies such as the aforementioned can help in picking gener-
ally well-performing algorithms. In unsupervised anomaly detection,
comparative studies have been of much smaller scale, or have been
performed on synthesized, rather than real-world anomalies. To close
the gap we have in this work, in Chapter 2, performed the largest
comparison study of unsupervised anomaly detection algorithms. We
hope to thus provide better guidelines on which algorithms perform
well and should be good “first picks”.

1.3.3 Types of Data

Anomaly detection is applied on a wide variety of data types. Dif-
ferent types of data generally warrant the use of different anomaly
detection methods, though there is a lot of common ground between
them.

1.3.3.1 Tabular

Tabular data is one of the most common and well-studied types of
data. It is generally represented as an m-by-n matrix of m samples
and n variables. Typically this type of data is stored in relational
databases, spreadsheets, or CSV files. Though many other types of
data can be stored or represented in a tabular way, we will only refer
to them as being tabular when each sample is independent, and the
feature ordering is unimportant. Many classical anomaly detection
methods have been developed specifically for this type of data.

10 introduction

1.3.3.2 Images

Images are often the objects of interest in computer vision tasks. Im-
age anomaly detection has surged in popularity due to the recent
interest in computer vision with the advent of deep learning. Tra-
ditional analysis of images was done using dimensionality reduc-
tion techniques such as PCA. Nowadays, this has mostly been sup-
planted by a variety of neural network based anomaly detection mod-
els which can leverage the spatial connection between pixels.

1.3.3.3 Time Series

Time series data consists out of a sequence of data points in time
order. This means that there is some temporal connection between
subsequent samples. When analyzing time series data using anomaly
detection, it is often vital to account for temporal dependencies and
patterns. Taking trends and seasonality into account can enhance ano-
maly detection performance. Many applications also require real-time
processing capabilities, necessitating efficient online algorithms. In
many cases, time series anomaly detection is done by looking at the
residuals of a regression where the next point in time is predicted.
If the residuals are large, i.e., the model’s prediction is inaccurate, a
time point is deemed more likely to be an anomaly.

1.3.3.4 Video

Video data is quite common in anomaly detection applications such
as camera surveillance. It can be viewed as a combination of tradi-
tional image and time series anomaly detection, as it has both a spa-
tial relation between pixels, and a temporal relation between subse-
quent frames. In many applications it is however still common to see
the input data being treated as separate images, treating lengths of
normal video as separate normal images used to train semi-supervised
anomaly detection algorithms [4].

1.3.4 Common Methods

Many methods exist for detecting anomalies, more than can feasibly
be listed or explained thoroughly. We will rather give summary de-
scriptions of a large number of common approaches for the detection
of anomalies. We will do so in a manner that best preserves the com-
monalities between methods. We will focus on classical methods used
for the detection of anomalies in tabular data. Many of the neural net-
works methods popular nowadays build on these principles, as we
will discuss in Section 1.3.4.7. In the rest of this thesis, we will mostly
discuss tabular and computer vision applications, which will build
from the explanations below. In Chapter 4 we consider time-series

1.3 an in-depth look at anomaly detection 11

anomaly detection, which we will handle with tabular methods after
applying extensive preprocessing in order to forgo the time compo-
nent.

We have grouped many methods, but this taxonomy is by no means
conclusive, as categories can just as easily be renamed and reshuffled,
and methods can be interchangeable between categories. By present-
ing our summary in this way, we hope to have this introduction serve
as a simple tutorial to the most commonly applied anomaly detection
methods.

1.3.4.1 Statistical Approaches

In statistics, anomalies are often called outliers. One often wants to
remove outliers to limit their influence on statistical models. Sum-
mary statistics such as the mean and standard deviation are for ex-
ample heavily influenced by the presence of samples which deviate
greatly from other data. Often when outliers are removed, it is either
assumed that they are caused by experimental error, or they belong
to some other distribution that is not of interest.

grubbs’s test A typical statistical method to detect a outliers
is Grubbs’s test [21]. Grubbs’s test detects a single outlier in a one-
dimensional normally distributed dataset x with samples xi ∈ x by
calculating the test statistic G as:

G =
maxi(|xi − x̄|)

s
,

where maxi(|xi − x̄|) is the largest absolute deviation from the mean
x̄, and s is the standard deviation calculated over x. This statistic is
compared to a critical value Gcritical from the reference table based on
the sample size m and significance level α. If G exceeds Gcritical, the
extreme value is deemed an outlier. The test assumes normality of
the input data and is designed to identify only one outlier at a time.
Grubbs’s test does not explicitly assume the presence of outliers in
the dataset.

dixon’s q test Similar to Grubbs’s test, Dixon’s Q test is used
to detect a single outlier in a small dataset which is assumed to be
normally distributed [13]. In contrast to Grubbs’s test, Dixon’s Q test
assumes the presence of an outlier, and aims to overcome the mask-
ing effect, where the outlier affects the statistics used to calculate the
“outlierness”, thereby making it harder to detect the outlier. The test
statistic Q is calculated as:

Q =
gap

range
,

where gap is the absolute difference between the suspected outlier
and its nearest neighbor, and range is the difference between the max-

12 introduction

imum and minimum values in the dataset. The calculated Q is com-
pared to a critical value Qcritical from the reference table, which varies
with sample size n and significance level α. If Q exceeds Qcritical, the
suspected outlier is considered significant.

median absolute deviation (mad) The Median Absolute De-
viation, or MAD, is commonly used to detect outlier [22, 47]. Rather
than Dixon’s and Grubb’s tests, it is more often used to detect mul-
tiple outliers at once. The MAD is a robust statistic used to measure
the dispersion of data around the median. It is commonly used for
outlier detection by determining if a data point significantly deviates
from the median compared to the typical deviation of the dataset. It
is calculated by first finding the median x̃. Next, the absolute devia-
tions from the median are computed as |xi − x̃| for each data point
xi. The MAD is then obtained by taking the median of these absolute
deviations. Mathematically, this is expressed as:

MAD = median(|xi − x̃|).

A data point xi is often considered an outlier if its absolute deviation
from the median is greater than a certain multiple of the MAD, such
as 2.5 or 3. This method is robust to the presence of outliers and
therefore more often used when a dataset is suspected to contain
multiple outliers.

mahalanobis distance When considering more than one vari-
able, the Mahalanobis distance can be used to detect outliers. The Ma-
halanobis distance is a multivariate measure of the distance between
a point and a distribution, accounting for the correlations between
variables [38]. It is calculated as:

dMahalanobis(x) =
√
(x− x̄)TΣ−1(x− x̄),

where Σ−1 is the inverse of the covariance matrix of the dataset X.
The Mahalanobis distance quantifies how many standard deviations
away a data point is from the mean of the distribution, taking into
account the shape of the distribution.

In outlier detection, the Mahalanobis distance is used to identify
points that are significantly different from the expected distribution.
A data point is considered an outlier if its Mahalanobis distance is
greater than a critical value derived from the Chi-squared distribu-
tion, given a chosen significance level and the number of dimensions
n. This approach can be used for identifying outliers in multivariate
datasets.

gaussian mixture model When the data is assumed to be both
multivariate and multimodal, Gaussian Mixture Models, or GMMs

1.3 an in-depth look at anomaly detection 13

are often used. A GMM is a probabilistic model that assumes all the
data points are generated from a mixture of k Gaussian distributions
with unknown parameters. Each Gaussian in the mixture is defined
by its mean vector µk and covariance matrix Σk. The probability den-
sity function of the GMM is given by:

p(x) =

K∑
k=1

πkN(x|µk,Σk),

where K is the number of Gaussian components, πk are the mixture
weights, such that

∑K
k=1 πk = 1, and N(x|µk,Σk) represents the Gaus-

sian distribution with mean µk and covariance Σk.
GMMs can be used for outlier detection by determining the likeli-

hood of each data point under the fitted model. Data points with very
low likelihoods are then considered outliers. This is done by calculat-
ing the log-likelihood of each point and identifying those that fall be-
low a certain threshold, which is often determined based on a chosen
significance level. GMMs are particularly useful in handling complex
data distributions and can effectively model multimodal data where
traditional methods may fail. As GMMs use underlying Gaussian dis-
tributions, they are not robust to the presence of outliers.

1.3.4.2 Density-based methods

In many cases, traditional statistical methods do not perform well or
are hard to use. This can be caused by unfulfilled assumptions, or
due to computational cost when too many parameters need to be es-
timated. Some of the most common methods used for anomaly detec-
tion originate from data mining and machine learning, where fewer
parametric assumptions are made. Many of these models implicitly,
rather than explicitly, model density, and detect anomalies when they
occupy spaces of low density.

k-nearest neighbors (knn) kNN is one of the more straight-
forward methods of implicit density estimation used for anomaly de-
tection [44]. The principle behind kNN is to measure the distance
of each data point to its k-nearest neighbors and use this distance
to determine if the point is an anomaly. For each data point xi, the
distances to all other points in the dataset are calculated. Then, the
k-nearest neighbors of each data point are identified. The anomaly
score for each point is then some aggregation over the distances to its
kth nearest neighbors, such as the maximum or the average distance.

Mathematically, the anomaly score for a data point xi can be repre-
sented as:

score(xi) = fkj (d(xi, xij)),

14 introduction

where d(xi, xij) is some chosen distance between xi and its jth nearest
neighbor xij , and fkj is some aggregation function iterating over the
j = 1, . . . ,k nearest neighbors of sample xi.

In kNN based anomaly detection, data points with the highest ano-
maly scores are considered anomalies. This method is quite versatile
and can be used with various distance metrics, such as Euclidean dis-
tance. It is particularly effective for detecting anomalies in datasets
with no prior assumption about the data distribution.

local outlier factor (lof) The Local Outlier Factor, or LOF,
is a popular method used for anomaly detection [10]. It measures the
local distance of a data point with respect to its neighbors. The LOF
score is based on the concept of local density, where the density is
estimated by the distance to the point’s k-nearest neighbors and the
distance of those neighbors to their k-nearest neighbors.

For the sake of notation we will forgo the passing of the entire
dataset X to all functions where k is a parameter. Let us now define
the reachability distance between two data points:

rk(xi, xj) = max(dk(xj),d(xi, xj)),

where d(xi, xj) indicates some distance metric, and dk(xj) indicates
the distance, according to some distance metric, to the k-th nearest
neighbor of xj.

From this, the local reachability density is calculated:

LRDk(xi) =

(∑
xj∈Nk(xi)

rk(xi, xj)

|Nk(xi)|

)−1

,

where Nk(xi) is the set data points within dk(xi), which may be
higher than k in case of ties, |Nk(xi)| then indicates the cardinality
of the set, or the number of data points within dk(xi). The LOF score
is then computed by comparing the local reachability density of the
point to the local reachability densities of its neighbors. Mathemati-
cally, the LOF score for a data point xi can be expressed as:

LOF(xi) =

∑
xj∈Nk(xi)

LRDk(xj)

|Nk(xi)| · LRDk(xi)
.

A data point is considered an outlier if its LOF score is sufficiently
greater than 1, indicating that it has a substantially lower density
than its neighbors. LOF is particularly useful for detecting anoma-
lies in multimodal datasets where the density of data clusters varies
significantly across the data space.

1.3.4.3 One-Class Support Vector Machine (OC-SVM)

One-Class Support Vector Machines, or OC-SVMs, are used for ano-
maly detection by finding the decision boundary that best separates

1.3 an in-depth look at anomaly detection 15

the normal data points from the rest of the feature space [52]. The
algorithm constructs a hyperplane in a high-dimensional space such
that the majority of the data points lie on one side of the hyperplane,
while suspected anomalies lie on the opposite side.

The OC-SVM builds heavily on the traditional support vector ma-
chine used in classification. We will not explain support vector ma-
chines from the ground up, but rather focus on the extensions needed
for anomaly detection. The interested reader is refered to the seminal
work of Schölkopf and Smola [51]. Mathematically, OC-SVM solves
the following optimization problem:

min
w,ρ,ξi

(
1

2
∥w∥2 + 1

νm

m∑
i=1

ξi − ρ

)
,

subject to

(w ·ϕ(xi)) ⩾ ρ− ξi, ξi ⩾ 0, ∀i = 1, . . . ,m,

where w is the normal vector to the hyperplane, ϕ(xi) is the map-
ping of the data point xi to a higher-dimensional space, ξi are slack
variables, ρ is the offset, and ν is a parameter between 0 and 1 that
controls the trade-off between maximizing the margin and minimiz-
ing the number of misclassifications.

A data point xi is considered an anomaly if it lies on the side of the
hyperplane where the majority of the data does not reside. OC-SVMs
are very flexible with respect to the possible multidimensional and
multimodal distributions that can be modelled, but they are highly
sensitive to the hyperparameter ν and the choice of kernel.

1.3.4.4 Support Vector Data Description

Support Vector Data Description, or SVDD, is a support vector based
method developed concurrently with OC-SVM. It can similarly be
used for anomaly detection. Rather than finding a separating hyper-
plane, it finds the smallest hypersphere in a high-dimensional space
that encloses the majority of the data points [56]. The objective is to
minimize the volume of the hypersphere while allowing some flexi-
bility for anomalies.

Mathematically, SVDD solves the following optimization problem:

min
R,a,ξi

(
R2 +

C

m

m∑
i=1

ξi

)
,

subject to

∥ϕ(xi) − a∥2 ⩽ R2 + ξi, ξi ⩾ 0 ∀i = 1, . . . ,m,

where R is the radius of the hypersphere, a is the center of the hy-
persphere, ϕ(xi) is the mapping of the data point xi to a higher-
dimensional space, ξi are slack variables, and C is a regularization

16 introduction

parameter that controls the trade-off between the volume of the hy-
persphere and the allowance for outliers.

A data point xi is considered an anomaly if its distance from the
center of the hypersphere exceeds the radius R.

The one-class support vector machine is equivalent to SVDD when
the training data is of unit norm [56].

SVDD can be extended to learn from anomalies as well, which can
be useful if labels are available in the semi-supervised, supervised, or
active learning settings. In this case, the optimization is extended to
include anomalies as well:

min
R,a,ξi


R2 +

C

m

m∑
i=1

ξi +
C

m ′

m ′∑
i ′=1

ξi ′


 ,

subject to

∥ϕ(xi) − a∥2 ⩽ R2 + ξi, ξi ⩾ 0 ∀i = 1, . . . ,m, and

∥ϕ(xi ′) − a∥2 ⩾ R2 + ξi ′ , ξi ′ ⩾ 0 ∀i ′ = 1, . . . ,m ′,

where we now use index i ∈ 1, . . . ,m to denote the normal samples,
and index i ′ ∈ 1, . . . ,m ′ to denote the anomalies.

1.3.4.5 PCA

PCA can be used to detect anomalies by reducing the dimensionality,
and reconstructing the data from a lower-dimensional representation.
We factorize a mean-centered matrix X as X = UΣVT using singular
value decomposition (SVD), where U and V are orthonormal matri-
ces containing the left- and right-singular vectors of X, respectively,
and Σ is a diagonal scaling matrix. We can then project the data ma-
trix X onto the first d principal components by multiplying: Y = XVd.
By then transforming the data back we get a reconstruction of the
original data: X̂ = YVT

d . We can then calculate the reconstruction
loss for each sample by calculating the mean squared error, or MSE:
MSE(xi, x̂i) = 1

n

∑n
j=1

�
xi,j − x̂i,j

2 The assumption of using the re-
construction loss for anomaly detection is that anomalies are harder
to reconstruct than normal data, and will thus have a higher MSE.
However, PCA is sensitive to the presence of anomalies, as the eigen-
vectors will be heavily influenced by them.

In Chapter 3 we further study reconstruction-based methods such
as PCA and autoencoders. There we specifically question the assump-
tion that anomalies are harder to reconstruct than normal data.

1.3 an in-depth look at anomaly detection 17

1.3.4.6 Isolation Forest

Isolation Forest is an ensemble anomaly detection method that iso-
lates data points by recursively partitioning the data space using ran-
dom splits [34, 35]. The key idea is that anomalies are rare and dif-
fer from most data, thus they are easier to isolate. Isolation Forest
creates an ensemble of isolation trees. Each tree is trained on a sub-
sample of the data, and on a subset of variables. A tree is trained
by randomly selecting a variable from the subset and then randomly
selecting a split value between the minimum and maximum values
of the selected feature. The samples are then divided across the two
child nodes based on whether the sample is below or above the split
value. This process is repeated until either the maximum tree depth
is reached, or a node contains only a single sample.

The anomaly score for a data point is based on the path length
from the root of the tree to the node where the sample ends. Since
anomalies are easier to isolate, they tend to have shorter path lengths.
The average path length over all trees in the forest is used to compute
the anomaly score.

The anomaly score for a data point xi is then given by:

IsolationScore(xi) = E(h(xi)),

where E(h(xi)) is the average path length of xi across all the trees in
the forest.

In this case, the lower the anomaly score, the more likely a sample
is an anomaly, as it is more easily isolated from other data.

Different weighting schemes exist for this score which makes it
possible to compare scores across models with different hyperparam-
eters [34, 35].

Isolation Forests have a lower computational complexity and are
therefore easy to apply in practice. They also deal well with clustered
anomalies.

1.3.4.7 Deep Learning

Since the advent of deep learning, many researchers have started ap-
plying these principles in anomaly detection, with varying degrees of
success. Most of the proposed methods rely on the underlying con-
cepts and methods we presented in this section. They adapt these
methods by making use of the capability of neural networks to per-
form feature extraction and effectively capture spatial or temporal
information. As there are a plethora of methods used, we will give
a bird’s eye view of some of the more popular methods. While we
will not go into explicit detail about the architectures, it should be
noted that these methods can easily be adapted to be applicable on

18 introduction

tabular, image, time series, or video data. These methods are gener-
ally most popular within the computer vision domain when making
use of convolutional layers.

autoencoders Autoencoders are very similar to PCA when used
for anomaly detection [5, 28], as they both rely on dimensionality re-
duction and reconstruction. They are one of the most popular meth-
ods for deep learning anomaly detection, with many available vari-
ations for different use cases across tabular, image, time-series, and
video data [11, 49, 50, 60]. Autoencoders learn to find a lower-dimen-
sional encoding Y , e.g. d < n, in the encoding space Y = Rd by
applying the function g : X → Y. they then decode Y by transforming
it back into the space X through the decoder h : Y → X, yielding
the reconstructed data X̂. Summarizing, they learn the concrete trans-

formations X
g−→ Y

h−→ X̂ whilst minimizing the reconstruction loss:
LR(benc,bdec;X, X̂) = 1

mn

∑m
i=1 |x

T
i − x̂Ti |

2, where m and n indicate
the number of samples and features respectively. When using linear
activation functions, this will find a solution in the same space as
PCA. When using non-linear activation functions, it can be seen as a
non-orthogonal, non-linear generalization of PCA. Anomalies are de-
tected in much the same way, by looking at the sample MSE, where
a higher MSE is assumed to be indicative of an anomaly. In recent
years, some researchers have questioned whether the assumption that
a higher MSE is indicative of an anomaly is valid. Some methods
have been proposed to fix reported issues, but no works have gone
into detail to show how and when autoencoders might fail to detect
anomalies. We have endeavored to further elucidate this purported
unreliability of autoencoders so as to provide a scaffold for fixing
observed issues. This in-depth study is presented in Chapter 3.

variational autoencoders Variational autoencoders are an
extension of the autoencoder and add a term to the reconstruction
loss, the Kullback-Leibler divergence [31] in order to regularize the
distribution of the latent variables to be close to achosen prior distri-
bution. Similar to autoencoders the VAE consists of an encoder that
maps the input data X to a distribution over the latent variables Y ,
and a decoder that maps Y back to the data space.

The VAE optimizes on the Evidence Lower Bound, or ELBO, com-
posed of two terms: the reconstruction loss and the Kullback-Leibler
divergence. The ELBO is expressed as:

LELBO = Eq(Y |X)[logp(X|Z)] − KL(q(Y |X) ∥ p(Y)),

where q(Y |X) is the approximate posterior, p(X|Y) is the likelihood,
and p(Y) is the prior over the latent variables. The first term repre-
sents the reconstruction loss, ensuring that the data can be accurately
reconstructed from the latent variables. The second term is the KL

1.3 an in-depth look at anomaly detection 19

divergence, which regularizes the distribution of the latent variables
to be close to the prior distribution.

In anomaly detection using VAEs, data points that have a high re-
construction error or a low likelihood under the model are considered
anomalies. Sometimes, only the reconstruction error or the likelihood,
but not both, is used [3].

deep support vector data description (deepsvdd) Deep
Support Vector Data Description, or DeepSVDD, extends the tradi-
tional SVDD approach of anomaly detection by using deep learn-
ing to learn a lower-dimensional representation [48]. The core idea
is to map the data into a lower-dimensional space, much like an
autoencoder, using a deep neural network, and then find a mini-
mum volume hypersphere that encloses the majority of the mapped
data points in this feature space. Two variations exist: soft-boundary
DeepSVDD, which is suited for unsupervised anomaly detection, and
one-class DeepSVDD, which is suited for semi-supervised anomaly
detection.

For soft-boundary DeepSVDD we optimize on the following objec-
tive function:

min
R,Θ

(
R2 +

1

νn

n∑
i=1

max(0, ∥ϕΘ(xi) − c∥2 − R2) +
λ

2

L∑
l=1

∥Wl∥2F

)
,

where R is the radius of the hypersphere, c is the center of the hy-
persphere in the lower-dimensional representation, ϕΘ(xi) is the fea-
ture representation of the data point xi learned by the neural network
with parameters Θ, n is the number of data points, ν is a hyperpa-
rameter that controls the trade-off between the volume of the hyper-
sphere and the penalty for points outside the hypersphere, ∥Wl∥2F is
the Frobenius norm of the weights of the l-th layer of the network,
and λ is the weighting term of the weight decay regularization in the
last term.

For the one-class DeepSVDD, the objective function is simplified
to:

min
Θ

1

n

n∑
i=1

∥ϕΘ(xi) − c∥2 + λ

2

L∑
l=1

∥Wl∥2F.

The one-class DeepSVDD employs a quadratic loss for penalizing
the distance of every network representation ϕΘ(xi) to the center c,
along with a weight decay regularizer with hyperparameter λ. This
approach assumes that most of the training data is normal and fo-
cuses on minimizing the mean distance of all data representations to
the center.

20 introduction

In either variation a data point is considered to be more anoma-
lous the further it is away from the center of the hypersphere i.e.,
si = ∥ϕΘ(xi) − c∥2. In soft-boundary DeepSVDD we can also calcu-
late the score as si = ∥ϕΘ(xi) − c∥2 − R2. This means that if the dis-
tance of the point to the center exceeds the radius, the score is above
0, and subsequently considered anomalous. DeepSVDD does not suf-
fer from the reconstruction issues that trouble autoencoders that we
describe in Chapter 3. However, training and using DeepSVDD mod-
els is still hard. To prevent hypersphere collapse, DeepSVDD uses no
biases, which makes training slow, and can cause the model to fail to
converge.

1.4 contributions

In this work we have identified several gaps in the current state of
anomaly detection. We have made several contributions aiming to
alleviate these issues. Furthermore, we have applied anomaly detec-
tion to a practical use case related to the operation of the Dutch power
grid.

1.4.1 Unsupervised Anomaly Detection Algorithms on Real-world Data:
How Many Do We Need?

Researchers, engineers applied scientists, and other users need guide-
lines on which anomaly detection algorithms work well in practice.
We specifically want to answer the research question:

1. Which anomaly detection algorithms perform well on
real-world data?

In Chapter 2 we present the largest unsupervised anomaly detection
benchmark study to date to answer this question. By performing a
benchmark study without proposing new or self-developed meth-
ods, we can compare anomaly detection algorithms in an unbiased
manner. By comparing 33 algorithms across 52 real-world tabular da-
tasets, we find a subset of algorithms that perform well across the
board. Specifically kNN and the Extended Isolation Forest signifi-
cantly outperform the highest number of other methods on data with
“local” and “global” anomalies respectively and are therefore good
“first picks” when starting with anomaly detection. While studying
the properties of anomalies we have found that there is no clear con-
sensus on what properties anomalies can have. We further contribute
to the understanding of anomaly detection by proposing a new tax-
onomy of anomaly types, aiming to move away from a binary catego-
rization to distinct properties on gradual scales.

Chapter 2 has been published in the Journal of Machine Learning Re-
search [7].

1.4 contributions 21

1.4.2 Autoencoders for Anomaly Detection are Unreliable

In Chapter 3 we study one of the most popular deep learning meth-
ods in anomaly detection: autoencoders. As we have noted in Sec-
tion 1.3.4.7 this type of neural network is commonly applied under
the assumption that "Anomalies are harder to reconstruct than nor-
mal data". Our second research question is then:

2. Is it reasonable to assume that anomalies are harder to
reconstruct than normal data?

In this chapter we show that this assumption does not hold in prac-
tice for many trained autoencoders. In fact, anomalies can often be
nearly perfectly be reconstructed by an autoencoder, even when it
has seen no anomalies during the training phase. When this happens
anomalies can in the worst case look to be less anomalous than all
analyzed normal data. By studying this problem in detail, we hope
to dissuade researchers from using autoencoders in safety critical ap-
plications, and to provide a scaffold for future research into perhaps
solving this limitation.

Chapter 3 can be found as a preprint on ArXiv [8].

1.4.3 Acquiring Better Load Estimates by Combining Anomaly and Change
Point Detection in Power Grid Time Series Measurements

In Section 1.1.2 we have discussed several applications of anomaly
detection within the energy domain. In Chapter 4 we present a novel
practical use case of anomaly detection to power grid time-series mea-
surements. In this use case we want to improve the detection of mea-
surement errors and switch events and automate it. Accomplishing
this could allow for better load estimates, which are needed for plan-
ning power grid expansions. This use case motivates the third and
final research question:

3. Can anomaly detection be used to automate and im-
prove the filtering procedure in power grid load measure-
ments?

By performing extensive baseline corrections on time series, we are
able to apply tried-and-true methods such as binary segmentation
and statistical process control in order to automatically filter anoma-
lies and switch events, which are long baseline changes due to power
rerouting, from the data. By performing this filtering, Dutch distri-
bution system operator Alliander can acquire better estimates of the
actual load of hundreds of routes across the Netherlands. We perform
extensive hyperparameter tuning and validation to get an estimate of
how well the best model performs in practice on new data. By combin-
ing relatively simple and interpretable models, the results generated

22 introduction

by the novel methodology can be interpreted by domain experts and
explained to stakeholders.

Chapter 4 has been published at Sustainable Energy Grids And Net-
works [9].

references

[1] M. Ahmed, N. Choudhury, and S. Uddin. “Anomaly detec-
tion on big data in financial markets.” In: Proceedings of the
2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2017. 2017, pp. 998–1001.

[2] M. Ahmed, A. N. Mahmood, and M. R. Islam. “A survey of
anomaly detection techniques in financial domain.” In: Future
Generation Computer Systems 55 (2016),
278–288.

[3] J. An and S. Cho. “Variational autoencoder based anomaly de-
tection using reconstruction probability.” In: Special Lecture on
IE 2.1 (2015), pp. 1–18.

[4] M. Astrid, M. Z. Zaheer, J.-Y. Lee, and S.-I. Lee. “Learning not
to reconstruct anomalies.” In: arXiv preprint arXiv:2110.09742
(2021).

[5] P. Baldi and K. Hornik. “Neural networks and principal compo-
nent analysis: Learning from examples without local minima.”
In: Neural Networks 2.1 (1989), pp. 53–58.

[6] S. Ball. “Harnessing unlabelled data for automatic aerial poacher
detection: Reducing annotation costs through unsupervised and
self-supervised learning.” MA thesis. University of the Witwa-
tersrand, Johannesburg, 2023.

[7] R. Bouman, Z. Bukhsh, and T. Heskes. “Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We
Need?” In: Journal of Machine Learning Research 25.105 (2024),
pp. 1–34. url: http://jmlr.org/papers/v25/23-0570.html.

[8] R. Bouman and T. Heskes. Autoencoders for Anomaly Detection
are Unreliable. 2025. arXiv: 2501 . 13864 [cs.LG]. url: https :

//arxiv.org/abs/2501.13864.

[9] R. Bouman, L. Schmeitz, L. Buise, J. Heres, Y. Shapovalova, and
T. Heskes. “Acquiring better load estimates by combining ano-
maly and change point detection in power grid time-series mea-
surements.” In: Sustainable Energy, Grids and Networks 40 (2024),
p. 101540. issn: 2352-4677. doi: https://doi.org/10.1016/j.
segan.2024.101540. url: https://www.sciencedirect.com/
science/article/pii/S2352467724002698.

1.4 references 23

[10] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF:
identifying density-based local outliers.” In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of
Data. 2000, pp. 93–104.

[11] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y.-H. Wang.
“Anomaly detection of defects on concrete structures with the
convolutional autoencoder.” In: Advanced Engineering Informat-
ics 45 (2020), p. 101105.

[12] M. Das and S. Parthasarathy. “Anomaly detection and spatio-
temporal analysis of global climate system.” In: Proceedings of
the Third International Workshop on Knowledge Discovery From Sen-
sor Data. 2009, pp. 142–150.

[13] R. B. Dean and W. J. Dixon. “Simplified statistics for small
numbers of observations.” In: Analytical Chemistry 23.4 (1951),
pp. 636–638.

[14] D. Divya, B. Marath, and M. Santosh Kumar. “Review of fault
detection techniques for predictive maintenance.” In: Journal of
Quality in Maintenance Engineering 29.2 (2023), pp. 420–441.

[15] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim.
“Do we need hundreds of classifiers to solve real world classi-
fication problems?” In: The Journal of Machine Learning Research
15.1 (2014), pp. 3133–3181.

[16] T. Fernando, H. Gammulle, S. Denman, S.-h. Sridharan, and
C. Fookes. “Deep learning for medical anomaly detection–A
survey.” In: ACM Computing Surveys (CSUR) 54.7 (2021), pp. 1–
37.

[17] R. Folcarelli, S. Van Staveren, R. Bouman, B. Hilvering, G. H.
Tinnevelt, G. Postma, O. F. Van Den Brink, L. M. Buydens, N.
Vrisekoop, L. Koenderman, et al. “Automated flow cytomet-
ric identification of disease-specific cells by the ECLIPSE algo-
rithm.” In: Scientific Reports 8.1 (2018), p. 10907.

[18] B. Frénay and M. Verleysen. “Classification in the presence of
label noise: A survey.” In: IEEE Transactions on Neural Networks
and Learning Systems 25 (2013), pp. 845–869.

[19] N. Goix. “How to evaluate the quality of unsupervised anomaly
detection algorithms?” In: arXiv preprint
arXiv:1607.01152 (2016).

[20] K. Golmohammadi and O. R. Zaiane. “Time series contextual
anomaly detection for detecting market manipulation in stock
market.” In: 2015 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE. 2015, pp. 1–10.

[21] F. E. Grubbs. Sample criteria for testing outlying observations. Uni-
versity of Michigan, 1949.

24 introduction

[22] F. R. Hampel. “The influence curve and its role in robust esti-
mation.” In: Journal of the American Statistical Association 69.346
(1974), pp. 383–393.

[23] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning: Data mining, inference, and prediction. Vol. 2.
Springer, 2009.

[24] H. He and A. Ghodsi. “Rare class classification by support vec-
tor machine.” In: 2010 20th International Conference on Pattern
Recognition. IEEE. 2010, pp. 548–551.

[25] M. He and H. Chen. “Anomaly Detection in Species Distri-
bution Patterns: A Spatio-Temporal Approach for Biodiversity
Conservation.” In: Journal of Biobased Materials and Bioenergy 18.1
(2024), pp. 39–50.

[26] W. Hilal, S. A. Gadsden, and J. Yawney. “Financial fraud: a
review of anomaly detection techniques and recent advances.”
In: Expert Systems With Applications 193 (2022), p. 116429.

[27] D. J. Hill, B. S. Minsker, and E. Amir. “Real-time Bayesian ano-
maly detection for environmental sensor data.” In: Proceedings
of the Congress-International Association for Hydraulic Research. 2007.

[28] N. Japkowicz, C. Myers, M. Gluck, et al. “A novelty detection
approach to classification.” In: International Joint Conference on
Artificial Intelligence. Vol. 1. Citeseer. 1995, pp. 518–523.

[29] P. Kamat and R. Sugandhi. “Anomaly detection for predictive
maintenance in industry 4.0-A survey.” In: E3S Web of Confer-
ences. Vol. 170. EDP Sciences. 2020, p. 02007.

[30] P. Kanhere and H. Khanuja. “A methodology for outlier de-
tection in audit logs for financial transactions.” In: 2015 Inter-
national Conference on Computing Communication Control and Au-
tomation. IEEE. 2015, pp. 837–840.

[31] D. P. Kingma and M. Welling. “Auto-encoding variational Bayes.”
In: arXiv preprint arXiv:1312.6114 (2013).

[32] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. “A
comparative study of anomaly detection schemes in network in-
trusion detection.” In: Proceedings of the 2003 SIAM International
Conference on Data Mining. SIAM. 2003, pp. 25–36.

[33] D.-Y. Liao, C.-Y. Chen, W.-P. Tsai, H.-T. Chen, Y.-T. Wu, and
S.-C. Chang. “Anomaly detection for semiconductor tools using
stacked autoencoder learning.” In: 2018 International Symposium
on Semiconductor Manufacturing (ISSM). IEEE. 2018, pp. 1–4.

[34] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation forest.” In: 2008
eighth IEEE International Conference on Data Mining. IEEE. 2008,
pp. 413–422.

1.4 references 25

[35] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation-based ano-
maly detection.” In: ACM Transactions on Knowledge Discovery
from Data (TKDD) 6.1 (2012), pp. 1–39.

[36] R. Longadge and S. Dongre. Class Imbalance Problem in Data Min-
ing Review. 2013. eprint: arXiv:1305.1707.

[37] M. Q. Ma, Y. Zhao, X. Zhang, and L. Akoglu. “The need for
unsupervised outlier model selection: A review and evaluation
of internal evaluation strategies.” In: ACM
SIGKDD Explorations Newsletter 25.1 (2023), pp. 19–35.

[38] P. C. Mahalanobis. “On the generalised distance in statistics.”
In: Proceedings of the National Institute of Science of India. Vol. 12.
1936, pp. 49–55.

[39] H. O. Marques, R. J. Campello, J. Sander, and A. Zimek. “In-
ternal evaluation of unsupervised outlier detection.” In: ACM
Transactions on Knowledge Discovery from Data (TKDD) 14.4 (2020),
pp. 1–42.

[40] R. Moghaddass and J. Wang. “A hierarchical framework for
smart grid anomaly detection using large-scale smart meter
data.” In: IEEE Transactions on Smart Grid 9.6 (2017),
5820–5830.

[41] T. T. Nguyen, U. Q. Nguyen, et al. “An evaluation method
for unsupervised anomaly detection algorithms.” In: Journal of
Computer Science and Cybernetics 32.3 (2016), pp. 259–272.

[42] J. Oakland and J. S. Oakland. Statistical process control. Rout-
ledge, 2007.

[43] S. H. Oh and W. S. Lee. “An anomaly intrusion detection method
by clustering normal user behavior.” In: Computers & Security
22.7 (2003), pp. 596–612.

[44] S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient algorithms
for mining outliers from large data sets.” In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of
Data. 2000, pp. 427–438.

[45] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng. “A survey of
predictive maintenance: Systems, purposes and approaches.”
In: arXiv preprint arXiv:1912.07383 (2019).

[46] B. Rossi, S. Chren, B. Buhnova, and T. Pitner. “Anomaly detec-
tion in smart grid data: An experience report.” In: 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC).
IEEE. 2016, pp. 002313–002318.

[47] P. J. Rousseeuw and C. Croux. “Alternatives to the median abso-
lute deviation.” In: Journal of the American Statistical Association
88.424 (1993), pp. 1273–1283.

26 introduction

[48] L. Ruff, R. A. Vandermeulen, N. Görnitz, L.
Deecke, S. A. Siddiqui, A. Binder, E.
Müller, and M. Kloft. “Deep One-Class
Classification.” In: Proceedings of the 35th International Conference
on Machine Learning. Vol. 80. 2018, pp. 4393–4402.

[49] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut. “Net-
work anomaly detection using
LSTM based autoencoder.” In: Proceedings of the 16th ACM Sym-
posium on QoS and Security for Wireless and Mobile Networks. 2020,
pp. 37–45.

[50] M. Sakurada and T. Yairi. “Anomaly detection using autoen-
coders with nonlinear dimensionality reduction.” In: Proceed-
ings of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis. 2014, pp. 4–11.

[51] B. Schölkopf and A. J. Smola. Learning with kernels: Support vec-
tor machines, regularization, optimization, and beyond. MIT press,
2002.

[52] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and
J. Platt. “Support vector method for novelty detection.” In: Ad-
vances in Neural Information Processing Systems 12 (1999).

[53] L. Scime and J. Beuth. “Anomaly detection and classification
in a laser powder bed additive manufacturing process using a
trained computer vision algorithm.” In: Additive Manufacturing
19 (2018), pp. 114–126.

[54] R. Stribos, R. Bouman, L. Jimenez, M. Slot, and M. Stoelinga. “A
comparison of anomaly detection algorithms with applications
on recoater streaking in an additive manufacturing process.” In:
Rapid Prototyping Journal (2024).

[55] G. A. Susto, M. Terzi, and A. Beghi. “Anomaly detection ap-
proaches for semiconductor manufacturing.” In: Procedia Manu-
facturing 11 (2017), pp. 2018–2024.

[56] D. M. Tax and R. P. Duin. “Support vector data description.” In:
Machine Learning 54 (2004), pp. 45–66.

[57] H. Y. Teh, I. Kevin, K. Wang, and A. W. Kempa-Liehr. “Expect
the unexpected: Unsupervised feature selection for automated
sensor anomaly detection.” In: IEEE Sensors Journal 21.16 (2021),
pp. 18033–18046.

[58] W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner.
“Bayesian network anomaly pattern detection for disease out-
breaks.” In: Proceedings of the 20th International Conference on Ma-
chine Learning (ICML-03). 2003, pp. 808–815.

1.4 references 27

[59] S.-C. Yip, W.-N. Tan, C. Tan, M.-T. Gan, and K. Wong. “An ano-
maly detection framework for identifying energy theft and de-
fective meters in smart grids.” In: International Journal of Electri-
cal Power & Energy Systems 101 (2018), pp. 189–203.

[60] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S. Hua. “Spatio-
temporal autoencoder for video anomaly detection.” In: Proceed-
ings of the 25th ACM International Conference on Multimedia. 2017,
pp. 1933–1941.

2
UNSUPERV I SED ANOMALY DETECT ION
ALGOR ITHMS ON REAL -WORLD DATA : HOW
MANY DO WE NEED?

In this chapter we evaluate 33 unsupervised anomaly detection algorithms
on 52 real-world multivariate tabular data sets, performing the largest com-
parison of unsupervised anomaly detection algorithms to date. On this collec-
tion of data sets, the EIF (Extended Isolation Forest) algorithm significantly
outperforms the most other algorithms. Visualizing and then clustering the
relative performance of the considered algorithms on all data sets, we identify
two clear clusters: one with “local” data sets, and another with “global” data
sets. “Local” anomalies occupy a region with low density when compared to
nearby samples, while “global” occupy an overall low density region in the
feature space. On the local data sets the kNN (k-nearest neighbor) algorithm
comes out on top. On the global data sets, the EIF (extended isolation forest)
algorithm performs the best. Also taking into consideration the algorithms’
computational complexity, a toolbox with these two unsupervised anomaly
detection algorithms suffices for finding anomalies in this representative col-
lection of multivariate data sets. By providing access to code and data sets,
the research in this chapter can be easily reproduced and extended with more
algorithms and/or data sets.

2.1 introduction

Anomaly detection is the study of finding data points that do not fit
the expected structure of the data. Anomalies can be caused by unex-
pected processes generating the data. In chemistry an anomaly might
be caused by an incorrectly performed experiment, in medicine a cer-
tain disease might induce rare symptoms, and in predictive mainte-
nance an anomaly can be indicative of early system failure. Depend-
ing on the application domain, anomalies have different properties,
and may also be called by different names. Within the domain of ma-
chine learning (and hence also in this chapter), anomaly detection is
often used interchangeably with outlier detection.

Unsupervised, data-driven, detection of anomalies is a standard
technique in machine learning. Throughout the years, many meth-
ods, or algorithms, have been developed in order to detect anomalies.
Some of these algorithms aim to solve specific issues, such as high
dimensionality. Other methods try to detect anomalies in the general
sense, and focus on high performance or low computational or mem-
ory complexity. Due to the many algorithms available, it is hard to
determine which algorithm is best suited for a particular use case,

29

30 comparing unsupervised anomaly detection algorithms

especially for a user who is not intimately familiar with the field of
anomaly detection. More details on the specific algorithms evaluated
in this study can be found in section 2.3.1.

Several studies have been performed to provide guidelines on when
to apply which algorithm. Some review studies [37, 44], give advice
based on the theoretical properties of the algorithms. In recent years
several studies have been conducted that empirically compare a num-
ber of anomaly detection algorithms on a range of data sets.

Emmott et al. [14] study 8 well-known algorithms on 19 data sets.
They find Isolation Forest to perform the best overall, but recommend
using ABOD (Angle-Based anomaly Detection) or LOF (Local Outlier
Factor) when there are multiple clusters present in the data.

Campos et al. [10] compare 12 k-nearest neighbours based algo-
rithms, on 11 base data sets. They find LOF to significantly outper-
form a number of other methods, while KDEOS (Kernel Density Esti-
mation anomaly Score) performs significantly worse than most algo-
rithms.

Goldstein and Uchida [19] compare 19 algorithms on 10 data sets.
Unlike Campos et al., Goldstein and Uchida perform no explicit op-
timization or selection, but rather evaluate the average performance
over a range of sensible hyperparameter settings. With methods based
on k-nearest neighbours generally giving stable results, Goldstein
and Uchida recommend kNN (k-nearest neighbours) for global ano-
malies, LOF for local anomalies, and HBOS (Histogram-Based ano-
maly Selection) in general (see section 2.2.2 for an explanation of
global and local anomalies). Goldstein and Uchida compare on a data
set basis, without any overall statistical analysis.

More recently, Domingues et al. [12], apply 14 algorithms on 15
data sets, some of which are categorical. They find IF (Isolation Forest)
and robust KDE (Kernel Density Estimation) to perform best, but note
that robust KDE is often too expensive too calculate for larger data
sets.

Steinbuss and Böhm [52] propose a novel strategy for synthesiz-
ing anomalies in real-world data sets using several statistical distribu-
tions as a sampling basis. They compare 4 algorithms across multiple
data sets derived from 19 base data sets, both using the original and
synthesized anomalies. They find kNN and IF to work best for detect-
ing global anomalies, and LOF to work best for local and dependency
anomalies. In the same year, Soenen et al. [51] study the effect of hy-
perparameter optimization strategies on the evaluation and propose
to optimize hyperparameters on a small validation set, with evalua-
tion on a much larger test set. In their comparison of 6 algorithms
on 16 data sets, IF performs the best, closely followed by CBLOF/u-
CBLOF ((unweighted-)Cluster-Based Local Outlier Factor) and kNN,
while OCSVM (One-Class Support Vector Machine) performs worst

2.1 introduction 31

unless optimized using a substantially larger validation set than the
other algorithms.

Han et al. [21] performed an extensive comparison of anomaly
detection methods, including supervised and semi-supervised algo-
rithms. They compare 14 unsupervised algorithms on 47 tabular data
sets using out-of-the-box, that is suggested by algorithm author or im-
plementation, hyperparameter settings. They subsample larger data
sets to a maximum of 10.000 samples, duplicate samples for those
data sets smaller than 1000 samples. They find no significant differ-
ences between unsupervised algorithms. While real-world data sets
are being used, the anomalies in each data set are generated synthet-
ically according to 4 different type definitions (see section 2.2.2), and
they compare the performance for each different type. Additionally,
they have analyzed more complex benchmark data sets used in CV
and NLP, such as CIFAR10 [30] and the Amazon data set [24] by per-
forming neural-based feature extraction.

Other studies are of a more limited scope, and cover for example
methods for high-dimensional data [55], or consider only ensemble
methods [59].

The studies done by Campos et al. [10], Domingues et al. [12], Gold-
stein and Uchida [19], Han et al. [21], Soenen et al. [51], and Steinbuss
and Böhm [52] have several limitations when used as a benchmark.
Firstly, with the exception of Han et al., all studies were done on
a rather small collection of data sets. Secondly, these studies cover
only a small number of methods. Campos et al. compare only kNN-
based approaches, while Goldstein and Uchida fail to cover many of
the methods that have gained traction in the last few years, such as
IF [35] and variants thereof [22]. Soenen et al. consider just 6 com-
monly used methods, Steinbuss and Böhm cover 4 methods and Han
et al. cover 14 unsupervised methods.

Some of these studies consider the performance on data sets con-
taining specific types of anomalies, such as global or local anomalies.
Specifically, Steinbuss and Böhm look at the performance of differ-
ent algorithms on data sets containing synthesized global, local, and
dependency anomalies. Similarly, Han et al. synthesize these three
types of anomalies as well as cluster anomalies for use in their com-
parison. Goldstein and Uchida’s study is, to the best of our knowl-
edge, the only one that analyzes real-world, that is, non-synthesized
global and local anomalies. In particular, they analyze the ‘pen-local’
and ‘pen-global’ data set, two variants of the same data set where
different classes were selected to obtain local and global anomalies
specifically.

In practice, very little is known regarding what types of anomalies
are present in commonly used benchmark data sets, and thus large
scale comparisons on real-world data for specific types of anomalies
are still missing. In this study we apply a large number of commonly

32 comparing unsupervised anomaly detection algorithms

used anomaly detection methods on a large collection of multivariate
data sets, to discover guidelines on when to apply which algorithms.
We explicitly choose to perform no optimization of hyperparameters,
so as to evaluate the performance of algorithms in a truly unsuper-
vised manner. Instead, we evaluate every algorithm over a range of
sensible hyperparameters, and compare average performances. This
contrasts with Soenen et al. [51], who perform extensive optimiza-
tion on a small validation set and thereby supply guidelines for semi-
supervised detection or active learning. Our approach rather is sim-
ilar to that used by Domingues et al. [12], who also compare out-of-
the-box performance. To the best of our knowledge, ours is the largest
study of its kind performed so far.

2.2 background

2.2.1 Unsupervised Anomaly Detection

Most anomaly detection tasks, including those done in this chapter,
are conducted unsupervised. That means that no labels are available
to the user. Consequently this means that regular optimization, like
grid searches for optimal hyperparameters used in supervised learn-
ing, are not used within unsupervised anomaly detection. Most unsu-
pervised anomaly detection algorithms produce scores, rather than la-
bels, to samples. The most common convention is that a higher score
indicates a higher likelihood that a sample is an anomaly, making
unsupervised anomaly detection a ranking problem.

2.2.2 Types of Anomalies

Many different definitions of anomalies and their properties exist,
many of these have been defined in an isolated context, not consid-
ering the relationships with other definitions or properties [9]. More
recently, a review by Foorthuis [17] tried to unify definitions across
multiple subdomains of anomaly detection in order to encompass
all types of anomalies. These definitions however do not encompass
many properties or types of anomalies, such as clustered or depen-
dency anomalies.

Rather than aiming to redefine every distinct type of anomaly, we
treat anomalies as being able to have multiple, sometimes non-exclu-
sive properties. Instead, we define four scales of non-exclusive proper-
ties which, when combined, encompass all types of anomalies found
in multivariate tabular data in literature known to us. It should be
noted that commonalities exist across these properties. For example
the peripheral anomalies and isolated anomalies shown in Subfigures
1a and 1c have the same characteristics when considering no other
properties.

2.2 background 33

(a) Examples of peripheral (left) and enclosed (right) anomalies

(b) Examples of local (left) and global (right) anomalies

(c) Examples of clustered (left) and isolated (right) anomalies

(d) Examples of univariate (left) and multivariate (right) anomalies

Figure 1: Eight examples of different types of anomalies along the four de-
fined property axes. Normal data are visualized as blue points,
while anomalies are visualized as red crosses.

34 comparing unsupervised anomaly detection algorithms

2.2.2.1 Enclosed and Peripheral Anomalies

Anomalies can be surrounded in the feature space by normal data.
When this occurs, we define them as enclosed anomalies. On the other
end of this axis, peripheral anomalies occupy the edges of the feature
space, and have one or more attribute scores either below the mini-
mum or above the maximum of the scores of the normal data region.
Examples of both enclosed and peripheral anomalies can be found in
Figure 1a.

2.2.2.2 Global and Local Density Anomalies

The most commonly discussed types of anomalies are the global and
local anomalies. These definitions follow from the work of Breunig
et al. [9]. Global anomalies are points which can be isolated from
normal data because they occupy a globally low density region of
the feature space. Local anomalies however, cannot be separated us-
ing just these criteria. This stems from the fact that density estimates
are often imperfect, and based on a proxy measure, such as (aver-
age) distance. Local anomalies rather are located in regions with a
density which is low compared to nearby normal regions, so just the
distance as a proxy for density would fail to identify these points.
Local anomalies occur when multiple clusters with differing density
functions exist in the feature space. Examples of both global and lo-
cal density anomalies can be found in Figure 1b . Specifically in the
"local anomaly example", the red marked anomalies occupy a space
close to the dense cluster, but where the density is low.

2.2.2.3 Isolated and Clustered Anomalies

Most often, anomalies are isolated, and are single datapoints with-
out any additional, normal or anomaly, datapoints nearby. In many
practical cases, anomalies are not that singular, and small groups of
anomalies form clusters, leading to clustered anomalies. Clustered
anomalies are closely related to the phenomenon known as “mask-
ing", where similar anomalies mask each other’s presence by forming
a cluster [35]. Examples of both isolated and clustered anomalies can
be found in Figure 1c.

2.2.2.4 Univariate and Multivariate Anomalies

Some anomalies are clearly univariate in nature. That is, they can be
identified by just a single feature score in an anomalous range. Other
anomalies are multivariate in nature, requiring a specific combina-
tion of feature scores to be identified as anomalies. These multivariate
anomalies are also often called dependency anomalies, as they differ
from the normal dependency, or causal, structure of the data. Exam-

2.3 materials and methods 35

ples of both isolated and clustered anomalies can be found in Figure
1d.

2.3 materials and methods

We evaluate the effectiveness of 33 different algorithms, listed in Ta-
ble 1. We evaluate each algorithm multiple times for each data set,
each with a different set of sensible hyperparameters. The results
are then averaged across hyperparameter settings, leading to a single
average ROC-AUC score for each method-data set combination. We
refrain from optimizing hyperparameters, for example, using cross-
validation, to reflect the real-world situation in which no labels are
available for training the models. It should be noted, that the neu-
ral network architectures covered in this study are optimized with
loss functions not using the original class labels, autoencoders for
example use the mean squared error between the original and recon-
structed features. While unsupervised optimization of hyperparame-
ters has been studied by Thomas, Gramfort, and Clémençon [54] it
has not been applied to most algorithms considered in this study.

2.3.1 Algorithms

Of the 33 methods, 27 were used as implemented in the popular
Python library for anomaly detection, PyOD [57]. As part of this
research, we made several contributions to this open source library,
such as a memory-efficient implementation of the COF (Connectivity-
based Outlier Factor) method, as well as an implementation of the
Birgé and Rozenholc [7] method for histogram size selection, which
is used in HBOS and LODA (lightweight on-line detector of anoma-
lies). For EIF (extended isolation forest) we used the implementation
provided by the authors in the Python package “eif" by Hariri, Kind,
and Brunner [22]. We implemented the ODIN (Outlier Detection us-
ing Indegree Number) method in Python, and it is being prepared
as a submission to the PyOD package. The ensemble-LOF method,
which implements the LOF score calculation in line with the origi-
nal paper [9] was implemented using the base LOF algorithm from
PyOD. DeepSVDD is applied based on the publicly available code by
its author Lukas Ruff1, and we modified it to work on general tabular
data sets. The DynamicHBOS method was applied using the code by
Kanatoko2

We left out several of the implemented methods in the PyOD pack-
age, such as LOCI and ROD, because they have a time or memory

1 The DeepSVDD Git repository can be found at https://github.com/lukasruff/

Deep-SVDD-PyTorch.
2 The DynamicHBOS Git repository can be found at https://github.com/Kanatoko/
HBOS-python.

36 comparing unsupervised anomaly detection algorithms

complexity of O(n3), with n the number of data points. The PyOD
SOS method was also ignored, due to its O(n2) memory requirement.
None of these methods performed notably well compared to the other
algorithms that we included on the smaller data sets where evalua-
tion was feasible. We have thoroughly optimized several of the slower
methods in PyOD, specifically the SOD, COF, and LMDD methods.

2.3.2 Data

2.3.2.1 Datasets

In this study we consider a large collection of data sets from a va-
riety of sources. We focus on real-valued, multivariate, tabular data,
comparable to the data sets used by Campos et al. [10], Domingues
et al. [12], Fernández-Delgado et al. [16], Goldstein and Uchida [19],
and Soenen et al. [51]. Table 2 contains a summary of the data sets,
listing each data set’s origin, number of samples, number of features,
number and percentage of anomalies. While we recognize that other
types of data, such as timeseries, categorical, or visual, are of interest,
they cannot be readily compared in a single study.

Our collection consists for the most part of data sets from the ODDS
data collection [41], specifically the multi-dimensional point data sets.
It is a collection of various data sets, mostly adapted from the UCI
machine learning repository [13]. All data sets are real-valued, with-
out any categorical data. Curation of this collection is sadly not fully
up-to-date, causing some of the listed data sets to be unavailable. The
unavailable data sets were omitted from this comparison.

In addition to the ODDS data set, we also incorporate publicly avail-
able data sets used in earlier anomaly detection research. These in-
clude several data sets from the comparison by Goldstein and Uchida
[19], from the comparison of Campos et al. [10] using ELKI [47], from
a study on Generative Adversial Active Learning, or GAAL [36], from
a study on extended Autoencoders [48], from the ADBench com-
parison [21], and from a study on Efficient Online Anomaly Detec-
tion (EOAD) [8]. data sets from these latter sources that are (near-
)duplicates of data sets present in the ODDS collection are left out. In
Table 2 we specify exactly where each data set was downloaded or
reconstructed from.

Emmott et al. [14] and Emmott et al. [15] present a systematic
methodology to construct anomaly detection benchmarks, which is
then also extensively applied by Pevnỳ [39]. In this chapter, we chose
not to construct our own benchmark data sets, which inevitably leads
to some arbitrariness and possibly bias, but instead we rely on a large
collection of different data sets used in earlier comparison studies.
Synthetic data sets are not included in this study, as real-world data
sets are generally considered the best available tool for benchmark-

2.3 materials and methods 37

Name Hyperparameters Publication

ABOD FastABOD, k = 60 [29]

AE nlayers = 1,2,3, shrinkage factor= 0.2,0.3,0.5 [27]

ALAD nlayers = 3, shrinkage factor= 0.2,0.3,0.5 [56]

CBLOF k = 2,5,10,15, α = 0.7,0.8,0.9, β = 3,5,7 [25]

COF k = 5,10,15,20,25,30 [53]

COPOD [33]

DeepSVDD nlayers = 1,2,3, shrinkage factor= 0.2,0.3,0.5 [45]

DynamicHBOS [18]

ECOD [34]

EIF ntrees = 1000, nsamples = 128,256,512,1024,

no replacement, extension levels: 1,2,3 [22]

ensemble-LOF maximum LOF score over k = 5, ...,30 [9]

gen2out [32]

GMM ngaussians = 2, ...,14 [1]

HBOS nbins based on Birgé-Rozenholc criterium [18]

IF ntrees = 1000, nsamples = 128,256,512,1024,

no replacement [35]

INNE 200 estimators [5]

KDE Gaussian kernel [31]

kNN k = 5,8, ...,29, mean distance [40]

kth-NN k = 5,8, ...,29, largest distance [40]

LMDD nshuffles = 100, MAD dissimilarity function [4]

LODA nbins based on Birgé-Rozenblac criterium,

100 random projections [39]

LOF k = 5,8, ...,29 [9]

LUNAR k = 5,10,15,20,25,30 [20]

MCD subset fraction= 0.6,0.7,0.8,0.9 [43]

OCSVM RBF kernel, ν = 0.5,0.6,0.7,0.8,0.9, γ = 1/d [46]

ODIN k = 5,8, ...,29 [23]

PCA selected PCs explain > 30,50,70,90% of variance [49]

sb-DeepSVDD nlayers = 1,2,3, shrinkage factor= 0.2,0.3,0.5 [45]

SOD k = 20,30, l = 10,18, α = 0.7,0.9 [28]

SO-GAAL stop epochs= 50 [36]

u-CBLOF k = 2,5,10,15, α = 0.7,0.8,0.9, β = 3,5,7 [2]

VAE nlayers = 1,2,3, shrinkage factor= 0.2,0.3,0.5 [3]

β-VAE nlayers = 1,2,3, shrinkage factor= 0.2,0.3,0.5,

γ = 10,20,50 [58]

Table 1: Overview of the algorithms, the setting of the hyperparameters,
the year of original publication, and the author(s). For the neu-
ral networks, the “shrinkage factor" hyperparameter indicates that
any subsequent layer in the encoder is defined by: layer sizen+1 =

layer sizen × shrinkage factor.

38 comparing unsupervised anomaly detection algorithms

ing algorithms [12, 14, 44]. While real-world data sets are preferred
for benchmarking, we note the usefulness of synthetic data in when
studying specific properties of anomaly detection algorithms.

2.3.2.2 Preprocessing

Several steps have been undertaken to be able to compare the per-
formance of the various algorithms on the different data sets. Most
importantly all features in all data sets have been scaled and cen-
tered. Centering is done for each feature in a data set by subtracting
the median. Scaling is performed by dividing each feature by its in-
terquartile range. Our choice of centering and scaling procedure is
deliberate, as both the median and interquartile range are influenced
less by the presence of anomalies than the mean and standard devi-
ation. This procedure is generally considered to be more stable than
standardization when anomalies are known to be present [42]. Our
choice of scaling is further motivated because although some algo-
rithms, such as Isolation Forest, can implicitly handle features with
different scales, methods that involve, for example, distance or cross-
product calculations are strongly affected by the scale of the features.

2.3.3 Evaluation Procedure

In the unsupervised anomaly detection setting, it is generally more
common and useful to evaluate anomaly scores, rather than binary
labels as also produced by some algorithms. An anomaly score is a
real-valued score, where a higher value indicates a higher likelihood,
according to the score producing algorithm, that a specific sample is
an anomaly. Using these scores, samples can be ranked according to
apparent anomalousness, providing insights into the underlying na-
ture of anomalies. For each data set, we calculate anomaly scores on
all available data at once, without using any cross-validation or train-
test splits, procedures common in the supervised setting. The scores
from this unsupervised analysis are then compared to the ground
truth labels, which indicates whether a sample is an anomaly (1), or
not (0), to evaluate the performance of the algorithm. In order to com-
pare the different algorithms we calculate the performance for each
algorithm-data set combination in terms of the AUC (area under the
curve) value resulting from the ROC (receiver operating characteris-
tic) curve. This is the most commonly used metric in anomaly detec-
tion evaluations [10, 19, 55], which can be readily interpreted from
a probabilistic view. We considered using other metrics, such as the
R-precision or average precision and their chance-adjusted variants
introduced by Campos et al. [10], but found these to be less stable,
and harder to interpret.

For each data set we rank the AUC scores calculated from the
scores produced by each algorithm. Following the recommendations

2.3 materials and methods 39

Origin #samples #features #outliers %outliers #removed features

Name

aloi Goldstein 49999 27 1507 (3.01%) 0

annthyroid ODDS 7200 6 534 (7.42%) 0

arrhythmia ODDS 452 257 66 (14.6%) 17

breastw ADBench 683 9 239 (34.99%) 0

campaign ADBench 41188 62 4640 (11.27%) 0

cardio ODDS 1831 21 176 (9.61%) 0

cover ODDS 286048 10 2747 (0.96%) 0

donors ADBench 619326 10 36710 (5.93%) 0

fault ADBench 1941 27 673 (34.67%) 0

glass ODDS 214 9 9 (4.21%) 0

hepatitis ELKI 80 19 13 (16.25%) 0

hrss_anomalous_optimized ex-AE 19634 18 4517 (23.01%) 0

hrss_anomalous_standard ex-AE 23645 18 5670 (23.98%) 0

http ODDS 567498 3 2211 (0.39%) 0

internetads ELKI 1966 1555 368 (18.72%) 0

ionosphere ODDS 351 33 126 (35.9%) 0

landsat ADBench 6435 36 1333 (20.71%) 0

letter ODDS 1600 32 100 (6.25%) 0

magic.gamma ADBench 19020 10 6688 (35.16%) 0

mammography ODDS 11183 6 260 (2.32%) 0

mi-f ex-AE 25286 40 2161 (8.55%) 5

mi-v ex-AE 25286 40 3942 (15.59%) 5

mnist ODDS 7603 78 700 (9.21%) 22

musk ODDS 3062 166 97 (3.17%) 0

nasa ex-AE 4687 32 755 (16.11%) 0

optdigits ODDS 5216 62 150 (2.88%) 2

pageblocks ELKI 5393 10 510 (9.46%) 0

parkinson ELKI 195 22 147 (75.38%) 0

pen-global Goldstein 808 16 90 (11.14%) 0

pen-local Goldstein 6723 16 10 (0.15%) 0

pendigits ODDS 6870 16 156 (2.27%) 0

pima ODDS 768 8 268 (34.9%) 0

satellite ODDS 6435 36 2036 (31.64%) 0

satimage-2 ODDS 5803 36 71 (1.22%) 0

seismic-bumps ODDS 2584 21 170 (6.58%) 3

shuttle ODDS 49097 9 3511 (7.15%) 0

skin ADBench 245057 3 50859 (20.75%) 0

smtp ODDS 95156 3 30 (0.03%) 0

spambase GAAL 4206 57 1678 (39.9%) 0

speech ODDS 3686 400 61 (1.65%) 0

stamps ELKI 340 9 31 (9.12%) 0

thyroid ODDS 3772 6 93 (2.47%) 0

vertebral ODDS 240 6 30 (12.5%) 0

vowels ODDS 1456 12 50 (3.43%) 0

waveform GAAL 3442 21 99 (2.88%) 0

wbc ODDS 378 30 21 (5.56%) 0

wbc2 ADBench 223 9 10 (4.48%) 0

wilt ELKI 4819 5 257 (5.33%) 0

wine ODDS 129 13 10 (7.75%) 0

wpbc ADBench 198 33 47 (23.74%) 0

yeast ADBench 1484 8 507 (34.16%) 0

yeast6 EOAD 1484 8 35 (2.36%) 0

Table 2: Summary of the 52 multivariate data sets used in our anomaly de-
tection algorithm comparison: the colloquial name of the data set,
origin of the data set, the number of samples, features, and anoma-
lies, as well as the percentage of anomalies, and the number of re-
moved features.

40 comparing unsupervised anomaly detection algorithms

for the comparison of classifiers by Demšar [11], we use the Iman-
Davenport statistic [26] in order to determine whether there is any
significant difference between the algorithms. If this statistic falls be-
low the desired critical value corresponding to a p-value of 0.05, we
apply the Nemenyi post-hoc test [38] to then assess which algorithms
differ significantly from each other.

In some of the visualizations in this chapter we plot the percentage
of maximum AUC, defined as

ÃUC(a,d) =
AUC(a,d)

maxa ′∈A AUC(a ′,d)
× 100 ,

with a one of the algorithms and d one of the data sets.

2.3.4 Reproducibility

In order to reproduce all our experiments, we have provided access
to a public GitHub repository3 containing the code, including the
optimized PyOD methods, and data sets used for all experiments as
well as for the production of all figures and tables presented in this
chapter.

2.4 results

2.4.1 Overall Algorithm Performance

In order to gauge the performance, we evaluated each algorithm on
each data set using the AUC measure corresponding to a ROC curve.
To evaluate the performance across multiple sensible hyperparame-
ters the AUC value for a given method is the average of the AUC
of each hyperparameter setting evaluated. In our analysis, we found
three data sets on which nearly every evaluated algorithm produced
close to random results, that is with all AUC values between 0.4 and
0.6. These data sets, the ‘hrss_anomalous_standard’ and ‘wpbc’ data
sets, were therefore excluded from further analysis. It is likely that
these data sets contain no discernible anomalies. The existence of
newer versions of these data sets, further motivates our choice of re-
moval. Some data sets showed no AUC values above 0.6, but did
show AUC values below 0.4. In these cases, the detector performs
better when the labels are inverted. This behaviour was observed in
the ‘yeast‘, ‘skin’ and ‘vertebral’ data sets. The original construction
of the latter two data sets was done based on treating the largest
group of samples as the normal (label 0) class, and the smaller group
as the anomaly (label 1) class, as is done commonly in anomaly detec-
tion research. Yet, for both these sets, the more heterogeneous group

3 The Git repository can be found at: https://github.com/RoelBouman/

outlierdetection.

2.4 results 41

E
I
F

M
C
D

I
F

g
e
n
2
o
u
t

k
t
h
-
N
N

I
N
N
E

K
D
E

k
N
N

u
-
C
B
L
O
F

C
O
P
O
D

O
C
S
V
M

A
B
O
D

H
B
O
S

A
E

D
y
n
a
m
i
c
H
B
O
S

E
C
O
D

b
e
t
a
-
V
A
E

V
A
E

P
C
A

L
U
N
A
R

S
O
D

L
M
D
D

G
M
M

L
O
D
A

e
n
s
e
m
b
l
e
-
L
O
F

L
O
F

D
e
e
p
S
V
D
D

O
D
I
N

C
O
F

A
L
A
D

S
O
-
G
A
A
L

s
b
-
D
e
e
p
S
V
D
D

C
B
L
O
F

method

0

20

40

60

80

100

v
a
l
u
e

Percentage of maximum performance (ROC/AUC)

Figure 2: Boxplots of the performance of each algorithm on each data set in
terms of percentage of maximum AUC. The maximum AUC is the
highest AUC value obtained by the best performing algorithm on
that particular data set. The whiskers in the boxplots extend 1.5
times the interquartile range past the low and high quartiles. data
set-algorithm combinations outside of the whiskers are marked as
diamonds.

is chosen as the normal class, in contrast to normal anomaly defini-
tions. For these data sets, we inverted the labelling and recalculated
the AUC values to be more in line with the general anomaly property
that anomalies are more heterogenous than normal data.

Figure 2 shows the distribution of the performance for each method.
In order to compare the AUC across different data sets, which might
have different baseline performances, in a boxplot we express the
AUC in terms of its percentage of the maximum AUC value obtained
by the best performing algorithm on that particular data set.

It can be seen that many of the algorithms perform comparably,
with a median percentage of maximum AUC around 90%. Several
lower medians, as well as wider quartiles, can be observed.

To determine whether any of the observed differences in perfor-
mance from Figure 2 are significant, we apply the Iman-Davenport
test. This yielded a test-statistic of 16.395 , far above the critical value
of 0.625 , thus refuting the null hypothesis. We then applied the Ne-
menyi post-hoc test to establish which algorithms significantly out-
perform which other algorithms. The results of this Nemenyi post-
hoc test are summarized in Table 3.

Table 3 reveals that there are indeed several algorithms signifi-
cantly outperforming many other algorithms. Most notable here is
EIF, which significantly outperforms 14/16 algorithms evaluated in

42 comparing unsupervised anomaly detection algorithms

C
BL

O
F

sb
-D

ee
pS

V
D

D

SO
-G

A
A

L

A
LA

D

C
O

F

O
D

IN

D
ee

pS
V

D
D

LO
F

en
se

m
bl

e-
LO

F

LO
D

A

G
M

M

LM
D

D

SO
D

LU
N

A
R

PC
A

VA
E

M
ea

n
A

U
C

EIF ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ + ++ ++ 0.770

MCD ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.762

IF ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.759

gen2out ++ ++ ++ ++ ++ ++ ++ ++ + 0.747

kth-NN ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + 0.745

INNE ++ ++ ++ ++ ++ ++ ++ ++ 0.743

KDE ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.743

kNN ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.741

u-CBLOF ++ ++ ++ ++ ++ ++ ++ + 0.740

COPOD ++ ++ ++ ++ ++ ++ ++ ++ 0.729

OCSVM ++ ++ ++ ++ ++ ++ ++ 0.723

ABOD ++ ++ ++ ++ ++ ++ ++ ++ 0.721

HBOS ++ ++ ++ ++ ++ ++ ++ 0.720

AE ++ ++ ++ ++ + ++ 0.719

DynamicHBOS ++ ++ ++ ++ ++ ++ ++ 0.717

ECOD ++ ++ ++ ++ + ++ 0.713

beta-VAE ++ ++ ++ ++ ++ 0.711

VAE ++ ++ + ++ + 0.704

PCA ++ ++ ++ 0.700

LUNAR ++ ++ ++ ++ ++ 0.691

SOD ++ ++ + 0.682

LMDD ++ 0.675

GMM ++ ++ ++ ++ + 0.664

LODA + 0.658

ensemble-LOF ++ 0.643

LOF 0.617

DeepSVDD - -- - 0.596

ODIN 0.588

COF 0.586

ALAD -- - -- -- -- 0.576

SO-GAAL -- -- - 0.575

sb-DeepSVDD -- - -- -- -- -- -- -- 0.551

CBLOF -- -- -- -- -- 0.515

Table 3: Significant differences between algorithms based on Nemenyi post-
hoc analysis. ++/+ denotes that the row algorithm outperforms the
column algorithm at p = 0.05/p = 0.10 respectively, while -- de-
notes that the row algorithm is outperformed by the column algo-
rithm at p = 0.05. Rows and columns are sorted by descending and
ascending mean performance, respectively. Columns are not shown
when the column algorithm is not outperformed by any other algo-
rithms at p = 0.05 or p = 0.10. The last column shows the mean
AUC.

2.4 results 43

this study at the p = 0.05/p = 0.10 significance level respectively.
Since the computational complexity of Isolation Forest and variants
thereof scales linearly with the number of samples n, this may give
them a clear further edge over methods such as kNN and deriva-
tives for large data sets, with a computational complexity that scales
quadratically or at best with O(n logn) when optimized.

From Figure 2 and Table 3 we can also observe that the original
CBLOF method is by far the worst performing method based on the
mean AUC, being significantly outperformed by 22 at the p = 0.05 sig-
nificance level. This corroborates the results of Goldstein and Uchida
[19], who also found CBLOF to consistently underperform, while its
unweighted variant, u-CBLOF, performs comparably to other algo-
rithms. Notable is also the sb-DeepSVDD method, which performs
slightly better in terms of mean AUC, but is significantly outper-
formed by 24/25 algorithms at the p = 0.05/p = 0.10 significance
level respectively.

From these overall results it is clear that many of the neural net-
works do not perform well. (Soft-boundary) DeepSVDD, ALAD, and
SO-GAAL all occupy the lower segment of overall method perfor-
mance. We surmise that there are three likely reasons for this phe-
nomenon. Firstly, these methods were not designed with tabular data
in mind, and they can’t leverage the same feature extraction capabil-
ities that give them an edge on their typical computer vision tasks.
Secondly, these methods are relatively complex, making it exceed-
ingly hard to specify general hyperparameter settings and architec-
tures which work on a large variety of data sets. Lastly, many of
the data sets in this study are likely not sufficiently large enough
to leverage the strengths of neural network approaches. Not all neu-
ral networks suffer from these problems equally, as the auto-encoder
and variants, as well as LUNAR, perform about average. This is likely
caused by a more straightforward architecture and optimisation crite-
rion. More specifically, we suspect lack of convergence is a problem
for the generative adversarial methods and DeepSVDD.

In addition to the neural networks, the local methods, such as LOF,
ODIN, COF, and CBLOF, are some of the most underperforming
methods. This result for LOF stands in stark contrast to the results
of Campos et al. [10], who found LOF to be among the best perform-
ing methods. This is most likely caused by their evaluation on a small
number of data sets with a low percentage of anomalies, which causes
LOF to suffer less from swamping or masking [35]. We further study
this finding in Section 2.4.3.

2.4.2 Clustering Algorithms and data sets

To visualize the similarities between algorithms on one hand, and
the data sets on the other, Figure 3 shows a heatmap of the perfor-

44 comparing unsupervised anomaly detection algorithms

A
L
A
D

S
O
-
G
A
A
L

L
O
D
A

D
y
n
a
m
i
c
H
B
O
S

H
B
O
S

L
M
D
D

V
A
E

P
C
A

b
e
t
a
-
V
A
E

A
E

C
O
P
O
D

E
C
O
D

O
C
S
V
M

g
e
n
2
o
u
t

E
I
F

I
F

I
N
N
E

u
-
C
B
L
O
F

M
C
D

A
B
O
D

K
D
E

S
O
D

k
t
h
-
N
N

k
N
N

L
U
N
A
R

D
e
e
p
S
V
D
D

s
b
-
D
e
e
p
S
V
D
D

G
M
M

C
B
L
O
F

C
O
F

L
O
F

e
n
s
e
m
b
l
e
-
L
O
F

O
D
I
N

vertebral

skin

ionosphere

glass

landsat

fault

vowels

pen-local

letter

wilt

nasa

parkinson

waveform

magic.gamma

pima

internetads

speech

aloi

wbc

wbc2

arrhythmia

hepatitis

wine

yeast

campaign

annthyroid

pageblocks

pen-global

cardio

yeast6

pendigits

smtp

thyroid

stamps

satimage-2

breastw

seismic-bumps

cover

shuttle

donors

mammography

spambase

satellite

hrss

mi-f

mi-v

mnist

http

musk

optdigits

0.2

0.4

0.6

0.8

1.0

Figure 3: Clustered heatmap of the ROC/AUC performance of each algo-
rithm. The algorithms and data sets are each clustered using hier-
archical clustering with average linkage and the Pearson correla-
tion as metric.

mance of each data set/algorithm combination and dendrograms of
two hierarchical clusterings, one on the data sets, and one on the algo-
rithms. For these clustering steps, the Pearson correlation was used as
a distance measure, as this best shows how similar methods or data
sets are when looking at the calculated performance. We furthermore
used average linkage cluster analysis to construct more robust clus-
ters. For the sake of visualisation the leaf orderings were optimized
using the method of Bar-Joseph, Gifford, and Jaakkola [6].

Figure 3 shows that many similar algorithms cluster together in an
expected way, with families of algorithms forming their own clusters.
Some interesting patterns can be observed at a larger level. For the
algorithms, we obtain several fairly distinct clusters. Firstly, CBLOF
is distinct, as it underperforms on nearly every data set. Similarly,
underperforming methods such as SO-GAAL, GMM, and ALAD only
cluster together at a large distance, indicating that they have little
correlation to other methods. The local methods, COF, ensemble-LOF,
LOF and ODIN, form a separate cluster. These algorithms, which are

2.4 results 45

specifically designed to detect local anomalies, work well on a few
(approximately a quarter) of the data sets, but do not perform well
for most other data sets. We have a small cluster of kNN and related
methods such as LUNAR and SOD, that performs decently for all
data sets. Lastly, as can be seen seen in the top left half of Figure 3, a
large cluster of methods seems to negatively correlate with the local
methods, performing well for most (approximately three-quarters) of
the data sets, but less so for the remainder.

The data sets split into two clearly distinct clusters: one cluster of
data sets on which the local algorithms perform well, and another
cluster of data sets on which the large cluster of algorithms performs
well. Combining the two-way clustering with knowledge of the algo-
rithms suggests that approximately one third of the data sets com-
prises so-called local problems, while the other two-thirds comprises
global problems. This is corroborated by specifically constructed lo-
cal and global sets ‘pen-local’ and ‘pen-global’, that clearly belong to
their expected clusters. This observation is corroborated by research
by Steinbuss and Böhm [52] and Emmott et al. [14], who similarly
find differences between what they categorize as local/dependency
and multi-cluster anomalies respectively, and global anomalies. We
cannot clearly observe any other clear patterns of different anomaly
properties arising from our analysis. The ‘vertebral’ data set further-
more seems distinct from either the global or local clusters.

To the best of our knowledge, no previous study on naturally oc-
curring anomalies in real-world data has looked, in detail, into the
difference between the performance of algorithms when specifically
being applied to either global or local anomaly detection problems.

2.4.3 Performance on Global and Local Problems

In the previous section, we discovered a clear distinction between
two clusters of data sets: one with the “local” data sets ‘aloi’, ‘fault’,
‘glass’, ‘internetads’, ‘ionosphere’, ‘landsat’, ‘letter’, ‘magic.gamma’,
‘nasa’, ‘parkinson’, ‘pen-local’, ‘pima’, ‘skin’, ‘speech’, ‘vowels’, ‘wave-
form’, and ‘wilt’, and another with the remaining “global” data sets,
excluding ‘vertebral’,. Suspecting that different methods may do well
on different types of data sets, we repeated the significance testing
procedure from Section 2.4.1 for both clusters separately.

Performance boxplots for all algorithms applied on the collection
of local data sets can be found in Figure 4. Figure 4 clearly shows the
reversed performance of some of the local methods for anomaly de-
tection. Where COF, ensemble-LOF, and LOF were among the worst
performers over the entire collection, they are among the best per-
formers when applied to the problems for which they were specif-
ically developed. This phenomenon is a fine example of Simpson’s

46 comparing unsupervised anomaly detection algorithms

k
N
N

k
t
h
-
N
N

G
M
M

A
B
O
D

e
n
s
e
m
b
l
e
-
L
O
F

M
C
D

C
O
F

L
O
F

K
D
E

S
O
D

L
U
N
A
R

u
-
C
B
L
O
F

O
D
I
N

E
I
F

I
N
N
E

I
F

H
B
O
S

g
e
n
2
o
u
t

V
A
E

D
y
n
a
m
i
c
H
B
O
S

O
C
S
V
M

C
B
L
O
F

A
E

C
O
P
O
D

L
O
D
A

D
e
e
p
S
V
D
D

L
M
D
D

b
e
t
a
-
V
A
E

E
C
O
D

s
b
-
D
e
e
p
S
V
D
D

A
L
A
D

P
C
A

S
O
-
G
A
A
L

method

0

20

40

60

80

100

v
a
l
u
e

Percentage of maximum performance (ROC/AUC)

Figure 4: Boxplots of the performance of each algorithm on the “local" data
sets in terms of percentage of maximum AUC. The maximum
AUC is the highest AUC value obtained by the best performing
algorithm on that particular data set. The whiskers in the boxplots
extend 1.5 times the interquartile range past the low and high quar-
tiles. data set-algorithm combinations outside of the whiskers are
marked as diamonds.

paradox [50]. This also partially explains the difference in findings of
our overall comparison and the comparison of Campos et al. [10].

We then repeated the Nemenyi-Friedman post hoc test on just the
local data sets. The results for this analysis are summarized in Ta-
ble 4. kNN is the top performers, and significantly outperform 17/18
other methods at the p = 0.05/p = 0.10 significance level respectively.

We then repeated the analysis for the global data sets, leading to
the performance boxplots in Figure 5 and the significance results in
Table 5.

From Figure 5 and Table 5 we can see that the Extended Isolation
Forest has the highest mean performance, closely followed by the
regular Isolation Forest. The Extended Isolation Forest outperforms
13/14 methods at p = 0.05/p = 0.10 respectively. Coincidentally,
these methods also have the lowest computational and memory re-
quirement, leaving them as the most likely choices for global anoma-
lies.

2.5 discussion

In our study we compared the performance of anomaly detection al-
gorithms on 52 semantically meaningful real-world tabular data sets,
more than any other recent comparison studies [10, 12, 19, 21, 51, 52,

2.5 discussion 47

SO
-G

A
A

L

PC
A

A
LA

D

sb
-D

ee
pS

V
D

D

EC
O

D

be
ta

-V
A

E

LM
D

D

D
ee

pS
V

D
D

LO
D

A

C
O

PO
D

A
E

C
BL

O
F

O
C

SV
M

D
yn

am
ic

H
BO

S

VA
E

ge
n2

ou
t

H
BO

S

O
D

IN

M
ea

n
A

U
C

kNN ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + 0.737

kth-NN ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ + 0.722

GMM ++ ++ ++ ++ ++ ++ ++ + + 0.710

ABOD ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.709

ensemble-LOF ++ ++ ++ ++ ++ ++ ++ ++ + ++ + + 0.708

MCD ++ ++ ++ ++ ++ ++ ++ + + 0.702

COF ++ ++ ++ ++ ++ ++ ++ 0.698

LOF ++ ++ ++ ++ ++ ++ ++ 0.695

KDE ++ ++ ++ ++ ++ ++ ++ + + 0.693

SOD ++ ++ ++ ++ ++ ++ ++ 0.693

LUNAR ++ ++ ++ ++ ++ ++ ++ 0.693

u-CBLOF ++ ++ ++ + 0.657

ODIN 0.646

EIF ++ ++ ++ 0.646

INNE ++ + + 0.644

IF + 0.637

HBOS 0.609

gen2out 0.601

VAE 0.585

DynamicHBOS 0.578

OCSVM 0.573

CBLOF 0.566

AE 0.565

COPOD 0.561

LODA 0.555

DeepSVDD 0.554

LMDD 0.539

beta-VAE 0.539

ECOD 0.538

sb-DeepSVDD 0.531

ALAD 0.514

PCA 0.513

SO-GAAL 0.444

Table 4: Significant differences between algorithms on the collection of lo-
cal problems based on Nemenyi post-hoc analysis. ++/+ denotes
that the row algorithm outperforms the column algorithm at p =

0.05/p = 0.10. Rows and columns are sorted by descending and
ascending mean performance, respectively. Columns are not shown
when the column algorithm is not outperformed by any other algo-
rithms at p = 0.05 or p = 0.10. The last column shows the mean
AUC.

48 comparing unsupervised anomaly detection algorithms

C
BL

O
F

C
O

F

O
D

IN

sb
-D

ee
pS

V
D

D

LO
F

A
LA

D

en
se

m
bl

e-
LO

F

D
ee

pS
V

D
D

SO
-G

A
A

L

G
M

M

SO
D

LU
N

A
R

LO
D

A

A
BO

D

M
ea

n
A

U
C

EIF ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + 0.849

IF ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.837

gen2out ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.836

COPOD ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.831

ECOD ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ 0.815

OCSVM ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.813

beta-VAE ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.813

AE ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.812

INNE ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.807

PCA ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.807

MCD ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.805

DynamicHBOS ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.804

u-CBLOF ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.793

HBOS ++ ++ ++ ++ ++ ++ ++ ++ ++ + 0.790

KDE ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.782

VAE ++ ++ ++ ++ ++ ++ + ++ 0.778

kth-NN ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 0.770

LMDD ++ ++ ++ ++ ++ ++ ++ 0.757

kNN ++ ++ ++ ++ ++ ++ ++ ++ + 0.755

ABOD ++ ++ ++ ++ ++ ++ ++ 0.740

LODA ++ ++ ++ 0.724

LUNAR + 0.701

SOD 0.679

GMM 0.650

SO-GAAL 0.642

DeepSVDD -- 0.621

ensemble-LOF 0.615

ALAD -- 0.611

LOF -- 0.580

sb-DeepSVDD -- -- 0.566

ODIN -- 0.560

COF - -- -- 0.530

CBLOF -- -- 0.487

Table 5: Significant differences between algorithms on the collection of
global problems based on Nemenyi post-hoc analysis. ++/+ de-
notes that the row algorithm outperforms the column algorithm at
p = 0.05/p = 0.10. Rows and columns are sorted by descending and
ascending mean performance, respectively. Columns are not shown
when the column algorithm is not outperformed by any other algo-
rithms at p = 0.05 or p = 0.10. The last column shows the mean
AUC.

2.5 discussion 49

E
I
F

I
F

g
e
n
2
o
u
t

C
O
P
O
D

E
C
O
D

O
C
S
V
M

b
e
t
a
-
V
A
E

A
E

I
N
N
E

P
C
A

M
C
D

D
y
n
a
m
i
c
H
B
O
S

u
-
C
B
L
O
F

H
B
O
S

K
D
E

V
A
E

k
t
h
-
N
N

L
M
D
D

k
N
N

A
B
O
D

L
O
D
A

L
U
N
A
R

S
O
D

G
M
M

S
O
-
G
A
A
L

D
e
e
p
S
V
D
D

e
n
s
e
m
b
l
e
-
L
O
F

A
L
A
D

L
O
F

s
b
-
D
e
e
p
S
V
D
D

O
D
I
N

C
O
F

C
B
L
O
F

method

20

40

60

80

100

v
a
l
u
e

Percentage of maximum performance (ROC/AUC)

Figure 5: Boxplots of the performance of each algorithm on the global data
sets in terms of percentage of maximum AUC. The maximum
AUC is the highest AUC value obtained by the best performing
algorithm on that particular data set. The whiskers in the boxplots
extend 1.5 times the interquartile range past the low and high quar-
tiles. data set-algorithm combinations outside of the whiskers are
marked as diamonds.

55]. A somewhat comparable study by Fernández-Delgado et al. [16]
on classification algorithms easily considered 121 data sets. The main
reason for this discrepancy is that data sets for comparing anomaly
detection algorithms rarely include categorical features, which are not
an issue for comparing classification algorithms. It is certainly possi-
ble to further extend the collection of data sets, for example, through
data set modifications. Campos et al. [10], Emmott et al. [14] and Em-
mott et al. [15], and Steinbuss and Böhm [52] modified data sets in
different ways to create similar data sets with differing characteristics
from a single base data set. While such modifications can be useful
for targeted studies, near-duplicate data sets are far from indepen-
dent and then seem detrimental to a proper statistical comparison of
anomaly detection algorithms, such as can be observed in Emmott
et al. [14].

In this study we compared 33 of the most commonly used algo-
rithms for anomaly detection. This collection is certainly not exhaus-
tive: many more methods exist [12, 14, 19, 44, 47], and likely even
more will be invented. Also along this axis, there is a clear discrep-
ancy with the study by Fernández-Delgado et al. [16] on classification
algorithms, who incorporated 179 classifiers from 17 different fam-
ilies. Apparently, the number of classification algorithms largely ex-
ceeds the number of anomaly detection algorithms. But perhaps more

50 comparing unsupervised anomaly detection algorithms

importantly, there are many more solid and easy-to-use implementa-
tions of classification algorithms in many different machine learning
libraries than there are out-of-the-box implementations of anomaly
detection algorithms. Before being able to perform the comparison in
this study, we had to spend quite some effort to clean up and some-
times re-implement (parts of) existing code.

In this research we chose not to cover meta-techniques for ensem-
bling. While ensembles are of great interest, a better understanding
of the performance of base learners is an essential prerequisite before
moving on to a study of ensemble methods.

While we evaluated neural networks in our comparison, no general
guidelines exist on how to construct a well-performing network for
any given data set, which is essential for the unsupervised setup con-
sidered in this study. The strength of many of these methods comes
from high-level feature extraction implicitly performed by the net-
work, which cannot be leveraged on the smaller tabular data sets
used in this benchmark. Like Ruff et al. [44], we recognize that there
is a major discrepancy between the availability of classification and
anomaly detection benchmark data sets useful for deep learning ap-
proaches. More anomaly detection benchmark data sets useful for
deep learning based anomaly detection would be a welcome addi-
tion to the field.

Cross-comparing the performance of algorithms on data sets, we
noticed a clear separation between two clusters of data sets and rough-
ly two clusters of corresponding algorithms. We characterized these
clusters as “local” and “global” data sets and algorithms, in corre-
spondence with common nomenclature in the literature [9, 19]. How-
ever, we are well aware that this characterization may turn out to
be an oversimplification when analyzing more data sets and more
algorithms in closer detail. For example, the local and global prob-
lems likely have quite some overlap, but need not be fully equivalent
with multimodal and unimodal anomaly detection problems, respec-
tively. Overlap between multimodal and local problems occurs when
the different modes start having different densities, so that local algo-
rithms that try to estimate these local densities fare better than global
algorithms that cannot make this distinction. Further theoretical and
empirical studies, for example, on carefully simulated data sets are
needed to shed further light. We acknowledge that there is a gap in
both theoretical and empirical studies on determining what types of
anomalies are present in a data set, which would directly help in se-
lecting an appropriate algorithm in conjunction with this research.
Furthermore, we have not readily observed several well-described
properties of anomalies. This exemplifies the need for more, varied,
benchmark data sets.

2.6 conclusion 51

2.6 conclusion

Based on our research we can establish general guidelines on when
users should apply which anomaly detection methods for their prob-
lem.

In general, when a user has no a priori knowledge on whether or
not their data set contains local or global anomalies, EIF, Extended
Isolation Forest, is the best choice. It outperforms 14 out of 33 other
evaluated methods at p = 0.05, and is one the highest performing
method based on its mean AUC score.

When a data set is known or suspected to contain local anoma-
lies, which might for example occur when the data is known to con-
tain multiple different density clusters, the best performing method
is kNN, which outperforms 17 out of 33 methods at p = 0.05.

Datasets containing just global anomalies are best analyzed using
EIF, which is the top performing algorithm on the data sets contain-
ing global anomalies. COPOD, gen2out, INNE and k-thNN all per-
form comparably, and these methods all outperform at least 10 other
methods at p = 0.05. IF and EIF are the algorithms with the lowest
computational complexity, which are usually preferable in practice.

Contemplating the above considerations, we are tempted to an-
swer the question in the title of this chapter with “two”: a toolbox
with kNN, and EIF seems sufficient to perform well on the type of
multivariate data sets considered in our study. These two algorithms
are due to the scope of this study likely to perform well on unseen
real-world multivariate data sets. This conclusion is open for further
consideration when other algorithms and/or data sets are added to
the bag, which should be relatively easy to check when extending
the code and the data set pre-processing procedures that we open-
sourced.

Future work following this study may seek to extend our compar-
ative analysis with diverse types of data such as raw images, texts
and time-series. All of these types of data require specific methods
and tailored comparisons. Furthermore, automatically determining
properties of anomalies in a data set before further analysis is an un-
explored avenue of study which might provide users with even more
detailed guidelines on which algorithm to apply.

acknowledgments and disclosure of funding

The research reported in this chapter has been partly funded by the
NWO grant NWA.1160.18.238 (https://primavera-project.com/),
as well as BMK, BMDW, and the State of Upper Austria in the frame
of the SCCH competence center INTEGRATE [(FFG grant no. 892418)]
part of the FFG COMET Competence Centers for Excellent Technolo-
gies Programme.

52 comparing unsupervised anomaly detection algorithms

references

[1] D. Agarwal. “Detecting anomalies in cross-classified
streams: a Bayesian approach.” In: Knowledge and Information
Systems 11.1 (2007), pp. 29–44.

[2] M. Amer and M. Goldstein. “Nearest-neighbor and clustering
based anomaly detection algorithms for Rapidminer.” In: Rapid-
Miner Community Meeting and Conference. 2012, pp. 1–12.

[3] J. An and S. Cho. “Variational autoencoder based anomaly de-
tection using reconstruction probability.” In: Special Lecture on
IE 2.1 (2015), pp. 1–18.

[4] A. Arning, R. Agrawal, and P. Raghavan. “A linear method for
deviation detection in large databases.” In: Knowledge Discovery
and Data Mining 1141.50 (1996), pp. 972–981.

[5] T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, Y. Zhu,
and J. R. Wells. “Isolation-based anomaly detection using nearest-
neighbor ensembles.” In: Computational Intelligence 34.4 (2018),
pp. 968–998.

[6] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. “Fast opti-
mal leaf ordering for hierarchical clustering.” In: Bioinformatics
17.suppl_1 (2001), S22–S29.

[7] L. Birgé and Y. Rozenholc. “How many bins should be put
in a regular histogram.” In: ESAIM: Probability and Statistics 10
(2006), pp. 24–45.

[8] A. Brandsæter, E. Vanem, and I. K. Glad. “Efficient on-line ano-
maly detection for ship systems in operation.” In: Expert Sys-
tems with Applications 121 (2019), pp. 418–437.

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF:
identifying density-based local outliers.” In: ACM SIGMOD In-
ternational Conference on Management of Data. 2000, pp. 93–104.

[10] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková,
E. Schubert, I. Assent, and M. E. Houle. “On the evaluation
of unsupervised outlier detection: measures, datasets, and an
empirical study.” In: Data Mining and Knowledge Discovery 30.4
(2016), pp. 891–927.

[11] J. Demšar. “Statistical comparisons of classifiers over multiple
data sets.” In: The Journal of Machine Learning Research 7 (2006),
pp. 1–30.

[12] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. “A
comparative evaluation of outlier detection algorithms: Experi-
ments and analyses.” In: Pattern Recognition 74 (2018), pp. 406–
421.

2.6 references 53

[13] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. url:
http://archive.ics.uci.edu/ml.

[14] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong.
“A meta-analysis of the anomaly detection problem.” In: arXiv
preprint arXiv:1503.01158 (2015).

[15] A. F. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong.
“Systematic construction of anomaly detection benchmarks from
real data.” In: ACM SIGKDD workshop on outlier detection and de-
scription. 2013, pp. 16–21.

[16] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim.
“Do we need hundreds of classifiers to solve real world classi-
fication problems?” In: The Journal of Machine Learning Research
15.1 (2014), pp. 3133–3181.

[17] R. Foorthuis. “On the nature and types of anomalies: A review
of deviations in data.” In: International Journal of Data Science
and Analytics 12.4 (2021), pp. 297–331.

[18] M. Goldstein and A. Dengel. “Histogram-based Outlier Score
(HBOS): A fast unsupervised anomaly detection algorithm.” In:
KI-2012: Poster and Demo Track. 2012, pp. 59–63.

[19] M. Goldstein and S. Uchida. “A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data.”
In: PloS one 11.4 (2016), e0152173.

[20] A. Goodge, B. Hooi, S.-K. Ng, and W. S. Ng. “LUNAR: Unifying
local outlier detection methods via graph neural networks.” In:
AAAI Conference on Artificial Intelligence. Vol. 36. 2022, pp. 6737–
6745.

[21] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao. “ADBench:
Anomaly Detection Benchmark.” In: Neural Information Process-
ing Systems. 2022.

[22] S. Hariri, M. C. Kind, and R. J. Brunner. “Extended Isolation
Forest.” In: IEEE Transactions on Knowledge and Data Engineering
33.4 (2019), pp. 1479–1489.

[23] V. Hautamaki, I. Karkkainen, and P. Franti. “Outlier detection
using k-nearest neighbour graph.” In: International Conference
on Pattern Recognition. Vol. 3. IEEE. 2004, pp. 430–433.

[24] R. He and J. McAuley. “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filter-
ing.” In: International Conference on World Wide Web. 2016, pp. 507–
517.

[25] Z. He, X. Xu, and S. Deng. “Discovering cluster-based local out-
liers.” In: Pattern Recognition Letters 24.9-10 (2003), pp. 1641–
1650.

54 comparing unsupervised anomaly detection algorithms

[26] R. L. Iman and J. M. Davenport. “Approximations of the critical
region of the fbietkan statistic.” In: Communications in Statistics
- Theory and Methods 9.6 (1980), pp. 571–595.

[27] N. Japkowicz, C. Myers, M. Gluck, et al. “A novelty detection
approach to classification.” In: International Joint Conference on
Artificial Intelligence. Vol. 1. Citeseer. 1995, pp. 518–523.

[28] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. “Outlier de-
tection in axis-parallel subspaces of high dimensional data.” In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer. 2009, pp. 831–838.

[29] H.-P. Kriegel, M. Schubert, and A. Zimek. “Angle-based outlier
detection in high-dimensional data.” In: ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 2008,
pp. 444–452.

[30] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. Tech. rep. University of Toronto, 2009.

[31] L. J. Latecki, A. Lazarevic, and D. Pokrajac. “Outlier detection
with kernel density functions.” In: International Workshop on Ma-
chine Learning and Data Mining in Pattern Recognition. Springer.
2007, pp. 61–75.

[32] M.-C. Lee, S. Shekhar, C. Faloutsos, T. N. Hutson, and L. Iasemidis.
“gen2Out: Detecting and ranking generalized anomalies.” In:
IEEE International Conference on Big Data. IEEE. 2021, pp. 801–
811.

[33] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu. “COPOD: copula-
based outlier detection.” In: 2020 IEEE International Conference
on Data Mining (ICDM). IEEE. 2020,
1118–1123.

[34] Z. Li, Y. Zhao, X. Hu, N. Botta, C. Ionescu, and G. H. Chen.
ECOD: Unsupervised Outlier Detection Using Empirical Cumula-
tive Distribution Functions. 2022. eprint: 2201.00382.

[35] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation forest.” In: IEEE
International Conference on Data Mining. IEEE. 2008, pp. 413–422.

[36] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He.
“Generative adversarial active learning for unsupervised outlier
detection.” In: IEEE Transactions on Knowledge and Data Engineer-
ing 32.8 (2019), pp. 1517–1528.

[37] K. Malik, H. Sadawarti, and K. G S. “Comparative analysis of
outlier detection techniques.” In: International Journal of Com-
puter Applications 97.8 (2014), pp. 12–21.

[38] P. B. Nemenyi. Distribution-free multiple comparisons.
Princeton University, 1963.

2.6 references 55

[39] T. Pevnỳ. “Loda: Lightweight on-line detector of anomalies.” In:
Machine Learning 102.2 (2016), pp. 275–304.

[40] S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient algorithms
for mining outliers from large data sets.” In: International Con-
ference on Management of Data. 2000, pp. 427–438.

[41] S. Rayana. ODDS Library. 2016. url: http://odds.cs.stonybrook.
edu.

[42] P. J. Rousseeuw and C. Croux. “Alternatives to the median abso-
lute deviation.” In: Journal of the American Statistical Association
88.424 (1993), pp. 1273–1283.

[43] P. J. Rousseeuw and K. V. Driessen. “A fast algorithm for the
minimum covariance determinant estimator.” In: Technometrics
41.3 (1999), pp. 212–223.

[44] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W.
Samek, M. Kloft, T. G. Dietterich, and K.-R. Müller. “A unifying
review of deep and shallow anomaly detection.” In: Institute of
Electrical and Electronics Engineers (2021).

[45] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller,
K.-R. Müller, and M. Kloft. “Deep semi-supervised anomaly
detection.” In: arXiv preprint arXiv:1906.02694 (2019).

[46] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C.
Platt, et al. “Support vector method for novelty detection.” In:
Neural Information Processing Systems. Vol. 12. 1999, pp. 582–588.

[47] E. Schubert and A. Zimek. “ELKI: A large open-source library
for data analysis. ELKI Release 0.7.5 "Heidelberg".” In: CoRR
abs/1902.03616 (2019). arXiv: 1902.03616. url: https://arxiv.
org/abs/1902.03616.

[48] S. Y. Shin and H.-j. Kim. “Extended autoencoder for novelty de-
tection with reconstruction along projection pathway.” In: Ap-
plied Sciences 10.13 (2020), p. 4497.

[49] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A
novel anomaly detection scheme based on principal component clas-
sifier. Tech. rep. University of Miami, department of Eletrical
and Computer Engineering, 2003.

[50] E. H. Simpson. “The interpretation of interaction in contingency
tables.” In: Journal of the Royal Statistical Society: Series B (Method-
ological) 13.2 (1951), pp. 238–241.

[51] J. Soenen, E. Van Wolputte, L. Perini, V. Vercruyssen, W. Meert,
J. Davis, and H. Blockeel. “The effect of hyperparameter tun-
ing on the Comparative evaluation of unsupervised anomaly
detection methods.” In: Knowledge Discovery and Data Mining
Workshop on Outlier Detection and Description. 2021, pp. 1–9.

56 comparing unsupervised anomaly detection algorithms

[52] G. Steinbuss and K. Böhm. “Benchmarking Unsupervised Out-
lier Detection with Realistic Synthetic Data.” In: ACM Transac-
tions on Knowledge Discovery from Data 15.4 (2021), pp. 1–20.

[53] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. “Enhancing
effectiveness of outlier detections for low density patterns.” In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer. 2002, pp. 535–548.

[54] A. Thomas, A. Gramfort, and S. Clémençon. “Learning Hy-
perparameters for Unsupervised Anomaly Detection.” In: Con-
férence sur L’apprentissage automatique-Cap 2016. 2016.

[55] X. Xu, H. Liu, L. Li, and M. Yao. “A comparison of outlier de-
tection techniques for high-dimensional data.” In: International
Journal of Computational Intelligence Systems 11.1 (2018), pp. 652–
662.

[56] H. Zenati, M. Romain, C.-S. Foo, B.
Lecouat, and V. Chandrasekhar. “Adversarially learned ano-
maly detection.” In: International Conference on Data Mining. IEEE.
2018, pp. 727–736.

[57] Y. Zhao, Z. Nasrullah, and Z. Li. PyOD: A Python toolbox for
scalable outlier detection. 2019. eprint: 1901.01588.

[58] L. Zhou, W. Deng, and X. Wu. “Unsupervised anomaly localiza-
tion using VAE and beta-VAE.” In: arXiv preprint arXiv:2005.10686
(2020).

[59] A. Zimek, R. J. Campello, and J. Sander. “Ensembles for unsu-
pervised outlier detection: challenges and research questions a
position paper.” In: ACM SIGKDD Explorations Newsletter 15.1
(2014), pp. 11–22.

2.6 references 57

3
AUTOENCODERS FOR ANOMALY DETECT ION ARE
UNREL IABLE

Autoencoders are frequently used for anomaly detection, both in the unsu-
pervised and semi-supervised settings. They rely on the assumption that
when trained using the reconstruction loss, they will be able to reconstruct
normal data more accurately than anomalous data. Some recent works have
posited that this assumption may not always hold, but little has been done
to study the validity of the assumption in theory. In this work we show that
this assumption indeed does not hold, and illustrate that anomalies, lying
far away from normal data, can be perfectly reconstructed in practice. We
revisit the theory of failure of linear autoencoders for anomaly detection by
showing how they can perfectly reconstruct out of bounds, or extrapolate
undesirably, and note how this can be dangerous in safety critical applica-
tions. We connect this to non-linear autoencoders through experiments on
both tabular data and real-world image data, the two primary application
areas of autoencoders for anomaly detection.

3.1 introduction

Autoencoders are one of the most popular architectures within ano-
maly detection, either directly, or as a scaffold or integral part in
larger pipelines or architectures. They are commonly used across
a variety of domains, such as predictive maintenance [20], network
anomaly detection [28], and intrusion detection [15], but find much
contemporary use in computer vision anomaly detection, with appli-
cations such as industrial inspection [32], medical imaging [33], struc-
tural health monitoring [12] and video surveillance [13, 36]. Many of
these applications are safety critical, meaning that the reliability of
these algorithms is of utmost importance in order to prevent catas-
trophic failure and associated dangers and consequences.

Anomaly detection using autoencoders typically relies on using the
reconstruction loss, often the mean squared error (MSE), as a proxy
for “anomalousness”. The underlying assumption is that anomalies
are harder to reconstruct, and will therefore have a higher reconstruc-
tion loss. However, the validity of this assumption has been ques-
tioned in recent years. Merrill and Eskandarian [25] and Beggel, Pfeif-
fer, and Bischl [5] for example state that anomalies in the training
data might lead to reconstruction of anomalies, leading to unreliable
detectors. Some researchers have noted that reconstruction of unseen
anomalies might also occur in the semi-supervised setting, where the
training data is assumed to contain no anomalies [1, 2, 17, 38]. Yet,

59

60 autoencoders for anomaly detection are unreliable

little work has been done on the nature of failure and reliability of
autoencoders.

In this work we provide valuable insights into the reliability of au-
toencoders for anomaly detection. Following the seminal works of
Bourlard and Kamp [9], and Baldi and Hornik [3] we mathematically
and experimentally study autoencoder failure modes, whilst briefly
examining how various activation functions influence these failures.
We show that failure is not just a rarely occurring edge case, but
also show failure cases on tabular data and on real-world image data
commonly used in anomaly detection benchmarks. By doing this
we provide a foundation for future research in solving the demon-
strated unreliability of autoencoders for anomaly detection and fur-
thering our understanding of autoencoders. We show that for dif-
ferent architectures and activations functions, even with sufficiently
low-dimensional latent spaces, these problems persist. By developing
our understanding of autoencoders for anomaly detection, we hope
to function as a warning regarding the reliability of autoencoders in
practice, and as a scaffold for future developments striving for more
robust anomaly detection algorithms. To ensure reproducibility of all
experiments we use only open-source data and provide code for all
experiments.

3.2 related work

This work is not the first to recognize that autoencoders have several
issues as anomaly detectors. The most discussed type of failure is the
unwanted reconstruction of anomalies, which is also the focus of this
work. Several causes of this unwanted behavior have been proposed.

Many works focus on the unsupervised setting, and observe that
contrary to prior belief, autoencoders will fairly easily reconstruct
any anomalies present in the training data, leading to an unusable
detector [5, 11, 25, 31].

Several works cover the anomaly reconstruction problem within
the semi-supervised setting. Most commonly, it is only experimen-
tally observed that anomalies are well reconstructed [1, 2, 11, 17, 23,
26, 29, 38]. Based on these experimental results, some solutions have
been proposed. Gong et al. [17] mention that out-of-bounds recon-
struction can occur and propose adding a memory module to the
autoencoder to alleviate the issue. While the addition of the memory
module can aid in limiting out-of-bounds reconstruction, it also leads
to a severely decreased reconstruction ability and substantial added
complexity in training and optimizing the network. Zong et al. [38]
note that while some anomalies have a high reconstruction loss, some
occupy the region of normal reconstruction loss, and add a Gaussian
mixture model to the latent space to aid in detection of anomalies
under the assumption that anomalies occupy a low-density region in

3.2 related work 61

the latent space. Similarly, Cheng et al. [11] aim to detect anomalies
in the latent space by looking at the distance to the centroid. From
our experiments we can glean that relying on distances or densities
in the latent space does not always work in practice. Astrid et al. [1,
2] make use of constructed pseudo anomalies in training the autoen-
coder. They add adaptive noise to normal samples to generate pseudo
anomalies. In the reconstruction, they then optimize the reconstruc-
tion loss between the pseudo anomaly and the normal sample used
to generate it. While they show promising results and greater discrim-
inative power on benchmark datasets, they do not quantify to which
degree their performance gains can be attributed to the reduction of
the out-of-bounds reconstruction. Salehi et al. [29] aim to limit the
reconstruction of anomalies by generating adversarial samples. The
adversarial examples are generated by perturbing the normal sam-
ples, and minimizing the effect those perturbations have in the latent
space. This is similar to the concept of denoising autoencoders. Based
on our experiments, we do not think this results in a reliable autoen-
coder, as often adversarial anomalies can occupy the latent space close
to normal data.

Some authors have moved beyond the experimental, and propose
explanations for the anomaly reconstruction problem. For example
You et al. [35], Lu et al. [22] and Bercea, Rueckert, and Schnabel
[6] propose that anomaly reconstruction can happen because an au-
toencoder can learn an “identical shortcut", where both normal data
and anomalous data is effectively reconstructed using an identity
mapping. This point has however been countered by Cai, Chen, and
Cheng [10] who show that by constraining the latent space to be suf-
ficiently low dimensional, this problem can be avoided.

The second line of thought follows from VAE anomaly detection,
where Havtorn et al. [18] theorize that in out-of-distribution detection,
unwanted reconstruction can happen due to a high correlation be-
tween learned low-level features for in- and out-of-distribution data.

A third line of thought is proposed by Zhou [37] who propose
that reconstruction of out-of-distribution samples can happen due
to out-of-distribution data having smaller neural activations than in-
distribution data.

Finally, some works theorize that autoencoders can perfectly recon-
struct data due to the anomalies occupying the reconstruction hyper-
plane, or latent space manifold. Denouden et al. [14] for example note
this phenomenon, and aim to solve it by adding the Mahalanobis dis-
tance in the latent space to the loss. The most detailed work is that of
Yoon, Noh, and Park [34] who provide an example of the hyperplane
interpolating between clusters of data. They solve this by introducing
a normalized autoencoder which reinterprets the autoencoder as a
likelihood-based energy model. We specifically follow up on this line
of reasoning, and revisit mathematical proofs and provide new exper-

62 autoencoders for anomaly detection are unreliable

imental evidence of anomaly reconstruction due to both unwanted
extrapolation and inter-class interpolation.

3.3 background

3.3.1 Anomaly Detection

In practical anomaly detection, we attribute a score si =

fanomaly score(xi) for each sample xi ∈ X = Rn, i.e. the i-th row of da-
taset X with size m-by-n. The score should then be higher for anoma-
lous samples than for normal data.

When applied to some dataset consisting of both normal data and
anomalies, i.e. X = {Xnormal,Xanomalous}, a perfect anomaly detector
will assign higher scores to anomalies than to normal data:
mini(fanomaly score(x

anomalous
i)) > maxi(fanomaly score(x

normal
i)).

The two most common anomaly detection settings are unsuper-
vised and semi-supervised. Unsupervised anomaly detection is char-
acterized by having no discernible “train” and “test” splits. Instead,
we only consider a single dataset X = {Xnormal,Xanomalous}, where we
are uncertain which samples are anomalous and which are not. In the
semi-supervised setting we instead have a conventional “train” and
“test” set. The train set consists out of only normal samples: Xtrain =

{Xtrain, normal}, while the test set is unknown, and can contain both nor-
mal and anomalous samples: Xtest = {Xtest, normal,Xtest, anomalous}. In
this paper we will only consider the semi-supervised case, and sim-
plify the notation with X = Xtrain and xi referring to an individual
training data point, which in the semi-supervised case by definition
is not an anomaly. We then consider a new data point a to determine
whether this is an anomaly or not. In older literature, semi-supervised
anomaly detection is often called one-class classification.

3.4 out-of-bounds reconstruction

In this section we will show that autoencoders can yield zero-loss
reconstruction far away from all training data, and that these autoen-
coders will then fail to detect certain anomalies. Our analysis follows
the results of Bourlard and Kamp [9], moving from PCA to linear
autoencoders to non-linear autoencoders.

Out-of-bounds reconstruction is unwanted within the application
of anomaly detection, as it leads to a low reconstruction loss for data
that can be considered anomalous, thereby leading to false negatives.
These regions of out-of-bounds reconstruction can also be exploited
by targeted adversarial evasion attacks.

In the worst case, unwanted perfect reconstruction causes an ano-
maly a ∈ Rn far from all training data to be ranked as being less

3.4 out-of-bounds reconstruction 63

anomalous than or equally anomalous as all training data, that is:
fanomaly score(a) ⩽ mini(fanomaly score(xi)).

3.4.1 Anomaly Detection Using the Reconstruction Loss

Both PCA and autoencoders are dimensionality reduction techniques
that can be used to detect anomalies using their reconstruction loss,
commonly known as the mean squared error, or MSE. We can calcu-
late the reconstruction loss by comparing a sample xi to its reconstruc-
tion x̂i: LR(xi, x̂i) = 1

n

∑n
j=1

(
xi,j − x̂i,j

)2, for each sample vector xi.
This reconstruction loss often serves as a proxy for detecting anoma-
lies, with the underlying assumption that a higher reconstruction loss
indicates a higher likelihood of the sample being an anomaly.

For both PCA and autoencoders we want to find a lower-dimensional
encoding Y , e.g. d < n, in the encoding space Y = Rd by applying
the function g : X → Y. We then decode Y by transforming it back
into the space X through the decoder h : Y → X, yielding the recon-
structed data X̂. Summarizing, we learn the concrete transformations

X
g−→ Y

h−→ X̂.
We can then formulate the anomaly scoring function in terms of

the reconstruction loss, encoder, and decoder:
fanomaly score(xi) = LR(xi,h(g(xi))).

The worst case can then be formulated as: there exists an a far from
all training data such that LR(a, â) ⩽ mini(LR(xi, x̂i)).

3.4.2 PCA

In PCA, we factorize X as X = UΣVT using singular value decom-
position (SVD), where U and V are orthonormal matrices containing
the left- and right-singular vectors of X, respectively, and Σ is a diag-
onal scaling matrix. The encoding, or latent, space is then obtained
by projecting onto the first d right-singular vectors: Y = g(X) = XVd,
where Vd contains the first d columns of V. The transformation back
into X is given by X̂ = h(Y) = YVT

d .
Revisiting Bourlard and Kamp [9], we will show that there exist

some a ∈ Rn for which the reconstruction loss is zero, but that are
far away from the normal data, i.e. mini(dist(xi,a)) > δ, for any ar-
bitrary choice of δ. Hereby we prove that it is possible to find anoma-
lous, adversarial, examples with perfect out-of-bounds reconstruction.
We can prove this even in the semi-supervised setting, where we guar-
antee that the model was not exposed to anomalous data at training
time. Due to the semi-supervised setting being more restrictive, the
proofs also apply to the unsupervised case.

Let us now look for some a ∈ Rn. We aim to prove that if a lies in
the column space of Vd, then the reconstruction loss LR(a,h(g(a))) =
0.

64 autoencoders for anomaly detection are unreliable

We now need to show that there exists some a such that h(g(a)) =
a. For PCA, this condition can be written as:

aVdV
T
d = a.

Assume a is in the row space of VT
d . Then a can be expressed as a

linear combination of the rows in VT
d . Let c ∈ Rd be such that:

a = cVT
d .

Substitute a into the left-hand side of the reconstruction equation:

aVdV
T
d = cVT

dVdV
T
d .

Since Vd is composed of orthonormal columns, VT
dVd = Id, where

Id is the d-by-d identity matrix. Therefore:

cVT
dVdV

T
d = cVT

d = a.

Thus, a satisfies the condition h(g(a)) = a, implying that the recon-
struction loss LR(a,g(h(a))) = 0.

Now we will prove that there exists some adversarial example
a ∈ Rn that is far from all normal data, i.e. mini(dist(xi,a)) > δ,
for an arbitrary δ and the Euclidean distance metric, but still has a
reconstruction loss LR(a,g(h(a))) = 0.

Let us first recall that any a in the column space of Vd will have
zero reconstruction loss.

If we then define a = xiVdV
T
d + cVT

d , a will still have zero recon-
struction loss.

Then for the Euclidean distance it follows that:

dist(xi,a)2 = ∥xi − xiVdV
T
d∥2 + ∥a− xiVdV

T
d∥2,

or the squared Euclidean distance is equal to the distance from xi
to its projection onto the hyperplane xiVdV

T
d plus the distance from

that projection xiVdV
T
d to a.

It then follows that:

dist(xi,a)2 ⩾ ∥a− xiVdV
T
d∥2

= ∥xiVdV
T
d + cVT

d − xiVdV
T
d∥2 = ∥cVT

d∥2,

which we can increase to arbitrary length. This can be intuited as
moving the projection of xi along the hyperplane.

To ensure that we increase the distance to all points xi rather than
just a single one, we need to move outward starting from a sample on
the convex hull enclosing XVd. Any point in this convex set, that is
the set of points occupying the convex hull, can be moved along the
hyperplane to increase the distance to all points xiVd, and therefore

3.4 out-of-bounds reconstruction 65

to all points xi as long as c lies in the direction from xiVd to the
exterior of the convex hull.

We can thus always find a a = xiVdV
T
d + cVT

d , for some xiVd in
the convex set of XVd and choose c so that it points from xiVd to
the exterior of the convex hull and is of sufficient length such that
mini(dist(xi,a)) > δ, for an arbitrary δ.

Hence, all vectors a ∈ Rn found in this way are constructed anoma-
lies, or adversarial examples, that are far from all normal data, but
still have zero reconstruction loss.

We posit that the same principle applies to other distance metrics,
and the intuition is that this follows the same line of reasoning as
presented here for the Euclidean distance.

3.4.3 Linear Autoencoders

Linear neural networks, like PCA, can also exhibit out-of-bounds re-
construction for certain anomalous data points.

Linear autoencoders consist of a single linear encoding layer and a
single linear decoding layer. Given a mean-centered dataset X, the en-
coding and decoding transformations can be represented as follows:

Y = g(X) = XWenc,

X̂ = h(Y) = YWT
dec = XWencW

T
dec

where Wenc is the n-by-d weight matrix of the encoder, and WT
dec is

the d-by-n weight matrix of the decoder. We assume the autoencoder
to have converged to the global optimum. Note that we define WT

dec
in its transposed form to illustrate its relation to VT

d . Due to the full
linearity of the model, even multiple layer networks can be simplified
to a single multiplication. It is known that a well-converged linear
autoencoder finds an encoding in the space spanned by the first d

principal components [3]. In other words, the encoding weight matrix
can be expressed in terms of the first d principal components and
some invertible matrix C:

Wenc = VdC.

At the global optimum WT
dec can be expressed as the inverse of Wenc :

WT
dec = W−1

enc = (VdC)−1 = C−1V−1
d = C−1VT

d .

To show that linear autoencoders can exhibit perfect out-of-bounds
reconstruction, we follow the same lines as for PCA.

Let us now look for some a ∈ Rn. We aim to prove that if a lies in
the column space of Vd, then the reconstruction loss LR(a,h(g(a))) =
0.

66 autoencoders for anomaly detection are unreliable

We need to show that there exists some a such that h(g(a)) = a.
For linear autoencoders, this condition can be written as:

aWencW
T
dec = a.

Assume a is in the row space of VT
d . Then a can be expressed as a

linear combination of the rows in Vd. Let c ∈ Rd be such that:

a = cVT
d .

Then it follows that:

aWencW
T
dec = cVT

dWencW
T
dec

= cVT
dVdCC−1VT

d = cVT
dVdV

T
d = cVT

d = a,

indicating that a satisfies the condition h(g(a)) = a, implying that
the reconstruction loss LR(a,g(h(a))) = 0.

By proving this, the case of the linear autoencoder reduces to that
of PCA, with the same proof that adversarial examples satisfying
mini(dist(xi,a)) > δ, with a reconstruction loss LR(a,g(h(a))) = 0,
exist.

An extension of this proof to the case of linear networks with bias
terms applied on non-centered data can be found in Appendix 1.

3.4.4 Non-Linear Autoencoders

In this section we show that datasets exist for which we can prove
that non-linear neural networks perform the same unwanted out-of-
bounds reconstruction. Then we experimentally show that this be-
havior indeed occurs in more complex real-world examples. In this
way, we illustrate how autoencoders demonstrate unreliability even
in real-world scenarios.

3.4.4.1 Failure of a Non-Linear Network with ReLU Activations

We can show on a simple dataset that unwanted reconstruction be-
havior can occur in non-linear autoencoders. We consider a two-di-
mensional dataset X consisting out of normal samples xi = αi(1, 1),
where αi is some scalar. Simply put, every normal sample xi occupies
the diagonal. This dataset can be perfectly reconstructed by a linear
autoencoder with Wenc = β(1, 1)T , where β is some scalar. The sim-
plest non-linear autoencoder with ReLU activation will find the same
weights, but with a bias such that xiWenc + benc > 0 for all xi ∈ X,
i.e. benc ⩾ mini(xiWenc). This will then lead to a perfect reconstruc-
tion for all xi. Adversarial anomalies a can also be easily found as
a = c(1, 1), where c ≫ maxi(xi)

(1,1) is some sufficiently large scalar such
that mini(dist(xi,a)) > δ is satisfied. We theorize that even beyond

3.4 out-of-bounds reconstruction 67

this simple case, similar linear behavior can occur beyond the con-
vex hull that the normal data occupies. We experimentally show this
anomaly reconstruction behavior in later sections.

3.4.4.2 Tabular Data

On more complex datasets, we observe similar behavior. We have syn-
thesized several two-dimensional datasets to show how non-linear
autoencoders behave when used for anomaly detection. These data-
sets, as well as contours of the MSE of autoencoders trained on these
datasets, are visualized in Figure 6. In each of these cases, we have
synthesized a dataset by sampling 100 points per distribution, either
from a single or from two Gaussians as in 6a, 6b, 6e, and 6f, or from
x2 = x21 with added Gaussian noise in 6c and 6d. In all cases we
use an autoencoder with layer sizes [2,5,1,5,2], except for 6d, where
we use layer sizes of [2,100,20,1,20,100,2] to better model the non-
linearity of the data. All layers have ReLU (Subfigures 6a, 6b, 6c, and
6d), or sigmoid (Subfigures 6e and 6f) activations, except for the last
layer, which has a linear activation. In these figures the color red is
used to highlight those areas where the autoencoder is able to nearly
perfectly reconstruct the data, i.e. MSE < ϵ = 0.1.

relu activation failure on tabular data
We can readily observe some of the problematic behavior of au-

toencoders as anomaly detectors. Firstly, in Figure 6a we observe that
well outside the bounds of the training data there is an area with
a near-perfect reconstruction. Worryingly, the reconstruction loss is
lower than for a large part of the area which the normal data occu-
pies. If we move in the (−1,−1) direction, the encoder and decoder
will no longer match perfectly. Even so, problematically low recon-
struction losses can be found in this direction. In Figures 6c and 6d
we see the same linear out-of-bounds behavior. In each of these cases,
the mismatch between encoder and decoder in the linear domain is
less noticeable, leading to even larger areas of near-perfect reconstruc-
tion. Lastly, in Figure 6b that there is an area between the two clusters
with a good reconstruction. Likely the units responsible for this area
are still close to their initialization, and due to the simple shallow
network architecture can not meaningfully contribute to the recon-
struction of any samples.

Our intuition of this behavior directly relates to the proof of out-of-
bounds reconstruction we have provided for linear autoencoders. At
the edge of the data space, only a few of the ReLU neurons activate.
Beyond this edge, no new neurons will activate, nor will any of the
activated ones deactivate. This can lead to linear behavior on some
edge of the data space, i.e., in this area the network reduces to a
linear transformation Wenc. If we now synthesize some a such that it
lies in the column space of Wenc, we can again find some adversarial

68 autoencoders for anomaly detection are unreliable

anomalies a = cWT
enc. Like we have observed in Figure 6a, there may

be a mismatch between the encoder and decoder, even at the global
optimum, so we might not be able to increase c towards infinity and
still find adversarial examples with LR(a,g(h(a))) < ϵ.

sigmoid activation autoencoders
Nowadays, full sigmoid networks have mostly fallen out of favor

in deeper networks due to their vanishing gradients [16, 19]. How-
ever, sigmoids are more attractive to use in anomaly detection be-
cause they lead to networks that do not exhibit the hyperplane issues
that the ReLU suffers from. While sigmoids have the more desirable
property of tapering off at high or low input, making it hard to per-
fectly reconstruct data far away from normal data, autoencoders with
just sigmoid activation can still behave unexpectedly, albeit less so
than those with ReLU activation.

We can see in Figure 6e that the data is nicely approximated by
a sigmoid autoencoder. It extends nicely to the first and last samples
on the direction of the first principal component, and does not extend
beyond that. When we extend this example to multimodal data, as in
Figure 6f, we can see different undesirable behavior arising. There ex-
ists an area where the sigmoids reconstructing both clusters intersect.
Due to the two distinct sigmoids mixing, we can find a hyperplane
orthogonal to the first principal component where the reconstruction
loss is much lower than would be expected. While in this case there
are no points on the hyperplane which would have a lower recon-
struction loss than all normal data, there is still a substantial area
where the reconstruction loss is lower than for many of the normal
data points.

other activation functions
While we have explicitly discussed the ReLU and sigmoid acti-

vation functions, the behavior shown is similar for other activation
functions. Effectively, we can categorize most activation functions as
those having an order of continuity of C0 like the ReLU, or C∞ like
the sigmoid. In summary, activation functions with an order of conti-
nuity of C0 suffer most from out-of-bounds reconstruction, but allow
for more easily trainable deep networks. In contrast, activation func-
tions with an order of continuity of C∞ generally have more desirable
properties for anomaly detection, but are harder to use in deep net-
works due to the vanishing gradient.

3.4.5 Convolutional Autoencoders

All the previous examples clearly illustrate autoencoders’ possible
failure and unreliability when used for anomaly detection on tabular
data. Yet, many applications of anomaly detection are in computer

3.4 out-of-bounds reconstruction 69

(a) (b)

(c) (d)

(e) (f)

Figure 6: Plots of the contours of the reconstruction loss of non-linear au-
toencoders when applied to 3 distinct datasets. The datasets con-
sist of 100 samples from a 2D Gaussian (a, e), 100 samples for
each of 2 different 2D Gaussians (b, f), and 100 samples from a
classic banana-shaped function with Gaussian noise (c, d). In (a,
b, c, e, f) a [2,5,1,5,2] autoencoder is used, while in (d) a deeper
[2,100,20,1,20,100,2] autoencoder is used. The contour plot is col-
ored red whenever the MSE is below a set threshold ε < 0.1 to
indicate a near-perfect reconstruction. Note that the color scaling
is exponential to better visualize the MSE loss.

70 autoencoders for anomaly detection are unreliable

vision, where anomaly detection can be used to detect foreign objects.
Typical examples of computer vision anomaly detection are surveil-
lance, where videos are analyzed to find possible security threats [27,
30], structural health monitoring [4], and industrial inspection [7].

For most applications of autoencoders on image data, the archi-
tecture is fairly straightforward. ReLU activation functions are most
commonly used throughout the network, with a sigmoid activation at
the final layer. Connections to and from the bottleneck layer are often
chosen to be just linear, to allow for a richer internal representation.
As most layers have ReLU activation functions, these networks do not
suffer from the vanishing gradient. Yet, due to using a sigmoid at the
last layer, these networks suffer less from the issues encountered in
full ReLU/linear networks as discussed in Section 3.4.4.2. Nonethe-
less, we will show that even on more complex real-world problems,
autoencoders remain unreliable and are often able to reconstruct out-
of-bounds.

3.4.5.1 Failure on real-world data: MNIST

To show that deeper non-linear networks trained on real-world im-
age data can still undesirably reconstruct anomalies we will study
an autoencoder for anomaly detection that was trained on the well-
known MNIST dataset [21]. Benchmarking computer vision anomaly
detection algorithms is not as standardized as classification bench-
marking, as datasets with “true” anomalies are exceedingly rare. The
common method for benchmarking these algorithms is to take a clas-
sification dataset and select a subset of classes as “normal” data and
another distinct subset as “anomalies”. This is analogous to other,
more-developed, fields such as tabular anomaly detection [8]. There
is no general consensus on which digits are taken as the normal data,
and how many. In our experiments, both shown and non-shown, we
have tried several different combinations and observe that in some
cases out-of-bounds reconstruction occurs.

The 2D convolutional autoencoder we will discuss has a 2-layer en-
coder and 2-layer decoder. Down- and upsampling to and from the
latent space is done using a fully connected linear layer. The convolu-
tional layers all use ReLU activations, except for the last one, which
is a sigmoid to bound the data to the original 0-1 range. In these ex-
periments, the latent space is set to be two dimensional, far below
the maximum to avoid the "identical shortcut" as noted by Cai, Chen,
and Cheng [10]. This serves as proof that the "identical shortcut" is
not the cause of anomaly reconstruction. In Figures 7a and 7b we
show how the reconstruction loss behaves in the latent space when
we apply this autoencoder on a train set consisting out of a subset
of digits. These contourplots are constructed by sampling each point
in the latent space, decoding it to get an artificial sample, and then
calculating the reconstruction loss between the artificial sample and

3.4 out-of-bounds reconstruction 71

its reconstruction loss. We subsequently show the latent representa-
tions of all normal data in the same space. We should note that as
the encoder is a many-to-one mapping, the reconstruction loss in the
grid does not necessarily correspond to the reconstruction loss of a
real sample occupying the same point in that grid.

Looking at Figure 7a we see that a 2D latent space is able to sepa-
rate the digits 4 and 5, with 7 occupying the middle between the two
classes. As expected, the reconstruction loss grows the larger the dis-
tribution shift becomes. However, the reconstruction loss landscape is
fairly skewed, with the MSE starkly increasing towards the right, and
slowly towards any other direction, indicating model bias. Most no-
tably, around (−4.2,−5.2) we observe an out-of-bounds area of low
reconstruction loss. Due to this type of visualization, we can easily
generate an adversarial anomaly by simply decoding the latent space
sample: a = h((−4.2,−5.2)). This leads to the adversarial anomaly
shown in Figure 7c. The adversarial anomaly shares some features
with the digits used for training, but does not resemble any of them
specifically, making it a clear false negative. Indeed, this sample ful-
fills our earlier criterion of LR(ai, âi) ⩽ mini(LR(xi, x̂i)), as for this
example LR(ai, âi) = 0.014, and mini(LR(xi, x̂i)) = 8.47.

We also looked at a simpler example, where we train on the digits
0 and 1 to get a clearer separation of the two classes. In our previ-
ous experiments with sigmoid activation functions in Section 3.4.4.2
we observed that at the intersection of the two modalities some un-
wanted interpolation can occur. In Figure 7b we can observe the same
thing, where at the intersection of the two classes we have a very
small area in the latent space with a very low reconstruction loss.
The normal data close to this area is however not well reconstructed.
By generating an artificial sample from the lowest MSE in this la-
tent space, at (0.535,−0.353), we can find an adversarial anomaly
a = h((0.535,−0.353)) with LR(ai, âi) = 0.022, substantially lower
than mini(LR(xi, x̂i)) = 1.61. This adversarial anomaly is visualized
in Figure 7d. We find, unsurprisingly, that the adversarial anomaly
here is a mix of the features of the 0 and 1 class.

Similar to our experiments on the digits 4, 5, and 7 autoencoder,
we identified an area at the edge of the 1 class where the reconstruc-
tion loss is low, but where few normal data points can be found. In
contrast to our previous experiment, this area corresponds to a more
uncommon diagonally drawn 1, as shown in Figure 7e, which is still
within the bounds of what we can consider normal data. From this
we can conclude that although out-of-bounds reconstruction can be
unwanted, in some cases it aligns with the expectations of an ano-
maly detector. More generally speaking we observe that some gener-
alization of the autoencoder can align with the expectation of a user.
In some cases, generalization can lead to unwanted inter- or extrap-
olation. This unwanted generalization can cause anomalous data to

72 autoencoders for anomaly detection are unreliable

(a) (b)

(c) (d) (e)

Figure 7: Plots of the contours of the reconstruction loss in the 2D latent
space of a convolutional autoencoder when applied on subsets of
MNIST (a, b), plots of constructed adversarial anomalies (c, d), and
a plot of non-problematic out-of-bounds reconstruction (e). Sub-
plots (a, c) show the results for an autoencoder trained on digits
4, 5, and 7, and Subplots (b, d, e) show the results for an autoen-
coder trained on digits 0, and 1. The visualized samples, i.e., the
points in (a, b) are the latent representations of the training data.
The shown digits are constructed by sampling from the ε < 0.1
zone within the marked area, and correspond to these from left to
right. The contour plot is colored red whenever the MSE is below
a set threshold ε < 0.1 to indicate a near-perfect reconstruction.
Note that the color scaling is exponential to better visualize the
MSE loss.

stay fully undetected. This is similar to the phenomena observed by
Nalisnick et al. [26] for variational autoencoders, who observe some
out-of-distribution samples to remain fully undetected.

While conducting the experiments on the MNIST data, we found
that the problems shown above do not seem to arise in every case.
We observe that depending on the random seed used for initializa-
tion and the digits selected as normal data, the out-of-bounds re-
construction may or may not be easily detected. In some cases, the
out-of-bounds behavior seems very non-monotonous, meaning that
the regions of reconstruction disappear one epoch, and reappear the
next. This solidifies our belief that autoencoders may fail, but in many
cases outwardly seem to work well. The crux lies in the fact that in
a semi-supervised or unsupervised setting, it is not possible to accu-
rately judge whether a network will fail on future data. This is further

3.5 conclusion 73

complicated by the fact that due to the heterogeneity of anomalies,
some may be detected while others go unnoticed.

3.5 conclusion

In this work we provide an analysis of the unwanted reconstruc-
tion of anomalies that autoencoders can exhibit when used for ano-
maly detection. We move beyond existing theories of unwanted recon-
struction happening in interpolation and show how unwanted out-of-
bounds reconstruction can occur when extrapolating as well, and how
this can lead to anomalies staying fully undetected. We show through
several experiments that these issues can arise in real-world data and
not just in theory. This leads us to some safety concerns, where au-
toencoders can catastrophically fail to detect obvious anomalies. This
unreliability can have major consequences when trust is put into the
anomaly detector in safety-critical applications.

In general, we solidify the growing belief that the reconstruction
loss is not a reliable proxy for anomaly detection, especially when
the network is explicitly trained to lower the reconstruction loss for
normal data without constraining the reconstruction capability be-
yond the bounds of the normal training data such as has been done
by Yoon, Noh, and Park [34]. We find that this issue is most preva-
lent for (conditionally) linear units such as the ReLU, but similar is-
sues exist for sigmoid networks, albeit to a lesser degree. The recon-
struction issue is mostly caused by the fact that a point in the lower-
dimensional latent space corresponds to a hyperplane in the original
space that the data occupies. Next to interpolation and out-of-bounds
reconstruction, we find that anomalies can remain undetected when
they occupy the latent space where normal classes border.

Users of autoencoders for anomaly detection should be aware of
these issues. Good practice would be to at least check whether a
trained non-linear autoencoder exhibits the undesirable out-of-bounds
reconstruction. In this paper’s illustrative examples, we checked for
this by searching for adversarial anomalies. This was relatively easy,
as it could be done either visually in the latent space, or through a
simple 2D grid search. For more complex datasets, requiring larger
latent spaces, a feasible strategy might be to again synthesize samples
from the latent space and formulate the search for adversarial anoma-
lies as an optimization in terms of projected gradient descent [24].

By describing exactly how autoencoders are unreliable anomaly
detectors by describing anomaly reconstruction, we hope to provide
a scaffold for future research on fixing and avoiding the identified
issues in a targeted manner.

74 autoencoders for anomaly detection are unreliable

acknowledgments and disclosure of funding

The research reported in this chapter has been partly funded by the
NWO grant NWA.1160.18.238 (PrimaVera); as well as BMK, BMDW,
and the State of Upper Austria in the frame of the SCCH competence
center INTEGRATE [(FFG grant no. 892418)] part of the FFG COMET
Competence Centers for Excellent Technologies Programme. We also
want to thank Alex Kolmus and Marco Loog for the excellent input
and discussions on this topic.

references

[1] M. Astrid, M. Z. Zaheer, D. Aouada, and S.-I. Lee. “Exploit-
ing autoencoder’s weakness to generate pseudo anomalies.” In:
Neural Computing and Applications (2024), pp. 1–17.

[2] M. Astrid, M. Z. Zaheer, J.-Y. Lee, and S.-I. Lee. “Learning not
to reconstruct anomalies.” In: arXiv preprint arXiv:2110.09742
(2021).

[3] P. Baldi and K. Hornik. “Neural networks and principal compo-
nent analysis: Learning from examples without local minima.”
In: Neural Networks 2.1 (1989), pp. 53–58.

[4] Y. Bao, Z. Tang, H. Li, and Y. Zhang. “Computer vision and
deep learning–based data anomaly detection method for struc-
tural health monitoring.” In: Structural Health Monitoring 18.2
(2019), pp. 401–421.

[5] L. Beggel, M. Pfeiffer, and B. Bischl. “Robust anomaly detection
in images using adversarial autoencoders.” In: Machine Learn-
ing and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I. Springer. 2020, pp. 206–222.

[6] C. I. Bercea, D. Rueckert, and J. A. Schnabel. “What do aes
learn? challenging common assumptions in unsupervised ano-
maly detection.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2023,
304–314.

[7] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Ste-
ger. “The MVTec anomaly detection dataset: a comprehensive
real-world dataset for unsupervised anomaly detection.” In: In-
ternational Journal of Computer Vision 129.4 (2021), pp. 1038–1059.

[8] R. Bouman, Z. Bukhsh, and T. Heskes. “Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We
Need?” In: Journal of Machine Learning Research 25.105 (2024),
pp. 1–34. url: http://jmlr.org/papers/v25/23-0570.html.

3.5 references 75

[9] H. Bourlard and Y. Kamp. “Auto-association by multilayer per-
ceptrons and singular value decomposition.” In: Biological Cy-
bernetics 59.4 (1988), pp. 291–294.

[10] Y. Cai, H. Chen, and K.-T. Cheng. “Rethinking autoencoders for
medical anomaly detection from a theoretical perspective.” In:
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer. 2024, pp. 544–554.

[11] Z. Cheng, S. Wang, P. Zhang, S. Wang, X. Liu, and E. Zhu. “Im-
proved autoencoder for unsupervised anomaly detection.” In:
International Journal of Intelligent Systems 36.12 (2021), pp. 7103–
7125.

[12] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y.-H. Wang.
“Anomaly detection of defects on concrete structures with the
convolutional autoencoder.” In: Advanced Engineering Informat-
ics 45 (2020), p. 101105.

[13] E. Cruz-Esquivel and Z. J. Guzman-Zavaleta. “An examination
on autoencoder designs for anomaly detection in video surveil-
lance.” In: IEEE Access 10 (2022), pp. 6208–6217.

[14] T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan,
and S. Vernekar. “Improving reconstruction autoencoder out-
of-distribution detection with mahalanobis distance.” In: arXiv
preprint arXiv:1812.02765 (2018).

[15] F. Farahnakian and J. Heikkonen. “A deep auto-encoder based
approach for intrusion detection system.” In: 2018 20th Interna-
tional Conference on Advanced Communication Technology (ICACT).
IEEE. 2018, pp. 178–183.

[16] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neu-
ral Networks.” In: Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics. Ed. by G. Gordon, D.
Dunson, and M. Dudík. Vol. 15. Proceedings of Machine Learn-
ing Research. Fort Lauderdale, FL, USA: PMLR, 2011, pp. 315–
323. url: https://proceedings.mlr.press/v15/glorot11a.
html.

[17] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh,
and A. v. d. Hengel. “Memorizing Normality to Detect Ano-
maly: Memory-augmented Deep Autoencoder for Unsupervised
Anomaly Detection.” In: IEEE International Conference on Com-
puter Vision (ICCV). 2019.

[18] J. D. Havtorn, J. Frellsen, S. Hauberg, and L. Maaløe. “Hierar-
chical vaes know what they don’t know.” In: International Con-
ference on Machine Learning. PMLR. 2021, pp. 4117–4128.

[19] S. Hochreiter. “Untersuchungen zu dynamischen neuronalen
Netzen.” In: Diploma, Technische Universität München 91.1 (1991),
p. 31.

76 autoencoders for anomaly detection are unreliable

[20] P. Kamat and R. Sugandhi. “Anomaly detection for predictive
maintenance in industry 4.0-A survey.” In: E3S Web of Confer-
ences. Vol. 170. EDP Sciences. 2020, p. 02007.

[21] Y. LeCun. “The MNIST database of handwritten digits.” In:
http://yann. lecun. com/exdb/mnist/ (1998).

[22] R. Lu, Y. Wu, L. Tian, D. Wang, B. Chen, X. Liu, and R. Hu.
“Hierarchical vector quantized transformer for multi-class un-
supervised anomaly detection.” In: Advances in Neural Informa-
tion Processing Systems 36 (2023), pp. 8487–8500.

[23] O. Lyudchik. Outlier detection using autoencoders. Tech. rep. CERN,
2016.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
“Towards deep learning models resistant to adversarial attacks.”
In: arXiv preprint arXiv:1706.06083 (2017).

[25] N. Merrill and A. Eskandarian. “Modified autoencoder training
and scoring for robust unsupervised anomaly detection in deep
learning.” In: IEEE Access 8 (2020), pp. 101824–101833.

[26] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Laksh-
minarayanan. “Do Deep Generative Models Know What They
Don’t Know?” In: International Conference on Learning Represen-
tations. 2019.

[27] R. Nayak, U. C. Pati, and S. K. Das. “A comprehensive review
on deep learning-based methods for video anomaly detection.”
In: Image and Vision Computing 106 (2021), p. 104078.

[28] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut. “Net-
work anomaly detection using LSTM based autoencoder.” In:
Proceedings of the 16th ACM Symposium on QoS and Security for
Wireless and Mobile Networks. 2020, pp. 37–45.

[29] M. Salehi, A. Arya, B. Pajoum, M. Otoofi, A. Shaeiri, M. H. Ro-
hban, and H. R. Rabiee. “Arae: Adversarially robust training of
autoencoders improves novelty detection.” In: Neural Networks
144 (2021), pp. 726–736.

[30] W. Sultani, C. Chen, and M. Shah. “Real-world anomaly detec-
tion in surveillance videos.” In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2018, pp. 6479–
6488.

[31] A. Tong, G. Wolf, and S. Krishnaswamy. “Fixing bias in re-
construction-based anomaly detection with lipschitz discrimi-
nators.” In: Journal of Signal Processing Systems 94.2 (2022), pp. 229–
243.

[32] D.-M. Tsai and P.-H. Jen. “Autoencoder-based anomaly detec-
tion for surface defect inspection.” In: Advanced Engineering In-
formatics 48 (2021), p. 101272.

3.5 references 77

[33] Q. Wei, Y. Ren, R. Hou, B. Shi, J. Y. Lo, and L. Carin. “Ano-
maly detection for medical images based on a one-class clas-
sification.” In: Medical Imaging 2018: Computer-Aided Diagnosis.
Vol. 10575. SPIE. 2018, pp. 375–380.

[34] S. Yoon, Y.-K. Noh, and F. Park. “Autoencoding under nor-
malization constraints.” In: International Conference on Machine
Learning. PMLR. 2021, pp. 12087–12097.

[35] Z. You, L. Cui, Y. Shen, K. Yang, X. Lu, Y. Zheng, and X. Le. “A
unified model for multi-class anomaly detection.” In: Advances
in Neural Information Processing Systems 35 (2022), pp. 4571–4584.

[36] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S. Hua. “Spatio-
temporal autoencoder for video anomaly detection.” In: Proceed-
ings of the 25th ACM International Conference on Multimedia. 2017,
pp. 1933–1941.

[37] Y. Zhou. “Rethinking reconstruction autoencoder-based out-of-
distribution detection.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2022, pp. 7379–
7387.

[38] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho,
and H. Chen. “Deep autoencoding gaussian mixture model for
unsupervised anomaly detection.” In: International Conference
on Learning Representations. 2018.

4
ACQUIR ING BETTER LOAD EST IMATES BY
COMB IN ING ANOMALY AND CHANGE PO INT
DETECT ION IN POWER GR ID T IME SER IES
MEASUREMENTS

In this chapter we present novel methodology for automatic anomaly and
switch event filtering to improve load estimation in power grid systems.
By leveraging unsupervised methods with supervised optimization, our ap-
proach prioritizes interpretability while ensuring robust and generalizable
performance on unseen data. Through experimentation, a combination of
binary segmentation for change point detection and statistical process con-
trol for anomaly detection emerges as the most effective strategy, specifically
when ensembled in a novel sequential manner. Results indicate the clear
wasted potential when filtering is not applied. The automatic load estimation
is also fairly accurate, with approximately 90% of estimates falling within
a 10% error margin, with only a single significant failure in both the min-
imum and maximum load estimates across 60 measurements in the test set.
Our methodology’s interpretability makes it particularly suitable for critical
infrastructure planning, thereby enhancing decision-making processes.

4.1 introduction

The global energy landscape is undergoing a transformative shift to-
wards sustainability, driven by the urgent need to mitigate climate
change and reduce reliance on fossil fuels [38]. This process, more
commonly known as the energy transition, presents a multitude of
challenges that must be addressed to achieve a successful energy tran-
sition. These challenges encompass technical, economic, social, and
political aspects, demanding innovative solutions and collaborative
efforts on a global scale [18]. One of the key bottlenecks in implement-
ing the energy transition in the Netherlands is the growth of electrical
infrastructure [47]. In order to replace fossil fuel energy sources, the
capacity of the power grid needs to increase significantly. However,
increasing the capacity of the power grid involves several challenges.
Due to a scarcity of resources [25] identification of key areas where
additional capacity is most needed is imperative.

In addition to the need for additional capacity, the way the grid
is being used is also changing [5]. Due to the increasing reliance on
solar and wind energy, the centralized production of energy is a fad-
ing paradigm. Decentralized production in the form of a multitude of
wind and solar parks, as well as solar panels covering a large percent-
age of urban housing, are changing the ways in which electricity is

79

80 acquiring better load estimates

distributed [28, 44]. Where previously gas was the primary source of
heating in houses, heat pumps are increasingly being used in house-
holds [17]. Electrical cooling of houses has seen a substantial increase
in recent years [12]. Electric motors are quickly replacing fossil fuel
combustion engines in personal vehicles [40]. These vehicles are now
often charged at home, at the workplace, or near other hubs [10].
These changing requirements drive a need to expand the power grid
in a smart manner, where expansion is done there where it is most
needed in the near future.

Next to expansion, smarter use of the existing grid is essential. This
can be done through for example flexible energy contracts, the use of
redundant grid capacity for power generation, and the use of batter-
ies [33]. Better insight into grid usage over time is needed to facilitate
these changes. With more measurements this can be achieved, but
this means also more data that needs to be cleaned before it can be
used for analysis.

In order to determine key points of expansion, an accurate overview
of the current state of grid capacity needs to be made. In this study,
we specifically study primary substation-level measurements on the
Dutch power grid managed by Alliander. In order to know what per-
centage of a primary substation’s capacity is being used, accurate
estimates of the minimum and maximum load of the subgrid that
substation supplies must be made. This process is more commonly
known as demand modeling [3]. Primary substation-level time series
load measurements, however, cannot be directly interpreted with-
out giving a distorted view. These measurements are contaminated
with anomalies, for example caused by measurement errors, and with
switch events. In a switch event power from different primary substa-
tions is rerouted to or from part of the measured primary substation’s
route. An example of this can be found in Figure 8, where due to a
cable failure power is rerouted from primary substation 1 to supply
secondary substations E and F. Rerouting power reduces the blackout
time in case of damage to a cable in the power grid, and is possible
when the grid is sufficiently redundant to circumvent the broken ca-
ble. Switch events can also happen when long-term maintenance is
performed on a primary substation or any its cables or secondary
substations. Switch events can have a large range of possible lengths,
from a few minutes, to multiple months, depending on how fast the
underlying problem is resolved. Both of these, measurement errors,
which we will call anomalies, and switch events, need to be filtered
out to get an accurate estimate of the load profile. This more accurate
load profile can be used directly for more optimized usage of the grid.
It can then be used to find the true minimum and maximum load of
the substation under normal operating conditions, so the redundancy
capacity can be added separately. The task of detecting which parts

4.1 introduction 81

2

A D

B E

C F

1

X

2

A

B E

C F

1

X

No Switch
Event

Switch
Event

Primary
Substations

Secondary
Substations

Switch

Cable
Failure

D

Figure 8: An illustration of a switch event. The diamonds numbered 1 and
2 indicate two primary substations. The squares named A-F indi-
cate secondary substations. The circle named X indicates a switch.
Solid lines indicates connections between substations, and dashed
lines indicate connections to other substations outside of the figure.
The primary substation and the secondary substations powered by
it are colored light blue or light yellow for primary substations 1
and 2 respectively. When a switch event occurs, for example due to
cable failure between secondary substations D and E, power will
be supplied from primary substation 1 rather than 2. This is indi-
cated by the switch X color change from red to green. This leads to
a temporary increase in apparent power measured at 1 and a de-
crease at 2, as illustrated with the apparent power measurements
as a function of time at the bottom of the figure.

of a load measurement represent the normal situation can be seen as
a time series segmentation task.

Traditionally, these load measurement are manually segmented and
annotated by domain experts within the Alliander organization. This
procedure is however extremely time consuming, and produces an-
notations with a high percentage of label noise. This label noise is of
little concern in determining the minimum and maximum loads, as
the annotation procedure is generally optimized in such a way that
these loads are as accurate as possible. The resulting annotation can
however not be used for other purposes such as year-round usage
insights. An automated annotation procedure, capable of producing
high-quality annotations, can therefore both free up valuable domain
expert time, as well as allow for detailed studies on load measure-
ment data previously unfeasible. Because economically and logisti-
cally vital decisions are made based on these load estimates, it is ex-
tremely important that any machine learning model automating this
procedure is highly interpretable.

82 acquiring better load estimates

For smart grids, change point and anomaly detection algorithms
have been broadly applied. Zhang, Wu, and Boulet [46] describe mul-
tiple time series anomaly detection algorithms used in various ap-
plications across smart grids. They differentiate between point, con-
textual, and pattern anomalies. Thomas, Kurupath, and Nair [36] de-
scribe a novel method tailored to detecting islanding. In addition to
islanding, their method, which uses k-means clustering and empirical
mode decomposition, is able to detect load switch events and other
faults. Neagoe et al. [26] used change point detection in order to de-
tect multi-year patterns in hydropower generation in Romania. Wang
and Ahn [41] combine a regression-based anomaly detection model
with SVM, kNN and a cross-entropy loss function to detect anomalies
in a Tanzanian solar power plant. Wang, Yao, and Papaefthymiou [42]
present methodology for simultaneously performing load forecasting
and semi-supervised anomaly detection and apply it to the UCI elec-
tric load dataset. They report higher specificity and sensitivity than
neural network-based methods, but find similar F1 scores. For shorter
time series, Rajabi et al. [30] have compared various clustering meth-
ods for load pattern segmentation.

Load estimation has been performed across a variety of use cases
within power grid operation and study. Heslop, MacGill, and Fletcher
[14] have estimated maximum photovoltaic generation for residential
low voltage feeders. Mendes, Paiva, and Batista [24] estimate the vari-
ability of the load, using graph signal processing, on data with a high
level of distributed generation, similar to the situation in the Nether-
lands. Langevin, Cheriet, and Gagnon [19] employ variational autoen-
coders for short-term forecasting of the load within households. Kara
et al. [16] use multiple linear regression to disaggregate the solar gen-
eration in regular feeder measurements in order to get separate esti-
mates for generation and production. Asefi et al. [1] perform a com-
bination of statistical modeling, anomaly detection and classification
in order to estimates states and identify false data injection.

However, to the best of our knowledge, for time series, of a year or
longer in length, where event lengths vary substantially, no studies
have been conducted on load estimation through means of automated
segmentation.

4.2 materials and methods

4.2.1 Data

In this study we optimize and evaluate our algorithms for anomaly
and switch event detection on a total of 180 primary substation load
measurements. Most primary substation measurements span a full
year in length, and provide measurements at regular 15-minute in-
tervals of the apparent power S, which we will refer to as load. We

4.2 materials and methods 83

calculate S from the active power P and the reactive power Q and
assign it the sign of P, S = sign(P)

√
P2 +Q2. In some cases, the

measurement equipment of a primary substation does not allow for
accurate measurements of both P and Q. In these cases, S is calcu-
lated from S =

√
3VI. The

√
3 term originates from the fact that in a

3-phase system the phase voltage rather than the line voltage is used.
At each 15-minute interval over which the load is measured, we

also calculate the so-called bottom-up load B throughout the subgrid
supplied by that specific primary substation. The bottom-up load is
an estimation of the load over a certain primary substation, but not
a direct measurement, like S. Thus, the bottom-up load is directly re-
lated to the actual load measurement. The bottom-up is traditionally
used by distribution system operators to get an estimate of load on
the grid on places where no measurements are available. This bottom-
up estimate tries to reconstruct the total load based on telemetry
measurements from bulk consumers, from aggregated smaller scale
measurements, and from average profiles based on smart meters at
consumers’ homes and some smaller bulk consumers. In the latter
machine learning is used to estimate the load profiles of those con-
sumers that do not have a smart meter, or have not consented to have
their smart meter data read [13]. In order to acquire the final bottom-
up load, Alliander uses the SunDance algorithm [6] for disaggrega-
tion of net consumption and generation, k-means clustering [22, 23]
for generating load profiles, and XGBoost [7] for determining which
clustered load profiles should be used instead of missing smart meter
measurements [13]. More details regarding the bottom-up generation
methodology can be found in [13]. Most often, the bottom-up load
is fairly accurate. Most failure cases are not caused by the algorithm,
but rather by incorrect grid-topology data, causing consumers to be
wrongfully included or excluded.

In order to discern between a primary substation connection that is
net consuming or net producing, the load measurements S are given
a sign based on P. If a primary substation connection is consuming
more than it is producing, the load measurement is assigned a posi-
tive sign. A negative sign therefore means that the primary substation
is net producing. However, not all primary substations are outfitted
with measurement equipment to determine whether the primary sub-
station is net producing or consuming: they just measure the absolute
current I, thus the sign needs to be corrected later on. The bottom-up
load, in contrast to the actual load, can always be measured in the
negative due to being based on more recent, lower-level, measuring
equipment. We will use this property in correcting the sign of the
load measurement. Bottom-up load measurements are furthermore
based on P measurements and load estimates so they never have a
missing sign. A typical primary substation measurement time series,
consisting out of the load (S), the bottom-up load, and an illustrative

84 acquiring better load estimates

Figure 9: A plot of the measured load (S) and the bottom-up load (B) as
measured or estimated over the entire year for station 005. The S
measurement is visualized in blue, and the bottom-up load is visu-
alized in orange. The minimum and maximum load estimates are
shown by the dashed lines. The load limit of the primary substa-
tion is shown by the dotted line. The green and blue areas indicate
the unused and redundant capacity, these are fictitious and only
shown for illustrative purposes.

example of the needed minimum and maximum capacity is shown
in Figure 9, where it should be noted that this measurement does not
contain anomalies or switch events. In this figure we can additionally
see the minimum and maximum loads (S) that are vitally important
for the planning of grid expansion. On top of the maximum or min-
imum load, there should be enough redundant capacity in order to
allow for rerouting in case of grid failures. All remaining capacity is
unused, and quantification of this unused capacity is essential for de-
termining whether the capacity of a station should be expanded, or
whether there is room for additional customers. Should anomalies or
switch events be present, we expect to see these minimum and max-
imum values be inflated or deflated, leading to inaccurate estimates
of the unused capacity of a primary substation, thereby interfering
with power grid expansion planning. An example of wrong capacity
estimates leading to unused capacity can be found in Figure 10.

To summarize, at each 15-minute interval t for each station i we
measure the load sit and estimate the bottom-up load bi

t. We do this
for a full year of measurements, yielding for each station i a load
vector si ∈ S, and a bottom-up load vector bi ∈ B, where S and B

respectively now denote the full collections of load and bottom-up
vectors as measured for each of the 180 measured stations. In order
to allow for evaluation of automatic segmentation and anomaly de-
tection algorithms, each 15-minute measurement yi

t has additionally
been labeled, leading to a detailed labeled segmentation of each time
series for each station i, yi ∈ Y, which we will treat as our gold stan-

4.2 materials and methods 85

Figure 10: A plot of the measured load (S) and the bottom-up load (B) as
measured or estimated over the entire year for station 010. The S
measurement is visualized in blue, and the bottom-up load is vi-
sualized in orange. The minimum and maximum load estimates
are shown by the black dashed lines. The load limit of the pri-
mary substation is shown by the dotted line. The true minimum
and maximum load limits are shown by the red dashed lines.
The capacity that would be incorrectly included in the estimate is
shown by the opaque red boxes.

dard. Possible values for this label are: 0 (no anomaly or switch event);
1 (anomaly or switch event); 5 (the labeler is uncertain whether this
should be label 0 or 1). For simplicity, the dependence of vectors s,
b and y on index of the station i will be omitted throughout the re-
mainder of this chapter, and will only be mentioned explicitly when
necessary.

The time series of all primary substations show great variation,
both within a primary substation, but also between primary sub-
stations. The average load for a primary substation can range from
100’s to 10,000’s of kilowatts. In addition, not all bottom-up loads are
equally accurate for each primary substation. This variability leads to
a challenging segmentation task.

4.2.1.1 Event-length Categories

We use a variety of measures to judge the quality of the time se-
ries segmentation, see Section 4.2.4.1. Generally, these measures are
calculated over all individual time points. This can be done when
the segments are of somewhat similar length. In this use case how-
ever, anomalies are very short events, while switch events might be
very long. This disparity in event length is illustrated in Figure 11.
From this figure, we can clearly observe that long events are rare, but
make up the majority of measured data labelled as 1, while short
events/anomalies are much more frequent, but only make up a small

86 acquiring better load estimates

0 2000 4000 6000 8000 10000 12000

Event Length (#data points)

10

0

10

1

10

2

10

3

C
o
u
n
t
s

Figure 11: Histogram of the length of the events and anomalies over all da-
tasets. Note that the y-axis is log-scaled due to the frequency of
short events. A year typically consists out of 35040 15-minute in-
terval measurements.

part of the label 1 data. In order to alleviate this problem while opti-
mizing and evaluating our methods, we divide the anomaly/switch
events in 4 categories based on their length based on how many sam-
ples they consists of, and calculate all measures, see Section 4.2.4.1
for each category. The 4 categories of event lengths are defined as:
1 up to and including 24 samples, 25 up to including 288 samples,
289 up to and including 4032 samples, and 4033 samples and longer.
From here on out we will refer to these, for sake of clarity, as their
equivalents in time units: 15 minutes to 6 hours, 6 hours to 3 days,
3 to 42 days, and 42 days or longer. Roughly speaking the categories
contain the following types of events: 15 minutes to 6 hours generally
contains measurement errors, 6 hours to 3 days contains longer mea-
surement errors and very short switch events that are easily resolved,
3 to 42 days contains short switch events, as well as more complex
rerouting, and 42 days or longer contains switch events caused by for
example complex rerouting, long-term maintenance, and grid expan-
sion. It should be noted that this categorization is not set in stone,
and may be chosen slightly differently depending on the prevalence
of event types in other applications.

4.2.2 Preprocessing

In order to make each time series suitable for further analysis, several
preprocessing steps have been conducted. First, missing S measure-
ments and corresponding bottom-up loads are removed from each

4.2 materials and methods 87

time series. Missing data can occur when there is a communication
error in the system. Communication errors are typically character-
ized by repeated measurements or bottom-up loads. To correct for
the discrepancies between the load measurement and the bottom-up
load, we perform a linear regression to better match the two. The
multiplication term corrects for multiplicative mismatches caused by
over- or underestimating the amount of load of the customers and
the grid losses that depend on the load (copper-losses), while the
additive baseline correction corrects for constant grid losses, or iron
losses, and, in the case of a current measurement, for the constant
reactive power caused mainly by the capacitance of the cables. The
linear regression is done on a subset of the time series, specifically
by excluding everything outside user-defined quantiles qlower% and
qupper%. This is done to prevent that any anomalies or switch events
steer the linear regression. Lastly, we perform a sign correction on
S measurements as some measurement equipment cannot measure
load signs. We list the preprocessing steps as pseudocode in Algo-
rithm 1 in the order in which they are applied to each individual
station measurement, i.e., all s ∈ S and b ∈ B. Note that si and bi

are vectors of equal length. The used functions “bottomUpMissing”
and “repeatedMeasurements” are described in Algorithm 2 and Al-
gorithm 3 respectively.

As one can note, this procedure has several user-defined hyperpa-
rameters, which can be optimized. These are specifically the range of
the quantiles, qlower% and qupper%, used in the filtering procedure, as
well as the number of s measurements, r, that have to be identical in
order to be classified as missing due to a communication error. Based
on manual observations of the preprocessing procedure, we have se-
lected qlower% and qupper% to be 10% and 90% respectively, and r to
be 5.

The resulting difference vector δ is calculated for each primary sub-
station, yielding the set of difference vectors ∆, and then used for
further analysis. δ now represents the error between the actual mea-
surement and the bottom-up load. Effectively we now have a feature
vector where the variation that can be explained from the bottom-
up load has been removed from the S measurement. This difference
vector is used as input for the various segmentation and anomaly
detection algorithms we apply, all listed in section 4.2.3.

4.2.3 Algorithms and Optimization

In this research, we compare several methods for detecting anomalies
and switch events. Each of these takes the difference vector between
the measurement and the bottom-up load δi ∈ ∆ as input data. The
output of each base method is a vector of unbounded scores for each
primary substation zi, thus yielding a set of score vectors Z. These

88 acquiring better load estimates

Algorithm 1 Preprocessing procedure

1: Input: Measurement s and bottom-up load b

2: Hyperparameters: The maximum number of repeated measure-
ments r, and the quantile boundaries used for scaling before the
linear fit qlower%, qupper%

3: Output: Difference vector δ
4:

5: for i ← 1 to n do ▷ Remove missing and repeated measurements
6: if bottomUpMissing(bi) or repeatedMeasurements(s, i, r)

then
7: Remove si from s and bi from b ▷ See Algorithm 2 and 3.
8: end if
9: end for

10: δtemp ← s−b ▷ Calculate the temporary difference vector
11: qmin ← quantile(s,qlower%)

12: qmax ← quantile(s,qupper%)

13: sfiltered ← si ∈ s where si > qmin and si < qmax

14: bfiltered ← corresponding elements b ∈ B

15: sfiltered = mbfiltered + c ▷ Fit linear model to find slope m and
offset c

16: bscaled ← mb+ c ▷ Rescale the bottom-up to match S

17: ▷ Correct the sign of s if the minimum of s is positive while the
minimum of b is negative.

18: if min(s) ⩾ 0 and min(bscaled) < 0 then
19: ssigned ← s ◦ sign(bscaled)

20: else
21: ssigned ← s

22: end if
23: δ ← ssigned −bscaled ▷ Calculate the difference vector

Algorithm 2 bottomUpMissing

1: Input: A single bottom-up measurement bi

2: Output: Boolean β indicating whether the bottom-up load mea-
surement bi is missing

3:

4:

β ←




True, if bi = NaN

False, otherwise

4.2 materials and methods 89

Algorithm 3 repeatedMeasurements

1: Input: Measurement s and index i

2: Hyperparameters: The maximum number of repeated measure-
ments r

3: Output: Boolean β indicating whether the maximum allowed
number of repeated measurements and adjacent to si is exceeded

4:

5: β ← False
6: c ← 0 ▷ Repeated measurement counter
7: max_c ← 0

8: for j ← max(i− r, 0) to min(i+ r,n) do ▷ n is the length of the
vector s

9: if sj = si then
10: max_c ← max(c, max_c)
11: else
12: c ← 0

13: end if
14: end for
15: if max_c ⩾ r then
16: β ← True
17: end if

scores are subsequently converted to predicted binary label vectors
for each primary substation ỹi, yielding a set of predicted label vec-
tors Ỹ. This is done by thresholding the scores, on which more details
can be found in section 4.2.4.3.

We specifically make use of unsupervised anomaly detection algo-
rithms. Unsupervised algorithms do not learn from labeled data, but
only consider the measurements. We have annotated a fairly large
number of 180 yearly primary substation measurements, but recog-
nize that anomalies and switch events are very rare and heteroge-
neous events. Because of this, we applied unsupervised methods of
detection. We then assume that some higher level hyperparameters
of the unsupervised procedure, specifically the thresholds used for
acquiring labels, will generalize towards unobserved types of anoma-
lies and switch events, we will evaluate this assumption on the test
set.

We have applied 3 base detectors, specifically statistical process con-
trol, isolation forest, and binary segmentation, and describe them in
section 4.2.3.1. We compare these detectors separately, but also en-
semble them by combining them in several ways. We compare a naive
ensemble method, a distinct optimization criterion ensemble, and a
sequential ensemble, which we describe in section 4.2.3.2.

90 acquiring better load estimates

4.2.3.1 Base Detectors

statistical process control Under the assumption that the
data is stationary we can use classical statistical process control, or
SPC, methods [27] in order to detect anomalies and switch events. In
traditional SPC one assumes a process which is stationary within a
chosen time frame or segment. Then, the user defines certain lower
and upper control limits, typically 2 or 3 standard deviations away
from the mean of the segment. In our case, the control limits will
be optimized as either symmetric or asymmetric thresholds, rather
than using the traditional statistical approach. Additionally, due to
the known presence of anomalies in the data, we also look at the dis-
tance to the median, rather than to the mean. We will explicitly refer
to the optimized control limit as “threshold” from here on out. When
a time point falls outside of these control limits, it is flagged as out-of-
control, in this case meaning anomalous. How SPC is applied to each
difference vector δ ∈ ∆ resulting from preprocessing is described in
Algorithm 4

Algorithm 4 Statistical process control

1: Input: Difference vector δ
2: Hyperparameters: Quantile boundaries for scaling qlower%,

qupper%
3: Output: Score vector z
4:

5: m ← median(δ) ▷ Calculate median
6: d ← interquantileDistance(δ,qlower%, qupper%) ▷ Calculate

interquantile distance
7: z ← (δ−m)/d

It should be noted that the relevant hyperparameters here are the
quantiles that are chosen for the interquantile range. These can be dis-
tinct from the quantiles hyperparameters used in the preprocessing
procedure.

isolation forest One of the most commonly used machine learn-
ing methods for anomaly detection is the isolation forest, or IF [21].
The isolation forest is known as one of the best state-of-the-art ano-
maly detectors on real-valued static data [4]. An isolation forest on
one-dimensional data effectively produces a density estimate by ran-
domly splitting subsets of the data. We consider two distinct ways of
applying isolation forests on the data: one where we apply a single
forest per station difference vector, see Algorithm 5, and one where
we scale and concatenate all difference vectors for training the isola-
tion forest and apply that isolation forest on each difference vector,
see Algorithm 6. Note that in these algorithms, we use several high-
level functions. “fitPredictIsolationForest” fits an isolation forest with

4.2 materials and methods 91

nestimators trees on the input δ and returns the anomaly scores z̃ on the
same input. “fitIsolationForest” fits an isolation forest with nestimators

trees on the input δ and returns the fitted model γ. “predictIsolation-
Forest” returns the anomaly scores z̃i calculated over δi

scaled given
an already fitted isolation forest γ. Each of these functions is imple-
mented as part of the scikit-learn library [29].

Algorithm 5 Isolation forest per station

1: Input: Difference vector δ
2: Hyperparameters: The number of trees nestimators

3: Output: Score vector z
4:

5: z̃ ← fitPredictIsolationForest(δ,nestimators)

6: z ← −z̃+ 1 ▷ Rescale so higher score means more anomalous

Algorithm 6 Single isolation forest over all stations

1: Input: Difference vectors δi ∈ ∆ for each station
2: Hyperparameters: The number of trees nestimators, quantile bound-

aries for scaling qlower%, qupper%
3: Output: Score vectors zi ∈ Z for each station
4:

5: for δi ∈ ∆ do
6: m ← median(δi)

7: d ← interquantileDistance(δi,qlower%, qupper%)

8: δi
scaled ← (δi −m)/d

9: end for
10: ∆scaled ← {δi

scaled, ...,δn
scaled}

11: γ ← fitIsolationForest(∆scaled,nestimators)

12: for δi
scaled ∈ ∆scaled do

13: z̃i ← predictIsolationForest(γ,δi
scaled)

14: zi ← −z̃i + 1 ▷ Rescale so higher score means more
anomalous

15: end for

In either procedure, we need to set the hyperparameters of the
isolation forest. In the case where a single isolation forest is applied,
we also consider the quantile boundaries for scaling. Furthermore,
the choice between fitting a single forest or a forest per station is
treated as a hyperparameter. We perform rescaling of the scores so
that the algorithms deems the most anomalous samples to have the
highest scores. These definitions differ between different algorithms
in literature, but we chose this definition to be analogous to SPC,
allowing for a similar threshold optimization strategy.

92 acquiring better load estimates

binary segmentation Binary segmentation is a change point
detection algorithm able to find multiple change points in a given
time series [2, 32]. We use binary segmentation as a state-of-the-art
change point algorithm because it is found to be one of the best
performing algorithms on real-world univariate time series data [9,
31, 39]. It finds change points by recursively partitioning the time
series into two parts, forming a binary tree. A split occurs at the op-
timal break point. This break point is found by first calculating the
cost ctotal of the entire segment using a chosen cost function. Then
the costs of the two subsegments, cleft and cright, are calculated for
each possible break point using the same cost function. The optimal
break point is then found by selecting the one for which the gain,
g = ctotal − cleft − cright is maximized. This procedure is repeated un-
til the gain for a split is below a user-defined threshold called the
penalty p. In our experiments, we consider two penalties, a linear
and a L1 penalty [39], the scaling of which depends on a user defined
β parameter.

We use binary segmentation in order to generate scores by perform-
ing the following procedure explained in Algorithm 7. The “findRef-
erenceValue” function is described in more detail in Algorithm 8. The
“findBreakpointsBinarySegmentation” is a call to the high-level “rup-
tures” Python library [37] which takes the scaled vector z̃ and seg-
ments it according to the well-known binary segmentation algorithm
with hyperparameters β,C, l, and j.

Algorithm 7 Binary segmentation

1: Input: Difference vector δ
2: Hyperparameters: Cost function C, cost function weight β, min-

imum segment size l, the jump size j, quantile boundaries
for scaling qlower%, qupper%, and the reference point strategy
reference_point

3: Output: Score vector z
4:

5: m ← median(δ)
6: d ← interquantileDistance(δ,qlower%, qupper%)

7: z̃ ← (δ−m)/d

8:

9: b ← findBreakpointsBinarySegmentation(z̃,β,C, l, j)
10: r ← findReferenceValue(z̃,b, reference_point)
11: bbegin = 1 ▷ indexing begins at 1
12: for bend ∈ b do
13: t ← (z̃i)bbegin⩽i⩽bend ▷ Get segment
14: (zi)bbegin⩽i⩽bend ← mean(t) − r ▷ Get difference between

segment and reference value
15: bbegin = bend

16: end for

4.2 materials and methods 93

Algorithm 8 findReferenceValue

1: Input: Scaled difference vector z̃, and breakpoints resulting from
binary segmentation b

2: Hyperparameters: Reference point strategy reference_point
3: Output: Reference point value r

4:

5: if reference_point = “mean” then
6: r = mean(z̃)
7: else if reference_point = “median” then
8: r = median(z̃)
9: else if reference_point = “longest_mean” then

10: smax = 0

11: bbegin = 1 ▷ indexing begins at 1
12: for bend ∈ b do
13: t ← (z̃i)bbegin⩽i⩽bend ▷ Get segment
14: si ← bend − bbegin ▷ Get segment size
15: if si > smax then
16: smax = si
17: r = mean(t)
18: end if
19: bbegin = bend

20: end for
21: else if reference_point = “longest_median” then
22: smax = 0

23: bbegin = 1 ▷ indexing begins at 1
24: for bend ∈ b do
25: t ← (z̃i)bbegin⩽i⩽bend ▷ Get segment
26: si ← bend − bbegin ▷ Get segment size
27: if si > smax then
28: smax = si
29: r = median(t)
30: end if
31: bbegin = bend

32: end for
33: end if

This procedure has a large number of optimizable hyperparam-
eters resulting from the binary segmentation algorithm, the strategy
for determining the reference point, and with which quantiles scaling
should be applied. We have compared 4 different strategies for deter-
mining the reference point: 1) comparing to the mean of the entire
scaled station difference vector (“mean”), 2) comparing to the median
of the entire scaled station difference vector(“median”), 3) comparing
to the mean of the longest segment (“longest_mean”), and 4) compar-
ing to the median of the longest segment (“longest_median”).

94 acquiring better load estimates

4.2.3.2 Ensembles

The different base detection algorithms have various strengths and
weaknesses. Specifically, binary segmentation is good at detecting
long events, while SPC and IF are good at detecting shorter events.
Binary segmentation more easily detects long events as it can com-
pare the distance of an entire segment to the distance of a different
segment, thus being more sensitive to small changes over a long time
period. SPC and IF consider each time point individually, thus only
detecting large changes without considering the time component. In
order to leverage the strengths of multiple complementary methods,
we employ different ensembling techniques to combine base detec-
tion algorithms. We specifically compare naive ensembling through
combining predictions directly, combining algorithms optimized on
detecting events of different lengths, and sequential ensembles, where
we apply binary segmentation and apply SPC or IF only on the “nor-
mal" segments. A more detailed description of each ensembling strat-
egy can be found below. For all ensembles, we look at a combination
of a change point detector, binary segmentation, and an anomaly de-
tector, which is either SPC or IF. As both SPC and IF are designed
to find singular anomalies, we see them as complementary to binary
segmentation, and will specifically compare SPC to IF.

naive ensembles The simplest way of combining base detection
algorithm predictions is by what we call naive ensembling. In naive
ensembling, we simply take the predictions of each base detection
algorithm, and combine them using an OR operation, meaning when
either algorithm predicts an anomaly or switch event, so does the
ensembled prediction.

different optimization criterion ensembles As noted ear-
lier, it is known that binary segmentation is good at detecting long
events, while SPC and IF are good at detecting shorter events. By
simply combining predictions as in naive ensembling, the individual
strengths of the sub-models are not leveraged to their fullest extent.
We can instead optimize both detection models on different criteria.
In this case, we have optimized binary segmentation to detect longer
events in the “3 to 42 days", and “42 days and longer" length cate-
gories, whereas we optimize either SPC or IF on the “15 minutes to 6
hours", and “6 hours to 3 days" length categories. Then, like in naive
ensembling, we combine the predictions of both separately optimized
algorithms using an OR operation. Due to the category specific opti-
mization we expect this method to find fewer false positives than
naive ensembling and have a higher recall. For clarity’s sake, we will
abbreviate this type of ensemble as DOC, Different Optimization Cri-
terion, ensembles.

4.2 materials and methods 95

sequential ensembles Sequential ensembles follow the same
idea of using differently optimized detectors. In a sequential ensem-
ble we first apply binary segmentation optimized on the “3 to 42
days", and “42 days and longer" length categories. Then, all segments
that were not classified as switch events are passed to a second detec-
tion algorithms, either SPC or IF, to detect shorter events and anoma-
lies. The second method is again optimized for detecting the shorter
event categories “15 minutes to 6 hours", and “6 hours to 3 days". Due
to the further specificity of this method, we expect to find fewer false
positives, and to have a higher recall, especially on the shorter events
which are no longer being masked by long switch events.

4.2.4 Evaluation and Optimization

4.2.4.1 Evaluation Metrics

Typically, time series segmentation is evaluated using precision, re-
call, the ROC/AUC, and the Fβ score [9, 31]. In this research, we
focus on a weighted approach of the precision, recall, and the Fβ
score. Rather than calculating them directly on a sample-to-sample
basis, we calculate them for each of the 4 defined length categories.
We do this so we can accurately detect events across the entire spec-
trum of lengths, as the number of measurements of events in each
category increases greatly for increasing event lengths. For each of
the length categories, we calculate the precision, recall, and the F1.5
score. We use β = 1.5 to give a higher importance to the recall term,
as the potential impact of a false negative is higher than that of a false
positive in power grid expansion planning. When we calculate a score
for a length category, we do not include timestamps where either the
assigned label is 5 (“uncertain"), or where the assigned label is 1 for
any of the other categories. In order to get an estimate of the overall
performance of the model, we average these measures over the four
categories. The metric used to optimize any (hyper)parameter is the
average F1.5 score over all 4 length categories. We explicitly choose to
study the precision, recall, and the Fβ scores. In the practical use case
we describe, the predictions are always binary, even though they are
based on real-valued scores. As we explicitly threshold the scores to
labels in order to filter our data, the precision, recall, and the Fβ score
most closely illustrate the performance trade-off that is being made
by thresholding. While we do not explicitly study the ranking of the
anomalies and switch events, as is commonly done by the ROC/AUC
metric, we do provide an additional plot plot of the performance in
terms of the ROC/AUC in the appendix of this chapter in Figure 17.

96 acquiring better load estimates

Table 6: The distribution of event lengths over the train, test, and valida-
tion splits. The event count indicates how many events within that
category are in a dataset. The label “1" count indicates how many
separate time points belong to the anomaly/switch event class per
dataset.

15m-6h 6h-3d 3d-42d 42d and longer

Dataset

Event count Train 338 136 24 4

Validation 203 173 25 4

Test 444 99 23 4

All 985 408 72 12

Label 1 count Train 1506 6290 28386 28212

Validation 1971 13974 25075 30904

Test 2262 6790 27389 24992

All 5739 27054 80850 84108

4.2.4.2 Validation

In order to optimize thresholds, hyperparameters and to compare
models, we split our original dataset consisting out of 180 stations
into 3 equal parts of 60 stations each, creating a training, validation,
and test dataset. This splitting procedure was done in a stratified man-
ner such that the three splits have a more or less equal distribution of
event lengths. The stations were divided by aiming to have an equal
number of events for each category present in each dataset. The com-
putational complexity of evaluating all possible combinations, like is
done in available cross-validation software, is too high. We have there-
fore used a greedy approach to produce a stratified split of the data,
where stations were divided starting with the longest, and least fre-
quent, event length category, and ending with the shortest and most
frequent event length category. All stations with no events were sub-
sequently divided among the datasets in order to create 3 equally
large datasets. The number of events, as well as the label “1" counts,
can be found in Table 6.

From this table we can observe that the splitting of events in the
longer categories is fairly balanced, whereas there is some imbalance
in the shorter event categories. Even though the data is split in a strat-
ified manner, such an imbalance can occur when single stations have
a lot of events. This imbalance is most notable in the validation set,
which has fewer “15 minutes to 6 hours" events, but more “6 hours
to 3 days" events. Because these two categories are optimized on to-
gether, even within ensembles, we argue that this imbalance does not
affect our conclusions.

4.2 materials and methods 97

After splitting, the train set is used to optimize the thresholds and
train the isolation forest or just optimize the thresholds. The valida-
tion set is used to select the best performing hyperparameters for
each method. Lastly, the test set is used to compare methods using
only the best performing hyperparameters as evaluated on the vali-
dation set.

To get an estimate of the reliability of each method, we perform
bootstrapping [8]. We do so by resampling the test set stations with
replacement 10,000 times. In this way, we acquire both a bootstrapped
mean and standard deviation for the precision, recall, and F1.5 met-
rics.

4.2.4.3 Threshold Optimization

All methods we have applied produce scores z ∈ Z. These can either
be positives scores, where a higher value indicates a higher likeli-
hood for a sample to be an anomaly or switch event according to
the model, or scores centered around 0, where a greater distance
to 0 indicates a higher likelihood. Of the presented methods, iso-
lation forest has a purely positive score, while the statistical pro-
cess control and binary segmentation scores are centered around 0.
These scores are thresholded to yield a label prediction vector ỹ ∈
Ỹ. This is done by applying a one-sided or symmetrical approach,
ỹ = thresholdScores(abs(z), θsymmetrical), or a two-sided or asymmet-
rical approach, ỹ = thresholdScores(z, θlower, θupper). The symmetri-
cal approach can be used on both positive and zero-centered scores,
whereas the asymmetrical approach can only be used on the zero-
centered scores. Pseudocode for the one-sided approach can be found
in Algorithm 9, and for the two-sided approach in Algorithm 10.

Algorithm 9 thresholdScores (one-sided)

1: Input: A score vector z, where a higher zi indicates a higher like-
lihood of being an anomaly/switch event

2: Hyperparameters: A threshold θsymmetrical

3: Output: Predicted label vector ỹ
4: for zi ∈ z do
5:

ỹi ←




1, if zi ⩾ θsymmetrical

0, otherwise

6: end for

The thresholds are optimized by selecting those thresholds for which
the average of the F1.5 over all 4 segment length categories is highest.
This can be done efficiently by calculating the F1.5 score for each pos-
sible threshold value for all distinct segment length categories, and

98 acquiring better load estimates

Algorithm 10 thresholdScores (two-sided)

1: Input: A score vector z, where a high or low zi indicates a higher
likelihood of being an anomaly/switch event

2: Hyperparameters: A lower threshold θlower, and upper threshold
θupper

3: Output: Predicted label vector ỹ
4: for zi ∈ z do
5:

ỹi ←




1, if zi ⩾ θupper

1, else if zi < θlower

0, otherwise

6: end for

then averaging these profiles. An illustration of this selection proce-
dure for the symmetrical approach can be found in Figure 12. In this
figure we visualize the procedure for the SPC model with optimal hy-
perparameters. We further discuss the performance of this model in
Section 4.3. We can formalize this optimization as finding that thresh-
old θ, or those thresholds θlower, θupper that maximize the average F1.5
score

θoptimal = arg max
θ

F1.5average(Y, thresholdScores(abs(Z),θ))

in the symmetrical case, or

θlower
optimal, θ

upper
optimal = arg max

θlower,θupper

F1.5average(Y, thresholdScores(Z,θlower, θupper))

in the two-sided case.
Whether to use one- or two-sided optimization is treated as a hy-

perparameter in the evaluation and selection process.

4.2.5 Implementation and Reproducibility

Our analysis has been done in the Python programming language,
specifically version 3.10.0. Many of our calculations rely on NumPy [11]
and Pandas [35]. We furthermore make use of the Ruptures[37] pack-
age for binary segmentation, and use the Scikit-learn [29] package for
scaling procedures, as well as applying the isolation forest. Visualiza-
tions were made using the Seaborn [43] and Matplotlib [15] packages.
In order to reproduce all our experiments, we have provided access to
a public GitHub repository1. This reproduces the data splitting pro-
cedure, all experiments, including hyperparameter optimization, as

1 The Git repository can be found at: https://github.com/RoelBouman/StormPhase2

4.3 results 99

Figure 12: Plot of the one-sided threshold optimization procedure. The F1.5
score, on the y-axis, as a function of the threshold, on the x-axis,
is shown for all four distinct segment length categories, as well as
their average. The red vertical line indicates the selected threshold
which maximizes the F1.5 score on the average. As an example
the optimization is visualized for an SPC model with optimal
hyperparameters.

well as producing all figures and tables in this chapter. All data is
provided through Alliander2. An overview of all evaluated, as well
as optimal, hyperparameters can be found in this chapter’s appendix
in Tables 12, 13 and 14.

4.3 results

After evaluating each method on the validation set, we have selected
for each method and ensembling combination the model with the best
performance on the validation set. Each of these models was then
evaluated on the test set to get an estimate of how well optimized
models perform on unseen data. The resulting performance in terms
of the F1.5 is visualized in Figure 13. From this figure we can observe
the performance of the three base learners, as well as the effectiveness
of the ensembling strategies when applied to different combinations.

We find that IF and SPC perform similarly across the board. This
is partially to be expected, as they are designed to find short anoma-
lies/events that are rare compared to normal data. IF, however is able
to more easily model multimodal distributions and detect anomalies
in the presence of multimodality. Since IF does not noticeably out-
perform SPC, it seems that it can not leverage this advantage. This

2 The data repository can be found at https://www.liander.nl/over-ons/open-data

100 acquiring better load estimates

Figure 13: From top to bottom: bar plots of the results of each method per
length category for the F1.5, recall, and precision respectively. The
height of each bar indicates the average score over the bootstrap
iterations. The error bars indicate the standard deviation resulting
from the bootstrap resampling.

4.3 results 101

is further corroborated by visualization of typical scaled data, which
is mostly unimodal. both IF and SPC are able to detect short anoma-
lies/events better than binary segmentation, achieving a F1.5 score
of approximately 0.2 for both the “15 minutes to 6 hours", and “6
hours to 3 days" event length categories. Perhaps surprisingly, these
methods are able to detect some of the longer switch events as well,
achieving just below 0.3 F1.5 scores. The relatively good performance
on these longer events can be easily explained. Many of the longer
switch events have a larger distance to the δ median than normal
data. SPC is therefore able to detect these events based on this dis-
tance, while IF identifies them because these switch events occupy a
lower density region where they are not masked by normal data. We
find that even when ensembled in any of the three tested manners, IF
offers no significant performance boost over SPC. Due to the ease of
interpretability of SPC, it is preferable over IF.

Binary segmentation is found to be much better at detecting longer
events than either SPC or IF. The longer the event, the better binary
segmentation will perform, as can be seen from the performance on
the longest category, which nears a F1.5 score of 0.5. It is also clear
that binary segmentation fails to detect most short events/anomalies,
achieving near random baseline F1.5 scores.

The results from the naive and different optimization criterion (DOC)
ensembles are less obvious. Both methods perform similarly, and
the different optimization criterion addition does not significantly
improve overall model performance. Perhaps surprisingly, the F1.5
score for the two shorter event length categories is only marginally
better than that of binary segmentation. Indeed, ensembling binary
segmentation with a detector for shorter events barely increases the
F1.5 score. This can be explained when we consider the two terms
making up the Fβ score: precision and recall. When ensembling using
an OR operation, we expect the recall to always increase, as we will
only classify more samples in category “1". The precision, however,
will generally decrease, as more false positives will be found. Indeed,
when looking at the performance in terms of recall and precision,
which we have visualized in Figure 13, we can readily observe that
the recall only increases or stays the same when ensembling. From
this we conclude that the number of false positives introduced by OR
ensembling causes simple ensemble methods to underperform.

Sequential ensembles seemingly do not suffer from this increase in
false positives as much. We can see that sequential ensembles nearly
match the performance of the individual SPC and IF detectors in the
single categories where they perform best, while the performance
in the “3 to 42 days" category is significantly better than any base
detector or other ensemble. The performance in the longest category
is comparable to that of the other ensembles. Sequential ensembles
indeed outperform any base detector or other ensembling method.

102 acquiring better load estimates

While intuitively one might think the performance increase in the
shorter categories should be similar to other ensembling strategies,
it seems that due to the sequential nature, we can optimize more
on precision than is the case in other ensembles. This can also be
observed in Figure 13, where we see that the recall of the sequential
models is lower in the longest category, while being similar in the
other three. This means that all performance increases from naive or
DOC ensembles to sequential can be attributed to a higher precision,
which is confirmed by Figure 13.

To further study the behaviour of one of the sequential ensembles,
specifically the combination of BS and SPC, we have visualized one
of the station difference vectors together with the predictions, thresh-
olds, and reference points from both components of the sequential
ensemble in Figure 14. From this figure we can observe several quali-
ties, as well as failings, of the sequential ensembling approach. Most
prominent is the correct classification of the switch event on the far
right of the figure. Binary segmentation was able to correctly classify
this. Also correctly detected are the 3 shorter events/anomalies to the
left of the figure, which SPC has detected due to their large nega-
tive contribution. However, some mistakes are made by the method.
Specifically some false positives arise in the middle of the figure,
where some points fall just outside the detection boundaries. Then,
on the right in the second segment, there is a mix of true positives
and false negatives. Due to the variability of the signal, only a few
time points within this event are accurately detected by SPC. Lastly,
one could argue that the second segment in its entirety should have
been classified as a switch event. Yet, this was neither done by the do-
main expert, nor by the binary segmentation algorithm. Upon closer
inspection, we found that the information in the load measurement
and the bottom-up load is insufficient to fully determine whether this
was a switch event. From this, and other observations on similar sta-
tions, we are led to conclude that further improvements can be made
by including more metadata in future endeavors to improve our algo-
rithms. This is further reinforced by the performance of all methods,
which is relatively low across the board, even on the train data. This
indicates that the problem is hard to learn, though it generalizes fairly
well. Additionally, with these visualizations, we show that these mod-
els, even when ensembled, are exceedingly interpretable, solidifying
their use in applications of societal importance.

In order to gain more insight into how the proposed filtering ap-
proach works for automatically acquiring load estimates, we have
plotted the ground truth load estimates against the predictions or un-
filtered load estimates in Figure 15 for the maximum load estimates,
and in Figure 16 for the minimum load estimates. In these figures, a
perfect prediction would lead to all points lying on the diagonal. As
can be seen, when we do not apply any filtering approach on the data,

4.3 results 103

Figure 14: Plot of the results of the best sequential BS+SPC model on station
“042" contained in the test set. The blue line indicates the inputted
difference vector δ. The thresholds found by the initial BS pass are
indicated by vertical dashed lines. The SPC segment medians and
the BS overall mean used to calculate difference with the refer-
ence point are indicated by purple and orange lines. The bound-
aries for classification are indicated by either dotted or dashed
lines for BS and SPC respectively. True positives, false positives
and false negatives are visualized by changing the background
color to green, yellow, or blue respectively.

the minimum and maximum load values are highly inflated, leading
to a 300% increase at worst. A lot of potential grid capacity is unused
when the measurements remain unfiltered and are being considered
normal behavior. When we apply binary segmentation, we correctly
predict some of the minimum and maximum loads, but still miss
many while at the same time making the mistake of vastly under-
estimating the minimum and maximum load in a single case. With
statistical process control the filtering procedure is much better, but
we still have the worst case scenario of a 300% increase in maximum
load prediction. By combining both using sequential ensembling, we
leverage the strengths of either method, reducing the worst case sce-
nario to an approximately 200% increase, and having only a single
additional underestimation in the minimum load estimates. To fur-
ther zoom in on the performance, we can see how well the method
performs within certain error margins. The maximum load predic-
tions are perfect in 75.00%, and within a 10% margin in 88.33% of
all cases. The minimum load predictions are perfect in 86.96% and
within a 10% error margin in 91.30% of all cases.

Due to the high performance of our ensemble method for load
estimation it has been adopted for use within Alliander. Previously,
all filtering and load estimates were done by hand. This was a time-
consuming process, taking a month of time for several full-time em-
ployees. This was done once a year to acquire the load estimates for

104 acquiring better load estimates

0 50 100 150

Ground truth maximum load (MW)

0

25

50

75

100

125

150

175

P
r
e
d
i
c
t
e
d

m
a
x
i
m
u
m

l
o
a
d

(
M
W
)

Unfiltered

0 50 100 150

Ground truth maximum load (MW)

0

25

50

75

100

125

150

175

P
r
e
d
i
c
t
e
d

m
a
x
i
m
u
m

l
o
a
d

(
M
W
)

BS

0 50 100 150

Ground truth maximum load (MW)

0

25

50

75

100

125

150

175

P
r
e
d
i
c
t
e
d

m
a
x
i
m
u
m

l
o
a
d

(
M
W
)

SPC

0 50 100 150

Ground truth maximum load (MW)

0

25

50

75

100

125

150

175

P
r
e
d
i
c
t
e
d

m
a
x
i
m
u
m

l
o
a
d

(
M
W
)

Seq BS+SPC

Figure 15: Scatter plots where the ground truth maximum load estimate (in
kW on x-axis) is plotted against the predicted maximum load es-
timate (in kW on y-axis). From top-left to bottom-right are shown
the estimates resulting from: no filtering, the best Binary Seg-
mentation (BS) model, the best Statistical Process Control (SPC)
model, and the best Sequential Binary Segmentation + Statistical
Process Control ensemble. When a point is above the y = x line,
too few points are filtered out, when the point is below, too many
points are filtered out.

4.3 results 105

80 60 40 20 0

Ground truth minimum load (MW)

80

70

60

50

40

30

20

10

0

P
r
e

d
i
c
t
e

d

m

i
n

i
m

u
m

l
o

a
d

(
M

W
)

Unfiltered

80 60 40 20 0

Ground truth minimum load (MW)

80

70

60

50

40

30

20

10

0

P
r
e

d
i
c
t
e

d

m

i
n

i
m

u
m

l
o

a
d

(
M

W
)

BS

80 60 40 20 0

Ground truth minimum load (MW)

80

70

60

50

40

30

20

10

0

P
r
e

d
i
c
t
e

d

m

i
n

i
m

u
m

l
o

a
d

(
M

W
)

SPC

80 60 40 20 0

Ground truth minimum load (MW)

80

70

60

50

40

30

20

10

0

P
r
e

d
i
c
t
e

d

m

i
n

i
m

u
m

l
o

a
d

(
M

W
)

Seq BS+SPC

Figure 16: Scatter plots where the ground truth minimum load estimate (in
kW on x-axis) is plotted against the predicted minimum load es-
timate (in kW on y-axis). From top-left to bottom-right the fig-
ure shows the estimates resulting from: no filtering, the best Bi-
nary Segmentation (BS) model, the best Statistical Process Con-
trol (SPC) model, and the best Sequential Binary Segmentation
+ Statistical Process Control ensemble. Minimum load estimates
are only shown for those stations that have measurements with a
negative sign (23/60). When a point is above the y = x line, too
many points are filtered out, when the point is below, too few
points are filtered out.

106 acquiring better load estimates

future planning and operations management. Earlier variations of the
presented methodology have been in use since 2021, fully replacing
the manual, time-consuming, process. In addition to replacing time-
consuming manual labor of domain experts whose expertise is better
utilized elsewhere, our methodology allows for easier updating of
load estimates, which can now be generated on-the-fly. We hope that
by open sourcing our methodology, code, and data other distribution
system operators can benefit similarly.

4.4 discussion

This chapter showcases a novel combination of change point detec-
tion and anomaly detection algorithms for acquiring better load es-
timates. While the considered algorithms demonstrate good perfor-
mance, we envision several possible improvements of the proposed
method in the future

Firstly, in some cases, just looking at the difference between load
measurement and bottom-up load is not enough to determine the
ground truth. Additional information or metadata is needed for ac-
curate segmentation, for example one could use a separate detector
for seeing whether the load or bottom-up is incorrect, and incorporat-
ing this as a rule-based detector. We estimate that we could improve
performance by using additional rule-based detectors on top of our
current method.

Secondly, the datasets have a somewhat skewed distribution of
events, meaning not all categories are equally represented in each da-
taset, as can be glanced from Table 6. Due to this imbalance, as well as
the general heterogeneity of events, we observe that the datasets are
not as indistinct as they ideally would be. By labeling more stations
we might be able to alleviate this problem. As labeling data is costly,
the gains of this procedure might however not be worth the invest-
ment. Specifically over 500 primary substations are measured, which
is unfeasible to manually label. Furthermore, events and anomalies
are rare, and only a finite number of these occurs during any given
year, which means that data acquisition and labeling for several more
years might be needed to get fully balanced data.

Our current method relies heavily on the bottom-up loads which
are used to attain the difference vector δ. The accuracy of the bottom-
up load varies between stations, leading to a high variability between
stations in terms of variance. We correct for this using the robust
scaling procedure, but it remains a critical step in the total analysis
pipeline. When the bottom-up load is not available, for example due
to anomalous situations in the grid, or when wanting to apply this
method on old historical data, our methodology cannot be directly
applied.

4.4 discussion 107

The current analysis considers one year of measurements for one
station at a time. This is in line with the labeling procedure used by
the grid operator prior to this research, where the data was labeled
by hand during the first month of the year. As load estimates are
used in long-term decision making, generally the speed of acquisi-
tion is not that important. However, should the availability of more
recent load estimates be prioritized, the binary segmentation algo-
rithm, which only works on static data, will need to be replaced by
an online change point detection algorithm.

The methods employed for the change point and anomaly detection
are all highly interpretable and fairly easily comprehensible. In recent
years, machine learning has been widely applied in high-performance
applications on time series. Examples are LSTM’s for anomaly detec-
tion [20], and Meta’s (formerly Facebook’s) Prophet [34] for simulta-
neous anomaly and change point detection. While promising, these
methods would not be readily usable on this application. These meth-
ods require far more data than the unsupervised methods used in this
research, something which is unfeasible due to time of data acquisi-
tion. While these methods can be trained on the unlabeled time se-
ries, we still need labels for hyperparameter optimization. Using the
model with the best predictions doesn’t guarantee the best model for
event detection, as an overparametrized model might learn to predict
anomalies. Furthermore it has been shown that in many cases sim-
ple solutions work better than complex ones for time series anomaly
detection [45].

We show that our automatic filtering and load estimate procedure
works in most cases, but there are still some failures cases. Future
work could include studying these failure cases and devising detec-
tion methods for this purpose. Increasing the amount of data is ex-
pected to further increase performance. Furthermore, incorporating
information of previous yearly measurements might lead to addi-
tional robustness of the filtering procedure. For example, a rule-based
system could detect large differences in load estimates between years
on top of the presented models, while still allowing for the full inter-
pretability.

It should be noted that while figures like Figure 14 can be inter-
preted fairly easily, it is not immediately clear why the thresholds are
chosen like they are. One could change the thresholds for this figure
and achieve a better filtering. When interpreting these figures, one
should always note that the thresholds are optimized to find the best
F1.5 score over all stations, rather than the single figure shown.

108 acquiring better load estimates

4.5 conclusion

Based on our research we present interpretable methodology for the
automatic filtering of anomalies and switch events from load mea-
surements in order to establish more accurate load estimates.

We posit that using unsupervised methods, with supervised opti-
mization of hyperparameters and the threshold parameters, based on
the F1.5 score, allows for robust, well-generalizing, performance on
unseen data.

We show that without filtering, a lot of grid capacity is left unused.
In our experiments on unseen test data, comprised of 60 individual
station measurements, we only observe a single severe failure case
in both the automatic minimum and maximum load estimate predic-
tions. Of all estimated predictions, approximately 90% fall within a
10% error margin.

By having compared different methods and ensembling strategies
we find that a combination of the well-known binary segmentation
algorithm for change point detection and the tried statistical process
control method for anomaly detection works best. The best ensem-
bling strategy is a sequential ensemble, where the anomaly detec-
tor is applied after first segmenting the time series based on the ob-
tained change points. The proposed methods are highly interpretable,
a distinct advantage when this methodology is used in critical infras-
tructure planning. This high interpretability is a direct result of each
underlying model being interpretable. SPC and BS are both simple,
yet effective mathematical models. The strategies used for optimiza-
tion are similarly straightforward, and can be visualized. Depending
on underlying needs or when business priorities change the chosen
threshold(s) for the algorithms can be adjusted based on the easily
translatable precision and recall measures using figures such as Fig-
ure 12.

We finally identify possible steps for further improvement of the
presented methodology. Incorporating additional data, either for fur-
ther optimization, or as a historical reference, are potential avenues
for improvement. Furthermore, the currently identified failure modes
might be caught by using interpretable rule-based classification with-
out losing the initial performance of the current algorithms.

acknowledgments and disclosure of funding

The research reported in this chapter has been partly funded by the
NWO grant NWA.1160.18.238 (PrimaVera); as well as BMK, BMDW,
and the State of Upper Austria in the frame of the SCCH compe-
tence center INTEGRATE [(FFG grant no. 892418)] part of the FFG
COMET Competence Centers for Excellent Technologies Programme;
the Alliander Research Centre for Digital Technologies; and finally

4.5 references 109

by a Radboud Interdisciplinary Research Platform Green IT voucher.
We also want to thank Ayan Wasame for her efforts in studying la-
bel quality, and Evander van Wolfswinkel, Gijs van Paridon and Jari
Immerzeel for their efforts in (re)labeling the data.

references

[1] S. Asefi, M. Mitrovic, D. Ćetenović, V. Levi, E. Gryazina, and
V. Terzija. “Anomaly detection and classification in power sys-
tem state estimation: Combining model-based and data-driven
methods.” In: Sustainable Energy, Grids and Networks 35 (2023),
p. 101116.

[2] J. Bai. “Estimating multiple breaks one at a time.” In: Economet-
ric Theory 13.3 (1997), pp. 315–352.

[3] J. N. Betge, B. Droste, J. Heres, and S. H. Tindemans. “Efficient
Assessment of Electricity Distribution Network Adequacy with
the Cross-Entropy Method.” In: 2021 IEEE Madrid PowerTech.
IEEE. 2021, pp. 1–6.

[4] R. Bouman, Z. Bukhsh, and T. Heskes. “Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We
Need?” In: Journal of Machine Learning Research 25.105 (2024),
pp. 1–34. url: http://jmlr.org/papers/v25/23-0570.html.

[5] A. S. Brouwer, T. Kuramochi, M. van den Broek, and A. Faaij.
“Fulfilling the electricity demand of electric vehicles in the long
term future: An evaluation of centralized and decentralized
power supply systems.” In: Applied Energy 107 (2013), pp. 33–
51.

[6] D. Chen and D. Irwin. “Sundance: Black-box behind-the-meter
solar disaggregation.” In: Proceedings of the Eighth International
Conference on Future Energy Systems. 2017, pp. 45–55.

[7] T. Chen and C. Guestrin. “XGBoost: A scalable tree boosting
system.” In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016, pp. 785–
794.

[8] B. Efron and R. J. Tibshirani. An introduction to the bootstrap.
CRC press, 1994.

[9] A. Ermshaus, P. Schäfer, and U. Leser. “ClaSP: Parameter-free
time series segmentation.” In: Data Mining and Knowledge Dis-
covery (2023).

[10] S. Á. Funke, F. Sprei, T. Gnann, and P. Plötz. “How much charg-
ing infrastructure do electric vehicles need? A review of the evi-
dence and international comparison.” In: Transportation research
part D: transport and environment 77 (2019), pp. 224–242.

110 acquiring better load estimates

[11] C. R. Harris et al. “Array programming with NumPy.” In: Na-
ture 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-
020- 2649- 2. url: https://doi.org/10.1038/s41586- 020-
2649-2.

[12] M. Hekkenberg, R. Benders, H. Moll, and A. S. Uiterkamp. “In-
dications for a changing electricity demand pattern: The tem-
perature dependence of electricity demand in the Netherlands.”
In: Energy Policy 37.4 (2009), pp. 1542–1551.

[13] J. Heres, M. van Braak, W. de Swart, and E. Gerritse. “Creat-
ing bottom up load profiles using disaggregation, clustering
and supervised machine learning on large smart meter data-
set.” In: 27th International Conference on Electricity Distribution
(CIRED 2023). Vol. 2023. IET. 2023, pp. 3503–3507.

[14] S. Heslop, I. MacGill, and J. Fletcher. “Maximum PV genera-
tion estimation method for residential low voltage feeders.” In:
Sustainable Energy, Grids and Networks 7 (2016), pp. 58–69.

[15] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Com-
puting in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.
1109/MCSE.2007.55.

[16] E. C. Kara, C. M. Roberts, M. Tabone, L. Alvarez, D. S. Call-
away, and E. M. Stewart. “Disaggregating solar generation from
feeder-level measurements.” In: Sustainable Energy, Grids and
Networks 13 (2018), pp. 112–121.

[17] A. Kieft, R. Harmsen, and M. P. Hekkert. “Heat
pumps in the existing Dutch housing stock: An assessment
of its Technological Innovation System.” In: Sustainable Energy
Technologies and Assessments 44 (2021), p. 101064.

[18] E. Laes, L. Gorissen, and F. Nevens. “A comparison of energy
transition governance in Germany, the Netherlands and the
United Kingdom.” In: Sustainability 6.3 (2014), pp. 1129–1152.

[19] A. Langevin, M. Cheriet, and G. Gagnon. “Efficient deep gen-
erative model for short-term household load forecasting using
non-intrusive load monitoring.” In: Sustainable Energy, Grids and
Networks 34 (2023), p. 101006.

[20] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich. “A sur-
vey on anomaly detection for technical systems using LSTM
networks.” In: Computers in Industry 131 (2021), p. 103498.

[21] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation forest.” In:
Eighth IEEE International Conference on Data Mining. IEEE. 2008,
pp. 413–422.

[22] S. Lloyd. “Least squares quantization in PCM.” In: IEEE Trans-
actions on Information Theory 28.2 (1982), pp. 129–137.

4.5 references 111

[23] J. MacQueen et al. “Some methods for classification and anal-
ysis of multivariate observations.” In: Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1.
Oakland, CA, USA. 1967, pp. 281–297.

[24] M. A. Mendes, M. H. M. Paiva, and O.-e. E. Batista. “Signal
processing on graphs for estimating load current variability in
feeders with high integration of distributed generation.” In: Sus-
tainable Energy, Grids and Networks 34 (2023), p. 101032.

[25] R. Moss, E. Tzimas, H. Kara, P. Willis, and J.-k. Kooroshy. Crit-
ical metals in strategic energy technologies. Assessing rare metals
as supply-chain bottlenecks in low-carbon energy technologies. Tech.
rep. Institute for Energy and Transport IET, 2011.

[26] A. Neagoe, E. Tică, F. Popa, and B. Popa. “Change point detec-
tion in recent hydropower generation in Romania.” In: IOP Con-
ference Series: Materials Science and Engineering. Vol. 1032. IOP
Publishing. 2021, p. 012045.

[27] J. S. Oakland. Statistical process control. Routledge, 2007.

[28] G. A. Pagani and M. Aiello. “Towards decentralization: A topo-
logical investigation of the medium and low voltage grids.” In:
IEEE Transactions on Smart Grid 2.3 (2011), pp. 538–547.

[29] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[30] A. Rajabi, M. Eskandari, M. J. Ghadi, L. Li, J. Zhang, and P.
Siano. “A comparative study of clustering techniques for elec-
trical load pattern segmentation.” In: Renewable and Sustainable
Energy Reviews 120 (2020), p. 109628.

[31] P. Schäfer, A. Ermshaus, and U. Leser. “ClaSP - Time Series
Segmentation.” In: Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management. CIKM ’21. Vir-
tual Event, Queensland, Australia: Association for Computing
Machinery, 2021, pp. 1578–1587. isbn: 9781450384469. doi: 10.
1145 / 3459637 . 3482240. url: https : / / doi . org / 10 . 1145 /

3459637.3482240.

[32] A. J. Scott and M. Knott. “A cluster analysis method for group-
ing means in the analysis of variance.” In: Biometrics (1974),
pp. 507–512.

[33] M. Sufyan, N. A. Rahim, M. M. Aman, C. K. Tan, and S. R. S.
Raihan. “Sizing and applications of battery energy storage tech-
nologies in smart grid system: A review.” In: Journal of Renew-
able and Sustainable Energy 11.1 (2019).

[34] S. J. Taylor and B. Letham. “Forecasting at scale.” In: The Amer-
ican Statistician 72.1 (2018), pp. 37–45.

112 acquiring better load estimates

[35] The Pandas development team. pandas-dev/pandas: Pandas. Ver-
sion v2.1.3. Nov. 2023. doi: 10.5281/zenodo.10107975. url:
https://doi.org/10.5281/zenodo.10107975.

[36] S. R. Thomas, V. Kurupath, and U. Nair. “A passive islanding
detection method based on K-means clustering and EMD of
reactive power signal.” In: Sustainable Energy, Grids and Networks
23 (2020), p. 100377.

[37] C. Truong, L. Oudre, and N. Vayatis. “Ruptures: Change point
detection in Python.” In: arXiv preprint
arXiv:1801.00826 (2018).

[38] United Nations. Theme Report on Energy Transition—Towards the
Achievement of SDG 7 and Net-Zero Emissions. 2021.

[39] G. J. Van den Burg and C. K. Williams. “An evaluation of change
point detection algorithms.” In: arXiv preprint arXiv:2003.06222
(2020).

[40] L. Wang, Z. Qin, T. Slangen, P. Bauer, and T. Van Wijk. “Grid
impact of electric vehicle fast charging stations: Trends, stan-
dards, issues and mitigation measures-an overview.” In: IEEE
Open Journal of Power Electronics 2 (2021), pp. 56–74.

[41] X. Wang and S.-H. Ahn. “Real-time prediction and anomaly de-
tection of electrical load in a residential community.” In: Applied
Energy 259 (2020), p. 114145.

[42] X. Wang, Z. Yao, and M. Papaefthymiou. “A real-time electrical
load forecasting and unsupervised anomaly detection frame-
work.” In: Applied Energy 330 (2023), p. 120279.

[43] M. L. Waskom. “Seaborn: Statistical data visualization.” In: Jour-
nal of Open Source Software 6.60 (2021), p. 3021. doi: 10.21105/
joss.03021. url: https://doi.org/10.21105/joss.03021.

[44] M. van Werven, J. de Joode, and M. Scheepers. To an optimal
electricity supply system. Tech. rep. ECN, Tech. Rep. ECN-C–06-
005, 2006.

[45] R. Wu and E. J. Keogh. “Current time series anomaly detec-
tion benchmarks are flawed and are creating the illusion of
progress.” In: IEEE Transactions on Knowledge and Data Engineer-
ing 35.3 (2021), pp. 2421–2429.

[46] J. E. Zhang, D. Wu, and B. Boulet. “Time series anomaly detec-
tion for smart grids: A survey.” In: 2021 IEEE Electrical Power
and Energy Conference (EPEC). IEEE. 2021, pp. 125–130.

[47] R. Zuijderduin, O. Chevtchenko, J. Smit, G. Aanhaanen, I. Mel-
nik, and A. Geschiere. “Integration of HTS cables in the future
grid of the Netherlands.” In: Physics Procedia 36 (2012), pp. 890–
893.

4.5 references 113

5
DISCUSS ION AND OUTLOOK

In this thesis we discussed some of the challenges and applications of
anomaly detection. Many detailed topic specific points of discussion
were elaborated upon in Chapter 2, 3, and 4. In this section we instead
take more of bird’s-eye view on the field of anomaly detection and
what we identify as important future directions to advance the field.

5.1 regarding the evaluation of new unsupervised al-
gorithms

In Chapter 2 we perform the largest comparison of unsupervised ano-
maly detection algorithms. While benchmark studies like this provide
useful insights at the time of writing, they are insufficiently robust for
future developments. To put it more simply: it is easy to cheat on ex-
isting benchmarks, and this is doubly true for unsupervised anomaly
detection. This can be problematic, as it is hard to assess which meth-
ods are pushing the state-of-the-art, and which are only muddying
the waters. Systematic progress of the field can be severely hampered
by a lack of good evaluation.

In supervised tasks we typically have benchmark datasets, take, for
example, MNIST or CIFAR, which are already split in a train and test
set. Typically, authors of new methods report their performance and
open source their code, both for training and testing. Sometimes per-
formance can be reported higher than would be realistic, for example
by cherry picking the model with the best performance on the test
set. With available code, this is however decently verifiable.

In unsupervised learning this becomes much harder. There are no
distinct train of test steps, there is just a single evaluation round.
In this evaluation, we can either average across a sensible range of
hyperparameters, as we have done in Chapter 2, or by evaluating
the out-of-the-box hyperparameter settings. If the benchmark data-
sets are available however by a developer of algorithms, the range
of hyperparameters, or the out-of-the-box hyperparameters, can be
influenced by the performance of the algorithm on the benchmark.
Either knowingly or unknowingly, the benchmark can be overfitted
on when new methods are developed after the benchmark.

Solving this problem completely is not trivial, and of course even a
more robust evaluation systemmight still be abused. As an outlook to
the future we want to offer two ways in which the evaluation problem
might at least be alleviated:

115

116 discussion and outlook

5.1.1 Constructing Benchmarks with Distinct Datasets Belonging to Train
and Test Categories

One of the most common assumptions of unsupervised and semi-
supervised anomaly detection is that anomalies are heterogeneous
and rare. As such, they cannot typically be explicitly modeled or
learned. Because of this, we cannot generally divide a dataset in a
train and test partition, unless we have a sufficiently large dataset
with enough anomalies. In practical use cases, acquiring even a sub-
set of labeled data might even be possible only after initial anomaly
detection. Optimizing hyperparameters on a train set will likely im-
prove performance [3] for some algorithms, but is likely insufficient.
The best thing we can strive for is finding a good set of out-of-the-
box hyperparameters that perform decently enough across a variety
of datasets.

Finding this good set of hyperparameters can likely be done by
having a large collection of datasets, and constructing a train and test
set by splitting across the datasets rather than across the samples of
each dataset. This approach has not been adopted widely, and instead
many researchers opt to show “oracle” performance by optimizing on
the entire dataset. A rare example of optimizing on different datasets
to acquire hyperparameter settings for a test dataset is found in the
work of Yoon, Noh, and Park [4]. This is however research in the
computer vision domain. Because of the heterogeneity of especially
tabular data, we need a large collection of multiple datasets, rather
than a few large datasets. This would still allow us to construct a
sufficiently representative benchmark.

In Chapter 2 we were able to barely identify the cluster of “local”
anomalies from the total collection. These types of anomalies seem
rarer in practice. Moreover, some properties of anomalies could not
even be identified in the collection we have assembled. If we want to
really go towards finding estimates of good out-of-the-box hyperpa-
rameters, we will need many more datasets.

5.1.2 Regular Contests for Anomaly Detection

Machine learning contests are regularly held across a variety of fields.
Competitions continuously push the state of the art. For anomaly de-
tection, barely any competitions have been held. One of the most re-
cent prominent competitions in the field has been the VAND2.0 chal-
lenge at CVPR 2024 as part of the “VAND 2.0: Visual Anomaly and
Novelty Detection” workshop. Yet, even this challenge was held with
the long-existing MVTec AD [1] and MVTec LOCO AD [2] datasets
rather than new datasets.

5.2 what do we actually know about methods? 117

The establishment of new contests, focusing on various parts of
anomaly detection, might be a valuable force in driving advance-
ments in the field.

5.2 what do we actually know about methods?

In Chapter 3 we aim to study the way autoencoders work in detail.
One of the more remarkable findings of the literature review accom-
panying this study was how pervasive the prevailing theory - that
autoencoders do not reconstruct anomalies well - was. Even though
several authors have remarked upon this through the years, this as-
sumptions kept being propagated. Of all the proposed theories of
why failure can then happen, only a few substantiated their theories
with experiments. It seems that as a field, we are much more busy
with engineering, rather than science. Falsifying or proving theories
seems to be second to just acquiring higher performance on some
test set. This can be considered reminiscent of the infamous talk of Ali
Rahimi at NeurIPS 20171, where he famously called machine learning
to now be “alchemy”. With the recent advances in, and expectations
of, reproducibility we are already progressing along the right lines.
Yet, to really move beyond the “alchemy” of it all, we need to spend
more time scientifically studying machine learning, not just the meth-
ods, but really every part of machine learning.

references

[1] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Ste-
ger. “The MVTec anomaly detection dataset: a comprehensive
real-world dataset for unsupervised anomaly detection.” In: In-
ternational Journal of Computer Vision 129.4 (2021), pp. 1038–1059.

[2] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Ste-
ger. “Beyond dents and scratches: Logical constraints in unsu-
pervised anomaly detection and localization.” In: International
Journal of Computer Vision 130.4 (2022), pp. 947–969.

[3] J. Soenen, E. Van Wolputte, L. Perini, V. Vercruyssen, W. Meert,
J. Davis, and H. Blockeel. “The effect of hyperparameter tun-
ing on the Comparative evaluation of unsupervised anomaly
detection methods.” In: Knowledge Discovery and Data Mining
Workshop on Outlier Detection and Description. 2021, pp. 1–9.

[4] S. Yoon, Y.-K. Noh, and F. Park. “Autoencoding under nor-
malization constraints.” In: International Conference on Machine
Learning. PMLR. 2021, pp. 12087–12097.

1 https://www.youtube.com/watch?v=x7psGHgatGM

APPENDIX TO : UNSUPERV I SED ANOMALY
DETECT ION ALGOR ITHMS ON REAL -WORLD
DATA : HOW MANY DO WE NEED?

auc scores for each algorithm-data set combination

Table 7 contains the first half of the combinations and Table 8 contains
the second half of the combinations.

nemenyi post-hoc analysis results

Table 9 shows the results for all data sets, Table 10 shows the results
for the local data sets, and Table 11 shows the results for the global
data sets.

119

120 appendix to chapter 2

ionosphere

yeast

spambase

hrss

glass

seismic-bumps

donors

pageblocks

internetads

wilt

breastw

shuttle

pen-global

skin

satimage-2

fault

pima

mammography

smtp

hepatitis

mi-f

cover

parkinson

pen-local

arrhythmia

M
C

D
0.

95
0.

61
0.

49
0.

59
0.

75
0.

73
0.

91
0.

93
0.

75
0.

86
0.

99
1.

00
0.

91
0.

82
0.

99
0.

51
0.

68
0.

81
0.

95
0.

79
0.

38
0.

84
0.

62
0.

74
0.

72

O
C

SV
M

0.
84

0.
58

0.
52

0.
57

0.
65

0.
71

0.
87

0.
93

0.
69

0.
44

0.
98

0.
98

0.
87

0.
55

0.
99

0.
47

0.
63

0.
83

0.
95

0.
76

0.
49

0.
93

0.
45

0.
47

0.
80

O
D

IN
0.

85
0.

55
0.

53
0.

57
0.

64
0.

55
0.

28
0.

58
0.

57
0.

66
0.

51
0.

50
0.

66
0.

33
0.

55
0.

59
0.

56
0.

44
0.

30
0.

67
0.

51
0.

52
0.

43
0.

88
0.

63

SO
-G

A
A

L
0.

78
0.

58
0.

44
0.

57
0.

77
0.

57
0.

60
0.

88
0.

45
0.

44
0.

48
0.

58
0.

76
0.

66
0.

72
0.

39
0.

33
0.

61
0.

66
0.

72
0.

58
0.

60
0.

30
0.

05
0.

70

LO
D

A
0.

47
0.

48
0.

59
0.

58
0.

22
0.

71
0.

74
0.

57
0.

60
0.

49
0.

92
0.

67
0.

72
0.

54
0.

98
0.

43
0.

58
0.

81
0.

76
0.

55
0.

80
0.

91
0.

76
0.

64
0.

51

D
yn

am
ic

H
BO

S
0.

21
0.

58
0.

70
0.

57
0.

60
0.

75
0.

90
0.

71
0.

50
0.

45
0.

98
0.

99
0.

71
0.

61
0.

98
0.

55
0.

63
0.

86
0.

95
0.

78
0.

34
0.

79
0.

68
0.

66
0.

80

C
O

PO
D

0.
80

0.
62

0.
68

0.
60

0.
64

0.
71

0.
82

0.
88

0.
68

0.
34

0.
99

0.
99

0.
79

0.
47

0.
97

0.
46

0.
65

0.
91

0.
91

0.
80

0.
66

0.
88

0.
54

0.
52

0.
80

kN
N

0.
92

0.
60

0.
65

0.
55

0.
82

0.
74

0.
67

0.
95

0.
73

0.
69

0.
98

0.
82

0.
98

0.
67

0.
95

0.
66

0.
71

0 .
83

0.
91

0.
79

0.
39

0.
79

0.
64

0.
98

0.
80

kt
h-

N
N

0.
89

0.
60

0.
67

0.
55

0.
79

0.
73

0.
67

0.
95

0.
71

0.
69

0.
98

0.
84

0.
98

0.
67

0.
97

0.
64

0.
71

0.
83

0.
92

0.
81

0.
39

0.
79

0.
60

0.
98

0.
80

PC
A

0.
80

0.
59

0.
55

0.
57

0.
53

0.
64

0.
77

0.
90

0.
61

0.
31

0.
82

0.
99

0.
78

0.
44

0.
97

0.
50

0.
59

0.
84

0.
87

0.
76

0.
83

0.
93

0.
31

0.
34

0.
78

ge
n2

ou
t

0.
76

0.
60

0.
66

0.
57

0.
73

0.
71

0.
86

0.
91

0.
56

0.
49

0.
99

0.
99

0.
92

0.
65

0.
99

0.
53

0.
65

0.
86

0.
94

0.
70

0.
70

0.
92

0.
53

0.
66

0.
78

G
M

M
0.

74
0.

57
0.

58
0.

60
0.

76
0.

66
0.

75
0.

83
0.

61
0.

78
0.

96
0.

90
0.

92
0.

74
0.

75
0.

65
0.

59
0.

85
0.

94
0.

35
0.

45
0.

90
0.

61
0.

95
0.

34

D
ee

pS
V

D
D

0.
75

0.
50

0.
47

0.
55

0.
48

0.
59

0.
52

0.
67

0.
68

0.
50

0.
71

0.
49

0.
64

0.
50

0.
75

0.
50

0.
53

0.
53

0.
78

0.
65

0.
41

0.
47

0.
52

0.
72

0.
67

SO
D

0.
89

0.
53

0.
54

0.
53

0.
74

0.
71

0.
77

0.
76

0.
53

0.
59

0.
94

0.
74

0.
81

0.
61

0.
78

0.
64

0.
58

0.
78

0.
88

0.
57

0.
37

0.
63

0.
70

0.
92

0.
76

K
D

E
0.

93
0.

61
0.

60
0.

55
0.

77
0.

74
0.

88
0.

94
0.

66
0.

50
0.

98
0.

93
0.

96
0.

62
0.

99
0.

63
0.

70
0.

83
0.

95
0.

78
0.

36
0.

92
0.

62
0.

87
0.

67

C
BL

O
F

0.
72

0.
50

0.
59

0.
54

0.
52

0.
45

0.
43

0.
63

0 .
56

0.
57

0.
29

0.
98

0.
58

0.
49

0.
33

0.
59

0.
42

0.
63

0.
40

0.
36

0.
56

0.
83

0.
45

0.
67

0.
48

IN
N

E
0.

90
0.

60
0.

59
0.

56
0.

70
0.

71
0.

79
0.

96
0.

69
0.

56
0.

77
0.

98
0.

89
0.

53
1.

00
0.

53
0.

67
0.

72
0.

94
0.

71
0.

52
0.

95
0.

47
0.

74
0.

73

A
E

0.
83

0.
60

0.
55

0.
58

0.
60

0.
67

0.
76

0.
92

0.
61

0.
34

0.
97

0.
99

0.
90

0.
60

0.
98

0.
53

0.
66

0.
88

0.
82

0.
72

0.
83

0.
92

0.
35

0.
55

0.
77

LO
F

0.
90

0.
54

0.
50

0.
56

0.
79

0.
54

0.
57

0.
67

0.
63

0.
65

0.
40

0.
58

0.
72

0.
57

0.
56

0.
57

0.
61

0.
74

0.
48

0.
72

0.
55

0.
51

0.
54

0.
98

0.
62

IF
0.

86
0.

61
0.

62
0.

59
0.

69
0.

67
0.

77
0.

90
0.

68
0.

45
0.

99
1.

00
0.

93
0.

67
0.

99
0.

58
0.

68
0.

86
0.

91
0.

70
0.

78
0.

89
0.

50
0.

80
0.

81

EC
O

D
0.

74
0.

56
0.

64
0.

59
0.

62
0.

68
0.

89
0.

91
0.

68
0.

39
0.

99
1.

00
0.

77
0.

49
0.

97
0.

47
0.

59
0.

91
0.

88
0.

74
0.

56
0.

93
0.

38
0.

45
0.

81

A
BO

D
0.

93
0.

60
0.

52
0.

57
0.

81
0.

74
0.

25
0.

94
0.

74
0.

69
0.

98
0.

79
0.

98
0.

25
0.

95
0.

68
0.

70
0.

55
0.

94
0.

79
0.

44
0.

80
0.

63
0.

96
0.

82

en
se

m
bl

e-
LO

F
0.

90
0.

53
0.

51
0.

56
0.

80
0.

52
0.

68
0.

71
0.

68
0.

64
0.

31
0.

62
0.

81
0.

68
0.

67
0.

56
0.

61
0.

78
0.

83
0.

64
0.

59
0.

50
0.

54
0.

99
0.

62

sb
-D

ee
pS

V
D

D
0 .

71
0.

54
0.

41
0.

52
0.

58
0.

51
0.

28
0.

66
0.

63
0.

41
0.

72
0.

46
0.

66
0.

49
0.

60
0.

51
0.

55
0.

36
0.

71
0.

60
0.

30
0.

46
0.

44
0.

63
0.

63

u-
C

BL
O

F
0.

87
0.

42
0.

51
0.

57
0.

80
0.

70
0.

81
0.

92
0.

69
0.

53
0.

97
0.

99
0.

90
0.

67
1.

00
0.

56
0.

66
0.

79
0.

90
0.

72
0.

60
0.

89
0.

57
0.

81
0.

79

LU
N

A
R

0.
93

0.
58

0.
51

0.
58

0.
82

0.
72

0.
67

0.
72

0.
65

0.
43

0.
98

0.
65

0.
91

0.
66

0.
89

0.
71

0.
70

0.
83

0.
90

0.
65

0.
41

0.
73

0.
51

0.
90

0.
79

H
BO

S
0.

77
0.

59
0.

64
0.

56
0.

71
0.

71
0.

81
0.

75
0.

68
0.

36
0.

99
0.

99
0.

77
0.

60
0.

98
0.

59
0.

70
0.

83
0.

83
0.

78
0.

40
0.

64
0.

52
0.

73
0.

80

VA
E

0.
86

0.
60

0.
56

0.
57

0.
59

0.
67

0.
79

0.
92

0.
61

0.
33

0.
96

0.
79

0.
85

0.
55

0.
87

0.
55

0.
66

0.
84

0.
82

0.
72

0.
51

0.
94

0.
42

0.
63

0.
77

C
O

F
0.

88
0.

55
0.

47
0.

54
0.

78
0.

55
0.

68
0.

59
0.

66
0.

63
0.

43
0.

56
0.

64
0.

70
0.

54
0.

57
0.

60
0.

75
0.

42
0.

57
0.

52
0.

51
0.

60
0.

95
0.

66

LM
D

D
0.

74
0.

53
0.

50
0.

50
0.

59
0.

71
0.

90
0.

76
0.

68
0.

40
0.

66
0.

99
0.

75
0.

43
0.

48
0.

40
0.

64
0.

78
0.

86
0.

83
0.

56
0.

91
0.

59
0.

45
0.

80

A
LA

D
0.

57
0.

51
0.

56
0.

52
0.

55
0.

64
0.

60
0.

58
0.

61
0.

43
0.

83
0.

58
0.

62
0.

72
0.

62
0.

41
0.

54
0.

72
0 .

31
0.

66
0.

74
0.

42
0.

45
0.

33
0.

67

be
ta

-V
A

E
0.

79
0.

60
0.

55
0.

57
0.

59
0.

66
0.

82
0.

91
0.

61
0.

33
0.

95
0.

99
0.

81
0.

52
0.

98
0.

49
0.

66
0.

89
0.

82
0.

74
0.

80
0.

93
0.

36
0.

44
0.

77

EI
F

0.
88

0.
61

0.
67

0.
58

0.
70

0.
71

0.
83

0.
91

0.
69

0.
49

0.
98

1.
00

0.
94

0.
71

1.
00

0.
52

0.
69

0.
84

0.
94

0.
75

0.
79

0.
89

0.
52

0.
79

0.
82

Table 7: The AUC values for the first half of the algorithm-data set combina-
tions.

5.0 nemenyi post-hoc analysis results 121

musk

wbc2

vertebral

mnist

pendigits

stamps

nasa

wbc

optdigits

waveform

landsat

cardio

satellite

yeast6

campaign

speech

letter

wine

aloi

mi-v

vowels

thyroid

annthyroid

http

magic.gamma

M
C

D
1.

00
0.

99
0.

39
0.

83
0.

84
0.

84
0.

61
0.

93
0.

39
0.

59
0.

56
0.

82
0.

76
0.

67
0.

77
0.

50
0.

81
0.

77
0.

54
0.

58
0.

91
0.

99
0.

93
1.

00
0.

74

O
C

SV
M

0.
87

0.
98

0.
38

0.
70

0.
93

0.
88

0.
52

0.
94

0.
51

0.
65

0.
38

0.
88

0.
63

0.
72

0.
80

0.
47

0.
61

0.
86

0.
54

0.
62

0.
71

0.
99

0.
94

0.
99

0.
67

O
D

IN
0.

55
0.

79
0.

50
0.

62
0.

51
0.

59
0.

56
0.

79
0.

51
0.

66
0.

49
0.

57
0.

49
0.

45
0.

56
0.

65
0.

86
0.

66
0.

74
0.

53
0.

87
0.

57
0.

50
0.

92
0.

65

SO
-G

A
A

L
0.

90
0.

83
0.

67
0.

58
0.

90
0.

71
0.

51
0.

41
0.

50
0.

41
0.

46
0.

80
0.

55
0.

56
0.

56
0.

47
0.

43
0.

20
0.

50
0.

53
0.

04
0.

93
0.

86
0.

66
0.

57

LO
D

A
0.

99
0.

98
0.

32
0.

82
0.

91
0.

92
0.

57
0.

96
0.

42
0.

70
0.

39
0.

64
0.

62
0.

71
0.

40
0.

55
0.

55
0.

32
0.

53
0.

72
0.

72
0.

93
0.

55
0.

97
0.

69

D
yn

am
ic

H
BO

S
1.

00
0.

99
0.

27
0.

44
0.

88
0.

89
0.

65
0.

95
0.

83
0.

69
0.

59
0.

84
0.

77
0.

67
0.

83
0.

47
0.

63
0.

92
0.

47
0.

51
0.

71
0.

99
0.

89
0.

94
0.

72

C
O

PO
D

0.
95

0.
99

0.
33

0.
77

0.
90

0.
93

0.
54

0.
96

0.
68

0.
73

0.
42

0.
92

0.
63

0.
81

0.
78

0.
49

0.
56

0.
87

0.
51

0.
67

0.
50

0.
94

0.
78

0.
99

0.
68

kN
N

0.
54

0.
99

0.
35

0.
81

0.
79

0.
86

0.
65

0.
94

0.
45

0.
74

0.
60

0.
80

0.
70

0.
64

0.
80

0.
51

0.
85

0 .
81

0.
60

0.
59

0.
97

0.
99

0.
92

0.
15

0.
79

kt
h-

N
N

0.
63

0.
99

0.
34

0.
82

0.
82

0.
89

0.
65

0.
94

0.
48

0.
74

0.
61

0.
84

0.
71

0.
67

0.
81

0.
48

0.
81

0.
90

0.
58

0.
60

0.
96

0.
99

0.
92

0.
15

0.
78

PC
A

1.
00

0.
99

0.
49

0.
85

0.
92

0.
85

0.
46

0.
92

0.
48

0.
60

0.
40

0.
95

0.
63

0.
71

0.
74

0.
47

0.
52

0.
81

0.
55

0.
74

0.
64

0.
96

0.
69

1.
00

0.
65

ge
n2

ou
t

1.
00

1.
00

0.
39

0.
78

0.
95

0.
90

0.
53

0.
94

0.
63

0.
63

0.
48

0.
93

0.
72

0.
74

0.
70

0.
46

0.
65

0.
78

0.
50

0.
71

0.
71

0.
99

0.
87

1.
00

0.
70

G
M

M
0.

76
0.

39
0.

34
0.

67
0.

76
0.

74
0.

62
0.

38
0.

45
0.

69
0.

59
0.

64
0.

67
0.

49
0.

77
0.

57
0.

89
0.

17
0.

53
0.

60
0.

95
0.

91
0.

87
0.

20
0.

80

D
ee

pS
V

D
D

0.
73

0.
92

0.
50

0.
63

0.
58

0.
69

0.
46

0.
85

0.
55

0.
45

0.
60

0.
73

0.
59

0.
65

0.
65

0.
51

0.
63

0.
72

0.
50

0.
48

0.
64

0.
70

0.
63

0.
41

0.
48

SO
D

0.
45

0.
96

0.
59

0.
71

0.
66

0.
74

0.
59

0.
93

0.
52

0.
62

0.
57

0.
68

0.
58

0.
59

0.
73

0.
56

0.
89

0.
47

0.
66

0.
57

0.
93

0.
96

0.
81

0.
26

0.
75

K
D

E
0.

08
0.

97
0.

33
0.

73
0.

96
0.

87
0.

64
0.

90
0.

41
0.

76
0.

60
0.

81
0.

78
0.

72
0.

84
0.

43
0.

88
0.

77
0.

59
0.

59
0.

89
0.

98
0.

94
0.

99
0.

68

C
BL

O
F

0.
61

0.
23

0.
53

0.
64

0.
45

0.
32

0.
45

0.
35

0 .
48

0.
69

0.
55

0.
53

0.
62

0.
39

0.
51

0.
52

0.
59

0.
31

0.
54

0.
55

0.
81

0.
24

0.
37

0.
42

0.
49

IN
N

E
0.

99
0.

91
0.

40
0.

82
0.

87
0.

82
0.

59
0.

93
0.

55
0.

74
0.

54
0.

89
0.

75
0.

69
0.

81
0.

47
0.

68
0.

82
0.

53
0.

64
0.

89
0.

98
0.

92
1.

00
0.

71

A
E

1.
00

0.
98

0.
36

0.
85

0.
93

0.
88

0.
50

0.
93

0.
51

0.
64

0.
37

0.
93

0.
60

0.
67

0.
73

0.
47

0.
55

0.
80

0.
55

0.
74

0.
76

0.
91

0.
65

1.
00

0.
69

LO
F

0.
54

0.
75

0.
47

0.
60

0.
51

0.
64

0.
56

0.
92

0.
49

0.
72

0.
54

0.
53

0.
54

0.
48

0.
55

0.
53

0.
87

0.
76

0.
74

0.
55

0.
93

0.
59

0.
48

0.
37

0.
69

IF
1.

00
1.

00
0.

36
0.

81
0.

95
0.

90
0.

57
0.

94
0.

72
0.

72
0.

48
0.

93
0.

70
0.

73
0.

72
0.

47
0.

64
0.

80
0.

54
0.

77
0.

77
0.

98
0.

82
1.

00
0.

73

EC
O

D
0.

96
0.

99
0.

42
0.

75
0.

91
0.

88
0.

44
0.

90
0.

60
0.

72
0.

37
0.

94
0.

75
0.

70
0.

77
0.

49
0.

57
0.

73
0.

53
0.

65
0.

59
0.

98
0.

79
0.

98
0.

64

A
BO

D
0.

18
0.

99
0.

36
0.

81
0.

77
0.

85
0.

63
0.

93
0.

46
0.

70
0.

58
0.

76
0.

66
0.

61
0.

79
0.

57
0.

82
0.

76
0.

61
0.

59
0.

96
0.

98
0.

91
0.

97
0.

80

en
se

m
bl

e-
LO

F
0.

63
0.

92
0.

45
0.

63
0.

53
0.

70
0.

55
0.

94
0.

51
0.

72
0.

55
0.

59
0.

58
0.

48
0.

46
0.

55
0.

87
0.

88
0.

75
0.

59
0.

94
0.

71
0.

50
0.

14
0.

70

sb
-D

ee
pS

V
D

D
0 .

64
0.

86
0.

43
0.

60
0.

47
0.

67
0.

52
0.

77
0.

47
0.

47
0.

54
0.

76
0.

52
0.

57
0.

61
0.

50
0.

53
0.

60
0.

51
0.

37
0.

58
0.

76
0.

61
0.

43
0.

45

u-
C

BL
O

F
0.

85
0.

99
0.

42
0.

82
0.

91
0.

78
0.

44
0.

93
0.

52
0.

71
0.

57
0.

84
0.

77
0.

62
0.

80
0.

47
0.

70
0.

59
0.

54
0.

59
0.

86
0.

99
0.

91
1.

00
0.

70

LU
N

A
R

0.
73

0.
97

0.
36

0.
76

0.
72

0.
71

0.
54

0.
93

0.
44

0.
74

0.
59

0.
60

0.
66

0.
61

0.
67

0.
46

0.
75

0.
69

0.
71

0.
62

0.
86

0.
93

0.
71

0.
16

0.
81

H
BO

S
1.

00
0.

99
0.

36
0.

35
0.

93
0.

91
0.

49
0.

96
0.

87
0.

68
0.

58
0.

80
0.

76
0.

75
0.

78
0.

46
0.

60
0.

91
0.

50
0.

59
0.

66
0.

97
0.

68
0.

97
0.

71

VA
E

0.
80

0.
97

0.
38

0.
84

0.
92

0.
88

0.
54

0.
87

0.
47

0.
66

0.
51

0.
87

0.
63

0.
77

0.
72

0.
47

0.
63

0.
77

0.
55

0.
64

0.
70

0.
92

0.
67

1.
00

0.
67

C
O

F
0.

50
0.

61
0.

47
0.

61
0.

51
0.

52
0.

54
0.

81
0.

43
0.

71
0.

53
0.

50
0.

53
0.

41
0.

50
0.

54
0.

86
0.

41
0.

77
0.

54
0.

90
0.

51
0.

47
0.

12
0.

65

LM
D

D
0.

97
1.

00
0.

36
0.

75
0.

94
0.

89
0.

49
0.

72
0.

59
0.

56
0.

45
0.

71
0.

42
0.

63
0.

73
0.

48
0.

52
0.

86
0.

50
0.

60
0.

63
0.

99
0.

91
1.

00
0.

63

A
LA

D
0.

56
0.

65
0.

50
0.

51
0.

61
0.

53
0.

49
0.

65
0.

70
0.

54
0.

43
0.

71
0.

54
0.

62
0.

67
0.

49
0.

50
0.

81
0 .

50
0.

56
0.

59
0.

43
0.

51
0.

91
0.

57

be
ta

-V
A

E
0.

86
0.

99
0.

37
0.

85
0.

94
0.

90
0.

49
0.

93
0.

51
0.

65
0.

39
0.

95
0.

60
0.

77
0.

73
0.

47
0.

52
0.

81
0.

55
0.

74
0.

62
0.

96
0.

67
1.

00
0.

67

EI
F

1.
00

1.
00

0.
35

0.
81

0.
95

0.
89

0.
59

0.
95

0.
66

0.
73

0.
50

0.
93

0.
72

0.
73

0.
76

0.
47

0.
65

0.
85

0.
53

0.
78

0.
81

0.
99

0.
90

0.
99

0.
72

Table 8: The AUC values for the second half of the algorithm-data set com-
binations.

122 appendix to chapter 2

PCA

LMDD

SO-GAAL

IF

LOF

EIF

ALAD

kNN

LUNAR

KDE

COF

MCD

GMM

u-CBLOF

INNE

ECOD

beta-VAE

AE

LODA

ODIN

HBOS

SOD

ensemble-LOF

DynamicHBOS

VAE

COPOD

OCSVM

DeepSVDD

gen2out

ABOD

CBLOF

kth-NN

sb-DeepSVDD

PC
A

1.
0

0.
9

0.
18

8
0.

18
8

0.
9

0.
01
2

0.
04
5

0.
15

5
0.

9
0.

48
2

0.
83

5
0.

16
7

0.
9

0.
9

0.
73

6
0.

9
0.

9
0.

9
0.

9
0.

61
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
21

6
0.

65
1

0.
74

7
0.
03
5

0.
05

8
0.
00
1

LM
D

D
0.

9
1.

0
0.

58
1

0.
03
1

0.
9

0.
00
1

0.
24

5
0.
02
4

0.
9

0.
12

5
0.

9
0.
02
6

0.
9

0.
65

8
0.

32
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
88

8
0.

9
0.

61
3

0.
9

0.
61

6
0.

24
5

0.
33

8
0.

20
4

0.
00
7

0.
01
5

SO
-G

A
A

L
0.

18
8

0.
58

1
1.

0
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
03
2

0.
00
1

0.
9

0.
00
1

0.
04
8

0.
00
1

0.
00
1

0.
00
6

0.
02
4

0.
00
7

0.
87

7
0.

9
0.
00
1

0.
23

8
0.

55
3

0.
00
1

0.
07

4
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

IF
0.

18
8

0.
03
1

0.
00
1

1.
0

0.
00
1

0.
9

0.
00
1

0.
9

0.
57

4
0.

9
0.
00
1

0.
9

0.
49

6
0.

9
0.

9
0.

85
2

0.
63

0.
84

9
0.
00
6

0.
00
1

0.
9

0.
14

6
0.
03
6

0.
9

0.
40

1
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

LO
F

0.
9

0.
9

0.
9

0.
00
1

1.
0

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
2

0.
9

0.
00
1

0.
9

0.
06

2
0.
01
1

0.
71

8
0.

9
0.

72
2

0.
9

0.
9

0.
33

0.
9

0.
9

0.
17

1
0.

9
0.
04
9

0.
43

4
0.

9
0.
00
7

0.
01
2

0.
9

0 .
00
1

0.
38

3

EI
F

0.
01
2

0.
00
1

0.
00
1

0.
9

0.
00
1

1.
0

0.
00
1

0.
9

0.
08

8
0.

9
0.
00
1

0.
9

0.
06

2
0.

9
0.

9
0.

27
4

0.
11

6
0.

27
1

0.
00
1

0.
00
1

0.
66

2
0.
00
8

0.
00
1

0.
84

5
0.
04

0.
9

0.
57

4
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

A
LA

D
0.
04
5

0.
24

5
0.

9
0.
00
1

0.
9

0.
00
1

1.
0

0.
00
1

0.
00
5

0.
00
1

0.
9

0.
00
1

0.
00
8

0.
00
1

0.
00
1

0.
00
1

0.
00
4

0.
00
1

0.
56

0.
9

0.
00
1

0.
06

2
0.

22
1

0.
00
1

0.
01
4

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

kN
N

0.
15

5
0.
02
4

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

1.
0

0.
52

5
0.

9
0.
00
1

0.
9

0.
44

2
0.

9
0.

9
0.

80
3

0.
58

1
0.

79
9

0.
00
4

0.
00
1

0.
9

0.
11

9
0.
02
8

0.
9

0.
34

2
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

LU
N

A
R

0.
9

0.
9

0.
03
2

0.
57

4
0.

9
0.

08
8

0.
00
5

0.
52

5
1.

0
0.

86
3

0.
45

1
0.

54
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
22

1
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.
03
9

0.
9

0.
9

0.
00
4

0.
28

4
0.
00
1

K
D

E
0.

48
2

0.
12

5
0.
00
1

0.
9

0.
00
2

0.
9

0.
00
1

0.
9

0.
86

3
1.

0
0.
00
1

0.
9

0.
78

5
0.

9
0.

9
0.

9
0.

9
0.

9
0.
03

0.
00
1

0.
9

0.
40

9
0.

14
1

0.
9

0.
70

1
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

C
O

F
0.

83
5

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
45

1
0.
00
1

1.
0

0.
00
1

0.
53

2
0.
00
3

0.
00
1

0.
17

5
0.

38
3

0.
17

8
0.

9
0.

9
0.
03
2

0.
89

8
0.

9
0.
01
1

0.
61

6
0.
00
2

0.
05

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

M
C

D
0.

16
7

0.
02
6

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
54

2
0.

9
0.
00
1

1.
0

0.
46

2
0.

9
0.

9
0.

82
1

0.
59

9
0.

81
7

0.
00
5

0.
00
1

0.
9

0.
12

7
0.
03
1

0.
9

0.
36

2
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

G
M

M
0.

9
0.

9
0.
04
8

0.
49

6
0.

9
0.

06
2

0.
00
8

0.
44

2
0.

9
0.

78
5

0.
53

2
0.

46
2

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
29

1
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

05
8

0.
9

0.
9

0.
00
6

0.
21

6
0.
00
1

u-
C

BL
O

F
0.

9
0.

65
8

0.
00
1

0.
9

0.
06

2
0.

9
0.
00
1

0.
9

0.
9

0.
9

0.
00
3

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
34

2
0.
00
1

0.
9

0.
9

0.
68

7
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

IN
N

E
0.

73
6

0.
32

6
0.
00
1

0.
9

0.
01
1

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
10

5
0 .
00
1

0.
9

0.
67

3
0.

35
8

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

EC
O

D
0.

9
0.

9
0.
00
6

0.
85

2
0.

71
8

0.
27

4
0.
00
1

0.
80

3
0.

9
0.

9
0.

17
5

0.
82

1
0.

9
0.

9
0.

9
1.

0
0.

9
0.

9
0.

9
0.

06
8

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
8

0.
9

0.
9

0.
00
1

0.
58

4
0.
00
1

be
ta

-V
A

E
0.

9
0.

9
0.
02
4

0.
63

0.
9

0.
11

6
0.
00
4

0.
58

1
0.

9
0.

9
0.

38
3

0.
59

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

9
0.

17
8

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
02
9

0.
9

0.
9

0.
00
3

0.
34

2
0.
00
1

A
E

0.
9

0.
9

0.
00
7

0.
84

9
0.

72
2

0.
27

1
0.
00
1

0.
79

9
0.

9
0.

9
0.

17
8

0.
81

7
0.

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

06
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
8

0.
9

0.
9

0.
00
1

0.
58

1
0.
00
1

LO
D

A
0.

9
0.

9
0.

87
7

0.
00
6

0.
9

0.
00
1

0.
56

0.
00
4

0.
9

0.
03

0.
9

0.
00
5

0.
9

0.
34

2
0.

10
5

0.
9

0.
9

0.
9

1.
0

0.
9

0.
77

5
0.

9
0.

9
0.

59
1

0.
9

0.
29

5
0.

86
3

0.
9

0.
07

1
0.

11
0.

51
0.
00
1

0.
07

4

O
D

IN
0.

61
6

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
22

1
0.
00
1

0.
9

0.
00
1

0.
29

1
0.
00
1

0.
00
1

0.
06

8
0.

17
8

0.
06

9
0.

9
1.

0
0 .
00
9

0.
68

0.
9

0.
00
3

0.
38

3
0.
00
1

0.
01
5

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

H
BO

S
0.

9
0.

9
0.
00
1

0.
9

0.
33

0.
66

2
0.
00
1

0.
9

0.
9

0.
9

0.
03
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
77

5
0.
00
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

SO
D

0.
9

0.
9

0.
23

8
0.

14
6

0.
9

0.
00
8

0.
06

2
0.

11
9

0.
9

0.
40

9
0.

89
8

0.
12

7
0.

9
0.

9
0.

67
3

0.
9

0.
9

0.
9

0.
9

0.
68

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
27

1
0.

58
8

0.
68

3
0.
04
8

0.
04
2

0.
00
2

en
se

m
bl

e-
LO

F
0.

9
0.

9
0.

55
3

0.
03
6

0.
9

0.
00
1

0.
22

1
0.
02
8

0.
9

0.
14

1
0.

9
0.
03
1

0.
9

0.
68

7
0.

35
8

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
64

1
0.

9
0.

58
8

0.
27

1
0.

37
1

0.
18

3
0.
00
8

0.
01
3

D
yn

am
ic

H
BO

S
0.

9
0.

88
8

0.
00
1

0.
9

0.
17

1
0.

84
5

0.
00
1

0.
9

0.
9

0.
9

0.
01
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
59

1
0.
00
3

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

VA
E

0.
9

0.
9

0.
07

4
0.

40
1

0.
9

0.
04

0.
01
4

0.
34

2
0.

9
0.

70
1

0.
61

6
0.

36
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
38

3
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

9
0.

08
7

0.
87

0.
9

0.
01

0.
15

5
0.
00
1

C
O

PO
D

0.
9

0.
61

3
0.
00
1

0.
9

0.
04
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
29

5
0.
00
1

0.
9

0.
9

0.
64

1
0.

9
0.

9
1.

0
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

O
C

SV
M

0.
9

0.
9

0.
00
1

0.
9

0.
43

4
0.

57
4

0.
00
1

0.
9

0.
9

0.
9

0.
05

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
86

3
0.
01
5

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

0.
00
1

0.
9

0.
9

0.
00
1

0.
86

3
0.
00
1

D
ee

pS
V

D
D

0.
21

6
0.

61
6

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
03
9

0.
00
1

0.
9

0.
00
1

0.
05

8
0.
00
1

0.
00
1

0.
00
8

0.
02
9

0.
00
8

0.
9

0.
9

0.
00
1

0.
27

1
0.

58
8

0.
00
1

0.
08

7
0.
00
1

0.
00
1

1.
0

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

ge
n2

ou
t

0.
65

1
0.

24
5

0.
00
1

0.
9

0.
00
7

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
07

1
0.
00
1

0.
9

0.
58

8
0.

27
1

0.
9

0.
87

0.
9

0.
9

0.
00
1

1.
0

0.
9

0.
00
1

0.
9

0.
00
1

A
BO

D
0.

74
7

0.
33

8
0.
00
1

0.
9

0.
01
2

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
11

0.
00
1

0.
9

0.
68

3
0.

37
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

1.
0

0.
00
1

0.
9

0.
00
1

C
BL

O
F

0.
03
5

0.
20

4
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
00
4

0.
00
1

0.
9

0.
00
1

0.
00
6

0.
00
1

0.
00
1

0.
00
1

0.
00
3

0.
00
1

0.
51

0.
9

0.
00
1

0.
04
8

0.
18

3
0.
00
1

0.
01

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

1.
0

0.
00
1

0.
9

kt
h-

N
N

0.
05

8
0.
00
7

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
28

4
0.

9
0.
00
1

0.
9

0.
21

6
0.

9
0.

9
0.

58
4

0.
34

2
0.

58
1

0.
00
1

0.
00
1

0.
9

0.
04
2

0.
00
8

0.
9

0.
15

5
0.

9
0.

86
3

0.
00
1

0.
9

0.
9

0.
00
1

1.
0

0.
00
1

sb
-D

ee
pS

V
D

D
0.
00
1

0.
01
5

0.
9

0.
00
1

0.
38

3
0.
00
1

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
07

4
0.

9
0.
00
1

0.
00
2

0.
01
3

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

1.
0

Table 9: The p-values from Nemenyi post-hoc analysis on all algorithm pairs
based on all 52 data sets. P-values below 0.05 have been printed
bold.

5.0 nemenyi post-hoc analysis results 123

PCA

LMDD

SO-GAAL

IF

LOF

EIF

ALAD

kNN

LUNAR

KDE

COF

MCD

GMM

u-CBLOF

INNE

ECOD

beta-VAE

AE

LODA

ODIN

HBOS

SOD

ensemble-LOF

DynamicHBOS

VAE

COPOD

OCSVM

DeepSVDD

gen2out

ABOD

CBLOF

kth-NN

sb-DeepSVDD

PC
A

1.
0

0.
9

0.
9

0.
12

9
0.
00
1

0.
04
2

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
2

0.
00
1

0.
00
1

0.
02
8

0.
06

4
0.

9
0.

9
0.

9
0.

9
0.

40
7

0.
80

4
0.
00
2

0.
00
1

0.
78

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

LM
D

D
0.

9
1.

0
0.

9
0.

43
6

0.
00
9

0.
19

3
0.

9
0.
00
1

0.
00
9

0.
00
3

0.
01
9

0.
00
4

0.
00
4

0.
14

4
0.

26
3

0.
9

0.
9

0.
9

0.
9

0.
75

5
0.

9
0.
01
7

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

SO
-G

A
A

L
0.

9
0.

9
1.

0
0.

06
8

0.
00
1

0.
01
9

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
01
2

0.
03

0.
9

0.
9

0.
9

0.
9

0.
25

2
0.

65
9

0.
00
1

0.
00
1

0.
63

5
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

IF
0.

12
9

0.
43

6
0.

06
8

1.
0

0.
9

0.
9

0.
14

4
0.

26
3

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
46

3
0.

40
7

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
75

5
0.

9
0.

69
5

0.
33

5

LO
F

0.
00
1

0.
00
9

0.
00
1

0.
9

1.
0

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
01
1

0.
00
8

0.
14

4
0.

39
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
52

6
0.

31
0.

24
1

0.
12

9
0.

53
8

0.
9

0.
26

3
0.

9
0.
00
6

EI
F

0.
04
2

0.
19

3
0.
01
9

0.
9

0.
9

1.
0

0.
04
7

0.
52

6
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

21
2

0.
17

5
0.

73
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
86

4
0.

70
7

0.
9

0.
9

0.
88

8
0.

9
0.

13
6

A
LA

D
0.

9
0.

9
0.

9
0.

14
4

0.
00
1

0.
04
7

1.
0

0.
00
1

0.
00
1

0.
00
1

0.
00
3

0.
00
1

0.
00
1

0.
03
2

0.
07

2
0.

9
0.

9
0.

9
0.

9
0.

43
6

0.
82

8
0.
00
2

0.
00
1

0.
80

4
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

kN
N

0.
00
1

0.
00
1

0.
00
1

0.
26

3
0.

9
0.

52
6

0.
00
1

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
59

8
0.

43
6

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
07

2
0.
00
9

0.
9

0.
9

0.
01

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

LU
N

A
R

0.
00
1

0.
00
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
01

0.
00
8

0.
13

6
0.

37
8

0.
9

0.
9

0.
9

0.
9

0.
9

0.
51

4
0.

29
8

0.
23

1
0.

12
5

0.
52

6
0.

9
0.

25
2

0.
9

0.
00
5

K
D

E
0.
00
1

0.
00
3

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
3

0.
00
3

0.
06

4
0.

21
2

0.
9

0.
75

5
0.

9
0.

9
0.

78
0.

32
2

0.
15

9
0.

11
8

0.
05

7
0.

33
5

0.
9

0.
12

9
0.

9
0.
00
2

C
O

F
0.
00
2

0.
01
9

0.
00
1

0.
9

0.
9

0.
9

0.
00
3

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
02
2

0.
01
7

0.
23

1
0.

52
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
64

7
0.

45
0.

36
3

0.
21

2
0.

65
9

0.
9

0.
39

2
0.

9
0.
01
2

M
C

D
0.
00
1

0.
00
4

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
00
4

0.
00
3

0.
07

6
0.

24
1

0.
9

0.
79

2
0.

9
0.

9
0.

81
6

0.
36

3
0.

18
4

0.
13

6
0.

06
8

0.
37

8
0.

9
0.

15
2

0.
9

0.
00
2

G
M

M
0.
00
1

0.
00
4

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
00
4

0.
00
3

0.
07

6
0.

24
1

0.
9

0.
79

2
0.

9
0.

9
0.

81
6

0.
36

3
0.

18
4

0.
13

6
0.

06
8

0.
37

8
0.

9
0.

15
2

0.
9

0.
00
2

u-
C

BL
O

F
0.
02
8

0.
14

4
0.
01
2

0.
9

0.
9

0.
9

0.
03
2

0.
59

8
0.

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

15
9

0.
12

9
0.

65
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
86

4
0.

79
2

0.
63

5
0.

9
0.

9
0.

81
6

0.
9

0.
1

IN
N

E
0.

06
4

0.
26

3
0.
03

0.
9

0.
9

0.
9

0.
07

2
0.

43
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

0.
28

6
0.

24
1

0.
81

6
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

79
2

0.
9

0.
9

0.
9

0.
85

2
0.

19
3

EC
O

D
0.

9
0.

9
0.

9
0.

46
3

0.
01
1

0.
21

2
0.

9
0.
00
1

0.
01

0.
00
3

0.
02
2

0.
00
4

0.
00
4

0.
15

9
0.

28
6

1.
0

0.
9

0.
9

0.
9

0.
78

0.
9

0.
01
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

be
ta

-V
A

E
0.

9
0.

9
0.

9
0.

40
7

0.
00
8

0.
17

5
0.

9
0.
00
1

0.
00
8

0.
00
3

0.
01
7

0.
00
3

0.
00
3

0.
12

9
0.

24
1

0.
9

1.
0

0.
9

0.
9

0.
73

1
0.

9
0.
01
4

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

A
E

0.
9

0.
9

0.
9

0.
9

0.
14

4
0.

73
1

0.
9

0.
00
1

0.
13

6
0.

06
4

0.
23

1
0.

07
6

0.
07

6
0.

65
9

0.
81

6
0.

9
0.

9
1.

0
0.

9
0.

9
0.

9
0.

21
2

0.
03
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

LO
D

A
0.

9
0.

9
0.

9
0.

9
0.

39
2

0.
9

0.
9

0.
00
1

0.
37

8
0.

21
2

0.
52

6
0.

24
1

0.
24

1
0.

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

9
0.

50
2

0.
12

5
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
6

0.
9

0.
00
4

0.
9

O
D

IN
0.

40
7

0.
75

5
0.

25
2

0.
9

0.
9

0.
9

0.
43

6
0.

07
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
78

0.
73

1
0.

9
0.

9
1.

0
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

43
6

0.
9

0.
36

3
0.

67
1

H
BO

S
0.

80
4

0.
9

0.
65

9
0.

9
0.

9
0.

9
0.

82
8

0.
00
9

0.
9

0.
75

5
0.

9
0.

79
2

0.
79

2
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.

9
0.

62
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
10

6
0.

9
0.

08
1

0.
9

SO
D

0.
00
2

0.
01
7

0.
00
1

0.
9

0.
9

0.
9

0.
00
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
01
9

0.
01
4

0 .
21

2
0.

50
2

0.
9

0.
9

1.
0

0.
9

0.
9

0.
62

2
0.

42
1

0.
33

5
0.

19
3

0.
63

5
0.

9
0.

36
3

0.
9

0.
01

en
se

m
bl

e-
LO

F
0.
00
1

0.
00
1

0.
00
1

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
00
1

0.
03
2

0.
12

5
0.

9
0.

62
2

0.
9

1.
0

0.
64

7
0.

20
2

0.
08

9
0.

06
4

0.
02
8

0.
21

2
0.

9
0.

07
2

0.
9

0.
00
1

D
yn

am
ic

H
BO

S
0.

78
0.

9
0.

63
5

0.
9

0.
9

0.
9

0.
80

4
0.
01

0.
9

0.
78

0.
9

0.
81

6
0.

81
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
64

7
1.

0
0.

9
0.

9
0.

9
0.

9
0.

9
0.

11
8

0.
9

0.
08

9
0.

9

VA
E

0.
9

0.
9

0.
9

0.
9

0.
52

6
0.

9
0.

9
0.
00
1

0.
51

4
0.

32
2

0.
64

7
0.

36
3

0.
36

3
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

62
2

0.
20

2
0.

9
1.

0
0.

9
0.

9
0.

9
0.

9
0.
01
2

0.
9

0.
00
9

0.
9

C
O

PO
D

0.
9

0.
9

0.
9

0.
9

0.
31

0.
9

0.
9

0.
00
1

0.
29

8
0.

15
9

0.
45

0.
18

4
0.

18
4

0.
86

4
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

42
1

0.
08

9
0.

9
0.

9
1.

0
0.

9
0.

9
0.

9
0.
00
4

0.
9

0.
00
3

0.
9

O
C

SV
M

0.
9

0.
9

0.
9

0.
9

0.
24

1
0.

86
4

0.
9

0.
00
1

0.
23

1
0.

11
8

0.
36

3
0.

13
6

0.
13

6
0.

79
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
33

5
0.

06
4

0.
9

0.
9

0.
9

1.
0

0.
9

0.
9

0.
00
2

0.
9

0.
00
2

0 .
9

D
ee

pS
V

D
D

0.
9

0.
9

0.
9

0.
9

0.
12

9
0.

70
7

0.
9

0.
00
1

0.
12

5
0.

05
7

0.
21

2
0.

06
8

0.
06

8
0.

63
5

0.
79

2
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

19
3

0.
02
8

0.
9

0.
9

0.
9

0.
9

1.
0

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

ge
n2

ou
t

0.
9

0.
9

0.
9

0.
9

0.
53

8
0.

9
0.

9
0.
00
1

0.
52

6
0.

33
5

0.
65

9
0.

37
8

0.
37

8
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

63
5

0.
21

2
0.

9
0.

9
0.

9
0.

9
0.

9
1.

0
0.
01
3

0.
9

0.
00
9

0.
9

A
BO

D
0.
00
1

0.
00
1

0.
00
1

0.
75

5
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
6

0.
43

6
0.

10
6

0.
9

0.
9

0.
11

8
0.
01
2

0.
00
4

0.
00
2

0.
00
1

0.
01
3

1.
0

0.
00
3

0.
9

0.
00
1

C
BL

O
F

0.
9

0.
9

0.
9

0.
9

0.
26

3
0.

88
8

0.
9

0.
00
1

0.
25

2
0.

12
9

0.
39

2
0.

15
2

0.
15

2
0.

81
6

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
36

3
0.

07
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
3

1.
0

0.
00
2

0.
9

kt
h-

N
N

0.
00
1

0.
00
1

0.
00
1

0.
69

5
0.

9
0.

9
0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
85

2
0.
00
1

0.
00
1

0.
00
1

0.
00
4

0.
36

3
0.

08
1

0.
9

0.
9

0.
08

9
0.
00
9

0.
00
3

0.
00
2

0.
00
1

0.
00
9

0.
9

0.
00
2

1.
0

0.
00
1

sb
-D

ee
pS

V
D

D
0.

9
0.

9
0.

9
0.

33
5

0.
00
6

0 .
13

6
0.

9
0.
00
1

0.
00
5

0.
00
2

0.
01
2

0.
00
2

0.
00
2

0.
1

0.
19

3
0.

9
0.

9
0.

9
0.

9
0.

67
1

0.
9

0.
01

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

1.
0

Table 10: The p-values from Nemenyi post-hoc analysis on all algorithm
pairs based on the 17 local data sets. P-values below 0.05 have
been printed bold.

124 appendix to chapter 2

PCA

LMDD

SO-GAAL

IF

LOF

EIF

ALAD

kNN

LUNAR

KDE

COF

MCD

GMM

u-CBLOF

INNE

ECOD

beta-VAE

AE

LODA

ODIN

HBOS

SOD

ensemble-LOF

DynamicHBOS

VAE

COPOD

OCSVM

DeepSVDD

gen2out

ABOD

CBLOF

kth-NN

sb-DeepSVDD

PC
A

1.
0

0.
9

0.
01
5

0.
9

0.
00
1

0.
66

9
0.
00
1

0.
9

0.
73

1
0.

9
0.
00
1

0.
9

0.
59

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
11

8
0.
00
5

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

LM
D

D
0.

9
1.

0
0.

23
0.

63
4

0.
00
2

0.
12

6
0.
02
6

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
65

1
0.

10
5

0.
9

0.
9

0.
63

8
0.

9
0.
00
9

0.
48

4
0.

9
0.
00
1

0.
9

0.
00
1

SO
-G

A
A

L
0.
01
5

0.
23

1.
0

0.
00
1

0.
9

0.
00
1

0.
9

0.
05

4
0.

9
0.
00
4

0.
9

0.
00
1

0.
9

0.
03

0.
00
1

0.
00
1

0.
00
1

0.
00
2

0.
9

0.
9

0.
00
5

0.
9

0.
9

0.
00
1

0.
21

6
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
33

5
0.

9
0.
00
2

0.
9

IF
0.

9
0.

63
4

0.
00
1

1.
0

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
4

0.
9

0.
00
1

0.
9

0.
00
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
02
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
65

1
0.

9
0.

9
0.
00
1

0.
9

0.
52

4
0.
00
1

0.
9

0.
00
1

LO
F

0.
00
1

0.
00
2

0.
9

0.
00
1

1.
0

0.
00
1

0.
9

0.
00
1

0.
51

9
0.
00
1

0.
9

0.
00
1

0.
65

1
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
22

3
0.

9
0.
00
1

0 .
9

0.
9

0.
00
1

0.
00
2

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
4

0.
9

0.
00
1

0.
9

EI
F

0.
66

9
0.

12
6

0.
00
1

0.
9

0.
00
1

1.
0

0.
00
1

0.
42

4
0.
00
1

0.
89

8
0.
00
1

0.
9

0.
00
1

0.
54

6
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
00
1

0.
85

0.
00
1

0.
00
1

0.
9

0.
13

6
0.

9
0.

9
0.
00
1

0.
9

0.
07

8
0.
00
1

0.
9

0.
00
1

A
LA

D
0.
00
1

0.
02
6

0.
9

0.
00
1

0.
9

0.
00
1

1.
0

0.
00
3

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
2

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
66

9
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
02
3

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
04
6

0.
9

0.
00
1

0.
9

kN
N

0.
9

0.
9

0.
05

4
0.

9
0.
00
1

0.
42

4
0.
00
3

1.
0

0.
9

0.
9

0.
00
1

0.
9

0.
83

6
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
29

5
0.
01
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
81

9
0.

9
0.
00
1

0.
9

0.
00
1

LU
N

A
R

0.
73

1
0.

9
0.

9
0.
00
4

0.
51

9
0.
00
1

0.
9

0.
9

1.
0

0.
50

2
0.

05
6

0.
19

8
0.

9
0.

85
4

0.
31

2
0.

13
8

0.
28

6
0.

42
4

0.
9

0.
36

0.
55

0.
9

0.
9

0.
21

9
0.

9
0.
00
4

0.
19

5
0.

77
5

0.
00
1

0.
9

0.
14

7
0.

37
1

0.
12

6

K
D

E
0.

9
0.

9
0.
00
4

0.
9

0.
00
1

0.
89

8
0.
00
1

0.
9

0.
50

2
1.

0
0.
00
1

0 .
9

0.
35

0.
9

0.
9

0.
9

0.
9

0.
9

0.
78

4
0.
00
1

0.
9

0.
03
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

C
O

F
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
05

6
0.
00
1

1.
0

0.
00
1

0.
10

5
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
01
2

0.
9

0.
00
1

0.
57

2
0.

9
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

M
C

D
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
19

8
0.

9
0.
00
1

1.
0

0.
11

6
0.

9
0.

9
0.

9
0.

9
0.

9
0.

48
8

0.
00
1

0.
9

0.
00
7

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

G
M

M
0.

59
9

0.
9

0.
9

0.
00
2

0.
65

1
0.
00
1

0.
9

0.
83

6
0.

9
0.

35
0.

10
5

0.
11

6
1.

0
0.

72
2

0.
19

5
0.

07
8

0.
17

5
0.

27
7

0.
9

0.
51

0.
40

8
0.

9
0.

9
0.

12
8

0.
9

0.
00
2

0.
11

4
0.

9
0.
00
1

0.
9

0.
24

5
0.

23
7

0.
21

6

u-
C

BL
O

F
0.

9
0.

9
0.
03

0.
9

0.
00
1

0.
54

6
0.
00
2

0.
9

0.
85

4
0.

9
0.
00
1

0.
9

0.
72

2
1.

0
0.

9
0.

9
0.

9
0.

9
0.

9
0.
00
1

0.
9

0.
19

5
0.
01

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

IN
N

E
0.

9
0.

9
0.
00
1

0.
9

0 .
00
1

0.
9

0.
00
1

0.
9

0.
31

2
0.

9
0.
00
1

0.
9

0.
19

5
0.

9
1.

0
0.

9
0.

9
0.

9
0.

61
6

0.
00
1

0.
9

0.
01
6

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

EC
O

D
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
13

8
0.

9
0.
00
1

0.
9

0.
07

8
0.

9
0.

9
1.

0
0.

9
0.

9
0.

38
7

0.
00
1

0.
9

0.
00
4

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

be
ta

-V
A

E
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
28

6
0.

9
0.
00
1

0.
9

0.
17

5
0.

9
0.

9
0.

9
1.

0
0.

9
0.

59
0.
00
1

0.
9

0.
01
3

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

A
E

0.
9

0.
9

0.
00
2

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
42

4
0.

9
0.
00
1

0.
9

0.
27

7
0.

9
0.

9
0.

9
0.

9
1.

0
0.

71
3

0.
00
1

0.
9

0.
02
7

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

LO
D

A
0.

9
0.

9
0.

9
0.
02
1

0.
22

3
0.
00
1

0.
66

9
0.

9
0.

9
0.

78
4

0.
01
2

0.
48

8
0.

9
0.

9
0.

61
6

0.
38

7
0.

59
0.

71
3

1.
0

0.
12

6
0.

83
2

0.
9

0.
9

0.
51

5
0.

9
0.
02
2

0.
48

4
0.

49
3

0.
00
9

0.
9

0 .
03
9

0.
66

9
0.
03
3

O
D

IN
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
36

0.
00
1

0.
9

0.
00
1

0.
51

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
12

6
1.

0
0.
00
1

0.
9

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

H
BO

S
0.

9
0.

9
0.
00
5

0.
9

0.
00
1

0.
85

0.
00
1

0.
9

0.
55

0.
9

0.
00
1

0.
9

0.
40

8
0.

9
0.

9
0.

9
0.

9
0.

9
0.

83
2

0.
00
1

1.
0

0.
05

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

SO
D

0.
11

8
0.

65
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
29

5
0.

9
0.
03
9

0.
57

2
0.
00
7

0.
9

0.
19

5
0.
01
6

0.
00
4

0.
01
3

0.
02
7

0.
9

0.
9

0.
05

1.
0

0.
9

0.
00
9

0.
63

4
0.
00
1

0.
00
7

0.
9

0.
00
1

0.
76

2
0.

78
4

0.
02
1

0.
74

8

en
se

m
bl

e-
LO

F
0.
00
5

0.
10

5
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
01
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
01

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

1.
0

0.
00
1

0.
09

6
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
16

7
0.

9
0.
00
1

0.
9

D
yn

am
ic

H
BO

S
0.

9
0.

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
21

9
0.

9
0.
00
1

0.
9

0.
12

8
0.

9
0.

9
0.

9
0.

9
0.

9
0.

51
5

0.
00
1

0.
9

0.
00
9

0.
00
1

1.
0

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

VA
E

0.
9

0.
9

0.
21

6
0.

65
1

0.
00
2

0.
13

6
0.
02
3

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
63

4
0.

09
6

0.
9

1.
0

0.
65

6
0.

9
0.
00
8

0.
50

2
0.

9
0.
00
1

0.
9

0.
00
1

C
O

PO
D

0.
9

0.
63

8
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
4

0.
9

0.
00
1

0.
9

0.
00
2

0.
9

0.
9

0.
9

0.
9

0.
9

0.
02
2

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
65

6
1.

0
0.

9
0.
00
1

0.
9

0.
52

8
0.
00
1

0.
9

0.
00
1

O
C

SV
M

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
19

5
0.

9
0.
00
1

0.
9

0.
11

4
0.

9
0.

9
0.

9
0.

9
0.

9
0.

48
4

0.
00
1

0.
9

0.
00
7

0.
00
1

0.
9

0.
9

0.
9

1.
0

0.
00
1

0.
9

0.
9

0.
00
1

0.
9

0.
00
1

D
ee

pS
V

D
D

0.
00
1

0.
00
9

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
77

5
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
49

3
0.

9
0.
00
1

0.
9

0.
9

0.
00
1

0.
00
8

0.
00
1

0.
00
1

1.
0

0.
00
1

0.
01
8

0.
9

0.
00
1

0.
9

ge
n2

ou
t

0.
9

0.
48

4
0.
00
1

0 .
9

0.
00
1

0.
9

0.
00
1

0.
81

9
0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
9

0.
00
1

0.
9

0.
00
1

0.
00
1

0.
9

0.
50

2
0.

9
0.

9
0.
00
1

1.
0

0.
35

5
0.
00
1

0.
9

0.
00
1

A
BO

D
0.

9
0.

9
0.

33
5

0.
52

4
0.
00
4

0.
07

8
0.
04
6

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
76

2
0.

16
7

0.
9

0.
9

0.
52

8
0.

9
0.
01
8

0.
35

5
1.

0
0.
00
1

0.
9

0.
00
1

C
BL

O
F

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
14

7
0.
00
1

0.
9

0.
00
1

0.
24

5
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
03
9

0.
9

0.
00
1

0.
78

4
0.

9
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
9

0.
00
1

0.
00
1

1.
0

0.
00
1

0.
9

kt
h-

N
N

0.
9

0.
9

0.
00
2

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
37

1
0.

9
0.
00
1

0.
9

0.
23

7
0.

9
0.

9
0.

9
0.

9
0.

9
0.

66
9

0.
00
1

0.
9

0.
02
1

0.
00
1

0.
9

0.
9

0.
9

0.
9

0.
00
1

0.
9

0.
9

0.
00
1

1.
0

0.
00
1

sb
-D

ee
pS

V
D

D
0.
00
1

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
9

0.
00
1

0.
12

6
0.
00
1

0.
9

0.
00
1

0.
21

6
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
03
3

0.
9

0.
00
1

0.
74

8
0.

9
0.
00
1

0.
00
1

0.
00
1

0.
00
1

0 .
9

0.
00
1

0.
00
1

0.
9

0.
00
1

1.
0

Table 11: The p-values from Nemenyi post-hoc analysis on all algorithm
pairs based on the 32 global data sets. P-values below 0.05 have
been printed bold.

A P P E N D I X T O : A U T O E N C O D E R S F O R A N O M A LY
D E T E C T I O N A R E U N R E L I A B L E

linear networks with bias terms

Linear neural networks with a bias term, similar to those without a
bias term, still exhibit out-of-bounds reconstruction that leads to zero
reconstruction loss for certain anomalous data points.

Linear autoencoders with bias terms consist of a single linear en-
coding layer and a single linear decoding layer, each with an added
bias term. Like for linear networks without a bias, all multi-layer net-
works can be reduced to a single layer autoencoder. At the global
optimum the bias terms will recover the process of mean-centering.
Note that a simplified version of this proof was presented by Bourlard
and Kamp [1].

Let us now consider x̄ = 1
m1mX, so the vector of length n where

each element contains the corresponding column-wise mean of X. We
will prove that the reconstruction loss LR(benc,bdec;X, X̂) for fixed
Wenc, WT

dec is minimized by benc = −x̄Wenc, and bdec = x̄.
First let us acknowledge that

x̄ =
1

m

m∑
i=1

xi,

and thus

m∑
i=1

(xi − x̄) = 0.

We can then express the average reconstruction loss over the entire
dataset as:

125

126 appendix to chapter 3

LR(benc,bdec;X, X̂)

=
1

mn

m∑
i=1

|xi − x̂i|
2

=
1

mn

m∑
i=1

|xi − h(g(xi))|
2

=
1

mn

m∑
i=1

|xi − ((xiWenc +benc)W
T
dec +bdec)|

2

=
1

mn

m∑
i=1

|xi − xiWencW
T
dec −bencW

T
dec −bdec|

2

=
1

mn

m∑
i=1

|xi(1−WencW
T
dec) −bencW

T
dec −bdec|

2

=
1

mn

m∑
i=1

|(xi − x̄)(1−WencW
T
dec)|

2

+
1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec) −bencW

T
dec −bdec|

2.

Notice that the left term is constant with respect to bdec and benc,
and the right term is minimized when 1

mn

∑m
i=1 |(x̄− x̄WencW

T
dec) −

bencW
T
dec − bdec|

2 = 0. If we now substitute benc = −x̄Wenc, and
bdec = x̄:

1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec) −bencW

T
dec −bdec|

2 =

1

mn

m∑
i=1

|(x̄− x̄WencW
T
dec) + x̄WencW

T
dec − x̄|2 = 0

thereby showing that the optimal solution for the biases indeed re-
covers the process of mean centering.

Also note that the other term now mimics the reconstruction loss on
the mean-centered data. This means that we find Vd by performing
PCA not on X, but on (X− X̄). Again, we can use the same strategy
a = cVT

d to find adversarial anomalies.

references

[1] H. Bourlard and Y. Kamp. “Auto-association by multilayer per-
ceptrons and singular value decomposition.” In: Biological Cy-
bernetics 59.4 (1988), pp. 291–294.

A P P E N D I X T O : A C Q U I R I N G B E T T E R L O A D
E S T I M AT E S B Y C O M B I N I N G A N O M A LY A N D
C H A N G E P O I N T D E T E C T I O N I N P O W E R G R I D
T I M E S E R I E S M E A S U R E M E N T S

evaluated and best hyperparameters

An overview of all evaluated hyperparameters can be found in Ta-
ble 12. The best parameters resulting from optimization on the vali-
dation set for each method-ensembling method combination can be
found in Table 13 and Table 14.

auc-roc performance of each method

To provide insight into the ranking of the anomalies, so without ex-
plicit thresholding, we provide an additional plot of the area under
the curve of the receiver-operating characteristic (AUC-ROC) in Fig-
ure 17.

127

128 appendix to chapter 4

Table 12: Evaluated hyperparameters.

Hyperparameter values

Method Hyperparameter

IF per station
nestimators [1000]

Threshold strategy [Symmetrical]

IF over all stations
nestimators [1000]

(qlower%, qupper%) [(10, 90), (15, 85), (20, 80)]

Threshold strategy [Symmetrical]

SPC
(qlower%, qupper%) [(10, 90), (15, 85), (20, 80)]

Threshold strategy [Symmetrical, Asymmetrical]

BS

β [0.005, 0.008, 0.015, 0.05, 0.08, 0.12]

l [150, 200, 288]

j [5, 10]

(qlower%, qupper%) [(10, 90), (15, 85), (20, 80)]

C [L1]

reference_point [mean, median, longest_median, longest_mean]

Threshold strategy [Symmetrical, Asymmetrical]

Figure 17: A bar plot of the results of each method per length category in
terms of the area under the curve of the receiver-operating char-
acteristic (AUC-ROC).

5.0 auc-roc performance of each method 129

Table 13: The best parameters resulting from optimization on the validation
set for each single method and within the naive ensembles.

Hyperparameter values

Ensemble method Combination Method Hyperparameter

No ensemble - IF nestimators 1000

(qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 1.27

SPC (qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 2.50

BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

Naive BS+SPC BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

SPC (qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 2.50

BS+IF BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

IF nestimators 1000

(qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 1.27

5.0 auc-roc performance of each method 129

Table 13: The best parameters resulting from optimization on the validation
set for each single method and within the naive ensembles.

Hyperparameter values

Ensemble method Combination Method Hyperparameter

No ensemble - IF nestimators 1000

(qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 1.27

SPC (qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 2.50

BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

Naive BS+SPC BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

SPC (qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 2.50

BS+IF BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

IF nestimators 1000

(qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 1.27

130 appendix to chapter 4

Table 14: The best parameters resulting from optimization on the validation
set for each method within the DOC and sequential ensembles.

Hyperparameter values

Ensemble method Combination Method Hyperparameter

DOC BS+SPC BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

SPC (qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 2.50

BS+IF BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (10, 90)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.41, 0.66)

IF nestimators 1000

(qlower%, qupper%) (15, 85)

Threshold strategy Symmetrical

Optimal threshold(s) 1.27

Sequential BS+SPC BS β 0.008

j 10

l 200

C L1

(qlower%, qupper%) (15, 85)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.49, 0.84)

SPC (qlower%, qupper%) (10, 90)

Threshold strategy Symmetrical

Optimal threshold(s) 2.24

BS+IF BS β 0.008

j 5

l 150

C L1

(qlower%, qupper%) (15, 85)

reference_point mean

Threshold strategy Asymmetrical

Optimal threshold(s) (-0.49, 0.84)

IF nestimators 1000

(qlower%, qupper%) (10, 90)

Threshold strategy Symmetrical

Optimal threshold(s) 1.28

R E S E A R C H D ATA M A N A G E M E N T

This thesis research has been carried out under the research data man-
agement policy of the Institute for Computing and Information Sci-
ence of Radboud University, The Netherlands.1

The following research datasets and software have been produced
during this PhD research:

[1] R. Bouman. Software and Data Related to: Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We Need?
Aug. 2024. doi: 10.5281/zenodo.13305896. url: https://doi.
org/10.5281/zenodo.13305896.

[2] R. Bouman. Software Related to: Autoencoders for Anomaly Detec-
tion are Unreliable. Aug. 2024. doi: 10.5281/zenodo.13308587.
url: https://doi.org/10.5281/zenodo.13308587.

[3] R. Bouman, L. Buise, and L. Schmeitz. Software Related to: Acquir-
ing Better Load Estimates by Combining Anomaly and Change Point
Detection in Power Grid Time Series Measurements. Version 1.0.
Aug. 2024. doi: 10.5281/zenodo.13308551. url: https://doi.
org/10.5281/zenodo.13308551.

The data used in Chapter 4 is intellectual property of Alliander
N.V. but has been open sourced. It is available at Alliander’s open
data repository.

1 ru.nl/icis/research-data-management/, last accessed August 12th, 2024.

R E S E A R C H D ATA M A N A G E M E N T

This thesis research has been carried out under the research data man-
agement policy of the Institute for Computing and Information Sci-
ence of Radboud University, The Netherlands.1

The following research datasets and software have been produced
during this PhD research:

[1] R. Bouman. Software and Data Related to: Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We Need?
Aug. 2024. doi: 10.5281/zenodo.13305896. url: https://doi.
org/10.5281/zenodo.13305896.

[2] R. Bouman. Software Related to: Autoencoders for Anomaly Detec-
tion are Unreliable. Aug. 2024. doi: 10.5281/zenodo.13308587.
url: https://doi.org/10.5281/zenodo.13308587.

[3] R. Bouman, L. Buise, and L. Schmeitz. Software Related to: Acquir-
ing Better Load Estimates by Combining Anomaly and Change Point
Detection in Power Grid Time Series Measurements. Version 1.0.
Aug. 2024. doi: 10.5281/zenodo.13308551. url: https://doi.
org/10.5281/zenodo.13308551.

The data used in Chapter 4 is intellectual property of Alliander
N.V. but has been open sourced. It is available at Alliander’s open
data repository.

1 ru.nl/icis/research-data-management/, last accessed August 12th, 2024.

A B O U T T H E A U T H O R

Roel Bouman was born on the 14th of December 1993 in Gendringen,
The Netherlands. He acquired a double bachelor’s degree in Chem-
istry and Molecular Life Sciences with a minor in Data Science in
2016. He then acquired a double master’s degree in Chemistry and
Computing Science, specializing in Chemometrics and Data Science
respectively. During his master’s degree, he participated in the TI-
COAST MSc+ program for talents in the analytical sciences. After
obtaining both degrees in 2020 he went on to pursue a PhD at the
Radboud University, specializing in Machine Learning, under super-
vision of Tom Heskes in the Data Science group. Roel’s specialty is
Anomaly Detection, on which he has written several deep dive and
application papers. He has collaborated with companies on topics
like process control and predictive maintenance and with research
institutes like TNO, Fraunhofer and the SCCH.

132

P U B L I C AT I O N S B Y T H E A U T H O R

The following is a complete list of publications and preprints by the
author: (as of writing date)

[1] R. Bouman, Z. Bukhsh, and T. Heskes. “Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We
Need?” In: Journal of Machine Learning Research 25.105 (2024),
pp. 1–34. url: http://jmlr.org/papers/v25/23-0570.html.

[2] R. Bouman and T. Heskes. Autoencoders for Anomaly Detection
are Unreliable. 2025. arXiv: 2501 . 13864 [cs.LG]. url: https :

//arxiv.org/abs/2501.13864.

[3] R. Bouman, L. Schmeitz, L. Buise, J. Heres, Y. Shapovalova, and
T. Heskes. “Acquiring better load estimates by combining ano-
maly and change point detection in power grid time-series mea-
surements.” In: Sustainable Energy, Grids and Networks 40 (2024),
p. 101540. issn: 2352-4677. doi: https://doi.org/10.1016/j.
segan.2024.101540. url: https://www.sciencedirect.com/
science/article/pii/S2352467724002698.

[4] R. Folcarelli, S. Van Staveren, R. Bouman, B. Hilvering, G. H.
Tinnevelt, G. Postma, O. F. Van Den Brink, L. M. Buydens, N.
Vrisekoop, L. Koenderman, et al. “Automated flow cytomet-
ric identification of disease-specific cells by the ECLIPSE algo-
rithm.” In: Scientific Reports 8.1 (2018), p. 10907.

[5] G. van Kollenburg, R. Bouman, T. Offermans, J. Gerretzen, L.
Buydens, H.-J. van Manen, and J. Jansen. “Process PLS: Incor-
porating substantive knowledge into the predictive modelling
of multiblock, multistep, multidimensional and multicollinear
process data.” In: Computers & Chemical Engineering 154 (2021),
p. 107466.

[6] G. H. van Kollenburg, J. van Es, J. Gerretzen, H. Lanters, R.
Bouman, W. Koelewijn, A. N. Davies, L. M. Buydens, H.-J. van
Manen, and J. J. Jansen. “Understanding chemical production
processes by using PLS path model parameters as soft sensors.”
In: Computers & Chemical Engineering 139 (2020), p. 106841.

[7] R. Stribos, R. Bouman, L. Jimenez, M. Slot, and M. Stoelinga. “A
comparison of anomaly detection algorithms with applications
on recoater streaking in an additive manufacturing process.” In:
Rapid Prototyping Journal (2024).

133

P U B L I C AT I O N S B Y T H E A U T H O R

The following is a complete list of publications and preprints by the
author: (as of writing date)

[1] R. Bouman, Z. Bukhsh, and T. Heskes. “Unsupervised Anomaly
Detection Algorithms on Real-world Data: How Many Do We
Need?” In: Journal of Machine Learning Research 25.105 (2024),
pp. 1–34. url: http://jmlr.org/papers/v25/23-0570.html.

[2] R. Bouman and T. Heskes. Autoencoders for Anomaly Detection
are Unreliable. 2025. arXiv: 2501 . 13864 [cs.LG]. url: https :

//arxiv.org/abs/2501.13864.

[3] R. Bouman, L. Schmeitz, L. Buise, J. Heres, Y. Shapovalova, and
T. Heskes. “Acquiring better load estimates by combining ano-
maly and change point detection in power grid time-series mea-
surements.” In: Sustainable Energy, Grids and Networks 40 (2024),
p. 101540. issn: 2352-4677. doi: https://doi.org/10.1016/j.
segan.2024.101540. url: https://www.sciencedirect.com/
science/article/pii/S2352467724002698.

[4] R. Folcarelli, S. Van Staveren, R. Bouman, B. Hilvering, G. H.
Tinnevelt, G. Postma, O. F. Van Den Brink, L. M. Buydens, N.
Vrisekoop, L. Koenderman, et al. “Automated flow cytomet-
ric identification of disease-specific cells by the ECLIPSE algo-
rithm.” In: Scientific Reports 8.1 (2018), p. 10907.

[5] G. van Kollenburg, R. Bouman, T. Offermans, J. Gerretzen, L.
Buydens, H.-J. van Manen, and J. Jansen. “Process PLS: Incor-
porating substantive knowledge into the predictive modelling
of multiblock, multistep, multidimensional and multicollinear
process data.” In: Computers & Chemical Engineering 154 (2021),
p. 107466.

[6] G. H. van Kollenburg, J. van Es, J. Gerretzen, H. Lanters, R.
Bouman, W. Koelewijn, A. N. Davies, L. M. Buydens, H.-J. van
Manen, and J. J. Jansen. “Understanding chemical production
processes by using PLS path model parameters as soft sensors.”
In: Computers & Chemical Engineering 139 (2020), p. 106841.

[7] R. Stribos, R. Bouman, L. Jimenez, M. Slot, and M. Stoelinga. “A
comparison of anomaly detection algorithms with applications
on recoater streaking in an additive manufacturing process.” In:
Rapid Prototyping Journal (2024).

133

ACKNOWLEDGMENTS

Writing acknowledgments is hard. If you know me, you know I can
be scatterbrained at times, especially when it concerns lists. As such,
let me preface this section with the following: if you are reading this
and missing your name, it was unintentional and I will make it up to
you by buying you a beverage of your choice!

Then onto the actual list.
First of all I would like to express my thanks to my supervisor Tom.

When I was deliberating whether I wanted to pursue a PhD I knew
one thing: I only want to do so with a supervisor who is not only ca-
pable, but whom I can also trust. I always felt able to share whatever
I needed to share, be it personal or professional in nature. I feel like
you really helped me grow into a much more capable researcher. I
am glad to have more time to learn during my time as a postdoc.

None of the work I did, I did alone. I want to thank all my co-
authors during my PhD, Jacco, Linda, Lisandro, Luco, Maaike, Mar-
iëlle, Reinier, Yuliya, and Zaharah for collaborating with me and pro-
viding helpful input and great work.

Some people I want to single out for always being willing to discuss
ideas and keeping me sharp. Alex, Charlotte, Gabriel, Janneke, Jelle,
Marco and Twan: Thank you so much!

Only last year I had the pleasure of being able to go on a research
visit to Austria, where I visited the Software Competence Centre Ha-
genberg to meet up with colleagues there. Florian, you were a very
gracious host, thank you for the wonderful stay!

My time at the Data Science department has always been wonder-
ful. What started off great in February 2020 saw a somewhat unfor-
tunate interruption by this stupid global pandemic. Nonetheless, the
(then) limited number of colleagues actively endeavored to keep so-
cial contacts up during what could have otherwise been a very iso-
lated start of my PhD. Not only did we have a nice Discord channel
for collective (digital) lunch, but we also had weekly groups to share
our research insights or otherwise complain about whatever PhD life
entailed at times. When we finally were able to meet in person again
the group quickly grew. From that, we quickly started organizing
tons of social activities of all kinds. I especially enjoyed all the board
game nights we organized, and are still organizing, as DaS.

I was furthermore lucky to be part of The Office™ where the envi-
ronment was always great and truly gezellig, even though at times it
was hard to get actual work done when all of us were present. It was
all a joy!

135

ACKNOWLEDGMENTS

Writing acknowledgments is hard. If you know me, you know I can
be scatterbrained at times, especially when it concerns lists. As such,
let me preface this section with the following: if you are reading this
and missing your name, it was unintentional and I will make it up to
you by buying you a beverage of your choice!

Then onto the actual list.
First of all I would like to express my thanks to my supervisor Tom.

When I was deliberating whether I wanted to pursue a PhD I knew
one thing: I only want to do so with a supervisor who is not only ca-
pable, but whom I can also trust. I always felt able to share whatever
I needed to share, be it personal or professional in nature. I feel like
you really helped me grow into a much more capable researcher. I
am glad to have more time to learn during my time as a postdoc.

None of the work I did, I did alone. I want to thank all my co-
authors during my PhD, Jacco, Linda, Lisandro, Luco, Maaike, Mar-
iëlle, Reinier, Yuliya, and Zaharah for collaborating with me and pro-
viding helpful input and great work.

Some people I want to single out for always being willing to discuss
ideas and keeping me sharp. Alex, Charlotte, Gabriel, Janneke, Jelle,
Marco and Twan: Thank you so much!

Only last year I had the pleasure of being able to go on a research
visit to Austria, where I visited the Software Competence Centre Ha-
genberg to meet up with colleagues there. Florian, you were a very
gracious host, thank you for the wonderful stay!

My time at the Data Science department has always been wonder-
ful. What started off great in February 2020 saw a somewhat unfor-
tunate interruption by this stupid global pandemic. Nonetheless, the
(then) limited number of colleagues actively endeavored to keep so-
cial contacts up during what could have otherwise been a very iso-
lated start of my PhD. Not only did we have a nice Discord channel
for collective (digital) lunch, but we also had weekly groups to share
our research insights or otherwise complain about whatever PhD life
entailed at times. When we finally were able to meet in person again
the group quickly grew. From that, we quickly started organizing
tons of social activities of all kinds. I especially enjoyed all the board
game nights we organized, and are still organizing, as DaS.

I was furthermore lucky to be part of The Office™ where the envi-
ronment was always great and truly gezellig, even though at times it
was hard to get actual work done when all of us were present. It was
all a joy!

135

136 acknowledgments

To all my wonderful colleagues, past and present, thank you for
the wonderful time! (I really tried, but you really are too many to list
in full)

So I have this habit of having too many hobbies. One of the hob-
bies I enjoy spending an exorbitant amount of time on is playing role-
playing games (for the uninitiated, this means things like Dungeons
& Dragons). I want to thank Glenn, Henk, and Jeff for spending so
much time with me on all those lovely obscure, but mostly Swedish,
games we have played throughout the years. Rarely have I laughed
so much. Bas, Eva, Laura, Louis, and Sjors, thank you for sticking
with me throughout the strange adventure on tropical islands and the
Feywild West™, even when planning has been horrible when I was
busy finishing my thesis. Charlotte, Erkan, Gabriel, Kasper, Mohanna,
Parisa, Sjors, and Wouter, thank you for joining and sharing with me
a bunch of wacky adventures throughout the Feywild, Arthis Ador,
and Noctinem. Thanks especially for being patient with my convo-
luted plans and turning the game into a real estate simulator.

I have the pleasure of having a great number of wonderful friends,
with whom I can always talk, cook, ferment, hike, climb, drink, listen
to vinyl, discuss books, or play board games with. As the risk of
missing someone would become too great, I just want to thank you
all with a bit of a perhaps underwhelming blanket statement: you are
wonderful, and I hope to have you all in my life for much longer.

Alex and Janneke, thank you for agreeing to be my paranymphs.
Even though your duties have barely begun as I write this, I am sure
you will do a great job.

Starting way before my PhD, but of course continuing throughout,
my family has always been of great support to me. I am extremely
lucky to still have two living grandparents, oma Wil en oma Mari-
etje: thank you for all your love, support, and copious amounts of
food and talks. I am also beyond lucky to have many aunts, uncles,
and cousins whom I enjoy spending time with, I treasure each family
gathering. Carel, Petra, Bas, Femke, and Rens you are like a second
family to me, and I always feel fully at home and loved by all of you!
To my parents, Julie and Reinier, and my brother Martijn: the sup-
port you have given me over the years is immense. Even when I was
ridiculously busy, you were always there for me. In many ways my
PhD journey was only possible through you.

Even though he obviously cannot read, I want to thank Moki for
being the cuddliest, enthusiastic and most pet-deserving dog a man
could want.

Laura, your patience and understanding is endless. You are the
most wondrous person I ever had the blessing to encounter. Then, for
some quirk of the universe, we ended up being together. I treasure
you every day. All my love to you for the rest of my days.

- Roel, 04-02-2025

9 789465 150765

	Cover
	Colophon
	SUMMARY
	SAMENVATTING
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	1. INTRODUCTION
	2. UNSUPERVISED ANOMALY DETECTION ALGORITHMS ON REAL-WORLD DATA: HOW MANY DO WE NEED?
	3. AUTOENCODERS FOR ANOMALY DETECTION ARE UNRELIABLE
	4. ACQUIRING BETTER LOAD ESTIMATES BY COMBINING ANOMALY AND CHANGE POINT DETECTION IN POWER GRID TIME SERIESMEASUREMENTS
	5. DISCUSSION AND OUTLOOK
	APPENDIX TO: UNSUPERVISED ANOMALY DETECTION ALGORITHMS ON REAL-WORLD DATA: HOW MANY DO WE NEED?
	APPENDIX TO: AUTO ENCODERS FOR ANOMALY DETECTION ARE UNRELIABLE
	APPENDIX TO: ACQUIRING BETTER LOAD ESTIMATES BY COMBINING ANOMALY ANDCHANGE POINT DETECTION IN POWER GRID TIME SERIES MEASUREMENTS
	RESEARCH DATA MANAGEMENT
	ABOUT THE AUTHOR
	PUBLICATIONS BY THE AUTHOR
	ACKNOWLEDGMENTS

