
Radboud
Dissertation
Series

Institute for Computing and
Information Sciences

R
E

TH
IN

K
IN

G
 TH

E
 S

E
C

U
R

ITY
 O

F M
A

C
H

IN
E

 LE
A

R
N

IN
G

 IN
 M

A
LW

A
R

E
 D

E
TE

C
TIO

N
H

am
id B

ostani

RETHINKING THE SECURITY
OF MACHINE LEARNING

IN MALWARE DETECTION

Hamid Bostani

9 789465 151304

Rethinking the Security of Machine Learning
in Malware Detection

Hamid Bostani

This dissertation presents research conducted within the Digital Security research
group at the Institute for Computing and Information Sciences, Radboud University.

RETHINKING THE SECURITY OF MACHINE LEARNING IN MALWARE DETECTION
Hamid Bostani

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Hamid Bostani
Cover: Hamid Bostani
Printing: DPN Rikken/Pumbo

ISBN: 9789465151304
DOI: 10.54195/9789465151304
Free download at: https://doi.org/10.54195/9789465151304

© 2025 Hamid Bostani

This is an Open Access book published under the terms of Creative Commons
Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This
license allows reusers to copy and distribute the material in any medium or format in
unadapted form only, for noncommercial purposes only, and only so long as attribution
is given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

Rethinking the Security of Machine Learning
in Malware Detection

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 9 september 2025
om 14:30 uur precies

door

Hamid Bostani

geboren op 29 november 1984
te Shiraz, Iran

Promotoren:
Dr. ir. Erik Poll
Prof. dr. Veelasha Moonsamy (Ruhr-Universität Bochum, Duitsland)

Manuscriptcommissie:

Prof. dr. Lejla Batina (voorzitter)
Prof. dr. Konrad Rieck (Technische Universität Berlin, Duitsland)
Prof. dr. Mauro Conti (Università degli studi di Padova, Italië)
Dr. Juan Caballero (Instituto IMDEA Materiales, Spanje)
Dr. Jason Xue (CSIRO, Data61, Australië)

Rethinking the Security of Machine Learning
in Malware Detection

Dissertation

to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,
according to the decision of the Doctorate Board

to be defended in public on

Tuesday, September 9, 2025
at 2:30 pm

by

Hamid Bostani

born on November 29, 1984
in Shiraz, Iran

Supervisors:

Dr. ir. Erik Poll
Prof. dr. Veelasha Moonsamy (Ruhr University Bochum, Germany)

Manuscript Committee:

Prof. dr. Lejla Batina (Chair)
Prof. dr. Konrad Rieck (Technical University of Berlin, Germany)
Prof. dr. Mauro Conti (University of Padua, Italy)
Dr. Juan Caballero (IMDEA Software Institute, Spain)
Dr. Jason Xue (CSIRO, Data61, Australia)

Knowledge is a great treasure that does not diminish with spending.

Imam Ali (peace be upon him)

ix

Contents

Summary xiii

Samenvatting xv

Acknowledgments xvii

1 Introduction 1
1.1 Revisiting Realism for Adversarial Malware 1
1.2 Problem Statement . 3

1.2.1 Target Environment. 4
1.2.2 Practical Evasion attacks . 5
1.2.3 Effectiveness of Defenses . 5
1.2.4 Spurious Correlations in Malware Classifiers 6
1.2.5 Influential Factors for Malware Classifiers 7

1.3 Structure of Dissertation . 7
1.4 List of Publications . 9

1.4.1 Main Publications Contributing to Thesis Chapters 9
1.4.2 Other Publications . 12

1.5 Code and Data Management . 12

2 Background 13
2.1 Overview of Malware Detection . 13

2.1.1 Malware Detection . 13
2.1.2 Machine Learning in Malware Detection 14

2.2 Adversarial Susceptibility of Malware Classifiers 15
2.2.1 Machine Learning Vulnerabilities to Evasion Attacks 16
2.2.2 Threat Models of Evasion Attacks 17
2.2.3 Defenses Against Evasion Attacks 18

3 Subverting Machine Learning in Malware Detection 21
3.1 Introduction . 21

3.1.1 Contributions. 23
3.2 Related work . 24
3.3 Background . 27

3.3.1 Android Application Package (APK) 27
3.3.2 ML-Based Android Malware Detection 27
3.3.3 Adversarial Transformations . 28

3.4 Proposed Attack . 28
3.4.1 Threat Model. 29
3.4.2 Problem Definition . 30
3.4.3 Methodology . 31

x Contents

3.5 Simulation Results . 37
3.5.1 Experimental Setup. 37
3.5.2 Evasion Costs and Generalizability 40
3.5.3 EvadeDroid vs. Other Attacks 42
3.5.4 EvadeDroid in Real-World Scenarios 44
3.5.5 Transferable Adversarial Examples 45
3.5.6 The Impact of Search Strategy on EvadeDroid 46
3.5.7 Discussion . 47

3.6 Limitations and Future Work . 49
3.7 Conclusions . 50
3.A Problem-Space Constraints . 51
3.B Donors Evaluation . 51
3.C Implementation Details . 51
3.D Android Malware Detectors . 53
3.E Experimental Settings . 54
3.F Baseline Attacks . 54
3.G Data Augmentation . 55

4 Exposing Vulnerabilities in Machine Learning for Malware Detection 57
4.1 Introduction . 58
4.2 Related Work. 60

4.2.1 Feature-Space AEs . 60
4.2.2 Problem-Space AEs . 61
4.2.3 Feature-Space realizable AEs . 62

4.3 Interpreting Domain Constraints in the Feature Space 62
4.3.1 Problem-Space and Feature-Space Realizable AEs 63
4.3.2 Domain Constraints in the Feature Space 64

4.4 Learning Feature-Space Domain Constraints 66
4.4.1 Our Learning Method . 66

4.5 Applying Feature-Space Domain Constraints 68
4.5.1 Adversarial Example Detection 68
4.5.2 Adversarial Hardening . 69

4.6 Experimental Results . 72
4.6.1 Experimental Setup. 73
4.6.2 Evaluating Our Learned Domain Constraints 75
4.6.3 Evaluating Our Defense . 77
4.6.4 Evaluating Our OPF-based Method 79
4.6.5 Feature-Space Realizable AEs vs. Problem-Space Realizable AEs . 80
4.6.6 Discussion . 81

4.7 Limitations and Future Work . 84
4.8 Conclusion . 85
4.A Evaluating the Efficacy of Learned Domain Constraints with Sparse-RS. . . 86
4.B PiAttack . 86
4.C PK-Feature . 87
4.D AT with Non-Uniform Perturbations . 87

Contents xi

5 Enhancing Adversarial Robustness with Robust Feature Space 89
5.1 Introduction . 89
5.2 Background . 91

5.2.1 Evasion Attacks . 91
5.2.2 Spurious Correlations . 92
5.2.3 Domain Constraints in the Feature Space 92

5.3 Our Proposed Defense . 93
5.3.1 Formulation of the Problem. 94
5.3.2 Robust Feature Space. 94

5.4 Experiments . 96
5.4.1 Experimental Setup. 96
5.4.2 Evaluation of Proposed Defense 97
5.4.3 Discussion . 100

5.5 Related Work. 101
5.6 Limitations and Future Work . 102
5.7 Conclusion . 102

6 Enhancing Adversarial Robustness with Robust Optimization 105
6.1 Introduction . 105
6.2 Background . 107

6.2.1 Evasion Attacks . 107
6.2.2 ML Hardening . 108

6.3 Methodology . 108
6.3.1 Problem Definition . 109
6.3.2 Characterizing the Effectiveness of AT 109
6.3.3 Unified Evaluation Framework 111
6.3.4 Structured Analysis. 114

6.4 Experiments and Evaluations . 115
6.4.1 Scope of Analysis . 115
6.4.2 Systematic Evaluations . 115

6.5 Related Work. 129
6.6 Discussion . 130

6.6.1 Limitations . 131
6.6.2 Future work . 131

6.7 Conclusion . 131
6.A Experimental Settings . 133

6.A.1 Data . 133
6.A.2 Feature representations . 133
6.A.3 Classifiers . 134
6.A.4 Threat Model. 134
6.A.5 Computational Resources. 135

6.B Implementation Details . 135
6.C Confidence of AEs . 136
6.D Robustness Evaluation . 136
6.E Large Perturbation Bound . 137
6.F Clean Performance Considering Different Adversarial Fractions. 139

xii Contents

6.G Robust Performance Considering Different Adversarial Fractions 139
6.H Challenge of Exhaustive Exploration . 139
6.I Overview of Results . 141

7 Conclusions and Outlook 143
7.1 Realistic Threat Models . 143
7.2 Reliable Defenses . 144

7.2.1 Identifying Vulnerable Regions 144
7.2.2 Reducing Spurious Correlations 145
7.2.3 Effective Adversarial Training 145

7.3 Outlook . 146
7.3.1 The Impact of Malware Variability in Evasion Attacks 146
7.3.2 Detecting Malware in Public Repositories. 147
7.3.3 Data’s Role in Robust Malware Detection 147

Bibliography 153

About the Author 175

xiii

Summary
Malicious software (malware) continues to pose a growing and evolving threat to systems
security, exploiting vulnerabilities to cause significant harm. In response, Machine Learning
(ML) has emerged as a promising tool in malware detection, being leveraged in both static
and dynamic analysis to identify malicious programs. However, despite the effectiveness of
ML in improving malware detection, it faces inherent challenges, particularly adversarial
vulnerabilities that evasion attacks exploit. These adversarial attacks involve crafting
adversarial malware by manipulating malware to bypass detection systems while retaining
its malicious functionality. As a result, evasion attacks undermine the robustness of ML
classifiers, necessitating the development of defenses that can withstand such sophisticated
threats.

This dissertation rethinks the security of ML-based malware detection systems against
evasion attacks by incorporating realistic perspectives from both attackers and defenders.
Specifically, this work highlights the challenges of integrating realism into both attack
and defense strategies, such as identifying feasible adversarial vulnerabilities in malware
classifiers or fairly evaluating the robustness of malware detection. By reassessing these
aspects, we aim to offer a more practical viewpoint for strengthening ML-based malware
detection against realistic evasion attacks. The research begins by exploring realistic threat
models of evasion attacks, pushing the boundaries of current understanding and testing
of such adversarial attacks. A key contribution on the offensive side is the proposal of
a practical evasion attack, named EvadeDroid, that tackles the fundamental challenge of
creating evasion techniques independent of the target model. This independence is crucial,
as it allows the attacks to be applicable in real-world settings, where malware detectors
typically operate as black boxes, returning only hard labels. The dissertation highlights that
adversarial malware must not only preserve its malicious functionality but also ensure that
the manipulation remains undetectable during preprocessing, enabling it to bypass detection.
Additionally, EvadeDroid is optimized for efficiency, minimizing query costs and appearing
plausible by injecting adversarial payloads prepared based on realistic, existing code, making
it more practical and harder to defend against.

On the defensive side, the dissertation investigates methods to efficiently and effectively
identify the vulnerabilities of malware classifiers against realistic evasion attacks and explores
reliable defenses to protect malware detection systems from such adversarial attacks. A
significant contribution of this part of the research is identifying feasible vulnerabilities
in malware classifiers by focusing on generating potential adversarial malware directly in
the feature space, rather than the problem space, thus providing more efficient and broader
protection. The dissertation also investigates the issue of spurious correlations—misleading
patterns that malware classifiers may mistakenly learn. By ensuring that the features used in
detection better align with the true functionality of malware, classifiers can be improved to
resist adversarial manipulation and generalize more effectively. Finally, the research delves
into adversarial training (AT), a common technique for strengthening malware classifiers

xiv Summary

against adversarial attacks. This investigation identifies key dimensions for exploring and
evaluating AT, such as feature representations and the realism of adversarial examples, by
proposing a unified framework that helps identify essential factors influencing the success of
AT, such as model flexibility. The dissertation underscores the importance of considering all
these factors in conjunction, rather than in isolation, to achieve meaningful improvements in
classifier robustness.

In conclusion, the thesis offers a practical and forward-thinking approach to defending
against adversarial threats in malware detection. It emphasizes the need for more realistic
threat models and reliable defense strategies. By addressing the complexities of practical
evasion attacks and providing a comprehensive roadmap for building resilient systems,
this work contributes to the development of more secure and effective ML-based malware
detection systems that can withstand the ever-evolving landscape of cyber threats. The thesis
concludes by suggesting several potential research directions, particularly focusing on how
the quality of training data influences the development of more robust malware classifiers.

xv

Samenvatting
Malicious software (malware) blijft een groeiende en zich ontwikkelende bedreiging vormen
voor de systeembeveiliging, waarbij kwetsbaarheden worden misbruikt om aanzienlijke
schade aan te richten. In reactie hierop is Machine Learning (ML) naar voren gekomen
als een veelbelovend hulpmiddel voor malwaredetectie, waarbij het wordt ingezet in zowel
statische als dynamische analyses om kwaadaardige programma’s te identificeren. Hoewel
ML effectief is gebleken in het verbeteren van malwaredetectie, kampt het met inherente
uitdagingen, met name kwetsbaarheden voor adversariële aanvallen die gebruikmaken
van ontwijkingstechnieken. Deze aanvallen bestaan uit het vervaardigen van adversariële
malware, waarbij malware zodanig wordt gemanipuleerd dat detectiesystemen worden
omzeild, terwijl de kwaadaardige functionaliteit behouden blijft. Hierdoor ondermijnen
ontwijkingsaanvallen de robuustheid van ML-classificatiemodellen, wat de ontwikkeling
vereist van verdedigingsmechanismen die bestand zijn tegen zulke geavanceerde bedreigingen.

Dit proefschrift heroverweegt de beveiliging van op ML-gebaseerde malwaredetectiesys-
temen tegen ontwijkingsaanvallen, door realistische perspectieven van zowel aanvallers als
verdedigers te integreren. Specifiek belicht dit werk de uitdagingen van het integreren van
realisme in zowel aanvalstechnieken als verdedigingsstrategieën, zoals het identificeren van
haalbare adversariële kwetsbaarheden in malwareclassificatiemodellen of het eerlijk evalue-
ren van de robuustheid van malwaredetectie. Door deze aspecten opnieuw te beoordelen,
beogen we een praktischere benadering te bieden voor het versterken van ML-gebaseerde
malwaredetectie tegen realistische ontwijkingsaanvallen.

Het onderzoek begint met het verkennen van realistische dreigingsmodellen van ontwij-
kingsaanvallen en streeft ernaar de grenzen van de huidige kennis en testmethoden op dit
gebied te verleggen. Een belangrijke bijdrage aan de aanvalszijde is het voorstellen van een
praktische ontwijkingsaanval, genaamd EvadeDroid, die de fundamentele uitdaging aanpakt
om ontwijkingstechnieken te ontwikkelen die onafhankelijk zijn van het doelsysteem. Deze
onafhankelijkheid is cruciaal, aangezien detectiesystemen in de praktijk vaak functioneren als
black boxes die enkel harde labels retourneren. Het proefschrift benadrukt dat adversariële
malware niet alleen haar kwaadaardige functionaliteit moet behouden, maar ook zodanig
moet worden gemanipuleerd dat deze onopgemerkt blijft tijdens de preprocessering, zodat
detectie wordt omzeild. Bovendien is EvadeDroid geoptimaliseerd voor efficiëntie: het
minimaliseert het aantal queries en verhoogt de geloofwaardigheid door het injecteren van
realistische adversariële payloads, gebaseerd op bestaande code. Hierdoor wordt de aanval
praktischer en moeilijker te verdedigen.

Aan de verdedigende kant onderzoekt het proefschrift methoden om efficiënt en effectief
de kwetsbaarheden van malwareclassificatiemodellen tegen realistische ontwijkingsaanvallen
te identificeren, en bestudeert het robuuste verdedigingsstrategieën om detectiesystemen
hiertegen te beschermen. Een belangrijke bijdrage van het defensieve deel van dit onderzoek is
het identificeren van haalbare kwetsbaarheden door het genereren van potentiële adversariële
malware direct in de kenmerkruimte in plaats van in de probleemruimte, wat efficiëntere en

xvi Samenvatting

bredere bescherming biedt. Daarnaast wordt het probleem van spurious correlations onder-
zocht—misleidende patronen die door malwareclassificatiemodellen ten onrechte kunnen
worden geleerd. Door te waarborgen dat de gebruikte kenmerken beter overeenkomen met de
daadwerkelijke functionaliteit van malware, kunnen classificatiemodellen worden verbeterd
om beter bestand te zijn tegen manipulatie en beter te generaliseren. Ten slotte wordt ingegaan
op adversariële training (AT), een gangbare techniek om malwareclassificatiemodellen te
versterken tegen adversariële aanvallen. Dit onderzoek specificeert belangrijke dimensies
voor het verkennen en evalueren van AT, zoals kenmerkrepresentaties en de realisme van
adversariële voorbeelden, door een uniform kader voor te stellen dat helpt bij het identificeren
van essentiële factoren die het succes van AT beı̈nvloeden, zoals modelflexibiliteit. Het
proefschrift benadrukt het belang van het beschouwen van al deze factoren in samenhang, in
plaats van afzonderlijk, om tot betekenisvolle verbeteringen in robuustheid te komen.

Samengevat biedt dit proefschrift een praktische en toekomstgerichte benadering voor
het verdedigen tegen adversariële bedreigingen in malwaredetectie. Het onderstreept de
noodzaak van realistischere dreigingsmodellen en betrouwbare verdedigingsstrategieën.
Door de complexiteit van praktische ontwijkingsaanvallen aan te pakken en een uitgebreid
raamwerk te bieden voor het bouwen van veerkrachtige systemen, draagt dit werk bij aan
de ontwikkeling van veiligere en effectievere ML-gebaseerde malwaredetectiesystemen die
bestand zijn tegen het steeds veranderende dreigingslandschap. Tot slot worden er enkele
veelbelovende onderzoekslijnen voorgesteld, met name gericht op hoe de kwaliteit van
trainingsdata de ontwikkeling van robuustere malwareclassificatiemodellen beı̈nvloedt.

xvii

Acknowledgments

Looking back on this long journey, I reflect on the rough and challenging path I’ve taken
to reach this milestone—undoubtedly one of the most significant turning points in my life.
The only words that truly come to mind are: “Thank you, God.” Thank you for creating
me with strength, perseverance, intelligence, passion, hope, and ambition. Thank you for
blessing me with devoted and loving parents who raised me with faith and supported me
unconditionally. Thank you for allowing me to grow up surrounded by kind and encouraging
siblings, whose love and presence have always been a source of comfort. Thank you for
placing exceptional teachers, advisors, and mentors along my path. And above all, thank
you for the most invaluable gift you have given me—my greatest love, Marzieh, who has
dedicated herself fully to this journey alongside me.

Marzieh, you know more than anyone that I could not have made it here without you. I
have run, walked, and at times crawled just to keep moving forward, but it was you who kept
me standing. Words cannot fully capture the depth of my gratitude for your extraordinary
kindness, unwavering support, and boundless dedication. We have walked this path together,
and I wholeheartedly dedicate this achievement to you. Still, even this dedication cannot
fully reflect all that you have done—for me and for our dear children, Mohammad and Ali,
who have been part of this journey every step of the way.

I would also like to extend my heartfelt thanks to my wife’s family. I am especially
grateful to my late father-in-law—may he rest in peace—whose memory continues to inspire
me. My warmest thanks to my mother-in-law for her continued kindness, and to my brothers-
and sister-in-law, Ali, Mohammadhadi, and Zeinab, for their sincere interest in my work and
for the many engaging conversations we’ve shared about research.

Before continuing with my acknowledgments, I would like to take a moment to reflect
on how I arrived at this point. My story goes back many years to my time as a student. I
was always among the top performers in primary and secondary school—a curious boy with
endless questions. However, during high school, I drifted somewhat away from being among
the top students for various reasons. But as I pursued my bachelor’s degree, I returned to
my “factory settings” and once again began to thrive academically. A pivotal moment in
my academic journey came when I enrolled in a master’s course taught by Prof. Mansour
Sheikhan. His lectures on artificial neural networks sparked a profound passion for AI
research within me. With his mentorship and encouragement, I pursued a novel master’s
thesis at the intersection of AI and cybersecurity, leading to impactful research and significant
achievements—none of which would have been possible without his constant support.

After completing my master’s, I continued conducting research with great enthusiasm,
driven by the perfectionism I believed was essential for securing a top PhD position. In
hindsight, committing to a long-term research project delayed my PhD trajectory by nearly
five years. However, that period of exploration may have been a necessary detour, ultimately
guiding me toward a PhD position focused on machine learning security in the malware

xviii Acknowledgments

domain at one of top universities in the Netherlands. I’m deeply grateful to Veelasha and
Erik for believing in me and offering me the position after our first interview.

I began my PhD journey during the height of the COVID-19 pandemic—a time of
heightened challenges. Moving from Iran to the Netherlands was far from easy; the university
was nearly deserted, with most working remotely, and even Veelasha had already moved
on to RUB. I still recall my first day at Mercator 1, where Irma and Joan welcomed me
warmly. Despite being physically distant, Veelasha made substantial effort to prepare me
for my PhD, offering invaluable guidance on university life and adjusting to life in the
Netherlands. Though remote supervision came with its challenges—for both of us—we
found our rhythm and made steady progress together. Veelasha, thank you for trusting in me
and for your ongoing support and mentorship. I am sincerely grateful for the way you helped
me grow, both as a researcher and as a person, particularly in areas like academic networking,
which I now recognize as vital in research. Likewise, I extend my deep gratitude to Erik for
facilitating the logistical aspects of my work, providing thoughtful feedback, and offering
timely assistance. Erik, your trust and support have been instrumental in helping me find my
footing throughout this journey.

I also appreciate Zhengyu and Zhuoran for their collaboration and engaging discussions,
which significantly deepened my understanding of adversarial machine learning. Likewise, I
am grateful to Lorenzo and Fabio for welcoming me into their research group in the UK,
where I had the opportunity to explore an exciting project. Similarly, I truly valued my
collaboration with Jacopo and Daniel during my research visit, especially working closely
with Jacopo on a project that was highly relevant to both our PhD research.

A special thanks to the Iranian community in Nijmegen—Ahmad, Arash, Hamidreza,
Farzaneh, Parisa (Naseri), Maryam, Negin, Hadi, Sadegh, Masoud, Akbar, Raheleh, Esmail,
and Arman—for their unwavering support of me and my family throughout this journey.
Without them, settling in Nijmegen, especially for my family, would have been far more
difficult. I am also deeply grateful to Alireza for his generosity in sharing his experience,
guiding me through the hiring process, and helping me navigate the many bureaucratic steps
of relocating to the Netherlands.

Many thanks to Behnam, Omid, and Parisa (Amiri Eliasi) for their friendship and support,
which made my time at work more enjoyable. I’m also grateful to Twan and Pol for the
opportunity to assist in their course—the experiences that helped me grow as an educator.

I extend my appreciation to all my colleagues in the Digital Security and Data Science
groups—Joan, Gunes, Irma, Janet, Shanley, Ronny, Ileana, Martha, Faegheh, Gijs, Alex,
Nik, Azade, Behrad, Vahid, Yanis, Krijn, and many others, especially my office mates Zahra,
Paulus, Charlotte, and Alexandre—for their cooperation and friendship.

Finally, I am sincerely grateful to the members of the manuscript committee—Lejla,
Konrad, Mauro, Juan, and Jason—for taking the time to evaluate my dissertation and grant
their approval. I would also like to thank Stjepan for joining the examination board and being
part of this important milestone. This journey has been long and challenging, yet enriched
by growth, learning, and meaningful connections. I am grateful for every step and for those
who have walked it with me.

Hamid Bostani
Nijmegen, The Netherlands—June 2025

1

1

1
Introduction

In today’s cybersecurity landscape, malicious software (malware) poses a growing and
evolving threat. Such software is intentionally designed to harm victim machines, such
as computers or smartphones [1]. Malware uses various techniques, both simple and
sophisticated, that can cause serious and sometimes irreversible damage to systems. In the
ongoing battle against such threats, Machine Learning (ML) has emerged as a promising
approach in enhancing malware detection [2]. ML can be employed in static analysis to
inspect software source codes for detecting malicious content, or in dynamic analysis to
monitor the behavior of running software to identify malicious activities. For instance, leading
Android application stores, such as Google Play, leverage ML in both static and dynamic
analysis to identify potentially harmful applications [3]. Utilizing ML for malware detection
is valuable, as system security requires increasingly intelligent decision-making to keep
up with malicious actors who are constantly advancing their attack methods. Nevertheless,
the trustworthiness of malware classifiers1 remains a major concern for both academia
and industry [4]. A key pillar of building a trustworthy malware classifier is ensuring its
robustness, which enables the detector to perform reliably even under challenging conditions
during its inference phase, such as noisy representations caused by errors in feature extraction.
Achieving robustness, especially in malware detection, which is adversarial by nature [5],
presents significant challenges as ML systems can be targeted by adversarial attacks, which
specifically aim to diminish their robustness. Evasion attacks are among the hazardous forms
of adversarial attacks which entail crafting adversarial input instances named adversarial
examples (AEs) to circumvent ML systems. In the context of malware, adversaries alter the
static features of malware (e.g., control flow graph) to generate adversarial malware, a form
of AE that not only evades malware classifiers but also has the potential to compromise victim
machines. Such type of adversarial attack must ensure the malware’s inherent properties,
such as its malicious functionality, remain intact after adversarial manipulations.

1.1 Revisiting Realism for Adversarial Malware
To improve the adversarial robustness2 of malware classifiers, it is essential to consider
realism, referring to threat models and defenses that align with real-world constraints. This
1In this dissertation, the terms malware classifiers and ML-based malware detectors are used interchangeably.
2In the context of this dissertation, adversarial robustness specifically refers to the robustness of ML systems during
the inference phase against evasion attacks.

1

2 1 Introduction

ensures that solutions go beyond theory and are applicable in practical settings. Realism is
a crucial aspect for both attackers and defenders in Adversarial Machine Learning (AML),
yet it has been underemphasized in the malware domain because of the unique properties
of malware, which set it apart from other entities such as images. While AML typically
focuses on identifying and mitigating vulnerabilities within ML systems [6], the challenges
of securing ML systems in the malware domain are significantly more pronounced compared
to fields like computer vision. This is primarily due to the mismatch between the problem
space and the feature space. The problem space refers to real-world representations of
malware or benign software—such as actual Android apps or Windows executables—while
the feature space represents these samples in abstract forms, typically as binary or numerical
vectors. This mismatch introduces several domain-specific characteristics that make securing
malware classifiers particularly difficult:

• Non-standardized Features. Malware detection lacks standardized feature defini-
tions [7], unlike other domains such as computer vision, where fixed features like
pixels are used. This flexibility allows attackers to target only key features relevant to
specific detectors, whereas, in computer vision, all pixels are involved. This also gives
adversaries more opportunities to exploit vulnerabilities in feature representations. For
instance, if a feature representation is not expressive enough to differentiate malware
from goodware [8], attackers can alter malware so that its representation mimics that
of benign programs, without altering the malware’s original functionality. Finally,
non-standardized features make it harder for defenders to create generalized defenses,
as for each detector, defenses must be tailored to the specific features used by each
detection system. For example, if detectors rely on permissions, defenders must assess
how these can be adversarially altered, whereas those based on API calls require
evaluating different manipulation methods.

• Structured Program Files and Discrete Feature Space. Program files are highly
structured and often represented by discrete features, making it difficult to alter
them without rendering the files non-executable or harmless [7]. However, in the
malware domain, since the goal is not only to evade detection but also to successfully
compromise victim machines, any modifications must adhere to domain constraints
(e.g., preserving the semantics of malware after adversarial manipulations), ensuring
the malicious programs remain functional and harmful. In fact, satisfying these
constraints ensures that the malware’s malicious functionality remains intact, as any
changes made to evade detection must not interfere with its ability to carry out its
intended harmful actions.

• Non-Invertible and Non-Differentiable Feature Mapping. Since adversarial pertur-
bations typically occur in the feature space by perturbing the representation of malware,
attackers must reconstruct the malware based on the perturbed feature representation.
However, the mapping function from the problem space to the feature space in malware
detection is non-invertible [9], meaning it is not possible to reconstruct a functional
program file based solely on its feature representation. This is because the feature
representation simplifies the actual code, capturing only aspects relevant for detection,
not the full logic or structure of a program. Additionally, this mapping function is
non-differentiable [9], complicating the use of gradient-based evasion attacks [10].

1.2 Problem Statement

1

3

Program files are structured and non-numerical; therefore, converting them into
numerical features for ML models acts like a non-differentiable layer. Specifically,
transforming a feature representation generated by a gradient-based attack into a
functional program file presents a challenge, as back-propagating the loss gradient
through this mapping is not feasible [10].

These characteristics intensify the challenges encountered by attackers and defenders
in the malware domain. Particularly, the practical effectiveness of many proposed evasion
attacks and defense strategies remains questionable, highlighting the need for a deeper focus
on realistic threat models and reliable defenses that reflect the nature of the malware domain.

Over the past decade, significant research has been dedicated to exploring the vul-
nerabilities of malware classifiers through the investigation of evasion attacks. However,
the real-world applicability of the proposed adversarial attacks remains uncertain. Many
studies [9, 11–25] assume that attackers have in-depth knowledge of the target classifiers used
for malware detection, whereas, in practice, malicious actors often have limited access to such
information. Although some studies [16, 26–28] acknowledge this limitation by investigating
evasion attacks in Zero-Knowledge (ZK) settings, they frequently neglect the evasion costs
(e.g., the number of queries required to target malware classifiers), which represent important
real-world constraints. Moreover, the majority of studies [9, 11–28] generate AEs through
manipulations in the feature space. However, the realizability of adversarial programs in the
problem space has received less attention due to the inverse feature-mapping problem or the
failure to meet domain constraints that ensure feasible programs.

On the other hand, many recently proposed defenses [12, 14, 15, 17–19, 24–26, 29–38]
may not adequately protect malware classifiers from evasion attacks. This inadequacy is
either due to the lack of clarity regarding their focus on feasible, vulnerable regions of the
ML decision space or their failure to evaluate against strong and realistic evasion attacks,
which generate feasible adversarial malware by adhering to domain constraints. Furthermore,
malware classifiers are more prone to spurious correlations—misleading associations between
input features and target labels—due to malware’s dynamic nature, imbalanced datasets,
and noisy, high-dimensional features, which lead models to rely on superficial patterns
rather than meaningful ones. Current defenders fail to account for the intrinsic tendency of
malware classifiers to learn spurious correlations that significantly diminish the performance
of ML systems in adversarial settings. Finally, defenders often lack a clear understanding of
how factors related to key aspects of malware classifiers, such as feature representation and
learning algorithms (e.g., feature space dimensionality and classifier flexibility), contribute
to the vulnerabilities of ML models to evasion attacks. This knowledge gap makes it difficult
to fully grasp how these factors influence the models’ adversarial robustness, which is crucial
for effective defense against such attacks.

1.2 Problem Statement
ML has gained prominence in malware detection because it not only overcomes the
limitations of traditional methods, such as evading signature-based detectors with repacking
or polymorphism, but also excels at detecting evolving, unseen malware through model
generalization and knowledge adaptation [7]. ML is typically employed in either static
analysis, which distinguishes malware from goodware based solely on source code, or

1

4 1 Introduction

Adversary

1. Analyze classifier

2. Devise and execute attack

Classifier Designer

4. Develop countermeasures

3. Analyze a effect

Classifier Designer

1. Model adversary

2. Simulate attack

Classifier Designer

4. Develop countermeasures
 if the attack has a significant
 impact on the classifier

3. Evaluate a impact

(a) Reactive Arms Race

Adversary

1. Analyze classifier

2. Devise and execute attack

Classifier Designer

4. Develop countermeasures

3. Analyze a effect

Classifier Designer

1. Model adversary

2. Simulate attack

Classifier Designer

4. Develop countermeasures
 if the attack has a significant
 impact on the classifier

3. Evaluate a impact

(b) Proactive Arms Race

Figure 1.1: A conceptual depiction of the arms race in AML [39], showing two perspectives.

dynamic analysis, which evaluates runtime behavior. Although malware classifiers have
demonstrated high performance in various studies, they remain vulnerable to adversarial
attacks, particularly evasion attacks that alter malware to mislead malware classifiers during
their inference phase.

To improve the security of malware classifiers against evasion attacks, defense strategies
follow two approaches, namely security by obscurity and security by design [39]. Security by
obscurity relies on hiding system details from adversaries, while adversaries could potentially
uncover these obscured details. This approach results in a reactive arms race between
adversaries and defenders. As shown in Figure 1.1a, in a reactive arms race, adversaries
examine the ML systems to identify and exploit vulnerabilities to craft evasion attacks.
Defenders (i.e., classifier designers), in turn, respond by assessing these threats and updating
the ML systems accordingly [39, 40]. Conversely, as shown in Figure 1.1b, the security-by-
design approach embodies a proactive arms race, advocating for the development of ML
systems that are inherently secure against evasion attacks from the outset. In this approach,
defenders (i.e., classifier designers) anticipate potential threats by forecasting evasion attacks
and then fortify ML systems by implementing robust countermeasures designed to be
secure from the outset [39, 40]. This dissertation endorses a security-by-design approach to
safeguard malware classifiers against evasion attacks by (i) anticipating potential evasion
attacks and analyzing the vulnerabilities of malware classifiers to these adversarial attacks,
and (ii) developing defenses that enhance the adversarial robustness of malware classifiers.
Indeed, it begins by examining realistic evasion attacks and feasible adversarial perturbations
to reveal the vulnerabilities of ML models. Subsequently, it investigates hardening solutions
to strengthen malware classifiers against realistic evasion attacks. It is worth noting that we
focus on exploring evasion attacks targeting ML-based malware detection systems that rely
on static analysis due to their scalability and resource efficiency, which enable large-scale
evaluations. Below, we first motivate the environment considered in this dissertation for our
investigations and then present the research questions that it aims to explore.

1.2.1 Target Environment
Malware comes in various forms, such as Windows Portable Executables, PDFs, and
JavaScripts. This thesis focuses specifically on Android malware, as Android provides an
ideal environment for research due to its open-source nature, large user base, and access to
extensive datasets including large collections of timestamped Android Packages (APKs).
This open-source platform allows a wide range of developers to create applications, which
can lead to inconsistent security practices across the ecosystem [41]. The inconsistency in
security practices among Android applications leads to exploitable vulnerabilities, making
the platform a compelling subject for malware research. Additionally, Android’s dominance

1.2 Problem Statement

1

5

in the global smartphone market—with over 70% market share [42]—subjects a vast user
base to increased malware risks. The ability to sideload apps from third-party sources,
coupled with diverse security measures across various Android devices, further escalates its
susceptibility to security threats [43]. These factors collectively make Android a particularly
interesting platform for malware research. Finally, repositories like AndroZoo [44] offer
researchers access to millions of timestamped APKs, which is invaluable for large-scale
studies and ensuring the accuracy and reliability of malware detection systems.

Although the primary focus of our research is on Android malware, the insights and
challenges explored in this dissertation extend beyond the Android ecosystem. Challenges
such as feature representations in malware classifiers, realistic evasion attacks, identifying
ML vulnerabilities, the tendency of malware classifiers to learn spurious correlations, and
the uncertain effectiveness of adversarial training are common issues that affect malware
detection across various platforms. These common challenges highlight the broader relevance
of this research to the general field of malware defense.

1.2.2 Practical Evasion attacks
In real-world scenarios, adversaries often lack access to detailed information about target
malware classifiers as antivirus systems typically function as black-box models that can only
be queried externally [45]. For instance, adversaries are often limited to performing hard-label
attacks by querying the target detectors, where they can only access the classification labels
assigned to the input samples by target malware classifiers [46], rather than the more detailed
confidence scores, which would be more advantageous for generating AEs. Efficient querying
is also essential, given the costs associated with each query and the risk of detectors blocking
suspicious activities [45]. Furthermore, adversaries must ensure that the adversarial malware
they generate remains functional [47], allowing it to be installed on victim machines and
execute malicious actions after successfully bypassing malware detection systems. The first
research question of this thesis explores a practical evasion attack that meets the requirements
of these real-world constraints, addressing the challenge of generating adversarial malware
that can both evade detection and maintain its malicious functionality.

Q1. What threat model is truly practical for evasion attacks targeting malware
classifiers in real-world scenarios?

1.2.3 Effectiveness of Defenses
Realistic evasion attacks must generate functional adversarial malware in the problem space,
meaning they must adhere to domain constraints in the problem space [9]. For instance,
adversarial manipulations must be robust against non-ML preprocessing techniques (e.g., code
pruning, which minimizes code size by eliminating dead or unreachable code), as malware
classifiers often preprocess input programs before classification to exclude unused payloads,
such as unused permissions in Android apps [9]. AEs that are not robust to preprocessing
may be filtered out by the malware classifiers, rendering the attack unsuccessful. In the
feature space where malware classifiers operate, not all feature representations are feasible,
as they must correspond to functional and valid programs in the problem space. As depicted
in Figure 1.2, realistic evasion attacks are restricted to targeting specific regions in the blind

1

6 1 Introduction

Optimal Decision
Boundary

Decision Boundary of
the Malware Classifier

Blind Spots

Figure 1.2: A conceptual illustration of feasible regions (outlined by dashed orange closed lines) in the feature
space, where malware (red dots) and goodware (green dots) can be positioned. The blind spot regions within these
closed lines are feasible vulnerable areas that can be targeted by realistic evasion attacks. The red and green dots
located outside the dashed orange boundaries represent unrealizable malicious and benign programs, respectively.

spots of the feature space where these feasible representations exist. It is important to note
that blind spots refer to the areas between the decision boundary learned by a malware
classifier and the ideal potential decision boundary, where the classifier fails to correctly
identify malware.

To effectively defend malware classifiers against such attacks, defenders should con-
centrate on protecting these vulnerable regions. Identifying these regions by generating
realizable AEs in the problem space—those that meet domain constraints—can be useful,
though this process is both computationally intensive and time-consuming. Furthermore,
realistic evasion attacks used by defenders to generate realizable AEs are based on limited
problem-space transformations3, potentially lacking other unseen problem-space transforma-
tions. As a result, defenders may struggle to protect malware classifiers against attacks that
use alternative, undiscovered transformations to generate AEs, since these problem-space
transformations target unknown vulnerable regions. The next research question explores a
technique to quickly identify these vulnerable areas within the decision space of malware
classifiers, enabling more robust defenses against realistic evasion attacks without revealing
the full extent of ML vulnerabilities in the problem space.

Q2. How can vulnerable regions in malware classifiers be efficiently identified to
defend against realistic evasion attacks?

1.2.4 Spurious Correlations in Malware Classifiers
In the context of systems security, spurious correlations refer to patterns in data, such as
relationships between input features and the target label, that are unrelated to the actual
security problem, such as malware detection, but create shortcuts for classification [48]. For
example, if a specific permission appears frequently in malware apps, an ML model might

3Problem-space transformations include manipulations like injecting dead code to modify software.

1.3 Structure of Dissertation

1

7

learn to rely on the presence of that permission to classify malware, instead of identifying
genuine malicious behavior. Robust ML systems emphasize learning robust features—those
directly linked to the classification task and less vulnerable to adversarial perturbations—over
unrelated patterns in the data. Altering these robust features carries a high risk of changing
the semantics of the input programs (e.g., changing the malware functionality), which is
undesirable for evasion attacks. The next research question highlights the impact of spurious
correlations on the adversarial robustness of malware classifiers, specifically investigating
how the influence of irrelevant patterns can be eliminated to enhance the classifier’s resilience
against realistic evasion attacks.

Q3. How can the impact of spurious correlations be reduced to secure malware
classifiers against realistic evasion attacks?

1.2.5 Influential Factors for Malware Classifiers
There are numerous studies conducted in the malware domain to shield malware classifiers
against evasion attacks, e.g., defensive distillation [17], weight bounding [16, 28], and
monotonic classification [49]. Adversarial Training (AT) [50] emerges as the most successful
defense strategy against evasion attacks [51, 52] which leverage the usage of AEs during
the training phase to mitigate the generalizability concerns inherent in ML models. To
this end, an effective mechanism for AT formulates the training procedure as a robust
optimization via a min-max optimization problem, where the inner maximization problem
seeks optimal adversarial perturbations, and the outer minimization problem optimizes
model parameters [53]. This proactive defense, which is also known as adversarially robust
training [52], enhances the generalizability of ML models in classifying unseen samples,
such as AEs, by revealing blind spots in their decision space. To advance AT in the context
of malware detection, it is crucial to provide an in-depth understanding of AT’s capability
not only in uncovering blind spots but also in maintaining the clean performance of ML
models. This requires exploring various factors that influence AT while ensuring evaluations
are well-aligned with real-world scenarios to accurately assess improvements in adversarial
robustness. The next research question addresses this gap by investigating the intertwined
roles of different factors in strengthening malware classifiers through AT.

Q4. What are the key factors influencing adversarial training, and how do they affect
its effectiveness in malware detection?

1.3 Structure of Dissertation
This dissertation believes we need to rethink the security of ML used in malware detection
by revisiting realism. Throughout the chapters, we investigate evasion attacks and defenses
with a focus on realism, highlighting practical threat models of evasion attacks in real-world
scenarios, and examining effective defensive strategies to strengthen malware classifiers
against such attacks. Our exploration opens with Chapter 2 to lay the groundwork for our
examination of the adversarial robustness of malware classifiers. Specifically, this chapter
provides a detailed foundation for understanding malware detection in the context of AML.

1

8 1 Introduction

It begins by outlining the fundamentals of malware detection and then discusses how evasion
attacks exploit the vulnerabilities of malware classifiers to generate adversarial malware
aimed at bypassing detection. The chapter also delves into how different threat models help
simulate realistic evasion attacks, highlighting the potential risks that malware classifiers
face. Furthermore, it reviews key defense mechanisms aimed at enhancing the robustness of
malware classifiers, ensuring they can withstand evasion attacks. Reviewing these topics is
essential for this thesis, as it establishes the necessary context for investigating adversarial
robustness and contributes to the development of more secure ML-based malware detection
systems.

Since developing malware classifiers that are secure against evasion attacks requires an
understanding of ML vulnerabilities to evasion attacks, the first part of the thesis, covered in
Chapters 3 and 4, investigates practical evasion attacks and the susceptibility of ML models
to these threats within the feature space. Specifically, Chapter 3 presents a novel evasion
attack method designed to evade Android malware classifiers in real-world scenarios. The
proposed attack, which is named EvadeDroid, is a practical evasion attack that operates under
ZK settings in the problem space. By utilizing a random search optimization algorithm,
EvadeDroid iteratively applies problem-space transformations derived from benign apps to
bypass malware classifiers. This optimization approach effectively selects and injects suitable
transformations by relying on feedback from the target classifier. EvadeDroid not only
operates without needing any knowledge of the malware classifier’s internal workings but also
achieves high query efficiency with minimal interactions. As a result, EvadeDroid achieves
high evasion rates while preserving the malware’s original functionality, demonstrating its
feasibility in real-world applications. Furthermore, Chapter 4 introduces a novel approach
to identify regions vulnerable to realistic evasion attacks by exploring realizable AEs
within the feature space. This approach ensures that the AEs adhere to domain constraints
essential for feasible Android apps. To this end, we interpret these domain constraints
as meaningful feature dependencies and propose a method to learn them through feature
correlations. Leveraging these learned constraints, our approach enhances detection by
effectively distinguishing AEs from feasible apps. Moreover, it addresses the shortcomings of
prior studies, particularly in maintaining realism and efficiency in adversarial hardening. By
integrating these constraints into AT, we significantly strengthen the robustness of Android
malware detection against realistic evasion attacks.

The second part of the thesis, presented in Chapters 5 and 6, examines the defenses
that protect malware classifiers against the ML vulnerabilities discussed in the first part.
ML models used for malware detection often grapple with the challenge of spurious
correlations, which can severely hinder their performance on out-of-distribution data, such
as AEs. Chapter 5 presents a novel approach to addressing this vulnerability through a
domain adaptation technique that enhances the generalizability of malware classifiers. By
establishing a robust feature space that aligns the distributions of malware and adversarial
malware, our method mitigates the influence of misleading features. This alignment allows
classifiers to focus on genuine semantic patterns associated with software functionality,
thereby bolstering their resilience against realistic evasion attacks. Chapter 6 investigates
AT as the most effective strategy for enhancing malware detection. This chapter highlights
that the effectiveness of AT in hardening malware classifiers against realistic evasion attacks
has not been thoroughly explored. Many studies have either not conducted a comprehensive

1.4 List of Publications

1

9

exploration of the full space or have used inappropriate evasion attacks (e.g., unrealistic
or weak ones), limiting the validity of their conclusions. This chapter proposes a unified
framework to investigate the impact of various influential factors—within data, feature
representations, classifiers, and robust optimization settings—on the effectiveness of AT,
using different evaluation criteria. It systematically explores the roles of these factors in
strengthening malware classifiers, identifies evaluation pitfalls that may lead to misleading
conclusions in state-of-the-art approaches, and offers key insights to guide future research
toward optimal AT configurations.

In Chapter 7, we conclude the thesis by summarizing the key contributions of each
chapter and reflecting on how they address the research questions outlined in Section 1.2.
We revisit the findings from our exploration of evasion attacks, defenses, and practical threat
models in malware detection, highlighting the advancements made in understanding and
improving the adversarial robustness of ML models in this domain. Finally, we close the
dissertation by discussing potential directions for future research, focusing on areas where
further investigation could enhance the security of ML-based malware detection systems. In
particular, we underscore the significance of exploring evasion attacks targeted at malware
classifiers used in dynamic analysis, as well as analyzing the influence of malware types and
families on the effectiveness of evasion attacks in shaping adversarial malware. Furthermore,
we caution against the growing threat of malware propagation through malicious public
repositories. Specifically, we stress the importance of proactively analyzing evasion attacks
that bypass detection mechanisms intended to identify and mitigate these threats. Our
final recommendation is to provide a detailed discussion on how future research should
concentrate on improving the robustness of malware detection by leveraging high-quality,
in-distribution data prepared by advanced techniques, which may lead to the development of
malware classifiers that are more resilient to both in-distribution and out-of-distribution data,
such as adversarial malware.

1.4 List of Publications
I have published the following papers during my Ph.D. at Radboud University.

1.4.1 Main Publications Contributing to Thesis Chapters
This dissertation primarily draws on five publications, most of which were collaborative
efforts with other authors. All chapters have either been published or are currently under
review in peer-reviewed journals and conferences. My specific contributions to each chapter,
based on the published works, are detailed in the following list.

• Chapter 3. Subverting Machine Learning in Malware Detection.

This chapter is based on EvadeDroid: A Practical Evasion Attack on Machine
Learning for Black-Box Android Malware Detection4, by Hamid Bostani and Veelasha
Moonsamy, which was published in Computers & Security in 2024. In this research, I
led the project, overseeing the conceptualization, design, and empirical evaluation of
EvadeDroid, a new evasion attack proposed to deceive ML-based Android malware
detection. My extensive literature review, which examined prior studies on evasion

4https://doi.org/10.1016/j.cose.2023.103676

https://doi.org/10.1016/j.cose.2023.103676

1

10 1 Introduction

attacks and their roles in malware detection, informed the development of EvadeDroid
and helped identify limitations in existing evasion attacks. I was responsible for
drafting the initial manuscript, incorporating insights from existing literature to
effectively position our work within the wider landscape of AML. Additionally, I
handled the implementation of the proposed attack and the reproduction of existing
evasion strategies and malware detectors to empirically validate the effectiveness of
EvadeDroid. Veelasha Moonsamy contributed valuable feedback and revisions, which
were instrumental in enhancing the clarity and quality of the paper.

• Chapter 4. Exposing Vulnerabilities in Machine Learning for Malware Detection.
This chapter is based on Level Up with ML Vulnerability Identification: Leveraging
Domain Constraints in Feature Space for Robust Android Malware Detection5, by
Hamid Bostani, Zhengyu Zhao, Zhuoran Liu, and Veelasha Moonsamy, which
was published in ACM Transactions on Privacy and Security in 2025. In this
work, I took on the role of lead author, driving the conceptualization, design, and
empirical evaluation of our method for detecting adversarial vulnerabilities in malware
classifiers. I conducted a thorough literature review, focusing on AML and the
application of domain constraints in the feature space, which directly informed our
approach for strengthening malware classifiers. I wrote the initial draft of the paper,
synthesizing prior research to place our method within the broader discourse on
vulnerability detection in ML models. My responsibilities also included implementing
the full source code and carrying out data collection and preparation. Zhengyu Zhao
contributed to the conceptual development of the study and, along with Zhuoran Liu
and Veelasha Moonsamy, provided insightful feedback and edits that helped refine the
manuscript, enhancing its clarity and precision. Their contributions were crucial to
ensuring the overall quality of the paper.

• Chapter 5. Enhancing Adversarial Robustness with Robust Feature Space.
This chapter is based on Improving Adversarial Robustness in Android Malware
Detection by Reducing the Impact of Spurious Correlations6, by Hamid Bostani,
Zhengyu Zhao, and Veelasha Moonsamy, which was presented at the 29th European
Symposium on Research in Computer Security International Workshops (ESORICS
2024 International Workshops) in 2024. As the lead author of this study, I was
responsible for the overall conceptualization, design, and empirical evaluation of a
method aimed at improving adversarial robustness in Android malware detection by
addressing the impact of spurious correlations. My literature review explored existing
research on adversarial robustness and feature representations, which informed the
development of our approach to enhance model resilience. I wrote the initial draft of
the paper, integrating findings from related works to frame our method within the larger
context of adversarial defense strategies. I also implemented the entire source code
and managed the data collection and preparation. The valuable feedback and revisions
provided by Zhengyu Zhao and Veelasha Moonsamy significantly contributed to
improving the clarity and quality of the final manuscript. Their contributions ensured
the paper’s strength and coherence.

5https://doi.org/10.1145/3711899
6https://doi.org/10.1007/978-3-031-82362-6_13

https://doi.org/10.1145/3711899
https://doi.org/10.1007/978-3-031-82362-6_13

1.4 List of Publications

1

11

• Chapter 6. Enhancing Adversarial Robustness with Robust Optimization.
This chapter is based on On the Effectiveness of Adversarial Training on Malware
Classifiers7, by Hamid Bostani, Jacopo Cortellazzi, Daniel Arp, Fabio Pierazzi,
Veelasha Moonsamy, and Lorenzo Cavallaro, which has been under peer review since
2025. In this study, I led the project, guiding the conceptualization, literature review,
and formulation of key research questions and hypotheses regarding the effectiveness of
AT for malware classifiers. My literature review focused on existing works concerning
AT and vulnerabilities in malware detection, which helped define the research questions
related to perturbation budgets, confidence levels of AEs, and the impact of feature
representations on AT performance. I authored the majority of the paper, writing key
sections such as the introduction, related work, methodology, and evaluation, with
a particular focus on pitfalls, robustness optimization settings (perturbation bounds,
confidence levels of AEs, and domain constraints), and key findings. I was also
responsible for implementing the source code, including the development of classifiers
(DNNs8 and linear SVM9), feature-space and problem-space attacks (PGD10, JSMA11,
and EvadeDroid), as well as the AT method. Additionally, I designed analysis tools for
evaluating feature importance and plotting performance metrics. Jacopo Cortellazzi
was a co-contributor in brainstorming, data preparation, implementation, and authoring.
Daniel Arp, Fabio Pierazzi, Veelasha Moonsamy, and Lorenzo Cavallaro contributed to
brainstorming and provided essential feedback and edits, which significantly improved
the paper’s clarity and coherence. Jacopo Cortellazzi, Fabio Pierazzi, and Lorenzo
Cavallaro also contributed to the conceptual development of the study.

• Chapter 7. Conclusions and Outlook.
The outlook section of this chapter is based on Beyond Learning Algorithms: The
Crucial Role of Data in Robust Malware Detection, by Hamid Bostani and Veelasha
Moonsamy, accepted for publication in IEEE Security & Privacy in 2025. In this
work, I was the lead author, responsible for the conceptualization and literature review
concerning the use of coreset methods to improve adversarial robustness in malware
detection. My review of existing research on coreset techniques and adversarial
robustness provided a foundation for developing arguments and insights into the
potential opportunities and challenges of applying coreset methods in this domain. I
wrote the entire paper, synthesizing insights from previous studies to build a clear
argument on the critical role of data quality in enhancing the adversarial robustness
of malware classifiers, and how coreset techniques can help overcome challenges
in achieving robust malware detection. Throughout the writing process, Veelasha
Moonsamy provided valuable feedback, which improved the manuscript’s clarity and
overall quality.

7https://arxiv.org/abs/2412.18218
8Deep Neural Networks
9Support Vector Machine
10Projected Gradient Descent
11Jacobian-based Saliency Map Attack

https://arxiv.org/abs/2412.18218

1

12 1 Introduction

1.4.2 Other Publications
I have also contributed to the following paper during my Ph.D. at Radboud University;
however, it is not part of this dissertation.

• Targeted and Troublesome: Tracking and Advertising on Children’s Websites12, by
Zahra Moti, Asuman Senol, Hamid Bostani, Frederik J. Zuiderveen Borgesius,
Veelasha Moonsamy, Arunesh Mathur, and Gunes Acar, which was presented at the
45th IEEE Symposium on Security and Privacy (IEEE S&P) in 2024. In this work,
I contributed to brainstorming the research and collaborating on preparing the list
of child-directed websites by conducting a literature review on web classification,
conceptualization, validating various potential techniques, and manually labeling
websites. I also implemented scripts for online labeling of the collected websites using
VirusTotal, analyzed the results, verified the implemented LLM-based method for web
classification. Additionally, I contributed to preparing the initial structure of the paper
and co-authored the sections related to compiling the list of child-directed websites.

1.5 Code and Data Management
The source code developed and datasets collected for the research in various chapters of this
thesis are listed below:

• Chapter 3: EvadeDroid developed by Hamid Bostani.
https://github.com/HamidBostani2021/EvadeDroid.

• Chapter 4: Robust Android Malware Detector develped by Hamid Bostani.
https://github.com/HamidBostani2021/robust-Android-malware-detector.

• Chapter 5: Robust Feature Space developed by Hamid Bostani.
https://github.com/HamidBostani2021/robust-feature-space.

• Chapter 6: Robust Optimization for Malware Detection developed by Hamid Bostani
and Jacopo Cortellazzi.
https://github.com/HamidBostani2021/robust-optimization-malware-detection.

The supplementary materials used in all chapters of this thesis are written in Python.
Java is also used in the development of EvadeDroid, introduced in Chapter 3. In Chapters 3
to 6, we used the dataset and reproduced the problem-space evasion attack released in the
S2Lab repository13. However, access to these materials requires permission from the owners.
The dataset14 prepared by Zhang et al. [54] was also used in Chapter 6.

12https://ieeexplore.ieee.org/abstract/document/10646733
13https://s2lab.cs.ucl.ac.uk/projects/intriguing/
14https://github.com/seclab-fudan/APIGraph

https://github.com/HamidBostani2021/EvadeDroid
https://github.com/HamidBostani2021/robust-Android-malware-detector
https://github.com/HamidBostani2021/robust-feature-space
https://github.com/HamidBostani2021/robust-optimization-malware-detection
https://ieeexplore.ieee.org/abstract/document/10646733
https://s2lab.cs.ucl.ac.uk/projects/intriguing/
https://github.com/seclab-fudan/APIGraph

2

13

2
Background

As the cybersecurity landscape continues to evolve, malware detection systems face growing
challenges from adversarial threats. This chapter provides the foundational knowledge
necessary for understanding both malware detection and Adversarial Machine Learning
(AML) in this context. It begins by outlining the principles of malware detection and the
role of ML in identifying malicious software. The discussion then shifts to the security
concerns surrounding ML-based malware detection, focusing on AML, with particular
attention to evasion attacks—the adversarial threat examined in this dissertation. Then, we
review various threat models, which offer insights into the risks malware classifiers face,
and defense mechanisms aimed at enhancing the robustness of malware classifiers against
adversarial manipulation. By presenting these essential concepts, this chapter establishes
the groundwork for investigating the security of malware classifiers against realistic evasion
attacks in subsequent chapters.

2.1 Overview of Malware Detection
Malware is any software deliberately designed to disrupt, damage, or gain unauthorized
access to victim machines, including computer systems or networks [2]. Its effects include
data theft, data loss, and damage to hardware and software [55]. Malware appears in various
forms, such as Windows or Android malware, but their objectives are similar within their
respective categories. For example, trojans trick users by posing as legitimate software,
viruses spread between devices, spyware gathers sensitive information without consent, and
ransomware locks systems or files, demanding payment for access [2].

Malware continues to be a major global cybersecurity threat. With over a billion malware
programs in existence and hundreds of thousands of new instances discovered daily [56], the
need for malware detection systems is more critical than ever. These systems are essential
for mitigating the widespread impact of malware and protecting users and systems from
ongoing threats.

2.1.1 Malware Detection
Malware detection is a crucial analytical process designed to determine whether software,
such as an Android app, is intended to carry out malicious activities on a target system, like
Android devices. This process involves examining all executable programs on the system to
distinguish malware from benign software. Traditional malware detection techniques often

2

14 2 Background

rely on signature-based methods, where malware signatures are extracted by malware analysts
from malicious programs [57]. However, these systems have notable limitations. For instance,
signature extraction is labor-intensive and can be circumvented through various techniques
such as encryption, repacking, and polymorphism [57]. In contrast, many advanced malware
detection approaches utilize behavior-based methods. These techniques analyze the behavior
of suspicious programs to determine whether they are malicious [58]. Behavior-based
detectors typically evaluate programs in isolated environments (e.g., sandboxes) before
allowing them to execute in real-world settings. Nonetheless, these systems have their own
limitations, such as a tendency to produce high false-positive rates [58] or an inclination
for malware to conceal its malicious functionality during evaluation [59]. In practice,
malware detection operates as a pipeline, where each stage utilizes different malware analysis
techniques to assess software. The goal of malware analysis is to uncover the functionality,
origin, and potential impact of software, providing insight into its behavior [2]. Malware
analysis can be broadly divided into static and dynamic analysis [60]:

• Static analysis involves classifying software based solely on their code or binary
structure (i.e., raw bytes), without requiring their execution. This approach relies on
either code-level features such as strings, API calls, and control flow graphs [2], or
binary-level features, such as byte sequences [61], to identify potentially malicious
behavior.

• Dynamic analysis detects malware by observing its behavior during execution, such
as time-dependent sequences of system calls. This approach leverages runtime
characteristics, including API call traces and memory usage patterns, to identify
malicious activity [2]. Endpoint Detection and Response (EDR) is a widely recognized
dynamic analysis technology designed to continuously monitor and analyze endpoint
activities in real-time, enabling rapid responses to threats on devices such as computers
and mobile phones [62].

2.1.2 Machine Learning in Malware Detection
ML is a vital branch of Artificial Intelligence (AI) that enables systems to learn from prior
collected data—referred to as experience—without requiring explicit programming [63].
Nowadays, ML has become a fundamental computational approach in data processing, finding
applications across various domains, such as image processing and speech recognition. Over
the past years, ML has been widely used by cybersecurity researchers for malware detection
to achieve effective solutions, e.g., detecting zero-day malware. Supervised learning is the
predominant ML approach for malware detection. This technique utilizes labeled samples to
build a binary classifier capable of distinguishing malware from goodware. More recently,
Large Language Models (LLMs) have emerged as a promising ML technique in this domain.
LLMs, which can offer zero-shot reasoning in malware detection, are trained on vast pre-
trained knowledge (e.g., large amounts of code) instead of specifically labeled datasets [64].
These models have demonstrated strong capabilities in static analysis tasks—such as software
bug detection [65]—which are closely related to malware detection, further highlighting
their potential in this domain.

Building an effective malware classifier with supervised learning requires automating
workflows through an ML pipeline. This pipeline comprises several stages, including data

2.2 Adversarial Susceptibility of Malware Classifiers

2

15

preparation (data collection, cleaning, and feature engineering), model training, and model
deployment. During model training, the classifier learns from labeled data to optimize its
performance in identifying malware and benign samples, using metrics like accuracy or
expected loss. In the model deployment phase, the trained classifier is used to identify
malware in real-world scenarios. By automating these stages through a well-structured
ML pipeline [66], researchers and developers can streamline the creation and deployment
of effective malware detection systems. However, the success of such systems relies on
addressing key challenges, such as ensuring high-quality training data, adapting to the
ever-evolving nature of malware, and strengthening the model’s resilience to evasion attacks,
which is the primary focus of this dissertation.

2.2 Adversarial Susceptibility of Malware Classifiers
ML techniques used for malware detection are data-driven approaches that can be significantly
impacted by deliberate data manipulation carried out through adversarial attacks [67]. These
type of attacks aim to cause misclassification by exploiting vulnerabilities in the ML pipeline
at either the training or inference phase. Specifically, based on the attack time, adversarial
attacks can be classified into two main categories:

• Poisoning attacks (also referred to as causative attacks [68]): These attacks involve
injecting intentionally crafted data points into the training dataset by modifying labels
or features to corrupt the training process and compromise the resulting model [69].
Large-scale poisoning attacks can be automated to craft highly effective poisoned
samples, allowing attackers to bypass security mechanisms at scale [70].

• Evasion attacks (also known as exploratory attacks [68]): These attacks target the
model during the inference phase, attempting to carefully craft adversarial examples
(AEs) by introducing small, deliberately designed perturbations into input samples to
confuse the model and force incorrect predictions after it has been trained [71].

In both attack types, adversaries typically aim to conduct either targeted or untargeted
attacks [33]. In targeted attacks, the goal is to deceive the classifier into assigning a specific,
predetermined label to the input sample, regardless of its actual class. In contrast, untargeted
attacks aim solely to mislead the classifier into making an incorrect prediction, without
regard to which incorrect label is assigned. Targeted and untargeted attacks can be viewed
similarly in the context of malware detection, as the classifiers used are typically binary.

Moreover, recent research highlights the phenomenon of transferability, wherein AEs or
poisoning points crafted for one model can also compromise others, even if they differ in
architecture or training data [72]. This property significantly broadens the attack surface,
enabling adversaries to mount effective attacks even without direct access to the target model.

Generating AEs in the malware domain is more challenging compared to other domains,
primarily because AEs must remain functional malicious software. Indeed, unlike some fields
(e.g., computer vision), where AEs only need to deceive a model, adversarial malware must
also retain its ability to compromise victim machines while evading detection. Figure 2.1
illustrates the pipeline of malware detection, highlighting the process of constructing and
utilizing a malware classifier. One of the key concepts demonstrated in the figure is the
distinction between the problem space and the feature space. Unlike domains such as

2

16 2 Background

Unseen
Malware

Malware

Goodware

Evasion Attack

Adversarial
Malware

Figure 2.1: The pipeline of ML-based malware detection and its susceptibility to evasion attacks. Green and red
dots represent benign and malicious samples, respectively.

computer vision, where the problem space (e.g., images) and the feature space (e.g., pixel
representations) are closely aligned, in malware detection, these two spaces are significantly
different. The problem space consists of real-world software (e.g., executable files), while
the feature space represents the abstract representations derived from these files, which are
used for ML. This separation presents unique challenges in the malware domain, particularly
when generating adversarial malware capable of evading detection while preserving its
functionality. Since adversarial methods typically operate in the feature space [73], there
arises a need to reconstruct problem-space objects from their feature representations, adding
an extra layer of complexity to the process.

2.2.1 Machine Learning Vulnerabilities to Evasion Attacks
As illustrated in Figure 2.1, evasion attacks occur during the inference phase by adversarially
manipulating input malware. To mitigate their potentially catastrophic impact, it is crucial to
understand the underlying reasons for the vulnerability of ML systems to such adversarial
attacks1. Generally, as depicted in Figure 2.2, two primary factors contribute to this
vulnerability: learning vulnerability and feature vulnerability [8].

• Learning vulnerability. Figure 2.2 illustrates how the decision boundary learned
during the training process may differ from the truly optimal decision boundary.
This discrepancy creates blind spots, representing areas where malicious samples are
misclassified as benign. These blind spots emerge due to the gap between the optimal
decision boundary and the learned decision boundary, often caused by limitations in the
training process. Learning vulnerability may stem from the statistical and probabilistic
nature of ML, where inherent discrepancies between the ground truth distribution and
the finite training samples introduce error, making it difficult to fully approximate

1Since the thesis specifically focuses on evasion attacks, the term adversarial attacks will always refer to evasion
attacks throughout the rest of the thesis.

2.2 Adversarial Susceptibility of Malware Classifiers

2

17

Figure 2.2: Illustrating the learning and feature vulnerabilities of malware classifiers, which are exploited by
blind-spot and mimicry evasion attacks, respectively. Green and red samples represent benign and malicious
samples, respectively.

the optimal decision boundary. Achieving adversarial robustness typically seems to
require significantly more data than standard training, highlighting the limitations of
learning from finite datasets [74]. Moreover, AEs can emerge due to test-time errors
under noisy conditions, reflecting the uncertainty inherent in model behavior [75].
Blind-spot evasion attacks exploit vulnerabilities arising from these limitations by
manipulating malicious samples to fall into regions where the model misclassifies
them as benign.

• Feature vulnerability. As shown in Figure 2.2, adversaries can manipulate the
feature representations of malicious samples to resemble those of benign ones.
This manipulation becomes possible when the feature representation used to map
objects from the problem space to feature vectors in the feature space lacks sufficient
expressiveness to effectively distinguish between malware and goodware. In such cases,
different inputs from the problem space—such as benign and malicious applications—
may be mapped to similar or indistinguishable feature vectors, undermining the
classifier’s ability to separate them effectively. A poorly designed or insufficiently
discriminative feature representation increases the risk of mimicry evasion attacks
bypassing the classifier by exploiting these representational limitations.

While classification errors derived from learning vulnerability are reducible through
methods such as adversarial training, which involves training the classifier on AEs to
enhance its detection capabilities, classification errors due to feature vulnerability constitute
a non-reducible error that cannot be resolved merely by modifying the learning algorithm [8].

2.2.2 Threat Models of Evasion Attacks
When attempting to bypass malware classifiers, adversaries rely on various threat models,
which are defined by the following critical attributes:
Adversarial Knowledge. Evasion attacks are categorized based on the adversary’s under-
standing of the target malware classifiers, including details such as training data, feature
representations, learning algorithms, and the trained models. These levels of knowledge
determine the following attack’s complexity:

2

18 2 Background

• Perfect Knowledge (PK): In this scenario, adversaries have complete knowledge of the
target malware detection system, including its architecture, parameters, and training
details. Such attacks are referred to as white-box attacks because they allow adversaries
to exploit every aspect of the classifier to generate adversarial malware.

• Zero Knowledge (ZK): Here, adversaries lack any information about the target system.
These attacks referred to as black-box attacks, rely on techniques like query-based
exploration [76] or surrogate models [77] to bypass the target malware classifiers
without requiring access to their internal details.

• Limited Knowledge (LK): Adversaries have partial information about the malware
classifier, such as the knowledge of the feature representation but not the exact training
data or model parameters. Such attacks are referred to as gray-box attacks as they
balance between black-box and white-box scenarios.

Adversarial Capabilities. Using their available knowledge, adversaries manipulate either
the feature space or the problem space to craft adversarial malware. These manipulations
aim to force the malware classifier into misclassifying malicious samples as benign.

• Feature-Space Perturbations: Adversaries identify and apply small, carefully crafted
modifications to the feature representations of malicious software. While this approach
is straightforward within the feature space, these perturbations must be mapped back
to the problem space to create functional malware.

• Problem-Space Manipulations: Adversaries manipulate the malware’s code or binary
files directly to create adversarial malware in the problem space, ensuring it remains
realizable by adhering to domain constraints in the problem space, including available
transformations, preserved semantics, robustness to preprocessing, and plausibility [9].
Specifically, adversaries require appropriate problem-space transformations to manipu-
late malware in the problem space. When applying these transformations, the malware
must preserve its original malicious functionality (e.g., stealing data or exploiting
vulnerabilities) while avoiding detection during feature extraction or preprocessing.
Additionally, the modified malware must appear valid to bypass malware classifiers,
maintaining its plausibility as benign software.

Table 2.1 provides an overview of key aspects—such as attacker assumptions and
manipulation techniques—considered in existing evasion attacks, highlighting the diversity
of these aspects across the literature.

2.2.3 Defenses Against Evasion Attacks
To enhance the resilience of malware classifiers against evasion attacks, we must improve
their robustness against adversarial manipulations. Robustness, in general, refers to the
ability of a system to maintain consistent performance despite uncertainties or variations
in input parameters [78]. In ML systems, such as malware classifiers, a robust classifier
should accurately classify inputs even when adversaries deliberately modify them to evade
detection. Figure 2.3 conceptually illustrates the difference between a robust and a non-robust
malware classifier. A malware classifier is considered robust within a perturbation range 𝜖 ,

2.2 Adversarial Susceptibility of Malware Classifiers

2

19

Table 2.1: Overview of key aspects of evasion attacks in malware detection.

Aspects Findings

Attack Strategy

Majority of studies employ gradient-free strategies (e.g., random search [12],
genetic algorithms [19, 26, 38]) or gradient-driven methods (e.g., PGD [24],
JSMA [17], FGSMa [18]). Some explore novel designs like GANsb [11] or
reinforcement learning [14].

Knowledge Setting

Many studies assume either white-box (e.g., [9, 17]) or gray-box (e.g., [20])
settings, where some utilize substitute models to approximate gradients [13]
or query the target model to discover adversarial perturbations in the feature space
of detectors [12]. In contrast, only a few studies adopt black-box settings
(e.g., [26, 46]), often relying on repeated queries to target detectors.

Manipulation Space Most studies (e.g., [14, 38]) perform perturbations directly in the
feature space, while a few also consider the problem space (e.g., [9]).

Classifier Types DNNs are the most common target models (e.g., [12, 17, 24–26, 38]), followed by
SVM and other classical ML models.

Trends Over Time

Earlier studies (2017–2019) often focused on gradient-based methods, white-box
assumptions, and feature-space perturbations, whereas more recent works (2020–
2024) emphasize query-efficient black-box strategies and the practical realizability
of attacks.

a Fast Gradient Sign Method
b Generative Adversarial Networks

known as the perturbation bound, if for every malicious input 𝑥, the classifier consistently
identifies any variations (e.g., 𝑥′ and 𝑥′′ in Figure 2.3 (a), which are adversarially perturbed
variations of 𝑥) within the 𝜖-bound area as malware. Conversely, the classifier is deemed
non-robust if it misclassifies such adversarial malware (e.g., 𝑥′ in Figure 2.3 (b)) as goodware.
This distinction highlights the critical need for robust defenses to ensure reliable malware
detection in adversarial settings.

To this end, recent research has explored systematic evaluation techniques—such as
explainability-guided testing frameworks—that help reveal vulnerabilities in model decision-
making under adversarial conditions [79]. To address these vulnerabilities, several defense
strategies have been proposed to enhance the adversarial robustness of ML systems [80]:

(a) (b)
Optimal Decision

Boundary
Optimal Decision

Boundary

Robust Decision
Boundary Non-Robust Decision

Boundary

Figure 2.3: Illustration of (a) a robust and (b) a non-robust decision boundary within the perturbation bound 𝜖 .
Green and red dots represent benign and malicious samples, respectively.

2

20 2 Background

• Model robustification: This approach improves the adversarial robustness of ML
systems by modifying the learning algorithms. For instance, adversarially robust
optimization [53] incorporates AEs during the training phase using a min-max
optimization framework to minimize the worst-case loss. Similarly, regularization [81],
which adds a penalty term to the loss function to avoid overfitting, is another approach
to enhance the model’s resilience against adversarial perturbations.

• Input transformation: This type of defense involves transforming the input data into a
new representation using techniques such as feature squeezing [82] or autoencoders [83].
The transformed data is then fed to the model, which reduces the effect of adversarial
perturbations and makes it harder for attackers to bypass classifiers.

• AE detection: This defense strategy focuses on identifying adversarial inputs before
they are processed by the ML system. These detection methods rely on specific criteria
to distinguish valid inputs from adversarial ones, effectively filtering out potentially
harmful inputs.

Throughout this dissertation, the effectiveness of these defense mechanisms is explored
in the context of securing ML-based malware detection systems against evasion attacks.
Model robustification using adversarially robust optimization is explored in Chapters 4 and 6,
input transformation is investigated in Chapter 5, and AE detection is explored in Chapter 4.
These analyses provide a comprehensive understanding of how various defense strategies
can strengthen malware classifiers against adversarial threats.

3

21

3
Subverting Machine Learning

in Malware Detection
Over the last decade, researchers have extensively explored the vulnerabilities of Android
malware detectors to adversarial examples through the development of evasion attacks;
however, the practicality of these attacks in real-world scenarios remains arguable. The
majority of studies have assumed attackers know the details of the target classifiers used
for malware detection, while in reality, malicious actors have limited access to the target
classifiers. This chapter introduces EvadeDroid, a problem-space adversarial attack designed
to effectively evade black-box Android malware detectors in real-world scenarios. EvadeDroid
constructs a collection of problem-space transformations derived from benign donors that
share opcode-level similarity with malware apps by leveraging an n-gram-based approach.
These transformations are then used to morph malware instances into benign ones via an
iterative and incremental manipulation strategy. The proposed manipulation technique
is a query-efficient optimization algorithm that can find and inject optimal sequences of
transformations into malware apps. Our empirical evaluations carried out on 1K malware
apps, demonstrate the effectiveness of our approach in generating real-world adversarial
examples in both soft- and hard-label settings. Our findings reveal that EvadeDroid can
effectively deceive diverse malware detectors that utilize different features with various
feature types. Specifically, EvadeDroid achieves evasion rates of 80%-95% against DREBIN,
Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries. Furthermore,
we show that the proposed problem-space adversarial attack is able to preserve its stealthiness
against five popular commercial antiviruses with an average of 79% evasion rate, thus
demonstrating its feasibility in the real world.

3.1 Introduction
Machine Learning (ML) continues to show promise in detecting sophisticated and zero-day
malicious programs [85–91]. However, despite the effectiveness of ML-based malware
detectors, these defense strategies are vulnerable to evasion attacks [57]. More concretely,
attackers aim to deceive ML-based malware classifiers by transforming existing malware

This chapter is based on the published paper: H. Bostani and V. Moonsamy, EvadeDroid: A Practical Evasion
Attack on Machine Learning for Black-Box Android Malware Detection, Computers & Security, vol. 139, 2024 [84].
The content remains unchanged from the published version.

3

22 3 Subverting Machine Learning in Malware Detection

into adversarial examples (AEs) via a series of manipulations. The proliferation of Android
malware [92] has extended research into novel evasion attacks to strengthen malware
classifiers against AEs [9, 14–23, 28, 93]. However, this endeavor, which also exists for other
platforms, such as Windows, poses its own set of challenges, which we elaborate on further
below.

The first challenge pertains to the feature representation of Android applications (apps).
Making a slight modification in the feature representation of a malware app may break its
functionality [57] as malware features extracted from Android Application Packages (APKs)
are usually discrete (e.g., app permissions) instead of continuous (e.g., pixel intensity in
a grayscale image). One plausible solution is to manipulate the features extracted from
the Android Manifest file [14, 17, 21]; however, the practicality of such manipulations in
generating executable AEs is questionable for the following reasons. Firstly, modifying
features from the Android Manifest (e.g., content providers, intents, etc.) cannot guarantee the
executability of the original apps (i.e., malicious payload) [33, 93]. Secondly, adding unused
features to the Manifest file can be discarded by applying pre-processing techniques [9].
Finally, advanced Android malware detectors (e.g., [94, 95]) primarily rely on the semantics
of Android apps, which are represented by the Dalvik bytecode rather than the Manifest
files [21, 22].

Another challenge is the limitations of feature mapping techniques used to convert Android
apps from the problem space (i.e., input space) to the feature space. These techniques are
not reversible, meaning that feature-space perturbations cannot be directly translated into a
malicious app [9]. To address inverse feature-mapping problem, a common approach is to
manipulate real-world malware apps using problem-space transformations that correspond to
the features used in ML models. By applying these feature-based transformations to Android
apps, adversaries can create hazardous evasion attacks [9, 22, 23, 28]. However, finding
suitable transformations that satisfy problem-space constraints is not straightforward [9]:
Firstly, certain transformations (e.g., [24, 25]) intended to mimic feature-space perturbations
may not result in feasible AEs because they disregard feature dependencies from real-world
objects. Additionally, some transformations (e.g., [9, 23]) that meet problem-space constraints
for manipulating real objects may introduce undesired or incompatible payloads into malware
apps. These types of transformations not only might render the perturbations different from
what the attacker expects [23] but can also lead to the crashing of adversarial malware apps.

The final challenge revolves around current methods [9, 14–25] that generate AEs based
on the specifics of target malware detectors, such as the ML algorithm and feature set.
These approaches assume that attackers possess either Perfect Knowledge (PK) or Limited
Knowledge (LK) about the target classifiers. However, in real-world scenarios, adversaries
generally have Zero Knowledge (ZK) about the target malware detectors, which aligns
more closely with reality since antivirus systems operate as black-box engines that are
queried [45]. Some studies [12, 13, 20] have explored semi-black-box settings to generate
AEs by leveraging feedback from the target detectors. Nevertheless, these approaches suffer
from inefficiency in terms of evasion costs, including the high number of queries required and
the extent of manipulation applied to the input sample. Efficient querying is crucial due to
the associated costs [45] and the risk of detectors blocking suspicious queries. Additionally,
minimizing manipulation is desired as excessive manipulations could impact the malicious
functionality of apps [16].

3.1 Introduction

3

23

3.1.1 Contributions
In response to the challenges outlined earlier, we propose a comprehensive and generalized
evasion attack called EvadeDroid, which can bypass black-box Android malware classifiers
through a two-step process: (i) preparation and (ii) manipulation. The first step involves
implementing a donor selection technique within EvadeDroid to create an action set
comprising a collection of problem-space transformations, i.e., code snippets known as
gadgets. These gadgets are derived by performing program slicing on benign apps (i.e.,
donors) that are publicly available. By injecting each gadget into a malware app, specific
payloads from a benign donor can be incorporated into the malware app. Our proposed
technique utilizes an n-gram-based similarity method to identify suitable donors, particularly
benign apps that exhibit similarities to malware apps at the opcode level. Applying
transformations derived from these donors to malware apps can enable them to appear benign
or move them towards blind spots of ML classifiers. This approach aims to achieve the desired
outcome of introducing transformations that not only ensure adherence to problem-space
constraints (i.e., preserved semantics, robustness to preprocessing, and plausibility [9]) but
also lead to malware classification errors.

In the manipulation step, EvadeDroid uses an iterative and incremental manipulation
strategy to create real-world AEs. This procedure incrementally perturbs malware apps by
applying a sequence of transformations gathered in the action set into malware samples over
several iterations. We propose a search method to randomly choose suitable transformations
and apply them to malware apps. The random search algorithm, which moves malware
apps in the problem space, is guided by the labels of manipulated malware apps. These
labels are specified by querying the target black-box ML classifier. Our contributions can be
summarized as follows:

• We propose a black-box evasion attack that generates real-world Android AEs that
adhere to problem-space constraints. To the best of our knowledge, EvadeDroid is
the pioneer study in the Android domain that successfully evades ML-based malware
detectors by directly manipulating malware samples without performing feature-space
perturbations.

• We demonstrate that EvadeDroid is a query-efficient attack capable of deceiving various
black-box ML-based malware detectors through minimal querying. Specifically, our
proposed problem-space adversarial attack achieves evasion rates of 89%, 85%, 86%,
95%, and 80% against DREBIN [96], Sec-SVM [16], ADE-MA [25], MaMaDroid [95],
and Opcode-SVM [97], respectively. This chapter represents one of the pioneering
efforts in the Android domain, introducing a realistic problem-space attack in a ZK
setting.

• Our proposed attack can operate with either soft labels (i.e., confidence scores) or hard
labels (i.e., classification labels) of malware apps, as specified by the target malware
classifiers, to generate AEs.

• We assess the practicality of the proposed evasion attack under real-world constraints
by evaluating its performance in deceiving popular commercial antivirus products.
Specifically, our findings indicate that EvadeDroid can significantly diminish the

3

24 3 Subverting Machine Learning in Malware Detection

effectiveness of five popular commercial antivirus products, achieving an average
evasion rate of approximately 79%.

• In the spirit of open science and to allow reproducibility, we have made our code
available at https://github.com/HamidBostani2021/EvadeDroid.

The rest of the chapter is organized as follows: Section 3.2 reviews the most important
relevant studies, particularly in the Android domain. In Section 3.3, we provide background
information on fundamental concepts, specifically ML-based malware detectors, and briefly
discuss the practical transformations that can be used for manipulating APKs. Section 3.4
initiates by reviewing the threat model and articulating the problem definition for EvadeDroid.
Following this, an illustration of the proposed black-box attack will be presented. We evaluate
EvadeDroid’s performance in Section 3.5. Limitations and future work, along with a brief
conclusion, are presented in Section 5.6 and Section 3.7.

3.2 Related work
In the past few years, several studies have explored AEs in the context of malware, particularly
in the Windows domain. For example, Demetrio et al. [46] generated AEs in a black-box
setting by applying structural and behavioral manipulations. Song et al. [98] employed
code randomization techniques to generate real-world AEs. They proposed an adversarial
framework guided by reinforcement learning to model the action selection problem as a
multi-armed bandit problem. Sharif et al. [47] used binary diversification techniques to evade
malware detection. Khormali et al. [33] bypassed visualization-based malware detectors by
applying padding and sample injection to malware samples. Demetrio et al. [99] generated
adversarial malware by making small manipulations in the file headers of malware samples.
Rosenberg et al. [45] presented a black-box attack that perturbs API sequences of malware
samples to mislead malware classifiers.

While evasion attacks have made significant advancements in the Windows domain, their
effectiveness in the Android domain may be limited because their manipulations might not
be appropriate for altering Android malware apps in a way that can deceive existing Android
malware detectors. Over the last few years, various studies have been performed to generate
AEs in the Android ecosystem to anticipate possible evasion attacks. Table 3.1 illustrates
the threat models that were considered by researchers. Note that in the categorization of
studies under the ZK setting, adversaries should not only lack access to the details of the
target model but also have no assumptions (e.g., types of features utilized by detectors)
about it. To study feature-space AEs, Croce et al. [12] introduced Sparse-RS, a query-based
attack that generated AEs using a random search strategy. Rathore et al. [14] generated
AEs by using Reinforcement Learning to mislead Android malware detectors. Chen et
al. [15, 18] implemented different feature-based attacks (e.g., brute-force attacks) to evaluate
their defense strategies. Demontis et al. [16] presented a white-box attack to perturb feature
vectors of Android malware apps regarding the most important features that impact the
malware classification. Liu et al. [19] introduced an automated testing framework based on a
Genetic Algorithm (GA) to strengthen ML-based malware detectors. Xu et al. [20] proposed
a semi-black-box attack that perturbs features of Android apps based on the simulated
annealing algorithm. The above attacks seem impractical as they do not show how real-world
apps can be reconstructed based on feature-space perturbations.

https://github.com/HamidBostani2021/EvadeDroid

3.2 Related work

3

25

Table 3.1: Evasion attacks in ML-based Android malware detectors.

Relevant Papers Attacker’s Knowledge Perturbation Type
PK LK ZK Problem Space Feature Space

Xu et al. [26] ✓ ✓ ✓
He et al. [27] ✓ ✓ ✓
Li et al. [11] ✓ ✓ ✓
Croce et al. [12] ✓ ✓
Zhang et al. [13] ✓ ✓ ✓
Rathore et al. [14] ✓ ✓ ✓
Chen et al. [15] ✓ ✓ ✓
Demontis et al. [16] ✓ ✓ ✓ ✓ ✓
Grosse et al. [17] ✓ ✓ ✓
Chen et al. [18] ✓ ✓ ✓
Liu et al. [19] ✓ ✓
Xu et al. [20] ✓ ✓
Berger et al. [21] ✓ ✓ ✓ ✓
Pierazzi et al. [9] ✓ ✓ ✓
Chen et al. [22] ✓ ✓ ✓
Cara et al. [23] ✓ ✓ ✓
Yang et al. [28] ✓ ✓ ✓
Li et al. [24] ✓ ✓ ✓ ✓
Li et al. [25] ✓ ✓ ✓ ✓
EvadeDroid ✓ ✓

To investigate problem-space manipulations, Grosse et al. [17] manipulated the Android
Manifest files based on the feature-space perturbations. Berger et al. [21] and Li et al. [24, 25]
used a similar approach; however, they considered both Manifest files and Dalvik bytecodes of
Android apps in their modification methods. Zhang et al. [13] introduced an adversarial attack
called ShadowDroid to generate AEs using a substitute model built on permissions and API
call features. Xu et al. [26] introduced GenDroid, a query-based attack that employed GA by
integrating an evolutionary strategy based on Gaussian Process Regression. The practicality
of these attacks is also questionable because the generated AEs might not satisfy all the
constraints in the problem space [9] (e.g., plausibility and robustness to preprocessing). For
instance, Li et al. [24] reported that 5 out of 10 manipulated apps that were validated could not
run successfully. Furthermore, unused features injected into APKs by the attacks discussed
in [13, 17, 21, 24–26] not only raise plausibility concerns but also render them susceptible
to elimination by preprocessing operator [9], especially those features incorporated into
Manifest files.

In addition to the aforementioned studies, some (e.g., [9, 22, 23, 28]) have considered
the inverse feature-mapping problem when presenting practical AEs in the Android domain.
Pierazzi et al. [9] proposed a problem-space adversarial attack to generate real-world AEs by
applying functionality-preserving transformations to the input malware apps. Chen et al. [22]
added adversarial perturbations found by a substitute ML model to Android malware apps.
Cara et al. [23] presented a practical evasion attack by injecting system API calls determined
via mimicry attack on APKs. Li et al. [11] proposed a problem-space attack called BagAmmo,
targeting function call graph (FCG) based malware detection. The main shortcoming of

3

26 3 Subverting Machine Learning in Malware Detection

these studies is that the authors assume the adversary to have perfect knowledge [9] or limited
knowledge [22, 23] about the target classifiers (e.g., knowing the feature space or accessing
the training set), while in real scenarios (e.g., bypassing antivirus engines), an adversary
often has zero knowledge about the target malware detectors. For instance, BagAmmo [11]
assumes that the target malware detector is based on FCG, which implies that it has some
knowledge about the target model. Note that this assumption may not be applicable in all
real-world scenarios, as different malware detectors may employ diverse feature sets.

On the other hand, despite the practicality of [9] in attacking white-box malware
classifiers, the side-effect features that appear from undesired payloads injected into malware
samples may manipulate the feature representations of apps differently from what the attacker
expects [23]. Furthermore, such attacks may cause the adversarial malware to grow infinitely
in size as they do not consider the size constraint of the adversarial manipulations. The attacks
presented in [11, 22] are tailored to the target malware classifiers (i.e., DREBIN [96], and
FCG-based detectors such as MaMaDroid [95]), which means the authors did not succeed in
presenting a generalized evasion technique. Moreover, the attack in [23] has some limitations,
such as injecting incompatible APIs into Android apps or using incorrect parameters for API
calls, which can crash adversarial malware apps.

To address the aforementioned shortcomings, Yang et al. [28] proposed two attacks
named the evolution and confusion attacks, designed to evade target classifiers in a black-
box setting. However, their approach lacks details about critical issues (e.g., the feature
extraction method) and is impractical because, as reported by the authors, their attacks can
easily disrupt the functionality of APKs after a few manipulations. Demontis et al. [16]
employed an obfuscation tool to bypass Android malware classifiers, but their results
indicate a low performance for their method. He et al. [27] introduced a query-based attack
utilizing a perturbation selection tree and an adjustment policy. Nevertheless, the proposed
attack is ineffective in hard-label settings, which are crucial for most real-world scenarios.
Furthermore, in addition to the questionable plausibility of this attack, its success would
be jeopardized by the disputable assumption that perturbations in the attack’s malware
perturbation set impact the feature values of target malware detectors.

EvadeDroid addresses the limitations of existing attacks by thoroughly aiming to meet
the practical demands of real-world scenarios, such as hard-label attacking in a fully ZK
setting, query efficiency, and satisfaction of all problem-space constraints. The novelty
of our work, compared to the aforementioned studies, lies in the following aspects: (i)
EvadeDroid provides adversaries with a general tool to bypass various Android malware
detectors, as it is a problem-space evasion attack that operates in a ZK setting without any
pre-assumptions about the features and types of features employed by the target malware
detectors (Section 3.5.2). (ii) Unlike other evasion attacks, EvadeDroid directly manipulates
Android apps without relying on feature-space perturbations. Its transformations not only are
independent of the feature space but also adhere to problem-space constraints (Section 3.4.1).
(iii) EvadeDroid is simple and easy to implement in real-world scenarios (Section 3.5.4)
with proper transferability (Section 3.5.5). It is a query-efficient evasion attack that only
requires the hard labels of Android apps provided by target black-box malware detectors
(e.g., cloud-based antivirus services) (Section 3.5.2).

3.3 Background

3

27

3.3 Background
In this section, we present a concise overview of of the fundamental backgrounds relevant
to Android evasion attacks. This encompasses the structure of Android apps, ML-based
Android malware detection, and the adversarial transformations used for generating Android
adversarial malware.

3.3.1 Android Application Package (APK)
APK is a compressed file format with a .apk extension. APKs contain various contents
such as Resources and Assets. However, the most crucial contents, particularly for malware
detectors, are the Manifest (AndroidManifest.xml) and Dalvik bytecode (classes.dex). The
Manifest is an XML file that provides essential information about Android apps, including
the package name, permissions, and definitions of Android components. It contains all the
metadata required by the Android OS to install and run Android apps. On the other hand,
Dalvik bytecode, also known as Dalvik Executable or DEX file, is an executable file that
represents the behavior of Android apps.

Apktool [100] is a popular reverse-engineering tool for the static analysis of Android apps.
This reverse-engineering instrument can decompile and recompile Android apps. In the
decompilation process, the DEX files of Android apps are decompiled into a human-readable
code called smali. Besides the above tool, Soot [101] and FlowDroid [102] are two Java-based
frameworks that are used for analyzing Android apps. Soot extracts different information
from APKs (e.g., API calls) which are then used during static analysis. One of the advantages
of Soot for malware detection is its ability to generate call graphs; however, Soot cannot
generate accurate call graphs for all apps because of the complexity of the control flow of
some APKs. To address this shortcoming, FlowDroid, which is a Soot-based framework, can
create precise call graphs based on the app’s life cycle. It is worth noting that EvadeDroid
uses Apktool, FlowDroid, and Soot in different components of its pipeline to generate
adversarial examples.

3.3.2 ML-Based Android Malware Detection
Leveraging ML for malware detection has garnered significant interest among cybersecurity
researchers in the past decade. ML has demonstrated its potential as an effective solution in
static malware analysis, enabling the identification of sophisticated and previously unknown
malware through the generalization capabilities of ML algorithms [57]. It is important to
note that static analysis is a prominent approach for detecting malicious programs, where
apps are classified based on their source code (i.e., static features) without execution. This
approach offers fast analysis, allowing for the examination of an app’s code comprehensively,
with minimal resource usage in terms of memory and CPU [103]. In order to represent
programs for ML algorithms, various types of features are commonly employed in the static
analysis, including syntax features (e.g., requested permissions and API calls [16, 25, 96]),
opcode features (e.g., n-gram opcodes [104]), image features (e.g., grayscale representations
of bytecodes [105]), and semantic features (e.g., function call graphs [95]).

3

28 3 Subverting Machine Learning in Malware Detection

3.3.3 Adversarial Transformations

In the programming domain, a safe transformation refers to a problem-space transformation
that maintains the semantic equivalence of the original program while ensuring its excitability.
In the adversarial malware domain, safe transformations, which guarantee preserved-
semantics constraint, can become adversarial transformations if they are also plausible and
robust to processing (refer to Appendix 3.A for additional details regarding these constraints).
Generally, in the context of Android malware detection, attackers have three types of
adversarial transformations at their disposal to manipulate malicious apps [9]: (i) feature
addition, (ii) feature removal, and (iii) feature modification. Feature addition involves adding
new elements, such as API calls, to the programs, while feature removal entails removing
contents like user permissions. Feature modification combines both addition and removal
transformations in malware programs. Most studies have primarily focused on feature
addition, as removing features from the source code is a complex operation that may cause
malware apps to crash. Code transplantation [9, 28], system-predefined transformation [23],
and dummy transformation [17, 21, 22, 24, 25] are three potential methods for adding features
to manipulate Android apps. However, two main issues arise when considering feature
additions:

(i) What specific content should be included. By deriving problem-space transformations
from feature-space perturbations, the attacker aims to ensure that the additional contents (e.g.,
API calls, Activities, etc.) are guaranteed to appear in the feature vector of the manipulated
malware app [9]. Therefore, attackers may either use dummy contents (e.g., functions,
classes, etc.) [22] or system-predefined contents (e.g., Android system packages) [23] for this
purpose. As the plausibility of these transformations is debatable due to the potential lack
of complete inconspicuousness, malicious actors may also make use of content present in
already-existing Android apps. The automated software transplantation technique [106] can
then be used to allow attackers to successfully carry out safe transformations. They extract
some slices of existing bytecodes from benign apps (i.e., donor) during the organ harvesting
phase, and the collected payloads are injected into malware apps in the organ transplantation
phase.

(ii) Where contents should be injected. New contents must preserve the semantics of
malware samples; therefore, they should be injected into areas that cannot be executed during
runtime. For example, new contents can be added after RETURN instructions [16] or inside
an IF statement that is always false [9]. However, these injected contents are not robust
to preprocessing if static analysis can discard unreachable code. One creative idea to add
unreachable code that is undetectable is the use of opaque predicates [107]. In this approach,
new contents are injected inside an IF statement where its outcome can only be determined
at runtime [9].

3.4 Proposed Attack
Here we first review the threat model and the problem definition of EvadeDroid. Subsequently,
we will offer an illustration of the proposed attack.

3.4 Proposed Attack

3

29

3.4.1 Threat Model
Adversarial Goal. The purpose of EvadeDroid is to manipulate Android malware samples
in order to deceive static ML-based Android malware detectors. The proposed attack is an
untargeted attack [108] designed to mislead binary classifiers utilized in Android malware
detection, causing Android malware apps to be misclassified. In other words, EvadeDroid’s
objective is to trick malware classifiers into classifying malware samples as benign.
Adversarial Knowledge. The proposed evasion attack has black-box access to the target
malware classifier. Therefore, EvadeDroid does not have knowledge of the training data
𝐷, the feature set 𝑋 , or the classification model 𝑓 (i.e., the classification algorithm and its
hyperparameters). The attacker can only obtain the classification results (e.g., hard labels or
soft labels) by querying the target malware classifier.
Adversarial Capabilities. EvadeDroid is designed to deceive black-box Android malware
classifiers during their prediction phase. Our attack manipulates an Android malware app by
applying a set of safe transformations, known as Android gadgets (i.e., slices of the benign
apps’ bytecode), which are optimized through interactions with the black-box target classifier.
To ensure adherence to problem-space constraints, EvadeDroid leverages a previous tool [9],
for extracting and injecting gadgets. Furthermore, in order to avoid major disruptions to apps,
the manipulation process of a malware app is conducted gradually, making it resemble benign
apps. This is achieved by injecting a minimal number of gadgets extracted from benign apps
into the malware app, and the process continues until the malware app is misclassified or
reaches the predefined evasion cost. In addition to the problem-space constraints discussed in
previous research [9], EvadeDroid must also adhere to two additional constraints highlighting
the significance of minimizing evasion costs:

• Number of queries. EvadeDroid is a decision-based adversarial attack that aims to
generate AEs while minimizing the number of queries, thus reducing the associated
costs [45].

• Size of adversarial payloads. In order to generate executable and visually inconspicuous
AEs, such as those with minimal file size [46], EvadeDroid aims to minimize the size
of injected adversarial payloads.

It is worth mentioning, each gadget consists of an organ, which represents a slice of
program functionality, an entry point to the organ, and a vein, which represents an execution
path that leads to the entry point [9]. EvadeDroid extracts gadgets from benign apps by
identifying entry points, which are typically API calls, through string analysis. The proposed
attack assumes that the benign apps used for gadget extraction are not obfuscated, particularly
in terms of their API calls. This is because EvadeDroid relies on string analysis to identify
entry points, which limits its ability to extract gadgets from obfuscated apps. The gadget
injection is considered successful when both the classification loss value of the manipulated
app increases and the injected adversarial payload conforms to the predefined size of the
adversarial payload. Additionally, the injected gadgets are placed within the block of an
obfuscated condition statement that is always evaluated as False during runtime and cannot
be resolved during design time.
Defender’s Capabilities. The study conducted in this chapter assumes that the target ML
models do not employ adaptive defenses that are aware of the operations performed by
EvadeDroid due to disclosing detectors’ vulnerability to EvadeDroid. Specifically, these

3

30 3 Subverting Machine Learning in Malware Detection

target models are unable to enhance their resilience by incorporating AEs generated by
EvadeDroid during adversarial training. Furthermore, they lack the capability to detect and
block queries from EvadeDroid if they become suspicious of its origin. Importantly, our
analysis suggests that EvadeDroid can still be effective even if we relax the second assumption
regarding the defender’s capabilities. This is supported by empirical evidence demonstrating
that our attack often requires only a minimal number of queries to generate AEs.

3.4.2 Problem Definition
Suppose 𝜙 : 𝑍 → 𝑋 ⊂ R𝑛 is a feature mapping that encodes an input object 𝑧 ∈ 𝑍 to a
feature vector 𝑥 ∈ 𝑋 with dimension 𝑛. We denote this as 𝜙(𝑍) = 𝑋 . Here, 𝑍 represents the
input space of Android applications, and 𝑋 represents the feature space of the app’s feature
vectors. Furthermore, let 𝑓 : 𝑋 → R2 and 𝑔 : 𝑋 × 𝑌 → R denote a malware classifier and
its discriminant function, respectively. The function 𝑓 assigns an Android app 𝑧 ∈ 𝑍 to a
class 𝑓 (𝜙(𝑧)) = arg max𝑦=0,1 𝑔𝑦 (𝜙(𝑧)), where 𝑦 = 1 indicates that 𝑧 is a malware sample
and vice versa. The confidence score (soft label) for classifying 𝑧 into class 𝑦 is denoted as
𝑔𝑦 (𝜙(𝑧)). Let 𝑇 : 𝑍 𝛿⊆Δ−→ 𝑍 be a transformation function, denoted as 𝑇𝛿⊆Δ (𝑧) = 𝑧′ or simply
𝑇𝛿 (𝑧) = 𝑧′, which transforms 𝑧 ∈ 𝑍 to 𝑧′ ∈ 𝑍 by applying a sequence of transformations
𝛿 ⊆ Δ such that 𝑧 and 𝑧′ have the same functionality. Here, Δ = {𝛿1, 𝛿2, ..., 𝛿𝑛} represents an
action set consisting of safe manipulations (transformations). Each 𝛿𝑖 ∈ Δ can independently
preserve the functionality of a malware sample when applied.

The objective of the proposed evasion attack in this chapter is to generate an adversarial
example 𝑧∗ ∈ 𝑍 for a given malware app 𝑧 ∈ 𝑍 by applying a minimal sequence of
transformations 𝛿 ⊆ Δ to the app, using at most 𝑄 queries, while ensuring that the amount
of injected adversarial payloads is equal to or lower than 𝛼. This can be formulated as the
following optimization problem:

min
𝛿⊆Δ

|𝛿 |

s.t. 𝑓 (𝜙(𝑇𝛿 (𝑧))) ≠ 𝑓 (𝜙(𝑧))
𝑞 ≤ 𝑄
𝑐(𝑇𝛿 (𝑧), 𝑧) ≤ 𝛼

(3.1)

where |𝛿 | denotes the cardinality of 𝛿. Additionally, 𝑄 and 𝛼 represent the evasion cost
constraints of EvadeDroid, indicating the maximum query budget and the maximum size
of adversarial payloads, respectively. The size of adversarial payloads refers to the relative
increase in the size of a malware sample after applying 𝛿, and it is measured using the
following payload-size cost function:

𝑐(𝑇𝛿 (𝑧), 𝑧) =
[𝑇𝛿 (𝑧)] − [𝑧]

[𝑧] × 100 (3.2)

where [.] represents the size of an APK. Equation (3.1) can be translated into the following
optimization problem to find an optimal subset of transformations in the action set:

3.4 Proposed Attack

3

31

arg max
𝛿⊆Δ

𝑔𝑦=0 (𝜙(𝑇𝛿 (𝑧)))

s.t. 𝑞 ≤ 𝑄
𝑐(𝑇𝛿 (𝑧), 𝑧) ≤ 𝛼

(3.3)

Equation (3.3) outlines our objective to identify an optimal subset of problem-space
transformations 𝛿 within the action set Δ that leads to misclassification. Specifically, the
optimization aims to enhance the confidence score of classifiers in classifying 𝜙(𝑇𝛿 (𝑧)), the
feature representation of 𝑧 modified by applying 𝛿, towards the benign class indicated by 0.
Note that the optimization solver is tasked with identifying the optimal 𝛿 with a maximum of
𝑄 queries, given that the adversarial payloads do not alter the size of 𝑧 beyond 𝛼.

3.4.3 Methodology
The primary goal of EvadeDroid is to transform a malware app into an adversarial app in such
a way that it retains its malicious behavior but is no longer classified as malware by ML-based
malware detectors. This is achieved through an iterative and incremental algorithm employed
in the proposed attack, which aims to disguise malware APKs as benign ones. The attack
algorithm generates real-world AEs from malware apps using problem-space transformations
that satisfy problem-space constraints. These transformations are extracted from benign
apps in the wild, which are similar to malware apps using an n-gram-based similarity. In this
approach, a random search algorithm is used to optimize the manipulations of apps. Each
malware app undergoes incremental manipulation during the optimization process, where a
sequence of transformations is applied in different iterations. Before delving into the details
of the methodology, we offer a brief overview of n-grams and random search.
n-Grams are contiguous overlapping sub-strings of items (e.g., letters or opcodes) with a
length of 𝑛 from the given samples (e.g., texts or programs). This technique captures the
frequencies or existence of a unique sequence of items with a length of 𝑛 in a given sample.
In the area of malware detection, several studies have used n-grams to extract features from
malware samples [109–113]. These features can be either byte sequences extracted from
binary content or opcodes extracted from source codes. n-Grams opcode analysis is one of
the static analysis approaches for detecting Android malware that has been investigated in
various related works [97, 114–117]. To conduct such an analysis, the DEX file of an APK
is disassembled into smali files. Each smali file corresponds to a specific class in the source
code of the APK that contains variables, functions, etc. n-Grams are extracted from the
opcode sequences that appear in different functions of the smali files.
Random Search (RS) [118] is a simple yet highly exploratory search strategy that is used
in some optimization problems to find an optimal solution. It relies entirely on randomness,
which means RS does not require any assumptions about the details of the objective function
or transfer knowledge (e.g., the last obtained solution) from one iteration to another. In the
general RS algorithm, the sampling distribution 𝑆 and the initial candidate solution 𝑥 (0) are
defined based on the feasible solutions of the optimization problem. Then, in each iteration
𝑡, a solution 𝑥 (𝑡) is randomly generated from 𝑆 and evaluated using an objective function
regarding 𝑥 (𝑡−1) . This process continues through different iterations until the best solution is
found or the termination conditions are met. It’s noteworthy that RS can be a search strategy
with high query efficiency in generating AEs [12].

3

32 3 Subverting Machine Learning in Malware Detection

Figure 3.1: Overview of EvadeDroid’s pipeline.

The workflow of the attack pipeline is illustrated in Figure 3.1, which consists of two
phases: (i) preparation and (ii) manipulation.

3.4.3.1 Preparation
The primary objective of this step is to construct an action set comprising a collection of safe
transformations that can directly manipulate Android applications. Each transformation in
the action set should be capable of altering APKs without causing crashes while preserving
their functionality. Program slicing [119], implemented in [9], is utilized in this chapter
to extract the gadgets that make up the transformations collected in the action set. During
the preparation step, two important considerations are determining appropriate donors and
identifying suitable gadgets. Employing effective gadgets enables the modification of a set
of features that can alter the classifier’s decision. EvadeDroid achieves this by executing the
following two sequential steps:

a) Donor selection. EvadeDroid selects donors from a pool of benign apps in order to mimic
malware instances as benign ones. While it is possible to extract gadgets from any available
benign app, collecting transformations from a large corpus of apps is computationally
expensive due to the complexity of the program-slicing technique used for organ harvesting.
Additionally, identifying potential donors resembling malware apps can lead to obtaining
transformations that facilitate disguising malware apps as benign. This is because malware

3.4 Proposed Attack

3

33

apps that share similarities with benign ones may require fewer transformations to become
AEs. In this chapter, EvadeDroid adopts a strategy of limiting the number of donors, i.e.,
choosing donors from the pool of benign apps that resemble malware apps. Our empirical
results demonstrate that utilizing transformations from such benign apps accelerates the
process of converting malware apps into benign ones, resulting in a reduced number of
queries and transformations required for manipulation (refer to Appendix 3.B for more
details).

More specifically, by utilizing the extracted gadgets from these donors, EvadeDroid
can generate effective adversarial perturbations by considering both feature and learning
vulnerabilities [8, 120]. Figure 3.2 provides a conceptual representation of EvadeDroid’s
performance in evading the target classifier. As depicted in Fig. 3.2, incorporating segments
of benign apps that resemble malware apps can either make malware apps look benign
(𝑇𝛿 (𝑧) = 𝑧∗1 where 𝛿 = {𝛿1, 𝛿2, 𝛿3}), or shift them towards the blind spots of the target
classifier (e.g., 𝑇𝛿 (𝑧) = 𝑧∗2 where 𝛿 = {𝛿4, 𝛿5}). Note that some sequences of transformations
may fail to generate successful AEs (e.g., {𝛿6, 𝛿7}). In this work, we employ an 𝑛-gram-based
opcode technique to assess the similarities between malware and benign samples. Extracting
𝑛-gram opcode features enables automated feature extraction from raw bytecodes, allowing
EvadeDroid to measure the similarity between real objects without requiring knowledge of the
feature vector of Android apps in the feature space of the target black-box malware classifiers.
We extract 𝑛-grams following typical approaches found in the literature (e.g., [104, 121]), but
with a focus on opcode types rather than the opcodes themselves. The 𝑛-gram opcode feature
extraction utilized in the study conducted this chapter involves the following main steps:

1. Disassemble Android application’s DEX files into smali files using Apktool.

2. Discard operands and extract 𝑛-grams from the types of all opcode sequences in each
smali file belonging to the app. For example, consider a sequence of opcodes in a
smali file: I: if-eq M: move G: goto I: if-ne M: move-exception G: goto/16 M:
move-result. In this case, we have 7 opcodes with 3 types (i.e., 𝐼, 𝑀, 𝐺). Note IM,
MG, GI, GM are all unique 2-grams that appeared in the given sequence.

3. Map the extracted feature sets to a feature space 𝐻 by aggregating all observable
𝑛-grams from all APKs.

4. Create a feature vector ℎ ∈ 𝐻 for each app, where each element of ℎ indicates the
presence or absence of a specific 𝑛-gram in the app.

Suppose 𝑀 and 𝐵 represent the sets of malware and benign apps, respectively, available
to EvadeDroid. The similarity between each pair of a malware app 𝑚𝑖 ∈ 𝑀 and a benign
app 𝑏 𝑗 ∈ 𝐵 is determined by measuring the containment [104, 121] of 𝑏 𝑗 in 𝑚𝑖 using the
following approach:

𝜎(𝑚𝑖 , 𝑏 𝑗) =
|𝑣(𝑚𝑖) ∩ 𝑣(𝑏 𝑗) |
|𝑣(𝑏 𝑗) |

(3.4)

where 𝑣(𝑚𝑖) and 𝑣(𝑏 𝑗) represent the sets of features with values of 1 in ℎ𝑚𝑖
and ℎ𝑏 𝑗

,
respectively, and |.| denotes the number of features. Specifically, |𝑣(𝑚𝑖) ∩ 𝑣(𝑏 𝑗) | denotes the
number of common features between 𝑚𝑖 and 𝑏 𝑗 . It is worth emphasizing that most Android

3

34 3 Subverting Machine Learning in Malware Detection

Figure 3.2: The functionality of EvadeDroid in generating real-world adversarial malware apps. The dark red and
dark green samples are, respectively, the inaccessible malware and benign samples that have been used for training
the malware classifier. Light red and light green samples represent, respectively, accessible malware and benign
samples in the wild. The blue and purple samples are manipulated malware apps and AEs, respectively.

malware apps are created using repackaging techniques, where attackers disguise malicious
payloads in legitimate apps [122]. Therefore, we consider the containment of benign samples
in malware samples to determine the similarities between each pair of malware and benign
samples. To identify suitable donors, we calculate a weight for each benign app 𝑏𝑖 ∈ 𝐵
according to equation (3.4):

𝑤𝑏 𝑗
=

∑
∀𝑚𝑖∈𝑀 𝜎(𝑚𝑖 , 𝑏 𝑗)

|𝑀 | (3.5)

where |𝑀 | represents the number of malware apps. We then sort the benign apps in descend-
ing order based on their corresponding weights. Finally, we select the top-𝑘 benign apps as
suitable donors for gadget extraction. Note that 𝑤𝑏 𝑗

reflects how closely 𝑏 𝑗 aligns with the
distribution of malware apps, offering a measure of its resemblance to the characteristics of
malware.

b) Gadget extraction. We collect gadgets based on the desired functionality we aim to
extract from donors. EvadeDroid intends to simulate malware samples to benign ones
from the perspective of static analysis; therefore, the payloads responsible for the key
semantics of donors are proper candidates for extraction. To access the semantics of Android
applications, EvadeDroid extracts the payloads containing API calls (i.e., the code snippet
encompassing an API call and all its associations) since API calls represent the main
semantics of apps [123, 124]. An API call is an appropriate point in the bytecode of an APK
because the snippets encompassing the API calls are related to one of the app semantics. In
sum, gadget extraction from donors consists of the following main steps:

1. Disassemble DEX files of donors into smali files by using Apktool.

2. Perform string analysis on each app to identify all API calls in its smali files.

3.4 Proposed Attack

3

35

Algorithm 3.1: Generating a real-world adversarial example.
Input: 𝑧: the original malware sample; Δ: the action set; 𝐿: the objective function;

𝜙: the feature mapping function; 𝑐: the payload-size cost function; 𝑄: the
query budget; 𝛼: the allowed adversarial payload size.

Output: 𝑧∗: an adversarial example; 𝛿: an optimal transformations.
1 𝑞 ← 1 ;
2 𝑧∗ ← 𝑧;
3 𝐿𝑏𝑒𝑠𝑡 ←-∞;
4 𝛿← Ø;
5 while 𝑞 ≤ 𝑄 and 𝑧∗ is classified as a malware do
6 𝜆← Select a transformation randomly from Δ \𝛿;
7 𝑧′ ← 𝑇𝜆 (𝑧∗);
8 𝑙 = 𝐿 (𝜙(𝑧′));
9 if 𝑐(𝑧, 𝑧′) ≤ 𝛼 then

10 if 𝐿𝑏𝑒𝑠𝑡 ≤ 𝑙 then
11 𝐿𝑏𝑒𝑠𝑡 ← 𝑙;
12 𝑧∗ ← 𝑧′;
13 𝛿← 𝛿 ∪ 𝜆
14 end
15 end
16 end
17 return 𝑧∗, 𝛿

3. Extract the gadgets associated with the collected API calls from each app.

Ultimately, the action set Δ is formed by taking the union of the extracted gadgets.

3.4.3.2 Manipulation
We employ Random Search (RS) as a simple black-box optimization method to solve
equation (3.3). Specifically, for each malware sample 𝑧, EvadeDroid utilizes RS to find an
optimal subset of transformations 𝛿 in order to generate an adversarial example 𝑧∗. RS offers
a significant advantage in terms of query reduction compared to other heuristic optimization
algorithms, such as Genetic Algorithms (GAs). This is because RS only requires one query
in each iteration to evaluate the current solution. Algorithm 3.1 outlines the key steps of
the manipulation component in the proposed problem-space evasion attack. As depicted in
Algorithm 3.1, the RS method randomly selects a transformation 𝜆 from the action set Δ
to generate 𝑧∗ for 𝑧. Subsequently, based on the adversarial payload size 𝛼, the algorithm
applies 𝜆 to 𝑧 only if it can improve the objective function 𝐿 defined in equation (3.3), which
corresponds to the discriminant function of the target classifier for 𝑦 = 0.
Hard-label Setting. In Algorithm 3.1, we assume that our attack has access to the soft label
of the target classifier. This means that EvadeDroid can obtain the confidence score provided
by the black-box classification model when making queries. However, in real-world scenarios,
such as antivirus systems, the target classifier may only provide hard labels (i.e., classification
labels) for Android apps. This chapter considers two approaches, namely optimal and

3

36 3 Subverting Machine Learning in Malware Detection

Figure 3.3: Applying a problem-space transformation (i.e., gadget) into a malware app involves injecting the gadget
extracted from an API call entry point (e.g., SmsManager) in a donor into an obfuscated false condition statement
within the malware app. The code snippets are displayed in Java representation to facilitate better understanding.

non-optimal hard-label attacks, to address this challenge. In the optimal hard-label attack,
the adversary aims to generate AEs by applying minimal transformations. To achieve this,
EvadeDroid modifies the objective function of the proposed RS algorithm (i.e., equation (3.3))
by maximizing the following objective function, while considering the evasion cost:

arg max
𝛿⊆Δ

𝑠(𝑇𝛿 (𝑧))

s.t. 𝑞 ≤ 𝑄
𝑐(𝑇𝛿 (𝑧), 𝑧) ≤ 𝛼

(3.6)

where 𝑄 (i.e., number of queries) and 𝛼 (i.e., size of adversarial payloads) represent evasion
cost budgets, and 𝑐 denotes the payload-size cost function (equation (3.2)). Moreover, 𝑠 is
the following similarity function:

𝑠(𝑎) = max
∀𝑏∈𝐵

|𝑣(𝑎) ∩ 𝑣(𝑏) |
∥ℎ𝑎 − ℎ𝑏∥1

(3.7)

where 𝐵 represents all available benign apps in the wild. 𝑣(𝑎) and 𝑣(𝑏) represent the sets of
features with values of 1 in ℎ𝑎 (i.e., the feature vector of 𝑎) and ℎ𝑏 (i.e., the feature vector of
𝑏), respectively, and |.| denotes the number of features. Furthermore, ∥ℎ𝑎 − ℎ𝑏∥1 denotes the
sum of the absolute differences (i.e., 𝑙1-norm) between the opcode-based feature vectors of 𝑎
and 𝑏. The 𝑙1-norm enhances the accuracy of our similarity measurement, particularly in
scenarios where the number of common features between various pairs of malware samples
and benign samples is the same, aiding EvadeDroid in identifying the maximum similarity.
Note that equation (3.7) aims to measure the similarity between two apps based on not only

3.5 Simulation Results

3

37

a large set of common features but also a small distance. The underlying idea behind the
introduced objective function is rooted in our primary approach to misleading malware
classifiers. In other words, a transformation can be applied to a malware app if it maintains
or increases the maximum similarity between the malware app and available benign apps.

On the other hand, in the non-optimal hard-label attack, EvadeDroid applies random
transformations to malware until it creates an AEs or reaches the predefined query budget.
Specifically, in this setting, EvadeDroid randomly selects and applies a transformation from
the action set to the malware app in each query. The target classifier is then queried to
determine the label of the modified app. If the label indicates that the app is still classified as
malware, EvadeDroid repeats this process.

It is important to highlight that Figure 3.3 depicts the procedure of manipulating an
Android malware app through a problem-space transformation, specifically injecting an
extracted gadget into a malware app. For more detailed information on the implementation
of EvadeDroid, we refer the reader to 3.C.

3.5 Simulation Results
In this section, we empirically assess the performance of EvadeDroid in deceiving various
academic and commercial malware classifiers. Our experiments aim to answer the following
research questions:
RQ1. How does the evasion cost affect the performance of EvadeDroid? (Section 3.5.2)
RQ2. Is EvadeDroid a versatile attack that can evade different Android malware detectors
without relying on any specific assumptions? (Section 3.5.2)
RQ3. How does the performance of EvadeDroid compare to other similar attacks? (Sec-
tion 3.5.3)
RQ4. Is EvadeDroid applicable in real-world scenarios? (Section 3.5.4)
RQ5. How does EvadeDroid demonstrate its performance despite the restriction of not being
able to query the target detectors? (Section 3.5.5)
RQ6. How does the proposed RS-based manipulation strategy affect the performance of
EvadeDroid? (Section 3.5.6)

All experiments have been run on a Debian Linux workstation with an Intel (R) Core
(TM) i7-4770K, CPU 3.50 GHz, and 32 GB RAM.

3.5.1 Experimental Setup
Here, we provide an overview of the target detectors, datasets, and evaluation metrics we
consider in our experiments.

3.5.1.1 Target Detectors
To ensure that our conclusions are not limited to a specific type of malware detection, we
evaluate EvadeDroid against various malware detectors to demonstrate the effectiveness
of the proposed attack. In particular, our evaluation focuses on assessing EvadeDroid’s
performance against well-known Android malware detection models, namely DREBIN [96],
Sec-SVM [16], ADE-MA [25], MaMaDroid [95], and Opcode-SVM [97]. These models
have been extensively studied in the context of detecting problem-space adversarial attacks
in the Android domain [9, 13, 17, 22, 24]. For more details about these detectors, please
refer to Appendix 3.D.

3

38 3 Subverting Machine Learning in Malware Detection

Table 3.2: Datasets used in our experiments.

Dataset
No. of

Benign samples
No. of

Malware Samples
Relevant

Experiment

Inaccessible Dataset
(Training Samples)

10K 2K Section 3.5.2, Section 3.5.3,
Section 3.5.5

90K 10K Section 3.5.5
Accessible Dataset

(EvadeDroid’s samples) 2K 1K All

3.5.1.2 Dataset
We evaluate the performance of EvadeDroid using the dataset provided in [9]. This dataset
consists of ≈ 170𝐾 samples, each represented using the DREBIN [96] feature set. The
samples are feature representations of Android apps collected from AndroZoo [125] and
labeled by [9] using a threshold-based labeling approach. These collected apps were
published between January 2017 and December 2018. According to the labeling criteria
in [9], an APK is considered malicious or clean if it has been detected by any 4+ or 0
VirusTotal (VT) [126] engines, respectively. It is important to note that the threshold-based
labeling approach does not rely on specific engines but considers the number of engines
involved [127]. Therefore, the engines used for labeling may vary from sample to sample.

Table 3.2 presents the specifications of datasets utilized in the study conducted in this
chapter where their samples were randomly chosen from the collected data provided in [9].
It’s worth mentioning that there is no overlap between the inaccessible and accessible datasets.
EvadeDroid exclusively makes use of the accessible dataset, which comprises 2𝐾 benign
samples for donor selection and 1𝐾 malware samples for the creation of AEs. To fulfill
the requirement of direct utilization of apps in our problem-space attack, we collect 3𝐾
apps corresponding to EvadeDroid’s accessible samples from AndroZoo, based on the apps’
specifications provided with the dataset [9]. Our study conducted in this chapter employs
two training sets with different scales (i.e., 12𝐾 and 100𝐾) for training classifiers. The
proportion between benign and malware samples in the training sets is chosen to avoid
spatial dataset bias [128]. Figure 3.4 illustrates the temporal distribution of the smaller
training set, demonstrating the absence of temporal bias as these apps were published across
various months. The larger training set follows a similar distribution. In Section 3.5.2,
Section 3.5.3, and Section 3.5.5, a training set with a reasonable size (i.e., 12𝐾) is used
due to the time-consuming preprocessing required by the apps in the MaMaDroid and
Opcode-SVM, especially the former. Note that MaMaDroid and Opcode-SVM employ their
own distinct feature representations, which differ from the DREBIN feature representation
used in [9]. Therefore, to provide the training set for these detectors, we have to directly
collect all considered apps in the training set from AndroZoo based on the specifications
provided by [9]. Subsequently, the apps are embedded in the MaMaDroid and Opcode-SVM
feature spaces using a feature extraction method. In the second evaluation conducted in
Section 3.5.5, we employ a larger training set (incl., 100𝐾 samples) to train DREBIN and
Sec-SVM in order to illustrate the impact of a larger training set on EvadeDroid. It is
important to highlight that our empirical evaluation shows that training classifiers with more
samples does not significantly alter the performance of EvadeDroid.

3.5 Simulation Results

3

39

Figure 3.4: The temporal distribution of training samples. The dataset [9] lacked clarity regarding the release dates
of the ≈ 1.5𝐾 samples in our training set.

3.5.1.3 Evaluation Metrics
We utilize the True Positive Rate (TPR) and False Positive Rate (FPR) as performance
metrics for evaluating the effectiveness of malware classifiers in detecting Android malware.
In Figure 3.5, we present the Receiver Operating Characteristic (ROC) curves of DREBIN,
Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM, the Android malware detectors used
in this chapter, on the 12𝐾 training samples in the absence of our proposed attack. Note that
the ROC curves were generated using 10-fold cross-validation. In addition to these metrics,
we introduce the Evasion Rate (ER) and Evasion Time (ET) as EvadeDroid’s performance
assessment metrics in deceiving malware classifiers. ER is calculated as the ratio of correctly
detected malware samples that are able to evade the target classifiers after manipulation
to the total number of correctly classified malware samples. ET represents the average
time, expressed in seconds, required by EvadeDroid to generate an AE, encompassing both
optimization and query times. Note that the optimization time primarily consists of the
execution times of random search, injecting problem-space transformations, and performing
feature extraction to represent manipulated apps within the feature space. Further details of
our experimental settings can be found in Appendix 3.E.

Figure 3.5: ROC curves of DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM in the absence of
adversarial attacks. The regions with translucent colors that encompass the lines are standard deviations.

3

40 3 Subverting Machine Learning in Malware Detection

3.5.2 Evasion Costs and Generalizability
This section first examines the influence of the allowed adversarial payload size 𝛼 and
the query budget 𝑄 on the performance of EvadeDroid to answer RQ1. Specifically, the
evasion rates of EvadeDroid in fooling various malware detectors under different adversarial
payload sizes and query numbers are depicted in Figure 3.6. Fig. 3.6 (a) demonstrates that
the evasion rate is influenced by the size of the adversarial payload, as increasing the size
allows EvadeDroid to modify more malware applications. However, we observed that for
𝛼 ≥ 30%, the impact on the evasion rate becomes less significant, as most sequences of viable
transformations almost reach a plateau at 𝛼 = 30%. Furthermore, no further improvement in
evasion rates is observed beyond 𝛼 = 50%. In addition to the adversarial payload size, the
query budget is another constraint that affects the evasion rate of EvadeDroid. Fig. 3.6 (b)
presents a comparison of the effect of different query numbers on the evasion rates of
EvadeDroid against various malware detectors, with an allowed adversarial payload size of
𝛼 = 50%. As can be seen in Fig. 3.6 (b), EvadeDroid requires a larger number of queries to
generate successful AEs for bypassing Sec-SVM as compared to other detectors. This can be
attributed to the fact that Sec-SVM, being a sparse classification model, relies on a greater
number of features for malware classification compared to other classifiers. Consequently,
EvadeDroid needs to apply more transformations to malware apps in order to deceive this
more resilient variant of DREBIN. Additionally, Fig. 3.6 (b) demonstrates that a query
budget of 𝑄 = 20 is nearly sufficient for EvadeDroid to achieve maximum evasion rate when
attempting to bypass a malware detector. It is important to highlight that for the remaining
experiments of the chapter, we have chosen to use 𝑄 = 20 and 𝛼 = 50% as they yield the
optimal performance for EvadeDroid.

To answer RQ2, we conduct an experiment involving various malware detectors and
different attack settings. Specifically, we include DREBIN, SecSVM, ADE-MA, MaMaDroid,
and Opcode-SVM to cover different ML algorithms (i.e., linear vs. non-linear malware
classifiers, and gradient-based vs. non-gradient-based malware classifiers) and diverse
features (i.e., discrete vs. continuous features, and syntax vs. opcode vs. semantic features).

Figure 3.6: ERs of EvadeDroid operating in the soft-label setting in deceiving different Android malware detectors
in terms of (a) different queries and (b) different adversarial payload sizes.

3.5 Simulation Results

3

41

Table 3.3: Effectiveness of EvadeDroid in misleading different malware detectors when 𝑄 = 20 and 𝛼 = 50%.
NoQ, NoT, and AS denote Avg. No. of Queries, Avg. No. of Transformations, and Avg. Adversarial Payload Size,
respectively.

Type of Threat Target Model ER ET NoQ NoT AS

Soft Label

DREBIN 88.9% 210.3s 3 2 15.5%
Sec-SVM 85.1% 495.4s 9 4 16.4%
ADE-MA 86.0% 126.2s 2 1 16.3%
MaMaDroid 94.8% 131.4s 1 1 15.9%
Opcode-SVM 79.6% 114.1s 3 2 18.3%

Optimal
Hard Label

DREBIN 84.5% 240.6s 4 2 16.2%
Sec-SVM 82.6% 613.1s 9 6 16.5%
ADE-MA 84.4% 121.2s 2 1 16.3%
MaMaDroid 94.8% 133.7s 1 1 15.9%
Opcode-SVM 74.1% 101.2s 2 1 18.2%

Non-optimal
Hard Label

DREBIN 79.7% 357.2s 4 4 16.9%
Sec-SVM 78.2% 782.8s 9 9 17.3%
ADE-MA 82.7% 157.3s 2 2 16.4%
MaMaDroid 94.8% 132.6s 1 1 15.9%
Opcode-SVM 66.6% 76.2s 1 1 18.3%

Additionally, we explore different attack settings (soft label vs. hard label) to demonstrate
EvadeDroid’s adaptability in various scenarios. The performance of the proposed attacks
under different settings and malware detectors is presented in Table 3.3. As shown in
this table, EvadeDroid demonstrates effective evasion capabilities against various malware
detectors, including DREBIN, Sec-SVM, and ADE-MA with syntax binary features, as
well as MaMaDroid with semantic continuous features and Opcode-SVM with opcode
binary features. The evaluation also reveals that EvadeDroid performs similarly well in the
optimal hard-label setting compared to the soft-label setting. It is important to note that the
comparison between soft-label attacking and non-optimal hard-label attacking highlights the
influence of optimizing manipulations on the performance of EvadeDroid against different
detectors. While only applying transformations to malware apps is sufficient for MaMaDroid,
optimizing manipulations can enhance EvadeDroid’s effectiveness against other detectors,
especially Opcode-SVM. For instance, our findings shown in Table 3.3 demonstrate a
13% improvement in the ER of EvadeDroid when targeting Opcode-SVM in the soft-label
setting, compared to the non-optimal hard-label setting. Furthermore, when operating in the
soft-label setting, EvadeDroid requires notably fewer transformations to bypass DREBIN
and Sec-SVM, as compared to the non-optimal hard-label setting (e.g., 4 vs. 9 for Sec-SVM),
which confirms the effectiveness of EvadeDroid in solving the optimization problem defined
in equation (3.1). Table 3.3 further illustrates that our optimization leads to a substantial
reduction in ET compared to the non-optimal hard-label setting. Specifically, for DREBIN
and Sec-SVM, this leads to a time reduction of ≈ 41% and ≈ 37%, respectively. This
significant enhancement can be attributed to the reduction in the number of transformations,
achieved through the utilization of our proposed optimization technique. Note that ET brings
attention to the varying time overheads associated with the feature extraction process used
to compute objective values when attacking different target detectors. For example, while

3

42 3 Subverting Machine Learning in Malware Detection

NoQ and NoT are the same in attacking MaMaDroid and Opcode-SVM in the non-optimal
hard-label setting, the ET for MaMaDroid is significantly higher than that for Opcode-SVM.
The observed distinction is rooted in the considerable time consumption of the feature
extraction process in MaMaDroid.

In summary, the results demonstrate that the proposed adversarial attack is a versatile
black-box attack that does not make assumptions about target detectors, including the ML
algorithms or the features used for malware detection. Furthermore, it can operate effectively
in various attack settings.

3.5.3 EvadeDroid vs. Other Attacks
To answer RQ3, we conduct an empirical analysis to assess how EvadeDroid performs in
comparison to other similar attacks. To establish a comprehensive evaluation of EvadeDroid,
we consider four baseline attacks: PiAttack1 [9], Sparse-RS [12], ShadowDroid [13], and
GenDroid [26] operating in white-box, gray-box, semi-black-box, and black-box settings,
respectively. These attacks serve as suitable benchmarks, allowing us to assess the perfor-
mance of EvadeDroid from different perspectives, such as evasion rate and the number of
queries. Similar to EvadeDroid, Sparse-RS, ShadowDroid, and GenDroid generate AEs
by querying the target detectors. Additionally, PiAttack is a problem-space adversarial
attack that employs a similar type of transformation to generate AEs. Although PiAttack
is a white-box evasion attack, it establishes a benchmark for optimal evasion performance,
facilitating the evaluation of the comparative effectiveness of other attacks with limited or zero
knowledge about the targeted detectors. For further information about these attacks, please
refer to Appendix 3.F. In this experiment, we chose DREBIN, Sec-SVM, and ADE-MA
as the target detectors because they align with the threat models of PiAttack, Sparse-RS,
and ShadowDroid. Table 3.4 shows the ERs of different adversarial attacks in deceiving
various malware detectors. As can be seen in Table 3.4, although EvadeDroid has zero
knowledge about DREBIN, Sec-SVM, and ADE-MA, its evasion rates for bypassing these
detectors are comparable to PiAttack, where the adversary has full knowledge of the target
detectors. Moreover, our empirical analysis shows that EvadeDroid requires adding more
features to evade DREBIN, Sec-SVM, and ADE-MA. In concrete, on average, EvadeDroid
makes 54–90 new features appear in the feature representations of the malware apps when it
applies transformations to the apps for evading DREBIN, Sec-SVM, and ADE-MA, while
the transformations used by PiAttack on average, trigger 11–68 features. PiAttack’s ability to
add a smaller number of features is attributed to its complete knowledge of the details of
DREBIN, Sec-SVM, and ADE-MA. However, EvadeDroid lacks this specific information.

Furthermore, as shown in Table 3.4, the evasion rate of Sparse-RS for DREBIN and
Sec-SVM demonstrates that random alterations in malware features do not necessarily
result in the successful generation of AEs, even when adversaries have access to the target
models’ training set. Although EvadeDroid operates solely in a black-box setting, this attack
outperforms Sparse-RS by a considerable margin for both DREBIN and Sec-SVM, i.e.,
70.6% and 84.7% improvement, respectively. Moreover, EvadeDroid considerably surpasses
ShadowDroid in attacking Sec-SVM and ADE-ME. Especially, in contrast to EvadeDroid,
ShadowDroid is unsuccessful in effectively evading Sec-SVM, which is a robust detector
against AEs. Note that the superior performance of ShadowDroid compared to EvadeDroid
1PiAttack is also referred to as the PK-Greedy attack.

3.5 Simulation Results

3

43

Table 3.4: ERs of EvadeDroid, PiAttack, Sparse-RS, ShadowDroid, and GenDroid in misleading DREBIN,
Sec-SVM, and ADE-MA. NoQ denotes Avg. No. of Queries.

Target Model Evasion Attach ER NoQ

DREBIN

EvadeDroid 88.9% 3
PiAttack 99.6% N/A
Sparse-RS 18.3% 195
ShadowDroid 95.3% 31
GenDroid 95.5% 93

Sec-SVM

EvadeDroid 85.1% 9
PiAttack 94.3% N/A
Sparse-RS 0.4% 38
ShadowDroid 8.6% 64
GenDroid 14.5% 336

ADE-MA

EvadeDroid 86.0% 2
PiAttack 100% N/A
Sparse-RS 99.7% 2
ShadowDroid 77.8% 29
GenDroid 100% 81

in bypassing DREBIN is based on the assumption that target detectors primarily rely on
API calls and permissions. However, this assumption is not practical in real scenarios, as
detectors may employ other features for malware detection. Table 3.4 further illustrates that
GenDroid exhibits superior evasion rates compared to EvadeDroid when targeting DREBIN
and ADE-MA; nevertheless, its efficacy is substantially nullified when facing Sec-SVM, a
resilient malware detector. Our empirical analysis also highlights the remarkable efficiency
of EvadeDroid in terms of the number of queries compared to other query-based attacks.
Specifically, on average, EvadeDroid requires only 2–9 queries to bypass DREBIN, Sec-SVM,
and ADE-MA, while Sparse-RS, ShadowDroid, and GenDroid demand 2–195, 29–64, and
81–336 queries, respectively.

In summary, the experimental results validate the practicality of EvadeDroid, which
adopts a realistic threat model, in comparison to other attacks for generating AEs. Specifically,
the threat models of PiAttack and Sparse-RS are essentially proposed for the detectors that
operate in the DREBIN feature space, but their threat models are not practical for targeting
detectors like MaMaDroid. Furthermore, ShadowDroid’s effectiveness is limited to scenarios
where malware detection is solely based on API calls and permissions. For instance, as
demonstrated in [13], ShadowDroid is unable to deceive MaMaDroid or opcode-based
detectors. In contrast, as shown in Section 3.5.2, EvadeDroid is capable of effectively
fooling these types of detectors as its problem-space transformations are independent of
feature space. Additionally, although GenDroid operates in the ZK setting, it perhaps
encounters challenges in evading robust malware detectors like Sec-SVM and might pose
potential issues in real-world scenarios due to the substantial number of queries it requires
compared to EvadeDroid. Finally, Sparse-RS, ShadowDroid, and GenDroid might not be
deemed realistic approaches as their abilities to satisfy problem-space constraints, particularly
robustness-to-preprocessing and plausibility constraints, are questionable.

3

44 3 Subverting Machine Learning in Malware Detection

Table 3.5: Performance of EvadeDroid in the hard-label setting on five commercial antivirus products. NoM denotes
No. of Detected Malware by each engine among 100 malware apps.

Engine NoM EvadeDroid

ER
Avg. Attack

Time
Avg. No. of

Queries
Avg. Query

Time

AV1 54 68.5% 31.3s 1 214.3s
AV2 32 87.5% 54.7s 2 387.2s
AV3 31 74.2% 124.1s 2 446.6s
AV4 41 100% 35.2s 1 329.7s
AV5 11 63.6% 21.5s 1 272.9s

3.5.4 EvadeDroid in Real-World Scenarios
This experiment aims to investigate RQ4 to demonstrate the practicality of EvadeDroid in
real-world scenarios. Although the ability of EvadeDroid in the hard-label setting indicates
that this attack can transfer to real life, we further consolidate this observation by measuring
the impact of EvadeDroid on commercial antivirus products that are available on VT to
confirm the practicality of our proposed attack in real scenarios. We chose five popular
antivirus engines in the Android ecosystem based on the recent ratings of the endpoint
protection platforms reported by AV-Test [129]. They are the top AVs in AV-Test capable
of detecting malware apps in EvadeDroid’s accessible dataset. Moreover, 100 malware
apps belonging to different malware families have been randomly selected from the 1𝐾
malware apps available to EvadeDroid to evaluate the performance of this attack on the
aforementioned five commercial detectors. To ensure the reliability of our experiment, it
is crucial to confirm that the labels assigned to the malware apps used in this experiment
have remained consistent. This is because the labels of collected apps are based on their
corresponding samples in our benchmark dataset [9], while the labels assigned by antivirus
engines to apps can potentially change over time. Therefore, we meticulously selected 100
apps that are still malware based on the threshold labeling criteria used in our primary
dataset at the time of our experiment, i.e., on September 11, 2022, through querying VT.
Furthermore, for each antivirus product, we generate AEs for the apps detected as malware by
the antivirus. Table 3.5 presents the results of the experiment in which EvadeDroid attempts
to deceive each AV in the optimal hard-label setting. In this experiment, we have assumed
𝑄 = 10 and 𝛼 = 50%. As can be seen in Table 3.5, our proposed attack can effectively
evade all antivirus products with a few queries. Here the effectiveness of EvadeDroid can be
primarily attributed to the transformations rather than the optimization technique. This is
evident from the fact that in most cases, only one query is required to generate AEs. We
further investigate the performance of EvadeDroid against the overall effect of VT. Figure 3.7
shows the average number of VT detections for all 100 malware apps after each attempt
of EvadeDroid to change malware apps into AEs. As depicted in Fig. 3.7, EvadeDroid
can effectively deceive VT engines with an average of 70.67%. It is worth noting that the
findings in this experiment validate the results observed in previous studies (e.g., [130]).
Responsible Disclosure. We conducted a responsible disclosure process to ensure the
security community was informed of the findings presented in this chapter. As part of this
process, we not only reached out to VT but also notified the antivirus engines that were

3.5 Simulation Results

3

45

Figure 3.7: Performance of EvadeDroid in evading VT engines against different query budgets.

affected by EvadeDroid by providing detailed information about our attack methodology and
sharing some test cases.

3.5.5 Transferable Adversarial Examples
In general, when decision-based adversarial attacks, such as EvadeDroid, encounter difficulty
in querying specific target detectors, they can create transferable AEs using a surrogate
classifier. Here we explore RQ5 by considering transferable AEs. To investigate the
transferability of EvadeDroid, we evaluate the evasion rates of AEs generated on a model
(e.g., Sec-SVM), which works as a surrogate model, in misleading other target models (e.g.,
DREBIN). This is a stricter threat model that indicates the performance of EvadeDroid
in cases where adversaries are not capable of querying the target detectors. Table 3.6
demonstrates that when EvadeDroid employs a stronger surrogate model (e.g., Sec-SVM),
the AEs exhibit higher transferability. Note that the reported ERs in Table 3.6 are the evasion
rates of successful AEs that are also successfully transferred.

We further compare the transferability of EvadeDroid with PiAttack [9] as it is similar
to ours in terms of transformation type. This attack uses two kinds of primary features for
misclassification, and side-effect features for satisfying problem-space constraints to generate
realizable adversarial examples. However, EvadeDroid is not constrained by features as
it operates in black-box settings. We specifically measure the transferability of the AEs
in fooling Sec-SVM when DREBIN is the surrogate model. We ensure that the original
apps of the AEs are correctly detected by Sec-SVM. Both DREBIN and Sec-SVM are
trained with 100𝐾 apps (incl., 90𝐾 benign apps and 10𝐾 malware apps) to see the effect
of large ML models on EvadeDroid’s performance. The experimental results show that the
ERs of the PiAttack and EvadeDroid in circumventing DREBIN are 99.06% and 82.12%,
respectively. Furthermore, EvadeDroid is much more transferable as the transferability of
the AEs generated by EvadeDroid is 58.05%, while 23.23% for PiAttack.

3

46 3 Subverting Machine Learning in Malware Detection

Table 3.6: Transferability of AEs generated by EvadeDroid.

Surrogate Model Target Model ER

DREBIN

Sec-SVM 25.5%
ADE-MA 88.7%
MaMaDroid 63.0%
Opcode-SVM 42.2%

Sec-SVM

DREBIN 95.7%
ADE-MA 98.5%
MaMaDroid 95.4%
Opcode-SVM 53.7%

ADE-MA

DREBIN 49.3%
Sec-SVM 8.7%
MaMaDroid 67.5%
Opcode-SVM 22.0%

MaMaDroid

DREBIN 41.1%
Sec-SVM 6.0%
ADE-MA 88.9%
Opcode-SVM 37.0%

Opcode-SVM

DREBIN 32.8%
Sec-SVM 10.9%
ADE-MA 66.8%
MaMaDroid 74.83%

3.5.6 The Impact of Search Strategy on EvadeDroid
To answer RQ6, we perform an empirical analysis to evaluate the performance of EvadeDroid
when utilizing an alternative search strategy for manipulation. Specifically, we introduce
a baseline manipulation method based on GA for use in EvadeDroid, where the fitness
function of the baseline is the same as the RS-based method. In the proposed GA-based
manipulation method, the individuals in the population (representing potential solutions) are
binary strings with a length equal to the action set Δ, where 1 indicates the corresponding
transformation in Δ should be used for manipulation. This approach enhances the solution
across various generations. In this experiment, the query budget for GA is set at 50 due to
scalability concerns, as evaluating more solutions obtained by applying different sequences of
transformations to the malware app would significantly increase time overheads. Moreover,
our preliminary experiment suggests considering 9 as the population size of the GA-based
method. Note that a large population size negatively affects the performance of GA, as the

Table 3.7: RS-based vs. GA-based manipulation strategies in EvadeDroid. NoQ indicates Avg. No. of Queries and
NoT denotes Avg. No. of Transformations.

Search Method ER ET NoQ NoT

RS 88.9% 210.3s 3 2
GA 65.1% 630.7s 22 5

3.5 Simulation Results

3

47

perturbation budget is quickly consumed by individuals in the initial generations.
Table 3.7 presents the results of the baseline when DREBIN is the target malware detector.

As shown in Table 3.7, using RS in EvadeDroid outperforms GA. Specifically, RS not only
leads to a 36.5% enhancement in ER but also accelerates EvadeDroid by ≈ 3×. These
improvements are achieved with only 3 queries compared to GA’s 22 queries.

3.5.7 Discussion
Real-world applicability. EvadeDroid demonstrates its ability to generate practical adversar-
ial Android apps by considering real-world attack limitations, such as operating in ZK settings.
We assume that EvadeDroid has no knowledge about the target malware classifiers and can
only query them to obtain the labels of Android apps. Additionally, in some experiments,
we assume that the target malware detectors only provide hard labels in response to the
queries. The performance of EvadeDroid in various experiments validates its practicality. In
a hard-label setting, it efficiently evades five popular commercial antivirus products with an
average evasion rate of nearly 80%. Furthermore, empirical evaluations of EvadeDroid on
DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM result in evasion rates of
89%, 85%, 86%, 95%, and 80%, respectively. The success of our attack can be attributed to
our approach of directly crafting adversarial apps in the problem space rather than perturbing
features in the classifier’s feature space. From a defender’s perspective, EvadeDroid can be
utilized in adversarial retraining to enhance the robustness of Android malware detection
against realistic evasion attacks. Appendix 3.G includes an experiment showcasing the
adversarial robustness that can be achieved with the involvement of EvadeDroid.
Functionality preserving. We extended the tool presented in [9], in particular the organ-
harvesting component, to manipulate malware apps. This tool ensures the preservation
of functionality by adding dead codes to malware apps without affecting their semantics.
Specifically, it incorporates opaque predicates, an obfuscated condition, to inject adversarial
payloads into the apps while remaining unresolved during analysis, ensuring the payloads
are never executed. Generally, verifying the semantic equivalence of two programs (e.g., a
malware app and its adversarial version) is not trivial [106]. Therefore, similar to the prior
studies [9, 25, 28], our primary goal is to consider the installability and executability of
apps to verify the correct functioning of the adversarial apps. To this end, we developed a
scalable test framework that installs and executes adversarial apps on an Android Virtual
Device (AVD) and conducts monkey testing [131] to simulate random user interactions with
the apps to guarantee the stability of the apps. Furthermore, taking inspiration from prior
research [11], we incorporate a log statement within the opaque predicate to ensure that
the functionality of the manipulated apps remains unchanged. By monitoring the absence
of log outputs, we can ascertain that the injected payloads are not executed. We select 50
adversarial apps, representing diverse malware families, for which their original malware
apps can be installed and executed on the AVD without any issues. These apps are then
subjected to our test framework. While the flaws in the Soot [101] framework (e.g., the
injection of payloads through Soot might result in incorrect updates to the function address
table of the app), utilized in the manipulation tool [9], affect the executability of a few cases,
the majority of the apps passed the test.
Query efficiency. According to the experimental results obtained by applying EvadeDroid on
academic and commercial malware detectors, we demonstrated that it can successfully carry

3

48 3 Subverting Machine Learning in Malware Detection

Table 3.8: The prevalent search strategies employed in Android evasion attacks.

Search Strategy Description Study

Gradient-driven Utilizes gradients to iteratively ad-
just perturbations towards optimal
adversarial perturbations.

[9, 13, 16–18, 22, 24, 25]

Sampling-driven Involves exploring the solution space
by sampling candidate perturbations
to find optimal adversarial perturba-
tions.

[11, 12, 14, 19, 20, 26–28]

out a query-efficient black-box attack. For instance, our proposed attack often only needs an
average of 4 queries to generate the AEs that can successfully bypass DREBIN, Sec-SVM,
ADE-MA, MaMaDroid, and Opcode-SVM. Moreover, we showed that EvadeDroid can
effectively fool commercial antivirus products with less than two queries. One of the main
reasons for being a query-efficient attack is due to the well-crafted transformations gathered
in the action set. To maintain EvadeDroid’s performance, it is crucial to periodically update
the action set by incorporating newly published apps as new potential donors. Besides the
quality of the action set, the presented optimization method is another important aspect of our
proposed attack that can facilitate the identification of an optimal sequence of transformations,
especially when the target detectors are robust to AEs (e.g., Sec-SVM). In fact, the proposed
RS technique is an efficient sampling-driven search strategy that can quickly converge to a
proper solution. Table 3.8 shows that Android evasion attacks often employ gradient-driven
(e.g., gradient descent) and sampling-driven (e.g., GA) methodologies, where the latter
is more practical for black-box evasion attacks because they can overcome the challenges
inherent in using gradient-driven attacks in ZK settings. Specifically, gradient-driven
attacks require access to precise details of target malware detectors and are limited to
differentiable-based classifiers, which are not applicable to attacks operating in ZK settings.
Moreover, gradient-driven techniques are not well-suited for continuous features, whereas the
malware domain predominantly involves discrete features. Ultimately, gradient-masking [77]
defenses implemented in target malware detectors demonstrate effectiveness in preventing
gradient-driven attacks. It is important to note that our proposed sampling-driven method
demonstrates greater efficiency compared to query-based methods used in other studies
(e.g., [12, 20, 26, 27]). For instance, as shown in Section 3.5.3, EvadeDroid can effectively
evade DREBIN with only 3 queries, whereas GenDroid needs 93 queries. Additionally, as
illustrated in Section 3.5.6, our proposed RS-based strategy requires ≈ 210 seconds to bypass
DREBIN, while the GA-based methods extend the evasion time to ≈ 631 seconds.
Scalability and effectiveness. Our empirical evaluations demonstrate the ability of the
EvadeDroid to adapt and work effectively across a large scale of targets. Especially the results
in Section 3.5.2 highlight the effectiveness of our evasion attack in bypassing diverse malware
detectors (i.e., linear vs. non-linear malware classifiers, and gradient-based vs. non-gradient-
based malware classifiers) that utilize different features (i.e., syntax, opcode, and semantic
features) with different feature types (i.e., discrete and continuous features). Furthermore,
although manipulating applications within the problem space is inherently a time-consuming

3.6 Limitations and Future Work

3

49

endeavor, the efficiency in querying allows our attack to autonomously generate AEs at a
good speed, eliminating the need for manual and labor-intensive methods. Our empirical
assessment in Section 3.5.5 also demonstrates that AEs generated by EvadeDroid to target a
specific detector exhibit reusability across various malware detectors.

Potential applications. EvadeDroid shows promise for various real-world applications
within the realm of Android malware detection. Security professionals and organizations
involved in the development and deployment of malware detectors can utilize EvadeDroid
for security testing and evaluation. For instance, they can simulate adversarial scenarios
to identify vulnerabilities and enhance the robustness of their systems against real-world
threats. The adversarial training capabilities of the system render EvadeDroid a helpful asset
for developers seeking to strengthen malware detectors against real-world evasion attacks.
Moreover, our attack can be instrumental in the development of countermeasures, allowing
cybersecurity experts to understand and address potential weaknesses in existing malware
detection systems.

3.6 Limitations and Future Work
In this section, we elaborate on the limitations of our proposed method, which can be
considered as future work. One of the concerns of EvadeDroid is the adversarial payload size
(i.e., the relative increase in the size of AEs) that might be relatively high, especially for the
small Android malware apps. This deficiency may cause malware detectors to be suspicious
of the AEs, particularly for popular Android applications. Improving the organ harvesting
used in the program slicing technique, in particular, finding the smallest vein for a specific
organ, can address this limitation as each organ has usually multiple veins of different sizes.

Additionally, EvadeDroid particularly crafts malware apps to mislead the malware
detectors that use static features for classification. We do not anticipate our proposed evasion
attack to successfully deceive ML-based malware detectors that work with behavioral features
specified by dynamic analysis as the perturbations are injected into malicious apps within an
IF statement that is always False. Therefore, it remains an interesting avenue for future
work to evaluate how our proposed attack can bypass behavior-based malware detectors.

Furthermore, since EvadeDroid uses a well-defined optimization problem outlined in
Algorithm 3.1, it can be extended to other platforms (e.g., Windows) if attackers offer
problem-space transformations that are tailored to manipulate real-world objects (e.g.,
Windows Portable Executable files). This is because the transformations used in EvadeDroid
can only be applied to manipulate Android applications. We leave further exploration as
future work since it is beyond the scope of this chapter.

Finally, our chapter comprehensively covers various malware detection systems, em-
ploying diverse classifiers on different features with various types. However, there is an
opportunity to improve the validity of our findings since the evaluation is conducted in
controlled laboratory settings. Future research should delve deeper into the applicability of
our adversarial attack framework in real-world environments, where dynamic factors like
evolving malware landscapes and deployment scenarios may impact the attack’s performance.

3

50 3 Subverting Machine Learning in Malware Detection

3.7 Conclusions
This chapter introduces EvadeDroid, a novel Android evasion attack in the problem space,
designed to generate real-world adversarial Android malware capable of evading ML-based
Android malware detectors in a black-box setting. Unlike previous approaches, EvadeDroid
directly operates in the problem space without initially focusing on finding feature-space
perturbations. Experimental results demonstrate the effectiveness of EvadeDroid in deceiving
various academic and commercial malware detectors.

3.A Problem-Space Constraints

3

51

3.A Problem-Space Constraints
To generate realizable AEs, adversarial attacks need to consider the following four problem-
space constraints [9]:

• Available transformations describe the types of manipulations (e.g., adding dead
codes) that an adversary can utilize to modify malware apps.

• Preserved semantics constraint explains that the semantics of an Android app should
be maintained after applying a transformation to the app.

• Robustness-to-preprocessing constraint describes the requirement that non-ML
methods (e.g., preprocessing operators) should not be able to undo the adversarial
changes.

• Plausibility constraint explains adversarial apps must look realistic (i.e., naturally
created) under manual inspection.

3.B Donors Evaluation
In this evaluation, we assess the influence of our donor selection strategy on the performance
of EvadeDroid. Two action sets, denoted as Δ1 and Δ2, are provided, each containing 20
transformations. The transformations in Δ1 and Δ2 are chosen at random from the collection
of transformations extracted from the 10 most similar apps and the 10 least similar apps
to malware apps, respectively. To understand the process of finding similar apps, refer to
Section 3.4.3.1. We then use these action sets in EvadeDroid to transform 50 randomly
selected malware apps into AEs. Table 3.9 presents a comparison of the impact of Δ1 and Δ2
on EvadeDroid’s performance. As can be seen in this table, when using Δ1, the number of
queries and transformations is significantly reduced compared to Δ2. This finding validates
that leveraging benign apps that resemble malware apps as the donors of transformations can
reduce the cost of generating AEs, specially in terms of the required queries.

Table 3.9: The performance of EvadeDroid in attacking DREBIN when it utilizes two different action sets Δ1 and
Δ2.

Action Set ER
Avg. No. of

Queries
Avg. No. of

Transformations

Δ1 66.0% 3 2
Δ2 68.0% 7 3

3.C Implementation Details
The proposed framework illustrated in Figure 3.8 is implemented with Python 3 and Java 8.
The source code2 of the pipeline has been made publicly available to allow reproducibility.
The components of EvadeDroid’s pipeline are clearly depicted in Figure 3.8. This section
2https://github.com/HamidBostani2021/EvadeDroid

https://github.com/HamidBostani2021/EvadeDroid

3

52 3 Subverting Machine Learning in Malware Detection

Figure 3.8: The details of the proposed framework. The blue and gray areas represent the workflows of EvadeDroid
and target black-box malware detection, respectively.

reviews some of the components that have not been previously described in detail in the
chapter.

• Component 7. To identify API calls in donor apps, we utilize the tool provided
in [132]. This tool leverages Apktool [100] to access the DEX files of Android apps,
which are represented as smali files. It employs string analysis techniques to scan these
files and identify the API calls present within them.

• Component 8. We extend the tool presented in [9] to extract API calls from donors
because this tool, which is based on the Soot framework, originally harvests Activities
and URLs only.

• Component 10. The tool presented in [9] has also been used to inject gadgets into mal-
ware apps (i.e., hosts). This tool ensures the fulfillment of both the preserved-semantic
and robustness-to-preprocessing constraints by utilizing opaque predicates [107] for
transplanting the gadgets into hosts. The opaque predicates employed in the tool are
obfuscated condition statements that encapsulate the injected gadgets. During runtime,

3.D Android Malware Detectors

3

53

these statements always evaluate to False, thereby preserving the semantics of mal-
ware apps as the injected gadgets remain unexecuted. Furthermore, the preprocessing
operators are unable to eliminate the injected gadgets as the result of the statement
cannot be statically resolved from the source code during design time. It is important to
note that the generated AEs are plausible. This is because the manipulation of malware
apps involves the injection of realistic gadgets found in benign apps. Additionally,
the injection of the gadget occurs in unnoticeable injection points, maintaining the
homogeneity complexity of the host’s components. The inclusion of gadgets may
enhance EvadeDroid’s performance by introducing more features in the manipulated
apps. For further insights into the tool, we refer readers to [9].

3.D Android Malware Detectors
DREBIN [96] and Sec-SVM [16] are two prominent approaches in Android malware
detection. DREBIN utilizes binary static features and employs linear Support Vector Machine
(SVM) for classification. It extracts various features, including requested permissions and
suspicious API calls, from the Manifest and DEX files of APKs through string analysis [2].
These features are then used to construct a feature space for the classifier. In DREBIN, each
app is represented by a sparse feature vector, where each entry indicates the presence or
absence of a specific feature. Secure SVM (Sec-SVM) is an enhanced version of DREBIN
that aims to enhance the resilience of linear SVM against adversarial examples. The core
concept behind Sec-SVM is to increase the cost of evading the model when generating
adversarial examples. Compared to DREBIN, Sec-SVM relies on a larger set of features
for malware detection, making it more challenging to evade. Since Sec-SVM is a sparse
classification model, it leverages a greater number of features to improve its malware detection
capabilities

ADE-MA [25] is an ensemble of deep neural networks (DNNs) that is strengthened against
adversarial examples with adversarial training. The adversarial training method tunes the
DNN models by solving a min-max optimization problem, in which the inner maximizer
generates adversarial perturbations based on a mixture of attacks, i.e. iterative “max”
Projected Gradient Descent (PGD) attacks.

MaMaDroid [95] utilizes static analysis to detect Android malware. The goal of MaMaDroid
is to capture the semantics of an Android app by employing a Markov chain based on abstracted
sequences of API calls. The process begins with generating a call graph for each Android app.
From this call graph, the sequences of API calls are extracted and abstracted into different
modes, including families, packages, and classes. Subsequently, MaMaDroid constructs a
Markov chain for each abstracted API call in an APK, where each state represents a family,
package, or class, and the transition probabilities indicate the state transitions. Finally, feature
vectors incorporating continuous features are created based on the generated Markov chains.

Opcode-SVM [97] is an Android malware detection method that utilizes static opcode-
sequence features instead of predefined features. This approach focuses on performing
n-gram opcode analysis to represent apps in a feature space, where a malware classifier is
constructed. Specifically, the method employs a linear SVM with 5-gram binary opcode
features to effectively detect Android malware.

3

54 3 Subverting Machine Learning in Malware Detection

3.E Experimental Settings
Android malware detectors. We built DREBIN, Sec-SVM, MaMaDroid, and ADE-MA
based on their available source codes (i.e., [133–135]) that have been published in online
repositories. Moreover, we have reproduced Opcode-SVM based on the implementation
details provided in [97]. The hyperparameters of the reproduced malware detectors are
similar to those considered in their original studies [9, 25, 95, 97]. Note that in this chapter,
the reproduced MaMaDroid [95] is based on the K-Nearest Neighbors (KNN) algorithm
with 𝑘 = 5. This malware classifier operates in the family mode in all experiments. KNN
algorithm is used in MaMaDroid as we empirically concluded that KNN performs better on
our dataset than other classifiers employed in [95].
Baseline evasion attacks. We implemented Sparse-RS, ShadowDroid, and GenDroid with
Python 3 based on their relevant studies (i.e., [12, 13, 26]). Moreover, PiAttack [9] has been
built based on their available source codes published in [133].
EvadeDroid. Besides query budget 𝑄 and the allowed adversarial payload size 𝛼 that have
been mentioned earlier, 𝑛 is another hyperparameter that shows the length of overlapping
sub-string of opcodes’ types in 𝑛-gram-based feature extraction. The study conducted
in this chapter considers 𝑛 = 5 because in [97], the authors have shown that the best
classification performance for opcode-based Android malware detection can be achieved
with the 5-gram features. Furthermore, we select the top-100 benign apps as suitable donors
for gadget extraction. Note that we consider 100 donors as organ harvesting from donors is a
time-consuming process.

3.F Baseline Attacks
PiAttack [9], also known as PK-Greedy, is a white-box attack in the problem space that
generates real-world AEs using transformations called gadgets. This attack comprises two
main phases: the initialization phase and the attack phase. In the initialization phase, key
benign features are identified, and then gadgets corresponding to the identified features are
collected from benign apps. In the attack phase, a greedy search strategy is used to find
optimal perturbations by selecting gadgets based on their contribution to the feature vector
of the malware app. This process is repeated until the modified feature vector is classified
as a benign sample. Note that PiAttack incorporates both primary features and side-effect
features into malware apps. The primary features are added to bypass detection, while the
side-effect features are included to meet problem-space constraints.
Sparse-RS [12] attack is a soft-label attack that gradually converts malware samples into
AEs by querying the target model. Sparse-RS, which is a gray-box attack in the malware
domain, finds the 𝑙0-bounded perturbations (i.e., the maximum allowed perturbations) via
random search. Note that we set initial decay factor 𝛼𝑖𝑛𝑖𝑡 = 1.6 and sparsity level 𝑘 = 180
similar to [12] and query budget 𝑄 = 1000.
ShadowDroid [13] is a black-box problem-space attack that generates AEs by building a
substitute classifier, which is a linear SVM. The substitute classifier is built on binary feature
space compromised by permissions and API calls. This attack makes a key feature list based
on the importance of features specified by the substitute classifier. The attack adds the key
features to a malware app and queries the target classifier to check if the manipulated app
is classified as malware. ShadowDroid continues this process until reaching the maximum

3.G Data Augmentation

3

55

Table 3.10: The impact of various training strategies on the utility of DREBIN.

Model No. of AEs TPR FPR

Standard Training N/A 80.8% 1.7%

Adversarial Re-training

500 78.3% 1.4%
1000 74.9% 0.9%
1500 68.7% 0.5%
1769 32.7% 0.2%

query budget or generating an AEs. We set query budget 𝑄 = 100, following a similar
setting as in [13]. Note that ShadowDroid is not fully compatible with the zero-knowledge
(ZK) setting as it relies on the assumption that the target detectors utilize permissions and
API calls for malware detection. However, since it is a query-based problem-space attack, it
serves as a proper naive problem-space baseline attack for our chapter.
GenDroid [26] is a black-box Android evasion attack building upon GenAttack [136].
This query-based attack utilizes GA to discover adversarial perturbations in soft-label
settings. GenDroid extends GenAttack by redesigning the fitness function, adopting a
new evolutionary strategy, and incorporating Gaussian Process Regression (GPR) to guide
evolution. Specifically, the fitness function is defined through a logarithmic transformation,
incorporating adjustable weight parameters (𝛼 and 𝛽) and a norm-bounded perturbation.
The selection process prioritizes elite individuals with higher fitness scores, and the Softmax
function is employed to convert fitness scores into probabilities. GPR is introduced to predict
fitness values for individuals in the next generation. We empirically set the population size
to 8 and the maximum number of generations to 50.

3.G Data Augmentation
In this experiment, we evaluate the performance of EvadeDroid in enhancing the adversarial
robustness of Android malware detection. To achieve this, we transform malware samples
from the original training set into AEs using EvadeDroid. Subsequently, we re-train DREBIN
using the modified dataset, resulting in a model that is robust to EvadeDroid. Our empirical
analysis demonstrates that incorporating AEs generated by EvadeDroid in the training set of
DREBIN can effectively thwart the adversarial effect of EvadeDroid. However, the number
of AEs employed has an effect on the DREBIN’s utility (i.e., the original performance of
DREBIN). Table 3.10 reveals that the addition of more AEs to the training set reduces the
TPR of DREBIN. For instance, the TPR of DREBIN is reduced by 32.7% compared to the
standard training when 1769𝐾 malware samples in the training set are transformed into
AEs. It is noteworthy that out of the 2𝐾 malware samples in the training set, EvadeDroid is
capable of generating 1769 AEs.

4

57

4
Exposing Vulnerabilities in

Machine Learning for
Malware Detection

Machine Learning (ML) promises to enhance the efficacy of Android Malware Detection
(AMD); however, ML models are vulnerable to realistic evasion attacks—crafting realizable
Adversarial Examples (AEs) that satisfy Android malware domain constraints. To eliminate
ML vulnerabilities, defenders aim to identify susceptible regions in the feature space where
ML models are prone to deception. The primary approach to identifying vulnerable regions
involves investigating realizable AEs, but generating these feasible apps poses a challenge.
For instance, previous work has relied on generating either feature-space norm-bounded
AEs or problem-space realizable AEs in adversarial hardening. The former is efficient
but lacks full coverage of vulnerable regions while the latter can uncover these regions
by satisfying domain constraints but is known to be time-consuming. To address these
limitations, we propose an approach to facilitate the identification of vulnerable regions.
Specifically, we introduce a new interpretation of Android domain constraints in the feature
space, followed by a novel technique that learns them. Our empirical evaluations across
various evasion attacks indicate effective detection of AEs using learned domain constraints,
with an average of 89.6%. Furthermore, extensive experiments on different Android malware
detectors demonstrate that utilizing our learned domain constraints in Adversarial Training
(AT) outperforms other AT-based defenses that rely on norm-bounded AEs or state-of-the-art
non-uniform perturbations. Finally, we show that retraining a malware detector with a wide
variety of feature-space realizable AEs results in a 77.9% robustness improvement against
realizable AEs generated by unknown problem-space transformations, with up to 70× faster
training than using problem-space realizable AEs.

This chapter is based on the published paper: H. Bostani, Z. Zhao, Z. Liu, and V. Moonsamy, Level Up with
ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust Android Malware
Detection, ACM Transactions on Privacy and Security, 2025 [137]. The content remains unchanged from the
published version.

4

58 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

4.1 Introduction
Due to the ongoing proliferation of Android malware, the application of Machine Learning
(ML) for Android Malware Detection (AMD) continues to remain a topic of interest for
security researchers [95, 96, 123, 138–143]. However, ML-based solutions are vulnerable to
evasion attacks that generate adversarial examples (AEs) [144]—malware that is crafted to
purposely be misclassified as benign. These adversarial attacks exploit blind spots within
feature space (i.e., the model’s decision space) where the decision boundary is not accurate due
to insufficient training samples [29]. To confront evasion attacks, various defense strategies
have been proposed to either detect (e.g., [145–147]) or eliminate (e.g., [49, 148, 149]) blind
spots; nevertheless, in the Android malware domain, defenders must cope with realistic
attacks that capitalize on feasible blind spots. Indeed, the entire blind spots do not show
vulnerable regions in the context of malware because realistic evasion attacks solely target
blind spots within feasible regions where feature representations of feasible apps can settle.
The primary solution for uncovering vulnerable regions entails exploring realizable AEs, such
as leveraging them in adversarial hardening [150], encompassing methods that integrate AEs
into the training process. However, generating realizable AEs is challenging as AEs must be
feasible apps in the real world, meaning they must satisfy the domain constraints [151, 152]
(e.g., preserving malicious functionality [9]).

Generally, there are two different approaches to generating AEs. The first approach
is to generate norm-bounded AEs by modifying specific features that can best mislead
the detector without considering domain constraints [14–16, 18–20]. This approach is
moderately efficient and can offer some degree of adversarial robustness when utilized in
adversarial hardening because the feature space of realizable AEs is just a sub-space of
the full space of AEs [153]. However, AEs generated by this approach in the Android
domain [154, 155], might not be realizable AEs, as the resulting AE space fails to fully
cover feasible regions that are vulnerable to realistic evasion attacks [150], as illustrated
by Figure 4.1. For instance, the attacks proposed in [17, 24] might not always generate
realizable AEs as the adversarial features added to the Manifest files of apps can be removed
by pre-processing operators [9]. Figure 4.1 also indicates that exploring the full space of
norm-bounded AE space is not necessary if we can model the smaller space of realizable
AEs.

The second approach is to directly generate realizable AEs in the problem space, i.e.,
applying problem-space transformations into malicious apps that induce realizable perturba-
tions in the feature space [9, 22, 23, 28, 84, 154]. Although this approach fundamentally
ensures that the domain constraints are satisfied, we find it to be sub-optimal for adversarial
hardening mainly due to three reasons. First, applying problem-space transformations is
computationally expensive [156] whereas perturbing feature vectors is typically simpler
and more efficient than manipulating objects in the problem space [151]. Second, finding
effective problem-space transformations is challenging because they must not only mislead
the detector but also meet domain constraints. For instance, the transformations utilized
in [17, 28, 157] fail to meet the domain constraints because they either can be thwarted
by removing newly-added content through pre-processing [17, 157] or result in functional
disruptions [28]. Third, the problem-space transformations used in adversarial hardening
might be ineffective to unknown attacks, implying that attackers utilizing new transformations
could still successfully evade detection [156].

4.1 Introduction

4

59

Figure 4.1: Feature space achieved by existing unrealistic attacks (blue) may not cover the realizable AE space
(gray). The 𝜖 -ball covers all possible AEs that can be generated for the malware sample (red).

To tackle the challenges associated with identifying vulnerable regions, this chapter
aims to help defenders uncover such regions by exploring the properties of feasible apps
within the feature space. These properties, which represent domain constraints in the feature
space, assist defenders in pinpointing feasible regions that might be susceptible to realistic
evasion attacks. For instance, by leveraging feature-space domain constraints, adversarial
hardening can harness the advantages of both the feature space and the problem space when
generating AEs, i.e., being efficient by directly modifying features while satisfying the domain
constraints. To this end, we first interpret the domain constraints of Android malware in the
feature space (Section 4.3), then learn domain constraints from the feature representations
of a large number of apps (Section 4.4), and finally apply them to counter evasion attacks
(Section 4.5). More concretely, we first argue that Android domain constraints are meaningful
feature dependencies that exist within the feature space. This implies that feature-space
AEs are realizable when they adhere to these feature dependencies. Then, we introduce two
sets of dependencies over the feature values, named perfect and relatively strong feature
dependencies, which can represent domain constraints in the feature space. Next, we present a
domain-constraint learning method to extract meaningful feature dependencies. Specifically,
the proposed method utilizes statistical dependencies and Optimum-path Forest (OPF) [158]
to learn domain constraints from the feature representations of training samples. Here,
OPF, which is a graph-based pattern recognition method, is adapted to extract meaningful
feature dependencies. Finally, we apply our learned domain constraints across various
defense methods to illustrate their effectiveness. In particular, we propose an AE detection
method to preemptively identify AEs by differentiating them from feasible apps using our
learned domain constraints. Our empirical evaluation shows that our proposed method can
successfully identify 89.6% of AEs generated by various evasion attacks. Moreover, we
incorporate feature-space realizable AEs into Adversarial Training (AT) [148] to enhance
the robustness of Android malware detection against realistic evasion attacks, generating
problem-space realizable AEs. Such feature-space realizable AEs are generated during AT by
considering not only the norm-bounded constraints but also our learned domain constraints.
Our empirical analyses on DREBIN [96], DroidAPIMiner [123], and RAMDA [159], and
R-PackDroid [160], four different malware detectors, reveal that our defense outperforms both
AT based on norm-bounded AEs (9.3% over DREBIN, 34.5% over DroidAPIMiner, 20.0%
over RAMDA, and 8.1% over R-PackDroid) and state-of-the-art AT based on non-uniform
perturbations [161] (4.7% over DREBIN, 16.6% over DroidAPIMiner, 11.1% over RAMDA,
and 3.1% over R-PackDroid). Our evaluation also highlights the better performance of our

4

60 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

defense than problem-space realizable AEs in efficiency and generalizability for adversarial
retraining [162]. Our contributions1 can be summarized as follows:

• We propose a novel interpretation of domain constraints in the feature space for
AMD (Section 5.2.3). This new interpretation considers key feature dependencies of
feasible Android apps in feature space to specify feasible regions where the feature
representations of realizable AEs may reside. We then propose a novel domain-
constraints learning technique based on the statistical correlations between features
and a graph-based clustering algorithm called OPF to extract meaningful feature
dependencies from large-scale data (Section 4.4.1).

• We demonstrate how these learned domain constraints can be utilized either to identify
AEs, which are not feasible apps (Section 4.5.1), or to generate feature-space realizable
AEs for adversarial hardening to improve the robustness of AMD against realistic
evasion attacks (Section 4.5.2).

• We empirically evaluate the proposed AE detection with three evasion attacks, Gen-
Droid [26], ShadowDroid [13], and Grosse Attack [17], demonstrating that our defense
can successfully identify their generated AEs. Furthermore, our extensive experiments
on four different Android malware detectors, DREBIN [96], DroidAPIMiner [123],
RAMDA, and R-PackDroid [160] demonstrate that our defense provides superior
model robustness than AT based on norm-bounded AEs and the state-of-the-art defense
based on non-uniform perturbations [161].

• We validate both the efficiency and generalizability of our defense over adversarial
retraining based on problem-space realizable AEs (Section 4.6.5).

4.2 Related Work
In this section, we first provide an overview of prior studies that have explored AEs in
the Android domain, either within the feature space (Section 4.2.1) or problem space
(Section 4.2.2). Furthermore, we review recent studies that explore realizable AEs with
feature-space domain constraints but in domains other than Android (Section 4.2.3).

4.2.1 Feature-Space AEs
There exist a large body of related work [12, 15, 17–20, 24–26, 34] that investigated
feature-space AEs. Xu et al. [26] introduced a black-box attack, incorporating the attention
mechanism and the Jacobian-based saliency map algorithm. Croce et al. [12] proposed
a query-based evasion attack using random search and evaluated it in various contexts,
including AMD. Xu et al. [20] developed a semi-black-box framework based on the simulated
annealing method to perturb features of Android apps by querying the target malware
detector. Li et al. [24, 25] proposed gradient-based and gradient-free evasion attacks to
generate AEs in the feature space. Rathore et al. [14] proposed two evasion attacks based on
reinforcement learning to generate feature-space AEs. Liu et al. [19] used a genetic algorithm
to create feature-space AEs for improving the robustness of AMD. Chen et al. [15, 18]
explored different feature-space evasion attacks (e.g., anonymous attacks and well-crafted
1Our code is available at https://github.com/HamidBostani2021/robust-Android-malware-detector.

https://github.com/HamidBostani2021/robust-Android-malware-detector

4.2 Related Work

4

61

attacks) to bypass AMD. Demontis et al. [16] proposed a feature-space evasion attack to
generate Android AEs by changing the features that seem important for the SVM classifier.
Grosse et al. [17] generated AEs by modifying the features extracted from Manifest files of
Android malware apps using a forward derivative approach. However, the above adversarial
attacks might not always yield realizable AEs. In other words, AEs generated by these
evasion attacks could be impossible, as they are created by only adhering to norm-bounded
constraints without ensuring domain constraints i.e., available-transformations, preserved-
semantic, robustness-to-preprocessing, and plausibility constraints [9]. In particular, the
AEs discussed in [12, 14–20, 24–26] might not satisfy the robustness-to-preprocessing
constraint because the proposed attacks considered adding features to Manifest files in order
to generate AEs, while pre-processing operators can discard the added unused features [9].
Furthermore, the preserved semantic or plausibility constraints have not been thoroughly
investigated in the studies mentioned above. For instance, although the authors in [24] tried
to manipulate Android malware apps using feature-space perturbations while preserving the
malicious functionality of the original apps, they failed to generate realizable AEs since most
manipulated apps did not work.

4.2.2 Problem-Space AEs
To address the limitation of feature-space norm-bounded AEs, several studies [9, 22, 23,
28, 84, 154] have proposed different approaches for generating AEs. Specifically, they
rely on problem-space transformations that satisfy domain constraints. Labaca-Castro et
al. [154] generated realizable universal adversarial perturbations by applying a sequence
of transformations, found by a greedy algorithm, into malware objects. Bostani and
Moonsamy [84] proposed an evasion attack that gradually converts an Android malware app
into an AE by leveraging transformations identified through querying the target malware
detector. Cara et al. [23] crafted adversarial Android malware by injecting API calls into
malware apps. Pierazzi et al. [9] proposed an evasion attack to generate real-world adversarial
Android apps through problem-space transformations guided by feature-space perturbations.
Chen et al. [22] used CW [163] and JSMA [164] techniques to propose an attack that can
mislead AMD. Yang et al. [28] introduced two attacks named evolution and confusion attacks
to present an Android evasion attack that was based on manipulating Android malware apps.
Demontis et al. [16] used obfuscation to manipulate Android malware apps. It is worth noting
that in the studies above, the problem-space transformations are either code transplantation
(incl. harvesting slices of bytecodes extracted from benign apps) [9, 28, 84, 154], obfuscation
tools [16], or dummy codes (e.g., unused API calls in Android apps) [22].

However, the practicality of utilizing problem-space transformations in adversarial
hardening is debatable due to their high computational complexity [151]. It is also known to
be difficult to collect diverse problem-space transformations that fully satisfy the domain
constraints [84]. For instance, although Yang et al. [28] explored domain constraints in the
problem space, they failed to generate realizable AEs, as their problem-space transformations
caused the apps to crash, mainly because most malware apps cannot run after manipulation.
Moreover, Demontis et al. [16] utilized DexGuard, an Android obfuscation tool, to tamper
with malware apps; however, the generated AEs were unable to significantly evade the target
detectors they examined, as the obfuscation techniques provided by the tool (i.e., available
problem-space transformations) had a limited effect on the features critical for their detectors.

4

62 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Figure 4.2: Illustration of generating AEs in the problem space Z and the feature space X where 𝜓 shows a
mapping function from Z to X. The feature-space perturbations 𝛿1, 𝛿2, 𝛿3, and 𝛿4 correspond to the problem-space
transformations 𝑡1, 𝑡2, 𝑡3, and 𝑡4, respectively. The dashed lines are the decision boundaries that distinguish malware
from benignware. The areas surrounded by solid closed curves represent the realizable problem space and feature
space, which meet problem-space domain constraints ΓZ and feature-space domain constraints ΓX, respectively. 𝑧∗
and 𝑥∗ are realizable AEs but 𝑧′ and 𝑥′ are unrealizable AEs.

4.2.3 Feature-Space realizable AEs
Although some studies [165, 166] argue that impossible perturbations can still be employed
to generate valid problem-space AEs if adversaries have access to the data-processing
pipeline of target systems, there have been several efforts across various domains aimed at
overcoming the limitations of both feature-space norm-bounded AEs and problem-space
realizable AEs by generating feature-space realizable AEs. Simonetto et al. [151] introduced
a generic constraint language to define feature dependencies for botnet and credit risk
detection. Erdemir et al. [161] improved the adversarial robustness of DNN-based models
used for malware, spam, and credit risk detection by using non-uniformed perturbations
based on the PGD attack [148]. Sheatsley et al. [167] presented a formal logic framework to
learn domain constraints from data used in Network Intrusion Detection Systems (NIDSs)
and phishing detection. Teuffenbach et al. [168] employed domain knowledge to group
flow-based features in NIDSs. Sheatsley et al. [152] proposed a domain-constraints-learning
method for NIDSs based on independent features that affect other features. Chernikova et
al. [169] used domain-specific dependencies (e.g., range of feature values) and mathematical
feature dependencies to guarantee the realizability of AEs in NIDSs, botnet detection, and
malicious domain classification. Tong et al. [170] considered so-called conserved features
for improving the robustness of PDF malware detection.
Our work. To the best of our knowledge, we are the first aiming to not only thoroughly
interpret how Android domain constraints (e.g., executability and plausibility of apps) are
represented in the feature space for AMD but also propose a technique for learning and
applying them.

4.3 Interpreting Domain Constraints in the Feature
Space

In the problem space, the domain constraints of Android malware apps are defined as (i)
available transformations, (ii) preserved semantics, (iii) robustness to preprocessing, and (iv)
plausibility [9]; however, we aim to interpret these constraints into a set of new constraints
over the feature values in the feature space. Therefore, this section introduces our novel

4.3 Interpreting Domain Constraints in the Feature Space

4

63

feature-space interpretation of domain constraints for Android malware apps. Before going
into the detailed definitions (Section 5.2.3), we first provide a mathematical background of
realizable AEs in both the problem and feature spaces (Section 4.3.1).

4.3.1 Problem-Space and Feature-Space Realizable AEs
Suppose 𝜓 : Z→ X is a mapping function that transforms each Android app in the problem
space Z into a 𝑑−dimensional feature vector in the feature space X. A malware detector is an
ML-based binary classifier 𝑓 : X→ Y with a discriminant function ℎ : X × Y→ R where
𝑓 (𝑥) = arg max𝑖∈Y ℎ𝑖 (𝑥) determines the label of 𝑥 ∈ X. Specifically, Y = {0, 1} is the label set
with 𝑦 = 0 indicating benign labels and 𝑦 = 1 indicating malicious labels. Each element in the
feature vector 𝑥 ∈ X is typically discrete [7] such as binary representations [14, 96, 123, 171–
173], where 0 indicates the absence and 1, the presence of a specific feature. Generally, AEs
can be generated by modifying 𝑧 ∈ Z through problem-space transformations or modifying
𝑥 ∈ X through feature-space perturbations.
Problem-Space Realizable AEs. In order to generate realizable AEs in the problem space,
the following optimization is solved [9]:

arg min
T

ℎ1 (𝜓(𝑧′ = T(𝑧))) s.t. T(𝑧) ⊨ ΓZ, (4.1)

where T is a sequence of transformations that satisfy the domain constraints defined in
the problem space, ΓZ, such as preserving the malicious functionality of the malware [24].
Feature-Space Realizable AEs. In the feature space, the following optimization is solved [9,
16]:

arg min
𝛿

ℎ1 (𝑥′ = 𝑥 + 𝛿) s.t. 𝛿 ⊨ Ω, (4.2)
where the perturbation vector 𝛿 must satisfy the domain constraints defined in the feature
space, Ω.

Most existing studies on generating feature-space AEs do not consider domain constraints
but instead, adopt the naive norm bound [9] that can lead to AEs being unrealizable. In the
feature space, 𝑥′ = 𝑥 + 𝛿 is a realizable AE if there exists at least one corresponding malware
app 𝑧′ in the problem space (i.e., 𝜓(𝑧′) = 𝑥′) that not only bypasses malware detection but also
satisfies problem-space constraints ΓZ. Figure 4.2 illustrates how adversarial transformations
in the problem space make adversarial perturbations in the feature space. Reconstructing
𝑧′ from 𝑥′ is not possible since 𝜓, i.e., mapping function from Z to X, is neither invertible
nor differentiable [9]. For instance, one of the main challenges in converting 𝑥′, generated
by a gradient-based adversarial attack, to 𝑧′ arises when attempting to back-propagate the
loss gradient through the mapping function that behaves like a non-differentiable layer,
particularly in non-numerical domains such as malware detection [10]. While the inverse
feature mapping problem [9] presents a considerable challenge in the malware domain,
particularly for attackers, defenders are less impacted by this issue because their primary
objective is not to generate real adversarial objects but rather to understand which adversarial
perturbations are feasible within the model’s decision space (i.e., the feature space). To verify
the realizability of 𝑥′, there is no need to directly reconstruct 𝑧′ from 𝑥′ to see if 𝑧′ meets the
domain constraints in the problem space because satisfying the domain constraints in the
feature space is sufficient. In other words, 𝑥′ is realizable if 𝛿 meets the domain constraints in
the feature space because they demonstrate Android malware properties in the feature space.

4

64 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Figure 4.3: The dependency of two units in the app 𝑧 is represented by the dependency of two corresponding
features in the feature representation 𝑥.

4.3.2 Domain Constraints in the Feature Space
Extracting all feature dependencies is not only time-consuming and difficult [174] but
also unnecessary because this could result in misleading dependencies (i.e., spurious cor-
relations [48]) that have an adverse impact on robustness. Thus, we need to identify
the meaningful feature dependencies, which can sufficiently guarantee the domain constraints
in the feature space. To find out which types of feature dependencies are meaningful, we rely
on predefined definitions of domain constraints that have already been formalized within the
problem space [9]. Specifically, here we introduce our new feature-space interpretation for
the four aspects of domain constraints defined in the problem space.

(a) Available perturbations refer to all adversarial perturbations Δ = {𝛿1, 𝛿2, ..., 𝛿𝑛} in the
feature space that ensures 𝑥′ = 𝑥 + 𝛿𝑖 meets domain constraints. Using these perturbations
makes 𝑥′ corresponds to at least one problem-space realizable AE 𝑧′.

Generally, an Android app contains different units (e.g., statements, functions, classes,
and metadata) that provide various functionalities. As shown in Figure 4.3, the presence of a
specific feature in the feature vector depends on the existence of the corresponding unit in
the app. Moreover, the dependencies between multiple units (e.g., SmsManager API and
SEND SMS permission) also indicate that they offer a particular functionality (e.g., sending
messages in Android apps). In the problem space, practical transformations are the ones

4.3 Interpreting Domain Constraints in the Feature Space

4

65

that consider these sorts of dependencies during app modification. For instance, in the code
transplantation technique used to manipulate Android apps [9, 28, 84, 154], an organ (i.e., a
problem-space transformation) is extracted from a donor based on the code dependencies
because an organ must include all codes associated with a certain functionality [106]. In the
problem space, the dependencies between units can be clarified by the System Dependency
Graph [106]; however, these dependencies can be extracted from samples in the feature
space. Therefore, we argue that using feature dependencies is sufficient for interpreting the
domain constraints in the feature space. Specifically, according to the domain constraints
defined in the problem space (i.e., preserved-semantic, robustness-to-preprocessing, and
plausibility constraints), we introduce the following two sets of dependencies over the feature
values in the feature space in (b) and (c).

(b) Perfect feature dependencies refer to the relationships between pairs of features, signi-
fying that both features in each pair of feature dependencies should occur together. Given
a feature-space adversarial example 𝑥′ = 𝑥 + 𝛿𝑖 , the perturbation 𝛿𝑖 ∈ Δ might not satisfy
domain constraints if 𝛿𝑖 does not guarantee all perfect feature dependencies.

The semantic equivalence of two programs (e.g., Android apps) is undecidable [106],
therefore, in the problem space, adversaries satisfy the preserved-semantics constraint by
installing and running the manipulated app 𝑧′ on an Android emulator and performing smoke
testing to make sure that 𝑧′ can be executed without crashing [9, 25, 28, 175]. Similarly, in
the feature space, we should ensure that all perfect feature dependencies corresponding to an
executable app also appear in 𝑥′. Otherwise, if only one of the perfectly dependent features
exists in 𝑥′, 𝑧′ is not a feasible app, as its functionality (e.g., executability) may fail due to
the lack of other dependent units.

(c) Relatively strong feature dependencies refer to the relationships between each individual
feature and the remaining features, highlighting that the feature should appear alongside
at least one other feature that frequently occurs with it. Given a feature-space adversarial
example 𝑥′ = 𝑥 + 𝛿𝑖 , the perturbation 𝛿𝑖 ∈ Δ might not satisfy domain constraints if each
feature in 𝛿𝑖 does not guarantee all relatively strong (including perfect) feature dependencies.

To satisfy the robustness-to-preprocessing constraint in the problem space, it is ensured
that preprocessing operators cannot remove unnecessary content (e.g., unused permissions)
that has been added to 𝑧 during generating 𝑧′ [9]. Similarly, in the feature space, we ensure
that there are no removable added features appearing in 𝑥′ by keeping the features that have a
relatively strong dependency on each added feature. In other words, a specific feature 𝑓 𝑗 in
𝑥′ is regarded as a removable feature that represents an unused unit 𝑢 𝑗 in 𝑧′ when none of
its dependent features appears in 𝑥′. Moreover, to satisfy the plausibility constraint in the
problem space, 𝑧′ is ensured to be plausible under manual inspection [9]. Similarly, in the
feature space, we ensure that 𝑥′ looks plausible when the feature representation is inspected.

It is noteworthy that beyond just preserving the semantics, robustness-to-preprocessing,
and plausibility constraints further require the adversarial example 𝑧′/𝑥′ to be similar to
a realizable app in the problem/feature space. For this reason, in the feature space, we
should ensure that 𝑥′ keeps all features relatively strongly dependent (i.e., the features that
are not necessarily highly dependent, but whose dependencies are stronger than others)
in order to achieve a similar feature representation to that of an executable Android app.

4

66 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

These dependencies indicate the most dependent features for each feature. Considering
relatively strong feature dependencies is sufficient because they capture the most important
feature dependencies. Furthermore, feature dependencies in both perfect and relatively
strong feature dependencies ensure that dependent features appear together and maintain
consistent relationships. This implies that any alteration in one feature must be matched by
corresponding changes in its dependent feature to reflect valid and plausible combinations
within the feature space. For example, if an adversary changes an app’s API level from
30 to 22 while the app still requests permissions relevant only to API level 30, it creates a
mismatch and results in unrealistic adversarial perturbations.

4.4 Learning Feature-Space Domain Constraints
This section introduces our learning-based method for extracting the above-defined domain
constraints in the feature space. Specifically, we rely on feature correlations to identify perfect
feature dependencies, and a graph-based algorithm called Optimum-Path Forest (OPF) to
further identify the rest of the relatively strong feature dependencies. Regression analysis
is also used in situations where it is necessary to understand how changes in dependent
features affect each other. It is noted that OPF is a parameter-independent algorithm [158]
that essentially considers feature dependencies in our problem to partition dependent features
into a cluster.
Preliminaries of Optimum-Path Forest. OPF is an efficient pattern recognition algorithm
based on graph theory [158]. This algorithm reduces a pattern recognition problem to
the partitioning of a graph G = (V,E) derived from input dataset [176]. G is a complete
weighted graph wherein the vertices V are the feature vectors in the input dataset and the edges
E = V × V are undirected arcs that connect vertices. Moreover, each 𝑒𝑖, 𝑗 ∈ E is weighted
based on the distance between the feature vectors of corresponding vertices 𝑣𝑖 and 𝑣 𝑗 (i.e.,
𝑑 (𝑣𝑖 , 𝑣 𝑗)). OPF algorithm works based on a simple hypothesis called transitive property
in which the vertices belonging to the same partition are connected by a chain of adjacent
vertices [176]. This algorithm requires several key vertices P ⊂ V called prototypes that have
been found from V based on various approaches such as probability density function [177].
The OPF algorithm partitions G into different Optimum-Path Trees (OPTs) where each OPT
is rooted at one of the prototypes, through a competitive process among the prototypes
to conquer the rest of the vertices [176]. In general, the complete weighted graph G is
partitioned into several OPTs by finding a path from each 𝑣𝑖 ∈ G to the best prototype 𝑝 ∈ P,
which provides an optimal path with the minimum path cost for 𝑣𝑖 .

4.4.1 Our Learning Method
As depicted in Figure 4.4, our method aims to identify two types of domain constraints
Γ′X = {Υ,Λ}, where Υ and Λ show perfect and relatively strong feature dependencies,
respectively. The study conducted in this chapter utilizes the correlation coefficient to identify
feature dependencies because, given the types of dependencies outlined in Section 5.2.3,
using this measurement is sufficient for extracting our desired feature dependencies.
(a) Identification of perfect feature dependencies Υ. Based on the types of features being
analyzed, a suitable correlation coefficient should be chosen to measure the correlation
between every pair of features. The dependency between a pair of features is perfect if the
correlation coefficient between them equals 1. We create Υ, the set of all perfect feature

4.4 Learning Feature-Space Domain Constraints

4

67

Figure 4.4: Overview of our method for learning domain constraints from data based on meaningful feature
dependencies. 𝜑𝑎,𝑏 shows correlation coefficient between 𝑓𝑎 and 𝑓𝑏 , and 𝑐 𝑓𝑎 represents the path cost from 𝑓𝑎 to
the best prototype identified by solving equation (4.4).

dependencies based on the identified perfect correlations. Note that each B𝑖 ∈ Υ includes all
features in F that are perfectly correlated where F is the feature set of X.
(b) Identification of relatively strong feature dependencies Λ. Based on our explanation
in Section 5.2.3, considering only the perfect feature dependencies is insufficient for ensuring
that feature-space AEs closely resemble the feature representations of realizable Android apps.
For this reason, we adopt OPF to further learn other relatively strong feature dependencies
beyond the perfect ones. The proposed version of OPF partitions F into the different groups
A𝑖 where the features that are more interdependent belong to the same cluster. As shown in
Figure 4.4, to construct OPF, we first create a complete weighted graph G = (V,E) where
G = F, and E = F × F includes the edges between each pair of features (𝑓𝑎, 𝑓𝑏) weighted by
correlation coefficient. Then, from each set of very strongly correlated features (i.e., 𝜑 > 0.9),
we randomly select one feature as a prototype. This is due to the fact that highly correlated
features can naturally indicate a potential cluster, making them suitable for clustering the
remaining features. Finally, G is partitioned based on the typical method used in the OPF
algorithm which is slightly modified, particularly its connectivity and cost functions, because
here, the weights of edges are specified based on the correlation coefficient instead of distance
as in the original algorithm. Suppose 𝜋 𝑓𝑏 , 𝑓𝑎 = ⟨ 𝑓𝑏, ..., 𝑓𝑘 , 𝑓𝑎⟩ is a path from 𝑓𝑏 to 𝑓𝑎. In the
modified OPF algorithm, a connectivity function 𝑓𝑚𝑖𝑛, which is a smooth function, assigns a

4

68 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

path cost to each path as follows:

𝑓𝑚𝑖𝑛 (⟨ 𝑓𝑏⟩) =
{

1 if 𝑓𝑏 ∈ P
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑚𝑖𝑛 (𝜋 𝑓𝑏 , 𝑓𝑘 .⟨ 𝑓𝑘 , 𝑓𝑎⟩) = 𝑚𝑖𝑛{ 𝑓𝑚𝑖𝑛 (𝜋 𝑓𝑏 , 𝑓𝑘), 𝜑(𝑓𝑘 , 𝑓𝑎)}
(4.3)

where 𝜋 𝑓𝑏 , 𝑓𝑘 .⟨ 𝑓𝑘 , 𝑓𝑎⟩ shows the connection of the edge ⟨ 𝑓𝑘 , 𝑓𝑎⟩ to the path 𝜋 𝑓𝑏 , 𝑓𝑘 . As shown
in equation (4.3), the path cost of 𝜋 𝑓𝑏 , 𝑓𝑎 is the minimum weight of edges along the path. The
modified OPF algorithm aims to find an optimal path for each 𝑓𝑎 ∈ F by maximizing 𝑓𝑚𝑖𝑛
through the following cost function:

𝐶𝑜𝑠𝑡 (𝑓𝑎) = max
∀ 𝑓𝑝∈P, 𝜋 𝑓𝑝 , 𝑓𝑎

{ 𝑓𝑚𝑖𝑛 (𝜋 𝑓𝑝 , 𝑓𝑎)}. (4.4)

where P shows the prototype set. Optimum-path trees constructed by the OPF algorithm
let us determine other relatively strong correlations because an OPT includes a subset of
all features in the feature space (i.e., A ⊂ F) where each feature 𝑓𝑎 ∈ A is more dependent
on other features in A as compared to the rest of features F\A. According to the specified
OPTs, we create Λ which is the set of all relatively strong feature dependencies. Each A𝑖 ∈ Λ
contains all the features in F that are relatively strongly correlated.

Note that we also demonstrate that our OPF-based identification method is better than a
simple baseline that uses a fixed threshold to keep highly correlated features—see results in
Section 4.6.4.
Regression Analysis. For non-binary feature spaces used by some detectors like Ma-
MaDroid [95], where its features represent Markov transition probabilities between API
calls, we need to not only specify dependent features but also understand how variations in
one feature affect others. Specifically, to show how adversarial perturbations in feature 𝑓𝑎
influence feature 𝑓𝑏, we fit a regression model with 𝑓𝑎 as the independent variable and 𝑓𝑏 as
the dependent variable. This model helps predict feasible values of 𝑓𝑏 based on 𝑓𝑎, ensuring
𝑓𝑏 looks representative of feasible apps.

4.5 Applying Feature-Space Domain Constraints
This section explores two approaches to demonstrate how our learned domain constraints
can be applied to counter evasion attacks.

4.5.1 Adversarial Example Detection
According to our learned domain constraints, we propose a technique to identify AEs
in advance, before engaging the ML model constructed for AMD. Specifically, we first
introduce a way to validate how our learned feature-space domain constraints can represent
the domain constraints of feasible apps. To this end, we define a new metric called Constraints
Satisfaction Rate (CSR) to measure the ratio of the features that satisfy our learned domain
constraints to all the features of a particular sample. By satisfying our learned domain
constraints, we mean that one specific feature appears simultaneously with at least one of
its relatively strong dependent features and all its perfectly dependent features specified in

4.5 Applying Feature-Space Domain Constraints

4

69

Figure 4.5: Illustration of generating a feature-space realizable AE 𝑥∗1 by adding missed meaningful dependent
features 𝜂 to unrealizable AE 𝑥′1. The area surrounded by the black closed curve represents the actual realizable
feature space determined by the complete domain constraints ΓX, while the blue closed curve area represents the
realizable feature space determined by our learned domain constraints Γ′X. Our learned realizable space is a subset
of the actual realizable space due to the limitation of learning from finite data.

Λ and Υ, respectively. Then, we use CSR as a criterion to distinguish AEs from feasible
apps, such that an input app is considered AE if the CSR of its feature representation falls
below a threshold. This criterion aids in confronting evasion attacks (e.g., [13, 17, 26]) that
generate AEs through norm-bounded perturbations without considering the properties of
feasible apps. For further details on these attacks, refer to Section 4.2.1.

Note that we do not expect the feature representation of feasible apps to fully satisfy our
learned domain constraints because as shown in Figure 4.5, our learned domain constraints
are indeed a subset of true feature-space domain constraints. This is mainly because they are
learned from a finite set of samples that might not fully represent the true distribution of all
existing apps.

4.5.2 Adversarial Hardening
This defense approach emphasizes integrating AEs into the training process of the classifier
alongside the original training set [150]. In this chapter, we introduce two defense tech-
niques based on adversarial hardening, which are proposed by adapting typical adversarial
training [148] and adversarial retraining [162] approaches to employ our learned domain
constraints.

4.5.2.1 Adversarial Training with Domain Constraints
AT is a well-established defense strategy against AEs that is widely used in the context of
Android malware [14, 17, 24, 25, 28, 154]. This defense strategy proactively incorporates
the generation of AEs into the training phase of ML models [178]. It solves the following
min-max optimization for AT [150, 179]:

min
𝜃

E(𝑥𝑖 ,𝑦𝑖)∼D [max
𝛿⊨{Ω,Γ′X }

L(𝑓𝜃 (𝑥 + 𝛿), 𝑦)] (4.5)

where L denotes the loss function and 𝜃 denotes the parameters of the Android malware
detector 𝑓𝜃 . Moreover, E is the expected value of inner optimization according to (𝑥𝑖 , 𝑦𝑖) ∼ D
indicating training data samples drawn from the distribution D. As shown in equation 4.5,
the adversarial perturbations 𝛿, which is found by solving the inner optimization, must
satisfy not only initial feature space constraints (i.e., 𝛿 ⊨ Ω), which is often norm-bounded

4

70 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Algorithm 4.1: Applying our feature-space domain constraints
Input: Att.: a feature-space adversarial attack; 𝛿: an adversarial perturbation found

by Att.;
Γ′X = {Υ,Λ}: feature-space domain constraints.
Output: 𝛿∗, a realizable adversarial perturbation.

1 𝛿∗ ← 𝛿.
2 foreach feature 𝑓 𝑗 in 𝛿 do
3 if there exists B𝑘 ∈ Υ including 𝑓 𝑗 then
4 foreach feature 𝑓𝑏 ∈ B𝐾 do
5 Load the regression model M for 𝑓 𝑗 → 𝑓𝑏 if it exists; otherwise, build it.
6 Add M(𝑓𝑏) into 𝛿∗.
7 end
8 end
9 Find A𝑖 ∈ Λ containing 𝑓 𝑗

10 Select 𝑓𝑎 ∈ A𝑖\{ 𝑓 𝑗 }, which appears the most important for Att.
11 Load the regression model M for 𝑓 𝑗 → 𝑓𝑎 if it exists; otherwise, build it.
12 Add M(𝑓𝑎) into 𝛿∗.
13 end
14 return 𝛿∗

constraints but also our learned feature-space domain constraints (i.e., 𝛿 ⊨ Γ′X) because as
depicted in Figure 4.5, satisfying Γ′X can turn an unrealizable AE into a realizable AE. Lines
2 to 13 in Algorithm 4.1 show how an adversarial perturbation 𝛿 becomes realizable by
adding dependent features. Note that in Line 10 of Algorithm 4.1, we select a feature from
A𝑖\{ 𝑓 𝑗 } into 𝛿∗ that seems the most important for the input attack Att., e.g., the feature
associated with the highest gradient provided by a gradient-based attack. In Lines 5 (and 11),
we construct a regression model M using the training set, with 𝑓 𝑗 as the independent variable
and 𝑓𝑏 (and 𝑓𝑎) as the dependent variable. M is used to estimate plausible values for 𝑓𝑏 (and
𝑓𝑎) based on 𝑓 𝑗 . To minimize the computational overhead of Algorithm 4.1, we cache new
regression models, eliminating the need to rebuild them for similar cases. It is important to
note that regression models are employed for estimating dependent feature values only when
the input feature space is non-binary. For a binary feature space, it is sufficient just to add the
dependent features (i.e., skip Lines 5 and 11 in Algorithm 4.1 and adjust Lines 6 and 12 to
include 𝑓𝑏 or 𝑓𝑎 in 𝛿∗).

Over the past years, Projected Gradient Descent (PGD) [148] has been extensively applied
in the field of malware detection [24, 25, 35, 180]. The study conducted in this chapter
uses PGD adapted for the Android malware domain [24] to find 𝛿. We adopt the 𝐿1 norm
bound as the perturbation bound for PGD. This attack, which is described in Algorithm 4.2,
has been modified slightly for the purpose of of this chapter. Specifically, we follow the
suggestion in [24] and incorporate a normalization step to address the small-gradients
issue, which may occur especially when the feature space is binary. This step involves
updating the perturbation 𝛿 in the steepest gradient direction, which is computed as the unit
vector 𝑒 with 𝑒 𝑗∗ = 𝑠𝑖𝑔𝑛(𝑔 𝑗∗) for 𝑗∗ = arg max1≤ 𝑗≤𝑑 |𝑔 𝑗 | [181], where 𝑔 𝑗 is the value of

4.5 Applying Feature-Space Domain Constraints

4

71

Algorithm 4.2: PGD Attack under 𝐿1 bounds and our feature-space domain
constraints

Input: (𝑥, 𝑦): a malware sample where 𝑥 and 𝑦 is the feature vector of the sample
and its label; 𝑓𝜃 : target malware detector with parameters 𝜃; L: loss function
of 𝑓𝜃 ; 𝑘: steps; 𝛼: step-size; 𝑞: percentile; 𝜖 : the 𝐿1 norm perturbation
bound; Γ′X: our learned domain constraints; F: the feature set characterizing
the dimensions of feature space X

1 . Output: 𝑥′, the perturbed samples.
2 𝛿← a vector of 0 with length 𝑥.
3 foreach 𝑖 = 1 to 𝑘 do
4 𝑔 ← ∇𝛿𝑖L(𝑓𝜃 (𝑥 + 𝛿𝑖), 𝑦).
5 𝑒 ← {𝑟 (𝑔 𝑗) if 𝑔 𝑗 ≥ 𝑃𝑞 (𝑔) else 0|1 ≤ 𝑗 ≤ 𝑑} where 𝑟 (𝑔 𝑗) is a function that

rounds the value 𝑔 𝑗 up to the nearest integer, 𝑑 is the dimension of 𝑥 and 𝑃𝑞 (𝑔)
is the 𝑞-th percentile of 𝑔.

6 𝛿𝑖 ← 𝛿𝑖−1 + 𝛼 × 𝑒.
7 𝛿𝑖 ← 𝜖 .

𝛿𝑖
max{ 𝜖 ,∥𝑥 ∥1 } .

8 end
9 if F is composed of discrete features then

10 𝐶,𝑈 ← Select top-𝜖 features in 𝛿 with highest values, and their corresponding
values.

11 𝛿, 𝛿′ ← two vectors of 0 with length 𝑥.
12 while ∥𝛿∥1 ≤ 𝜖 do
13 𝑐 ← Remove top-1 feature from 𝐶.
14 𝛿′𝑐 ← 𝑈 [𝑐].
15 Apply Algorithm 4.1 to ensure 𝛿′ satisfies Γ′X.
16 if ∥𝛿∥1 + ∥𝛿′∥1 ≤ 𝜖 then
17 𝛿← 𝛿 + 𝛿′.
18 end
19 𝛿′ ← a vector of 0 with length 𝑥.
20 end
21 end
22 𝑥′ ← 𝑥 + 𝛿.
23 return 𝑥′

the 𝑗-th index of the gradient 𝑔 = ∇𝛿𝑖L(𝑓𝜃 (𝑥 + 𝛿𝑖), 𝑦) computed in 𝑖-th iteration of PGD,
and 𝑑 is the dimension of sample 𝑥. In this chapter, we consider 𝑔 𝑗 rather than |𝑔 𝑗 | since
our attacker can only add features for generating AEs. Moreover, as shown in Line 4 of
Algorithm 4.2, we adopt the proposed solution from [181] to address the inefficiency of
updating a single feature by updating multiple features simultaneously. We use the projection
operator demonstrated in [161] to project perturbation 𝛿𝑖 into 𝐿1 norm bound with the size
of 𝜖 (Line 7 in Algorithm 4.2). Note that as stated in [148], this attack lets 𝛿 be continuous
during the optimization process. However, as shown in Lines 9 to 19, if the input feature
space is discrete, we map 𝛿 to the discrete feature space by considering at most 𝜖 indices in 𝛿

4

72 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

(including the top features with the highest values and their dependent features specified by
Algorithm 4.1) before incorporating 𝛿 into the input malware sample. We ensure that the
process of adding each feature, including its dependent features, from the top-𝜖 features of
the initially identified 𝛿 to the final 𝛿 is carried out in a manner that respects the perturbation
bound 𝜖 unless the feature should not be included. Our mapping approach makes 𝛿 a
realizable adversarial perturbation; however, considering only the top-𝜖 indices in 𝛿 might
lead to creating an unrealizable adversarial perturbation.

It is important to note that besides PGD, various other methods, especially those designed
for discrete feature spaces [182, 183], can be used in the inner maximization problem of equa-
tion 4.5 to identify adversarial perturbations. In Appendix 4.A, we examine Sparse-RS [12],
which was originally tested on AMD, instead of PGD, and evaluate its performance. More-
over, since we are focused on defense, the goal of Algorithm 4.1 is not to generate realizable
AEs that mislead malware classifiers but rather to convert adversarial perturbations produced
during robust optimization into realizable ones. Although incorporating dependent features
in these perturbations may reduce misclassification confidence compared to the original
adversarial perturbations, our preliminary analysis demonstrates that the misclassification
confidence of the feature representations of malware samples adversarially modified by our
approach is still significantly higher than that of the original malware samples, showcasing
their effectiveness in AT.

4.5.2.2 Adversarial Retraining with Domain Constraints
This adversarial hardening method directly uses AEs to augment the training data. Suppose
D𝑚 = {(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ X, 𝑦𝑖 = 1, 𝑖 = 1, ..., 𝑘} shows a fraction of all the malware samples
in the input training set D. In adversarial retraining, we first construct an adversarial set
D𝑎𝑚 = {(𝑥′

𝑖
, 𝑦𝑖) |𝑥𝑖 ∈ X, 𝑦𝑖 = 1, 𝑖 = 1, ..., 𝑘} where each 𝑥′

𝑖
is the adversarial example of 𝑥𝑖

that is generated by using an evasion attack. Then, we use D′ = D ∪ D𝑎𝑚, the mixed set that
is augmented with AEs, to retrain the ML models.

The study conducted in this chapter considers our learned domain constraints in the
evasion attack that is supposed to prepare D𝑎𝑚 because we aim to augment D with realizable
AEs. In fact, every adversarial perturbation 𝛿 generated by the evasion attack must satisfy
both the feature-space constraints and our learned domain constraints (i.e., 𝛿 ⊨ Ω and 𝛿 ⊨ Γ′X).
Note that to adhere to our learned domain constraints, the evasion attack should add an
adversarial feature alongside one of its relatively strong dependent features, as well as all
its perfectly dependent features specified in Λ and Υ, respectively. The values of the newly
added dependent features are determined based on the adversarial features using a regression
model M, similar to the method described in Algorithm 4.2.

4.6 Experimental Results
In this section, we empirically evaluate the performance of our learned domain constraints in
confronting evasion attacks aimed at tricking AMD. Specifically, our experiments aim to
answer the following research questions:

RQ1. Can our learned domain constraints be applied to counter evasion attacks that generate
AEs without ensuring their feasibility? (Section 4.6.2)

4.6 Experimental Results

4

73

RQ2. Can our learned domain constraints help AT enhance the robustness of the detectors
against realistic evasion attacks? (Section 4.6.3)

RQ3. Can our OPF-based method effectively extract meaningful feature dependencies?
(Section 4.6.4)

RQ4. Can our feature-space realizable AEs outperform the conventional problem-space
realizable AEs? (Section 4.6.5)

All the experiments have been performed on a Debian Linux workstation with an Intel
(R) Core (TM) i7-4770K, CPU 3.50 GHz, 32 GB RAM, and GPU GeForce RTX 3080 Ti.

4.6.1 Experimental Setup
Threat Models and Attacks. The evasion attacks considered in our experiments generate
AEs based on the threat model that is described with three attributes:

• Adversary’s Goal. The goal of the adversary is to trigger the Android malware
detector to misclassify the adversarial (malware) example as benign.

• Adversary’s Knowledge. The adversary may have perfect knowledge (PK), limited
knowledge (LK), or zero knowledge (ZK) about the target model, including its learning
algorithm, training data, feature space, and parameters. In other words, in PK, LK, and
ZK attacks, the target model is considered as a white-, gray-, and black-box model by
the adversary, respectively. In our experiments, we assess the efficacy of our approach
using whole three types of attacks.

• Adversary’s Capability. The adversary can generate AEs either in the feature
space by perturbing feature representations under feature-space constraints, or in
the problem space by applying a sequence of transformations under domain con-
straints [9]. Here we follow the common practice of only considering feature-addition
transformations/perturbations [9, 17, 84].

To explore RQ1, we use three evasion attacks, GenDroid [26], ShadowDroid [13],
and Grosse attack [17], which generate AEs under ZK, LK, and PK settings, respectively.
These attacks generate adversarial perturbations irrespective of domain constraints, raising
doubts about the realizability of the resulting AEs. Moreover, our work considers a realistic
problem-space attack, known as PiAttack2 [9], to empirically investigate different RQs
stated in Section 4.6. PiAttack is a white-box attack that generates problem-space realizable
AEs by applying effective problem-space transformations (i.e., code snippets called gadgets
extracted from donor apps) specified by feature-space perturbations. Note that PiAttack can
be regarded as an adaptive attack, as it inherently knows our domain constraints. We refer
the reader to Appendix 4.B for the technical details of PiAttack.

As a comparison, we also consider the well-known PGD attack introduced in Section 4.5,
which directly adds perturbations in the feature space constrained by specific 𝐿1 norm bounds.
Specifically, we use PGD for both AT and attacking target detectors. Furthermore, in the
experiments involving adversarial retraining (i.e., Section 4.6.4 and Section 4.6.5), we have
2PiAttack is also referred to as the PK-Greedy attack.

4

74 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

developed a feature-space attack called PK-Feature, which operates in a manner similar to
PiAttack within the feature space. See Appendix 4.C for more details about this attack.
Target Detector. We use the well-known DREBIN-Support Vector Machine (SVM) [96] as
a baseline target Android malware detector. This detector builds a linear SVM in a binary
feature space consisting of eight types of features (e.g., permissions and restricted API calls).
The regularization hyperparameter of the implemented linear SVM is 𝐶 = 1 [9]. It is worth
mentioning that for AT, we also consider DREBIN-Deep Neural Network (DNN) [154]
consisting of four layers with the dimensions as 10, 000 × 1, 024 × 512 × 2. We also
take into account another DNN-based malware detector called DroidAPIMiner-DNN. This
malware detector, which leverages the DroidAPIMiner [123] feature representation (i.e., a
binary feature representation solely constructed from API calls appearing in Android apps),
consists of four layers with the dimensions as 337 × 256 × 128 × 2, where 337 represents
the dimension of our samples represented based on DroidAPIMiner feature representation.
Given the potential limitations in DREBIN and DroidAPIMiner, as discussed in [184]
and [185] respectively, we consider a more advanced malware detector called RAMDA-DNN.
This new malware detector, built upon a robust feature representation derived through
Autoencoder [159], exhibits an architecture similar to DroidAPIMiner but instead uses 269
in the input layer, showing the dimensions of samples. All DREBIN-DNN, DroidAPIMiner-
DNN, and RAMDA-DNN employ ReLU activation functions in their hidden layers and a
Sigmoid activation function in their output layer. We train these malware classifiers for 100
epochs with a batch size of 1024.

While binary feature representation is common in the malware domain, we consider
another family of malware detectors called R-PackDroid-DNN, which operates on a discrete,
non-binary feature representation to demonstrate the broad applicability of our method. This
detector utilizes the R-PackDroid-DNN [160] feature representation, where each feature
represents the frequency of a specific type of system API component, such as a package,
class, or method, within Android apps. The R-PackDroid-DNN model is composed of four
layers with dimensions 2155×1024×512×2, where 2155 corresponds to the dimensionality
of the samples, based on the R-PackDroid feature representation derived from the classes of
system API components employed in the apps.
Dataset. We use a public Android dataset [9] including ≈ 152𝐾 Android apps collected
from AndroZoo [125]. In this dataset, an app is defined as malware if it is detected by
4+ VirusTotal AVs, and as a benign sample, if no AVs detect it. We randomly select
a test set of 30𝐾 samples, comprising 25𝐾 benign and 5𝐾 malware samples, while the
remaining ≈ 122𝐾 samples, including ≈ 111𝐾 benign and ≈ 11𝐾 malware samples, are
designated as the training set. Note that we consider a fair proportional distribution between
benign and malware samples to mitigate spatial bias [128]. To assess DREBIN, samples
are represented based on the DREBIN feature representation [96], a widely used binary
feature set in recent studies [9, 12, 20, 24, 84, 154]. Since the DREBIN feature space is a
very high-dimensional (i.e., over 1𝑀 features) but sparse feature space, with a significant
amount of redundant features impacting DREBIN’s performance [184], we select the 10𝐾
most distinguishing features following the recommendations from previous studies [16, 25].
We perform feature selection and feature dependency extraction solely on the training set,
preventing the data-snooping pitfall [48]. To measure the correlation between every pair
of features, which is crucial for extracting meaningful feature dependencies, we use phi

4.6 Experimental Results

4

75

Figure 4.6: CSR of AEs generated by the domain-constraint-aware attacks, PiAttack vs. the domain-constraint-
agnostic attacks, PGD, when they target DREBIN-DNN.

coefficient [186] because the feature space of target detectors considered in our evaluation
consists of binary features. To evaluate the adversarial robustness of different Android
malware detectors, we randomly select 1𝐾 malware samples from the test set, representing
diverse malware families, to generate the AEs.
Evaluation Metrics. For evaluating the malware detectors, we consider Accuracy (Acc) as
well as True Positive Rate (TPR) and False Positive Rate (FPR). Specifically, we calculate
clean Acc on benign and malware examples for model utility and robust Acc on adversarial
malware examples for robustness.

4.6.2 Evaluating Our Learned Domain Constraints
To answer RQ1, we first validate the utility of our learned domain constraints for representing
Android malware properties by empirically evaluating if they can help to distinguish realizable
AEs from unrealizable AEs. To this end, we demonstrate how the added features in AEs
generated by different attacks on the DREBIN-DNN, which is based on standard training,
can satisfy our learned domain constraints. Specifically, we consider two attacks, i.e., the
domain-constraint-aware attack, PiAttack, and the domain-constraint-agnostic attack, PGD.
Both attacks are bounded by the 𝐿1 norm 𝜖 = 30. We calculate CSR defined in Section 4.5.1
for the AEs successfully generated by both attacks. Figure 4.6 demonstrates that AEs
generated by the realistic attack can better satisfy our learned domain constraints than the
unrealistic attack. Specifically, the average CSR of AEs generated by PiAttack is 73.8%, and
that of the AEs generated by PGD is only 44.6%. The relatively high CSR results related
to PiAttack confirm that our extracted feature dependencies can adequately represent the
domain constraints. Note that we expect that using a larger number of training samples
would further improve the results.

Our empirical evaluation suggests that it is possible to differentiate realizable AEs from
unrealizable AEs by setting a CSR threshold. Specifically, we consider the AEs above
this CSR threshold as realizable AEs and otherwise, unrealizable AEs. Here we calculate
the CSR for each example based on all its features rather than only the added adversarial
features because, in practice, it is not known which of all features are added by an attack.
Figure 4.7 shows the results with varied CSR thresholds and 𝜖 bounds. As can be seen, the

4

76 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Figure 4.7: Differentiating realizable AEs generated by PiAttack from unrealizable AEs generated by PGD based on
our learned domain constraints when the attacks target DREBIN-DNN. Results are reported for various 𝐿1 norm
bounds.

CSR threshold should be high enough to differentiate realizable AEs from unrealizable AEs.
However, the CSR should not be set too high because our learned domain constraints may
not perfectly represent the actual domain constraints. In addition, the differentiation is easier
when the 𝜖 bounds are high (e.g., 𝜖 = 20 and 𝜖 = 30). Note that a lower 𝜖 requires a higher
threshold for optimal accuracy. This is because a lower 𝜖 implies fewer perturbed features,
which means more features remain the same as the original features, leading to a higher CSR
baseline.

Finally, we assess our defense, introduced in Section 4.5.1, to show the impact of our
learned domain constraints on identifying AEs generated by three evasion attacks: GenDroid,
ShadowDroid, and Grosse Attack, whose resulting AEs may not be realizable. Specifically,
we prepare an evaluation set comprising 5𝐾 benign samples and 1𝐾 malware samples
randomly selected from the test set. Depending on the attack under investigation, AEs
of malware samples generated by GenDroid, ShadowDroid, or Grosse Attack targeting
DREBIN-DNN are also included in the evaluation set. All attacks are constrained by an 𝐿1
norm bound of 𝜖 = 30 for AE generation. Furthermore, our preliminary evaluation indicates
that setting the CSR threshold at 92% can result in high detection rates of AEs. Table 4.1
demonstrates the capability of our proposed AE detection method to effectively identify AEs.
It is worth noting that utilizing a smaller CSR threshold can decrease the occurrences of
false detections, albeit at the expense of reducing AE detection rates.

Table 4.1: TPR and FPR of the proposed AE detection method against various evasion attacks.

Attack TPR FPR

GenDroid 97.5% 6.9%
ShadowDroid 95.2% 4.3%
Grosse Attack 75.4% 6.9%

4.6 Experimental Results

4

77

RQ1. Can our learned domain constraints be applied to counter evasion attacks that
generate AEs without ensuring their feasibility?
Yes, because our learned domain constraints are capable of distinguishing
between realizable AEs and unrealizable AEs.

4.6.3 Evaluating Our Defense
In order to answer RQ2 stated in Section 4.6, this section empirically evaluates our defense,
which is based on AT with realizable AEs generated by considering feature-space domain
constraints, as introduced in Section 4.5.2.1. Specifically, DREBIN-DNN, DroidAPIMiner-
DNN, RAMDA-DNN, and R-PackDroid-DNN are trained with different strategies: standard
training indicating w/o defense, AT with unrealizable AEs, and our AT with realizable
AEs. We also consider a state-of-the-art AT strategy [161] that relies on non-uniform
perturbations, denoted as AT-Non-Uniform-Perturbations in our experiment. We refer the
reader to Appendix 4.D for further details about the AT-Non-Uniform-Perturbations approach.
For all three AT approaches, PGD [24] is adopted to generate AEs in every training epoch.
Specifically, half of the training malware samples are used to generate AEs and the rest
remain unmodified. To generate realizable AEs in the R-PackDroid feature space, we use
random forest regression, which can capture the complex relationships, to build the regression
models mentioned in Algorithm 4.1. Our preliminary evaluation shows that PiAttack requires
adding an average of 30 new features to achieve a successful AE in attacking DREBIN-DNN,
6 new features for DroidAPIMiner-DNN, and 15 new features for both RAMDA-DNN and
R-PackDroid-DNN. Therefore, we adopt 𝐿1 norm bound with 𝜖 = 30 for DREBIN-DNN,
𝜖 = 6 for DroidAPIMiner-DNN, and 𝜖 = 15 for both RAMDA-DNN and R-PackDroid-DNN.
It is worth emphasizing that the perturbation bounds for all AT approaches are the same.
Moreover, since AT uses minibatch Stochastic Gradient Descent to train DNN models, there
is inherent randomness in the selection of samples, particularly malware samples, in each
batch. To account for this randomness and reduce bias, we perform the experiment across
five trials. This involves repeating the experiments five times and reporting the average
results for both the model’s performance on clean data and its adversarial robustness.

Table 4.2 shows the performance of different detectors on clean samples and Figure 4.8
reports their robustness. For robustness, we test both the unrealistic attack, PGD, and
the realistic attack, PiAttack, and vary the 𝜖 values for both attacks. Considering large
perturbation bounds beyond norm-bounded perturbations can provide insights into the
detector’s performance against realistic attacks, which normally may succeed with large
perturbations. We make sure that the AEs are generated from the malware samples that
were correctly detected by malware detectors. As can be seen, in general, different defenses
yield similar clean performance (Table 4.2) but different robustness (Figure 4.8). For
DREBIN-DNN, our defense achieves the best robustness with an accuracy of 92.7%, thus
surpassing the performance of AT-Unrealizable AEs and AT-Non-Uniform-Perturbations for
𝜖 = 30. Specifically, for larger values of 𝜖 , the improvement of our proposed approach over
other robust detectors, especially over AT-Non-Uniform-Perturbations slightly increases. For
DroidAPIMiner-DNN, RAMDA-DNN, and R-PackDroid-DNN, our defense is still the best,
e.g., 59.9% vs. 43.3% for AT-Non-Uniform-Perturbations at 𝜖 = 6 when the target detector
is DroidAPIMiner, 73.5% vs. 62.4% for AT-Non-Uniform-Perturbations at 𝜖 = 15 when the

4

78 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

(a) DREBIN-DNN

30 60 90
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
iA

tta
ck

W/O Defense
AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(b) DREBIN-DNN

30 60 90
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
G

D W/O Defense
AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(c) DroidAPIMiner-DNN

6 10 15
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
iA

tta
ck W/O Defense

AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(d) DroidAPIMiner-DNN

6 10 15
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
G

D W/O Defense
AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(e) RAMDA-DNN

15 30 45
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
iA

tta
ck W/O Defense

AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(f) RAMDA-DNN

15 30 45
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
G

D W/O Defense
AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(g) R-PackDroid-DNN

15 30 45
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
iA

tta
ck W/O Defense

AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

(h) R-PackDroid-DNN

15 30 45
0

20

40

60

80

100

R
ob

us
t A

cc
 (%

) a
ga

in
st

 P
G

D W/O Defense
AT-Unrealizable-AEs
AT-Non-Uniform-Perturbations
AT-Realizable-AEs (ours)

Figure 4.8: The adversarial robustness of different detectors against both an unrealistic attack (PGD) and a realistic
attack (PiAttack). Results are averaged over five trials. DREBIN-DNN, DroidAPIMiner-DNN, and RAMDA-DNN
operate on binary feature spaces, whereas R-PackDroid-DNN operates on a non-binary feature space.

4.6 Experimental Results

4

79

Table 4.2: The average model utility of different malware detectors based on five trials. DREBIN-DNN,
DroidAPIMiner-DNN, and RAMDA-DNN operate on binary feature spaces, whereas R-PackDroid-DNN operates
on a non-binary feature space.

Detector Defense TPR FPR Clean Acc

DREBIN-DNN

W/O Defense 81.0% 0.4% 96.4%
AT-Unrealizable-AEs 79.6% 0.4% 96.2%
AT-Non-Uniform-Perturbations 81.2% 0.4% 96.5%
AT-Realizable-AEs (ours) 81.0% 0.4% 96.3%

DroidAPIMiner-DNN

W/O Defense 77.2% 1.0% 95.4%
AT-Unrealizable-AEs 76.1% 1.0% 95.2%
AT-Non-Uniform-Perturbations 74.5% 1.0% 94.9%
AT-Realizable-AEs (ours) 75.1% 1.0% 95.0%

RAMDA-DNN

W/O Defense 86.1% 0.9% 96.9%
AT-Unrealizable-AEs 84.9% 0.8% 96.8%
AT-Non-Uniform-Perturbations 85.3% 0.9% 96.7%
AT-Realizable-AEs (ours) 84.0% 0.9% 96.6%

R-PackDroid-DNN

W/O Defense 80.4% 0.9% 95.9%
AT-Unrealizable-AEs 77.7% 1.1% 95.4%
AT-Non-Uniform-Perturbations 77.4% 1.0% 95.4%
AT-Realizable-AEs (ours) 78.0% 1.0% 95.5%

target detector is RAMDA-DNN, and 28.5% vs. 25.4% for AT-Non-Uniform-Perturbations
at 𝜖 = 15 when the target detector is R-PackDroid-DNN. Figure 4.8 also demonstrates
that evaluating detectors against unrealistic attacks may not accurately reflect the actual
robustness against realistic attacks. As an example, with DREBIN-DNN as the target detector
at 𝜖 = 30, it would slightly overestimate the robustness of AT-Unrealizable AEs but largely
underestimate the robustness of AT-Non-Uniform-Perturbations and our AT-Realizable AEs.

RQ2. Can our learned domain constraints help AT enhance the robustness of the
detectors against realistic evasion attacks?
Yes, incorporating our learned domain constraints provides AT with feature-
space realizable AEs, which are more effective than AT with feature-space
unrealizable AEs.

4.6.4 Evaluating Our OPF-based Method
In this experiment, we aim to answer RQ3 stated in Section 4.6 by validating the ability
of OPF to extract meaningful feature dependencies. We compare the proposed OPF-based
method with a straightforward baseline method that is based on threshold clustering (TC). For
a specific feature 𝑓𝑎, TC exclusively chooses the dependent features from its top-N dependent
features. As a sanity check, we also report the results for TC with bottom-N dependent
features, where the least dependent features are used. This experiment specifically compares
the adversarial robustness of DREBIN-SVM retrained based on the defense introduced in

4

80 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Section 4.5.2.2 by changing 500 malware samples of the training data set to AEs when
OPF- or TC-based approach is used to make them realizable. Note that for re-training
DREBIN-SVM with AEs, we use PK-Feature under our learned domain constraints. Here
we measure the robustness of different augmented DREBIN-SVMs against transferable
problem-space realizable AEs generated by PiAttack using the original DREBIN-SVM as
the surrogate detector. This is because generating problem-space AEs directly on different
augmented DREBIN-SVMs in a white-box setting is time-consuming. Moreover, we
make sure that the AEs are generated from the malware samples correctly detected by all
augmented DREBIN-SVMs, and the results are calculated on successful AEs for the original
DREBIN-SVM.

Table 4.3 shows that the clean accuracy for all three detectors is comparable. For
robustness, although the TC method confirms the effectiveness of considering feature
correlations in identifying feature dependencies that enhance adversarial robustness, our
proposed OPF method surpasses it (82.9% vs. 69.4% under Top-80). In contrast, as expected,
using bottom-N features leads to significantly worse results. It is also worth mentioning that
the TC method requires careful tuning (e.g., via linear search) of the hyperparameter 𝑁 to
achieve the best performance but our OPF approach does not.

RQ3. Can our OPF-based method effectively extract meaningful feature dependen-
cies?
Yes, OPF notably outperforms the baseline that simply selects top-N dependent
features.

4.6.5 Feature-Space Realizable AEs vs. Problem-Space Realizable
AEs

To explore RQ4 stated in Section 4.6, we assess how using different types of realizable AEs
impacts the training speed and generalizability of ML-based malware detection. Note that

Table 4.3: The model utility and robustness of DREBIN-SVM augmented by OPF-based method vs. TC-based
method.

Detector N Clean Acc Robust Acc

OPF-DREBIN-SVM N/A 96.6% 82.9%

TC-DREBIN-SVM
(Top-N)

20 96.6% 45.7%
40 96.7% 64.6%
60 96.6% 65.2%
80 96.8% 69.4%

100 96.7% 57.1%

TC-DREBIN-SVM
(Bottom-N)

20 96.7% 12.9%
40 96.7% 13.8%
60 96.7% 24.0%
80 96.6% 13.6%

100 96.6% 11.6%

4.6 Experimental Results

4

81

when investigating generalizability, we aim to understand how well a detector, enhanced
with realizable AEs, can resist problem-space attacks that generate realizable AEs distinct
from those used during model training. In other words, our objective is to evaluate the
robustness of a detector hardened with certain transformations against attacks utilizing
new transformations. To accomplish this, we retain some problem-space transformations
exclusively for the purpose of attacking, while others are available for use during the training
phase. Specifically, we randomly select a subset of collected problem-space transformations.
We then employ PiAttack with this subset of transformations to convert 500 malware
samples in the training set into problem-space realizable AEs. Subsequently, we expand
our training set by incorporating these problem-space realizable AEs and proceed to retrain
DREBIN-SVM. We follow a similar process to retrain DREBIN-SVM with our feature-space
realizable AEs, which are generated by PK-Feature operating under our learned domain
constraints, in contrast to the unconstrained variant (PK-Feature-un) that uses perturbations
without enforcing such constraints. From Table 4.4, we can observe how various retraining
strategies perform in terms of training speed and the level of robustness they offer. PiAttack
directly targets DREBIN-SVM hardened with different defenses to generate problem-space
realizable AEs from a set of 500 malware apps. In Table 4.4, NoF indicates the number of
AEs, R Time denotes the retraining time, and C Acc represents the clean accuracy. Moreover,
R Acc1 and R Acc2 denote robust accuracy against realizable AEs generated by a subset of
problem-space transformations, which are also employed during retraining, and against all
problem-space transformations, respectively. Table 4.4 demonstrates the significant increase
in computational complexity when retraining DREBIN-SVM with problem-space realizable
AEs compared to the scenario where we utilize feature-space AEs for retraining.

Furthermore, it’s evident that AT-PiAttack primarily enhances robustness against realiz-
able AEs that resemble those used during retraining. However, this robustness significantly
diminishes when faced with realizable AEs that might differ from those employed in ad-
versarial retraining. On the other hand, employing feature-space realizable AEs during
retraining aids in maintaining the detector’s robustness. In fact, utilizing feature-space
domain constraints enables us to rapidly generate a greater number of realizable AE variants
from each malware sample, thereby uncovering more vulnerable regions during the retraining
process. As depicted in Table 4.4, our AT-PK-Feature defense, which retrains DREBIN-SVM
with ≈ 10𝐾 feature-space realizable AEs, exhibits strong robust accuracy against PiAttack
when it can utilize all available transformations. It is worth noting that generating a large
number of additional (problem-space) realizable AEs is not practical for AT-PiAttack due to
its high computational cost.

RQ4. Can our feature-space realizable AEs outperform the conventional problem-
space realizable AEs?
Yes, feature-space realizable AEs yield higher AT training efficiency and gener-
alizability of the detector.

4.6.6 Discussion
In order to improve the adversarial robustness of malware detection, it is necessary to provide
a realistic view of the vulnerabilities of ML-based detectors to realizable AEs, which are

4

82 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Table 4.4: The performance of different defenses used in DREBIN-SVM in terms of re-training time, clean and
robust accuracy.

Defense NoA R Time C Acc R Acc1 R Acc2

AT-PiAttack 500 110,543s 96.6% 95.6% 5.0%

AT-PK-Feature (ours) 500 224s 96.7% 94.2% 20.8%
AT-PK-Feature-un 187s 96.7% 83.2% 14.8%

AT-PK-Feature (ours) ≈ 10𝐾 1,559s 96.7% 100.0% 82.9%
AT-PK-Feature-un 952s 96.6% 85.4% 37.4%

generated under domain constraints of malware apps [154]. Our experimental results derived
from various experiments have demonstrated the general effectiveness of our feature-space
solution in hardening Android malware detection against evasion attacks. Note that our
experiments are designed to empirically assess the efficacy of different aspects of our feature-
space solution. The proposed solution is structured around a three-fold approach, which
includes (1) establishing feature-space domain constraints by analyzing various aspects of
Android malware properties, (2) learning feature-space domain constraints from large-scale
data, and (3) applying the learned feature-space domain constraints to fortifying the robustness
of AMD against evasion attacks. Specifically, our analysis in Section 4.6.2 and Section 4.6.4
validates the performance of our solution for the first and second folds. Moreover, our
assessment in Section 4.6.2, Section 4.6.3, and Section 4.6.5 provides compelling evidence
in support of the third fold. Here we further discuss the advantages of our solution from
three main aspects: practicality, generalizability, and detectability.
Practicality. Our findings in Section 4.6.3 and Section 4.6.5, indicate that generating
feature-space AEs to incorporate in adversarial hardening can be a promising alternative
to generating time-consuming problem-space AEs, particularly when they successfully
satisfy domain constraints. Generally, PiAttack requires an average of 5 problem-space
transformations to convert a malware app into a problem-space AE. Each transformation
involves several steps: (i) choosing a gadget (i.e., a slice of an app’s bytecode) that indicates
a problem-space transformation and loading it from disk, (ii) injecting the gadget into the
malware app using Soot [101], (iii) performing static analysis using Apktool [100] (i.e.,
a reverse engineering tool), and (iv) constructing the feature representation based on the
extracted features in the feature space of the malware classifier. Although all of these steps
involve time and computational overhead, gadget injection and static analysis are particularly
time-consuming compared to other processes, each averaging around 20 seconds. In the
PiAttack, memory overhead is also an important consideration alongside computational time.
Each step involved in transforming a malware app into an adversarial app contributes to the
overall memory usage as follows:

• Load and inject the gadget: Loading a gadget from the disk and injecting it into the
app requires additional memory. The size of the gadget and its integration with the
app’s existing codebase can impact memory consumption. For instance, loading a
1 𝑀𝐵 gadget into memory might require slightly more than 1 𝑀𝐵 due to overheads
associated with loading and managing data structures.

4.6 Experimental Results

4

83

• Static analysis: performing static analysis with tools like Apktool involves parsing and
analyzing the app’s APK file. This process can be memory-intensive, as the tool needs
to maintain a representation of the app’s structure and resources in memory during
analysis. For instance, for a 5 𝑀𝐵 app, the static analysis tool could require around
15 𝑀𝐵 (5 𝑀𝐵 app size × 3 for analysis overhead).

Generating AEs in the feature space eliminates the need to conduct steps (i) to (iv) for
each modification, thereby significantly accelerating the speed of AT. As shown in Table 4.4,
the retraining time for DREBIN-SVM is 110,543 seconds when using 500 problem-space
realizable AEs for hardening. In contrast, the retraining time is only 224 seconds with 500
feature-space realizable AEs. Specifically, our empirical analysis in Table 4.5 demonstrates
that creating a feature-space realizable AE in a binary features space takes only 0.44 seconds,
whereas generating a problem-space realizable AE takes 221.09 seconds. This remarkable
improvement is attributed to the fact that our approach eliminates the time-consuming
process of generating problem-space AEs based on transformations. Our analysis reveals
that generating feature-space AEs in a non-binary feature space takes around 0.81 seconds,
which is still significantly quicker than the 221.09 seconds needed to generate problem-space
AEs. Specifically, constructing the regression model, the most time-consuming phase in
generating feature-space AEs, requires about 0.03 second with random forest regression
using 10 decision trees on a 120𝐾 sample training set. This time is negligible when compared
to the significant computational effort needed for problem-space AEs. Additionally, building
a regression model is not always required, as a pre-constructed model for certain independent
and dependent features may already be available, as outlined in Algorithm 4.1. In summary,
the significant improvement in generating AEs within the feature space during AT indicates
the potential use of feature-space realizable AE in real-world scenarios where defenders need
to harden large Android malware detectors with AT.

It noted that in the preprocessing stage, we need to measure the correlation between each
pair of features in the dataset. For low-dimensional datasets like DroidAPIMiner, this process
takes only a few seconds. However, for very high-dimensional datasets like DREBIN, it can
take over 10 hours on our Debian Linux workstation equipped with an Intel (R) Core (TM)
i7-4770K CPU at 3.50 GHz and 32 GB of RAM. Despite the longer preprocessing time for
high-dimensional datasets, this process is still significantly more efficient than the processing
required for problem-space attacks. For example, collecting around 500 problem-space
transformations, including program slicing of gadgets from benign apps, can take more than
a week.

Table 4.5: Computational time required to generate AEs using various attacks.

Attack Attack Surface
Avg. Time for

Generating AE
Avg. Time

per Modification

PiAttack Problem space 221.09s 44.2s

Our approach Binary feature space 0.44s 0.09s
Non-binary feature space 0.81s 0.16s

4

84 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

Table 4.6: The clean and robust accuracy of different defenses used in DREBIN-DNN on old/new test samples. The
new samples have been released between 2020 and 2022. The hardened models are strengthened using PGD with
𝜖 = 30.

Defense Clean Acc Robust Acc
Old

Test Set
New

Test Set
Old

Test Set
New

Test Set

W/O Defense 96.4% 89.1% 51.6% 32.0%
AT-Unrealizable-AEs 96.2% 88.1% 83.4% 73.2%
AT-Non-Uniform-Perturbations 96.5% 86.7% 88.0% 77.4%
AT-Realizable-AEs (ours) 96.3% 85.2% 92.7% 80.2%

Generalizability. As examined in Section 4.6.5, our feature-space realizable AEs exhibit
high generalizability as there are no limitations on the generation of realizable AEs in the
feature space. On the other hand, generating problem-space realizable AEs has specific
limitations because they rely on limited sets of problem-space transformations [17, 28, 157].
This means it is possible that a realistic attack based on a new set of transformations can
bypass the detector that is adversarially trained on those limited sets [154]. In contrast,
feature-space realizable AEs can potentially generate more diverse realizable AEs when they
take into account the domain constraints in the feature space. For instance, our empirical
analysis shows that for each problem-space realizable AE generated by PiAttack, we can
generate about 20 different variants of feature-space realizable AEs using PK-Feature attack
under our learned domain constraints.
Detectability. The results outlined in Section 4.6.2 illustrate that our learned domain
constraints are able to function as a preprocessing method in detecting AEs prior to engaging
an ML-based malware detector. Specifically, this non-ML defense entails a thorough analysis
of the feature representations of apps to uncover suspicious apps that are not practically
feasible by determining their violations from the predefined domain constraints.

4.7 Limitations and Future Work
While we have demonstrated the effectiveness of our proposed defensive approach through
extensive experiments, there are some limitations that need further investigation.

First, the proposed technique can be applied to various ML-based Android malware
detectors, but it may prove more effective for those utilizing expressive features, such as
domain-specific features (e.g., API calls and permissions) that capture complex relationships
within Android apps. Detectors that rely on more basic features, such as byte sequences [187]
or opcode analysis [97], may not fully benefit due to the lack of rich dependencies. Therefore,
our approach could have a greater impact on a subset of Android malware detectors that
leverage more expressive feature representations. Future work could explore adapting our
method to more basic feature representations.

Second, like any data-driven technique, our approach may be potentially biased toward
the specific training data because data might be inaccurate and incomplete. For instance,
as shown in Table 4.6, the purely data-driven approaches might intensify the concept drift
issue [188], which is a common challenge in the ML context. Here, we empirically illustrate
this limitation by testing different DREBIN-DNNs introduced in Section 4.6.3 on 15𝐾 (12𝐾

4.8 Conclusion

4

85

benign and 3𝐾 malware) newly collected Android apps from AndroZoo [125]. These new
samples have been released between 2020 and 2022. As can be seen from Table 4.6, all of
the newly measured clean accuracies are reduced compared to the old results, indicating
the existence of concept drift. While concept drift can also affect adversarial robustness,
Table 4.6 demonstrates that the proposed approach still achieves better robust accuracy than
other detectors, confirming its effectiveness in providing adversarial robustness against newer
adversarial malware apps.

Our study in this chapter shows that feature correlations are theoretically adequate for
identifying meaningful dependencies that reflect domain constraints in the feature space, but
their success depends on the quality of the training data. Feature correlations can perform
well when the utilized dataset accurately represents the true data distribution. However,
as indicated in Table 4.6, correlations may vary if the dataset does not reflect the true
data distribution. To address this concept drift, techniques like continuous learning can
help maintain accuracy by adapting to current distributions of malware and benign apps.
Incorporating domain knowledge could also address this limitation. However, a key question
is how the knowledge of domain experts can be incorporated to specify domain constraints
in the feature space. One can assume that domain knowledge can make the search for feature
dependencies more precise; therefore, an interesting avenue for future study is to incorporate
domain knowledge to complement the data-driven approaches in finding meaningful feature
dependencies.

4.8 Conclusion
In this chapter, we propose a new approach to facilitate uncovering vulnerable regions
within ML models employed in AMD, consequently enhancing the capability of defense
mechanisms against evasion attacks, particularly realistic attacks. Specifically, we present
a new interpretation of domain constraints in the feature space by extracting meaningful
feature dependencies. To this end, we not only consider statistical correlations but also adopt
OPF to extract such dependencies and apply them either in AE detection to identify feasible
AEs or in generating feature-space RealAEs during AT to improve the robustness of detectors
against RealAEs. The empirical results show the general effectiveness of our new approach in
strengthening the robustness of AMD. In particular, our assessment underscores the superior
efficiency and generalizability of our defense in comparison to problem-space RealAEs when
it comes to adversarial hardening. Additionally, our extracted feature dependencies have
proven effective in distinguishing between feasible and unfeasible ones such as unRealAEs,
thereby demonstrating the significant potential for use as a reliable criterion for defenses that
work based on AE detection.

4

86 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

4.A Evaluating the Efficacy of Learned Domain Con-
straints with Sparse-RS
To further assess the effectiveness of our learned domain constraints in enhancing the
adversarial robustness of malware detectors, we utilize another adversarial attack known
as Sparse-RS [12], which is inherently suitable for generating AEs in discrete domains
like malware detection. Sparse-RS operates as a sparse adversarial attack within black-box
settings, employing a heuristic search strategy—specifically, a randomized search that is
effective in both discrete and continuous feature spaces. This approach not only identifies
AEs with minimal changes to input features but also achieves query efficiency by reducing
interactions with the target detectors.

For our evaluation, we set the initial decay factor 𝛼𝑖𝑛𝑖𝑡 = 1.6, sparsity level 𝑘 = 180 as
per [12], and a query budget 𝑄 = 100. Table 4.7 demonstrates that incorporating our learned
domain constraints in AT to make AEs generated by Sparse-RS realizable significantly
enhances adversarial robustness compared to using typical AEs generated by Sparse-RS.
Moreover, our approach interestingly maintains performance on clean data better than another
defense method.

4.B PiAttack
PiAttack [9], also known as PK-Greedy, is an adversarial attack that operates in the problem
space and transforms Android apps into adversarial ones by attacking white-box target
malware detectors. The attack adds both primary features to bypass malware detection and
side-effect features to satisfy domain constraints. PiAttack consists of two main phases:

• Initialization phase. The first step of PiAttack is to identify the top-n benign features
based on the learned weights of the linear SVM. Subsequently, for each benign feature,
the attack collects a set of candidate transformations, called gadgets (i.e., slices of the
apps’ bytecode), by extracting them from benign apps.

• Attack Phase. The attack employs a greedy search strategy to find optimal perturbations.
It first sorts the collected gadgets based on their feature vector’s contribution to the
feature vector of the malware app 𝑧, denoted by 𝑥. Next, the attack selects the best
gadget from the sorted list and combines its feature vector with 𝑥. This process
is repeated until 𝑥 is classified as benignware. Once the perturbations have been
identified, all corresponding gadgets are injected into 𝑧 to generate RealAE.

Note that for some experiments that need to consider 𝐿1 norm bound for PiAttack, we
only include specific gadgets that satisfy the bound when combining their feature vector with
𝑥 in the attack phase. Moreover, the study conducted in this chapter uses DNN instead of
linear SVM for AT. Therefore, to clarify the significance of features, we adopt the approach
suggested in [189], which utilizes the gradients provided by DNN for each feature to explain
their global importance. We refer the reader to [189] for more details about the global
explanation of malware detectors.

It is noteworthy that in this chapter, PiAttack has been built based on their available
source codes published in [133]. Considering the recent insights from Pintor et al. [190],
PiAttack seems to effectively address several key concerns highlighted in their research.

4.8 Conclusion

4

87

Table 4.7: The clean performance and adversarial robustness of DREBIN-DNN detectors hardened through AT
using Sparse-RS, with and without incorporating our domain constraints at 𝜖 = 30. The robust accuracy is measured
against PiAttack with various attack bounds.

Defense TPR FPR Clean Acc Robust Acc
𝜖 = 30 𝜖 = 60 𝜖 = 90

AT-Unrealizable-AEs 73.9% 0.3% 95.3% 52.0% 46.2% 39.3%
AT-Realizable-AEs (ours) 80.8% 0.4% 96.3% 59.9% 50.9% 48.1%

• Optimization Challenges and Loss Saturation. [190] highlights the issue of loss
saturation, where further modifications fail to improve attack success. While PiAttack
uses a greedy search rather than gradient-based optimization, it can similarly get stuck
in suboptimal solutions. Nevertheless, PiAttack reduces this risk by meticulously
choosing gadgets during the initialization phase based on their potential to shift the
classification score toward the benign class. This approach ensures the optimization
process remains effective, preventing the stagnation that might occur with a less
structured search.

• Feature Contribution and Impact. PiAttack effectively manages the contribution
of each feature. During the initialization phase, gadgets are carefully pre-selected
based on their ability to positively influence the classification outcome while avoiding
those that might unintentionally reinforce a malicious label. This strategy prevents
issues similar to gradient vanishing or exploding, ensuring that each modification
significantly contributes to the attack’s success without compromising the app’s benign
appearance.

• Maintaining Problem-Space Feasibility. PiAttack is crafted to maintain the original
functionality of the Android app. This is accomplished by encapsulating the injected
code in conditional statements that are never executed at runtime, ensuring the app’s
original behavior remains intact. Additionally, PiAttack uses opaque predicates to
guard against static analysis tools that might otherwise eliminate the transplanted code.
These strategies ensure that the generated adversarial examples remain functional and
plausible within the problem space.

4.C PK-Feature
This is a white-box attack that iteratively perturbs the impactful features of a malware sample
until it reaches the maximum allowable perturbation. It’s essential to note that the impactful
features are those that exert a more significant influence on the classification outcomes
compared to other features, and like PiAttack, they are determined based on the weight
parameters of the linear SVM learned during training. Incorporating the dependent features
of each perturbed feature, based on our extracted meaningful feature dependencies, enables
this attack to generate feature-space RealAEs.

4

88 4 Exposing Vulnerabilities in Machine Learning for Malware Detection

4.D AT with Non-Uniform Perturbations
Unlike conventional feature-space adversarial attacks used in AT that can only perturb the
training sample under norm-bounded constraints, the main idea of AT with non-uniform
perturbations [161] is to take into account the data distribution of training data by allowing
attackers to generate non-uniform perturbations. Specifically, the paper proposes a new
projection approach for the PGD attack as follows:

𝑃(Ω𝛿) =
{
𝜖 𝛿
∥Ω𝛿 ∥𝑝 if ∥Ω𝛿∥ 𝑝 > 𝜖
𝛿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.6)

where ∥.∥ 𝑝 shows the 𝐿𝑝 norm bound, Ω ∈ R𝑑×𝑑 is a diagonal matrix that can be specified
by a weighted norm, and 𝑑 is the dimensions of samples in the training set. By incorporating
Ω in the projection, PGD can perturb important features more than less important features
that may have a lesser effect on classification. One of the suggestions of the paper to capture
the importance of features is to utilize Pearson’s correlation coefficient of each feature 𝑓 𝑗
with the label 𝑦, which is denoted as |𝑝 𝑗 ,𝑦 |. Note that Ω is constructed using this coefficient
as follows:

Ω =
𝑑𝑖𝑎𝑔({𝑝−1

𝑗 ,𝑦
}𝑑
𝑗=1)

∥𝑑𝑖𝑎𝑔({𝑝−1
𝑗 ,𝑦
}𝑑
𝑗=1)∥ 2

(4.7)

where 𝑝−1
𝑗 ,𝑦

= 1/𝑝 𝑗 ,𝑦 .

5

89

5
Enhancing Adversarial
Robustness with Robust

Feature Space
Machine learning (ML) has demonstrated significant advancements in Android malware
detection (AMD); however, the resilience of ML against realistic evasion attacks remains a
major obstacle for AMD. One of the primary factors contributing to this challenge is the
scarcity of reliable generalizations. Malware classifiers with limited generalizability tend
to overfit spurious correlations derived from biased features. Consequently, adversarial
examples (AEs), generated by evasion attacks, can modify these features to evade detection.
This chapter proposes a domain adaptation technique to improve the generalizability of AMD
by aligning the distribution of malware samples and AEs. Specifically, we utilize meaningful
feature dependencies, reflecting domain constraints in the feature space, to establish a robust
feature space. Training on the proposed robust feature space enables malware classifiers to
learn from predefined patterns associated with app functionality rather than from individual
features. This approach helps mitigate spurious correlations inherent in the initial feature
space. Our experiments conducted on DREBIN, a renowned Android malware detector,
demonstrate that our approach surpasses the state-of-the-art defense, Sec-SVM, when facing
realistic evasion attacks. In particular, our defense can improve adversarial robustness by up
to 55% against realistic evasion attacks compared to Sec-SVM.

5.1 Introduction
Despite the substantial progress in utilizing machine learning (ML) for Android malware
detection (AMD), the field still suffers from security concerns surrounding ML models,
especially their vulnerabilities to realistic evasion attacks. These attacks change malware apps
into adversarial examples (AEs), tricking AMD while preserving the malware’s properties,
e.g., their executability and malicious functionalities. Evasion attacks can circumvent ML
models, exploiting their susceptibility to learning vulnerabilities [8], which often arise from

This chapter is based on the published paper: H. Bostani, Z. Zhao, and V. Moonsamy, Improving Adversarial
Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations, 29th European
Symposium on Research in Computer Security International Workshops (ESORICS 2024 International Workshops),
2024 [191]. The content remains unchanged from the published version.

5

90 5 Enhancing Adversarial Robustness with Robust Feature Space

the limited generalizability inherent in ML models. In fact, adversaries deceive ML models
by generating AEs that sufficiently deviate from the distribution of the training samples [192].

One of the major factors contributing to the generalizability challenges of ML is biased
features[193]. These features introduce biases into the model, potentially resulting in poor
performance on unseen samples. ML models tend to learn these simple cues effectively
on most training samples, which in turn causes them to perform well on those samples;
however, they encounter difficulty with more complex unseen samples (e.g., AEs) due to
the distribution shift [193]. Specifically, the presence of biased features causes classifiers
to learn spurious correlations [194], resulting in misleading associations between biased
features and the target variable, known as the label in supervised learning. In other words,
ML models might learn misleading patterns—the irrelevant associations between features
and the label—that may not generalize well to unseen samples with distributions different
from those of the training samples. These misleading correlations often occur because the
training set fails to accurately represent the true data distribution, typically due to sampling
bias [195]. Spurious correlations, substantially diminish the generalizability of ML models,
especially in the context of cybersecurity. These meaningless correlations represent patterns
within the data unrelated to the security problem but serve as shortcuts for distinguishing
classes [48]. For instance, the inclusion of particular market information, such as Chinese
markets, in numerous malware samples might cause the ML model to mistakenly associate
this feature with maliciousness [48], instead of prioritizing the identification of authentic
patterns linked to malicious behavior.

Spurious correlations present intriguing implications for realistic evasion attacks. Ad-
versaries aim to append adversarial payloads that significantly influence features crucial for
classification while ensuring that the added contents are unrelated to the app’s functionality.
Therefore, realistic evasion attacks could leverage the features associated with spurious
correlations, as they influence the classification outcome while ensuring the malicious
patterns remain intact. Since learning spurious correlations poses challenges for malware
classifiers when the distribution of AEs significantly differs from that of malware samples
in the training set, this issue can be reduced if both malware samples and AEs follow a
similar distribution. This chapter introduces a novel domain adaptation1 technique designed
to reduce the impact of spurious correlations by aligning the distributions of the source
domain (including malware samples) and the target domain (including AEs). As illustrated in
Figure 5.1, to reduce the adverse impact of spurious correlations on the adversarial robustness
of AMD, our proposed approach utilizes domain constraints that characterize app properties
to create a robust feature space. To this end, we first model domain constraints based on
the relationships between features derived from the feature representations of the training
apps. Within the feature space, domain constraints denote complex relationships among
features that an adversary must fulfill for an attack to be realistic [167]. Then, we propose a
transformation function using these identified patterns to transform samples from the initial
feature space to a robust feature space. The distribution of malware apps is expected to
align more closely with adversarial ones when represented in the robust feature space rather
than in the initial feature space. This is because, unlike the features in the initial feature
space, each feature in the robust space reflects a functional aspect (e.g., sending an SMS)
commonly shared among feasible apps, including both malware and adversarial apps. Our

1In domain adaptation [196], domain refers to a certain distribution over a sample set (e.g., the training set).

5.2 Background

5

91

Figure 5.1: An illustration of our proposed domain-adaptation technique. In the initial feature space, the distributions
of malware samples and adversarial examples differ significantly. However, in our proposed robust feature space,
their distributions are more aligned.

contributions2 can be summarized as follows:

• We propose a robust feature space based on a novel domain adaptation approach to
reduce spurious correlations, thereby enhancing the adversarial robustness of AMD
against realistic evasion attacks.

• We empirically demonstrate that our proposed defense surpasses the state-of-the-art
defense, Sec-SVM [16], in hardening AMD against gradient-based and query-based
realistic attacks across various threat models.

• Our empirical findings illustrate that the distribution of malware apps and AEs is more
aligned in the proposed robust feature space than in the initial feature space.

The rest of the chapter is organized as follows: Section 5.2 provides an elaboration on the
fundamental concepts crucial to the chapter. Our novel approach for constructing a robust
feature space is detailed in Section 5.3. Section 5.4 assesses the effectiveness of our proposed
defense technique in hardening the robustness of ML-based AMD against realistic evasion
attacks. Section 5.5 examines relevant studies that have explored feature representations
to enhance the adversarial robustness of malware detection. The limitations and potential
directions for future research are discussed in Section 5.6 and we conclude in Section 5.7.

5.2 Background
In this section, we briefly review the fundamentals of evasion attacks, spurious correlations,
and domain constraints.

5.2.1 Evasion Attacks
Consider 𝜙 : Z → X as a mapping function representing Android apps of the problem
space Z with 𝑑-dimensional feature vectors in the feature space X. ML-based AMD is a
2We make our code publicly available at https://github.com/HamidBostani2021/robust-feature-space
to allow reproducibility.

https://github.com/HamidBostani2021/robust-feature-space

5

92 5 Enhancing Adversarial Robustness with Robust Feature Space

binary classifier 𝑓 : X → Y equipped with a discriminant function 𝑔 : X × Y → R. Here,
𝑓 (𝑥) = arg max𝑖∈Y 𝑔𝑖 (𝑥) assigns labels to 𝑥 ∈ X, where Y = {0, 1} denotes the label space
with 𝑦 = 0 representing benign labels and 𝑦 = 1 representing malicious labels. In the binary
feature space [29, 143, 197], each element of the feature vector 𝑥 ∈ X is binary, where 0
signifies absence and 1 signifies the presence of specific features. It is noteworthy that
F = { 𝑓1, 𝑓2, ..., 𝑓𝑑} represents the feature set defining the dimensions of X, where 𝑑 denotes
the number of dimensions.

Generally, evasion attacks generate AEs by altering 𝑥 ∈ X through the discovery of
optimal perturbations 𝛿 applied to it. Particularly, malicious actors endeavor to solve the
following optimization problem [9, 16]:

arg max
𝛿

𝑔0 (𝑥′ = 𝑥 + 𝛿) subject to 𝛿 |= Ω, (5.1)

where the perturbation vector 𝛿 must satisfy constraints defined in the feature space
denoted by Ω, such as a naive norm bound [9].

5.2.2 Spurious Correlations
In statistical analysis, spurious correlation describes a scenario in which two variables seem
to be associated, but their relationship is either accidental or influenced by an external
factor [194]. Such situations can result in misleading or erroneous interpretations of data
and models [194]. Supervised learning algorithms are vulnerable to spurious correlations
because classifiers often tend to learn any signal in the dataset that maximizes accuracy,
even those that may appear incomprehensible to humans [198]. Spurious correlations pose
significant challenges for ML in cybersecurity because existing ones may lead ML models
to learn patterns in the data unrelated to the security problem, thereby creating shortcuts
for classifying classes [48]. Over the past few years, several approaches (e.g., invariant
learning [199] and group robustness [200]) have been proposed to mitigate the impact of
spurious correlations in ML. Domain adaptation stands out as one of the approaches aimed at
aligning the distribution between source and target domains to address spurious correlations.
This approach focuses on transferring knowledge learned from the source domain to the
target domain, thereby aiding the model in better generalizing to new data and reducing
its dependence on spurious correlations [201]. In the study conducted in this chapter, we
concentrate on domain adaptation by suggesting a robust feature space, as a high-quality
feature representation is vital for the success of domain adaptation [196].

5.2.3 Domain Constraints in the Feature Space
Generally, evasion attacks must account for domain constraints to generate realizable AEs.
In the problem space, the domain constraints consist of available transformations, preserved
semantics, robustness to preprocessing, and plausibility, as formalized by Pierazzi et al. [9].
These constraints signify the properties of malware apps that must be maintained after
manipulation in the problem space. However, domain constraints appear differently in the
feature space. During the past years, numerous studies in diverse contexts have demonstrated
that feature dependencies serve as indicators of domain constraints within the feature
space [151, 152, 167–169]. The study conducted in this chapter applies the idea proposed
by [152] to infer domain constraints based on feature dependencies. This approach suggests

5.3 Our Proposed Defense

5

93

Figure 5.2: An example of the OPF process constructed to capture feature dependencies. (a) shows the completed
weighted graph G, where node 𝑓𝑖 represents the feature 𝑓𝑖 and 𝜑𝑖, 𝑗 represents the correlation between 𝑓𝑖 and 𝑓 𝑗 .
(b) the final OPF comprises two OPTs derived from G. The colored nodes signify primary features, and 𝑤 𝑓𝑖 denotes
the path cost from 𝑓𝑖 to its relevant primary features.

that the relationship between primary and secondary features can model domain constraints.
Primary features are those that limit the range of permissible values for other features,
whereas secondary features do not impose any such limitations. According to [152], primary
features can be identified based on data observations by indicating the features that are most
correlated with others. Here, we not only employ correlation to specify the primary features
but also adapt Optimum-path Forest (OPF), as used in [137], to determine the secondary
features. Using the primary features as a starting point, we apply OPF to partition the
remaining features into different groups, ensuring that each cluster includes relevant features.
(i.e., primary and secondary features). In fact, we partition F, the feature set characterizing
X, into distinct clusters denoted as A𝑖 . This clustering strategy aims to identify primary
and secondary features by grouping them together. As shown in Figure 5.2, the technique
involves constructing a complete weighted graph, denoted as G = (V,E), where G = F
and E = F × F encompassing edges that connect each feature pair (𝑓𝑎, 𝑓𝑏), with weights
determined by a correlation coefficient. Following the graph construction, the next step
involves partitioning G into various clusters such as A𝑖 where it constitutes a subset of all
features within the feature space, i.e., A𝑖 ⊂ F. It is noted that the OPF algorithm treats each
cluster as an Optimum-path Tree (OPT), wherein each feature has an optimal path to the
OPT’s prototype, which is a primary feature in our case. The path cost is the minimum
weight of the edges along the path. For more details about primary and secondary features,
refer to [152], and for information on OPF, see [137].

5.3 Our Proposed Defense
This section illustrates how domain constraints, specified by feature dependencies, have
been utilized to propose a robust feature space. The proposed defense aims to enhance the
robustness of ML-based AMD against realistic attacks by reducing the impact of spurious
correlations. To this end, we first formulate a new domain adaptation approach, which
leverages the feature dependencies of the source domain to build a resilient feature space.
Subsequently, we delve into an elaborate discussion demonstrating the process of constructing

5

94 5 Enhancing Adversarial Robustness with Robust Feature Space

our proposed robust feature space.

5.3.1 Formulation of the Problem
Suppose X denotes the initial feature space, and T denotes the source domain (i.e., training
set), and U implies the target domain (i.e., unseen samples). Moreover, let Y, DT

X, and DU
X

represent the label space and the data distributions of T and U based on X, respectively.
Given a labeled source dataset {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1 drawn from DT

X, the goal is to build a robust
feature space H that captures the dependencies observed in X and can be effectively used for
classification in both T and U. We can mathematically express this as follows:

1. Construct a feature transformation function 𝜆 : X→ H that maps the initial feature
space X to the robust feature space H. This function is designed to capture the relevant
feature dependencies observed in X considering the source domain and build a new
feature representation based on them. Indeed, the transformation function tends to
construct H wherein DT

H and DU
H are more align compared to DT

X and DU
X.

2. Train a classifier 𝑓 : H→ Y using the transformed features H. This classifier should be
capable of making accurate predictions based on robust feature representations. The
objective can be formulated as minimizing a loss function J over the labeled source
dataset:

min
𝜆, 𝑓

𝑛∑︁
𝑖=1

J(𝑓 (𝜆(x𝑖)), 𝑦𝑖)

where J represents the classification loss function, and 𝑓 (𝜆(x𝑖)) denotes the predicted
label for the 𝑖-th source domain sample after feature transformation.

5.3.2 Robust Feature Space
The primary objective of our proposed robust feature space is to mitigate the impact of
adversarial perturbations on misclassification by aligning the distributions of malware
samples seen during training and AEs. Leveraging the proposed robust feature space adapts
the ML-based malware detection, trained on training samples, to perform well on samples
with unseen distribution, especially AEs. Generally, the adversarial perturbations used in
realistic attacks consist of redundant codes that are unrelated to the malicious functionality
of the original malware apps. Therefore, we anticipate that their adversarial effect can be
diminished if our ML model can learn authentic malicious patterns rather than shortcut
patterns (i.e., spurious correlations [48]) unrelated to malware detection. To achieve this,
we propose a new transformation function (i.e., 𝜆 : X → H) that maps each 𝑥 ∈ X to an
ℎ ∈ H based on feature-space domain constraints. ML used in AMD operates with feature
representations of apps in H, which implicitly abstract domain constraints, instead of X in
both the training and inference phases. We expect that training our ML-based detector on H
gives the detector more chances to learn generic attack patterns to distinguish malicious and
benign apps because H is characterized based on the pre-identified patterns (i.e., a collection
of feature groups, where each includes the interdependent features) that represent domain
constraints. Indeed, training an ML model on H will cause the detector to rely on groups of
features in X rather than individual features, potentially introducing bias in classification.

Suppose Λ = {A1,A2, ...,A𝑚} represents all feature dependency clusters identified by
utilizing the method discussed in Section 5.2.3, where A𝑖 ⊂ F denotes the feature set of

5.3 Our Proposed Defense

5

95

Figure 5.3: Overview of our method for applying domain constraints to construct a robust feature space.

the 𝑖-th cluster in Λ. Additionally, let L denote the dimensions (i.e., features) of the feature
space H. As depicted in Figure 5.3, within the proposed new feature space H, each A𝑖 is
associated with a feature 𝑙𝑖 ∈ L serving as the representative of all features in A𝑖 to ensure
the detection model’s accuracy on legitimate samples. This representativeness is necessary
since A𝑖 encompasses interdependent features with similar information about the target class,
making a single feature in L sufficient to represent these relevant features. To determine
whether a feature 𝑙𝑖 ∈ L should appear in H for a sample 𝑥 ∈ X, we utilize an activation
function based on the sigmoid. This function can transfer the influence of input features in
A𝑖 to the output feature 𝑙𝑖 while uniformly increasing the probability of a feature appearing
in the output as the number of input features rises. Furthermore, the function ensures that
changing a feature 𝑓 𝑗 ∈ A𝑖 cannot simply alter 𝑙𝑖 due to our aim to increase the evasion
costs for adversaries. It is important to note that the sigmoid function, being a monotonic
function, adjusts 𝑙𝑖 based on the features in A𝑖 . As the sigmoid function exhibits an S-Shaped
Curve [202], we anticipate that it can help smooth out the severe impact of adversarial
perturbations within A𝑖 on 𝑙𝑖 . This is because, when there are large adversarial fluctuations
or spikes in the input feature values in A𝑖 , the output will show a more gradual change due to
the sigmoid’s property of saturating large values. According to the proposed transformation
method, the value of feature 𝑙𝑖 in ℎ = 𝜆(𝑥) is computed as follows:

𝑙𝑖 =

{
1 𝜎(𝑠 = ∑

∀ 𝑓 𝑗 ∈A𝑖
𝑤 𝑗 · 𝑥 𝑗) > 𝜃

0 otherwise,
(5.2)

where 𝜎(·) = 1
1+𝑒−𝑠 represents the sigmoid function, 𝑤 𝑗 stands for the weight of feature 𝑓 𝑗

in A𝑖 , 𝑥 𝑗 denotes the value of feature 𝑓 𝑗 in 𝑥, and 𝜃 signifies a threshold for activating 𝑙𝑖 in H.
It’s important to note that not every feature holds the same level of importance (e.g., some
features may arise due to noise). Thus, we aim to account for the greater impact of features
that might contribute more to the detection task. Consequently, as shown in equation (5.2),

5

96 5 Enhancing Adversarial Robustness with Robust Feature Space

we take into consideration the weights of features since they can indicate the importance of
features in A𝑖 . In the proposed transformation function, we consider the path cost of each
feature in the constructed OPF as the weight for the features, since it serves as a measure
demonstrating the relevance of a certain feature to its respective cluster. Moreover, in
equation (5.2), 𝑠 ≥ 0 since 𝑤 𝑗 possesses a positive value. Hence, 0.5 ≤ 𝜎 ≤ 1 in our context,
implying that 𝜃 should be chosen from the interval (0.5, 1). Generally, opting for a moderate
threshold seems preferable because setting a very low threshold may result in the output
feature appearing even with minor perturbations in the input features. This occurs because
triggering more features in A𝑖 leads to a larger 𝜎, potentially causing 𝑙𝑖 = 1 if 𝜃 is small.
On the other hand, a very high threshold hinders the transfer of the input features’ effect to
the output. In essence, although a high threshold might enhance the model’s robustness
by reducing the impact of adversarial perturbations on features in A𝑖 , it could decrease the
model’s accuracy on legitimate samples.

5.4 Experiments
In this section, we conduct empirical assessments to gauge the effectiveness of the proposed
defense mechanism against various realistic evasion attacks. All experiments were conducted
on a Debian Linux workstation equipped with an Intel(R) Core(TM) i7-4770K CPU running
at 3.50 GHz and 32 GB of RAM.

5.4.1 Experimental Setup
Dataset. The study conducted in this chapter utilizes an available dataset [9] comprising
approximately 170𝐾 Android apps sourced from AndroZoo [125]. An app within this
dataset is classified as benign if no VirusTotal Antiviruses (AVs) detect it, while it is deemed
malware if it is flagged by four or more AVs. Our training set comprises 50𝐾 randomly
selected samples, with 30𝐾 samples allocated for the test set for evaluating Android malware
detectors. The training set consists of 45𝐾 clean samples and 5𝐾 malware samples, whereas
the test set comprises 25𝐾 clean samples and 5𝐾 malware samples. All samples are encoded
based on the DREBIN [96] feature space before being processed by the malware detectors.
Given that DREBIN encompasses a vast but sparse feature space, we select the 10𝐾 most
frequently occurring features, as recommended by prior research [16, 25]. To evaluate
the adversarial robustness of various Android malware detectors, we employ 1𝐾 malware
samples as outlined in [84] to generate AEs.
Threat Models and Attacks. Adversarial attacks can be analyzed based on their objectives,
knowledge, and capabilities. The adversary’s objective is to cause misclassification in
AMD, resulting in the classification of the adversarial (malware) examples as benign ones.
Moreover, the adversary’s knowledge of the target model, including its training data, feature
space, and parameters, ranges from perfect (PK) to limited (LK) or zero (ZK). In PK, LK,
and ZK attacks, the target model is perceived as a white-box, gray-box, and black-box model,
respectively. Finally, the adversary’s capability enables the generation of AEs either within
the feature space, by altering feature representations of Android malware apps, or within the
problem space, through a sequence of transformations applied to Android malware apps [9].

The study conducted in this chapter explores two realistic problem-space attacks, namely
PK-Greedy [9] and EvadeDroid [84], to evaluate the adversarial robustness of malware

5.4 Experiments

5

97

detectors discussed in Section 5.4.2. PK-Greedy and EvadeDroid transform Android apps into
adversarial instances by targeting white-box and black-box malware detectors, respectively.
The details of these attacks are described as follows.

• PK-Greedy [9] generates problem-space realizable AEs by applying effective transfor-
mations (i.e., code snippets called gadgets extracted from donor apps) specified by
feature-space perturbations on the target model. This attack adds not only primary
features to bypass malware detection but also side-effect features to meet the domain
constraints. The attack was originally tested in the PK setting, but here we also test it
in an LK setting where the AEs transfer from a surrogate model to a target model. To
utilize PK-Greedy in PK settings when the feature space is H, we must adapt this attack
to target the ML model trained on the robust feature space, as it was initially designed
for models trained on the DREBIN feature space. Therefore, PK-Greedy is an adaptive
one aware of our proposed transformation function. Specifically, during the attacking
phase, PK-Greedy identifies the most adversarially sensitive features in L based on
the model trained on H where L is the feature set characterizing H. Then, for each
identified feature 𝑙𝑖 ∈ L, it finds a transformation wherein its triggered features (i.e.,
the DREBIN features that can appear in an app after applying the transformation) have
a significant overlap with the features in A𝑖 (i.e., the cluster in the DREBIN feature set
corresponding to 𝑙1 ∈ L), and then applies it to the app.

• EvadeDroid [84] generates problem-space realizable AEs through a sequence of
transformations by querying the target model in a ZK setting. This adversarial attack
involves the initial collection of problem-space transformations by extracting code
snippets containing API calls from benign apps found in the wild, resembling malware
apps. Subsequently, random search is employed to select and apply transformations
that induce the malware app to exhibit similarities to benign apps. In addition to the
original ZK setting, here we also consider a more restricted setting where EvadeDroid
is only allowed to query a surrogate model and then transfer the AEs to the target model.
Specifically, we set the query budget 𝑄 = 10, and 𝛼 = 50% (i.e., the percentage of the
relative increase in the size of a malware sample after manipulation).

Evaluation Metrics. To assess the malware detectors, we test both their clean performance
and robustness. For clean performance, we compute Clean Accuracy, True Positive Rate
(TPR), and False Positive Rate (FPR) on benign and malware samples. For robustness, we
compute Robust Accuracy on adversarial malware examples. Additionally, we include the
average number of added features needed to achieve successful AEs.

5.4.2 Evaluation of Proposed Defense
This section aims to evaluate our robust feature space introduced in Section 5.3. We consider
the following four ML-based Android malware detectors:

• DREBIN-Original [96], a well-known Android malware detector that is based on the
linear Support Vector Machine (SVM). It is trained with the original DREBIN feature
space.

• Sec-SVM [16] is the secure version of DREBIN-Original for strengthening the
robustness of linear SVM against AEs. Sec-SVM relies on more features, and this

5

98 5 Enhancing Adversarial Robustness with Robust Feature Space

Table 5.1: The training time (TR), clean performance metrics—including TPR, FPR, and Clean Acc—and
robust accuracy—including R Acc P (robust accuracy against PK-Greedy) and R Acc E (robust accuracy against
EvadeDroid)—are reported for various DREBIN detectors. Realizable AEs are transferred from DREBIN-Original.
“*” means both the surrogate and target models are DREBIN-Original.

Model TR TPR FPR
Clean
Acc R Acc P R Acc E

DREBIN-Original 8.2s 87.2% 1.4% 96.7% *0.0% *26.8%
Sec-SVM 25.4s 77.0% 1.0% 95.3% 97.6% 72.1%
DREBIN-FeatureSelect 1.3s 79.5% 1.3% 95.5% 30.7% 49.8%
DREBIN-Robust (ours) 1.7s 77.5% 1.3% 95.1% 97.9% 94.6%

increases the evasion cost. Essentially, the goal of Sec-SVM is to enhance the
robustness of a linear SVM by ensuring that it assigns weight more evenly across all
features used in the model. This approach inherently makes generating AEs more
challenging for an attacker, as it needs to alter more features to bypass malware
detection.

• DREBIN-Robust is our robust DREBIN detector trained with our new robust feature
space.

• DREBIN-FeatureSelect resembles DREBIN-Original but is trained with a lower-
dimensional feature space to enhance the stability of models against noise [203].
Feature selection aims to eliminate redundant or irrelevant features, which can be
misused by adversarial perturbations, and thus improve the robustness of an ML model.
We utilize Linear SVC to identify the 500 most influential features, resulting in clean
accuracy comparable to DREBIN-Robust.

In the first experiment, we assess the robustness of malware detectors against transferable
AEs generated by PK-Greedy and EvadeDroid, using DREBIN-Original as the surrogate
model. It’s ensured that the AEs are generated from malware samples correctly detected by

Figure 5.4: The evasion success rates of PK-Greedy against different DREBIN detectors when varying the number
of added features.

5.4 Experiments

5

99

Table 5.2: The robustness of different DREBIN detectors against realizable AEs that are directly generated on the
corresponding models in terms of Robust Acc and Number of Features (NoF).

Model PK-Greedy EvadeDroid
Robust Acc NoF Robust Acc NoF

DREBIN-Original 0.0% 9.2 26.8% 66.5
Sec-SVM 6.6% 37.9 31.9% 77.5
DREBIN-FeatureSelect 0.6% 19.6 45.9% 62.1
DREBIN-Robust (ours) 13.8% 86.1 87.0% 56.7

all four malware detectors, and the results are computed based on the successful AEs for
DREBIN-Original. As depicted in Table 5.1, all defenses achieve similar clean performance
in terms of TPR, FPR, and clean accuracy; however, the training time of our proposed
defense is substantially shorter than that of Sec-SVM and even DREBIN-Original. It is
important to note that, despite the significant improvement in training time, our technique
incurs some overhead due to the creation of the robust feature space and the transformation
of training samples into this space. However, this overhead is minimal compared to the
feature engineering required during preprocessing to extract and represent features from
apps in the initial feature space. Concerning robustness, although DREBIN-FeatureSelect
demonstrates notable robustness compared to DREBIN-Original due to feature selection,
both DREBIN-Robust and Sec-SVM exhibit significantly higher robustness. Additionally,
our DREBIN-Robust outperforms Sec-SVM, especially for EvadeDroid.

We further examine a more challenging scenario where AEs are directly generated on
the target model. Due to the time-consuming nature of generating problem-space AEs
across different detectors, we limit our test to 500 malware samples. Moreover, to ensure
rigorous evaluation of detectors in worst-case scenarios, PK-Greedy operates in the PK
setting, especially in attacking the ML model trained on the robust feature space (i.e.,
DREBIN-Robust). As illustrated in Table 5.2, the superiority of our DREBIN-Robust over
Sec-SVM remains evident, particularly in defense against EvadeDroid. Indeed, DREBIN-
Robust demonstrates superior performance compared to Sec-SVM against both attacks, with
a 7.2% improvement against PK-Greedy and a 55.1% improvement against EvadeDroid.
Additionally, in defense against PK-Greedy, DREBIN-Robust escalates the evasion cost
by necessitating the adversary to modify significantly more features to achieve success.
Figure 5.4 further validates the consistently superior performance of our DREBIN-Robust
across varying numbers of added features. Furthermore, we observe rapid convergence of
the evasion rates, suggesting that increasing the number of added features scarcely improves
PK-Greedy against our DREBIN-Robust. It should be noted that although our defense
in DREBIN-Robust substantially improves robustness against both realistic attacks, the
success rate of PK-Greedy is significantly higher than that of EvadeDroid—specifically,
73.2%—because PK-Greedy is an adaptive attack that operates in PK settings, whereas
EvadeDroid targets our proposed detector in ZK settings.

Note that in Table 5.2, the fact that the average number of added features required by
EvadeDroid for bypassing DREBIN-Robust is lower than bypassing the other detectors is due
to the property of EvadeDroid. Specifically, in EvadeDroid, a transformation is applied to a
malware app only if it can increase the chance of generating successful AEs. This leads to

5

100 5 Enhancing Adversarial Robustness with Robust Feature Space

the difference between the number of transformations applied to the detectors (e.g., 1.00 for
DREBIN-Robust vs. 2.54 for Sec-SVM). This difference indicates that most transformations
are not good enough for attacking DREBIN-Robust, and consequently leads to a difference
in the number of added features.

5.4.3 Discussion
Our empirical investigation highlights the resilience of the proposed robust feature space
against realizable AEs generated by various realistic evasion attacks. To further analyze
this observation, Figure 5.5 displays the t-SNE visualization of malware samples from the
training set and AEs from the test set. The visualization is based on the top-100 important
features selected using Linear SVC, both in the original feature space and our proposed
robust feature space. It is noteworthy that AEs are generated by targeting DREBIN-Original
with PK-Greedy. In the proposed robust feature space, the visualization demonstrates a closer
alignment between the distribution of malware samples and AEs compared to those observed
in the initial feature space. Consequently, this contributes to the enhanced adversarial
robustness observed in DREBIN-Robust trained on H compared to DREBIN-Original trained
on X, as demonstrated in the results presented in Table 5.1.

Moreover, to grasp the extent of our approach’s efficacy in countering potentially
misleading correlations learned by models, we delve into the operational mechanism of
DREBIN, (i.e., a linear SVM-based detector). The detection model relies on a score
function, derived from the inner product of the model’s parameters (i.e., learned weights
®𝑊) and a feature vector representing an app 𝑧. Specifically, this function is denoted as
𝑓 (𝑧) = ⟨𝜙(𝑧), ®𝑊⟩ when the model is trained on X, and as 𝑓 (𝑧) = ⟨𝜆(𝜙(𝑧)), ®𝑊⟩ when trained
on H. A sample is classified as benign if 𝑓 < 0, and conversely if 𝑓 > 0. This suggests that
features with high negative weights play a pivotal role in classifying a sample as benign.
Adversaries target altering the features relevant to negative weights as it increases the chance

Figure 5.5: t-SNE visualization of malware and adversarial malware samples in (a) the feature space X and (b) our
robust feature space H.

5.5 Related Work

5

101

1 {
2 "f1": [

3 ’URLs::https://play.google.com/store/apps/’

4],

5
6 "l1": [

7 ’Activities::xmlparser.GiftActivity’,

8 ’URLs::http://jgpre.alibaba.inc.com/’,

9 ’URLs::http://jg.daily.taobao.net/’,

10 ’URLs::http://jg.alibaba.inc.com/’,

11 ’Activities::xmlparser.SplashScreenActivity’,

12 ’Activities::xmlparser.PrivacyActivity’,

13 ’S_and_P::android.permission.BIND_REMOTEVIEWS’

14]

15 }

Figure 5.6: The details of features 𝑓1 ∈ X and 𝑙1 ∈ H.

of deceiving malware detectors. The features that are important for the classifier operating
on X might be biased features; however, H aims to diminish classifier bias by assisting it in
relying on sets of features that contribute more to the behavior of the apps, rather than on
individual features. For instance, as shown in Figure 5.6, 𝑓1 ∈ X, the feature with the most
negative weight in the linear SVM trained on X, can potentially represent a shortcut feature
that might be important due to biased data, while 𝑙1 ∈ H, the feature with the most negative
weight in the linear SVM trained on H, seems relevant to functionality.

We conduct a further evaluation to ascertain whether DREBIN-Robust exhibits superior
resilience compared to DREBIN-Original in learning spurious correlations. To ensure bias
in a feature, we must identify a feature that not only seems biased but also is absent in some
of the malware samples in our test set, allowing us to observe the effects of adding it to the
malware samples. Note that a feature appears biased when it is prevalent in the majority of
benign samples but is present in the minority of malware samples within the training set.
Among features with negative weights, feature 𝑓44 (i.e., android.permission.INTERNET)
stands out as the first one that not only appears biased but is also absent in some of the
malware samples in the test set. Adding this feature to malware samples of the test set that
lack 𝑓44, drops DREBIN-Original’s robustness from 96.4% to 86.3%. This demonstrates
𝑓44’s bias, resulting in spurious correlations in DREBIN-Original. This is because the feature
is not effective in distinguishing between benign and malware samples since it can potentially
be present in both types of samples. However, DREBIN-Robust remains unaffected by this
misleading correlation, demonstrating its resilience against modifications to feature 𝑓44.
Ethical Considerations. Since our proposed defense strategy is designed to enhance
cybersecurity and mitigate adversarial attacks, rather than facilitate malicious activities,
ethical concerns are minimal. However, we stress that our defense mechanisms should be
used responsibly and primarily as a baseline for research purposes.

5.5 Related Work
Despite numerous efforts aimed at enhancing the adversarial robustness of ML-based AMD
against evasion attacks (e.g., [14, 17, 24, 25, 28, 154]), few studies have primarily explored
the impact of features on enhancing adversarial robustness. To this end, Demontis et al. [16]
introduced Sec-SVM which trains a linear SVM with a more uniform distribution of feature
weights. This study ensured that the linear model learned feature weights more evenly by

5

102 5 Enhancing Adversarial Robustness with Robust Feature Space

applying box constraints on weights within the standard optimization problem used in the
linear SVM. Their proposed Sec-SVM relies on a larger number of features for classification,
thereby enhancing adversarial robustness, as attackers would need to perform significantly
more meticulous manipulations to generate AEs. Chen et al. [15] introduced SecureDroid,
a defense strategy employing ensemble learning, coupled with a novel feature selection
technique, to bolster classifier resilience against evasion attacks. The proposed method
highlighted the importance of individual features, considering both their contribution to
classification and their vulnerability to manipulation by attackers. In other words, the paper
argues that the features with greater significance in classification and lower manipulation
cost are interesting features for attackers. Specifically, the proposed method reduced the
presence of these features by altering the training set. This resulted in a more uniform
distribution of feature importance, compelling attackers to manipulate a larger array of
features to bypass detection. Yang et al. [28] investigated weight bounding, similar to [16].
They constrained the weights of the linear classifier on a few dominant features to achieve
more evenly distributed feature weights. They determined the dominant features by noting
that adversaries could generate evasive malware variants with minimal mutations on certain
features identified as dominant, compared to the extensive mutations required on other
non-dominant features. Chen et al. [18] introduced a gradient masking method that converts
the binary feature space into continuous probabilities, encoding the distribution for both
benign and malicious instances. The paper argues that when the binary feature space is
transformed into a continuous space, the gradient of feature addition or removal accessible to
attackers may be significantly reduced. As a result, attackers cannot easily bypass detection.
This technique also enables the classifier to strike an optimal balance between security and
accuracy by utilizing a softmax function with an adversarial parameter.

5.6 Limitations and Future Work
While our experiments on DREBIN convincingly showcase the effectiveness of our proposed
defense against realistic evasion attacks, it remains imperative to extend our evaluation to
encompass a broader array of malware detection systems. By doing so, we can ascertain the
generalizability of our approach across different detectors. Furthermore, since the technique
for capturing domain constraints is data-driven, it is essential to periodically update the
feature space before regular retraining to keep ML models effective. This is crucial for
maintaining the performance of malware classifiers, especially against evolving zero-day
malware with varying feature dependencies. In addition, as elucidated in Section 5.3.2,
the selection of an appropriate threshold is pivotal for ensuring the efficacy of our defense.
Hence, future inquiries should delve into the impact of different threshold values on both the
clean and robust accuracies of our defense mechanism.

5.7 Conclusion
This chapter introduces a novel defense mechanism based on domain adaptation to enhance
the adversarial robustness of ML-based AMD. The proposed method aims to enhance
the reliable generalizability of AMD against adversarial examples by mitigating spurious
correlations misused by evasion attacks. Our approach leverages domain constraints to
establish a robust feature space, enabling ML models to learn genuine malicious patterns

5.7 Conclusion

5

103

of Android malware. Experimental results on DREBIN, a well-known AMD, demonstrate
significant improvements over the state-of-the-art defense Sec-SVM, particularly against
realistic evasion attacks.

6

105

6
Enhancing Adversarial
Robustness with Robust

Optimization
Adversarial Training (AT) has emerged as a promising defense against adversarial evasive
attacks, yet its ability to effectively harden malware classifiers without sacrificing the accuracy
on clean data remains an intricate challenge. Assessments of AT often depend on weak
or unrealistic evasion attack scenarios, failing to reveal the practical challenges posed by
real-world adversarial threats. Prior work treats robustness as a task-dependent property,
often focusing narrowly on aspects like adversarial confidence or adversarial example realism.
This chapter challenges these assumptions and proposes a novel framework to systematically
evaluate AT’s effectiveness in malware classification. Our framework tackles this complex
problem by breaking it down into multiple key dimensions—whose behaviors remain largely
unknown—and empirically examining the interconnected roles of diverse factors across them.
These dimensions include data, feature representations, classifiers, and robust optimization
settings, analyzed in our framework through reliable evaluation practices, such as realistic
evasion attacks. By adopting this holistic approach, we thoroughly evaluate AT properties
within the malware domain. This enables deeper insights into how these factors collectively
influence both clean and robust accuracy, providing fresh perspectives that challenge existing
studies. Our findings reveal five critical evaluation pitfalls that affect state-of-the-art research.
We also summarize our insights into ten takeaways, along with practical recommendations to
guide future research toward uncovering the conditions under which AT achieves optimal
performance.

6.1 Introduction
Although Machine Learning (ML) remains a vital tool in assisting with malware detection,
a major concern lies in its reliability and trustworthiness, particularly in safeguarding ML
models against evasion attacks which entail crafting adversarial examples (AEs). Specifically,
these attacks can deceive ML models by exploiting blind spots1 in their decision space, where

This chapter is based on the paper currently under peer review: H. Bostani, J. Cortellazzi, D. Arp, F. Pierazzi, V.
Moonsamy, and L. Cavallaro, Effectiveness of Adversarial Training on Malware Classifiers, 2025 [204].
1Blind spot is the informal name for AE [205].

6

106 6 Enhancing Adversarial Robustness with Robust Optimization

the predictions are unreliable or inaccurate due to inadequate training samples [29]. While
there exist several approaches for thwarting such attacks (e.g., defensive distillation [17],
weight bounding [16, 28], and monotonic classification [49]), Adversarial Training (AT) [50]—
also called adversarially robust optimization—remains one of the most successful defense
strategies [51, 52]. Throughout the last decade, AT has been widely recognized as the primary
solution to strengthen ML-based malware detection against evasion attacks [14, 17, 24, 25, 28–
33, 35–38, 60, 137, 153, 154, 156, 206–208]; however, it has not been extensively investigated.
Specifically, the efficacy of existing AT techniques in providing adversarial robustness against
realistic evasion attacks while maintaining the original clean performance2 remains an
under-explored area.

In particular, we observed that several studies [14, 17, 24, 25, 29–33, 35–38, 60]
employed improper evasion attacks to demonstrate the adversarial robustness derived from
AT, because either the realizability of the AEs generated by their attacks is impractical [137]
(as they do not meet all domain constraints formalized in [9]), or the evasion attacks
considered for evaluation might not be strong enough to cause classification errors in the
ML models [51]. Moreover, the robustness of AT explored in some studies, such as [206],
was not evaluated in the worst-case scenario since they examined AT against only an
evasion attack operated under Zero Knowledge (ZK) settings, which may be less effective
than the ones operating under Perfect Knowledge (PK) settings. On the other hand, some
studies [14, 17, 28, 30, 32, 37, 60, 206, 208] failed to consider effective hardening techniques
for adversarial hardening, which might influence their conclusions, and consequently, limiting
the generalizability of their findings.

Convergence [35] in solving the inner maximization problem is another aspect that the
majority of studies [17, 24, 25, 28–33, 35, 37, 38, 60, 153, 156, 207, 208] mostly focus
on while overlooking the exploration of other key dimensions (e.g., classifiers and feature
representations) that affect the clean performance and adversarial robustness of ML models.
Although exploring evasion attacks in AT can help mitigate convergence issues by producing
high-confidence AEs (i.e., some AEs that are incorrectly classified with high confidence) [53],
it remains uncertain whether these samples consistently improve the adversarial robustness
of ML models utilized for malware detection. While [36] is the most concrete study that
explored several settings in AT, it failed to comprehensively delve into the examination of
attack perturbation bounds, AE confidence levels, and AE fractions that are deemed critical
for maximizing the coverage of blind spots in AT [53, 209].

In this chapter, we propose a unified framework that enables a comprehensive investigation
of how data, feature representations, classifiers, and robust optimization settings interact
to shape the effectiveness of AT in malware detection. Using this framework, we uncover
counterintuitive insights that challenge assumptions in prior work and offer several novel
contributions, such as improving our understanding of how linear and non-linear models
respond to AT. Specifically, building on prior research, our chapter revisits AT by questioning
established assumptions and broadening exploration. Unlike earlier works that emphasize
convergence issues [35], promote strict domain constraints [137, 206, 210], or narrowly
target specific models like Bayesian Neural Networks [153], we adopt a more inclusive
approach to challenge these ideas and explore new possibilities. Using our framework,
we empirically show that AT’s effectiveness in robust optimization depends on a complex

2The clean performance refers to vanilla malware classifiers’ performance on clean data.

6.2 Background

6

107

interaction of factors—such as perturbation bounds, adversarial confidence, adversarial
fraction, and domain constraints—shaped by the underlying data, feature representations,
and classifiers. Our results highlight the necessity of adopting a holistic methodology for
AT, demonstrating that no single factor ensures robustness. Achieving optimal trade-offs
between clean accuracy and robustness requires coordinated tuning of all parameters. Our
contributions can be summarized as follows:

• We propose a unified framework (Section 6.3.3) that identifies key factors, such as the
dimensionality of feature representations and AE realism, across multiple exploration
and evaluation dimensions to examine how their interplay affects the effectiveness
of AT. To support further research, we release our code at https://github.com/
HamidBostani2021/robust-optimization-malware-detection.

• Our evaluation shows that clean and robust performance in hardened classifiers is
shaped by the interplay of key factors. Challenging prior influential studies on
AT [35, 36, 137, 153, 206, 210], we find that the success of AT is not absolute—it
relies on careful tuning of parameters (e.g., type and quantity of AEs) alongside
variations in data, feature representations, and classifiers.

• Through our empirical evaluations, we identified five evaluation pitfalls (Section 6.4.2.1)
that impact current state-of-the-art research. Furthermore, we present ten key insights
(Section 6.4.2.7) to guide researchers in refining their adversarial training methodology
and deepening their understanding of the underlying principles.

6.2 Background
In this section, we briefly describe evasion attacks, and ML hardening.

6.2.1 Evasion Attacks
ML-based static analysis faces challenges such as evasion attacks, where the code is altered
to evade detection without changing its functionality. The goal of an adversary in evasion
attacks is to perform targeted or untargeted attacks to change the predicted class assigned
by the classifier. In targeted attacks, the objective is to alter the prediction to a desired,
predefined class; however, in untargeted attacks, any change in the predicted label from its
original classification suffices. Evasion attacks can be categorized into feature-space attacks,
which modify the input features, and problem-space attacks, which directly manipulate
domain-specific objects [50, 164, 211], such as Android apps. The transformation between
feature space and problem space is neither differentiable nor invertible, complicating the
adversary’s task in these dimensions.
Feature-space evasion attacks. These adversarial attacks operate directly on the feature
vector representing the input data to the ML model. By making subtle modifications to the
feature values, attackers can deceive the model into making incorrect classifications. This
type of attack is particularly insidious because it requires knowledge of the model’s features
and how they are processed but does not necessarily require direct access to the model itself.
The simplicity and effectiveness of feature-space attacks highlight the vulnerabilities inherent
in relying solely on ML for security [212]. Feature-space evasion attacks can be categorized
into constrained and unconstrained attacks. Constrained attacks target classification datasets

https://github.com/HamidBostani2021/robust-optimization-malware-detection
https://github.com/HamidBostani2021/robust-optimization-malware-detection

6

108 6 Enhancing Adversarial Robustness with Robust Optimization

by considering inherent domain-specific constraints (e.g., feature immutability or non-linear
relationships between features), while unconstrained feature-space attacks ignore these
constraints.
Problem-space evasion attacks. These adversarial attacks involve manipulating the actual
content of the input data, such as modifying an Android malware app without changing its
malicious functionality. These attacks are more complex and require a deeper understanding
of how modifications to the input data affect its representation in the feature space. Problem-
space attacks are considered more practical from an attacker’s perspective because they do
not necessitate direct access to the model’s internal workings. Instead, they focus on crafting
inputs that are inherently challenging for the model to classify correctly [9].

From a general perspective, evasion attacks can be categorized as either realistic or
unrealistic evasion attacks [137], regardless of where they are generated. Realistic evasion
attacks generate realizable AEs by adhering to domain constraints in either the problem space
or the feature space, where these representations resemble legitimate programs. Conversely,
unrealistic evasion attacks produce AEs that may be unrealizable, meaning they do not
resemble legitimate programs.

6.2.2 ML Hardening
To defend against evasion attacks, robust optimization techniques [53] have become a pivotal
focus. These techniques are designed to enhance the resilience of ML models against
adversarial attacks, which manipulate input data to cause misclassification. Among these
techniques, adversarially robust optimization, also known as adversarial training, plays a
crucial role in fortifying models by exposing them to AEs during the training phase. This
exposure aims to improve the model’s ability to generalize from adversarial perturbations
it might encounter in real-world scenarios [53]. AT involves incorporating AEs into the
training process, thereby enabling the model to learn from these perturbations and make more
robust predictions. Specifically, the most established strategy [53] is to iteratively generate
high-confidence AEs—worst-case AEs that cause the highest loss—and update the model
parameters to minimize the classification error on these examples. This method has been
shown to significantly enhance the model’s resilience against certain types of attacks, though
it may not guarantee protection against all possible adversarial inputs [50]. In addition to AT,
adversarial retraining [71] follows a similar approach but is based on a simpler idea. This
defense strategy involves enriching the training dataset from scratch with AEs generated by
an evasion attack.

6.3 Methodology
This chapter highlights the intertwined factors crucial for effective AT. We first formulate the
problem and define key dimensions, such as feature representations and classifiers that must
be explored to understand AT’s effectiveness. Then, we present a unified framework that
introduces diverse training and evaluation factors to explore AT from various perspectives.
Finally, we outline a systematic evaluation to understand how these factors impact adversarial
robustness and malware classifier performance on clean data. Exploring AT through different
training factors is vital, as practitioners must select appropriate configurations that will
inherently influence their detectors’ performance in real-world scenarios.

6.3 Methodology

6

109

6.3.1 Problem Definition
Suppose Z represents the problem space encompassing all potential objects (e.g., Android apps
or Windows programs). Additionally, F denotes the feature representation that characterizes
the dimensions of the feature space X. For utilizing ML in malware detection, each object
𝑧 ∈ Z is first mapped to 𝑥 ∈ X through a mapping function 𝜓 : Z→ X. Malware detection is
then performed by a binary classifier 𝑓 : X→ Y with a discriminant function 𝑔 : X × Y→ R,
where 𝑓 (𝑥) = arg max𝑖∈Y 𝑔𝑖 (𝑥) determines the label of 𝑥 ∈ X from the label space Y = {0, 1}.
Specifically, 𝑥 is classified as malware if 𝑓 (𝑥) = 1, and as benign, otherwise.

Evasion attacks can transform a malware sample 𝑥 ∈ X, which is correctly classified (i.e.,
𝑓 (𝑥) = 1), into an AE by finding an adversarial perturbation 𝛿 that changes the prediction
to 𝑓 (𝑥 + 𝛿) = 0 when added to 𝑥. To identify 𝛿, attackers solve the following optimization
problem:

𝑥′ = arg max
𝑥′∈N(𝑥)

L(𝑔𝑦 (𝑥′), 𝜃, 𝑦) (6.1)

where 𝑥′ = 𝑥 + 𝛿, and L and 𝜃 denote the loss function and parameters of the classifier 𝑓 ,
respectively. Moreover, N(𝑥) represents the set of allowed perturbations. The common
constraint in finding 𝛿, which represents the allowed perturbations, is a norm bound
∥𝑥 − 𝑥′∥ 𝑝 ≤ 𝜖 , where 𝜖 signifies the magnitude of the maximum allowed changes. To harden
𝑓 against adversarial perturbations, robust optimization aims to adjust the parameters of 𝑓 by
incorporating eq. 6.1 in the training process and solving the following min-max optimization
problem:

min
𝜃

E(𝑥𝑖 ,𝑦𝑖)∼D

[
max

∥𝑥𝑖−𝑥′𝑖 ∥𝑝≤ 𝜖
L(𝑔𝑦𝑖 (𝑥′𝑖), 𝜃, 𝑦𝑖)

]
(6.2)

where E denotes the expected value of the inner maximization problem, considering that
(𝑥𝑖 , 𝑦𝑖) ∼ D are training data samples drawn from the distribution D. It is important to
note that adversarial robustness implies that 𝑓 can accurately classify any variations of 𝑥𝑖 ,
demonstrated by 𝑥′

𝑖
= 𝑥𝑖 + 𝛿, as long as 𝑥′

𝑖
∈ N(𝑥𝑖). In other words, 𝑓 exhibits adversarial

robustness under ∥𝑥𝑖 − 𝑥′𝑖 ∥ 𝑝 ≤ 𝜖 if 𝑓 (𝑥𝑖) = 𝑓 (𝑥′
𝑖
).

6.3.2 Characterizing the Effectiveness of AT
To assess the robustness of malware detectors derived from AT, it is crucial to initially
identify the factors that might significantly impact the effectiveness of AT. Subsequently,
comprehending how these factors influence both clean performance and the adversarial
robustness of hardened malware detectors is essential. According to eq. 6.2, taking the
following key dimensions into account is vital for identifying factors that are likely to
significantly influence the performance of AT:
Data and Feature Representations. Eq. 6.2 shows that the training set is crucial for AT as
robust optimization is performed in it. When the empirical distribution of the training set
diverges from the true data distribution, AT may become ineffective since adversaries can
generate AEs that fall outside the empirical distribution of the training set [192]. One of the
primary dimensions significantly affecting the distribution of the training samples and the
coverage of blind spots is feature representation. As shown in Figure 6.1, the distribution

6

110 6 Enhancing Adversarial Robustness with Robust Optimization

Figure 6.1: Illustrating the impact of feature representation on altering the data distribution and covering blind spots
(i.e., the vulnerable regions between the decision boundary and the benign region).

of training samples and the size of the blind spots can be altered by using different feature
representations. Specifically, in discrete feature spaces, using low-dimensional feature
representations (e.g., Figure 6.1 (b)) can reduce the vulnerable region compared to high-
dimensional feature representations (Figure 6.1 (a)), intuitively impacting the capabilities of
uncovering blind spots by AT. Our experiments, especially the analysis in Section 6.4.2.2,
tend to provide empirical insights into this matter.
Classifiers. Our work aims at understanding the role that different learning algorithms,
especially linear and non-linear classifiers, play in model hardening through AT. The intuition
is that low-flexible classifiers, such as linear SVM, might be more susceptible to adversarial
instability compared to high-flexible classifiers [213], such as non-linear classifiers, resulting

Figure 6.2: Demonstrating the impact of classifiers on AT: (a) and (b) show that a linear classifier, due to its low
flexibility, may lose the adjustments made to its decision boundary at time 𝑡 based on an AE when encountering
a new AE at time 𝑡 + 1. In contrast, (c) and (d) illustrate that a non-linear classifier is more adaptable when
encountering new AE.

6.3 Methodology

6

111

in varying levels of adversarial robustness. Specifically, as shown in Figure 6.2, linear
classifiers might start to forget patterns of adversarial inputs encountered earlier in the training
process due to their limited flexibility [154].
Robust Optimization Settings. Eq. 6.2 indicates that the following hyperparameters might
have a considerable influence on the performance of AT:
(i) Perturbation bounds for identifying AEs and confidence levels of AEs. As shown
in Figure 6.3 (a), intuitively a larger perturbation bound 𝜖 should uncover more blind spots
when the adversarial example 𝑥′ found in the inner maximization is misclassified with high
confidence, achieving higher robustness.
(ii) Adversarial fractions, indicating the proportion of AEs used in AT. The robust
optimization in eq. 6.2 utilizes malware samples, underscoring the critical importance of
the number of malware samples used for AT. Increasing the number of AEs can potentially
enhance AT’s ability to uncover more blind spots. However, as illustrated in Figure 6.3 (b),
this is more likely to occur if the original malware used for AT covers a broader feature space
rather than just specific narrow areas.
(iii) Domain constraints. Realistic adversarial attacks target specific regions in the feature
space to compromise ML-based malware detectors [137]. As shown in Figure 6.3 (c), this
suggests that it is sufficient for AT to uncover only those vulnerable regions that include
the feature representations of realizable AEs. These vulnerable regions can be exposed by
considering domain constraints during AE generation, e.g., creating realizable AEs that
satisfy the domain constraints specified in the problem space [9].

6.3.3 Unified Evaluation Framework
To thoroughly investigate AT, we propose an evaluation framework, shown in Figure 6.4, that
helps identify impactful factors in AT. It allows for various controlled evaluations necessary
to clarify the impact of the training factors within the key dimensions defined in Section 6.3.2

Figure 6.3: Illustrating the influence of different settings on the performance of robust optimization: (a) demonstrates
that a large perturbation bound (e.g., 𝜖2), along with a high-confidence AE (e.g., 𝑠2) can potentially reveal more
blind spots. (b) shows that using different sets of malware samples results in varying effects on uncovering blind
spots, e.g., 𝑠1, 𝑠2, and 𝑠3 being more effective than 𝑠1 and 𝑠2. (c) indicates that in AT, uncovering only those blind
spots within the feasible feature space is sufficient, as realistic evasion attacks target these regions (e.g., 𝑠1 and 𝑠3
are realizable AEs, whereas 𝑠2 is not realizable).

6

112 6 Enhancing Adversarial Robustness with Robust Optimization

on the success of robust optimization. The framework defines these dimensions for AT and
essential evaluations to assess vanilla and robust models, allowing systematic hypothesis
testing and debugging of AT configurations through controlled factor adjustments.

6.3.3.1 Dimensions and Their Relevant Factors
The proposed framework facilitates investigating the effectiveness of AT based on various
factors across the following defined key dimensions:
Data. Distribution and volume of data are shown to be two essential training factors in
AT [74]. Our framework allows us to explore the impacts of the variations of these factors
on the effectiveness of AT. Specifically, we can import various datasets of different sizes that
include real-world objects like Android Packages (APKs), with diverse distributions based
on variables such as source and release date. Additionally, we can specify the proportion of
samples in the training, validation, and test sets.
Feature Representations. Our framework enables us to explore dimensionality, sparsity,
and types of feature representations, as they seem to influence both model performance
and computational efficiency. For instance, high-dimensional feature spaces can hinder
generalization because increased features lead to sparser data points, which may cause models
to capture incidental correlations instead of meaningful patterns [214]. It is important to note
that by elucidating each supported feature representation within the framework, we ensure
that all real-world objects in the training and test sets are represented in the feature space
according to the specified representations.
Classifiers. The framework supports building various malware detectors by employing a
range of learning algorithms. With support for both linear and non-linear classifiers, this key
dimension facilitates a thorough investigation of how the model flexibility, which indicates
the flexibility of classifiers, influences AT.
Robust Optimization Settings. Adversarial confidence, perturbation bound, adversarial
fraction, and domain constraints are adjustable factors specific to AT. The framework helps
us understand how variations in these factors, along with other discussed factors, contribute
to strengthening malware classifiers. In the AT process, we can specify the perturbation
bound for generating AEs and select different evasion attacks, either unrealistic feature-space
attacks or realistic problem-space attacks, to solve the inner maximization problem in AT.
The former is used to explore the influence of adversarial confidence, as different unrealistic
feature-space attacks produce AEs with varying levels of misclassification confidence, while
the latter is used to examine the impact of domain constraints since realistic problem-space
attacks can generate realizable AEs that meet these constraints.

6.3.3.2 Evaluations
The proposed framework provides options for building either vanilla or robust malware
detectors through standard or adversarial training. Exploring robust optimization settings is
solely crucial for AT, while the remaining factors in the key dimensions are relevant for both
types of training. Once ML models are built according to the configurations outlined in the
framework’s key dimensions, we can assess their performance using the following evaluation
aspects. Please note that in Section 6.4.2.1, we discuss some pitfalls that might occur when
exploring evaluation factors.
Clean Performance. Two important evaluation factors in specifying the performance of
malware classifiers in the absence of adversarial attacks are reliability and completeness,

6.3 Methodology

6

113

Feature

Representations
Classifiers

Robust Optimization

Settings
Data

F1 Distribution

F2 Volume

F4 Sparsity

F5 Type F6 Model Flexibility

F7 Adversarial Confidence

F8 Perturbation Bound

F9 Adversarial Fraction

F10 Domain Constraints

D
im

e
n

s
io

n
s

F
a

c
to

rs

Standard/Adversarial Training

F4 Dimensionality

Adversarial

Robustness

E3 Adversarial Detectability

E4 Adversarial Realism

Clean

Performance

E1 Reliability

E2 Completeness

Analysis

E6 Vulnerable Regions

E7 Boundary Complexity

E5 Adversarial Knowledge

E
v
a

lu
a

ti
o

n
s

E8 Hardening Cost

Figure 6.4: Illustration of our unified framework proposed to investigate the influence of various key dimensions on
the performance of malware classifiers.

offering practical insight into their impact beyond formal definitions. Reliability ensures the
classifier accurately detects malware without mislabeling goodware, while completeness
ensures it identifies all malicious instances. The framework includes metrics like F1-Score
to clarify these aspects.
Adversarial Robustness. Our proposed framework supports three key evaluation factors
for assessing adversarial robustness: adversarial detectability, adversarial realism, and
adversarial knowledge. While adversarial detectability measures the classifier’s ability to
detect AEs, adversarial realism ensures that only realistic evasion attacks are considered.
Additionally, robustness is assessed against attacks with varying levels of knowledge about
the classifier.
Analysis. The framework provides a collection of tools for plotting, such as t-SNE
visualization [215]. Besides regular plots, two following tools are supported to further
interpret the functionality of AT:
(i) Joint Feature Importance. This tool is designed to assess how vulnerable regions in the
feature space are protected by AT. Specifically, to evaluate which features are important for
both AT and a realistic evasion attack, we proposed a technique utilizing the Joint Distribution
Plot (JDP). To this end, we first determine the frequency of alteration for each feature within
the feature space during AT and attacking, as this frequency can be seen as a metric indicating
the importance of features for either AT or the realistic evasion attack. For example, if 𝑓1 ∈ F
is involved in transforming 𝑥1 ∈ X and 𝑥2 ∈ X into AEs during AT, its frequency is 2. We
then use the JDP to visualize the overlap in features importance between AT and the evasion
attack. The JDP is based on the Probability Distribution Function (PDF) and is plotted by
estimating the values of two random variables: one representing the importance of features
for AT and the other for the evasion attack. Using the PDF, the distribution of every feature
is displayed along the x-axis and y-axis according to the frequencies determined by AT and

6

114 6 Enhancing Adversarial Robustness with Robust Optimization

the evasion attack, respectively. Refer to 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 6.4.2.5 to see an example for JPD.
(ii) Decision-function Roughness. To investigate whether the adversarial vulnerability is
related to boundary complexity, which indicates the shape of the decision surface learned
by the models, we adapt the technique proposed in [209] for use in our framework. This
method estimates a model’s prediction-change risk 𝑟 by comparing the predictions of
synthetic samples, uniformly drawn within the 𝜖-bound of a training sample 𝑥 ∈ X, with the
prediction of 𝑥. A larger 𝑟 indicates a rougher decision function. For more details about this
measurement, refer to [209].

Besides the above analysis factors, our framework includes the hardening cost, which
captures the computational resources needed for AT, helping assess its practical feasibility.

6.3.4 Structured Analysis
To evaluate the influence of the key factors outlined in 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 6.3.2, we design a wide
range of experiments that enable controlled assessments. Specifically, these experiments are
crafted to explore the following RQs:

RQ1: What factors significantly affect the effectiveness of AT?

To explore this research question, we design a comprehensive set of experiments.
Specifically, we systematically vary each of the different factors identified within our key
dimensions to understand their contributions to the efficacy of AT. Our experimental design
encompasses the following key aspects:

• Data: We consider different datasets including raw objects such as Android APKs,
denoted as D1, D2, etc.

• Feature Representations: We use different feature representations, denoted as F1, F2,
etc.

• Classifiers: We consider multiple classifiers, denoted as C1, C2, etc.

• Perturbation Bounds: We explore a range of perturbation bounds, such as 𝜀 =

[0, 5, 10, ..., 100].

• Adversarial Fractions: We vary the fraction of AEs, such as A = [10%, 20%, ..., 100%]
where each 𝛼𝑖 ∈ A indicates the percentage of malware samples per epoch that can be
used for AT.

• Evasion Attacks: We employ several evasion attacks, donated as A𝑡𝑡𝑎𝑐𝑘1, A𝑡𝑡𝑎𝑐𝑘2,
etc., to generate AEs required for either AT or attacking. Our attack set includes
unrealistic feature-space attacks to explore the impact of AE confidence on AT, as
well as realistic problem-space attacks to assess the effect of domain constraints on
AT. It is noted that realistic problem-space attacks allow us to generate realizable AEs
that satisfy domain constraints. Additionally, these problem-space attacks are used to
evaluate the adversarial robustness of our classifiers.

For each combination of data, feature representation, and classifier, we conduct a series
of experiments by varying the perturbation bounds, the adversarial fractions, and evasion

6.4 Experiments and Evaluations

6

115

attacks. For instance, we first combine data D1, feature representation F1, and classifier C1,
and evaluate the performance at each 5 ∈ 𝜀 and 50% ∈ A using different A𝑡𝑡𝑎𝑐𝑘 . We then
continue in this manner for all combinations.

RQ2: What properties of the generated AEs influence the outcomes of the hardening process?

Different evasion attacks generate AEs by leveraging distinct logical approaches, leading
to varying levels of adversarial robustness. Therefore, each method uniquely influences the
training process, resulting in different coverage of blind spots (i.e., vulnerable regions in the
decision space of classifiers) and decision boundaries. To investigate this research question,
we examine the coverage of blind spots and decision boundaries using analysis tools prepared
in the framework, particularly Joint Feature Importance and Decision-function Roughness.

6.4 Experiments and Evaluations
6.4.1 Scope of Analysis
AT is platform-independent, operating on feature representations rather than raw problem-
space data. However, to avoid biased datasets and enable thorough exploration, it is essential
to collect a large, diverse set of malware and goodware samples. Android is well-suited for
this, offering extensive timestamped APKs via repositories like AndroZoo [44], ensuring the
volume and variety needed for reliable analysis.

We emphasize the necessity for practitioners to fine-tune key parameters (e.g., adversarial
fraction) in robust optimization to ensure its effectiveness. Our framework underscores
the importance of understanding how these parameters interact with variations in data,
feature representations, and classifiers. Given the challenges in identifying optimal feature
representations and classifiers, we adopt well-established solutions to maintain focus on
our primary research objectives. Specifically, to explore training factors such as feature
dimensionality and model flexibility, we utilize multiple datasets (DREBIN20 [9] and
APIGraph [54]), feature representations (DREBIN [96] and RAMDA [159]), classifiers (linear
Support Vector Machine (SVM), Decision Tree (DT), and Deep Neural Network (DNN)). To
address evaluation factors like adversarial realism and adversarial knowledge, we consider
both unrealistic (PGD [53], JSMA [164]) and realistic (PK-Greedy [9], EvadeDroid [84])
attacks, generating AEs from 1K randomly selected clean malware samples from the test set
(true positives). Details of our choices and implementation are provided in Appendices 6.A
and 6.B.

6.4.2 Systematic Evaluations
This section explores RQ1 in Section 6.4.2.2, Section 6.4.2.3, and Section 6.4.2.4, as well as
RQ2 in Section 6.4.2.5 to determine the impact of various key factors on the success of AT
and explore which properties of AEs influence AT performance. As outlined in Section 6.3.4,
our systematic evaluations are structured around a series of experiments, each employing
various combinations of data, feature representations, and classifiers.

6

116 6 Enhancing Adversarial Robustness with Robust Optimization

6.4.2.1 Standard Evaluation Configuration
PGD and JSMA are two feature-space attacks within the optimization module of our proposed
framework. They are used to harden baseline malware detectors in most of our evaluations
by generating adversarial examples (AEs) with varying confidence levels (see Appendix
6.C). Additionally, given that both DREBIN and RAMDA are binary feature representations,
we consider the ℓ0-norm (i.e., the number of changes) in eq. 6.2, because it is the common
perturbation bound for binary feature representations [108]. Moreover, to assess adversarial
robustness, we evaluate the models’ resistance to bounded PK-Greedy and EvadeDroid
attacks, ensuring that their attack bounds match those used in the evasion attacks during
AT. Additionally, it is imperative to confirm that the observed adversarial robustness against
evasion attacks is attributable to AT, rather than stemming from the limitation imposed by the
attack bounds of evasion attacks. Our preliminary evaluations in Appendix 6.D underscore
the importance of excluding the robustness improvement resulting from the limitations
imposed by the attack bound when assessing the adversarial robustness of a model enhanced
with AT. This approach is crucial for accurately understanding the impact of AT on the
model’s robustness. In particular, consider M𝑣 and Mℎ, representing a vanilla model and
its hardened counterpart strengthened with an evasion attack employing an 𝜖 bound during
AT. To assess the robust accuracy solely obtained through AT of Mℎ against an 𝜖-bounded
evasion attack A𝑡𝑡𝑎𝑐𝑘 , the measurement should be conducted as follows:

RAT = Rℎ − (R𝑣1 − R𝑣2) (6.3)
where Rℎ represents the robust accuracy of Mℎ in response to the 𝜖-bounded A𝑡𝑡𝑎𝑐𝑘 .
Additionally, R𝑣1 denotes the robust accuracy of M𝑣 under the same 𝜖-bounded attack, while
R𝑣2 indicates M𝑣’s robust accuracy against the unbounded A𝑡𝑡𝑎𝑐𝑘 . While RAT isolates the
robustness directly attributed to AT, comparing its effectiveness across different attack bounds
requires normalization, as AT does not have the same opportunity to improve robustness
when the inherent robustness of the vanilla model varies. For instance, with a smaller attack
bound, the vanilla model may already exhibit higher robustness, limiting the potential gain
from AT. We define the relative robustness gained by AT as:

Rrel =
RAT

100 − (R𝑣1 − R𝑣2)
× 100 (6.4)

where 100 − (R𝑣1 − R𝑣2) represents the portion of robustness that is still available for
improvement by AT in Mℎ under the 𝜖-bounded A𝑡𝑡𝑎𝑐𝑘 . Here, 100 represents the theoretical
maximum robustness a model can achieve. This normalization ensures a fair comparison
across different attack bounds by measuring how effectively AT improves robustness relative
to the remaining improvable portion. The aforementioned evaluations give rise to Pitfalls 1
and 2, which are described as follows:
Pitfall 1—Overestimated Robustness. It is common to measure the adversarial robustness
of malware detectors after hardening ML models with AT. However, overlooking the
robustness arising from the limitations of adversaries due to the attack bound could result in
an overestimation when reporting the adversarial robustness achieved through AT.
Recommendation for Pitfall 1. To verify the efficacy of AT methods in enhancing adversarial
robustness, eq. 6.3 can be employed to discount the initial robustness of baseline malware
detectors against bounded evasion attacks. Figure 6.5 provides an example highlighting

6.4 Experiments and Evaluations

6

117

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

20

30

40

50

60

70

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Adversarial Robustness
AT-Driven Adversarial Robustness

Figure 6.5: An example demonstrating the robust accuracy of hardened DNN models trained on RAMDA with
varying perturbation bounds, evaluated against PK-Greedy attacks with identical attack bounds. The models are
strengthened by utilizing PGD in AT.

the difference between the measured adversarial robustness and the adversarial robustness
derived from AT (as identified by eq. 6.3) for various DNN models trained on RAMDA.
Pitfall 2—Limited Threat Models. Investigating AT could result in misleading conclusions
if the robust evaluation of malware detectors is performed using only one threat model. For
example in [206], malware classifiers have been compared against a single attack, which may
lead to an unreliable conclusion. Our observation in Table 6.4 of Appendix 6.D confirms that
malware detectors provide various robustness against attacks with different threat models.
For instance, Table 6.4 intriguingly indicates that EvadeDroid, which operates in ZK settings,
outperforms PK-Greedy, which operates in PK settings.
Recommendation for Pitfall 2. The evaluation of the adversarial robustness of detectors
against evasion attacks should involve considering different threat models, including at
least PK and ZK evasion attacks. This is because of robustness against PK attacks do not
necessarily imply robustness against ZK attacks, and vice versa, as they might target different
vulnerable regions.

Additionally, we identified the following three pitfalls during our preliminary assessment
aimed at ensuring the framework’s effectiveness.
Pitfall 3—Reproducibility Challenges. ML algorithms often involve random processes,
such as weight initialization and data shuffling. For instance, our preliminary evaluation
illustrates the F1 score of the same model adversarially trained with the same varied
perturbation bounds in two runs is different. We cannot ensure that the changes in the
F1 score are due to the perturbation bound alone, as the scores differ even for a single
perturbation bound.
Recommendation for Pitfall 3. Since results can vary between runs without consistently
setting random seeds, it is essential to fix the random seed for every stochastic operation in
the training process. This ensures that, at least on the same machine, observed differences
are due to variations in AT settings rather than randomness.
Pitfall 4—Role of Representations. Multiple representations may be available for the data
considered. For instance, for malware, we have multiple available feature spaces in the
research community. Nevertheless, research frequently focuses on a single feature space,
which could have inherent limitations and may not be the best choice for the considered task.
Recommendation for Pitfall 4. Since intrinsic characteristics of different representations
may vary, it would be worth exploring multiple representations and then proceeding with the
most suitable for the considered task.
Pitfall 5—Adversarial Realism Challenge. In the real world, not all adversarial attacks are

6

118 6 Enhancing Adversarial Robustness with Robust Optimization

feasible, as adversarial malware aims to both bypass malware classifiers and compromise
victim machines. Therefore, using evasion attacks that cannot generate realizable AEs for
robustness evaluation may lead to misleading results.
Recommendation for Pitfall 5. When evaluating adversarial robustness, it is necessary
to consider evasion attacks that are realistic by satisfying domain constraints, either in the
problem space [9] or in the feature space [137].

6.4.2.2 Robust Optimization Settings: Variation of Perturbation Bounds and
AE Confidence Levels

To investigate the impact of these two variables on AT, we utilized PGD and JSMA to generate
AEs with perturbation bounds varying from 5 to 100 in increments of 5. Additionally, we set
the fraction of AEs to 𝛼 = 50%. Figure 6.6 shows the clean performance of different models
in terms of the F1 score. As can be seen, different classifiers exhibit varying sensitivities to
AT with changing perturbation bound 𝜖 and the confidence of AEs. Increasing 𝜖 potentially
enables the inner optimization to find AEs with higher confidence, provided the evasion
attack used in AT is able to generate high-confidence AEs. As shown in Figure 6.6, using
AT for hardening linear SVM and DT often compromises clean performance, with a greater
sacrifice as 𝜖 increases, especially when PGD is used for hardening linear SVM. In contrast,
DNN is more adaptable. For instance, Figure 6.6 (a) depicts in DREBIN (DREBIN20), the
F1 Score of linear SVM significantly decreases from 86.1% to 72.6% when PGD is used in
AT with 𝜖 = 100. Using JSMA in AT has a lower effect on clean performance than PGD,
especially in linear SVM, as the attack might not generate high-confidence AEs even with
increasing 𝜖 . For instance, as can be seen in Figure 6.6 (b), while the F1 Score of linear
SVM trained on RAMDA drops significantly with JSMA at 𝜖 = 5, it remains relatively stable
for higher 𝜖 = 5 because, as shown in Figure 6.11 of Appendix 6.C, the confidence of AEs
generated by JSMA does not significantly change with increasing perturbation bound.

Figure 6.7 illustrates the relative robust accuracy of different models trained on DREBIN
and RAMDA against PK-Greedy and EvadeDroid on DREBIN20 and APIGraph datasets.
Although Figure 6.7 shows variations in the adversarial robustness of models when hard-
ened with different perturbation bounds, our observations reveal a few interesting results.
First, models trained on RAMDA (dense, low-dimensional discrete feature space) often
exhibit higher adversarial robustness compared to those trained on DREBIN (sparse, high-
dimensional discrete feature space), as AT can potentially uncover more vulnerable regions in
the lower-dimensional space. For example, Figure 6.7 (a) shows that 12 out of 20 DNN-JSMA
models trained on DREBIN achieve a robust accuracy greater than 50% against PK-Greedy,
whereas as can be seen in Figure 6.7 (c), 18 models achieve this benchmark when trained on
RAMDA.

Second, low-confidence AEs like those from JSMA often enhance the robustness of
linear SVM on RAMDA as the perturbation bound increases (Figure 6.7 (c, d, g, and h)).
This is likely because, in dense, low-dimensional spaces, AEs within smaller 𝜖-bounded
regions have limited impact on the decision boundary. Larger 𝜖 enables greater shifts, but at
the cost of clean performance. A similar pattern is observed for linear SVM on DREBIN, a
sparse, high-dimensional space, when high-confidence AEs like those from PGD are used in
AT (Figure 6.7 (b, e, and f)).

Thirdly, incorporating high-confidence AEs in AT does not consistently lead to improved
adversarial robustness. For instance, as depicted in Figure 6.7 (a to d), among 240 models

6.4 Experiments and Evaluations

6

119

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(a) DREBIN (DREBIN20)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(b) RAMDA (DREBIN20)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(c) DREBIN (APIGraph)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(d) RAMDA (APIGraph)

Figure 6.6: Clean performance of various models trained on (a) the DREBIN and (b) RAMDA representations of
the DREBIN20 dataset, and (c) the DREBIN and (d) RAMDA representations of the APIGraph dataset, measured
in terms of F1 score. The models are strengthened using either PGD or JSMA with different perturbation bounds.
The F-scores of different vanilla models are displayed with a perturbation bound of 0.

strengthened with JSMA, 143 models demonstrate higher adversarial robustness against
realistic evasion attacks compared to those strengthened with PGD. As another example,
Figure 6.7 (e to h) shows that using JSMA (low-confidence AEs) for hardening DNNs
on both DREBIN and RAMDA representations of the APIGraph dataset often provides
better adversarial robustness. However, within linear SVM, employing high-confidence
AEs generated by PGD during AT, particularly in models trained on DREBIN, enhances
adversarial robustness more effectively than JSMA. This observation appears to correlate with
the linear decision boundary learned during training, which can be significantly shifted by
high-confidence AEs—those characterized by high loss—thereby exposing larger vulnerable
regions. Nevertheless, as illustrated in Figure 6.6, these substantial adjustments come at the
cost of notable reductions in clean performance. It is noted that Appendix 6.E examines
larger perturbation bounds for DREBIN, as the current bounds may be insufficient for this
high-dimensional space. We observe that using attacks with large perturbation bounds in AT
yields minimal to no effect, or even a negative impact, across all models.

6.4.2.3 Robust Optimization Settings: Variation of AE Fractions and AE Confi-
dence Levels

Increasing the number of AEs can potentially uncover more blind spots if the malware
samples in the training set are uniformly distributed around the decision boundary; however,
they might hurt the clean performance. In this experiment, we explore the impact of
different fractions of AEs utilized in AT on both clean and robust accuracy. Specifically, the
experimental design is similar to Section 6.4.2.2, but in this case, we set 𝜖 = 50 and vary
the AE fraction from 10% to 100% in increments of 10%. The relative robust accuracy is
shown in Figure 6.15 of Appendix 6.G and the clean accuracy is reported in Figure 6.14 of
Appendix 6.F. As with the previous evaluations, the plots demonstrate the significance of

6

120 6 Enhancing Adversarial Robustness with Robust Optimization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(a) DREBIN (DREBIN20) – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(b) DREBIN (DREBIN20) – EvadeDroid

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(c) RAMDA (DREBIN20) – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(d) RAMDA (DREBIN20) – EvadeDroid

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(e) DREBIN (APIGraph) – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(f) DREBIN (APIGraph) – EvadeDroid

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(g) RAMDA (APIGraph) – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Perturbation Bound

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(h) RAMDA (APIGraph) – EvadeDroid

Figure 6.7: Relative clean accuracy improvement from AT on hardened models. Subfigures (a) and (b) show results
on the DREBIN representation of the DREBIN20 dataset; (c) and (d) show RAMDA representation of DREBIN20;
(e) and (f) show DREBIN representation of the APIGraph dataset; and (g) and (h) show RAMDA representation of
APIGraph. Each model is hardened using either PGD or JSMA with varying perturbation budgets and evaluated
against PK-Greedy and EvadeDroid attacks.

classifiers in AT. Non-linear models, such as DNNs, demonstrate adaptation of their decision
boundaries to AEs, with minimal impact on clean accuracy across both feature spaces. In
contrast, linear SVM exhibits a notable enhancement in robust accuracy, exceeding 60% in
the DREBIN feature space. However, this improvement comes at the cost of a significant
decrease in clean performance as the number of AEs during training increases. It is worth
noting that this exploration indicates that the issue of low adversarial robustness with large

6.4 Experiments and Evaluations

6

121

perturbation bounds in non-linear models, highlighted in Section 6.4.2.2, can be mitigated by
increasing the number of AEs used in AT as the robustness of DNN models often improves
with a higher adversarial fraction.

6.4.2.4 Robust Optimization Settings: Domain Constraints
The domain constraints can guide AT to focus on regions vulnerable to realistic evasion
attacks. To examine the impact of these constraints on AT’s success, we used realizable
AEs generated by bounded PK-Greedy and bounded EvadeDroid in our AT process. Since
employing problem-space adversarial attacks for robust optimization to solve the inner
maximization problem significantly increases training time, we only consider the DREBIN20
dataset in our evaluations. Table 6.1 shows the settings for the robust optimization considered
in this experiment. Our criterion for selecting the perturbation bound 𝜖 is to ensure that
PK-Greedy and EvadeDroid achieve maximum success rates in fooling the evaluated models.

Figure 6.8 illustrates the robust accuracy of various malware classifiers hardened with
unrealistic and realistic evasion attacks. Our observations for DREBIN indicate that realistic
evasion attacks often provide robustness against similar attacks. For instance, as shown in
Figure 6.8 (DREBIN-DNN, subfigure a), while utilizing PK-Greedy achieves relatively high
adversarial robustness against PK-Greedy (63.6% robust accuracy), its robustness against
EvadeDroid is very low (e.g., 0.5% robust accuracy). However, employing unrealistic evasion
attacks such as JSMA can strengthen DNN models against both realistic evasion attacks,
achieving 59.3% robust accuracy against PK-Greedy and 48.6% against EvadeDroid. We
observe a similar trend for other classifiers, but the robustness achieved using PK-Greedy
and EvadeDroid in AT is significantly lower for SVM and DT compared to DNN. Overall,
PK-Greedy and EvadeDroid are less effective at hardening malware classifiers trained on
DREBIN (a sparse, high-dimensional discrete feature space), particularly for models using
SVM and DT. However, these results highlight that domain constraints, which are implicitly
defined through the use of realizable AEs in AT, have a more significant impact on the
success of AT in dense, low-dimensional discrete feature spaces. For instance, applying
EvadeDroid to harden an SVM trained on RAMDA resulted in 41.8% robustness against
PK-Greedy, while the same model trained on DREBIN only achieved 0.5%.

Furthermore, Figures 6.8 (RAMDA-DNN, subfigure a and d) and 6.8 (RAMDA-DT,
subfigure a and d) show that utilizing EvadeDroid to harden DNN and DT models trained
on RAMDA provides high adversarial robustness against both PK-Greedy and EvadeDroid.
This suggests that exploring the low-dimensional feature space blindly is more effective
than following gradients, which are potentially biased towards finding certain vulnerable
regions rather than all vulnerable regions. In other words, in the RAMDA, which is a

Table 6.1: Parameter settings for domain constraints exploration in terms of adversarial rate 𝛼 and perturbation
bound 𝜖 . PG and ED define PK-Greedy and EvadeDroid, respectively.

Model 𝛼
𝜖 (DREBIN) 𝜖 (RAMDA)
PG ED PG ED

DNN 50 50 80 90 50
SVM 50 100 65 25 65
DT 50 70 85 75 30

6

122 6 Enhancing Adversarial Robustness with Robust Optimization

DNN-PGD DNN-JSMA DNN-PK-Greedy
(a) = 50

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy

32.6

59.3 63.6

DNN-PGD DNN-JSMA DNN-EvadeDroid
(b) = 80

0

20

40

60

80

100

26.4
36.3

0.0
DNN-PGD DNN-JSMA DNN-PK-Greedy

(c) = 50
0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 E
va

de
Dr

oi
d

27.9

48.6

0.5
DNN-PGD DNN-JSMA DNN-EvadeDroid

(d) = 80
0

20

40

60

80

100

29.6

50.9

17.7

DNN models trained on DREBIN

DNN-PGD DNN-JSMA DNN-PK-Greedy
(a) = 90

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy

53.6 55.6

71.0

DNN-PGD DNN-JSMA DNN-EvadeDroid
(b) = 50

0

20

40

60

80

100

55.7 59.6

94.3

DNN-PGD DNN-JSMA DNN-PK-Greedy
(c) = 90

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 E
va

de
Dr

oi
d

58.2 61.7

31.6

DNN-PGD DNN-JSMA DNN-EvadeDroid
(d) = 50

0

20

40

60

80

100

60.0
66.1

85.5

DNN models trained on RAMDA

SVM-PGD SVM-JSMA SVM-PK-Greedy
(a) = 100

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy

46.1

0.4
9.7

SVM-PGD SVM-JSMA SVM-EvadeDroid
(b) = 65

0

20

40

60

80

100

47.3

0.4 0.5
SVM-PGD SVM-JSMA SVM-PK-Greedy

(c) = 100
0

20

40

60

80

100
Ro

bu
st

 A
cc

 (%
) a

ga
in

st
 E

va
de

Dr
oi

d

49.6

1.0 1.2
SVM-PGD SVM-JSMA SVM-EvadeDroid

(d) = 65
0

20

40

60

80

100

53.2

2.6
7.1

SVM models trained on DREBIN

SVM-PGD SVM-JSMA SVM-PK-Greedy
(a) = 25

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy 84.9

45.4 45.1

SVM-PGD SVM-JSMA SVM-EvadeDroid
(b) = 65

0

20

40

60

80

100

75.4
69.4

41.8

SVM-PGD SVM-JSMA SVM-PK-Greedy
(c) = 25

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 E
va

de
Dr

oi
d

80.6 83.1

29.0

SVM-PGD SVM-JSMA SVM-EvadeDroid
(d) = 65

0

20

40

60

80

100
85.4 81.2

31.9

SVM models trained on RAMDA

DT-PGD DT-JSMA DT-PK-Greedy
(a) = 70

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy

32.1

46.8

3.0
DT-PGD DT-JSMA DT-EvadeDroid

(b) = 85
0

20

40

60

80

100

19.0
9.1

2.3
DT-PGD DT-JSMA DT-PK-Greedy

(c) = 70
0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 E
va

de
Dr

oi
d

15.0 17.7

0.9
DT-PGD DT-JSMA DT-EvadeDroid

(d) = 85
0

20

40

60

80

100

6.2 1.8 6.2

DT models trained on DREBIN

DT-PGD DT-JSMA DT-PK-Greedy
(a) = 75

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 P
K-

Gr
ee

dy

61.1

11.3

60.1

DT-PGD DT-JSMA DT-EvadeDroid
(b) = 30

0

20

40

60

80

100

62.1

48.9

62.2

DT-PGD DT-JSMA DT-PK-Greedy
(c) = 75

0

20

40

60

80

100

Ro
bu

st
 A

cc
 (%

) a
ga

in
st

 E
va

de
Dr

oi
d

53.3

0.7

21.3

DT-PGD DT-JSMA DT-EvadeDroid
(d) = 30

0

20

40

60

80

100

52.9

40.5 41.7

DT models trained on RAMDA

Figure 6.8: Robust accuracy, gained from AT, of DNN, SVM, and DT models trained on DREBIN and RAMDA
representations of DREBIN20, hardened with either unrealistic or realistic evasion attacks against realistic evasion
attacks. The perturbation bound and attack bound, both represented by 𝜖 , are identical in each subfigure.

6.4 Experiments and Evaluations

6

123

Table 6.2: Clean performance of different models trained on DREBIN and RAMDA representations of DREBIN20,
hardened with either unrealistic or realistic evasion attacks in terms of F1 Score. PG and ED define PK-Greedy and
EvadeDroid, respectively. F1 scores of vanilla DNN, SVM, and DT trained on DREBIN representation are 88.9,
86.1, and 81.4, respectively. F1 scores of vanilla DNN, SVM, and DT trained on RAMDA representation are 82.8,
71.3, and 79.5, respectively.

Model DREBIN RAMDA
𝜖 PGD JSMA PG 𝜖 PGD JSMA PG

DNN 50 89.7% 89.0% 89.1% 90 81.5% 81.3% 82.6%
SVM 100 72.6% 82.5% 85.1% 25 51.8% 54.6% 70.9%
DT 70 79.4% 80.8% 82.1% 75 63.8% 72.3% 77.5%

𝜖 PGD JSMA ED 𝜖 PGD JSMA ED

DNN 80 88.9% 88.8% 90.4% 50 81.7% 81.5% 82.3%
SVM 65 76.2% 82.5% 85.5% 65 51.0% 53.1% 71.2%
DT 85 78.9% 82.0% 83.6% 30 70.7% 75.4% 78.6%

low-dimensional feature space, robustness achieved by EvadeDroid, which works in ZK
settings, is more transferable than PK-Greedy which works in PK settings.

Our observations in Figures 6.8 indicate that PGD and JSMA can potentially be effective
in hardening malware classifiers; however, their effectiveness must be weighed against their
impacts on clean performance. Table 6.2 shows notable drops in F1 Score, especially when
PGD and JSMA are used for hardening SVM and DT, while PK-Greedy and EvadeDroid
maintain clean accuracy. The decline in clean performance with unrealistic evasion attacks
stems from AEs distorting class boundaries, causing artificial overlaps. This shift forces the
model to focus on unfeasible regions (i.e., the areas where realizable AEs cannot be placed),
hindering its ability to generalize and leading to more misclassifications on clean data. The
use of realizable AEs in AT avoids these negative effects by guiding the optimizer to explore
feasible and genuinely vulnerable regions.

6.4.2.5 Properties of AEs
This section investigates RQ2. This research question is similar to the research question
explored in [206]. Intuitively, different methodologies for crafting AEs inherently produce
distinct characteristics in the generated samples, as they exploit varying sets of features and
algorithms. This distinction is illustrated in Figure 6.11 of Appendix 6.C, where it is evident
that the confidence levels of AEs created by two different gradient-based strategies vary
significantly. To delve deeper into AEs and their influence on the effectiveness of AT, we
employ diverse tools mentioned in Section 6.3.3.2.

We first utilize the joint feature importance metric introduced in 6.3.3.2 to determine the
significance of features for both the defense and attack sides. Specifically, we analyze some
interesting results reported in Section 6.4.2.4. As shown in Figures 6.8 (b) and 6.8 (d) for
DNN models trained on RAMDA, the adversarial robustness achieved by using EvadeDroid
in hardening DNN trained on RAMDA is highly transferable, providing high adversarial
robustness against not only EvadeDroid but also PK-Greedy. Figures 6.9 (a) and 6.9 (b)
clarify this, demonstrating that some overlapping regions are highly important for both the
defender and the attacker. Note that in each plot, the contours highlight regions where the

6

124 6 Enhancing Adversarial Robustness with Robust Optimization

0.0 0.2 0.4 0.6 0.8 1.0
EvadeDroid

0.0

0.2

0.4

0.6

0.8

1.0

PK
-G

RE
ED

Y

RAMDA

(a)

0.0 0.2 0.4 0.6 0.8 1.0
EvadeDroid

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ad

eD
ro

id

RAMDA

(b)

0.0 0.2 0.4 0.6 0.8 1.0
JSMA

0.0

0.2

0.4

0.6

0.8

1.0

PK
-G

RE
ED

Y

RAMDA

(c)

0.0 0.2 0.4 0.6 0.8 1.0
JSMA

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ad

eD
ro

id

RAMDA

(d)

Figure 6.9: Joint distribution plots which compare the importance of features used both during the hardening phase
(x-axis) and the attack phase (y-axis), referring to the scenario described in Figure 6.8.

importance of common features is greater than in areas outside the contours. The contours
near the top right indicate that the common features are mostly important for both the
defender and the attacker, with darker contours representing a higher feature overlap. Indeed
Figures 6.9 (a) and 6.9 (b) demonstrate that EvadeDroid can generate some AEs during
training that highlight features often targeted by both EvadeDroid and PK-Greedy during
attacks. This helps the DNN model guard against adversarial changes that might affect these
features. Figures 6.8 (b) and 6.8 (d) for DNN models trained on RAMDA also illustrate a
relatively high adversarial robustness achieved by hardening DNN with JSMA, an unrealistic
evasion attack. We visualize similar joint importance feature plots (Figures 6.9 (c) and
6.9 (d)) which, like the previous analysis, demonstrate that some overlapping regions are
highly important for both defense and attack sides.

Then, we examine the potential connection between the roughness of the decision
boundary, which is measured using the decision-function roughness metric introduced in
Section 6.3.3.2, and adversarial robustness. Here, we consider several models hardened
by PGD on RAMDA with 𝜖 values ranging from 50 to 60. As shown in Figure 6.7 (c),
this range is particularly interesting because, at 𝜖 = 55, DT exhibits a significant drop in
adversarial robustness against PK-Greedy, while DNN and SVM models remain more stable.

6.4 Experiments and Evaluations

6

125

Table 6.3: Analyzing various models trained on RAMDA in terms of decision-function roughness 𝛾 and robust
accuracy R Acc against PK-Greedy. These models are hardened by PGD.

Model 𝜖 = 50 𝜖 = 55 𝜖 = 60
𝛾 R Acc 𝛾 R Acc 𝛾 R Acc

DNN 0.82 55.7% 0.82 58.6% 0.84 57.8%
SVM 0.26 74.6% 0.31 76.0% 0.26 77.6%
DT 0.16 58.1% 0.13 18.8% 0.17 49.2%

Table 6.3 presents the decision-function roughness 𝛾 and robust accuracy for these models.
Our observations indicate that increasing 𝜖 can affect adversarial robustness, particularly in
DT. For instance, DT’s robust accuracy drops significantly from 58.1% to 18.8% when 𝜖
changes from 50 to 55, whereas the 𝛾 changes only slightly by -0.03. Furthermore, as shown
for the DT model, increasing or decreasing 𝜖 does not necessarily correlate with changes in 𝛾.
Lastly, while the results for DNN and SVM suggest that lower 𝛾 can lead to better adversarial
robustness, this is not consistently the case, as evidenced by the DT results contradicting this
hypothesis.

Next, as shown in the results presented in Section 6.4.2.2 and Section 6.4.2.3, hardened
models trained on the APIGraph dataset often achieve higher clean and robust accuracy
compared to those trained on DREBIN20. To understand this performance gap, we use
t-SNE visualizations of both datasets. As shown in Figure 6.10, APIGraph plots—under
both DREBIN and RAMDA features—demonstrate clearer separation between malware and
goodware than DREBIN20, likely contributing to the improved performance. Additionally,
prior work [216] indicates that APIGraph experiences less distribution drift, supporting its
suitability for training effective and stable malware classifiers.

6.4.2.6 Computational Constraints
This chapter systematically analyzes how various factors affect the effectiveness of AT in
malware classification. We trained 1K+ models and ran 3K+ evaluations, which took more
than six months despite significant hardware resources (see Appendix 6.A.5). Specifically,
training times ranged from 4 to 140 hours per model, depending on the settings, while clean
performance and robustness evaluations took 15 and 780 seconds per model, respectively. It
is important to note that a full exploration of all possible combinations—datasets, feature
representations, classifiers, and robust optimization settings (e.g., perturbation bounds and
adversarial fractions)—would require nearly 27K models (see Appendix 6.H). Given that
training just 1K models took over six months, pursuing an exhaustive training regimen is
computationally infeasible. To balance practicality and meaningful insights, we adopt a
structured approach, varying key parameters while holding others constant. For instance, in
Section 6.4.2.2, we examine perturbation bounds and adversarial confidence across datasets,
features, and classifiers, fixing the adversarial fraction and using unrealistic evasion attacks,
reducing the model count to 480 for efficient evaluation.

6.4.2.7 Key Findings
Our results shed light on the trade-offs between clean performance and adversarial robustness
when using AT to strengthen malware classifiers, advocating for structured evaluations

6

126 6 Enhancing Adversarial Robustness with Robust Optimization

Goodware
Malware

(a) DREBIN (DREBIN20)

Goodware
Malware

(b) DREBIN (APIGraph)

Goodware
Malware

(c) RAMDA (DREBIN20)

Goodware
Malware

(d) RAMDA (APIGraph)

Figure 6.10: t-SNE plots of goodware and malware from DREBIN20 and APIGraph, represented with DREBIN
and RAMDA features.

over exhaustive training. Our chapter challenges conclusions drawn in previous influential
research: Specifically, Section 6.4.2.4 questions the conclusions of [206, 210], arguing that
realistic evasion attacks do not always enhance robustness, as their effectiveness depends
on multiple factors. Additionally, while [36, 210] report that unrealistic evasion attacks
degrade clean performance, we show that this effect varies by classifier, particularly in
deep, non-linear models, where AT with unrealistic evasion attacks does not necessarily
harm clean performance. However, when realistic evasion attacks are used, our results align
with [36, 210], supporting the claim that such settings can maintain clean accuracy. Our
findings in Section 6.4.2.2 and Section 6.4.2.3 also challenge the assumption made in [35],
demonstrating that generating highly confident AEs in the inner loop of adversarially robust
optimization is not always necessary. In fact, depending on the specific settings, using
low-confidence AEs—settling for a local rather than a global solution—can sometimes lead
to better robustness. Finally, our results in Section 6.4.2.3 challenge the findings of [206]
regarding the adversarial fraction, showing that AT can benefit from increasing the budget of
AEs generated by unrealistic evasion attacks.

In addition to challenging the relevant important studies, our systematic evaluations
reveal new insights in malware detection. Drawing on our extensive empirical investigation,
whose complete results are summarized in Table 6.5 of Appendix 6.I, we identify ten key

6.4 Experiments and Evaluations

6

127

findings to inform and guide future research on AT in the malware domain.

Takeaway 1: Linear and shallow non-linear models hardened with AT on discrete
feature space substantially lose their performance on clean data, whereas deep
non-linear models do not.

Our observations in Section 6.4.2.2 as well as Section 6.4.2.3 demonstrate that the
clean performance of SVM (linear model) and DT (shallow non-linear model) hardened
by AT is often notably sensitive to changes in the perturbation bound. Specifically, larger
perturbation bounds result in greater sacrifices in clean performance, and vice versa. The
sensitivity, especially in linear models decreases when AEs with lower confidence are used
in AT. Conversely, adjustments to the perturbation bound have minimal impact on the clean
performance of deep non-linear models.

Takeaway 2: The amount and distribution of adversarial examples matters.

As demonstrated in Section 6.4.2.3, the fraction of AEs utilized in AT, specifically in
each batch of robust optimization is crucial as it impacts the amount of considered AEs
and the covered distribution. A minimum threshold is required to effectively shape a robust
decision boundary, but it is important not to exceed this threshold in order to not heavily
impact the clean accuracy. Conversely, using the entire batch of adversarial examples can
degrade classifier performance, particularly in linear models. It is important to note that this
finding validates similar results discussed in [209], which were explored in other domains.

Takeaway 3: In discrete feature spaces, low-dimensional dense feature representations
are easier to harden than high-dimensional sparse feature representations.

As illustrated in Figures 6.7 and 6.15, in discrete feature space, low-dimensional
dense feature representations demonstrate superior robust accuracy compared to high-
dimensional sparse feature representations across the tested classifiers, thereby revealing
more vulnerabilities during AT. This can also be highlighted based on the transferability
property of hardened models with problem-space AEs. Figure 6.8 further confirms that in low-
dimensional feature spaces, realistic evasion attacks—constrained adversarial attacks—can
effectively explore regions akin to other attack types. However, achieving such transferability
is less pronounced and more challenging in high-dimensional, sparse feature spaces.

Takeaway 4: Moving toward unbounded perturbations does not necessarily lead to
any benefit in AT.

Considering very large perturbation bounds for AT does not provide any additional
benefits and may harm robust accuracy against realistic evasion attacks. For instance, as
shown in Figure 6.13, we evaluated the robustness of multiple DNN models trained with
large perturbation budgets ranging from 100 to over 800 against a realistic evasion attack.
The results, depicted in the plots, indicate insufficient robustness. Furthermore, the larger the

6

128 6 Enhancing Adversarial Robustness with Robust Optimization

perturbation bound used during training, the worse the robustness becomes. This suggests
that increasing the perturbation bound for AT does not imply that more relevant regions in
the feature space are explored.

Takeaway 5: High-confidence AEs do not always matter in AT.

Our thorough investigation, particularly in Section 6.4.2.2 and Section 6.4.2.3, demon-
strates that incorporating low-confidence AEs in AT can sometimes yield better adversarial
robustness than using high-confidence AEs in the malware domain across different scenarios.
Therefore, resolving convergence issues in the inner maximization problem of AT is of lesser
immediate importance. This aligns with the findings of [210].

Takeaway 6: Using realistic evasion attacks in AT outperform unrealistic ones for
hardening deep non-linear models trained on dense, low-dimensional discrete feature
space.

Our observations in Figure 6.8—RAMDA (DNN, subfigures a to d)—show that DNN
models (deep non-linear models) hardened with PK-Greedy and EvadeDroid (realistic
evasion attacks) exhibit superior adversarial robustness compared to those hardened with
PGD and JSMA (unrealistic evasion attacks) when the models trained on RAMDA (a dense,
low-dimensional feature space). Moreover, as shown in Table 6.2, this effectiveness is
achieved by maintaining the clean performance of hardened models similar to the vanilla
DNN model trained on RAMDA. For a more detailed discussion, refer to Section 6.4.2.4.

Takeaway 7: AT with unrealistic evasion attacks is ineffective for hardening linear
models trained either on a dense, low-dimensional discrete feature space or sparse,
high-dimensional discrete feature space.

Table 6.2 demonstrates that the clean performance of SVM models (linear models) trained
on either DREBIN (sparse, high-dimensional discrete feature space) or RAMDA (dense,
low-dimensional discrete feature space) substantially drops when they are hardened with
PGD or JSMA (unrealistic evasion attacks). Moreover, as shown in Figure 6.8—DREBIN
(SVM, subfigures a to d)—using PGD in AT to strengthen SVM trained on DREBIN, and
in Figure 6.8—RAMDA (SVM, subfigures a to d)—using both PGD and JSMA in AT to
strengthen SVM trained on RAMDA outperforms PK-Greedy and EvadeDroid. However,
this ultimately renders the SVM ineffective due to a considerable reduction in the clean
performance of the hardened SVM models. For further details, see Section 6.4.2.4.

Takeaway 8: Unrealistic evasion attacks outperform realistic ones in hardening deep
and shallow non-linear models trained on sparse, high-dimensional, discrete feature
spaces.

Figure 6.8—DREBIN (DNN, subfigures a to d) and DREBIN (DT, subfigures a to
d)—shows using PGD and JSMA (unrealistic evasion attacks) in AT to harden the DNN

6.5 Related Work

6

129

and DT models (deep and shallow non-linear models) trained on DREBIN (sparse, high-
dimensional discrete feature space) often provide better adversarial robustness than PK-
Greedy and EvadeDroid (realistic evasion attacks). As shown in Table 6.2, This superiority
is accompanied by maintaining the clean performance of the hardened DNN and DT models
because, as discussed in Section 6.4.2.2, using unrealistic evasion attacks in AT for hardening
non-linear models has a minimal impact on clean performance.

Takeaway 9: Adversarial robustness is not necessarily correlated with the roughness
of the decision boundaries found in the discrete feature space.

Our meticulous analysis conducted in Section 6.4.2.5 reveals that contrary to findings
discussed in [209], for the malware classifiers trained on the discrete feature space, altering the
decision-function roughness does not consistently affect the adversarial robustness achieved
through AT.

Takeaway 10: Adversarial robustness is correlated with regions in the discrete feature
space that are important for both attackers and defenders.

Our thorough analysis in Section 6.4.2.5 demonstrates that the adversarial robustness
of the models trained on discrete feature space can improve with an increased number of
common features important in both the defending and attacking processes.

6.5 Related Work
In this section, we review related work on adversarial training with a particularly emphasis
on those applied to harden malware classifiers.

Adversarial Training. Although the study by Goodfellow et al. [50] is recognized as
the first to demonstrate that the inclusion of AEs during the training phase can enhance the
robustness of ML models to evasion attacks, the robust optimization formulation proposed
by Madry et al. [53] for AT marks a turning point in this area. Over the past few years,
numerous studies have focused on robust optimization to enhance the adversarial robustness
of ML models. For instance, Zhang et al. [192] demonstrated the limitations of robust
optimization in ensuring robustness when test points slightly deviate from the training set
distribution. Zhang et al. [192] revealed that the effectiveness of AT is closely tied to the
proximity of test data to the training data manifold. Levi and Kontorovich [217] introduced
an AT approach where perturbed examples from each class are regarded as distinct categories
by dividing each class into clean and adversarial. Zhang et al. [218] proposed a new defense
method to balance adversarial robustness and accuracy by decomposing the robust error into
classification and boundary errors.

Adversarial Training for Malware Detection. AT has been regarded as the most
prevalent defense mechanism for strengthening ML-based detectors. In the last few years,
several studies [14, 17, 28, 30, 32, 37, 60, 206–208] have explored adversarial retraining [50]
to improve the robustness of malware detectors. Most of these studies [14, 17, 28, 30, 32, 37,
60, 207, 208] have primarily focused on proposing new evasion attacks for generating AEs
needed in adversarial retraining. For instance, Grosse et al. [17] adapted the JSMA [164] to

6

130 6 Enhancing Adversarial Robustness with Robust Optimization

generate highly effective AEs.
One of the major concerns frequently observed in studies exploring AT is that the

hardened models were not tested against realistic evasion attacks. Specifically, they did
not clarify whether their attacks meet all domain constraints [9]. For example, the AEs
used in [14, 17, 24, 25, 35, 38] may lack robustness to preprocessing, as preprocessing
operators can potentially remove features added to the Manifest file of Android apps [9].
Additionally, bytes that are appended into non-executable areas of Portable Executable (PE)
files through the attacks described in [36, 60, 208] might be discarded by preprocessing
before classification [219]. It is worth noting that the adversarial attacks used in some studies,
such as [31, 206], may not adequately reflect the robustness of detectors against adversaries,
as they did not evaluate the adversarial robustness against some attacks conducted in PK
settings, potentially allowing adversaries to create strong attacks.

Another notable concern is the lack of in-depth examination of adversarial robustness
in most studies since exploring AT was not their primary focus. In recent years, only a
few studies within the field of malware have dedicated their research to investigating AT.
Two significant explorations have been conducted in [206] and [36]. In fact, Dyrmishi et
al. [206, 210] examined the influence of domain constraints on AT by exploring realizable
AEs generated in the problem space. Their findings demonstrated that in the malware
domain, models hardened with unrealizable AEs exhibit less robustness against realistic
evasion attacks compared to models strengthened with realizable AEs. Their observations
also showed that clean performance is slightly affected after AT. Lucas et al. [36] enhanced
the efficiency of various problem-space evasion attacks in generating AEs, making AT
practical for raw-binary malware detectors. Furthermore, unlike the observations reported
in [206], they found that using unrealistic evasion attacks in AT can provide appropriate
adversarial robustness; however, it significantly degrades clean performance. In addition to
these two studies, [31, 137, 153] specifically explored robust optimization for AT. Similar
to [206], Bostani et al. [137] studied the impact of domain constraints on AT. However, they
explored realizable AEs generated in the feature space to overcome the limitations of utilizing
problem-space AEs in AT. Doan et al. [153] introduced a new adversarial learning objective
based on Bayesian inference to capture the distribution of models, leading to improved
robustness.

Finally, the lack of extensive investigation into the impact of influential factors on AT,
especially classifiers and feature representations is another noteworthy concern in relevant
studies. Most of the studies [17, 24, 25, 28–33, 35–38, 60, 153, 154, 156, 206–208] have
primarily focused on using AT to reinforce a single type of classifier, typically relying on
Deep Neural Networks (DNNs) for malware detection; however, it remains uncertain how
effective their explored AT methods are in fortifying other types of classifiers. Furthermore,
to the best of our knowledge, there has not been a thorough investigation into how different
representations, such as high-dimensional and low-dimensional feature spaces, impact the
effectiveness of AT in the context of malware detection.

6.6 Discussion
Our analysis demonstrates that multiple variables (e.g., classifiers, feature representations,
and robust optimization settings) significantly influence the effectiveness of hardening a
target ML-based malware detection through AT. For instance, the method employed to create

6.7 Conclusion

6

131

AEs is also crucial, as our research in this chapter indicates that for a model to exhibit
robustness, there needs to be some overlap between the areas of the input space covered by the
adversarial hardening approach and those exploited by an attacker. Our findings indicate that
there is no perfect general formula that exists, but that each configuration must be evaluated
individually and meticulously to ensure the maximum effectiveness of the hardening process.
This careful evaluation is crucial to avoid configurations that could potentially harm the
learning process. For instance, inappropriate choices in feature representation or learning
algorithms may lead to suboptimal robustness and a drop in clean performance. Furthermore,
it is essential to tailor the AT approach to the specific characteristics of datasets and the threat
models. By doing so, one can enhance the model’s robustness without compromising its
overall performance. This highlights the importance of comprehensive and context-specific
evaluations in developing AT strategies.

6.6.1 Limitations
Our research in this chapter focuses on classifiers suitable for exploring a range of models,
from deep non-linear to linear models. However, further exploration is needed, as the target
learning algorithms significantly impact the effectiveness of AT. Moreover, we concentrate
on discrete feature representations, common in malware classification, but since altering
the feature representations could greatly affect attacker capabilities and the AT process,
exploring more diverse feature representations is crucial for a deeper understanding of clean
performance and adversarial robustness. Expanding the exploration of AT for malware
classification by adding more classifiers and feature representations can offer deeper insights,
but is impractical within a single study due to its complexity. Adding just one classifier
or feature representation can increase the number of models in the study conducted in this
chapter from ≈ 1K to ≈ 1.5K, with training and evaluation potentially taking over a year.
This highlights the trade-off between comprehensiveness and feasibility in large-scale AT
experiments.

6.6.2 Future work
We underscore the real-world computational demands of large-scale AT to inspire future
advancements. Our framework offers researchers a platform to explore customized adversarial
settings, optimizing the balance between clean accuracy and robustness in malware detection.
Given the limitations of prior studies, which often draw conclusions from narrow and varied
settings, we encourage researchers to build on our framework for further exploration of the
key factors highlighted in this chapter. Such investigations can help identify broad trends
and establish clear benchmarks across diverse experimental, operational, and threat model
contexts.

6.7 Conclusion
In this work, we present a unified framework that outlines key exploration and evaluation
dimensions in AT for malware detection, along with critical factors for each. Our systematic
evaluation based on this framework uncovers common evaluation pitfalls and provides key
insights to improve the effectiveness of AT. Our exploration highlights how various factors
influence the impact of AT, revealing a complex web of interconnected characteristics that

6

132 6 Enhancing Adversarial Robustness with Robust Optimization

affect its success. Indeed, our findings suggest that a tailored approach is essential for
developing robust models through AT.

6.7 Conclusion

6

133

6.A Experimental Settings
6.A.1 Data
To empirically analyze how the distribution and volume of data affect AT’s efficacy, we use two
datasets, DREBIN20 [9] and APIGraph [54], which differ in size and malware classification
criteria. The DREBIN20 dataset comprises ≈ 150𝐾 Android applications collected between
January 2016 and December 2018, while APIGraph contains ≈ 323𝐾 Android applications
from January 2012 to December 2018. Specifically, DREBIN20 includes 135,708 goodware
and 15,765 malware labeled according to criteria adapted from [220], where an app is
classified as goodware if it has zero VirusTotal (VT) detections, and as malware if it has
four or more VT detections. Moreover, APIGraph comprises 290,505 goodware and 32,089
malware, labeled using the criteria established in [221]: an app is considered goodware if it
has zero VT detections and malware if it has 15 or more VT detections. It is noted that both
DREBIN20 and APIGraph datasets are constructed to align with the composition suggested
in Tesseract dataset [222], ensuring that the malware ratio mirrors the real-world prevalence
of about 10% for Android malware to maintain spatial consistency, while also preserving
temporal consistency by organizing samples chronologically and distributing them evenly
over the years. In constructing the training and test sets, we use stratified sampling to create
fair and unbiased subsets (33% for testing, 67% for training), while maintaining a 10%
malware ratio in datasets. Additionally, 10% of the training set is reserved for validation. To
ensure a fair and meaningful evaluation, we begin with vanilla models that perform well on
clean data. It is important to note that both the datasets and the way training and test sets are
constructed aim to minimize temporal and spatial biases to mitigate concept drift. Since
this is an inherent challenge in malware classification, we believe concept drift should be
addressed beforehand, rather than adding complexity by applying AT on top of it.

6.A.2 Feature representations
In the study conducted in this chapter, we focus on two primary data representations to examine
the role of dimensionality and sparsity of data representations: DREBIN [223] (sparse,
high-dimensional) and RAMDA [159] (dense, low-dimensional). Indeed, these were selected
for their distinct characteristics, which make them suitable for our analysis of the impact of
representation on security hardening processes. The DREBIN representation, as outlined
in the work by [223], is defined by a high-dimensional, sparse feature space, consisting
of approximately 1.5M features. This vast dimensionality provides a comprehensive but
complex view of data, potentially capturing more nuanced aspects of behaviors and patterns.
Given that the DREBIN representation is substantially high-dimensional, we select the top
10𝐾 most distinctive features based on recommendations from prior studies [16]. In contrast,
RAMDA, as introduced by Li et al. [159], utilizes a dense, low-dimensional space with
379 features. This compact representation is beneficial for modeling as it may reduce the
complexity and increase the manageability of the dataset.

The choice of these representations is significant because, as highlighted [192], the
distribution of data plays a critical role in AT. Smaller dimensions, such as those used in
RAMDA, can potentially improve the fidelity of AT samples to the true data distribution.

6

134 6 Enhancing Adversarial Robustness with Robust Optimization

6.A.3 Classifiers
We employ three models: DNN as a deep non-linear classifier, DT as a shallow non-linear
classifier, and linear SVM as a linear classifier to investigate how different learning algorithms
are influenced by AT. In fact, since these classifiers range from non-linear to linear, they are
well-suited for assessing the model flexibility factor highlighted in the proposed framework.

6.A.4 Threat Model
In order to conduct a thorough investigation, we consider a comprehensive threat modeling
scenario that examines both defender and attacker capabilities. As an attacker, our goal is to
fool the classifier and evade it successfully, while as a defender, we want to make our model
as robust as possible against multiple threat actors. Our analysis focuses on four key factors:
(a) Adversarial Confidence: Adversarial confidence refers to the model’s certainty in
classifying an input program as either malicious or benign, playing a key role in both the
success of attacks and the robustness of the model. Attackers aim to generate adversarial
malware that can bypass detection with high confidence, while defenders work to reduce this
confidence and mitigate the associated threats.
(b) Perturbation Bound: This capability defines the maximum allowable perturbation that
can be applied to a target sample. For example, given a target binary vector and a perturbation
bound of 5, it means that in order to craft an AE, we set a modification upper bound of 5
features. This parameter is crucial for both attackers and defenders as it directly impacts the
confidence and feasibility of the generated samples. It is important to highlight that, from the
attacker’s perspective, a lower perturbation bound restricts the number of features that can be
modified, which may hinder the success of evasion. On the other hand, higher bounds can
increase the chances of successful evasion but may also raise the risk of detection through
behavioral analysis or manual inspection, as well as the risk of altering the functionality of
the malware program.
(c) Adversarial Fraction: This capability indicates the proportion of AEs used during the
training phase. For instance, if the adversarial fraction is set to 5%, it implies that only 5%
of the available malware samples in each batch are used for AT. While this parameter is
primarily set by the defender during training, it indirectly reflects the attacker’s influence. A
lower adversarial fraction results in less exposure to adversarial behavior, potentially leaving
the model more vulnerable. From the attacker’s standpoint, this affects their success rate, as
models trained with limited exposure to AEs may generalize poorly to unseen attacks.
(d) Domain Constraints: In real-world scenarios, attackers must ensure that any modifica-
tions preserve the malicious functionality, cannot be easily removed, and appear plausible.
These constraints significantly restrict the space of allowable perturbations, particularly in
realistic evasion attacks. While defenders may enforce or relax such restrictions during
training—leading to strategies that may or may not reflect actual attack behavior—realistic
evasion attacks, from the attacker’s perspective, are limited to feasible regions. These
regions are typically shaped by the domain constraints that defenders attempt to capture or
approximate.

By examining the capabilities of threat models in terms of adversarial confidence,
perturbation bounds, adversarial fractions, and domain constraints, we can comprehensively
assess the dynamics between attackers and defenders. This approach not only helps in
understanding how attackers can optimize their strategies within given constraints but also

6.7 Conclusion

6

135

provides insights into how defenders can effectively adjust their training processes to build
more resilient models. When generating AEs either to strengthen or deceive malware
classifiers, the following factors are also considered for evasion attacks:
Attacker Knowledge Assumptions: To deeply explore a range of attack scenarios, we
consider both Perfect Knowledge (PK) and Zero Knowledge (ZK) threat models. In the PK
setting, the attacker has full access to the target model, including its architecture, parameters,
data, and the feature space it operates on. In contrast, the ZK setting only allows black-box
querying of the model’s output.
Attack Strategies: In evaluating hardened malware classifiers, our primary focus is on
realistic, problem-space evasion attacks. For PK scenarios, we utilize the PK-Greedy attack
from Pierazzi et al. [9], which can also be considered an adaptive attack. This is because
PK-Greedy not only functions in white-box settings but also adapts to the target model
by identifying the most influential benign features specified by the hardened classifier.
The attack dynamically adjusts to the model’s characteristics, adapting to what is most
relevant for evading detection. Additionally, PK-Greedy’s method of sorting problem-space
transformations and selecting the most effective one in each iteration via a greedy search
further reflects its adaptive nature. For ZK scenarios, we employ EvadeDroid [84], which is a
realistic, decision-based problem-space attack. Both PK-Greedy and EvadeDroid are crafted
to produce realizable AEs by enforcing domain constraints, ensuring that the generated
malware remains both valid and functional, which makes them particularly suitable for
real-world adversarial evaluations. In some of our experiments, PK-Greedy and EvadeDroid
are also used in AT to strengthen malware detectors. Additionally, we incorporate PGD [53]
and JSMA [164] in AT—both unrealistic feature-space evasion attacks that use gradients to
directly generate AEs in the feature space.

6.A.5 Computational Resources
All our experiments were conducted on a dedicated instance equipped with an NVIDIA
A100 80GB GPU, a 32-core AMD EPYC Milan processor @2.6 GHz, 128GB of RAM, and
a 2.5TB SSD.

6.B Implementation Details
In the study conducted in this chapter, we employed various learning algorithms implemented
in PyTorch: linear SVM, DT, and DNN. To ensure complete control over the training process,
we approximated the linear SVM as a single-layer neural network using PyTorch [224].
The SVM model was evaluated using the LinearSVC class from scikit-learn [225], which
utilizes the LIBLINEAR library [226], to ensure our implementation work well. For the
DREBIN representation, we set the hyperparameter 𝐶 = 1 [223], while for RAMDA, our
preliminary evaluations suggested 𝐶 = 4 provides better performance. Moreover, for DT, we
implemented the approach described in [227] and tuned it using Optuna [228], adjusting the
following hyperparameters.

max_depth’: 5,

’output_dim’: 2,

’momentum’: 0.53,

’lmbda’:0.47,

6

136 6 Enhancing Adversarial Robustness with Robust Optimization

1 2 3 4 5 6 7 8 9 10
Malware Sample

0

10

20

30

40

50

Lo
ss

(a)
Clean samples
AEs - PGD (= 5)
AEs - JSMA (= 5)

1 2 3 4 5 6 7 8 9 10
Malware Sample

0

10

20

30

40

50

Lo
ss

(b)
Clean samples
AEs - PGD (= 10)
AEs - JSMA (= 10)

Figure 6.11: An example demonstrating the confidence level of different sample types (i.e., clean malware and
adversarial malware samples) in terms of loss. A larger loss indicates greater confidence in misleading classifiers.

’learning_rate’: 0.12,

’weight_decay’: 5e-4,

Our implementation of the DNN is based on the Multilayer Perceptron described in [17] for
malware detection.

Moreover, we implemented PGD and JSMA, with the former adapted for the Android
malware domain according to [24], and the latter directly adapted for use in our framework.
Lastly, for PK-Greedy and EvadeDroid, we utilized the codes shared in their respective
studies—[9] and [84], respectively.

6.C Confidence of AEs
To ascertain whether the feature-space attacks can generate AEs with varying levels of
confidence, we conduct a preliminary evaluation of their performance against a vanilla DNN
trained on the DREBIN representation. Drawing inspiration from [190], we evaluated the
loss (i.e., prediction error) of the vanilla DNN when classifying AEs generated by PGD or
JSMA targeting the vanilla DNN. It is important to note that a higher loss corresponds to
a higher evasion confidence. Figure 6.11 illustrates the confidence levels of 10 randomly
selected malware samples from the DREBIN test set, comprising both clean and adversarial
examples. It is evident that AEs inherently exhibit higher confidence than clean samples,
with those generated by PGD showing higher confidence than those generated by JSMA.
Furthermore, as 𝜖 increases, the confidence of PGD-generated AEs rises, whereas it remains
relatively stable or changes only slightly for JSMA.

6.D Robustness Evaluation
To assess adversarial robustness, we evaluate the models’ resistance to bounded PK-Greedy
and EvadeDroid attacks, ensuring that their attack bounds match those used in the evasion
attacks during AT. This is because models strengthened under a particular 𝜖 during AT are
anticipated to offer resilience within that bound, not necessarily beyond it. Therefore, we
limit the maximum alterations feasible by realistic evasion attacks to 𝜖 . Additionally, it is
imperative to confirm that the observed adversarial robustness against evasion attacks is

6.7 Conclusion

6

137

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

Ro
bu

st
 A

cc
ur

ac
y

(%
)

DNN (PK-Greedy)
DNN (EvadeDroid)
SVM (PK-Greedy)
SVM (EvadeDroid)
DT (PK-Greedy)
DT (EvadeDroid)

(a) DREBIN (DREBIN20)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

Ro
bu

st
 A

cc
ur

ac
y

(%
)

DNN (PK-Greedy)
DNN (EvadeDroid)
SVM (PK-Greedy)
SVM (EvadeDroid)
DT (PK-Greedy)
DT (EvadeDroid)

(b) RAMDA (DREBIN20)

Figure 6.12: Robust accuracy of various vanilla models trained on DREBIN and RAMDA against PK-Greedy and
EvadeDroid with different attack bounds.

attributable to AT, rather than stemming from the limitation imposed by the attack bounds
of evasion attacks. To this end, we need to quantify the improvement in the adversarial
robustness of vanilla models when an attack bound is applied to evasion attacks. Therefore,
we first meticulously evaluate the robustness of the vanilla model against unbound PK-Greedy
and EvadeDroid to understand the inherent adversarial robustness of these baseline malware
detectors, even when attacks do not adhere to a specific attack bound. In an unbounded attack,
adversaries can potentially apply any combination of problem-space transformations to
convert a malware app into an adversarial one, irrespective of how many features are changed
in the feature space. Table 6.4 shows different models have some level of robustness against
realistic evasion attacks. Especially, the models trained on RAMDA demonstrate significantly
greater adversarial robustness compared to those trained on DREBIN, supporting the authors’
claim in [14] that their representation can enhance robust malware detection. Next, we
consider an attack bound 𝜖 for PK-Greedy and EvadeDroid to observe how it limits these
attacks in fooling target baseline malware detectors. Figure 6.12 shows that a lower attack
bound results in a higher limitation on the success of PK-Greedy and EvadeDroid.

6.E Large Perturbation Bound
In the setting used in Section 6.4.2.2, the attacker’s capabilities remain unchanged, while
we consider a defender that increases the perturbation bound. The motivation is that since
DREBIN is a high-dimensional feature representation, the previously considered range of
perturbation bounds might be inadequate to uncover vulnerable areas.

Here, we assess the hardening of DNN, SVM, and DT models trained on DREBIN with

Table 6.4: Robust accuracy of different vanilla models against unbounded PK-Greedy and EvadeDroid.

Model DREBIN RAMDA
PK-Greedy EvadeDroid PK-Greedy EvadeDroid

DNN 0.0% 0.2% 8.3% 0.6%
SVM 0.0% 0.7% 10.0% 9.4%
DT 0.0% 0.0% 6.2% 0.4%

6

138 6 Enhancing Adversarial Robustness with Robust Optimization

PGD, considering large perturbation bounds that may help uncover more vulnerable areas.
Specifically, the perturbation bound varies from 100 to 800 in increments of 100 to examine
whether very large bounds can uncover more blind spots and enhance the effectiveness of AT.
Our results, shown in Figure 6.13, demonstrate that the learning algorithm plays a vital role
in this phenomenon, as shown by the differing performance of the models when exposed
to attacks with smaller perturbations. We observe an evident contrast in behavior between
the models: linear SVM do not benefit from larger perturbations against both EvadeDroid
and Pk-Greedy for any attack bound. DNN has a slight improvement against EvadeDroid,
while DT exhibits an advantage against PK-Greedy, especially for lower attack bounds, when
using 600 as the perturbation bound for PGD. However, results for large perturbation bound
attacks (𝜖 >90) are nearly consistent across all models, indicating that this approach has a
negligible or even negative effect, as exemplified by the linear SVM in Figure 6.13.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 P

K-
Gr

ee
dy

100
200
300
400
500
600
700
800

(a) DNN – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 E

va
de

Dr
oi

d

100
200
300
400
500
600
700
800

(b) DNN – EvadeDroid

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 P

K-
Gr

ee
dy

100
200
300
400
500
600
700
800

(c) SVM – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 E

va
de

Dr
oi

d

100
200
300
400
500
600
700
800

(d) SVM – EvadeDroid

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 P

K-
Gr

ee
dy

100
200
300
400
500
600
700
800

(e) DT – PK-Greedy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Bound

0

10

20

30

40

50

60

70

80

90

100

Ro
bu

st
 A

cc
ur

ac
y

(%
) a

ga
in

st
 E

va
de

Dr
oi

d

100
200
300
400
500
600
700
800

(f) DT – EvadeDroid

Figure 6.13: Relative robust accuracy of hardened DNN, SVM, and DT on the DREBIN feature representation of
the DREBIN20 dataset against PK-Greedy and EvadeDroid. Each line represents the same model trained using the
specified perturbation bound for generating AEs during adversarial training.

6.7 Conclusion

6

139

6.F Clean Performance Considering Different Adver-
sarial Fractions
This section includes the evaluation of experiments that focus on evaluating the clean
performance of various models trained on DREBIN and RAMDA representations of both
DREBIN20 and APIGraph datasets in terms of F1 score as shown in Figure 6.14. The
models are strengthened using either PGD or JSMA with different fractions of AEs.

6.G Robust Performance Considering Different Adver-
sarial Fractions
This section includes the evaluation of experiments that focus on exploring the robust accuracy
of various models trained on DREBIN and RAMDA representations of both DREBIN20 and
APIGraph datasets in terms of relative robust accuracy as shown in Figure 6.15. The models
are strengthened using either PGD or JSMA with different rates of AEs during the training.

10 20 30 40 50 60 70 80 90 100
Adersarial Fraction (%)

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(a) DREBIN (DREBIN20)

10 20 30 40 50 60 70 80 90 100
Adersarial Fraction (%)

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(b) RAMDA (DREBIN20)

10 20 30 40 50 60 70 80 90 100
Adersarial Fraction (%)

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(c) DREBIN (APIGraph)

10 20 30 40 50 60 70 80 90 100
Adersarial Fraction (%)

40

50

60

70

80

90

100

F1
-S

co
re

 (%
)

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(d) RAMDA (APIGraph)

Figure 6.14: Clean performance of models trained on DREBIN and RAMDA representations of DREBIN20 and
APIGraph datasets in terms of F1 score hardened with different fractions of AEs.

6.H Challenge of Exhaustive Exploration
Although we aimed to systematically evaluate the impact of various AT settings, conducting a
comprehensive exploration across all experimental factors would require training a prohibitive
number of models. Specifically, the total number of configurations is derived from the
following combinations:

• Datasets: 2 (DREBIN20, APIGraph)

• Feature Representations: 2 (DREBIN, RAMDA)

6

140 6 Enhancing Adversarial Robustness with Robust Optimization

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(a) DREBIN (DREBIN20) – PK-Greedy

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(b) DREBIN (DREBIN20) – EvadeDroid

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(c) RAMDA (DREBIN20) – PK-Greedy

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(d) RAMDA (DREBIN20) – EvadeDroid

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(e) DREBIN (APIGraph) – PK-Greedy

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(f) DREBIN (APIGraph) – EvadeDroid

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 P

K-
Gr

ee
dy

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(g) RAMDA (APIGraph) – PK-Greedy

10 20 30 40 50 60 70 80 90 100
Adversarial Fraction

0

20

40

60

80

100

Re
l.

Ro
bu

st
 A

cc
. (

%
) a

ga
in

st
 E

va
de

Dr
oi

d

DNN - PGD
DNN - JSMA
SVM - PGD
SVM - JSMA
DT - PGD
DT - JSMA

(h) RAMDA (APIGraph) – EvadeDroid

Figure 6.15: Relative robust accuracy gained from AT on hardened models trained on (a) and (b) DREBIN
representation and (c) and (d) RAMDA representation of the DREBIN20 dataset, and (e) and (f) DREBIN
representation and (g) and (h) RAMDA representation of the APIGraph dataset against PK-Greedy and EvadeDroid
considering different fraction of AEs during training.

• Classifiers: 3 (DNN, linear SVM, DT)

• Perturbation Bounds: 28 (20 for regular perturbations + 8 for very large perturbations)

• Adversarial Fractions: 10

• Adversarial Confidence Levels: 2 (low confidence (JSMA) and high confidence
(PGD))

6.7 Conclusion

6

141

• Domain Constraints: 4 (PK-Greedy, EvadeDroid, PGD, JSMA)

By systematically varying each factor independently, the total number of potential model
configurations follows:

2 × 2 × 3 × 28 × 10 × 2 × 4 = 26, 880

This calculation represents the full scope of model variations required for an exhaustive
evaluation of AT across all dimensions. Given past training experience—where 1K+
models required over six months—evaluating 26,880 models would be computationally
infeasible, requiring several years. Furthermore, expanding the current experimental setup by
introducing additional variables into each designed experiment, such as considering various
adversarial fractions in Section 6.4.2.2, would significantly increase complexity. This would
make the problem analogous to an NP-hard problem, rendering it intractable within practical
time constraints.

6.I Overview of Results
To simplify the review of the empirical results shown across various plots, we offer a
high-level summary of the findings from our evaluations, as presented in Table 6.5.

6

142 6 Enhancing Adversarial Robustness with Robust Optimization
Table

6.5:Sum
m

ary
ofFindings.

Feature
Space

A
ttack

used
in

AT
A

ttacker’s
K

now
ledge

Type
ofA

Esin
AT

Variable
Linear

M
odel

N
on-linear

M
odel

C
lean

Perf.
R

obustA
cc.

C
lean

Perf.
R

obustA
cc.

D
iscrete

high-dim
.

sparse
space

Feature-space,
U

nrealistic
PK

H
igh-C

onf.A
Es

Increasing
Pert.B

ound
-M

ore
loss

-M
ore

gain
-N

o
im

pact(deep)
-N

o
trend

-Slightloss(shallow
)

Very
Large

B
ound

U
nexam

ined
N

o
effectorw

orse
U

nexam
ined

N
o

effectorw
orse

Increasing
A

E
Fraction

-M
ore

loss
-M

ore
gain

-N
o

im
pact(deep)

-Slightloss(shallow
)

-M
ore

gain

D
iscrete

high-dim
.

sparse
space

Feature-space,
U

nrealistic
PK

Low
-C

onf.A
Es

Increasing
Pert.B

ound
-Slightloss

-N
o

trend
-N

o
im

pact(deep)
-N

o
trend

-Slightloss(shallow
)

-H
igherrobustacc.

com
pared

to
the

high-conf.
A

Essetting
Very

Large
B

ound
U

nexam
ined

U
nexam

ined
U

nexam
ined

U
nexam

ined

Increasing
A

E
Fraction

Sligh
loss

-M
ore

gain,but
low

erthan
the

high-conf.A
Essetting

-Slightloss
-M

ore
gain

D
iscrete

low
-dim

.
dense

space
Feature-space,
U

nrealistic
PK

H
igh-C

onf.A
Es

Increasing
Pert.B

ound
-Varied

loss
-N

o
trend

-N
o

im
pact(deep)

-N
o

trend

-Varied
loss(shallow

).
-H

igherrobustacc.
com

pared
to

the
high-dim

.
space

setting
(shallow

)
Very

Large
B

ound
U

nexam
ined

U
nexam

ined
U

nexam
ined

U
nexam

ined
Increasing

A
E

Fraction
-M

ore
loss

-M
ore

gain
-N

o
im

pact(deep)
-M

ore
gain

-M
ore

loss(shallow
)

D
iscrete

low
-dim

.
dense

space
Feature-space,
U

nrealistic
PK

Low
-C

onf.A
Es

Increasing
Pert.B

ound
-M

ore
loss

-M
ore

gain
-N

o
im

pact(deep)
-N

o
trend

-H
igherclean

perf.
com

pared
to

the
high-conf.A

Essetting
-Varied

loss(shallow
)

-H
igherrobustacc.

com
pared

to
the

high-conf.
A

Essetting
(deep)

Very
Large

B
ound

U
nexam

ined
U

nexam
ined

U
nexam

ined
U

nexam
ined

Increasing
A

E
Fraction

-M
ore

loss
-M

ore
gain

-N
o

im
pact(deep)

-M
ore

gain
-H

igherclean
perf.

com
pared

to
the

high-conf.A
Essetting

-M
ore

loss(shallow
)

-H
igherrobustacc.

com
pared

to
the

high-conf.
A

Essetting

D
iscrete

high-dim
.

sparse
space

Problem
-space,

Realistic
PK

Realizable
A

Es
Forcing

D
om

ain
C

onstraints
-N

o
im

pact
-Low

robustacc.
(only

againstsim
ilar

attack)
-N

o
im

pact
-H

igh
robustacc.against

sim
ilarattack

(deep)

-Very
low

robustacc.
(shallow

)

D
iscrete

high-dim
.

sparse
space

Problem
-space,

Realistic
ZK

Realizable
A

Es
Forcing

D
om

ain
C

onstraints
-N

o
im

pact
-Low

robustacc.
(only

againstsim
ilar

attack)
-N

o
im

pact
-Low

robustacc.against
sim

ilarattack,and
very

low
againstdissim

ilarattack
(deep)

-Very
low

robustacc.(shallow
)

D
iscrete

low
-dim

.
dense

space
Problem

-space,
Realistic

PK
Realizable

A
Es

Forcing
D

om
ain

C
onstraints

-N
o

im
pact

-M
oderate

robustacc.
-N

o
im

pact
-H

igh
robustacc.

againstsim
ilarattack

(deep)

-H
igh

robustacc.(shallow
)

D
iscrete

low
-dim

.
dense

space
Problem

-space,
Realistic

ZK
Realizable

A
Es

Forcing
D

om
ain

C
onstraints

-N
o

im
pact

-M
oderate

robustacc.
-N

o
im

pact
-Very

high
robustacc.(deep)

-M
oderate

robustacc.
againstsim

ilarattack
and

high
robustacc.

againstdissim
ilarattack

(shallow
)

7

143

7
Conclusions and Outlook

Nowadays, ML has become a ubiquitous tool, offering promising opportunities across various
applications, especially in the context of malware detection [230]. However, safeguarding
ML systems against evasion attacks remains a major concern for enhancing the adversarial
robustness of malware classifiers. While previous studies have made notable efforts to
improve the robustness of ML-based malware detection, their practical effectiveness is
often questionable due to a lack of realism, such as overestimating attackers’ knowledge
or overlooking feasible vulnerabilities in the decision space of malware classifiers. In this
dissertation, we have rethought the security of malware classifiers against evasion attacks by
exploring realism concerns on both the attacker and defender sides, with the goal of assessing
the current state and paving the way toward resolving this critical challenge.

In this chapter, we first summarized our findings in Sections 7.1 and 7.2, based on our
explorations of ML systems for malware detection, emphasizing realism, which is essential
in developing realistic evasion attacks and reliable defenses. Then, in Section 7.3, we present
an overview that highlights new research directions for enhancing the robustness of malware
classifiers.

7.1 Realistic Threat Models
Chapter 3 has provided an in-depth exploration to address Q1 defined in Chapter 1:

Q1: What threat model is truly practical for evasion attacks targeting malware
classifiers in real-world scenarios?

In this chapter, we have taken into account realism concerns from the perspective of
attackers by introducing EvadeDroid, a practical evasion attack targeting black-box Android
malware detectors. Our findings highlight several key requirements for advancing evasion
attacks based on realistic threat models in the malware domain.

1. Develop Attacks That Are Agnostic to the Target Model. While evasion attacks in a
perfect-knowledge setting are useful for robustness evaluation as a worst-case scenario, it

Section 7.3 of this chapter is based on the accepted paper: H. Bostani and V. Moonsamy, Beyond Learning
Algorithms: The Crucial Role of Data in Robust Malware Detection, IEEE Security & Privacy, 2025 [229].
Along with revising the second paragraph of Section 7.3 and incorporating a new paragraph at the beginning of
Section 7.3.3, Subsections 7.3.1 and 7.3.2 have been added to broaden the outlook beyond the original paper.

7

144 7 Conclusions and Outlook

is equally important to develop attacks that are agnostic to the target model. This ensures
practical assessments of malware classifiers in real-world scenarios, where detectors
operate as black boxes, often returning only hard labels.

2. Address the Challenge of Inverse Feature Mapping. Adversaries must generate
adversarial malware in the problem space, even if perturbations are crafted in the feature
space. Reconstructing malware based on feature representations is challenging since
the feature mapping from the problem space to the feature space is not invertible. As
confirmed by EvadeDroid, this issue can be resolved by directly identifying adversarial
perturbations in the problem space, eliminating the need to identify them in the feature
space.

3. Generate Realizable Adversarial Malware. Adversarial malware must not only be
functional programs capable of compromising victims’ machines but also appear as valid
programs and ensure their adversarial payloads–such as dead or rubbish code injected
by adversaries to deceive malware classifiers–are not excluded during preprocessing,
a common step in ML pipelines. Our findings show that adversarial payloads injected
into obfuscated FALSE conditions remain inactive at runtime while staying undetectable
during preprocessing, ensuring they cannot be removed. Moreover, using snippets
of benign code as adversarial payloads ensures adversarial malware appears as valid
software even when inspected by human programmers.

4. Ensure Low Evasion Costs. Adversaries need to optimize the query efficiency of their
methods, as excessive query requirements are not economical and, from a practical
perspective, might raise suspicion and lead the target detector to impose restrictions or
block further queries. Our investigation shows that utilizing existing code snippets–well-
crafted problem-space transformations extracted from benign programs at API calls entry
points–plays an essential role in making the attack query-efficient.

7.2 Reliable Defenses
To move towards reliable defenses, Chapters 4 to 6 have investigated various aspects of
defending against realistic evasion attacks:

7.2.1 Identifying Vulnerable Regions
Our findings in Chapter 4 suggest that practical defense mechanisms must efficiently and
effectively identify feasible vulnerable regions while also focusing on these regions without
bias toward specific areas. Specifically, Chapter 4 has offered a comprehensive analysis to
answer Q2 defined in Chapter 1:

Q2: How can vulnerable regions in malware classifiers be efficiently identified
to defend against realistic evasion attacks?

In Chapter 4, we have highlighted that identifying feasible regions vulnerable to realistic
attacks requires generating realizable adversarial malware. The chapter has empirically
demonstrated that generating adversarial malware directly in the feature space, rather than

7.2 Reliable Defenses

7

145

the problem space, is more efficient. Additionally, it provides defenders with a greater
opportunity to protect against unknown attacks that exploit new vulnerable regions. This is
because using known problem-space transformations to craft realizable adversarial malware
biases defenders toward specific regions, whereas directly exploring the feature space to
identify vulnerabilities avoids such limitations.

7.2.2 Reducing Spurious Correlations
Our findings suggest that effective defenses should address spurious correlations to ensure
the practicality of malware classifiers in real-world scenarios. Specifically, our exploration
in Chapter 5 has shown that malware classifiers have low generalizability, particularly
against adversarial malware, because they tend to learn misleading patterns unrelated to
malicious functionalities. In this chapter, we have provided an extensive analysis of spurious
correlations in the malware domain to address Q3 defined in Chapter 1:

Q3: How can the impact of spurious correlations be reduced to secure malware
classifiers against realistic evasion attacks?

The chapter had discussed the significance of feature representations in minimizing the
risk of learning spurious correlations, which could significantly impair the generalizability
of malware classifiers. We have indeed highlighted that ML models could be guided to learn
genuine patterns rather than misleading ones by ensuring that the features, representing the
dimensions of the feature space, are semantically aligned with the programs’ functionalities.

7.2.3 Effective Adversarial Training
In Chapter 6, we have demonstrated that considering all key factors in both the hardening and
evaluation processes is crucial for understanding the effectiveness of Adversarial Training
(AT). This chapter has specifically conducted comprehensive evaluations to address Q4
defined in Chapter 1:

Q4: What are the key factors influencing adversarial training, and how do they
affect its effectiveness in malware detection?

Our findings highlight that data, feature representations, classifiers, and robust optimiza-
tion settings are key exploration dimensions that must be examined to identify and understand
the essential factors influencing the performance of AT in hardening malware classifiers.
Particularly, we have identified different influential factors in each key dimension as follows:

1. Data: The distribution and volume of training data can significantly impact the
outcomes of AT.

2. Feature Representations: Dimensionality, sparsity, and the type of feature represen-
tation are influential factors in achieving robust models.

3. Classifiers: Model flexibility is important, as different learning algorithms exhibit
varying resilience to adversarial attacks.

7

146 7 Conclusions and Outlook

4. Robust Optimization Settings: In addition to the perturbation bound used to generate
adversarial examples (AEs) for AT, adversarial confidence (i.e., the confidence of the
AEs), adversarial fraction (i.e., the number of AEs used in AT), and domain constraints,
ensuring the realizability of the AEs, are crucial configurations for strengthening
malware classifiers.

It is worth to note that each of these factors plays a distinct role in the success of AT.
However, it is essential to recognize their intertwined roles, rather than focusing solely on
their individual contributions. Additionally, a fair evaluation of adversarial robustness is
vital, necessitating the use of realistic evasion attacks based on diverse threat models, along
with employing reliable metrics to assess the performance of malware classifiers.

7.3 Outlook
In today’s digital age, malware is a formidable threat, compromising countless users daily.
According to AV-TEST’s findings, over 450K new malicious programs and potentially
unwanted applications are detected each day [231]. This staggering number highlights the
immense threat to our online safety. So, how do we keep up with these evolving dangers?
This is where ML systems come into play. Unlike traditional methods, ML systems can
learn from data and adapt to new attack strategies, significantly enhancing their effectiveness
against sophisticated malware. But here is the catch: making sure ML-based malware
detection systems are reliable is no small feat. For these systems to be truly dependable,
they need to follow the core principles of trustworthy ML, including robustness, fairness,
explainability, privacy, and transparency [232]. Among these, robustness is particularly
crucial in the context of malware detection due to the adversarial nature of malware. For
instance, Trojan horses are a common type of malware inherently designed to appear as
legitimate programs, thereby deceiving detection systems. Ensuring robustness becomes
even more critical when dealing with evasion attacks.

Although significant progress has been made in improving the adversarial robustness
of malware classifiers, these systems remain vulnerable to adversarial threats like evasion
attacks which aim to compromise classifiers by manipulating unseen data during the inference
phase. This thesis has made significant efforts to improve the security of ML-based malware
detection systems, specifically those used in static analysis, against evasion attacks, with an
emphasis on realism–a crucial factor in real-world scenarios. However, ML-based dynamic
analysis [233] is also widely used for malware detection alongside static analysis, as practical
defenses typically incorporate multiple layers of protection [234]. Therefore, an important
research direction is to investigate the robustness of these systems against evasion attacks
that manipulate dynamic features extracted during program execution. Moreover, we believe
that further investigation, particularly in the following directions, is necessary to effectively
secure ML-based malware detection systems.

7.3.1 The Impact of Malware Variability in Evasion Attacks
The diversity of malware threats could have significant implications for evasion attacks.
Different malware types and families may not only vary in their objectives but also in how
adversaries craft evasion techniques to bypass detection systems. For instance, ransomware
typically tightly couples encryption mechanisms with its payload, which may make it harder

7.3 Outlook

7

147

to apply adversarial perturbations by complicating the modification of critical components
that should be exploited for evasion. In contrast, spyware, which primarily focuses on data
collection, may be more susceptible to adversarial modifications. As it relies on API calls
to gather user information, injecting benign permissions or APIs could enable adversarial
transformations while maintaining functionality.

While this thesis primarily focuses on exploring adversarial robustness in malware
detection, understanding how evasion techniques interact with different malware threat
models is an important aspect of ensuring the practicality of defenses. This broader
perspective suggests a need for further research into tailoring adversarial defenses to account
for the variability in malware features, evasion capabilities, and detection methods. Therefore,
a promising avenue for future research is to explore how different malware types or families
influence the complexity of evasion attacks in generating adversarial malware.

7.3.2 Detecting Malware in Public Repositories
Malware developers continually devise innovative and sophisticated methods to infiltrate
victim machines and execute malicious code. One of the more recent tactics for distributing
malware involves exploiting public code repositories, such as GitHub [235]. In this approach,
adversaries create malicious repositories by embedding harmful source code within legitimate
codebases. These malicious repositories are often designed to closely resemble legitimate
ones, making it challenging to differentiate between the two manually. When such repositories
are cloned or their code is integrated into other projects, the malware can spread, potentially
leading to data breaches, system compromises, and even widespread exploitation of vulnerable
software systems [236].

The increasing prevalence of this attack vector has led to the application of ML techniques
to detect malicious repositories [237]. Although the use of ML for identifying malicious
code in repositories is still in its infancy, it holds considerable promise for automating and
scaling detection efforts. However, as with any technology, ML models are susceptible
to evasion attacks. Given that the application of ML in this domain is still evolving, it
seems essential to proactively explore methods to safeguard these systems against potential
adversarial manipulations. A compelling direction for future research is to investigate the
security of ML-based detection systems for malicious repositories. This would involve not
only improving detection accuracy but also enhancing the robustness of these systems to
evade attacks, ensuring their effectiveness in identifying malicious code even in the presence
of sophisticated adversarial techniques.

7.3.3 Data’s Role in Robust Malware Detection
Generally, strengthening the robustness of malware detection systems involves refining
learning algorithms or enhancing the quality of the training data. Recent research has
largely focused on improving algorithms, but a crucial factor in the generalizability of ML
models–their ability to perform well on unseen data–depends on the quality of the data
itself. ML models often excel when working with in-distribution data; but, they struggle
when confronted with out-of-distribution examples, especially adversarial ones. This issue is
particularly evident in malware detection, where the threat landscape is constantly shifting.

7

148 7 Conclusions and Outlook

7.3.3.1 The Art of Building Robust Malware Classifiers
Think of cybersecurity as a battlefield where we must constantly adapt to new threats.
Building robust malware classifiers is no different. Now, imagine a training dataset with
only one malicious and one benign sample–hardly enough to prepare for the fight. In fact,
training or adversarial training [148] an ML model on such minimal data leads to underfitting,
making it unable to distinguish between malware and benign software. This results in poor
performance on unseen and adversarial malware, as the model has not learned the broader
characteristics that define malicious and benign software. As we add more samples to our
training set, the model gets better at recognizing a wider range of features and variations.
This helps the model accurately classify new, unseen malware and withstand adversarial
attempts to deceive it. However, this process must be balanced with the risk of overfitting,
where the model memorizes the training data instead of learning from it, leading to poor
performance on new data.

But the question remains: Does simply increasing the number of samples in the training set
consistently improve both accuracy and robustness? While practitioners might instinctively
answer “Yes”, especially when using deep neural networks for malware detection, the reality
is far more nuanced. Developing robust malware classifiers requires a delicate balance
between data quantity and quality to build models capable of handling the ever-evolving
threats of malware.

7.3.3.2 Why Should We Care About Data?
Data is the fuel of the digital era. It is what shapes our knowledge and powers our technologies.
Data is indeed the foundation upon which information is built, and information, in turn,
forms the basis of knowledge [238]. Errors in data can lead to flawed knowledge [238]. Just
like a car needs high-quality fuel to run smoothly, ML models need high-quality data to
perform effectively. However, not all data is created equal. Noisy, biased, or inaccurately
labeled samples can cause serious complications, especially for ML systems used in malware
detection. These data errors can lead to inaccurate models, making them unreliable when it
matters most, such as detecting malware in real-world cybersecurity scenarios.

Contrary to popular belief, more data is not always better. Studies in both supervised
and unsupervised learning [239, 240] have demonstrated that merely adding more data can
sometimes hurt performance, especially when the additional data lacks quality. For instance,
Loog et al., [239] discusses how empirical risk minimization, a fundamental aspect of
statistical learning theory aiming to minimize average loss across a dataset, does not always
benefit from larger datasets. Likewise, Loog et al., [240] examines unsupervised learning
methods such as k-means clustering, which can fail to improve with additional data when
that data is noisy or misrepresented. These insights highlight a crucial lesson: Low-quality
data can undermine the performance of malware classifiers, especially their robustness. So,
how does data quality shape model robustness? Understanding this relationship is essential
for developing resilient ML systems.

7.3.3.3 Robustness Is Tied to Data Quality
In the fight against malware, the quality of the data used to train ML models is crucial.
High-quality training data enable models to learn robust features–genuine, meaningful
patterns relevant to detecting malware. When a model is trained on robust features, it
performs well and generalizes effectively. However, models often end up learning non-robust

7.3 Outlook

7

149

features that are highly predictive but might seem unrelated or illogical to humans [198].
This issue can arise from low-quality data, such as biased or incomplete datasets.

To illustrate the significance of data quality in providing resilient models, consider an
image detection model designed to classify seagulls. If the training set is biased, containing
mostly images of seagulls with blue backgrounds (e.g., the sea), the model might incorrectly
associate the blue background–non-robust feature–with the presence of seagulls. This
makes it vulnerable to adversarial attacks, as an adversary could manipulate the background
without altering the actual seagull. While such changes are imperceptible to humans, who
still recognize the seagull, the model would fail. Conversely, if the model learns robust
features–like the seagull’s beak–it becomes more resilient, as adversaries would need to
alter these critical features, which are harder to manipulate without violating perceptual
constraints.

The same principle applies to malware detection. Biased datasets can have a similar
detrimental impact. Let us consider the following scenario where malware apps are frequently
collected from Chinese markets, while benign apps come from various markets, such as
Google Play. Since there are so many of these samples, the model starts to think that features
derived from market data are indicative of malicious behavior. In fact, an ML classifier might
mistakenly associate this market data with malicious behavior, even though there is no real
connection. This misclassification happens because the model is picking up on irrelevant
features due to the biased training dataset.

Improving learning algorithms through techniques like regularization can help mitigate
these issues, but enhancing data quality offers a more fundamental solution. One effective
approach is subsampling. For instance, instead of using all malware samples from a certain
market–which typically dominates the training dataset–we can randomly select a smaller,
more representative subset. This reduces the over-representation of certain features, allowing
the model to focus on the actual patterns that distinguish malware from benign software.
This process, known as subsampling from the majority class in the training set, helps mitigate
errors that arise when models are over-parameterized [241].

The subsampling approach appears promising for selecting key samples that capture
the core characteristics of the dataset. However, this brings us to a crucial question: How
can we ensure that training datasets for building ML systems are composed of high-quality,
representative samples? Addressing this question is particularly important in malware
detection. High-quality, representative datasets allow the models to learn robust features
associated with genuine patterns. Learning robust features increases the generalizability of
malware classifiers, enabling them to perform reliably in real-world scenarios where the
variety and sophistication of malware are constantly evolving.

7.3.3.4 Coresets and Adversarial Robustness
When it comes to ML systems, the quality of our training data is crucial. Think of it
like cooking. Using fresh, high-quality ingredients leads to a delicious meal, while using
subpar ingredients can ruin the dish. Similarly, in ML, not all data samples are created
equal. Some are the fresh, high-quality “ingredients” that capture the true essence of the
dataset, while others can introduce noise and redundancy, making it hard for the model to
generalize effectively [242]. So, how do we ensure our ML models get the best “ingredients”?
The best we can do is use a subsampling method, and we believe coreset construction

7

150 7 Conclusions and Outlook

techniques [243] are among the most promising subsampling methods for retaining only
high-quality, representative samples in the training dataset. In fact, instead of training on
the entire dataset, which can be overwhelming and inefficient, coresets allow us to focus
on smaller, more representative subsets of data. This approach not only speeds up training
but also achieves performance similar to training our ML model on the entire dataset, as
the coreset preserves the key characteristics of the training dataset. Figure 7.1 (a)1 is an
example showing that models trained on a coreset can achieve performance comparable to
those trained on the full dataset. In fact, by using a coreset construction method, we can cut
down on training time while still hitting the same optimal performance.

But here is where it gets even better. Coresets are not just about efficiency. They also can
enhance the model’s robustness against adversarial attacks [245]. Think of it like training
a security guard. By focusing on the most representative training scenarios, the guard
becomes better at spotting real threats. Figure 7.1 (b) highlights how training on high-quality
samples identified by the CRAIG method [244], a coreset construction method, leads to
strong generalization performance, often surpassing models trained on the full dataset.

In practical terms, focusing on the most diverse and representative samples helps reduce
noise, redundancy, and outliers–elements that can make a model vulnerable to adversarial
attacks. This is particularly vital in cybersecurity applications like malware detection,
where adversaries constantly evolve their techniques. By capturing both malicious and
benign behaviors more effectively, coresets make our ML models stronger and more reliable.
Moreover, coresets act as a form of regularization, guiding models toward simpler, more
robust decision-making. This does not just improve generalizability but also reduces the risk
of adversarial exploitation, a common pitfall of overly complex models.

In summary, we believe using coresets is like cooking with the finest ingredients. It not
only makes our ML model more efficient but also helps it build robustness, equipping it to
tackle the ever-evolving landscape of cybersecurity threats.

7.3.3.5 The Power of Coresets in Action
Let us continue with our cooking example. Imagine trying to find the best ingredients for
a recipe. We would not want to use everything in the pantry; instead, we would select the
freshest and most essential items. Similarly, in ML, using a subset of the best data can make
all the difference. This is where coresets come in. Coresets are like a highlight reel of our
data. They focus on the most important and representative samples, making the training
process both faster and more effective. This is particularly exciting for malware detection,
where ensuring robustness against adversarial attacks is crucial. But how do we make this
work?
Gradient Approximation: Imagine gradients as the lines that define shapes in an image,
outlining the boundaries of objects. In malware detection, these “lines” help the model tell
the difference between harmful and harmless behavior. Malware often has sharp lines, like
distinct edges, because of unique features like suspicious API calls [189]. On the other hand,
benign (harmless) samples are more like gentle slopes. If our coreset misses the sharp lines,
it might overlook subtle malicious patterns. Conversely, if it ignores the smooth slopes of

1We thank Dr. Baharan Mirzasoleiman (UCLA) for granting permission to reproduce Figure 7.1, originally
published in [244].

7.3 Outlook

7

151

Figure 7.1: This graph illustrates the performance of an ML model in terms of error of Stochastic Gradient Descent
for Logistic Regression over time, using different training methods on a dataset with approximately 580,000 data
points [244]. The blue curve represents the model trained using CRAIG, a coreset construction technique that uses
only 10% of the dataset but selects the most important data points. The green curve shows the model trained on a
random 10% of the data, while the orange curve depicts the model trained on the entire dataset. CRAIG achieves
similar performance to the full dataset, with the added benefit of being three times faster.

benign samples, it could result in false alarms. To be effective, coresets must capture the
gradient behavior inherent to both malicious and benign data.
Designing Versatile Coresets: Just as a diverse cast of characters makes a story more
engaging, diversity in key samples is vital for defining a coreset that enhances a model’s
robustness. In malware detection, it is crucial to reflect the variety and complexity of
real-world samples, especially those tricky edge cases that hackers exploit. Therefore,
coresets must cover critical regions of the data distribution that are susceptible to evasion
attacks. By focusing on diversity and informativeness, models trained on these coresets can
better generalize across both regular and tricky, adversarial examples. This approach aligns
with findings from recent studies, which emphasize the importance of including diverse
adversarial examples in training to bolster model robustness [246].

7.3.3.6 Last Word
Despite significant efforts to strengthen ML-based malware detection systems, improving
their robustness remains a complex puzzle. While recent research has largely focused on
enhancing algorithms, the quality of the data itself remains an often-overlooked factor. Here
we highlight the need to shift our focus toward high-quality, representative data as the key to
building robust malware classifiers. Think of data as the backbone of ML. High-quality data
is essential for learning robust features, which, in turn, improve model robustness. But what
exactly does this data include? It consists of the feature representations of real programs in
the feature space. This means we also need to consider how feature representations shape

7

152 7 Conclusions and Outlook

the distribution of data–ultimately influencing the decision boundary where malware is
distinguished from benign software.

To move forward, our community must take a closer look at data quality, not just in terms
of real programs but also in how they are represented in the feature space. By doing so, we
can pave the way for more resilient ML systems that stand strong against evolving cyber
threats.

153

Bibliography

References
[1] Ömer Aslan and Refik Samet. A comprehensive review on malware detection

approaches. IEEE Access, 8:6249–6271, 2020.

[2] Daniel Gibert, Carles Mateu, and Jordi Planes. The rise of machine learning for
detection and classification of malware: Research developments, trends and challenges.
Journal of Network and Computer Applications, 153:102526, 2020.

[3] Google Developers. Cloud-based protections. https://developers.google.com/
android/play-protect/cloud-based-protections. Accessed: 2025-01-22.

[4] Pulei Xiong, Scott Buffett, Shahrear Iqbal, Philippe Lamontagne, Mohammad Mamun,
and Heather Molyneaux. Towards a robust and trustworthy machine learning system
development: An engineering perspective. Journal of Information Security and
Applications, 65:103121, 2022.

[5] Zeinab Khorshidpour, Jafar Tahmoresnezhad, Sattar Hashemi, and Ali Hamzeh. Using
domain adaptation in adversarial environment. International Journal of Data Mining,
Modelling and Management, 9(3):201–219, 2017.

[6] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug
Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop on
Security and artificial intelligence, pages 43–58, 2011.

[7] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Arms race in adversarial
malware detection: A survey. ACM Computing Surveys (CSUR), 55(1):1–35, 2021.

[8] Davide Maiorca, Ambra Demontis, Battista Biggio, Fabio Roli, and Giorgio Giacinto.
Adversarial detection of flash malware: Limitations and open issues. Computers &
Security, 96:101901, 2020.

[9] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
Intriguing properties of adversarial ML attacks in the problem space. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1332–1349. IEEE, 2020.

[10] Kevin Eykholt, Taesung Lee, Douglas Schales, Jiyong Jang, and Ian Molloy. {URET}:
Universal Robustness Evaluation Toolkit (for Evasion). In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3817–3833, 2023.

[11] Heng Li, Zhang Cheng, Bang Wu, Liheng Yuan, Cuiying Gao, Wei Yuan, and Xiapu
Luo. Black-box adversarial example attack towards FCG based Android malware
detection under incomplete feature information. In 32nd USENIX Security Symposium
(USENIX Security), 2023.

https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections

154 Bibliography

[12] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion,
and Matthias Hein. Sparse-RS: a versatile framework for query-efficient sparse
black-box adversarial attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 6437–6445, 2022.

[13] Jin Zhang, Chennan Zhang, Xiangyu Liu, Yuncheng Wang, Wenrui Diao, and Shanqing
Guo. ShadowDroid: Practical Black-box Attack against ML-based Android Malware
Detection. In 2021 IEEE 27th International Conference on Parallel and Distributed
Systems (ICPADS), pages 629–636. IEEE, 2021.

[14] Hemant Rathore, Sanjay K Sahay, Piyush Nikam, and Mohit Sewak. Robust Android
malware detection system against adversarial attacks using Q-learning. Information
Systems Frontiers, 23(4):867–882, 2021.

[15] Lingwei Chen, Shifu Hou, and Yanfang Ye. SecureDroid: Enhancing Security of
Machine Learning-based Detection against Adversarial Android Malware Attacks. In
Proceedings of the 33rd Annual Computer Security Applications Conference, pages
362–372, 2017.

[16] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad
Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can
be more secure! a case study on Android malware detection. IEEE Transactions on
Dependable and Secure Computing, 16(4):711–724, 2017.

[17] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial examples for malware detection. In European symposium on
research in computer security, pages 62–79. Springer, 2017.

[18] Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. Droideye: Fortifying
security of learning-based classifier against adversarial Android malware attacks. In
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pages 782–789. IEEE, 2018.

[19] Xiaolei Liu, Xiaojiang Du, Xiaosong Zhang, Qingxin Zhu, Hao Wang, and Mohsen
Guizani. Adversarial samples on Android malware detection systems for IoT systems.
Sensors, 19(4):974, 2019.

[20] Guangquan Xu, GuoHua Xin, Litao Jiao, Jian Liu, Shaoying Liu, Meiqi Feng, and
Xi Zheng. OFEI: A Semi-black-box Android Adversarial Sample Attack Framework
Against DLaaS. arXiv preprint arXiv:2105.11593, 2021.

[21] Harel Berger, Chen Hajaj, and Amit Dvir. When the Guard failed the Droid: A case
study of Android malware. arXiv preprint arXiv:2003.14123, 2020.

[22] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. Android HIV: A study of repackaging malware for evading
machine-learning detection. IEEE Transactions on Information Forensics and Security,
15:987–1001, 2019.

References 155

[23] Fabrizio Cara, Michele Scalas, Giorgio Giacinto, and Davide Maiorca. On the
Feasibility of Adversarial Sample Creation Using the Android System API. Information,
11(9):433, 2020.

[24] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. A framework for enhancing
deep neural networks against adversarial malware. IEEE Transactions on Network
Science and Engineering, 8(1):736–750, 2021.

[25] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion attacks and defenses
for malware detection. IEEE Transactions on Information Forensics and Security,
15:3886–3900, 2020.

[26] Guangquan Xu, Hongfei Shao, Jingyi Cui, Hongpeng Bai, Jiliang Li, Guangdong Bai,
Shaoying Liu, Weizhi Meng, and Xi Zheng. GenDroid: A Query-Efficient Black-box
Android Adversarial Attack Framework. Computers & Security, page 103359, 2023.

[27] Ping He, Yifan Xia, Xuhong Zhang, and Shouling Ji. Efficient query-based attack
against ML-based Android malware detection under zero knowledge setting. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 90–104, 2023.

[28] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in Android apps. In
Proceedings of the 33rd Annual Computer Security Applications Conference, pages
288–302, 2017.

[29] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adversarial
deep learning for robust detection of binary encoded malware. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[30] Yi-Ming Chen, Chun-Hsien Yang, and Guo-Chung Chen. Using generative adversarial
networks for data augmentation in Android malware detection. In 2021 IEEE
conference on dependable and secure computing (DSC), pages 1–8. IEEE, 2021.

[31] Alex Huang, Abdullah Al-Dujaili, Erik Hemberg, and Una-May O’Reilly. On visual
hallmarks of robustness to adversarial malware. arXiv preprint arXiv:1805.03553,
2018.

[32] Yonghong Huang, Utkarsh Verma, Celeste Fralick, Gabriel Infantec-Lopez, Brajesh
Kumar, and Carl Woodward. Malware evasion attack and defense. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), pages 34–38. IEEE, 2019.

[33] Aminollah Khormali, Ahmed Abusnaina, Songqing Chen, DaeHun Nyang, and Aziz
Mohaisen. COPYCAT: practical adversarial attacks on visualization-based malware
detection. arXiv preprint arXiv:1909.09735, 2019.

[34] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto,
Claudia Eckert, and Fabio Roli. Adversarial malware binaries: Evading deep learning

156 Bibliography

for malware detection in executables. In 2018 26th European signal processing
conference (EUSIPCO), pages 533–537. IEEE, 2018.

[35] Deqiang Li, Shicheng Cui, Yun Li, Jia Xu, Fu Xiao, and Shouhuai Xu. PAD: Towards
principled adversarial malware detection against evasion attacks. IEEE Transactions
on Dependable and Secure Computing, 21(2):920–936, 2023.

[36] Keane Lucas, Samruddhi Pai, Weiran Lin, Lujo Bauer, Michael K Reiter, and
Mahmood Sharif. Adversarial training for {Raw-Binary} malware classifiers. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 1163–1180, 2023.

[37] Chenyue Wang, Linlin Zhang, Kai Zhao, Xuhui Ding, and Xusheng Wang. AdvAnd-
Mal: Adversarial Training for Android Malware Detection and Family Classification.
Symmetry, 13(6):1081, 2021.

[38] Guangquan Xu, GuoHua Xin, Litao Jiao, Jian Liu, Shaoying Liu, Meiqi Feng, and
Xi Zheng. OFEI: A Semi-Black-Box Android Adversarial Sample Attack Framework
Against DLaaS. IEEE Transactions on Computers, 2023.

[39] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern
classifiers under attack. IEEE transactions on knowledge and data engineering,
26(4):984–996, 2013.

[40] Alex Serban, Erik Poll, and Joost Visser. Adversarial examples on object recognition:
A comprehensive survey. ACM Computing Surveys (CSUR), 53(3):1–38, 2020.

[41] Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer. Poirot: Probabilistically recom-
mending protections for the android framework. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 937–950,
2022.

[42] Statista. Market share of smartphone operating systems worldwide
from 2012 to 2024. https://www.statista.com/statistics/272698/

global-market-share-of-mobile-operating-systems/, 2024.

[43] Juan Francisco Bertona. Beyond the App Store: The Hidden Risks of Sideloading
Apps, 2024. Accessed: 2025-01-22. URL: https://www.zimperium.com/blog/
the-hidden-risks-of-sideloading-apps/.

[44] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:
Collecting Millions of Android Apps for the Research Community. In ACM Mining
Software Repositories (MSR), 2016.

[45] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Query-efficient
black-box attack against sequence-based malware classifiers. In Annual Computer
Security Applications Conference, pages 611–626, 2020.

[46] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. Functionality-preserving black-box optimization of adversarial Windows
malware. IEEE Transactions on Information Forensics and Security, 16:3469–3478,
2021.

https://www.statista.com/statistics/272698/global-market-share-of-mobile-operating-systems/
https://www.statista.com/statistics/272698/global-market-share-of-mobile-operating-systems/
https://www.zimperium.com/blog/the-hidden-risks-of-sideloading-apps/
https://www.zimperium.com/blog/the-hidden-risks-of-sideloading-apps/

References 157

[47] Mahmood Sharif, Keane Lucas, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
Optimization-guided binary diversification to mislead neural networks for malware
detection. arXiv preprint arXiv:1912.09064, 2019.

[48] E Quiring, F Pendlebury, A Warnecke, F Pierazzi, C Wressnegger, L Cavallaro, and
K Rieck. Dos and don’ts of machine learning in computer security. In 31st USENIX
Security Symposium (USENIX Security 22), USENIX Association, Boston, MA, 2022.

[49] Íñigo Íncer Romeo, Michael Theodorides, Sadia Afroz, and David Wagner. Adversar-
ially robust malware detection using monotonic classification. In Proceedings of the
Fourth ACM International Workshop on Security and Privacy Analytics, pages 54–63,
2018.

[50] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. 2015.

[51] Roland S Zimmermann, Wieland Brendel, Florian Tramer, and Nicholas Carlini.
Increasing confidence in adversarial robustness evaluations. Advances in Neural
Information Processing Systems, 35:13174–13189, 2022.

[52] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Mixtrain: Scalable
training of verifiably robust neural networks. arXiv preprint arXiv:1811.02625, 2018.

[53] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In 6th
International Conference on Learning Representations, ICLR 2018- Conference Track
Proceedings, 2018.

[54] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang,
Mi Zhang, and Min Yang. Enhancing State-of-the-art Classifiers with API Semantics
to Detect Evolved Android Malware. In Proceedings of the 2020 ACM SIGSAC
conference on computer and communications security, pages 757–770, 2020.

[55] Paul C van Oorschot. Computer Security and the Internet, 2020.

[56] Kegan Mooney. Malware Statistics 2024: A Comprehensive Overview,
May 2024. Updated on November 28, 2024, 5:26 AM. Ac-
cessed: 2024-11-28. URL: https://www.next7it.com/insights/

malware-statistics-2024-a-comprehensive-overview/.

[57] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Sok: Arms race in adversarial
malware detection. ACM Computing Surveys, 55(1):15–35, 2021.

[58] Ashwini Mujumdar, Gayatri Masiwal, and Dr B Meshram. Analysis of signature-based
and behavior-based anti-malware approaches. International Journal of Advanced
Research in Computer Engineering and Technology (IJARCET), 2(6):2037–2039,
2013.

https://www.next7it.com/insights/malware-statistics-2024-a-comprehensive-overview/
https://www.next7it.com/insights/malware-statistics-2024-a-comprehensive-overview/

158 Bibliography

[59] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. Malware detection by eating a whole exe. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[60] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth. Learning
to evade static pe machine learning malware models via reinforcement learning. arXiv
preprint arXiv:1801.08917, 2018.

[61] Om Prakash Samantray and Satya Narayan Tripathy. IoT-malware classification model
using byte sequences and supervised learning techniques. In Next Generation of
Internet of Things: Proceedings of ICNGIoT 2021, pages 51–60. Springer, 2021.

[62] Microsoft. What is edr? endpoint detection and response, 2025. Accessed:
2025-01-24. URL: https://www.microsoft.com/en-us/security/business/
security-101/what-is-edr-endpoint-detection-response.

[63] Tom Mitchell. Machine Learning. Publisher: McGraw Hill, 1997.

[64] Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. LAMD:
Context-driven android malware detection and classification with LLMs. arXiv
preprint arXiv:2502.13055, 2025.

[65] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing Static Analysis for
Practical Bug Detection: An LLM-Integrated Approach. Proceedings of the ACM on
Programming Languages, 8(OOPSLA1):474–499, 2024.

[66] Masoud Mehrabi Koushki, Ibrahim AbuAlhaol, Anandharaju Durai Raju, Yang Zhou,
Ronnie Salvador Giagone, and Huang Shengqiang. On building machine learning
pipelines for Android malware detection: a procedural survey of practices, challenges
and opportunities. Cybersecurity, 5(1):16, 2022.

[67] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks. In 28th USENIX security
symposium (USENIX security 19), pages 321–338, 2019.

[68] Olakunle Ibitoye, Rana Abou-Khamis, Mohamed el Shehaby, Ashraf Matrawy, and
M Omair Shafiq. The Threat of Adversarial Attacks on Machine Learning in Network
Security–A Survey. arXiv preprint arXiv:1911.02621, 2023.

[69] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support
vector machines. In Proceedings of the 29th International Conference on Machine
Learning (ICML), pages 1467–1474. Omnipress, 2012.

[70] Sen Chen, Minhui Xue, Lingling Fan, Lei Ma, Yang Liu, and Lihua Xu. How can we
craft large-scale Android malware? An automated poisoning attack. In 2019 IEEE 1st
international workshop on artificial intelligence for mobile (AI4Mobile), pages 21–24.
IEEE, 2019.

https://www.microsoft.com/en-us/security/business/security-101/what-is-edr-endpoint-detection-response
https://www.microsoft.com/en-us/security/business/security-101/what-is-edr-endpoint-detection-response

References 159

[71] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[72] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras.
When does machine learning {FAIL}? generalized transferability for evasion and
poisoning attacks. In 27th USENIX Security Symposium (USENIX Security 18), pages
1299–1316, 2018.

[73] Robert Flood, Marco Casadio, David Aspinall, and Ekaterina Komendantskaya. Gen-
erating Traffic-Level Adversarial Examples from Feature-Level Specifications. In
Proceedings of the European Symposium on Research in Computer Security (ES-
ORICS) Workshops, 2024. URL:https://sites.google.com/view/secai2024/
programme.

[74] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. Advances in neural
information processing systems, 31, 2018.

[75] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial examples
are a natural consequence of test error in noise. In International Conference on
Machine Learning, pages 2280–2289. PMLR, 2019.

[76] Viet Quoc Vo, Ehsan Abbasnejad, and Damith C Ranasinghe. RamBoAttack: A
Robust Query Efficient Deep Neural Network Decision Exploit. In Proceedings of
the 29th Annual Network and Distributed System Security Symposium (NDSS), 2022.
URL: https://www.ndss-symposium.org/ndss-paper/auto-draft-239/.

[77] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical Black-Box Attacks against Machine Learning.
Proceedings of the 12th ACM on Asia Conference on Computer and Communications
Security, pages 506–519, 2017.

[78] Kais Zaman, Mark McDonald, Sankaran Mahadevan, and Lawrence Green.
Robustness-based design optimization under data uncertainty. Structural and Multi-
disciplinary Optimization, 44:183–197, 2011.

[79] Ruoxi Sun, Minhui Xue, Gareth Tyson, Tian Dong, Shaofeng Li, Shuo Wang, Haojin
Zhu, Seyit Camtepe, and Surya Nepal. Mate! Are you really aware? An explainability-
guided testing framework for robustness of malware detectors. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1573–1585, 2023.

[80] Yijun Yang, Ruiyuan Gao, Yu Li, Qiuxia Lai, and Qiang Xu. What You See is Not What
the Network Infers: Detecting Adversarial Examples Based on Semantic Contradiction.
In Proceedings of the Network and Distributed System Security Symposium (NDSS).
Internet Society, 2022.

https://sites.google.com/view/secai2024/programme
https://sites.google.com/view/secai2024/programme
https://www.ndss-symposium.org/ndss-paper/auto-draft-239/

160 Bibliography

[81] Yuxin Wen, Shuai Li, and Kui Jia. Towards Understanding the Regularization of
Adversarial Robustness on Neural Networks. In Proceedings of the 37th International
Conference on Machine Learning (ICML). PMLR, 2020.

[82] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). Internet Society, 2018.

[83] Mingfei Lu and Badong Chen. On the Adversarial Robustness of Generative Au-
toencoders in the Latent Space. Neural Computing and Applications, 36:8109–8123,
2024.

[84] Hamid Bostani and Veelasha Moonsamy. Evadedroid: A practical evasion attack on
machine learning for black-box Android malware detection. Computers & Security,
139:1–18, 2024.

[85] Faraz Ahmed, Haider Hameed, M Zubair Shafiq, and Muddassar Farooq. Using spatio-
temporal information in API calls with machine learning algorithms for malware
detection. In Proceedings of the 2nd ACM Workshop on Security and Artificial
Intelligence, pages 55–62, 2009.

[86] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. Analysis of machine learning
techniques used in behavior-based malware detection. In 2010 second international
conference on advances in computing, control, and telecommunication technologies,
pages 201–203. IEEE, 2010.

[87] Mojtaba Eskandari, Zeinab Khorshidpour, and Sattar Hashemi. HDM-Analyser: a
hybrid analysis approach based on data mining techniques for malware detection.
Journal of Computer Virology and Hacking Techniques, 9(2):77–93, 2013.

[88] Jinrong Bai, Junfeng Wang, and Guozhong Zou. A malware detection scheme based
on mining format information. The Scientific World Journal, 2014, 2014.

[89] Edward Raff and Charles Nicholas. An alternative to NCD for large sequences,
Lempel-Ziv Jaccard distance. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1007–1015, 2017.

[90] Sitalakshmi Venkatraman, Mamoun Alazab, and R Vinayakumar. A hybrid deep
learning image-based analysis for effective malware detection. Journal of Information
Security and Applications, 47:377–389, 2019.

[91] Faranak Abri, Sima Siami-Namini, Mahdi Adl Khanghah, Fahimeh Mirza Soltani, and
Akbar Siami Namin. Can machine/deep learning classifiers detect zero-day malware
with high accuracy? In 2019 IEEE international conference on big data (Big Data),
pages 3252–3259. IEEE, 2019.

[92] C. Castillo and R. Samani. McAfee Mobile Threat Report,” McAfee Advanced Threat
Research and Mobile Malware Research Team, McAfee. Technical report, McAfee,
2021.

References 161

[93] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Enhancing deep neural
networks against adversarial malware examples. arXiv preprint arXiv:2004.07919,
2020.

[94] Zhuo Ma, Haoran Ge, Yang Liu, Meng Zhao, and Jianfeng Ma. A combination method
for Android malware detection based on control flow graphs and machine learning
algorithms. IEEE access, 7:21235–21245, 2019.

[95] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro,
Gordon Ross, and Gianluca Stringhini. Mamadroid: Detecting android malware by
building markov chains of behavioral models (extended version). ACM Transactions
on Privacy and Security (TOPS), 22(2):1–34, 2019.

[96] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and
CERT Siemens. DREBIN: Effective and explainable detection of android malware
in your pocket. In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (𝑁𝐷𝑆𝑆 2014), volume 14, pages 1–15, 2014.

[97] Quentin Jerome, Kevin Allix, Radu State, and Thomas Engel. Using opcode-sequences
to detect malicious Android applications. In 2014 IEEE international conference on
communications (ICC), pages 914–919. IEEE, 2014.

[98] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and Heng
Yin. Automatic generation of adversarial examples for interpreting malware classifiers.
pages 990–1003, 2022.

[99] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. Explaining vulnerabilities of deep learning to adversarial malware binaries.
arXiv preprint arXiv:1901.03583, 2019.

[100] Apktool: a tool for reverse engineering Android apk files. https://ibotpeaches.
github.io/Apktool/, 2010. Accessed: 2022-01-27.

[101] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java Bytecode Optimization Framework. In Proceedings of
the 1999 Conference of the Centre for Advanced Studies on Collaborative Research,
(CASCON 1999), pages 1–11. IBM Press, 1999.

[102] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[103] Rosmalissa Jusoh, Ahmad Firdaus, Shahid Anwar, Mohd Zamri Osman, Mohd Faaizie
Darmawan, and Mohd Faizal Ab Razak. Malware detection using static analysis in
Android: a review of FeCO (features, classification, and obfuscation). PeerJ Computer
Science, 7:e522, 2021.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

162 Bibliography

[104] BooJoong Kang, Suleiman Y Yerima, Sakir Sezer, and Kieran McLaughlin. N-gram
opcode analysis for Android malware detection. arXiv preprint arXiv:1612.01445,
2016.

[105] Kyoung Soo Han, Jae Hyun Lim, Boojoong Kang, and Eul Gyu Im. Malware analysis
using visualized images and entropy graphs. International Journal of Information
Security, 14:1–14, 2015.

[106] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 257–269, 2015.

[107] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis
for malware detection. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pages 421–430. IEEE, 2007.

[108] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On
evaluating adversarial robustness. arXiv preprint arXiv:1902.06705, 2019.

[109] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, and Yuval Elovici. Unknown
malcode detection via text categorization and the imbalance problem. In 2008 IEEE
international conference on intelligence and security informatics, pages 156–161.
IEEE, 2008.

[110] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis for malware
detection. In International Conference on Information Processing, pages 51–59.
Springer, 2011.

[111] Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval Elovici.
Detecting unknown malicious code by applying classification techniques on opcode
patterns. Security Informatics, 1(1):1–22, 2012.

[112] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Opcode
sequences as representation of executables for data-mining-based unknown malware
detection. Information Sciences, 231:64–82, 2013.

[113] Zhang Fuyong and Zhao Tiezhu. Malware detection and classification based on
n-grams attribute similarity. In 2017 IEEE international conference on computational
science and engineering (CSE) and IEEE international conference on embedded and
ubiquitous computing (EUC), volume 1, pages 793–796. IEEE, 2017.

[114] Gerardo Canfora, Andrea De Lorenzo, Eric Medvet, Francesco Mercaldo, and
Corrado Aaron Visaggio. Effectiveness of opcode ngrams for detection of multi family
Android malware. In 2015 10th International Conference on Availability, Reliability
and Security, pages 333–340. IEEE, 2015.

[115] MV Varsha, P Vinod, and KA Dhanya. Identification of malicious Android app using
manifest and opcode features. Journal of Computer Virology and Hacking Techniques,
13(2):125–138, 2017.

References 163

[116] MZ Mas’ud, S Sahib, MF Abdollah, SR Selamat, and R Yusof. An evaluation of
N-gram system call sequence in mobile malware detection. ARPN J. Eng. Appl. Sci,
11(5):3122–3126, 2016.

[117] Takia Islam, Sheikh Shah Mohammad Motiur Rahman, Md Aumit Hasan, Abu Sayed
Md Mostafizur Rahaman, and Md Ismail Jabiullah. Evaluation of N-gram based
multi-layer approach to detect malware in Android. Procedia Computer Science,
171:1074–1082, 2020.

[118] LA Rastrigin. The convergence of the random search method in the extremal control
of a many parameter system. Automaton & Remote Control, 24:1337–1342, 1963.

[119] Mark Weiser. Program slicing. IEEE Transactions on software engineering, (4):352–
357, 1984.

[120] Luis Muñoz-González and Emil C Lupu. The security of machine learning systems.
In AI in Cybersecurity, pages 47–79. Springer, 2019.

[121] Jeonguk Ko, Hyungjoon Shim, Dongjin Kim, Youn-Sik Jeong, Seong-je Cho, Minkyu
Park, Sangchul Han, and Seong Baeg Kim. Measuring similarity of Android
applications via reversing and K-gram birthmarking. In Proceedings of the 2013
Research in Adaptive and Convergent Systems, pages 336–341. 2013.

[122] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale. In 24th 𝑈𝑆𝐸𝑁𝐼𝑋 Security Symposium (𝑈𝑆𝐸𝑁𝐼𝑋
Security 15), pages 659–674, 2015.

[123] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android. In International conference on
security and privacy in communication systems, pages 86–103. Springer, 2013.

[124] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar Hashemi,
and Ali Hamze. Malware detection based on mining API calls. In Proceedings of the
2010 ACM symposium on applied computing, pages 1020–1025, 2010.

[125] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:
Collecting millions of Android apps for the research community. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR), pages 468–471.
IEEE, 2016.

[126] VirusTotal. VirusTotal. https://www.virustotal.com, 2004. Accessed: 2022-
09-11.

[127] Aleieldin Salem. Towards accurate labeling of android apps for reliable malware
detection. In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy, pages 269–280, 2021.

https://www.virustotal.com

164 Bibliography

[128] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro. TESSERACT: Eliminating experimental bias in malware classification
across space and time. In 28th 𝑈𝑆𝐸𝑁𝐼𝑋 Security Symposium (𝑈𝑆𝐸𝑁𝐼𝑋 Security
19), pages 729–746, 2019.

[129] AV-TEST Institute. AV-TEST. https://www.av-test.org/en/antivirus/
mobile-devices, 2004. Accessed: 2022-09-11.

[130] Fabrı́cio Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S Oliveira, and
André Grégio. Shallow security: On the creation of adversarial variants to evade
machine learning-based malware detectors. In Proceedings of the 3rd Reversing and
Offensive-oriented Trends Symposium, pages 1–9, 2019.

[131] UI/Application Exerciser Monkey Kernel Description. https://developer.

android.com/studio/test/other-testing-tools/app-crawler?

authuser=1, 2023. Accessed: 2023-06-06.

[132] Michael Spreitzenbarth. DREBIN Feature Extractor. https://www.dropbox.com/
s/ztthwf6ub4mxxc9/feature-extractor.tar.gz, 2014. Accessed: 2022-09-
11.

[133] Intriguing Properties of Adversarial ML Problem-Space Attacks. https://s2lab.
cs.ucl.ac.uk/projects/intriguing, 2020. Accessed: 2024-08-17.

[134] MaMaDroid Source Code. https://bitbucket.org/gianluca_students/

mamadroid_code, 2020. Accessed: 2022-09-11.

[135] Adversarial Deep Ensemble for Malware Detection. https://github.com/

deqangss/adv-dnn-ens-malware, 2020. Accessed: 2022-09-11.

[136] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh,
and Mani B Srivastava. GenAttack: Practical black-box attacks with gradient-free
optimization. In Proceedings of the genetic and evolutionary computation conference,
pages 1111–1119, 2019.

[137] Hamid Bostani, Zhengyu Zhao, Zhuoran Liu, and Veelasha Moonsamy. Level Up with
ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space
for Robust Android Malware Detection. ACM Transactions on Privacy and Security,
28(2):1–32, 2025.

[138] Hui-Juan Zhu, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, and Li Cheng.
DroidDet: effective and robust detection of Android malware using static analysis
along with rotation forest model. Neurocomputing, 272:638–646, 2018.

[139] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. DroidDetector: Android malware
characterization and detection using deep learning. Tsinghua Science and Technology,
21(1):114–123, 2016.

[140] Win Zaw Zarni Aung. Permission-based Android malware detection. International
Journal of Scientific & Technology Research, 2(3):228–234, 2013.

https://www.av-test.org/en/antivirus/mobile-devices
https://www.av-test.org/en/antivirus/mobile-devices
https://developer.android.com/studio/test/other-testing-tools/app-crawler?authuser=1
https://developer.android.com/studio/test/other-testing-tools/app-crawler?authuser=1
https://developer.android.com/studio/test/other-testing-tools/app-crawler?authuser=1
https://www.dropbox.com/s/ztthwf6ub4mxxc9/feature-extractor.tar.gz
https://www.dropbox.com/s/ztthwf6ub4mxxc9/feature-extractor.tar.gz
https://s2lab.cs.ucl.ac.uk/projects/intriguing
https://s2lab.cs.ucl.ac.uk/projects/intriguing
https://bitbucket.org/gianluca_students/mamadroid_code
https://bitbucket.org/gianluca_students/mamadroid_code
https://github.com/deqangss/adv-dnn-ens-malware
https://github.com/deqangss/adv-dnn-ens-malware

References 165

[141] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection
of Android malware using embedded call graphs. In Proceedings of the 2013 ACM
workshop on Artificial intelligence and security, pages 45–54, 2013.

[142] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
DroidMat: Android Malware Detection through Manifest and API Calls Tracing. In
2012 Seventh Asia Joint Conference on Information Security, pages 62–69. IEEE,
2012.

[143] Bo Li and Yevgeniy Vorobeychik. Evasion-robust classification on binary domains.
ACM Transactions on Knowledge Discovery from Data (TKDD), 12(4):1–32, 2018.

[144] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings
of the International Conference on Learning Representations (ICLR), 2014.

[145] Fabio Carrara, Rudy Becarelli, Roberto Caldelli, Fabrizio Falchi, and Giuseppe Amato.
Adversarial examples detection in features distance spaces. In Proceedings of the
European conference on computer vision (ECCV) workshops, pages 1–15, 2018.

[146] Shawn Shan. Using honeypots to catch adversarial attacks on neural networks. In
Proceedings of the 8th ACM Workshop on Moving Target Defense, pages 1–25, 2021.

[147] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017.

[148] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In 2018
International Conference on Learning Representations (ICLR), 2018.

[149] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks. In
2016 IEEE symposium on security and privacy (SP), pages 582–597. IEEE, 2016.

[150] Salijona Dyrmishi, Salah Ghamizi, Thibault Simonetto, Yves Le Traon, and Maxime
Cordy. On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against
Realistic Adversarial Attacks. In 2023 IEEE symposium on security and privacy (SP),
2023.

[151] Thibault Simonetto, Salijona Dyrmishi, Salah Ghamizi, Maxime Cordy, and Yves Le
Traon. A Unified Framework for Adversarial Attack and Defense in Constrained
Feature Space. In Thirty-First International Joint Conference on Artificial Intelligence
IJCAI-22, pages 1313–1319, 2022.

[152] Ryan Sheatsley, Nicolas Papernot, Michael Weisman, Gunjan Verma, and Patrick
McDaniel. Adversarial examples in constrained domains. arXiv preprint
arXiv:2011.01183, 2020.

166 Bibliography

[153] Bao Gia Doan, Shuiqiao Yang, Paul Montague, Olivier De Vel, Tamas Abraham, Seyit
Camtepe, Salil S Kanhere, Ehsan Abbasnejad, and Damith C Ranasinghe. Feature-
Space Bayesian Adversarial Learning Improved Malware Detector Robustness. In
AAAI, 2023.

[154] Raphael Labaca-Castro, Luis Muñoz-González, Feargus Pendlebury, Gabi Dreo
Rodosek, Fabio Pierazzi, and Lorenzo Cavallaro. Realizable Universal Adversarial
Perturbations for Malware. arXiv preprint arXiv:2102.06747, 2021.

[155] Weiwei Hu and Ying Tan. Black-box attacks against RNN based malware detection
algorithms. In Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[156] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
Malware makeover: Breaking ml-based static analysis by modifying executable bytes.
In Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, pages 744–758, 2021.

[157] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box
end-to-end attack against state of the art API call based malware classifiers. In
International Symposium on Research in Attacks, Intrusions, and Defenses, pages
490–510. Springer, 2018.

[158] Joao P Papa, Alexandre X Falcao, and Celso TN Suzuki. Supervised pattern
classification based on optimum-path forest. International Journal of Imaging Systems
and Technology, 19(2):120–131, 2009.

[159] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen. Robust
Android malware detection against adversarial example attacks. In Proceedings of the
Web Conference 2021, pages 3603–3612, 2021.

[160] Michele Scalas, Davide Maiorca, Francesco Mercaldo, Corrado Aaron Visaggio,
Fabio Martinelli, and Giorgio Giacinto. On the effectiveness of system API-related
information for Android ransomware detection. Computers & Security, 86:168–182,
2019.

[161] Ecenaz Erdemir, Jeffrey Bickford, Luca Melis, and Sergul Aydore. Adversarial robust-
ness with non-uniform perturbations. Advances in Neural Information Processing
Systems (NeurIPS), 34:19147–19159, 2021.

[162] Jiyu Chen, David Wang, and Hao Chen. Explore the transformation space for
adversarial images. In Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy, pages 109–120, 2020.

[163] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,
2017.

References 167

[164] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.
IEEE, 2016.

[165] Giovanni Apruzzese, Mauro Conti, and Ying Yuan. Spacephish: The evasion-space
of adversarial attacks against phishing website detectors using machine learning. In
Proceedings of the 38th Annual Computer Security Applications Conference, pages
171–185, 2022.

[166] Giovanni Apruzzese, Mauro Andreolini, Luca Ferretti, Mirco Marchetti, and Michele
Colajanni. Modeling realistic adversarial attacks against network intrusion detection
systems. Digital Threats: Research and Practice (DTRAP), 3(3):1–19, 2022.

[167] Ryan Sheatsley, Blaine Hoak, Eric Pauley, Yohan Beugin, Michael J Weisman, and
Patrick McDaniel. On the robustness of domain constraints. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 495–515, 2021.

[168] Martin Teuffenbach, Ewa Piatkowska, and Paul Smith. Subverting Network Intru-
sion Detection: Crafting Adversarial Examples Accounting for Domain-Specific
Constraints. In International Cross-Domain Conference for Machine Learning and
Knowledge Extraction, pages 301–320. Springer, 2020.

[169] Alesia Chernikova and Alina Oprea. Fence: Feasible evasion attacks on neural
networks in constrained environments. arXiv preprint arXiv:1909.10480, 2019.

[170] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorobeychik.
Improving robustness of ML classifiers against realizable evasion attacks using
conserved features. In 28th USENIX Security Symposium (USENIX Security 19),
pages 285–302, 2019.

[171] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An
intelligent Android malware detection system based on structured heterogeneous
information network. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1507–1515, 2017.

[172] Ke Xu, Yingjiu Li, Robert H Deng, and Kai Chen. Deeprefiner: Multi-layer android
malware detection system applying deep neural networks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 473–487. IEEE, 2018.

[173] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. A multimodal
deep learning method for Android malware detection using various features. IEEE
Transactions on Information Forensics and Security, 14(3):773–788, 2018.

[174] Yunzhe Tian, Yingdi Wang, Endong Tong, Wenjia Niu, Liang Chang, Qi Alfred Chen,
Gang Li, and Jiqiang Liu. Exploring Data Correlation between Feature Pairs for
Generating Constraint-based Adversarial Examples. In 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS), pages 430–437. IEEE,
2020.

168 Bibliography

[175] Harel Berger, Chen Hajaj, and Amit Dvir. Evasion is not enough: A case study of
Android malware. In International Symposium on Cyber Security Cryptography and
Machine Learning, pages 167–174. Springer, 2020.

[176] Hamid Bostani, Mansour Sheikhan, and Behrad Mahboobi. A strong coreset algo-
rithm to accelerate OPF as a graph-based machine learning in large-scale problems.
Information Sciences, 555:424–441, 2021.

[177] Leonardo Marques Rocha, Fábio AM Cappabianco, and Alexandre Xavier Falcão.
Data clustering as an optimum-path forest problem with applications in image analysis.
International Journal of Imaging Systems and Technology, 19(2):50–68, 2009.

[178] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning
robust against adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

[179] Huimin Zeng, Chen Zhu, Tom Goldstein, and Furong Huang. Are adversarial examples
created equal? a learnable weighted minimax risk for robustness under non-uniform
attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 10815–10823, 2021.

[180] Chen Liu, Bo Li, Jun Zhao, Weiwei Feng, Xudong Liu, and Chunpei Li. A2-CLM: Few-
Shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation.
IEEE Transactions on Information Forensics and Security, 2023.

[181] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple
perturbations. Advances in neural information processing systems, 32, 2019.

[182] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan.
Greedy attack and gumbel attack: Generating adversarial examples for discrete data.
Journal of Machine Learning Research, 21(43):1–36, 2020.

[183] Fengjuan Gao, Yu Wang, and Ke Wang. Discrete adversarial attack to models of code.
Proceedings of the ACM on Programming Languages, 7(PLDI):172–195, 2023.

[184] Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein. A
deep dive inside drebin: An explorative analysis beyond Android malware detection
scores. ACM Transactions on Privacy and Security, 25(2):1–28, 2022.

[185] Lucky Onwuzurike, Mario Almeida, Enrico Mariconti, Jeremy Blackburn, Gianluca
Stringhini, and Emiliano De Cristofaro. A family of Droids-Android malware detection
via behavioral modeling: Static vs dynamic analysis. In 2018 16th Annual Conference
on Privacy, Security and Trust (PST), pages 1–10. IEEE, 2018.

[186] David Freedman, Robert Pisani, and Roger Purves. Statistics (international student
edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New York, 2007.

[187] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. DexRay: A Simple, yet Effective Deep Learning
Approach to Android Malware Detection Based on Image Representation of Bytecode.
In Deployable Machine Learning for Security Defense: Second International Workshop,

References 169

MLHat 2021, Virtual Event, August 15, 2021, Proceedings 2, pages 81–106. Springer,
2021.

[188] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994,
2016.

[189] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, and Fabio Roli.
Explaining black-box android malware detection. In 2018 26th european signal
processing conference (EUSIPCO), pages 524–528. IEEE, 2018.

[190] Maura Pintor, Luca Demetrio, Angelo Sotgiu, Ambra Demontis, Nicholas Carlini,
Battista Biggio, and Fabio Roli. Indicators of attack failure: Debugging and improving
optimization of adversarial examples. Advances in Neural Information Processing
Systems, 35:23063–23076, 2022.

[191] Hamid Bostani, Zhengyu Zhao, and Veelasha Moonsamy. Improving adversarial
robustness in android malware detection by reducing the impact of spurious correlations.
In European Symposium on Research in Computer Security, pages 204–222. Springer,
2024.

[192] Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and
Cho-Jui Hsieh. The limitations of adversarial training and the blind-spot attack. In
International Conference on Learning Representations (ICLR), 2019.

[193] He He, Sheng Zha, and Haohan Wang. Unlearn Dataset Bias in Natural Language
Inference by Fitting the Residual. In Proceedings of the 2nd Workshop on Deep
Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 132–142, Hong
Kong, China, November 2019. Association for Computational Linguistics. URL:
https://aclanthology.org/D19-6115, doi:10.18653/v1/D19-6115.

[194] Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, Xia Hu, and Aidong Zhang. Spu-
rious Correlations in Machine Learning: A Survey. arXiv preprint arXiv:2402.12715,
2024.

[195] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sample
selection bias correction theory. In International conference on algorithmic learning
theory, pages 38–53. Springer, 2008.

[196] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of
representations for domain adaptation. Advances in neural information processing
systems, 19, 2006.

[197] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-box
attacks based on GAN. In International Conference on Data Mining and Big Data,
pages 409–423. Springer, 2022.

[198] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. Advances
in neural information processing systems, 32, 2019.

https://aclanthology.org/D19-6115
https://doi.org/10.18653/v1/D19-6115

170 Bibliography

[199] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. arXiv preprint arXiv:1907.02893, 2019.

[200] Wanqian Yang, Polina Kirichenko, Micah Goldblum, and Andrew G Wilson. Chroma-
vae: Mitigating shortcut learning with generative classifiers. Advances in Neural
Information Processing Systems, 35:20351–20365, 2022.

[201] Ruimeng Li, Yuanhao Pu, Zhaoyi Li, Hong Xie, and Defu Lian. Invariant Rep-
resentation Learning via Decoupling Style and Spurious Features. arXiv preprint
arXiv:2312.06226, 2023.

[202] Anders Sandberg, Stuart Armstrong, Rebecca Gorman, and Rei England. Sigmoids
behaving badly: why they usually cannot predict the future as well as they seem to
promise. arXiv preprint arXiv:2109.08065, 2021.

[203] Hamid Bostani and Mansour Sheikhan. Hybrid of binary gravitational search algorithm
and mutual information for feature selection in intrusion detection systems. Soft
computing, 21(9):2307–2324, 2017.

[204] Hamid Bostani, Jacopo Cortellazzi, Daniel Arp, Fabio Pierazzi, Veelasha Moonsamy,
and Lorenzo Cavallaro. On the Effectiveness of Adversarial Training on Malware
Classifiers. arXiv preprint arXiv:2412.18218, 2024.

[205] Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G Ororbia, Xinyu Xing, Xue
Liu, and C Lee Giles. Adversary resistant deep neural networks with an application to
malware detection. In Proceedings of the 23rd ACM sigkdd international conference
on knowledge discovery and data mining, pages 1145–1153, 2017.

[206] Salijona Dyrmishi, Salah Ghamizi, Thibault Simonetto, Yves Le Traon, and Maxime
Cordy. On the empirical effectiveness of unrealistic adversarial hardening against
realistic adversarial attacks. In 2023 IEEE symposium on security and privacy (SP),
pages 1384–1400. IEEE, 2023.

[207] Yunchun Zhang, Haorui Li, Yang Zheng, Shaowen Yao, and Jiaqi Jiang. Enhanced
DNNs for malware classification with GAN-based adversarial training. Journal of
Computer Virology and Hacking Techniques, 17:153–163, 2021.

[208] Xiruo Wang and Risto Miikkulainen. MDEA: Malware detection with evolutionary
adversarial learning. In 2020 IEEE Congress on Evolutionary Computation (CEC),
pages 1–8. IEEE, 2020.

[209] Hamid Eghbal-zadeh, Werner Zellinger, Maura Pintor, Kathrin Grosse, Khaled
Koutini, Bernhard A Moser, Battista Biggio, and Gerhard Widmer. Rethinking data
augmentation for adversarial robustness. Information Sciences, 654:119838, 2024.

[210] Jacopo Cortellazzi, Feargus Pendlebury, Daniel Arp, Erwin Quiring, Fabio Pierazzi,
and Lorenzo Cavallaro. Intriguing Properties of Adversarial ML Attacks in the Problem
Space [Extended Version], 2024. URL: https://arxiv.org/abs/1911.02142,
arXiv:1911.02142.

https://arxiv.org/abs/1911.02142
https://arxiv.org/abs/1911.02142

References 171

[211] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2154–2156, 2018.

[212] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine Learning
at Test Time. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 387–402. Springer, 2013.

[213] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness
to adversarial perturbations. Machine learning, 107(3):481–508, 2018.

[214] Pedro Domingos. A few useful things to know about machine learning. Communica-
tions of the ACM, 55(10):78–87, 2012.

[215] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(Nov):2579–2605, 2008.

[216] Xinran Zheng, Shuo Yang, Edith CH Ngai, Suman Jana, and Lorenzo Caval-
laro. Learning temporal invariance in android malware detectors. arXiv preprint
arXiv:2502.05098, 2025.

[217] Matan Levi and Aryeh Kontorovich. Splitting the Difference on Adversarial Training.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 1163–1180, 2023.

[218] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International Conference on Machine Learning, pages 7472–7482. PMLR, 2019.

[219] Jiapeng Zhao, Zhongjin Liu, Xiaoling Zhang, Jintao Huang, Zhiqiang Shi, Shichao Lv,
Hong Li, and Limin Sun. Gradient-based adversarial attacks against malware detection
by instruction replacement. In International Conference on Wireless Algorithms,
Systems, and Applications, pages 603–612. Springer, 2022.

[220] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani,
Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu, et al.
Reviewer Integration and Performance Measurement for Malware Detection. In
DIMVA. Springer, 2016.

[221] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 47–62. IEEE, 2019.

[222] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro. TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time. In 28th USENIX Security Symposium, Santa Clara, CA, 2019.
USENIX Association. USENIX Sec.

172 Bibliography

[223] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.
DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket.
In NDSS, 2014.

[224] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
Differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[225] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-Learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[226] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res.,
9:1871–1874, 2008.

[227] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision
tree. arXiv preprint arXiv:1711.09784, 2017.

[228] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 2623–2631, 2019.

[229] Hamid Bostani and Veelasha Moonsamy. Beyond Learning Algorithms: The Crucial
Role of Data in Robust Malware Detection. IEEE Security & Privacy, 23:1–6, 2025.

[230] Farida Siddiqi Prity, Md Shahidul Islam, Emran Hossain Fahim, Md Maruf Hossain,
Sazzad Hossain Bhuiyan, Md Ariful Islam, and Mirza Raquib. Machine learning-based
cyber threat detection: an approach to malware detection and security with explainable
AI insights. Human-Intelligent Systems Integration, pages 1–30, 2024.

[231] AV-TEST Institute. Malware statistics & trends report, 2024. Accessed: 2025-02-08.
URL: https://www.av-test.org/en/statistics/malware/.

[232] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou.
Trustworthy AI: From principles to practices. ACM Computing Surveys, 55(9):1–46,
2023.

[233] Suleiman Y Yerima, Mohammed K Alzaylaee, and Sakir Sezer. Machine learning-
based dynamic analysis of android apps with improved code coverage. EURASIP
Journal on Information Security, 2019(1):1–24, 2019.

[234] Palo Alto Networks. Why you need static analysis, dy-
namic analysis, and machine learning. Accessed: 2025-02-
03. URL: https://www.paloaltonetworks.com/cyberpedia/

why-you-need-static-analysis-dynamic-analysis-machine-learning.

https://www.av-test.org/en/statistics/malware/
https://www.paloaltonetworks.com/cyberpedia/why-you-need-static-analysis-dynamic-analysis-machine-learning
https://www.paloaltonetworks.com/cyberpedia/why-you-need-static-analysis-dynamic-analysis-machine-learning

References 173

[235] M. Krol. GitHub besieged by millions of malicious repositories in ongoing attack.
Ars Technica, 2024. Accessed: 2025-01-30. URL: https://arstechnica.com/
security/2024/02/.

[236] Snyk Team. GitHub Malware Repositories and Repo Confusion.
Snyk, 2024. Accessed: 2025-01-30. URL: https://snyk.io/blog/
github-malware-repositories-repo-confusion/.

[237] GitHub Security Team. Leveraging Machine Learning to Find Se-
curity Vulnerabilities. GitHub Blog, 2024. Accessed: 2025-01-
30. URL: https://github.blog/security/vulnerability-research/
leveraging-machine-learning-find-security-vulnerabilities/.

[238] Daniel E Geer Jr. Data. IEEE Security & Privacy, 23:98–100, 2025.

[239] Marco Loog, Tom Viering, and Alexander Mey. Minimizers of the empirical risk and
risk monotonicity. Advances in Neural Information Processing Systems, 32, 2019.

[240] Marco Loog, Jesse H Krijthe, and Manuele Bicego. Also for k-means: more data does
not imply better performance. Machine Learning, 112(8):3033–3050, 2023.

[241] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation
of why overparameterization exacerbates spurious correlations. In International
Conference on Machine Learning, pages 8346–8356. PMLR, 2020.

[242] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel
Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua
Bengio, and Simon Lacoste-Julien. A Closer Look at Memorization in Deep Networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML),
pages 233–242. PMLR, 2017.

[243] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 209–217, 2005.

[244] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient
training of machine learning models. In International Conference on Machine
Learning, pages 6950–6960. PMLR, 2020.

[245] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of
deep neural networks against noisy labels. Advances in Neural Information Processing
Systems, 33:11465–11477, 2020.

[246] Yunseok Jang, Tianchen Zhao, Seunghoon Hong, and Honglak Lee. Adversarial
defense via learning to generate diverse attacks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2740–2749, 2019.

https://arstechnica.com/security/2024/02/
https://arstechnica.com/security/2024/02/
https://snyk.io/blog/github-malware-repositories-repo-confusion/
https://snyk.io/blog/github-malware-repositories-repo-confusion/
https://github.blog/security/vulnerability-research/leveraging-machine-learning-find-security-vulnerabilities/
https://github.blog/security/vulnerability-research/leveraging-machine-learning-find-security-vulnerabilities/

175

About the Author
Hamid Bostani was born on November 29, 1984, in Shiraz, Iran. He earned his Bachelor’s
and Master’s degrees in Computer Engineering (Software Engineering) from the Shiraz
and South Tehran branches of Islamic Azad University (IAU), Iran, in 2008 and 2015,
respectively. His Master’s thesis, titled “Intrusion Detection and Identification of Attacks on
the Internet of Things Using a Combination of Machine Learning Methods”, was supervised
by Prof. Mansour Sheikhan and received the Best Master’s Thesis Award at the 5th Research,
Scientific & Technological National Festival of IAU in 2017. Additionally, in December
2017, he was honored with the Outstanding Researcher Award at the Annual Convention
of Plaudits for Top-tier Researchers at the South Tehran Branch of IAU. Hamid joined the
Digital Security group at the Institute for Computing and Information Sciences, Radboud
University, The Netherlands, in October 2020, where he conducted research on the security
of Machine Learning (ML) in malware detection under the supervision of Prof. Veelasha
Moonsamy and Dr. Erik Poll. During his PhD, he was a visiting scholar in the Cybersecurity
Group at King’s College London and the Systems Security Lab at University College London
in the UK from October 2023 to March 2024, where he studied the robustness of ML-based
malware detection under the supervision of Dr. Fabio Pierazzi and Prof. Lorenzo Cavallaro.
In addition to his academic background, Hamid has industrial experience as a Software
Engineer at the National Organization for Educational Testing (NOET) in Iran from 2012
to 2020. In 2019, he received the Best Employee Award at NOET. Hamid is currently in
the process of being hired as a Postdoctoral Researcher at the Interdisciplinary Centre for
Security, Reliability, and Trust at the University of Luxembourg to continue working on ML
security under the supervision of Dr. Maxime Cordy.

Radboud
Dissertation
Series

Institute for Computing and
Information Sciences

R
E

TH
IN

K
IN

G
 TH

E
 S

E
C

U
R

ITY
 O

F M
A

C
H

IN
E

 LE
A

R
N

IN
G

 IN
 M

A
LW

A
R

E
 D

E
TE

C
TIO

N
H

am
id B

ostani

RETHINKING THE SECURITY
OF MACHINE LEARNING

IN MALWARE DETECTION

Hamid Bostani

9 789465 151304

	Contents
	Summary
	Samenvatting
	Acknowledgments
	1 Introduction
	1.1 Revisiting Realism for Adversarial Malware
	1.2 Problem Statement
	1.3 Structure of Dissertation
	1.4 List of Publications
	1.5 Code and Data Management

	2 Background
	2.1 Overview of Malware Detection
	2.2 Adversarial Susceptibility of Malware Classifiers

	3 Subverting Machine Learningin Malware Detection
	3.1 Introduction
	3.2 Related work
	3.3 Background
	3.4 Proposed Attack
	3.5 Simulation Results
	3.6 Limitations and FutureWork
	3.7 Conclusions

	4 Exposing Vulnerabilities inMachine Learning forMalware Detection
	4.1 Introduction
	4.2 RelatedWork
	4.3 Interpreting Domain Constraints in the FeatureSpace
	4.4 Learning Feature-Space Domain Constraints
	4.5 Applying Feature-Space Domain Constraints
	4.6 Experimental Results
	4.7 Limitations and FutureWork
	4.8 Conclusion
	4.A Evaluating the Efficacy of Learned Domain Constraintswith Sparse-RS
	4.B PiAttack
	4.C PK-Feature
	4.D AT with Non-Uniform Perturbations

	5 Enhancing AdversarialRobustness with RobustFeature Space
	5.1 Introduction
	5.2 Background
	5.3 Our Proposed Defense
	5.4 Experiments
	5.5 RelatedWork
	5.6 Limitations and FutureWork
	5.7 Conclusion

	6 Enhancing AdversarialRobustness with RobustOptimization
	6.1 Introduction
	6.2 Background
	6.3 Methodology
	6.4 Experiments and Evaluations
	6.5 RelatedWork
	6.6 Discussion
	6.7 Conclusion
	6.A Experimental Settings
	6.B Implementation Details
	6.C Confidence of AEs
	6.D Robustness Evaluation
	6.E Large Perturbation Bound
	6.F Clean Performance Considering Different AdversarialFractions
	6.G Robust Performance Considering Different AdversarialFractions
	6.H Challenge of Exhaustive Exploration
	6.I Overview of Results

	7 Conclusions and Outlook
	7.1 Realistic Threat Models
	7.2 Reliable Defenses
	7.3 Outlook

	Bibliography
	About the Author

