
Radboud
Dissertation
Series

Institute for Computing and 
Information Sciences

Robust and Reliable D
ecision-M

aking U
nder U

ncertainty�
M

arnix Suilen Marnix Suilen

Robust and Reliable
Decision-Making Under Uncertainty





Robust and Reliable
Decision-Making Under Uncertainty

Marnix Suilen



Robust and Reliable
Decision-Making Under Uncertainty

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

maandag 29 september 2025
om 14:30 uur precies

door

Marnix Robert Suilen

geboren op 2 februari 1996
te Roermond

Robust and Reliable Decision-Making Under Uncertainty
Marnix Robert Suilen

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS 
Postbus 9100, 6500 HA Nijmegen, The Netherlands 
www.radbouduniversitypress.nl 

Cover: Proefschrift AIO | Guus Gijben
Printing: DPN Rikken/Pumbo

ISBN: 9789465150970
DOI: 10.54195/9789465150970
Free download at: https://doi.org/10.54195/9789465150970
 
© 2025 Marnix Robert Suilen

 

This is an Open Access book published under the terms of Creative Commons Attribution-
Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license 
allows reusers to copy and distribute the material in any medium or format in unadapted 
form only, for noncommercial purposes only, and only so long as attribution is given to the 
creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.



Robust and Reliable
Decision-Making Under Uncertainty

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

maandag 29 september 2025
om 14:30 uur precies

door

Marnix Robert Suilen

geboren op 2 februari 1996
te Roermond



Promotoren:
Prof. dr. N.H. Jansen (Ruhr-Universität Bochum, Duitsland)
Prof. dr. F.W. Vaandrager

Manuscriptcommissie:
Prof. dr. M.I.A. Stoelinga
Prof. dr. N. Hawes (University of Oxford, Verenigd Koninkrijk)
Prof. dr. ir. J.P. Katoen (RWTH Aachen, Duitsland)
Prof. dr. J. Křetínský (Masarykova Univerzita, Tsjechië)
Prof. dr. M.T.J. Spaan (Technische Universiteit Delft)

Contents

Summary ix

Samenvatting xi

Acknowledgments xiii

1 Introduction 1
1.1 Decision-Making Under Uncertainty . . . . . . . . . . . . . . . . . . 2

1.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 4
1.2 Sources of Uncertainty in Decision-Making. . . . . . . . . . . . . . . 4

1.2.1 State Uncertainty Through Partial Observability . . . . . . . . 4
1.2.2 Stochastic Uncertainty: Where Do Probabilities Come From? . 6

1.3 Robust Planning Under Partial Observability. . . . . . . . . . . . . . 8
1.4 Robust and Reliable Reinforcement Learning . . . . . . . . . . . . . 9

1.4.1 Robustness in Reinforcement Learning . . . . . . . . . . . . . 9
1.4.2 Reliable Offline Reinforcement Learning . . . . . . . . . . . . 10

1.5 Contributions and Structure of the Thesis . . . . . . . . . . . . . . . 11
1.5.1 A Tutorial on Robust Markov Decision Processes. . . . . . . . 12
1.5.2 Finite-Memory Policies for Robust POMDPs . . . . . . . . . . 12
1.5.3 Robust Anytime Learning of Markov Decision Processes . . . 13
1.5.4 Extending the Scope of Offline RL. . . . . . . . . . . . . . . . 13
1.5.5 Other Peer-Reviewed Publications. . . . . . . . . . . . . . . . 14

2 Decision-Making Under Uncertainty: Foundations 17
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Classical Dynamic Programming . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 State Uncertainty: Partially Observable MDPs . . . . . . . . . . . . . 24
2.3.1 Policies for POMDPs . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Tutorial on Robust Markov Decision Processes 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Robust Markov Decision Processes . . . . . . . . . . . . . . . . . . . 30
3.3 RMDP Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Robust and Optimistic Objectives . . . . . . . . . . . . . . . . 35

v



Promotoren:
Prof. dr. N.H. Jansen (Ruhr-Universität Bochum, Duitsland)
Prof. dr. F.W. Vaandrager

Manuscriptcommissie:
Prof. dr. M.I.A. Stoelinga
Prof. dr. N. Hawes (University of Oxford, Verenigd Koninkrijk)
Prof. dr. ir. J.P. Katoen (RWTH Aachen, Duitsland)
Prof. dr. J. Křetínský (Masarykova Univerzita, Tsjechië)
Prof. dr. M.T.J. Spaan (Technische Universiteit Delft)

Contents

Summary ix

Samenvatting xi

Acknowledgments xiii

1 Introduction 1
1.1 Decision-Making Under Uncertainty . . . . . . . . . . . . . . . . . . 2

1.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 4
1.2 Sources of Uncertainty in Decision-Making. . . . . . . . . . . . . . . 4

1.2.1 State Uncertainty Through Partial Observability . . . . . . . . 4
1.2.2 Stochastic Uncertainty: Where Do Probabilities Come From? . 6

1.3 Robust Planning Under Partial Observability. . . . . . . . . . . . . . 8
1.4 Robust and Reliable Reinforcement Learning . . . . . . . . . . . . . 9

1.4.1 Robustness in Reinforcement Learning . . . . . . . . . . . . . 9
1.4.2 Reliable Offline Reinforcement Learning . . . . . . . . . . . . 10

1.5 Contributions and Structure of the Thesis . . . . . . . . . . . . . . . 11
1.5.1 A Tutorial on Robust Markov Decision Processes. . . . . . . . 12
1.5.2 Finite-Memory Policies for Robust POMDPs . . . . . . . . . . 12
1.5.3 Robust Anytime Learning of Markov Decision Processes . . . 13
1.5.4 Extending the Scope of Offline RL. . . . . . . . . . . . . . . . 13
1.5.5 Other Peer-Reviewed Publications. . . . . . . . . . . . . . . . 14

2 Decision-Making Under Uncertainty: Foundations 17
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Classical Dynamic Programming . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 State Uncertainty: Partially Observable MDPs . . . . . . . . . . . . . 24
2.3.1 Policies for POMDPs . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Tutorial on Robust Markov Decision Processes 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Robust Markov Decision Processes . . . . . . . . . . . . . . . . . . . 30
3.3 RMDP Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Robust and Optimistic Objectives . . . . . . . . . . . . . . . . 35

v



vi Contents

3.4 Robust Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Robust Value Iteration . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Robust Policy Evaluation. . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Robust Policy Iteration . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Well-Known RMDP Instances . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Related Models and Applications . . . . . . . . . . . . . . . . . . . . 42
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Finite-Memory Policies for Robust POMDPs 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Contributions and Approach . . . . . . . . . . . . . . . . . . 48
4.2 Background: Robust POMDPs . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Interval POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Nonlinear Optimization for Robust Policies . . . . . . . . . . . . . . 54
4.4 CCP: Convex-Concave Procedure . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Convexification . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Iterative Over-Approximations Towards Local Optima . . . . 59

4.5 SCP: Sequential Convex Programming . . . . . . . . . . . . . . . . . 61
4.5.1 Nonlinear Optimization on Simple IPOMDPs . . . . . . . . . 62
4.5.2 Dualization of the Uncertain Constraints . . . . . . . . . . . . 64
4.5.3 Linearizing the Finite Nonconvex Problem . . . . . . . . . . . 66

4.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 74

5 Robust Anytime Learning of Markov Decision Processes 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Robust RL in Changing Environments . . . . . . . . . . . . . 76
5.2 Background: Robust Reinforcement Learning . . . . . . . . . . . . . 77

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Learning Probabilities . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Learning Point Estimates by Counting . . . . . . . . . . . . . 80
5.2.4 Anytime PAC Learning. . . . . . . . . . . . . . . . . . . . . . 81

5.3 Robust Anytime Learning . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Linearly Updating Intervals . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Learning Linearly Updating Intervals . . . . . . . . . . . . . . 85
5.5 LUI in Changing Environments . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Sampling Policies . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 94
5.6.2 Robustness Against Changing Environments . . . . . . . . . . 95

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 98

Contents vii

6 Extending the Scope of Reliable Offline RL 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Background: Safe Policy Improvement . . . . . . . . . . . . . . . . . 106

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Safe Policy Improvement. . . . . . . . . . . . . . . . . . . . . 108
6.2.3 SPI with Baseline Bootstrapping on MDPs . . . . . . . . . . . 109

6.3 Safe Policy Improvement in POMDPs . . . . . . . . . . . . . . . . . . 110
6.3.1 From POMDP to Finite-History MDP . . . . . . . . . . . . . . 110
6.3.2 Estimating the Finite-History MDP . . . . . . . . . . . . . . . 112
6.3.3 Applying SPIBB to the Finite-History MDP. . . . . . . . . . . 112

6.4 Tighter Improvement Bounds for SPI . . . . . . . . . . . . . . . . . . 114
6.4.1 From MDP to Two-Successor MDP . . . . . . . . . . . . . . . 114
6.4.2 Dataset Transformation . . . . . . . . . . . . . . . . . . . . . 118
6.4.3 SPI in Two-Successor MDPs . . . . . . . . . . . . . . . . . . . 120
6.4.4 Uncertainty in Two-Successor MDPs . . . . . . . . . . . . . . 124
6.4.5 Comparison of Different Minimal Sample Thresholds N∧ . . . 128

6.5 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 SPI in Partially Observable Environments . . . . . . . . . . . 129
6.5.2 SPI With Stronger Performance Guarantees . . . . . . . . . . 136

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 140

7 Conclusion and Outlook 141
7.1 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 145

Research Data Management 163

List of Publications 165

About the Author 167



vi Contents

3.4 Robust Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Robust Value Iteration . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Robust Policy Evaluation. . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Robust Policy Iteration . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Well-Known RMDP Instances . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Related Models and Applications . . . . . . . . . . . . . . . . . . . . 42
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Finite-Memory Policies for Robust POMDPs 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Contributions and Approach . . . . . . . . . . . . . . . . . . 48
4.2 Background: Robust POMDPs . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Interval POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Nonlinear Optimization for Robust Policies . . . . . . . . . . . . . . 54
4.4 CCP: Convex-Concave Procedure . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Convexification . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Iterative Over-Approximations Towards Local Optima . . . . 59

4.5 SCP: Sequential Convex Programming . . . . . . . . . . . . . . . . . 61
4.5.1 Nonlinear Optimization on Simple IPOMDPs . . . . . . . . . 62
4.5.2 Dualization of the Uncertain Constraints . . . . . . . . . . . . 64
4.5.3 Linearizing the Finite Nonconvex Problem . . . . . . . . . . . 66

4.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 74

5 Robust Anytime Learning of Markov Decision Processes 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Robust RL in Changing Environments . . . . . . . . . . . . . 76
5.2 Background: Robust Reinforcement Learning . . . . . . . . . . . . . 77

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Learning Probabilities . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Learning Point Estimates by Counting . . . . . . . . . . . . . 80
5.2.4 Anytime PAC Learning. . . . . . . . . . . . . . . . . . . . . . 81

5.3 Robust Anytime Learning . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Linearly Updating Intervals . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Learning Linearly Updating Intervals . . . . . . . . . . . . . . 85
5.5 LUI in Changing Environments . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Sampling Policies . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 94
5.6.2 Robustness Against Changing Environments . . . . . . . . . . 95

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 98

Contents vii

6 Extending the Scope of Reliable Offline RL 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Background: Safe Policy Improvement . . . . . . . . . . . . . . . . . 106

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Safe Policy Improvement. . . . . . . . . . . . . . . . . . . . . 108
6.2.3 SPI with Baseline Bootstrapping on MDPs . . . . . . . . . . . 109

6.3 Safe Policy Improvement in POMDPs . . . . . . . . . . . . . . . . . . 110
6.3.1 From POMDP to Finite-History MDP . . . . . . . . . . . . . . 110
6.3.2 Estimating the Finite-History MDP . . . . . . . . . . . . . . . 112
6.3.3 Applying SPIBB to the Finite-History MDP. . . . . . . . . . . 112

6.4 Tighter Improvement Bounds for SPI . . . . . . . . . . . . . . . . . . 114
6.4.1 From MDP to Two-Successor MDP . . . . . . . . . . . . . . . 114
6.4.2 Dataset Transformation . . . . . . . . . . . . . . . . . . . . . 118
6.4.3 SPI in Two-Successor MDPs . . . . . . . . . . . . . . . . . . . 120
6.4.4 Uncertainty in Two-Successor MDPs . . . . . . . . . . . . . . 124
6.4.5 Comparison of Different Minimal Sample Thresholds N∧ . . . 128

6.5 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 SPI in Partially Observable Environments . . . . . . . . . . . 129
6.5.2 SPI With Stronger Performance Guarantees . . . . . . . . . . 136

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.1 Limitations and Discussion . . . . . . . . . . . . . . . . . . . 140

7 Conclusion and Outlook 141
7.1 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 145

Research Data Management 163

List of Publications 165

About the Author 167



Summary

Sequential decision-making is a fundamental problem encountered in many applica-
tion areas such as robotics, finance, and healthcare. Since many of these decision-
making problems are based on data, they are inherently affected by uncertainty
that arises from insufficient, incomplete, or incorrect data. With the rise of artificial
intelligence (AI), the reliance on data to solve decision-making problems is greater
than ever, as also evidenced by the success of reinforcement learning (RL). As a conse-
quence, uncertainty in sequential decision-making is unavoidable. This uncertainty
must be accounted for to ensure solutions to these decision-making problems are
robust and reliable against incomplete information, misspecification, or adversarial
perturbation while maintaining performance.

Sequential decision-making under uncertainty is usually formalized through
Markov decision processes (MDPs), and various extensions such as robust MDPs,
that account for model uncertainty, or partially observable MDPs (POMDPs), which
account for state uncertainty. This thesis presents several contributions to increase
the robustness and reliability of solutions to sequential decision-making problems
formulated through these models.

A Tutorial on Robust Markov Decision Processes. Our first contribution is a
short tutorial on robust MDPs. Starting with an introduction to the general model,
we discuss its semantics and structural assumptions such as rectangularity. We then
explain how standard dynamic programming for MDPs can be extended to robust
dynamic programming. Finally, we discuss some commonly used instances of robust
MDPs, such as interval MDPs (IMDPs), L1-MDPs, and multi-environment MDPs
(MEMDPs). This tutorial is meant for readers from the formal methods and AI
communities who are familiar with MDPs.

Finite-Memory Policies for Robust POMDPs. For our second contribution, we
present two novel algorithms to compute finite-memory policies in robust POMDPs.
Robust POMDPs formalize decision-making problems that exhibit both partial
observability (i.e., state uncertainty) as well as imprecise probabilities (i.e., model
uncertainty). Policies for robust POMDPs must be robust against both to ensure
acceptable performance. To that end, we encode the problem of finding an optimal
robust finite-memory policy as a semi-infinite, nonlinear optimization problem.
Methods from the robust optimization literature are used to derive two algorithms
that make this optimization finite and iteratively convexify or linearize it into a
convex optimization problem ready to be solved.

Robust Anytime Learning of Markov Decision Processes. For our third contri-
bution, we consider a robust RL setting where the underlying environment may

ix
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Robust POMDPs formalize decision-making problems that exhibit both partial
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convex optimization problem ready to be solved.

Robust Anytime Learning of Markov Decision Processes. For our third contri-
bution, we consider a robust RL setting where the underlying environment may
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x Summary

change over time. Our goal is to learn a robust MDP that is adaptable to such
changes. To that end, we present a novel model-based RL algorithm that employs
linearly updating intervals, a Bayesian approach to updating probability intervals in
the presence of new, possibly inconsistent, data. Together with a sliding window
approach that discards old data and integration with robust dynamic programming,
we can learn robust policies that are conservative yet adaptable when the underlying
environment changes.

Extending the Scope of Reliable Offline RL. Finally, we present two contribu-
tions to the offline RL problem of safe policy improvement (SPI). SPI concerns the
computation of a new policy that outperforms a behavior policy with a reliability
guarantee from a fixed dataset collected by the behavior policy. Together, our two
contributions extend the scope of SPI algorithms. For our first contribution, we
extend existing SPI methods to work in partially observable environments and with
finite-memory policies. For our second contribution to SPI, we introduce a novel
approach that significantly reduces the amount of data required to establish the
same improvement guarantee within the SPI algorithms, thus making the most out
of the available data.

All these contributions add to the robustness and reliability of sequential
decision-making problems in their own way and highlight the many facets in-
volved. Yet, they all share the same throughline: robustness and reliability can be
ensured using model-based approaches that explicitly account for uncertainty.

Samenvatting

Sequentiële besluitvorming is een fundamenteel probleem dat zich voordoet in veel
toepassingsgebieden, zoals robotica, financiën en gezondheidszorg. Omdat veel
van deze besluitvormingsproblemen gebaseerd zijn op data, worden ze inherent
beïnvloed door onzekerheid die voortkomt uit onvoldoende, onvolledige of onjuiste
data. Met de opkomst van kunstmatige intelligentie (artificial intelligence; AI) is de
afhankelijkheid van data om besluitvormingsproblemen op te lossen groter dan ooit,
zoals ook blijkt uit het succes van reinforcement learning (versterkend leren; RL). Als
gevolg hiervan is onzekerheid in sequentiële besluitvorming onvermijdelijk. Met
deze onzekerheid moet rekening worden gehouden om ervoor te zorgen dat oplos-
singen voor deze besluitvormingsproblemen robuust en betrouwbaar zijn, ondanks
onvolledige informatie, misspecificatie of vijandige verstoringen, en tegelijkertijd
de prestaties behouden.

Sequentiële besluitvorming onder onzekerheid wordt meestal geformaliseerd
via Markov decision processes (MDPs) en diverse uitbreidingen, zoals robust MDPs,
die rekening houden met modelonzekerheid, of partially observable MDPs (POMDPs),
die rekening houden met toestandsonzekerheid. Dit proefschrift presenteert ver-
schillende bijdragen om de robuustheid en betrouwbaarheid oplossingen voor
sequentiële besluitvormingsproblemen die via deze modellen worden geformuleerd
te vergroten.

A Tutorial on Robust Markov Decision Processes. Onze eerste bijdrage is een
korte tutorial over robust MDPs. Beginnend met een inleiding tot het algemene
model, bespreken we de semantiek en structurele aannames, zoals rectangularity.
Vervolgens leggen we uit hoe standaard dynamic programming technieken voorMDPs
kunnen worden uitgebreid naar robust dynamic programming. Tot slot bespreken we
enkele veelgebruikte voorbeelden van robuste MDPs, zoals interval MDPs (IMDPs),
L1-MDPs en multi-environment MDPs (MEMDPs). Deze tutorial is bedoeld voor
lezers uit de formele methoden- en AI-gemeenschap die bekend zijn met MDPs.

Finite-Memory Policies for Robust POMDPs. Voor onze tweede bijdrage pre-
senteren we twee nieuwe algoritmen voor het berekenen van finite-memory polcies
in robust POMDPs. Robust POMDPs formaliseren besluitvormingsproblemen die
zowel gedeeltelijke waarneembaarheid zijn (i.e., met toestandsonzekerheid) als waar-
schijnlijkheidsintervallen (i.e., modelonzekerheid) vertonen. Policies voor robust
POMDPs moeten robuust zijn tegen beide vormen van onzekerheid om acceptabele
prestaties te garanderen. Daartoe coderen we het probleem van het vinden van een
optimale robuuste finite-memory policy als een semi-oneindig, niet-lineair optima-
lisatieprobleem. Methoden uit de literatuur over robuuste optimalisatie worden
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xii Samenvatting

gebruikt om twee algoritmen af te leiden die dit optimalisatieprobleem eindig ma-
ken en deze iteratief convex of lineair maken tot een convex optimalisatieprobleem
dat klaar is om opgelost te worden.

Robust Anytime Learning of Markov Decision Processes. Voor onze derde bij-
drage beschouwen we een robuust RL probleem waarin de onderliggende omgeving
naar verloop van tijd kan veranderen. Ons doel is om een robust MDP te leren
die aanpasbaar is aan dergelijke veranderingen. We presenteren een nieuw mo-
delgebaseerd RL-algoritme dat gebruikmaakt van lineair updatende intervallen, een
Bayesiaanse benadering voor het updaten van waarschijnlijkheidsintervallen in de
aanwezigheid van nieuwe, mogelijk inconsistente, data. In combinatie met een sli-
ding window-benadering, die oude data weggooit, en integratie met robust dynamic
programming, kunnen we robuuste policies leren die conservatief maar aanpasbaar
zijn wanneer de onderliggende omgeving verandert.

Extending the Scope of Reliable Offline RL. Tot slot presenteren we twee bijdra-
gen aan het offline RL-probleem van safe policy improvement (SPI). SPI betreft de
berekening van een nieuwe policy die beter presteert dan een behavior policy met
een betrouwbaarheidsgarantie op basis van een vaste dataset die door het behavior
policy is verzameld. Samen breiden onze twee bijdragen de toepasbaarheid van
SPI-algoritmen uit. Voor onze eerste bijdrage breiden we bestaande SPI-methoden
uit om te werken in gedeeltelijk waarneembare omgevingen en finite-memory po-
licies. Voor onze tweede bijdrage aan SPI introduceren we een nieuwe aanpak
die de hoeveelheid data die nodig is om dezelfde verbeteringsgarantie binnen de
SPI-algoritmen vast te stellen aanzienlijk vermindert, waardoor de beschikbare data
optimaal wordt benut.

Al deze bijdragen dragen op hun eigen manier bij aan de robuustheid en be-
trouwbaarheid van sequentiële besluitvormingsproblemen en benadrukken de vele
facetten die hierbij betrokken zijn. Toch delen ze allemaal dezelfde rode draad:
robuustheid en betrouwbaarheid kunnen worden gegarandeerd met behulp van
modelgebaseerde methodes die expliciet rekening houden met onzekerheid.
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1
Introduction

From determining the best move to make in a board or video game (Mnih et al., 2015;
Silver et al., 2017), to more serious applications such as robot navigation (Klingspor
et al., 1997; Thrun et al., 2005), decision support systems (Kochenderfer, 2015), and
in areas like finance (Bahrammirzaee, 2010) or healthcare (D’aeth et al., 2023; Jiang
et al., 2017), sequential decision-making problems are everywhere.

These problems are inherently subject to uncertainty that arises from many
different sources. For instance, the roll of a die may be a core component of a
game, introducing uncertainty about the outcome of a certain play. In robotics,
sensor noise or imprecise actuators may introduce uncertainty about where the
robot is located. In systems that rely on human interaction, such as decision support
systems, variations in the human operator’s response time introduce uncertainty on
how quickly the system’s advice is carried out. Finally, in healthcare, a plethora of
underlying reasons influence a patient’s recovery and thus introduce uncertainty on
the effects of a treatment plan. These are only a few examples of how uncertainty
inherently affects sequential decision-making problems.

All such decision-making problems rely on an exact formulation of the outcome
of a decision. These formulations may be based on (historical) data or expert
opinions. With the rapid development and deployment of artificial intelligence (AI;
Russell and Norvig, 2020), decision-making problems have become intertwined
with data, as most notably evidenced by the rise of reinforcement learning (RL; Sutton
and Barto, 1998), and their solutions deployed in the real world. As a consequence,
uncertainty in sequential decision-making is unavoidable, raising a whole range of
safety concerns that need to be accounted for (Dalrymple et al., 2024). The central
question is how to properly account for this uncertainty, in all its facets, such that
solutions to these decision-making problems are robust and reliable.
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Figure 1.1: An example MDP model. The states are {s0, s1, s2}, the actions are {a1, a2}, and the
transition probabilities are given by the graph. For instance, the probability of arriving in s1
when taking action a1 from s0 is 0.6.

1.1 Decision-Making Under Uncertainty

Given their wide range of applications, it is only natural that sequential decision-
making under uncertainty is studied across multiple scientific disciplines, such as
operations research, formal methods, and AI. While each of these communities has
a different emphasis on the type of decision-making problems they are interested
in, and thus the precise formalization used, they find common ground in the basic
mathematical model often used for these problems: Markov decision processes.

Markov decision processes (MDPs; Puterman, 1994) formalize sequential decision-
making under uncertainty problems in which the decision-maker, often called the
agent, aims to make optimal decisions for some objective. More specifically, the
agent operates in an environment. The states describe the current configuration of the
environment. At each state, the agent is presented with one or more choices called
actions. After choosing an action, the agent receives a reward, and the environment
configuration transitions to some new state drawn from a probability distribution
over all states. Figure 1.1 contains an example of an MDP.

MDPs only specify an environment in which an agent operates. An objective
specifies what the decision-making problem should optimize for. Common objec-
tives include maximizing the expected discounted cumulative reward, the probability
of reaching a certain target state, or the expected cumulative reward for reaching a
certain target state. A policy is a structured representation of when the agent should
choose what action in a given MDP. The obtained expected reward or reachability
probability under that policy is called the value or the performance of that policy.
The solution to the decision-making problem modeled as an MDP is an optimal
policy and its performance. When the MDP model is completely known, that is,
all states, actions, transition probabilities, and rewards are given, the problem of
finding an optimal policy for an objective is also known as a planning problem.

Planning in MDPs is well-studied and, for many objectives, computationally
efficient to solve. Specifically, MDPs with any of the objectives mentioned admit
optimal policies that are memoryless and deterministic. Optimal policies for these

1.1. Decision-Making Under Uncertainty

1

3

� �1

2 3 4

5

Figure 1.2: An example grid navigation task, inspired by the Cheese Maze example by Mc-
Callum (1993). The car represents the agent, and the castle is the target. The intersections in
this problem are numbered.

objectives in MDPs can be computed in polynomial time (Baier and Katoen, 2008;
Puterman, 1994). More intricate objectives may be expressed using temporal logics,
such as (probabilistic) linear temporal logic (LTL; Pnueli, 1977) or computation
tree logic ((P)CTL; Clarke and Emerson, 1981; Hansson and Jonsson, 1994), but
at the cost of increased computational complexity. While for PCTL, planning in
MDPs is still polynomial (in the size of the MDP and logical formula), it is double
exponential time complete for PCTL∗, which includes LTL, and policies are in
general no longer memoryless (Bianco and de Alfaro, 1995).

Solving MDPs, i.e., computing an optimal policy and its performance for an
objective, is the classic dynamic programming problem (Bellman, 1957). Notable
instances of dynamic programming algorithms for MDPs are value iteration and
policy iteration. Additionally, MDPs are straightforwardly encoded into linear
optimization problems, providing a polynomial time solution method for many
objectives such as the ones aforementioned (see, e.g., Baier and Katoen, 2008).

We illustrate some of the basic concepts of MDPs through Example 1.

Example 1. Consider Figure 1.2, which shows a grid on which the car, the
agent, attempts to reach the castle. Such a navigation problem can naturally
be modeled as an MDP with a reachability objective. Each cell is a state, the
actions are the four cardinal directions the car can move in, and the transition
function is given by the probability of reaching one cell from another.

Suppose it is raining and the roads are slippery. With some probability, say
10%, the car slips and moves two cells ahead in the chosen direction instead
of one. The agent is now at risk of overshooting some of the intersections.
For instance, moving east from the starting position now has a 10% chance of
ending up in the cell right of intersection 1. A policy that eventually reaches
the castle with probability one simply needs to assign which direction the
agent should move for each cell, i.e., it is indeed memoryless deterministic.

Depending on the slip probabilities, getting the car onto an intersection
may take a few attempts. Still, eventually, it will succeed as the probability
of successively overshooting an intersection in this scenario approaches zero.
Thus, eventually the agent will always arrive at the castle.
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Figure 1.1: An example MDP model. The states are {s0, s1, s2}, the actions are {a1, a2}, and the
transition probabilities are given by the graph. For instance, the probability of arriving in s1
when taking action a1 from s0 is 0.6.

1.1 Decision-Making Under Uncertainty

Given their wide range of applications, it is only natural that sequential decision-
making under uncertainty is studied across multiple scientific disciplines, such as
operations research, formal methods, and AI. While each of these communities has
a different emphasis on the type of decision-making problems they are interested
in, and thus the precise formalization used, they find common ground in the basic
mathematical model often used for these problems: Markov decision processes.

Markov decision processes (MDPs; Puterman, 1994) formalize sequential decision-
making under uncertainty problems in which the decision-maker, often called the
agent, aims to make optimal decisions for some objective. More specifically, the
agent operates in an environment. The states describe the current configuration of the
environment. At each state, the agent is presented with one or more choices called
actions. After choosing an action, the agent receives a reward, and the environment
configuration transitions to some new state drawn from a probability distribution
over all states. Figure 1.1 contains an example of an MDP.

MDPs only specify an environment in which an agent operates. An objective
specifies what the decision-making problem should optimize for. Common objec-
tives include maximizing the expected discounted cumulative reward, the probability
of reaching a certain target state, or the expected cumulative reward for reaching a
certain target state. A policy is a structured representation of when the agent should
choose what action in a given MDP. The obtained expected reward or reachability
probability under that policy is called the value or the performance of that policy.
The solution to the decision-making problem modeled as an MDP is an optimal
policy and its performance. When the MDP model is completely known, that is,
all states, actions, transition probabilities, and rewards are given, the problem of
finding an optimal policy for an objective is also known as a planning problem.

Planning in MDPs is well-studied and, for many objectives, computationally
efficient to solve. Specifically, MDPs with any of the objectives mentioned admit
optimal policies that are memoryless and deterministic. Optimal policies for these
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Figure 1.2: An example grid navigation task, inspired by the Cheese Maze example by Mc-
Callum (1993). The car represents the agent, and the castle is the target. The intersections in
this problem are numbered.

objectives in MDPs can be computed in polynomial time (Baier and Katoen, 2008;
Puterman, 1994). More intricate objectives may be expressed using temporal logics,
such as (probabilistic) linear temporal logic (LTL; Pnueli, 1977) or computation
tree logic ((P)CTL; Clarke and Emerson, 1981; Hansson and Jonsson, 1994), but
at the cost of increased computational complexity. While for PCTL, planning in
MDPs is still polynomial (in the size of the MDP and logical formula), it is double
exponential time complete for PCTL∗, which includes LTL, and policies are in
general no longer memoryless (Bianco and de Alfaro, 1995).

Solving MDPs, i.e., computing an optimal policy and its performance for an
objective, is the classic dynamic programming problem (Bellman, 1957). Notable
instances of dynamic programming algorithms for MDPs are value iteration and
policy iteration. Additionally, MDPs are straightforwardly encoded into linear
optimization problems, providing a polynomial time solution method for many
objectives such as the ones aforementioned (see, e.g., Baier and Katoen, 2008).

We illustrate some of the basic concepts of MDPs through Example 1.

Example 1. Consider Figure 1.2, which shows a grid on which the car, the
agent, attempts to reach the castle. Such a navigation problem can naturally
be modeled as an MDP with a reachability objective. Each cell is a state, the
actions are the four cardinal directions the car can move in, and the transition
function is given by the probability of reaching one cell from another.

Suppose it is raining and the roads are slippery. With some probability, say
10%, the car slips and moves two cells ahead in the chosen direction instead
of one. The agent is now at risk of overshooting some of the intersections.
For instance, moving east from the starting position now has a 10% chance of
ending up in the cell right of intersection 1. A policy that eventually reaches
the castle with probability one simply needs to assign which direction the
agent should move for each cell, i.e., it is indeed memoryless deterministic.

Depending on the slip probabilities, getting the car onto an intersection
may take a few attempts. Still, eventually, it will succeed as the probability
of successively overshooting an intersection in this scenario approaches zero.
Thus, eventually the agent will always arrive at the castle.
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Figure 1.3: Schematic overview of the reinforcement learning loop.

1.1.1 Reinforcement Learning
Reinforcement learning (RL) is a paradigm to solve sequential decision-making
problems through exploration in a trial-and-error fashion (Sutton and Barto, 1998).
In the planning setting, the agent could exploit knowledge of the environment’s
transition dynamics to compute a policy, but in the RL setting, the agent does not
have this knowledge. Therefore, the agent has to explore the environment to collect
data. By repeatedly observing a state, taking an action, and observing a successor
state and obtaining a reward, as illustrated in Figure 1.3, the agent may, over time,
infer what actions are good and what actions are bad. By doing so, it learns a policy,
and with enough exploration even converges to an optimal policy.

Consequently, the greatest success stories of RL are found in areas where such
trial-and-error behavior poses no harm. Most notably, RL has been used to achieve
super-human performance in playing video and board games such as Atari 2600
classics (Mnih et al., 2015) or Go (Silver et al., 2017).

Example 2. Consider the navigation task of Figure 1.2 again. In an RL setting,
the agent does not know the transition dynamic of the environment. That is,
our agent does not know which cells are adjacent and with what probability
they may end up in another cell when moving in a certain direction. From
(randomly) trying actions and observing the cell they move to, the agent may
learn the transition dynamics and eventually reach the castle.

1.2 Sources of Uncertainty in Decision-Making
We now take a closer look at two of the key sources of uncertainty in sequential
decision-making: state uncertainty and stochastic uncertainty.

1.2.1 State Uncertainty Through Partial Observability
A key assumption MDPs rely on is that the states of the environment in which
the agent operates are observable. These states provide all necessary information
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Figure 1.4: An example POMDP model, adapted from the MDP in Figure 1.1. The states
are again {s0, s1, s2}, the actions are again {a1, a2}, and the transition probabilities once more
are given by the graph. The observations are represented by the color {blue,white}, and the
observation function assigns the observations blue to states s0 and s1 and white to state s3.
Upon taking action a1, the agent arrives in state s0 with probability 0.4 and in state s1 with
probability 0.6, but contrary to MDPs, the agent cannot observe the state in a POMDP and
instead only sees the state’s observation. In this case, both states have observation blue, and
hence, the agent cannot identify in which state they arrived.

on which the agent can base their decisions, and the agent can observe all this
information. Partially observable Markov decision processes (POMDPs; Åström,
1965; Kaelbling et al., 1998) extend MDPs with an observation function that pro-
vides partial information on the states through observations based on the action
the agent chose and the successor state they arrived in. POMDPs are a very general
framework that allows the modeling of many real-world applications, such as health-
care (Hauskrecht and Fraser, 2000), conservation of endangered species (Chadès
et al., 2011, 2012), or aircraft collision avoidance (Kochenderfer, 2015). An exam-
ple POMDP is illustrated in Figure 1.4. We continue Example 1 by adding state
uncertainty through partial observability.

Example 3. Consider Figure 1.2 again. Now, suppose the agent is not aware
of its position but can only observe in which directions it can move from one
cell, as illustrated in Figure 1.5. This is a form of partial observability, and the
agent cannot (immediately) distinguish several cells anymore. For example,
the intersections 1 and 5, or 2, 3, and 4 will now be identical to the agent, as
will the vertical and horizontal roads.

This partial observability poses a problem for our agent. In the cells be-
tween intersections 1 and 2, the agent needs to move south, but between 3
and the castle, they need to move north. So, the problem that arises is how to
distinguish these cells to make the right decisions.

The solution is straightforward: memory. Clearly, if the agent remembers
where they were a few steps before, that information could be used to infer
where they are now. For example, knowing the agent starts in the top left,
seeing an intersection of type 1 or 5 implies the agent is at 1. Then, the agent
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1.1.1 Reinforcement Learning
Reinforcement learning (RL) is a paradigm to solve sequential decision-making
problems through exploration in a trial-and-error fashion (Sutton and Barto, 1998).
In the planning setting, the agent could exploit knowledge of the environment’s
transition dynamics to compute a policy, but in the RL setting, the agent does not
have this knowledge. Therefore, the agent has to explore the environment to collect
data. By repeatedly observing a state, taking an action, and observing a successor
state and obtaining a reward, as illustrated in Figure 1.3, the agent may, over time,
infer what actions are good and what actions are bad. By doing so, it learns a policy,
and with enough exploration even converges to an optimal policy.

Consequently, the greatest success stories of RL are found in areas where such
trial-and-error behavior poses no harm. Most notably, RL has been used to achieve
super-human performance in playing video and board games such as Atari 2600
classics (Mnih et al., 2015) or Go (Silver et al., 2017).

Example 2. Consider the navigation task of Figure 1.2 again. In an RL setting,
the agent does not know the transition dynamic of the environment. That is,
our agent does not know which cells are adjacent and with what probability
they may end up in another cell when moving in a certain direction. From
(randomly) trying actions and observing the cell they move to, the agent may
learn the transition dynamics and eventually reach the castle.

1.2 Sources of Uncertainty in Decision-Making
We now take a closer look at two of the key sources of uncertainty in sequential
decision-making: state uncertainty and stochastic uncertainty.

1.2.1 State Uncertainty Through Partial Observability
A key assumption MDPs rely on is that the states of the environment in which
the agent operates are observable. These states provide all necessary information
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Figure 1.4: An example POMDP model, adapted from the MDP in Figure 1.1. The states
are again {s0, s1, s2}, the actions are again {a1, a2}, and the transition probabilities once more
are given by the graph. The observations are represented by the color {blue,white}, and the
observation function assigns the observations blue to states s0 and s1 and white to state s3.
Upon taking action a1, the agent arrives in state s0 with probability 0.4 and in state s1 with
probability 0.6, but contrary to MDPs, the agent cannot observe the state in a POMDP and
instead only sees the state’s observation. In this case, both states have observation blue, and
hence, the agent cannot identify in which state they arrived.

on which the agent can base their decisions, and the agent can observe all this
information. Partially observable Markov decision processes (POMDPs; Åström,
1965; Kaelbling et al., 1998) extend MDPs with an observation function that pro-
vides partial information on the states through observations based on the action
the agent chose and the successor state they arrived in. POMDPs are a very general
framework that allows the modeling of many real-world applications, such as health-
care (Hauskrecht and Fraser, 2000), conservation of endangered species (Chadès
et al., 2011, 2012), or aircraft collision avoidance (Kochenderfer, 2015). An exam-
ple POMDP is illustrated in Figure 1.4. We continue Example 1 by adding state
uncertainty through partial observability.

Example 3. Consider Figure 1.2 again. Now, suppose the agent is not aware
of its position but can only observe in which directions it can move from one
cell, as illustrated in Figure 1.5. This is a form of partial observability, and the
agent cannot (immediately) distinguish several cells anymore. For example,
the intersections 1 and 5, or 2, 3, and 4 will now be identical to the agent, as
will the vertical and horizontal roads.

This partial observability poses a problem for our agent. In the cells be-
tween intersections 1 and 2, the agent needs to move south, but between 3
and the castle, they need to move north. So, the problem that arises is how to
distinguish these cells to make the right decisions.

The solution is straightforward: memory. Clearly, if the agent remembers
where they were a few steps before, that information could be used to infer
where they are now. For example, knowing the agent starts in the top left,
seeing an intersection of type 1 or 5 implies the agent is at 1. Then, the agent
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Figure 1.5: The grid navigation task from Figure 1.2, adapted with observations. The patterns
and colors show which cells the agent cannot be distinguished from each other. For instance,
all cells where the agent can only move vertically are indicated by blue vertical lines.

should move south until observing an intersection of type 2, 3, or 4. Knowing
we came from 1, this has to be intersection 2. From here, we move east until
we see an intersection again, which could be either 3 or 4 due to the stochastic
transition dynamics. From there, we move north until we reach the castle or
see an intersection, which has to be 5. In the latter case, we repeat the above
reasoning but are now mirrored.

As illustrated in Example 3, partial observability requires the agent to use mem-
ory. While the idea of using memory seems straightforward, it only presents us with
new problems: how much memory do we need, and what do we need to remember?
In general, optimal policies for POMDPs with infinite horizons require infinite
memory, rendering this problem undecidable (Madani et al., 2003). Nonetheless,
several successful approaches to approximate such infinite memory policies have
been proposed, most notably point-based value iteration techniques (Kurniawati
et al., 2008; Pineau et al., 2003; Spaan and Vlassis, 2005).

Finite memory can also make good approximations of the optimal policy (Bonet,
2002). Policies with finite memory can be concisely represented by automata known
as finite-state controllers (FSCs; Meuleau et al., 1999), and computed via policy
iteration (Poupart and Boutilier, 2003) or convex optimization techniques (Amato
et al., 2010; Junges et al., 2018). When small enough, FSCs can also be considered
more explainable than arbitrary finite-memory or belief-based policies (Bork et al.,
2024; Dujardin et al., 2017)

1.2.2 Stochastic Uncertainty: Where Do Probabilities Come From?
In the standard planning setting, it is simply assumed that the transition prob-
abilities of the MDP exist and are known. This assumption is, however, rather
strong in many applications. Probabilities may be estimated from data or derived
from subjective expert opinions, which naturally carries the risk of making inaccu-
rate estimates, especially when data is limited or flawed or different experts have
disagreeing opinions.

Literature distinguishes two types of uncertainty: aleatoric and epistemic un-
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Figure 1.6: An example RMDP adapted from the MDP in Figure 1.1. The uncertainty set at
each state-action pair of this RMDP is given by all valid probability distributions within the
intervals. Hence, all distributions of the form (p,1− p) with p ∈ [0.1,0.9].

certainty (Hüllermeier and Waegeman, 2021; Soize, 2017). Aleatoric uncertainty
is inherent to the system or environment being modeled, such as in board games
where a die is rolled or a networking protocol that uses coin flips to decide which
party goes first. While we know the probability distribution that is being drawn
from precisely, the outcome of the draw will always remain uncertain. Hence, the
stochastic uncertainty of (PO)MDPs in the transition (and observation) function is
inherently aleatoric.

On the other hand, epistemic uncertainty stems from a lack of knowledge and
may be reduced by incorporating further data. Such a lack of knowledge may, for
instance, come from insufficient data to reliably estimate a probability distribution.

Consider a straightforward estimation technique such as maximum likelihood
estimation (MLE). MLE neglects the amount of data used when computing the
estimate. For example, suppose we estimate the probability of observing heads after
a coin flip. If we flip the coin twice and observe heads once and tails once, the
MLE derives a probability of 1/2 for heads. If we flip the coin a thousand times, and
observe heads precisely five hundred times, the MLE probability would be the same,
i.e., 500/1000 = 1/2. Yet, intuitively, we have more confidence in the latter estimate
than in the former, as it is based on more data. We can formalize this intuition
by adding a confidence interval around the MLE estimate, for instance, through
probably approximately correct (PAC) learning (Valiant, 1984).

Such confidence intervals should ideally be taken into account by the model
describing a decision-making problem. Robust Markov decision processes (RMDPs;
Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann et al., 2013) allow for precisely
that. RMDPs extend standard MDPs with an uncertainty set that describes sets of
probability distributions for each state-action pair.

Intuitively, we may think of RMDPs as a set of MDPs that differ only in their
transition function. The agent now needs to make decisions that are robust against
all possible transition functions in this uncertainty set. Consequently, we obtain
a robustness guarantee on the resulting policy and its performance. Regardless of
which environment the resulting policy is deployed in, as long as that environment



1

6 1. Introduction

� �1

2 3 4

5

Figure 1.5: The grid navigation task from Figure 1.2, adapted with observations. The patterns
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all cells where the agent can only move vertically are indicated by blue vertical lines.

should move south until observing an intersection of type 2, 3, or 4. Knowing
we came from 1, this has to be intersection 2. From here, we move east until
we see an intersection again, which could be either 3 or 4 due to the stochastic
transition dynamics. From there, we move north until we reach the castle or
see an intersection, which has to be 5. In the latter case, we repeat the above
reasoning but are now mirrored.

As illustrated in Example 3, partial observability requires the agent to use mem-
ory. While the idea of using memory seems straightforward, it only presents us with
new problems: how much memory do we need, and what do we need to remember?
In general, optimal policies for POMDPs with infinite horizons require infinite
memory, rendering this problem undecidable (Madani et al., 2003). Nonetheless,
several successful approaches to approximate such infinite memory policies have
been proposed, most notably point-based value iteration techniques (Kurniawati
et al., 2008; Pineau et al., 2003; Spaan and Vlassis, 2005).

Finite memory can also make good approximations of the optimal policy (Bonet,
2002). Policies with finite memory can be concisely represented by automata known
as finite-state controllers (FSCs; Meuleau et al., 1999), and computed via policy
iteration (Poupart and Boutilier, 2003) or convex optimization techniques (Amato
et al., 2010; Junges et al., 2018). When small enough, FSCs can also be considered
more explainable than arbitrary finite-memory or belief-based policies (Bork et al.,
2024; Dujardin et al., 2017)

1.2.2 Stochastic Uncertainty: Where Do Probabilities Come From?
In the standard planning setting, it is simply assumed that the transition prob-
abilities of the MDP exist and are known. This assumption is, however, rather
strong in many applications. Probabilities may be estimated from data or derived
from subjective expert opinions, which naturally carries the risk of making inaccu-
rate estimates, especially when data is limited or flawed or different experts have
disagreeing opinions.

Literature distinguishes two types of uncertainty: aleatoric and epistemic un-
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certainty (Hüllermeier and Waegeman, 2021; Soize, 2017). Aleatoric uncertainty
is inherent to the system or environment being modeled, such as in board games
where a die is rolled or a networking protocol that uses coin flips to decide which
party goes first. While we know the probability distribution that is being drawn
from precisely, the outcome of the draw will always remain uncertain. Hence, the
stochastic uncertainty of (PO)MDPs in the transition (and observation) function is
inherently aleatoric.

On the other hand, epistemic uncertainty stems from a lack of knowledge and
may be reduced by incorporating further data. Such a lack of knowledge may, for
instance, come from insufficient data to reliably estimate a probability distribution.

Consider a straightforward estimation technique such as maximum likelihood
estimation (MLE). MLE neglects the amount of data used when computing the
estimate. For example, suppose we estimate the probability of observing heads after
a coin flip. If we flip the coin twice and observe heads once and tails once, the
MLE derives a probability of 1/2 for heads. If we flip the coin a thousand times, and
observe heads precisely five hundred times, the MLE probability would be the same,
i.e., 500/1000 = 1/2. Yet, intuitively, we have more confidence in the latter estimate
than in the former, as it is based on more data. We can formalize this intuition
by adding a confidence interval around the MLE estimate, for instance, through
probably approximately correct (PAC) learning (Valiant, 1984).

Such confidence intervals should ideally be taken into account by the model
describing a decision-making problem. Robust Markov decision processes (RMDPs;
Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann et al., 2013) allow for precisely
that. RMDPs extend standard MDPs with an uncertainty set that describes sets of
probability distributions for each state-action pair.

Intuitively, we may think of RMDPs as a set of MDPs that differ only in their
transition function. The agent now needs to make decisions that are robust against
all possible transition functions in this uncertainty set. Consequently, we obtain
a robustness guarantee on the resulting policy and its performance. Regardless of
which environment the resulting policy is deployed in, as long as that environment
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is contained within the uncertainty set of the RMDP, the performance is guaranteed
to be at least that of the policy in the worst-case environment.

Computing robust policies and their performance in RMDPs is more involved
than in MDPs, and depends on the structure of the uncertainty set. An uncertainty
set that satisfies an independence condition where it may be partitioned into inde-
pendent uncertainty sets per state-action pair is known as (s,a)-rectangular (Iyen-
gar, 2005). Uncertainty sets that partition into independent sets per state (and
thus with possible dependencies between different actions at a state) are called s-
rectangular (Wiesemann et al., 2013). When the uncertainty set is (s,a)-rectangular,
dynamic programming methods for MDPs, such as value and policy iteration, can be
extended to RMDPs in a straightforward manner (Iyengar, 2005; Nilim and Ghaoui,
2005). For s-rectangular RMDPs, solution methods are more tailor-made to specific
types of uncertainty set (Ho et al., 2018, 2021; Wiesemann et al., 2013).

RMDPs thus provide a strong formalization for robust decision-making under
uncertainty, provided that the uncertainty set is constructed in an appropriate way.
Besides planning problems where the probabilities may be inaccurate, RMDPs also
find a natural application in RL, which we shall discuss later in Section 1.4.1. .

Unfortunately, RMDPs are a relatively young formalization and, thus, to the
best of our knowledge, are not included in any standard textbooks in operations re-
search, formal methods, or AI. Furthermore, only one recent survey is available (Ou
and Bi, 2024) that discusses the state-of-the-art in RMDP literature and clearly tar-
gets an audience already familiar with RMDPs and robust dynamic programming.
Given that RMDPs are a natural extension of MDPs with many applications across
communities, the first research question treated in this thesis arises.

Research question 1

How can we make RMDP literature accessible to a wider audience with basic
familiarity with standard MDPs and dynamic programming?

1.3 Robust Planning Under Partial Observability
We discussed planning in MDPs, RMDPs, and POMDPs above. What about ro-
bust POMDPs? Indeed, as one would expect, robust POMDPs combine the model
uncertainty of RMDPs and the state uncertainty of POMDPs. Planning in robust
POMDPs, however, is still largely understudied. Osogami (2015) extends the value
iteration approaches for POMDPs to robust POMDPs, while Burns and Brock (2007)
propose a sampling-based method which is thus strictly speaking not robust.

Although the use of finite-memory policies through FSCs in POMDPs has been
extensively studied, they have not been considered for robust POMDPs yet. There-
fore, a natural direction to investigate is whether existing methods to compute FSCs
for POMDPs can be made robust or whether a more dedicated approach is needed
for robust POMDPs. This leads us to the second research question of this thesis.

1.4. Robust and Reliable Reinforcement Learning
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Research question 2

How to efficiently plan with finite-state controllers in robust POMDPs?

1.4 Robust and Reliable Reinforcement Learning
As introduced in Section 1.1.1, RL has shown great promise in solving compli-
cated decision-making problems where a model of the environment is not readily
available. Yet, RL faces several challenges when dealing with real-world prob-
lems. Dulac-Arnold et al. (2021) identify nine of such challenges, out of which the
following two concern the robustness and reliability of RL.

i. Interacting with environments that are partially observable or non-stationary.

ii. Training offline on fixed datasets of past interactions of a behavior policy.

The first challenge concerns robustness against two sources of uncertainty:
partial observability and changing environments. Both present the agent with a
lack of information. Under partial observability, the observations are generally
insufficient to determine transition probabilities, as different states may have the
same observations and are thus lumped together in the data. A similar problem
appears when the underlying environment is non-stationary and changes. Even
when these environments are fully observable, data from one environment may get
mixed up with data from another environment, again lumping together data from
two different probability distributions.

The second challenge also concerns robustness but of a different kind. Offline
datasets are inherently finite and, very likely, too small to provide sufficient data to
reliably estimate the probability distributions throughout the environment. Thus,
offline RL needs to be robust against the epistemic uncertainty stemming from a
lack of data in an attempt to provide reliable results.

We now consider each of these two challenges and the specific research questions
addressed in this thesis that arise from them in more detail.

1.4.1 Robustness in Reinforcement Learning
Robust RL is an umbrella term for any RL method that deals with robustness to
uncertainty, disturbances, or (structural) changes in the environment (Moos et al.,
2022). RMDPs form the backbone of (model-based) robust RL as they naturally
capture uncertainty about the transition probabilities. The worst-case policy of an
RMDP is robust against any uncertainty captured by the uncertainty set. Hence,
a fundamental problem is how to construct uncertainty sets that are conservative
enough to ensure robustness.

Probably approximately correct (PAC) learning is commonly used to construct
such uncertainty sets. An interval around a probability estimated from data is PAC
if, with high confidence, the actual probability lies within the interval. Such an
interval can be computed via concentration inequalities such as Hoeffding’s inequal-
ity (Hoeffding, 1963). Similarly, one can construct a set of probability distributions
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is contained within the uncertainty set of the RMDP, the performance is guaranteed
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Research question 2
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around an estimated distribution that is PAC using Weissman’s bound (Weissman
et al., 2003). PAC learning techniques have been used extensively in the formal
methods community in statistical model checking (Agha and Palmskog, 2018; Ashok
et al., 2019), and in the AI community in RL (Jaksch et al., 2010; Strehl and Littman,
2008; Strehl et al., 2006, 2009).

A fundamental drawback of PAC learning methods is, however, that they re-
quire samples to be independent and identically distributed (i.i.d.). To ensure the i.i.d.
requirement, it is natural to assume the underlying environment the samples are
drawn from is stationary. When the environment is not stationary, sliding window
approaches (i.e., forgetting old data after some time) are employed (Cheung et al.,
2020; Gajane et al., 2018; McCallum, 1995). These methods are, however, typically
used in combination with optimism, i.e., best-case policies to ensure efficient explo-
ration, instead of robustness. Altogether, these observations lead us to the next
research question of this thesis.

Research question 3

How to make model-based RL more robust against changing environments?

1.4.2 Reliable Offline Reinforcement Learning
We now turn to the second challenge we listed for RL. The standard RL paradigm
assumes some form of sampling access to collect data about the environment.
In many applications, such access cannot be provided or granted. In real-world
applications such as robotics or healthcare, direct interaction can be impractical
or dangerous (Levine et al., 2020). Other examples include predictive mainte-
nance (Andriotis and Papakonstantinou, 2021), where data is collected under the
current maintenance plan, which may be impractical to change for to sole purpose
of additional data collection, or conservation of endangered species (Chadès et al.,
2012), and management of invasive species (Chadès et al., 2011), both instances
of decision-making problems where interventions in the environment are costly
as they may upset a delicate balance and hence, online exploration is out of the
question. Furthermore, alternatives such as simulators or digital twins may not
be available or insufficiently capture the nuances of the real-world application for
reliable learning (Ramakrishnan et al., 2020; Zhao et al., 2020).

Offline RL, also known as batch RL (Lange et al., 2012), mitigates these concerns
by allowing the agent only access to a fixed dataset of past interactions generated
by a so-called behavior policy. Offline RL algorithms compute a new policy without
further interactions with the environment (Levine et al., 2020). Methods that can
reliably improve the performance of a policy are key in (offline) RL.

Safe policy improvement (SPI) is a specific offline RL problem that concerns the
computation of a new policy that outperforms the behavior policy with a reliability
guarantee. This reliability guarantee comes in a PAC-style that states that the
improved policy produced by an SPI algorithm outperforms the behavior policy
with high probability and up to some admissible performance loss. To provide this
reliability guarantee, most SPI methods assume the environment and dataset are
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fully observable, i.e., modeled by an MDP (Laroche et al., 2019; Petrik et al., 2016).
The restriction to fully observable environments poses a serious limitation on

the applicability of SPI, as most real-world problems are partially observable due
to, for instance, noisy sensors (Kochenderfer, 2015). As such, having SPI methods
work with partially observable datasets obtained from POMDPs would significantly
expand their applicability. So far, SPI for POMDPs was only studied for memoryless
policies (Thomas et al., 2015; Yeager et al., 2022). However, POMDP policies
often require a notion of memory and are then typically represented by finite-state
controllers. As such, the first key challenge to employing SPI in practical settings is
to develop an SPI algorithm that can work with finite-memory policies and partially
observable datasets. We summarize this first challenge for SPI in the following
research question.

Research question 4

How to do safe policy improvement on finite-memory policies with partially
observable datasets?

The reliability guarantees provided by SPI algorithms depend on the size of
the dataset and usually adhere to a conservative bound on the minimal amount
of samples required. Since this bound often turns out to be too large for practical
applications of SPI, it is instead turned into a hyperparameter (see, e.g., Laroche
et al., 2019). As the offline nature of SPI prevents further data collection, the second
key challenge to employing SPI in practical settings is to exploit the dataset as
efficiently as possible and thus compute improved policies from smaller datasets.
Previous work shows that exploiting underlying structures in the environment
through a factorized state space (Simão and Spaan, 2019a) and structure learning
methods (Simão and Spaan, 2019b). We summarize this second challenge for SPI in
the following research question.

Research question 5

How to exploit the dataset as efficiently as possible in safe policy improvement?

1.5 Contributions and Structure of the Thesis
The contributions of this thesis aim to provide technical solutions to the research
questions posed above. All our methods are inherently model-based. Model-based
reasoning allows us, for instance, to exactly evaluate the performance of a pol-
icy, derive formal guarantees on, e.g., the correctness of a learned model or the
improvement of a learned policy.

We now introduce each of the contributions presented in this thesis and its
structure. In Chapter 2, we start with a general background. In particular, we cover
MDPs and their semantics, dynamic programming, and the extension to POMDPs.
The chapters that follow present the technical contributions of this thesis.
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1.5.1 A Tutorial on Robust Markov Decision Processes
Chapter 3 is dedicated to robust MDPs (RMDPs). The chapter is structured as a
short survey, starting with a tutorial in which we introduce the general model of
RMDPs, discuss their semantics and structural assumptions such as rectangularity,
and show how dynamic programming can be extended to robust dynamic program-
ming. We then discuss some commonly used instances of RMDPs, such as interval
MDPs (IMDPs), L1-MDPs, and multi-environment MDPs (MEMDPs). Applications
of RMDPs, especially in the context of reinforcement learning, are discussed in
subsequent chapters.

To the best of our knowledge, there is only one survey on RMDPs available (Ou
and Bi, 2024), which targets an audience already familiar with most concepts and
notations used in the RMDP literature. In contrast, our overview is meant to be ac-
cessible to readers with a basic understanding of MDPs and dynamic programming
(as introduced in Chapter 2). As such, Chapter 3 constitutes the first contribution
of this thesis towards Research question 1.

Contribution 1

We present a tutorial on RMDPs and robust dynamic programming.

Chapter origins. Chapters 2 and 3 are partly based on joint work with Thom
Badings, Eline M. Bovy, David Parker, and Nils Jansen that was published in (Suilen
et al., 2024a). The author was the main person responsible for the contents used in
these two chapters.

1.5.2 Finite-Memory Policies for Robust POMDPs
In Chapter 4, we study planning in robust POMDPs. We develop two novel al-
gorithms based on convex optimizations for planning in (s,a)-rectangular robust
POMDPs with interval uncertainty. In contrast to existing literature, we do not
consider belief-based policies but finite-memory policies represented by FSCs. Both
algorithms start with a robust nonlinear optimization problem that is then itera-
tively either convexified into a robust convex qudratically constrained quadratic
program (QCQP), or linearized into a robust linear program (LP). We then apply
standard techniques from robust optimization to these robust convex optimization
problems to derive finite convex optimization problems. These iterative algorithms
improve over previous solutions until a local optimum is attained, at which point
the robust FSC and its performance can be extracted. In our experimental evalua-
tion, we compare both algorithms and highlight their scalability. Thus, our second
contribution towards Research question 2 can be formulated as follows.

Contribution 2

We present novel algorithms based on convex optimization to compute finite-
memory policies for robust POMDPs.
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Chapter origins. This chapter is based on two papers. The first was published
at IJCAI 2020 (Suilen et al., 2020) and is joint work with Murat Cubuktepe, Nils
Jansen, and Ufuk Topcu. The second paper was published at AAAI 2021 (Cubuk-
tepe et al., 2021) and is joint work with Murat Cubuktepe, Nils Jansen, Sebastian
Junges, Ahmadreza Marandi, and Ufuk Topcu. The author was responsible for
co-developing the theory, implementation, empirical evaluation, and writing both
papers. For this chapter, the contents of the two papers have been merged into a
continuous story and include some minor extensions to the theory and a completely
revised empirical evaluation.

1.5.3 Robust Anytime Learning of Markov Decision Processes
In Chapter 5, we consider a robust RL setting where the underlying environment
may change over time. Our goal is to learn an RMDP that is adaptable to such
changes. To that end, we use linearly updating intervals (Walter and Augustin,
2009), a Bayesian approach to updating probability intervals in the presence of
new, possibly inconsistent, data. We integrate these linearly updating intervals into
a robust RL loop that learns an IMDP. Together with a sliding window approach
that discards old data and integrates with robust dynamic programming, we can
learn robust policies that are conservative and adaptable when the underlying
environment changes. We show the applicability of our approach in an experimental
evaluation that also compares to other learning methods. We also perform an
ablation that shows the need for both the linearly updating intervals and the sliding
window to deliver the robustness and adaptability of our approach. Hence, our
third contribution is towards Research question 3.

Contribution 3

We present a new approach to robust reinforcement learning in MDPs where
the underlying environment may change over time.

Chapter origins. This chapter is based on joint work with Thiago D. Simão, David
Parker, and Nils Jansen that was published at NeurIPS 2022 (Suilen et al., 2022). The
author was the main person responsible for developing the theory, implementation
and empirical evaluation, and writing the paper. For this chapter, parts of the
original paper have been rewritten and extended with additional material.

1.5.4 Extending the Scope of Offline RL
Chapter 6 presents our final two contributions to the offline reinforcement learning
problem of safe policy improvement. Together, these two contributions extend the
scope of SPI algorithms.

For our first contribution to SPI, we extend SPI algorithms, such as safe policy
improvement with baseline bootstrapping (SPIBB; Laroche et al., 2019), to partially
observable environments. The dataset now consists of observations, actions, and
rewards stemming from a POMDP that we assume to be k-Markovian (Brafman
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and Giacomo, 2024; Kaelbling et al., 1996). We show that under this assumption,
the improvement guarantee of SPIBB still holds. Our experimental evaluation
also shows that this approach is relevant and promising in environments that do
not satisfy the assumption. In summary, this contribution is towards Research
question 4 and can be formulated as follows.

Contribution 4

We extend SPIBB to compute finite-memory policies from datasets collected in
partially observable environments.

In our second contribution to the SPI problem, we introduce a novel approach
that significantly reduces the amount of data required to establish the same im-
provement guarantee within the SPIBB algorithm, thus making the most out of the
available data. We devise a new transformation for the underlying MDP model and
the dataset collected from it that limits its branching factor. This transformation
expands the state space of the underlying MDP but allows us to exploit the fixed
branching factor when computing the improvement guarantee. This last technical
contribution of this thesis is thus towards Research question 5.

Contribution 5

We present new techniques that provide stronger improvement guarantees
given the same amount of data in SPI algorithms such as SPIBB.

Chapter origins. This chapter is based on two papers. The first was published at
AAAI 2023 (Simão et al., 2023) and is joint work with Thiago D. Simão and Nils
Jansen. The author contributed to the theory, implementation and empirical evalu-
ation, and the writing. The second paper was published at IJCAI 2023 (Wienhöft
et al., 2023) and is joint work with Patrick Wienhöft, Clemens Dubslaff, Thiago D.
Simão, Christel Baier, and Nils Jansen. The author contributed to the implementa-
tion and empirical evaluation, the writing, and parts of the theory. For this chapter,
the contents of the two papers have been merged into a continuous story, and some
minor extensions of the theory have been included.

1.5.5 Other Peer-Reviewed Publications
We briefly summarize the other peer-reviewed publications the author contributed
to that are not included in this thesis.

Balancing Wind and Batteries: Towards Predictive Verification of Smart Grids
(Badings et al., 2021). This paper studies balancing demand and wind power
availability in a smart grid with batteries. Classical day-ahead planning for this
problem relies on weather forecasts to predict future wind power. As the actual
wind conditions often deviate from forecasts, short-term flexibility in storage and
generation is used to fill potential gaps. Where previous approaches rely on sam-
pling, our method employs more rigorous probabilistic verification techniques
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by formalizing the problem as a continuous-space Markov decision process with
discrete controls. To mitigate state space explosion, we exploit specific structural
properties of the model to implement an iterative exploration method that reuses
pre-computed values as wind data is updated.

Decision-MakingUnderUncertainty: Beyond Probabilities (Badings et al., 2023c).
This position paper provides an overview of the state-of-the-art in decision-making
under uncertainty, with a specific focus on aleatoric and epistemic uncertainty. The
paper presents a short review of Markov decision processes (MDPs) and extensions
to account for partial observability (POMDPs), adversarial behavior, and models
that exhibit uncertainty in a more robust interpretation, i.e., RMDPs. We discuss
several solution techniques for discrete and continuous models, ranging from for-
mal verification over control-based abstractions to reinforcement learning. Finally,
we list and discuss several key challenges that arise when dealing with rich types of
uncertainty in a model-based fashion.

Imprecise Probabilities Meet Partial Observability: Game Semantics for Robust
POMDPs (Bovy et al., 2024). This paper studies robust POMDPs (RPOMDPs) and
their semantics. In particular, we establish that the notions of static and dynamic
uncertainty semantics of robust MDPs do not coincide on RPOMDPs and are the
two extremes of an entire spectrum. We define an explicit transformation from
RPOMDP to partially observable stochastic game (POSG) and show that for different
uncertainty semantics, the transformation yields semantically different POSGs.
Consequently, the uncertainty semantics do not coincide, and different semantics
may have different optimal policies and values.

A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment
MDP (Suilen et al., 2024b). This paper presents an algorithm to decide almost-
sure Rabin objectives in multi-environment Markov decision processes (MEMDPs).
We show that in MEMDPs, belief-support-based strategies are sufficient for these
objectives, in contrast to general POMDPs. We use this observation to develop a
recursive algorithm that operates in PSPACE to decide whether there exists a policy
that can satisfy the almost-sure Rabin objective in the MEMDP. This paper received
the best paper award at CONCUR 2024.
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given the same amount of data in SPI algorithms such as SPIBB.

Chapter origins. This chapter is based on two papers. The first was published at
AAAI 2023 (Simão et al., 2023) and is joint work with Thiago D. Simão and Nils
Jansen. The author contributed to the theory, implementation and empirical evalu-
ation, and the writing. The second paper was published at IJCAI 2023 (Wienhöft
et al., 2023) and is joint work with Patrick Wienhöft, Clemens Dubslaff, Thiago D.
Simão, Christel Baier, and Nils Jansen. The author contributed to the implementa-
tion and empirical evaluation, the writing, and parts of the theory. For this chapter,
the contents of the two papers have been merged into a continuous story, and some
minor extensions of the theory have been included.

1.5.5 Other Peer-Reviewed Publications
We briefly summarize the other peer-reviewed publications the author contributed
to that are not included in this thesis.

Balancing Wind and Batteries: Towards Predictive Verification of Smart Grids
(Badings et al., 2021). This paper studies balancing demand and wind power
availability in a smart grid with batteries. Classical day-ahead planning for this
problem relies on weather forecasts to predict future wind power. As the actual
wind conditions often deviate from forecasts, short-term flexibility in storage and
generation is used to fill potential gaps. Where previous approaches rely on sam-
pling, our method employs more rigorous probabilistic verification techniques
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by formalizing the problem as a continuous-space Markov decision process with
discrete controls. To mitigate state space explosion, we exploit specific structural
properties of the model to implement an iterative exploration method that reuses
pre-computed values as wind data is updated.

Decision-MakingUnderUncertainty: Beyond Probabilities (Badings et al., 2023c).
This position paper provides an overview of the state-of-the-art in decision-making
under uncertainty, with a specific focus on aleatoric and epistemic uncertainty. The
paper presents a short review of Markov decision processes (MDPs) and extensions
to account for partial observability (POMDPs), adversarial behavior, and models
that exhibit uncertainty in a more robust interpretation, i.e., RMDPs. We discuss
several solution techniques for discrete and continuous models, ranging from for-
mal verification over control-based abstractions to reinforcement learning. Finally,
we list and discuss several key challenges that arise when dealing with rich types of
uncertainty in a model-based fashion.

Imprecise Probabilities Meet Partial Observability: Game Semantics for Robust
POMDPs (Bovy et al., 2024). This paper studies robust POMDPs (RPOMDPs) and
their semantics. In particular, we establish that the notions of static and dynamic
uncertainty semantics of robust MDPs do not coincide on RPOMDPs and are the
two extremes of an entire spectrum. We define an explicit transformation from
RPOMDP to partially observable stochastic game (POSG) and show that for different
uncertainty semantics, the transformation yields semantically different POSGs.
Consequently, the uncertainty semantics do not coincide, and different semantics
may have different optimal policies and values.

A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment
MDP (Suilen et al., 2024b). This paper presents an algorithm to decide almost-
sure Rabin objectives in multi-environment Markov decision processes (MEMDPs).
We show that in MEMDPs, belief-support-based strategies are sufficient for these
objectives, in contrast to general POMDPs. We use this observation to develop a
recursive algorithm that operates in PSPACE to decide whether there exists a policy
that can satisfy the almost-sure Rabin objective in the MEMDP. This paper received
the best paper award at CONCUR 2024.
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Decision-Making Under

Uncertainty: Foundations

In this chapter, we provide the necessary definitions and background knowledge for
the results presented in this dissertation. We introduce Markov decision processes
(MDPs), the objectives we consider in this thesis, and how dynamic programming is
used to find optimal policies for these objectives in MDPs. Next, we introduce par-
tially observable MDPs (POMDPs). Robust MDPs and robust dynamic programming
are given a dedicated treatment in Chapter 3.

Basic notations. For a set X, we denote its cardinality by |X | and X∗ denotes the set
of all (in)finite sequences over X. The concatenation of two sequences ω,ω′ ∈ X∗ is
written as ω : ω′ . A discrete probability distribution over a finite set X is a function
µ : X → [0,1] such that

∑
x∈X = 1. The set of all discrete probability distributions

over X is denoted by D(X). A distribution µ ∈ D(X) is Dirac when there exists
precisely one element x ∈ X with µ(x) = 1. We write N and R for the standard sets
of natural and real numbers, and R≥0 for the non-negative reals. Partial functions
are denoted f : X ⇀ Y , and we write ⊥ to denote undefined. We write [m : n] for
the set of natural numbers {m,. . . ,n} ⊂N, and 1[x=x′] for the indicator function,
returning 1 if x = x′ and 0 otherwise.

2.1 Markov Decision Processes
We define Markov decision processes (MDPs) and their semantics.

Definition 2.1 (MDP). A Markov decision process (MDP) is a tuple of the form
⟨S,sι,A,P,R⟩, where S is a finite set of states with sι ∈ S the initial state, A is a
finite set of actions, P : S ×A ⇀ D(S) is the probabilistic transition function, and
R : S ×A⇀ R≥0 is the (non-negative) reward function.
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Figure 2.1: An example of an MDP, as also shown in Chapter 1. The states are {s0, s1, s2}, the
actions are {a1, a2}, and the transition probabilities are given by the graph. In state s2 only
action a1 is enabled.

We use partial functions for the transition and reward functions to allow for
enabled actions. An action is enabled if P(s,a) is defined. We write A(s) ⊆ A for
the set of enabled actions at state s. An example MDP is shown in Figure 2.1.
We require that the transition and reward function are consistent with each other,
that is, P(s,a) = ⊥ ⇐⇒ R(s,a) = ⊥. For convenience, we write P(s′ |s,a) for the
probability P(s,a)(s′). This notation extends to other functions.

For each state-action pair, we define the set of successor states as PostM (s,a) =
{s′ ∈ S | P(s′ |s,a) > 0}. A path in an MDP is an (in)finite sequence of successive
states and actions: ω = ⟨s0, a0, s1, . . .⟩ ∈ (S ×A)∗ × S where s0 = sι and ∀i ∈N : si+1 ∈
PostM (si ,ai ). A path is finite if the sequence is finite, ω = ⟨s0, a0, . . . , sk⟩, for which
we write last(ω) = sk for the last state. The set of all paths in MDP M is denoted as
PathsM . When clear from the context, we may omit M and simply write Post(s,a) or
Paths. The sequence of states in a path ω = ⟨s0, a0, s1, . . .⟩ is states(ω) = ⟨s0, s1, . . .⟩.

A discrete-time Markov chain (DTMC) is an MDP with only one enabled action in
each state: ∀s ∈ S : |A(s)| = 1. For DTMCs, we omit the actions altogether from the
tuple and write ⟨S,sι,P,R⟩, where the transition function is equivalent to the total
function P : S →D(S), and the reward function is R : S → R. A policy (also called
scheduler or strategy) is a function that maps paths to distributions over actions
π : Paths→D(A). Such policies are called history-based and randomized. The set of
all policies is denoted by Π.

A policy is a finite-memory policy if it only requires finite paths. More precisely,
finite-memory policies can be encoded by a (finite) automaton known as a finite-state
controller (FSC).

Definition 2.2 (FSC). A finite state controller (FSC) for an MDPM = ⟨S,sι,A,P,R⟩ is a
tuple ⟨N ,nι,α,η⟩, whereN is a finite set of memory nodes, nι ∈ N is the initial node,
α : N × S →D(A) is the action mapping, and η : N × S ×A→D(N ) is the memory
update function.

A policy is deterministic if it only maps to Dirac distributions over actions and
memoryless (also called stationary) if it only considers finite paths of length one,

2.1. Markov Decision Processes
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i.e., it can be represented by an FSC with only a single memory node. Stationary
deterministic policies are written as π : S→ A.

Given a policy π for an MDP M , the action choices in M are resolved, resulting
in a DTMC. For arbitrary policies π : Paths→ D(A), we construct the following
infinite state DTMC.

Definition 2.3 (Induced DTMC). LetM = ⟨S,sι,A,P,R⟩ be an MDP and π : Paths→
D(A) a policy. The induced DTMC is defined as Mπ = ⟨S∗, sι,Pπ,Rπ⟩, where S∗ is the
(infinite) set of states, sι is the initial state, and the transition and reward functions
are defined as

Pπ(states(ω),states(ω) : s′) =
∑

a∈A
π(a |ω) ·P(s′ | last(ω), a),

Rπ(states(ω)) =
∑

a∈A
π(a |ω) ·R(last(ω), a),

where ω ∈ Paths and states(ω) : s′ denotes concatenation of states(ω) with s′ .

The induced DTMC Mπ has a unique probability measure PMπ
by the standard

cylinder set construction (Baier and Katoen, 2008; Fijalkow et al., 2023).
When the policy π is finite-memory and represented by an FSC, we can simplify

the definition of the induced DTMC to the following product construction.

Definition 2.4 (Induced DTMC of an FSC). Let M = ⟨S,sι,A,P,R⟩ be an MDP and
F = ⟨N ,nι,α,η⟩ be an FSC representing the policy π. The induced DTMC is defined
as MF = ⟨S ×N ,⟨sι,nι⟩ ,PF ,RF ⟩, where the states are given by the product of MDP
states S and FSC nodesN , the initial state is ⟨sι,nι⟩, and the transition and reward
functions are defined as

PF (⟨s′ ,n′⟩ | ⟨s,n⟩) =
∑

a∈A
α(a |n,s) ·P(s′ |s,a) · η(n′ |n,s,a),

RF (⟨s,n⟩) =
∑

a∈A
α(a |n,s) ·R(s,a).

Throughout this thesis, we will assume that finite-memory policies are implicitly
encoded as FSCs, and we write Mπ for the induced DTMC MF when the FSC F
encodes policy π.

2.1.1 Objectives
Objectives specify the goal of the decision-making problem. In general, we are
interested in computing some value V and an associated (optimal) policy π that
achieves this value.

Definition 2.5 (Objectives). We consider four objectives in this thesis: reachability,
discounted reward, and cumulative reward (or cost) until reaching a target, which we
shall refer to as reach-reward and stochastic shortest path, respectively. The semantics
of these objectives follow those of (standard) temporal logic over paths in MDPs (see,
e.g., Baier and Katoen, 2008; Kwiatkowska et al., 2007).
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Throughout this thesis, we will assume that finite-memory policies are implicitly
encoded as FSCs, and we write Mπ for the induced DTMC MF when the FSC F
encodes policy π.

2.1.1 Objectives
Objectives specify the goal of the decision-making problem. In general, we are
interested in computing some value V and an associated (optimal) policy π that
achieves this value.

Definition 2.5 (Objectives). We consider four objectives in this thesis: reachability,
discounted reward, and cumulative reward (or cost) until reaching a target, which we
shall refer to as reach-reward and stochastic shortest path, respectively. The semantics
of these objectives follow those of (standard) temporal logic over paths in MDPs (see,
e.g., Baier and Katoen, 2008; Kwiatkowska et al., 2007).
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Reachability. The reachability objective is to optimize the probability of reaching a
target set T ⊆ S :

PMax(♦T ) = max
π∈Π

Pπ [ω ∈ PathsM | ω |= ♦T ] .

Discounted Reward. The discounted reward objective is to optimize the discounted
sum of expected rewards for some discount factor γ ∈ (0,1):

RMax(γ) = max
π∈Π

Eπ


∞

t=0

γtR(st ,at) | s0 = sι

 ,

where st and at are the state and action at step t along a path ω ∈ PathsM (sι).

Reach-Reward. Let ω ∈ PathsM , the cumulative reward along ω is defined as

r(♦T )(ω) =


∞ ∀t ∈N : st � T ,min{t | st∈T }−1

t=0 R(st ,at) otherwise.

The reach-reward objective is to optimize the cumulative reward until reaching
a target set T ⊆ S :

RMax(♦T ) = max
π∈Π

Eπ [r(♦T )] .

Stochastic Shortest Path. Let r(♦T )(ω) again denote the cumulative reward along
a path ω. The stochastic shortest path objective is the minimizing dual of
reach-reward and defined as

RMin(♦T ) = min
π∈Π

Eπ [r(♦T )] .

The set of these objectives is denoted by

Φ = {PMax(♦T ),RMax(♦T ),RMin(♦T ),RMax(γ)}.

Naturally, the optimization direction of the reachability and discounted reward
objectives may also be reversed to instead minimize. Besides optimizing, one may
also consider the satisfaction of some threshold. Instead of maximizing or minimiz-
ing, we simply seek a policy that ensures that the probability or reward surpasses
some threshold. Standard approaches optimize the objective and then check the
found optimum against that threshold (Forejt et al., 2011). For MDPs, it is well-
known that for all of the objectives ϕ ∈ Φ, memoryless deterministic policies are
sufficient to be optimal (Forejt et al., 2011; Puterman, 1994).

2.2 Classical Dynamic Programming
We now review dynamic programming, the technique at the core of solving MDPs via
an algorithm called value iteration.

2.2. Classical Dynamic Programming
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2.2.1 Value Iteration
We define state and state-action value functions V : S → R and Q : S × A → R,
respectively. Dynamic programming updates these value functions iteratively until
the least fixed point is reached, at which point the value functions represent the
best possible (i.e., optimal) value achievable for the given objective.

We now present value iteration for the reach-reward objective RMax(♦T ) and
discuss the adjustments necessary for the other objectives ϕ ∈Φ afterward.

We preprocess the set of states S based on graph properties via the following
standard procedure (Baier and Katoen, 2008) and PRISM-semantics for reward
objectives (Forejt et al., 2011; Kwiatkowska et al., 2007). Let T ⊆ S be the target set
of our objective, let S∞ ⊆ S be the set of states for which there exists a policy that
does not reach T almost-surely, and denote the remaining states by S? = S \ (T ∪S∞).
For all a ∈ A and target states s ∈ T , let Q(s,a) = 0. Similarly, for all a ∈ A and s ∈ S∞,
let Q(s,a) =∞. For all other states s ∈ S? and a ∈ A, we initialize the state-action
values as Q(s,a) = 0. We iteratively update the state and state-action values for all
(s,a) ∈ S? ×A by:

V (n)(s) = max
a∈A

Q(n)(s,a), Q(n+1)(s,a) = R(s,a) +


s′∈S
P(s′ |s,a)V (n)(s′).

This process is also known as value iteration. When doing value iteration, we do not
need to keep track of the state-action values Q explicitly but instead can directly
compute the state-values V by setting V (s) = 0 for all s ∈ T , for all s ∈ S∞, V (s) =∞,
and for all s ∈ S? we iteratively compute:

V (n+1)(s) = max
a∈A

R(s,a) +


s′∈S
P(s′ |s,a)V (n)(s′)

 , (2.1)

The optimal value function V ∗ is the unique least fixed point of the Bellman equation
in Equation 2.1.

For many objectives in MDPs, such as reach-reward maximization, optimal
policies are stationary and deterministic, i.e., of type π : S → A (Puterman, 1994).
An optimal stationary deterministic policy π∗ that achieves valueV ∗ can be extracted
by performing the following one-step dynamic programming procedure:

π∗(s) = argmax
a∈A

R(s,a) +


s′∈S
P(s′ |s,a)V ∗(s′)

 .

2.2.2 Policy Evaluation
Policy evaluation is the process of computing the value of an MDP for a given policy.
In the formal methods community, this process is also known as verifying or model
checking the induced Markov chain from Definition 2.3 (Baier and Katoen, 2008).
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values as Q(s,a) = 0. We iteratively update the state and state-action values for all
(s,a) ∈ S? ×A by:

V (n)(s) = max
a∈A

Q(n)(s,a), Q(n+1)(s,a) = R(s,a) +


s′∈S
P(s′ |s,a)V (n)(s′).

This process is also known as value iteration. When doing value iteration, we do not
need to keep track of the state-action values Q explicitly but instead can directly
compute the state-values V by setting V (s) = 0 for all s ∈ T , for all s ∈ S∞, V (s) =∞,
and for all s ∈ S? we iteratively compute:

V (n+1)(s) = max
a∈A

R(s,a) +


s′∈S
P(s′ |s,a)V (n)(s′)

 , (2.1)

The optimal value function V ∗ is the unique least fixed point of the Bellman equation
in Equation 2.1.

For many objectives in MDPs, such as reach-reward maximization, optimal
policies are stationary and deterministic, i.e., of type π : S → A (Puterman, 1994).
An optimal stationary deterministic policy π∗ that achieves valueV ∗ can be extracted
by performing the following one-step dynamic programming procedure:

π∗(s) = argmax
a∈A

R(s,a) +


s′∈S
P(s′ |s,a)V ∗(s′)

 .

2.2.2 Policy Evaluation
Policy evaluation is the process of computing the value of an MDP for a given policy.
In the formal methods community, this process is also known as verifying or model
checking the induced Markov chain from Definition 2.3 (Baier and Katoen, 2008).



2

22 2. Decision-Making Under Uncertainty: Foundations

Definition 2.6 (Policy evaluation). The value of a memoryless policy π : S→D(A)
is computed by the following Bellman equation:

V
(n+1)
π (s) =



a∈A
π(a |s) ·

R(s,a) +


s′∈S
P(s′ |s,a)V (n)

π (s′)

 .

Alternatively, we may explicitly construct the induced DTMC ⟨S,sι,Pπ,Rπ⟩ from
Definition 2.3, whose set of states coincides with that of the MDP (and is thus finite)
as the policy π is memoryless.

The performance or expected return of the policy π is defined as its value in the
initial state ρ = V ∗π(sι). Sometimes, we evaluate multiple (different) policies on an
MDP or evaluate a single policy on multiple MDPs. To that end, we may incorporate
these elements into the notation and write ρ(π,M,ϕ) for the performance of the
policy π on the MDP M for objective ϕ, defined as:

ρ(π,M,ϕ) = Vπ,M,ϕ(sι).

When clear from the context, we may omit any of the symbols for the policy, MDP,
or objective.

2.2.3 Policy Iteration
As an alternative to value iteration, MDPs can also be solved through policy iteration.
Policy iteration consists of two alternating steps: the previously discussed policy
evaluation and policy improvement.

After evaluating the current policy π and determining its value function V ∗π,
the policy improvement step looks for a new policy π′ that outperforms the current
policy as follows. First, compute the state-action values under π as

Qπ(s,a) = R(s,a) +


s′
P(s′ |s,a)V ∗π(s′), ∀s ∈ S, a ∈ A(s).

The new policy π′ is extracted as π′(s) = argmaxa∈AQπ(s,a) for all s ∈ S and has a
value at least as good as the previous policy, i.e., V ∗π′ ≥ V ∗π. This process starts with
any initial policy and terminates as soon as the policy does not change anymore:
π′ = π, after which π is guaranteed to be optimal.

Variations and Modifications Towards Other Objectives
Several variations to value iteration have been introduced to resolve issues with accu-
racy and convergence. Most notably, there are bounded value iteration (Brázdil et al.,
2014; Haddad and Monmege, 2014), interval iteration (Baier et al., 2017) optimistic
value iteration (Hartmanns and Kaminski, 2020) and sound value iteration (Quat-
mann and Katoen, 2018). An extensive experimental evaluation comparing several
methods for solving MDPs can be found in (Hartmanns et al., 2023).

Many other objectives, such as reachability and discounted reward, can be
solved by straightforward modifications to the Bellman equation. For maximizing
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the reachability probability of a target set T ⊆ S , the reward function is removed
and the preprocessing step is changed to set Q(s,a) = 1 for all (s,a) ∈ T ×A, and
Q(s,a) = 0 for all (s,a) ∈ S∞×A. For discounted reward, the preprocessing is removed
altogether, and all state-action pairs are initialized with Q(s,a) = 0. The Bellman
equation from Equation 2.1 is modified for both cases, respectively:

Q(n+1)(s,a) =
∑

s′∈S
P(s′ |s,a)V (n)(s′), (reachability)

Q(n+1)(s,a) = R(s,a) +γ
∑

s′∈S
P(s′ |s,a)V (n)(s′). (discounted reward)

These modifications can also be directly applied to the state-value function V
from Equation 2.1. For stochastic shortest path, we simply need to replace the
maximization in the equations for reach-reward by minimization.

2.2.4 Linear Programming
As an alternative to dynamic programming, many objectives for MDPs can also be
naturally encoded as a linear optimization problem (LP). These LPs can be solved
in polynomial time for many objectives, including the ones we consider (Baier and
Katoen, 2008).

We now present the LP formulation for the reach-reward objective, and discuss
the adjustments necessary afterward. The LP formulation uses the same prepro-
cessing step as value iteration. Let {vs ∈ R | s ∈ S?} be a set of variables for the state
values. The LP for maximizing reach-reward is then given by

Minimize vsι
Subject to

∀s ∈ T : vs = 0,

∀s ∈ S?, a ∈ A(s) : vs ≥ R(s,a) +
∑

s′∈S
P(s′ |s,a) · vs′ .

Indeed, the LP optimization direction is opposite of the objective, i.e., maximizing
objectives are encoded by a minimizing LP. After solving the LP, the variable
assignments give the state values: ∀s ∈ S? : V ∗(s) = vs.

The LP for the stochastic shortest path objective is the opposite, i.e., the LP be-
comes a maximization problem, and the state value variables vs are now constrained
from above:

Maximize vsι
Subject to

∀s ∈ T : vs = 0,

∀s ∈ S?, a ∈ A(s) : vs ≤ R(s,a) +
∑

s′∈S
P(s′ |s,a) · vs′ .

For reachability objectives we omit the reward function from the encoding, while
for discounted reward we omit the preprocessing step and remove the target set T .



2

22 2. Decision-Making Under Uncertainty: Foundations

Definition 2.6 (Policy evaluation). The value of a memoryless policy π : S→D(A)
is computed by the following Bellman equation:

V
(n+1)
π (s) =



a∈A
π(a |s) ·

R(s,a) +


s′∈S
P(s′ |s,a)V (n)

π (s′)

 .

Alternatively, we may explicitly construct the induced DTMC ⟨S,sι,Pπ,Rπ⟩ from
Definition 2.3, whose set of states coincides with that of the MDP (and is thus finite)
as the policy π is memoryless.

The performance or expected return of the policy π is defined as its value in the
initial state ρ = V ∗π(sι). Sometimes, we evaluate multiple (different) policies on an
MDP or evaluate a single policy on multiple MDPs. To that end, we may incorporate
these elements into the notation and write ρ(π,M,ϕ) for the performance of the
policy π on the MDP M for objective ϕ, defined as:

ρ(π,M,ϕ) = Vπ,M,ϕ(sι).

When clear from the context, we may omit any of the symbols for the policy, MDP,
or objective.

2.2.3 Policy Iteration
As an alternative to value iteration, MDPs can also be solved through policy iteration.
Policy iteration consists of two alternating steps: the previously discussed policy
evaluation and policy improvement.

After evaluating the current policy π and determining its value function V ∗π,
the policy improvement step looks for a new policy π′ that outperforms the current
policy as follows. First, compute the state-action values under π as

Qπ(s,a) = R(s,a) +


s′
P(s′ |s,a)V ∗π(s′), ∀s ∈ S, a ∈ A(s).

The new policy π′ is extracted as π′(s) = argmaxa∈AQπ(s,a) for all s ∈ S and has a
value at least as good as the previous policy, i.e., V ∗π′ ≥ V ∗π. This process starts with
any initial policy and terminates as soon as the policy does not change anymore:
π′ = π, after which π is guaranteed to be optimal.

Variations and Modifications Towards Other Objectives
Several variations to value iteration have been introduced to resolve issues with accu-
racy and convergence. Most notably, there are bounded value iteration (Brázdil et al.,
2014; Haddad and Monmege, 2014), interval iteration (Baier et al., 2017) optimistic
value iteration (Hartmanns and Kaminski, 2020) and sound value iteration (Quat-
mann and Katoen, 2018). An extensive experimental evaluation comparing several
methods for solving MDPs can be found in (Hartmanns et al., 2023).

Many other objectives, such as reachability and discounted reward, can be
solved by straightforward modifications to the Bellman equation. For maximizing

2.2. Classical Dynamic Programming

2

23
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from Equation 2.1. For stochastic shortest path, we simply need to replace the
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As an alternative to dynamic programming, many objectives for MDPs can also be
naturally encoded as a linear optimization problem (LP). These LPs can be solved
in polynomial time for many objectives, including the ones we consider (Baier and
Katoen, 2008).

We now present the LP formulation for the reach-reward objective, and discuss
the adjustments necessary afterward. The LP formulation uses the same prepro-
cessing step as value iteration. Let {vs ∈ R | s ∈ S?} be a set of variables for the state
values. The LP for maximizing reach-reward is then given by
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Indeed, the LP optimization direction is opposite of the objective, i.e., maximizing
objectives are encoded by a minimizing LP. After solving the LP, the variable
assignments give the state values: ∀s ∈ S? : V ∗(s) = vs.

The LP for the stochastic shortest path objective is the opposite, i.e., the LP be-
comes a maximization problem, and the state value variables vs are now constrained
from above:

Maximize vsι
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∀s ∈ T : vs = 0,

∀s ∈ S?, a ∈ A(s) : vs ≤ R(s,a) +
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For reachability objectives we omit the reward function from the encoding, while
for discounted reward we omit the preprocessing step and remove the target set T .
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Figure 2.2: An example of a POMDP, as also shown in Chapter 1.

2.3 State Uncertainty: Partially Observable MDPs

Next, we introduce partially observable MDPs (POMDPs; Åström, 1965; Kaelbling
et al., 1998; Smallwood and Sondik, 1973). POMDPs extend MDPs with state
uncertainty, meaning the agent has no precise information on which state they
are currently in. Observations (hopefully) provide useful information to infer the
underlying state.

Definition 2.7 (Partially observable Markov decision process). A partially observ-
able Markov decision process (POMDP) is a tuple ⟨S,bι,A,P,R,Z,O⟩ where S is
a finite set of states with bι ∈ D(S) the initial belief, A is a finite set of actions,
P : S ×A⇀D(S) is the probabilistic transition function, R : S ×A⇀ R is the reward
function, Z is a finite set of observations, and O : S ×A⇀D(Z) is the probabilistic
observation function.

We again define A(s) = {a ∈ A | P(s,a) �⊥} to be the set of enabled actions in state
s, and assume the partial functions to be consistent with each other, i.e.,

∀s ∈ S,a ∈ A(s) : P(s,a) �⊥∧R(s,a) �⊥∧O(s,a) �⊥.

An example of a POMDP is illustrated in Figure 2.2.
Paths through a POMDP are the same as for MDPs: sequences of successive

states and actions. As the agent cannot observe the states in a POMDP, the agent
only observes a history. A history of a POMDP M is a sequence of observations
and actions in (Z ×A)∗ ×Z . A history ⟨z0, a0, z1, a1, . . .⟩ is valid for M if there exists a
path ⟨s0, a0, s1, a1, . . .⟩ ∈ PathsM that can generate h. That is, for all observations zi
we have O(zi |si+1, ai ) > 0. Indeed, semantically, the observations of a POMDP are
given by the successor state the agent arrives at after taking an action. The set of all
(in)finite histories in POMDPM is denoted by HistsM . When clear from the context,
we omit M and simply write Hists.

Histories can be compressed into beliefs. A belief is a distribution over the states
of a POMDP, i.e., b ∈ D(S). Beliefs are sufficient statistics for the history of the
POMDP (Åström, 1965). Given a belief b ∈ D(S), an observation z ∈ Z and an action
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a ∈ A, the successor belief b′ ∈ D(S) is computed via the following belief update
rule (Kaelbling et al., 1998):

b′(s′ |b,z,a) =
O(z |s′ , a) ·

∑
s∈S P(s

′ |s,a) · b(s)∑
s′′∈S O(z |s′′ , a) ·

∑
s∈S P(s′′ |s,a) · b(s)

.

Essentially, the updated belief b′ in state s′ is computed by the probability of
the agent observing z when arriving in state s′ after taking action a, multiplied
by the probability of arriving in s′ given the current belief b. The denominator
is a normalization constant to ensure the updated belief b′ forms a probability
distribution.

For a finite history h concatenated with action a and observation z, i.e., h : a : z,
the belief b(s |h : a : z) is computed recursively by applying the belief update rule:

b′(s′ |h : a : z) = b′(s′ |b(· |h), a, z).

until the history h is empty, denoted ∅, and where b(· | ∅) is the initial belief.
Using histories or beliefs, we can map a POMDP to a fully observable MDP

history MDP (Silver and Veness, 2010) or belief MDP (Kaelbling et al., 1998).

2.3.1 Policies for POMDPs
As the agent can no longer observe the states in a POMDP, they cannot base their
decision on the state information either, and thus policies for POMDPsmap histories
to (distributions over) actions instead of paths. That is, a policy (for a POMDP) is of
the form π : Hists→D(A). Since beliefs are sufficient statistics for histories, policies
may equivalently be defined as π : D(S)→D(A). As with policies for MDPs, π is
deterministic if it only maps to Dirac distributions and finite-memory if it can be
encoded by a finite-state controller.

FSCs for POMDPs are defined analogously to those for MDPs, except that they
now use the observations Z instead of the states S in their memory update function
and action mapping.

Definition 2.8 (FSC for POMDP). Let M = ⟨S,bι,A,P,R,Z,O⟩ be a POMDP. A finite-
state controller forM is a tuple ⟨N ,nι,α,η⟩ whereN is a finite set of memory nodes
with nι ∈ N the initial node, and α : N ×Z →D(A) and η : N ×Z ×A→D(N ) are
action mapping and the memory update function.

The size of the FSC is the number of memory nodes |N |. A policy is memoryless
when it can be encoded by an FSC with a single (trivial) memory node: |N | = 1. An
example FSC is illustrated in Figure 2.3.

As with MDPs, we can also evaluate the performance of an FSC in a POMDP by
constructing a Markov chain. This definition is analogous to the construction for
MDPs (Definition 2.4) except that we need to account for the observations.

Definition 2.9 (Induced DTMC of an FSC on a POMDP). LetM = ⟨S,bι,A,P,R,Z,O⟩
be a POMDP and F = ⟨N ,nι,α,η⟩ be an FSC representing a finite-memory policy
π. The induced DTMC is defined as MF = ⟨S ×N ,µι,PF ,RF ⟩, where the states are
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Figure 2.3: A partial example FSC for a POMDP with observations Z = {z1, z2}. The probabil-
ities of the action mapping are indicated by α and the probabilities of the memory update
are indicated by η. For instance, starting in memory node n0 and observing z1, action a1
is selected with probability 0.7, while a2 is drawn with probability 0.3. If a1 is drawn, the
memory node is updated to n2 with probability 0.6 or remains n0 with probability 0.4. The
action mapping and memory update for node n1 are omitted.

given by the product of the POMDP states S and FSC memory nodesN , the initial
state (distribution) is given by µι(⟨s,n⟩) = b0(s) · 1[n = n0], and the transition and
reward functions are defined as

PF (⟨s′ ,n′⟩ | ⟨s,n⟩) =
∑

a∈A

∑

z∈Z
α(a |n,z) ·O(z |s′ , a) ·P(s′ |s,a) · η(n′ |n,z,a),

RF (⟨s,n⟩) =
∑

a∈A

∑

z∈Z
α(a |n,z) ·O(z |s′ , a) ·R(s,a).

Using the induced DTMC from Definition 2.9, we formally define policy evalua-
tion for a policy represented by an FSC on a POMDP as follows.

Definition 2.10 (FSC policy evaluation). LetM be a POMDP and π a finite-memory
policy represented by FSC Fπ. The performance of π on M for objective ϕ ∈ Φ is
defined as the value of the Markov chain MFπ weighed by the initial belief

ρ(π,M,ϕ) =
∑

s∈S
bι(s) ·VMFπ ,ϕ

(s).

FSC policy evaluation encodes the memory nodes into the state space of the
POMDP, after which it is reduced to evaluating a memoryless policy. Sometimes, it
is convenient to already encode the FSC memory into a POMDP when the action
mapping and memory update function are not (yet) defined. Computing an FSC
of k memory nodes for a POMDP M can be reduced to computing a memoryless
policy on the k-unfolding of M (Junges et al., 2018).
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Figure 2.4: Example 2-unfolding of state s0 of the POMDP from Figure 2.2.

Definition 2.11 (k-unfolding of a POMDP). LetM = ⟨S,bι,A,P,R,Z,O⟩ be a POMDP
andN a finite set of k memory nodes. We construct the product POMDP defined
by the tuple M ⊗N = ⟨S ×N , b⊗ι ,A

⊗,P⊗,R⊗,Z⊗,O⊗⟩ as follows. The states are the
product S ×N , with initial belief is b⊗ι (s,n) = bι(s) ·1[n = nι]. The actions A⊗ = A×N
are tuples of actions and memory nodes. The transition and reward functions are
given by

P⊗(⟨s′ ,n′⟩ | ⟨s,n⟩ ,⟨a, n̂⟩) =


P(s′ |s,a) if n̂ = n′ ,

0 otherwise,

R(⟨s,n⟩ , a) = R(s,a).

Finally, the set of observations is Z⊗ = Z ×N with the observation function

O⊗(⟨z, ṅ⟩ | ⟨s,n⟩ ,⟨a, n̂⟩) =


O(z |s,a) if ṅ = n̂,

0 otherwise.

We illustrate the idea of k-unfolding in the following example.

Example 4 (2-unfolding of a POMDP). In Figure 2.4, we show the 2-unfolding
of state s0 of the POMDP from Figure 2.2. The unfolding for the other states
works analogously. States are now pairs of the original states and the memory
nodes. Actions are now also pairs of the original actions and the memory nodes,
such that the agent’s (memoryless) policy in the unfolded POMDP selects both
an action as well as a memory node to update to. The set of observations and
the observation function are extended such that the agent can observe the
current memory node while still adhering to the partial observability of the
original state space.

Computing Policies for POMDPs
Where the objectives we consider in this thesis, i.e., reachability, reach-reward,
stochastic shortest path, and discounted reward, all admit optimal policies com-
putable in polynomial time in MDPs, this is not the case for these objectives in



2

26 2. Decision-Making Under Uncertainty: Foundations

n0 n1

z1

z2

a1

a2

a1

a2

α = 0.7

α = 0.3

α = 0.5

α = 0.5

η =
0.4 η = 0.6

η = 0.4 η =
0.6

η = 1

η = 1

. . .

Figure 2.3: A partial example FSC for a POMDP with observations Z = {z1, z2}. The probabil-
ities of the action mapping are indicated by α and the probabilities of the memory update
are indicated by η. For instance, starting in memory node n0 and observing z1, action a1
is selected with probability 0.7, while a2 is drawn with probability 0.3. If a1 is drawn, the
memory node is updated to n2 with probability 0.6 or remains n0 with probability 0.4. The
action mapping and memory update for node n1 are omitted.

given by the product of the POMDP states S and FSC memory nodesN , the initial
state (distribution) is given by µι(⟨s,n⟩) = b0(s) · 1[n = n0], and the transition and
reward functions are defined as

PF (⟨s′ ,n′⟩ | ⟨s,n⟩) =
∑

a∈A

∑

z∈Z
α(a |n,z) ·O(z |s′ , a) ·P(s′ |s,a) · η(n′ |n,z,a),

RF (⟨s,n⟩) =
∑

a∈A

∑

z∈Z
α(a |n,z) ·O(z |s′ , a) ·R(s,a).

Using the induced DTMC from Definition 2.9, we formally define policy evalua-
tion for a policy represented by an FSC on a POMDP as follows.

Definition 2.10 (FSC policy evaluation). LetM be a POMDP and π a finite-memory
policy represented by FSC Fπ. The performance of π on M for objective ϕ ∈ Φ is
defined as the value of the Markov chain MFπ weighed by the initial belief

ρ(π,M,ϕ) =
∑

s∈S
bι(s) ·VMFπ ,ϕ

(s).

FSC policy evaluation encodes the memory nodes into the state space of the
POMDP, after which it is reduced to evaluating a memoryless policy. Sometimes, it
is convenient to already encode the FSC memory into a POMDP when the action
mapping and memory update function are not (yet) defined. Computing an FSC
of k memory nodes for a POMDP M can be reduced to computing a memoryless
policy on the k-unfolding of M (Junges et al., 2018).
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Definition 2.11 (k-unfolding of a POMDP). LetM = ⟨S,bι,A,P,R,Z,O⟩ be a POMDP
andN a finite set of k memory nodes. We construct the product POMDP defined
by the tuple M ⊗N = ⟨S ×N , b⊗ι ,A

⊗,P⊗,R⊗,Z⊗,O⊗⟩ as follows. The states are the
product S ×N , with initial belief is b⊗ι (s,n) = bι(s) ·1[n = nι]. The actions A⊗ = A×N
are tuples of actions and memory nodes. The transition and reward functions are
given by

P⊗(⟨s′ ,n′⟩ | ⟨s,n⟩ ,⟨a, n̂⟩) =


P(s′ |s,a) if n̂ = n′ ,

0 otherwise,

R(⟨s,n⟩ , a) = R(s,a).

Finally, the set of observations is Z⊗ = Z ×N with the observation function

O⊗(⟨z, ṅ⟩ | ⟨s,n⟩ ,⟨a, n̂⟩) =


O(z |s,a) if ṅ = n̂,

0 otherwise.

We illustrate the idea of k-unfolding in the following example.

Example 4 (2-unfolding of a POMDP). In Figure 2.4, we show the 2-unfolding
of state s0 of the POMDP from Figure 2.2. The unfolding for the other states
works analogously. States are now pairs of the original states and the memory
nodes. Actions are now also pairs of the original actions and the memory nodes,
such that the agent’s (memoryless) policy in the unfolded POMDP selects both
an action as well as a memory node to update to. The set of observations and
the observation function are extended such that the agent can observe the
current memory node while still adhering to the partial observability of the
original state space.

Computing Policies for POMDPs
Where the objectives we consider in this thesis, i.e., reachability, reach-reward,
stochastic shortest path, and discounted reward, all admit optimal policies com-
putable in polynomial time in MDPs, this is not the case for these objectives in
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POMDPs. Computing optimal policies for infinite and indefinite horizon objectives
for POMDPs is, in general, undecidable (Madani et al., 2003). Even when restricting
to memoryless policies, finding an optimal policy within that subset is already
NP-hard (Vlassis et al., 2012).

A plethora of algorithms to compute policies for POMDPs exist. Most of these
methods attempt to approximate the optimal policy or restrict to more tractable
subclasses of policies. In particular, many approaches rely on constructing (part
of) the belief MDP and performing value iteration (Kaelbling et al., 1998). Notable
variants include point-based value iteration (Kurniawati et al., 2008; Pineau et al.,
2003; Spaan and Vlassis, 2005) and heuristic search value iteration (Smith and
Simmons, 2004). Additionally, there are policy iteration methods (Ji et al., 2007),
possibly using FSCs as policy representation (Poupart and Boutilier, 2003) and
convex optimization approaches for FSCs (Amato et al., 2010; Junges et al., 2018),
as well as Monte-Carlo tree search based methods (Silver and Veness, 2010). Finally,
recurrent neural networks have been used to search the space of FSCs (Carr et al.,
2021). For a more detailed discussion on many of these approaches, we refer
to (Spaan, 2012).

3
ATutorial on Robust Markov

Decision Processes

This chapter presents an overview of the theory of robust Markov decision processes
(RMDPs), their semantics and structural assumptions, and how to employ robust
dynamic programming to solve RMDPs. The contents of this chapter serve both
as a short tutorial, providing a concise introduction to RMDPs and context and
references for their applications in AI and formal methods, and as background and
preliminary material for the subsequent chapters of this thesis.

3.1 Introduction
Markov decision processes (MDPs) are a fundamental model for tackling decision-
making under uncertainty across various areas, such as formal methods (Katoen,
2016), operations research (Puterman, 1994), and artificial intelligence (Sutton
and Barto, 1998). Yet, at the core of MDPs is the assumption that the transition
probabilities are precisely known, a requirement that is often prohibitive in practice
and may lead to suboptimal outcomes (Goyal and Grand-Clément, 2023; Mannor
et al., 2007). For example, in data-driven applications in AI such as reinforcement
learning (RL) (Sutton and Barto, 1998), transition probabilities are unknown and
can only be estimated from data. Furthermore, in formal verification problems, the
state-explosion problem often prevents the model from being fully built (Baier and
Katoen, 2008; Baier et al., 2019; Clarke et al., 2011). As a remedy, sampling-based
approaches that only estimate the transition probabilities, such as statistical model
checking (Ashok et al., 2019; Legay et al., 2010), are used. Any sampling-based
approach naturally carries the risk of statistical errors and hence, incorrect estimates
of the probabilities.

Robust MDPs (RMDPs) overcome this assumption of precise knowledge of the
probabilities. An RMDP contains an uncertainty set that captures all possible transi-
tion functions from which an adversary, typically called nature, may choose. Tracing
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back to at least interval Markov chains in the formal methods community (Jonsson
and Larsen, 1991) and bounded-parameter MDPs in AI (Givan et al., 2000), RMDPs
provide a general and flexible framework for modelling MDPs with uncertainty on
the transition probabilities (Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann
et al., 2013). RMDPs provide a rigorous approach to quantifying the impact of
data-driven methods for MDPs and, as such, represent an important topic in the
intersection of AI and formal methods.

As RMDPs are studied across several research fields, results inevitably become
scattered across the communities. While several recent algorithmic developments
and applications of RMDPs stem from AI and operations research, see e.g., (Badings
et al., 2023b; Goyal and Grand-Clément, 2023; Ho et al., 2021) and many of the
other works cited in this thesis, tool support is arguably more mature in the formal
methods community. While several of the significant contributions to dynamic
programming for RMDPs can be traced back more to the AI than the formal meth-
ods community, these algorithms have been implemented in probabilistic model
checkers such as PRISM (Kwiatkowska et al., 2011) and Storm (Hensel et al., 2022),
which are well-known within formal methods but less so in AI. Because work on
RMDPs in formal methods and AI faces many of the same problems, we believe that
research in both communities can benefit greatly from each other. In particular,
theoretical contributions in one field may improve tool support in the other. Con-
versely, improved tool support may lead to more advanced applications of RMDPs
across both research areas.

This chapter presents a brief tutorial and survey to unify the views on RMDPs
from the AI and formal methods communities. While the theory of RMDPs has
made significant advances over the years, surveys summarizing these results are,
as of yet, sparse. To the best of our knowledge, (Ou and Bi, 2024) is the only other
survey on RMDPs available, primarily focusing on summarizing recent technical
results. In contrast, we aim to provide an introduction to the theory of robust
MDPs and a short review of its connections with other well-known models and
applications in the areas of formal methods and AI.

3.2 Robust Markov Decision Processes
In the following, let X be a set of variables. An uncertainty set U is a non-empty set
of variable assignments subject to some constraints and is defined as U = {f : X→
R | constraints on f }.

Definition 3.1 (RMDP). A robust Markov decision process (RMDP) is a tuple
⟨S,sι,A,P ,R⟩, where the states S , initial state sι, actions A and reward function R
are defined as for standard MDPs (Definition 2.1), and P : U → (S ×A ⇀ D(S)) is
the uncertain transition function.

Essentially, the uncertain transition function P is a set of standard transition
functions P : S × A ⇀ D(S), and we may thus also write P ∈ P for a transition
function P that lies inside the uncertain transition function.

While strictly speaking not required, it is convenient to define the set of variables
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Figure 3.1: An example RMDP.

X to have a unique variable for each possible transition of the RMDP, such that
X = {xsas′ | (s,a, s′) ∈ S × A × S}. The uncertainty set U is then a set of variable
assignments, i.e., functions that map each variable to a real number, subject to
constraints. These constraints may, for example, define each variable’s allowed
range and encode dependencies between different variables. Note that we do not
explicitly add a constraint that each state-action pair is assigned a valid probability
distribution but leave this implicit in the definition of the uncertain transition
function P . Alternatively, one can define RMDPs by having the uncertain transition
function assign a function over the variables to each transition, effectively encoding
the dependencies there, and having the uncertainty set only define the range of
each variable. This construction would, however, require additional adjustments
to move most of the discussion that follows (most notably around rectangularity)
from the uncertainty set to the uncertain transition function.

Example 5. Figure 3.1 depicts an MDP and an RMDP. Below are three possible
uncertainty sets for this RMDP:

U1 =
{
x0a11 ∈ [0.1,0.9]∧ x0a21 ∈ [0.1,0.9]∧ x2a10 ∈ [0.1,0.9]

}
,

U2 =
{
x0a11 ∈ [0.1,0.4]∧ x0a21 = 2x0a11 ∧ x2a10 ∈ [0.1,0.9]

}
, (3.1)

U3 =
{
x0a11 ∈ [0.1,0.4]∧ x0a21 = 2x0a11 ∧ x2a10 = x0a11

}
.

The agent can choose between action a1 and a2 in state s0 and has singleton
choices in the other states. An adversary, often called nature, chooses variable
assignments for x0a10, x0a11, x0a21, x0a22, x2a10, and x2a12. As mentioned above,
the restriction that each state-action pair is assigned a valid probability distri-
bution is implied by the definition of the uncertain transition function P . We
can therefore focus purely on the choices of x0a10,x0a21, and x2a10.

The uncertainty sets give restrictions on the possible variable assignments.
In uncertainty set U1, variables x0a10,x0a21, and x2a10 can each be given any
value in the interval [0.1,0.9]. A possible variable assignment in U1 is f1 =
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X to have a unique variable for each possible transition of the RMDP, such that
X = {xsas′ | (s,a, s′) ∈ S × A × S}. The uncertainty set U is then a set of variable
assignments, i.e., functions that map each variable to a real number, subject to
constraints. These constraints may, for example, define each variable’s allowed
range and encode dependencies between different variables. Note that we do not
explicitly add a constraint that each state-action pair is assigned a valid probability
distribution but leave this implicit in the definition of the uncertain transition
function P . Alternatively, one can define RMDPs by having the uncertain transition
function assign a function over the variables to each transition, effectively encoding
the dependencies there, and having the uncertainty set only define the range of
each variable. This construction would, however, require additional adjustments
to move most of the discussion that follows (most notably around rectangularity)
from the uncertainty set to the uncertain transition function.

Example 5. Figure 3.1 depicts an MDP and an RMDP. Below are three possible
uncertainty sets for this RMDP:

U1 =
{
x0a11 ∈ [0.1,0.9]∧ x0a21 ∈ [0.1,0.9]∧ x2a10 ∈ [0.1,0.9]

}
,

U2 =
{
x0a11 ∈ [0.1,0.4]∧ x0a21 = 2x0a11 ∧ x2a10 ∈ [0.1,0.9]

}
, (3.1)

U3 =
{
x0a11 ∈ [0.1,0.4]∧ x0a21 = 2x0a11 ∧ x2a10 = x0a11

}
.

The agent can choose between action a1 and a2 in state s0 and has singleton
choices in the other states. An adversary, often called nature, chooses variable
assignments for x0a10, x0a11, x0a21, x0a22, x2a10, and x2a12. As mentioned above,
the restriction that each state-action pair is assigned a valid probability distri-
bution is implied by the definition of the uncertain transition function P . We
can therefore focus purely on the choices of x0a10,x0a21, and x2a10.

The uncertainty sets give restrictions on the possible variable assignments.
In uncertainty set U1, variables x0a10,x0a21, and x2a10 can each be given any
value in the interval [0.1,0.9]. A possible variable assignment in U1 is f1 =
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{x0a10 → 0.3,x0a21 → 0.1,x2a10 → 0.8}. This variable assignment is not possible
in uncertainty sets U2 and U3 because of the dependencies between the vari-
ables. For example, in uncertainty set U2, variable x0a21 must be assigned twice
the value of x0a10, whose value must now be in the interval [0.1,0.4]. A possible
variable assignment in U2 is f2 = {x0a10 → 0.3,x0a21 → 0.6,x2a10 → 0.8}. We
further discuss the effect of dependencies in the uncertainty set in Section 3.3.

We consider the same type of objectives and objectives as for MDPs: reachability,
reach-avoid, disocunted reward, and reach-reward. We focus our detailed discussion
of RMDP semantics and robust dynamic programming around reach-reward, and
discuss the necessary modifications for the other objectives afterward.

3.3 RMDP Semantics
RMDPs can be seen as a game between the agent, who aims to maximize their reward
by selecting actions, and an adversarial nature, who seeks to minimize the agent’s
reward by selecting variable assignments from the uncertainty set. Hence, nature
simulates the worst-case transition function the agent should be robust against.
This game interpretation can be fully formalized into a zero-sum stochastic game
(SG), as discussed in Section 3.6.

Intuitively, the game is constructed by adding a new set of states S ×A for nature
that consists of tuples of the state-action pairs the agent was in. At each such
state-action pair, nature selects a variable assignment from the uncertainty set that
determines the transition function P ∈ P .

The precise rules of the game, and with that the semantics of RMDPs, that
determine which variable assignments nature is allowed to choose are controlled
by two factors: (1) possible dependencies between nature’s choice of the variable
assignments between different states or actions, known as (non)-rectangularity; and
(2) whether previous choices by nature restrict its future choices, known as the
static and dynamic uncertainty semantics. These two factors determine the available
policies, i.e., transition functions, for nature, and thus the worst-case transition
function that the agent must be robust against. We now discuss both concerns in
more detail.

Dependencies between the variables, or lack thereof, immediately follow from
the constraints that define the uncertainty set U . Independence between states
or state-action pairs is commonly referred to as rectangularity. Informally, an
uncertainty set U is state-action or (s,a)-rectangular if there are no dependencies
between the constraints on the variables at different state-action pairs, and state or
s-rectangular if there are no dependencies between constraints on the variables at
different states. More formally, using standard notation (Wiesemann et al., 2013):

Definition 3.2 (Rectangularity). The uncertainty set U is (s,a)-rectangular if it can
be split into lower dimensional uncertainty sets U(s,a) that only relate to the variables
at the respective state-action pair (s,a), such that their product forms the whole
uncertainty set: U =×(s,a)∈S×AU(s,a). Similarly, an uncertainty set U is s-rectangular

3.3. RMDP Semantics

3

33

Uncertainty set & rectangularity Optimal policy class Complexity

(s,a)-rectangular Memoryless, deterministic Polynomial
Convex s-rectangular Memoryless, randomized Polynomial

non-rectangular History, randomized NP-hard

(s,a)-rectangular Memoryless, deterministic NP-hard
Nonconvex s-rectangular History, randomized NP-hard

non-rectangular History, randomized NP-hard

Table 3.1: Policy classes that are sufficient for optimality and the computational complexity
of policy evaluation for RMDPs with discounted reward objectives with various types of
uncertainty sets under static uncertainty semantics, as identified by Wiesemann et al. (2013).

if U can be split into lower dimensional uncertainty sets U(s) that only relate to
variables at state s, such that U =×s∈S U(s).

Example 6. We revisit the RMDP in Figure 3.1 and the three possible uncer-
tainty sets in Equation 3.1. The set U1 is an (s,a)-rectangular uncertainty set,
as each variable influences the transition probabilities in only one state-action
pair. In other words, there are no dependencies between constraints on the
variables at different state-action pairs. In U2 the transition probabilities for
state-action pairs ⟨s0, a1⟩ and ⟨s0, a2⟩ both depend on variable x0a11. There-
fore, U2 no longer has independence between actions but is still s-rectangular.
The final uncertainty set, U3, has dependencies between all variables and is,
therefore, non-rectangular.

The type of rectangularity has, together with whether the uncertainty set is
convex or not, direct consequences for the computational complexity of policy
evaluation, i.e., computing the performance of a given policy, as well as the type
of policy that is required to be optimal for discounted reward objectives under
static uncertainty semantics. These results are due to Wiesemann et al. (2013) and
presented in Table 3.1.

In s-rectangularity, an additional assumption is made that nature can no longer
observe the last action of the agent. This assumption is mentioned explicitly in (Ho
et al., 2018, 2021; Wiesemann et al., 2013) but often left implicit. Note that this
assumption does influence the optimal policy and value, as demonstrated by Ex-
ample 7. The question of last-action observability corresponds to the difference
between agent first and nature first semantics in (Bovy et al., 2024).

Example 7 (Last-action observability). Figure 3.2 depicts an RMDP. Below is an
s-rectangular uncertainty set:

U =
{
x0a11 ∈ [0.1,0.9]∧ x0a11 = x0a22

}
.
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{x0a10 → 0.3,x0a21 → 0.1,x2a10 → 0.8}. This variable assignment is not possible
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policies, i.e., transition functions, for nature, and thus the worst-case transition
function that the agent must be robust against. We now discuss both concerns in
more detail.

Dependencies between the variables, or lack thereof, immediately follow from
the constraints that define the uncertainty set U . Independence between states
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uncertainty set: U =×(s,a)∈S×AU(s,a). Similarly, an uncertainty set U is s-rectangular
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Uncertainty set & rectangularity Optimal policy class Complexity

(s,a)-rectangular Memoryless, deterministic Polynomial
Convex s-rectangular Memoryless, randomized Polynomial

non-rectangular History, randomized NP-hard

(s,a)-rectangular Memoryless, deterministic NP-hard
Nonconvex s-rectangular History, randomized NP-hard

non-rectangular History, randomized NP-hard

Table 3.1: Policy classes that are sufficient for optimality and the computational complexity
of policy evaluation for RMDPs with discounted reward objectives with various types of
uncertainty sets under static uncertainty semantics, as identified by Wiesemann et al. (2013).

if U can be split into lower dimensional uncertainty sets U(s) that only relate to
variables at state s, such that U =×s∈S U(s).
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fore, U2 no longer has independence between actions but is still s-rectangular.
The final uncertainty set, U3, has dependencies between all variables and is,
therefore, non-rectangular.

The type of rectangularity has, together with whether the uncertainty set is
convex or not, direct consequences for the computational complexity of policy
evaluation, i.e., computing the performance of a given policy, as well as the type
of policy that is required to be optimal for discounted reward objectives under
static uncertainty semantics. These results are due to Wiesemann et al. (2013) and
presented in Table 3.1.

In s-rectangularity, an additional assumption is made that nature can no longer
observe the last action of the agent. This assumption is mentioned explicitly in (Ho
et al., 2018, 2021; Wiesemann et al., 2013) but often left implicit. Note that this
assumption does influence the optimal policy and value, as demonstrated by Ex-
ample 7. The question of last-action observability corresponds to the difference
between agent first and nature first semantics in (Bovy et al., 2024).

Example 7 (Last-action observability). Figure 3.2 depicts an RMDP. Below is an
s-rectangular uncertainty set:
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{
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Figure 3.2: An RMDP for Example 7.

Whether or not nature observed the agent’s last action determines whether or
not nature has to take the dependency between x0a11 and x0a22 into account.
If nature observes the agent’s last action, it can achieve an expected reward
of 55 by choosing the maximal x0a11 = x0a22 = 0.9 when observing action a1,
and by choosing the minimal x0a11 = x0a22 = 0.1 when observing action a2. If
nature does not have this information, it has to account for both possible agent
actions. The best course of action for nature is choosing x0a11 = x0a22 = 0.5,
leading to an expected reward of 75 regardless of the agent’s choice.

Static and Dynamic Uncertainty Semantics
The second point about RMDP semantics is whether nature’s previous choice at a
certain state-action pair should restrict its possible future choices. Iyengar (2005)
introduced the notions of static and dynamic uncertainty semantics. Static uncer-
tainty semantics require nature to play a ‘once-for-all’ policy. If the state-action
pair is revisited, nature must use the same variable assignment from the uncer-
tainty set as before. In contrast, under dynamic uncertainty semantics, nature plays
memoryless and is free to choose any variable assignment at every step. Simulta-
neous but independently, Nilim and Ghaoui (2005) introduced these semantics as
time-stationary and time-varying uncertainty models. Note that these notions have
only been introduced for (s,a)-rectangular RMDPs and are only of concern in cyclic,
infinite horizon models. Interestingly, Iyengar (2005) also shows that the distinction
between static and dynamic uncertainty does not matter for reward maximization
in (s,a)-rectangular RMDPs. A similar result was established for reachability in
interval Markov chains in (Chen et al., 2013). We state the result in general in the
following lemma.

Lemma 3.3 (Static and dynamic uncertainty coincide (Iyengar, 2005)). Consider
an (s,a)-rectangular RMDP where both agent and nature are restricted to memoryless
policies, i.e., policies of type π : S → D(A). Let πst be the optimal policy under static
uncertainty, and πdy be the optimal policy under dynamic uncertainty semantics. The
robust values of these policies coincide, i.e., Vπst = Vπdy .

The result from Lemma 3.3 extends to the other objectives we consider under
the (common) assumption that nature plays memoryless.
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3.3.1 Robust and Optimistic Objectives
Knowing that static and dynamic uncertainty coincide for our objectives in (s,a)-
rectangular RMDPs, we can formally define robust and optimistic objectives for
all our objectives for the static uncertainty semantics only. Robust, or pessimistic,
objectives assume nature plays adversarially. That is, when the agent selects actions
to maximize, nature selects transition functions to minimize, and vice versa. Op-
timistic objectives assume nature plays cooperatively, i.e., both players maximize
or minimize. The resulting robust and optimistic objectives for an RMDPM with
uncertain transition function P are defined as follows, where M is the MDP with
transition function P ∈ P .
Definition 3.4 (Robust and optimistic objectives). We extend the objectives for
MDPs from Definition 2.5 to the following objectives for RMDPs.

Reachability. The robust reachability objective is to optimize the probability of
reaching a target set T ⊆ S :

PMaxMin(♦T ) = max
π∈Π

inf
P∈P

Pπ,P [ω ∈ PathsM | ω |= ♦T ] .

Discounted Reward. The robust discounted reward objective is to optimize the
discounted sum of expected rewards for some discount factor γ ∈ (0,1):

RMaxMin(γ) = max
π∈Π

inf
P∈P

Eπ,P


∞

t=0

γtR(st ,at) | s0 = sι

 ,

where st and at are the state and action at step t along a path ω ∈ PathsM (sι).

Reach-Reward. Let ω ∈ PathsM , the cumulative reward along ω is defined as

r(♦T )(ω) =


∞ ∀t ∈N : st ∈ T ,min{t | st |=∈T }−1

t=0 R(st ,at) otherwise.

The robust reach-reward objective is to optimize the cumulative reward until
reaching a target set T ⊆ S :

RMaxMin(♦T ) = max
π∈Π

inf
P∈P

Eπ,P [r(♦T )] .

Stochastic Shortest Path. The robust Stochastic shortest path objective is to optimize
the cumulative reward until reaching a target set T ⊆ S :

RMinMax(♦T ) = min
π∈Π

sup
P∈P

Eπ,P [r(♦T )] .

The set of robust objectives is denoted by

Φ = {PMaxMin(♦T ),RMaxMin(♦T ),RMinMax(♦T ),RMaxMin(γ)}.

Adaptations of these objectives to the optimistic case follow straightforwardly
by changing the optimization direction for nature, i.e., the second Max or Min.
Consequently, we have the following set of optimistic objectives:

Φ = {PMaxMax(♦T ),RMaxMax(♦T ),RMinMin(♦T ),RMaxMax(γ)}.
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Figure 3.2: An RMDP for Example 7.

Whether or not nature observed the agent’s last action determines whether or
not nature has to take the dependency between x0a11 and x0a22 into account.
If nature observes the agent’s last action, it can achieve an expected reward
of 55 by choosing the maximal x0a11 = x0a22 = 0.9 when observing action a1,
and by choosing the minimal x0a11 = x0a22 = 0.1 when observing action a2. If
nature does not have this information, it has to account for both possible agent
actions. The best course of action for nature is choosing x0a11 = x0a22 = 0.5,
leading to an expected reward of 75 regardless of the agent’s choice.

Static and Dynamic Uncertainty Semantics
The second point about RMDP semantics is whether nature’s previous choice at a
certain state-action pair should restrict its possible future choices. Iyengar (2005)
introduced the notions of static and dynamic uncertainty semantics. Static uncer-
tainty semantics require nature to play a ‘once-for-all’ policy. If the state-action
pair is revisited, nature must use the same variable assignment from the uncer-
tainty set as before. In contrast, under dynamic uncertainty semantics, nature plays
memoryless and is free to choose any variable assignment at every step. Simulta-
neous but independently, Nilim and Ghaoui (2005) introduced these semantics as
time-stationary and time-varying uncertainty models. Note that these notions have
only been introduced for (s,a)-rectangular RMDPs and are only of concern in cyclic,
infinite horizon models. Interestingly, Iyengar (2005) also shows that the distinction
between static and dynamic uncertainty does not matter for reward maximization
in (s,a)-rectangular RMDPs. A similar result was established for reachability in
interval Markov chains in (Chen et al., 2013). We state the result in general in the
following lemma.

Lemma 3.3 (Static and dynamic uncertainty coincide (Iyengar, 2005)). Consider
an (s,a)-rectangular RMDP where both agent and nature are restricted to memoryless
policies, i.e., policies of type π : S → D(A). Let πst be the optimal policy under static
uncertainty, and πdy be the optimal policy under dynamic uncertainty semantics. The
robust values of these policies coincide, i.e., Vπst = Vπdy .

The result from Lemma 3.3 extends to the other objectives we consider under
the (common) assumption that nature plays memoryless.
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3.3.1 Robust and Optimistic Objectives
Knowing that static and dynamic uncertainty coincide for our objectives in (s,a)-
rectangular RMDPs, we can formally define robust and optimistic objectives for
all our objectives for the static uncertainty semantics only. Robust, or pessimistic,
objectives assume nature plays adversarially. That is, when the agent selects actions
to maximize, nature selects transition functions to minimize, and vice versa. Op-
timistic objectives assume nature plays cooperatively, i.e., both players maximize
or minimize. The resulting robust and optimistic objectives for an RMDPM with
uncertain transition function P are defined as follows, where M is the MDP with
transition function P ∈ P .
Definition 3.4 (Robust and optimistic objectives). We extend the objectives for
MDPs from Definition 2.5 to the following objectives for RMDPs.

Reachability. The robust reachability objective is to optimize the probability of
reaching a target set T ⊆ S :

PMaxMin(♦T ) = max
π∈Π

inf
P∈P

Pπ,P [ω ∈ PathsM | ω |= ♦T ] .

Discounted Reward. The robust discounted reward objective is to optimize the
discounted sum of expected rewards for some discount factor γ ∈ (0,1):

RMaxMin(γ) = max
π∈Π

inf
P∈P

Eπ,P
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∞
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 ,

where st and at are the state and action at step t along a path ω ∈ PathsM (sι).

Reach-Reward. Let ω ∈ PathsM , the cumulative reward along ω is defined as

r(♦T )(ω) =


∞ ∀t ∈N : st ∈ T ,min{t | st |=∈T }−1

t=0 R(st ,at) otherwise.

The robust reach-reward objective is to optimize the cumulative reward until
reaching a target set T ⊆ S :

RMaxMin(♦T ) = max
π∈Π

inf
P∈P

Eπ,P [r(♦T )] .

Stochastic Shortest Path. The robust Stochastic shortest path objective is to optimize
the cumulative reward until reaching a target set T ⊆ S :

RMinMax(♦T ) = min
π∈Π

sup
P∈P

Eπ,P [r(♦T )] .

The set of robust objectives is denoted by

Φ = {PMaxMin(♦T ),RMaxMin(♦T ),RMinMax(♦T ),RMaxMin(γ)}.

Adaptations of these objectives to the optimistic case follow straightforwardly
by changing the optimization direction for nature, i.e., the second Max or Min.
Consequently, we have the following set of optimistic objectives:

Φ = {PMaxMax(♦T ),RMaxMax(♦T ),RMinMin(♦T ),RMaxMax(γ)}.
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3.4 Robust Dynamic Programming
In this section, we discuss how value iteration and policy iteration can be adapted
rather straightforwardly for (s,a)-rectangular RMDPs.

Remark 3.5 (Graph preservation). For computational tractability of robust dynamic
programming, especially of objectives that rely on preprocessing the underlying
graph, such as the reach-reward objective we consider, it is often assumed that the
uncertainty set should be graph preserving. That is, all variable assignments in the
uncertainty set U imply the same topology for the underlying graphs. Hence, if
there exists some P ∈ P with P(s,a, s′) = 0 for some transition, then all other P ′ ∈ P
should also have P ′(s,a, s′) = 0.

3.4.1 Robust Value Iteration
Recall Equation 2.1, describing value iteration in a standard MDP. In an RMDP,
we do not have access to a precisely defined transition function P : S ×A→D(S).
Instead, we have the uncertain transition function P that defines a set of such
transition functions P ∈ P .

Robust value iteration adapts value iteration by accounting for the worst-case P ∈
P at each iteration. This is achieved by replacing the inner sum


s′∈S P(s

′ |s,a)Vn(s′)
by an inner minimization problem:

V (n+1)(s) = max
a∈A

R(s,a) + inf
P∈P




s′∈S
P(s′ |s,a)V (n)(s′)



 . (3.2)

We write V instead of V , which is now the worst-case or pessimistic value of the
RMDP. That is, V is a lower bound on the value the agent can possibly achieve.
Best-case or optimistic interpretations also exist, which we discuss later.

Under our assumption that the uncertainty set U is (s,a)-rectangular, we may
replace the global minimization problem infP∈P by a local one:

V (n+1)(s) = max
a∈A

R(s,a) + inf
P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V (n)(s′)



 . (3.3)

If, additionally, the uncertainty set U is convex, for instance, because all constraints
are linear, the inner minimization problem can be solved efficiently via, e.g., convex
optimization methods. Hence, robust value iteration extends regular value iteration
by solving an additional inner problem at every iteration. In general, the computa-
tional tractability of RMDPs primarily relies on whether or not this inner problem
is efficiently solvable.

As discussed in Section 3.3 and shown in Table 3.1, memoryless determinis-
tic policies are sufficient for optimality in (s,a)-rectangular RMDPs with convex
uncertainty sets. Thus, an optimal robust policy π∗ can again be extracted via

π∗(s) = argmax
a∈A

R(s,a) + inf
P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V ∗(s′)



 . (3.4)
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Optimistic Dynamic Programming
Instead of assuming the worst-case from the uncertainty set, we may also assume
the agent and nature play cooperatively. That is, both players attempt to maximize
the agent’s reward. We instead obtain optimistic values V that are computed in
the same way as the pessimistic values were, except that the inner minimization
problem from Equation 3.2 is now replaced by an inner maximization problem:

V
(n+1)

(s) = max
a∈A

R(s,a) + sup
P∈P




s′∈S
P(s,a, s′)V

(n)
(s′)



 .

The optimal optimistic policy π∗ is again extracted by one final step of dynamic
programming, as in Equation 3.4:

π∗(s) = argmax
a∈A

R(s,a) + sup
P∈P




s′∈S
P(s,a, s′)V

∗
(s′)



 .

3.4.2 Robust Policy Evaluation
We now consider policy evaluation for RMDPs with robust and optimistic objectives.

Definition 3.6 (Robust policy evaluation). The value of a memoryless policy π : S→
D(A) is computed by the following robust Bellman equation:

V
(n+1)
π =



a∈A
π(a |s) ·

R(s,a) + inf
P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V (n)

π (s′)



 .

Here, we again use that our uncertainty set is (s,a)-rectangular and convex to ensure
an efficiently solvable inner minimization problem.

Robust and Optimistic Performance in RMDPs
Recall that for a policy π, MDP M , and objective ϕ, the performance of π in M for
ϕ is denoted ρ(π,M,ϕ), and defined as the value in the initial state. For RMDPs, the
performance of a policy depends on whether we evaluate the policy optimistically
or pessimistically, i.e., whether the agent and nature optimize the objective in the
same or opposite directions. As such, we denote robust or pessimistic objectives by
ϕ, and optimistic objectives by ϕ. The robust performance of a policy π in RMDP
M for objective ϕ is then defined as ρ(π,M,ϕ) = V ∗π,M,ϕ(sι), and the optimistic

performance is defined as ρ(π,M,ϕ) = V
∗
π,M,ϕ(sι). Again, whenever clear from the

context, we may omit any of the symbols π,M, or ϕ.

3.4.3 Robust Policy Iteration
Robust policy iteration (Iyengar, 2005; Kaufman and Schaefer, 2013) extends standard
policy iteration in a similar way. We start with some initial memoryless deterministic
policy π : S → A and perform robust policy evaluation (Definition 3.6). After
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3.4 Robust Dynamic Programming
In this section, we discuss how value iteration and policy iteration can be adapted
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If, additionally, the uncertainty set U is convex, for instance, because all constraints
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optimization methods. Hence, robust value iteration extends regular value iteration
by solving an additional inner problem at every iteration. In general, the computa-
tional tractability of RMDPs primarily relies on whether or not this inner problem
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As discussed in Section 3.3 and shown in Table 3.1, memoryless determinis-
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Optimistic Dynamic Programming
Instead of assuming the worst-case from the uncertainty set, we may also assume
the agent and nature play cooperatively. That is, both players attempt to maximize
the agent’s reward. We instead obtain optimistic values V that are computed in
the same way as the pessimistic values were, except that the inner minimization
problem from Equation 3.2 is now replaced by an inner maximization problem:

V
(n+1)

(s) = max
a∈A

R(s,a) + sup
P∈P




s′∈S
P(s,a, s′)V

(n)
(s′)



 .

The optimal optimistic policy π∗ is again extracted by one final step of dynamic
programming, as in Equation 3.4:

π∗(s) = argmax
a∈A

R(s,a) + sup
P∈P




s′∈S
P(s,a, s′)V

∗
(s′)



 .

3.4.2 Robust Policy Evaluation
We now consider policy evaluation for RMDPs with robust and optimistic objectives.

Definition 3.6 (Robust policy evaluation). The value of a memoryless policy π : S→
D(A) is computed by the following robust Bellman equation:

V
(n+1)
π =



a∈A
π(a |s) ·

R(s,a) + inf
P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V (n)

π (s′)



 .

Here, we again use that our uncertainty set is (s,a)-rectangular and convex to ensure
an efficiently solvable inner minimization problem.

Robust and Optimistic Performance in RMDPs
Recall that for a policy π, MDP M , and objective ϕ, the performance of π in M for
ϕ is denoted ρ(π,M,ϕ), and defined as the value in the initial state. For RMDPs, the
performance of a policy depends on whether we evaluate the policy optimistically
or pessimistically, i.e., whether the agent and nature optimize the objective in the
same or opposite directions. As such, we denote robust or pessimistic objectives by
ϕ, and optimistic objectives by ϕ. The robust performance of a policy π in RMDP
M for objective ϕ is then defined as ρ(π,M,ϕ) = V ∗π,M,ϕ(sι), and the optimistic

performance is defined as ρ(π,M,ϕ) = V
∗
π,M,ϕ(sι). Again, whenever clear from the

context, we may omit any of the symbols π,M, or ϕ.

3.4.3 Robust Policy Iteration
Robust policy iteration (Iyengar, 2005; Kaufman and Schaefer, 2013) extends standard
policy iteration in a similar way. We start with some initial memoryless deterministic
policy π : S → A and perform robust policy evaluation (Definition 3.6). After
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convergence, we use the robust state values under the current policy V ∗π to compute
the robust state-action values Q

π
:

Q
π
(s,a) = R(s,a) + inf

P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V ∗π(s

′)

 .

The policy improvement step is performed on these robust state-action values:

π′(s) = argmax
a∈A

Q
π
(s,a).

The process repeats until the policy stabilizes, i.e., π′ = π, after which an optimal
robust policy π∗ = π′ has been found.

Methods for s-Rectangular RMDPs
For s-rectangular RMDPs, dynamic programming does not extend so straightfor-
wardly, and a lot of research has focused on finding efficient Bellman operators
for various types of uncertainty sets. Most notably, s-rectangular L1-MDPs (Ho
et al., 2018), but also s-rectangular uncertainty sets defined by an L∞-norm (Be-
hzadian et al., 2021) or φ-divergences (Ho et al., 2022). In (Ho et al., 2021), a
policy iteration algorithm was introduced. Other methods employ policy gradient
techniques (Gadot et al., 2024; Kumar et al., 2023; Wang et al., 2023).

Other Objectives
The RMDP literature primarily focuses on either finite horizon or discounted infinite
horizon reward maximization. Adaptation to reachability objectives, such as the
reach-reward maximization we consider, is usually straightforward, provided the
graph preservation property of Remark 3.5 is met. Temporal logic objectives can
be reduced to such reach-reward objectives via a product construction (Wolff et al.,
2012). Finally, recent works study average reward (also known as mean payoff)
and Blackwell optimality in RMDPs (Chatterjee et al., 2023; Grand-Clément and
Petrik, 2023; Grand-Clément et al., 2023). Average reward objectives consider the
problem of maximizing the average reward collected in t time steps when limt→∞,
and Blackwell optimality balances the standard discounted reward objective by also
accounting for long-term reward. A policy is Blackwell optimal if it is optimal for
all discount factors sufficiently close to one, i.e., all γ ∈ [γ ∗,1) (Puterman, 1994).

Convex Optimization
Given that dynamic programming approaches for MDPs extend with relative ease
to RMDPs, especially in the case of (s,a)-rectangular uncertainty sets, a natural
question to ask is whether the same goes for convex optimization approaches, and in
particular the linear programming (LP) formulation for MDPs. As Iyengar (Iyengar,
2005) already notes, however, that is not the case, and the natural analogue of the LP
of MDPs for RMDPs yields, in fact, a nonconvex optimization problem. In contrast,
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the optimistic setting does yield tractable LPs via standard dualization techniques,
which have been applied to solve PCTL objectives in (s,a)-rectangular RMDPs with
convex uncertainty sets (Puggelli et al., 2013).

3.5 Well-Known RMDP Instances
We review common types of RMDPs often used in formal verification and AI, namely
interval MDPs, L1-MDPs, and multi-environment MDPs. For each, we give the more
common definition and explain how they fit the RMDP framework.

Interval MDPs
Interval MDPs (IMDPs; Nilim and Ghaoui, 2005), also referred to as bounded-
parameter MDPs (Givan et al., 2000) or uncertain MDPs (Wolff et al., 2012), are a
special instance of (s,a)-rectangular RMDPs.

Definition 3.7 (IMDP). An interval MDP (IMDP) is a tuple ⟨S,sι,A,P,P,R⟩, where
P : S ×A×S ⇀ [0,1] and P : S ×A×S ⇀ [0,1] are two transition functions that assign
lower and upper bounds to each transition, respectively, such that

∀s, s′ ∈ S,a ∈ A : P(s,a, s′) =⊥ ⇐⇒ P(s,a, s′) =⊥,
∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) = 0 ⇐⇒ P(s,a, s′) = 0,

∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) ≤ P(s,a, s′).

Our definition of an IMDP requires consistency across enabled actions, as well
as that a transition either does not exist (where both P and P are zero) or is as-
signed an interval with a non-zero lower bound, thus ensuring graph preservation
(Remark 3.5). For IMDPs, however, the statistical model checking literature offers
solutions to circumvent this requirement (Ashok et al., 2019; Daca et al., 2016).

Implicitly, IMDPs have a constraint that each state-action pair is required to
have a valid probability distribution. An IMDP can also formally be described as
an RMDP (S,sι,A,P ,R) where the uncertainty set is of the form U = {f : X → R |
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convergence, we use the robust state values under the current policy V ∗π to compute
the robust state-action values Q

π
:

Q
π
(s,a) = R(s,a) + inf

P(s,a)∈P (s,a)




s′∈S
P(s′ |s,a)V ∗π(s

′)

 .

The policy improvement step is performed on these robust state-action values:

π′(s) = argmax
a∈A

Q
π
(s,a).

The process repeats until the policy stabilizes, i.e., π′ = π, after which an optimal
robust policy π∗ = π′ has been found.

Methods for s-Rectangular RMDPs
For s-rectangular RMDPs, dynamic programming does not extend so straightfor-
wardly, and a lot of research has focused on finding efficient Bellman operators
for various types of uncertainty sets. Most notably, s-rectangular L1-MDPs (Ho
et al., 2018), but also s-rectangular uncertainty sets defined by an L∞-norm (Be-
hzadian et al., 2021) or φ-divergences (Ho et al., 2022). In (Ho et al., 2021), a
policy iteration algorithm was introduced. Other methods employ policy gradient
techniques (Gadot et al., 2024; Kumar et al., 2023; Wang et al., 2023).

Other Objectives
The RMDP literature primarily focuses on either finite horizon or discounted infinite
horizon reward maximization. Adaptation to reachability objectives, such as the
reach-reward maximization we consider, is usually straightforward, provided the
graph preservation property of Remark 3.5 is met. Temporal logic objectives can
be reduced to such reach-reward objectives via a product construction (Wolff et al.,
2012). Finally, recent works study average reward (also known as mean payoff)
and Blackwell optimality in RMDPs (Chatterjee et al., 2023; Grand-Clément and
Petrik, 2023; Grand-Clément et al., 2023). Average reward objectives consider the
problem of maximizing the average reward collected in t time steps when limt→∞,
and Blackwell optimality balances the standard discounted reward objective by also
accounting for long-term reward. A policy is Blackwell optimal if it is optimal for
all discount factors sufficiently close to one, i.e., all γ ∈ [γ ∗,1) (Puterman, 1994).

Convex Optimization
Given that dynamic programming approaches for MDPs extend with relative ease
to RMDPs, especially in the case of (s,a)-rectangular uncertainty sets, a natural
question to ask is whether the same goes for convex optimization approaches, and in
particular the linear programming (LP) formulation for MDPs. As Iyengar (Iyengar,
2005) already notes, however, that is not the case, and the natural analogue of the LP
of MDPs for RMDPs yields, in fact, a nonconvex optimization problem. In contrast,
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the optimistic setting does yield tractable LPs via standard dualization techniques,
which have been applied to solve PCTL objectives in (s,a)-rectangular RMDPs with
convex uncertainty sets (Puggelli et al., 2013).

3.5 Well-Known RMDP Instances
We review common types of RMDPs often used in formal verification and AI, namely
interval MDPs, L1-MDPs, and multi-environment MDPs. For each, we give the more
common definition and explain how they fit the RMDP framework.

Interval MDPs
Interval MDPs (IMDPs; Nilim and Ghaoui, 2005), also referred to as bounded-
parameter MDPs (Givan et al., 2000) or uncertain MDPs (Wolff et al., 2012), are a
special instance of (s,a)-rectangular RMDPs.

Definition 3.7 (IMDP). An interval MDP (IMDP) is a tuple ⟨S,sι,A,P,P,R⟩, where
P : S ×A×S ⇀ [0,1] and P : S ×A×S ⇀ [0,1] are two transition functions that assign
lower and upper bounds to each transition, respectively, such that

∀s, s′ ∈ S,a ∈ A : P(s,a, s′) =⊥ ⇐⇒ P(s,a, s′) =⊥,
∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) = 0 ⇐⇒ P(s,a, s′) = 0,

∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) ≤ P(s,a, s′).

Our definition of an IMDP requires consistency across enabled actions, as well
as that a transition either does not exist (where both P and P are zero) or is as-
signed an interval with a non-zero lower bound, thus ensuring graph preservation
(Remark 3.5). For IMDPs, however, the statistical model checking literature offers
solutions to circumvent this requirement (Ashok et al., 2019; Daca et al., 2016).

Implicitly, IMDPs have a constraint that each state-action pair is required to
have a valid probability distribution. An IMDP can also formally be described as
an RMDP (S,sι,A,P ,R) where the uncertainty set is of the form U = {f : X → R |
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Algorithm 3.1: Algorithm to solve the IMDP inner problem infP∈P (s,a)

1: Sort S ′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i ) ≤ V (n)(s′i+1)
2: ∀s′i ∈ S

′ : P(s′i |s,a)← 0
3: budget = 1−

∑
s′∈S ′ P(s,a, s

′)
4: i← 1
5: while budget− (P(s,a, s′i )−P(s,a, s

′
i )) ≥ 0 do

6: P(s′i |s,a)← P(s,a, s′i )
7: budget← budget− (P(s,a, s′i )−P(s,a, s

′
i ))

8: i← i +1
9: end while

10: P(s′i |s,a)← P(s,a, s′i ) + budget
11: ∀j ∈ {i +1, . . . ,m}: P(s,a, s′j )← P(s,a, s′j )
12: return P(· |s,a)

∀(s,a, s′) ∈ S ×A × S : f (xsas′ ) ∈ [i, j]sas′ ⊆ [0,1]∧∀(s,a) ∈ S ×A :
∑

s′∈S f (xsas′ ) = 1}.
An example IMDP is depicted in Figure 3.3. Note that this IMDP is precisely the
RMDP from Figure 3.1 with uncertainty set U1, see Example 5.

IMDPs have the nice property that their inner problem can be solved efficiently
via a bisection algorithm (Nilim andGhaoui, 2005), more explicitly given for interval
DTMCs in (Katoen et al., 2012) and presented in Algorithm 3.1. This algorithm
sorts the successor states S ′ = {s′1, . . . , s′m} of state-action pair (s,a) by the current
value V (n) in ascending order. A variable budget indicates how much probability
mass is still free to assign when we start with assigning the lower bounds to each
successor state. Successor states occurring at low indices, i.e., with low values V (n),
will be assigned the upper bound of the transition leading to them until the budget
runs out. One state will get a remaining budget added to its lower bound, which
is the first state for which it is no longer possible to replace the lower bound by
the upper bound, ensuring the transition probability lies within its interval. The
remaining successor states, with high values, will be assigned the lower bounds,
as the budget for replacement is now zero. As a result, transition function P(s,a, ·)
forms a valid probability distribution.

For optimistic dynamic programming, i.e., the case where the inner problem is
given by the supremum over the uncertainty set instead of the infimum, we only
need to reverse the order in which the states are sorted in line 1 of Algorithm 3.1.

L1-MDPs
L1-MDPs (Strehl and Littman, 2008) are another instance of (s,a)-rectangular
RMDPs. Whereas IMDPs put an error margin around each individual transition
probability, L1-MDPs put an error margin around each probability distribution at a
state-action pair.

Definition 3.8 (L1-MDP). An L1-MDP is a tuple ⟨S,sι,A, P̃,R,d⟩, where S,sι,A and
R are as for standard MDPs, P̃ : S ×A⇀D(S) is the centre transition function and
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Algorithm 3.2: Algorithm to solve the L1-MDP inner problem infP∈P (s,a)

1: Sort S ′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i ) ≤ V (n)(s′i+1)
2: P(s′1 |s,a)←min{1, P̃(s′1 |s,a) + d(s,a)/2}
3: ∀s′i � s

′
1 ∈ S ′ : P(s

′
i |s,a)← P̃(s′i |s,a)

4: i←m
5: while

∑m
j=1P(s

′
j |s,a) > 1 do

6: P(s′i |s,a)←max{0,1−
∑

j∈{1,...,m}\{i}P(s
′
j |s,a)}

7: i← i − 1
8: end while
9: return P(· |s,a)

d : S ×A→ R≥0 is a distance function assigning a bound to each state-action pair.

An L1-MDP is an RMDP (S,sι,A,P ,R) where the uncertainty set is given by U =
{f : X→ R | ∀(s,a) ∈ S ×A :

∑
s′∈S |f (xsas′ )− P̃(s′ |s,a)| ≤ d(s,a)}, where d(s,a) bounds

the L1-error between the reference distribution P̃(s,a) and all other distributions.
Similar to IMDPs, the inner optimization problem for L1-MDPs can be solved

efficiently, again by ordering the successor states along their current value and
assigning low-ranking states the most possible probability mass and high-ranking
states the least probability mass. Specifically, the state with the lowest value s′s gets
probability mass d(s,a)/2 added to its estimate P̃(s,a, s′1), and the remaining states
from high to low get probability mass subtracted up to a total of d(s,a)/2, ensuring
a valid probability distribution. This algorithm is the dual of the algorithm for
computing the optimistic inner problem supP∈P (s,a) of Strehl and Littman (2008)
and explicitly given in Algorithm 3.2.

Multi-Environment MDPs
Multi-environment MDPs (MEMDPs; Raskin and Sankur, 2014) model discrete
uncertainty. Specifically, a MEMDP is a finite set of MDPs that share the same states,
actions, and reward function and only differ in their transition functions. Each
MDP in a MEMDP is called an environment.

Definition 3.9 (MEMDP). A multi-environment MDP (MEMDP) is a tuple ⟨S,sι,A,
{Pi }i∈I ,R⟩ where S,sι,A, and R are as for MDPs, and {Pi : S ×A ⇀ D(S)}i∈I is a set
of I = {1, . . . ,n} transition functions that are consistent with each other in terms of
enabled actions: ∀(s,a) ∈ S ×A,∀i, j ∈ I : Pi (s,a) =⊥ ⇐⇒ Pj (s,a) =⊥.

A MEMDP is an RMDP (S,sι,A,P ,R) where the uncertainty set U is discrete:
|U | � ∞, and P = {Pi }i∈I . In general, MEMDPs are non-rectangular and follow
static uncertainty semantics, as nature’s choices at each state-action pair must be
consistent with, and equivalent to, choosing a single Pi ∈ P at the start. As the
uncertainty set is discrete, it is also nonconvex. Hence, optimal policies in MEMDPs
need to be history-based and randomized; see Table 3.1.

MEMDPs have been studied in both formal methods and AI. In AI, MEMDPs
have caught interest because of their applications in robotics, naturally modelling
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Algorithm 3.1: Algorithm to solve the IMDP inner problem infP∈P (s,a)

1: Sort S ′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i ) ≤ V (n)(s′i+1)
2: ∀s′i ∈ S

′ : P(s′i |s,a)← 0
3: budget = 1−

∑
s′∈S ′ P(s,a, s

′)
4: i← 1
5: while budget− (P(s,a, s′i )−P(s,a, s

′
i )) ≥ 0 do

6: P(s′i |s,a)← P(s,a, s′i )
7: budget← budget− (P(s,a, s′i )−P(s,a, s

′
i ))

8: i← i +1
9: end while

10: P(s′i |s,a)← P(s,a, s′i ) + budget
11: ∀j ∈ {i +1, . . . ,m}: P(s,a, s′j )← P(s,a, s′j )
12: return P(· |s,a)

∀(s,a, s′) ∈ S ×A × S : f (xsas′ ) ∈ [i, j]sas′ ⊆ [0,1]∧∀(s,a) ∈ S ×A :
∑

s′∈S f (xsas′ ) = 1}.
An example IMDP is depicted in Figure 3.3. Note that this IMDP is precisely the
RMDP from Figure 3.1 with uncertainty set U1, see Example 5.

IMDPs have the nice property that their inner problem can be solved efficiently
via a bisection algorithm (Nilim andGhaoui, 2005), more explicitly given for interval
DTMCs in (Katoen et al., 2012) and presented in Algorithm 3.1. This algorithm
sorts the successor states S ′ = {s′1, . . . , s′m} of state-action pair (s,a) by the current
value V (n) in ascending order. A variable budget indicates how much probability
mass is still free to assign when we start with assigning the lower bounds to each
successor state. Successor states occurring at low indices, i.e., with low values V (n),
will be assigned the upper bound of the transition leading to them until the budget
runs out. One state will get a remaining budget added to its lower bound, which
is the first state for which it is no longer possible to replace the lower bound by
the upper bound, ensuring the transition probability lies within its interval. The
remaining successor states, with high values, will be assigned the lower bounds,
as the budget for replacement is now zero. As a result, transition function P(s,a, ·)
forms a valid probability distribution.

For optimistic dynamic programming, i.e., the case where the inner problem is
given by the supremum over the uncertainty set instead of the infimum, we only
need to reverse the order in which the states are sorted in line 1 of Algorithm 3.1.

L1-MDPs
L1-MDPs (Strehl and Littman, 2008) are another instance of (s,a)-rectangular
RMDPs. Whereas IMDPs put an error margin around each individual transition
probability, L1-MDPs put an error margin around each probability distribution at a
state-action pair.

Definition 3.8 (L1-MDP). An L1-MDP is a tuple ⟨S,sι,A, P̃,R,d⟩, where S,sι,A and
R are as for standard MDPs, P̃ : S ×A⇀D(S) is the centre transition function and
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Algorithm 3.2: Algorithm to solve the L1-MDP inner problem infP∈P (s,a)

1: Sort S ′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i ) ≤ V (n)(s′i+1)
2: P(s′1 |s,a)←min{1, P̃(s′1 |s,a) + d(s,a)/2}
3: ∀s′i � s

′
1 ∈ S ′ : P(s

′
i |s,a)← P̃(s′i |s,a)

4: i←m
5: while

∑m
j=1P(s

′
j |s,a) > 1 do

6: P(s′i |s,a)←max{0,1−
∑

j∈{1,...,m}\{i}P(s
′
j |s,a)}

7: i← i − 1
8: end while
9: return P(· |s,a)

d : S ×A→ R≥0 is a distance function assigning a bound to each state-action pair.

An L1-MDP is an RMDP (S,sι,A,P ,R) where the uncertainty set is given by U =
{f : X→ R | ∀(s,a) ∈ S ×A :

∑
s′∈S |f (xsas′ )− P̃(s′ |s,a)| ≤ d(s,a)}, where d(s,a) bounds

the L1-error between the reference distribution P̃(s,a) and all other distributions.
Similar to IMDPs, the inner optimization problem for L1-MDPs can be solved

efficiently, again by ordering the successor states along their current value and
assigning low-ranking states the most possible probability mass and high-ranking
states the least probability mass. Specifically, the state with the lowest value s′s gets
probability mass d(s,a)/2 added to its estimate P̃(s,a, s′1), and the remaining states
from high to low get probability mass subtracted up to a total of d(s,a)/2, ensuring
a valid probability distribution. This algorithm is the dual of the algorithm for
computing the optimistic inner problem supP∈P (s,a) of Strehl and Littman (2008)
and explicitly given in Algorithm 3.2.

Multi-Environment MDPs
Multi-environment MDPs (MEMDPs; Raskin and Sankur, 2014) model discrete
uncertainty. Specifically, a MEMDP is a finite set of MDPs that share the same states,
actions, and reward function and only differ in their transition functions. Each
MDP in a MEMDP is called an environment.

Definition 3.9 (MEMDP). A multi-environment MDP (MEMDP) is a tuple ⟨S,sι,A,
{Pi }i∈I ,R⟩ where S,sι,A, and R are as for MDPs, and {Pi : S ×A ⇀ D(S)}i∈I is a set
of I = {1, . . . ,n} transition functions that are consistent with each other in terms of
enabled actions: ∀(s,a) ∈ S ×A,∀i, j ∈ I : Pi (s,a) =⊥ ⇐⇒ Pj (s,a) =⊥.

A MEMDP is an RMDP (S,sι,A,P ,R) where the uncertainty set U is discrete:
|U | � ∞, and P = {Pi }i∈I . In general, MEMDPs are non-rectangular and follow
static uncertainty semantics, as nature’s choices at each state-action pair must be
consistent with, and equivalent to, choosing a single Pi ∈ P at the start. As the
uncertainty set is discrete, it is also nonconvex. Hence, optimal policies in MEMDPs
need to be history-based and randomized; see Table 3.1.

MEMDPs have been studied in both formal methods and AI. In AI, MEMDPs
have caught interest because of their applications in robotics, naturally modelling



3

42 3. A Tutorial on Robust Markov Decision Processes

several possible worlds a robot may act in (Rigter et al., 2021a). Besides being
RMDPs, MEMDPs are also a subclass of partially observable MDPs (POMDPs), where
the agent does not directly observe the states (Kaelbling et al., 1998). In particular,
a MEMDP can be transformed into a POMDP by taking the disjoint union of all
environments and using the partial observability to hide in which environment the
agent is playing (Chatterjee et al., 2020). As a result, quantitative objectives such as
reward maximization may be solved by casting the MEMDP to a POMDP and using
off-the-shelf POMDP methods.

In formal methods, emphasis has been given to complexity results, especially
for almost-sure objectives, i.e., objectives that need to be satisfied with probability
one. In (Raskin and Sankur, 2014), it is shown that almost-sure parity objectives are
in P for MEMDPs of two environments, while (van der Vegt et al., 2023) shows that
already for almost-sure reachability, an arbitrary number of environments leads
to PSPACE-completeness. Recent work completes the complexity landscape for
qualitative objectives in MEMDPs by establishing PSPACE-completeness for almost-
sure parity and Rabin objectives (Suilen et al., 2024b). In contrast, almost-sure
reachability is already EXPTIME-complete for POMDPs (Chatterjee et al., 2010), and
almost-sure parity or Rabin objectives are undecidable (Baier et al., 2008), showing
that MEMDPs are an interesting class worth investigating.

3.6 Related Models and Applications
We conclude this chapter by sketching a broader context for RMDPs. In particular,
we consider the relation of RMDPs with other models, specifically: parametric
MDPs, stochastic games, and models that employ likelihoods of transition func-
tions. Then, we discuss their application to abstraction techniques and give a short
summary of the current tool support. Note that robust POMDPs are discussed
separately in Chapter 4, and the application of RMDPs in statistical model checking
and RL are part of Chapter 5.

Parametric MDPs
Our general definition of RMDPs as given in Definition 3.1 closely resembles that of
parametric MDPs (pMDPs; Jansen et al., 2022). Indeed, both models assign variables
(parameters) to the transitions instead of concrete probabilities, effectively defining
a set of possible MDP models. Typically, pMDPs are defined more generally and
allow for a rational function over two polynomials on the transitions.

The parameter synthesis problem (Dehnert et al., 2016) typically considered
in pMDPs is, however, different from the problem of computing robust policies
and values in RMDPs. Parameter synthesis asks whether there exists a variable
assignment such that for all policies, the value of an objective surpasses some
threshold. That is, the quantifiers are reversed compared to RMDPs.

Common techniques for parameter synthesis in pMDPs or pMCs include convex
optimization approaches (Cubuktepe et al., 2018, 2022), parameter lifting (Quat-
mann et al., 2016), or exact computation of the solution function (Junges et al.,
2024). Tool support for pMDPs can be found in, e.g., Storm (Hensel et al., 2022) or
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PROPhESY (Dehnert et al., 2015). Parameter synthesis in pMDPs with memoryless
deterministic policies is known to be NP-complete for a fixed number of parameters
and ETR-complete for arbitrary numbers of parameters (Junges et al., 2021b).

Stochastic Games
The connection between stochastic games (SG) and RMDPs has been noted many
times in the RMDP literature. See, e.g., (Goyal and Grand-Clément, 2023; Grand-
Clément et al., 2023; Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann et al.,
2013; Xu and Mannor, 2012). The most explicit game interpretations are given by
(Iyengar, 2005; Nilim and Ghaoui, 2005), which both link reward maximization in
(s,a)-rectangular RMDPs to turn-based zero-sum stochastic games. This equivalent
game is constructed by adding, in addition to the states S , states that correspond
with tuples ⟨s,a⟩ of states s ∈ S and actions a ∈ A. Then, the agent controls the
original states, and nature controls the tuple states. In a state s, the agent chooses
an action a, upon which the game transitions deterministically to the nature state
⟨s,a⟩. In this state ⟨s,a⟩, nature chooses a variable assignment. Given a nature state
⟨s,a⟩ and variable assignment f ∈ U , the game transitions stochastically to an agent
state s′ according to P (f )(s,a, s′). The reward function assigns the same value as the
reward function of the RMDP in the agent states and zero in nature states.

Changes in the assumptions on nature or the objective require some changes in
the translation to stochastic games. Wiesemann et al. (2013) mentions that a similar
construction follows for s-rectangular RMDPs, but does not describe the actual
game. As s-rectangular RMDPs assume that nature chooses variable assignments
without information of the agent’s latest action, such games would have to either be
partially observable or concurrent. An average reward objective in RMDPs can be
linked to zero-sum mean pay-off games (Grand-Clément et al., 2023).

A key difference between RMDPs and SGs is that in RMDPs, it is typically
assumed that nature plays memoryless, whereas in SGs, both players are allowed
to use history. Grand-Clément et al. (2023) show that the assumption of playing
against a memoryless nature is nonrestrictive for discounted reward maximization
against a convex and compact s-rectangular uncertainty set.

Likelihoods of Transition Functions
RMDPs describe sets of transition functions without any further assumptions or
prior knowledge of how likely one transition function over another is. Such prior
knowledge may be modeled as a probability distribution over the transition function
P of an RMDP. Models that do account for such prior knowledge, if available, are
generally less conservative than RMDPs. Although equivalent, it is often more
convenient to model this setting as a pMDP together with a distribution over the
parameter values. As such, these models have been named uncertain parametric
MDPs (upMDPs) in the literature (Badings et al., 2022a). A common verification
question is then to obtain a solution that is robust against (for example) at least a
99% probability mass of the distribution.

One important question for upMDPs is whether policies can depend on the
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realization of the (uncertain) parameters. For example, one possible assumption is
that we can first observe the realization of the parameters, and then can compute an
optimal policy based on this observation. This setting has first been investigated
by (Cubuktepe et al., 2020) and in more detail by (Badings et al., 2022a). The other
possible assumption is that we cannot observe the values of the parameters and
instead need to compute a single policy that is robust against all weather conditions.
This setting has been considered by (Rickard et al., 2023) for upMDPs, and also
relates to so-called Bayes-adaptive MDPs, which are commonly used in RL (Costen
et al., 2023; Guez et al., 2012; Rigter et al., 2021b). A variant where parameter values
cannot be observed and thus must be learned has been studied by (Arming et al.,
2018). The latter setting is arguably more difficult to solve due to dependencies
between the policies for different weather conditions. However, which of the two
assumptions is more appropriate depends on the context.

In practice, it may be unrealistic to have access to an explicit representation of
the distributions over transition functions, which motivates sampling-based verifi-
cation approaches for upMDPs, such as (Cubuktepe et al., 2020; Rickard et al., 2023).
A similar setting for continuous-time Markov chains is studied by (Badings et al.,
2022b; Rickard et al., 2023). Generally, these approaches assume access to a finite
set of parameter samples and aim to compute a solution with statistical (PAC-style)
guarantees on its performance on yet another sample from the underlying distri-
bution. For example, (Badings et al., 2022a) obtains PAC guarantees by techniques
from scenario optimization, which is a methodology to deal with stochastic convex
optimization in a data-driven fashion (Campi and Garatti, 2008; Campi et al., 2021).

Applications in Abstraction
RMDPs are commonly used to model abstractions of more complex systems. The
general idea is that states of a (non-robust) MDP can be aggregated by overapproxi-
mating the transition probabilities in the uncertainty set of an RMDP (Jaeger et al.,
2020). This idea at least dates back to (Larsen and Skou, 1991) and has already been
identified as an interesting application of RMDPs by Givan et al. (2000). Since then,
such abstraction techniques have been used across areas, including formal methods,
control theory, and AI.

Game-based abstraction of MDPs in the form of IMDPs has been studied by (Kat-
tenbelt et al., 2010; Kwiatkowska et al., 2006). So-called 3-valued abstractions of
Markov chains are developed by (Fecher et al., 2006), who abstract the system into
an interval Markov chain whose labelling function has three possible values (true,
false, or don’t know). A similar approach for 3-valued abstraction of CTMCs is
presented by (Katoen et al., 2007). Probabilistic bisimulation of IMDPs to reduce
the number of states is considered by (Hashemi et al., 2016).

In control theory, models typically have continuous state and action spaces. A
popular approach to synthesizing provably correct control policies is to generate
a finite-state abstraction of the continuous model (Abate et al., 2008; Alur et al.,
2000; Lahijanian et al., 2015). Under an appropriate simulation relation, satisfaction
guarantees of temporal logic formulae carry over from the abstract to the continuous
model (Girard and Pappas, 2007). Various papers generate IMDP abstractions of
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stochastic systems (Badings et al., 2023a,b; Coppola et al., 2024; Lavaei et al., 2023),
and tool support has been developed by, e.g., (Cauchi and Abate, 2019; Wooding
and Lavaei, 2024). Similar to game-based abstraction, the general idea is to use the
probability intervals to capture uncertainties and abstraction errors. For further
details on abstractions in control, we refer to the survey (Lavaei et al., 2022).

Tool Support
General-purpose tool support for RMDPs is still relatively limited compared to other
models. The probabilistic model checkers PRISM (Kwiatkowska et al., 2011) and
Storm (Hensel et al., 2022) both support basic IMDP model checking, with PRISM’s
provision slightly more advanced, e.g., in terms of user support for modelling.
Storm, on the other hand, has more advanced support for pMDPs, and has been
used as a back-end in several of the previously discussed works, e.g., (Badings et al.,
2022a,b; Cubuktepe et al., 2022; Suilen et al., 2020). Additionally, there is also the
Julia-based IntervalMDP.jl (Mathiesen et al., 2024) for IMDPs.

3.7 Conclusion
This chapter provided an overview of RMDPs and their solution methods, with a
detailed account of robust dynamic programming. We also introduced three well-
known and commonly used classes of RMDPs: IMDPs, L1-MDPs, and MEMDPs.
We concluded this chapter with a brief summary of the relation of RMDPs to
other models and their applications in abstraction. For the relation of RMDPs to
robust POMDPs, we refer the reader to Chapter 4. The application of RMDPs in
learning settings, specifically statistical model checking and RL, will be discussed
in Chapter 5.
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Finite-Memory Policies

for Robust POMDPs

In this chapter, we consider the problem of computing finite-memory policies for
robust POMDPs (RPOMDPs). RPOMDPs extend RMDPs with partial observability
in the same way POMDPs extend MDPs. Policies for RPOMDPs need not only to be
robust against the uncertainty set but also against the state uncertainty stemming
from partial observability. As such, we focus on finding finite-memory policies
encoded as finite-state controllers. We present two algorithms based on convex
optimization approaches to compute such finite-memory policies for RPOMDPs. We
state and encode the problem as a nonconvex optimization problem with infinitely
many constraints and then present two approaches to solve this optimization prob-
lem towards a local optimum. The first approach is to use the convex-concave
procedure (CCP) to convexify the problem into a convex quadratically constrained
quadratic program and enumerate the vertices of the uncertainty set, yielding a
finite convex optimization problem. The second approach uses dualization to make
the problem finite and then uses sequential convex programming (SCP) to linearize
it into a linear program. Both approaches iteratively convexify or linearize around a
previous solution until converging to a local optimum.

4.1 Introduction
Partially observableMarkov decision processes (POMDPs) model sequential decision-
making problems under stochastic uncertainties and partial information (Kaelbling
et al., 1998), and can be seen as an extension of standard MDPs with state uncer-
tainty. Just as with MDPs, POMDPs also rely on the assumption that the transition
and observation probabilities are precisely given. This assumption is highly unreal-
istic in many scenarios.

For example, take an aircraft collision avoidance system that issues advisories to
pilots (Kochenderfer, 2015). Modeled as a POMDP, the actions relate to such advice
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and concern the flying altitude and the speed. Probabilities enter the model based
on data on the reaction time of a pilot and sensor noise in observations regarding
the speed and altitude of other aircraft. Depending on the amount and quality of
the data, the probabilities derived from the data may be highly inaccurate, leading
to poor advisories. Robust POMDPs (RPOMDPs) mitigate precisely such concerns
in the same way as RMDPs do: by incorporating an uncertainty set around the
transition and observation functions.

While both partially observable Markov decision processes (POMDPs) and ro-
bust MDPs have been studied extensively over the last few decades, as discussed
in Chapters 2 and 3, their combination, i.e., RPOMDPs, remains relatively under
studied. In particular, their semantics have only recently been studied in detail
by Bovy et al. (2024), showing that in contrast to (s,a)-rectangular RMDPs, in (s,a)-
rectangular RPOMDPs the notions of static and dynamic uncertainty semantics do
not coincide in general.

On the algorithmic side, a few approaches to RPOMDPs exist. Osogami (2015)
extends standard POMDP approaches of value iteration on the belief space to that
of RPOMDPs. Other approaches exist but either consider a different notion of
an optimal policy, such as optimal for one instance in the uncertainty set (Itoh
and Nakamura, 2007) or optimal given a pessimism level (Saghafian, 2018), or
have additional assumptions on the uncertainty set, such as uncertainty in the
observation function only (Chamie and Mostafa, 2018) or a distribution over the
uncertainty set (Burns and Brock, 2007; Nakao et al., 2021).

4.1.1 Contributions and Approach
Methods that employ finite-memory policies in the form of finite-state controllers
(FSCs) for RPOMDPs have long been lacking, and the contribution of this chapter is
precisely that. We develop two novel algorithms for efficiently computing robust
finite-memory policies for RPOMDPs using robust convex optimization techniques.
Specifically, we consider interval POMDPs (IPOMDPs), which are the natural exten-
sion of IMDPs with partial observability. Nonetheless, the results of this chapter
extend to other types of (s,a)-rectangular RPOMDPs. Both algorithms follow the
same overall outline and only deviate in one step, as we discuss next and also
illustrate in Figure 4.1.

i. Finite-memory policies via FSCs. We unfold the memory of an FSC into the
state space of a POMDP, following Definition 2.11, which, as we discuss, also
applies to IPOMDPs.

ii. Semi-infinite optimization problems. We define semi-infinite optimization prob-
lems that optimize a memoryless stochastic policy for each objective, i.e.,
reachability, reach-reward, discounted reward, and stochastic shortest path.
These optimization problems are nonconvex, since variables of the optimiza-
tion problems are multiplied, resulting into nonconvex constraints. Further-
more, the optimization problems are semi-infinite, as they consist of a finite
number of variables but an infinite number of constraints that encode all
possible probability distributions in the uncertainty set of the RPOMDP. Such
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optimization problems are also known as robust optimization problems, and
we call the constraints affected by the uncertainty set the uncertain constraints.

iii. Building finite convex optimization problems. To obtain computationally tractable
optimization problems, we need to deal with the nonconvexity and the infi-
nite number of constraints. We resolve these two problems in tandem by
employing two approaches from the convex optimization literature: the
convex-concave procedure (CCP) and sequential convex programming (SCP). Both
approaches iteratively construct and solve a convex approximation of the orig-
inal nonconvex problem, yielding efficiently solvable optimization problems
at the cost of optimality. Both approaches only converge to a local optimum.
Applying these two methods to our original semi-infinite optimization prob-
lems results in the following two concrete algorithms, which, for convenience,
we name after the approximation technique.

(a) CCP: Convex-concave procedure. In our first algorithm, we use the penalty
convex-concave procedure (CCP; Lipp and Boyd, 2016) to build a (still semi-
infinite) convex quadratically constrained quadratic program (QCQP)
around a previous solution. Robust QCQPs with polytopic uncertainty
sets, as the ones we have in our setting, can be made finite by enu-
merating the vertices of the polytope (Löfberg, 2012). Together, the
convex-concave procedure and enumeration yield finite, convex QCQPs
that are iteratively solved until convergence.

(b) SCP: Sequential convex programming. In our second algorithm, we split
the concerns of nonconvexity and robustness by first building a sim-
ple RPOMDP, following the construction of Junges et al. (2018). We
obtain constraints that (1) are nonconvex but unaffected by the uncer-
tainty set and (2) constraints that are uncertain but are already linear
in return. The uncertain constraints are dualized following standard
robust optimization principles (Ben-Tal and Nemirovski, 1998; Bertsimas
et al., 2011), while the nonconvex constraints are linearized around a
previous solution using sequential convex programming (SCP; Mao et al.,
2018). Together, dualization and SCP yield finite linear programs that
are iteratively solved until convergence.

iv. Termination. While both CCP and SCP are guaranteed to eventually converge
to a local optimum, the convergence criterion of these techniques can be overly
conservative for our purpose of computing robust policies. Therefore, we
include a robust policy evaluation step at the end of each iteration. When the
performance of the computed policy surpasses a desired threshold, we may
already terminate the procedure. An additional benefit is that the resulting
value function can also be used to correct numerical inaccuracies of the convex
optimization solver.

In our experimental evaluation, we compare both approaches on several bench-
marks. Notably, the SCP approach can solve RPOMDPs with hundreds of thousands
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optimization problems are also known as robust optimization problems, and
we call the constraints affected by the uncertainty set the uncertain constraints.

iii. Building finite convex optimization problems. To obtain computationally tractable
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sets, as the ones we have in our setting, can be made finite by enu-
merating the vertices of the polytope (Löfberg, 2012). Together, the
convex-concave procedure and enumeration yield finite, convex QCQPs
that are iteratively solved until convergence.

(b) SCP: Sequential convex programming. In our second algorithm, we split
the concerns of nonconvexity and robustness by first building a sim-
ple RPOMDP, following the construction of Junges et al. (2018). We
obtain constraints that (1) are nonconvex but unaffected by the uncer-
tainty set and (2) constraints that are uncertain but are already linear
in return. The uncertain constraints are dualized following standard
robust optimization principles (Ben-Tal and Nemirovski, 1998; Bertsimas
et al., 2011), while the nonconvex constraints are linearized around a
previous solution using sequential convex programming (SCP; Mao et al.,
2018). Together, dualization and SCP yield finite linear programs that
are iteratively solved until convergence.

iv. Termination. While both CCP and SCP are guaranteed to eventually converge
to a local optimum, the convergence criterion of these techniques can be overly
conservative for our purpose of computing robust policies. Therefore, we
include a robust policy evaluation step at the end of each iteration. When the
performance of the computed policy surpasses a desired threshold, we may
already terminate the procedure. An additional benefit is that the resulting
value function can also be used to correct numerical inaccuracies of the convex
optimization solver.

In our experimental evaluation, we compare both approaches on several bench-
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Figure 4.1: Global outline of the approach. More detailed outlines of CCP and SCP are given
in their respective sections.

of states, which is out of reach for the belief-based methods of Osogami (2015). In
summary, the contribution presented in this chapter is as follows.

Contribution

We present novel algorithms based on convex optimization to compute finite-
memory policies for robust POMDPs.

Structure of This Chapter
The remainder of this chapter is structured as follows. We start with the necessary
background and definitions in Section 4.2. In Section 4.3, we present the general
semi-infinite optimization problems for computing robust policies in RPOMDPs.
Then, Section 4.4 details the CCP approach to make the optimization problems
tractable, while Section 4.5 details the SCP approach. In Section 4.6, we empirically
evaluate and compare both approaches. Finally, in Section 4.7, we conclude the
chapter with a discussion of limitations and future work.

4.2 Background: Robust POMDPs
This chapter builds upon POMDPs and RMDPs, as defined in Chapters 2 and 3. For
ease of reading, we summarize the definitions here and refer back to the previous
chapters for full definitions and discussion. We then briefly introduce robust
POMDP semantics and finally define interval POMDPs (IPOMDPs).

4.2.1 Preliminaries
POMDPs. A POMDP (Definition 2.7) is a tuple ⟨S,bι,A,P,R,Z,O⟩, where S is a
finite set of states, bι is the initial belief, A is a finite set of actions, P : S ×A→D(S)
is the transition function, R : S ×A→ R is the reward function, Z is a finite set of
observations, and O : S → Z is the observation function. For simplicity, we make
the following two assumptions on our POMDPs. First, there is a single, observable,
initial state sι. Hence, the initial belief is a Dirac distribution, bι =Dirac(sι). Second,
the observation function is state-based and deterministic. Recall from Chapter 2
that this second assumption is without loss of generality as any POMDP with
a general observation function can be transformed into a (polynomially larger)
POMDP with such state-based deterministic observations (Chatterjee et al., 2016).

4.2. Background: Robust POMDPs

4

51

Policies. A memoryless stochastic policy for a POMDP is a function π : S→D(A).
Finite-memory policies are encoded through FSCs (Definition 2.8). An FSC is a
tuple ⟨N ,nι,α,η⟩, where N is a finite set of memory nodes, nι is the initial node,
α : N ×Z→D(A) is the action mapping, and η : N ×Z×A→D(N ) is the randomized
memory update function. The memory nodes of an FSC can be unfolded into the
state space of a POMDP such that computing a memoryless policy on the unfolded
POMDP yields an FSC for the original POMDP, see Definition 2.11.

RMDPs. Additionally, recall that an RMDP (Definition 3.1) is a tuple ⟨S,sι,A,P ,R⟩,
where the uncertain transition function is defined as P : U → (S ×A⇀D(S)). The
uncertainty set U = {f : X → R | constraints on f } defines the set of admissible
value assignments to the variables in X. An RMDP is (s,a)-rectangular if there are
no dependencies between the constraints on the variables at different state-action
pairs, see Section 3.3 for a more detailed discussion of rectangularity.

IMDPs. An IMDP (Definition 3.7) is an (s,a)-rectangular RMDP of the form
⟨S,sι,A,P,P,R⟩. The transition functions P and P define lower and upper bounds
on each individual transition probability that are required to satisfy the following
consistency requirements:

∀s, s′ ∈ S,a ∈ A : P(s,a, s′) =⊥ ⇐⇒ P(s,a, s′) =⊥,
∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) = 0 ⇐⇒ P(s,a, s′) = 0, (4.1)

∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) ≤ P(s,a, s′).

Objectives and performance. We consider all four objectives defined in Defini-
tion 2.5 in this chapter, i.e., reachability, discounted reward, reach-reward, and
stochastic shortest path. We denote these objectives by

ϕ ∈Φ = {PMax(♦T ),RMax(♦T ),RMin(♦T ),RMax(γ)}.

For R(PO)MDPs, we only use the pessimistic extension of these objectives, as defined
in Definition 3.4, denoted

ϕ ∈Φ = {PMaxMin(♦T ),RMaxMin(♦T ),RMinMax(♦T ),RMaxMin(γ)}.

The performance of an FSC policy π on a POMDP M for objective ϕ ∈ Φ is com-
puted via policy evaluation as defined in Definition 2.9 and denoted by ρ(π,M,ϕ).
The robust (or worst-case) performance of a memoryless policy π : S → D(A) on
R(PO)MDPM for pessimistic objective ϕ ∈Φ is denoted ρ(π,M,ϕ) and computed
through robust policy evaluation, see Definition 3.6 and Section 3.4 in general.

Linear programming for MDPs. Recall from Section 2.2.4 that optimizing any
of the objectives ϕ ∈ Φ in an MDP can be done through a linear program (LP).
An LP, and more generally any (non)linear optimization problem consists of a set
of variables that need to be assigned values in R, an objective function that needs
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summary, the contribution presented in this chapter is as follows.

Contribution
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background and definitions in Section 4.2. In Section 4.3, we present the general
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Then, Section 4.4 details the CCP approach to make the optimization problems
tractable, while Section 4.5 details the SCP approach. In Section 4.6, we empirically
evaluate and compare both approaches. Finally, in Section 4.7, we conclude the
chapter with a discussion of limitations and future work.

4.2 Background: Robust POMDPs
This chapter builds upon POMDPs and RMDPs, as defined in Chapters 2 and 3. For
ease of reading, we summarize the definitions here and refer back to the previous
chapters for full definitions and discussion. We then briefly introduce robust
POMDP semantics and finally define interval POMDPs (IPOMDPs).

4.2.1 Preliminaries
POMDPs. A POMDP (Definition 2.7) is a tuple ⟨S,bι,A,P,R,Z,O⟩, where S is a
finite set of states, bι is the initial belief, A is a finite set of actions, P : S ×A→D(S)
is the transition function, R : S ×A→ R is the reward function, Z is a finite set of
observations, and O : S → Z is the observation function. For simplicity, we make
the following two assumptions on our POMDPs. First, there is a single, observable,
initial state sι. Hence, the initial belief is a Dirac distribution, bι =Dirac(sι). Second,
the observation function is state-based and deterministic. Recall from Chapter 2
that this second assumption is without loss of generality as any POMDP with
a general observation function can be transformed into a (polynomially larger)
POMDP with such state-based deterministic observations (Chatterjee et al., 2016).
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where the uncertain transition function is defined as P : U → (S ×A⇀D(S)). The
uncertainty set U = {f : X → R | constraints on f } defines the set of admissible
value assignments to the variables in X. An RMDP is (s,a)-rectangular if there are
no dependencies between the constraints on the variables at different state-action
pairs, see Section 3.3 for a more detailed discussion of rectangularity.
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on each individual transition probability that are required to satisfy the following
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∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) ≤ P(s,a, s′).

Objectives and performance. We consider all four objectives defined in Defini-
tion 2.5 in this chapter, i.e., reachability, discounted reward, reach-reward, and
stochastic shortest path. We denote these objectives by

ϕ ∈Φ = {PMax(♦T ),RMax(♦T ),RMin(♦T ),RMax(γ)}.

For R(PO)MDPs, we only use the pessimistic extension of these objectives, as defined
in Definition 3.4, denoted

ϕ ∈Φ = {PMaxMin(♦T ),RMaxMin(♦T ),RMinMax(♦T ),RMaxMin(γ)}.

The performance of an FSC policy π on a POMDP M for objective ϕ ∈ Φ is com-
puted via policy evaluation as defined in Definition 2.9 and denoted by ρ(π,M,ϕ).
The robust (or worst-case) performance of a memoryless policy π : S → D(A) on
R(PO)MDPM for pessimistic objective ϕ ∈Φ is denoted ρ(π,M,ϕ) and computed
through robust policy evaluation, see Definition 3.6 and Section 3.4 in general.

Linear programming for MDPs. Recall from Section 2.2.4 that optimizing any
of the objectives ϕ ∈ Φ in an MDP can be done through a linear program (LP).
An LP, and more generally any (non)linear optimization problem consists of a set
of variables that need to be assigned values in R, an objective function that needs
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to be maximized or minimized, and constraints that need to be satisfied (Boyd
and Vandenberghe, 2004). For instance, the reach-reward objective for an MDP
M = ⟨S,sι,A,P,R⟩ with target set T ⊂ S can be encoded into an LP as follows. Let
S∞ ⊆ S be the set of states for which there exists a policy that does not reach T
almost-surely, and denote the remaining states by S? = S \ (T ∪ S∞). We define the
set of variables {vs ∈ R | s ∈ S?}. These variables encode the value function V : S→ R
at each state s ∈ S?. The encoding for maximizing reach-reward is then given by the
following minimzing LP:

Minimize vsι
Subject to

∀s ∈ T : vs = 0,

∀s ∈ S?, a ∈ A(s) : vs ≥ R(s,a) +
∑

s′∈S
P(s′ |s,a) · vs′ .

Solving this LP yields value assignments for each variable, denoted by v̂s, that
precisely correspond with the optimal value function: V ∗(s) = v̂s. For details on how
to encode other objectives for MDPs in LPs we refer back to Section 2.2.4.

Robust POMDP Semantics
We now formally introduce robust POMDPs (RPOMDPs) and their semantics1.
We start with the general definition of (Bovy et al., 2024). Intuitively, we extend
the definition of POMDPs to RPOMDPs the same way as we extended MDPs to
RMDPs. However, to maintain the generality of the definition, we separate the sets
of observations that belong to the agent, to nature, and those that are visible to both,
and similarly split the observation function into three. Finally, we add two more
elements to our definition, stickiness and order of play, which are required to fully
specify the semantics of the RPOMDP.

In the following, let a denote the agent, n nature, and an both players.

Definition 4.1 (RPOMDP). An RPOMDP is a tuple ⟨S,sι,A,P ,R,Za,Zn,Zan,Oa,On,
Oan,stick,order⟩, where S,sι,A,P and R are as in RMDPs: a finite set of states, the
initial state, a finite set of actions, the uncertain transition function, and the reward
function. The finite sets Za, Zn, and Zan are the (private) observations for agent
and nature and the set of shared (public) observations, respectively. The private
and shared observation functions are Oa : S→ Za, On : S→ Zn and Oan : S→ Zan.
The stickiness function stick : X ×Zn ×Zan ×A→ {0,1} determines when a variable
assignment remains fixed (‘sticks’) and when nature is free to choose a different
value assignment. Finally, the order of play order ∈ {a,n} determines which player
moves first.

Stickiness generalizes the notions of static and dynamic uncertainty in RMDPs.
Recall that static uncertainty essentially requires nature to choose a variable assign-
ment for the RMDP once, while dynamic uncertainty allows nature to change the
1Note that while the author contributed to the paper (Bovy et al., 2024), RPOMDP semantics are not a
contribution of this thesis and only summarized here as preliminary material.
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Figure 4.2: An example of an IPOMDP.

variable assignment in the future. These coincide with full stickiness and zero sticki-
ness, respectively. Other intermediate forms of stickiness can also be constructed;
see (Bovy et al., 2024) for discussion and an example.

Together, stickiness and order of play determine the game semantics of the
RPOMDP. Analogous to RMDPs, RPOMDPs can be fully formalized as a zero-sum
partially observable stochastic game (POSG) where the agent selects actions to max-
imize their reward, and nature selects variable assignments within the uncertainty
set to minimize. In RMDPs, nature is typically assumed to play memoryless deter-
ministic. To deal with partial observability, nature plays with memory in RPOMDPs.
Stickiness and the order of play determine what variable assignments are available
for nature to choose from, while the order of play influences nature’s history. For a
full account of RPOMDP semantics, including explicit construction of the POSG
defining the semantics, we refer to (Bovy et al., 2024).

As with standard POMDPs, the restriction to deterministic state-based observa-
tion functions is without loss of generality. For RPOMDPs, too, every (uncertain)
observation function can be transformed by expanding the state space and encoding
the stochasticity into the transition function (Appendix B; Bovy et al., 2024).

4.2.2 Interval POMDPs
The algorithms presented in this chapter focus on a particular type of RPOMDPs:
Interval POMDPs (IPOMDPs) with full stickiness, where nature plays first and
chooses an unknown but fixed transition model P ∈ P , after which the agent needs
to optimize its policy against this unknown choice. We give nature full observability;
hence, there is only a single observation function for the agent. To that end, we
define interval POMDPs as follows:

Definition 4.2 (Interval POMDP). An interval POMDP (IPOMDP) is a tupleM =
⟨S,sι,A,P,P,R,Z,O⟩, where S is a finite set of states, sι ∈ S is the initial state, A is
the finite set of actions, P : S ×A × S → [0,1] and P : S ×A × S → [0,1] are lower
and upper bounds on the transition probabilities satisfying the same consistency
requirement as IMDPs (Equation 4.1), Z is a finite set of observations, andO : S→ Z
is the deterministic state-based observation function.
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to be maximized or minimized, and constraints that need to be satisfied (Boyd
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of observations that belong to the agent, to nature, and those that are visible to both,
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Recall that static uncertainty essentially requires nature to choose a variable assign-
ment for the RMDP once, while dynamic uncertainty allows nature to change the
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variable assignment in the future. These coincide with full stickiness and zero sticki-
ness, respectively. Other intermediate forms of stickiness can also be constructed;
see (Bovy et al., 2024) for discussion and an example.

Together, stickiness and order of play determine the game semantics of the
RPOMDP. Analogous to RMDPs, RPOMDPs can be fully formalized as a zero-sum
partially observable stochastic game (POSG) where the agent selects actions to max-
imize their reward, and nature selects variable assignments within the uncertainty
set to minimize. In RMDPs, nature is typically assumed to play memoryless deter-
ministic. To deal with partial observability, nature plays with memory in RPOMDPs.
Stickiness and the order of play determine what variable assignments are available
for nature to choose from, while the order of play influences nature’s history. For a
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defining the semantics, we refer to (Bovy et al., 2024).

As with standard POMDPs, the restriction to deterministic state-based observa-
tion functions is without loss of generality. For RPOMDPs, too, every (uncertain)
observation function can be transformed by expanding the state space and encoding
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chooses an unknown but fixed transition model P ∈ P , after which the agent needs
to optimize its policy against this unknown choice. We give nature full observability;
hence, there is only a single observation function for the agent. To that end, we
define interval POMDPs as follows:

Definition 4.2 (Interval POMDP). An interval POMDP (IPOMDP) is a tupleM =
⟨S,sι,A,P,P,R,Z,O⟩, where S is a finite set of states, sι ∈ S is the initial state, A is
the finite set of actions, P : S ×A × S → [0,1] and P : S ×A × S → [0,1] are lower
and upper bounds on the transition probabilities satisfying the same consistency
requirement as IMDPs (Equation 4.1), Z is a finite set of observations, andO : S→ Z
is the deterministic state-based observation function.
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Figure 4.3: Example 2-unfolding of state s0 of the IPOMDP from Figure 4.2.

An example of an IPOMDP with discussion of its semantics is presented in
Figure 4.2. For ease of presentation, we write P for the function mapping transitions
to intervals, i.e., P (s′ |s,a) = [P(s,a, s′),P(s,a, s′)]. For a transition function P : S ×A⇀
D(S) where each probability lies in its respective interval, we write P ∈ P .

IPOMDPs are (s,a)-rectangular, we can unfold FSC memory nodes into the
state space of the IPOMDP. The construction is the same as for standard POMDPs
(Definition 2.11), except that we now copy the uncertainty set instead of the proba-
bility distribution at each state-action pair. As an example, Figure 4.3 shows the
2-unfolding of state s0 of the IPOMDP from Figure 4.2.

Using k-unfolding on IPOMDPs allows us to, just as with standard POMDPs,
compute and evaluate FSCs as if they are memoryless policies. Unfolding an
IPOMDP, or an (s,a)-rectangular RPOMDP in general, has one important implica-
tion for the rectangularity assumption made when evaluating policies.

Remark 4.3 (k-unfolding and rectangularity). To ensure computational tractability
of robust policy evaluation, we require (s,a)-rectangularity. That is, there are no
dependencies in the uncertainty set between different state-action pairs. When
unfolding the IPOMDP, we create copies of state-action pairs and their associated
uncertainty sets. These copies represent the agent’s internal memory. It would be
natural to assume nature cannot exploit any information the agent stores internally.
The consequence of that assumption would be, however, that the unfolded IPOMDP
is no longer (s,a)-rectangular, as there are now multiple state-action pairs (for
instance (⟨s0,1⟩ ,⟨a1,1⟩ and ⟨s0,1⟩ ,⟨a1,2⟩) where nature would have to fix a single
choice in the uncertainty set for both actions at once. Hence, for computational
efficiency, we assume full rectangularity on the unfolded state space, i.e., (s,n,a)-
rectangularity, which when used in robust policy evaluation provides a conservative
bound on the policy’s performance.

4.3 Nonlinear Optimization for Robust Policies
The problem of computing a stationary stochastic policy π : S → D(A) that opti-
mizes one of the robust objectives ϕ ∈ Φ we consider can be precisely encoded
into a semi-infinite nonlinear optimization problem, which we shall simply refer to as
the nonlinear program (NLP). These NLPs are, in fact, semi-infinite quadratically
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constrained quadratic programs (QCQPs) and nonconvex in general. Note that
similar finite optimization problems have been used to compute FSCs for ordi-
nary POMDPs (Amato et al., 2010) and parameter synthesis in parametric Markov
models (Junges et al., 2024).

We present NLPs below for each of our objectives, i.e., maximizing reachability,
maximizing reach-reward, stochastic shortest path, and maximizing discounted
reward. Then, in Sections 4.4 and 4.5 we present two methods for dealing with
the semi-infiniteness and nonconvexity of the NLPs, either via the convex-concave
procedure (CCP) or by sequential convex programming (SCP).

In all of the following optimization problems, {πs,a ∈ (0,1] | s ∈ S,a ∈ A} are
the variables that encode the memoryless stochastic policy π : S→D(A), and {vs ∈
[0,∞) | s ∈ S} are the variables that encode the value function V : S→ R. Note that
the range of values a variable can take is included in the definitions above and not
explicitly included in the constraints of the optimization problems below. After
solving the optimization problem, the value assigned to a variable x is denoted by x̂.
Remark 4.4. The policy variables are bounded away from zero to ensure transitions
cannot be removed from the optimization problem. Consequently, any policy
computed through such an optimization problem will be stochastic with full support,
i.e., every action will be chosen with some probability strictly greater than zero.
When the optimization problem encodes an IPOMDP with memory unfolded into
its state space, the resulting FSC will also have an action mapping with full support,
as well as a fully connected memory update function.

Objectives with a target set T ⊆ S , i.e., PMax(♦T ),RMax(♦T ), and RMin(♦T ), are
preprocessed based on their underlying graph, just as for value iteration in standard
MDPs, see Chapter 2. Let S∞ ⊆ S be the set of states for which there exists a
policy that does not reach T almost-surely, and denote the remaining states by
S? = S \ (T ∪ S∞). We construct a separate optimization problem for each objective,
which we present below.

NLP for Maximizing Reachability
We define the following nonlinear optimization problem that maximizes the reacha-
bility probability of the target set:

Maximize vsι (4.2)

Subject to

∀s ∈ T : vs = 1, (4.3)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.4)

∀s, s′ ∈ S?, a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.5)

∀s ∈ S?,∀P ∈ P : vs ≤
∑

a∈A(s)
πs,a ·

∑

s′∈S
P(s′ |s,a) · vs′ . (4.6)

This NLP maximizes the probability to reach T from the initial state sι, as encoded
in the objective function (4.2). Constraint (4.3) ensures that states s ∈ T are assigned
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Figure 4.3: Example 2-unfolding of state s0 of the IPOMDP from Figure 4.2.

An example of an IPOMDP with discussion of its semantics is presented in
Figure 4.2. For ease of presentation, we write P for the function mapping transitions
to intervals, i.e., P (s′ |s,a) = [P(s,a, s′),P(s,a, s′)]. For a transition function P : S ×A⇀
D(S) where each probability lies in its respective interval, we write P ∈ P .

IPOMDPs are (s,a)-rectangular, we can unfold FSC memory nodes into the
state space of the IPOMDP. The construction is the same as for standard POMDPs
(Definition 2.11), except that we now copy the uncertainty set instead of the proba-
bility distribution at each state-action pair. As an example, Figure 4.3 shows the
2-unfolding of state s0 of the IPOMDP from Figure 4.2.

Using k-unfolding on IPOMDPs allows us to, just as with standard POMDPs,
compute and evaluate FSCs as if they are memoryless policies. Unfolding an
IPOMDP, or an (s,a)-rectangular RPOMDP in general, has one important implica-
tion for the rectangularity assumption made when evaluating policies.

Remark 4.3 (k-unfolding and rectangularity). To ensure computational tractability
of robust policy evaluation, we require (s,a)-rectangularity. That is, there are no
dependencies in the uncertainty set between different state-action pairs. When
unfolding the IPOMDP, we create copies of state-action pairs and their associated
uncertainty sets. These copies represent the agent’s internal memory. It would be
natural to assume nature cannot exploit any information the agent stores internally.
The consequence of that assumption would be, however, that the unfolded IPOMDP
is no longer (s,a)-rectangular, as there are now multiple state-action pairs (for
instance (⟨s0,1⟩ ,⟨a1,1⟩ and ⟨s0,1⟩ ,⟨a1,2⟩) where nature would have to fix a single
choice in the uncertainty set for both actions at once. Hence, for computational
efficiency, we assume full rectangularity on the unfolded state space, i.e., (s,n,a)-
rectangularity, which when used in robust policy evaluation provides a conservative
bound on the policy’s performance.

4.3 Nonlinear Optimization for Robust Policies
The problem of computing a stationary stochastic policy π : S → D(A) that opti-
mizes one of the robust objectives ϕ ∈ Φ we consider can be precisely encoded
into a semi-infinite nonlinear optimization problem, which we shall simply refer to as
the nonlinear program (NLP). These NLPs are, in fact, semi-infinite quadratically
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constrained quadratic programs (QCQPs) and nonconvex in general. Note that
similar finite optimization problems have been used to compute FSCs for ordi-
nary POMDPs (Amato et al., 2010) and parameter synthesis in parametric Markov
models (Junges et al., 2024).

We present NLPs below for each of our objectives, i.e., maximizing reachability,
maximizing reach-reward, stochastic shortest path, and maximizing discounted
reward. Then, in Sections 4.4 and 4.5 we present two methods for dealing with
the semi-infiniteness and nonconvexity of the NLPs, either via the convex-concave
procedure (CCP) or by sequential convex programming (SCP).

In all of the following optimization problems, {πs,a ∈ (0,1] | s ∈ S,a ∈ A} are
the variables that encode the memoryless stochastic policy π : S→D(A), and {vs ∈
[0,∞) | s ∈ S} are the variables that encode the value function V : S→ R. Note that
the range of values a variable can take is included in the definitions above and not
explicitly included in the constraints of the optimization problems below. After
solving the optimization problem, the value assigned to a variable x is denoted by x̂.
Remark 4.4. The policy variables are bounded away from zero to ensure transitions
cannot be removed from the optimization problem. Consequently, any policy
computed through such an optimization problem will be stochastic with full support,
i.e., every action will be chosen with some probability strictly greater than zero.
When the optimization problem encodes an IPOMDP with memory unfolded into
its state space, the resulting FSC will also have an action mapping with full support,
as well as a fully connected memory update function.

Objectives with a target set T ⊆ S , i.e., PMax(♦T ),RMax(♦T ), and RMin(♦T ), are
preprocessed based on their underlying graph, just as for value iteration in standard
MDPs, see Chapter 2. Let S∞ ⊆ S be the set of states for which there exists a
policy that does not reach T almost-surely, and denote the remaining states by
S? = S \ (T ∪ S∞). We construct a separate optimization problem for each objective,
which we present below.

NLP for Maximizing Reachability
We define the following nonlinear optimization problem that maximizes the reacha-
bility probability of the target set:

Maximize vsι (4.2)

Subject to

∀s ∈ T : vs = 1, (4.3)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.4)

∀s, s′ ∈ S?, a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.5)

∀s ∈ S?,∀P ∈ P : vs ≤
∑

a∈A(s)
πs,a ·

∑

s′∈S
P(s′ |s,a) · vs′ . (4.6)

This NLP maximizes the probability to reach T from the initial state sι, as encoded
in the objective function (4.2). Constraint (4.3) ensures that states s ∈ T are assigned



4

56 4. Finite-Memory Policies for Robust POMDPs

a reachability probability of one. Constraint (4.4) ensures the resulting policy
has a valid probability distribution at every state. Constraint (4.5) encodes that
the resulting policy adheres to the partial observability. That is, states with the
same observation are assigned the same distribution over the actions. Finally,
Constraint (4.6) encodes the probability of reaching the target from some state
s ∈ S \ T . It is this last constraint that makes the problem both nonlinear, as we
multiply policy variables πs,a with reachability variables vs′ . The optimization
problem is semi-infinite as we have a finite number of optimization variables but an
infinite number of constraints since we quantify over all transition functions P ∈ P .
This constraint is also where we exploit the (s,a)-rectangularity of our IPOMDPs.

NLP for Maximizing reach-reward
Maximizing reach-reward objectives follows a similar encoding, presented below.

Maximize vsι (4.7)

Subject to

∀s ∈ T : vs = 0, (4.8)

∀s ∈ S? :


a∈A(s)
πs,a = 1, (4.9)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.10)

∀s ∈ S?,∀P ∈ P : vs ≤


a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P(s′ |s,a) · vs′

 . (4.11)

Indeed, this NLP is very similar to that for reachability as defined in Equations 4.2
to 4.6, with the only differences in Constraints (4.8) and (4.11). The differences
follow the same modifications made when adapting value iteration, that is, Con-
straint (4.8) now encodes that states inside the target set obtain zero reward, follow-
ing PRISM semantics (Forejt et al., 2011), and Constraint (4.11) now includes the
reward R(s,a) for each state-action pair.

NLP for Stochastic Shortest Path
The nonlinear program for the stochastic shortest path problem, i.e., minimizing
the expected cost for reaching a target set T , is encoded analogous to maximizing
reach-reward. The NLP encoding is given by:

Minimize vsι (4.12)

Subject to

∀s ∈ T : vs = 0, (4.13)

∀s ∈ S? :


a∈A(s)
πs,a = 1, (4.14)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.15)
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∀s ∈ S?,∀P ∈ P : vs ≥


a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P(s′ |s,a) · vs′

 . (4.16)

The only differences with maximizing reach-reward are in the objective, Equa-
tion 4.12, which now minimizes, and Constraint (4.16), where the direction of the
constraint has been reversed.

NLP for Discounted Reward
Finally, we also present the nonlinear program for maximizing discounted reward.
This NLP is similar to that for maximizing reach-reward and reflects similar changes
made to value iteration when considering discounted reward instead of reach-
reward, as discussed in Chapter 2. In particular, the discount factor γ is added to
Constraint (4.20).

Maximize vsι (4.17)

Subject to

∀s ∈ S :


a∈A(s)
πs,a = 1, (4.18)

∀s, s′ ∈ S,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.19)

∀s ∈ S,∀P ∈ P : vs ≤


a∈A(s)
πs,a ·

R(s,a) +γ ·


s′∈S
P(s′ |s,a) · vs′

 . (4.20)

4.4 CCP: Convex-Concave Procedure
We now introduce our first approach to solve one of the NLPs defined in Section 4.3.
We convexify the semi-infinite NLPs via the penalty convex-concave procedure (CCP;
Lipp and Boyd, 2016), which iteratively over-approximates a nonconvex optimiza-
tion problem via linearization. The resulting convex problem can then be solved
efficiently, and the process is iterated until a suitable solution is found. This process
is illustrated in Figure 4.4.

For ease of presentation, we only show the procedure for the nonconvex quadratic
constraints of maximizing reach-reward and minimizing stochastic shortest path,
Equations 4.11 and 4.16, as these two optimization problems showcase maximiza-
tion and minimization. We first detail the convexification step for one iteration.
After that, we integrate the convexification step into the iterative procedure and
use vertex enumeration on the uncertainty set to make the convex optimization
problem finite and ready to be solved.

4.4.1 Convexification
We rewrite the quadratic functions in Equations 4.11 and 4.16 each as a sum of
convex and concave functions and compute upper bounds for the concave functions.
The CCP method starts with any (possibly infeasible) assignment v̂s and π̂s,a to the



4

56 4. Finite-Memory Policies for Robust POMDPs

a reachability probability of one. Constraint (4.4) ensures the resulting policy
has a valid probability distribution at every state. Constraint (4.5) encodes that
the resulting policy adheres to the partial observability. That is, states with the
same observation are assigned the same distribution over the actions. Finally,
Constraint (4.6) encodes the probability of reaching the target from some state
s ∈ S \ T . It is this last constraint that makes the problem both nonlinear, as we
multiply policy variables πs,a with reachability variables vs′ . The optimization
problem is semi-infinite as we have a finite number of optimization variables but an
infinite number of constraints since we quantify over all transition functions P ∈ P .
This constraint is also where we exploit the (s,a)-rectangularity of our IPOMDPs.

NLP for Maximizing reach-reward
Maximizing reach-reward objectives follows a similar encoding, presented below.
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Subject to
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
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Indeed, this NLP is very similar to that for reachability as defined in Equations 4.2
to 4.6, with the only differences in Constraints (4.8) and (4.11). The differences
follow the same modifications made when adapting value iteration, that is, Con-
straint (4.8) now encodes that states inside the target set obtain zero reward, follow-
ing PRISM semantics (Forejt et al., 2011), and Constraint (4.11) now includes the
reward R(s,a) for each state-action pair.

NLP for Stochastic Shortest Path
The nonlinear program for the stochastic shortest path problem, i.e., minimizing
the expected cost for reaching a target set T , is encoded analogous to maximizing
reach-reward. The NLP encoding is given by:

Minimize vsι (4.12)

Subject to

∀s ∈ T : vs = 0, (4.13)

∀s ∈ S? :


a∈A(s)
πs,a = 1, (4.14)
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∀s ∈ S?,∀P ∈ P : vs ≥


a∈A(s)
πs,a ·
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
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The only differences with maximizing reach-reward are in the objective, Equa-
tion 4.12, which now minimizes, and Constraint (4.16), where the direction of the
constraint has been reversed.

NLP for Discounted Reward
Finally, we also present the nonlinear program for maximizing discounted reward.
This NLP is similar to that for maximizing reach-reward and reflects similar changes
made to value iteration when considering discounted reward instead of reach-
reward, as discussed in Chapter 2. In particular, the discount factor γ is added to
Constraint (4.20).
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4.4 CCP: Convex-Concave Procedure
We now introduce our first approach to solve one of the NLPs defined in Section 4.3.
We convexify the semi-infinite NLPs via the penalty convex-concave procedure (CCP;
Lipp and Boyd, 2016), which iteratively over-approximates a nonconvex optimiza-
tion problem via linearization. The resulting convex problem can then be solved
efficiently, and the process is iterated until a suitable solution is found. This process
is illustrated in Figure 4.4.

For ease of presentation, we only show the procedure for the nonconvex quadratic
constraints of maximizing reach-reward and minimizing stochastic shortest path,
Equations 4.11 and 4.16, as these two optimization problems showcase maximiza-
tion and minimization. We first detail the convexification step for one iteration.
After that, we integrate the convexification step into the iterative procedure and
use vertex enumeration on the uncertainty set to make the convex optimization
problem finite and ready to be solved.

4.4.1 Convexification
We rewrite the quadratic functions in Equations 4.11 and 4.16 each as a sum of
convex and concave functions and compute upper bounds for the concave functions.
The CCP method starts with any (possibly infeasible) assignment v̂s and π̂s,a to the
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Figure 4.4: Flowchart of the overall CCP approach.

variables vs and πs,a. We unfold the brackets in the equations such that we get sums
of quadratic functions, each of the form:

P(s′ |s,a) ·πs,a · vs′ ,

for any s, s′ ∈ S?, a ∈ A(s) and P ∈ P . For readability, we introduce notation for
these quadratic functions: h(s,a, s′ ,P) = P(s′ |s,a) ·πs,a · vs′ . The righthand side of the
constraint is then equivalently written as

∑

a∈A(s)
πs,a ·R(s,a) +

∑

s′∈S
h(s,a, s′ ,P).

For further ease of reading, we introduce temporary variables d = 1/2P(s′ |s,a),
y = πs,a, and z = vs′ , such that

h(s,a, s′ ,P) = P(s,a, s′) ·πs,a · vs′
= 2 · d · y · z
= 2 · d · y · z + d(y2 + z2)− d(y2 + z2)

= d(y + z)2 − d(y2 + z2).

After this rewrite, the function consists of a quadratic convex function hcvx(s,a, s′ ,P) =
d(y+z)2, and a concave function hccv(s,a, s′ ,P) = −d(y2+z2). It is this concave function
that needs to be convexified around a previous solution to obtain a sum of two
convex functions, which is also convex.
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In particular, we transform hccv(s,a, s′ ,P) = −d(y2 + z2) into

ĥccv(s,a, s
′ ,P) = d(ŷ2 + ẑ2) + 2 · d(ŷ2 + ẑ2 − yŷ − zẑ),

where ŷ and ẑ are any assignments to the variables. After this transformation, the
function ĥccv(s,a, s′ ,P) is affine in y and z and therefore convex.

After this transformation, the constraint from Equation 4.11 becomes the fol-
lowing convex quadratic constraint:

vs ≤
∑

a∈A(s)
πs,a ·R(s,a) +

∑

s′∈S

(
hcvx(s,a, s

′ ,P) + ĥccv(s,a, s
′ ,P)

)
.

Similarly, Equation 4.16 is transformed into:

vs ≥
∑

a∈A(s)
πs,a ·R(s,a) +

∑

s′∈S

(
hcvx(s,a, s

′ ,P) + ĥccv(s,a, s
′ ,P)

)
.

4.4.2 Iterative Over-Approximations Towards Local Optima
The resulting convex QCQP is, however, still semi-infinite. Furthermore, we con-
vexified around variable assignments π̂s,a and v̂s′ . We first discuss how the convex-
concave procedure iteratively convexifies around new variable assignments.

As we over-approximate the quadratic functions, any feasible solution to the
convex problem is also feasible for the original semi-infinite QCQP. However, due
to the over-approximation, the resulting convex problem might be infeasible, even
though the original one is not. To find a feasible assignment, we assign a so-
called non-negative penalty variable ks for each convexified constraint. To find a
solution that induces minimal infeasibility or minimal violations of the convexified
constraints, we minimize the sum of the penalty variables scaled by a penalty
parameter τ.

If a solution assigns all penalty variables to zero, then the solution to the convex
QCQP is feasible for the original non-convex QCQP, as we over-approximate the
concave functions by affine functions. If any of the penalty variables ks are assigned
a positive value, we update the penalty parameter τ to τ +µ for a µ > 0, similar to
the approach in (Lipp and Boyd, 2016). We put an upper limit τMax on τ to avoid
numerical problems during the procedure. After getting a new assignment, we
convexify the non-convex QCQP by linearizing the concave functions around the
new assignment and solve the next convex QCQP. We repeat the procedure until we
find a feasible solution. The convergence to a locally optimal solution is guaranteed
for a fixed τ, i.e., after τ = τMax, but it may converge to an infeasible point of the
original problem (Lipp and Boyd, 2016).

Termination by robust policy evaluation. After each iteration, we use robust
policy evaluation to compute the precise, robust state values for the found policy
π(a |s) = π̂s,a. These values are then used to linearize around in the next iteration to
increase numerical stability. Additionally, we may use the performance of the policy
π as a termination criterion. That is, if it surpasses some threshold: ρ(π,M,ϕ) ▷◁ λ,
where ▷◁∈ {≤,≥}.
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∑
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4.4. CCP: Convex-Concave Procedure

4

59
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∑

s′∈S
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hcvx(s,a, s
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′ ,P)

)
.
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′ ,P) + ĥccv(s,a, s
′ ,P)

)
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for a fixed τ, i.e., after τ = τMax, but it may converge to an infeasible point of the
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Termination by robust policy evaluation. After each iteration, we use robust
policy evaluation to compute the precise, robust state values for the found policy
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Algorithm 4.1: CCP approach for solving IPOMDPs.
Input: IPOMDPM,
Initialize: weight τ, initial policy π,

1: while τ < τMax do
2: Compute values vs = Vπ(s) ▷ Robust policy evaluation
3: Convexify around π and v ▷ Convex-concave procedure (Section 4.4.1)
4: Solve convex QCQP ▷ Enumerate vertices and solve
5: if ∀s ∈ S? : ks = 0 then
6: return Converged, the policy π
7: end if
8: τ← τ +µ ▷ Update penalty variable
9: end while

10: return Termination by τMax, the policy π

Vertex enumeration. To be solvable, we have to make the semi-infinite convex
QCQP finite. For (s,a)-rectangular RPOMDPs where the uncertainty set is given
by a convex polytope at each state-action pair, as is the case for the IPOMDPs we
consider, it is sufficient to enumerate the vertices of that polytope (Löfberg, 2012).
This enumeration replaces the constraints with universal quantification P ∈ P by a
finite number of constraints in which the universal quantifier over all distributions
is replaced by all possible combinations of these vertices, which we denote by
Vert(P ). QCQP with polytopic uncertainty is still NP-Hard (Bertsimas et al., 2011)
as the number of vertices of a convex polytope can be exponential in the number
of dimensions. In our application to IPOMDPs, the dimension of each polytope is
determined by the number of successor states for each state-action pair. Thus, for
sparse models, this enumeration approach is still feasible.

Convex QCQP for Stochastic Shortest Path
The finite, convex QCQP for stochastic shortest path is defined as follows:

Minimize vsι + τ
∑

s∈S?

ks (4.21)

Subject to

∀s ∈ T : vs = 0, (4.22)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.23)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.24)

∀s ∈ S?,∀P ∈ Vert(P ) : ks + vs ≥
∑

a∈A(s)
πs,a ·R(s,a)

+
∑

s′∈S

(
hcvx(s,a, s

′ ,P) + ĥccv(s,a, s
′ ,P)

)
. (4.25)
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Convex QCQP for reach-reward

The finite, convex QCQP for reach-reward is defined as follows:

Maximize vsι − τ
∑

s∈S?

ks (4.26)

Subject to

∀s ∈ T : vs = 0, (4.27)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.28)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.29)

∀s ∈ S?,∀P ∈ Vert(P ) : ks − vs ≥
∑

a∈A(s)
πs,a ·R(s,a)

+
∑

s′∈S

(
hcvx(s,a, s

′ ,P) + ĥccv(s,a, s
′ ,P)

)
. (4.30)

Complete iterative CCP algorithm

Algorithm 4.1 presents the full algorithm for iteratively solving the convex QCQPs
to compute a robust policy via the CCP approach. We initialize with an initial
guess policy π and a weight τ > 0 for the penalty variables. We use robust policy
evaluation to compute the robust value function under π. We convexify around
π and the value function and solve the resulting QCQP. If all penalty variables
are zero, the CCP method has converged, and we return the policy; otherwise, we
increment the weight τ and continue the next iteration.

4.5 SCP: Sequential Convex Programming

In this section, we present our second approach to solving the semi-infinite NLPs
from Section 4.3 based on sequential convex programming (SCP; Mao et al., 2018).
In the SCP approach, we aim to separate the concerns of nonconvexity and the
infinite number of constraints due to the uncertainty set. A simple IPOMDP pro-
vides such a separation. In a simple IPOMDP, each state either has only a single
action enabled or multiple actions, each with at most two successor states. This
transformation allows us to define NLPs with separate uncertain constraints that
are either already linear but need to be robust against the uncertainty or nonconvex
quadratic constraints that need to be linearized but, in return, are not affected by the
uncertainty. The uncertain constraints are dualized to derive a finite nonconvex
optimization problem. We then iteratively linearize the nonconvex constraints
around a previous solution to construct and solve a finite linear program (LP). The
SCP procedure is outlined in Figure 4.5 and converges to a local optimum.
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Algorithm 4.1: CCP approach for solving IPOMDPs.
Input: IPOMDPM,
Initialize: weight τ, initial policy π,

1: while τ < τMax do
2: Compute values vs = Vπ(s) ▷ Robust policy evaluation
3: Convexify around π and v ▷ Convex-concave procedure (Section 4.4.1)
4: Solve convex QCQP ▷ Enumerate vertices and solve
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QCQP finite. For (s,a)-rectangular RPOMDPs where the uncertainty set is given
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finite number of constraints in which the universal quantifier over all distributions
is replaced by all possible combinations of these vertices, which we denote by
Vert(P ). QCQP with polytopic uncertainty is still NP-Hard (Bertsimas et al., 2011)
as the number of vertices of a convex polytope can be exponential in the number
of dimensions. In our application to IPOMDPs, the dimension of each polytope is
determined by the number of successor states for each state-action pair. Thus, for
sparse models, this enumeration approach is still feasible.

Convex QCQP for Stochastic Shortest Path
The finite, convex QCQP for stochastic shortest path is defined as follows:
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ks (4.21)
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∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.24)
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+
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(
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)
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Convex QCQP for reach-reward

The finite, convex QCQP for reach-reward is defined as follows:

Maximize vsι − τ
∑

s∈S?

ks (4.26)

Subject to

∀s ∈ T : vs = 0, (4.27)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.28)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.29)

∀s ∈ S?,∀P ∈ Vert(P ) : ks − vs ≥
∑
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πs,a ·R(s,a)

+
∑

s′∈S

(
hcvx(s,a, s

′ ,P) + ĥccv(s,a, s
′ ,P)

)
. (4.30)

Complete iterative CCP algorithm

Algorithm 4.1 presents the full algorithm for iteratively solving the convex QCQPs
to compute a robust policy via the CCP approach. We initialize with an initial
guess policy π and a weight τ > 0 for the penalty variables. We use robust policy
evaluation to compute the robust value function under π. We convexify around
π and the value function and solve the resulting QCQP. If all penalty variables
are zero, the CCP method has converged, and we return the policy; otherwise, we
increment the weight τ and continue the next iteration.

4.5 SCP: Sequential Convex Programming

In this section, we present our second approach to solving the semi-infinite NLPs
from Section 4.3 based on sequential convex programming (SCP; Mao et al., 2018).
In the SCP approach, we aim to separate the concerns of nonconvexity and the
infinite number of constraints due to the uncertainty set. A simple IPOMDP pro-
vides such a separation. In a simple IPOMDP, each state either has only a single
action enabled or multiple actions, each with at most two successor states. This
transformation allows us to define NLPs with separate uncertain constraints that
are either already linear but need to be robust against the uncertainty or nonconvex
quadratic constraints that need to be linearized but, in return, are not affected by the
uncertainty. The uncertain constraints are dualized to derive a finite nonconvex
optimization problem. We then iteratively linearize the nonconvex constraints
around a previous solution to construct and solve a finite linear program (LP). The
SCP procedure is outlined in Figure 4.5 and converges to a local optimum.
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Figure 4.5: Flowchart of the overall SCP approach.

4.5.1 Nonlinear Optimization on Simple IPOMDPs
For our SCP approach to work, we wish to separate the concerns of dealing with
action choices and the uncertainty on the transition probabilities. A simple IPOMDP
provides such a separation. At the cost of increasing the state space (linearly), we
obtain an IPOMDP where each state either has (multiple) action choices that all
lead to a deterministic successor state with probability one or only one enabled
action, which is allowed to have multiple successor states with interval transitions.

Definition 4.5 (Binary and Simple IPOMDP). An IPOMDP is binary, if there are at
most two enabled actions at every state, i.e., |A(s)| ≤ 2 for all s ∈ S . An IPOMDP is
simple if it is binary and for all s ∈ S , the following holds:

|A(s)| = 2 =⇒ ∀a ∈ A(s) : ∃s′ ∈ S : P (s,a, s′) = 1.

Every IPOMDP can be transformed into a simple IPOMDP by introducing
auxiliary states and observations via the same construction as for POMDPs presented
in (Junges et al., 2018), and will preserve (s,a)-rectangularity and optimal values.
Policies computed for simple IPOMDPs can be mapped back to policies for the
original IPOMDP.

Example 8 (Binary and simple IPOMDP). Consider the two IPOMDPs depicted
in Figure 4.6. The IPOMDP in Figure 4.6a is already binary, as each state has
at most two enabled actions. Figure 4.6b shows the simple IPOMDP obtained
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Figure 4.6: The IPOMDP from Figure 4.2 and a simple IPOMDP obtained from it.

from the IPOMDP in Figure 4.6a using the transformation method of (Junges
et al., 2018). We introduce an auxiliary state for every state-action pair with
multiple successor states, in this case, (s0, a1) and (s0, a2). Selecting one of the
actions transitions with probability one to its associated auxiliary state. The
outgoing interval transitions of the original state-action pair are now assigned
to the auxiliary state. Consequently, the transformation preserves the (s,a)-
rectangularity of the IPOMDP, as the uncertainty set of a state-action pair is
only moved to the auxiliary state, and no new dependencies across states or
actions are introduced.

Assuming our IPOMDP has been made simple, we now present slightly modified
NLP encodings that exploit the structure of simple IPOMDPs. For ease of readability,
we again only present the NLPs for maximizing reach-reward and minimizing
stochastic shortest path. The NLPs for reachability and discounted reward can be
adapted analogously. Note that these NLPs are specialized versions (adapted to
simple IPOMDPs) of the general NLPs defined in Section 4.3.

Recall that S∞ ⊆ S is the set of states for which there exists a policy that does
not reach the target set T almost-surely, and S? = S \ (T ∪ S∞). In the following, let
S?
a denote the states with action choices, and S?

u denote the states with uncertain
outcomes, such that S? = S?

a ∪ S?
u.

NLP for maximizing reach-reward on simple IPOMDPs
The NLP for maximizing reach-reward on simple IPOMDPs is given by

Maximize vsι (4.31)

Subject to

∀s ∈ T : vs = 0, (4.32)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.33)
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For our SCP approach to work, we wish to separate the concerns of dealing with
action choices and the uncertainty on the transition probabilities. A simple IPOMDP
provides such a separation. At the cost of increasing the state space (linearly), we
obtain an IPOMDP where each state either has (multiple) action choices that all
lead to a deterministic successor state with probability one or only one enabled
action, which is allowed to have multiple successor states with interval transitions.

Definition 4.5 (Binary and Simple IPOMDP). An IPOMDP is binary, if there are at
most two enabled actions at every state, i.e., |A(s)| ≤ 2 for all s ∈ S . An IPOMDP is
simple if it is binary and for all s ∈ S , the following holds:

|A(s)| = 2 =⇒ ∀a ∈ A(s) : ∃s′ ∈ S : P (s,a, s′) = 1.

Every IPOMDP can be transformed into a simple IPOMDP by introducing
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in (Junges et al., 2018), and will preserve (s,a)-rectangularity and optimal values.
Policies computed for simple IPOMDPs can be mapped back to policies for the
original IPOMDP.

Example 8 (Binary and simple IPOMDP). Consider the two IPOMDPs depicted
in Figure 4.6. The IPOMDP in Figure 4.6a is already binary, as each state has
at most two enabled actions. Figure 4.6b shows the simple IPOMDP obtained
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from the IPOMDP in Figure 4.6a using the transformation method of (Junges
et al., 2018). We introduce an auxiliary state for every state-action pair with
multiple successor states, in this case, (s0, a1) and (s0, a2). Selecting one of the
actions transitions with probability one to its associated auxiliary state. The
outgoing interval transitions of the original state-action pair are now assigned
to the auxiliary state. Consequently, the transformation preserves the (s,a)-
rectangularity of the IPOMDP, as the uncertainty set of a state-action pair is
only moved to the auxiliary state, and no new dependencies across states or
actions are introduced.

Assuming our IPOMDP has been made simple, we now present slightly modified
NLP encodings that exploit the structure of simple IPOMDPs. For ease of readability,
we again only present the NLPs for maximizing reach-reward and minimizing
stochastic shortest path. The NLPs for reachability and discounted reward can be
adapted analogously. Note that these NLPs are specialized versions (adapted to
simple IPOMDPs) of the general NLPs defined in Section 4.3.

Recall that S∞ ⊆ S is the set of states for which there exists a policy that does
not reach the target set T almost-surely, and S? = S \ (T ∪ S∞). In the following, let
S?
a denote the states with action choices, and S?

u denote the states with uncertain
outcomes, such that S? = S?

a ∪ S?
u.

NLP for maximizing reach-reward on simple IPOMDPs
The NLP for maximizing reach-reward on simple IPOMDPs is given by

Maximize vsι (4.31)

Subject to

∀s ∈ T : vs = 0, (4.32)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.33)
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∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.34)

∀s ∈ S?
a : vs ≤



a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P (s,a, s′) · vs′

 , (4.35)

∀s ∈ S?
u,∀P ∈ P : vs ≤ R(s) +



s′∈S
P(s, s′) · vs′ . (4.36)

In particular, note that we now have two constraints, Equations 4.35 and 4.36,
instead of Equation 4.11 from the original NLP. The first constraint is nonconvex as
we multiply policy variables πs,a with value variables vs′ , but without uncertainty
as P (s,a, s′) = 1 for precisely one s′ by construction. The second constraint is linear,
as there is only one action enabled in states s ∈ S?

u, but uncertain as we have interval
transitions to multiple successor states here. Since there is only one action in these
states, we also omit it from the transition and reward functions.

NLP for Stochastic Shortest Path on simple IPOMDPs
The NLP for minimizing stochastic shortest path on simple IPOMDPs is analogously
given by

Minimize vsι (4.37)

Subject to

∀s ∈ T : vs = 0, (4.38)

∀s ∈ S? :


a∈A(s)
πs,a = 1, (4.39)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.40)

∀s ∈ S?
a : vs ≥



a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P (s,a, s′) · vs′

 , (4.41)

∀s ∈ S?
u,∀P ∈ P : vs ≥ R(s) +



s′∈S
P(s, s′) · vs′ . (4.42)

4.5.2 Dualization of the Uncertain Constraints
We start off by summarizing robust LPs with polytopic uncertainty (Ben-Tal and
Nemirovski, 1998; Bertsimas et al., 2011). The idea of solving robust LPs with such
uncertainty is essential in our approach.

Robust LPs. A robust LP with the variable x ∈ Rn is of the form

minimize c⊤x

subject to (d +u)⊤x ≤ e ∀u ∈ U ,

where c,d ∈ Rn, and e ∈ R are given vectors, u ∈ Rn is the uncertain parameter, and
U is the uncertainty set. We assume that the set U is a convex polytope, i.e., that it is
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an n-dimensional shape defined by the linear inequalities Cu + g ≥ 0 for C ∈ Rm×n

and g ∈ Rm.

Duality. For simplicity, we explain the idea of dualization on a single robust
inequality. The idea can be generalized to multiple robust inequalities. With U
defined by the linear inequalities above, duality can be used to obtain a tractable
solution to the robust LP. Specifically, we write the Lagrangian for the maximization
problem over u⊤x with the dual variable µ ≥ 0 as

L(u,µ) = u⊤x +µ⊤(Cu + g).

By taking the supremum over u, we obtain

sup
u∈U

L(u,µ) =


∞ if C⊤µ+ x � 0,
µ⊤g if C⊤µ+ x = 0.

All inequalities are linear which implies strong duality, i.e.,

sup
u∈U

u⊤x = inf
µ≥0
{µ⊤g | C⊤µ+ x = 0}.

Since these optimization problems are linear, we know the optimal value is attained
at a feasible solution. Therefore, we can replace sup and inf with max and min. The
semi-infinite inequality with polytopic uncertainty is equivalent to the following
linear constraints

d⊤x +µ⊤g ≤ e, C⊤µ+ x = 0, µ ≥ 0.

Dualization for Simple IPOMDPs
We now describe the dualization step we use to obtain a finite optimization problem
for simple IPOMDPs.

Uncertainty polytopes. The uncertainty set of a simple IPOMDP at a state-action
pair is given by a convex polytope defined by the following constraints:

∀s, s′ ∈ S : P(s, s′) ≤ us,s′ ≤ P(s, s′), ∀s ∈ S :


s′∈S
us,s′ = 1.

We denote these constraints in matrix form: Csu + gs ≥ 0.
After obtaining the matrices Cs and vectors gs characterizing uncertainty sets

for each state, we directly use dualization to transform the inequalities from Equa-
tion 4.36 of the NLP for maximizing reach-reward into

∀s ∈ S?
u : vs ≤ R(s) +µ⊤s gs,

∀s ∈ S?
u : C⊤s µs − q = 0,

∀s ∈ S?
u : µs ≥ 0,
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∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.34)

∀s ∈ S?
a : vs ≤



a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P (s,a, s′) · vs′

 , (4.35)

∀s ∈ S?
u,∀P ∈ P : vs ≤ R(s) +



s′∈S
P(s, s′) · vs′ . (4.36)

In particular, note that we now have two constraints, Equations 4.35 and 4.36,
instead of Equation 4.11 from the original NLP. The first constraint is nonconvex as
we multiply policy variables πs,a with value variables vs′ , but without uncertainty
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u, but uncertain as we have interval
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Subject to

∀s ∈ T : vs = 0, (4.38)

∀s ∈ S? :


a∈A(s)
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∀s ∈ S?
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

a∈A(s)
πs,a ·

R(s,a) +


s′∈S
P (s,a, s′) · vs′

 , (4.41)
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

s′∈S
P(s, s′) · vs′ . (4.42)
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Nemirovski, 1998; Bertsimas et al., 2011). The idea of solving robust LPs with such
uncertainty is essential in our approach.

Robust LPs. A robust LP with the variable x ∈ Rn is of the form

minimize c⊤x

subject to (d +u)⊤x ≤ e ∀u ∈ U ,

where c,d ∈ Rn, and e ∈ R are given vectors, u ∈ Rn is the uncertain parameter, and
U is the uncertainty set. We assume that the set U is a convex polytope, i.e., that it is

4.5. SCP: Sequential Convex Programming

4

65

an n-dimensional shape defined by the linear inequalities Cu + g ≥ 0 for C ∈ Rm×n
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Since these optimization problems are linear, we know the optimal value is attained
at a feasible solution. Therefore, we can replace sup and inf with max and min. The
semi-infinite inequality with polytopic uncertainty is equivalent to the following
linear constraints

d⊤x +µ⊤g ≤ e, C⊤µ+ x = 0, µ ≥ 0.

Dualization for Simple IPOMDPs
We now describe the dualization step we use to obtain a finite optimization problem
for simple IPOMDPs.

Uncertainty polytopes. The uncertainty set of a simple IPOMDP at a state-action
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We denote these constraints in matrix form: Csu + gs ≥ 0.
After obtaining the matrices Cs and vectors gs characterizing uncertainty sets

for each state, we directly use dualization to transform the inequalities from Equa-
tion 4.36 of the NLP for maximizing reach-reward into
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∀s ∈ S?
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where µs ∈ R|S | is the dual variable of the constraint Csu + gs ≥ 0 and q is an
|S |−dimensional vector denoting the set of value variables vs for each state s ∈ S .

For stochastic shortest path, Equation 4.42, is reversed compared to that of
reach-reward. The resulting constraints are then given by

∀s ∈ S?
u : vs ≥ R(s) +µ⊤s gs,

∀s ∈ S?
u : C⊤s µs + q = 0,

∀s ∈ S?
u : µs ≥ 0,

4.5.3 Linearizing the Finite Nonconvex Problem
In this section, we discuss our algorithm to solve the (finite but nonconvex) dual
problem from the previous section. Our method is based on the sequential convex
programming (SCP; Mao et al., 2018; Yuan, 2015). SCP iteratively computes a locally
optimal solution to the dual problem from Section 4.5.2 by approximating it as an
LP. In every iteration, this approximation is obtained by linearizing the quadratic
functions around a previous solution.

We again show the linearization step only for reach-reward and stochastic
shortest path, i.e., the constraints from Equations 4.35 and 4.41. The linearization
step follows a method similar to that of the CCP approach (Section 4.4).

Let h(s,a, s′) be the quadratic function of the right-hand side of these constraints
for a given s ∈ S?

a, s
′ ∈ S and a ∈ A(s):

h(s,a, s′) = πs,a · P (s,a, s′) · vs′

and let d = P (s,a, s′), y = πs,a, and z = vs′ . Let ⟨ŷ, ẑ⟩ denote an arbitrary assignment
to y and z. We linearize h(s,a, s′) = d · y · z around ⟨ŷ, ẑ⟩ into

haff(s,a, s
′) = d ·


ŷ · ẑ + ŷ · (z − ẑ) + ẑ · (y − ŷ)



= d · (ŷ · z + ẑ · y − ẑ · ŷ).

The resulting function haff(s,a, s′) is affine in y and z (vs and πs,a). After the lin-
earization step, we replace Equation 4.35 for maximizing reach-reward by

∀s ∈ S?
a : vs ≤



a∈A(s)

πs,a ·R(s,a) +


s′∈S
haff(s,a, s

′)

 .

Similarly, Equation 4.41 for minimizing stochastic shortest path gets replaced by

∀s ∈ S?
a : vs ≥



a∈A(s)

πs,a ·R(s,a) +


s′∈S
haff(s,a, s

′)

 .

The linearized problem may be infeasible, or the optimal solution to the lin-
earized may no longer be feasible to the dual problem, as it is an over-approximation
of the original optimization problem. We alleviate these feasibility issues as follows.
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First, we add penalty variables to the linearized constraints to ensure that the dual
problem is always feasible, and we penalize violations by adding the sum of these
variables weighted by penalty parameter τ to the objective function, just as in
the CCP approach. Second, we include trust regions around the previous solution
to ensure we do not deviate too much from that solution. We explain these two
additions below. Finally, we use robust dynamic programming to compute the exact
robust value function and alleviate any potential approximation errors arising from
the linearization. Additionally, the robust performance computed here may also
serve as a termination criterion.

Penalty variables. Similar to the CCP approach, we add a non-negative penalty
variable ks for all s ∈ S?

a to the linearized constraints, which yields for maximizing
reach-reward:

∀s ∈ Sa : vs − ks ≤


a∈A(s)

πs,a ·R(s,a) +


s′∈S
haff(s,a, s

′)

 .

When ks is sufficiently large, these constraints always allow a feasible solution. The
objective function becomes to maximize vsι −τ


s∈S?

a
ks. The constraint and objective

function for minimizing stochastic shortest path are modified analogously.

Trust regions. We use trust regions by adding the following set of constraints to
the resulting linearized problem:

∀s ∈ S : v̂s
δ′
≤ vs ≤ v̂s · δ′ , (4.43)

∀s ∈ Sa,∀a ∈ A(s) :
π̂s,a

δ′
≤ πs,a ≤ π̂s,a · δ′ , (4.44)

where δ′ = δ +1 and δ > 0 is the size of the trust region, which restricts the set of
feasible policies, and v̂s and π̂s,a denote the assigned value and policy variables that
are used for linearization.

Complete Finite LPs
We now present the complete finite LPs for simple IPOMDPs with reach-reward
and stochastic shortest path objectives.

Complete Finite LP for Reach-Reward
Combining these steps, we now state the resulting finite LP—for some fixed but
arbitrary assignment to v̂s and π̂s,a in the definition of haff, penalty parameter τ > 0
and a trust region δ > 0:

Maximize vsι − τ


s∈S?
a

ks (4.45)

Subject to
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where µs ∈ R|S | is the dual variable of the constraint Csu + gs ≥ 0 and q is an
|S |−dimensional vector denoting the set of value variables vs for each state s ∈ S .

For stochastic shortest path, Equation 4.42, is reversed compared to that of
reach-reward. The resulting constraints are then given by
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u : vs ≥ R(s) +µ⊤s gs,

∀s ∈ S?
u : C⊤s µs + q = 0,

∀s ∈ S?
u : µs ≥ 0,

4.5.3 Linearizing the Finite Nonconvex Problem
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optimal solution to the dual problem from Section 4.5.2 by approximating it as an
LP. In every iteration, this approximation is obtained by linearizing the quadratic
functions around a previous solution.

We again show the linearization step only for reach-reward and stochastic
shortest path, i.e., the constraints from Equations 4.35 and 4.41. The linearization
step follows a method similar to that of the CCP approach (Section 4.4).

Let h(s,a, s′) be the quadratic function of the right-hand side of these constraints
for a given s ∈ S?

a, s
′ ∈ S and a ∈ A(s):
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and let d = P (s,a, s′), y = πs,a, and z = vs′ . Let ⟨ŷ, ẑ⟩ denote an arbitrary assignment
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haff(s,a, s
′) = d ·


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

= d · (ŷ · z + ẑ · y − ẑ · ŷ).

The resulting function haff(s,a, s′) is affine in y and z (vs and πs,a). After the lin-
earization step, we replace Equation 4.35 for maximizing reach-reward by
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a : vs ≤
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The linearized problem may be infeasible, or the optimal solution to the lin-
earized may no longer be feasible to the dual problem, as it is an over-approximation
of the original optimization problem. We alleviate these feasibility issues as follows.
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First, we add penalty variables to the linearized constraints to ensure that the dual
problem is always feasible, and we penalize violations by adding the sum of these
variables weighted by penalty parameter τ to the objective function, just as in
the CCP approach. Second, we include trust regions around the previous solution
to ensure we do not deviate too much from that solution. We explain these two
additions below. Finally, we use robust dynamic programming to compute the exact
robust value function and alleviate any potential approximation errors arising from
the linearization. Additionally, the robust performance computed here may also
serve as a termination criterion.

Penalty variables. Similar to the CCP approach, we add a non-negative penalty
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
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ks. The constraint and objective

function for minimizing stochastic shortest path are modified analogously.

Trust regions. We use trust regions by adding the following set of constraints to
the resulting linearized problem:

∀s ∈ S : v̂s
δ′
≤ vs ≤ v̂s · δ′ , (4.43)

∀s ∈ Sa,∀a ∈ A(s) :
π̂s,a

δ′
≤ πs,a ≤ π̂s,a · δ′ , (4.44)

where δ′ = δ +1 and δ > 0 is the size of the trust region, which restricts the set of
feasible policies, and v̂s and π̂s,a denote the assigned value and policy variables that
are used for linearization.

Complete Finite LPs
We now present the complete finite LPs for simple IPOMDPs with reach-reward
and stochastic shortest path objectives.

Complete Finite LP for Reach-Reward
Combining these steps, we now state the resulting finite LP—for some fixed but
arbitrary assignment to v̂s and π̂s,a in the definition of haff, penalty parameter τ > 0
and a trust region δ > 0:

Maximize vsι − τ


s∈S?
a

ks (4.45)

Subject to
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∀s ∈ T : vs = 0, (4.46)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.47)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.48)

∀s ∈ S?
a : vs − ks ≤

∑

a∈A(s)
πs,a ·R(s,a) +

∑

s′∈S
haff(s,a, s

′), (4.49)

∀s ∈ S?
u : vs ≤ R(s) +µ⊤s gs (4.50)

∀s ∈ S?
u : C⊤s µs + q = 0, (4.51)

∀s ∈ S?
u : µs ≥ 0, (4.52)

∀s ∈ S : v̂s · 1/δ′ ≤ vs ≤ v̂s · δ′ , (4.53)

∀s ∈ Sa,∀a ∈ A(s) : π̂s,a · 1/δ′ ≤ πs,a ≤ π̂s,a · δ′ . (4.54)

Complete Finite LP for Stochastic Shortest Path
Analogously, the resulting finite LP for minimizing stochastic shortest path is:

Minimize vsι + τ
∑

s∈S?
a

ks (4.55)

Subject to

∀s ∈ T : vs = 0, (4.56)

∀s ∈ S? :
∑

a∈A(s)
πs,a = 1, (4.57)

∀s, s′ ∈ S?,∀a ∈ A(s) : O(s) =O(s′) =⇒ πs,a = πs′ ,a, (4.58)

∀s ∈ S?
a : vs + ks ≥

∑

a∈A(s)
πs,a ·R(s,a) +

∑

s′∈S
haff(s,a, s

′), (4.59)

∀s ∈ S?
u : vs ≤ R(s) +µ⊤s gs (4.60)

∀s ∈ S?
u : C⊤s µs + q = 0, (4.61)

∀s ∈ S?
u : µs ≥ 0, (4.62)

∀s ∈ S : v̂s · 1/δ′ ≤ vs ≤ v̂s · δ′ , (4.63)

∀s ∈ Sa,∀a ∈ A(s) : π̂s,a · 1/δ′ ≤ πs,a ≤ π̂s,a · δ′ . (4.64)

Complete Iterative SCP Algorithm
Algorithm 4.2 details the complete SCP algorithm for computing robust policies
in RPOMDPs. We start with an initial guess of a policy π and a trust region radius
with δ > 0, and we use robust dynamic programming to compute the robust value
function for π, and in particular, its performance ρ(π,M). We check whether the
obtained value ρ(π,M) is improved compared to ρ(πold,M). In this case, we accept
the solution and enlarge the trust region by multiplying δ with a parameter κ > 1.

4.6. Experimental Evaluation
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Algorithm 4.2: SCP with trust region for solving IPOMDPs.
Input: IPOMDPM, κ > 1, ω > 0
Initialize: trust region δ, weight τ, policy π, ρ̂old = 0

1: while δ > ω do
2: Extract values vs, performance ρ̂ = ρ(π,M,ϕ) ▷ Robust policy evaluation
3: if ρ̂ > ρ̂old then ▷ Reverse for minimizing objectives
4: ∀s ∈ S : v̂s← vs , π̂← π, ρ̂old ← ρ̂ ▷ Accept iteration
5: δ← δ ·κ ▷ Extend trust region
6: else
7: δ← δ

κ ▷ Reject iteration, reduce trust region
8: end if
9: Linearize around ⟨π̂, v̂s⟩ ▷ Sequential convex programming (Section 4.5.3)

10: Solve the resulting LP
11: Extract policy π: π(a |s) = π̂s,a
12: end while
13: return the policy π

If not, we reject the solution and contract the trust region by κ. We then solve the
LP with the current parameters. We linearize around previous policy variables
π̂s,a and value variables v̂s, and solve with parameters δ and κ to get an optimal
solution. We iterate this procedure until a feasible solution is found or the radius
of the trust region is below a threshold ω > 0. If the trust region size is below ω,
the algorithm terminates. In such cases, we can run Algorithm 4.2 with a different
initial assignment.

4.6 Experimental Evaluation
We evaluate and compare the QCQP and SCP approaches for computing robust
policies on IPOMDPs. Our implementation is built on top of the probabilistic
verification tool Storm (Dehnert et al., 2017), together with QCQP and LP solver
Gurobi (Gurobi Optimization, 2019). All experiments were run on an i7-10510U
CPU with 16GB of RAM.

4.6.1 Setup
We use three POMDP benchmarks to evaluate both algorithms: aircraft collision
avoidance, intercepts, and spacecraft motion planning, all detailed below. We transform
these POMDPs into IPOMDPs by incorporating intervals around the probabilities
of the original POMDP model, which we shall refer to as the nominal model. We
consider FSCs of sizes |N | ∈ {1,2,3}.

Hyperparameters. For both CCP and SCP, we initialize π̂ to the policy that, for
each state, gives a uniform distribution over all available actions. For CCP, we set
τ = 104,τmax = 1010, and µ = 20 initially and doubled per iteration. For SCP, we set
τ = 104,δ = 1.5,κ = 1.5, and ω = 10−4.
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∀s ∈ T : vs = 0, (4.46)
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∑
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Complete Iterative SCP Algorithm
Algorithm 4.2 details the complete SCP algorithm for computing robust policies
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obtained value ρ(π,M) is improved compared to ρ(πold,M). In this case, we accept
the solution and enlarge the trust region by multiplying δ with a parameter κ > 1.
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Algorithm 4.2: SCP with trust region for solving IPOMDPs.
Input: IPOMDPM, κ > 1, ω > 0
Initialize: trust region δ, weight τ, policy π, ρ̂old = 0

1: while δ > ω do
2: Extract values vs, performance ρ̂ = ρ(π,M,ϕ) ▷ Robust policy evaluation
3: if ρ̂ > ρ̂old then ▷ Reverse for minimizing objectives
4: ∀s ∈ S : v̂s← vs , π̂← π, ρ̂old ← ρ̂ ▷ Accept iteration
5: δ← δ ·κ ▷ Extend trust region
6: else
7: δ← δ

κ ▷ Reject iteration, reduce trust region
8: end if
9: Linearize around ⟨π̂, v̂s⟩ ▷ Sequential convex programming (Section 4.5.3)

10: Solve the resulting LP
11: Extract policy π: π(a |s) = π̂s,a
12: end while
13: return the policy π

If not, we reject the solution and contract the trust region by κ. We then solve the
LP with the current parameters. We linearize around previous policy variables
π̂s,a and value variables v̂s, and solve with parameters δ and κ to get an optimal
solution. We iterate this procedure until a feasible solution is found or the radius
of the trust region is below a threshold ω > 0. If the trust region size is below ω,
the algorithm terminates. In such cases, we can run Algorithm 4.2 with a different
initial assignment.

4.6 Experimental Evaluation
We evaluate and compare the QCQP and SCP approaches for computing robust
policies on IPOMDPs. Our implementation is built on top of the probabilistic
verification tool Storm (Dehnert et al., 2017), together with QCQP and LP solver
Gurobi (Gurobi Optimization, 2019). All experiments were run on an i7-10510U
CPU with 16GB of RAM.

4.6.1 Setup
We use three POMDP benchmarks to evaluate both algorithms: aircraft collision
avoidance, intercepts, and spacecraft motion planning, all detailed below. We transform
these POMDPs into IPOMDPs by incorporating intervals around the probabilities
of the original POMDP model, which we shall refer to as the nominal model. We
consider FSCs of sizes |N | ∈ {1,2,3}.

Hyperparameters. For both CCP and SCP, we initialize π̂ to the policy that, for
each state, gives a uniform distribution over all available actions. For CCP, we set
τ = 104,τmax = 1010, and µ = 20 initially and doubled per iteration. For SCP, we set
τ = 104,δ = 1.5,κ = 1.5, and ω = 10−4.
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Termination criteria. We specify a maximum number of 100 iterations and use
a thirty-minute time-out (TO) for both algorithms. We do not set a termination
threshold for robust policy evaluation so we may investigate towards which value
each algorithm converges within the set timeframe and given iterations.

Environments
We benchmark our algorithms on the following environments. For each of these envi-
ronments we have a nominal model, i.e., a standard POMDP with fixed probabilities,
and two IPOMDPs with small and large interval sizes, respectively. Furthermore, we
unfold the FSC memory into the state space and transform it into a simple IPOMDP,
as described in Definition 2.11 and Section 4.5.1, respectively. We consider FSCs of
sizes |N | = 1 (memoryless), |N | = 2 and |N | = 3

• Aircraft Collision Avoidance. We consider a robust variant of the aircraft
collision avoidance problem (Kochenderfer, 2015). The agent’s objective is
to maximize the probability of avoiding a collision with an intruder aircraft
while taking into account sensor errors and uncertainty in the future paths of
the intruder, i.e., a reachability objective.

We consider a two-dimensional instance with a state space consisting of (1)
the agent’s aircraft position relative to an intruder and (2) the relative speed
of the intruder relative to the agent. The relative position is discretized, and
the agent cannot precisely observe the intruder’s position. In each time step,
the action choice reflects changing the acceleration of the own aircraft in two
dimensions. The intruder acceleration is chosen with probability 0.5 in the
nominal model and intervals [0.45,0.55] and [0.2,0.8] in the small and large
uncertainty sets. The nominal probability of the pilot being responsive at a
given time is 0.9, with uncertainty sets given by the intervals [0.85,0.95] and
[0.7,0.98]. The number of states of this model are 9100, 27236, and 45372,
for each FSC size, respectively.

• Intercept. This benchmark considers a partially observable grid world in which
the agent has to intercept a randomly moving adversary (Junges et al., 2021a).
The agent operates on an eight-by-eight grid and can move towards all eight
surrounding cells, with a probability of slipping two tiles in that direction.
Its view is limited to a radius of one, but by using an action to observe, the
adversary’s position is revealed. The goal is to intercept the adversary before
it reaches an exit, expressed through a stochastic shortest path objective. We
consider a nominal slip probability of 0.2 and small and large uncertainty sets
of [0.15,0.25] and [0.1,0.4], respectively. The number of states of this model
are 17570, 57316, and 97062, for each FSC size, respectively.

• Spacecraft Motion Planning. This case study considers the robust spacecraft
motion planning system (Frey et al., 2017; Hobbs and Feron, 2020). The
spacecraft orbits the earth along a set of predefined natural motion trajectories
(NMTs) (Kim et al., 2007). While the spacecraft follows its current NMT, it
does not consume fuel. Upon an imminent close encounter with other objects
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Figure 4.7: Performance of robust policies computed by CCP and SCP against reachability
objectives in the Aircraft and Spacecraft environments.

in space, the spacecraft may be directed to switch into a nearby NMT at the
cost of a certain fuel usage, modeled by a reward function.

For this model, we consider two (separate) objectives: (1) To maximize the
probability of avoiding a close encounter with other objects and (2) to mini-
mize fuel consumption, both within successfully finishing an orbiting cycle,
i.e., reachability and stochastic shortest path objectives. Uncertainty enters the
problem in the form of potential sensing and actuating errors. In particular,
there is uncertainty about the spacecraft position and the location of other
objects in the current orbit, leading to a failure rate of switching to a nearby
NMT. The nominal probability of successfully switching between NMTs is
0.92, with small and large uncertainty sets given by [0.9,0.95] and [0.7,0.98].
The number of states of this model with the reachability objective are 36048,
114406, and 192764 for each FSC, and for the stochastic shortest path version
of the model, we obtain IPOMDPs with 61545, 191835, and 322125 states.

Research questions. Our experimental evaluation centers around the following
three research questions.

RQ1 How do CCP and SCP compare to each other in terms of achieved performance
versus computation time of the robust policies?

RQ2 How does increasing the FSC memory size affect performance and computa-
tion time?

RQ3 Do robust policies indeed provide robustness against the uncertainty set of
the IPOMDP?

4.6.2 Results and Discussion
In Figures 4.7a, 4.7b, 4.8a and 4.8b we evaluate the performance of CCP and SCP
when computing a robust policy against the large uncertainty set of each model.
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Figure 4.7: Performance of robust policies computed by CCP and SCP against reachability
objectives in the Aircraft and Spacecraft environments.

in space, the spacecraft may be directed to switch into a nearby NMT at the
cost of a certain fuel usage, modeled by a reward function.

For this model, we consider two (separate) objectives: (1) To maximize the
probability of avoiding a close encounter with other objects and (2) to mini-
mize fuel consumption, both within successfully finishing an orbiting cycle,
i.e., reachability and stochastic shortest path objectives. Uncertainty enters the
problem in the form of potential sensing and actuating errors. In particular,
there is uncertainty about the spacecraft position and the location of other
objects in the current orbit, leading to a failure rate of switching to a nearby
NMT. The nominal probability of successfully switching between NMTs is
0.92, with small and large uncertainty sets given by [0.9,0.95] and [0.7,0.98].
The number of states of this model with the reachability objective are 36048,
114406, and 192764 for each FSC, and for the stochastic shortest path version
of the model, we obtain IPOMDPs with 61545, 191835, and 322125 states.

Research questions. Our experimental evaluation centers around the following
three research questions.

RQ1 How do CCP and SCP compare to each other in terms of achieved performance
versus computation time of the robust policies?

RQ2 How does increasing the FSC memory size affect performance and computa-
tion time?

RQ3 Do robust policies indeed provide robustness against the uncertainty set of
the IPOMDP?

4.6.2 Results and Discussion
In Figures 4.7a, 4.7b, 4.8a and 4.8b we evaluate the performance of CCP and SCP
when computing a robust policy against the large uncertainty set of each model.
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Figure 4.8: Performance of robust policies computed by CCP and SCP against stochastic
shortest path objectives in the Intercept and Spacecraft environments.

Note that certain FSC sizes have been left out, as the results for those sizes are either
between the shown results (for FSCs of size |N | = 2), or the algorithm timed-out
before finishing the first iteration (CCP on Spacecraft and Intercept). Using these
results, we now discuss research questions 1 and 2.

RQ1. In all environments, we observe SCP outperforming CCP. SCP finds better-
performing policies faster than CCP. The latter is due to CCP having to enumerate
the vertices of the convex polytopes, leading to larger optimization problems than
SCP, which employs dualization. Notably, all cases where CCP is missing from
the results, were due to either a timeout or running out of memory before the
first iteration was completed. We conclude research question 1 with that SCP
outperforms CCP in terms of both achieved performance and computation time.

RQ2. We also note that the use of memory is beneficial. Even a small FSC of
three nodes manages to perform significantly better than a memoryless policy
on the spacecraft environment, as seen in Figures 4.7b and 4.8b. The increase in
performance comes at a roughly linear increase in computational cost, which is to
be expected since unfolding memory linearly increases the number of state-action
pairs in the IPOMDP, answering research question 2.

Evaluating Robustness
Towards an answer to research question 3, we perform an additional experiment to
investigate the benefits of robust policies. We use SCP to compute a (memoryless)
robust policy and evaluate the performance of this robust policy against both
the nominal POMDP and the IPOMDP with small uncertainty. Similarly, we use
SCP to compute a memoryless policy for the nominal POMDP and evaluate that
policy against the IPOMDPs with small and large uncertainty sets. The results are
presented in Tables 4.1 and 4.2.

We note that in three out of four environments, Aircraft and both versions of
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Model Uncertainty size Nominal policy Robust policy

Nominal 0.95 0.97
Aircraft Small 0.93 0.95

Large 0.57 0.73

Nominal 0.996 0.996
Spacecraft Small 0.994 0.994

Large 0.952 0.955

Table 4.1: Policy evaluation results for reachability objectives.

Model Uncertainty size Nominal policy Robust policy

Nominal 18.50 22.99
Intercept Small 20.69 25.68

Large 30.52 36.93

Nominal 149.57 161.40
Spacecraft Small 158.22 171.23

Large 384.20 344.12

Table 4.2: Policy evaluation results for stochastic shortest path objectives.

Spacecraft, the robust policy performs best against the large uncertainty set. In the
Aircraft environment, the robust policy outperforms the nominal policy against
all uncertainty sets, including the nominal POMDP itself, while in the Spacecraft
environment with reachability objective, their performance is equal on the small
uncertainty and nominal models.

While the nominal policy performs better against the nominal POMDP and
the small uncertainty set on the Spacecraft environment with rewards, it drops
in performance as the uncertainty becomes larger, showcasing that its nominal
performance is not indicative of its performance in other environments. The severity
of such effects depends on the environment and the uncertainty set, as also seen by
the intercept environment, where the nominal policy consistently outperforms the
robust policy. Yet, it shows that, generally, when only an uncertain environment is
given, computing a robust policy for that environment is the better approach for
obtaining a well-performing policy, positively answering research question 3.

4.7 Conclusion

We presented two new algorithms to compute finite-memory policies for RPOMDPs.
Both algorithms are based on convex optimization approaches. Their primary
difference is how they deal with the nonconvex constraints. CCP convexifies around
a previous solution while SCP linearizes. Our experimental evaluation shows that
both methods are applicable to large RPOMDPs with varying levels of uncertainty,
with SCP being significantly more scalable than CCP.
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While the nominal policy performs better against the nominal POMDP and
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both methods are applicable to large RPOMDPs with varying levels of uncertainty,
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4.7.1 Limitations and Discussion
The techniques presented in this chapter rely on some assumptions that impose
certain limitations. We discuss each of these limitations individually below.

IPOMDP semantics. In Section 4.2, we discussed RPOMDP semantics and the spe-
cific semantics we assume for the IPOMDPs used in this chapter. Specifically,
we defined IPOMDPs to be (s,a)-rectangular with full sticky (i.e., static in terms
of RMDPs) uncertainty semantics. These semantics imply that nature, who
adversarially chooses probability distributions from the uncertainty set, does
so only once for each individual state-action pair. In other words, nature se-
lects a single POMDP that is contained in the uncertainty set of the IPOMDP
and does not change its choice over time. The use of convex optimization
inherently limits us to these semantics. Any other semantics would require
the NLPs defined in Section 4.3 to be adaptable to changes in nature’s choices.

Unfolding and rectangularity. As noted in Remark 4.3, encoding an FSC’s memory
nodes into the state space of the IPOMDP prevents an exact robust policy
evaluation as we lose (s,a)-rectangularity. Assuming full rectangularity on
the unfolded state space, as we do here, provides a conservative bound and
thus ensures the soundness of our results. Nonetheless, a more precise policy
evaluation could potentially lead to the discovery of other, better-performing,
robust policies since the evaluation results feed back into both CCP and SCP.
Using techniques for robust dynamic programming on s-rectangular RMDPs
(as briefly discussed in Section 3.4) could provide a first direction to alleviate
this limitation.

FSC structure. As explained in Remark 4.4, requiring the policy variables to be
bounded away from zero will result in FSCs with a fully connected memory
update function and action mapping with full support. Both CCP and SCP
search the space of all stochastic FSCs that satisfy these conditions, but FSCs
outside of this set that perform better may exist. One possible alleviation is
to specify some small threshold ε and prune the memory update and action
mapping where the probabilities are below this threshold. However, it is
unclear if such an approach would be worthwhile, as the pruning would have
to be done in each iteration of CCP or SCP. Alternatively, we could fix a specific
FSC structure and let the NLPs adhere to that structure. The downside of
that approach is the same as that of the current approach: the NLPs still only
consider a subset of all possible FSCs.

Future work. Further directions for future work are incorporating learning-based
approaches such as recurrent neural networks to construct alternative policy repre-
sentations (Carr et al., 2021; Galesloot et al., 2024), and extending the presented
algorithms to other classes or RPOMDPs. Most notably, we envision adaptations to-
ward RPOMDPs with L1uncertainty sets to be feasible with relatively minor changes
to the vertex enumeration of CCP or dualization of SCP.

5
Robust Anytime Learning of
Markov Decision Processes

This chapter considers an online model-based reinforcement learning setting. Our
primary goal is to learn a robust MDP that captures an environment so that robust
policies computed on this RMDP are robust against statistical errors made during
the learning process. To that end, we introduce a Bayesian inference scheme that
continuously learns the transition probabilities of an MDP in a robust anytime
learning approach. Our method (1) approximates probabilities as intervals, (2)
adapts to new data that may be inconsistent with an intermediate model, and (3)
may be stopped at any time to compute a robust policy on the RMDP that represents
the data so far. In particular, this learning scheme is capable of adapting to changes
in the underlying environment during the learning process.

5.1 Introduction
Sequential decision-making in realistic scenarios is inherently subject to uncertainty,
commonly captured via probabilities. Markov decision processes (MDPs) are the
standard model to reason about such decision-making problems (Bertsekas, 2005;
Puterman, 1994). A fundamental requirement for guaranteeing optimality of
the policies and values computed on an MDP with regard to some objective is
that the probabilities are precisely given. Already, a small misspecification of
transition probabilities may lead to significant deterioration in the performance of
a policy (Goyal and Grand-Clément, 2023; Mannor et al., 2007).

Inferring probabilities from data naturally introduces statistical errors. As a
consequence, methods that learn MDPs from data, such as model-based reinforce-
ment learning (Moerland et al., 2023) or PAC-learning (Strehl et al., 2009) need
to be robust against such errors. Additionally, learning methods often assume
the underlying environment remains fixed over time, and are not robust to any
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learning approach. Our method (1) approximates probabilities as intervals, (2)
adapts to new data that may be inconsistent with an intermediate model, and (3)
may be stopped at any time to compute a robust policy on the RMDP that represents
the data so far. In particular, this learning scheme is capable of adapting to changes
in the underlying environment during the learning process.

5.1 Introduction
Sequential decision-making in realistic scenarios is inherently subject to uncertainty,
commonly captured via probabilities. Markov decision processes (MDPs) are the
standard model to reason about such decision-making problems (Bertsekas, 2005;
Puterman, 1994). A fundamental requirement for guaranteeing optimality of
the policies and values computed on an MDP with regard to some objective is
that the probabilities are precisely given. Already, a small misspecification of
transition probabilities may lead to significant deterioration in the performance of
a policy (Goyal and Grand-Clément, 2023; Mannor et al., 2007).

Inferring probabilities from data naturally introduces statistical errors. As a
consequence, methods that learn MDPs from data, such as model-based reinforce-
ment learning (Moerland et al., 2023) or PAC-learning (Strehl et al., 2009) need
to be robust against such errors. Additionally, learning methods often assume
the underlying environment remains fixed over time, and are not robust to any
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disturbances or changes in the environment (Ashok et al., 2019; Jaksch et al., 2010;
Strehl and Littman, 2008).

Robust MDPs (RMDPs) may be used to incorporate a layer of additional un-
certainty around estimated probabilities via an uncertainty set (Goyal and Grand-
Clément, 2023; Nilim and Ghaoui, 2005; Rigter et al., 2021a; Wiesemann et al.,
2013). Robust policies computed on an RMDP account for the worst-case instance
of this uncertainty set, thus inducing a worst-case performance, i.e., a conservative
bound on, e.g., the reachability probability or expected reward.

5.1.1 Robust RL in Changing Environments
The central contribution presented in this chapter is as follows.

Contribution

We present a new approach to robust reinforcement learning in MDPs where
the underlying environment may change over time.

Specifically, we propose an iterative learning method that uses RMDPs as inter-
mediate models and can adapt to new data, which may be inconsistent with prior
assumptions. Our method learns intervals of probabilities for individual transitions
through a Bayesian inference scheme. This anytime-learning approach employs in-
tervals with linearly updating conjugate priors (Walter and Augustin, 2009) and can
iteratively improve upon an RMDP that approximates the underlying environment.

This method not only decreases the size of each interval but may also increase it
again in case of a so-called prior-data conflict where new data suggests the actual
probability lies outside the current interval. Consequently, a newly learned interval
does not need to be a subset of its prior interval. This property makes our method
especially suitable for learning MDPs where the transition probabilities of the
underlying environment change over time.

We summarize the key features of our learning method and what sets it apart
from other methods.

• An anytime approach. The ability to iteratively update intervals that are
not necessarily subsets of each other allows us to design an anytime-learning
approach. At any time, we may stop the learning and compute a robust policy
for the RMDP that the process has yielded thus far, together with the worst-
case performance of this policy against a given objective. This performance
may often already be sufficient, but when it is not satisfactory, e.g., the worst-
case probability of reaching a set of critical states may be below a certain
threshold, we continue learning towards a new RMDP that more faithfully
captures the true MDP due to the inclusion of further data. Thereby, we
ensure that the robust policy gradually gets closer to the optimal policy for
the true MDP.

• Objective-driven. Our method features the possibility to learn in a task-aware
fashion, that is, to learn transitions that matter for a given objective. In

5.2. Background: Robust Reinforcement Learning

5

77

s0 s1

s2

s3

a1

a2

[0.65,0.75]

[0.25,0.35]

[0.25,0.35]

[0.85,0.95]

1

1

1

(a) Learned IMDP.

s0 s1

s2

s3

a1

a2

[0.1,1.0]

[0.05,0.8]

[0.05,0.8]

[0.1,1.0]

1

1

1

(b) IMDP after prior-data con-
flicts.

s0 s1

s2

s3

a1

a2

[0.2,0.3]

[0.7,0.9]

[0.6,0.8]

[0.2,0.4]

1

1

1

(c) Updated IMDP.

Figure 5.1: Illustration of learning IMDPs through linearly updating intervals in changing
environment dynamics.

particular, for reachability or expected reward (temporal logic) objectives
which require a certain set of target states to be reached, we only learn and
update transitions along paths towards these states. Transitions outside those
paths do not affect the satisfaction of the objective.

• Adaptive to changing environment dynamics. When using linearly updating in-
tervals, our approach is adaptive to changing environment dynamics. That is,
if during the learning process the probability distributions of the underlying
MDP change, our method can easily adapt and learns these new distributions.

An illustration of how our anytime learning approach adapts to changing envi-
ronment dynamics is given in Figure 5.1. In Figure 5.1a, the learning process has
nearly converged to the actual environment dynamics, represented by an IMDP
with small intervals. When the environment dynamics suddenly change, prior-data
conflicts ensure the intervals enlarge again, as seen in Figure 5.1b. As more data is
collected, the intervals start to converge again.

Structure of This Chapter
The remainder of this chapter is structured as follows. We start with the necessary
preliminaries from Chapters 2 and 3 and background material on (robust) reinforce-
ment learning and PAC learning in Section 5.2. In Section 5.3, we introduce the
robust anytime-learning approach. Section 5.4 presents linearly updating intervals
(LUI) as an effective learning method for our anytime-learning approach. Section 5.5
details how to adapt LUI to operate in changing environments. In Section 5.6, we
empirically evaluate our approach, and in Section 5.7, we conclude the chapter with
a discussion of limitations and future work.

5.2 Background: Robust Reinforcement Learning
In this section, we first cover the basics of model-based reinforcement learning,
with a particular focus on robustness against the epistemic uncertainty stemming
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disturbances or changes in the environment (Ashok et al., 2019; Jaksch et al., 2010;
Strehl and Littman, 2008).

Robust MDPs (RMDPs) may be used to incorporate a layer of additional un-
certainty around estimated probabilities via an uncertainty set (Goyal and Grand-
Clément, 2023; Nilim and Ghaoui, 2005; Rigter et al., 2021a; Wiesemann et al.,
2013). Robust policies computed on an RMDP account for the worst-case instance
of this uncertainty set, thus inducing a worst-case performance, i.e., a conservative
bound on, e.g., the reachability probability or expected reward.

5.1.1 Robust RL in Changing Environments
The central contribution presented in this chapter is as follows.

Contribution

We present a new approach to robust reinforcement learning in MDPs where
the underlying environment may change over time.

Specifically, we propose an iterative learning method that uses RMDPs as inter-
mediate models and can adapt to new data, which may be inconsistent with prior
assumptions. Our method learns intervals of probabilities for individual transitions
through a Bayesian inference scheme. This anytime-learning approach employs in-
tervals with linearly updating conjugate priors (Walter and Augustin, 2009) and can
iteratively improve upon an RMDP that approximates the underlying environment.

This method not only decreases the size of each interval but may also increase it
again in case of a so-called prior-data conflict where new data suggests the actual
probability lies outside the current interval. Consequently, a newly learned interval
does not need to be a subset of its prior interval. This property makes our method
especially suitable for learning MDPs where the transition probabilities of the
underlying environment change over time.

We summarize the key features of our learning method and what sets it apart
from other methods.

• An anytime approach. The ability to iteratively update intervals that are
not necessarily subsets of each other allows us to design an anytime-learning
approach. At any time, we may stop the learning and compute a robust policy
for the RMDP that the process has yielded thus far, together with the worst-
case performance of this policy against a given objective. This performance
may often already be sufficient, but when it is not satisfactory, e.g., the worst-
case probability of reaching a set of critical states may be below a certain
threshold, we continue learning towards a new RMDP that more faithfully
captures the true MDP due to the inclusion of further data. Thereby, we
ensure that the robust policy gradually gets closer to the optimal policy for
the true MDP.

• Objective-driven. Our method features the possibility to learn in a task-aware
fashion, that is, to learn transitions that matter for a given objective. In

5.2. Background: Robust Reinforcement Learning

5

77

s0 s1

s2

s3

a1

a2

[0.65,0.75]

[0.25,0.35]

[0.25,0.35]

[0.85,0.95]

1

1

1

(a) Learned IMDP.

s0 s1

s2

s3

a1

a2

[0.1,1.0]

[0.05,0.8]

[0.05,0.8]

[0.1,1.0]

1

1

1

(b) IMDP after prior-data con-
flicts.

s0 s1

s2

s3

a1

a2

[0.2,0.3]

[0.7,0.9]

[0.6,0.8]

[0.2,0.4]

1

1

1

(c) Updated IMDP.

Figure 5.1: Illustration of learning IMDPs through linearly updating intervals in changing
environment dynamics.

particular, for reachability or expected reward (temporal logic) objectives
which require a certain set of target states to be reached, we only learn and
update transitions along paths towards these states. Transitions outside those
paths do not affect the satisfaction of the objective.

• Adaptive to changing environment dynamics. When using linearly updating in-
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if during the learning process the probability distributions of the underlying
MDP change, our method can easily adapt and learns these new distributions.

An illustration of how our anytime learning approach adapts to changing envi-
ronment dynamics is given in Figure 5.1. In Figure 5.1a, the learning process has
nearly converged to the actual environment dynamics, represented by an IMDP
with small intervals. When the environment dynamics suddenly change, prior-data
conflicts ensure the intervals enlarge again, as seen in Figure 5.1b. As more data is
collected, the intervals start to converge again.

Structure of This Chapter
The remainder of this chapter is structured as follows. We start with the necessary
preliminaries from Chapters 2 and 3 and background material on (robust) reinforce-
ment learning and PAC learning in Section 5.2. In Section 5.3, we introduce the
robust anytime-learning approach. Section 5.4 presents linearly updating intervals
(LUI) as an effective learning method for our anytime-learning approach. Section 5.5
details how to adapt LUI to operate in changing environments. In Section 5.6, we
empirically evaluate our approach, and in Section 5.7, we conclude the chapter with
a discussion of limitations and future work.

5.2 Background: Robust Reinforcement Learning
In this section, we first cover the basics of model-based reinforcement learning,
with a particular focus on robustness against the epistemic uncertainty stemming
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from statistical errors made during the learning process.

5.2.1 Preliminaries
We start by recalling the necessary definitions from Chapters 2 and 3.

MDPs. The Markov decision processes (MDPs, Definition 2.1) considered in this
chapter are tuples ⟨S,sι,A,P,R⟩, where S is a finite set of states, sι ∈ S is the initial
state, A is a finite set of actions, P : S ×A ⇀ D(S) is the transition function, and
R : S ×A⇀ R≥0 is the (positive) reward function.

RMDPs and IMDPs. The IMDPs in this chapter follow Definition 3.7 from Chap-
ter 3. That is, an IMDP is a tuple ⟨S,sι,A,P,P,R⟩ where S,sι,A and R are the same as
in the MDPs we consider here, and P : S ×A×S ⇀ [0,1] and P : S ×A×S ⇀ [0,1] are
lower and upper bounds on the transition probabilities such that form consistent
intervals. Specifically, P and P need to satisfy the following conditions.

∀s, s′ ∈ S,a ∈ A : P(s,a, s′) =⊥ ⇐⇒ P(s,a, s′) =⊥,
∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) = 0 ⇐⇒ P(s,a, s′) = 0,

∀s, s′ ∈ S,a ∈ A(s) : P(s,a, s′) ≤ P(s,a, s′).

Recall that an IMDP is a special case of an (s,a)-rectangular RMDP, for which the
inner problem of robust dynamic programming can be solved efficiently through
Algorithm 3.1.

Objectives and performance. In this chapter we consider all four objectives
defined in Definition 2.5: reachability, reach-reward, stochastic shortest path, and
discounted reward. We denote these objectives as

ϕ ∈ {PMax(♦T ),RMax(♦T ),RMin(♦T ),RMax(γ)}.

For IMDPs, we use both pessimistic (i.e., robust) and optimistic objectives as defined
in Definition 3.4, respectively:

ϕ ∈ {PMaxMin(♦T ),RMaxMin(♦T ),RMinMax(♦T ),RMaxMin(γ)},

ϕ ∈ {PMaxMax(♦T ),RMaxMax(♦T ),RMinMin(♦T ),RMaxMax(γ)}.

All policies considered in this chapter are memoryless, that is, of type π : S→D(A).
The value function of an MDP is denoted V : S→ R. The optimal value, denoted V ∗,
is the least fixed point of the Bellman equation for a given objective, as discussed in
Section 2.2.1. For IMDPs we have the pessimistic and optimistic value functions
V : S → R and V : S → R, respectively, and the optimality is again denoted by
V ∗ and V

∗
. The performance of a policy π for objective ϕ in MDP M is defined

as ρ(π,M,ϕ) = Vπ,M,ϕ . The pessimistic and optimistic performances of a policy
in an IMDP are defined as ρ(π,M,ϕ) = Vπ,M,ϕ(sι) and ρ(π,M,ϕ) = Vπ,M,ϕ(sι),

respectively. For a complete discussion we refer back to Chapters 2 and 3.

5.2. Background: Robust Reinforcement Learning
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5.2.2 Learning Probabilities
A natural application of RMDPs in both formal methods and AI comes in learn-
ing MDPs from data. Naive estimation of the transition probabilities from a fi-
nite amount of observations introduces estimation errors. When following a path
through a learned MDP, these errors may accumulate, leading to potentially sig-
nificant differences in values (and possibly optimal policies) between the learned
model and the true underlying MDP (Goyal and Grand-Clément, 2023; Mannor
et al., 2007). To account for these errors, confidence intervals around the probabili-
ties or distributions may be computed via, e.g., Hoeffding’s inequality (Hoeffding,
1963) or the Weissman bound (Weissman et al., 2003), and included in the learned
model, yielding an RMDP. Resulting policies and values can then be given a probably
approximately correct (PAC) guarantee.

Learning MDPs, both with and without PAC guarantees, has been studied ex-
tensively in both formal methods and AI, namely in the form of statistical model
checking (SMC) and reinforcement learning (RL).

Statistical Model Checking
Statistical model checking is the process of verifying whether a stochastic system
satisfies a particular quantitative property through simulations until enough sta-
tistical evidence has been collected to accept or reject the property (Legay et al.,
2010; Younes and Simmons, 2002). SMC is often used when the system is partially
unknown or too large to fit an explicit state space in memory and applies to indefi-
nite or infinite horizon properties such as reachability and reach-reward, or more
general temporal logic objectives (Brázdil et al., 2024).

SMCwith PAC guarantees (PAC-SMC) has been developed for MDPs and stochas-
tic games (Ashok et al., 2019), and extended to continuous time MDPs (Agarwal
et al., 2022). These methods either build IMDPs by deriving confidence intervals
through Hoeffding’s inequality or construct lower and upper Bellman equations that
are updated directly, implicitly performing robust dynamic programming without
building the underlying RMDP model (Ashok et al., 2019; Baier et al., 2023; Daca
et al., 2016; Kretínský, 2016).

Reinforcement Learning
In contrast, RL is primarily concerned with finding an optimal policy that maximizes
discounted or finite horizon reward objectives through efficient exploration (Sutton
and Barto, 1998). The RL paradigm is usually split into model-free and model-based
RL. Where model-free RL methods learn through an explicit trial-and-error process,
model-based RL methods explicitly construct an estimated model (usually an MDP)
of the environment and then perform planning on this model (Moerland et al., 2023;
Sutton and Barto, 1998). An RL method is a robust RL method when it accounts for
uncertainty or disturbances in the environment (Moos et al., 2022). RMDPs, and
specifically L1-MDPs based on the aforementioned Weissman bound, are used in
model-based and robust RL to achieve PAC guarantees on the learned model (Strehl
and Littman, 2008; Strehl et al., 2009) or efficient exploration through optimistic
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from statistical errors made during the learning process.
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policies (Jaksch et al., 2010).
It should be noted that the PAC-MDP framework of (Strehl et al., 2009) explicitly

requires the sample efficiency of a learning algorithm to be polynomial in the input
to be considered (efficiently) PAC. As a consequence, any non-finitary objective is
not PAC-learnable following the PAC-MDP framework, and PAC-SMC methods
are said to give anytime or best-effort guarantees (Yang et al., 2022). Recent work
investigates techniques to reduce the amount of data required to achieve PAC
guarantees in both SMC and RL (Budde et al., 2024; Meggendorfer et al., 2024;
Wienhöft et al., 2023).

5.2.3 Learning Point Estimates by Counting

We now describe a general setup for learning point estimates of probabilities via
maximum likelihood estimation (MLE) or maximum a-posteriori (MAP) estimation.

In RL settings, such as the one we also consider in this chapter, we do not have
direct sampling access to individual state-action pairs. Instead, we need to sample
according to some exploration policy that collects trajectories, one per episode, of the
MDP from the initial state until some termination criterion is met. Since we are
only concerned with learning the transition function in this chapter, we omit the
rewards from the trajectories.

A dataset is a collection ofm trajectories of length n: D = {⟨sι,a0, . . . , sn,an⟩t}t∈[1:m].
We write #D(s,a) and #D(s,a, s′) for the number of times a state-action pair and
transition were observed in D, respectively.

Maximum likelihood estimation (MLE) simply estimates probabilities by counting
occurrences in the dataset D. Assume a fixed state-action pair (s,a) in some MDP
M = ⟨S,sι,A,P,R⟩. Let N = #D(s,a) > 0 be the number of times (s,a) was sampled,
and each successor state is observed ki = #D(s,a, si ) times for i = 1, . . . ,m where
m = |PostM (s,a)|. The maximum likelihood estimate P̃MLE(s,a) of P(s,a) is given by

P̃MLE(si |s,a) =
ki
N

.

When N = 0, MLE fails to produce a valid probability distribution for that state-
action pair, and a default to fall back on needs to be used, for example, a uniform
distribution or by making the state absorbing with a self-loop of probability one.

Another particular issue with MLE is that transitions with count #D(s,a, s′) = 0
will be estimated to have probability zero. In settings where one assumes knowledge
of the underlying graph of the MDP, and thus whether (s,a, s′) exists or not, the
maximum likelihood estimate may contradict this prior knowledge, and again, an
ad hoc fix is needed.

Alternatively, we may exploit such prior knowledge by incorporating it in a prior
distribution and instead use Maximum a-posteriori estimation (MAP-estimation).
MAP-estimation derives point estimates from aDirichlet distribution that is updated
based on new data. In an MDP, the observed transition counts of state-action pair
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(s,a) follow the multinomial likelihood

Mn(k1, . . . , kn | P(· |s,a)) =
N !

k1! · . . . · km!
·

m∏

i=1

P(si |s,a)ki , (5.1)

where the transition probabilities P(s,a, si ) are unknown and given by a Dirichlet
distribution with parameters α1, . . . ,αm (Bishop, 2007):

Dir(P(· |s,a) | α1, . . . ,αm) ∝
m∏

i=1

P(si |s,a)αi−1.

The Dirichlet distribution is a conjugate prior to the multinomial likelihood, meaning
that we do not need to compute the posterior distribution explicitly, but instead, we
just update the parameters of the prior Dirichlet distribution. Formally, conjugacy
is a closure property, see (Jacobs, 2020).

Given a prior Dirichlet distribution with parameters α1, . . . ,αm, and observing
the i-th successor state ki times, the posterior Dirichlet distribution is given by
simply adding ki to parameter αi :

Dir(P(· |s,a) | α1 + k1, . . . ,αm + km).

Having computed the posterior Dirichlet distribution, MAP-estimation can be
used to infer the probabilities. These estimates are given by the mode of each
parameter of the posterior distribution:

P̃MAP(si |s,a) =
αi − 1

(
∑m

j=1αj )−m
.

When all parameters αi are equal, MAP-estimation yields uniform distributions.
Applying MLE or MAP-estimation for all state-action pairs of the MDP M yields

a complete estimate of the transition function of M . The estimated MDP from D,
either by MLE or MAP-estimation, is given by M̃ = ⟨S,sι,A, P̃,R⟩ where P̃ is either
P̃MLE or P̃MAP, respectively.

5.2.4 Anytime PAC Learning

Given a point estimate of a probability P̃(si |s,a), either derived by MLE or MAP-
estimation, we can construct probably approximately correct (PAC) intervals via
Hoeffding’s inequality. Given N = #D(s,a) samples and a fixed confidence level 1− δ,
we use Hoeffding’s inequality (Hoeffding, 1963) to construct intervals that will
define an IMDPM that is probably approximately correct (PAC) for the underlying
true MDP M . That is, with high probability 1− δ, the optimal value function V ∗M of
the MDP is bounded by the optimal pessimistic and optimistic value functions of
M, for every state:

∀s ∈ S : P(V ∗(s) ≤ V ∗(s) ≤ V
∗
(s)) > 1− δ.
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policies (Jaksch et al., 2010).
It should be noted that the PAC-MDP framework of (Strehl et al., 2009) explicitly

requires the sample efficiency of a learning algorithm to be polynomial in the input
to be considered (efficiently) PAC. As a consequence, any non-finitary objective is
not PAC-learnable following the PAC-MDP framework, and PAC-SMC methods
are said to give anytime or best-effort guarantees (Yang et al., 2022). Recent work
investigates techniques to reduce the amount of data required to achieve PAC
guarantees in both SMC and RL (Budde et al., 2024; Meggendorfer et al., 2024;
Wienhöft et al., 2023).

5.2.3 Learning Point Estimates by Counting

We now describe a general setup for learning point estimates of probabilities via
maximum likelihood estimation (MLE) or maximum a-posteriori (MAP) estimation.

In RL settings, such as the one we also consider in this chapter, we do not have
direct sampling access to individual state-action pairs. Instead, we need to sample
according to some exploration policy that collects trajectories, one per episode, of the
MDP from the initial state until some termination criterion is met. Since we are
only concerned with learning the transition function in this chapter, we omit the
rewards from the trajectories.

A dataset is a collection ofm trajectories of length n: D = {⟨sι,a0, . . . , sn,an⟩t}t∈[1:m].
We write #D(s,a) and #D(s,a, s′) for the number of times a state-action pair and
transition were observed in D, respectively.

Maximum likelihood estimation (MLE) simply estimates probabilities by counting
occurrences in the dataset D. Assume a fixed state-action pair (s,a) in some MDP
M = ⟨S,sι,A,P,R⟩. Let N = #D(s,a) > 0 be the number of times (s,a) was sampled,
and each successor state is observed ki = #D(s,a, si ) times for i = 1, . . . ,m where
m = |PostM (s,a)|. The maximum likelihood estimate P̃MLE(s,a) of P(s,a) is given by

P̃MLE(si |s,a) =
ki
N

.

When N = 0, MLE fails to produce a valid probability distribution for that state-
action pair, and a default to fall back on needs to be used, for example, a uniform
distribution or by making the state absorbing with a self-loop of probability one.

Another particular issue with MLE is that transitions with count #D(s,a, s′) = 0
will be estimated to have probability zero. In settings where one assumes knowledge
of the underlying graph of the MDP, and thus whether (s,a, s′) exists or not, the
maximum likelihood estimate may contradict this prior knowledge, and again, an
ad hoc fix is needed.

Alternatively, we may exploit such prior knowledge by incorporating it in a prior
distribution and instead use Maximum a-posteriori estimation (MAP-estimation).
MAP-estimation derives point estimates from aDirichlet distribution that is updated
based on new data. In an MDP, the observed transition counts of state-action pair
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(s,a) follow the multinomial likelihood

Mn(k1, . . . , kn | P(· |s,a)) =
N !

k1! · . . . · km!
·

m∏

i=1

P(si |s,a)ki , (5.1)

where the transition probabilities P(s,a, si ) are unknown and given by a Dirichlet
distribution with parameters α1, . . . ,αm (Bishop, 2007):

Dir(P(· |s,a) | α1, . . . ,αm) ∝
m∏

i=1

P(si |s,a)αi−1.

The Dirichlet distribution is a conjugate prior to the multinomial likelihood, meaning
that we do not need to compute the posterior distribution explicitly, but instead, we
just update the parameters of the prior Dirichlet distribution. Formally, conjugacy
is a closure property, see (Jacobs, 2020).

Given a prior Dirichlet distribution with parameters α1, . . . ,αm, and observing
the i-th successor state ki times, the posterior Dirichlet distribution is given by
simply adding ki to parameter αi :

Dir(P(· |s,a) | α1 + k1, . . . ,αm + km).

Having computed the posterior Dirichlet distribution, MAP-estimation can be
used to infer the probabilities. These estimates are given by the mode of each
parameter of the posterior distribution:

P̃MAP(si |s,a) =
αi − 1

(
∑m

j=1αj )−m
.

When all parameters αi are equal, MAP-estimation yields uniform distributions.
Applying MLE or MAP-estimation for all state-action pairs of the MDP M yields

a complete estimate of the transition function of M . The estimated MDP from D,
either by MLE or MAP-estimation, is given by M̃ = ⟨S,sι,A, P̃,R⟩ where P̃ is either
P̃MLE or P̃MAP, respectively.

5.2.4 Anytime PAC Learning

Given a point estimate of a probability P̃(si |s,a), either derived by MLE or MAP-
estimation, we can construct probably approximately correct (PAC) intervals via
Hoeffding’s inequality. Given N = #D(s,a) samples and a fixed confidence level 1− δ,
we use Hoeffding’s inequality (Hoeffding, 1963) to construct intervals that will
define an IMDPM that is probably approximately correct (PAC) for the underlying
true MDP M . That is, with high probability 1− δ, the optimal value function V ∗M of
the MDP is bounded by the optimal pessimistic and optimistic value functions of
M, for every state:

∀s ∈ S : P(V ∗(s) ≤ V ∗(s) ≤ V
∗
(s)) > 1− δ.
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To construct a PAC guarantee on the entire learned MDP M , and consequently
also the optimal value for some objective, we need to distribute δ over all transitions
that need to be estimated, i.e., those with probabilities strictly between zero and
one. To that end, let

δM =
δ∑

(s,a)∈S×A
1[|PostM (s,a)| > 1] · |PostM (s,a)|

.

Then, using Hoeffding’s inequality to compute the distributed interval size

ζM =

√
log(2/δM )

2N
.

Using this ζM , we then construct the intervals

P(s,a, si ) = P̃(si |s,a)− ζM, P(s,a, si ) = P̃(si |s,a) + ζM, (5.2)

such thatM = ⟨S,sι,A,P,P,R⟩ forms an interval MDP.
To derive a formal PAC guarantee on this IMDP, some conditions need to be

met. First, it should be noted that Hoeffding’s inequality assumes the samples are
independent and identically distributed (i.i.d.). This is, in general, not the case when
sampling trajectories from an MDP, as shown by (Starre et al., 2023; Strehl and
Littman, 2008), as the samples are not independent. However, Strehl and Littman
(2008, Appendix A) establish that one can still use the samples as if i.i.d. when
only providing an upper bound on the probability of specific sequences of successor
states occurring.

A second concern is the coverage of samples. Specifically, it should be possible to
sample every state-action pair infinitely often. One method to ensure this condition
on the sample coverage is satisfied is by requiring that every state can be reached
(within a finite number of steps) from every other state under some (randomized)
policy (Marjani et al., 2023). If the underlying MDP is episodic, i.e., may be reset,
the requirement can be weakened and every state only needs to be reachable from
the initial state. Depending on the objective, further processing of end-components
may be needed (Ashok et al., 2019). An end-component is a strongly connected
sub-MDP for which a policy exists such that all paths following that policy remain
within the end-component. For details on end-components we refer to (Baier and
Katoen, 2008; de Alfaro, 1997).

Proposition 5.1. Let M be an MDP andM = ⟨S,sι,A,P,P,R⟩ the 1− δ-correct IMDP
with P and P constructed through Equation 5.2. Let V ∗ be the optimal value function
of M , and V and V be the optimal pessimistic and optimistic value functions of M,
respectively. We then have

∀s ∈ S : P(V ∗(s) ≤ V ∗(s) ≤ V
∗
(s)) > 1− δ.
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Figure 5.2: Robust anytime-learning procedure outline.

5.3 Robust Anytime Learning
We now present the main contribution of this chapter: a model-based robust RL
algorithm that is adaptive to changing environments.

We assume the following setting, as also shown in Figure 5.2. We have an
unknown but fixed MDP M = ⟨S,sι,A,P,R⟩, which we will refer to as the true MDP,
an initial prior IMDPM = ⟨S,sι,A,P,P,R⟩, and an objective ϕ which we want to
satisfy. A discussion of prior (and other parameter) choices follows in Section 5.6.

In this setting, we assume the underlying graph of the true MDP M is known.

Assumption 5.2 (Underlying graph). We assume that the underlying graph of the true
MDP M is known and that the IMDPM always has the same graph structure. That is,

• transitions that do not exist in M (transitions of probability 0) do also not exist in
the IMDPM, i.e., ∀s, s′ ∈ S,a ∈ A : P(s′ |s,a) = 0 ⇐⇒ P(s,a, s′) = P(s,a, s′) = 0,

• transitions of probability 1 in M are assigned the point interval [1,1] inM, i.e.,
∀s, s′ ∈ S,a ∈ A : P(s′ |s,a) = 1 ⇐⇒ P(s,a, s′) = P(s,a, s′) = 1,

• any other transition of non-zero probability p has an interval with a lower bound
of at least pgraph > 0 inM, i.e., ∀s, s′ ∈ S,a ∈ A : P(s′ |s,a) � 0∧P(s′ |s,a) � 1 =⇒
P(s,a, s′) ≥ pgraph.

Under Assumption 5.2, we construct the initial prior IMDPM to have transitions
of probability 0 and 1 exactly where the true MDP M has these too, and interval
transitions [pgraph,1− pgraph] for all other transitions, with pgraph > 0 free to choose.
In particular, our approach does not require pgraph to be smaller than the smallest
probability p > 0 occurring in M , which we also do not assume to be known.
Alternatively, if further knowledge is available, one may use any other prior IMDP
as long as it satisfies Assumption 5.2.

We now outline our anytime-learning procedure as illustrated in Figure 5.2.

i. Input. We start with an initial prior IMDPM and objective ϕ. We assume
(grey box) access to the unknown true MDP M to sample trajectories from.

ii. Robust dynamic programming. We compute a robust policy π for the pes-
simistic extension of ϕ, i.e. ϕ, in the IMDPM, together with the worst-case
performance of the objective: ρ(π,M,ϕ).
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5.3 Robust Anytime Learning
We now present the main contribution of this chapter: a model-based robust RL
algorithm that is adaptive to changing environments.

We assume the following setting, as also shown in Figure 5.2. We have an
unknown but fixed MDP M = ⟨S,sι,A,P,R⟩, which we will refer to as the true MDP,
an initial prior IMDPM = ⟨S,sι,A,P,P,R⟩, and an objective ϕ which we want to
satisfy. A discussion of prior (and other parameter) choices follows in Section 5.6.

In this setting, we assume the underlying graph of the true MDP M is known.

Assumption 5.2 (Underlying graph). We assume that the underlying graph of the true
MDP M is known and that the IMDPM always has the same graph structure. That is,
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∀s, s′ ∈ S,a ∈ A : P(s′ |s,a) = 1 ⇐⇒ P(s,a, s′) = P(s,a, s′) = 1,

• any other transition of non-zero probability p has an interval with a lower bound
of at least pgraph > 0 inM, i.e., ∀s, s′ ∈ S,a ∈ A : P(s′ |s,a) � 0∧P(s′ |s,a) � 1 =⇒
P(s,a, s′) ≥ pgraph.

Under Assumption 5.2, we construct the initial prior IMDPM to have transitions
of probability 0 and 1 exactly where the true MDP M has these too, and interval
transitions [pgraph,1− pgraph] for all other transitions, with pgraph > 0 free to choose.
In particular, our approach does not require pgraph to be smaller than the smallest
probability p > 0 occurring in M , which we also do not assume to be known.
Alternatively, if further knowledge is available, one may use any other prior IMDP
as long as it satisfies Assumption 5.2.

We now outline our anytime-learning procedure as illustrated in Figure 5.2.

i. Input. We start with an initial prior IMDPM and objective ϕ. We assume
(grey box) access to the unknown true MDP M to sample trajectories from.

ii. Robust dynamic programming. We compute a robust policy π for the pes-
simistic extension of ϕ, i.e. ϕ, in the IMDPM, together with the worst-case
performance of the objective: ρ(π,M,ϕ).
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Figure 5.3: Process flow on an example MDP.

iii. Anytime learning. We have the following loop:

(a) Exploration. We sample one or more trajectories from the true MDP M ,
using the optimism in the face of uncertainty principle, i.e., according to
the optimistic policy π for ϕ inM.

(b) Update. We update the intervals of the IMDPM in accordance with the
newly collected data. This update yields a new IMDP that more faithfully
captures all collected data up to this point than the previous IMDP.

(c) Repeat. We start again at step 2 with this new IMDP.

iv. Output. The process may be stopped at any moment and yields the latest
IMDPM together with robust policy π and the performance ρ(π,M,ϕ).

The effects of this procedure are illustrated in Figure 5.3. In Figure 5.3a, we see an
example MDP M to learn, and Figure 5.3b shows the assumed knowledge about
M . Figure 5.3c shows the initial IMDPM constructed from Figure 5.3b, using a
(symbolic or explicit) lower bound pgraph > 0 to ensure that all lower bounds ofM
are strictly greater than zero. In Figure 5.3d, we see an intermediate learned IMDP.
Some intervals may already have successfully converged towards the probability of
that transition in the true MDP, while others may be very inaccurate due to a low
sample size and thus a bad estimate. Finally, Figure 5.3e depicts the learned IMDP
converging towards the true MDP.

5.4. Linearly Updating Intervals
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5.4 Linearly Updating Intervals
To be adaptive to changing environments, the Update step of our anytime learning
procedure needs to be flexible in the presence of new, possibly inconsistent, data.
To that end, we employ the Bayesian approach of intervals with linearly updating
conjugate priors (Walter and Augustin, 2009) to learn intervals of probabilities.
These intervals, which we shall simply refer to as linearly updating intervals (LUI),
are then used to construct and iteratively update IMDPs. We first present LUI
in its general form and discuss some modifications to increase robustness against
changing environments in Section 5.5.

5.4.1 Learning Linearly Updating Intervals
We have the same setup as for learning probabilities in Section 5.2.2. We assume a
dataset D and counters N = #D(s,a) and ki = #D(s,a, si ) for each si ∈ PostM (s,a). For
further ease of presentation, assume a fixed state-action pair (s,a), and let P be a
shorthand for the intervals at (s,a): Pi = [P(s,a, si ),P(s,a, si )].

Each IMDP transition (s,a, si ) is assigned a prior interval Pi = [Pi ,Pi ], and a
prior strength interval [ni ,ni ] that represents a minimum and maximum number of
samples on which the prior interval is based. The greater the values of the strength
interval, the more emphasis is placed on the prior, and the more data is needed
to significantly change the prior when computing the posterior. The greater the
difference between the ni and ni , the greater the difference between a prior-data
conflict and a prior-data agreement.

Definition 5.3 (Posterior interval computation). The interval [Pi ,Pi ] can be updated
to [P ′i ,P

′
i ], using N = #(s,a) and ki = #(s,a, si ), as follows:

P ′i =



niPi+ki
ni+N

if ∀j : kj
N ≥ Pj (prior-data agreement),

niPi+ki
ni+N

if ∃j : kj
N < Pj (prior-data conflict).

(5.3)

P
′
i =



niPi+ki
ni+N

if ∀j : kj
N ≤ Pj (prior-data agreement),

niPi+ki
ni+N

if ∃j : kj
N > Pj (prior-data conflict).

(5.4)

The strength interval is updated straightforwardly by adding the number of samples
N : [n′i ,n

′
i ] = [ni +N,ni +N ].

The initial values for the priors of each state-action pair can be chosen freely
subject to the constraints 0 < Pi ≤ Pi ≤ 1, and ni ≥ ni ≥ 1.

Key properties of linearly updating intervals.

• Convergence in the infinite run. Under the assumption that the true MDP does
not change, each interval will converge to the exact transition probability when
the total number of samples processed tends to infinity, regardless of how
many samples are processed per iteration (Walter and Augustin, 2009). This
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iii. Anytime learning. We have the following loop:

(a) Exploration. We sample one or more trajectories from the true MDP M ,
using the optimism in the face of uncertainty principle, i.e., according to
the optimistic policy π for ϕ inM.

(b) Update. We update the intervals of the IMDPM in accordance with the
newly collected data. This update yields a new IMDP that more faithfully
captures all collected data up to this point than the previous IMDP.

(c) Repeat. We start again at step 2 with this new IMDP.

iv. Output. The process may be stopped at any moment and yields the latest
IMDPM together with robust policy π and the performance ρ(π,M,ϕ).

The effects of this procedure are illustrated in Figure 5.3. In Figure 5.3a, we see an
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that transition in the true MDP, while others may be very inaccurate due to a low
sample size and thus a bad estimate. Finally, Figure 5.3e depicts the learned IMDP
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assumption is, however, not required for our work. If the true MDP changes
over time, or is adversarial (i.e., a RMDP), our method is still applicable, but
will not converge to a fixed MDP.

• Prior-data conflict. When the estimated probability ki/N lies outside the current
interval, a so-called prior data conflict occurs. Consequently, if at some point
we derive an interval that does not contain the true transition probability, the
method will correct itself later on.

• Closure properties under updating. Finally, updating is closed in two specific
ways. First, any interval of probabilities is updated again to a valid interval
of probabilities, and second, any set of intervals at a state-action pair that
contains a valid probability distribution over the successor states will again
contain a valid distribution over successor states after updating.

A key requirement for computing robust policies on RMDPs is that the lower
bound of every interval is strictly greater than zero. This closure property is
formalized as follows.

Theorem 5.4 (Closure of intervals under learning). For any valid prior interval [P,P]
with 0 < P ≤ P ≤ 1, we have that the posterior [P ′ ,P

′
] computed via Definition 5.3 also

satisfies 0 < P ′ ≤ P
′ ≤ 1.

The proof of Theorem 5.4 is straightforward and relies on the observation that
for any amount of finite data, a single update can only grow closer to zero but not
become zero and that iterated updates converge to the true probability which is
assumed to be non-zero.

Proof of Theorem 5.4. For any transition (s,a, si ), the following holds. We as-
sume a valid prior, that is, 0 < Pi ≤ Pi ≤ 1. We have an empirical estimate
of ki/N . Then we also have 0 < P ′i ≤ P

′
i ≤ 1, where the first inequality 0 < P ′i

follows from the fact that Equation 5.3 can only be 0 when their nominator
is zero, which is not possible when ni ≥ 1 (or ni ≥ 1) and Pi > 0. The second
inequality, P ′i ≤ P

′
i follows directly from Equations 5.3 and 5.4 together with

Pi ≤ Pi . The third inequality P
′
i ≤ 1 follows again from Equation 5.4 when

Pi ≤ 1 and ki ≤N . All reasoning above is independent of prior-data agreement
or conflict and thus applies to both cases in each equation.

Furthermore, we also have closure properties at each state-action pair. In partic-
ular, if we choose our prior intervals such that there is at least one valid probability
distribution at the state-action pair, then the posterior intervals will again contain a
valid probability distribution. We formalize this notion by examining the sum of
the lower and upper bounds of the intervals in the following theorem.

Theorem 5.5 (Closure of distributions under learning). We have the following bounds
on the set of posterior distributions. In the case of a prior data agreement, we have the
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sum of the posterior bounds bounded by the sum of the prior bounds and the value 1.
That is,

∑

i

Pi ≤
∑

i

P ′i ≤ 1, 1 ≤
∑

i

P
′
i ≤

∑

i

Pi . (5.5)

In case of a prior-data conflict, the sum of posterior bounds is no longer necessarily
bounded by the prior, and we only have

∑

i

P ′i ≤ 1 ≤
∑

i

P
′
i . (5.6)

Note, however, that this last constraint (5.6) is already sufficient to ensure that
there is a valid probability distribution at the state-action pair.

The proof of Theorem 5.5 uses the following Lemma:

Lemma 5.6. At a state-action pair with m successor states, there can be at most m−1
prior-data conflicts on the upper (or lower) bound.

Proof. We prove the lemma for the upper bound, and a proof for the lower
bound follows by symmetry. Assume a valid prior, that is,

∑
i Pi ≥ 1. Suppose

there is a prior-data conflict for every interval, i.e., ∀i : ki
N > Pi . Then we have

1 =
∑

i

ki
N

>
∑

i

Pi ≥ 1,

which is clearly not possible. The possibility for m − 1 prior-data conflicts is
witnessed in the following example. Take a state-action pair with two successor
states, s1 and s2. Then m = 2. Take one sample, i.e., N = 1, and suppose we
observe s1, such that k1 = 1 and k2 = 0. Then for any valid prior intervals
I1 = [P1,P1] and I2 = [P2,P2] we have k1/N = 1 > P1 and k2/N = 0 < P2. Hence,
a prior-data conflict at I1 but not at I2, thus m−1 conflicts at the state-action
pair in total.

We additionally have the following Lemma:

Lemma 5.7. A prior-data conflict at the upper bound implies a prior-data agreement at
the lower bound and vice versa.

Proof. Assume a conflict at the upper bound Pi . Then we have ki
N > Pi ≥ Pi ,

which is a prior-data agreement with Pi by definition. The opposite direction
follows by symmetry.

Now we prove Theorem 5.5.
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Proof of Theorem 5.5. We start with the constraints in Equation 5.5.
First, 1 ≤

∑
i P
′
i . We use that there is a prior-data agreement, that is, ∀i : ki

N ≤
Pi . Then we derive

∑

i

P
′
i =

∑

i

niPi + ki
ni +N

≥
∑

i

ni
ki
N + ki

ni +N
=
∑

i

ni ki+kiN
N

ni +N

=
∑

i

ki (ni+N )
N

ni +N
=
∑

i

ki
N

=
1
N

∑

i

ki =
N
N

= 1.

The bound
∑

i P
′
i ≤

∑
i Pi is derived using that

∀i : ki
N
≤ Pi ⇐⇒ ∀i : ki ≤ PiN.

Then, it follows that

∑

i

P
′
i =

∑

i

niPi + ki
ni +N

≤
∑

i

niPi +PiN
ni +N

=
∑

i

Pi (ni +N )
ni +N

=
∑

i

Pi .

The proof for the bounds
∑

i

Pi ≤
∑

i

P ′i ≤ 1

is symmetrical to the one above.
Next, we consider the case for a prior-data conflict, that is, the bounds

from Equation 5.6. The existential condition ∃j : kj
N ≥ Pj does not have to

be unique; hence we make a case distinction on the indexes for which the
existential quantification holds and for which it does not. Let I = {1, . . . ,m} be
the set of indices that enumerates the m successor states at the state-action pair
we consider. By Lemma 5.6, we know that there are at most m−1 prior-data
conflicts. Hence, we can partition I into two non-empty subsets, IA containing
all indices where the point estimate agrees with the prior interval, and IC the
set of indices where there is a prior-data conflict. That is,

IA = {i ∈ I | ki
N
≤ Pi }, IC = {i ∈ I | ki

N
> Pi }.

We use this partition to split the sum over all indices in two:

∑

i

P
′
i =

∑

i∈I

niPi + ki
ni +N

=
∑

i∈IA

niPi + ki
ni +N

+
∑

i∈IC

niPi + ki
ni +N
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We now reason on each part separately.
For i ∈ IA we have ki

N ≤ Pi , which also means N ≤ ki
Pi
.

∑

i∈IA

niPi + ki
ni +N

≥
∑

i∈IA

niPi + ki(
ni +

ki
Pi

) =
∑

i∈IA

niPi + ki(
niPi+ki

Pi

) =
∑

i∈IA

Pi

(
niPi + ki

niPi + ki

)
=
∑

i∈IA

Pi .

Next, for i ∈ IC we have ki
N > Pi , and thus also ki > PiN . Then we have the

following:

∑

i∈IC

niPi + ki
ni +N

>
∑

i∈IC

niPi +PiN

ni +N
=
∑

i∈IC

Pi
ni +N

ni +N
=
∑

i∈IC

Pi .

Finally, we put the two partitions back together using the inequalities derived
on both and conclude by using the assumption that the prior is valid, i.e.,∑

i Pi ≥ 1:

∑

i

P
′
i =

∑

i∈IA

niPi + ki
ni +N

+
∑

i∈IC

niPi + ki
ni +N

>
∑

i∈IA

Pi +
∑

i∈IC

Pi =
∑

i∈I
Pi ≥ 1.

The proof for the lower bounds, that
∑

i P
′
i ≤ 1, follows the same reasoning

by symmetry.

5.5 LUI in Changing Environments
Previously, we assumed a fixed unknown true MDP M to learn. But what if the
transition probabilities ofM suddenly change? Suppose there are two unknown true
MDPs, M1 and M2, with the same underlying graph but (possibly) different transi-
tion probabilities. After an unknown number of interactions with environment M1,
we suddenly continue interacting with M2.

LUI, as introduced above, is somewhat capable of dealing with this scenario. If
the change from M1 to M2 happens early on, the prior strengths of the intervals
are not extremely large yet, and hence adaptation to new data from M2 through
prior-data conflicts is still feasible. The more data LUI has processed, however, the
more future data will be needed to make any significant change to the intervals
learnt thus far. Since we do not assume any knowledge on when the change in
environments will happen, we cannot rely on prior-data conflicts in the standard
update rule alone.

We modify the basic LUI by introducing a bound on the strength of the inter-
vals. Such bounds are also sometimes referred to as sliding-window approaches
and have been suggested before to be used in such scenarios (McCallum, 1995).
Additionally, Gajane et al. (2018) proposes to modify the UCRL2 algorithm with
such a window.

We set an upper bound on the strength of the priors, and update the strength in-
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tervals up to this bound. Specifically, let nMax = [nMax,nMax], the posterior strength
interval is then given by

[n′i ,n
′
i ] = [min(ni +N,nMax),min(ni +N,nMax)].

The probability intervals themselves are updated in the same way as before in
Definition 5.3. By limiting the prior strength in this way, we trade theoretical
convergence for adaptability. The weaker the prior, the greater the effect of a
prior-data conflict, and hence adaptability to new data. When suddenly changing
environments, new data will likely lead to prior-data conflicts and, thus, a higher
adaptability of the overall learning method.

5.5.1 Sampling Policies
Above, we assumed a dataset D of trajectories was given. To actually obtain the
trajectories, we use the well-established optimism in the face of uncertainty princi-
ple (Munos, 2014). We compute the optimal policy π∗ for the optimistic extension
of the objective ϕ, i.e. ϕ, in the current IMDP and use this policy for exploration. To
make exploration objective-driven, we only sample transitions along trajectories
toward the target state(s) of the objective. When the last seen state has a probability
of zero or one to reach the target for reachability or reward zero or infinity, we
restart. States satisfying these conditions can be found by analyzing the graph of
the true MDP, which by Assumption 5.2 is given (Baier and Katoen, 2008).

Trajectories and iterations. Our method is iterative in terms of updating the
IMDPM and computing a robust policy. After updating the IMDP, we also com-
pute a new exploration policy, based on the new IMDP. Each iteration consists of
processing at least one, but possibly more, trajectories. To determine how many
trajectories to collect, we use a doubling-counting scheme, where we keep track of
how often every state-action pair and transition is visited during exploration (Jin
et al., 2020). An iteration is completed when any of the counters is doubled with
respect to the previous iteration. A detailed description of this exploration schedule
is given in Algorithm 5.1.

Randomization parameter. Optimism in the face of uncertainty, i.e., using the
optimal optimistic policy for exploration, is sufficient for exploration in most scenar-
ios. In our setting of arbitrarily changing environments, however, this deterministic
policy may be severely limiting. As the environments change, a different action
may become the optimal choice at some state s. However, to detect this change, we
need data from all actions at s. Hence, we need to ensure that every action is always
sampled with some positive probability.

To that end, we introduce a hyperparameter ξ ∈ [0,1], and follow with probabil-
ity ξ the action of the optimistic policy, and distribute the remaining 1−ξ uniformly
over the other actions, yielding a memoryless randomized policy.

In our experimental evaluation, presented next, we include an ablation study on
both upper bounding the prior strength, as well as on using randomization in the
exploration policy.

5.6. Experimental Evaluation

5

91

Algorithm 5.1: Exploration scheme.

Input: K : number of trajectories.
Input: H : max trajectory length.
Input: M = ⟨S,sι,A,P,R⟩ : underlying MDP.
Input: ϕ : objective.
Input: A: algorithm for exploration and robust verification.
1: for s,a ∈ S ×A do
2: ▷ Initialize counters
3: #(s,a) = 0
4: #(s,a, s′) = 0: ∀s′ ∈ S
5: #i (s,a) = 0
6: #i (s,a, s′) = 0: ∀s′ ∈ S
7: end for
8: for k ∈ [1, · · · ,K] do
9: if ∃s,a ∈ S ×A : #i (s,a) >= #(s,a) then

10: ▷ Compute new policies.
11: Give iteration counters #i (s,a) and #i (s,a, s′) to A
12: Get sampling policy from A : πsampling
13: Get robust policy from A : πrobust
14: Evaluate πrobust on M according to ϕ
15: ▷ Update global counters
16: #(s,a) += #i (s,a) : ∀s,a ∈ S ×A
17: #(s,a, s′) += #i (s,a, s′) : ∀s,a ∈ S ×A× S
18: ▷ Reset iteration counters
19: #i (s,a) = 0: ∀s,a ∈ S ×A
20: #i (s,a, s′) = 0: ∀s,a ∈ S ×A× S
21: end if
22: Sample τ from M following πsampling with max size H
23: Increment #i (s,a) and #i (s,a, s′) according to τ.
24: end for

5.6 Experimental Evaluation
We implement LUI on top of the verification tool PRISM (Kwiatkowska et al., 2011).
We compare our method to point estimates derived via MAP-estimation (MAP) and
with IMDPs derived from PAC learning (PAC) and with bounds akin to the UCRL2
algorithm (Jaksch et al., 2010) (UCRL). Note that this is not an exact implementation
of UCRL2 as our setting is different, as we are interested in robust policies and
performance, while UCRL2 only uses optimistic policies. All experiments were
performed on a 4GHz Intel Core i9 CPU, using a single core. Each experiment is
repeated 100 times and reported with a 95% confidence interval.

Without knowledge about the true MDP apart from Assumption 5.2, we must
define an appropriate prior interval for every transition. We set pgraph = 1e-4 as
constant and define the prior IMDP with intervals [P(s,a, s′) = pgraph, P(s,a, s′) =
1− pgraph]. and strength intervals [ni ,ni ] = [5,10] at every transition (s,a, st), as in
Figure 5.3c. For MAP, we use a prior of αi = 10 for all i. The same prior is used for
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1: for s,a ∈ S ×A do
2: ▷ Initialize counters
3: #(s,a) = 0
4: #(s,a, s′) = 0: ∀s′ ∈ S
5: #i (s,a) = 0
6: #i (s,a, s′) = 0: ∀s′ ∈ S
7: end for
8: for k ∈ [1, · · · ,K] do
9: if ∃s,a ∈ S ×A : #i (s,a) >= #(s,a) then

10: ▷ Compute new policies.
11: Give iteration counters #i (s,a) and #i (s,a, s′) to A
12: Get sampling policy from A : πsampling
13: Get robust policy from A : πrobust
14: Evaluate πrobust on M according to ϕ
15: ▷ Update global counters
16: #(s,a) += #i (s,a) : ∀s,a ∈ S ×A
17: #(s,a, s′) += #i (s,a, s′) : ∀s,a ∈ S ×A× S
18: ▷ Reset iteration counters
19: #i (s,a) = 0: ∀s,a ∈ S ×A
20: #i (s,a, s′) = 0: ∀s,a ∈ S ×A× S
21: end if
22: Sample τ from M following πsampling with max size H
23: Increment #i (s,a) and #i (s,a, s′) according to τ.
24: end for

5.6 Experimental Evaluation
We implement LUI on top of the verification tool PRISM (Kwiatkowska et al., 2011).
We compare our method to point estimates derived via MAP-estimation (MAP) and
with IMDPs derived from PAC learning (PAC) and with bounds akin to the UCRL2
algorithm (Jaksch et al., 2010) (UCRL). Note that this is not an exact implementation
of UCRL2 as our setting is different, as we are interested in robust policies and
performance, while UCRL2 only uses optimistic policies. All experiments were
performed on a 4GHz Intel Core i9 CPU, using a single core. Each experiment is
repeated 100 times and reported with a 95% confidence interval.

Without knowledge about the true MDP apart from Assumption 5.2, we must
define an appropriate prior interval for every transition. We set pgraph = 1e-4 as
constant and define the prior IMDP with intervals [P(s,a, s′) = pgraph, P(s,a, s′) =
1− pgraph]. and strength intervals [ni ,ni ] = [5,10] at every transition (s,a, st), as in
Figure 5.3c. For MAP, we use a prior of αi = 10 for all i. The same prior is used for
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the point estimates of PAC and UCRL, together with an error rate of δ = 0.01.

Research questions. This experimental evaluation aims to establish the effective-
ness of our approach, LUI, compared with the other methods. To that end, we pose
the following research questions for each learning method:

RQ1. How does the learned robust policy perform on the true underlying model?

RQ2. How does the uncertainty set of the IMDP constructed by the learningmethod
change during the learning process?

RQ3. How well does the learned IMDP predict a robust policy’s performance on
the true MDP?

RQ4. How robust is the learning method against changes in the underlying envi-
ronment during the learning process?

Evaluation metrics. We consider three metrics to evaluate the learning methods
and answer our research questions.

• Performance. We evaluate the performance of the robust policy on the true
MDP with regard to the objective, i.e., ρ(π,M,ϕ).

• Model Error. We define the model error as the average distance between the
true probability and the furthest bound of the interval. Specifically, for each
transition (s,a, s′), we compute

max(|P(s′ |s,a)−P(s,a, s′)|, |P(s′ |s,a)−P(s,a, s′)|),

i.e., the maximum distance between the true probability and the lower and
upper bounds of the interval in the IMDP (or the point estimate for MAP-
estimation). We then take the average over all these distances.

• Performance Estimation Error. We define the performance estimation error as
the difference between the performance of the robust policy on the learned
IMDP (the worst-case performance) and the performance on the true MDP:

ρ(π,M,ϕ)− ρ(π,M,ϕ).

While values closer to zero are preferable, a positive estimation error indicates
that the robust performance on the learned model of a method is not a lower
(conservative) bound on the actual performance of the policy. In particular,
an estimation error above zero shows the policy is misleading in terms of
predicting its performance.

5.6. Experimental Evaluation
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Benchmark environments. We use the following two well-known benchmarks
for detailed analysis of the evaluation presented here.

• Betting Game (Bäuerle and Ott, 2011). The agent starts with 10 coins and
attempts to maximize the number of coins after 6 bets. When a bet is won,
the number of coins placed is doubled; when lost, the number of coins placed
is removed. The agent may bet 0, 1, 2, 5, or 10 coins. We consider a version
of the game that is favorable to the player, with a win probability of 0.8 per
bet. After 6 bets, the player receives a reward equal to the number of coins
left. The objective is to maximize the reward: RMax(♦T ), where T is the set of
terminal states after six bets.

• Chain Problem (Araya-López et al., 2011). We consider a chain of 30 states.
There are three actions: one progresses with a probability of 0.95 to the next
state, and the other resets the model to the initial state with a probability of
0.05. The second action does the same but with reversed probabilities. The
third action has a probability of 0.5 for both cases. Every action gets a reward
of 1. The objective is to minimize the reward to reach the last state of the
chain, i.e., stochastic shortest path.

We use the following four benchmarks for additional supporting results.

• Aircraft (Kochenderfer, 2015). We model a small, simplified instance of the
aircraft collision avoidance problem. Two aircraft, one controlled, one adver-
sarial, approach each other. The controlled aircraft can increase, decrease, or
stay at the current altitude with a success probability of 0.8. The adversarial
aircraft can do the same but does so with probabilities 0.3, 0.3, and 0.4, re-
spectively. The goal is to maximize the probability of the two aircraft passing
each other without a collision.

• Bandit (Lattimore and Szepesvári, 2020). We consider a 99-armed bandit,
where each arm (action) has an increased success probability, 0.01,0.02, . . . ,0.99
respectively. The goal is to find the action that has the highest probability of
success, expressed as a reachability objective.

• Betting Game (Unfavorable). We additionally consider an unfavorable version
of the Betting Game, where the win probability is 0.2 per bet.

• Grid. We consider a slippery 10× 10 grid world as in (Derman et al., 2019),
where a robot starts in the north-west corner and has to navigate towards a
target position. The robot can move in each of the four cardinal directions with
a success probability of 0.55, and a probability of 0.15 to move in each other
direction. Throughout the grid, the robot has to avoid traps. The model has
100 states and 1450 transitions. The objective is to maximize the probability
of reaching the north-east corner without getting trapped.
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Figure 5.4: Comparison of the performance of robust policies on the Chain and favorable
Betting Game environments against the number of trajectories processed (on log-scale). The
dashed line indicates the optimal performance.
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Figure 5.5: Comparison of the model error of the IMDPs learned on the Chain and favorable
Betting Game environments.

5.6.1 Results and Discussion
RQ1: Performance robust policies. Figures 5.4 and 5.7 show the performance
of the robust policies computed via each learning method against the number of
trajectories processed. We first note that in all environments, our LUI method is the
first to find an optimal policy. Depending on the environment, the performance
of LUI and PAC may be roughly equivalent, as seen in the Chain environment.
When also taking the estimation error into account, Figures 5.6 and 5.8, we see LUI
outperforming other methods on that metric. UCRL2 is the slowest to converge to
an optimal policy. This is due to UCRL2 being a reinforcement learning algorithm,
and thus it is slower in reducing the intervals in favor of broader exploration.

RQ2: Recovering from bad estimates. On the Chain environment, we see LUI
and PAC (around trajectory 5) and UCRL2 (around trajectory 103) choose the wrong
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Figure 5.6: Comparison of the estimation error of robust policies on the Chain and favorable
Betting Game environments.

action(s), with a decrease in performance as a result. This is most likely due to
getting a bad estimate on some of the transitions later on in the chain, leading to
many resets to the initial state and thus decreasing the performance significantly.
While all three methods manage to recover and then find the optimal policy, UCRL2
takes significantly longer: only after trajectory 105, where LUI and PAC only need
about 100 trajectories. MAP-estimation typically sits between LUI and PAC in terms
of performance. It is less sensitive to mistakes like the one discussed above, but
is less reliable in providing a conservative bound on its performance, as will be
discussed below. Furthermore, we see that in the unfavorable Betting Game, only
MAP-estimation gives sub-optimal performance due to bad estimates. It can recover
but needs almost 104 trajectories to do so. Due to the low win probability in this
Betting Game, a robust policy on the RMDPs is, by default, optimal for the true
MDP, and we see that LUI, PAC, and UCRL2 do not change to a sub-optimal policy.

RQ3: Robust policies are conservative. To answer our third research question,
consider Figures 5.6 and 5.9. We note the undesirable behavior of having an
Estimation Error above zero, which means the performance of the policy on the
learned model was higher than its performance on the true MDP. MAP-estimation
is particularly susceptible to this behavior, while LUI and PAC yield policies that
are conservative in general.

5.6.2 Robustness Against Changing Environments
To answer our fourth research question (RQ4), we investigate the behavior of the
learning methods when, after a fixed number of trajectories, the probabilities of the
true MDP change, as introduced in Section 5.5.

Setup
Figures 5.10 and 5.11 shows the performance of the robust policy on the true MDP
for the environment’s objective, i.e., ρ(π,M,ϕ), after some trajectories for each
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Figure 5.4: Comparison of the performance of robust policies on the Chain and favorable
Betting Game environments against the number of trajectories processed (on log-scale). The
dashed line indicates the optimal performance.
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Figure 5.5: Comparison of the model error of the IMDPs learned on the Chain and favorable
Betting Game environments.

5.6.1 Results and Discussion
RQ1: Performance robust policies. Figures 5.4 and 5.7 show the performance
of the robust policies computed via each learning method against the number of
trajectories processed. We first note that in all environments, our LUI method is the
first to find an optimal policy. Depending on the environment, the performance
of LUI and PAC may be roughly equivalent, as seen in the Chain environment.
When also taking the estimation error into account, Figures 5.6 and 5.8, we see LUI
outperforming other methods on that metric. UCRL2 is the slowest to converge to
an optimal policy. This is due to UCRL2 being a reinforcement learning algorithm,
and thus it is slower in reducing the intervals in favor of broader exploration.

RQ2: Recovering from bad estimates. On the Chain environment, we see LUI
and PAC (around trajectory 5) and UCRL2 (around trajectory 103) choose the wrong
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Figure 5.6: Comparison of the estimation error of robust policies on the Chain and favorable
Betting Game environments.

action(s), with a decrease in performance as a result. This is most likely due to
getting a bad estimate on some of the transitions later on in the chain, leading to
many resets to the initial state and thus decreasing the performance significantly.
While all three methods manage to recover and then find the optimal policy, UCRL2
takes significantly longer: only after trajectory 105, where LUI and PAC only need
about 100 trajectories. MAP-estimation typically sits between LUI and PAC in terms
of performance. It is less sensitive to mistakes like the one discussed above, but
is less reliable in providing a conservative bound on its performance, as will be
discussed below. Furthermore, we see that in the unfavorable Betting Game, only
MAP-estimation gives sub-optimal performance due to bad estimates. It can recover
but needs almost 104 trajectories to do so. Due to the low win probability in this
Betting Game, a robust policy on the RMDPs is, by default, optimal for the true
MDP, and we see that LUI, PAC, and UCRL2 do not change to a sub-optimal policy.

RQ3: Robust policies are conservative. To answer our third research question,
consider Figures 5.6 and 5.9. We note the undesirable behavior of having an
Estimation Error above zero, which means the performance of the policy on the
learned model was higher than its performance on the true MDP. MAP-estimation
is particularly susceptible to this behavior, while LUI and PAC yield policies that
are conservative in general.

5.6.2 Robustness Against Changing Environments
To answer our fourth research question (RQ4), we investigate the behavior of the
learning methods when, after a fixed number of trajectories, the probabilities of the
true MDP change, as introduced in Section 5.5.

Setup
Figures 5.10 and 5.11 shows the performance of the robust policy on the true MDP
for the environment’s objective, i.e., ρ(π,M,ϕ), after some trajectories for each
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Figure 5.7: Comparison of the performance of robust policies on the Aircraft, Bandit, unfa-
vorable Betting Game, and Grid benchmarks.

learning method on the Chain and Betting Game environments, respectively. After
† ∈ {102, . . . ,105} trajectories, we change the environment by changing the transition
probabilities for three different bounds nMax on the strength intervals, and ran-
domization parameter ξ ∈ {0.8,1.0} (distribute 0.2 uniformly over the non-optimal
actions, or no randomization at all). We similarly bound the MAP-estimation priors
for MAP and UCRL, so they also employ a sliding window, with the same explo-
ration randomization parameter ξ . PAC is omitted from this experiment as PAC
guarantees lose all meaning when changing the underlying distribution.

For the Chain environment, we swap the transition probabilities for the actions,
such that after the change in environment, the new optimal policy has to use the
opposite action from the previously optimal policy. This type of change already
highlights the potential need for randomization, as previously sub-optimal actions
need to be explored again after the change. For the Betting Game environment, we
change the game from being favorable, i.e., of having a win probability 0.8, to being
unfavorable with a win probability of only 0.2.
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Figure 5.8: Comparison of the model error of the IMDPs learned on the Aircraft, Bandit,
unfavorable Betting Game, and Grid benchmarks.

Ablation study. In both Figures 5.10 and 5.11, the top three rows use randomized
exploration, while the bottom three rows use purely optimistic exploration. Hence,
the bottom three rows can be seen as an ablation for using randomization in the
exploration. Rows three and six in both figures use an unbounded sliding window,
i.e., nMax = [∞,∞], and are thus an ablation on using a sliding window approach.

Results and Discussion

We observe that LUI is the only method capable of converging to optimal policies
both before and after the change in the Chain environment. Furthermore, the
lower the bounds nMax on the prior strength, the faster it adapts to the change.
The later the change † happens, the more future data is needed to adapt, as seen
when comparing columns. When the change happens early enough, e.g., † = 100
or † = 1000, LUI is still very flexible and adapts quickly, even without a sliding
window. When a large amount of trajectories has been processed already before the
change happens, as with † = 100000, for instance, the need for a sliding window
becomes clearly visible, see the last column, rows one and two. MAP and UCRL,
both also employing the same sliding window, do not converge to the optimal policy
as LUI does. This further highlights the flexibility of LUI and the use of prior-data
conflicts in practice.
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learning method on the Chain and Betting Game environments, respectively. After
† ∈ {102, . . . ,105} trajectories, we change the environment by changing the transition
probabilities for three different bounds nMax on the strength intervals, and ran-
domization parameter ξ ∈ {0.8,1.0} (distribute 0.2 uniformly over the non-optimal
actions, or no randomization at all). We similarly bound the MAP-estimation priors
for MAP and UCRL, so they also employ a sliding window, with the same explo-
ration randomization parameter ξ . PAC is omitted from this experiment as PAC
guarantees lose all meaning when changing the underlying distribution.

For the Chain environment, we swap the transition probabilities for the actions,
such that after the change in environment, the new optimal policy has to use the
opposite action from the previously optimal policy. This type of change already
highlights the potential need for randomization, as previously sub-optimal actions
need to be explored again after the change. For the Betting Game environment, we
change the game from being favorable, i.e., of having a win probability 0.8, to being
unfavorable with a win probability of only 0.2.
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Figure 5.8: Comparison of the model error of the IMDPs learned on the Aircraft, Bandit,
unfavorable Betting Game, and Grid benchmarks.

Ablation study. In both Figures 5.10 and 5.11, the top three rows use randomized
exploration, while the bottom three rows use purely optimistic exploration. Hence,
the bottom three rows can be seen as an ablation for using randomization in the
exploration. Rows three and six in both figures use an unbounded sliding window,
i.e., nMax = [∞,∞], and are thus an ablation on using a sliding window approach.

Results and Discussion

We observe that LUI is the only method capable of converging to optimal policies
both before and after the change in the Chain environment. Furthermore, the
lower the bounds nMax on the prior strength, the faster it adapts to the change.
The later the change † happens, the more future data is needed to adapt, as seen
when comparing columns. When the change happens early enough, e.g., † = 100
or † = 1000, LUI is still very flexible and adapts quickly, even without a sliding
window. When a large amount of trajectories has been processed already before the
change happens, as with † = 100000, for instance, the need for a sliding window
becomes clearly visible, see the last column, rows one and two. MAP and UCRL,
both also employing the same sliding window, do not converge to the optimal policy
as LUI does. This further highlights the flexibility of LUI and the use of prior-data
conflicts in practice.
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Figure 5.9: Comparison of the estimation error of robust policies on the Aircraft, Bandit,
unfavorable Betting Game, and Grid benchmarks.

Comparing the top three rows with the bottom three rows of the Chain environ-
ment (Figure 5.10), we clearly note the need for randomization in the exploration on
this environment, as we also predicted earlier. The Betting Game (Figure 5.11) is less
sensitive to this exploration problem. We conclude that LUI is a robust approach for
reinforcement learning in changing environments, while MAP and UCRL are not.

5.7 Conclusion
We presented a new robust reinforcement learning approach that employs linearly
updating intervals (LUI) to learn IMDPs. Robust policies computed on these IMDPs
are shown to be conservative and reliable in predicting their performance when
applied on the MDP that is being learned. LUI is also effective at continuously
learning, showcasing robustness against changes in the underlying environment.

5.7.1 Limitations and Discussion
The techniques presented in this chapter rely on some assumptions that impose
certain limitations. We discuss each of these limitations individually below.

Formal guarantees. LUI comes with few guarantees. Notably, the only guarantees
we have are convergence and closure of intervals and distributions, as dis-
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cussed in Section 5.4.1. By setting the prior strength intervals high enough, it
is likely possible to enforce PAC guarantees via, e.g., Hoeffding’s inequality.
More interesting, however, would be to investigate what guarantees can be
given regarding robustness against changing environments. A possible avenue
could be to assume a model that describes the change in the environment.
Such a model could give information on the direction and rate of change that
could then be exploited to construct PAC-style guarantees or other theoretical
properties such as convergence rate.

Graph assumption. We currently assume the underlying graph of the environ-
ment is known and that all intervals have a lower bound of at least ε, as
specified in Assumption 5.2. This assumption is primarily made to enable
efficient robust value iteration in IMDPs for objectives with target sets, such as
reachability. We could weaken this assumption to only assume a known (lower
bound on a) minimal transition probability pmin and use the lower and upper
Bellman equations from (Ashok et al., 2019) to solve the resulting IMDPs.

Other uncertainty sets. In its current form, LUI is inherently limited to IMDPs.
Developing similar adaptive techniques for other types of RMDPs, such as
L1-MDPs or s-rectangular RMDPs, would increase the applicability of our
techniques and further strengthen RL in changing environments.

Future work. Besides addressing the limitations above, LUI could be extended
to other settings. Interesting options include partial observability, i.e., when the
underlying environment is given as a POMDP, or to the offline RL setting where
only a fixed dataset is given. Recent work already applies LUI as a learning method
to the setting of uncertain parametric MDPs (Schnitzer et al., 2024).
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Figure 5.10: Environment change at point † on the Chain environment using randomization
parameter ξ = 0.8 (top three rows) and ξ = 1.0 (bottom three rows) and different nMax.
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Figure 5.11: Environment change at point † in the Betting Game using randomization
parameter ξ = 0.8 (top three rows) and ξ = 1.0 (bottom three rows) and different nMax.
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6
Extending the Scope of

Reliable Offline RL

This chapter studies the offline reinforcement learning problem of safe policy im-
provement (SPI). The SPI problem is to improve the performance of a behavior policy
that was used to collect data about an environment and, while doing so, to pro-
vide a formal guarantee on the performance of the resulting policy. Specifically,
the improved policy is required to outperform the behavior policy in terms of its
performance up to some small error tolerance, with high probability. The safe
policy improvement with baseline bootstrapping (SPIBB) algorithm achieves this
requirement by exploiting both the available data and the behavior policy. SPIBB
constrains the policy space according to the available data, such that the newly
computed policy only differs from the behavior policy when sufficient data is avail-
able, ensuring the required improvement guarantee. The contributions to the SPI
problem presented in this chapter are two-fold. First, we extend SPIBB to work
under partially observable environments modeled as POMDPs that are k-Markovian.
Second, we introduce a novel approach that significantly reduces the amount of data
required to establish the same improvement guarantee within the SPIBB algorithm,
thus making the most out of the available data.

6.1 Introduction
Reinforcement learning (RL) solves decision-making problems, in particular when
the environment dynamics are unknown (Sutton and Barto, 1998). In an online RL
setting, an agent aims to learn a decision-making policy that maximizes the expected
accumulated reward by interacting with the environment and observing feedback,
typically in the form of information about the environment state and reward. While
online RL has shown great performance in solving hard problems (Mnih et al.,
2015; Silver et al., 2018), the assumption that the agent can always directly interact
with the environment is not always realistic. In real-world applications such as
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Figure 6.1: Illustration of the offline reinforcement learning problem in partially observable
environments (adapted from Levine et al., 2020). Observations z and rewards r are obtained
by simulating the behavior policy πb and stored in a dataset D. After data collection has
finished, a new policy πI is learned from the dataset and deployed. The dashed arrow
indicates the setting where the behavior policy is available during learning.

robotics or healthcare, direct interaction can be impractical or dangerous (Levine
et al., 2020). Furthermore, alternatives such as simulators or digital twins may not
be available or insufficiently capture the nuances of the real-world application for
reliable learning (Ramakrishnan et al., 2020; Zhao et al., 2020).

Offline RL (or batch RL) (Lange et al., 2012) mitigates these concerns by re-
stricting the agent to have only access to a fixed dataset of past interactions. As a
common assumption, the dataset has been generated by a so-called behavior policy.
An offline RL algorithm aims to produce a new policy without further interactions
with the environment (Levine et al., 2020). Methods that can reliably improve the
performance of a policy are key in (offline) RL.

Safe policy improvement (SPI) algorithms address this challenge by providing
(probabilistic) correctness guarantees on the reliable improvement of policies (Petrik
et al., 2016; Thomas et al., 2015). The safe policy improvement with baseline bootstrap-
ping (SPIBB; Laroche et al., 2019) is one of the most used SPI algorithms. SPI(BB)
has been studied in various settings, among which multi-objective (Satija et al.,
2021), non-stationary (Chandak et al., 2020), factored environments (Simão and
Spaan, 2019a,b), and multi-agent (Bianchi et al., 2024) settings. Additionally, SPIBB
has been extended to work in settings where the behavior policy is not given (Simão
et al., 2020) and in environments with large state spaces via Monte Carlo tree
search (Castellini et al., 2023). For a recent overview of SPI methods, we refer
to Scholl et al. (2022).

6.1.1 Contributions
In this chapter, we study the SPI problem and extend the applicability of SPIBB.
The contributions presented in this chapter are twofold.

6.1. Introduction
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Contribution

i. We extend SPIBB to compute finite-memory policies from datasets col-
lected in partially observable environments.

ii. We present new techniques that provide stronger improvement guaran-
tees given the same amount of data in SPI algorithms such as SPIBB.

We now discuss each of the two contributions in more detail.

Contribution I: SPI in Partially Observable MDPs
We contribute a novel extension of SPIBB to partially observable environments
modeled by POMDPs. First, to account for the inherent memory requirement in
partially observable domains, we consider a behavior policy represented by an
FSC. To create a tractable method, we assume that there exists a finite-memory
policy for the POMDP that is optimal, also known as the finite-history-window
approach (Kaelbling et al., 1996, Section 7.3). This assumption allows us to cast the
POMDP as an equivalent, fully observable, history MDP that is finite instead of the
standard infinite-history MDP (Silver and Veness, 2010). We can then reliably esti-
mate the transition and reward models of this finite-history MDP from the available
data. We apply SPIBB to the estimated finite-history MDP to compute an improved
policy that outperforms the behavior policy up to an admissible performance losswith
high probability. Compared to the approach for mere MDPs (Laroche et al., 2019),
we derive an improved bound on this admissible performance loss by exploiting the
specific structure of the history MDP. Figure 6.1 illustrates our approach.

Contribution II: Tighter Improvement Bounds for SPI
The guarantees of SPI algorithms depend on the size of the dataset and adhere to a
conservative bound on the minimal amount of samples required. Since this bound
often turns out to be too large for practical applications of SPI, it is instead often
turned into a hyperparameter (see, e.g., Laroche et al., 2019)). The offline nature of
SPI prevents further data collection, which steers the key requirements of SPI in
practical settings: (1) exploit the dataset as efficiently as possible and (2) compute
better policies from smaller datasets.

Our contribution provides the theoretical foundations to improve the under-
standing of SPI algorithms in general. Specifically, in a general SPI setting, we can
guarantee a higher performance for significantly less data. Our main technical
contribution is a transformation of the underlying MDP model into a two-successor
MDP (2sMDP) along with adjustments to the dataset, which allows us to prove these
tighter bounds. A 2sMDP is an MDP where each state-action pair has at most two
successors. These transformations preserve (the optimal) performance of policies
and are reversible. In the context of SPI these transformations are implicit, i.e., do
not have to be computed explicitly. Hence, we can apply standard SPI algorithms
such as SPIBB, and use our novel improvement guarantees without any algorithmic
changes necessary, as also illustrated in Figure 6.2.
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The contributions presented in this chapter are twofold.
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Contribution

i. We extend SPIBB to compute finite-memory policies from datasets col-
lected in partially observable environments.
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changes necessary, as also illustrated in Figure 6.2.
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Figure 6.2: Overview of the tighter improvement bounds for SPI. The solid arrows indicate
how the full derivation of the improvement guarantees is done, while the dashed line
indicates that the transformations are only used in the proofs and that, in practice, we can
immediately use ζ2s or ζβ as bounds.

Following the theoretical foundations for the MDP and dataset transforma-
tions (Section 6.4), we present two different methods to compute the new perfor-
mance guarantees (Section 6.4.3). The first uses Weissman’s bound (Weissman et al.,
2003), as also used in, e.g., standard SPIBB, while the second uses the inverse in-
complete beta function (Temme, 1992). Our experimental results show a significant
reduction in the amount of data required for equal performance guarantees (Sec-
tion 6.5). Concretely, where the number of samples required at each state-action
pair of standard SPIBB grows linearly in the number of states; our approach only
grows logarithmic in the number of states for both methods. We also demonstrate
the impact on three well-known benchmarks in practice by comparing them with
standard SPIBB across multiple hyperparameters.

Structure of This Chapter
The remainder of this chapter is structured as follows. First, we recall the necessary
preliminaries from Chapter 2 and provide the technical background on SPI and
SPIBB in Section 6.2. In Section 6.3 we present the theoretical results for our first
contribution, SPI in partially observable environments. In Section 6.4, we present
the theoretical results for our second contribution. Section 6.5 contains the experi-
mental evaluation of each of our two contributions individually in Sections 6.5.1
and 6.5.2, respectively. Finally, in Section 6.6, we conclude the chapter with a
discussion of limitations and future work.

6.2 Background: Safe Policy Improvement
In this section, we briefly recap the basic tools from Chapter 2 we need and then
review safe policy improvement (SPI) for MDPs.

6.2.1 Preliminaries
Discounted reward MDPs. The MDPs we consider in this chapter are tuples
⟨S,sι,A,P,R⟩ as generally defined in Definition 2.1, where S is a finite set of states,
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sι ∈ S is the initial state, A is a finite set of actions, P : S ×A⇀D(S) is the transition
function and R is the reward function. In the context of this chapter, we assume
the reward function is allowed to map to negative values and to be bounded by
some known value rmax, that is, R : S ×A⇀ [−rmax, rmax]. The objective is discounted
reward maximization with a discount factor γ , i.e., RMax(γ) as defined in Defini-
tion 2.5. Since this chapter considers multiple different discount factors, we often
explicitly include these into the MDP tuple and write, e.g., M = ⟨S,sι,A,P,R,γ⟩.

Discounted reward POMDPs. A POMDP is a tuple ⟨S,bι,A,P,R,Z,O⟩ (see Defini-
tion 2.7), where S,A,P,R are as for MDPs, bι ∈ D(S) is the initial belief, Z is a finite
set of observations, and O : S ×A⇀D(Z) is the observation function.

Paths and histories. Recall that for an MDP M , PostM (s,a) is the set of succes-
sor states reachable with positive probability from the state-action pair (s,a) in
M . A path in M is a finite sequence ⟨s1, a1, . . . , an−1, sn⟩ ∈ (S × A)∗ × S where si ∈
PostM (si−1, ai−1) for all i ∈ [2:n]. The probability of following a path ⟨s1, a1, . . . , an−1, sn⟩
in the MDP M given a deterministic sequence of actions is written as PM (⟨s1, a1,
. . . , an−1, sn⟩) and can be computed by repeatedly applying the transition proba-
bility function: PM (⟨s1, a1, . . . , an−1, sn⟩) =

∏n−1
i=1 P(si+1 |si ,ai ). A history for a POMDP

M = ⟨S,bι,A,P,R,Z,O⟩ is a sequence of observations and actions: h ∈ (Z×A)∗×Z . We
denote the set of all histories by Hists, and Histsk denotes all histories of maximal
length k, where the length |h| is the number of observations in the history h.

Policies. This chapter considers memoryless policies, i.e., policies of type π : S→
D(A) for MDPs. For POMDPs, we consider both memoryless and finite-memory
policies represented by finite-state controllers (FSCs; Definition 2.8) for POMDPs.
An FSC is a tuple ⟨N ,nι,α,η⟩, where N is a finite set of memory nodes, nι is the
initial node, α : N ×Z → D(A) is the action mapping, and η : N ×Z ×A→ D(N )
is the memory update function. The performance, also called the expected return,
ρ(π,M,γ) of a policy π in an MDP M with discount factor γ is defined as the value
in the initial state sι ∈ S , i.e., ρ(π,M,γ) = VM,π,γ (sι). Since we include γ in the
(PO)MDP tuples in this chapter, we omit it from the performance and simply write
ρ(π,M). Furthermore, we write Vmax for a known upper bound on the absolute
value of the performance: Vmax ≤ rmax/1−γ.

Discounted reward policy iteration. The policy iteration algorithm (Section 2.2.3)
can be used to compute a memoryless deterministic policy that maximizes the
expected discounted reward in anMDP. It consists of two steps: (1) policy evaluation
and (2) policy improvement. For the policy evaluation step, compute the state-action
values under π as

Qπ(s,a) = R(s,a) +γ
∑

s′
P(s′ |s,a)V ∗π(s′), ∀s ∈ S, a ∈ A(s).
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The policy improvement step updates the policy π to a new policy π′ by

π′(s) = argmax
a∈A

Qπ(s,a), ∀s ∈ S, (6.1)

which is guaranteed to have a value at least as good as the previous policy, i.e.,
V ∗π′ ≥ V ∗π. This process starts with any initial policy and terminates as soon as the
policy does not change anymore: π′ = π, after which π is guaranteed to be optimal.

6.2.2 Safe Policy Improvement
A dataset is a sequence D of trajectories collected under a behavior policy πb in
an MDP M∗. For MDPs, the datasets we consider for SPI are of the form D =
⟨st ,at , rt⟩t∈[1:m], and we write #D(x) for the number of times x occurs in D. The
goal of SPI is to compute a new policy πI based on D that outperforms πb with an
allowed performance loss ζ ∈ R with high probability 1− δ.

SPI operates on a set of admissible MDPsΞ, that is, MDPsM = ⟨S,sι,A,P,R⟩which
are ‘close’ to an MDP M̃ = ⟨S,sι,A, P̃, R̃⟩ estimated from a dataset D by maximum
likelihood estimation (MLE).

Definition 6.1 (MLE-MDP). The MLE-MDP of an unknown true MDP M∗ =
⟨S,sι,A,P,R⟩ and a datasetD is a tuple M̃ = ⟨S,sι,A, P̃, R̃⟩with transition and reward
functions P̃ and R̃ derived from D via maximum likelihood estimation:

P̃(s′ |s,a) = #D(s,a, s′)
#D(s,a)

, and R̃(s,a) =

∑
(st ,at ,rt )∈D1[st = s∧ at = a] · rt

#D(s,a)
.

For an MLE-MDP M̃ and error function e : S × A → R, we define the set of
admissible MDPs ΞM̃

e with a transition function P that has L1-distance to the
estimated transition function P̃ bounded by the error function e:

ΞM̃
e =

{
M = ⟨S,sι,A,P,R,γ⟩ | ∀(s,a) : ∥P(· |s,a)− P̃(· |s,a)∥1 ≤ e(s,a)

}
.

Remark 6.2. The set of admissible MDPs ΞM̃
e forms an L1-MDP, see Definition 3.8.

The general idea behind SPI methods is to define the error function e such
that ΞM̃

e includes the true MDP M∗ with high probability 1− δ (Petrik et al., 2016,
Proposition 9). Then one can compute a new policy which is an improvement for all
MDPs within ΞM̃

e . An alternative is to simply solve the MLE-MDP, but this could
lead to arbitrarily poor policies when the amount of data is insufficient. If, however,
the amount of data is sufficient for all state-action pairs, then we can guarantee with
high probability that the improved policy computed on the MLE-MDP has a higher
performance. The amount of data required to achieve a ζSPI-approximately safe
policy improvement with probability 1− δ (recall Equation 6.3) for all state-action
pairs has been established by (Laroche et al., 2019) as

#D(s,a) ≥NSPI
∧ =

8V 2
max

(ζSPI)2(1−γ)2
log

2|S ||A|2|S |

δ
. (6.2)
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Then, with probability 1 − δ, an optimal policy πI for M̃ is ζ-approximately safe
with respect to the true MDP M∗ for some admissible performance loss ζ ∈ R. That is,

ρ(πI ,M
∗) ≥ ρ(π∗,M∗)− ζ ≥ ρ(πb,M

∗)− ζ, (6.3)

where π∗ is an optimal policy in the true MDPM∗. Intuitively, the constraint defined
in Equation 6.2 ensures that the estimated transition function is close enough to the
true MDP to guarantee that the policy computed in the MLE-MDP approximately
outperforms the behavior policy in the underlying true MDP.

6.2.3 SPI with Baseline Bootstrapping on MDPs
The bound in Equation 6.2 needs to hold for every state-action pair, which impairs
the practical use of optimizing the MLE-MDP. The SPI with baseline bootstrap-
ping (SPIBB; Laroche et al., 2019) algorithm overcomes this limitation, allowing the
constraint in (6.2) to be violated on some state-action pairs. These state-action pairs
are collected in U, the set of unknown state-action pairs with counts smaller than a
given hyperparameter NSPIBB

∧ :

U =
{
(s,a) ∈ S ×A | #D(s,a) ≤NSPIBB

∧
}
.

SPIBB then determines an improved policy πI similar to (standard) SPI, except that
if (s,a) ∈U, πI is required to follow the behavior policy πb:

∀(s,a) ∈U : πI (a |s) = πb(a |s).

Then, πI is an improved policy as in Equation 6.3, where NSPIBB
∧ is treated as a

hyperparameter and ζ is given by

ζSPIBB =
4Vmax

1−γ

√
2

NSPIBB
∧

log
2|S ||A|2|S |

δ
− ρ(πI ,M̃) + ρ(πb,M̃).

We can rearrange this equation to compute the number of necessary samples for
a ζSPIBB-approximate improvement. As ρ(πI ,M̃) is only known at runtime, we have
to employ an under-approximation ρ(πb,M̃) to a priori compute

NSPIBB
∧ =

32V 2
max

(ζSPIBB)2(1−γ)2
log

2|S ||A|2|S |

δ
. (6.4)

Thus, the sample size constraint NSPIBB
∧ grows approximately linearly in terms

of the size of the MDP. The term 2|S | is an over-approximation of the maximum
branching factor of the MDP since, worst-case, the MDP can be fully connected.

Algorithmically, SPIBB performs a constrained version of policy iteration on the
MLE-MDP. SPIBB computes stochastic policies by modifying the policy improve-
ment step, Equation 6.1. Recall that U is the set of uncertain state-action pairs, and
let A(s) = {a ∈ A | (s,a) � U} be the set of free state-action pairs. Specifically, the new
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policy follows πb with the same probability mass in state-action pairs in U , while
the remaining probability mass gets assigned to the free action that maximizes Qπ:

π′(a |s) =



πb(a |s) ∀(s,a) ∈ U ,
a′∈A(s)

πb(a′ |s) a = argmax
a′∈A(s)

Qπ(s,a′),

0 otherwise.

As with standard policy iteration, this process terminates when π′ = π, and the
resulting policy is the improved policy πI that solves the SPI problem.

6.3 Safe Policy Improvement in POMDPs
Now, we detail our approach to applying SPIBB to POMDPs.

Formal problem statement. Given a POMDP M = ⟨S,bι,A,P,R,Z,O⟩ of which the
transition and observation functions are unknown, some initial belief bι ∈ D(S), and
a finite-memory behavior policy represented as a κ-FSC πb = ⟨N ,nι,α,η⟩, the goal
is to apply SPIBB to construct a new κ-FSC πI = (N ,nι,α

′ ,η) with the same nodes
and memory structure η, i.e., πb,πI ∈Π

η
k , such that with high probability 1− δ, πI

is a ζ-approximately safe improvement over πb with respect to M . That is, with a
probability of at least 1− δ we have

ρ(πI ,M) ≥ ρ(πb,M)− ζ.

6.3.1 From POMDP to Finite-History MDP
As already briefly mentioned but not worked out in detail yet, every POMDP is
equivalent to a fully observable history MDPs (Silver and Veness, 2010).

Definition 6.3 (History MDP). Let M = ⟨S,bι,A,P,R,Z,O⟩ be a POMDP. The history
MDP of M is a tuple ⟨Hists, zι,A,PHists,RHists⟩, where the states are given by all
histories of M , zι ∈ D(Z) is the initial distribution over the first observation, the
actions remain A, and PHists : Hists ×A ⇀ D(Hists) and RHists : Hists ×A → R are
given by

PHists(h : a : z |h,a) =


s∈S
b(s |h) ·



s′∈S
P(s′ |s,a) ·O(z |s′ , a),

RHists(h,a) =


s∈S
b(s | h) ·R(s,a).

While a POMDP can be mapped to a fully observable history MDP (Defini-
tion 6.3), this MDP has infinitely many states, making a direct application of
SPI(BB) methods infeasible. To mitigate this issue, we assume the structure of the
history MDP (and inherently on the POMDP) that implies that the history MDP
is equivalent to a smaller, finite MDP. We formalize this assumption via stochastic
bisimulation (Givan et al., 2003). Intuitively, this bisimulation is an equivalence
relation that relates (history) states that behave similarly according to reward signals.
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Definition 6.4 (Bisimilarity of history states). A stochastic bisimulation relation
E ⊆H×H on history states h1,h2 ∈ H is an equivalence relation satisfying

E(h1,h2) ⇐⇒ ∀a ∈ A : RH(h1, a) = RH(h2, a) and

∀h′1,h
′
2 ∈ H with E(h′1,h

′
2) we have

PH(h
′
1 | h1, a) = PH(h

′
2 | h2, a).

The largest stochastic bisimulation relation is called (stochastic) bisimulation, de-
noted by ∼. We write [h]∼ for the equivalence class of history h under ∼, and H/∼
for the set of equivalence classes.

Assumption 6.5 (Sufficiency of finite histories). Every history state h of size |h| > k in
the history MDP is bisimilar to a history state h′ of size |h′ | ≤ k. That is, h ∼ h′ .

As a consequence, the history MDP satisfying Assumption 6.5 has a finite
bisimulation quotient MDP (Givan et al., 2003), and we call it a finite-history MDP
instead. This finite-history MDP consists of states with the equivalence classes of
histories under ∼. Note that belief remains a sufficient statistic in this case, i.e.,
b(s | [h]∼) = b(s | h).
Definition 6.6 (Finite-history MDP). A POMDP satisfying Assumption 1 is a fully
observable finite-state MDP M = ⟨Hists/∼,A,PH,RH⟩ where the states are given by
the set of equivalence classes, the actions and discount factor from the POMDP, and
transition and reward functions are defined as

PH ([haz]∼ | [h]∼, a) =
∑

s∈S
b(s | [h]∼)

∑

s′∈S
P(s′ | s,a)O(z | s′ , a),

RH ([h]∼, a) =
∑

s∈S
b(s | [h]∼)R(s,a).

Under bisimulation equivalence, the finite-history MDP and the POMDP are
related in the following fundamental way.

Theorem 6.7 (Optimal finite-memory policies under bisimilarity). An optimal policy
π∗ in the finite-history MDP is an optimal finite-memory policy for the POMDP.

Theorem 6.7 is a direct result of bisimilarity (Givan et al., 2003). We may number
the equivalence classes in the finite-history MDP so that they correspond to memory
nodes of an FSC. As a result, the finite-history MDP can be defined on a state space
consisting of memory nodes and observations rather than histories.

Definition 6.8 (Finite-history MDP via FSC). A POMDP satisfying Assumption 6.5
is a fully observable finite-state MDPM = ⟨N ×Z,⟨nι,zι⟩ ,A,PH,RH⟩where the states
are given by pairs of memory nodes from an FSC and observations, the initial state
⟨nι,zι⟩ is the initial memory node, and the first observation zι, the actions from the
POMDP, and transition and reward functions defined as

PH (⟨n′ , z′⟩ | ⟨n,z⟩, a) =
∑

s∈S
b(s | ⟨n,z⟩)

∑

s′∈S
P(s′ |s,a)O(z′ |s′ , a)η(n′ | n,z′ , a),

RH (⟨n,z⟩, a) =
∑

s∈S
b(s | ⟨n,z⟩)R(s,a),
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policy follows πb with the same probability mass in state-action pairs in U , while
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0 otherwise.
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where b(s | ⟨n,z⟩) is the belief of being in state s of the POMDP, given memory node
n and observation z.

Recall that η is the memory update function of the FSC. This finite-history MDP
will serve as the (unknown) true MDP M∗ in our application of SPIBB.

6.3.2 Estimating the Finite-History MDP
Next, we describe how to estimate the true finite-history MDP M∗ by an MLE-MDP
M̃ . The approach is similar to that of SPI for MDPs, except that the dataset D is
different. Here, D is collected from simulating the POMDP M under (FSC) policy
πb. This yields a dataset of the form

D = ⟨⟨nt,zt⟩, at , rt⟩t∈[1:m], (6.5)

where the observations zt come from the observation function and the memory
nodes nt are observed from the FSC.

Definition 6.9 (Finite-history MLE-MDP). The MDP from Definition 6.8 can be
estimated from a dataset D of the form (6.5), following the same approach for
estimating a standard MLE-MDP as in Definition 6.1:

P̃H (⟨n′ , z′⟩ | ⟨n,z⟩, a) =
#D(⟨n,z⟩, a,⟨n′ , z′⟩)

#D(⟨n,z⟩, a)
, and

R̃H (⟨n,z⟩, a) =
∑

(⟨nt ,zt⟩,at ,rt )∈D1(⟨nt,zt⟩ = ⟨n,z⟩ ∧ at = a) · rt
#D(⟨n,z⟩, a)

.

6.3.3 Applying SPIBB to the Finite-History MDP
In this section, we apply the theory of SPIBB, as introduced in Section 6.2, to our
setting. In particular, we have just defined a true MDP M∗ (the finite-history MDP,
Definition 6.6) and an MLE-MDP M̃ estimating M∗ (Definition 6.9). Let

U = {(⟨n,z⟩, a) ∈ N ×Z ×A | #D(⟨n,z⟩, a) ≤N∧}

be the set of tuples (⟨n,z⟩, a) which occur less than N∧ times in the dataset D for
some hyperparameter N∧. Just as in SPIBB for MDPs, we compute a new policy
πI ∈Π

η
k for the MLE-MDP M̃ that estimates the finite-history MDP, constrained to

follow the behavior policy πb used to collect D for all (⟨n,z⟩, a) ∈U.

Theorem 6.10 (ζ-bound on history MDP). Let Πβ be the set of policies under the
constraint of following πb when (⟨n,z⟩, a) ∈ U. Then, the policy πI computed by the
SPIBB algorithm on the history MDP (Definition 6.3) is a ζ-approximate safe policy
improvement over the behavior policy πb with high probability 1− δ, where:

ζ =
4Vmax

1−γ

√
2
N∧

log
2|H||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃).
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The proof replaces the regular MDP from the SPIBB algorithm with the (infinite)
history MDP. We can reduce the exponent from |H|, which would be the result
of naively applying the SPIBB algorithm, to |Z | because of the structure of the
transition function of the history MDP. In particular, the transition function of the
history MDP is defined for histories h, which are appended by an action a and an
observation z to haz, see Definition 6.3. As such, the successor states of h in the
history MDP are fully determined by the observation z instead of the full state
space, and thus we may replace 2|S | from Equation 6.2 by 2|Z |.

Proof of Theorem 6.10. First, we restate Theorem 2.1 by Weissman et al. (2003)
that bounds the L1-error of an empirical probability distribution P̃ given a
finite number of samples.

Proposition (Theorem 2.1 by Weissman et al. (2003)). Given m i.i.d. random
variables distributed according to P and given an estimated probability distribution
P̃ computed from those m variables, we have

Pr(∥P − P̃∥1 ≥ ϵ) ≤ (2n − 2)e−mϵ2/2.

To bound the L1-error of the estimated transition function of given a (h,a)
pair of the history MDP, given #D(h,a) samples for (h,a) ∈D we can apply the
Theorem 2.1 of (Weissman et al., 2003) to obtain

Pr
(
∥P(· |h,a)− P̃(· |h,a)∥1 ≥ ϵ

)
≤ (2|Z | − 2)e−#D(h,a)ϵ2/2.

Choosing an appropriate N∧, we can do a union bound over all history-action
pairs. We get that the probability of having an arbitrary history-action pair
(h,a) of which the L1-error is larger than ϵ is bounded by δ:

Pr
(
∃(h,a) ∈ H×A : ∥P(· |h,a)− P̃(· | h,a)∥1 ≥ ϵ

)

≤
∑

h,a∈H×A
Pr

(
∥P(· |h,a)− P̃(· | h,a)∥1 ≥ ϵ

)
≤ |H| |A|(2|Z | − 2)e−N∧ϵ

2/2 = δ.

Reordering the equation above, we get

ϵ =

√
2
N∧

log
2|H||A|2|Z |

δ
, (6.6)

and then

Pr
(
∃h,a ∈ H×A : ∥P(· |h,a)− P̃(· | h,a)∥1 ≥ ϵ

)
≤ δ.
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where b(s | ⟨n,z⟩) is the belief of being in state s of the POMDP, given memory node
n and observation z.

Recall that η is the memory update function of the FSC. This finite-history MDP
will serve as the (unknown) true MDP M∗ in our application of SPIBB.

6.3.2 Estimating the Finite-History MDP
Next, we describe how to estimate the true finite-history MDP M∗ by an MLE-MDP
M̃ . The approach is similar to that of SPI for MDPs, except that the dataset D is
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where the observations zt come from the observation function and the memory
nodes nt are observed from the FSC.
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estimated from a dataset D of the form (6.5), following the same approach for
estimating a standard MLE-MDP as in Definition 6.1:
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U = {(⟨n,z⟩, a) ∈ N ×Z ×A | #D(⟨n,z⟩, a) ≤N∧}

be the set of tuples (⟨n,z⟩, a) which occur less than N∧ times in the dataset D for
some hyperparameter N∧. Just as in SPIBB for MDPs, we compute a new policy
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η
k for the MLE-MDP M̃ that estimates the finite-history MDP, constrained to

follow the behavior policy πb used to collect D for all (⟨n,z⟩, a) ∈U.
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constraint of following πb when (⟨n,z⟩, a) ∈ U. Then, the policy πI computed by the
SPIBB algorithm on the history MDP (Definition 6.3) is a ζ-approximate safe policy
improvement over the behavior policy πb with high probability 1− δ, where:

ζ =
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log
2|H||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃).
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The last step of the proof is to replace the ϵ from Equation 36 of (Laroche
et al., 2019) by the value from Equation 6.6, resulting in

ζ =
4Vmax

1−γ

√
2
N∧

log
2|H||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃),

as stated in the Theorem.

While Theorem 6.10 and its proof reason over the full history MDP, these results
extend to the finite-history MDP when Assumption 6.5 is satisfied. We have the
following corollary.

Corollary 6.11 (ζ-bound on finite-historyMDP). LetΠβ and πb be as in Theorem 6.10.
Then, the policy πI computed by the SPIBB algorithm in the finite-history MDP M∗ of a
POMDP satisfying Assumption 6.5 is a ζ-approximate safe policy improvement over the
behavior policy πb with high probability 1− δ, where the admissible performance loss ζ
is given by

ζ =
4Vmax

1−γ

√
2
N∧

log
2|N×Z ||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃).

Since bisimilarity is an equivalence relation, the finite-history MDP is equiv-
alent to the full history MDP, and thus also the POMDP, see Theorem 6.7. As a
consequence, the proof of Corollary 6.11 follows immediately from Theorem 6.10
and the fact that bisimulation is an equivalence relation.

6.4 Tighter Improvement Bounds for SPI
Our second contribution to the SPI problem is to derive tighter improvement
guarantees for the same dataset compared to the state-of-the-art (Laroche et al.,
2019). To achieve our new guarantees, we rely on a new transformation of the
dataset and MLE-MDP into a two-successor MDP where each state-action pair only
has at most two successor states, as well as a transformation of a dataset collected
on an arbitrary MDP to a dataset for the two-successor MDP. These transformations
preserve (optimal) performance of policies and are reversible. Hence, we can
apply SPI(BB) on the transformed environment and dataset and then transform the
resulting improved policy back to the original setting, as illustrated in Figure 6.2.

In the following, we present the technical construction of two-successor MDPs
and the dataset transformation that allows us to derive these tighter performance
guarantees in SPI.

6.4.1 From MDP to Two-Successor MDP

Definition 6.12. A two-successor MDP (2sMDP) is an MDP M2s where each state-
action pair (s,a) has at most two possible successors states, i.e., |PostM2s(s,a)| ≤ 2.
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Figure 6.3: Example of a transformation from an MDP to a 2sMDP, where the single and
double arc indicate different actions.

Every MDP M = ⟨S,sι,A,P,R,γ⟩ can be transformed into a 2sMDP M2s =
⟨S ∪ Saux, sι,A∪ {τ},P2s,R2s,γ2s⟩. To do so, we introduce a set of auxiliary states
Saux along with the main states S of the MDP M . Further, we include an additional
action τ and adapt the probability and reward functions.

For readability, we now detail the transformation for a fixed state-action pair
(s,a) with three or more successors. The transformation of the whole MDP follows
from repeatedly applying this transformation to all such state-action pairs.

We enumerate the successor states of (s,a), i.e., PostM (s,a) = {s1, . . . , sk} and define
pi = P(si |s,a) for all i = 1, . . . , k. Further, we introduce k − 2 auxiliary states Ss,a

aux =
{x2, . . . ,xk−1}, each with one available action with a binary outcome. Concretely, the
two possible outcomes in state xi are move to state si or move to one of the states
si+1, . . . , sk , where the latter is represented bymoving to an auxiliary state xi+1, unless
i = k − 1 in which case we immediately move to sk . Formally, the new transition
function P2s(· |s,a) is:

P2s(s1 |s,a) = p1, P2s(x2 |s,a) = 1− p1.

For the transition function P2s in the auxiliary states we define a new action τ that
will be the only enabled action in these states. For i > 1, the transition function P2s

is then

P2s(si |xi ,τ) =
pi

1− (p1 + · · ·+ pi−1)
,

P2s(xi+1 |xi ,τ, i < k − 1) = 1−
pi

1− (p1 + · · ·+ pi−1)
,

P2s(sk |xk−1,τ) = 1−
pk

1− (pi−1 + pk)
.

An example of this transformation is shown in Figure 6.3, where Figure 6.3a shows
the original MDP and Figure 6.3b shows the resulting 2sMDP. As we introduce
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The last step of the proof is to replace the ϵ from Equation 36 of (Laroche
et al., 2019) by the value from Equation 6.6, resulting in

ζ =
4Vmax

1−γ

√
2
N∧

log
2|H||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃),

as stated in the Theorem.

While Theorem 6.10 and its proof reason over the full history MDP, these results
extend to the finite-history MDP when Assumption 6.5 is satisfied. We have the
following corollary.

Corollary 6.11 (ζ-bound on finite-historyMDP). LetΠβ and πb be as in Theorem 6.10.
Then, the policy πI computed by the SPIBB algorithm in the finite-history MDP M∗ of a
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is given by

ζ =
4Vmax

1−γ

√
2
N∧

log
2|N×Z ||A|2|Z |

δ
− ρ(πI ,M̃) + ρ(πb,M̃).

Since bisimilarity is an equivalence relation, the finite-history MDP is equiv-
alent to the full history MDP, and thus also the POMDP, see Theorem 6.7. As a
consequence, the proof of Corollary 6.11 follows immediately from Theorem 6.10
and the fact that bisimulation is an equivalence relation.

6.4 Tighter Improvement Bounds for SPI
Our second contribution to the SPI problem is to derive tighter improvement
guarantees for the same dataset compared to the state-of-the-art (Laroche et al.,
2019). To achieve our new guarantees, we rely on a new transformation of the
dataset and MLE-MDP into a two-successor MDP where each state-action pair only
has at most two successor states, as well as a transformation of a dataset collected
on an arbitrary MDP to a dataset for the two-successor MDP. These transformations
preserve (optimal) performance of policies and are reversible. Hence, we can
apply SPI(BB) on the transformed environment and dataset and then transform the
resulting improved policy back to the original setting, as illustrated in Figure 6.2.

In the following, we present the technical construction of two-successor MDPs
and the dataset transformation that allows us to derive these tighter performance
guarantees in SPI.

6.4.1 From MDP to Two-Successor MDP

Definition 6.12. A two-successor MDP (2sMDP) is an MDP M2s where each state-
action pair (s,a) has at most two possible successors states, i.e., |PostM2s(s,a)| ≤ 2.
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Figure 6.3: Example of a transformation from an MDP to a 2sMDP, where the single and
double arc indicate different actions.

Every MDP M = ⟨S,sι,A,P,R,γ⟩ can be transformed into a 2sMDP M2s =
⟨S ∪ Saux, sι,A∪ {τ},P2s,R2s,γ2s⟩. To do so, we introduce a set of auxiliary states
Saux along with the main states S of the MDP M . Further, we include an additional
action τ and adapt the probability and reward functions.

For readability, we now detail the transformation for a fixed state-action pair
(s,a) with three or more successors. The transformation of the whole MDP follows
from repeatedly applying this transformation to all such state-action pairs.

We enumerate the successor states of (s,a), i.e., PostM (s,a) = {s1, . . . , sk} and define
pi = P(si |s,a) for all i = 1, . . . , k. Further, we introduce k − 2 auxiliary states Ss,a

aux =
{x2, . . . ,xk−1}, each with one available action with a binary outcome. Concretely, the
two possible outcomes in state xi are move to state si or move to one of the states
si+1, . . . , sk , where the latter is represented bymoving to an auxiliary state xi+1, unless
i = k − 1 in which case we immediately move to sk . Formally, the new transition
function P2s(· |s,a) is:

P2s(s1 |s,a) = p1, P2s(x2 |s,a) = 1− p1.

For the transition function P2s in the auxiliary states we define a new action τ that
will be the only enabled action in these states. For i > 1, the transition function P2s

is then
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pi

1− (p1 + · · ·+ pi−1)
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1− (p1 + · · ·+ pi−1)
,

P2s(sk |xk−1,τ) = 1−
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.

An example of this transformation is shown in Figure 6.3, where Figure 6.3a shows
the original MDP and Figure 6.3b shows the resulting 2sMDP. As we introduce
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|PostM (s,a)| auxiliary states for a state-action pair (s,a), and k ≤ |S | in the worst-case
of a fully connected MDP, we can bound the number of states in the 2sMDP by
|S∪Saux| ≤ |S |+ |S ||A|(|S |−2) ≤ |S |2|A|. Note that we did not specify a particular order
to enumerate the successor states. Further, other transformations utilizing auxiliary
states with a different structure (e.g., a balanced binary tree) are possible. However,
neither the structure of the auxiliary states nor the order of successor states changes
the total number of states in the 2sMDP, which is the deciding factor for applying
this transformation in the context of SPI algorithms.

The extension of the reward function is straightforward, i.e., the agent receives
the same reward as in the original MDP when in main states and no reward when
in auxiliary states:

R2s(s,a) =


R(s,a) s ∈ S,a ∈ A,
0 otherwise.

Any policy π for the MDP M can be extended into a policy π2s for the 2sMDP
M2s by copying π for states in S and choosing τ otherwise:

π2s(a |s) =


π(a |s) s ∈ S,
1[a = τ] s ∈ Saux.

Finally, to preserve discounting correctly, we introduce a state-dependent dis-
count factor γ2s, such that discounting only occurs in the main states, i.e.,

γ2s(s) =


γ s ∈ S,
1 s ∈ Saux.

This yields the following value function for the 2sMDP M2s:

VM2s,π2s(s) =


a∈A
π2s(a |s)


R2s(s,a) +γ2s(s)



s′∈S
P2s(s′ |s,a)VM2s,π2s(s′)


.

The performance of policy π2s on M2s uses the value function defined above and is
denoted by ρ2s(π2s,M2s) = VM2s,π2s(sι), for the initial state sι ∈ S . Our transforma-
tion described above, together with the adjusted value function, indeed preserves
the performance of the original MDP and policy:

Theorem 6.13 (Preservation of transition probabilities). For every transition (s,a, s′)
in the original MDP M , there exists a unique path ⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩ in the 2sMDP
M2s with the same probability. That is,

PM (⟨s,a, s′⟩) = PM2s(⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩).

Proof of Theorem 6.13. Fix a state s ∈ S and action a ∈ A(s) that is enabled
in s and assume PostM (s,a) = {s1, . . . , sk}. We define pi = P(si |s,a) for all i =
1, . . . , k. By definition, for each si ∈ PostM (s,a) with i < k, there exists a path
⟨s,a,x2,τ, . . . ,xi ,τ, si⟩ that has positive probability. For i = k the path is instead
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given by ⟨s,a,x2,τ, . . . ,xk−1,τ, sk⟩. Note that there is precisely one incoming
transition for each auxiliary state xi ∈ S

s,a
aux and each si ∈ PostM (s,a) has precisely

one predecessor in Ss,a
aux. Further, PostM2s(s,a) ⊆ Ss,a

aux ∪ PostM (s,a) and also
PostM2s(x,τ) ⊆ Ss,a

aux∪PostM (s,a) for all x ∈ Ss,a
aux, i.e., any path ⟨s,a, . . .⟩must stay

in the set Ss,a
aux until it reaches a state in PostM (s,a). Thus, the path from s to si

must be unique.
We now show that the probabilities pre- and post-transformation match:

PM (⟨s,a, si⟩) = PM2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩).

For si = s1, the statement holds by definition. Now, consider the case
2 ≤ i ≤ k − 1. Then, we can compute the probability of the path as

PM2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩)

= P2s(x2 |s,a)


i−1

j=2

P2s(xj+1 |xj ,τ)

P
2s(si |xi ,τ)

= (1− p1)


i−1

j=2

1−
pj

1− (p1 + · · ·+ pj−1)


pi

1− (p1 + · · ·+ pi−1)

= (1− p1)


i−1

j=2

1− (p1 + · · ·+ pj )

1− (p1 + · · ·+ pj−1)


pi

1− (p1 + · · ·+ pi−1)

= pi
= PM (⟨s,a, si⟩).

For the case i = k, the proof is analogous to the case i = k −1, replacing the last
factor by P2s(sk |xk−1,τ).

Corollary 6.14 (Preservation of performance). Let M be an MDP, π a policy for M ,
andM2s the two-successor MDP with policy π2s constructed fromM and π as described
above. Then ρ(π,M) = ρ2s(π2s,M2s).

Proof of Corollary 6.14. Recall that the auxiliary states can only choose action
τ, which does not yield any reward. Further, since no discount is applied in
auxiliary states, for all states s ∈ S , we have

VM2s,π2s(s) =


a∈A
π2s(a |s)


R2s(s,a) +γ2s(s)



s′∈S
P2s(s′ |s,a)VM2s,π2s(s′)



=


a∈A
π(a |s)


R(s,a) +γ



s′∈S
PM2s(si |s,a,x2,τ, . . . ,xi ,τ)VM2s,π2s(s′)



=


a∈A
π(a |s)


R(s,a) +γ



s′∈S
P(s,a)VM2s,π2s(s′)


.
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|PostM (s,a)| auxiliary states for a state-action pair (s,a), and k ≤ |S | in the worst-case
of a fully connected MDP, we can bound the number of states in the 2sMDP by
|S∪Saux| ≤ |S |+ |S ||A|(|S |−2) ≤ |S |2|A|. Note that we did not specify a particular order
to enumerate the successor states. Further, other transformations utilizing auxiliary
states with a different structure (e.g., a balanced binary tree) are possible. However,
neither the structure of the auxiliary states nor the order of successor states changes
the total number of states in the 2sMDP, which is the deciding factor for applying
this transformation in the context of SPI algorithms.

The extension of the reward function is straightforward, i.e., the agent receives
the same reward as in the original MDP when in main states and no reward when
in auxiliary states:

R2s(s,a) =
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R(s,a) s ∈ S,a ∈ A,
0 otherwise.
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M2s by copying π for states in S and choosing τ otherwise:

π2s(a |s) =
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count factor γ2s, such that discounting only occurs in the main states, i.e.,
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.

The performance of policy π2s on M2s uses the value function defined above and is
denoted by ρ2s(π2s,M2s) = VM2s,π2s(sι), for the initial state sι ∈ S . Our transforma-
tion described above, together with the adjusted value function, indeed preserves
the performance of the original MDP and policy:

Theorem 6.13 (Preservation of transition probabilities). For every transition (s,a, s′)
in the original MDP M , there exists a unique path ⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩ in the 2sMDP
M2s with the same probability. That is,

PM (⟨s,a, s′⟩) = PM2s(⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩).

Proof of Theorem 6.13. Fix a state s ∈ S and action a ∈ A(s) that is enabled
in s and assume PostM (s,a) = {s1, . . . , sk}. We define pi = P(si |s,a) for all i =
1, . . . , k. By definition, for each si ∈ PostM (s,a) with i < k, there exists a path
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aux and each si ∈ PostM (s,a) has precisely

one predecessor in Ss,a
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This is exactly the defining Bellman equation for VM,π, i.e., by definition, we
have

VM,π(s) =


a∈A
π(a |s)


R(s,a) +γ



s′∈S
P(s,a)VM,π(s

′)

.

As the Bellman equation has a unique least fixed point for a discount factor
γ < 1 (Puterman, 1994), we must have VM,π(s) = VM2s,π2s(s) for all s ∈ S . In
particular, this holds for s = sι, and thus ρ(π,M) = ρ(π2s,M2s).

6.4.2 Dataset Transformation
In the previous section, we discussed how to transform an MDP into a 2sMDP.
However, for SPI, we do not have access to the underlying MDP, but only to a
dataset D and the behavior policy πb used to collect this data. In this section, we
present a transformation similar to the one from MDP to 2sMDP, but now for the
dataset D. This dataset transformation allows us to estimate a 2sMDP from the
transformed data via maximum likelihood estimation (MLE).

Assume a dataset D of observed states and actions of the form D = ⟨st ,at⟩t∈[1:m]

from an MDP M . We transform the dataset D into a dataset D2s that we use to esti-
mate a two-successor MLE-MDP M̃2s. Each sample (st ,at , st+1) in D is transformed
into a set of samples, each corresponding to a path from st to st+1 via states in Saux
in M2s. Importantly, the dataset transformation only relies on D and not on any
additional knowledge about M .

Similar to the notation in Section 6.2, let #D(x) denote the number of times x
occurs in D. For each state-action pair (s,a) ∈ S ×A we denote its successor states
in M̃ as PostM̃ (s,a) = {si |#D(s,a, si ) > 0}, which are again enumerated by {s1, . . . , sk}.
Similarly as for the MDP transformation, we define PostM̃2s(s,a) = PostM̃ (s,a) if
k ≤ 2 and PostM̃2s(s,a) = {s1,x2} otherwise. For auxiliary states xi ∈ S

s,a
aux, we define

PostM̃2s(xi ,τ) = {si ,xi+1} for i < k−1 and PostM̃2s(xk−1,τ) = {sk−1, sk}. We then define
the transformed dataset D2s from D for each s ∈ S and s′ ∈ PostM̃2s(s,a) as follows:

#D2s(s,a, s′) =



#D(s,a, s′) s′ ∈ S,
k

j=2
#D(s,a, sj ) s′ = x2 ∈ S

s,a
aux,

0 otherwise.

Further, for each xi ∈ S
s,a
aux and s′ ∈ PostM̃2s(s,a)

#D2s(xi ,τ, s
′) =



#D(s,a, s′) s′ ∈ S,
k

j=i+1
#D(s,a, sj ) s′ = xi+1 ∈ S

s,a
aux,

0 otherwise.

The following preservation results for data generated MLE-MDPs are in the
line of Theorem 6.13 and Corollary 6.14. See Figure 6.2 for an overview of the
relationships between theorems.
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Theorem 6.15 (Preservation of estimated transition probabilities). LetD be a dataset
and D2s be the dataset obtained by the transformation above. Further, let M̃ and
M̃2s be the MLE-MDPs constructed from D and D2s, respectively. Then for every
transition (s,a, s′) in M̃ there is a unique path ⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩ in M̃2s with the
same probability:

PM̃ (⟨s,a, s′⟩) = PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩).

The proof of this theorem is similar to that of Theorem 6.13.

Proof of Theorem 6.15. Fix a state s ∈ S and action a ∈ A(s) that is enabled in s
and assume PostM̃ (s,a) = {s1, . . . , sk}. For the case k ≤ 2 the statement trivially
holds as #D(s,a, ·) = #D2s(s,a, ·).

We now consider the case k > 2. As we have P̃2s(s′ |s,a) > 0 if and only
if #D2s(s,a, s′) > 0 for all s, s′ ∈ S ∪ Saux, and for each s′ ∈ Ss,a

aux ∪PostM̃ (s,a), by
definition there is exactly one state s ∈ Ss,a

aux∪{s} for which #D2s(s,a, s′) > 0. Thus,
for each i ∈ {1, . . . , k} there must be exactly one unique path ⟨s,a,x2,τ, . . . ,xi ,τ, si⟩
in MLE-2sMDP M̃2s.

We now show that PM̃ (⟨s,a, si⟩) = PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩). For si = s1,
the statement holds by definition. Now consider the case 2 ≤ i ≤ k − 1. Then,
we can compute the probability of the path as

PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩)

= PM̃2s(x2 |s,a) ·


i−1

j=2

PM̃2s(xj+1 |xj ,τ)

 ·PM̃2s(si |xi ,τ)

=
#D2s(s,a,x2)
s′ #D2s(s,a, s′)

·


i−1

j=2

#D2s(xi ,τ,xj+1)
s′ #D2s(xj ,τ, s′)

 ·
#D2s(xi ,τ, si )
s′ #D2s(xi ,τ, s′)

=
#D2s(s,a,x2)

#D2s(s,a, s1) + #D2s(s,a,x2)
·


i−1

j=2

#D2s(xi ,τ,xj+1)

#D2s(xj ,τ, sj ) + #D2s(xj ,τ,xj+1)



· #D2s(xi ,τ, si )
#D2s(xi ,τ, si ) + #D2s(xi ,τ,xi+1)

=
k

m=2 #D(s,a, sm)

#D(s,a, s1) +
k

m=2 #D(s,a, sm)
·


i−1

j=2

k
m=j+1 #D(s,a, sm)

#D(s,a, sj ) +
k

m=j+1 #D(s,a, sm)



· #D(s,a, si )

#D(s,a, si ) +
k

m=i+1 #D(s,a, sm)

=
k

m=2 #D(s,a, sm)k
m=1 #D(s,a, sm)

·


i−1

j=2

k
m=j+1 #D(s,a, sm)
k

m=j #D(s,a, sm)

 ·
#D(s,a, si )k

m=i #D(s,a, sm)
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This is exactly the defining Bellman equation for VM,π, i.e., by definition, we
have

VM,π(s) =


a∈A
π(a |s)


R(s,a) +γ



s′∈S
P(s,a)VM,π(s

′)

.

As the Bellman equation has a unique least fixed point for a discount factor
γ < 1 (Puterman, 1994), we must have VM,π(s) = VM2s,π2s(s) for all s ∈ S . In
particular, this holds for s = sι, and thus ρ(π,M) = ρ(π2s,M2s).

6.4.2 Dataset Transformation
In the previous section, we discussed how to transform an MDP into a 2sMDP.
However, for SPI, we do not have access to the underlying MDP, but only to a
dataset D and the behavior policy πb used to collect this data. In this section, we
present a transformation similar to the one from MDP to 2sMDP, but now for the
dataset D. This dataset transformation allows us to estimate a 2sMDP from the
transformed data via maximum likelihood estimation (MLE).

Assume a dataset D of observed states and actions of the form D = ⟨st ,at⟩t∈[1:m]

from an MDP M . We transform the dataset D into a dataset D2s that we use to esti-
mate a two-successor MLE-MDP M̃2s. Each sample (st ,at , st+1) in D is transformed
into a set of samples, each corresponding to a path from st to st+1 via states in Saux
in M2s. Importantly, the dataset transformation only relies on D and not on any
additional knowledge about M .

Similar to the notation in Section 6.2, let #D(x) denote the number of times x
occurs in D. For each state-action pair (s,a) ∈ S ×A we denote its successor states
in M̃ as PostM̃ (s,a) = {si |#D(s,a, si ) > 0}, which are again enumerated by {s1, . . . , sk}.
Similarly as for the MDP transformation, we define PostM̃2s(s,a) = PostM̃ (s,a) if
k ≤ 2 and PostM̃2s(s,a) = {s1,x2} otherwise. For auxiliary states xi ∈ S

s,a
aux, we define

PostM̃2s(xi ,τ) = {si ,xi+1} for i < k−1 and PostM̃2s(xk−1,τ) = {sk−1, sk}. We then define
the transformed dataset D2s from D for each s ∈ S and s′ ∈ PostM̃2s(s,a) as follows:

#D2s(s,a, s′) =



#D(s,a, s′) s′ ∈ S,
k

j=2
#D(s,a, sj ) s′ = x2 ∈ S

s,a
aux,

0 otherwise.

Further, for each xi ∈ S
s,a
aux and s′ ∈ PostM̃2s(s,a)

#D2s(xi ,τ, s
′) =



#D(s,a, s′) s′ ∈ S,
k

j=i+1
#D(s,a, sj ) s′ = xi+1 ∈ S

s,a
aux,

0 otherwise.

The following preservation results for data generated MLE-MDPs are in the
line of Theorem 6.13 and Corollary 6.14. See Figure 6.2 for an overview of the
relationships between theorems.
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Theorem 6.15 (Preservation of estimated transition probabilities). LetD be a dataset
and D2s be the dataset obtained by the transformation above. Further, let M̃ and
M̃2s be the MLE-MDPs constructed from D and D2s, respectively. Then for every
transition (s,a, s′) in M̃ there is a unique path ⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩ in M̃2s with the
same probability:

PM̃ (⟨s,a, s′⟩) = PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, s′⟩).

The proof of this theorem is similar to that of Theorem 6.13.

Proof of Theorem 6.15. Fix a state s ∈ S and action a ∈ A(s) that is enabled in s
and assume PostM̃ (s,a) = {s1, . . . , sk}. For the case k ≤ 2 the statement trivially
holds as #D(s,a, ·) = #D2s(s,a, ·).

We now consider the case k > 2. As we have P̃2s(s′ |s,a) > 0 if and only
if #D2s(s,a, s′) > 0 for all s, s′ ∈ S ∪ Saux, and for each s′ ∈ Ss,a

aux ∪PostM̃ (s,a), by
definition there is exactly one state s ∈ Ss,a

aux∪{s} for which #D2s(s,a, s′) > 0. Thus,
for each i ∈ {1, . . . , k} there must be exactly one unique path ⟨s,a,x2,τ, . . . ,xi ,τ, si⟩
in MLE-2sMDP M̃2s.

We now show that PM̃ (⟨s,a, si⟩) = PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩). For si = s1,
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we can compute the probability of the path as

PM̃2s(⟨s,a,x2,τ, . . . ,xi ,τ, si⟩)

= PM̃2s(x2 |s,a) ·


i−1

j=2

PM̃2s(xj+1 |xj ,τ)

 ·PM̃2s(si |xi ,τ)

=
#D2s(s,a,x2)
s′ #D2s(s,a, s′)

·


i−1

j=2

#D2s(xi ,τ,xj+1)
s′ #D2s(xj ,τ, s′)

 ·
#D2s(xi ,τ, si )
s′ #D2s(xi ,τ, s′)

=
#D2s(s,a,x2)

#D2s(s,a, s1) + #D2s(s,a,x2)
·
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i−1

j=2
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#D2s(xj ,τ, sj ) + #D2s(xj ,τ,xj+1)


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#D2s(xi ,τ, si ) + #D2s(xi ,τ,xi+1)

=
k

m=2 #D(s,a, sm)

#D(s,a, s1) +
k

m=2 #D(s,a, sm)
·
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k
m=j+1 #D(s,a, sm)

#D(s,a, sj ) +
k
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=
k

m=2 #D(s,a, sm)k
m=1 #D(s,a, sm)

·


i−1

j=2

k
m=j+1 #D(s,a, sm)
k

m=j #D(s,a, sm)

 ·
#D(s,a, si )k

m=i #D(s,a, sm)
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=
#D(s,a, si )∑k

m=1 #D(s,a, sm)

=
#D(s,a, si )∑
s′ #D(s,a, s′)

= PM̃ (⟨s,a, si⟩).

The case where i = k is analogous to the case i = k − 1.

Corollary 6.16 (Preservation of estimated performance). Let M̃ and M̃2s be the
MLE-MDPs as above, constructed from D and D2s, respectively. Further, let π̃ be an
arbitrary policy on M̃ and π̃2s the policy that extends π for M̃2s by choosing τ in all
auxiliary states. Then ρ(π̃,M̃) = ρ2s(π̃2s, M̃2s).

Proof of Corollary 6.16. Using Theorem 6.15, the proof is analogous to the
proof of Corollary 6.14.

We want to emphasize that whileD2s may contain more samples thanD, it does
not yield any additional information. Rather, instead of viewing each transition
sample as an atomic data point, in D2s transition samples should be considered
a multi-step process, e.g., the sample (s,a, s3) ∈D would be transformed into the
samples {(s,a,x2), (x2,τ,x3), (x3,τ, s3)} ∈D2s, which in the construction of the MLE-
MDP is used to estimate the probabilities P(s′ � s1 |s,a),P(s′ � s2 |s,a, s′ � s1) and
P(s′ = s3 |s,a, s′ � s1, s

′ � s2), respectively. The probabilities of these events are
mutually independent, but when multiplied, give precisely P(s3 |s,a).

6.4.3 SPI in Two-Successor MDPs
In this section, we discuss how SPI can benefit from two-successor MDPs as con-
structed following our new transformation. The dominating term in the bound
NSPIBB
∧ obtained by (Laroche et al., 2019) is the branching factor of the MDP, which,

without any prior information, has to necessarily be over-approximated by |S |, see
Equation 6.4 and subsequent discussion. We use our transformation from regular
MDP to two-successor MDP to bound the branching factor to k = 2, which allows
us to provide stronger guarantees with the same dataset (or, conversely, require
less data to guarantee a set maximum performance loss). Note that bounding the
branching factor by any other constant can be achieved by a similar transformation
as in Section 6.4, but k = 2 leads to an optimal bound, as we shall establish later.

Let M̃ and M̃2s be the MLE-MDPs inferred from datasets D and D2s, respec-
tively. Further, let π⊙ and π2s

⊙ denote the optimal policies in these MLE-MDPs,
constrained to the set of policies that follow the behavior policy πb for state-action
pairs (s,a) ∈ U. Note that these optimal policies can easily be computed using,
e.g., standard value iteration, see Chapter 2. First, we show how to improve the
admissible performance loss ζ in SPI on two-successor MDPs.
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Lemma 6.17. Let M2s be a two-successor MDP with behavior policy πb. Then, π2s
⊙ is a

ζ-approximately safe policy improvement over πb with high probability 1− δ, where:

ζ =
4Vmax

1−γ


2
N∧

log
8|S ||A|

δ
− ρ2s(π2s

⊙ , M̃2s) + ρ2s(πb,M̃
2s).

Proof of Lemma 6.17. The proof follows a similar argumentation as (Laroche
et al., 2019, Theorem 2). First, note that we cannot directly apply the cited
theorem as we deal with a two-successor MDP for which ρ(·, ·) is defined in a
different manner. More precisely, the discount rate γ is not constant. We now
show that the results can still be applied in our setting by adapting the proof
of (Laroche et al., 2019, Theorem 2).

LetM2s = ⟨S ∪ Saux, sι,A∪ {τ},P2s,R2s,γ2s⟩ be the given two-successorMDP
(Definition 6.12), D a dataset of trajectories over M2s and N∧ ∈N the sample
size requirement given as a parameter. The set of bootstrapped state-action
pairs is defined as U = {(s,a) | #D2s(s,a) < N∧} ∪ {(s,τ) | s ∈ S}. Note that ac-
tions in auxiliary states are always bootstrapped. The behavior policy πb is
decomposed into π̃b, for bootstrapped and π̇b for non-bootstrapped actions:

π̃b =


πb(a |s) (s,a) ∈U,

0 else,

and π̇b(a |s) = πb(a |s)− π̃b(a |s).
The remainder of the proof relies on the use of semi-MDPs (Sutton and

Barto, 1998; Sutton et al., 1999).

Definition 6.18 (Semi-MDP). A semi-MDP is a tuple ⟨S,sι,ΩA,P,R,Γ⟩, where
S,sι,P and R are as in standard MDPs, ΩA is the set of options, and Γ : S ×
A→ (0,1) is the state-action dependent discount factor. An option is a tuple
⟨I ,π,β⟩ ∈ΩA that consists of an initiation set I ⊆ S , a policy π : S→D(A) and
a termination condition β : S→ [0,1].

Semantically, a semi-MDP works as follows. An option ⟨I ,π,β⟩ is available
in states st ∈ I . If the agent takes this option, actions are chosen stochastically
in accordance with π until the termination condition β is met. That is, from
st ∈ I , action at is taken with probability π(at |st), the environment transitions
to st+1, after which the option terminates with probability β(st+1).

Following the same strategy as the original proof in (Laroche et al., 2019),
we now transform M2s into its corresponding bootstrapped semi-MDP coun-
terpart M̈ . We define this semi-MDP as a tuple M̈ = ⟨S ∪ Saux, sι,ΩA, P̈, R̈,Γ⟩
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with ΩA = {ωa}a∈A where for each a ∈ A

ωa = ⟨Ia,a : πb,β(s)⟩ =



Ia = {s | (s,a) �U},
a : πb,

β(s) =


a′∈A∪{τ} π̇b(s,a′),

where a : πb is the option where the agent first uses action a, and then plays
according to πb, and

Γ(s,a) =


γ2s s ∈ S,
1 s ∈ Saux.

P and R are naturally extended to options, i.e., P̈(s,ωa) = P2s(s,a) and R̈(s,ωa) =
R2s(s,a). In the same fashion we transform the MLE-MDP M̃2s into its boot-
strapped counterpart ˜̈M2s = ⟨S ∪ Saux, sι,ΩA,

˜̈P,R̈,Γ⟩.
Using (Weissman et al., 2003, Theorem 2.1) on all (s,a) �U we obtain that

for all a ∈ A and s ∈ Ia, with probability at least 1− δ we have

∥γ2sP̈(s,a)−γ2s ˜̈P(s,a)∥1 ≤


2

min
a∈A,s∈Ia

#D2s(s,a)
log

2|S ||A|2maxa∈A,s∈Ia |Post(s,a)|

δ

≤


2
N∧

log
8|S ||A|

δ

This means we can apply Lemma 1 from (Laroche et al., 2019) to M2s and
M̃2s for arbitrary bootstrapped policies to obtain

|ρ(π2s
⊙ ,M2s)− ρ(π2s

⊙ , M̃2s)| ≤ 2Vmax

1−γ


2
N∧

log
8|S ||A|

δ
,

|ρ(π2s
b ,M2s)− ρ(π2s

b ,M̃2s)| ≤ 2Vmax

1−γ


2
N∧

log
8|S ||A|

δ
.

Combining these inequalities, we obtain the final result

ζ2s = ρ(π2s
b ,M2s)− ρ(π2s

⊙ ,M2s)

≤ 4Vmax

1−γ


2
N∧

log
8|S ||A|

δ
− ρ(π2s

⊙ , M̃2s) + ρ(π2s
b ,M̃2s).

For a general MDP M , we can utilize this result by first applying the transforma-
tion from Section 6.4.1.

Theorem 6.19 (Weissman-based tighter improvement guarantee). Consider an MDP
M = ⟨S,sι,A,P,R,γ⟩ with behavior policy πb. Then, π⊙ is a ζ2s-approximate safe policy
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improvement over πb with high probability 1− δ, where:

ζ2s =
4Vmax

1−γ

√
2

N2s
∧

log
8|S |2|A|2

δ
− ρ(π⊙, M̃) + ρ(πb,M̃). (6.7)

Proof of Theorem 6.19. The proof follows straightforwardly from Theorem 6.13
and Theorem 6.15.

ρ(π⊙,M) = ρ(π2s
⊙ ,M2s)

≥ ρ(π2s
b ,M2s)− 4Vmax

1−γ

√
2
N∧

log
8|S |2|A|2

δ
− ρ(π2s

⊙ , M̃2s) + ρ(π2s
b ,M̃2s)

= ρ(πb,M)− ζ2s

Both equalities follow by applying Theorem 6.13 and Theorem 6.15. The
inequality is obtained by applying Lemma 6.17 to M2s where the size of the
state space of M2s is bounded by |S ∪ Saux| ≤ |S |2|A|, see Section 6.4.1

Just as done for ζSPIBB, we can rearrange the Equation 6.7 to compute the sample
size requirement N2s

∧ for a ζ2s-safe improvement:

N2s
∧ =

32V 2
max

(ζ2s)2(1−γ)2
log

8|S |2|A|2

δ
.

Remark 6.20. Note that ζ2s and N2s
∧ only depend on parameters of M and pol-

icy performances on M̃ , which follows from Corollary 6.16 yielding ρ(π⊙, M̃) =
ρ2s(π⊙, M̃2s). Hence, it is not necessary to explicitly compute the transformed
MLE-MDP M̃2s.

k-successor MDPs
We saw that theNSPIBB

∧ grows linearly in |S |whereasN2s
∧ grows logarithmically in |S |.

The contributing factor to this was that for any state-action pair (s,a) the L1-norm
between the true successor distribution P(s,a) and its maximum likelihood estimate
can only be bounded linearly in terms of the branching factor k = |PostM (s,a)| when
applying the bound obtained by (Weissman et al., 2003). Hence, the idea behind our
2sMDP transformation was to bound the branching factor by a constant. To achieve
this, we necessarily needed to introduce auxiliary states, essentially creating a trade-
off between the branching factor and the size of the state space. One question that
may arise is whether it may be beneficial to allow for a larger branching factor k
than 2, possibly harvesting the advantage of introducing fewer auxiliary states. In
Section 6.4.1 we hint at the fact that for SPI algorithms, k = 2 is indeed optimal. We
now outline why this is the case.

First, notice that we can easily adapt the transformation outlined in Section 6.4.1
towards k-successor MDPs by structuring the auxiliary nodes in a tree with branch-
ing factor 2 rather than in a binary tree, resulting in up to |S |/k−1 auxiliary states in
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with ΩA = {ωa}a∈A where for each a ∈ A
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
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

a′∈A∪{τ} π̇b(s,a′),
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
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δ
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δ
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δ
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δ
− ρ(π2s
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b ,M̃2s).

For a general MDP M , we can utilize this result by first applying the transforma-
tion from Section 6.4.1.

Theorem 6.19 (Weissman-based tighter improvement guarantee). Consider an MDP
M = ⟨S,sι,A,P,R,γ⟩ with behavior policy πb. Then, π⊙ is a ζ2s-approximate safe policy

6.4. Tighter Improvement Bounds for SPI

6

123

improvement over πb with high probability 1− δ, where:

ζ2s =
4Vmax

1−γ

√
2

N2s
∧

log
8|S |2|A|2

δ
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Both equalities follow by applying Theorem 6.13 and Theorem 6.15. The
inequality is obtained by applying Lemma 6.17 to M2s where the size of the
state space of M2s is bounded by |S ∪ Saux| ≤ |S |2|A|, see Section 6.4.1

Just as done for ζSPIBB, we can rearrange the Equation 6.7 to compute the sample
size requirement N2s

∧ for a ζ2s-safe improvement:
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Remark 6.20. Note that ζ2s and N2s
∧ only depend on parameters of M and pol-

icy performances on M̃ , which follows from Corollary 6.16 yielding ρ(π⊙, M̃) =
ρ2s(π⊙, M̃2s). Hence, it is not necessary to explicitly compute the transformed
MLE-MDP M̃2s.

k-successor MDPs
We saw that theNSPIBB

∧ grows linearly in |S |whereasN2s
∧ grows logarithmically in |S |.

The contributing factor to this was that for any state-action pair (s,a) the L1-norm
between the true successor distribution P(s,a) and its maximum likelihood estimate
can only be bounded linearly in terms of the branching factor k = |PostM (s,a)| when
applying the bound obtained by (Weissman et al., 2003). Hence, the idea behind our
2sMDP transformation was to bound the branching factor by a constant. To achieve
this, we necessarily needed to introduce auxiliary states, essentially creating a trade-
off between the branching factor and the size of the state space. One question that
may arise is whether it may be beneficial to allow for a larger branching factor k
than 2, possibly harvesting the advantage of introducing fewer auxiliary states. In
Section 6.4.1 we hint at the fact that for SPI algorithms, k = 2 is indeed optimal. We
now outline why this is the case.

First, notice that we can easily adapt the transformation outlined in Section 6.4.1
towards k-successor MDPs by structuring the auxiliary nodes in a tree with branch-
ing factor 2 rather than in a binary tree, resulting in up to |S |/k−1 auxiliary states in
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each tree. Thus, when transforming an arbitrary MDP into a k-successor MDP, we
can bound the L1-error in the same fashion as in Theorem 6.19 to obtain

Nks
∧ =

32V 2
max

ζ2(1−γ)2
log

2|S |2|A|22k

(k − 1)δ

As all terms are positive, his expression is minimal if and only if 2k
k−1 is minimal,

which is the case for k = 2 and k = 3. Hence, 2sMDPs are optimal for SPIBB when
utilizing the L1-norm bound by (Weissman et al., 2003).

The main reason why we choose a branching factor of k = 2 over k = 3 is that
for k = 2, we can give even tighter bounds on the L1-norm by computing integrals
over the probability density function of the transition probabilities that are given
by a beta distribution as described in Section 6.4.4. Next, we provide proofs for the
Lemma and Theorem in that section.

6.4.4 Uncertainty in Two-Successor MDPs
So far, the methods we outlined relied on a bound of the L1-distance between a
probability vector and its estimate based on a number of samples (Weissman et al.,
2003). In this section, we outline a second method to tighten this bound for two-
successor MDP and how to apply it to obtain a smaller admissible performance
loss ζβ for a fixed sample size requirement Nβ

∧ based on the inverse incomplete Beta
function (Temme, 1992).

In the following, we use that every two-successor MDP is also a regular MDP
to simplify notation. Given a 2sMDP (represented as a standard MDP) M2s =
⟨S,sι,A,P,R⟩ and an error tolerance δ, we construct an error function e : S ×A→ R
that ensures with probability 1 − δ that ∥P(s,a) − P̂(s,a)∥1 ≤ e(s,a) for all (s,a). To
achieve this, we distribute δ uniformly over all states to obtain δT = δ/|S |, indepen-
dently ensuring that for each state-action pair (s,a) the condition ∥P(s,a)− P̂(s,a)∥1 ≤
e(s,a) is satisfied with probability at least 1− δT .

We now fix a state-action pair (s,a). Since we are dealing with a two-successor
MDP, there are only two successor states, s1 and s2. To bound the error function, we
view each sample of action a in state s as a Bernoulli trial. As shorthand notation,
let p = P(s,a, s1) and 1 − p = P(s,a, s2). Using a uniform prior over p and given a
datasetD in which (s,a, s1) occurs k1 times and (s,a, s2) occurs k2 times, the posterior
probability over p is given by a beta distribution with parameters k1 + 1 and k2 + 1,
i.e., Pr(p |D) ∼ B(k1+1, k2+1) (Jaynes, 2003). We can express the error function in
terms of the probability of p being contained in a given interval [p,p] as e(s,a) = p−p.

The task that remains is to find such an interval [p,p] for which we can guarantee
with probability δT that p is contained within it. Formally, we can express this
via the incomplete regularized beta function I , which in turn is defined as the
cumulative density function of the beta distribution B:

Pr(p ∈ [p,p]) = Ip,p(k1+1, k2+1).

We show that we can define the smallest such interval in terms of the inverse
incomplete beta function (Temme, 1992), denoted as I−1δ .

6.4. Tighter Improvement Bounds for SPI

6

125

Lemma 6.21. Let k ∼ Bin(n,p) be a random variable according to a binomial distribution.
Then the smallest interval [p,p] for which

P
(
p ∈

[
p,p

])
≥ 1− δT

holds, has size
p − p ≤ 1− 2I−1δT/2

(n
2
+1,

n
2
+1

)
.

Proof of Lemma 6.21. We first show that for k = n
2 the statement holds.

Let B(·, ·) denote the beta function and fB(· |a,b) the probability density
function of the Beta distribution with parameters a and b.

Consider the interval [p,p] = [12 −h,
1
2 +h] with h = 1

2

(
1− 2I−1δT/2

(
n
2 + 1, n2 + 1

))
.

The interval clearly has size p − p = 1− 2I−1δT/2

(
n
2 + 1, n2 + 1

)
.

Now we show that it contains p with probability 1− δT .

P
(
p ∈

[
p,p

])
=
∫ 1

2+h

1
2−h

fB(u |
n
2
+1,

n
2
+1) (6.8)

=
∫ 1

2+h

1
2−h

u
n
2 (1−u)

n
2

B
(
n
2 + 1, n2 + 1

)du (6.9)

= I 1
2+h

(n
2
+1,

n
2
+1

)
− I 1

2−h

(n
2
+1,

n
2
+1

)
(6.10)

= 1− 2 · I 1
2−h

(n
2
+1,

n
2
+1

)
(6.11)

= 1− 2II−1δT/2(
n
2 +1,

n
2 +1)

(n
2
+1,

n
2
+1

)
(6.12)

= 1− 2δT
2

(6.13)

= 1− δT (6.14)

Note that Equation 6.8 assumes a uniform prior. Equation 6.10 is obtained by
definition and Equation 6.11 by using the symmetry of I(a,a).

Due to symmetry of fB(· | n2 ,
n
2 ) and its monotonicity on the intervals [0, 12 )

and (12 ,1] we have for all r ∈ [0, 12 − h]∪ [
1
2 + h,1] and s ∈ [ 12 − h,

1
2 + h] that

fB(r |
n
2
,
n
2
) ≤ fB(

1
2
− h | n

2
,
n
2
) = fB(

1
2
+ h | n

2
,
n
2
) ≤ fB(s |

n
2
,
n
2
).

Further, as fB(· | n2 ,
n
2 ) is positive on [0,1], we conclude that for any interval

[p′ ,p′] with p′ − p′ = p − p we have P
(
p ∈

[
p′ ,p′

])
≤ P

(
p ∈

[
p,p

])
. As all steps in

the chain above are equalities,
[
p,p

]
is indeed the smallest interval for which

we can guarantee P
(
p ∈

[
p,p

])
≥ 1− δT .
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each tree. Thus, when transforming an arbitrary MDP into a k-successor MDP, we
can bound the L1-error in the same fashion as in Theorem 6.19 to obtain
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As all terms are positive, his expression is minimal if and only if 2k
k−1 is minimal,

which is the case for k = 2 and k = 3. Hence, 2sMDPs are optimal for SPIBB when
utilizing the L1-norm bound by (Weissman et al., 2003).

The main reason why we choose a branching factor of k = 2 over k = 3 is that
for k = 2, we can give even tighter bounds on the L1-norm by computing integrals
over the probability density function of the transition probabilities that are given
by a beta distribution as described in Section 6.4.4. Next, we provide proofs for the
Lemma and Theorem in that section.

6.4.4 Uncertainty in Two-Successor MDPs
So far, the methods we outlined relied on a bound of the L1-distance between a
probability vector and its estimate based on a number of samples (Weissman et al.,
2003). In this section, we outline a second method to tighten this bound for two-
successor MDP and how to apply it to obtain a smaller admissible performance
loss ζβ for a fixed sample size requirement Nβ

∧ based on the inverse incomplete Beta
function (Temme, 1992).

In the following, we use that every two-successor MDP is also a regular MDP
to simplify notation. Given a 2sMDP (represented as a standard MDP) M2s =
⟨S,sι,A,P,R⟩ and an error tolerance δ, we construct an error function e : S ×A→ R
that ensures with probability 1 − δ that ∥P(s,a) − P̂(s,a)∥1 ≤ e(s,a) for all (s,a). To
achieve this, we distribute δ uniformly over all states to obtain δT = δ/|S |, indepen-
dently ensuring that for each state-action pair (s,a) the condition ∥P(s,a)− P̂(s,a)∥1 ≤
e(s,a) is satisfied with probability at least 1− δT .

We now fix a state-action pair (s,a). Since we are dealing with a two-successor
MDP, there are only two successor states, s1 and s2. To bound the error function, we
view each sample of action a in state s as a Bernoulli trial. As shorthand notation,
let p = P(s,a, s1) and 1 − p = P(s,a, s2). Using a uniform prior over p and given a
datasetD in which (s,a, s1) occurs k1 times and (s,a, s2) occurs k2 times, the posterior
probability over p is given by a beta distribution with parameters k1 + 1 and k2 + 1,
i.e., Pr(p |D) ∼ B(k1+1, k2+1) (Jaynes, 2003). We can express the error function in
terms of the probability of p being contained in a given interval [p,p] as e(s,a) = p−p.

The task that remains is to find such an interval [p,p] for which we can guarantee
with probability δT that p is contained within it. Formally, we can express this
via the incomplete regularized beta function I , which in turn is defined as the
cumulative density function of the beta distribution B:

Pr(p ∈ [p,p]) = Ip,p(k1+1, k2+1).

We show that we can define the smallest such interval in terms of the inverse
incomplete beta function (Temme, 1992), denoted as I−1δ .
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Proof of Lemma 6.21. We first show that for k = n
2 the statement holds.

Let B(·, ·) denote the beta function and fB(· |a,b) the probability density
function of the Beta distribution with parameters a and b.

Consider the interval [p,p] = [12 −h,
1
2 +h] with h = 1
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definition and Equation 6.11 by using the symmetry of I(a,a).
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1
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2
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Further, as fB(· | n2 ,
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2 ) is positive on [0,1], we conclude that for any interval

[p′ ,p′] with p′ − p′ = p − p we have P
(
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[
p′ ,p′

])
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[
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])
. As all steps in

the chain above are equalities,
[
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]
is indeed the smallest interval for which

we can guarantee P
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Next, we consider arbitrary 1 ≤ k ≤ n − 1. In this case, we construct the
following interval, which contains p with probability 1− δT by definition:

[
p
k
,pk

]
=
[
I−1δT/2(k,n− k), I

−1
1−δT/2(k,n− k)

]
.

Note that for k = n/2 the intervals
[
p,p

]
and

[
p
k
,pk

]
coincide.

We now show that the size of the interval pk − pk is maximal if k = n/2.
We do this by computing the derivative with respect to k. Substituting a = k
and b = n − k, using symmetry, applying the multi-variable chain rule, and
renaming integration variables, we obtain:



k
(I−11−δT/2(k,n− k)− I

−1
δT/2(k,n− k))

=


k
(I−11−δT/2(a,b)− I

−1
δT/2(a,b))

=


k
(1− I−1δT/2(b,a)− I

−1
δT/2(a,b))

=


b
I−1δT/2(b,a)−



a
I−1δT/2(b,a)−



a
I−1δT/2(a,b) +



b
I−1δT/2(a,b)

=


c
I−1δT/2(c,a)−



c
I−1δT/2(b,c)−



c
I−1δT/2(c,b) +



c
I−1δT/2(a,c)

=


c

(
I−1δT/2(c,a)− I

−1
δT/2(c,b)

)
− 

c

(
I−1δT/2(b,c)− I

−1
δT/2(a,c)

)

=


c

(
I−1δT/2(c,b)− I

−1
δT/2(c,a)

)
+



c

(
I−11−δT/2(c,b)− I

−1
1−δT/2(c,a)

)

Clearly, for a = b the expression equals 0, i.e., for k = n/2 the interval size
reaches an extreme point. As the function a → I−

1
p (a,b) for any p ∈ (0,1) and

b ≥ 1 is concave on [1,∞) (Askitis, 2021), both 
c (I

−1
1−δT/2(b,c)− I

−1
1−δT/2(a,c)) and


c (I

−1
δT/2(b,c)− I

−1
δT/2(a,c)) are positive if and only if b > a. That is, exactly when

k/2 < n. Analogously, the expression is negative for k/2 > n. Thus, k = n/2 is the
only extreme point in the interval [0,1] and a maximum.

As a result, for every k we have an interval
[
p
k
,pk

]
that contains p with

probability at least 1− δT and has size bounded by

pk − pk ≤ 1− 2I−1δT/2

(n
2
+1,

n
2
+1

)
,

and for k = n/2 no smaller interval exists.

Remark 6.22. Note that in Equation 6.8, we assumed a uniform prior in the binomial
distribution. However, we can easily generalize this result for other choices of
beta-distributed priors. Observe that the proof only relies on the parameters of the
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beta distribution but not how the parameters are composed, i.e., to which extent
the prior hyperparameters or the samples contributed. Thus, we can generalize the
result as follows:

Corollary 6.23. Let k ∼ Bin(n,p) be a random variable according to a binomial distribu-
tion. Assume a a beta-distributed prior p ∼ B(α1,α2) Then, the smallest interval [p,p]
for which

P

p ∈


p,p


≥ 1− δT

holds, has size
p − p ≤ 1− 2I−1δT/2

n+α1 +α2

2
,
n+α1 +α2

2


.

Note that the interval size decreases monotonically as n + α1 + α2 increases.
As α1,α2 > 0, in case no information about the prior distribution of p is present,
we can still give a lower bound of the interval size, namely 1 − 2I−1δT/2


n
2 ,

n
2


by

underapproximating α1 = α2 = 0.
Next, we show how to utilize this bound for the interval size in MDPs with

arbitrary topology. The core idea is the same as in Theorem 6.19: We transform the
MDP into a 2sMDP and apply the error bound e(s,a) = p − p from Lemma 6.21.

Theorem 6.24 (Beta-based tighter improvement guarantee). Let M be an MDP with
behavior policy πb. Then, π⊙ is a ζβ-approximate safe policy improvement over πb with
high probability 1− δ, where:

ζβ =
4Vmax

1−γ

1− I−1δT/2


N

β
∧
2

+1,
N

β
∧
2

+1


− ρ(π⊙, M̃) + ρ(πb,M̃), (6.15)

with δT = δ
|S |2 |A|2 .

Proof of Theorem 6.24. Let M2s = ⟨S ∪ Saux, sι,A∪ {τ},P2s,R2s,γ2s⟩ be the 2s-
MDP obtained by transforming M . We then define the set of bootstrapped
state-action pairs inM2s asB2s = {(s,a) | s ∈ S,a ∈ A(s) : #D2s(s,a) < N

β
∧}∪{(s,τ) |

s ∈ Saux}. As a consequence, the set of non-bootstrapped actions is of size at
most |S ||A|, i.e., |{(s,a) | (s,a) �B2s}| ≤ |S ||A|. Distributing the error tolerance δ
uniformly over all state-action pairs and by applying Corollary 6.23 we can
ensure with high probability 1 − δ that e(s,a) ≤ 1 − 2I−1δT/2


n
2 + 1, n2 + 1


for all

(s,a) � B. Note that although we assumed uniform priors for all transitions
in M , we do not necessarily have uniform priors for all transitions in M2s.
Precisely, by the marginal distributions of the Dirichlet distribution, all tran-
sitions (s,a) in M2s have a prior of B(1,m) where m is the number of states
reachable from s by action a through only auxiliary states. This is why we have
to apply Corollary 6.23 rather than Lemma 6.21. However, the bound from
Lemma 6.21 is still as tight as possible since there are transitions with m = 1,
namely all τ-transitions from the last auxiliary state after the transformation
and all transitions that were already binary before the transformation. We
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following interval, which contains p with probability 1− δT by definition:

[
p
k
,pk

]
=
[
I−1δT/2(k,n− k), I

−1
1−δT/2(k,n− k)

]
.

Note that for k = n/2 the intervals
[
p,p

]
and

[
p
k
,pk

]
coincide.
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Remark 6.22. Note that in Equation 6.8, we assumed a uniform prior in the binomial
distribution. However, we can easily generalize this result for other choices of
beta-distributed priors. Observe that the proof only relies on the parameters of the
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Method Admissible performance loss ζ Sample size requirement N∧

Standard SPI
(Petrik et al., 2016) ζSPI =

2γVmax

1−γ


2

NSPI
∧

log
2|S ||A|2|S |

δ
NSPI
∧ =

8V 2
max

ζSPI2(1−γ)2
log

2|S ||A|2|S |

δ
(⋆)

Standard SPIBB
(Laroche et al., 2019) ζSPIBB =

4Vmax
1−γ


2

NSPIBB
∧

log
2|S ||A|2|S |

δ
+ ρ̃ NSPIBB

∧ =
32V 2

max

ζSPIBB2(1−γ)2
log

2|S ||A|2|S |

δ

Two-Successor SPIBB
(Theorem 6.19) ζ2s =

4Vmax
1−γ


2

N2s
∧

log
8|S |2|A|2

δ
+ ρ̃ N2s

∧ =
32V 2

max

(ζ2s)2(1−γ)2
log

8|S |2|A|2

δ

Inverse beta SPIBB
(Theorem 6.24) ζβ =

4Vmax
1−γ

1− 2I−1δT/2


N

β
∧
2

+1,
N

β
∧
2

+1


+ ρ̃

No closed formula available
(use binary search to compute)

Table 6.1: Overview of the different ζ and N∧ we obtain, where δT = δ
|S |2 |A|2 and ρ̃ =

−ρ(π⊙, M̃) + ρ(πb,M̃) is the difference in performance between optimal and behavior policy
on the MLE-MDP. (⋆) Standard SPI requires at least NSPI

∧ samples in all state-action pairs.

then finish this proof in the same fashion as the proof of Theorem 6.19 and
Lemma 6.17 but use the above-mentioned bound for the L1-error instead of
the bound obtained in (Weissman et al., 2003).

There is no closed formula to directly compute Nβ
∧ for a given ζβ . However, for

a given admissible performance loss ζ, we can perform a binary search to obtain
the smallest natural number Nβ

∧ such that ζβ ≤ ζ given in Theorem 6.24.

6.4.5 Comparison of Different Minimal Sample Thresholds N∧
In the context of SPI, finding an N∧ that is as small as possible while still guarantee-
ing ζ-approximate improvement is the main objective. An overview of the different
ζ and N∧ that are available is given in Table 6.1. Comparing the equations for
different N∧, we immediately see that N2s

∧ ≤NSPIBB
∧ if and only if 2|S | ≥ 4|S ||A|. This

means the only MDPs where standard SPIBB outperforms our 2sMDP approaches
are environments with a small state space but a large action space. By Lemma 6.21,
we have that the error term e(s,a) used to compute ζβ is minimal in the 2sMDP, and
in particular, it is smaller than the error term used to compute ζ2s. Thus we always
have Nβ

∧ ≤N2s
∧ . In case 2|S | < 4|S ||A| it is also possible to compute both NSPIBB

∧ , and
N

β
∧ and simply choose the smaller one.

6.5 Experimental Evaluation

We experimentally evaluate the theoretical results presented in this chapter, stating
with SPI in POMDPs, Section 6.3, and moving to tighter improvement bounds for
SPI, Section 6.4 after.
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6.5.1 SPI in Partially Observable Environments
We now empirically evaluate our first contribution, extending SPIBB to partially
observable environments, as detailed in Section 6.3. We first describe the setup of
the experiments and then present and analyze the results.

Setup
Research questions. We pose the following research questions to evaluate our
first contribution to SPI.

RQ1 Can our approach show empirical improvement in the policy, even in envi-
ronments that do not satisfy Assumption 6.5?

RQ2 Does the FSC memory size affect the improvement?

Environments. We consider three POMDP environments:

i. CheeseMaze (McCallum, 1993): An agent navigates a maze, moving in the
four cardinal directions, but in each state, it only perceives whether or not
there is a barrier in each direction. The agent is placed at a random location at
the beginning of an episode and receives a positive reward (+1) if it reaches
the goal and a small negative reward (−0.01) otherwise. The episode ends
when the agent reaches the goal.

ii. Tiger (Kaelbling et al., 1998): An agent is in front of two doors, and a tiger is
randomly positioned behind one of them at the beginning of each episode. The
agent has three actions: Listening or opening one of the doors. Listening gives
a noisy observation of the position of the tiger and a small negative reward (−1).
Opening the door with the tiger gives a large negative reward (−100), while
opening the other door gives a positive reward (+10).

iii. Voicemail (Williams and Young, 2007): An agent controls a voicemail machine.
At the beginning of the episode, the user listens to a message and decides
if they want to keep it. This information is hidden from the agent, which
has three actions: ask, save, and delete. Asking the user if they want to keep
the message gives the agent a small negative reward (−1) and a noisy obser-
vation of the user’s intention. Correctly saving the message gives a positive
reward (+5), and a negative reward (−10) otherwise. Correctly deleting the
message gives a positive reward (+5), and a negative reward (−20) otherwise.

All experiments use a discount factor γ = 0.95, with at most 300 steps in an episode.

Satisfaction of Assumption 6.5. Note that the Maze environment is close to
satisfying Assumption 6.5 for memory that looks back two steps, i.e., k = 2, with the
exceptions of histories with equal observations. Tiger and Voicemail do not satisfy
the assumption for any k.
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CheeseMaze Tiger Voicemail

Initial exploration rate ϵ0 0.500 0.500 0.500
Initial learning rate α0 1.000 1.000 1.000
Decay rate λ 0.002 0.002 0.002
Softmax temperature τ 15.000 0.050 0.300

Table 6.2: Hyperparameters to generate the behavior policies.

Data collection. We generate behavior policies via Q-learning using the memory
of an FSC that keeps track of the last k ∈ {1,2} observations as the state. After
convergence, we extract a softmax policy to ensure we sample different actions
during data collection. We consider datasets of different sizes, namely: 1, 2, 5,
10, 20, 50, · · · , 5000, and 10000 trajectories, and generate 500 datasets for each
environment, number of trajectories, and behavior policy.

Training the behavior policies. To train the behavior policy, we use Q-learning
over 5000 episodes with learning rate α and exploration rate ϵ decaying exponen-
tially after each episode:

αi = α0 exp(−λ ∗ i), ϵi = ϵ0 exp(−λ ∗ i),

where i is the episode index, λ is the decay rate, α0 and ϵ0 are the initial learning
rate and initial exploration rate, respectively. After training, we extract the behavior
policy πb using a softmax function.

πb(a | s) =
e−τQ(s,a)

∑
a′∈A e

−τQ(s,a′)
,

where Q(s,a) is the final value of the state-action pair s,a and τ a hyperparameter to
control the randomness of the behavior policy. See Table 6.2 for all hyperparameters
per environment.

Learning algorithms. We consider two algorithms to compute a new policy:
SPIBB, and Basic RL. Both algorithms operate on the finite-history MLE-MDP (Defi-
nition 6.9) related to the finite-history MDP of the POMDP. We implement Basic RL
as an unconstrained SPIBB whereN∧ = 0; that is, it solves the MLE-MDP using value
iteration. For each dataset, we compute new policies πI using each offline RL algo-
rithm, considering different hyperparameters: N∧ ∈ {5,7,10,15,20,30,50,70,100}
and k′ ∈ {k,k +1}, where k′ is the history size encoded in the FSC of πI .

Evaluation metrics. Each policy is evaluated over 10000 episodes to estimate the
performance of the improved policy ρ(πI ,M

∗). We also consider the normalized
policy improvement:

ρ̄(πI ) =
ρ(πI ,M

∗)− ρ(πb,M
∗)

ρ(πmax,M∗)− ρ(πb,M∗)
,
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Algorithm: Basic RL SPIBB Metric: Mean 10%-CVaR 1%-CVaR Policy: πb PO-UCT
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Figure 6.4: Policy improvement on the environments Maze, Tiger, and Voicemail (first,
second and third row, respectively) for datasets collected by a behavior policy with history
size k = 2, varying the hyperparameters pairs column-wise: (N∧ = 5, k′ = 2), (N∧ = 20, k′ = 2),
(N∧ = 5, k′ = 3), and (N∧ = 20, k′ = 3). The plots show the mean (solid line), 10%-CVaR
(dashed line), and 1%-CVaR (dotted line). The performance of the behavior policy is shown
in green (dash-dotted line).

where πmax is the policy with the highest expected return in each environment.
To aggregate the results across the 500 repetitions, we compute the mean and
Conditional Value at Risk (CVaR; Rockafellar and Uryasev, 2000). We use x%-CVaR
to indicate the mean of the x% lowest performances. To approximate the optimal
value, we show the performance of PO-UCT (Silver and Veness, 2010), which uses
the environment as a simulator to compute a policy.

Computing specifications. All experiments were performed on a 4GHz Intel Core
i9 CPU and 64Gb of memory, using a single core for each experiment.

Results and Discussion
Figure 6.4 shows results on the three environments (ordered by row). The data was
collected using a behavior policy with k = 2. The first column shows the results
where SPIBB uses a low threshold to consider a history-action pair known and the
same memory size as the behavior policy (N∧ = 5 and k′ = 2). The second column
shows the results with a higher threshold (N∧ = 20 and k′ = 2). The third column
shows the results for increased memory (N∧ = 5 and k′ = 3). Finally, the fourth
column shows the results with a higher threshold and increased memory (N∧ = 20



6

130 6. Extending the Scope of Reliable Offline RL

CheeseMaze Tiger Voicemail

Initial exploration rate ϵ0 0.500 0.500 0.500
Initial learning rate α0 1.000 1.000 1.000
Decay rate λ 0.002 0.002 0.002
Softmax temperature τ 15.000 0.050 0.300

Table 6.2: Hyperparameters to generate the behavior policies.

Data collection. We generate behavior policies via Q-learning using the memory
of an FSC that keeps track of the last k ∈ {1,2} observations as the state. After
convergence, we extract a softmax policy to ensure we sample different actions
during data collection. We consider datasets of different sizes, namely: 1, 2, 5,
10, 20, 50, · · · , 5000, and 10000 trajectories, and generate 500 datasets for each
environment, number of trajectories, and behavior policy.

Training the behavior policies. To train the behavior policy, we use Q-learning
over 5000 episodes with learning rate α and exploration rate ϵ decaying exponen-
tially after each episode:

αi = α0 exp(−λ ∗ i), ϵi = ϵ0 exp(−λ ∗ i),

where i is the episode index, λ is the decay rate, α0 and ϵ0 are the initial learning
rate and initial exploration rate, respectively. After training, we extract the behavior
policy πb using a softmax function.

πb(a | s) =
e−τQ(s,a)

∑
a′∈A e

−τQ(s,a′)
,

where Q(s,a) is the final value of the state-action pair s,a and τ a hyperparameter to
control the randomness of the behavior policy. See Table 6.2 for all hyperparameters
per environment.

Learning algorithms. We consider two algorithms to compute a new policy:
SPIBB, and Basic RL. Both algorithms operate on the finite-history MLE-MDP (Defi-
nition 6.9) related to the finite-history MDP of the POMDP. We implement Basic RL
as an unconstrained SPIBB whereN∧ = 0; that is, it solves the MLE-MDP using value
iteration. For each dataset, we compute new policies πI using each offline RL algo-
rithm, considering different hyperparameters: N∧ ∈ {5,7,10,15,20,30,50,70,100}
and k′ ∈ {k,k +1}, where k′ is the history size encoded in the FSC of πI .

Evaluation metrics. Each policy is evaluated over 10000 episodes to estimate the
performance of the improved policy ρ(πI ,M

∗). We also consider the normalized
policy improvement:

ρ̄(πI ) =
ρ(πI ,M

∗)− ρ(πb,M
∗)

ρ(πmax,M∗)− ρ(πb,M∗)
,
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Figure 6.4: Policy improvement on the environments Maze, Tiger, and Voicemail (first,
second and third row, respectively) for datasets collected by a behavior policy with history
size k = 2, varying the hyperparameters pairs column-wise: (N∧ = 5, k′ = 2), (N∧ = 20, k′ = 2),
(N∧ = 5, k′ = 3), and (N∧ = 20, k′ = 3). The plots show the mean (solid line), 10%-CVaR
(dashed line), and 1%-CVaR (dotted line). The performance of the behavior policy is shown
in green (dash-dotted line).

where πmax is the policy with the highest expected return in each environment.
To aggregate the results across the 500 repetitions, we compute the mean and
Conditional Value at Risk (CVaR; Rockafellar and Uryasev, 2000). We use x%-CVaR
to indicate the mean of the x% lowest performances. To approximate the optimal
value, we show the performance of PO-UCT (Silver and Veness, 2010), which uses
the environment as a simulator to compute a policy.

Computing specifications. All experiments were performed on a 4GHz Intel Core
i9 CPU and 64Gb of memory, using a single core for each experiment.

Results and Discussion
Figure 6.4 shows results on the three environments (ordered by row). The data was
collected using a behavior policy with k = 2. The first column shows the results
where SPIBB uses a low threshold to consider a history-action pair known and the
same memory size as the behavior policy (N∧ = 5 and k′ = 2). The second column
shows the results with a higher threshold (N∧ = 20 and k′ = 2). The third column
shows the results for increased memory (N∧ = 5 and k′ = 3). Finally, the fourth
column shows the results with a higher threshold and increased memory (N∧ = 20
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Figure 6.6: Policy improvement on the Tiger environment for datasets collected with a
memoryless policy (k = 1), varying the hyperparameters pairs column-wise: (N∧ = 5, k′ = 1),
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10%-CVaR (dashed line), and 1%-CVaR (dotted line). The performance of the behavior policy
is shown in green (dash-dotted line).

and k′ = 3). Basic RL is included everywhere to give a perspective on the influence
of different hyperparameters.

Figures 6.5 and 6.7 extend the empirical analysis on the Voicemail and Tiger
environments for memoryless behavior policy (k = 1), since they demonstrated to
be more challenging for the safe policy improvement problem. Figure 6.5 considers
the Voicemail environment, while Figures 6.7 to 6.11 show the normalized results
for a range of thresholds and different memory sizes in the three environments.

Basic RL is unreliable. Across all environments, the Basic RL algorithm shows a
considerable performance drop compared to the behavior policy, even in terms of
the mean performance for smaller datasets. Notice that for Tiger and Voicemail, the
CVaR metrics are often outside the graph.
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Figure 6.7: Normalized performance ρ̄(πI ) on the Tiger environment (k = 1). The left,
middle, and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first
row shows the results where the improved policy uses the same memory as the behavior
policy (k′ = k), while the second row shows the results for an improved policy with more
memory (k′ = k +1).

SPIBB outperforms Basic RL. In the environments Tiger and Voicemail (Fig-
ure 6.4), the SPIBB algorithm shows better performance than the Basic RL across all
dataset sizes. This is likely due to the SPIBB algorithm retaining the randomization
of the behavior policy when insufficient data is available.

SPIBB is reliable when Assumption 6.5 is satisfied. Analyzing the results for
the Maze environment (Figure 6.4, first row), we observe that SPIBB shows reliably
outperforms the behavior policy even for a small N∧ (first column), for which only
the 1%-CVaR shows a performance drop.

More memory improves the reliability. SPIBB shows slightly unreliable behavior
for small values of N∧ in the Tiger and Voicemail environments (Figure 6.4), as
evidenced by both the CVaR curves, which can be alleviated by increasing the N∧
or the memory of the new policy (second, third and fourth column). When Assump-
tion 6.5 is violated, the performance drop may be significant, as seen in the first two
columns of Figure 6.5. In this case, merely increasing theN∧ threshold is insufficient
to guarantee a policy improvement. Increasing the memory size, however, allows
the SPIBB algorithm to improve the behavior policy, as Figure 6.5 (last column) and
Figure 6.7 (second row) show. Similar results are observed in Figures 6.8 to 6.11. We
thus positively answer RQ1 and RQ2: under the right circumstances, our approach
can show empirical improvements, even when Assumption 6.5 is not satisfied, and
increasing the FSC memory size positively affects the improvements made over the
behavior policy.
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and k′ = 3). Basic RL is included everywhere to give a perspective on the influence
of different hyperparameters.

Figures 6.5 and 6.7 extend the empirical analysis on the Voicemail and Tiger
environments for memoryless behavior policy (k = 1), since they demonstrated to
be more challenging for the safe policy improvement problem. Figure 6.5 considers
the Voicemail environment, while Figures 6.7 to 6.11 show the normalized results
for a range of thresholds and different memory sizes in the three environments.

Basic RL is unreliable. Across all environments, the Basic RL algorithm shows a
considerable performance drop compared to the behavior policy, even in terms of
the mean performance for smaller datasets. Notice that for Tiger and Voicemail, the
CVaR metrics are often outside the graph.
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Figure 6.7: Normalized performance ρ̄(πI ) on the Tiger environment (k = 1). The left,
middle, and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first
row shows the results where the improved policy uses the same memory as the behavior
policy (k′ = k), while the second row shows the results for an improved policy with more
memory (k′ = k +1).

SPIBB outperforms Basic RL. In the environments Tiger and Voicemail (Fig-
ure 6.4), the SPIBB algorithm shows better performance than the Basic RL across all
dataset sizes. This is likely due to the SPIBB algorithm retaining the randomization
of the behavior policy when insufficient data is available.

SPIBB is reliable when Assumption 6.5 is satisfied. Analyzing the results for
the Maze environment (Figure 6.4, first row), we observe that SPIBB shows reliably
outperforms the behavior policy even for a small N∧ (first column), for which only
the 1%-CVaR shows a performance drop.

More memory improves the reliability. SPIBB shows slightly unreliable behavior
for small values of N∧ in the Tiger and Voicemail environments (Figure 6.4), as
evidenced by both the CVaR curves, which can be alleviated by increasing the N∧
or the memory of the new policy (second, third and fourth column). When Assump-
tion 6.5 is violated, the performance drop may be significant, as seen in the first two
columns of Figure 6.5. In this case, merely increasing theN∧ threshold is insufficient
to guarantee a policy improvement. Increasing the memory size, however, allows
the SPIBB algorithm to improve the behavior policy, as Figure 6.5 (last column) and
Figure 6.7 (second row) show. Similar results are observed in Figures 6.8 to 6.11. We
thus positively answer RQ1 and RQ2: under the right circumstances, our approach
can show empirical improvements, even when Assumption 6.5 is not satisfied, and
increasing the FSC memory size positively affects the improvements made over the
behavior policy.
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Figure 6.8: Normalized results (ρ̄(πI )) on the Maze environment (k = 2). The left, middle,
and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row
shows the results where the improved policy uses the same memory as the behavior policy
(k′ = k), while the second row shows the results for an improved policy with more memory
(k′ = k +1).
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Figure 6.9: Normalized result on the Voicemail environment (k = 2). The left, middle, and
right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row shows
the results where the improved policy uses the same memory as the behavior policy (k′ = k),
while the second row shows the results for an improved policy with more memory (k′ = k+1).
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Figure 6.10: Normalized results (ρ̄(πI )) on the Tiger environment (k = 2). The left, middle,
and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row
shows the results where the improved policy uses the same memory as the behavior policy
(k′ = k), while the second row shows the results for an improved policy with more memory
(k′ = k +1).
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Figure 6.11: Normalized results (ρ̄(πI )) on the Voicemail environment (k = 1). The left,
middle, and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first
row shows the results where the improved policy uses the same memory as the behavior
policy (k′ = k), while the second row shows the results for an improved policy with more
memory (k′ = k +1).
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Figure 6.8: Normalized results (ρ̄(πI )) on the Maze environment (k = 2). The left, middle,
and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row
shows the results where the improved policy uses the same memory as the behavior policy
(k′ = k), while the second row shows the results for an improved policy with more memory
(k′ = k +1).
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Figure 6.9: Normalized result on the Voicemail environment (k = 2). The left, middle, and
right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row shows
the results where the improved policy uses the same memory as the behavior policy (k′ = k),
while the second row shows the results for an improved policy with more memory (k′ = k+1).
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Figure 6.10: Normalized results (ρ̄(πI )) on the Tiger environment (k = 2). The left, middle,
and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first row
shows the results where the improved policy uses the same memory as the behavior policy
(k′ = k), while the second row shows the results for an improved policy with more memory
(k′ = k +1).
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Figure 6.11: Normalized results (ρ̄(πI )) on the Voicemail environment (k = 1). The left,
middle, and right columns show the mean, 10%-CVaR and 1%-CVaR, respectively. The first
row shows the results where the improved policy uses the same memory as the behavior
policy (k′ = k), while the second row shows the results for an improved policy with more
memory (k′ = k +1).
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Deterministic policies may require more memory. Figure 6.5 shows an interest-
ing phenomenon. In partially observable settings, the stochastic behavior policy
might perform better than the new deterministic policy since randomization can
trade-off some amount of memory. We observe that when k = 1, SPIBB and Basic RL
converge to deterministic policies with an expected return lower than the behavior
policy. When SPIBB has sufficient data, it is not constrained to follow the behavior
policy and thus does not inherit any randomization from that policy. As stated in
the previous paragraph, more memory can, in that case, yield a new deterministic
policy with a higher performance than the behavior policy.

6.5.2 SPI With Stronger Performance Guarantees

We now empirically evaluate our second contribution of tighter improvement guar-
antees to the SPI problem, as detailed in Section 6.4. We provide an evaluation of
our approach from two different perspectives. First, a theoretical evaluation of how
the different N∧ depend on the size of a hypothetical MDP, and second, a practical
evaluation to investigate how smaller N∧ values translate to the performance of the
improved policies.

Setup

Reserach questions. We pose the following two research questions to evaluate
our second contribution to SPI.

RQ3 How does the size of the state space of the underlying MDP affect the values
for NSPIBB

∧ , N2s
∧ , and N

β
∧?

RQ4 Do the new theoretical bounds for smaller N∧ values also translate to the
performance of the improved policies?

6.5. Experimental Evaluation
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Figure 6.13: Safe policy improvement on the Gridworld environment.
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Figure 6.14: Safe policy improvement on the Wet Chicken environment.

Example Comparison of Different N∧

To render the theoretical differences between the possible N∧ discussed at the end
of Section 6.4.3 more tangible and answer RQ3, we now give a concrete example.

We assume a hypothetical MDP with |A| = 4, Vmax = 1, γ = 0.95, and SPIBB
parameters δ = 0.1 and ζ = 0.1. For varying sizes of the state space, we compute
all three sample size constraints: NSPIBB

∧ , N2s
∧ , and N

β
∧ . The results are shown in

Figure 6.12, where Figure 6.12a shows the full plot and Figure 6.12b provides an
excerpt to differentiate between the N2s

∧ and N
β
∧ plots by scaling down the y-axis.

Note that the x-axis, the number of states in our hypothetical MDP, is on a log scale.
We see that NSPIBB

∧ grows linearly with the number of states, whereas N2s
∧ and N

β
∧

are logarithmic in the number of states. Further, we note that Nβ
∧ is significantly

below N2s
∧ , which follows from Lemma 6.17. Finally, the difference between NSPIBB

∧
and N2s

∧ is for small MDPs of around a hundred states already a factor 10.
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Deterministic policies may require more memory. Figure 6.5 shows an interest-
ing phenomenon. In partially observable settings, the stochastic behavior policy
might perform better than the new deterministic policy since randomization can
trade-off some amount of memory. We observe that when k = 1, SPIBB and Basic RL
converge to deterministic policies with an expected return lower than the behavior
policy. When SPIBB has sufficient data, it is not constrained to follow the behavior
policy and thus does not inherit any randomization from that policy. As stated in
the previous paragraph, more memory can, in that case, yield a new deterministic
policy with a higher performance than the behavior policy.
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antees to the SPI problem, as detailed in Section 6.4. We provide an evaluation of
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the different N∧ depend on the size of a hypothetical MDP, and second, a practical
evaluation to investigate how smaller N∧ values translate to the performance of the
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To render the theoretical differences between the possible N∧ discussed at the end
of Section 6.4.3 more tangible and answer RQ3, we now give a concrete example.

We assume a hypothetical MDP with |A| = 4, Vmax = 1, γ = 0.95, and SPIBB
parameters δ = 0.1 and ζ = 0.1. For varying sizes of the state space, we compute
all three sample size constraints: NSPIBB
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∧ . The results are shown in
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Figure 6.15: Safe policy improvement on the Resource Gathering environment.

Discussion. While we show that a significant reduction of the required number
of samples per state-action pair N∧ is possible via our two approaches, we note
that even for small MDPs (e.g., |S | = 100) we still need over 10 million samples per
state-action pair to guarantee that an improved policy is safe with respect to the
behavior policy. That is, with probability 1− δ = 0.9, an improved policy will have
an admissible performance loss of at most ζ = 0.1, which is infeasible in practice.
Nevertheless, a practical evaluation of our approaches is possible by taking on a
different perspective, which we will address next.

Evaluation in SPIBB

To answer RQ4, we integrate our novel results for computing ζ2s,ζβ,N2s
∧ , and N

β
∧

into the implementation of SPIBB (Laroche et al., 2019).

Environments. We consider two standard benchmarks used in SPI and one other
well-known MDP: the 25-state Gridworld proposed by Laroche et al. (2019), the 25-
state Wet Chicken benchmark (Hans and Udluft, 2009), which was used to evaluate
SPI approaches by Scholl et al. (2022), and a 376-state instance of Resource Gathering
proposed by Barrett and Narayanan (2008).

Behavior policies. For the Gridworld, we use the same behavior policy as (Laroche
et al., 2019). For the Wet Chicken environment, we use Q-Learning with a softmax
function to derive a behavior policy. The behavior policy of Resource Gathering
was derived from the optimal policy by selecting each non-optimal action with a
probability of 1e-5.

Methodology. Recall that in the standard SPIBB approach, N∧ is used as a hy-
perparameter since the actual N∧ for reasonable δ and ζ are infeasible. While our
methods improve significantly on N∧, the values we obtain are still infeasible in
practice, as discussed in Section 6.5.2. We still use NSPIBB

∧ as a hyperparameter,
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and then run the SPIBB algorithm and compute the resulting ζSPIBB. This ζSPIBB

is consequently used to compute the values N2s
∧ and N

β
∧ that ensure the same per-

formance loss. We then run SPIBB again with these two values for N∧. As seen in
the previous experiment, and detailed at the end of Section 6.4.3, for most MDPs –
including our examples – we have Nβ

∧ ≤N2s
∧ ≤NSPIBB

∧ for a fixed ζ.

Evaluation metrics. For each dataset size, we repeat each experiment 1000 times
and report the mean performance of the learned policy, as well as the 10% and 1%
conditional value at risk (CVaR) values (Rockafellar and Uryasev, 2000), indicating
the mean performance of the worst 10% and 1% runs. We also include the perfor-
mance of basic RL (dynamic programming on the MLE-MDP (Sutton and Barto,
1998)), the behavior policy πb, and the optimal policy π∗ of the underlying MDP.

Results. We present the results for the Gridworld, Wet Chicken, and Resource
Gathering environments in Figures 6.13 to 6.15 for three different hyperparameters
NSPIBB
∧ , respectively. In all instances, we see similar and improved behaviors as we

presumed by sharpening the sampling bounds with our new approaches. Smaller
values for N∧ typically require smaller datasets for a policy to start improving, and
this is precisely what our methods set out to do. In particular, we note that our
methods (2S and Beta) are quicker to converge to an optimal policy than standard
SPIBB. Beta is, as expected, the fastest and has started to improve over the behavior
policy for datasets, about half the size compared to SPIBB in Gridworld. Further,
while theoretically, the factor between the different N∧ does not directly translate
to the whole dataset size, we see that in practice on all three benchmarks, this
is roughly the case. Finally, we note that Basic RL is unreliable compared to the
SPI methods, as seen by the CVaR values being significantly below the baseline
performance for several dataset sizes in all three environments. This is as expected
and in accordance with well-established results.

6.6 Conclusion
This chapter presented two key contributions to the offline RL problem of safe
policy improvement (SPI). First, we presented a new approach to SPI in partially
observable environments modeled as POMDPs by relying on a reduction to finite-
history MDPs. Our experiments show the applicability of our approach, even in
cases where finite-history is not sufficient to obtain optimal results.

Second, we presented a new approach to SPI that significantly reduces the
sample size requirements of datasets. We derived new performance guarantees and
applied them to the well-established SPIBB algorithm. Specifically, we introduced
a novel transformation to the underlying MDP model that limits the branching
factor and provided two new ways of computing the admissible performance loss
ζ and the sample size constraint N∧, both exploiting the limited branching factor
in SPI(BB). This contribution improves the overall performance of SPI algorithms,
leading to more efficient use of a given dataset.



6

138 6. Extending the Scope of Reliable Offline RL

Algorithm: Basic RL SPIBB 2S Beta Metric: Mean 10%-CVaR 1%-CVaR Policy: πb π∗

101 103 105

|D|

0

5

10

15

20

E
xp

ec
te

d
R

et
ur

n

(a) NSPIBB
∧ = 600,N2s

∧ = 43,N
β
∧ = 12.

101 103 105

|D|

0

5

10

15

20

E
xp

ec
te

d
R

et
ur

n

(b) NSPIBB
∧ = 1000,N2s

∧ = 71,N
β
∧ = 37.

Figure 6.15: Safe policy improvement on the Resource Gathering environment.

Discussion. While we show that a significant reduction of the required number
of samples per state-action pair N∧ is possible via our two approaches, we note
that even for small MDPs (e.g., |S | = 100) we still need over 10 million samples per
state-action pair to guarantee that an improved policy is safe with respect to the
behavior policy. That is, with probability 1− δ = 0.9, an improved policy will have
an admissible performance loss of at most ζ = 0.1, which is infeasible in practice.
Nevertheless, a practical evaluation of our approaches is possible by taking on a
different perspective, which we will address next.

Evaluation in SPIBB

To answer RQ4, we integrate our novel results for computing ζ2s,ζβ,N2s
∧ , and N

β
∧

into the implementation of SPIBB (Laroche et al., 2019).

Environments. We consider two standard benchmarks used in SPI and one other
well-known MDP: the 25-state Gridworld proposed by Laroche et al. (2019), the 25-
state Wet Chicken benchmark (Hans and Udluft, 2009), which was used to evaluate
SPI approaches by Scholl et al. (2022), and a 376-state instance of Resource Gathering
proposed by Barrett and Narayanan (2008).

Behavior policies. For the Gridworld, we use the same behavior policy as (Laroche
et al., 2019). For the Wet Chicken environment, we use Q-Learning with a softmax
function to derive a behavior policy. The behavior policy of Resource Gathering
was derived from the optimal policy by selecting each non-optimal action with a
probability of 1e-5.

Methodology. Recall that in the standard SPIBB approach, N∧ is used as a hy-
perparameter since the actual N∧ for reasonable δ and ζ are infeasible. While our
methods improve significantly on N∧, the values we obtain are still infeasible in
practice, as discussed in Section 6.5.2. We still use NSPIBB

∧ as a hyperparameter,

6.6. Conclusion

6

139

and then run the SPIBB algorithm and compute the resulting ζSPIBB. This ζSPIBB

is consequently used to compute the values N2s
∧ and N

β
∧ that ensure the same per-

formance loss. We then run SPIBB again with these two values for N∧. As seen in
the previous experiment, and detailed at the end of Section 6.4.3, for most MDPs –
including our examples – we have Nβ

∧ ≤N2s
∧ ≤NSPIBB

∧ for a fixed ζ.

Evaluation metrics. For each dataset size, we repeat each experiment 1000 times
and report the mean performance of the learned policy, as well as the 10% and 1%
conditional value at risk (CVaR) values (Rockafellar and Uryasev, 2000), indicating
the mean performance of the worst 10% and 1% runs. We also include the perfor-
mance of basic RL (dynamic programming on the MLE-MDP (Sutton and Barto,
1998)), the behavior policy πb, and the optimal policy π∗ of the underlying MDP.

Results. We present the results for the Gridworld, Wet Chicken, and Resource
Gathering environments in Figures 6.13 to 6.15 for three different hyperparameters
NSPIBB
∧ , respectively. In all instances, we see similar and improved behaviors as we

presumed by sharpening the sampling bounds with our new approaches. Smaller
values for N∧ typically require smaller datasets for a policy to start improving, and
this is precisely what our methods set out to do. In particular, we note that our
methods (2S and Beta) are quicker to converge to an optimal policy than standard
SPIBB. Beta is, as expected, the fastest and has started to improve over the behavior
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while theoretically, the factor between the different N∧ does not directly translate
to the whole dataset size, we see that in practice on all three benchmarks, this
is roughly the case. Finally, we note that Basic RL is unreliable compared to the
SPI methods, as seen by the CVaR values being significantly below the baseline
performance for several dataset sizes in all three environments. This is as expected
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This chapter presented two key contributions to the offline RL problem of safe
policy improvement (SPI). First, we presented a new approach to SPI in partially
observable environments modeled as POMDPs by relying on a reduction to finite-
history MDPs. Our experiments show the applicability of our approach, even in
cases where finite-history is not sufficient to obtain optimal results.
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applied them to the well-established SPIBB algorithm. Specifically, we introduced
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factor and provided two new ways of computing the admissible performance loss
ζ and the sample size constraint N∧, both exploiting the limited branching factor
in SPI(BB). This contribution improves the overall performance of SPI algorithms,
leading to more efficient use of a given dataset.
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6.6.1 Limitations and Discussion
The techniques presented in this chapter rely on some assumptions that impose
certain limitations. We discuss each of these limitations individually below.

Finite history MDP assumption. Our first contribution, extending SPIBB to work
in POMDPs, relies on the assumption that the POMDP is equivalent to a finite-
history MDP, see Assumption 6.5 and Definition 6.6. This assumption poses a
strong limitation on this contribution, even though we empirically established
that it is still possible to apply SPIBB in practice without it. Natural directions
for future work are ways to relax this assumption. One approach would be
to consider (bisimulation) distance metrics (Ferns et al., 2004, 2005; García
and Fernández, 2015) instead of the exact bisimulation we currently use. We
conjecture that assuming a bound on such a distance could be included in
the performance guarantees of SPI methods such as SPIBB. Other methods
to relax the assumption could be to consider other subclasses of POMDPs
such as regular decision processes (Brafman and Giacomo, 2024), or abstraction
techniques for RL as presented in, e.g., (Starre et al., 2023).

Practical applicability of SPIBB. Our second contribution does not rely on any
assumptions other than those made in standard SPIBB. Yet, the overall appli-
cability of SPIBB, even with our newly contributed performance guarantees,
remains limited. While we reduce the required number of samples per state-
action pair required compared to standard SPIBB, data efficiency of offline RL
with reliability guarantees remains a fundamental problem.

Future work. There are a few other directions for future work besides the ones al-
ready mentioned. SPI in partially observable environments could benefit from adap-
tively learning a memory structure as done in, e.g., model-free RL for POMDPs (Mc-
Callum, 1995). Our second contribution, on a more abstract level, is that we showed
that even in a setting where the underlying model is unknown, it is still possible
to reason over the structure of that model and the data generated from it. Hence,
a clear direction for future work is the application of the techniques presented to
other learning settings such as online model-based RL (Jaksch et al., 2010; Moerland
et al., 2023; Moos et al., 2022), data-driven abstractions (Badings et al., 2023b),
or statistical model checking (Ashok et al., 2019). The latter has already been
considered in recent work (Meggendorfer et al., 2024).

7
Conclusion and Outlook

This thesis presented several contributions towards making decision-making under
uncertainty more robust and reliable, each in their own way and highlight the many
facets involved. Nonetheless, they all share the same throughline: robustness and
reliability can be ensured by using model-based approaches that explicitly account
for uncertainty. We now summarize our contributions and their potential impact.

A Tutorial on Robust Markov Decision Processes. In Chapter 3, we presented a
short tutorial on robust MDP theory and robust dynamic programming. RMDPs
form the backbone of (robust) RL and other applications such as statistical model
checking. Hence, making RMDPs accessible to a wider audience is important for
both the formal methods and AI communities.

Finite-Memory Policies for Robust POMDPs. RPOMDPs are the extension of
RMDPs with partial observability. While POMDPs themselves are well-studied
and many scalable planning algorithms exist, that is not the case for RPOMDPs.
In Chapter 4, we contributed two algorithms based on convex optimization to
compute finite-memory policies in robust POMDPs. Given the extensive use of
RMDPs in (robust) reinforcement learning, having access to efficient planning
algorithms for RPOMDPs is the first step towards developing RL methods under
partial observability.

Robust Anytime Learning of Markov Decision Processes. In Chapter 5, we
presented a new approach to robust reinforcement learning in MDPs where the
underlying environments may change over time. Robustness against changing
environments is a key challenge in RL, and our contribution addresses this chal-
lenge by combining a sliding window approach with linearly updating intervals, a
Bayesian scheme that updates prior intervals given observations. This combination
outperforms existing approaches that only use a sliding window.
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Bayesian scheme that updates prior intervals given observations. This combination
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Extending the Scope of Reliable Offline RL. Finally, in Chapter 6, we presented
our last two contributions: An extension to the safe policy improvement with
baseline bootstrapping (SPIBB) algorithm to compute finite-memory policies from
datasets collected in partially observable environments and new techniques that
provide stronger improvement guarantees given the same amount of data in safe
policy improvement algorithms, such as SPIBB. The former brings offline RL with
reliability guarantees to partially observable environments, where policies usually
depend on a sufficient amount of memory to yield an acceptable performance.
The later contribution reduces the sample size requirements to achieve the same
reliability guarantees. This contribution is of interest in a broader context as a
natural direction to investigate whether such techniques can be applied to other RL
and statistical model checking settings to reduce sample complexities.

7.1 Directions for Future Work
To conclude, we present three general directions for future work, going beyond
the possible directions already mentioned at the end of each chapter. These direc-
tions directly build on top of several of the contributions presented in this thesis,
highlighting their potential impact.

Robust POMDP Theory and Algorithms
In Chapter 4, we presented two algorithms to compute finite-memory policies in
RPOMDPs under several structural and semantic assumptions. Most notably, we
assumed fully stickiness, i.e., static uncertainty semantics, where nature chooses (non-
deterministically) a complete transition model P ∈ P at the start. Our algorithms
are, to the best of our knowledge, the first to tackle robust planning in RPOMDPs
under these semantics. Conversely, other existing algorithms for RPOMDPs, such as
the value iteration-based approaches of Osogami (2015), all assume zero stickiness,
i.e., dynamic uncertainty semantics, and that the agent plays first. See (Bovy
et al., 2024) for a full classification of existing RPOMDP algorithms. A natural
question that arises is whether any of these algorithms can be adapted to work under
different RPOMDP semantics. Second, all existing RPOMDP methods assume (s,a)-
rectangularity. New approaches to s-rectangular uncertainty sets would further
expand the applicability of RPOMDPs.

Our algorithms, based on convex optimization, may be interpreted as methods
that search the space of (fixed size) finite-memory policies. Integration with learning
methods and alternative policy representations, such as recurrent neural networks
(RNNs), may provide a feasible alternative to finding robust policies. This direction
has proven successful for standard POMDPs already (Carr et al., 2019, 2021).

Theoretically, the partially observable stochastic game (POSG) semantics of an
RPOMDP, as defined by Bovy et al. (2024), raise several new questions. Complexity
theoretically, RPOMDPs are at least as hard as standard POMDPs, but whether an
additional jump in complexity classes occurs here too, for instance between policy
evaluation in MDPs and RMDPs (Table 3.1, Chapter 3) is still open. Additionally, as
shown by Bovy et al. (2024), a Nash equilibrium must exist in the semantical game
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for an optimal robust policy to exist in the RPOMDP. The existence of such a Nash
equilibrium has only been shown for finite horizon reward maximization and is thus
an open problem for other objectives. Finally, on the algorithmic side, it would be
interesting to see whether algorithms for POSGs can be applied to solve RPOMDPs
in practice and, conversely, whether RPOMDP algorithms can be adapted to solve
(subcases of) POSGs.

Robust RL in Partially Observable Environments
In Chapter 5, we presented an RL algorithm that is robust against changing en-
vironments, while in Chapter 6, we presented an approach to deal with partially
observable environments in the offline setting of safe policy improvement. There,
we presented changing environments and partial observability as two separate
concerns. Yet, they may be closely related.

A direction worthwhile to investigate would be to assume some form of a known
model of the environment change, as also discussed in the conclusion of Chapter 5.
Alternatively, a change in distributions may be caused by partial observability. When
the states consist of several features, i.e., may be factorized into a Cartesian product
of sets, one of these features may not be observable. Yet, the transition function, and
thus the observed samples, depends on all features. In such a setting, being robust
against changes in the environment corresponds to being robust against partial
observability. The need for memory in POMDPs is well-established, as also seen in
the experimental evaluation of Chapter 6. Hence, when the change of environments
is caused by unobserved features, learning (robust) finite-memory policies may
already be sufficient to ensure robustness and reliability against such changes.

RL in partially observable environments is, of course, also a topic of interest in
its own right. Robust RL in fully observable environments often relies on robust
planning methods being applied to an estimated model from data. Our contribu-
tions to computing finite-memory policies for POMDPs in Chapter 4 may thus be
of use to build model-based RL methods for RPOMDPs.

Abstraction and Approximation of POMDPs
Finally, we envision a direction relevant to both planning and RL in POMDPs.
POMDPs are notoriously difficult to solve, as evidenced by many computability
and complexity results (Baier et al., 2008; Madani et al., 2003; Papadimitriou
and Tsitsiklis, 1987). Yet, many real-world problems are structured in ways that
the general POMDP framework does not account for. Identifying more tractable
subclasses of POMDPs, such as MEMDPs (Raskin and Sankur, 2014) or regular
decision processes (Brafman and Giacomo, 2024), provides models that are more
tailored to specific problems.

When a problem does not fit such a POMDP subclass, it may still be used through
abstraction. In particular, given an arbitrary POMDP, we could ask whether this
POMDP is contained in a specific subclass, and if not, can we define some notion
of distance between the POMDP and the closest tractable model? Such a distance
could be used to bound approximation errors when abstracting the POMDP into
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the subclass and transferring the results back to the original model. In essence, a
rudimentary version, without any such distance or guarantees, is what we do in
practice in the experimental evaluation of Chapter 6 where we consider POMDP
environments that do not satisfy our finite-history MDP quotient assumption. As
our results show, a certain amount of memory provides a sufficient abstraction of
the underlying partially observable model.

7.2 Final Remarks
The contributions of this thesis rely on a strong combination of methods ranging
across theoretical computer science, in particular formal methods and AI. Fun-
damental questions around robustness and reliability in decision-making under
uncertainty, and AI in general, are too important to be left to a single scientific
disciple. Multidisciplinary research into all aspects of robustness, reliability, safety,
explainability, and ethics is paramount to ensure the just and ethical deployment of
AI technology into our society.
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