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1
Towards an analytical theory for plasmonic
systems

Plasmonics, the study of controlling plasmons, quasi-particles formed by col-
lective electron oscillations, holds significant promise for manipulating light at
the nanoscale. This chapter serves as an introductory overview of plasmons,
with a particular focus on their behavior in two-dimensional inhomogeneous
media. We begin by establishing the fundamental concepts of plasmons, ex-
ploring their characteristics across different regimes, including classical and
quantum descriptions. This is followed by a discussion of the influence of
dimensionality on plasmonic properties and the added complexities intro-
duced by inhomogeneities. Subsequently, we delve into various theoretical
approaches for describing plasmons, highlighting their respective advantages
and limitations. To address the challenges posed by inhomogeneous systems,
we propose the application of semiclassical techniques within the random
phase approximation. We introduce these semiclassical techniques in a general
context, providing the essential background for their application. Finally, we
lay the theoretical groundwork for the development of our general theory
by applying semiclassical techniques to the initial steps of the random phase
approximation. This foundation will be further expanded upon and utilized
in the subsequent chapters of this thesis.

The content of Section 1.3 in this chapter is based on the research and findings presented in
Ref. [1]. Copyright by the American Physical Society.
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Chapter 1 Towards an analytical theory for plasmonic systems

1.1 Introduction to plasmons

Plasmonic systems, particularly quantum plasmons in two-dimensional inho-
mogeneous media, offer a rich field of study within condensed matter physics.
At the heart of plasmonics lies the concept of a plasma, a state characterized
by a significant separation of positive and negative charges, while maintain-
ing overall charge neutrality. This condition necessitates the presence of at
least one mobile charge species. Plasmas are ubiquitous in nature, spanning
from the ionized gases in the ionosphere and the solar atmosphere to the
condensed matter systems found in metals [2]. In the latter, the free electrons,
moving amidst a background of positively charged, immobile ions, exemplify
a condensed matter plasma. These mobile electrons, under the influence of
Coulomb interactions, give rise to collective electron oscillations known as
plasma oscillations in classical terms or plasmons in quantum mechanical
terms. In this thesis, we consider a quantum description of plasmons and,
therefore, use the term plasmons to refer to these excitations.

A simplified explanation of such a collective oscillation is as follows.
In a system with free electrons, the total negative charge of the electrons is
balanced by the positive charge of the static ions. When free electrons are
pushed together to one side by an external electric field, they begin to repel
each other due to their negative charges. Simultaneously, they are attracted
to the locally uncovered positive ions on the opposite side. When the electric
field is removed, this interplay of repulsion and attraction drives the electrons
back toward equilibrium, resulting in a coherent motion of charge carriers.
The electrons overshoot the equilibrium position and oscillate back and forth,
creating a self-sustained oscillation of the electron density. Quantization of
these collective oscillations leads to the concept of plasmon quasi-particles, a
fundamental excitation in condensed matter systems.

The emergence of plasmons is rooted in the long-range Coulomb in-
teractions between conduction electrons and static ions. These interactions
lead to collective oscillations, representing a fundamental excitation of the
electron gas. Analogous to longitudinal sound waves in gases and liquids,
which are collective oscillations of atoms, plasmons are longitudinal modes,
meaning the electron displacement is parallel to the direction of propagation.
However, unlike charge-neutral sound waves, plasmons involve the motion of
charged electrons, making them strongly coupled to electromagnetic fields.
This coupling makes plasmons particularly interesting for optical devices.
These characteristics enable the field of plasmonics [3–6], where one seeks to
control plasmons for information processing, such as exciting, manipulating,
and detecting them.

One of the most compelling features of plasmons is their ability to be
excited by visible light, which allows for direct manipulation and excitation us-
ing electromagnetic fields. Experimentally, plasmons are excited and detected
using techniques such as near-field scanning optical microscopy (SNOM) [7, 8]
or excitation via periodic gratings [9]. More importantly, this interaction

2
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allows for the confinement of light to extremely small dimensions [4, 10],
significantly smaller than those achievable with conventional optics. This
sub-wavelength confinement is essential for a wide range of applications,
as it enables the miniaturization of optical devices and the enhancement of
light-matter interactions.

Plasmonics offers a competitive edge over other methods, particularly
in its ability to complement photonic systems. While photonics can signifi-
cantly enhance electronic systems due to faster speeds and lower losses, it
faces limitations in miniaturization due to the large wavelength of visible
light. Plasmonics addresses this by enabling the confinement of light to sub-
wavelength dimensions, thus allowing for smaller and more compact devices.
However, the goal is not to replace photonic systems entirely, as plasmon
propagation has its limitations. Plasmons experience damping, which limits
their propagation distance. This damping arises from the transfer of collective
electron motion into incoherent electron-hole excitations, known as Landau
damping [2, 11, 12], or into other forms of excitations such as magnons [13]
or phonons [14]. Therefore, in practical applications, plasmons are best suited
for short-distance signal processing and manipulation. For long-distance
information transfer, other lower-loss carriers like photons in optical fibers
are more appropriate. The strategy could, therefore, be to perform complex
manipulations in the compact plasmonic regime and then transfer the infor-
mation to the photonic regime for long-distance transport, acknowledging
that plasmons are relatively short-lived particles and not suited for long-term
storage of information.

The emergence of plasmonics has significantly impacted the field of
nanophotonics, driven by the unique capability of plasmons to confine and
manipulate light at the nanoscale. Plasmonic devices have found applications
in a wide range of areas. Nanoscale target substances can be detected by mon-
itoring shifts in the plasmon resonance frequency, leading to applications in
chemical and biological sensing [15]. Additionally, plasmonics plays a crucial
role in lithographic fabrication, enabling the creation of nanoscale patterns
with higher precision [6, 16]. Furthermore, plasmonic properties are essential
for the applicability of metamaterials, artificial materials with engineered
electromagnetic properties [17, 18]. These metamaterials can exhibit exotic
phenomena like negative refraction. The strong light-matter interaction offered
by plasmons is also crucial for quantum optics. By coupling quantum emitters
to plasmonic modes, one can enhance light-matter interactions, paving the way
for advancements in quantum information processing [10, 19]. Plasmonics
can play a crucial role in the further development and competitiveness of
integrated photonics and quantum optics.

In most applications, plasmons can be considered classically, since we are
usually in the regime where the plasmon momentum is much smaller than the
Fermi momentum of electrons. In this regime, the classical theory of plasma
waves is sufficient [2, 20]. While classical plasmonics has achieved significant
success in areas like sub-wavelength imaging and enhanced spectroscopy, the
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Chapter 1 Towards an analytical theory for plasmonic systems

field of quantum plasmonics is increasingly relevant [5, 21]. Recent experi-
ments have reached regimes where the quantum nature of plasmons becomes
evident, particularly when their wavelengths approach the Fermi wavelength
of the electrons [22]. In this quantum regime, electrons no longer behave
as classical particles, and a quantum mechanical treatment of the electrons
becomes necessary. One prominent effect at these smaller wavelengths is
intrinsic Landau damping, caused by single electron-hole excitations, which
can decohere the plasmon [2, 12]. The impact of the quantum regime varies
with the dimensionality of the system. For instance, in two-dimensional sys-
tems, plasmons exhibit the classical square-root dispersion relation at long
wavelengths. However, at short wavelengths, their behavior deviates from
this classical picture, and a quantum mechanical description of the electron-
electron interactions becomes increasingly prominent. These effects become
more important at higher energies or frequencies, and in smaller systems with
higher confinement. Section 1.1.1 discusses the theoretical descriptions of such
systems, focusing on the evolution from classical to quantum models.

The behavior of plasmons is governed by the intricate interplay of charged
particles via Coulomb interactions and electron kinematics, manifesting dis-
tinct characteristics depending on the dimensionality of the electron gas. In
three-dimensional (3D) systems, electrons are free to move in all three spatial
dimensions, whereas in two-dimensional (2D) systems, electrons are confined
to move in a plane, with motion restricted to two dimensions. Section 1.1.2
provides a foundational overview of plasmon physics, emphasizing the con-
trasting features observed in 3D and 2D electron systems, with a particular
focus on the latter due to their growing importance in modern plasmon-
ics. The versatility of plasmons is amplified in 2D materials, which offer
enhanced tunability compared to their 3D counterparts. The experimental
discovery of graphene paved the way for the exploration of other 2D mate-
rials [23, 24]. Advances in fabrication techniques have made these materials
widely accessible, enabling the experimental realization of the plasmonic
quantum regime [3, 5, 21]. Research groups are actively exploring the prop-
erties of plasmons in 2D materials, highlighting their potential for various
applications [7, 8].

Despite the significant progress in plasmonics, a comprehensive theoreti-
cal framework for quantum plasmons in inhomogeneous media is still lacking.
Plasmonic systems, where the manipulation of plasmons is key, are inherently
inhomogeneous due to variations in material properties, geometry, or doping
profiles. While existing theories adequately describe homogeneous systems,
they fall short in capturing the complexities introduced by inhomogeneities.
This thesis aims to address this gap by developing a semiclassical theory for
plasmons in two-dimensional inhomogeneous media, which will be discussed
in more detail in Sec. 1.1.3. This theoretical framework provides a founda-
tion for understanding and predicting the behavior of plasmons in realistic
devices, paving the way for the design and optimization of future plasmonic
technologies.

4



Chapter 1 Towards an analytical theory for plasmonic systems

field of quantum plasmonics is increasingly relevant [5, 21]. Recent experi-
ments have reached regimes where the quantum nature of plasmons becomes
evident, particularly when their wavelengths approach the Fermi wavelength
of the electrons [22]. In this quantum regime, electrons no longer behave
as classical particles, and a quantum mechanical treatment of the electrons
becomes necessary. One prominent effect at these smaller wavelengths is
intrinsic Landau damping, caused by single electron-hole excitations, which
can decohere the plasmon [2, 12]. The impact of the quantum regime varies
with the dimensionality of the system. For instance, in two-dimensional sys-
tems, plasmons exhibit the classical square-root dispersion relation at long
wavelengths. However, at short wavelengths, their behavior deviates from
this classical picture, and a quantum mechanical description of the electron-
electron interactions becomes increasingly prominent. These effects become
more important at higher energies or frequencies, and in smaller systems with
higher confinement. Section 1.1.1 discusses the theoretical descriptions of such
systems, focusing on the evolution from classical to quantum models.

The behavior of plasmons is governed by the intricate interplay of charged
particles via Coulomb interactions and electron kinematics, manifesting dis-
tinct characteristics depending on the dimensionality of the electron gas. In
three-dimensional (3D) systems, electrons are free to move in all three spatial
dimensions, whereas in two-dimensional (2D) systems, electrons are confined
to move in a plane, with motion restricted to two dimensions. Section 1.1.2
provides a foundational overview of plasmon physics, emphasizing the con-
trasting features observed in 3D and 2D electron systems, with a particular
focus on the latter due to their growing importance in modern plasmon-
ics. The versatility of plasmons is amplified in 2D materials, which offer
enhanced tunability compared to their 3D counterparts. The experimental
discovery of graphene paved the way for the exploration of other 2D mate-
rials [23, 24]. Advances in fabrication techniques have made these materials
widely accessible, enabling the experimental realization of the plasmonic
quantum regime [3, 5, 21]. Research groups are actively exploring the prop-
erties of plasmons in 2D materials, highlighting their potential for various
applications [7, 8].

Despite the significant progress in plasmonics, a comprehensive theoreti-
cal framework for quantum plasmons in inhomogeneous media is still lacking.
Plasmonic systems, where the manipulation of plasmons is key, are inherently
inhomogeneous due to variations in material properties, geometry, or doping
profiles. While existing theories adequately describe homogeneous systems,
they fall short in capturing the complexities introduced by inhomogeneities.
This thesis aims to address this gap by developing a semiclassical theory for
plasmons in two-dimensional inhomogeneous media, which will be discussed
in more detail in Sec. 1.1.3. This theoretical framework provides a founda-
tion for understanding and predicting the behavior of plasmons in realistic
devices, paving the way for the design and optimization of future plasmonic
technologies.

4

1.1. Introduction to plasmons

To facilitate this comprehensive foundation, the remainder of this intro-
ductory section explores the core characteristics of plasmonics, focusing on
the distinctions between classical and quantum behavior, the impact of di-
mensionality, and the complexities of inhomogeneous systems. This overview
aims to establish a conceptual framework without overwhelming the reader
with detailed formulas. Subsequently, Sec. 1.2 delves into the theoretical un-
derpinnings, tracing the evolution from classical to quantum descriptions and
presenting the essential formulas for both regimes. Finally, Sec. 1.3 introduces
the semiclassical analysis, detailing the relevant formulas that will be applied
to the study of plasmonic systems in this work.

1.1.1 From a classical to quantum description

As discussed in the previous section, recent experimental progress has en-
abled access to the quantum regime for plasmons [3, 21, 22], opening new
avenues for plasmonic waveguides and necessitating a refined theoretical
understanding for the practical application of plasmonic systems. In this
regime, a quantum description of the electron-electron interactions plays a
crucial role in modifying the plasmon dispersion, and a description solely
based on classical theories is no longer sufficient. The fundamental distinction
between classical and quantum plasmonics can be characterized by the relative
magnitudes of the plasmon momentum |q| and the Fermi momentum pF:

• |q| ≪ pF: Classical limit, classical treatment of electron-electron interac-
tions is sufficient.

• |q| ≈ pF: Quantum limit, quantum mechanical treatment of electron-
electron interactions is required.

Consequently, the theoretical description of plasmons has evolved from classi-
cal electrodynamics to sophisticated quantum mechanical frameworks, reflect-
ing the increasing complexity of experimental observations and technological
advancements.

In the classical limit, plasmons can effectively be described using macro-
scopic models that treat the electron gas as a continuous fluid. These models,
based on classical electrodynamics and fluid dynamics, accurately predict the
behavior of plasmons at long wavelengths, where the collective motion of
electrons dominates. However, as plasmon wavelengths approach the Fermi
wavelength, the quantum nature of electrons becomes significant, and a quan-
tum mechanical treatment of electron-electron interactions becomes necessary.
In this quantum regime, the classical description of electron behavior is no
longer sufficient.

At the foundation, classical theories for plasma oscillations rest on
Maxwell’s equations, which describe the propagation of electromagnetic fields
in materials [2, 25]. In 3D bulk materials, the uniform electron density leads
to well-defined longitudinal bulk plasma oscillations, with a finite energy,
commonly known as the plasma frequency. Moreover, at an interface between
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a conductor and a dielectric, Maxwell’s equations predict the existence of a
different plasma wave, surface plasma oscillations or surface plasmons. In
contrast, these field equations are not suited for describing plasma oscillations
in 2D systems, as one needs to incorporate the behavior of the electrons in
such a layer.

Going beyond Maxwell’s equations, and treating the electrons as kinetic
particles, the oscillatory motion of charged particles in a plasma is described
classically by the Vlasov equations [20]. This becomes necessary because
Maxwell’s equations alone do not account for the diffusion of electrons [2].
The Vlasov equations, which combine Maxwell’s equations with the Boltz-
mann equation, provide a kinetic description of electron dynamics. This
classical theory accurately describes plasmons in the regime where the Fermi
wavelength of electrons is much smaller than the plasmon wavelength [12].
Hydrodynamic theories simplify the Vlasov equation by taking velocity mo-
ments, resulting in equations for macroscopic quantities like density, velocity,
and pressure [3, 20, 21]. These theories offer a simplified description of
long-wavelength plasmons. For inhomogeneous systems within this classical
regime, numerical particle-in-a-box simulations are often employed [3, 21].

Vlasov’s initial attempt to derive a dispersion relation for plasma waves
was refined by Landau [26, 27], who recognized the importance of treating the
problem as an initial value problem, leading to the discovery of Landau damp-
ing. This phenomenon, which is essentially classical, highlights a limitation of
the Vlasov approach.

At shorter wavelengths, when the plasmon wavelength is on the order of
the Fermi wavelength of electrons, we enter the regime of quantum plasma
oscillations. The associated quasi-particle, termed plasmon, was first described
by Pines and Bohm [2, 28, 29]. The plasmon dispersion is determined by the
roots of the dielectric function, which describes the electron response to
external fields. Within the random phase approximation (RPA), this dielectric
function is described by the Lindhard dielectric function [2, 28]. The RPA
predicts distinct plasmon dispersions, applicable even in the short-wavelength
limit, and offers a microscopic understanding of Landau damping through
electron-hole excitations.

From an analytical perspective, the Lindhard dielectric function can be
derived analytically in homogeneous systems with parabolic electronic Hamil-
tonians [2, 28]. However, these solutions rely heavily on Fourier transforms,
which are not applicable to inhomogeneous systems. Notably, for graphene,
which is described by the Dirac Hamiltonian, a distinct theoretical framework
has been developed [30, 31]. Furthermore, for 2D plasmons, an analytical
derivation of the full plasmon dispersion is attainable [28, 32, 33], valid for all
wavelengths. To accurately capture nonlocal effects arising from the Coulomb
tail, it is crucial to account for the effective finite height of materials [34–
36]. This introduces additional complexities that significantly impact electron
screening and plasmon properties, as demonstrated by Stern and Howard [37].
While numerical methods, such as real-space RPA and tight-binding propaga-
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tion, have been successfully employed to study plasmons in inhomogeneous
systems, including fractals and 2D waveguides [38–41], a comprehensive
analytical theory for inhomogeneous systems remains elusive.

In summary, the transition from classical to quantum descriptions of
plasmons is essential to accurately capture their behavior, particularly in 2D
inhomogeneous systems where higher frequencies and, consequently, shorter
wavelengths are excited. These quantum effects are also significantly influ-
enced by smaller spatial variations. The analytical description of quantum
plasmons across the full spectrum in inhomogeneous systems remains a chal-
lenge. Typical theoretical techniques applicable to translationally invariant
systems, such as Fourier analysis, are not applicable, necessitating the develop-
ment of new theoretical frameworks. In Sec. 1.2, we provide a more in-depth
review of the analytical theories commonly used to describe plasmons, and
elucidate the need for a novel theoretical framework.

1.1.2 Plasmons in different dimensions

The dimensionality of an electron system profoundly influences its plasmonic
properties, leading to distinct behaviors. Understanding these differences
between three-dimensional and two-dimensional systems is fundamental to
advancing plasmonic technologies. This distinction arises primarily from the
confinement of electrons and the resulting modifications to Coulomb interac-
tions, which dictate the characteristics of plasmon excitations [28]. Within 3D
systems, we can further distinguish between bulk plasmons, where electrons
move freely throughout the material, and surface plasmons, which are con-
fined to the surface of the conductor, while still subject to screening from the
bulk electrons. This crucial difference highlights that surface plasmons, de-
spite their surface localization, are fundamentally different from 2D plasmons,
where electrons are strictly confined to a plane, devoid of bulk electrons. In the
following discussion, we explore the unique properties of plasmons in both
3D and 2D environments, examining how confinement and dimensionality
shape their behavior.

Plasmons exhibit diverse characteristics depending on the dimensionality
of the system, some of which are apparent in daily life. To understand
these plasmon characteristics, it is instructive to consider the dispersion
relation, which relates the energy of the excited plasmon to the wavelength
or momentum. For a three-dimensional electron gas, the most fundamental
plasmon mode is the bulk plasmon, a collective oscillation of the electron
density throughout the material in all three directions, possessing a minimal
finite frequency. This finite frequency, known as the plasma frequency ωp,
is the reason why metals are reflective in the visible range [2, 25]. Photons
with energies below h̄ωp are strongly reflected because they lack the energy
to excite bulk plasmons.

Beyond bulk plasmons, surface plasmons (SPs) are collective oscillations
of the electron density confined to the interface between a bulk metal and a
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dielectric material. These surface-bound modes, known as surface plasmon
polaritons (SPPs), propagate along the interface and decay exponentially into
both media. The dispersion relation for SPPs at a planar metal-dielectric
interface, within a classical model for the metal’s dielectric function, exhibits a
characteristic long-wavelength limit. In this limit, the energy approaches zero
linearly [2]. This implies that these excitations can be excited at visible energies
and below, making them crucial for nanophotonics. Due to their ability to
confine light to nanoscale dimensions, they enable the development of highly
compact optical devices [42, 43]. An important class of surface plasmons
are nonpropagating localized surface plasmons (LSPs), confined to metallic
nanoparticles or nanostructures. LSPs arise from collective oscillations of
electrons within a confined nanostructure with defined boundaries, differing
from SPPs in that they do not propagate but are quantized standing waves,
due to confinement in all directions. The resonance frequency of LSPs is highly
sensitive to the geometry of the nanoparticle and the surrounding dielectric
environment, making them ideal for sensing applications. The vibrant colors
observed in stained glass windows can be attributed, in part, to LSPs, where
metallic nanoparticles embedded in the glass selectively interact with light
depending on their size and shape, thus contributing to the observed color.

Reducing the dimensionality of the electron system itself leads to two-
dimensional plasmons, which occur in monolayer systems like graphene,
TMDCs, and other 2D electron gases (2DEGs). In these systems, the plasmon
dispersion relation takes a characteristic square-root form h̄ωpl(q) ∝

√
|q|,

where q is the plasmon momentum. This distinct dispersion relation, different
from both three-dimensional bulk plasmons and surface plasmons, arises from
the reduced dimensionality and the altered Coulomb interaction between
electrons. Two-dimensional plasmons are particularly interesting due to
the possibility of long-wavelength excitations, similar to SPPs, and their
enhanced tunability, facilitated by their strong interaction with the substrate
environment [39, 40]. This tunability stems from the strong influence of the
dielectric environment surrounding the two-dimensional electron gas on the
2D plasmon frequency, offering a means to control the plasmon properties
without altering the active material itself. Furthermore, the low energy of the
plasmon excitation makes them accessible with a wider range of experimental
techniques.

This subsection has explored the diverse characteristics of plasmons
across different dimensions, highlighting the distinctions between 3D bulk
and surface plasmons, and 2D systems. Among these, 2D plasmons stand out
due to their enhanced tunability and potential for sub-wavelength confinement,
making them particularly relevant for advancing integrated photonics. This
sub-wavelength confinement, achieved because plasmons have much smaller
wavelengths than photons at the same frequency, allows for the miniaturization
of optical circuits beyond the diffraction limit. The ability to control plasmon
properties through the dielectric environment, without altering the active
material, coupled with the low energy excitation, offers significant advantages
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for practical applications. Therefore, in this thesis, we focus specifically on the
description of 2D plasmons and their propagating behavior.

1.1.3 Bridging the gap: quantum plasmons in complex
inhomogeneous environments

Plasmons in homogeneous systems, regardless of dimensionality or quan-
tum regime, are analytically straightforward to understand from a theoretical
perspective, making them a common starting point. However, experimental
realizations are inherently inhomogeneous. Imagine a water wave propagating
across a perfectly uniform ocean; while the wave’s behavior is predictable, it
becomes truly interesting when it encounters a coastline or an obstacle. Simi-
larly, plasmons in homogeneous systems, though valuable for fundamental
study, require inhomogeneities to be controlled, excited, and detected. Most
notably, experimental systems always have finite sizes, and variations in mate-
rial properties, geometry, or doping profiles introduce spatial dependencies.
These spatial dependencies significantly alter plasmon behavior. Consequently,
a theoretical framework capable of describing plasmons in inhomogeneous
environments is essential for both fundamental understanding and practical
applications.

Obtaining analytical solutions for inhomogeneous systems is significantly
more challenging than for homogeneous ones due to the broken transla-
tional symmetry. Techniques that are analytically applicable when there is
translational invariance, such as Fourier transforms, become ineffective. For
instance, within the random phase approximation, analytical solutions for
homogeneous systems are often derived by transforming to momentum space.
However, in inhomogeneous systems, the spatial dependence of system pa-
rameters precludes such transformations. Similarly, in classical descriptions,
spatial variations invalidate the analytical plane-wave formalism. Conse-
quently, analytical treatments of inhomogeneous plasmonic systems require
more sophisticated approaches that can handle spatial variations without
relying on translational symmetry or a single wavevector description.

The current state-of-the-art approach for studying inhomogeneous plas-
monic systems is numerical simulation. While powerful, these methods are
inherently limited by computational constraints, restricting the size of sys-
tems that can be investigated. Real-space diagonalization within the random
phase approximation is a common numerical technique [38–40], but it is com-
putationally intensive, requiring the diagonalization of large matrices and
a substantial basis set. Consequently, numerical RPA approaches are often
limited to small system sizes. While tight-binding methods can handle consid-
erably larger systems [41, 44–46], they introduce additional approximations
that are not always controllable. From a theoretical perspective, classical
approaches, such as particle-in-a-box models, can describe localized surface
plasmons as quantized modes [3, 21], but these models do not capture propa-
gating quantum plasmons. Furthermore, inhomogeneous 2D systems have
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been studied analytically using the Lippmann-Schwinger equation to describe
plasmon scattering [47], but a comprehensive analytical theory remains elu-
sive. Therefore, to gain a better understanding of the underlying physics, it is
essential to develop (semi-)analytical approaches that complement numerical
methods.

In pursuit of developing (semi-)analytical approaches that complement
numerical methods, the semiclassical approximation emerges as a powerful
tool for describing inhomogeneous systems. Semiclassical methods are appli-
cable when the wavelength of the underlying particle (in the case of plasmons,
the electron wavelength) is much smaller than the characteristic length scale
of the inhomogeneity [48, 49]. These methods have been successfully applied
to 3D quantum plasmons in inhomogeneous systems [50]. In this thesis,
this method is extended to plasmons in two-dimensional inhomogeneous
media, addressing its applicability and limitations, and comparing results to
numerical approaches. The semiclassical approximation, which constructs
asymptotic solutions of the form exp(iS(x)/h̄), where S(x) is the classical
action, offers an analytical approach to tackling inhomogeneous problems.
This method has a rich history, with early applications of the Wentzel-Kramers-
Brillouin (WKB) approximation to inhomogeneous electron systems [51, 52]
to study the bound states near the edge of a metal [53] and in atoms [54].
Recent advancements [50] have led to a more rigorous formulation using
pseudo-differential operators and the Maslov canonical operator [48, 55]. We
demonstrate how, for 2D systems, within the semiclassical approximation, the
out-of-plane degrees of freedom can be decoupled from the in-plane degrees
of freedom using operator separation of variables [56], potentially leading to
an alternative derivation of the background screening model.

It is important to clarify that the term “semiclassical approximation” does
not imply a hybrid classical-quantum description built upon classical modes.
Rather, it refers to a method for approximating quantum mechanical solutions,
in our case derived from the random phase approximation, using techniques
from classical mechanics. Specifically, it exploits a small dimensionless pa-
rameter that relates the length scale of spatial variations (ℓ) to a characteristic
wavelength, such as the electron wavelength (λel). When ℓ ≫ λpl ≈ λel (the
second approximation ensures the quantum limit), the system locally resem-
bles a homogeneous one, allowing us to approximate the quantum plasmon
behavior using classical concepts like trajectories derived from Hamilton’s
equations and the classical action governed by the Hamilton-Jacobi equation.
Crucially, this approach maintains the full quantum mechanical nature of the
plasmon, including Landau damping and the quantum mechanical treatment
of electron-electron interactions as reflected in the dispersion relation. In the
limit where the dimensionless parameter approaches zero (i.e., ℓ becomes
infinitely larger than λel), the full quantum homogeneous RPA solution is
recovered. Therefore, semiclassics provides a powerful way to describe quan-
tum plasmons in inhomogeneous systems using techniques from classical
mechanics, without sacrificing the essential quantum features.
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Building upon the semiclassical theory for inhomogeneous plasmon
systems in three dimensions [50], we extend this theory to two dimensions by
utilizing the method of operator separation of variables [56] to adiabatically
separate the in-plane from out-of-plane degrees of freedom. Methodologically,
we utilize the contemporary formulation of the semiclassical approximation,
leveraging the Maslov canonical operator [48] to tackle the complexities of
true pseudo-differential operators arising from the dielectric function. This
approach provides a valuable opportunity to apply this theory to a concrete
physical problem. Physically, we describe plasmons in dielectric environments
with arbitrary z-dependence. We also describe bound plasmon states in
waveguides, band structures in plasmonic crystals (periodic modulations),
and plasmon scattering, constructing the total and differential scattering
cross-section. Therefore, this thesis aims to bridge the gap by developing
a semiclassical analytical framework for describing 2D quantum plasmons
in inhomogeneous environments, providing a deeper understanding and
facilitating the design of advanced plasmonic devices.

1.2 Theoretical description of plasmons

This thesis aims to develop a comprehensive, almost fully analytical theory
for plasmons in two-dimensional inhomogeneous systems. To achieve this, we
must first understand the foundational theoretical descriptions of plasmons,
recognizing both their strengths and limitations. Plasmons, as collective elec-
tron excitations, are intrinsically linked to electromagnetism and the electronic
behavior of materials. This section provides a concise historical overview of
the theoretical approaches used to describe plasmons, starting from classical
descriptions and progressing to quantum theories, ultimately focusing on the
challenges posed by inhomogeneous quantum systems. Examining the short-
comings of existing theories, particularly their challenges in handling shorter
plasmon wavelengths and inhomogeneities, motivates the development of a
robust semiclassical framework capable of describing 2D quantum plasmons
in realistic devices.

This section systematically explores the theoretical landscape, starting
with the classical regime. We begin with Maxwell’s equations, which provide
a fundamental understanding of plasma oscillations in bulk and at interfaces,
serving as the classical counterpart to plasmon descriptions. We then present
a summary of the Vlasov equations and hydrodynamic models, extending
the classical picture to describe the unique dispersion of 2D plasmons in the
long-wavelength limit. A short discussion of the particle-in-a-box approach
highlights its relevance to localized plasmons in inhomogeneous systems such
as nanoparticles. Finally, we delve into the quantum mechanical random
phase approximation, the cornerstone of modern plasmon theory, and demon-
strate how the analytical calculation of the plasmon dispersion relies on the
Fourier transform. The analytical description of plasmons is significantly chal-
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lenged by inhomogeneous systems, which greatly complicates the analytical
application of Fourier techniques. This progression from classical to quantum
descriptions sets the stage for the development of a semiclassical theory that
can address the complexities of 2D inhomogeneous plasmonic environments.

1.2.1 Maxwell’s equations and classical plasma oscillations

Maxwell’s equations, the foundation of classical electromagnetism, describe
the interplay between electric and magnetic fields and their interaction with
matter. When the conduction electrons are viewed as a plasma, Maxwell’s
equations yield solutions describing plasma oscillations, which are self-
sustained collective excitations of electrons coupled to electromagnetic waves.
Solving Maxwell’s equations for 3D systems in simple, isotropic media re-
veals the existence of two distinct modes: transverse and longitudinal. In
the specific case of an interface, applying appropriate boundary conditions
reveals the existence of an additional wave type, the surface plasma wave. In
this section, we briefly discuss these 3D findings and then examine why this
approach is insufficient for 2D systems.

Maxwell’s equations in differential form in Gaussian units are given by

∇ · D = 4πρ (1.1)

∇ · B = 0 (1.2)

∇× E = −1
c

∂B
∂t

(1.3)

∇× H =
4π

c
J +

1
c

∂D
∂t

(1.4)

where D is the electric displacement field, B is the magnetic field, E is the
electric field, H is the magnetic field intensity, ρ is the external charge density,
c is the speed of light, and J is the external current density. In a material, the
displacement field D and magnetic field intensity H are related to the electric
and magnetic fields through the constitutive relations:

D = εbE + P (1.5)

H = B − 4πM (1.6)

where εb is the dielectric constant of the material, P is the polarization and
M is the magnetization of the material. For nonmagnetic materials, the
magnetization M is zero. In the context of self-sustained plasma oscillations,
we assume that the external current density and external charge density are
both zero.

Following the argumentation in [2], for a 3D system, both transverse
and longitudinal solutions emerge. The transverse solutions correspond to
propagating electromagnetic waves within the bulk of the material. The
longitudinal solutions, on the other hand, represent self-sustained collective
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oscillations of the electron density, termed bulk plasma oscillations. Both
modes exhibit a characteristic frequency in the long-wavelength limit, the
plasma frequency, given by

ωp =

√
4π

n(0)e2

meff
, (1.7)

where n(0) is the equilibrium electron density, e is the elementary charge, and
meff is the effective electron mass. Remarkably, this classical picture accurately
predicts the plasma frequency. For longitudinal (plasma) waves, the plasma
frequency is the frequency of (electron) oscillations in the long-wavelength
limit, whereas for transverse waves (photons), this is the limiting frequency
below which photons cannot propagate in metals.

While Maxwell’s equations alone are sufficient to describe the fundamen-
tal bulk plasma oscillations in three-dimensional systems, their application
to two-dimensional plasmas is more subtle. In 3D, the longitudinal plasma
oscillations arise naturally from Gauss’s law, which relates the electron den-
sity fluctuations to an induced restoring electric field. This results in the
well-known plasma frequency, which remains non zero even in the long-
wavelength limit. The reason for this lies in the Coulomb interaction in three
dimensions, where a charge perturbation generates a restoring electric field
that scales as 1/r. Consequently, the interaction between charge fluctuations
and the self-consistent electric field directly leads to bulk plasma oscillations
without requiring explicit consideration of the electron equation of motion.
This derivation relies solely on the electromagnetic response of the material
rather than the microscopic motion of individual charges, making it a broadly
applicable result within classical electrodynamics.

In contrast, when considering a two-dimensional electron gas embedded
in three-dimensional space, the Fourier component of the Coulomb potential
scales as 1/|q| rather than 1/|q|2, leading to fundamentally different screen-
ing behavior. As a result, the field response to charge perturbations in 2D
differs significantly from the 3D case, and Maxwell’s equations alone do not
determine the full dispersion relation. Additionally, a truly two-dimensional
picture presents a challenge within the framework of classical Maxwell’s
equations due to the instantaneous quantization of electron movement in the
out-of-plane direction. This concept, while a useful idealization, inherently
requires the explicit inclusion of the electrons or charge particles themselves
within the equations. Without this inclusion, the infinitesimally thin layer
becomes a passive boundary, unable to interact with the electromagnetic fields,
hence rendering the 2D description incomplete. Thus, modified approaches
are necessary to accurately describe 2D plasma oscillations.

While truly two-dimensional plasmons require approaches beyond
Maxwell’s equations, solutions to these equations do describe a related phe-
nomenon at 2D interfaces: surface plasma waves. These surface-bound modes,
known as surface plasmons, are collective oscillations of the electron density
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confined to the interface between a conductor and a dielectric. They propagate
along the interface, decay exponentially in the out-of-plane direction, and
are screened on one side by the bulk electrons. The dispersion relation for
surface plasma waves at a planar metal-dielectric interface, within a classical
model for the metal’s dielectric function, has two characteristic limits in the
long-wavelength and short-wavelength regimes [2], namely

ωSP =

{
c|q|/√εb |q| ≪ ωp/c
ωp/

√
1 + εb |q| ≫ ωp/c

, (1.8)

where ωSP is the SP frequency, q is the SP momentum, and c is the speed of
light. The dielectric constant, εb, is the background static dielectric constant of
the dielectric, which equals εb = 1 for a vacuum. In the long-wavelength limit,
the energy approaches zero, which implies that these excitations can be excited
at visible frequencies and below, and are therefore crucial for nanophotonics.
Due to their ability to confine light to nanoscale dimensions, they enable the
development of highly compact optical devices [4, 6, 10].

The purely classical picture of plasma oscillations derived from Maxwell’s
equations for electromagnetic waves, and specifically the linear dispersion of
surface plasmons in the long-wavelength limit, contrasts with the expected
square-root dispersion for truly two-dimensional plasmons. A key omission
in this approach is the treatment of electrons as charged particles. In re-
ality, the inhomogeneous induced electron density not only contributes to
the current but also enables electron diffusion. This particle-like behavior
is absent in the purely wave-like description provided by Maxwell’s equa-
tions. Consequently, the dispersion relation for truly 2D plasmons necessitates
the explicit incorporation of electron density dynamics, achieved through
methods like linearized hydrodynamic equations or the dielectric function
approach within the random phase approximation. This results in the char-
acteristic square-root dispersion, ω ∝

√
|q|, which differs significantly from

the frequency-independent behavior of bulk plasma oscillations in 3D and
the light-like dispersion of surface plasmons in the long-wavelength limit.
Therefore, to accurately capture the physics of truly 2D plasma oscillations,
Maxwell’s equations must be supplemented with models that explicitly ac-
count for electron density fluctuations.

1.2.2 Vlasov equation and hydrodynamic model

Building upon the foundation of Maxwell’s equations, a more refined classical
description of plasmon dynamics can be achieved by treating electrons as
kinetic particles, using the Vlasov equations [20]. These equations, which
combine Maxwell’s equations with the Boltzmann equation in the collisionless
limit, provide a kinetic description of electron dynamics, incorporating the
long-range Coulomb interaction. However, this theory does not include
electron-hole pair excitations. This classical theory provides an accurate
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description of plasmons in the regime where the Fermi wavelength of electrons
is much smaller than the plasma wavelength, a condition that ensures the
collective behavior of the electrons dominates over quantum effects.

To simplify the complex kinetic description of the Vlasov equation, hydro-
dynamic theories can be employed [3, 21]. These theories simplify the Vlasov
equation by taking velocity moments of the distribution function f (x, v, t),
resulting in equations for macroscopic quantities such as electron density
n(x, t), average electron velocity u(x, t), and pressure. This approach provides
a macroscopic description of long-wavelength plasmons, effectively represent-
ing the classical limit. Specifically, taking the zeroth moment of the Vlasov
equation yields the continuity equation for the electron density, while the first
moment results in the Euler equation for the average velocity. Applying plane
wave solutions and linearizing these equations, followed by using Poisson’s
equation in 2D, allows us to derive the dispersion relation.

To derive the dispersion relation for 2D plasmons within the hydrody-
namic model, we begin with the Vlasov equation, which describes the time
evolution of the distribution function f (x, v, t) [57], namely

∂ f
∂t

+ v · ∇ f − e
meff

E · ∇v f = 0, (1.9)

where E is the electric field, e is the electron charge, meff is the effective electron
mass, and v is the velocity of individual electrons. We define the electron
density n(x, t) as the zeroth moment and the macroscopic average electron
velocity u(x, t) as the first moment of the distribution function, given by

n(x, t) =
∫

f (x, v, t)dv (1.10)

u(x, t) =
1
n

∫
v f (x, v, t)dv, (1.11)

where the integrals are taken over the full 2D velocity space.
Integrating the Vlasov equation over the single electron velocity, effectively

averaging over the velocity distribution, yields the continuity equation for the
electron density n(x, t), namely

∂n
∂t

+∇ · (nu) = 0. (1.12)

This equation ensures the conservation of charge within the electron fluid,
relating the time variation of the electron density to the divergence of the
particle flux density nu. This reflects the fundamental principle that electrons
are neither created nor destroyed within the hydrodynamic approximation.
Notably, the term ∇ · (nu) arises directly from the v · ∇ f term in the Vlasov
equation, representing a diffusion term omitted in the previous Maxwell’s
equations approach.
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Taking the first moment of the Vlasov equation, which is mathematically
represented as the integral

∫
vd2v applied to the Vlasov equation, leads to the

momentum balance equation or the Euler equation, namely

∂u
∂t

+ (u · ∇)u = − e
meff

E − 1
meffn

∇P. (1.13)

These hydrodynamic equations, coupled with Poisson’s equation, form a
closed set that can be solved to describe the dynamics of the electron fluid
and, in particular, the collective oscillations associated with plasmons [28].
Linearizing these equations around the equilibrium state and assuming a
time-harmonic dependence of the form e−iωt, we can derive the plasmon
dispersion relation. Expressing the frequency as energy, via E = h̄ω, allows
us to represent the result as

E =

√
|q|e2gs p2

F
2meffεb

. (1.14)

It is important to note that this representation, despite using this plasmon
energy, remains purely classical, as the underlying Vlasov equation does not
incorporate Planck’s constant. This energy representation facilitates a more
direct comparison with quantum mechanical results. Furthermore, we defined
the Fermi momentum pF, which is related to the electron density n(0) via the
Thomas-Fermi approximation:

pF = h̄
(

4π

gs
n(0)

)1/2
, (1.15)

where gs is the spin degeneracy. This approximation is popular because of
its simplicity but it neglects correlation and exchange effects of the electrons.
For a more detailed discussion of the Thomas-Fermi approximation and its
validity, see Ref. [21, 28, 58, 59]. Equation (1.14) shows that the hydrodynamic
model provides a dispersion relation for 2D plasmons, which is not attainable
using Maxwell’s equations alone. The characteristic square-root dependence
on the momentum |q| is a signature of 2D plasmons, reflecting the unique
Coulomb interaction in two dimensions. In principle, one could add higher
order corrections by adding an additional force through the pressure gradient
∇P. Here, P is the pressure, which can be approximated, for a noninteracting
electron gas at zero temperature, by P = nEF/2 [28]. For a 2D electron gas,
we then have P = meffnv2

F/2, where vF is the Fermi velocity, with the Fermi
energy EF = meffv2

F/2. However, this is a relatively limited approximation,
as it relies on the assumption of local equilibrium of the Fermi surface, an
assumption that breaks down for plasmons at higher momenta [28].

While the hydrodynamic model provides a valuable starting point, partic-
ularly for capturing the long-wavelength behavior, it has limitations. It does
not fully account for the microscopic details of electron-electron interactions,
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which become increasingly important at shorter wavelengths and can signif-
icantly influence plasmon properties. Additionally, Vlasov’s initial attempt
to derive a dispersion relation for plasma waves was shown to be incomplete
by Landau [26, 27], who recognized the importance of treating the problem
as an initial value problem, leading to the discovery of Landau damping, a
phenomenon not captured by the hydrodynamic model. Therefore, while the
hydrodynamic model correctly predicts the form of the long-wavelength dis-
persion, more sophisticated approaches are needed for a complete description
of 2D plasmons for all momenta, as well as incorporating Landau damping.

Particle-in-a-box models

The hydrodynamic model, while only applicable for plasmons in the long-
wavelength limit, can be adapted to describe confined plasmonic excitations
in inhomogeneous nanostructures. In such systems, the details of the electron
confinement and the specific geometry play a crucial role in determining
the plasmon properties. For these scenarios, an approach analogous to the
quantum mechanical particle-in-a-box model can offer valuable insights [3, 21].
This approach is particularly useful for specific inhomogeneous systems, such
as nanoparticles, where the electron confinement leads to quantization of
plasmonic modes.

In highly confined metallic nanostructures, such as nanoparticles, the
confinement of conduction electrons leads to quantization of plasmonic modes,
analogous to the quantum mechanical particle-in-a-box model. This simplified
picture provides an intuitive understanding of how the geometry and size of
a nanoparticle influence its plasmon resonances. The electrons are treated as
confined within the nanoparticle’s boundaries, and their collective oscillations
are quantized due to these boundary conditions. The resonance energies of
the confined plasmons are then determined by the size and shape of the box,
as well as the effective mass of the electrons and the dielectric environment.
This approach effectively captures the essential physics of localized surface
plasmon resonances (LSPRs) in nanoparticles, where the electron oscillations
are nonpropagating and confined to the nanoparticle’s volume.

The particle-in-a-box model offers a straightforward way to estimate the
resonance frequencies of LSPRs. For a spherical nanoparticle of radius R,
for instance, one can approximate the plasmon modes as standing waves
within the sphere. The resonance wavelengths λm can then be related to the
particle size through a relation of the form R ≈ nλm/2, where m is an integer
representing the mode number. This leads to a discrete set of resonance
frequencies ωm that depend on the geometry and material parameters. While
this model provides a qualitative understanding of the LSPRs, it makes several
simplifying assumptions. It often neglects the detailed form of the Coulomb
interaction between electrons, the effects of surface polarization, and the
influence of the surrounding dielectric medium beyond the immediate vicinity
of the nanoparticle [3, 21]. Furthermore, the boundary conditions used in the
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simple particle-in-a-box model are often idealized and do not perfectly reflect
the complex surface interactions present in real nanostructures.

Despite its utility in understanding LSPRs in nanoparticles, the particle-
in-a-box model falls short in describing the behavior of plasmons in smaller
systems and at higher frequencies, due to the shortcomings of the hydro-
dynamic model. Furthermore, it fails to describe propagating plasmons,
such as those found in thin films, nanowires, or other extended structures.
The model’s fundamental assumption of strong confinement within a closed
boundary does not apply to systems where plasmons can propagate freely.
The particle-in-a-box model is therefore not suitable for analyzing the type
of 2D (quantum) plasmons that are the focus of this thesis, namely plasmons
that propagate in extended inhomogeneous systems for analyzing plasmon
scattering and plasmon waveguides. For such systems, a more comprehensive
theoretical framework that explicitly accounts for the long-range Coulomb
interaction and the specific geometry of the structure is required.

1.2.3 Quantum plasmons from the random phase approximation

The hydrodynamic model, while providing a valuable starting point for un-
derstanding plasmons, has limitations. It neglects the changes in the shape
of the Fermi surface during plasmon oscillations, leading to inaccuracies in
the plasmon dispersion, particularly at shorter wavelengths. This discrepancy
arises from the model’s assumption of local equilibrium, which fails to hold for
plasmon waves due to the high-frequency nature of these oscillations [2, 28].
Additionally, Vlasov’s original attempt overlooked the necessity of treating
this as an initial value problem, as proposed by Landau, leading to a damping
term [26, 27]. In the quantum regime, where the plasmon wavelength is com-
parable to the Fermi wavelength, a more sophisticated approach is necessary.
The quantum description of plasmons was further developed by introduc-
ing the concept of the longitudinal dielectric function, which describes the
response of the electron to variations in the electron density. This approach
led to the development of the random phase approximation, a theoretical
framework that allows for the calculation of the plasmon dispersion and other
properties in the quantum regime, otherwise known as the time-dependent
Hartree approximation [2, 28].

The RPA explicitly accounts for the quantum mechanical nature of
electron-electron interactions, providing a more accurate description of the
plasmon dispersion across all momenta. It correctly captures the changes in
the Fermi surface during plasmon oscillations and can also describe Landau
damping [2, 28], which arises from the decay of plasmons into single-particle
excitations. Therefore, while the hydrodynamic model and the Vlasov equa-
tion offer valuable insights into the classical behavior of plasmons, the RPA
is essential for a complete and accurate description of plasmon behavior in
the quantum regime, especially at shorter wavelengths. To fully understand
quantum plasmons, we employ the RPA to derive the Lindhard dielectric
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function and the 2D plasmon dispersion in homogeneous systems, and briefly
discuss the electron-hole continuum.

The Lindhard dielectric function describes the response of an electron gas
to an external perturbation and determines how charges screen external fields.
This can also describe the screening of external potentials due to the collective
response of the electron system, i.e., plasmons. In this section, we derive
this function explicitly by starting from the quantum mechanical evolution of
the system based on first principles. Assuming a parabolic energy spectrum
for the conduction electrons, we use the equations of motion approach [2] to
derive the Lindhard dielectric function.

This approach consists of three steps. First, we consider the electrons,
which are confined to two spatial dimensions x = (x, y). We use the Liouville-
von Neumann equation to establish a relation between the one-particle density
matrix ρ̂ and an external potential Vext(x, t). Second, we compute the induced
electron density n(x, t) using this density matrix. Third, the induced electron
density induces a potential Vind(x, t) through the Poisson equation. Finally, we
apply the condition that the total induced potential Vtot(x, t) should equal the
induced potential Vind(x, t) and the external potential Vext(x, t). Afterwards,
we argue that plasmons, self-sustained oscillations, exist when the external
potential is equal to zero. This system of equations is fully equivalent to the
diagrammatic approach to the RPA, that is, the empty loop approximation for
the polarization operator [2, 28, 60].

To derive the plasmon dispersion within the RPA, we first investigate
the response of the electron gas to an external potential Vext. This external
potential has a response in the electron gas, which in turn creates a total
screened Hartree potential Vtot. The relationship between the Hartree potential
and the external potential is characterized by the electronic response function,
also known as the dielectric function ε

Vtot(x, t) =
∫

dx′
∫

dt′ε−1(x, x′, t, t′)Vext(x′, t′). (1.16)

This nonlocal relationship reflects the fact that the electron density at one point
in space and time can be influenced by the potential at other points and times.
The response function ε encapsulates the dynamics of the electron gas and its
collective behavior. In the following, we derive an expression for the response
function within the RPA, taking into account the quantum mechanical nature
of the electron-electron interactions. This allows us to determine the plasmon
dispersion relation, which describes the collective excitations of the electron
gas.

The dynamics of a quantum system are governed by the Liouville–von
Neumann equation for the density matrix ρ̂, namely [2]

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]. (1.17)
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The Hamiltonian consists of two terms: the equilibrium Hamiltonian Ĥ0
describing the free electron gas and a time-dependent perturbation Vtot(x, t)
capturing the nonlocal electron-electron interaction, yielding

Ĥ = Ĥ0 + Vtot(x, t). (1.18)

Within the RPA, the electron-electron interaction is captured by a scalar po-
tential Vtot(x, t), called the Hartree potential or induced potential. This is due
to the closed system of local equations for the single-particle density matrix
[2, 28]. The unperturbed Hamiltonian is given by

Ĥ0 = ∑
ν

ϵνc†
νcν, (1.19)

where ϵν = h̄2p2/2m is the free-electron dispersion relation of state ν, and c†
ν

and cν are the fermionic creation and annihilation operators.

We are interested in periodic perturbations of the form

Vtot(x, t) = V(x)e−iωt+ηt, (1.20)

where η → 0+, ensuring causality. Since the perturbation is weak, we assume
that the density matrix takes the form

ρ̂ = ρ̂0 + ρ̂1, (1.21)

where ρ̂0 is the equilibrium density matrix satisfying [Ĥ0, ρ̂0] = 0, and ρ̂1 is
the first-order correction due to Vtot. This correction term ρ̂1 represents the
deviation of the density matrix from its equilibrium state due to the external
perturbation. We assume that ρ̂1 has the same time dependence as Vtot, which
is reasonable for linear response. This allows us to focus on the steady-state
response of the system to the perturbation.

To connect the density matrix to the induced potential, we next solve for
the induced density. Substituting the density matrix ρ̂ into the Liouville–von
Neumann equation and keeping only first-order terms in the perturbation, we
obtain

ih̄
dρ̂1

dt
= [Ĥ0, ρ̂1] + [V̂tot, ρ̂0], (1.22)

where we used the fact that the equilibrium density matrix ρ̂0 commutes
with the unperturbed Hamiltonian Ĥ0, and neglected higher-order terms.
Evaluating the commutators using the single-particle eigenstates |ν⟩ (where
we use the conventional Dirac notation [2]), we obtain the equation of motion
for the matrix elements (ρ1)ν,ν′ , which depend on two states, given by

ih̄
d(ρ1)ν,ν′

dt
= (ϵν − ϵν′)(ρ1)ν,ν′ + (Vtot)ν,ν′( f (ϵν)− f (ϵν′)). (1.23)
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Solving for (ρ1)ν,ν′ in steady state gives

(ρ1)ν,ν′ =
f (ϵν)− f (ϵν′)

h̄ω + ϵν − ϵν′ + iη
(Vtot)ν,ν′ , (1.24)

where η → 0+ ensures causality. The total induced electron density can be
found by taking the trace of the density matrix, or summing over all states.
The induced charge density fluctuation becomes

n(x) = gs ∑
ν,ν′

f (ϵν)− f (ϵν′)

h̄ω + ϵν − ϵν′ + iη+
(Vtot)ν,ν′ (1.25)

The factor gs = 2 accounts for spin degeneracy in the 2D electron gas.

The total self-consistent potential, denoted as Vtot, comprises both the
external perturbation and the self-induced potential arising from the charge
response. The relationship between the induced charge density and Vtot is
governed by the Poisson equation [2]:

∇2Vind(x) =
−4πe2n(x)

εb
. (1.26)

While the induced potential on the left-hand side is formally a three-
dimensional quantity, reflecting its spatial extent in all directions, we implicitly
account for this by first solving the Poisson equation and then evaluating
the result at z = 0. This approach effectively restricts the potential to the
two-dimensional plane of the electron gas. In Sec. 2.1.1, we explicitly perform
these steps to clarify the separation of in-plane and out-of-plane coordinates.
The total potential Vtot experienced by the electrons is the sum of these two
potentials: Vtot = Vext + Vind. For a homogeneous system, we can consider
Eq. (1.26) in momentum space. The external perturbation is a time-dependent
potential acting on the electrons, which we express in Fourier space

Vtot(q, ω) = Vext(q, ω) + vqn(q, ω), (1.27)

where
Vtot(q, ω) =

∫
dx

∫
dtVtot(x, t)ei(−q·r+ωt), (1.28)

and vq and n(q, ω) represent the Coulomb interaction and the electron density
in Fourier space, respectively.

The dielectric function is defined as the response of the system to external
perturbations, and therefore, the ratio between the external and total potentials.
We, therefore, write

ε(q, ω) =
Vext(q, ω)

Vtot(q, ω)
. (1.29)
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Using Eq. (1.27), we obtain

ε(q, ω) = 1 − vqΠ0(q, ω), (1.30)

where Π0(q, ω) is the noninteracting polarization, also known as the Lindhard
function or the single-particle response function, and in the continuous limit,
where ∑ν →

∫
p, is given by

Π0(q, ω) =
gs

(2πh̄)2

∫

p

f (ϵp)− f (ϵp+q)

h̄ω + ϵp − ϵp+q + iη+
dp, (1.31)

in Fourier space. To avoid confusion with the Lindhard dielectric function,
we refer to Π0 as the polarization in this thesis. This function describes the
charge response of the free electron gas and plays a central role in determining
plasmon dispersion and screening effects. By systematically applying the
Liouville–von Neumann equation, we have derived the longitudinal dielectric
function for a noninteracting electron gas. This function is characterized by the
polarization Π0(q, ω), which captures the fundamental screening properties
of the system. For the homogeneous case, the eigenstates are plane waves.

In essence, the dielectric function provides a comprehensive description
of the electron gas’s response to external perturbations, encompassing both
the collective excitations (plasmons) and the individual particle excitations
(electron-hole pairs). It serves as a fundamental tool for understanding the
dynamics and properties of the electron gas in the presence of external fields.
Its zeros determine the frequencies and momenta of self-sustained oscillations
of the electron density, i.e., the plasmon modes. As seen from Eq. (1.29),
when ε(q, ω) = 0, we can have a non-zero potential Vtot in the absence of
an external potential Vext, indicating the presence of self-sustained collective
oscillations. The imaginary part of the dielectric function, Im[ε(q, ω)], is
related to the damping of these oscillations. This damping arises from the
excitation of electron-hole pairs, a process known as Landau damping [2, 28].
The electron-hole continuum, where such excitations are possible, corresponds
to the region where Im[ε(q, ω)] ̸= 0. We discuss Landau damping in more
detail shortly.

Analytic form of the 2D polarization function and plasmon dispersion

Having established the general framework for calculating the polarization
function, we now focus on the specific case of a two-dimensional electron
gas at zero temperature. In this section, we review the derivation of the
polarization function analytically, which is crucial for understanding collective
excitations and damping mechanisms in 2D systems, see e.g. Ref. [28]. This
2D polarization function determines the screening and the plasmon disper-
sion, both playing a central role in the study of electronic properties in two
dimensions.
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At zero temperature, the noninteracting polarization function for a 2D
electron gas, Π0(q, ω), is analytically solvable, since the Fermi-Dirac distri-
bution becomes a step function. To simplify the derivation, we introduce the
dimensionless variable

ν± ≡ Emeff
|q| pF

± |q|
2pF

, (1.32)

where the Fermi momentum pF is given by Eq. (1.15) in the Thomas-Fermi
approximation.

The total complex polarization at zero temperature, for a parabolic single
electron dispersion in a 2D layer, is now given by [28]

Π(q, E) =
gsmeff

2πh̄2
pF

|q|

(
−|q|

pF
− sign(Re ν−)

√
ν2
−−1 + sign(Re ν+)

√
ν2
+−1

)
.

(1.33)

For the existence of plasmons, the dielectric function, given in Eq. (1.30),
should be equal to zero, ε(q, E) = 0. Classically, this corresponds to a self-
sustained oscillation of charge density, meaning an external perturbation is no
longer necessary to maintain the wave. This condition implies that the system
possesses an intrinsic oscillation mode, a collective excitation that can exist
without any external driving force.

From the condition ε(q, ω) = 0, the plasmon dispersion relation, which
relates the plasmon energy E = h̄ω to the momentum q, can be calculated.
For two-dimensional systems encapsulated in vacuum, the Fourier transform
of the Coulomb interaction is given by vq = 4πe2/(|q|εb) [2, 28]. Then, the
analytic form of the 2D plasmon dispersion is given by [28, 32]

E(q) =

√√√√√√
(

|q| h̄ p2
F

4m2
effλTF

)
(

1 + |q|3λTF
h̄p2

F
+

|q|4λ2
TF

h̄2 p2
F

)(
1 + 2|q|λTF

h̄

)2

1 + |q|λTF
h̄

(1.34)

where λTF = (h̄2εb)/(2gsmeffe2) is the Thomas-Fermi screening length [28, 33].
It characterizes the screening of the electric field of an electron by other
electrons. The full quantum 2D plasmon dispersion is plotted in Fig. 1.1 in
black. The dispersion has a finite energy EL, where the dispersion reaches the
Landau damped region in gray, which will be discussed shortly.

In the long-wavelength limit (|q| → 0), we expand the dispersion around
q = 0, which simplifies the 2D plasmon dispersion relation to

E =

√
|q|e2gs p2

F
2meffεb

+
3|q|2 p2

F
2m2

eff
, (1.35)
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The derived dispersion relation exhibits the characteristic square-root depen-
dence on the momentum, a hallmark of 2D plasmons. This result aligns
with the hydrodynamic model’s prediction Eq. (1.14), which has the same
square-root dispersion in this limit, indicating the well-defined nature in the
long-wavelength limit. However, the second-order correction differs from the
hydrodynamic model, as argued in Ref. [28]. This discrepancy arises from
the hydrodynamic model’s assumption of local equilibrium, which neglects
dynamic variations in the Fermi surface at higher momenta. Both the hydro-
dynamic dispersion relation Eq. 1.14 (dashed red) and the long-wavelength
quantum limit Eq. 1.35 (dashed black) are plotted in Fig. 1.1, illustrating the
growing discrepancies at higher momentum |q|.
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Figure 1.1: Dispersion relations for two-dimensional plasmons, depicting the
RPA result (black solid curve), long-wavelength limit (black dashed curve),
and hydrodynamic model (red dashed curve). The gray region indicates the
Landau damped regime, where single electron-hole pairs can be excited.

Landau damping and the electron-hole continuum

In real systems, plasmons are generally not infinitely long-lived. When the
imaginary part of the dielectric function, Im[ε(q, ω)], becomes non-zero, the
collective plasmon mode can lose coherence and decay through single-particle
excitations, a process known as Landau damping [2, 28]. Landau damping
arises from the interaction of the plasmon with electrons that are moving at
velocities close to the phase velocity of the plasmon wave. These electrons
can absorb energy from the plasmon, leading to its decay. An electron-hole
pair is created when an electron is excited from an occupied state below the
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Fermi energy to an unoccupied state above the Fermi energy. The region
in energy-momentum space where such excitations are allowed is known
as the electron-hole continuum (gray area in Fig. 1.1). Landau damping
occurs when the plasmon mode overlaps with this continuum, enabling the
transfer of energy from the plasmon to electron-hole pair excitations. Other
damping mechanisms, such as magnon [13] or phonon [14] scattering, can
also contribute to the decay of plasmons.

The imaginary part of the dielectric function indicates Landau damping.
At zero temperature, this occurs when the argument in one of the square roots
in Eq. (1.33) becomes negative. The boundary of the electron-hole continuum
is therefore given by the condition ν− = 1. This boundary gives us a minimum
value for the energy, namely

E− =
|q| pF

meff
+

|q|2
2meff

, (1.36)

and is plotted in Fig. 1.1 as the boundary between the white and gray area.
For momenta satisfying the condition E(q) = E−(q) = EL, or in other words,
when the dispersion reaches the electron-hole continuum, a plasmon can
decay into electron-hole pairs, leading to a finite imaginary part in the di-
electric function. Physically, this means that if the energy of the plasmon is
lower than the energy EL, which is required to excite an electron-hole pair, it
remains undamped. However, for higher energies, it enters the electron-hole
continuum, and the plasmon can transfer energy to single-particle excitations,
leading to damping and energy dissipation.

At finite temperature, the Fermi-Dirac distribution replaces the step
function in the zero-temperature polarization function:

f (ϵ) =
1

e(ϵ−µ)/kBT + 1
, (1.37)

where ϵ is the energy, µ the chemical potential, kB the Boltzmann constant,
and T the temperature. This smoothing of sharp boundaries means Landau
damping no longer has a distinct onset at Eq. (1.36), as thermal excitations
become probable. Consequently, the plasmon dispersion experiences spectral
broadening, and screening properties are altered. While the plasmon peak
broadens and becomes less defined with increasing temperature, the essential
qualitative features remain. Thus, a practical approach to capturing the
essential features is to calculate the plasmon dispersion at zero temperature
and then introduce a broadening factor to approximate thermal effects.

In summary, for a 2D electron gas, the polarization function is central to
understanding screening and plasmon dispersion. In homogeneous systems,
the full quantum plasmon dispersion can be analytically derived, providing a
comprehensive description beyond the long-wavelength limit. This dispersion
is gapless, meaning that plasmons can exist at arbitrarily low energies. Landau
damping occurs when the plasmon loses coherence to single electron-hole
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excitations, causing energy dissipation [2, 28]. At finite temperature, screening
changes, the continuum smears, and modes broaden. In this thesis, we con-
centrate on undamped plasmonic modes, which allow for clearer semiclassical
analysis, with careful attention to the Landau damping onset. While the
homogeneous 2DEG is well understood, our focus lies on inhomogeneous
systems. Here, spatial variations necessitate numerical methods in real space,
as translational invariance is lost. To address these complexities and gain
insights into inhomogeneous plasmons, we utilize a semiclassical approach,
deriving (semi-)analytical solutions through semiclassical techniques.

1.3 Semiclassical analysis for inhomogeneous systems

Inhomogeneous systems, unlike their homogeneous counterparts, lack transla-
tional invariance. This makes them more challenging to analyze but also more
interesting, as they offer the necessary complexity for practical applications
in plasmonics. To describe plasmons in inhomogeneous systems, we propose
using the semiclassical approximation, akin to the WKB approximation for
solving differential equations like the Schrödinger equation in smoothly vary-
ing inhomogeneous potentials in one direction. This approximation is valid
when the typical length scale of the potential variation is much larger than
the wavelength of the underlying particle, which allows us to treat the system
as locally homogeneous [61].

The WKB approximation was among the initial semiclassical techniques
employed to study plasmons in inhomogeneous electron systems. Notably,
the semiclassical approximation for quantum plasmons was initially proposed
in Ref. [51] and further justified at a heuristic level in Ref. [62]. Progressing
beyond these early applications, recent investigations have leveraged pseudo-
differential operators and the Maslov canonical operator [48] to establish a
more robust theoretical foundation for three-dimensional electron systems [50].
While this advanced methodology offers a significant advancement in the
understanding of plasmon dynamics within inhomogeneous environments,
further development is required to accurately model the distinctive character-
istics observed in two-dimensional systems.

Physically, the semiclassical analysis can be understood in analogy to
geometric optics. The Hamilton-Jacobi equation describes the trajectories
of plasmons, which can be calculated using Hamilton’s equations, allowing
us to trace the plasmon motion point by point, similar to how light rays
are traced in geometric optics. On top of these classical trajectories, the
semiclassical approximation incorporates the wave-like nature of plasmons,
capturing interference effects. Semiclassical methods are formally applicable
to systems with smoothly varying potentials, where the characteristic length
scale of the potential variation is much larger than the relevant wavelength.
However, the semiclassical approximate solution often remains qualitatively
accurate in regimes beyond its formally defined applicability, extending its
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usefulness to a wider range of physical scenarios. For the Schödinger equation
one can, e.g., consider the harmonic oscillator and the hydrogen atom, for
which the semiclassical result coincide with the exact result [61, 63].

For plasmons, the semiclassical approximation is valid when the electron
wavelength is much smaller than the characteristic length scale of the system.
This ensures that the electrons experience a locally homogeneous potential,
which is crucial for the validity of the approximation. In this regime, we
can define a dimensionless small parameter h as the ratio of the electron
wavelength to the system’s characteristic length scale. This characteristic
length scale can arise from spatial variations in, for example, the electron
density or the substrate dielectric constant. It is important to emphasize that
in our context, the semiclassical approximation does not serve as a bridge
between classical and quantum plasmons. Rather, in the limit of h → 0, we
recover the homogeneous case described by the RPA polarization Eq. (1.31),
and not the classical limit from the hydrodynamic model.

In this section, we first provide a theoretical introduction to semiclassics,
focusing on the WKB approximation applied to the Schrödinger equation,
which introduces essential concepts and techniques that will be applied to
plasmons. Then, we apply these semiclassical techniques to electrons in 2D
inhomogeneous systems, following the approach outlined by Ref. [50], to
derive an analytical expression for the polarization with spatially varying
parameters.

1.3.1 The WKB approximation

The semiclassical approximation is a powerful tool in quantum mechanics that
bridges classical and quantum techniques for describing quantum systems. A
fundamental example of semiclassics is the WKB approximation, which, in
the case of the Schrödinger equation, provides an approximate solution in
the regime where the characteristic length scale of the system varies slowly
compared to the de Broglie wavelength. This method is particularly useful for
understanding tunneling phenomena, bound states in slowly varying poten-
tials, and quantization conditions in one-dimensional systems. Here, we give
a simplified, physical explanation of the WKB approximation, highlighting the
essential concepts for this thesis, in line with Ref. [61]. For a more in-depth
discussion of semiclassical analysis, we refer to books like Refs. [48, 49, 63, 64].

Assuming a smoothly varying potential V(x), for which the WKB ap-
proximation is applicable, we begin with the time-independent Schrödinger
equation for a single particle, namely

− h̄2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x), (1.38)

where ψ(x) is the wavefunction.
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Defining the local wavenumber as

k(x) =
√

2m(E − V(x))
h̄

, (1.39)

the equation simplifies to

d2ψ(x)
dx2 + k2(x)ψ(x) = 0. (1.40)

We then seek a WKB solution of the form of the Ansatz

ψ(x) = (A0(x) + h̄A1(x) +O(h̄2))eiS(x)/h̄, (1.41)

where S(x) is the classical action and Ai(x) the expansion of the amplitude,
which is a series in powers of h̄. The WKB approximation is fundamentally
based on an expansion in a small dimensionless parameter h, which relates
the variations in the potential to the de Broglie wavelength of the particle.
While the specific definition of h for plasmon applications will be discussed in
detail in Sec. 2.1.5, for this introductory overview, we proceed by expanding
in powers of h̄. Substituting this expansion into the Schrödinger equation and
solving order by order in h̄ leads to equations for the coefficients Ai(x). The
zeroth-order equation is the Hamilton-Jacobi equation, describing the classical
motion, resulting in (

dS
dx

)2
− k2(x) = 0. (1.42)

Equivalently, we write the Hamilton-Jacobi equation as HWKB (x, dS/dx, E) =
0, which defines an effective classical Hamiltonian. Note that when deriving
the Hamilton-Jacobi equation, the wavenumber transforms to |k| = |dS/dx|; a
natural consequence of applying the semiclassical Ansatz. Using Hamilton’s
equations applied to HWKB (x, k, E), we can calculate classical trajectories with
Hamilton’s equation, analogous to geometric optics.

The first-order equation is the transport equation, governing the ampli-
tude A0(x), given by

d
dx

(
A2

0(x)
dS
dx

)
= 0. (1.43)

This ensures the conservation of probability density along classical trajecto-
ries. The amplitude derived from the transport equation, through standard
derivation, yields a solution proportional to the inverse square root of the
Jacobian, J(x) [48, 55]. This amplitude is evaluated along the trajectories in
phase space, and the Jacobian ensures that the wavefunction maintains its cor-
rect form and normalization under coordinate transformations, reflecting the
conservation of probability. However, in this one-dimensional WKB case, this
greatly simplifies to J(x) = k(x) with the help of Hamilton’s equations. This
specific simplification is not possible for plasmons, as is discussed in greater
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detail in Sec. 2.1.3. The approximate solution, Eq. (1.41), with amplitude
A0 governed by the transport equation, incorporates the wave-like behavior,
including quantum interference effects. In classically allowed regions, where
E > V(x) and k(x) is real, the solution takes the form

ψ(x) ≈
A0

0√
k(x)

e±i
∫ x k(x′)dx′ , (1.44)

where A0
0, is an initial amplitude factor. The probability of finding the particle

at a given point x is given by |ψ(x)|2 ∝ |k(x)|−1, which reflects the fact that it
is less probable to find the particle in regions where it has a higher velocity.
In classically forbidden regions, where E < V(x) and k(x) is imaginary, the
wavefunction becomes

ψ(x) ≈
A0

0√
|k(x)|

e±
∫ x |k(x′)|dx′ . (1.45)

This exponential behavior in the forbidden region describes quantum mechan-
ical tunneling, a key prediction of the WKB approximation.

A crucial application of the WKB method is the Bohr-Sommerfeld quanti-
zation condition for periodic trajectories, which determines the allowed energy
levels of bound states. For a potential V(x) exhibiting parabolic behavior, the
particle’s motion resembles that of a particle in a harmonic potential well.
When the particle encounters two simple turning points, the wavenumber
behaves as k(x) ∝

√
x near these points and goes to zero at the turning point.

The quantization condition for the action then reads

∮
k(x)dx =

(
m +

1
2

)
2π, (1.46)

where the integral is taken over one full periodic trajectory and m is a non-
negative integer. This condition establishes a relationship between the energy
levels and the integer m. The factor π/2 in Eq. (1.46) accounts for the phase
shift of the solution (1.44) at a simple turning, and can be formalized through
the Maslov index [48, 50, 55]. This phase shift arises because the asymptotic
solution (1.44) breaks down at a turning point, as the Jacobian vanishes. From
a practical perspective, the Maslov index ensures the correct phase evolution as
the particle traverses a turning point, compensating for the sign change in the
Jacobian within the amplitude. Such a quantization condition, incorporating
the Maslov index, will be applied in Ch. 4 of this thesis to determine the
bound states in a plasmonic waveguide.

One major limitation of the WKB approximation is its failure at classical
turning points, where E = V(x) and k(x) = 0. At these points, the amplitude
of the WKB solution diverges, indicating a breakdown of the approximation.
Physically, this occurs because the classical particle momentarily comes to rest
before reversing direction, and the wavelength of the quantum wavefunction

29



Chapter 1 Towards an analytical theory for plasmonic systems

changes rapidly in this region. While a more careful treatment using Airy
functions, Ai(x) and Bi(x), can provide intermediate solutions applicable
at the turning point, in most cases, one is not particularly interested in the
specific solution at these points, but rather in the general behavior around
them. This general behavior can be addressed in two specific scenarios. First,
the behavior of a backscattered particle after a turning point is captured
by the Maslov index, as discussed previously. Second, one can connect
the WKB solutions before and after the turning point, a procedure known
as the connection problem. For analyzing behavior in regions beyond the
turning point, the complex phase integral method is a suitable alternative,
as it circumvents the turning point’s direct influence [63, 65]. This method,
pioneered by Zwaan [66], involves taking a path through the complex plane to
connect the solutions, carefully tracking their behavior along so-called Stokes
and anti-Stokes lines. Connection formulas can be used to directly relate
the WKB solutions on either side of the turning point. This complex phase
integral method will be applied in Ch. 5 of this thesis.

The WKB approximation is significant because it connects quantum
mechanics with techniques from classical mechanics in a mathematically trans-
parent way. It provides insight into wave propagation, tunneling, and energy
quantization in systems where exact solutions to the Schrödinger equation are
difficult to obtain. In essence, this approach allows us to determine classical
trajectories with Hamilton’s equations, using the effective classical Hamilto-
nian HWKB (x, k, E). The WKB method incorporates the wave-like solutions
in the form of ψ(x) = A0(x) exp(iS(x)/h̄), where S(x) is the classical action
satisfying the Hamilton-Jacobi equation, HWKB (x, dS/dx, E) = 0, while the
amplitude A0(x) is calculated from the transport equation. Using techniques
like the Maslov index and the complex phase integral method, this approxi-
mation can be further refined to accurately describe quantum phenomena in
experimentally relevant systems.

1.3.2 Derivation of the formalism for plasmons

In this section, we aim to develop a description for electron behavior in inho-
mogeneous systems, specifically focusing on the derivation of a semiclassical
formalism for a two-dimensional inhomogeneous electron gas. Building upon
the equations of motion approach, as utilized in Ref. [2] and discussed in
Sec. 1.2.3 for a homogeneous system, we derive expressions for the polariza-
tion, which in the homogeneous case is given by Eq. (1.31), and the induced
electron density in inhomogeneous systems. To account for the spatial varia-
tions arising from the inhomogeneity of the system, we employ the formalism
of pseudodifferential operators [48, 49, 67]. This approach was used in Ref. [50]
to derive the full theory for plasmons in three-dimensional systems. Here,
we establish the foundation for our derivation of the full theory for plasmons
in 2D inhomogeneous systems by reviewing the procedure based on the re-
sults from Ref. [50]. We show that the initial steps of obtaining the induced
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density from the polarization are generally applicable and independent of
dimensionality.

We use the Liouville-von Neumann equation to establish a relation be-
tween the one-particle density operator ρ̂ and the semiclassical Ansatz for
the induced potential Vpl(x, t) in the plane. Subsequently, we compute the
induced electron density n(x, t) using this density operator. The final steps,
which involve relating the time-dependent induced electron density to the
three-dimensional potential V(x, z, t) through the Poisson equation, are de-
ferred to Ch. 2, as these represent novel contributions. For this step, we
consider the electric field, a three-dimensional quantity that extends into the
out-of-plane dimension z. We apply a self-consistency condition: the potential
V(x, z, t) should equal the in-plane induced potential Vpl(x, t) at z = 0. We
remark that this condition is not required for a three-dimensional charge den-
sity [50], where a self-consistent solution for the induced potential is obtained
directly. In this section, we lay the groundwork for this new derivation by
reviewing the initial two steps of the procedure, based on the results from
Ref. [50].

1.3.3 Density operator and induced electron density

Moving beyond the homogeneous case, we now specifically apply the equa-
tions of motion approach [2, 50] to plasmons in inhomogeneous systems. Con-
sequently, we denote the total potential as the induced potential or Hartree
potential Vpl(x, t), assuming the external potential to be zero, as discussed in
Sec. 1.2.3. To ensure self-containment in this derivation, some steps from the
homogeneous derivation are repeated. We write the Hamiltonian as

Ĥ = Ĥ0 + Vpl(x, t), (1.47)

where the operator Ĥ0 describes the motion of the individual electrons and
Vpl(x, t) is a scalar potential that expresses the electron-electron interaction
within the system.

We are interested in inhomogeneous systems, which necessitate modifi-
cations to the Hamiltonian for individual electrons. Throughout this thesis,
we consider electrons with a quadratic dispersion moving within a spatially
varying scalar potential U(x), as described by

Ĥ0 =
p̂2

2m
+ U(x), p̂x = −ih̄

∂

∂x
, (1.48)

where m is the effective electron mass of the system. It is important to note
that while we focus on quadratic dispersion, the semiclassical framework
developed here is applicable to other electronic dispersion relations, albeit
with additional considerations. The length of the vectors x and p̂, depend
on the dimensionality of the electron gas, i.e. for a two-dimensional electron
gas x = (x, y). The potential U(x) encodes the spatially varying electron
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density n(0)(x). Within the Thomas-Fermi approximation [2, 28, 58], the
position-dependent Fermi momentum pF(x) and the spatially varying scalar
potential U(x) are related by

pF(x) = h̄
(

4π

gs
n(0)(x)

)1/2
, U(x) = µ −

p2
F(x)
2m

, (1.49)

analogous to the homogeneous case described by Eq. (1.15), this equation
uses pF(x) to represent the position-dependent Fermi momentum, µ for the
chemical potential of the system, and gs for the spin degeneracy.

When the system is homogeneous, we can decompose this Hartree po-
tential Vpl into Fourier modes. In our case, where the system is “almost”
homogeneous on the scale of the electron wavelength, since λel/ℓ ≪ 1, we
can use the Ansatz that is commonly used in the semiclassical approxima-
tion [48, 55], namely

Vpl(x, t) = Vpl(x)e−iEt/h̄, (1.50)

where we assume that the Hamiltonian Ĥ0 does not depend on time t, which
indicates that the potential does not vary in time. Since we compute the
retarded response function of the electrons, it would be more correct to write
E + iη and consider the limit η → 0+. However, we implicitly assume this
throughout the thesis.

In the remainder of this subsection, we summarize the main points of
the derivation performed in Ref. [50], to which we refer for more detailed
arguments. The motion of the system of interacting electrons is described by
the Liouville-von Neumann equation for the density operator, i.e.

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]. (1.51)

We can decompose the density operator as ρ̂ = ρ̂0 + ρ̂1, where ρ̂0 corre-
sponds to the equilibrium situation originating from the Hamiltonian Ĥ0.
The perturbation ρ̂1 to this equilibrium is caused by the electron-electron
interaction, which implies that ρ̂1 should be of the same order of magnitude
as Vpl. Moreover, ρ̂1 should have the same time dependence as in Eq. (1.50).

Since Vpl is assumed to be small, we can linearize the Liouville-von
Neumann equation (1.51). The operator ρ̂0 is time independent, because
it corresponds to the equilibrium. The zeroth-order terms therefore give
[Ĥ0, ρ̂0] = 0. The terms that are first order in Vpl lead to

Eρ̂1 = [Ĥ0, ρ̂1] + [Vpl, ρ̂0], (1.52)

where we have taken the time dependence of ρ̂1 into account.

At this point, we apply the semiclassical approximation. We construct an
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asymptotic solution for Vpl(x) in the form of the semiclassical Ansatz

Vpl(x) = φ(x, h̄)eiS(x)/h̄, (1.53)

where S(x) is the classical action and φ(x, h̄) is the amplitude. The latter is a
series in powers of h̄, that is,

φ(x, h̄) = φ0(x) + h̄φ1(x) +O(h̄2). (1.54)

When this Ansatz is applied to one-dimensional problems in physics, one
usually speaks of the WKB approximation [61, 63], as discussed in the previous
subsection Sec. 1.3.1.

Unfortunately, we cannot use the same semiclassical approach for the
linearized Liouville-von Neumann equation (1.52), since it is an operator equa-
tion rather than a standard eigenvalue problem as the Schrödinger equation.
We therefore need a more advanced toolbox to derive an effective classical
Hamiltonian, or, more fundamentally, to relate quantum operators on Hilbert
space to classical observables on phase space. Very naively, one could think
of quantum mechanical operators as functions of x and p̂ and replace all
momentum operators p̂ by variables p to obtain classical observables on phase
space. Whilst this approach gives the correct results to the lowest order in h̄,
it hardly seems like a well-defined mathematical procedure and gives wrong
results for the higher-order corrections.

The most elegant way to express the relation between quantum mechani-
cal operators on Hilbert space and functions on classical phase space (x, p)
is through the formalism of pseudodifferential operators [48, 49, 67]. Within
so-called standard quantization, one obtains a function σ(â) = a(x, p, h̄) on
classical phase space from a quantum operator â with the formula

a(x, p, h̄) = σ (â) = e−i⟨p,x⟩/h̄
(

âei⟨p,x⟩/h̄
)

, (1.55)

where ⟨p, x⟩ = ∑j pjxj is the standard inner product on R2. The function
a(x, p, h̄) is commonly called a symbol. As an example, we may apply this
formula to Ĥ0 in Eq. (1.48). We then find that σ(Ĥ0) = H0(x, p) = p2/2m +
U(x), which is exactly what one obtains when replacing p̂ by p in Ĥ0.

Generalizing this previous example, we note that most of the symbols that
we consider in this thesis are so-called classical symbols. These are symbols
a(x, p, h̄) that have an asymptotic expansion in terms of h̄ [49], i.e.,

a(x, p, h̄) = a0(x, p) + h̄a1(x, p) +O(h̄2). (1.56)

One can think of the leading-order term a0(x, p) as the classical observable
(on phase space) corresponding to the quantum operator â. If one replaces
the momentum operators p̂ by coordinates p in the operator â, one precisely
obtains a0, which formalizes the very naive procedure that we sketched before.
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Within standard quantization, Hermitian operators may have complex
symbols. For instance, the operator 1

2 (x · p̂ + p̂ · x) has symbol x · p − ih̄. One
can show that the symbol of a Hermitian operator satisfies the relation

a1(x, p) = − i
2 ∑

j

∂a0

∂pj∂xj
(x, p), (1.57)

see e.g. Ref. [50]. These complex symbols should therefore be seen as an
artifact of the procedure, and by no means imply that we are dealing with
non-Hermitian operators. In order to avoid these complex symbols, one may
use Weyl quantization [49, 67], in which the relation between operators and
their symbols differs from Eq. (1.55) and Hermitian operators correspond to
real symbols. Although both quantization schemes are formally equivalent,
Weyl quantization typically makes the calculations more complicated. We
therefore use standard quantization throughout this text.

Starting from a symbol a(x, p, h̄), one obtains the corresponding pseudod-
ifferential operator â, within standard quantization, with the Fourier transform
F , namely [48, 49, 67]

(â f ) (x) = F−1
p→xa(x, p, h̄)Fy→p f (y). (1.58)

The operator constructed in this way corresponds to the situation where
the momentum operator always acts first, and the position operator acts
second. For instance, quantization of x · p with this procedure gives x · p̂,
which is not Hermitian. This is in accordance with our previous statement
that a symbol should satisfy Eq. (1.57) to give rise to a Hermitian operator.
Equations (1.55) and (1.58) establish a one-to-one relation between operators
and symbols [49, 67]. For a general discussion of pseudodifferential operators
and their symbols, we refer to Refs. [48, 49, 67]. A short overview in the
context of this thesis can be found in Ref. [50].

Let us return to the linearized Liouville-von Neumann equation (1.52). In
order to apply the semiclassical approximation to this operator equation, one
also needs to employ a semiclassical Ansatz for the induced density operator
ρ̂1. This Ansatz is constructed in detail in Ref. [50], and its symbol is expressed
in terms of the amplitude φ(x, h̄) and the classical action S(x), cf. Eq. (1.53),
by solving the operator equation (1.52). The result for ρ̂1 is subsequently used
to compute the induced electron density, defined by

n(x) = gsTr(δ(x′ − x)ρ̂1). (1.59)

After some lengthy calculations, that are performed explicitly in Ref. [50], one
finds that the induced density n(x) can be written as

n(x) = Π̂Vpl(x), (1.60)

where Vpl(x) is given by the semiclassical Ansatz (1.53). Where, in contrast to
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the homogeneous case (cf. Sec.1.2.3), the polarization Π̂ is a pseudodifferential
operator. These pseudodifferential operators can be viewed as generaliza-
tions of partial differential operators and are defined through their so-called
symbols [49, 67], which are functions on classical phase space. Intuitively
speaking, this relation can be understood as the correspondence between
quantum mechanical operators and classical observables on phase space [68].
Importantly, the symbols of pseudodifferential operators do not have to be
polynomial in 4Its symbol has an expansion in powers of h̄, cf. Eq. (1.56), i.e.,

σ(Π̂) = Π(x, q, h̄) = Π0(x, q) + h̄Π1(x, q) +O(h̄2), (1.61)

where the principal symbol Π0(x, q) depends on the position x and the
(plasmon) momentum q. It equals

Π0(x, q)=
gs

(2πh̄)d

∫
ρ0 (H0(x, p))− ρ0 (H0(x, p + q))

H0(x, p)− H0(x, p + q) + E
dp, (1.62)

where the function ρ0(z) is the Fermi-Dirac distribution. Its argument H0(x, p)
is the principal symbol of the Hamiltonian Ĥ0, which we constructed before.

Expression (1.62) bears a strong resemblance to the familiar Lindhard
expression for a homogeneous charge density Eq. (1.31) [2, 28], with the
key difference being the replacement of the energy eigenvalue ϵp by the
symbol H0(x, p) of the electronic Hamiltonian. Consequently, the integral
can therefore be evaluated in the same way as in Sec. 1.2.3, see e.g. Ref. [28].
Performing this evaluation, one obtains the Lindhard expression with the
replacement pF → pF(x), see also the discussion in Ref. [50]. The principal
symbol Π0(x, q) thus represents a local polarization, dependent on the spatial
coordinate x and the plasmon momentum q. Notably, due to the isotropy of
the Hamiltonian Ĥ0 in momentum space, it depends only on the magnitude
|q|. The subprincipal symbol Π1(x, q) satisfies Eq. (1.57), confirming the
Hermitian nature of the polarization operator. This holds true in regions
devoid of Landau damping, where the principal symbol Π0 is real-valued.
Incorporating the standard time dependence exp(−iEt/h̄) into n(x), we arrive
at an expression for the induced electron density n(x, t). While the form of the
resulting expression (1.60) is similar across different spatial dimensions, the
normalization factor gs/(2πh̄)d in the polarization depends explicitly on the
dimensionality d of the electronic system. Therefore, the result is not strictly
dimension-independent. Nevertheless, the underlying semiclassical approach
and the steps leading to the induced density are applicable to both two and
three spatial dimensions. However, throughout this thesis, we exclusively
focus on the two-dimensional case (d = 2).

As a result, we have obtained the position-dependent polarization, which
describes the single-electron response to the collective electron interactions.
In contrast to the homogeneous case discussed in Sec. 1.2.3, where a direct
Fourier transform of the Poisson equation is feasible, the inhomogeneous
case presents a more complex challenge. In Ch. 2, we apply the semiclassical
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approximation to the Poisson equation, utilizing the electron density given by
Eq. (1.60) as the source term. Given that the Poisson equation is inherently
three-dimensional, with the electric potential extending into the out-of-plane
dimension, we must carefully separate the in-plane and out-of-plane degrees
of freedom. Subsequently, by analyzing the first-order and second-order
components in the semiclassical parameter h, we derive the Hamilton-Jacobi
equation and the transport equation, which collectively govern the plasmonic
system.

In Ch. 3, we consider plasmon scattering, a fundamental process in
wave physics involving the redirection of waves due to interactions with
inhomogeneities. This is particularly interesting in plasmonics, where inhomo-
geneities such as impurities, local doping, and density variations significantly
impact plasmon propagation and are crucial for understanding and control-
ling realistic plasmonic behavior in nanostructures observed in experiments.
By calculating the classical trajectories using our semiclassical approach, we
can gain an initial qualitative understanding of the plasmon scattering behav-
ior. We then quantify this by calculating the total and differential scattering
cross sections, measures of the effective scattering area, utilizing the wave-like
properties of the approximate solution. Specifically, we focus on a simple
circular geometry, exploring how the scattering cross section is influenced by
variations in electron density and the width of such inhomogeneities.

In Ch. 4, we extend our analysis to investigate plasmonic localization
within layered systems, specifically focusing on plasmonic waveguides. Plas-
monic localization, the confinement of plasmons to a specific region, is critical
for integrated photonics applications, enabling efficient information trans-
port and manipulation through plasmons. This localization can be achieved
through various mechanisms, which we explore in detail. We identify two
primary types of localization: full localization through the formation of bound
states, and quasi-localization via amplitude screening effects. Full localiza-
tion arises from periodic trajectories within classically allowed and forbidden
regions, allowing us to calculate the discrete energy spectrum using the
Bohr-Sommerfeld quantization condition, as discussed in Sec. 1.3.1. Addition-
ally, we examine quasi-localization, where plasmon confinement is achieved
through amplitude screening. We compare and validate our semiclassical
results with numerical findings in the literature.

In Ch. 5, we extend our investigation to plasmonic crystals, which are
periodic analogs of waveguides, exhibiting plasmon tunneling. These struc-
tures are of significant interest as they enable the creation of plasmonic band
structures, akin to photonic and electronic band structures, offering unprece-
dented control over plasmon propagation. Specifically, we employ connection
formulas derived from the Zwaan method [63, 66] to incorporate tunneling
effects within these periodic structures. This allows us to accurately calculate
the plasmonic band structure, revealing the allowed and forbidden energy
bands for plasmon propagation within these complex environments.
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tures are of significant interest as they enable the creation of plasmonic band
structures, akin to photonic and electronic band structures, offering unprece-
dented control over plasmon propagation. Specifically, we employ connection
formulas derived from the Zwaan method [63, 66] to incorporate tunneling
effects within these periodic structures. This allows us to accurately calculate
the plasmonic band structure, revealing the allowed and forbidden energy
bands for plasmon propagation within these complex environments.
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2
Plasmons in arbitrary dielectric environment

In this chapter, we continue the semiclassical analysis from Sec. 1.3.2 to in-
vestigate plasmons within inhomogeneous systems characterized by arbitrary
dielectric environments. Building upon the induced density Eq. (1.60) derived
in the preceding chapter, we employ Poisson’s equation to establish the rela-
tionship with the induced potential. Our primary objective is to develop a
comprehensive theoretical framework capable of describing plasmon behav-
ior in such complex scenarios. This involves deriving an effective classical
Hamiltonian, analogous to the Lindhard dielectric function but incorporat-
ing spatially varying parameters, to extract the plasmon dispersion and the
classical action via the Hamilton-Jacobi equation. Furthermore, we determine
the amplitude of the semiclassical Ansatz using the transport equation, which
can be interpreted physically through the energy density. To demonstrate
the versatility of our methodology, we apply it to two distinct models of the
out-of-plane dielectric environment, which serves as foundational examples
for subsequent chapters.

This chapter draws upon work published in Refs. [1] and [69]. Copyright by the American
Physical Society.
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2.1 Effective description of plasmons in 2D systems
with arbitrary dielectric environments

In Ref. [1], the construction of the effective classical Hamiltonian H0 was
performed using the simplest model for the dielectric environment, in which
the background dielectric environment does not depend on z. This leads to
an effective dielectric function in the plasmon dispersion, which arises due
to screening effects from the surrounding environment. In this model, the
function is given by the average of the dielectric properties of the involved me-
dia. However, Ref. [69] argues that more complicated models for the dielectric
environment are often necessary to more accurately describe the screening
effects. In homogeneous systems, such advanced models typically yield more
accurate predictions of three-dimensional screening effects, as they account
for nonlocal interactions. Consequently, the effective dielectric function, de-
scribing this screening, is in these cases no longer a simple averaged quantity,
but instead exhibits a q-dependence [34, 40, 70]. We would therefore like to
extend the formalism developed in Ref. [1] to arbitrary dielectric environments
in order to be applicable to more complicated models.

Throughout this thesis, we describe the dielectric properties of the sub-
strate using the term dielectric constant. While we assume the substrate
material is locally characterized by a fixed static dielectric constant, justifying
the term “constant”, this value can still exhibit spatial variations as a function
of x. This, for example, accounts for material transitions in systems with
multiple materials.

The derivation in the previous chapter concluded with an expression for
the induced electron density, Eq. (1.60), which we now use to compute the
induced potential via the Poisson equation. A fundamental distinction arises
when applying this approach to two-dimensional versus three-dimensional sys-
tems. In three-dimensional scenarios, both the charge density and electrostatic
potential are inherently three-dimensional. However, in two-dimensional sys-
tems, while the electrostatic potential remains three-dimensional, the charge
density is effectively confined to two dimensions. The induced potential, as
dictated by Poisson’s equation, extends into the third dimension. Thus, in
Sec. 2.1.1, we consider the electric field, a three-dimensional quantity that per-
meates the out-of-plane dimension z, and establish a relationship between the
time-dependent induced electron density and the three-dimensional potential
V(x, z, t). Our semiclassical derivation employs a separation of variables into
slow and fast components. We posit that the in-plane variables are slow, im-
plying that the spatial scale of variations in the charge density and background
dielectric constant greatly exceeds the electron wavelength. Conversely, the
out-of-plane variable is fast, reflecting the abrupt change in charge density
at the charge layer boundary. This separation enables us to asymptotically
decouple the in-plane and out-of-plane degrees of freedom through a general-
ization of the adiabatic Born-Oppenheimer approximation. Specifically, we
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adapt the operator separation of variables method [56, 71] prior to introducing
the semiclassical Ansatz. At the conclusion of this section, we obtain two
ordinary differential equations in z derived from the Poisson equation: one of
order h̄0 and another of order h̄1.

In the subsequent section, Sec. 2.1.2, we derive the effective classical
Hamiltonian H0 for an arbitrary dielectric environment ε(x, z) by solving the
h̄0-order out-of-plane differential equation resulting from the Poisson equation.
Employing the method of variation of parameters [72], we construct a general
solution that is independent of specific dielectric models. This solution yields
the crucial result: an effective classical Hamiltonian for quantum plasmons in
two-dimensional inhomogeneous systems. This classical Hamiltonian turns
out to be given by the Lindhard expression for the two-dimensional dielectric
function with a coordinate-dependent Fermi momentum and background
dielectric constant. The Hamiltonian describes the classical dynamics of
plasmons in phase space through the Hamilton-Jacobi equation, cf. Sec. 1.3.1.

In Sec. 2.1.3, the h̄1-order out-of-plane differential equation resulting from
the Poisson equation is solved. The decoupling performed via the method of
operator separation of variables simplifies the subsequent application of the
semiclassical Ansatz, and the derivation of the transport equation. From the
transport equation, we calculate the leading-order amplitude of the Ansatz,
Eq. (1.53). Thus, we obtain a semiclassical expression for the full 3D electro-
static potential, which reveals the wave-like character of the plasmons and is
related to the induced or Hartree potential via the self-consistency condition,
as discussed in Sec. 1.3.2. The induced potential mimics the wavefunction
for particles subject to the Schrödinger equation. We show in Sec. 2.1.4 that
the induced potential can be related to the induced electron density and to
the electrostatic energy density, which has a physical interpretation as a prob-
ability density. Until this point, our considerations are completely general,
independent of the z dependence of the dielectric environment.

We consider the applicability of the semiclassical approximation in
Sec. 2.1.5. Since h̄ is a constant, it is strictly speaking not possible to use
it as a small parameter in the series expansion. The main reason for this
is that it is unclear with respect to which quantity it should be small. In
order to resolve this issue, we identify the correct dimensionless semiclassical
parameter for the series expansion. In this section, we consider the charac-
teristic scales in the problem, and define dimensionless quantities. We also
discuss the applicability regime of the semiclassical approximation, and give
the dimensionless analytical formulas for the effective classical Hamiltonian
at zero temperature and the analytical dispersion relation, relating it to the
homogeneous results discussed in Sec. 1.2.3.

Finally, we consider two specific models for the dielectric environment
ε(x, z) in Sec. 2.2. First, we examine the simplest model, where the dielectric
environment is independent of z and characterized by constants εA and εB
above and below the 2D layer, respectively. This leads to an effective dielectric
function in the plasmon dispersion, which represents the average screening
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effects of the surrounding media. This simple model will be applied in the
subsequent chapter, Ch. 3, on scattering of plasmons. Second, we explore a
more complex model for layered materials, where a thin film with dielectric
constant εM and finite thickness d is sandwiched between two semi-infinite
layers with dielectric constants εA and εB. This model captures nonlocal
Coulomb screening from the substrate [34, 39, 40] and has been shown to
accurately describe electrons in materials like TMDCs [34, 35]. This more
sophisticated model will be utilized in Chs. 4 and 5 discussing plasmonic
waveguides and plasmonic crystals.

2.1.1 Separating in-plane and out-of-plane degrees of freedom
in the Poisson equation

As discussed in Sec. 1.3.2, we consider electrons that are confined to a two-
dimensional plane x = (x, y), whose dynamics are governed by the single-
electron Hamiltonian Ĥ0. We assume that this single-electron Hamiltonian has
the form Ĥ0 = p̂2/2m + U(x), where the potential U(x) in this Hamiltonian
can be related to a spatially varying electron density n(0)(x) using the Thomas-
Fermi approximation [2, 28, 58]. A natural way to obtain a spatially varying
n(0)(x) is by doping or combining different materials.

In equilibrium, the electrons have a certain distribution, that can be
described by the equilibrium density operator ρ̂0. When a weak perturbation
is applied to the system, this equilibrium distribution is modified. In turn,
this new electron distribution gives rise to a potential, which can be computed
through the Poisson equation. In this way, a system of equations arises,
which has to be solved self-consistently [1, 2, 50]. Within this framework,
the plasmons are the self-sustained oscillations that remain after the external
perturbation is switched off.

The induced density n(x) Eq. (1.60) in the layer at z = 0 gives rise
to an electrostatic potential Φ(x, z) through the Poisson equation. In two-
dimensional materials, the strength of this electrostatic potential is strongly
affected by the dielectric environment of the two-dimensional charge layer [1,
40], since this environment screens the Coulomb interaction between charges
at different positions. This screening becomes more important when the
distance between two charges increases, so it is especially important in the
limit of small q. We denote the dielectric environment of the surrounding
media by ε(x, z), explicitly indicating that it can vary in both the in-plane
and out-of-plane directions. The next step in the derivation, similar to the
homogeneous case discussed in Sec. 1.2.3, is relating the induced potential to
the induced density through the Poisson equation. As previously mentioned,
the electric field E is a three-dimensional quantity. The three-dimensional
potential V(x, z, t), which is related to the electric field by E = e−1∇V, satisfies
the Poisson equation

⟨∇, ε(x, z)∇⟩V(x, z) = −4πe2n(x, z), (2.1)
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where V(x, z) is related to the electrostatic potential by V = −eΦ, with e the
elementary charge, and the induced density equals n(x, z) = n(x)δ(z). In
Eq. (2.1), ∇ = (∂/∂x, ∂/∂z) denotes the three-dimensional gradient and ⟨a, b⟩
denotes the three-dimensional Cartesian inner product between the vectors
a and b. Note that we do not consider external electric fields in the Poisson
equation because we are interested in plasmons, which are self-sustained
collective oscillations.

Since we consider electrons that are confined to the plane z = 0, the
induced density can be written as

n(x, z, t) = n(x, t)δ(z), (2.2)

where n(x, t) only depends on the in-plane coordinates x, see also expres-
sion (1.60). We consider a setup where the plane z = 0 is encapsulated by
two arbitrary dielectric media. We allow the background dielectric constant
ε(x, z) to depend on both x and z. The latter occurs when we have different
dielectrics above and below the plane or even multiple layers of dielectrics. A
dependence on x can for instance originate from a combination of different
dielectrics below the plane [39, 40].

It is important to note that the Hartree potential Vpl(x) in the Hamiltonian
Eq. (1.47) is caused by the potential V(x, z) obtained from Eq. (2.1). In order
to ensure that our set of equations is self-consistent, we therefore impose the
additional condition [1]

V(x, z = 0) = Vpl(x). (2.3)

In other words, the full three-dimensional potential should be equal to the
in-plane potential (1.53), in the form of the semiclassical Ansatz, in the plane
z = 0. Note that this condition is not necessary in this form for a three-
dimensional electron density, since we automatically have V on both sides of
the Poisson equation in that case [50]. Since we consider a time-independent
Hamiltonian Ĥ0, the time dependence has the standard exponential form, see
also expression (1.50), and we omit it from here on.

At this point, one can proceed in two different ways. In the first approach,
we note that the self-consistency condition (2.3) implies that V(x, z) is pro-
portional to exp(iS(x)/h̄), as the semiclassical Ansatz Eq. (1.53). We may
therefore write down an Ansatz for V(x, z) as

V(x, z) = eiS(x)/h̄
(

V0(x, z) + h̄V1(x, z) +O(h̄2)
)

, (2.4)

and solve the Poisson equation order by order in h̄. However, this approach
mixes the separation of the in-plane and out-of-plane degrees of freedom with
the application of the semiclassical Ansatz.

A more elegant approach, in which these two steps are separated, can be
developed by modifying the operator separation of variables technique [56, 71].
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In its original formulation, this technique can be seen as a generalization of
the Born-Oppenheimer approximation [56]. It can be regarded as an adiabatic
approximation, and can therefore be used when there are two different length
scales. As noted in Ref. [1], the in-plane variables x can be regarded as “slow”
variables, since the system parameters do not change significantly on the
scale of the electron wavelength, as asserted by the semiclassical limit. The
out-of-plane variables z can, instead, be considered “fast” variables, since
the delta function causes a fast change in the out-of-plane coordinate z. The
method then separates the motion in these fast and slow variables order by
order in the small parameter h̄. In what follows, we proceed with this second
method. For completeness, we show the derivation of the first approach in
appendix A, derived with the method of undetermined coefficients.

In the original formulation of the Born-Oppenheimer approximation, one
employs an instantaneous eigenfunction that depends on the variables x and
z. As explained in Ref. [56], this formulation does not suffice when one deals
with a rapidly oscillating exponent (1.53). Instead, one has to consider a
slightly more complicated form for the potential V(x, z), namely [1]

V(x, z) = (Γ̂Vpl)(x, z), (2.5)

where Γ̂ is a pseudodifferential operator that transforms the in-plane potential
Vpl(x), which is independent of z, into the full three-dimensional potential
V(x, z). This Ansatz yields a generalized Born-Oppenheimer approximation,
in which the instantaneous eigenfunction is replaced by an operator. In the
traditional Born-Oppenheimer approximation, one would thus in this context
consider a function Γ(x, z), instead of an operator Γ̂. Here we have to use a
full pseudodifferential operator, since Vpl is a rapidly oscillating exponential,
as discussed in detail in Ref. [56].

Similar to σ(Π̂) (Eq. (1.61)), the symbol σ(Γ̂) has an asymptotic expansion
in powers of h̄, given by

σ
(
Γ̂
)
= Γ0(x, q, z) + h̄Γ1(x, q, z) +O(h̄2), (2.6)

cf. Eq. (1.56). Comparing these symbols, which depend on x, q and z, to the
instantaneous eigenfunctions in the original Born-Oppenheimer approach, we
may loosely say that the generalized form (2.5) adds the momentum variable
to the original Ansatz. As we see in section 2.1.2, this momentum variable
will be replaced by ∂S/∂x at the end of the calculation, similar to the WKB
approximation discussed in Sec. 1.3.1.

Inserting the Ansatz (2.5) into the Poisson Eq. (2.1), and taking the induced
density (1.60) and its confinement to the z = 0 plane (Eq. (2.2)) into account,
we obtain

(
F̂Γ̂ + 4πe2δ(z)Π̂

)
Vpl(x) = 0, (2.7)
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where F̂ ≡ ⟨∇, ε(x, z)∇⟩. Since we are looking for a plasmon, we require that
Vpl(x) ̸= 0. We therefore obtain an operator equation, to wit,

F̂Γ̂ + 4πe2δ(z)Π̂ = 0. (2.8)

In what follows, we solve this equation order by order in h̄.

To this end, we first compute the symbol of the operator F̂ in Eq. (2.8), tak-
ing only the slow variables into account [56]. In other words, we compute the
symbol using expression (1.55), leaving the variable z out of the consideration.
In this way, we obtain the operator-valued symbol

σ(F̂) = F0

(
x, q, z,

∂

∂z

)
+ h̄F1

(
x, q, z,

∂

∂z

)
+O(h̄2), (2.9)

where

F0

(
x, q, z,

∂

∂z

)
= − 1

h̄2 ε(x, z)|q|2 + ∂

∂z

(
ε(x, z)

∂

∂z

)
, (2.10)

and

F1

(
x, q, z,

∂

∂z

)
=

i
h̄2

〈
q,

∂ε

∂x
(x, z)

〉
. (2.11)

Note that the derivative with respect to z is included in the principal symbol.
Naively, one may say this is because the derivative gives rise to a factor 1/h̄, as
we will see shortly. More fundamentally, we previously observed that changes
in the out-of-plane coordinate z are fast, whereas changes in the in-plane
coordinates x are slow. When one introduces proper dimensionless units, as
we do in Sec. 2.1.5, one therefore sees that the combination h̄/z is of order
one, cf. the discussion in Ref. [56].

We can now compute the symbol for all terms in Eq. (2.8), using the
expression for the symbol of an operator product [49, 67], that is,

σ(âb̂) = σ(â)σ(b̂)− ih̄

〈
∂σ(â)

∂q
,

∂σ(b̂)
∂x

〉
+O(h̄2). (2.12)

Inserting the symbols of the Ansatz (2.5) into the Poisson equation (2.1) and
taking the induced electron density Eq. (1.60) into account, one can convert
the Poisson equation into two ordinary differential equations for the principal
and subprincipal symbols Γ0 and Γ1, respectively, of the operator Γ̂. The terms
of order h̄0 give

F0

(
x, q, z,

∂

∂z

)
Γ0(x, q, z) = −4πe2δ(z)Π0(x, q), (2.13)
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whilst the terms of order h̄1 give

F1

(
x, q, z,

∂

∂z

)
Γ0(x, q, z) + F0

(
x, q, z,

∂

∂z

)
Γ1(x, q, z)

− i
〈

∂F0

∂q

(
x, q, z,

∂

∂z

)
,

∂Γ0

∂x
(x, q, z)

〉

= −4πe2δ(z)Π1(x, q). (2.14)

These expressions constitute two linear ordinary differential equations (ODE’s)
(with variable z) for the principal symbol Γ0 and the subprincipal symbol Γ1.
Loosely speaking, one can think of the symbol σ(Γ̂)(x, q, z) as a generalization
of the instantaneous eigenfunction in the adiabatic approximation. As shown
by Eqs. (2.13), (2.14) and (2.5), the principal symbol Γ0 and subprincipal
symbol Γ1 express the z-dependence of the full potential for given values of x
and q. In the remainder of this section, we solve Eqs. (2.13) and (2.14) one by
one and thereby construct the symbol σ(Γ̂).

From the above considerations, we are ready to construct the effective
classical Hamiltonian, without explicitly calculating the symbol Γ0(x, q, z).
Inserting the semiclassical Ansatz (1.53) and the operator separation of vari-
ables equation (2.5) into the self-consistency condition (2.3), and taking the
lowest order, one finds the secular equation H0(x, ∂S/∂x)φ0(x) exp(iS/h̄) = 0,
where [1]

H0(x, q) = 1 − Γ0(x, q, z = 0). (2.15)

This secular equation is equivalent to the Hamilton-Jacobi equation
H0(x, ∂S/∂x) = 0 for the action S(x). This implies that H0 can be inter-
preted as the effective classical Hamiltonian that describes the dynamics of
quantum plasmons.

We summarize this subsection by saying that one obtains an effective
classical Hamiltonian for two-dimensional quantum plasmons by solving the
ordinary differential equation (2.13) and inserting the solution into Eq. (2.15).
In the next subsection, we study the structure of this ordinary differential
equation in detail, and construct the effective classical Hamiltonian H0(x, q)
for a general class of models for ε(x, z). In Sec. 2.1.3, we solve the second
ordinary differential equation (2.14) in order to derive the transport equation,
and an explicit expression for the first order of the three-dimensional induced
potential Eq. (2.4).
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Γ1(x, q, z)

− i
〈

∂F0

∂q

(
x, q, z,

∂

∂z

)
,

∂Γ0

∂x
(x, q, z)

〉

= −4πe2δ(z)Π1(x, q). (2.14)

These expressions constitute two linear ordinary differential equations (ODE’s)
(with variable z) for the principal symbol Γ0 and the subprincipal symbol Γ1.
Loosely speaking, one can think of the symbol σ(Γ̂)(x, q, z) as a generalization
of the instantaneous eigenfunction in the adiabatic approximation. As shown
by Eqs. (2.13), (2.14) and (2.5), the principal symbol Γ0 and subprincipal
symbol Γ1 express the z-dependence of the full potential for given values of x
and q. In the remainder of this section, we solve Eqs. (2.13) and (2.14) one by
one and thereby construct the symbol σ(Γ̂).

From the above considerations, we are ready to construct the effective
classical Hamiltonian, without explicitly calculating the symbol Γ0(x, q, z).
Inserting the semiclassical Ansatz (1.53) and the operator separation of vari-
ables equation (2.5) into the self-consistency condition (2.3), and taking the
lowest order, one finds the secular equation H0(x, ∂S/∂x)φ0(x) exp(iS/h̄) = 0,
where [1]

H0(x, q) = 1 − Γ0(x, q, z = 0). (2.15)

This secular equation is equivalent to the Hamilton-Jacobi equation
H0(x, ∂S/∂x) = 0 for the action S(x). This implies that H0 can be inter-
preted as the effective classical Hamiltonian that describes the dynamics of
quantum plasmons.

We summarize this subsection by saying that one obtains an effective
classical Hamiltonian for two-dimensional quantum plasmons by solving the
ordinary differential equation (2.13) and inserting the solution into Eq. (2.15).
In the next subsection, we study the structure of this ordinary differential
equation in detail, and construct the effective classical Hamiltonian H0(x, q)
for a general class of models for ε(x, z). In Sec. 2.1.3, we solve the second
ordinary differential equation (2.14) in order to derive the transport equation,
and an explicit expression for the first order of the three-dimensional induced
potential Eq. (2.4).
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2.1.2 General construction of the effective classical Hamiltonian

For an explicit expression of the effective classical Hamiltonian Eq. (2.15), we
solve the ordinary differential equation (2.13) with the method of variation of
parameters [72]. Let us therefore first consider the fundamental solutions of
the homogeneous differential equation, i.e.,

(
∂

∂z

(
ε(x, z)

∂

∂z

)
− 1

h̄2 ε(x, z)|q|2
)

wH(z) = 0. (2.16)

This equation has two solutions, which we denote by w1 and w2, and whose
specific form depends on the form of ε(x, z). In order to make some progress,
we assert that ε(x, z) goes to a constant as z → ±∞. This condition is physi-
cally very intuitive, and does not limit the practical applicability of our theory,
since it does not dictate the precise shape of ε(x, z). Because of our assertion,
the fundamental solutions w1,2 are asymptotically equivalent to a linear com-
bination of the functions exp(±|q|z/h̄) in the limit z → ±∞, as follows from
Eq. (2.16). By making use of the freedom in our choice of the asymptotic
solutions, we can then construct them in such a way that w1 → 0 as z → ∞,
and w2 → 0 as z → −∞.

The solution of the inhomogeneous differential equation (2.13) can subse-
quently be expressed as [72]

Γ0(z) = c1(z)w1(z) + c2(z)w2(z). (2.17)

We find the functions c1(z) and c2(z) by inserting Eq. (2.17) into the inhomo-
geneous differential equation. Using standard arguments from the method of
variation of parameters [72], we then find a set of two differential equations,
which can be combined into

WT

(
dc1
dz
dc2
dz

)
=

(
0

f (z)

)
, (2.18)

where W resembles the Wronskian matrix, and is given by

W =

(
w1 ε dw1

dz
w2 ε dw2

dz

)
. (2.19)

The function f (z) = −4πe2Π0δ(z) corresponds to the inhomogeneous term
in Eq. (2.13). Because of the homogeneous differential equation (2.16), the
derivative of the determinant det(W) with respect to z vanishes, which means
that det(W) is constant. Moreover, det(W) is non-zero when the fundamen-
tal solutions w1,2 are linearly independent, meaning that the matrix W is
invertible.
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On physical grounds, we require that the potential V(x, z), see Eqs. (2.1)
and (2.5), goes to zero as z → ±∞. In turn, this implies that Γ0 → 0 as
z → ±∞. Because of the way in which we constructed w1,2(z), this condition
implies that c1 → 0 as z → −∞ and c2 → 0 as z → ∞. We may therefore write

 z

−∞

dc1

dz′
dz′ = c1(z)− c1(−∞) = c1(z),

 ∞

z

dc2

dz′
dz′ = c2(∞)− c2(z) = −c2(z).

(2.20)

Rewriting the solution (2.17) for Γ0(z) using Eq. (2.20), and inserting expres-
sions for the derivatives obtained from Eq. (2.18), we obtain, cf. Ref. [72],

Γ0(z) =
 z

−∞

dc1

dz′
dz′


w1(z)−

 ∞

z

dc2

dz′
dz′


w2(z)

=
 ∞

−∞
g(z, z′) f (z′)dz′, (2.21)

where

g(z, z′) =


− 1

detW w2(z′)w1(z), −∞ < z′ < z
− 1

detW w1(z′)w2(z), z < z′ < ∞
. (2.22)

The function g(z, z′) is, of course, a Green’s function.

Inserting our expression for the inhomogeneous term f (z)=−4πe2Π0δ(z),
we now easily find that

Γ0(z) =




2πe2 h̄
εeff|q|

Π0
w1(z)
w1(0)

, z > 0
2πe2 h̄
εeff|q|

Π0
w2(z)
w2(0)

, z < 0
, (2.23)

where we defined an effective dielectric function εeff as

εeff =
h̄

2|q|
detW

w1(0)w2(0)
, (2.24)

which captures the three-dimensional screening from the environment. Using
the definition of W, this expression can also be written as

εeff =
h̄

2|q| ε(0)


1
w2(0)

dw2

dz
(0)− 1

w1(0)
dw1

dz
(0)


. (2.25)

This dielectric function should not be confused with the longitudinal Lindhard
(dielectric) function, which describes the dynamical screening of the electric
field by electrons in the 2D electron gas. Instead, that dynamical screening is
incorporated into our theory through the effective classical Hamiltonian, which
we obtain by substituting the expression for Γ0(z) into the self-consistency
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condition Eq. (2.3). This yields

H0(x, q) = 1 − 2πe2h̄
εeff(x, q)|q|Π0(x, q), (2.26)

where we now explicitly indicated the dependence on x and q. The Hamilton-
Jacobi equation then reads H0 (x, ∂S/∂x) = 0.

At first glance, one may think that we have incorrectly matched the
different orders of h̄ in this expression, since Γ0 contains a factor of h̄. As
we explain in detail in Sec. 2.1.5, this is however not the case. In short, the
apparent contradiction can be resolved by noting that we should actually
perform our semiclassical expansion using a dimensionless parameter, instead
of h̄. Introducing this dimensionless expansion parameter, one can show
that Γ0 is of order one. Alternatively, one may refer to the analogy with the
homogeneous case, which was discussed in Sec. 1.2.3 and which implies that
the terms in Eq. (2.26) are of the same order.

It is important to note that this classical Hamiltonian strongly resembles
the Lindhard expression for the dielectric function of homogeneous two-
dimensional materials Eq. (1.30), with two main differences. First of all, it
includes a dependence on the coordinate x, whereas the homogeneous dielec-
tric function only depends on q. The classical Hamiltonian H0 is therefore
a function on classical phase space, rather than a function of the plasmon
momentum only. As we discussed below Eq. (1.62), the position dependence
of the polarization amounts to the replacement of the Fermi momentum by
the local Fermi momentum pF(x). The second difference between the two-
dimensional dielectric function and the effective Hamiltonian H0 is a factor of
εeff, since the former should evaluate to εeff in the absence of a polarization.

To avoid misunderstanding, we again emphasize that H0 is not a classical
Hamiltonian in the traditional sense, since it does not describe a classical
plasma, as we just established. Instead, we use H0 to calculate the classical tra-
jectories which form the basis for the construction of our asymptotic solution,
as we discussed in the previous chapter. This process is analogous to the way
in which one adds interference to the rays in geometrical optics. Although
we do not consider it explicitly in this article, we remark that we can still
make the transition to a classical plasma in the traditional sense by making
two changes in expression (1.62) for the polarization. First, we should re-
place the Fermi-Dirac distribution by the Maxwell-Boltzmann distribution, or,
equivalently, consider the regime where the temperature is much larger than
the chemical potential. Second, we should only keep the linear term in the
expansion of the denominator, that is, H0(x, p)− H0(x, p + q) ≈ −⟨p, q⟩/m.
Unfortunately, this transition to a classical plasma leads to practical issues
with Landau damping, cf. the discussion in Ref. [50].

Let us take a step back and reflect on the physical implications of this
result. Equation (2.26) shows that we can capture the effect of any dielectric
environment by a single effective dielectric function εeff(x, q) in the effective
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classical Hamiltonian. This is an important generalization of Ref. [1], where
this effective dielectric function was only computed for the simplest model
of the dielectric environment. Here, we have instead considered an arbitrary
shape of ε(x, z), only imposing the condition that it becomes constant as
z → ±∞. Moreover, we have expressed the effective dielectric function
in terms of the value of the fundamental solutions to the homogeneous
differential equation (2.16) at the point z = 0, which makes our result easily
applicable to different dielectric environments.

We note that the specific model that is commonly used for layered struc-
tures with an encapsulated thin film with finite thickness d also leads to an
effective dielectric function εeff in the Lindhard function [34, 40, 70]. As we
already discussed, the effective classical Hamiltonian can be viewed as, and
takes the form of, the Lindhard function with position-dependent parameters.
The result (2.26) may therefore seem somewhat straightforward. However,
we would like to stress two key findings. First of all, it does not depend on
the specific model that is used. In some sense, one may therefore say that
expression (2.26), and more specifically Eq. (2.25) also extends the known
results for the homogeneous case. Second, our result is not just valid for the
homogeneous case, but also, and especially, for the inhomogeneous case, as
long as λel/ℓ ≪ 1 as discussed in the introduction.

The Hamilton-Jacobi equation determines the action S(x) in our Ansatz
for the induced potential Vpl(x). As is well known from classical mechanics [73,
74], this Hamilton-Jacobi equation is equivalent to the system of Hamilton
equations for the effective classical Hamiltonian H0, i.e.,

dx
dτ

=
∂H0

∂q
,

dq
dτ

= −∂H0

∂x
. (2.27)

Of course, suitable initial conditions have to be specified, which we discuss
in more detail in Ch. 3. For now, let us assume that these conditions can be
parameterized by α and constitute a line, Λ1. In a typical scattering setup, the
parameter α corresponds to the coordinate along the initial wavefront. Under
these assumptions, we can denote the solutions of Hamilton’s equations by
(X(τ, α), Q(τ, α)). Together, these solutions describe a two-dimensional plane
Λ2 in classical phase space, parameterized by (τ, α), which is known as a
Lagrangian manifold [48, 55]. In general, open trajectories in phase space
correspond to plasmon scattering (Ch. 3). Closed trajectories, on the other
hand, correspond to bound states and plasmon quantization. We consider
these bound states in detail in Ch. 4, in which we also analyze the classical
Hamiltonian (2.26). The classical action can be written as

S(x) =
∫ x

x0

⟨Q, dX⟩ , (2.28)

where we integrate from an initial point x0 to the point x. In passing from the
Hamilton-Jacobi equation to Hamilton’s equations, we have lifted the problem

48



Chapter 2 Plasmons in arbitrary dielectric environment

classical Hamiltonian. This is an important generalization of Ref. [1], where
this effective dielectric function was only computed for the simplest model
of the dielectric environment. Here, we have instead considered an arbitrary
shape of ε(x, z), only imposing the condition that it becomes constant as
z → ±∞. Moreover, we have expressed the effective dielectric function
in terms of the value of the fundamental solutions to the homogeneous
differential equation (2.16) at the point z = 0, which makes our result easily
applicable to different dielectric environments.

We note that the specific model that is commonly used for layered struc-
tures with an encapsulated thin film with finite thickness d also leads to an
effective dielectric function εeff in the Lindhard function [34, 40, 70]. As we
already discussed, the effective classical Hamiltonian can be viewed as, and
takes the form of, the Lindhard function with position-dependent parameters.
The result (2.26) may therefore seem somewhat straightforward. However,
we would like to stress two key findings. First of all, it does not depend on
the specific model that is used. In some sense, one may therefore say that
expression (2.26), and more specifically Eq. (2.25) also extends the known
results for the homogeneous case. Second, our result is not just valid for the
homogeneous case, but also, and especially, for the inhomogeneous case, as
long as λel/ℓ ≪ 1 as discussed in the introduction.

The Hamilton-Jacobi equation determines the action S(x) in our Ansatz
for the induced potential Vpl(x). As is well known from classical mechanics [73,
74], this Hamilton-Jacobi equation is equivalent to the system of Hamilton
equations for the effective classical Hamiltonian H0, i.e.,

dx
dτ

=
∂H0

∂q
,

dq
dτ

= −∂H0

∂x
. (2.27)

Of course, suitable initial conditions have to be specified, which we discuss
in more detail in Ch. 3. For now, let us assume that these conditions can be
parameterized by α and constitute a line, Λ1. In a typical scattering setup, the
parameter α corresponds to the coordinate along the initial wavefront. Under
these assumptions, we can denote the solutions of Hamilton’s equations by
(X(τ, α), Q(τ, α)). Together, these solutions describe a two-dimensional plane
Λ2 in classical phase space, parameterized by (τ, α), which is known as a
Lagrangian manifold [48, 55]. In general, open trajectories in phase space
correspond to plasmon scattering (Ch. 3). Closed trajectories, on the other
hand, correspond to bound states and plasmon quantization. We consider
these bound states in detail in Ch. 4, in which we also analyze the classical
Hamiltonian (2.26). The classical action can be written as

S(x) =
∫ x

x0

⟨Q, dX⟩ , (2.28)

where we integrate from an initial point x0 to the point x. In passing from the
Hamilton-Jacobi equation to Hamilton’s equations, we have lifted the problem

48

2.1. Effective description of plasmons in 2D systems with arbitrary dielectric environments

from configuration space, on which we deal with the coordinate x, to phase
space, which involves the coordinates (x, q). The projection of the Lagrangian
manifold Λ2 onto the configuration space is (locally) invertible, as long as the
Jacobian

J(x) = det
(

∂X
∂(τ, α)

)
(2.29)

is not equal to zero [48, 75, 76]. As we have seen in Sec. 1.3.1, this Jaco-
bian plays an important role in the construction of the amplitude, which is
discussed in the next section.

2.1.3 General construction of the induced potential

In the previous subsections, we discussed the derivation of the classical Hamil-
tonian H0. While performing this derivation, we also found the defining
equation for the classical action S(x) in the Ansatz (1.53) for the Hartree po-
tential, namely the Hamilton-Jacobi equation. In this subsection, we consider
the amplitude φ0 in the Ansatz (1.53).

In the final step of the derivation of the classical Hamiltonian in Sec. 2.1.1,
we inserted both the Ansatz (1.53) and expression (2.5) into the self-consistency
condition (2.3). Gathering the terms of order h̄0 one finds that the amplitude
φ0 drops out, in the resulting Hamilton-Jacobi equation (cf. Eq. (2.15)). In
order to obtain an equation for this amplitude, we should therefore consider
the terms of order h̄1 in the self-consistency condition. All terms of the
operator separations of variables equation (2.5) up to order h̄1 are given by

(Γ̂Vpl)(x, z) = eiS(x)/h̄

(
Γ0 φ0 + h̄Γ0 φ1 − ih̄

〈
∂Γ0

∂q
,

∂φ0

∂x

〉

+ h̄Γ1 φ0 −
ih̄
2 ∑

j,k

∂2Γ0

∂qj∂qk

∂2S
∂xj∂xk

φ0

)
+O(h̄2), (2.30)

where Γ0 and Γ1 are to be evaluated at the point (x, ∂S/∂x, z). Although
we did not determine the quantity Γ1 yet, we continue with this expression.
We come back to the defining equations for Γ1, also called the subprincipal
symbol, at the end of this subsection.

Gathering all terms of order h̄1 in the self-consistency condition (2.3)
with the help of Eq. (2.30), and using our previous definition of the effective
classical Hamiltonian (2.15), we find that [1]

H1

(
x,

∂S
∂x

)
φ0 − i

〈
∂H0

∂q

(
x,

∂S
∂x

)
,

∂φ0

∂x

〉

− i
2 ∑

j,k

∂2H0

∂qj∂qk

(
x,

∂S
∂x

)
∂2S

∂xk∂xj
φ0 = 0, (2.31)
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where we defined H1 ≡ −Γ1(x, ∂S/∂x, z = 0). This equation is known in the
literature [1, 48] as the transport equation.

We now show how to solve the transport equation using standard semi-
classical techniques, which gives us the amplitude φ0(x). First, we look at
the time evolution of the Jacobian (2.29), which can be determined using the
Liouville formula [1, 48, 50]

d
dt

log J = ∑
j,k

∂2H0

∂qj∂qk

∂2S
∂xj∂xk

+ ∑
j

∂2H0

∂xj∂qj
. (2.32)

Second, we use that the time evolution of the amplitude φ0 along the trajecto-
ries of the Hamiltonian system (2.27) is given by

dφ0

dt
=

〈
∂x
∂t

,
∂φ0

∂x

〉
=

〈
∂H0

∂q
,

∂φ0

∂x

〉
. (2.33)

Substitution of Eq. (2.32) and Eq. (2.33) in the transport equation (2.31) yields

dφ0

dt
= −iH1 φ0 −

1
2

(
d
dt

log J − ∑
j

∂2H0

∂xj∂qj

)
φ0. (2.34)

We now define the quantity A0(x) by A0(x) ≡ φ0(x)
√

J(x), which transforms
the above equation in an ordinary differential equation for A0(x) along the
trajectories of the dynamical system, namely

dA0

dt
+ i

(
H1 +

i
2 ∑

j

∂2H0

∂xj∂qj

)
A0 = 0, (2.35)

which has the straightforward solution

A0(x) = A0
0 exp

(
− i

∫ t

0
H1 +

i
2 ∑

j

∂2H0

∂xj∂qj
dt′

)
. (2.36)

The integral in this expression is to be performed along the trajectories of
the Hamiltonian system. Note that, strictly speaking, the above derivation
is only valid when there is a one-to-one mapping of the trajectories onto
configuration space x, that is, in the absence of turning points. However, as
argued in Refs. [1, 50], one can incorporate the presence of turning points in
the description by introducing the Maslov index. We come back to this point
in greater detail in Ch. 4.

Equation (2.36) gives us the solution for the amplitude φ0(x)=A0(x)/
√

J(x)
in expression (1.53). However, as we already mentioned in the beginning
of this subsection, this solution contains the so far undetermined quantity
H1(x, q) = −Γ1(x, q, z = 0). Therefore, we consider the second differential
equation, given by Eq. (2.14), to find a solution for this quantity. The quan-
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tity Π1 in Eq. (2.14) is the so-called subprincipal symbol of the polarization
operator. Since Π̂ is a Hermitian operator, the following relation between the
principal and the subprincipal symbol always holds [49, 50]:

Im Π1(x, q) = −1
2 ∑

j

∂Π0

∂qj∂xj
(x, q). (2.37)

In the specific case that we consider in this thesis, where the electron Hamilto-
nian takes the form Ĥ = p̂2/2m +U(x), we have an even simpler relation [50],
namely

Π1(x, q) = − i
2 ∑

j

∂Π0

∂qj∂xj
(x, q). (2.38)

In the remainder of this chapter, we assume that Eq. (2.38) holds. At the same
time, we briefly explore the consequences of the relation (2.37), which is more
general and also holds for other electron Hamiltonians. For a more detailed
discussion on the background of Π1, we refer to Ref. [50].

So far, we reviewed the derivation of the amplitude φ0 and found that this
amplitude contains the quantity H1 = −Γ1(z = 0). In turn, the quantity Γ1 is
the solution of the ordinary differential equation (2.14). Next, we construct
an expression for Γ1 using variation of parameters, in the same way as we
constructed an expression for Γ0 in Sec. 2.1.2. As before, this solution general-
izes the discussion in Ref. [1], where Γ1 was only constructed for the simplest
case using the method of undetermined coefficients, in which the dielectric
environment does not depend on z. Here, we consider an arbitrary ε(x, z),
only assuming that it becomes constant as z → ±∞. With our expression
for Γ1, we subsequently compute the amplitude φ0 according to the theory
reviewed in the previous section. We finally show that the electromagnetic
energy density computed with the potential V(x, z) can be interpreted as a
probability density in the semiclassical sense, again generalizing the results
from Ref. [1].

Let us therefore consider the differential equation (2.14). We first note that
the only difference between the differential equations for Γ0 and Γ1, Eqs. (2.13)
and (2.14), is the inhomogeneous term. The homogeneous differential equa-
tions are exactly the same. We can therefore use our previous fundamental
solutions w1(z) and w2(z) to construct an expression for Γ1. Let us denote the
inhomogeneous term in Eq. (2.14) by

f1(z) = f1s(z)− 4πe2Π1δ(z), (2.39)

where we omitted the dependence on (x, q) and

f1s(z) = −F1(z)Γ0(z) + i
〈

∂F0

∂q

(
z,

∂

∂z

)
,

∂Γ0

∂x
(z)

〉
. (2.40)
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Drawing on the discussion in Sec. 2.1.2, we can then write

Γ1(z) =
∫ ∞

−∞
g(z, z′) f1(z′)dz′, (2.41)

cf. Eq. (2.21), where g(z, z′) is given by Eq. (2.22).

We now note that we are not interested in the full expression for Γ1, but
only in its value at z = 0, since this value enters the amplitude (2.36) through
H1 = −Γ1(z = 0). We can compute this value by performing the integration
in Eq. (2.41). This integration is straightforward for the part with the delta
function, but more involved for f1s, which also contains our expression (2.23)
for Γ0. Nevertheless, the integral can be calculated explicitly, using integration
by parts, as we show in appendix C.1.

The final result can be cast in the form

H1 +
i
2 ∑

j

∂2H0

∂xj∂qj
= −2πe2h̄

εeff|q|

(
Π1 +

i
2 ∑

j

∂2Π0

∂xj∂qj

)

− i
2
{ln εeff|q|,H0} , (2.42)

where {a,H0} denotes the Poisson bracket, defined in Eq. (C.22), of a and
the effective Hamiltonian H0. We note that we are free to add a function
g(H0(x, q)) to the first argument of the Poisson bracket for Eq. (2.42) to still be
true. However, this does not influence the final result, since we are constrained
to level set H0 = 0 by the Hamilton-Jacobi equation. Because of Hamilton’s
equations, this Poisson bracket can be written as a total derivative with respect
to time [73, 74]. This greatly simplifies the integration in the expression (2.36)
for the amplitude, cf. the discussion in Ref. [1], and leads to

A0(x) =
A0

0√
εeff(x, ∂S/∂x)|∂S/∂x|

eiΦB(x), (2.43)

where q has become ∂S/∂x in the denominator because we integrate along
the trajectories of the Hamiltonian system. The quantity ΦB in Eq. (2.43) is the
Berry phase, defined by

ΦB(x) =
∫ t

0

2πe2h̄√
εeff|q|

(
Π1 +

i
2 ∑

j

∂2Π0

∂qj∂xj

)
dt. (2.44)

Because of Eq. (2.38), the Berry phase is zero for a parabolic electron Hamilto-
nian H0 = p̂2/(2m) + U(x). However, for more complicated electron Hamil-
tonians the term in parentheses need not be zero. Nevertheless, Eq. (2.37)
indicates that Eq. (2.44) is purely real and therefore indeed a phase.

With the help of the operator separation of variables equation (2.5) and
the semiclassical Ansatz (1.53), we now obtain the leading-order term of the
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full potential V(x, z) = Γ̂Vpl, namely

V(x, z) = φ0(x)Γ0

(
x,

∂S
∂x

, z
)

eiS(x)/h̄ (2.45)

=
A0

0eiΦB(x)eiS(x)/h̄
√

J(x)εeff(x, ∂S/∂x)|∂S/∂x|
Γ0

(
x,

∂S
∂x

, z
)

, (2.46)

where Γ0 is given by Eq. (2.23). As discussed in Sec. 2.1.2, the action S(x)
in this expression can be calculated from the Hamilton-Jacobi equation, or,
equivalently, from integrating Hamilton’s equations. We have thus found
an expression for the full potential in real space, which is not only valid at
z = 0, where the charged layer is situated, but also outside of it. It is valid for
arbitrary ε(x, z), provided that this function goes to a constant as z → ±∞.
Note that this assumption ensures that the potential decays exponentially for
z → ±∞.

We immediately see that the asymptotic solution (2.46) diverges at the
points where J(x) = 0. In a one-dimensional setting, these divergences are the
so-called classical turning points, and Eq. (2.46) cannot be used in their vicinity.
This general fact is well known for the one-dimensional WKB approximation
for the Schrödinger equation, as discussed in Sec. 1.3.1 [61], where J(x) ∝ k(x).
In the vicinity of the turning points, one normally constructs an approximate
solution in terms of Airy functions [48, 61], see also the discussion in Ref. [50].
The additional factor (εavg|∂S/∂x|)−1/2, on the other hand, is not commonly
present in WKB-type approximations. In the next section, we give a physical
interpretation to it with the help of the energy density of electromagnetic
fields.

2.1.4 Interpretation through the energy density

Let us take a closer look at the physical interpretation to Eq. (2.46). We first
note that Eq. (2.46) differs from semiclassical approximations to the solution
of the Schrödinger equation, which have the form ψ = A0

0 exp(iS/h̄)/
√

J, as
discussed in Sec. 1.3.1. The Jacobian J ensures that the expression for the
probability to find a particle in a certain region γ takes the same form in
all coordinate systems, namely

∫
γ dx/|J|. In the context of the Schrödinger

equation, the Jacobian therefore ensures the invariance of the probability
integral

∫
γ dx/|J| under coordinate changes, reflecting the concept of a half-

density [55, 67], which ensures that probability density |ψ|2 ∝ 1/|J| remains
invariant under coordinate transformations. Clearly, Eq. (2.46) cannot be
interpreted in the same way, since V is a different quantity: it is not a solution
to the Schrödinger equation. Instead, it is related to an electrostatic potential Φ
through V = −eΦ. We may therefore consider the energy density stored in the
electromagnetic field coming from the potential V(x, z). In Ref. [1], this energy
density was computed for the case where the background dielectric does not
depend on z. It was shown that the electromagnetic energy density, when
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integrated along z, is proportional to 1/|J|, that is, has the same mathematical
structure as |ψ|2 for the Schrödinger equation. This means that the integrated
energy density indeed behaves as a density, and provides an additional
physical interpretation of the potential V(x, z). Let us check whether the same
conclusion holds for an arbitrary ε(x, z).

Since V(x, z, t) is a potential that corresponds to an electric field, we
cannot use the interpretation in terms of probabilities for our plasmons. If
we want to consider an equivalent quantity, we should look at the energy
density of the electromagnetic field, which can be derived from Poynting’s
theorem [25, 77]. For a complex electric field E and displacement field D, one
has

−∇ · S =
1

16π

(
E · ∂D∗

∂t
+ E∗ · ∂D

∂t

)
, (2.47)

where S is the Poynting vector. Note that we omitted the terms associated
with the magnetic field, since they do not play a role in our problem. Moreover,
we left out the terms proportional to E ·D and E∗ ·D∗, since they become
zero after averaging over time. The energy density U is obtained [25, 77] by
writing the right-hand side as a time derivative ∂U/∂t.

In our problem, the energy density U (x, z) depends on both the in-plane
and out-of-plane coordinates. In order to study the dependence on the in-
plane coordinate x, we integrate over z. We obtain the leading-order term of
the electric field in Eq. (2.47) using E = e−1∇V, where V is given by Eq. (2.46).
We have to be more careful for the displacement field, since the dielectric
function changes as a function of z. However, above and below the plane
z = 0, we have a dielectric environment without dispersion, characterized by
real and positive dielectric constants. Consequently, the displacement field is
there simply given by D(x, z) = ε(x, z)E(x, z). The displacement field in the
plane z = 0 is, however, much more complicated. Not only is there dispersion,
but the dielectric function is also an operator. In appendix B, we derive a
general formula for the energy density in this plane and show that it is in our
case generally zero. The principal reason for this is that we are dealing with
an infinitesimal layer.

Now that we have obtained both the electric and displacement fields in
terms of the induced potential for the regions above and below the plane, we
turn back to Eq. (2.47). Taking out the time derivative on the right-hand side,
we find that the energy density is given by

U (x, z) =
ε(x, z)
16π

E(x, z) · E∗(x, z) =
ε(x, z)
16πe2 |∇V(x, z)|2 (2.48)

where the gradient is three-dimensional, meaning that one should take the
derivative with respect to both x and z. The leading-order term of the gradient
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of the induced potential (2.46) reads

∇V =
A0

0 ei(S(x)−Et)/h̄

√
J
√

εeff

∣∣∣ ∂S
∂x

∣∣∣
e−

|z|
h̄ | ∂S

∂x |
(

i
h̄

∂S
∂x

,−1
h̄

∣∣∣∣
∂S
∂x

∣∣∣∣
)

, (2.49)

where the quantity in parentheses should be interpreted as a vector in the
space (x, z). We remark that the term proportional to |z|/h̄, coming from the
derivative of the exponential factor with respect to x is not of leading order.
As we discuss in the next subsection, the combination z/h̄ is of order one
when we introduce proper dimensionless units, see also Sec. 2.1.5.

In appendix C.2, we compute the leading-order term of the energy den-
sity (2.48) for the potential (2.46) and show that it satisfies

UI(x) =
∫ ∞

−∞
U (x, z)dz =

1
8πe2

|A0
0|2

|J(x)| . (2.50)

We observe that this expression does not depend on the momentum |∂S/∂x|,
and is also independent of the various ε. In fact, it is proportional to 1/|J|,
just as the probability density for the Schrödinger equation. We can therefore
interpret the additional factor (εavg|∂S/∂x|)−1/2 in V(x, z, t) as follows: it
ensures that the energy density has the correct mathematical structure of a
density [55, 67] discussed at the beginning of this section. This result provides
an additional physical interpretation of the potential V(x, z).

2.1.5 Dimensionless parameters and applicability of the
semiclassical approximation

So far, we have constructed our semiclassical theory for plasmons in inho-
mogeneous media as a power series in h̄. However, since h̄ is a constant, it
is, strictly speaking, not possible to use it as a small parameter in the series
expansion. The main reason for this is that it is unclear with respect to which
other quantity it should be small. This led to the apparent contradiction in the
result of Sec. 2.1.2, namely the effective classical Hamiltonian (2.26), where we
combined terms with different powers of h̄ in H0. In order to resolve these
issues, we should identify the correct dimensionless semiclassical parameter
for the series expansion. In this section, we consider the characteristic scales
in the problem, and define dimensionless quantities. We also discuss the
applicability regime of the semiclassical approximation.

We start by identifying the characteristic length scales involved. Since
we consider an inhomogeneous medium, the first scale is the characteristic
length ℓ over which the inhomogeneity changes. The second length scale
is the electron wavelength λel, since plasmons are collective excitations of
electrons. It is given by λel = 2πh̄/p0, where p0 is a typical value of the Fermi
momentum in the system, cf. Eq. (1.49). Our semiclassical theory is applicable
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when λel ≪ ℓ, which implies that the potential is locally almost homoge-
neous for the electrons [48, 50, 61]. We therefore introduce the dimensionless
semiclassical parameter h, given by

h =
h̄

p0ℓ
=

1
2π

λel
ℓ

. (2.51)

The applicability criterion is then given by h ≪ 1.

The third length scale is the Thomas-Fermi screening length [28, 33]. It
characterizes the screening of the electric field of an electron by other electrons,
and is given by λTF = h̄2εc/2gsme2, where εc is a typical value of the effective
background dielectric function εeff(x). Our second applicability criterion is
that the characteristic length ℓ is much larger than this screening length [50].
We therefore define a second dimensionless parameter κ, given by

κ =
λTF

ℓ
. (2.52)

We also require that κ ≪ 1.

Now that we have identified the characteristic length scales, we introduce
the dimensionless coordinates x̃ = x/ℓ, and momenta q̃ = |q|/p0. Moreover,
we also define the dimensionless Fermi momentum p̃F(x̃) = pF(x)/p0, back-
ground dielectric constant ε̃(x̃) = εeff(x)/εc, and energy Ẽ = 2mE/p2

0. We
substitute the dimensionless parameters in our effective Hamiltonian Eq. (2.26),
and calculate the integral of the polarization at zero temperature analogously
to the homogeneous case in Sec. 1.2.3 [28]. This yields the dimensionless
effective Hamiltonian

H̃0(x̃, q̃) = 1 − h
2ε̃κ

p̃F

q̃2

(
− q̃

p̃F
− sign (Re(ν̃−))

√
ν̃2
− − 1

+ sign (Re(ν̃+))
√

ν̃2
+ − 1

)
, (2.53)

where ν̃± = Ẽ/2q̃ p̃F ± q̃/2p̃F, Looking at the analytic result of the polariza-
tion Eq. (1.33) in the homogeneous case, we see that the effective classical
Hamiltonian is the same as the Lindhard dielectric function (1.30), but with
spatially varying parameters. Furthermore, comparing this expression to
Eq. (2.26), we see that it contains the ratio of the two small parameters h and κ.
In contrast to the parameters themselves, this ratio is typically not small. This
resolves the apparent contradiction, encountered in Sec. 2.1.2, regarding the
different orders of h̄. In Ch. 3, we calculate the ratio h/κ and show that it is of
order one for the systems we consider. Note that the above parameters are in
Gaussian units. We can convert them to S.I. units, by making the substitution
e2 → e2/4πε0.

So far, we only discussed the length scales related to the in-plane coor-
dinates x, which we called the slow variables in Sec. 2.1.1. It does not seem
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0. We
substitute the dimensionless parameters in our effective Hamiltonian Eq. (2.26),
and calculate the integral of the polarization at zero temperature analogously
to the homogeneous case in Sec. 1.2.3 [28]. This yields the dimensionless
effective Hamiltonian

H̃0(x̃, q̃) = 1 − h
2ε̃κ

p̃F

q̃2

(
− q̃

p̃F
− sign (Re(ν̃−))

√
ν̃2
− − 1

+ sign (Re(ν̃+))
√

ν̃2
+ − 1

)
, (2.53)
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very sensible to make the out-of-plane coordinate z, previously called the
fast variable, dimensionless using the length scale ℓ. After all, changes in the
electron density n(x, z) happen over a characteristic length ℓz, which is much
smaller than ℓ, as we discussed in the introduction. In our setup, one may
even say that this length scale is infinitely small, since we are considering a
delta function. However, in a more realistic setup, ℓz would correspond to
the thickness of the two-dimensional electron gas, cf. Refs. [34, 78]. When
introducing dimensionless units, we have to look at the combination h̄/(p0z),
cf. Eq. (2.10) and Sec. 2.1.1. Rewriting this quotient as h̄/(p0ℓz) · ℓz/z, we
see that both terms in the latter expression are of order one. In particular,
the dimensionless parameter h̄/(p0ℓz) is not small, because ℓz ≪ ℓ. This is
the reason why we included the derivatives with respect to z in the principal
symbol in Sec. 2.1.1, and also why we used the ratio z/h̄ in our Ansatz for Γ1.
Using the dimensionless quantities that we defined in this section, one can
show that our semiclassical approximation is an asymptotic series expansion
in powers of the dimensionless semiclassical parameter h, cf. the discussion in
Ref. [50].

We end this subsection with a short analysis of the semiclassical parameter
h, to get a better understanding for which electron densities the theory is
applicable. Since the criterion for h reads h = h̄/p0ℓ ≪ 1, we can consider
for which numerical values we have h = 0.1. As mentioned before, the
parameter p0 is directly related to the electron density by Eq. (1.49). We
readily see that for a typical metal with electron density n = 1014 cm−2,
we have h = 0.1 for a characteristic length of ℓ = 4 nm. When we go to
smaller densities, and for example consider a typical semiconductor with
electron density around n = 1011 cm−2, we have h = 0.1 for a characteristic
length scale of about 120 nm. Whilst the above parameters give an idea of
the applicability regime of the theory, we emphasize that the semiclassical
approximation generally gives good results outside of this regime as well, as
discussed in the introduction.

2.2 Application of the theory to two distinct models

The general theoretical framework developed in the preceding sections is
applicable to any static dielectric environment ε(x, z) that asymptotically ap-
proaches a constant as z → ±∞, rendering it broadly applicable. In this
section, we apply this general theory to two specific, yet distinct, models of the
dielectric environment. First, we examine a simplified model, characterized
by two uniform dielectric constants above and below the electron layer. While
primarily serving as a demonstration of the theory’s capabilities, this sim-
plified model will also be employed in Ch. 3 to describe plasmon scattering.
Second, we consider a more complex layered structure, where a thin film
with dielectric constant εM and finite thickness d is sandwiched between two
semi-infinite layers with dielectric constants εA and εB. This model accounts
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for nonlocal Coulomb screening from the substrate [34, 39, 40] and has been
shown to accurately represent electrons in materials like TMDCs [34, 35]. The
latter model will be employed in Chs. 4 and 5 to describe plasmon waveguides
and plasmonic crystals.

We derive the effective classical Hamiltonian and the effective dielec-
tric function εeff for both models. For the second, more complex model,
we demonstrate that the derived dielectric function matches the established
expression found in the literature [34, 40, 70], but with position-dependent
parameters. Our objective extends beyond consistency checks, i.e., verifying
that our formalism reproduces known results in homogeneous systems. More
importantly, we aim to generalize this well-established result to inhomoge-
neous environments. Specifically, provided λel/ℓ ≪ 1, we can obtain the
effective classical Hamiltonian H0 for inhomogeneous systems directly from
the Lindhard dielectric function for homogeneous systems by substituting
position-dependent variables for the constant parameters.

From the derivation in Sec. 2.1.2, we observe that the principal symbol
Γ0(z) directly determines the effective classical Hamiltonian H0. In turn, Γ0(z)
is constructed from the fundamental solutions w1 and w2 of the homogeneous
differential equation (2.16). Utilizing the principal symbol Γ0(z), we can also
compute the full leading-order potential V(x, z) and the energy density UI(x),
as detailed in Secs. 2.1.3 and 2.1.4.

2.2.1 Plasmons in a simple dielectric environment

We solve the homogeneous differential equation Eq. (2.16) to obtain an expres-
sion for the effective dielectric function εeff, and consequently the effective
classical Hamiltonian. As we said before, we assume that our two-dimensional
electron gas is located in the plane z = 0. For the first model, we consider the
simple variation of the dielectric constant ε(x, z) that does not depend on z
above (A) and below (B) this plane. However, the dielectric constant on either
side might be different. We therefore have

ε(x, z) = εi(x) =

{
εA(x), z > 0
εB(x), z < 0.

(2.54)

where the transition at z = 0 is instantaneous and behaves like a step function.
We call the εi dielectric constants, since we assume that each layer has a locally
well-defined static dielectric constant, which does not depend on momentum
or energy. However, these dielectric constants can still vary spatially across x,
for instance because of a variation of different materials in each layer. Since we
assume that the spatial scale ℓ of variations in the εi is much larger than the
electron wavelength, these dielectric constants are well defined on the scale of
the electron wavelength.
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2.2. Application of the theory to two distinct models

The two independent solutions to the homogeneous differential equation
have the same form, namely

wi(z) =

{
cA+ e|q|z/h̄ + cA− e−|q|z/h̄, z > 0
cB+ e|q|z/h̄ + cB− e−|q|z/h̄, z < 0

, (2.55)

where the constants are determined from the boundary conditions. We obtain
these conditions directly from the differential equation (2.16): both wi and
ε(x, z)∂wi/∂z have to be continuous at the boundaries z = 0. These boundary
conditions are a reflection of the electrostatic boundary conditions [25] The
first reflects that the potential is continuous on a boundary. The second
condition is reminiscent of the electrostatic boundary condition that relates
the discontinuity of the displacement field D to a surface charge. However,
with this method, the surface charge is taken into account separately via the
method of variation of parameters in Eq. (2.18). In Ref. [1], this reflection is
directly visible, where the system was solved with a different method, namely
with the method of undetermined coefficients.

Since w1 decays as z → ∞, we have cA+ = 0 in Eq. (2.55). The remaining
constants are determined by the boundary conditions. We note that, in
principle, the fundamental solutions are not uniquely defined, since any linear
combination of two fundamental solutions is again a fundamental solution.
By demanding that w1 (w2) decays for z → ∞ (z → −∞), we determine it
uniquely up to normalization. We obtain

w1(z) =

{
e−|q|z/h̄, z > 0(

1 − 1
2

εA+εB
εB

)
e|q|z/h̄ + 1

2
εA+εB

εB
e−|q|z/h̄, z < 0

. (2.56)

For w2, we have cB− = 0, since it decays as z → −∞, which yields

w2(z) =

{(
1 − 1

2
εA+εB

εA

)
e−|q|z/h̄ + 1

2
εA+εB

εA
e|q|z/h̄, z > 0

e|q|z/h̄, z < 0
. (2.57)

Following the general theory discussed in Sec. 2.1.2, we find the principal
symbol Γ0 from Eq. (2.23), which simply yields

Γ0(z)=
2πe2h̄
εeff|q|

Π0

{
e−

z
h̄ |q|, z > 0

e
z
h̄ |q|, z < 0

, (2.58)

where

εeff(x) =
εA(x) + εB(x)

2
, (2.59)

as defined by Eq. (2.24). We explicitly stated that the effective dielectric
constant might depend on (x), through variations in the substrate. Notice
that εeff(x), contrary to ε(x, z), does not depend on z. Having computed
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the effective dielectric function εeff(x), we immediately obtain the effective
classical Hamiltonian (2.26) and the full potential, given by Eq. (2.46).

In Ch. 3, we study the Hamiltonian, derived for this simple model of
the dielectric environment in more detail, in order to get a physical under-
standing of this model. More specifically, we calculate the classical trajectories
through Hamilton’s equations for a plasmon scattered on a radially symmetric
inhomogeneity.

2.2.2 Plasmons in layered structures with effective height d

For the second, more complicated model, we again consider a system where
the electrons are bound to the 2D plane at z = 0. However, for this model the
total dielectric environment as function of z takes the form

ε(x, z) = εi(x) =




εA(x), z > d/2
εM(x), d/2 > z > −d/2
εB(x), z < −d/2

, (2.60)

where now the transition at ±d is instantaneous and behaves like a step
function.

The two independent solutions to the homogeneous differential equation
have the same, more complicated, form, namely

wi(z) =




cA+ e|q|z/h̄ + cA− e−|q|z/h̄, z > d/2
cM+ e|q|z/h̄ + cM− e−|q|z/h̄, d/2 > z > −d/2
cB+ e|q|z/h̄ + cB− e−|q|z/h̄, z < −d/2

, (2.61)

where the constants are again determined from the boundary conditions: both
wi and ε(x, z)dwi/dz have to be continuous at the boundaries ±d.

Similar to the simple model, we construct w1 explicitly. Since w1 decays as
z → ∞, we have cA+ = 0 in Eq. (2.61). The remaining constants are determined
by the boundary conditions. We obtain

w1(z)=
1�

1 + ε̃Be−2|q|d/h̄
 �

1 + ε̃Ae−2|q|d/h̄
 (2.62)

×





(1 + ε̃A) e−|q|z/h̄, z>d/2
ε̃Ae−2|q|d/h̄e|q|z/h̄ + e−|q|z/h̄, d/2> z>−d/2
ε̃Ae−2|q|d/h̄+ε̃Be2|q|d/h̄

1+ε̃B
e|q|z/h̄ + 1+ε̃A ε̃Be−4|q|d/h̄

1+ε̃B
e−|q|z/h̄, z<−d/2

,

where ε̃i = (εM − εi)/(εM + εi). Note that the normalization factor, which is
arbitrary, has no physical consequences. Looking at our expression (2.25) for
εeff, we clearly see that it is divided out. Because of the symmetry, the second
solution w2 is then easily found by changing z to −z, and interchanging εA
and εB.
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εeff|q|

Π0
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1+ε̃A

1+ε̃Ae−2 d
h̄ |q|

e−
z
h̄ |q|, z>d/2

e−
z
h̄ |q|

+ε̃Ae−2 d
h̄ |q|e

z
h̄ |q|

1+ε̃Ae−2 d
h̄ |q|

, < z<d/2

ε̃Be−2 d
h̄ |q|e−

z
h̄ |q|

+e
z
h̄ |q|

1+ε̃Be−2 d
h̄ |q|

, −d/2< z<0

1+ε̃B

1+ε̃Be−2 d
h̄ |q|

e−
z
h̄ |q|, z<−d/2

, (2.63)

where

εeff(x) = εM(x)
1 − ε̃A(x)ε̃B(x)e−2|q|d/h̄

1 + (ε̃A(x) + ε̃B(x)) e−|q|d/h̄ + ε̃A(x)ε̃B(x)e−2|q|d/h̄
, (2.64)

as defined by Eq. (2.24). Having computed the effective dielectric function
εeff, we immediately obtain the effective classical Hamiltonian (2.26) and the
full potential, given by Eq. (2.46). Compared to the simple model discussed
in Sec. 2.2.1, where the effective dielectric function was simply the average
of the dielectric constants above and below the 2D layer, this expression is
more complex. Notably, it exhibits a dependence on the momentum q, which
becomes increasingly significant for small values of |q|. This momentum
dependence introduces nonlocal screening effects into the plasmon dynamics,
reflecting the influence of the dielectric environment at distances comparable
to the plasmon wavelength [34, 39, 40]

Equation (2.64) indeed corresponds to the well-known expression from
the literature [34, 40, 70], but with position-dependent parameters. We have
therefore extended this result to the inhomogeneous case. As previously
discussed, the effective classical Hamiltonian can be viewed as the analog of
the Lindhard function, with the parameters corresponding to their values at a
given point x. In the next section, we study this Hamiltonian in more detail, in
order to get a physical understanding of this model. More specifically, we look
at in-plane variations of various parameters, and show that these variations
allow for the existence of plasmonic bound states.
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2.3 Conclusion

In this chapter, we developed a comprehensive semiclassical theory for plas-
mons in spatially inhomogeneous two-dimensional media. We extended the
three-dimensional formalism of Ref. [50] to two dimensions by employing a
careful separation of in-plane and out-of-plane coordinates prior to applying
the semiclassical Ansatz. This approach allows for the calculation of the
full quantum plasmon dispersion within the random phase approximation,
without restrictions on momentum or system size. The central assumption of
our formalism is that the electron wavelength is significantly smaller than the
length scale of the inhomogeneity, enabling the introduction of a dimension-
less semiclassical parameter h ≪ 1. As discussed in Sec. 2.1.5, this condition
requires inhomogeneity length scales on the order of a few nanometers for
metallic systems and a hundred nanometers for semiconductor systems, values
readily achievable in experiments.

Building upon the general approach outlined above, we developed a de-
tailed semiclassical theory for plasmons in inhomogeneous two-dimensional
systems embedded within an arbitrary three-dimensional dielectric environ-
ment. The in-plane dynamics were treated semiclassically, subject to the limit
of small h (for a comprehensive discussion of the semiclassical approximation
and its applicability to plasmonic systems, refer to Refs. [1, 50]). In Sec. 2.1.1,
we accomplished this by adiabatically decoupling the in-plane and out-of-
plane variables using the method of operator separation of variables [56], and
solving the resulting systems independently. Following the imposition of a
self-consistency condition, we derived an expression for the effective classical
Hamiltonian Eq. (2.15).

In Sec. 2.1.2, we demonstrated that the effective classical Hamiltonian
incorporates the effective dielectric function Eq. (2.24) through the determinant
of the matrix W, which bears resemblance to the Wronskian determinant. This
effective dielectric function, which can be momentum-dependent, accounts
for screening effects arising from the three-dimensional dielectric environ-
ment. The classical Hamiltonian is connected to the Hamilton-Jacobi equation,
governing the dynamics of quantum plasmons in classical phase space. Con-
sequently, the classical trajectories of plasmons in phase space can be derived
from Hamiltonian’s equations. Furthermore, it determines the classical action,
S(x), through the Hamilton-Jacobi equation, which in turn governs the phase
of the induced potential, Vpl.

Subsequently, in Sec. 2.1.3, we derived the leading-order term (in the
semiclassical parameter) of the induced potential Eq. (2.46) by solving the
transport equation (2.31). This induced potential reveals the wave-like char-
acter of plasmons, and its derivative is proportional to the electric field. We
utilized this relationship in Sec. 2.1.4 to compute the energy density, demon-
strating its natural interpretation within the framework of the semiclassical
approximation.
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2.3. Conclusion

We applied this theory to two distinct models of the dielectric environ-
ment. First, we considered a simplified model characterized by uniform
dielectric constants above and below the electron layer, primarily serving as
a demonstration of our theory’s capabilities. Second, we examined a widely
used model for layered structures, as described in Refs. [34, 40, 70]. This model
represents a thin film of thickness d and dielectric constant εM, sandwiched
between two semi-infinite dielectric substrates. In both models, an infinitely
thin 2D free electron layer was positioned at z = 0. Within our framework,
the dielectric constants, film thickness, and electron density can all be treated
as spatially varying parameters.

In conclusion, this chapter presented a semiclassical theory that offers a
valuable new tool for investigating plasmons in spatially inhomogeneous two-
dimensional media. We believe this framework can be effectively extended
to model realistic experimental setups, as demonstrated in the following
chapters, where we apply this theory to scattering, waveguiding, and periodic
potentials.
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3
Scattering on radially symmetric
inhomogeneities

We demonstrate the applicability of the general theory developed in the previ-
ous chapter by considering the scattering of plasmons by a radially symmetric
inhomogeneity. Specifically, we use the simple model for the dielectric envi-
ronment (cf. Sec. 2.2.1) to illustrate how the theory can be applied to plasmon
scattering. The effective classical Hamiltonian (2.26) is employed to calculate
the classical trajectories of plasmons, which illustrates the general behavior
of the plasmons in an intuitive way. Afterwards, the wave-like character of
plasmons is incorporated through the induced potential (2.46), specifically
via a phase shift that occurs for scattered plasmons. From this, we derive
and compute numerical values for the total and differential scattering cross
sections for a Gaussian-shaped inhomogeneity in the local electron density.
We analyze how variations in the length scale ℓ and peak electron density of
this inhomogeneity affect the scattering patterns, revealing phenomena such
as forward scattering, interference effects, and backscattering.

This chapter details the full research and analysis from the second part of the paper published
in Ref. [1]. Copyright by the American Physical Society.
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3.1 Introduction to scattering

In the previous chapter, we developed a general semiclassical theory for
plasmons in two-dimensional inhomogeneous media. In this chapter, we
illustrate this theory by studying a scattering experiment. Specifically, we
consider the simple model discussed in Sec. 2.2.1, namely a two-dimensional
electron gas at z = 0, encapsulated by two homogeneous dielectric layers.
The electron density in the z = 0 plane is also homogeneous, except near
the x-origin, where a radially symmetric inhomogeneity is placed, locally
increasing or decreasing the electron density. We now proceed to demonstrate
how our theory can be used by considering the scattering of plasmons by this
radially symmetric inhomogeneity in the local charge density, which can be
caused by defects, doping, or local gating. We consider the situation where a
plasmon, represented as a plane wave, comes in from the left-hand side (x →
−∞), and is scattered by the inhomogeneity. A preliminary understanding
of the scattering can be gained by plotting the classical trajectories of this
system, shown in Fig. 3.1, which are computed using the effective classical
Hamiltonian (2.26). In this chapter, we incorporate the wave-like behavior
through a scattering phase shift, to gain a deeper physical understanding of
the scattering process.

In this chapter, we develop our scattering theory for plasmons, structured
as follows. We begin by reviewing the relationship between the scattering
cross section and the phase shift in Sec. 3.2, drawing from a quantum scat-
tering theory perspective. This allows us to establish how experimentally
measurable scattering cross sections can be expressed in terms of the phase
shift. We then identify the phase shift of the scattered plasmons, crucial for
calculating the total and differential scattering cross sections. In Sec. 3.3, we de-
rive a semiclassical expression for the phase shift from our induced potential,
constructing the formula for this phase shift within the semiclassical approxi-
mation. This derivation makes extensive use of the concept of a Lagrangian
manifold [48, 55, 76, 79, 80], positioning it as a practical application of the
abstract formalism of the Maslov canonical operator [48]. In Sec. 3.3.1, we
recast this expression into a form suitable for numerical computations. After
obtaining an expression for the scattering cross section, we present numerical
values for plasmon scattering by a Gaussian bump or well in the charge den-
sity distribution of a metallic system. We compare these results with classical
trajectories, highlighting the role of interference between different trajectories.
Our numerical implementation is detailed in Sec. 3.4, where we present total
and differential scattering cross sections for parameters indicative of a metallic
system. We explore how variations in the length scale ℓ and peak electron
density of this inhomogeneity lead to diverse scattering phenomena, includ-
ing forward scattering, interference effects, and backscattering, providing a
comprehensive understanding of plasmon scattering in radially symmetric
systems.
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ing forward scattering, interference effects, and backscattering, providing a
comprehensive understanding of plasmon scattering in radially symmetric
systems.

66

3.1. Introduction to scattering

-2.0 0.0 2.0 4.0 6.0

-4.0

-2.0

0.0

2.0

4.0

x / ℓ0

y/ℓ 0

1.00

1.25

1.50

1.75

2.00

2.25

Figure 3.1: Classical trajectories of a plasmon, coming in from x → −∞. The
maximum change in local density is δn = +1.25. The blue shading indicates
the region where the electron density is increased. The solid black lines are
the caustics.

Our description is based on the in-plane induced potential Vpl, which we
denote by V throughout this section in order to simplify the notation. This
notational simplification is justified and should not cause confusion because,
as established in the previous chapter, V(z = 0) = Vpl, and for scattering
phenomena, we are primarily concerned with the plasmon behavior within the
z = 0 plane. We note that an alternative method to describe plasmon scattering
has been developed in Ref. [47]. This approach leverages the analogy between
the RPA equations for the electrostatic potential and the Lippmann-Schwinger
formalism, a cornerstone of conventional scattering theory [81]. While the
formalism presented in Ref. [47] offers a broader scope of applicability, our
approach is specifically tailored to facilitate the construction of a semiclassical
description. By focusing on the classical trajectories and incorporating quan-
tum effects through the phase shift, we gain an intuitive understanding of
plasmon scattering dynamics, particularly in the context of radially symmetric
inhomogeneities. This allows us to directly connect the classical paths to
observable scattering patterns, providing a clear physical interpretation of the
scattering process.
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3.2 Scattering cross sections and phase shifts

Before we define the phase shift, we first have to carefully set the scene. In
order to obtain the relation between the velocity and the momentum, we
consider the Hamiltonian system Eqs. (2.27). A short calculation yields

H0 ≈ 1 −
gse2 p2

F|q|
2mεavgh̄E2 ,

dx
dτ

=
∂H0

∂q
≈ −

gse2 p2
F

2mεavgh̄E2
q
|q| , (3.1)

where we considered the limit of small q. This counter-intuitive result shows
that the (classical) velocity of the plasmon is in the opposite direction of the
momentum q. Note that it is sufficient to calculate the velocity in the limit of
small q, since it is not expected to change sign for larger q. A right-moving
plasmon, propagating along the x axis from negative infinity, thus corresponds
to a plane wave with momentum qx = −|q| < 0 parallel to the x axis, see also
Fig. 3.1.

In the remainder of this section, we derive the formulas that express
the total and differential scattering cross section in terms of the phase shift.
Readers who are familiar with this subject may directly skip to the result
Eq. (3.8).

We first take a closer look at the incoming plasmon, which is described
by a plane wave, namely,

V(r, θ) = Ae−i |q|xh̄ = Ae−i |q|rh̄ cos θ , (3.2)

where the amplitude A is constant, we used that qx = −|q| and introduced
polar coordinates in the last step. Because the inhomogeneity is radially
symmetric, we expand this incoming plane wave in radial waves. Using the
Fourier-Bessel series [82], we obtain

V(r, θ) = A
∞

∑
m=−∞

(−1)mim Jm

(
|q|r

h̄

)
eimθ , (3.3)

where Jm is the Bessel function of the first kind and where the factor (−1)m

arises because the argument of the exponent is negative. We subsequently
rewrite each Bessel function as the sum of two Hankel functions, which
represent incoming and outgoing waves. Because we are interested in the
far-field regime r/ℓ ≫ 1, far away from the inhomogeneity, we can use the
asymptotic expansions of the Hankel functions [82] to obtain

V(r, θ) = A

√
h̄

2π|q|r
∞

∑
m=−∞

e−im π
2 −i π

2 eimθ

(
ei |q|rh̄ +i π

4 −im π
2 − e−i |q|rh̄ −i π

4 +im π
2

)
,

(3.4)
where the first and second terms represent radially incoming and outgoing
waves, respectively.
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Our next step is to take a closer look at the outgoing wave. Far away from
the inhomogeneity (r/ℓ ≫ 1), the scattered plasmon is described by

Vscat(r, θ) ≈ A


e−i |q|rh̄ cos θ + g(θ)

e−i |q|rh̄
√

r


 . (3.5)

The first term in this expression comes from the incoming wave Eq. (3.2),
and the second term represents the outgoing radial wave in the far field.
This asymptotic form can be understood as a extension of the Sommerfeld
radiation condition for the Helmholtz equation [83–85]. Our goal is to find
the scattering amplitude g(θ), which expresses the amplitude of the scattered
wave scattered in every direction θ.

It is common to express the effect of the inhomogeneity using a phase
shift δm [61]. By definition, twice this phase shift is added to the outgoing
radial components in expression (3.4). Here we use a minus sign, mainly
because it simplifies our results. On a more fundamental level, one may think
that we need this minus sign because exp(−i|q|r/h̄) is the outgoing wave in
our problem, instead of exp(i|q|r/h̄). We therefore define

Vscat(r, θ) = A


h̄

2π|q|r
∞

∑
m=−∞

e−i mπ
2 −i π

2 eimθ

×


ei |q|rh̄ +i π
4 −i mπ

2 − e−i |q|rh̄ −i π
4 +i mπ

2 −2iδm


. (3.6)

This definition shows that the phase shift is defined up to an integer multiple
of π. For future reference, we note that each of the terms in the series (3.6)
can be rewritten in terms of a sine. We have

Vscat
m (r, θ) ∝ sin


|q|r

h̄
+ δm − mπ

2
+

π

4


, (3.7)

where we left out the factors of proportionality.
We remark that in our scattering setup both the incoming wave and

the inhomogeneity possess mirror symmetry around the y = 0 axis. The
scattered wave (3.6) should therefore have the same symmetry. Requiring that
V(r, θ) = V(r,−θ) and reversing the summation order (m → −m) on the right
hand side, we find that the phase shifts with opposite m have to be related
by δ−m = δm + nmπ, where nm is an arbitrary integer. Since the phase shift is
only defined up to an integer multiple of π, we may set δ−m = δm.
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Comparing expressions (3.5) and (3.6), we can now obtain an expression
for the scattering amplitude g(θ). Since the differential cross section is equal
to the square of the absolute value of this scattering amplitude [61], we find

dσ

dθ
= |g(θ)|2 =

∣∣∣∣∣e
−i π

4

√
2h̄√

π|q|

∞

∑
m=−∞

sin δmeimθ−iδm

∣∣∣∣∣
2

. (3.8)

Integrating over all angles θ gives the total scattering cross section, specifically

σ =
∫

|g(θ)|2dθ =
4h̄
|q|

∞

∑
m=−∞

sin2 δm, (3.9)

where we used the orthogonality of the azimuthal terms.
At the end of this section, we briefly come back to the dimensionless

parameters we introduced in the previous section. Since the scattering cross
section has the dimensions of length, we can make it dimensionless by dividing
by the characteristic length scale, i.e., σ̃ = σ/ℓ. This yields

σ̃ =
4h
q̃

∞

∑
m=−∞

sin2 δm, (3.10)

where we used the definitions for h and q̃ from Sec. 2.1.5.

3.3 Derivation of the semiclassical phase shift

In the previous subsection, we showed that the phase shift is sufficient to
calculate both the differential and the total scattering cross section. In this
subsection, we obtain a semiclassical expression for this phase shift. To this
end, we first construct an asymptotic solution using the semiclassical Ansatz,
and subsequently compare it to the solution (3.6), which was derived using
general quantum mechanical principles.

Our starting point is the asymptotic solution (2.46), which is based on
the classical trajectories. In the construction of this expression, we implicitly
assumed that to each point x corresponds a single trajectory. However, this
is generally not the case, because multiple electron trajectories may arrive at
the same point, cf. Fig. 3.1. Physically, this is nothing but the well-known
phenomenon of interference. We obtain the full asymptotic solution by adding
the contributions of the individual trajectories [48, 55], that is,

VSC(x) = ∑
j

A0
0√

εavg

∣∣∣ ∂Sj
∂x

∣∣∣
1√∣∣Jj(x)

∣∣ e−i π
2 µj e

i
h̄ Sj(x), (3.11)

where Sj is the action along the j-th trajectory. The object µj is the Maslov
index [48, 55, 73], which expresses the complex phase of the Jacobian Jj and
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will be discussed in more detail later on. Formally, this solution can be
obtained with the so-called Maslov canonical operator [48].

As previously mentioned, Fig. 3.1 shows the classical trajectories that
arise from the incoming plane wave (3.2). In principle, we could use Eq. (3.11)
to construct an asymptotic solution for our scattering problem based on these
trajectories, see Ref. [79] for an example. However, as clearly explained in
Ref. [86], it is not at all straightforward to relate this asymptotic solution to
Eq. (3.6), which takes the form of a series of radially incoming and outgoing
waves labeled by the index m.

We therefore construct the full asymptotic solution in a different way.
Keeping the asymptotic expression (3.6) in mind, we start by considering
radially symmetric incoming plane waves. In order to compute the classical
trajectories, we first write down the initial conditions, which form a one-
dimensional surface Λ1 in phase space. Since we consider radially symmetric
waves, Λ1 is a circle:

Λ1 = {r = r0, θ = α, qr = qr,0, qθ = qθ,0}, (3.12)

where the parameter α ∈ [0, 2π) corresponds to the angle of incidence. Al-
though one should theoretically consider r0 → ∞, a numerical computa-
tion requires a finite r0, and we assert that r0/ℓ ≫ 1. Moreover, note that
qr = qr,0 > 0 gives rise to an incoming wave, cf. Eq. (3.1). The total momentum
is given by |q0|2 = (qr,0)

2 + (qθ,0/r0)
2, and is equal to qr,0 at large distances.

Next, we consider the time evolution of each point on Λ1, shown as a
black circle in Fig. 3.2, by the Hamiltonian system dx/dt = ∂H0/∂p, dp/dt =
−∂H0/∂x with the effective classical Hamiltonian H0, see Eq. (2.26). This
time evolution gives rise to the two-dimensional surface Λ2, shown in orange
in Fig. 3.2. Each point on this surface can be parameterized by the angle of
incidence α and the time τ, i.e.,

Λ2 = {r = r(τ, α), θ = θ(τ, α), qr = qr(τ, α),

qθ = qθ(τ, α) | α ∈ [0, 2π), τ ∈ [0, ∞)}. (3.13)

With a more detailed analysis, one can show that this surface is a so-called
Lagrangian manifold [48, 55, 76, 79, 80]. An important property of such a
manifold is that the action integral (2.28) is path independent, that is, its
outcome only depends on the initial and final points on Λ2, and not on the
specific path that is used to compute the integral.

Looking at Fig. 3.2, one sees that Λ2 consists of two distinct leaves. In
other words, when one projects Λ2 onto the coordinate plane, each point
on the coordinate plane corresponds to two points on Λ2. The upper leaf
corresponds to the incoming wave, since it consists of points with radial
momentum qinc

r > 0. Similarly, the lower leaf corresponds to the outgoing
wave, since it consists of points with qout

r < 0. The two leaves join at the point
rc(qθ), where qr = 0. This point is a classical turning point, as can be inferred
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Figure 3.2: Schematic representation of the Lagrangian manifold Λ2 in orange.
The surface Λ1 is depicted by the black circle. The purple, blue and grey col-
ored lines represent plasmon trajectories, coming in from Λ1 with momentum
q0

r .

from Eq. (3.1). Moreover, one can show that q2
r ∝ r − rc in the vicinity of rc,

which implies that we are dealing with a simple turning point [48, 75, 76, 86].
The proof of this statement is simplest when there is no inhomogeneity at

all, in other words, when the system is homogeneous, since in this case both
qθ and |q|2 = q2

r (r) + q2
θ/r2 are constants of motion. Provided that qθ ̸= 0,

one has rc = |qθ |/|q|, and a Taylor expansion of |q|2 = q2
r (r) + q2

θ/r2 around
rc readily gives the result. When there is a radially symmetric inhomogeneity
present, qθ is still a constant of motion, since the effective classical Hamiltonian
H0 does not depend on θ. When qθ is small, one can consider the Taylor
expansion (3.1). Solving the equation H0 = 0 for the energy E leads to the
familiar square-root dispersion relation

E ≈
√

gse2 pF(r)2

2mεavgh̄
|q| =

√
2πe2h̄n(r)

mεavg
|q|, (3.14)

where pF(r) and n(r) depend on the radial coordinate, and we used that
n(r) = gs p2

F(r)/(4πh̄2) in the last equality. The turning point is subsequently
defined by the relation E2 = 2πe2h̄n(r)|qθ |/(mεavgrc), since it corresponds to
qr = 0. Performing a Taylor expansion in r around rc then gives

q2
r ≈

2q2
θ

r2
c

(
1
rc

− n′(rc)

n(rc)

)
(r − rc), (3.15)

which indeed shows that q2
r ∝ r − rc. For larger values of |qθ |, numerical

methods confirm that this proportionality remains valid. A more general
proof of this result is provided in appendix D. Furthermore, this result is
consistent with the general theory of caustics and singularities for effectively
one-dimensional geometries [75, 76].
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Now that we have studied the classical trajectories and the Lagrangian
manifold Λ2, we can construct the full asymptotic solution. Since we started
with radially symmetric incoming plane waves, we parameterize the Cartesian
plane with polar coordinates, i.e., x = x(r, θ). As expressed by Eq. (3.11) and
mentioned previously, we obtain the induced potential at the point x(r, θ)
by adding the contributions of the two points on Λ2 that are projected onto
x(r, θ). Note that this construction cannot be used in the vicinity of the turning
point, which is a singular point of the projection. We therefore limit ourselves
to the far-field regime r/ℓ ≫ 1.

We first consider the action (2.28), Since it is given by a line integral over a
path on Λ2, we can consider the action as a function of the coordinates (τ, α) on
Λ2. The action Sj(r, θ) on a given leaf follows from this more general quantity
by projection. Switching to polar coordinates, and using the definitions of
the polar momenta, i.e., qx = cos θ qr − sin θ

r qθ , and qy = sin θ qr +
cos θ

r qθ , cf.
Refs. [74, 76], we have

S(τ, α) =
∫

C
⟨qx, dx⟩ =

∫

C
qrdr + qθdθ. (3.16)

The integral is taken over the line C with starting point, the so-called central
point, (τ0, α0) [48] and end point (τ, α). For convenience, we set τ0 = α0 = 0
from here on.

As we previously mentioned, the integral (3.16) is independent of the
specific path, since Λ2 is a Lagrangian manifold [48, 55, 76, 79, 80]. Given a
point (r, θ), we therefore split the integration into two parts: we first integrate
along Λ1 to the initial point of the trajectory on which the point (r, θ) lies, and
then proceed the integration along the trajectory. Figure 3.2 shows that the
two trajectories that contain the point (r, θ), corresponding to the two different
leaves of Λ2, and hence to the incoming and the outgoing waves, originate
from two different angles θ1 = α1 and θ2 = α2. We therefore compute the
integral separately for both trajectories. For the trajectory corresponding to
the incoming wave, we have

S1(τ, α) =
∫ (0,α1)

(0,0)
(qrdr + qθdθ) +

∫ (τ,α)

(0,α1)
(qrdr + qθdθ),

S1(r, θ) = qθθ1 + qθ(θ − θ1) +
∫ r

r0

qinc
r (r′)dr′, (3.17)

where r0 was defined in Eq. (3.12). We used that qθ is constant because H0 is
independent of θ due to the radial symmetry, and immediately see that the
terms containing θ1 drop out.

In a similar way, we can compute the action for the trajectory correspond-
ing to the outgoing wave. Since it has passed the turning point rc, there is an
additional radial contribution. We find

S2(r, θ) = qθθ2 + qθ(θ − θ2) +
∫ rc

r0

qinc
r (r′)dr′ +

∫ r

rc
qout

r (r′)dr′, (3.18)
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where the terms containing θ2 cancel as before.
At this point, we have to consider an additional constraint: the action

S(τ, α) should be single-valued, since Λ2 is a Lagrangian manifold. When
we consider the action along a circular path that goes around the central
hole in Λ2, it should therefore equal a multiple of 2π. This is nothing but
an expression of the Bohr-Sommerfeld quantization condition [48], see also
Refs. [50, 87] for similar applications. We have

∫ 2π

0
qθdθ = 2πmh̄, (3.19)

where m is the (integer) azimuthal quantum number. This quantization
condition determines the values which qθ can take, and shows that qθ = mh̄.
Inserting this result into the expressions for S1 and S2, and considering
Eq. (3.11), we see that the angular dependence of our asymptotic solution
is given by exp(imθ), in accordance with the quantum mechanical results
discussed in Sec. 3.2.

Our next step is to determine the Jacobian in Eq. (3.11). In general, it is
given by

J = det

(
∂x
∂τ

∂x
∂α

∂y
∂τ

∂y
∂α

)
= det

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
det

(
∂r
∂τ

∂r
∂α

∂θ
∂τ

∂θ
∂α

)
, (3.20)

where the second equality follows from our parametrization in polar coor-
dinates. The first determinant on the right-hand side is the usual Jacobian
associated with the transformation to polar coordinates and equals r. In order
to compute the second Jacobian, we first consider its value on Λ1. Since
∂r/∂α = 0 and ∂θ/∂α = 1 on Λ1, we have

J = r
∂r
∂τ

. (3.21)

Using the variational system for Hamilton’s equations [80], see also Refs. [50,
79], one can show that the time derivatives of ∂r/∂α and ∂θ/∂α equal zero
on Λ2. The result (3.21) is therefore valid on all of Λ2. Using Hamilton’s
equations, we see that the Jacobian can also be written as

J = r
∂H0

∂qr
= r

∂H0

∂|q|
qr

|q| , (3.22)

where we have used that the effective Hamiltonian H0 is a function of |q| only,
and not of its components.

At a given point (r, θ), the incoming and outgoing waves have opposite
radial momenta, qinc

r (r) = −qout
r (r), see also Fig. 3.2. Equation (3.22) then

shows that J1 = −J2. Since Eq. (3.11) contains the absolute value of the
Jacobian, we obtain the same factor for the contribution of each leaf. The
sign of the Jacobian is, nevertheless, taken into account through the Maslov
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where the terms containing θ2 cancel as before.
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0
qθdθ = 2πmh̄, (3.19)
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∂r

∂y
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where the second equality follows from our parametrization in polar coor-
dinates. The first determinant on the right-hand side is the usual Jacobian
associated with the transformation to polar coordinates and equals r. In order
to compute the second Jacobian, we first consider its value on Λ1. Since
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∂r
∂τ

. (3.21)

Using the variational system for Hamilton’s equations [80], see also Refs. [50,
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∂H0

∂qr
= r
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qr
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index [48, 55, 80, 88]. On the upper leaf, which corresponds to the incoming
waves, the sign of the Jacobian is equal to its sign on Λ1, and we set µ1 = 0.
On the lower leaf, which corresponds to outgoing waves, the Jacobian has
the opposite sign. The Maslov index now regulates the analytic continuation
of the square root of this Jacobian. Computations performed explicitly in
Ref. [50], cf. Ref. [80], show that µ2 = −1 for points on the lower leaf.

Lastly, we calculate the factor |∂S/∂x| in Eq. (3.11), which is part of the
amplitude. In polar coordinates, we have

∣∣∣∣
∂S
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∣∣∣∣ =
√(

∂S
∂r

)2
+

(
1
r

∂S
∂θ

)2
=

√
q2

r (r) +
( qθ

r

)2
, (3.23)

where the latter expression is to be understood on the Lagrangian manifold
Λ2. Since qinc

r (r) = −qout
r (r), this factor is equal for both contributions to the

sum (3.11).

We are now ready to combine all ingredients and compute the asymptotic
solution (3.11). As a final preparatory step, we rewrite the integral from 0 to r
in our expression (3.17) for S1 as the sum of an integral from 0 to rc and an
integral from rc to r. Putting everything together, we obtain

VSC
m (r, θ) =

A0
0,m

ε1/2
avg

(
(qinc

r )2 + ( qθ
r )

2
)1/4

1√
r| ∂H0

∂|q|
qinc

r
|q| |

×
(

e
i
h̄
∫ r

rc
qinc

r dr′+i π
4 − e−

i
h̄
∫ r

rc
qinc

r dr′−i π
4
)

× eimθe
i
h̄
∫ rc

r0
qinc

r dr′−i π
4 , (3.24)

where we omitted the arguments of qr and used that qout
r = −qinc

r . We also
added an index m, because we constructed an asymptotic solution for a
radially incoming wave with angular momentum qθ = mh̄.

Comparing the asymptotic solution (3.24) with the m-th component of
the general solution (3.6), we observe that they exhibit the same asymptotic
behavior. First of all, their angular dependence is the same, as they are both
proportional to exp(imθ). Second, they both decay as 1/

√
r in the far field,

since qr becomes constant for r/ℓ ≫ 1.

At this point, we can obtain an asymptotic solution for the original plane
wave, see Fig. 3.1, by considering a series of incoming plane waves and
matching the coefficients A0

0,m with the constants in front of the series in
Eq. (3.6). However, this is not at all necessary, since we previously established
that we can express the scattering cross section in terms of the phase shift δm.
A semiclassical expression for this phase shift can be directly determined by
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rewriting the asymptotic solution (3.24) in the form of a sine, namely,

VSC
m (r, θ) ∝ sin

(
1
h̄

∫ r

rc
qinc

r (r′)dr′ +
π

4

)
. (3.25)

Comparing this result with Eq. (3.7), we immediately obtain

δm = lim
r→∞

(∫ r

rc

qinc
r (r′)

h̄
dr′ − q∞r

h̄

)
+

mπ

2
, (3.26)

where we used q∞ to denote the value of |q| at infinity where the presence of
the inhomogeneity is no longer felt. By taking the limit, we can rewrite this
expression as

δm =
∫ ∞

rc

(
qinc

r (r′)
h̄

− q∞

h̄

)
dr′ − q∞rc

h̄
+

mπ

2
. (3.27)

Although this result for the semiclassical phase shift has the same form as
most results in scientific literature, see e.g. Ref. [86], there is an important dif-
ference. Most semiclassical expressions for the phase shift that are commonly
found in the literature are derived by first performing separation of variables
in the two-dimensional differential equation and subsequently constructing
an asymptotic solution for the remaining one-dimensional equation. On the
other hand, we constructed an asymptotic solution for a two-dimensional
pseudodifferential equation, where we carefully accounted for the contribu-
tions of the different trajectories on the Lagrangian manifold Λ2. An added
advantage of our approach is that there is no need to perform an explicit
Langer substitution Ref. [63, 89]. Instead, the correct expression naturally
arises from the quantization of the azimuthal variable, cf. Ref. [50].

3.3.1 Alternative expression for the phase shift

Unfortunately, expression (3.26) for the scattering phase is not very convenient
when one wants to compute the phase shift for a given system. If |q| is the
solution of H0(x, q) = 0, then qinc

r (r) = (|q|2(r) − m2h̄2/r2)1/2 for a given
value of m. The integral in expression (3.26) therefore always converges
very slowly (because of the second term in qinc

r ), even when |q|(r) rapidly
becomes constant. Hence, we need to use a large cutoff radius in a numerical
implementation. In this subsection, we use a trick from Ref. [64] to obtain an
expression for δm that is more suitable for practical calculations.

To this end, we consider a second system, for which n(0) and εavg are
constant, and correspond to the values far away from the inhomogeneity in
the first system. In this second system the momentum q is constant, and
equal to q∞ > 0 which was defined in the previous subsection. The radial
momentum of the incoming wave is then given by q0

r (r) = (q2
∞ − m2h̄2/r2)1/2

and vanishes at the classical turning point r0
c = |m|h̄/q∞. We now rewrite
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expression (3.26) as

δm = lim
r→∞

(∫ r

rc

qinc
r (r′)

h̄
dr′ −

∫ r

r0
c

q0
r (r′)

h̄
dr′

)

+ lim
r→∞

(∫ r

r0
c

q0
r (r′)

h̄
dr′ − q∞r

h̄

)
+

mπ

2
, (3.28)

where we were allowed to split the limit into two because both converge.

Using our expression for q0
r (r), the integral in the second limit can be

computed explicitly [64]. Taking the limit r → ∞ in the result, we find

lim
r→∞

(∫ r

r0
c

q0
r (r′)

h̄
dr′ − q∞r

h̄

)
= −π

2
q∞r0

c
h̄

= −|m|π
2

. (3.29)

Inserting this result into expression (3.28), we obtain

δm = lim
r→∞

(∫ r

rc

qinc
r (r′)

h̄
dr′ −

∫ r

r0
c

q0
r (r′)

h̄
dr′

)
+

π

2
(m − |m|) . (3.30)

The last part of this expression equals zero for positive m, and −|m|π for
negative m. In section 3.2, we noted that the phase shift is only defined
up to an integer multiple of π. We can thus freely add a multiple of π to
expression (3.30) without changing the physical result. We therefore write

δm = lim
r→∞

(∫ r

rc

qinc
r (r′)

h̄
dr′ −

∫ r

r0
c

q0
r (r′)

h̄
dr′

)
, (3.31)

which has the property that all phase shifts vanish in the absence of an
inhomogeneity, cf. Refs. [64, 86]. It also satisfies the symmetry that we
previously derived, δm = δ−m.

Finally, we argue that expression (3.31) is more suitable for practical
calculations than expression (3.26). Let us first consider an inhomogeneity
with a finite range, such that |q|(r) = q∞ for r > R. We may then split the
limit and obtain

δm =
∫ R

rc

qinc
r (r′)

h̄
dr′ −

∫ R

r0
c

q0
r (r′)

h̄
dr′ + lim

r→∞

∫ r

R

qinc
r (r′)− q0

r (r′)
h̄

dr′. (3.32)

The last part of this expression vanishes, because the behavior of the two
integrands is identical for R < r < ∞. More colloquially, the (large r) tails of
the integrands cancel, and as a result we only have to integrate over a finite
interval. Moreover, we directly see that δm vanishes when both rc > R and
r0

c > R. Comparing this to Eq. (3.26), we see that the integral in the latter
expression converges very slowly in terms of r, because of the slow decay of
qinc

r (r) = (|q|2(r)− m2h̄2/r2)1/2. We therefore have to integrate over a much
larger interval in order to obtain an accurate result, which is computationally

77



Chapter 3 Scattering on radially symmetric inhomogeneities

more demanding.
When the inhomogeneity does not have a finite range, the difference

between the two expressions is less clear cut. Nevertheless, one can use a
similar argument to show that expression (3.31) converges faster, in terms of r,
than expression (3.26) whenever |q|(r) decays faster than 1/r. We therefore
consider expression (3.31) more suitable for our numerical computations in
the next section.

3.4 Numerical results for the scattering cross section

In this section, we apply our scattering theory to a specific example. First,
we introduce an explicit shape of the inhomogeneity, i.e. a change in local
electron density n(0). Subsequently, we numerically evaluate the semiclassical
phase shift (3.31) with Wolfram Mathematica [90] and discuss the total and
differential scattering cross sections, given by Eqs. (3.10), and (3.8), respectively.
We show their dependence on three parameters: the change in local electron
density, plasmon energy, and decay length of the inhomogeneity. In order
to gain a better understanding of the system, we also discuss the classical
trajectories associated with the plasmon scattering, similar to those shown in
Fig. 3.1.

We can compute the semiclassical phase shift with different approaches.
In the first approach, we numerically determine the root of the effective classi-
cal Hamiltonian H0 for a given coordinate r, to obtain the radial momentum
qr. Following the discussion in Sec. 3.3.1, the phase shift can then be computed
efficiently using Eq. (3.31). In the second approach, we numerically solve
Hamilton’s equations (2.27), supplemented with a differential equation for the
action S based on Eq. (2.28). From this we determine the phase shift directly,
by noting that both terms in Eq. (3.31) are the actions of the plasmon in the
two systems discussed in Sec. 3.3.1. Unfortunately, the latter approach is com-
putationally expensive, because it requires small time steps in the numerical
integration. We therefore use the first approach in our computation.

In practical applications of Eq. (3.31), we have to choose a cut-off radius
R for the integration. We pick R in such a way that the last term in Eq. (3.32)
is negligible. This choice of R is, naturally, highly affected by the spatial decay
of the inhomogeneity. In order to ensure rapid convergence, we therefore
consider a Gaussian inhomogeneity. However, the theory is not limited to this
form. Specifically, we describe the local Fermi momentum as

pF(r) = p0

(
1 + δpF e−r2/ℓ2

)
, (3.33)

where p0 is the Fermi momentum far away from the inhomogeneity. In this
model for the inhomogeneity, we have two independent parameters, namely
the maximum change in local Fermi momentum δpF, and the decay length
ℓ. Following Eq. (1.49), the change in Fermi momentum can be directly
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Figure 3.3: Numerically evaluated total scattering cross section σ/ℓ0 as func-
tion of the plasmon energy E. In this plot, the local density change δn = 1.25,
and the decay length is ℓ0 = 13.2 nm. The shades of blue indicate the partial
waves which have been taken into account, whilst the solid black line indi-
cates the cross section for |m| ≤ 28. The scattering cross section increases
monotonously up to around E = 0.7 eV, after which it starts to oscillate.

related to the change in electron density by δn = gs p2
F
(
2δpF + δp2

F
)

/4πh̄2n(0).
Throughout this section, we consider changes in the local electron density
instead of the Fermi momentum, since they can be more easily compared to
experiments.

In our specific example, we consider a free-electron density of n(0) =
2.25 × 1015 cm−2, indicative of a metallic system. The active layer is encap-
sulated by two dielectric materials, with εavg = 10ε0. The effective mass of
the electrons is taken as meff = me. Unless stated otherwise, we consider a
plasmon with an energy of E = 0.54 eV, a local increase in electron density
δn = 1.25, and a decay length of ℓ = ℓ0 = 13.2 nm. For these values, we have
h = 0.0064 and κ = 0.0100, and the ratio h/κ is of order one. We therefore
satisfy the requirements given in Sec. 2.1.5. For these parameters, the classical
trajectories corresponding to a scattered plasmon are plotted in Fig. 3.1.

We first computed the total cross section as function of the plasmon
energy, which is shown in Fig. 3.3. Intuitively, the total cross section increases
with increasing plasmon energy or momentum. We recognize this for low
energies, but for higher energies the total cross section σ/ℓ0 starts to oscillate.
We attribute this oscillation to interference between different overlapping
waves, as we discuss shortly.

Looking at the dispersion relation in Fig. 3.4, we observe that the plasmon
dispersion enters a shaded region at a certain energy. This shaded region corre-
sponds to the region of Landau damping [2, 28], where the collective electron
excitation transfers energy to incoherent electron-hole pairs. Mathematically,
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Figure 3.4: The dispersion relation for plasmons in a two-dimensional system
for two different electron densities, namely n(0) = 2.25 × 1015 cm−2 (solid red
line) and n(0) = 5.06 × 1015 cm−2 (dashed blue line). The black dash-dotted
line indicates a constant energy. One can see that the plasmon momentum
corresponding to a given energy decreases when the electron density increases.
The light and dark gray area depict the Landau damped regions for the higher
and lower electron density, respectively.

this corresponds to the point where H0, see Eq. (2.53), becomes complex,
which leads to many complications in the application of the semiclassical
approximation [50]. When plotting the cross section in Fig. 3.3, we therefore
made sure that we stayed well outside the region of Landau damping, which
starts at E = 5.7 eV for the given parameters.

Let us now examine the interference, by taking a closer look at the classical
trajectories in Fig. 3.1. Since the trajectories emerge from a classical picture,
they do not take the wave-like character into account and therefore do not
show the interference. However, we can determine the regions in which
interference takes place, by looking at points that are reached by more than
one trajectory. The black lines in Fig. 3.1, which are known as caustics [75, 76],
separate the regions where each point lies on a single trajectory from the
regions where each point lies on multiple trajectories. It is precisely in the
latter regions where interference takes place. The Jacobian (2.29) vanishes on
the caustics, and therefore our expressions for the induced potential and the
energy density diverge. This indicates that we cannot use our expressions
in the vicinity of the caustic, and implies that the energy density is larger
in this region. The interference is visible in the total cross section shown in
Fig. 3.3, since our semiclassical expression takes the wave-like character of the
plasmons into account.

A similar, but slightly different, oscillatory behavior is found in Fig. 3.5a,
where the total scattering cross section is plotted for different values of the
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Figure 3.5: Numerical evaluation of the scattering cross section as a function
of ℓ, with parameters: local density change δn = 1.25, reference decay length
ℓ0 = 13.2 nm, and plasmon energy E = 0.54 eV. (a) Total scattering cross
section σ/ℓ0 as a function of the decay length ℓ. The shades of blue indicate the
partial waves included in the calculation, with the solid black line representing
the cross section for |m| ≤ 23. The vertical colored lines mark the decay
lengths used for the differential cross sections in (b). (b) Differential scattering
cross section for various decay lengths ℓ. The ℓ = 13.2 nm (dotted orange)
and ℓ = 21.2 nm (dash-dotted green) curves show predominantly forward
plasmon scattering. The minima and maxima in the ℓ = 26.5 nm (solid purple)
and ℓ = 31.7 nm (dashed red) curves indicate interference effects. Parameters
are consistent with (a), and partial waves up to |m| ≤ 15 were considered.
Notice the minima around ±π/12 and maxima around ±π/6 for ℓ = 26.5 nm
and ℓ = 31.7 nm.

decay length ℓ, not to be confused with the constant ℓ0. The total cross section
increases monotonously as a function of the decay length, however, with
oscillating slope. We again attribute this behavior to interference between the
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the plasmon scattering, for the lengths corresponding to the colored vertical
lines in Fig. 3.5a. We divide it by ℓ0 to make it a dimensionless quantity.
Figure 3.5b shows that there is strong forward scattering for all decay lengths.
For larger decay lengths, in other words, for smaller values of the semiclassical
parameter h, two additional scattering peaks appear. The new local maxima
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Figure 3.6: Classical trajectories of a plasmon, coming in from x → −∞.
The maximum change in local density for the left plot is δn = −0.58, which
corresponds to the first maximum in σ/ℓ0 in Fig. 3.7a. The right plot has a
maximum change in local density of δn = −0.70, which is just before the local
minimum in the total scattering cross section. The solid black lines are the
caustics.

around ±π/6 originate from constructive interference, and similarly two local
minima arise around ±π/12 due to destructive interference. Comparing
Figs. 3.5b and 3.1, we observe that these additional extrema are indeed located
in the regions where the trajectories overlap. The interference effects thus
become more clearly visible for smaller values of h, in other words, in the
deep semiclassical limit. We see similar results when the differential cross
section is plotted for increasing energies.

Lastly, we look at the effect of a change in the local electron density δn
on the plasmon scattering. In Fig. 3.4, we see that, for a given energy E, an
increase in the local electron density decreases the momentum q. In this sense,
an increase in local electron density (δn > 0) can be considered a repelling
potential, as shown in Fig. 3.1. In contrast, a decreasing local density (δn < 0)
attracts the plasmon, as shown in Fig. 3.6.

Note that decreasing the local electron density also lowers the energy at
which the Landau damped region is reached, as can be seen in Fig. 3.4. This
means that for a certain energy there is a maximum to the decrease in local
electron density. For E = 0.54 eV, the maximum becomes δnc = −0.99. For the
total scattering cross section shown in Fig. 3.7a, we stay well below this limit.

As expected, we see in Fig. 3.7a that the total scattering cross section
σ/ℓ0 increases for larger increases in the local density |δn|. The scattering
cross section is asymmetric around δn = 0, which is expected since there is
a maximum decrease in local electron density for the existence of plasmons,
but no limit for positive values. Furthermore, the small q expansion given in
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Figure 3.7: Numerical evaluation of the scattering cross section as a function
of δn, with parameters: plasmon energy E = 0.54 eV and decay length
ℓ0 = 13.2 nm. (a) Total scattering cross section σ/ℓ0 as a function of the
maximum change in local electron density δn. The shades of blue indicate the
partial waves included in the calculation, with the solid black line representing
the cross section for |m| ≤ 6. Note the oscillatory behavior for negative δn.
The vertical colored lines mark the values of δn used for the differential cross
sections in (b). (b) Differential scattering cross section for various values of
δn. The δn = +1.25 (dotted orange) curve is the reference, while δn = −0.58
(dash-dotted green), δn = −0.75 (solid purple), and δn = −0.82 (dashed red)
correspond to the first maximum, minimum, and next maximum in σ/ℓ0,
respectively. Note the extra minima, maxima, and the backscattering peak for
δn = −0.75 and δn = −0.82. Partial waves up to |m| ≤ 8 were considered.

Eq. (3.1) for H0 = 0, yields the proportionality q ∝ 1/(n(0) + δn), which is
also not symmetric around δn = 0.

We observe in Fig. 3.7a that the total scattering cross section increases
monotonically for δn > 0. Looking at the dotted orange line in Fig. 3.7b,
we see that the plasmon is mainly scattered forward for δn = 1.25, without
any additional maxima and minima. Note that this differential cross section
is the same as the dotted orange differential cross section in Fig. 3.5b. On
the contrary, for negative values of δn, we see that the total cross section
shows maxima at approximately δn = −0.58 and δn = −0.82 and minima at
δn = −0.75, which we attribute to interference.

In Fig. 3.7b, we take a closer look at these extrema by considering the
differential cross section for the densities indicated by the colored vertical
lines in Fig. 3.7a. We see additional scattering directions emerging for negative
δn, including a sharp backscattering peak for δn = −0.75 and δn = −0.82.
The backscattering comes from plasmons that are attracted and deflected
by the lower local density, as can be seen from Fig. 3.6, where the classical
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trajectories are plotted for δn = −0.58 and δn = −0.70. Lowering the local
density to δn = −0.70, which is just before the local minimum in the total
scattering cross section, gradually deflects the plasmons 180o degrees, and
ergo explains the backscattering. Lowering δn further causes the caustics to
intersect, and consequently points are reached by even more trajectories in
that region. This in turn increases the interference effects, which is evident
form the rough changes below δn = −0.85 in the total scattering cross section
shown in Fig. 3.7a.

3.5 Conclusion

In this chapter, we have developed a semiclassical theory for plasmon scatter-
ing on radially symmetric inhomogeneities. We have applied this theory to a
simple model for the dielectric environment, consisting of a two-dimensional
electron gas at z = 0 encapsulated by two dielectric layers (cf. Sec. 2.2.1). The
electron density in the z = 0 plane is homogeneous, except near the x-origin,
where a radially symmetric inhomogeneity is placed. We have considered the
situation where a plasmon, represented as a plane wave, comes in from the
left-hand side (x → −∞), and is scattered by the inhomogeneity.

In Sec. 3.2, we laid the groundwork for our scattering analysis by review-
ing the relationship between differential cross sections and phase shifts within
the framework of quantum scattering theory. To bridge the gap between
theoretical constructs and experimental observables, we demonstrated how
scattering cross sections, readily measurable in experiments, can be expressed
in terms of phase shifts. Specifically, we decomposed the incoming plane
wave into radial waves using a Fourier-Bessel series expansion. By focusing
on the far-field regime, where the medium asymptotically approaches homo-
geneity, and by imposing the Sommerfeld radiation condition, we isolated the
scattered waves. Leveraging the radial symmetry of the system, we derived
expressions for the differential and total scattering cross sections, Eqs. (3.8)
and (3.9), respectively. These expressions establish a direct link between the
phase shift, which we expressed in terms of our semiclassical framework in
the subsequent section.

Building upon the groundwork laid in the previous section, in Sec. 3.3,
we derived a semiclassical expression for the phase shift, Eq. (3.31), directly
from our induced potential. This involved carefully tracing and matching
incoming trajectories with scattered trajectories within the framework of
the Lagrangian manifold. This manifold provides the natural setting for
incorporating the wave-like nature of plasmons. By making extensive use of
the concept of a Lagrangian manifold, we effectively positioned this derivation
as a practical application of the abstract formalism of the Maslov canonical
operator. Following this matching, we constructed the full induced potential,
accounting for the Jacobian, the other amplitude terms, and the phase, which
is the classical action. This led to a complete semiclassical expression for the
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scattered plasmon, which we linked to the general solution from the quantum
scattering approach, thus revealing an expression for the phase shift. Finally,
in Sec. 3.3.1, we recast this expression into the numerically favorable form
given by Eq. (3.31).

In Sec. 3.4, we discussed our numerical implementation of the theory.
We calculated the total and differential scattering cross sections, given by
Eqs. (3.9) and (3.8), respectively, for plasmon scattering by a Gaussian bump
or well in the charge density distribution of a metallic system. We considered
the dependence of the total cross section on the plasmon energy E, the
spatial scale ℓ of the inhomogeneity, and the change in local density δn. We
compared these results with classical trajectories, computed using the effective
classical Hamiltonian (2.26), highlighting the role of interference between
different trajectories. This interference was clearly observed in the differential
cross section for different ℓ and δn, and was more pronounced in the deep
semiclassical limit (smaller h). For a depletion in the local density, δn < 0,
we observed backscattering in the differential cross section, consistent with
the classical trajectories. We also observed that the total scattering cross
section shows maxima and minima for negative values of δn, which we
attributed to interference. We further analyzed these extrema by examining
the differential cross section for specific density values, revealing additional
scattering directions and a sharp backscattering peak. We explained the
backscattering by considering the classical trajectories for negative δn, showing
how plasmons are attracted and deflected by the lower local density. These
results demonstrate that the developed semiclassical theory can effectively
describe plasmon scattering phenomena, providing a robust framework for
interpreting experimental observations and predicting scattering patterns in
realistic systems.
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4
(Quasi-)localized states for waveguiding

Plasmons, due to their strong light interaction and subwavelength confine-
ment, are crucial for integrated photonic circuits. Plasmonic waveguides, es-
sential for guiding and controlling these plasmons, can be fabricated through
material patterning or dielectric structuring. In this chapter, we develop a
semi-analytical theory for plasmonic waveguides, employing the effective
classical Hamiltonian Eq. (2.26) to compute plasmonic trajectories, which,
as will be shown, can under certain conditions be periodic. Specifically, we
utilize the second model for the dielectric environment discussed in Ch. 2.2.2,
which accounts for a finite height and incorporates nonlocal effects. This
chapter therefore also serves as an example of the employment of this model.
By incorporating the wave-like nature of plasmons, we identify two dis-
tinct waveguiding mechanisms: one based on total internal reflection with
a quantization condition (cf. Sec. 1.3.1), and the other on varying dielectric
environments that induce quasi-localized states via local amplitude changes,
providing a foundation for understanding previous numerical studies.

This chapter details the full research and analysis from the paper published in Ref. [69].
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4.1 Introduction to plasmonic waveguiding

In this chapter, we illustrate the theory developed in Ch. 2 by studying
plasmonic waveguides. Specifically, we consider the more complex model
discussed in Sec. 2.2.2, which describes a two-dimensional electron gas at
z = 0 encapsulated by a dielectric layer with finite thickness d and dielectric
constant εM. This layer is then sandwiched between background dielectrics
above and below, similar to the simple model. We then proceed to demonstrate
how our theory can be used to describe plasmonic waveguides by patterning
quasi-one-dimensional systems, varying parameters such as the background
dielectric constant, energy density, or the effective height d. We find two
distinct mechanisms for plasmonic waveguiding: one based on plasmon
localization through bound states, and another based on quasi-localized states
induced by variations in the dielectric environment.

The effective classical Hamiltonian, which describes the dynamics of
quantum plasmons in phase space, generates classical plasmon trajectories
analogous to rays in geometrical optics. By incorporating the wave-like char-
acter of plasmons into these trajectories, we identify the first type of localized
plasmonic state, based on total internal reflection, similar to photonic waveg-
uides. Here, a classically forbidden region arises due to momentum along the
waveguide direction [91]. This leads to periodic trajectories, allowing us to
apply the quantization condition as outlined in Sec. 1.3.1. We demonstrate that
by varying the dielectric substrate, electron density, or effective height of the
middle layer, plasmonic bound states can be created. We then systematically
study the conditions for the appearance of these bound states and compute
their dispersion.

The second type of (quasi-)localization relies on a varying dielectric sub-
strate that locally modifies the screening of the electrons. This, in turn, locally
increases or decreases the amplitude of the plasmonic excitation, thereby
altering the induced electron density. We discuss how the localization of the
plasmon depends on parameters like the substrate dielectric constant, the
energy of the excited plasmon, and the momentum along the direction of
the waveguide. These findings provide a solid basis to understand previous
numerical results from Ref. [40], and also demonstrate that it is possible to
localize the plasmon in regions with higher screening.

This chapter is structured as follows. In Sec. 4.2, we conduct an in-depth
study of bound states supported by the effective classical Hamiltonian. We
elucidate their physical origin and investigate how the spectrum is influenced
by spatial variations in different parameters. This is achieved by numeri-
cally solving the quantization condition, yielding a dispersion relation that
connects the energy, the momentum along the waveguide direction, and a
quantum number (cf. Sec. 1.3.1). In Sec. 4.3, we explore a second type of
(quasi-)localized states. We demonstrate how their properties depend on the
screening provided by the substrate, as well as on the energy and momentum
of the excited plasmon, by numerically computing the real-space electron
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density using Eq. (1.60).

4.2 Plasmon localization through bound states

In this section, we analyze the effective classical Hamiltonian (2.26) at zero
temperature and show that it allows for the formation of bound states. These
states arise when a classically allowed region lies in between two regions where
plasmon propagation is classically forbidden. In a plasmonic waveguide, these
classically forbidden regions emerge through the presence of a momentum
along the direction of propagation in the waveguide.

Throughout this section, we consider the model discussed in Sec. 2.2.2,
where the substrate layer above (A) and below (B) have the same background
(b) dielectric constant, that is, εA(x) = εB(x) = εb(x) in Eq. (2.24). We use
the term dielectric constant to indicate that this quantity is static and does
not depend on the out-of-plane coordinate z. However, it still depends on
the in-plane coordinates x. At the same time, the length scale of variations in
this direction is large compared to the electron wavelength, which justifies the
term dielectric constant.

In Sec. 4.2.1, we analyze the classical Hamiltonian for this model. We
show that plasmonic bound states can arise in a waveguide geometry by
spatially varying the dielectric constant, but only when the momentum along
the propagation direction of the waveguide is non-zero. In Sec. 4.2.2, we
subsequently implement this setup in Wolfram Mathematica [90], and compute
the bound-state spectrum. We not only consider variations in the dielectric
constant, but also in the electron density n(0) and the effective height d,
introduced in the previous section.

4.2.1 General analysis of the effective classical Hamiltonian:
formation of bound states

We first demonstrate that the effective classical Hamiltonian supports plas-
monic bound states. We study a system in which the parameters vary only in
the x-direction, while the system is translationally invariant in the y-direction.
This implies that H0(x, q, E) does not explicitly depend on y, which means
dqy/dτ = −∂H0/∂y due to Hamilton’s equations. In other words, qy is con-
served and thus serves as a good quantum number. We refer to the y-direction
as the propagation direction of the waveguide. Notably, throughout this chap-
ter, we explicitly include the energy E dependence of the effective classical
Hamiltonian, as this is important for our explanation of plasmonic bound
state formation.

As previously mentioned, we can interpret the classical Hamiltonian as
a spatially varying analog of the conventional Lindhard function, where the
parameters take their local values at position x. A plasmon mode can exist at
a given position xi if there is a real momentum q satisfying H0(xi, q, E) = 0,
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for a given energy E. From the relation H0(x, q, E) = 0, we can compute the
local plasmon dispersion E(x; q), treating x as a parameter. When there is no
real momentum q satisfying this relation, we speak of a classically forbidden
region.

At first sight, it may seem strange that a 2D plasmonic waveguide exhibits
classically forbidden regions, since the 2D plasmon spectrum is gapless as
q → 0. This is in contrast to the 3D plasmon spectrum, which has a cutoff at
the plasma frequency ωp. This energy gap, which depends on the dielectric
constant and the electron density, results in classically forbidden regions
which can give rise to bound states [50]. Although the 2D plasmon spectrum
is gapless as a function of |q|, the presence of a finite momentum qy along
the propagation direction creates an effective gap for propagation in the x-
direction, as we discuss shortly. This mechanism is analogous to total internal
reflection in photonic waveguides, where a critical angle determines whether
a photon is completely reflected [91]. From this analogy, it is clear that a
non-zero momentum in the direction of propagation is required.

Figure 4.1 shows the plasmon dispersion for two different substrate dielec-
tric constants as a function of the total momentum |q|/h̄. In orange, denoted
by x1, the plasmon dispersion is given for a system where the dielectric con-
stant equal to εb = 1. In blue, denoted by x2, the plasmon dispersion is given
for εb = 9. In general, the energies of the plasmon mode are pushed toward
the electron-hole continuum (Landau damped region) for higher values of
εb, because of an increased screening by the substrate. For the following
discussion, it is insightful to split the momentum |q| into two components,
namely |q|2 = q2

x + q2
y, where, as discussed before, qy is the momentum along

the direction of the waveguide, and a constant of motion.
In the case of photonic waveguides, it is convenient to describe differ-

ent regions as “faster” or “slower” based on the refractive index, as the
linear dispersion allows for a well-defined group velocity and consequently
a unique critical angle. However, for plasmons, the highly nonlinear dis-
persion complicates the definition of “fast” and “slow” regions, making it
difficult to define a unique critical angle. Instead, we adopt an energy-gap
perspective. When treating qy as a parameter, we define the gap energy as
Eg(x, qy) = E(x, qy; qx = 0), which represents the lowest plasmon energy at a
given x for fixed qy. The inset of Fig. 4.1 illustrates this concept by plotting
E(x, qy; qx) as a function of qx for finite qy/h̄ = 0.08 Å−1, at the two specific
points discussed above. The gap energy can be extracted from this figure by
looking at the limit qx → 0.

The existence of this finite energy gap allows us to define classically
allowed and forbidden regions, analogous to the 3D case, as follows. Suppose
we excite a plasmon with energy Epl = 0.8 eV (i.e. the horizontal dashed line
in Fig. 4.1) and a (constant) finite momentum qy/h̄ = 0.08 Å−1 (i.e. the vertical
dashed line), and we look at a point, x1, where the dielectric constant is equal
to εb = 1. We observe that plasmons are not allowed to propagate at this point
x1, since they satisfy Epl = E(x1; |q|) only when |q| < |qy|, meaning that qx
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discussion, it is insightful to split the momentum |q| into two components,
namely |q|2 = q2

x + q2
y, where, as discussed before, qy is the momentum along

the direction of the waveguide, and a constant of motion.
In the case of photonic waveguides, it is convenient to describe differ-

ent regions as “faster” or “slower” based on the refractive index, as the
linear dispersion allows for a well-defined group velocity and consequently
a unique critical angle. However, for plasmons, the highly nonlinear dis-
persion complicates the definition of “fast” and “slow” regions, making it
difficult to define a unique critical angle. Instead, we adopt an energy-gap
perspective. When treating qy as a parameter, we define the gap energy as
Eg(x, qy) = E(x, qy; qx = 0), which represents the lowest plasmon energy at a
given x for fixed qy. The inset of Fig. 4.1 illustrates this concept by plotting
E(x, qy; qx) as a function of qx for finite qy/h̄ = 0.08 Å−1, at the two specific
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The existence of this finite energy gap allows us to define classically
allowed and forbidden regions, analogous to the 3D case, as follows. Suppose
we excite a plasmon with energy Epl = 0.8 eV (i.e. the horizontal dashed line
in Fig. 4.1) and a (constant) finite momentum qy/h̄ = 0.08 Å−1 (i.e. the vertical
dashed line), and we look at a point, x1, where the dielectric constant is equal
to εb = 1. We observe that plasmons are not allowed to propagate at this point
x1, since they satisfy Epl = E(x1; |q|) only when |q| < |qy|, meaning that qx
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Figure 4.1: The local dispersion relation for plasmons in two-dimensional
systems at two points with different values of the substrate dielectric constant,
namely εb = 1 at point x1, and εb = 9 at point x2. The horizontal dashed
black line indicates a constant energy Epl = 0.8 eV, and the vertical dashed
black line indicate a momentum qy/h̄ = 0.08 Å−1. For this momentum, the
dispersion E(qx) is plotted in the inset, where we see a gap opening up for
qx = 0. In the inset, the energy Epl = 0.8 eV lies below the dispersion for
εb = 1, and therefore in the classically forbidden region. For the region where
εb = 9, a state exists for this energy. The gray area in both plots depicts the
Landau damped region or the particle hole continuum.

has to be imaginary. We therefore have exponentially damped waves, meaning
that x1 lies in a classically forbidden region. At the same time, plasmons can
propagate at the point x2, where εb = 9, since they satisfy Epl = E(x2; |q|)
for |q| > |qy|, meaning that qx is real. The latter leads to the traveling waves,
meaning that x2 lies in a classically allowed region.

So far, we have seen that it is possible to create classically forbidden
and allowed regions for specific energies Epl and momenta qy. Let us now
consider the quasi-one-dimensional setup shown in Fig. 4.2(a). Ignoring the
exact spatial details for the present discussion, we can clearly distinguish three
different regions: on the left and the right we have εb = 1 (e.g. at the point x1),
while εb = 9 in the middle (e.g. at x2). The background dielectric constant
enters the classical Hamiltonian through the effective dielectric function εeff,
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Figure 4.2: (a) Spatial variation of the substrate dielectric constant εb(x). On
the left-hand and right-hand side the dielectric constant tends to εb = 1, and
in the middle it goes to εb = 9. From Fig. 4.1, we see that the dispersion
relation in the middle region, with higher dielectric constant, is pushed toward
the particle hole continuum. (b) The effective dielectric function plotted as
function of |q|/h̄. For small |q|/h̄, i.e. the long wavelength limit, the effective
dielectric function goes to εb(xi). In the opposite limit, for large |q|/h̄, it goes
to εM.

which is depicted in Fig. 4.2(b) as function of |q|/h̄ for the two values of
the substrate dielectric constant εb. For high values of q/h̄, the effective
dielectric function tends to εM, for both values of εb, and the screening
becomes equivalent in all regions. Comparing Figs. 4.1 and 4.2(b), we observe
that, for these specific parameters, only the lower momenta in Fig. 4.2(b), are
relevant for the plasmon dispersion, which means that the screening varies
substantially between different regions.

Applying the logic of the previous paragraphs to the spatial variation
εb(x) shown in Fig. 4.2(a), we conclude that, for certain energies Epl and
momenta qy, plasmons are only allowed to propagate in the middle region.
The presence of a classically allowed region between two classically forbidden
regions leads to periodic trajectories in classical phase space. These periodic
trajectories are shown in Fig. 4.3(a), for three different values of the momentum
qy. Note that the size of the classically allowed region increases when qy
decreases, meaning that the turning points move to larger values of x. Below
a certain value of qy, both regions are classically allowed, leading to the open
trajectory that is also shown in Fig. 4.3(a).

In appendix D, we briefly show that the turning points on the periodic
trajectories, that is, the points where qx → 0, are so-called simple turning
points. This means that q2

x ∝ x in the vicinity of the turning point, and holds
regardless of the value of the parameter qy.

Figure 4.3(b) can help us to gain a better understanding of the energies of
which periodic trajectories occur. It shows the gap energy Eg(x, qy) as function
of x for a specific value of qy/h̄. For this value of qy, periodic trajectories can
exist in the valley between Eg(x2, qy) < Epl < Eg(x1, qy). When we increase qy,
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we, at some point, reach a value at which the gap energy reaches the solid red
line EL(x). This corresponds to the point where the plasmon mode reaches
the Landau damped region (gray area in Fig. 4.1) Therefore, the maximum
energy for which periodic trajectories can exist, is determined by the lowest
Landau energy, which is for our system given by EL,min = EL(x2) (red dotted
line in Fig. 4.3(b)), cf. Ref. [50].

Note that, according to Ref. [50], so-called Landau turning points can
exist for energies between EL,min < Epl < EL,max, where EL,max = EL(x1).
However, these turning points and the subsequent periodic trajectories are not
discussed in this thesis, because this region is relatively small and close to the
particle-hole continuum (Landau damped region), as can be seen in Fig. 4.1.

So far, we have established the existence of classically allowed and for-
bidden regions, and we have discussed the conditions for periodic trajectories
in phase space to arise. However, not al periodic trajectories correspond to
bound states. Specifically, only periodic trajectories for which the classical
action fulfills the Einstein-Brillouin-Keller quantization condition [48, 55, 86]
lead to bound states. This condition can be stated as

Stot

2h̄
=

1
h̄

∣∣∣∣∣
∫ xc2

xc1

qx(x)dx

∣∣∣∣∣ =
(

m +
1
2

)
π, (4.1)

where xc1 and xc2 are the classical turning points, and m is a (non-negative)
integer. We can intuitively understand this condition from the requirement
that the induced potential should be single-valued when we move along the
periodic trajectory in phase space. After one full revolution in phase space,
see Fig. 4.3(a), the action should have increased by a multiple of 2π, which
makes the potential (1.53) single-valued because it is invariant under phase
differences of 2π.

The factor π/2 in Eq. (4.1) accounts for the phase shift of the solution (1.53)
at a simple turning point, which can be formalized through the so-called
Maslov index [48, 50, 55]. This phase shift arises because the asymptotic
solution (1.53) breaks down at a turning point, since the Jacobian vanishes.
From a practical perspective, the Maslov index ensures the correct phase
evolution as the plasmon passes through a turning point, compensating for
the sign change in the Jacobian in the amplitude, see Eq. (2.46).

The quantization condition (4.1) determines the spectrum of the plas-
monic waveguide. It defines a one-to-one relation between the energy and the
transverse momentum qy, for a given m. In the next subsection, we numeri-
cally implement the waveguide discussed here and compute the spectra for
waveguides with variations in different parameters.
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Figure 4.3: (a) Schematic representation of plasmonic trajectories in phase
space (x, qx) for four values of the momentum qy. The energy for all bound
states is constant and set to Epl = 0.8 eV. For certain values of qy, the phase
space trajectories are periodic and are confined to the middle region. For
the lowest value of qy, we have an open trajectory, which also pervades the
regions on the left and the right. (b) The spatial dependence of the gap energy
Eg(x, qy) (dotted black line) for constant qy = 0.08 Å−1, and the energy EL(x)
for which the Landau damped region is reached (solid red line). For this
specific qy, bound plasmonic states can exist in the middle valley of Eg(x, qy).
For higher values of the perpendicular momentum qy, the energy Eg(x, qy)
increases. Above the solid red line, plasmons do not exists in either spatial
region, because the dispersion has crossed the particle-hole continuum.

4.2.2 Numerical implementation semiclassical bound states

In this subsection, we numerically demonstrate the formation of plasmonic
bound states in quasi-one-dimensional systems with spatially varying pa-
rameters. We investigate three distinct scenarios: variations in the substrate
dielectric constant εb(x), variations in both the dielectric constant and the elec-
tron density n(0)(x), and variations in the dielectric constant, electron density,
and the effective height of the thin film d(x). These scenarios explore how
different physical mechanisms can be utilized to engineer plasmonic waveg-
uides, i.e. invasively or non-invasively. We show that each additional degree
of freedom allows for more precise control over the bound state spectrum.

For all three scenarios, we consider a quasi-one-dimensional geometry
with three distinct regions: two outer regions with identical characteristics (de-
noted by subscript 1) and a central region with different properties (denoted
by subscript 2). The spatial variation of the parameters along the x-direction
is modeled using hyperbolic tangent functions (∝ ± tanh [x/ℓ± ℓw/(2ℓ)]),
ensuring a smooth transition between the regions. A specific example with
varying the dielectric constant is given in Fig. 4.2(a), where significant vari-
ations happen over length scales 2ℓ = 3 nm, and ℓw = 15 nm is the width
of the middle part. The system is translationally invariant in the y-direction,
which defines the propagation direction of the waveguide.

Throughout this section, we adopt parameters resembling a metallic
system with a parabolic electronic dispersion and an effective electron mass
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region, because the dispersion has crossed the particle-hole continuum.
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rameters. We investigate three distinct scenarios: variations in the substrate
dielectric constant εb(x), variations in both the dielectric constant and the elec-
tron density n(0)(x), and variations in the dielectric constant, electron density,
and the effective height of the thin film d(x). These scenarios explore how
different physical mechanisms can be utilized to engineer plasmonic waveg-
uides, i.e. invasively or non-invasively. We show that each additional degree
of freedom allows for more precise control over the bound state spectrum.

For all three scenarios, we consider a quasi-one-dimensional geometry
with three distinct regions: two outer regions with identical characteristics (de-
noted by subscript 1) and a central region with different properties (denoted
by subscript 2). The spatial variation of the parameters along the x-direction
is modeled using hyperbolic tangent functions (∝ ± tanh [x/ℓ± ℓw/(2ℓ)]),
ensuring a smooth transition between the regions. A specific example with
varying the dielectric constant is given in Fig. 4.2(a), where significant vari-
ations happen over length scales 2ℓ = 3 nm, and ℓw = 15 nm is the width
of the middle part. The system is translationally invariant in the y-direction,
which defines the propagation direction of the waveguide.

Throughout this section, we adopt parameters resembling a metallic
system with a parabolic electronic dispersion and an effective electron mass
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meff = 0.423me. The 2D material has a background electron density n(0) =
1.8 × 1014 cm−2, surrounded by a thin film with an effective height d0 =
0.576 nm and a dielectric constant εM = 10, consistent with values reported
in Ref. [40]. The width of the central region is set to ℓw = 15 nm, and
the characteristic length of the boundary between regions is 2ℓ = 3 nm.
These parameters yield a small dimensionless parameter h = h̄/(2ℓpF) = 0.1,
satisfying the criteria for the approximation as discussed in Refs. [1, 50].

Varying dielectric constant

We first consider a system with spatial variations in the substrate dielectric
constant εb(x). The dielectric constant is varied between εb(x1) = 1 in the
outer regions and εb(x2) = 9 in the central region, as described by

εb(x) = εb(x1)−
εb(x1)− εb(x2)

2
tanh

[
x
ℓ
+

ℓw

2ℓ

]
(4.2)

+
εb(x1)− εb(x2)

2
tanh

[
x
ℓ
− ℓw

2ℓ

]
,

and shown in Fig. 4.2(a). This variation can be achieved non-invasively by
patterning the substrate. While the hyperbolic tangent function used to
model εb(x) formally only reaches its maximum value at infinity, the spatial
separation of the points is sufficient for the dielectric constant to effectively
reach its constant asymptotic value, ensuring that εb(x) is locally constant.

The quantization condition Eq. (4.1) defines a unique relation between
the bound state energy Ebound and the momentum qy for a given quantum
number m. In Fig. 4.4, we show this bound state spectrum for the dielectric
substrate (4.2). The green lines represent the allowed plasmon energies, with
the lowest line corresponding to m = 0. The spectrum is bounded by the gap
energies Eg(x1, qy) and Eg(x2, qy), indicated by the dashed orange and blue
lines, respectively. Plasmons are classically forbidden in all regions below
the dashed blue curve, whilst above the dashed orange curve plasmons are
classically allowed in both regions. As a consequence of the latter, plasmons
above Eg(x1, qy) do not have simple turning points and are therefore in a
continuum of allowed states. Bound states close to this continuum of states or
to the electron-hole continuum (in gray) will probably not be measurable as
localized states at finite temperatures, due to broadening of the modes into
the respective continuum [28, 29].

This demonstrates the formation of plasmonic bound states by solely
(non-invasively) manipulating the dielectric environment, which has a large
effect on the plasmon dispersion. Plasmons are localized in regions of higher
substrate dielectric constant. This may seem counterintuitive, as the potential
(Eq. (2.46)) naively suggests a decrease in amplitude due to increased screening.
However, this screening effect does not create the classically allowed and
forbidden regions necessary for bound states. We further explore the effect of
screening on the amplitude in Sec. 4.3.
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Figure 4.4: Spectrum of plasmonic bound states in a two-dimensional waveg-
uide, with a spatially varying dielectric constant of the substrate, as function
of the perpendicular momentum qy. The dot-dashed orange and dashed blue
lines indicate Eg(x1, qy) and Eg(x2, qy), respectively: they represent the upper
and lower energy boundaries of the bound state spectrum. Above the energy
Eg(x1, qy), the plasmons are classically allowed in both spatial regions, but,
therefore, no turning points can be formed, and hence no bound states exist.

Varying dielectric constant and electron density

We now investigate the combined effect of spatially varying both the dielectric
constant εb(x) and the electron density n(0)(x). Besides the dielectric variation
described in the previous subsection, we introduce a 15% increase in n(0)

in the central region; while this specific value is illustrative, the qualitative
effects of increased carrier density are the focus of this investigation. This
increase can, for example, be achieved non-invasively through local gating or
invasively through doping.

The electron density is parameterized via the Thomas-Fermi approxi-

mation, pF(x) = h̄
√

4πn(0)(x)/gs, and its spatial variation follows the same
hyperbolic tangent profile as the dielectric constant (Eq. (4.2)), where we
parameterize the electron density in the middle part with a relative increase
δn compared to the background electron density, n(0)

0 in the outer regions.
While increasing the dielectric constant tends to lower the plasmon dis-

persion, increasing the electron density has the opposite effect [1]. These two
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uide, with a spatially varying dielectric constant of the substrate, as function
of the perpendicular momentum qy. The dot-dashed orange and dashed blue
lines indicate Eg(x1, qy) and Eg(x2, qy), respectively: they represent the upper
and lower energy boundaries of the bound state spectrum. Above the energy
Eg(x1, qy), the plasmons are classically allowed in both spatial regions, but,
therefore, no turning points can be formed, and hence no bound states exist.
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Figure 4.5: Spectrum of plasmonic bound states in a two-dimensional waveg-
uide, with a spatially varying dielectric constant and electron density, as
function of the perpendicular momentum qy. The dot-dashed orange and
dashed blue lines indicate Eg(x1, qy) and Eg(x2, qy), respectively: they rep-
resent the upper and lower energy boundaries of the bound state spectrum.
Around qy/h̄ = 0.15 Å−1, the two gap energies cross, due to a combination
of the increased electron density and dielectric constant in the waveguide
channel. Before this crossing point, we have the bound state spectrum given by
the green lines, and above the energy Eg(x1, qy), we again have a continuum
of plasmon states.

competing effects operate over different momentum ranges. Consequently, we
expect a crossover regime where the influence of increased electron density
outweighs the increased screening from the dielectric constant.

The resulting bound state spectrum is shown in Fig. 4.5. The interplay
between εb(x) and n(0)(x) leads to a crossing of the gap energies Eg(x1, qy)
and Eg(x2, qy) at higher qy. This crossing point defines the boundary of
the allowed energy and momentum ranges for the bound states and can be
tuned by adjusting the magnitude of the variations in both parameters. This
demonstrates the enhanced control over the bound state spectrum achieved
by incorporating electron density variations.

All bound states, except for the lowest state (m = 0), begin and end at
the continuum edge defined by Eg(x1, qy) (dashed orange line). The m = 0
state ends at Eg(x2, qy) (dashed blue line), seemingly in a classically forbidden
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region. However, due to the opposing influences of the varying dielectric
constant and electron density, Eg(x, qy) locally dips below Eg(x2, qy) in the
boundary region between the central and outer regions. This local decrease
arises from the distinct momentum dependence of the two effects. While this
local minimum in Eg(x, qy) could theoretically support a bound state localized
at the boundary, we verified, through numerical estimates, that this is not the
case in our setups. We therefore do not further explore this possibility in this
thesis.

Increasing n(0) not only increases the dispersion energy E(x; |q|) but also
raises the energy of the particle-hole continuum (Landau damped region), as
shown by the lighter and darker gray areas in Fig. 4.5, corresponding to the
Landau damped regions at x2 and x1, respectively. One could theoretically
consider reversing the parameter variations, placing the higher dielectric
constant and electron density regions on the outside. This might lead to a
lower bound on the allowed energies and momenta. However, the Landau
damped region must be carefully considered in such a scenario, as for our
parameters, the energy Eg(x1, qy) crosses into the particle-hole continuum of
the new outer regions, resulting in damping for those qy values.

In summary, the interplay of the varying dielectric constant and electron
density creates a crossing point in the gap energies, providing control over the
allowed energy and momentum ranges for the bound states. This highlights
the increased flexibility in engineering the bound state spectrum by incorpo-
rating electron density variations. Both variations in the dielectric constant
and the electron density can be done non-invasively. On the contrary, when
the electron layer itself is varied, the characteristic properties and therefore
the parameters change, e.g., the dielectric constant εM or the parameter d for
the effective height of the thin film [35, 40].

Varying dielectric constant, electron density, and the effective height d

Here, we briefly discuss the effect of varying the effective height d(x), which
influences the plasmon dispersion through exp (−|q|d/h̄) in εeff, Eq. (2.24).
However, while variations in the dielectric constant and electron density offer
significant control over the bound state spectrum, the impact of varying the
effective height is generally smaller. As documented in Refs. [35, 40], typical
variations in d are on the order of 10%, resulting in negligible changes to the
bound state energies. Therefore, to illustrate the qualitative effects of varying
d, we consider significantly larger, and potentially unrealistic, variations.

While not physically realistic at present, these large variations serve to
illustrate the sensitivity of the bound state spectrum to changes in the effective
height. Such variations could become relevant in systems with significant
material or structural changes in the thin film, or potentially through substrate
modifications (e.g., doping) that influence the out-of-plane penetration of the
electron wavefunction.
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Figure 4.6: (a) The effective dielectric function εeff plotted as function of the
momentum |q|/h̄. In the middle of the waveguide the effective thickness is
equal to d = 5d0 (depicted in blue), whereas on the outer regions, the effective
thickness is given by d = d0 (depicted in orange) . For small |q|/h̄, or in the
long wavelength limit, the effective dielectric function goes to εb(x1) = 1.5
and εb(x2) = 1. In the opposite limit, for large |q|/h̄, it goes to εM. The two
lines cross for small |q|/h̄, which can be seen clearly in (b).

Varying the effective height alters the effective dielectric function εeff
Eq. (2.24), influencing the screening of the plasmon. Increasing d causes
εeff to approach εM more rapidly as a function of momentum |q|, as shown
in Fig. 4.6(a). This effect is, therefore, most pronounced at lower momenta.
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dispersion relation.
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However, to illustrate the potential impact of larger variations in d, we
consider an unrealistic scenario where d is increased by a factor of 5 in the
central region. The effective height is parameterized in the same way as the
Fermi momentum, namely with three regions where the middle layer has a
relative change in height δd and the boundary is described by a hyperbolic
tangent. We set εb = 1 in the central region and εb = 1.5 in the outer regions.
This large increase in d significantly alters εeff at low momenta, depicted in
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screening, while the central region is more screened at higher momenta. This
leads to a crossing point in the gap energies Eg(xi, qy) of the two regions at
low momenta, as shown in Fig. 4.7.

Beside these variations, we increase the electron density by 15% in the
central region, as in the previous subsection. This further modifies the disper-
sion relation, leading to another crossing point in the gap energies at higher
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momenta, as can be seen in Fig. 4.7. These two crossing points define the
upper and lower limits for the existence of bound states, which are again
depicted by green in the figure.
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Figure 4.7: Spectrum of plasmonic bound states in a two-dimensional waveg-
uide,with a spatially varying dielectric constant, electron density and effective
height, as function of the perpendicular momentum qy. The dot-dashed or-
ange and dashed blue lines indicate Eg(x1, qy) and Eg(x2, qy), respectively:
they represent the upper and lower energy boundaries of the bound state spec-
trum. The two gap energies have two crossing points, due to the interplay of
the three varying parameters. The first crossing is at low momentum around
qy/h̄ = 0.01 Å−1, whereas the second crossing lays at higher momentum
around qy/h̄ = 0.14 Å−1. In between the crossing points, we have the bound
states given by the green lines, and above the energy Eg(x1, qy), we again have
a continuum of plasmon states.

In summary, while realistic variations in the effective height d have a neg-
ligible impact on the bound state spectrum, we have shown that unrealistically
large variations can lead to significant changes, creating additional crossing
points in the gap energies and thus further modifying the allowed energy
and momentum ranges for bound states. This illustrates the potential, albeit
in an unrealistic regime, for controlling the bound state spectrum through
variations in the thin film’s effective height.
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4.3 (Quasi-)localization of plasmons through local
screening

In the previous section, we demonstrated that the effective classical Hamilto-
nian supports classically allowed and forbidden regions, leading to the forma-
tion of semiclassical bound states. In these states, plasmons are strictly con-
fined within the waveguide channel and cannot propagate outside. However,
effective plasmon localization can also arise through a different mechanism:
variations in the local screening environment, which alters the amplitude. As
explored in Ref. [40], plasmons can be (quasi-)localized even when they are
classically allowed in all regions, due to variations in dielectric screening.

In this section, we investigate screening-induced plasmon
(quasi-)localization within our theoretical framework. We demonstrate
that while the plasmon remains classically allowed to propagate throughout
the structure, variations in the dielectric environment can significantly
modulate the plasmon amplitude, leading to a form of quasi-localization.
Specifically, we show how the interplay of competing screening effects can be
exploited to engineer plasmonic waveguides.

First, we discuss the specific setup considered throughout the section,
and we present a detailed analysis of the plasmon amplitude, highlighting
the different contributions to screening and their influence on the plasmon
excitation. Next, we compare our results with the numerical calculations
presented in Ref. [40], demonstrating the connection between our theoretical
framework and previous work. Finally, we explore potential waveguide
applications, showcasing how variations in the dielectric environment can be
used to control plasmon propagation through competing screening effects on
the plasmon amplitude.

4.3.1 The effect of screening on the amplitude

In order to use the analytical theory developed in this thesis, we examine
the amplitude of the induced potential Eq. (2.46), and how it is influenced
by inhomogeneities. The amplitude Eq. (2.43) has three contributing factors
(not considering the Berry phase) which can depend on the position, namely:
the total momentum, the effective dielectric function, and the Jacobian. We
analyze the influence of these factors separately in this subsection. However,
to make an accurate comparison of our results with the numerical findings in
Ref. [40], we first define a specific setup.

Throughout this section, we consider variations in the substrate dielectric
constant only. Specifically, we analyze a system with hard-wall boundary
conditions at x0 and xw, with a total width of 240 Å. The hard-wall boundary
conditions force the induced potential vanish at the boundary, leading to an
Einstein-Brillouin-Keller quantization condition for the action.
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Before we consider the quantization condition, it is more insightful to
construct the induced semiclassical potential, as was done in Ref. [1, 50].
Considering plasmons with energy Epl and transversal momentum qy, and
setting the reference point of the action to the left wall at x0, we have contribu-
tions from we have contributions from both right- and left-moving plasmons.
The left-moving component arises from scattering at the right wall. The full
induced potential can then be written as

Vpl = φ0(x)e
i
h̄ (y−y0)qy

(
e−

i
h̄
∫ x

x0
qx(x′)dx′

+ e
i
h̄
∫ x

x0
qx(x′)dx′−iπ−iΦtot

)
, (4.3)

where the action is decomposed in Cartesian components and integrated
along the plasmon trajectories. We set the arbitrary reference point y0 = 0.
The phase −iπ accounts for the reflection at the hard wall, and Φtot = Stot/h̄
represents the accumulated phase after one full revolution in phase space.
Note that the right moving exponent is defined with a negative sign, because
of the opposite direction of the momentum and velocity, as discussed in
Ref. [1].

If we considered a system with hard-wall boundary conditions in both x
and y, as in Ref. [40], then we would, from a semiclassical point of view, be
considering a integrable square billiard [92]. This leads to either ergodic (with
incommensurate wavevector components) or periodic trajectories (commensu-
rate components). The latter can lead to bound states, for which both qx and
qy are quantized. Instead, we only impose hard-wall boundary conditions in
the x-direction. This means that we consider a physically accurate model for
a waveguide, in which the momentum along the propagation direction is not
quantized.

The quantization condition [48, 55, 86] imposed by the hard-wall is given
by

Stot

2h̄
=

1
h̄

∣∣∣∣
∫ xw

x0

qx(x)dx
∣∣∣∣ = (m + 1)π, (4.4)

where the Maslov index contributes an additional phase π. In contrast to
simple turning points, where the classical motion is smoothly reversed, since
qx smoothly goes to zero, a hard-wall boundary imposes an abrupt momen-
tum reversal, leading to a discontinuous phase shift and a different Maslov
index. The number m can again be any non-negative integer, and represents
the number of nodes in the plasmonic bound state along the x-direction.
Alternatively, we could have derived this quantization condition from the
induced potential (4.3), by requiring that it vanishes at x0. This shows that
Φtot is a multiple of 2π, which is equivalent to Eq. (4.4). Since we assume the
plasmon to be classically allowed in all regions, the values of m are bounded
from above by the lowest Landau energy EL,min.
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Note that multiple reflections from excitations far below y0 should, in
principle, be included. However, these reflections do not introduce new
phase contributions due to the quantization condition; they only lead to a
multiplicative factor in the amplitude, which contributes to the normalization.

When the plasmon is classically allowed in all regions, qx and qy are
strictly real, and the exponents in Eq. (4.3) represent plane waves. The
amplitude of these plane waves is determined by φ0(x) Eq. (2.43), which
captures the screening effects by the dielectric. Spatial variations in the
substrate lead to a local change in screening of the electrons and therefore
alter the amplitude of the excited plasmon in various ways (e.g. the inverse
dependence on the effective dielectric function in Eq. (2.43)).

Besides the direct dependence on the effective dielectric function, the
Jacobian and the total momentum are also altered by the change in dielectric
environment. For the total momentum, this is evident from the dispersion
relation in either region in Fig. 4.1, where we see that for constant energy, the
momentum increases for higher screening. On the other hand, the dependence
of the Jacobian is more complex. It is given by

J = det

(
∂x
∂τ

∂x
∂α

∂y
∂τ

∂y
∂α

)
, (4.5)

where (τ, α) are parameters representing, respectively, the time evolution and
initial conditions that determine the phase space trajectories governed by the
Hamiltonian system defined by Eq. (2.26) (see Ref. [1] for a full discussion for
a circular symmetric problem). Following the discussion in Refs. [1, 50], we
parameterize the trajectories by τ and their y-coordinate at the point x0. One
can show [1, 50] that this results in ∂x/∂α = 0 and ∂y/∂α = 1. These relations
not only hold at the initial point where τ = 0, but at all points, as follows by
analyzing the variational system [1, 50].

Thus, J = |∂x/∂τ|, which is the group velocity in the x-direction. Using
Hamilton’s equations, the Jacobian can be written as

J =
∣∣∣∣
∂H0

∂qx

(
x,

∂S
∂x

, E
)∣∣∣∣ , (4.6)

evaluated along the classical trajectories. This shows that the dependence of
the Jacobian on local screening is complex, as it emerges through the deriva-
tive of the effective classical Hamiltonian with respect to qx. Although this
dependence is difficult to analyze analytically, it can be calculated numerically.

So far, we have discussed the setup which will be considered in the follow-
ing sections, and the various components of the amplitude and their influence
on the plasmon excitation in different environments. The amplitude is related
to both the electrostatic energy density (Eq. (2.50)) and the leading order of
the induced electron density (Eq. (1.60)), given by n0(x) = Π0(x)Vpl(x). In
the following subsections, we consider the latter, similar to Ref. [40], and nu-
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merically analyze systems with varying dielectric constants. For this analysis,
we use the real part of Vpl(x) to calculate the induced electron density.

4.3.2 The effect of local screening on the localization of the
plasmonic excitation

In the previous subsection, we discussed the various ways the plasmonic
state depends on the local dielectric screening. Here, we investigate this
dependence more directly by analyzing three distinct systems with varying
dielectric constants on the right side, while keeping the left-side dielectric
constant fixed at εb = 1. The dispersion relation for a system with this
dielectric constant is shown in Fig. 4.1, and closely matches the dispersion in
Ref. [40] (likewise for εb = 9). The hard-wall boundary conditions quantize
the allowed momenta, establishing a unique relationship between energy and
momentum qy for a given mode number m. For consistency, we fix the energy
at Epl = 1.2 eV and the mode number at m = 3 throughout this subsection,
allowing qy to vary between systems.

Figure 4.8: Localization of the plasmon in regions with lower screening. (a)-(c)
Real-space induced electron density n0(x, y), plotted for different values of
the substrate dielectric constant on the right side. The left side has a dielectric
constant of εb(x1) = 1 for all three plots, and the right side is varied, namely
(a) εb(x2) = 2, (b) εb(x2) = 4, and (c) εb(x2) = 9. (d) Spatial variation of the
dielectric constant εb(x), for εb(x1) = 1 and εb(x2) = 9. (e) Relative amplitude
ηdens (orange) and ηsamp (green) of the plasmon excitation on the right. (f)
Absolute value of the induced plasmon potential, induced electron density
and the amplitude of the electron density over x, for εb(x2) = 6. The orange
line corresponds to the amplitude taken for ηdens, and the green line for ηsamp.
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Figures 4.8(a)-4.8(c) show the real-space induced electron densities n0,
for the profile of the dielectric constant shown in Fig. 4.8(d). The dielectric
constant on the right side takes the values εb(x2) = (2, 4, 9), from (a) to (c).
The transition between the dielectric constants is modeled as a hyperbolic
tangent, i.e. ∝ tanh [x/ℓ], similar to the boundary described in Sec. 4.2.

The electron density is clearly more localized on the left side of the
system, where the dielectric constant is lower. To quantify this localization,
we compare the electron density amplitude in the two regions. We define a
relative amplitude as

ηdens =
Π0(x2)φ0(x2)

Π0(x1)φ0(x1) + Π0(x2)φ0(x2)
, (4.7)

which is plotted in orange in Fig 4.8(e), as function of εb(x2). Note that this
relative amplitude does not include the wave-like nature of the plasmon, as it
only considers the amplitude.

Figure 4.8(f), shows that the theoretical maximum of the induced electron
density, Π0(x)φ0(x), is not always attained due to the finite system size
and boundary conditions. Here, the absolute value of the induced potential
Vpl(x) (dashed purple) and the electron density n0(x) (solid green) are plotted
for εb(x2) = 6. The solid orange line represents the theoretical maximum
Π0(x)φ0(x), which does not account for the wave-like features of Vpl(x). The
maximum of the attained electron density is often located near the boundary
between the two regions, particularly for higher values of εb(x2), where half
of the wavelength of the plasmon (in the x-direction) becomes comparable to
or larger than the size of the left region.

On that note, we can also define a relative amplitude based on the
maximum of the attained density in the sample, which is given by

ηsamp =
n0,max(xleft)

n0,max(xright) + n0,max(xleft)
, (4.8)

where the maximum of n0 on the left side is taken over the left and the entire
boundary region, while the region on the right side starts where the difference
between εb(x) and εb(x2) is less than 2%. This relative amplitude is plotted in
green in Fig. 4.8(e), and shows a clear deviation from the theoretical relative
amplitude ηdens from roughly εb(x2) = 6.

In summary, this subsection has demonstrated that the localization of the
plasmonic excitation is significantly influenced by the local dielectric screening.
By analyzing systems with varying dielectric constants, we observed that the
electron density tends to localize more on the side with the lower dielectric
constant, indicating that (quasi-)localization of the plasmonic excitation is
indeed possible under these conditions. This provides valuable insights into
the behavior of plasmonic states in heterogeneous dielectric environments.
We finish this discussion by noting that the real-space electron density plots
and the dependence on the dielectric constant are in very good agreement
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with Figure 5(g) in Ref. [40]. Their numerical results appear to fall between
our theoretical and attained relative amplitude for higher values of εb(x2).

4.3.3 Plasmonic waveguide from amplitude effect

In the previous subsection, we demonstrated the possibility of localizing
plasmon excitations in regions of lower dielectric screening, and confirmed
that our calculations coincide with previous numerical results. Furthermore,
Fig. 4.8(e) suggests that localization increases with greater contrast in the
dielectric constant between regions. We now consider a waveguide setup
analogous to those in Sec. 4.2, but with localization occurring in the region
with a lower dielectric constant. Specifically, we consider a central channel
with εb(x1) = 1 and outer regions with εb(x2) = 9. The dielectric constant
profile is given by Eq. (4.2), where x1 now refers to a point in the center and
x2 to a point in the outer regions. The central channel width is ℓw = 100 Å,
and the total system width is 240 Å, with hard-wall boundary conditions at
the outer edges. These boundary conditions imply that the induced potential
goes to zero at these edges, leading to the quantization condition Eq. (4.4),
which defines a one-to-one relation between the energy and momentum qy
for a given m. In this subsection, we vary different parameters, such as the
plasmon energy and the quantum number m, to see how we can control the
quasi-localization for waveguiding.

First, we analyze the effect of the plasmon energy. Figures 4.9(a)-4.9(c)
show the real-space induced electron density n0(x, y) for the dielectric envi-
ronment depicted in Fig. 4.9(d). For the first two plots, (a) and (b), the number
of nodes in between the hard-wall boundaries is kept constant at m = 4, while
the energy is increased from Epl = 1.2 eV in (a) to 1.4 eV in (b). This energy
increase results in a higher momentum qy, increasing the number of nodes
along the waveguide direction.We observe slightly increased localization in
the central region with increasing energy.

We also consider the effect of the number of nodes m. In Fig. 4.9(c), the
plasmon is excited at Epl = 1.2 eV (as in (a)) but with a higher number of
nodes in the x-direction, m = 8. This leads to a lower momentum qy, evident
in the decreased number of nodes along the y-direction. For this increase in m
at constant energy, the localization in the central channel decreases.

While the localization varies with energy, momentum qy, and node num-
ber m, the electron density n0 remains localized in the central channel in all
three cases shown in Fig. 4.9(a)-4.9(c). However, at lower energies, the oppo-
site behavior can be observed. For example, at Epl = 0.8 eV and m = 4, the
electron density localizes in the high-screening outer regions (Fig. 4.9(e) and
4.9(f)). Figure 4.9(e) shows that while the induced potential Vpl(x) is highly
localized in the low-screening central channel, the induced electron density
n0(x) is not. This suggests that this effect stems solely from the polarization
Π0(x), which generally decreases with decreasing momentum |q| at constant
energy. Because the momentum is lower in the central region (Fig. 4.1), the
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and the total system width is 240 Å, with hard-wall boundary conditions at
the outer edges. These boundary conditions imply that the induced potential
goes to zero at these edges, leading to the quantization condition Eq. (4.4),
which defines a one-to-one relation between the energy and momentum qy
for a given m. In this subsection, we vary different parameters, such as the
plasmon energy and the quantum number m, to see how we can control the
quasi-localization for waveguiding.

First, we analyze the effect of the plasmon energy. Figures 4.9(a)-4.9(c)
show the real-space induced electron density n0(x, y) for the dielectric envi-
ronment depicted in Fig. 4.9(d). For the first two plots, (a) and (b), the number
of nodes in between the hard-wall boundaries is kept constant at m = 4, while
the energy is increased from Epl = 1.2 eV in (a) to 1.4 eV in (b). This energy
increase results in a higher momentum qy, increasing the number of nodes
along the waveguide direction.We observe slightly increased localization in
the central region with increasing energy.

We also consider the effect of the number of nodes m. In Fig. 4.9(c), the
plasmon is excited at Epl = 1.2 eV (as in (a)) but with a higher number of
nodes in the x-direction, m = 8. This leads to a lower momentum qy, evident
in the decreased number of nodes along the y-direction. For this increase in m
at constant energy, the localization in the central channel decreases.

While the localization varies with energy, momentum qy, and node num-
ber m, the electron density n0 remains localized in the central channel in all
three cases shown in Fig. 4.9(a)-4.9(c). However, at lower energies, the oppo-
site behavior can be observed. For example, at Epl = 0.8 eV and m = 4, the
electron density localizes in the high-screening outer regions (Fig. 4.9(e) and
4.9(f)). Figure 4.9(e) shows that while the induced potential Vpl(x) is highly
localized in the low-screening central channel, the induced electron density
n0(x) is not. This suggests that this effect stems solely from the polarization
Π0(x), which generally decreases with decreasing momentum |q| at constant
energy. Because the momentum is lower in the central region (Fig. 4.1), the

106

4.3. (Quasi-)localization of plasmons through local screening

Figure 4.9: Localization of the plasmon in a waveguide setup. (a)-(c) Real-
space induced electron density n0(x, y), plotted for different energies and
number of nodes, namely (a) Epl = 1.2 eV and m = 4, (b) Epl = 1.4 eV and
m = 4, (c) Epl = 1.2 eV and m = 8. (d) Spatial variation of the dielectric
constant as a function of x for the waveguide considered, where εb(x1) = 1
and εb(x2) = 9. (e) Absolute value of the induced plasmon potential Vpl,
induced electron density n0 and the amplitude of the electron density φ0 as
function of x, for Epl = 0.8 eV and m = 4. (f) Real-space induced electron
density n0(x, y), plotted for Epl = 0.8 eV and m = 4.

polarization is also lower. In the higher energy cases (Fig. 4.9(a)-4.9(c)), the
effect of the lower Π0(x) in the middle is less dominant; the localization
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The color gradient on each curve represents the relative amplitude difference
between the central and outer regions, as given by

ν =
Π0(x1)φ0(x1)− Π0(x2)φ0(x2)

Π0(x1)φ0(x1) + Π0(x2)φ0(x2)
. (4.9)

Positive (green) values of ν indicate localization in the central, low-screening
region, while negative (red) values indicate localization in the high-screening
outer regions.

As discussed earlier, the Jacobian has a complex influence on the ampli-
tude, depending on the derivative of the effective classical Hamiltonian with
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Figure 4.10: Spectrum of plasmonic bound states in a two-dimensional systems
with a spatially varying dielectric constant as function of the perpendicular
momentum qy. The color gradient indicates the relative amplitude ν, where
localization in the low-screened middle region is depicted with green and in
the high-screened edge regions with red. The solid and dotted black lines
indicate Eg(x1, qy) and Eg(x2, qy), respectively. Above the energy Eg(x1, qy), in
the region where we are interested in, the plasmons are allowed in both spatial
regions. In this case, there is no continuum of states, due to the hard-wall
boundary conditions. Above the horizontal dashed black line on top, the
Landau damped region is reached in the outer regions, which starts from the
energy EL,min = EL(x2).

respect to qx. Near the gap energy Eg(x1, qy) (solid black curve in Fig. 4.10),
where qx → 0 in the central channel, the Jacobian is generally lower, enhancing
localization in the middle. This is visible, for example, at the end of the m = 4
bound state curve. Furthermore, near the Landau energy EL(x2) (horizontal
dashed black line), the Jacobian becomes large in the outer regions, reducing
the plasmon excitation there and increasing central localization.

An analog to the bound state spectrum as function of the momentum
qy, given in Fig. 4.10, can be found in Ref. [40] figure 4(b). However, direct
comparison is difficult, due to differences in system setup, with their system
resembling the system discussed in the previous subsection. Besides, there is
no clear distinction between the number of nodes considered. It is likely that
the curve in their plot crosses multiple values of m along the dots.

We have thus seen that (quasi-)localization of plasmons in waveguide
setups is possible (Fig. 4.9). The outcome, however, is not straightforward
and depends on many different parameters, as is evident from Fig. 4.10. By
varying parameters, such as the dielectric constant, plasmon energy, and mode
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number, we can control the degree of localization. This tunability allows us to
achieve either strong or weak (quasi-)localization, depending on the desired
application.

4.4 Conclusion

In this chapter, we applied the semiclassical theory to a specific, commonly
used, model for the dielectric constant [34, 40, 70], representing a layered
structure consisting of a thin film with effective height d, and dielectric
constant εM, encapsulated by a dielectric substrate on both sides (see Sec. 2.2.2).
An infinitely thin 2D free electron layer was placed in the middle of the thin
film. Within our framework, the dielectric constants, effective height, and
electron density can all be treated as spatially varying parameters. This model
facilitated the analysis of two distinct types of localized states, based on total
internal reflection or screening from the environment.

The first type of localization, discussed in Sec. 4.2.1, through the formation
of bound states, arises from the effective classical Hamiltonian Eq. (2.26). This
Hamiltonian generates classical plasmon trajectories, which can be periodic.
When a classically allowed region is surrounded by classically forbidden
regions, these periodic trajectories support bound states upon the application
of the quantization condition Eq. (4.1). For 2D plasmons, the formation of
these regions is strongly dependent on the momentum qy. This localization
mechanism is analogous to total internal reflection in optical waveguides. We
note that these localized states are single states, meaning only one energy
is excited per m for a certain momentum qy. For applications in integrated
photonics, it would be interesting to describe a plasmonic band structure,
where one can excite multiple states per quantum number m for a certain
momentum qy. Such a band structure might exist in periodic systems or
plasmonic crystals, analogous to electronic band structures, which will be
discussed in Ch. 5.

In Sec. 4.2.2, we numerically implemented and extensively studied bound
states supported by the effective classical Hamiltonian. We elucidated their
origin and investigated how the spectrum depends on the spatial variation
of different parameters by numerically solving the quantization condition
Eq. (4.1). This yielded a dispersion relation connecting the energy, the mo-
mentum along the waveguide direction qy, and a quantum number m. We
demonstrated that by varying the dielectric substrate, electron density, or
effective height of the middle layer, plasmonic bound states can be created. We
systematically studied the conditions for the appearance of these bound states
and computed their dispersion. Simultaneous variation of these parameters
allowed us to control the lower and upper limits of the bound state spectrum
in terms of energies and momenta qy. These spectra, plotted as a function of
the momentum along the waveguide, qy, provide a direct link to experimen-
tal observables. The momentum qy can be controlled experimentally by for
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example plasmonic antennas.
The second type of (quasi-)localization, studied in Sec. 4.3, arises from

variations in dielectric screening, which modulate the amplitude of the plas-
mon and therefore the induced electron density. This (quasi-)localization is
purely an amplitude effect, distinct from the phase-related localization of
bound states. We have found that it is possible to localize the plasmon in
regions with higher screening. We have also found that the localization of
the plasmon depends on parameters like the substrate dielectric constant, the
energy of the excited plasmon, and the momentum along the direction of the
waveguide. The underlying mechanism is complex due to the interplay of
several factors in the amplitude: the Jacobian, the effective dielectric function,
and the total momentum.

In the numerical implementation of these quasi-localized states, we com-
puted the real-space electron density using Eq. (1.60) for various values of the
substrate dielectric constant, plasmon excitation energy, and momentum along
the waveguide direction. We demonstrated that by varying these parameters,
we can control the degree of localization. Notably, we observed that plasmons
can be localized in regions with higher screening. Furthermore, the polariza-
tion function, Π0, can lead to counter-intuitive localization behavior at low
energies and momenta, where localization shifts to regions of higher screening.
While our analysis primarily focused on variations in the dielectric constant,
we anticipate similar effects from variations in other parameters, such as the
electron density, as these also influence the dispersion and, consequently, the
amplitude. The numerical results presented in this section are consistent with
those reported in Ref. [40].

We remark that we only plotted the real-space induced potential for the
quasi-localized states in Sec. 4.3, and not for the bound states in Sec. 4.2.
The latter requires a different approach, since the induced potential Eq. (1.53)
diverges at the classical turning points, due to the vanishing of the Jacobian. In
other words, the asymptotic solution Eq. (1.53) no longer accurately describes
the true solution. An accurate description in the vicinity of turning points
could be obtained using an analogous construction in momentum space [48,
50, 55]. This would result in an expression for the induced potential that
involves the Airy function. However, this construction has currently not
yet been performed for plasmons in inhomogeneous systems and would
require additional lengthy derivations [50]. We believe that this would be an
interesting future direction, both from a practical and a fundamental point of
view.
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5
Plasmonic crystals and band structures

In this chapter, we derive an analytical condition for the allowed and for-
bidden plasmon bands in a quasi-one-dimensional periodic potential. We
do this within the framework of semiclassical analysis for plasmons in two-
dimensional systems, using the same model for the dielectric environment as
in Ch. 4, with a finite height as discussed in Sec. 2.2.2. By applying Bloch’s the-
orem, the problem of determining the allowed energy bands can be reduced
to finding the eigenvalues of the transfer matrix for a single potential barrier.
For the existence of plasmons, we utilize the Hamilton-Jacobi equation, which
determines the plasmon’s phase via the classical action. The induced poten-
tial can then exhibit an imaginary exponent for propagating waves or a real
exponent for damped waves. We consider two distinct scenarios: tunneling
(damped waves through the barriers) and above-barrier scattering (propagat-
ing waves over the barriers), depending on the momentum qy. Finally, we
apply this theory to two distinct periodic variations, a Gaussian array and the
cosine function, illustrating the resulting band structures as functions of qy.

This chapter details the full research and analysis from unpublished work in collaboration
with K. J. A. Reijnders and M. I. Katsnelson.
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5.1 Introduction periodic structures

Periodic modulation is a standard technique to tune the characteristics of
electromagnetic waves, a principle well established in photonics with photonic
crystals [93]. Plasmonics is a rapidly advancing field focused on controlling
plasmons. Periodic structures hold significant promise for integrated pho-
tonics. The ability to manipulate plasmons at the nanoscale, overcoming
the diffraction limit, is crucial for miniaturization. While Ref. [94] discusses
one-dimensional periodic plasmonic systems, it does not observe forbidden
bands. However, building upon our previous work, we recognize that periodic
modulation, in principle, is a standard way to open gaps in the plasmon
energy spectrum. Within our semiclassical framework, we consider both tun-
neling and above-barrier scattering to describe plasmons in a one-dimensional
periodic structure. These two types of scattering lead to new quantization
conditions, ultimately resulting in forbidden and allowed bands, akin to sys-
tems described by the Kronig-Penney model [2, 29]. Our general goal is to
derive an analytical condition for the allowed and forbidden plasmon bands
in a quasi-one-dimensional periodic potential. We achieve this by employing
Bloch’s theorem, which reduces the problem to finding the eigenvalues of the
transfer matrix for a single potential barrier. We derive the transfer matrix
with the complex phase integral method, considering two scenarios: tunneling
and above-barrier scattering. The distinction between these scenarios greatly
depends on the momentum perpendicular to the modulation, qy.

In Sec. 5.2, we lay the theoretical foundation for understanding plasmonic
band structures in periodic potentials. We extend the semiclassical analysis
developed in previous chapters to derive an analytical condition for allowed
and forbidden plasmon regions in a one-dimensional periodic potential. By
utilizing Bloch’s theorem to simplify the problem for a periodic potential, we
show that this allows us to reduce the problem to finding the eigenvalues of a
transfer matrix for passing a single potential barrier.

A prerequisite for analyzing plasmon scattering in periodic structures is
to establish a principle of energy conservation. To this end, in Sec. 5.3, we
derive an optical theorem tailored for plasmons. This theorem provides a fun-
damental statement of energy flux conservation when a plasmon scatters from
a potential barrier. Physically, this conservation law imposes a crucial con-
straint on the system’s reflection and transmission amplitudes. This principle
is the direct analogue of probability conservation for particles described by the
Schrödinger equation [63, 95]. Just as unitarity in quantum mechanics ensures
that the probability currents of reflected and transmitted waves account for the
entire incident probability flux, this optical theorem ensures a self-consistent,
energy-preserving description of the plasmon scattering process.

Section 5.4 delves into the behavior of the plasmon around classical
turning points, where the approximate solution for the induced potential
is no longer an accurate representation. The standard way to resolve this
issue is by employing the complex phase integral method. This general
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framework provides essential tools for deriving connection formulas and
is broadly applied to second-order ordinary differential equations, such as
the Schrödinger equation [63, 65, 95, 96]. From it, two powerful solution
techniques have emerged to solve the following connection problem: the
method of comparison equations and a method pioneered by Zwaan [66].
However, the plasmonic system under consideration is more complex than
a standard Schrödinger equation, making a direct and rigorous application
of these methods challenging. Nevertheless, throughout this section, we will
apply this framework heuristically, justifying our steps with arguments of a
physical nature.

More specifically, we will adopt the method pioneered by Zwaan to
analytically continue the solution into the complex plane, navigating around
the turning points before returning to the real axis. We tackle the connection
problem, which connects the approximate solution of the wave before the
turning point to the solution of the scattered wave. We derive the analytical
relationships that define the conditions for plasmonic band structures. This
involves considering two distinct scenarios: tunneling and above-barrier
scattering, depending on the momentum qy. We derive the transfer matrix
which allows us to determine the relation for the allowed and forbidden bands.
This is similar to the quantization condition for a single well, derived in the
previous section, but now gives an upper and lower bound of the plasmonic
bands.

Finally, in Sec. 5.5, we perform numerical calculations on our theory for
two specific periodic variations: a Gaussian array and a cosine potential. We
illustrate the resulting band structures as functions of qy, showing the allowed
and forbidden bands for each potential. We analyze the differences between
the two potentials, particularly in terms of the width and shape of the bands,
and discuss the implications of these differences for plasmon propagation and
localization. This section provides concrete examples of how our theory can
be applied to understand and design plasmonic crystals with desired band
structures.

5.2 Periodic modulation for plasmons

While models like the Kronig-Penney model provide a straightforward ap-
proach for calculating the band structure in periodic potential steps separated
by homogeneous regions[2, 29], realistic potentials often exhibit smoother
variations. These smoother potentials are effectively treated within the semi-
classical approximation [63, 86, 97, 98], which is applicable when the length
scale of the inhomogeneity is much longer than the electron wavelength. For
the Schrödinger equation, these periodic potentials can then be solved em-
ploying complex phase integral methods to derive connection formulas and
quantization conditions for the band structure. In previous chapters, we have
demonstrated the successful application of the semiclassical approximation

113



Chapter 5 Plasmonic crystals and band structures

to plasmons in inhomogeneous environments [1, 50, 69]. Building on these
insights, we aim to heuristically apply the complex phase integral methods to
derive the band structure for plasmonic systems governed by the semiclassical
approximation.

For particles governed by the Schrödinger equation, the distinction be-
tween classically allowed and forbidden regions is straightforward: the pres-
ence of a particle is classically allowed when its energy exceeds the potential
energy of the barrier and forbidden when its energy is below the barrier. This
results in either above-barrier scattering for energies higher than the potential
or tunneling for energies below the potential.

Two-dimensional plasmons, however, have a gapless dispersion, com-
plicating this picture and suggesting, at first glance, that they are classically
allowed everywhere. Nevertheless, Ch. 4 demonstrated that classically forbid-
den regions can still exist when the variation occurs in only one direction and
there is a finite momentum perpendicular to this variation. In this chapter,
we consider variations in the x direction, and translational invariance in the y
direction. Consequently, the momentum qy, which is perpendicular to the vari-
ation, remains a good quantum number. For finite values of this perpendicular
momentum, a gap opens in the dispersion, leading to classically forbidden
regions as a function of qy. We, therefore, expect that the turning points, and
consequently the allowed and forbidden energy bands, also depend on this
momentum qy, analogous to the bound state spectrum of a single potential
well as discussed in Ref. [69].

Such a periodic potential or periodically forbidden region can be realized
through any mechanism that alters the dispersion relation, such as locally
doping the material or patterning the dielectric substrate to vary the screening.
A schematic example of a periodic modulation of the background dielectric
constant, εb(x), is depicted in Fig. 5.1a. Two specific spatial points are high-
lighted, namely a maximum in the dielectric function at x1, and a minimum
at x2. The dispersion relation, E(x, |q|), calculated from the effective classical
Hamiltonian (2.26) at these two specific spatial points is shown in Fig. 5.1b.

In this chapter, we focus on variations in the dielectric environment;
however, the theory is not limited to this, as demonstrated in Ch. 4. Let
us investigate the classically allowed and forbidden regions. For the follow-
ing discussion, it is useful to consider the gap energy, as defined in Ch. 4:
Eg(x, qy) = E(x, qy; qx = 0), where E(x, qy; qx) = E(x, |q|) is the local disper-
sion, with qy as a parameter. The gap energy, when plotted as a function of
qy (since qx = 0), replicates the dispersion relation shown in Fig. 5.1b, but
with qy as the independent variable instead of |q|. Note that this gap energy
can only be defined when qy is a constant, which is the case when there is
translational invariance in the y-direction. Thus, it provides a relationship
between energy and the momentum qy for which a classical turning point is
locally present (i.e., qx → 0).
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Figure 5.1: (a) Schematic representation of a periodically modulated back-
ground dielectric constant εb(x). At x1, the dielectric constant reaches a
maximum, and at x2 it has a minimum. (b) Dispersion relation for a two-
dimensional plasmon for two different local background dielectric constants
εb. The blue dispersion is for a higher background dielectric constant, such
as that at x1 in (a). This higher dielectric constant increases the plasmon
momentum, for a certain energy, pushing the dispersion relation toward the
Landau damped region in gray. The orange dispersion is for a lower dielectric
constant, e.g., at x2 in (a).

As discussed in Ch. 4, a classically forbidden (and therefore tunneling)
regime exists where the momentum qx locally becomes imaginary. This occurs
for energies between two gap energies: Eg(x2, qy) > Ep > Eg(x1, qy), where
Ep is the energy of the excited plasmon. In Fig. 5.1b, this corresponds to
energies (and corresponding qy values) below the orange curve and above the
blue curve. Conversely, for energies above the orange curve (i.e., for Ep >
Eg(x2, qy)), the plasmon is classically allowed everywhere. However, it can still
exhibit complex turning points due to so-called above-barrier scattering [63,
96]. These turning points were not considered in Ref. [69] because the potential
barrier extends indefinitely, which significantly complicates the analysis for
the purpose of that discussion.

To analyze the propagation of plasmons through such a periodic sys-
tem, we first consider the interaction with a single unit cell of the periodic
inhomogeneity, for instance, the region between two consecutive maxima
of the dielectric constant. The effect of this single barrier on the plasmonic
wave, in our case described by the induced potential, can be comprehensively
described by a two-by-two transfer matrix, T̄. The induced potential is given
by Eq. (2.46), or more specifically, since we are solely interested in z = 0 and
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Figure 5.2: Schematic of the nth potential barrier. On both sides of the barrier
the plasmonic wave is a superposition of a forward-propagating component
(amplitudes A1,n and B1,n) and a backward-propagating component (ampli-
tudes A2,n and B2,n). The amplitudes on both side can be related to each other
through the transfer matrix T̄.

variations in the x-direction, given by

Vpl(x) =
A(x)√

J(x)εeff(x)|∂S/∂x|
eiS(x)/h̄ (5.1)

The matrix, T̄, relates the amplitudes of forward A1,n and backward A2,n
propagating waves on the left side of the nth barrier to the corresponding
amplitudes (B1,n, B2,n) on the right side, as given by
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The amplitudes are depicted in Fig. 5.2, as a plasmon propagates through
a single unit cell. The elements of the transfer matrix are constructed from
the complex reflection r and transmission t coefficients of the single barrier.
The elements in terms of these coefficients can be determined by recognizing
that a single incoming plasmon from the left, with unitary amplitude results
in a reflected and transmitted wave, which directly results in the first two
elements [96]. The reverse process, an incoming plasmon from the right gives
the other two elements equivalent to complex conjugation. The whole process
of passing by a barrier can now be described by [96]

(
A1,n
A2,n

)
=

(
1/t r∗/t∗

r/t 1/t∗

)(
B1,n
B2,n

)
, (5.3)

where the star denotes complex conjugate. While the calculation of the
coefficients is well-established for the Schrödinger equation using semiclassical
methods [63, 86, 96–99], their specific form for plasmons requires careful
consideration within our formalism, which will be done in the following
sections.

Having defined the matrix for passing a single barrier, we now impose
the condition of periodicity. For an infinite, perfectly periodic lattice, the
system possesses discrete translational symmetry. This symmetry is cap-
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Figure 5.2: Schematic of the nth potential barrier. On both sides of the barrier
the plasmonic wave is a superposition of a forward-propagating component
(amplitudes A1,n and B1,n) and a backward-propagating component (ampli-
tudes A2,n and B2,n). The amplitudes on both side can be related to each other
through the transfer matrix T̄.
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tured by Bloch’s theorem, which constrains the form of the solutions. In the
one-dimensional case, this is known as Floquet’s theorem (cf. Sec. 4.1.4 in
Ref. [2]): Vpl(xn) = exp(−iϕ)Vpl(xn+1), where ϕ is the Bloch phase [2, 29].
Applying this theorem to the amplitudes of our wave components, the vector
of amplitudes at, for example, left of the n + 1th barrier can be related to the
amplitudes at the left of the nth barrier by this Bloch phase factor, hence

(
A1,n
A2,n

)
= e−iϕ

(
A1,n+1
A2,n+1

)
. (5.4)

Bloch’s theorem requires the system to be identical on both sides of the barrier,
and therefore the amplitudes should be taken in the same relative location
within the adjacent unit cells. Note that, the transfer matrix shown in Eq. (5.3)
only passes to the right side of the barrier. Before we can impose Bloch’s
theorem, we have to pass to the left side of the adjacent barrier, and therefore
switch from amplitude Bi,n to Ai,n+1. This process results in multiplication
with an extra transfer matrix, which will be elaborated in Sec. 5.4.

By combining the physical propagation described by the transfer matrix
with the symmetry constraint of Bloch’s theorem, we arrive at the central
condition for the existence of propagating wave solutions. Equating the two
descriptions for the amplitudes yields an eigenvalue problem for the total
transfer matrix. The allowed energy bands of the plasmonic crystal correspond
to energies for which the Bloch phase ϕ is real, which requires the eigenvalues
of T̄ to be complex numbers with unit modulus, i.e., of the form exp(−iϕ).
Conversely, energies that result in eigenvalues with a modulus different from
one correspond to evanescent waves and lie within the band gaps. Before we
can solve this eigenvalue problem to find the band structure, we must find
the reflection and transmission coefficients. Before that we will establish a
conservative relationship between the reflection and transmission coefficients,
analogous to the optical theorem. This ensures the physical consistency of our
transfer matrix, a topic we will address in the next section.

5.3 The optical theorem for plasmons

For the conventional Schrödinger equation, the unitarity condition for Hermi-
tian Hamiltonians ensures conservation of probability density, and therefore
particle or energy flow during a lossless scattering process. This unitarity
condition leads to the optical theorem, which relates the amplitude of a scat-
tered particle before and after the process according to |r|2 + |t|2 = 1 [63, 95].
This equation essentially states that for a lossless system, the total probability
of reflection (|r|2) and transmission (|t|2) must equal the probability of the
incoming wave. For plasmons, the optical theorem, which describes a similar
relationship between scattering amplitudes and energy conservation, has been
studied using different theories in Ref. [47].
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Here, we aim to derive a condition analogous to the optical theorem
within our semiclassical analysis of plasmons, governed by the Poisson equa-
tion (2.1). We focus on the lowest order in h̄, which yields

⟨∇, ε(x, z)∇⟩ Γ0(x, z)Vpl(x) = −4πe2Π0(x)Vpl(x). (5.5)

In this formulation, Γ0 is the principal symbol of the operator Γ̂, which can
be interpreted as a generalization of the instantaneous eigenfunction of the
Poisson equation within the adiabatic approximation (see Ch. 2 for the explicit
derivation).

We decompose the derivatives ∇ into in-plane and out-of-plane compo-
nents. Multiplying both sides of Eq. (5.5) by V∗

pl and subtracting the complex
conjugate of the resulting equation from the original equation yields an equa-
tion of the form: f g∗ − f ∗g = 2iIm( f ∗g). From this, we can readily see that
the right-hand side cancels if we stay away from the Landau-damped region,
i.e., Im(Π0) = 0. Furthermore, for Hermitian electronic Hamiltonians, Γ0 is
purely real [1, 69], which results in Im(∂zε(x, z)∂zΓ0(x, z)) = 0, assuming a real
and positive dielectric constant. This eliminates the out-of-plane components.
Therefore, the remaining terms are given by

V∗
pl(x) ⟨∂x, ε(x, z)∂x⟩ Γ0(x, z)Vpl(x)−Vpl(x) ⟨∂x, ε(x, z)∂x⟩ Γ∗

0(x, z)V∗
pl(x)=0,

(5.6)
where the inner product ⟨a, b⟩ is now the standard inner product on R2,
instead of R3.

As stated in the previous section, we are interested in periodic modula-
tions in only one direction, the x direction. This greatly simplifies the depen-
dence of the induced potential on the perpendicular y variable. The action can
be decomposed into two distinct terms corresponding to the two directions,
where the y component is simply given by Sy = qyy (this will be discussed in
detail in the next section). Due to the fact that both ε(x, z) and Γ0(x, z) do not
depend on y in this case, it is easily shown that the derivatives with respect to y
cancel out in the above equation, since Im

(
V∗

pl(x)ε(x, z)Γ0(x, z)∂2
yVpl(x)

)
= 0.

Therefore, we are left with only the derivatives with respect to x. The relation
between the induced potential at z = 0 before and after interaction with a
potential barrier is of primary concern. Therefore, considering only the active
electron layer at z = 0 and assuming the existence of plasmons, which allows
us to apply the Hamilton-Jacobi equation, for which Γ0(x, z = 0) = 1 (see
Sec. 2.1.2), results in

∂x

(
V∗

pl(x)ε(x, 0)∂xVpl(x)− Vpl(x)ε(x, 0)∂xV∗
pl(x)

)
= 0, (5.7)

which implies

Im
(

V∗
pl(x)ε(x, 0)∂xVpl(x)

)
= const. (5.8)
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This equation differs slightly from the standard optical theorem for the
Schrödinger equation due to the different form of the induced potential
compared to the wavefunction and the additional dielectric constant. Note
that, the derivation of Eq. (5.8) neglects a term with the derivative of Γ0 with
respect to x, because it leads to higher-order terms in h̄ (cf. appendix C.2).

In order to understand the physical importance of this result, let us
consider an incoming plasmon from x → −∞ interacting with a potential
barrier of finite width. We evaluate Eq. (5.8) at point a, after the barrier, and
point b, before the barrier. Since Eq. (5.8) must be constant, we can equate
its values at these two points. We substitute the induced potential Eq. (2.46)
at z = 0 with amplitude factor A0

0 = 1 for the incoming wave and consider
the other amplitude terms given by φ0(x) = 1/

√
J(x)εeff(x)|∂S/∂x|, which

results in reflected and transmitted waves with amplitude factors r and t,
respectively. Equating the expressions on both sides of the barrier gives

|t|2 ε(x, 0)
J(x)εeff(x)

∣∣∣∣
x=xa

+ |r|2 ε(x, 0)
J(x)εeff(x)

∣∣∣∣
x=xb

=
ε(x, 0)

J(x)εeff(x)

∣∣∣∣
x=xb

. (5.9)

Here, only the derivatives of the exponent in Vpl are retained, keeping only
the leading order terms in h̄, and therefore maintaining the accuracy of the
theory [63].

Let us reflect on this result. For the Schrödinger equation, the unitarity
condition ensures that probability is conserved. However, as discussed in
Sec. 2.1.4, in the case of plasmons, the modulus of the induced potential
does not represent a probability density; this role is fulfilled by the energy
density. Although the energy density is conserved, the amplitude of the
induced potential does not necessarily have to be conserved. As can be seen
in Eq. (5.9), one has to take the local Jacobian and effective dielectric function
into account, which might differ on either side of the barrier. Nevertheless,
when the momentum and dielectric constant are equal on both sides of the
barrier, this conservation condition reduces to the familiar Schrödinger case:
|t|2 + |r|2 = 1. However, when this is not the case, one has to carefully
consider the amplitude φ0(x) in the transmission and reflection coefficients.

5.4 The connection problem

The induced potential is an accurate representation of the plasmon wavefunc-
tion, in the context of the semiclassical approximation. However, it is not
an accurate representation of the true solution near turning points, where
J → 0, which causes the amplitude φ0 to diverge. In Ch. 4, this divergence
was circumvented by avoiding these points and only analyzing the region
between two turning points. A suitable Maslov index was used to describe
the plasmon’s behavior around the turning point when it reverses direction.

To determine the reflection and transmission coefficients, r and t, for a
symmetric potential barrier, we must solve the connection problem across its
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two turning points. Following the approach pioneered by Zwaan [66], we
circumvent the breakdown of the semiclassical approximation at the turn-
ing points by analytically continuing the solution into the complex position
plane. This method involves integrating along a carefully chosen contour
that bypasses the singularities associated with the turning points. While
this technique and its underlying connection formulas are extensively stud-
ied and rigorously established for second-order ordinary differential equa-
tions [63, 86, 95–99], their application to our plasmonic system will be based
on heuristic arguments. We will justify this extension by drawing strong
analogies to the quantum mechanical problems where this method has been
successfully applied.

We start by considering analytic continuation into the complex plane of
the the induced potential Eq. (5.1). The action in Eq. (5.1) can be decomposed
into two separate directions. For instance

S(x, y) =
∫ x

x0

qx(x′)dx′ +
∫ y

y0

qy(y′)dy′. (5.10)

As discussed before, throughout this chapter, we consider variations in only
one direction, namely the x direction. Consequently, qy is constant and serves
as a good quantum number. The action can then be simplified to

S(x0, x) =
∫ x

x0

qx(x′)dx′ + yqy, (5.11)

where the initial condition y0 is arbitrary due to the translational invariance.
For convenience, we set y0 = 0. The coordinate y is also effectively arbitrary,
as it only contributes a constant additional phase factor for constant y. In
contrast, the initial condition for the action in x is not arbitrary, since we must
consider the periodic variation in that direction. This variation may induce
turning points, requiring careful treatment, as we discuss shortly.

We proceed by extending the induced potential formalism to the complex
domain by considering complex values for x, denoted by ξ. We express the
induced potential in a form convenient for the subsequent discussion. We
have two solutions, representing right- and left-moving plasmons relative to a
(complex) reference point ξ0, which we write as

V1(ξ0, ξ) =
A1√

J(ξ)εeff(ξ)
√
(∂S/∂ξ)2 + q2

y

eiS(ξ0,ξ)/h̄ (5.12)

V2(ξ0, ξ) =
A2√

J(ξ)εeff(ξ)
√
(∂S/∂ξ)2 + q2

y

e−iS(ξ0,ξ)/h̄, (5.13)

where ξ is the complex continuation of the coordinate x, and ξ0 is a reference
point (often chosen to be a turning point).
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For a plasmon with momentum qy and energy below the gap energy
Ep < Eg(x2, qy), real simple turning points exist, where qx goes to zero.
In the vicinity of such a simple turning point, for example, x0 on the real
axis, the momentum behaves like qx ∝

√
x − x0 (cf. App. D), vanishing at

the turning point. The analytic continuation of the momentum qx for the
Schrödinger equation has been extensively discussed in references [63, 98].
For our wavefunction, it just follows the rules of a simple turning point for
the conventional Schrödinger equation, as long as it has this square root form.

The amplitude, however, differs from the conventional ∝ J(x), containing
additional terms dependent on x and q. The analytic continuation of these
terms is, nevertheless, rather simple, because these terms, excluding the
Jacobian, depend only on the magnitude of the momentum q, which is always
real and positive, and therefore do not acquire additional phase factors during
integration in the complex plane. The Jacobian also differs from the for the
Schödinger equation conventional J(x) ∝ qx (cf. Sec. 1.3.1), as it is given by
J(x) = dx/dt = ∂H0/∂qx. As discussed in Ch. 3 [1], it behaves like

J(x) ≈ −qx
gse2 p2

F
2mεeffh̄E2|q| , (5.14)

in the limit of small qx. Thus, near a turning point, where qx becomes small,
and non-zero qy, we have J(x) ∝ qx, similar to the Schödinger equation, justi-
fying the assumption that its analytic continuation around the turning point
follows the rules for the Schödinger equation. With similar argumentation,
we see that the rules for passing branch cut’s in the complex plane are also
the same as for a Schrödinger-like particle [63].

In order to visualize what happens in the complex plane, we introduce
so-called Stokes diagrams. We consider two distinct scenarios: tunneling and
above-barrier scattering, depending on the momentum qy as discussed before.
Subsequently, using Bloch’s theorem, we find the eigenvalues of this transfer
matrix to determine the allowed and forbidden energies.

5.4.1 Stokes diagrams

We recall that the goal is to determine the transfer matrix T̄ for passing a
barrier, which relates the amplitude of the induced potential before and after
the barrier. Combining this with Bloch’s theorem, we can then calculate
the eigenvalues of this matrix, yielding the allowed and forbidden energy
bands. As discussed before, close to a turning point, we may heuristically
apply the rules for the Schrödinger equation for traversing turning points in
the complex plane. In this section, we loosely follow and utilize the results
from [63] and [96], while also recommending references like [86, 95, 98] for
more detailed information. Our focus is on determining the transmission and
reflection coefficients, t and r, which are related to each other through the
optical theorem.
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To construct the transfer matrix with the transmission and reflection
coefficients, we must first define the turning points for plasmons and examine
their dependence on the momentum qy. A turning point, ξ0, is defined as
the point in the complex plane where qx → 0. From each simple turning
point, three lines emanate, called anti-Stokes lines, where Im(S) = 0. These
lines solely allow for propagating waves, and no exponentially decaying
components. On the real axis this corresponds to what was previously called
the classically allowed region. On the other hand, three different lines emanate
from each turning point, called Stokes lines, for which Re(S) = 0. On these
lines, we only have an exponentially decaying part of the solution, and no
propagation part. It is informative to draw so-called Stokes diagrams, to
clarify how the turning points and (anti-)Stokes lines, and therefore the barrier
depend on the momentum qy.

In addition to Stokes and anti-Stokes lines, the Stokes diagrams must also
incorporate branch cuts. A branch cut is a curve that emanates from each
turning point, which serves as a branch point for the momentum function
qx(x). The necessity for these cuts arises because qx is determined by solving
the local dispersion relation, a process that typically involves a square root
of a complex variable. The square root is inherently a multi-valued function;
any non-zero complex number has two distinct square roots. If one follows a
continuous path that encircles a branch point, the function does not return
to its initial value but rather to the value on its other branch. To render qx(x)
single-valued and well-defined, we introduce these cuts. While the specific
placement of the branch cuts is an arbitrary choice made for mathematical
convenience, this choice must be applied with strict consistency: any integra-
tion contour in the complex plane that crosses a branch cut must account for
the resulting discontinuity by transitioning to the other branch of the function.

In the tunneling regime, for energies and momenta qy in between the
blue and orange line in Fig. 5.1b, all turning points are real. A simplified
Stokes diagram for tunneling is shown in Fig. 5.3. We denote the turning
points of the nth barrier as an and bn, representing the beginning and end of
the tunneling region, respectively. For symmetric barriers, the turning points
are symmetric about the point of maximum potential (or minimum dielectric
constant), e.g. x2 in Fig. 5.1a. Both turning points depend on qy: they move
closer to the maximum potential as qy decreases, until they merge into a
single second-order turning point at the edge of the tunneling regime, where
the plasmon energy is equal to the gap energy Ep = Eg(x2, qy). The next
subsection discusses how to handle this higher-order turning point, which
introduces an additional phase factor.

In the above-barrier scattering regime, for energies and momenta qy above
the orange line in Fig. 5.1b, the turning points are located in the complex
plane. A simplified Stokes diagram is shown in Fig. 5.4. The turning points of
the nth barrier are again denoted by an and bn, where an is in the lower half
and bn in the upper half of the complex plane. They are situated above and
below the maximum potential at x2 and are symmetric about the real axis. For
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below the maximum potential at x2 and are symmetric about the real axis. For
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small qy, the turning points move further from the real axis, while for larger
qy, they approach each other, eventually merging into the same second-order
turning point at Ep = Eg(x2, qy) on the real axis, discussed in the previous
paragraph.

Figures 5.3 and 5.4 depict simplified Stokes lines, which are not necessarily
linear in reality. For bound potentials, as in our periodic modulation, the two
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consider paths in the complex plane close to the turning points, the behavior
of the (anti-)Stokes lines far from the turning point is not critical, provided
the assumption that no other turning points are in the vicinity.

Next, we must choose a path in the complex plane around the turning
point. In the tunneling regime, this avoids the singularity at the turning
point while accurately describing the plasmon beyond it. In the above-barrier
scattering regime, the turning points are initially in the complex plane and
might seem irrelevant when moving over the real axis. However, this would
incorrectly predict unitarity transmission. To incorporate an exponentially
small reflection, we must choose a specific path around the turning point,
returning to the real axis afterward.

5.4.2 Quantization condition for tunneling

We first consider the case of tunneling through a potential barrier. As previ-
ously discussed, a simplified schematic of the Stokes diagram for this regime
is shown in Fig. 5.3. For plasmons, real turning points appear when the
momentum perpendicular to the periodic modulation, qy, is sufficiently large
(see Sec. 5.2). The turning points of the nth barrier are denoted by an and bn,
representing the start and end of the tunneling region, respectively.

For the Schrödinger equation, the reflection and transmission coefficients
have been extensively studied [63, 86, 96–99]. In semiclassical analysis, careful
attention must be paid to the chosen path in the complex plane to ensure
the accuracy of the asymptotic expansion in terms of h̄ [63]. In the case of
plasmons, the analytic continuation of the wavefunction follows a similar
procedure to that of the Schrödinger equation, provided that the periodic
modulation does not introduce additional phases via branch cuts or singulari-
ties.

When the turning points are sufficiently separated, they can be treated
as independent. We connect the transmitted wave to the incoming wave by
analytically continuing the solution along a path in the complex position
plane that bypasses the turning points. The choice of this contour is dictated
by the fundamental requirement that the solution must be subdominant
(exponentially decaying) along the large semicircular part of the path, ensuring
its a unique solution [63, 96].
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Figure 5.3: Stokes diagram for tunneling of plasmons through an overdense
barrier. Dashed lines are Stokes lines, where Re(S) = 0, and therefore only
evanescent waves exist. Solid lines are anti-Stokes lines, where Im(S) = 0,
and therefore only propagating waves exist. The turning points are denoted
with an and bn, where an is considered the start of the tunneling regime, and
bn the end on the real x-axis. Branch cuts, given by wavy lines, emanate
symmetrically from the turning points, meaning the branch cut emanating
from turning point an is a point reflection of the branch cut emanating from
the turning point bn.

We are interested in the transmitted wave, which propagates forward in
the positive x-direction. For the specific plasmon dynamics in our system, the
Jacobian in Eq. (3.1) establishes that the group velocity is anti-parallel to the
momentum (vx ∝ −qx). Therefore, a forward-propagating plasmon is neces-
sarily described by a negative momentum. According to the Riemann-Cauchy
equations [63], a wave with negative momentum is mathematically subdomi-
nant on a contour in the lower half of the complex plane. Consequently, to
correctly isolate the subdominant unique transmitted wave, we must choose
our integration path in the lower half-plane.

This leads to the same contour choice as in Ref. [63]. In that work, the
formulation also results in a right-moving wave having a negative momentum,
which is therefore subdominant in the lower half-plane. The critical distinction
lies in the origin of this property: in our case, the negative momentum for
a forward wave is a direct physical consequence of the plasmon dispersion,
rather than a feature of a specific mathematical convention of wave dynamics.

When the turning points are sufficiently separated, they can be treated as
independent points. In this regime, a contour in the lower half of the complex
plane can be chosen to connect the transmitted wave (amplitude factor t) to
the incoming wave (amplitude factor 1), passing both turning points. Because
the branch cuts are chosen to be symmetric, a contour that connects the
transmitted wave to the incoming wave by passing through the lower half
of the complex plane will necessarily cross one branch cut. We take a path
which starts from the real axis after the second turning point, bn, and ends on
the real axis before the first turning point, an, thereby enclosing the tunneling
region. This path, encircling the turning points in the lower half-plane, results
in the transmitted wave being exponentially damped relative to the incoming
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wave. The transmission coefficient follows the semiclassical form [63, 96]

t = e−K/h̄, (5.15)

where K =
∫ bn

an
|qx|dx is real and positive, representing the classical action

associated with tunneling through the barrier. As the separation between
turning points increases, K grows, leading to an exponential suppression
of transmission. This is consistent with standard WKB results for quantum
mechanical barriers for the Schrödinger equation [63, 86, 96–99].

The reflection coefficient in this case is given by [63, 96]

r = iteK/h̄ = i, (5.16)

which appears to suggest unitarity reflection, as it implies that the wavefunc-
tion undergoes only a phase shift without loss of amplitude. However, this
contradicts the presence of tunneling, as we cannot simultaneously have com-
plete reflection and finite transmission. This apparent paradox arises because
the above expression neglects additional corrections beyond the leading-order
semiclassical approximation. In particular, using the optical theorem derived
in Sec. 5.3, we obtain a more accurate description that ensures that the mag-
nitudes of the reflection and transmission coefficients satisfy the necessary
energy conservation constraints, resolving the apparent contradiction.

Consequently, by using the optical theorem, we can find the magnitude
of the coefficients, valid independent of the chosen path and valid if the
turning points are close together [63, 96]. The magnitude of the transmission
coefficient is

|t| = e−K/h̄
(

1 + e−2K/h̄
)−1/2

. (5.17)

The reflection coefficient can then be written as

|r| =
(

1 + e−2K/h̄
)−1/2

. (5.18)

These expressions provide only the magnitudes of the coefficients. To fully
specify the complex coefficients, we must determine their phases.

While a rigorous derivation is beyond the scope of this discussion, we
can reconstruct the full coefficients by combining the magnitude information
with known phase behaviors. For example, in the limit of well-separated
turning points, the reflection coefficient acquires a phase of i. Moreover, as
the turning points move closer, an additional phase shift, θ, develops [96–98],
which evolves in the phase shift associated with a second-order turning point.
Therefore, the full reflection and transmission coefficients can be expressed as

r = eiπ/2+iθ
(

1 + e−2K/h̄
)−1/2

, (5.19)

t = eiθe−K/h̄
(

1 + e−2K/h̄
)−1/2

, (5.20)

125



Chapter 5 Plasmonic crystals and band structures

where θ is an additional phase that vanishes when the turning points are
well separated, but becomes non-negligible when the turning points are close
together.

In Ref [96, 98], this phase change can be captured by a single phase factor
θ, which is given by

θ = arg
[

Γ
(

1
2
+

iK
πh̄

)]
+

K
πh̄

− K
πh̄

ln
(
|K|
πh̄

)
. (5.21)

This formula is derived using the method of comparison equations for the
case where two turning points are sufficiently close applied to a second-order
ordinary differential equation. In this case, the equation for the Weber function
can be applied, whereas in the case of isolated turning points, the simpler
Airy equation is sufficient [63, 96–98]. While this derivation is formally for
a second-order ordinary differential equation, the reasoning is applicable to
our system. This is because the derivation uses the Weber equation as the
comparison equation, which is still applicable for our system. However, we
have not applied the method of comparison equations explicitly to our system
of equations. Nevertheless, we assume the result of Eq. (5.21) holds for our
system without re-deriving it.

Now we have derived the formulas for the transmission and reflection
coefficients, we can turn back to the transfer matrix given by Eq. (5.3). As
stated before, we have to multiply with a second transfer matrix that transfers
the amplitudes to the next turning points an+1. This matrix is given by

(
B1,n
B2,n

)
=

(
eL/h̄ 0

0 e−L/h̄

)(
A1,n+1
A2,n+1

)
, (5.22)

with L = i
∫ an+1

bn
qxdx, where qx is real now. The integral L is thus imaginary,

and describes the action of traversing between two barriers. Performing a
matrix multiplication to get the full transfer matrix over one periodic period,
yielding (

A1,n
A2,n

)
=

( 1
t eL/h̄ r∗

t∗ e−L/h̄

r
t eL/h̄ 1

t∗ e−L/h̄

)(
A1,n+1
A2,n+1

)
. (5.23)

As discussed in Sec. 5.2, because we are considering a periodic system, we
may apply Bloch’s theorem Eq. (5.4). This implies that exp(−iϕ) has to be an
eigenvalue of the full transfer matrix T̄.

By solving for the eigenvalues of this matrix, we find a relation between
the allowed energies, the quantum number m, and the momentum qy. Taking
the determinant of the matrix in Eq. (5.23), we find the eigenvalue secular
equation, given by

λ2 − 2λ|t|−1 cos
(

L
h̄
+ θ

)
+ 1 = 0, (5.24)
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with L = i
∫ an+1
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qxdx, where qx is real now. The integral L is thus imaginary,
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As discussed in Sec. 5.2, because we are considering a periodic system, we
may apply Bloch’s theorem Eq. (5.4). This implies that exp(−iϕ) has to be an
eigenvalue of the full transfer matrix T̄.

By solving for the eigenvalues of this matrix, we find a relation between
the allowed energies, the quantum number m, and the momentum qy. Taking
the determinant of the matrix in Eq. (5.23), we find the eigenvalue secular
equation, given by

λ2 − 2λ|t|−1 cos
(

L
h̄
+ θ

)
+ 1 = 0, (5.24)
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where λ = exp(±iϕ). It can be readily shown that this results in the following
quantization condition [63, 97, 99]

cos(ϕ) = |t|−1 cos
(

L
h̄
+ θ

)
. (5.25)

where, conventionally, real values of ϕ correspond to propagating Bloch waves
(allowed energy bands), while complex values of ϕ would indicate evanescent
waves (forbidden energy bands or band gaps). In Ref. [63], it is shown that
the Bloch phase can be expressed in terms of the allowed quantum state ν and
the total number of barriers N. For a finite number of barriers, it is shown
that ϕ = νπ/(N + 1), with N the number of barriers, and ν the quantum
state, within each band m. In our case of infinite barriers, ϕ gives a continuous
number of states within the boundaries cos(ϕ) = ±1, corresponding to the
first and final state, respectively. From these considerations, we expect that the
states in the allowed continuum are distributed according to cos (ϕ) ∝ cos(ν).
The density of states would therefore reach a maximum at the edges and
decreases inwards, with minima in the middle of each band.

Following Refs. [63, 97], we can use the identity that if

cos
(

L
h̄
+ θ

)
=

(
1 + e2K/h̄

)−1/2
, (5.26)

then

tan
(

L
h̄
+ θ

)
= eK/h̄, (5.27)

to write the condition for the edges of the allowed bands as

L
h̄
+ θ =

(
m − 1

2

)
π ± tan−1 e−K/h̄, (5.28)

where we also used the identity tan−1(eK/h̄) = 1
2 π − tan−1(e−K/h̄). This

equation is the condition for the mth band in the tunneling regime, where the
± describes the top and bottom edge of the allowed energy bands, respectively,
and m can be any positive integer. The first part of Eq. (5.28) (apart from θ)
is exactly the same as the quantization condition for a single well discussed
in Ch. 4. The quantum number m is therefore the band equivalent of the
quantum state in a single well, each of which splits up due to the last factor
and becomes a band of continuous states in the case of infinite periodic
potentials.

In summary, the tunneling regime is characterized by plasmons that
penetrate through potential barriers. This interaction between the plasmon
states in adjacent classically allowed regions lifts their degeneracy and leads to
the formation of continuous energy bands. The condition given by Eq. (5.28)
can be interpreted as the quantization condition that defines these bands,
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analogous to the formation of molecular orbitals from atomic orbitals, result-
ing in the formation of bonding and anti-bonding superpositions. Within
this framework, the ± signs in Eq. (5.28) determine the energies of these
bonding and anti-bonding states, thus defining the band edges. The phase
factor θ. derived from the method of comparison equations, becomes crucial
when the turning points approach each other and can no longer be treated
independently. For plasmons, this occurs when the energy is close to the top
of the potential barrier, Eg(x2, qy), for a given qy.

5.4.3 Quantization condition for above-barrier scattering

For energies above Eg(x2), corresponding to smaller values of qy, real turning
points no longer exist. Instead, for the nth barrier, we find two symmetric
complex conjugate turning points, denoted by an and bn, as depicted by
the Stokes diagram in Fig. 5.4. This situation gives rise to the non-classical
phenomenon of above-barrier reflection, which is fundamentally different
from the behavior of classical particles. A classical particle with energy
exceeding the potential maximum would simply pass over the barrier with
unit probability and no reflection. Plasmons, however, behave as waves, and
their partial reflection is physically expected because the potential barrier acts
as a region of smoothly varying impedance. In wave physics, any such change
in a medium’s properties, even one that does not create a classically forbidden
region, can act as a source of scattering. The complex conjugate turning points
are the mathematical signature of this effect [63, 65, 96]; their presence, though
off the real axis, signifies that the potential is structured enough to disturb the
wave’s propagation and generate a reflected component, which can open up a
gap in the spectrum.

Applying similar steps as in the previous subsection, using the optical the-
orem for above-barrier scattering, the transmission and reflection coefficients
are given by [63, 96]

t = eiθ
(

1 + e−2K/h̄
)−1/2

, (5.29)

and
r = eiπ/2+iθe−K/h̄

(
1 + e−2K/h̄

)−1/2
, (5.30)

where K =
∫ bn

an
|qx|dx is again real and positive, representing the action

associated with traveling around the complex turning points in the above-
barrier scattering regime. The integral K still grows as the separation between
the turning point increases, but, unlike the tunneling regime, for the above-
barrier regime, this leads to exponential suppression of the reflectivity. Here,
an and bn are the complex conjugate turning points, satisfying Im(an) < 0
and Im(bn) > 0.

The behavior of these complex turning points, and therefore the scattering
coefficients, strongly depends on the momentum qy. A smaller value of qy
corresponds to a plasmon energy Ep that is higher above the potential barrier
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Figure 5.4: Stokes diagram for above-barrier scattering of plasmons over an
underdense barrier. Dashed lines are Stokes lines, where Re(S) = 0, and
therefore only evanescent waves exist. Solid lines are anti-Stokes lines, where
Im(S) = 0, and therefore only propagating waves exist. The turning points
are denoted by an and bn, where Im(an) < 0 and Im(bn) > 0. The turning
points are exactly above and below the real space projection of the minima
in εb(x). Branch cuts, given by wavy lines, emanate symmetrically from the
turning points, meaning the branch cut emanating from turning point an is a
point reflection of the branch cut emanating from the turning point bn.

maximum Eg(x2, qy). Intuitively, one would expect that this leads to reduced
above-barrier reflection. This intuition is confirmed by the movement of the
turning points in the complex plane. When Ep = Eg(x2, qy), the turning points
lie on the real axis at the potential maximum. As qy decreases and the energy
increases relative to the barrier, the imaginary parts of the complex conjugate
pair an and bn increase, moving them further away from the real axis. This
increases the integral K and, hence, reduces the reflectivity. However, a crucial
aspect of this wave phenomenon is that the reflection does not approach zero
but rather a finite value in the limit of qy → 0. This is because the imaginary
parts of the turning points themselves approach a finite limiting value instead
of moving to infinity. This value can be calculated analytically for specific
forms of the periodic modulation, as we will briefly consider in the next
section when analyzing two particular modulation profiles.

The form of the reflection and transmission coefficients is similar to the
tunneling case. However, the key distinction is that the turning points an and
bn are now complex. While K remains real in the above-barrier regime, the
presence of complex turning points fundamentally alters the physics. Whereas
in the tunneling regime, the transmission coefficient is small, in the above-
barrier regime, the reflection coefficient is small. To connect amplitudes across
one Bloch period, we must again introduce an additional transfer matrix. This
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matrix accounts for the change of reference frame, from the nth barrier to the
(n + 1)th barrier, completing one full Bloch period.

In the above-barrier regime, the concept of single-well bound states is not
well defined [97]. This is because the complex turning points, in the analogous
single-well problem, would be undefined at infinity. However, we can define
forbidden regions (band gaps) where plasmon propagation is suppressed due
to above-barrier scattering. The quantization condition for the edges of these
forbidden gaps is given by

L + θ = mπ ± tan−1 e−K/h̄, (5.31)

where L = i
∫ Re(an+1)

Re(bn)
qxdx is imaginary and is the added action to change

reference frames between two barriers. The integration limits are now the
real-axis projections of the complex turning points. This equation determines
the upper and lower boundaries of the forbidden gaps in the energy spectrum.

In summary, the two regimes, tunneling and above-barrier scattering,
provide a comprehensive description of plasmonic crystals. In the tunneling
regime, Eq. (5.28) defines the upper and lower bounds for the allowed bands,
dictating the energies at which plasmons can propagate through the periodic
structure by tunneling. Conversely, in the above-barrier regime, Eq. (5.31)
defines the upper and lower bounds for the forbidden bands, indicating the
energy ranges where plasmon propagation is prohibited due to destructive
interference. In both regimes, the phase factor θ plays a crucial role when the
energy approaches the top of the potential barrier, specifically near Eg(x2, qy)
for a given qy. This factor accounts for the phase accumulated by the plasmon
as it interacts with the turning points, which become closely spaced near the
barrier top. The introduction of θ is essential for accurately describing the
transition between allowed and forbidden bands, ensuring the continuity of
the band structure near Eg(x2, qy).

5.5 Numerical computation of explicit periodic mod-
ulations

In this section, we apply the theoretical framework developed in the preceding
sections to numerically analyze two specific periodic systems. Our goal is to
calculate the energy-momentum dispersion relations for these systems, reveal-
ing the allowed and forbidden energy bands. We achieve this by numerically
solving the quantization conditions derived for the tunneling (Eq. (5.28)) and
above-barrier scattering (Eq. (5.31)) regimes. These equations relate the energy
and momentum qy for a given quantum number m.

We consider a layered dielectric environment similar to the one described
in Ch. 4 (Ref. [69]), consisting of a two-dimensional conducting layer (con-
taining free electrons) embedded within a layered dielectric structure. The
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We consider a layered dielectric environment similar to the one described
in Ch. 4 (Ref. [69]), consisting of a two-dimensional conducting layer (con-
taining free electrons) embedded within a layered dielectric structure. The
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effective dielectric constant for such a system is given by

εeff(x) = εM
1 − ε̃2

b(x)e−2|q|d/h̄

1 + 2ε̃b(x)e−|q|d/h̄ + ε̃2
b(x)e−2|q|d/h̄

, (5.32)

which is characteristic of layered materials in the literature [34, 40, 69, 70, 100].
The active layer is encapsulated by a dielectric with constant εm = 10 and
thickness d = 5.76 Å. Two semi-infinite layers with background dielectric
constant εb surround this structure. The influence of the background dielectric
is captured by ε̃b = (εM − εb)/(εM + εb). While, in principle, all parameters in
εeff(x) can be spatially dependent, provided the semiclassical approximation
(small h) remains valid, we restrict our analysis to spatial variations in the
background dielectric constant εb(x).

The choice of the specific functional form for εb(x) is subject to certain
constraints. Beyond the semiclassical condition, for which the inhomogeneities
must be smooth and only simple turning points are considered, there are
additional requirements that are not tied to the functional form of εb(x)
itself but instead arise from the derivation of the phase shift θ for second-
order ODEs. In particular, the method of comparison equations requires
that the Weber function equation be applicable [63, 96–98]. While we do
not formally derive or prove these conditions, we nonetheless adopt them
as working assumptions. In the above-barrier scattering regime, further
numerical constraints appear due to the complex nature of the turning points.
When the momentum qy is small (corresponding to smaller relative changes
in qx) or for wider barriers, the turning points are located deep in the complex
plane. This can introduce complications because certain functions, such as
tanh(x), possess branch cuts in the complex plane (e.g., at iπ/2), which may
interfere with the numerical determination of the turning points.

The choice of the specific functional form for εb(x) is subject to certain
constraints. Beyond the semiclassical condition, for which the inhomogeneities,
i.e. the dielectric constant, must be smooth and only result in simple turning
point. The method of comparison equations, which was applied to second
order differential equations to derive the phase shift θ (Eq. (5.21)) requires
that the equation for the Weber function must be applicable [63, 96–98]. Once
again, while we do not formally derive θ or apply the method of compari-
son equations, we nonetheless heuristically adopt it. For the above-barrier
scattering regime, an additional numerical constraint arises from the complex
nature of the turning points. When the momentum qy is small (corresponding
to smaller relative changes in qx) or for wider barriers, the turning points lie
deep in the complex plane. Certain functions, such as tanh(x), have branch
cuts in the complex plane (e.g., at iπ/2). These branch cuts can complicate the
numerical determination of the turning points. Ultimately, the applicability of
the Weber function description, together with the well-behaved behavior of qx
around the turning points, constitutes the central set of theoretical constraints
in this framework.
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Figure 5.5: (a) Periodic modulation of the background dielectric constant εb(x),
using a Gaussian array modulation. The maximum background dielectric
constant is given by εb(x1) = 9, whereas the minimum is given by εb(x2) = 1.
(b) Periodic modulation of the background dielectric constant εb(x) using
a cosine function. The maximum and the minimum background dielectric
constant are the same as in (a). The period in both modulations is 150 Å.

As previously explained in Chs. 3 and 4, plasmons perceive a decrease
in the dielectric constant as a potential barrier, as this decrease reduces the
local plasmon momentum |q|. Therefore, we consider a system where the
background dielectric constant εb(x) alternates between εb(x1) = 9 (at x1, a
potential minimum) and εb(x2) = 1 (at x2, a potential maximum). This can
be seen as an active material layer, encapsulated by a dielectric with εb = 9,
with etched away parts, leaving a vacuum with εb = 1. We investigate two
specific functional forms for this periodic modulation: a Gaussian array and
the cosine function, depicted in Figs. 5.5a and 5.5b. In both cases, the barriers
have a characteristic decay length ℓ = 15 Å and a period ℓp = 150 Å.

The chosen decay length ℓ allows us to verify the validity of the semiclas-
sical approximation through the calculation of the semiclassical parameter.
For a typical metal-like system with a carrier density n(0) = 1.8 × 1014 cm−2

and an effective mass meff = 0.42me, the electron wavelength can be estimated
using the Thomas-Fermi approximation Eq. (1.49). This yields a semiclassical
parameter h = λel/ℓ = 0.2, which is within the range of applicability of the
semiclassical approximation.

5.5.1 Gaussian Modulation

The Gaussian function is of interest due to its narrow width, controlled by
the decay length ℓ. This narrow width leads to closely spaced turning points
for a wide range of qy values, resulting in small values of the integral K and
therefore a large transmission coefficient. Consequently, we expect broad
allowed bands in the tunneling regime and broad forbidden bands in the
above-barrier scattering regime. Such a modulation is relevant for systems
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Figure 5.5: (a) Periodic modulation of the background dielectric constant εb(x),
using a Gaussian array modulation. The maximum background dielectric
constant is given by εb(x1) = 9, whereas the minimum is given by εb(x2) = 1.
(b) Periodic modulation of the background dielectric constant εb(x) using
a cosine function. The maximum and the minimum background dielectric
constant are the same as in (a). The period in both modulations is 150 Å.

As previously explained in Chs. 3 and 4, plasmons perceive a decrease
in the dielectric constant as a potential barrier, as this decrease reduces the
local plasmon momentum |q|. Therefore, we consider a system where the
background dielectric constant εb(x) alternates between εb(x1) = 9 (at x1, a
potential minimum) and εb(x2) = 1 (at x2, a potential maximum). This can
be seen as an active material layer, encapsulated by a dielectric with εb = 9,
with etched away parts, leaving a vacuum with εb = 1. We investigate two
specific functional forms for this periodic modulation: a Gaussian array and
the cosine function, depicted in Figs. 5.5a and 5.5b. In both cases, the barriers
have a characteristic decay length ℓ = 15 Å and a period ℓp = 150 Å.

The chosen decay length ℓ allows us to verify the validity of the semiclas-
sical approximation through the calculation of the semiclassical parameter.
For a typical metal-like system with a carrier density n(0) = 1.8 × 1014 cm−2

and an effective mass meff = 0.42me, the electron wavelength can be estimated
using the Thomas-Fermi approximation Eq. (1.49). This yields a semiclassical
parameter h = λel/ℓ = 0.2, which is within the range of applicability of the
semiclassical approximation.

5.5.1 Gaussian Modulation

The Gaussian function is of interest due to its narrow width, controlled by
the decay length ℓ. This narrow width leads to closely spaced turning points
for a wide range of qy values, resulting in small values of the integral K and
therefore a large transmission coefficient. Consequently, we expect broad
allowed bands in the tunneling regime and broad forbidden bands in the
above-barrier scattering regime. Such a modulation is relevant for systems
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with small, localized periodic variations, such as arrays of adatoms or narrow
strips etched from the background substrate.

The periodic Gaussian array is given by

εb(x) = ∑
n
(εb(x2)− εb(x1)) e−

(
x
ℓ+n

ℓp
ℓ

)2

+ εb(x1), (5.33)

where the sum extends over all integers n, the maximum dielectric constant is
εb(x1) = 9 and the minimum εb(x2) = 1. Although this expression involves
an infinite sum, we only need to consider the transfer matrix for a single
barrier to calculate the band structure. Because the period ℓp is much larger
than the decay length ℓ, the influence of adjacent Gaussian functions on the
single barrier is negligible. Even more, this is justified by the fact that we
require that there are no extra turning points nearby. The resulting periodic
modulation of the background dielectric constant is shown in Fig. 5.5a.

As discussed in the previous chapters and in Refs. [1, 69], the turning
points depend on the momentum qy perpendicular to the barriers. Conse-
quently, the integration limits in L and K, and therefore the quantization
conditions, are also functions of qy. The turning points for the Gaussian
barrier are plotted in Fig. 5.6a, for plasmon energy Ep = 0.8 eV. The tunnel-
ing and above-barrier scattering regimes are separated by the momentum
corresponding to the equality Ep = Eg(x2, qy); this corresponding qy value is
indicated by the orange dashed line. In the above-barrier regime, the real part
of the turning point (solid black line) remains constant at the minimum of the
dielectric constant, x2. In the tunneling regime, the real part of the turning
point decreases slowly with increasing qy and then drops sharply to zero as
qy approaches the momentum corresponding to Ep = Eg(x1, qy), depicted by
the blue dashed line.

The imaginary part of the turning point (black dot-dashed line), appli-
cable to the above-barrier regime, approaches a constant value as qy → 0.
This constant depends on the barrier’s shape, specifically the minimum and
maximum dielectric constants and the functional form of the modulation. It
can be derived analytically by taking the Hamilton-Jacobi equation H0 = 0
and taking the limit to qy → 0. For the Gaussian barrier, this constant value is
given by Im(ξ0)qy→0 =

√
ln (εb(x1)/(εb(x1)− εb(x2))).

Applying the theory from the previous subsections, we can calculate the
allowed and forbidden bands using Eqs. (5.28) and (5.31), respectively. These
bands are shown in Fig. 5.6b, where the thick green lines represent the top and
bottom of the allowed bands. As expected, the bands from the two regimes
join at the transition energy Eg(x2, qy), where the Stokes diagrams of the two
regimes converge, as discussed in Sec. 5.4.1.

As the behavior of the turning point in the tunneling regime in Fig. 5.6a
suggests, the allowed bands are broad when the momentum qy is close to
the orange dashed line (Eg(x2, qy)). This is because the turning points are
near the maximum of the inhomogeneity and thus close together, indicating
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Figure 5.6: (a) Real (black solid line) and imaginary (black dashed line) parts of
the turning points in terms of decay length ℓ as functions of the perpendicular
momentum qy for the Gaussian array modulation. Real turning points exist
in the tunneling regime, for large qy up to the dashed blue line (Eg(x1, qy)).
For smaller qy, from the orange dashed line (Eg(x2, qy)), the turning points
become complex, corresponding to the above-barrier scattering regime. (b)
Band structure for the Gaussian periodic modulation. The thick green lines
represent the top and bottom of the allowed bands, and the lighter green
regions are a continuum of allowed states. The white regions are forbidden
bands. The gray region is the Landau damped region, and the gap energies at
x1 and x2 are the dashed curves in blue and orange, respectively.

a short tunneling length. As the momentum approaches the blue dashed
line (Eg(x1, qy)), the tunneling length increases rapidly, and the allowed band
become narrower. Beside the effect of the momentum qy, it can be seen in the
figure that the allowed bands become narrower with increasing energy.

The allowed bands are generally broader in the above-barrier regime,
than in the tunneling regime, reflecting the high transmission probability, and
low reflectivity characteristic of this regime. As expected from Fig. 5.6a, the
complex turning points move further from the real axis for smaller qy, which
further decreases the width of the forbidden bands. Moreover, similar to the
tunneling regime, the forbidden bands become progressively narrower with
increasing energy.

Note that the lowest allowed band in the above-barrier regime extends
down to zero energy, indicating gapless propagation in the long-wavelength
limit. This contrasts sharply with the tunneling regime at higher qy, where
low-energy propagation is forbidden.

In conclusion, the Gaussian periodic barriers, being relatively narrow,
facilitate both tunneling and above-barrier scattering. This characteristic is
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Figure 5.6: (a) Real (black solid line) and imaginary (black dashed line) parts of
the turning points in terms of decay length ℓ as functions of the perpendicular
momentum qy for the Gaussian array modulation. Real turning points exist
in the tunneling regime, for large qy up to the dashed blue line (Eg(x1, qy)).
For smaller qy, from the orange dashed line (Eg(x2, qy)), the turning points
become complex, corresponding to the above-barrier scattering regime. (b)
Band structure for the Gaussian periodic modulation. The thick green lines
represent the top and bottom of the allowed bands, and the lighter green
regions are a continuum of allowed states. The white regions are forbidden
bands. The gray region is the Landau damped region, and the gap energies at
x1 and x2 are the dashed curves in blue and orange, respectively.

a short tunneling length. As the momentum approaches the blue dashed
line (Eg(x1, qy)), the tunneling length increases rapidly, and the allowed band
become narrower. Beside the effect of the momentum qy, it can be seen in the
figure that the allowed bands become narrower with increasing energy.

The allowed bands are generally broader in the above-barrier regime,
than in the tunneling regime, reflecting the high transmission probability, and
low reflectivity characteristic of this regime. As expected from Fig. 5.6a, the
complex turning points move further from the real axis for smaller qy, which
further decreases the width of the forbidden bands. Moreover, similar to the
tunneling regime, the forbidden bands become progressively narrower with
increasing energy.

Note that the lowest allowed band in the above-barrier regime extends
down to zero energy, indicating gapless propagation in the long-wavelength
limit. This contrasts sharply with the tunneling regime at higher qy, where
low-energy propagation is forbidden.

In conclusion, the Gaussian periodic barriers, being relatively narrow,
facilitate both tunneling and above-barrier scattering. This characteristic is
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directly reflected in the plasmonic band spectrum depicted in Fig. 5.6b. We
observe broad allowed bands in the tunneling regime for small energies and
momenta qy, resulting from a high probability of plasmons tunneling. Sim-
ilarly, the broad forbidden bands in the above-barrier regime for large qy,
suggesting that plasmons can still encounter significant resistance when prop-
agating over the barriers. These observations underscore the influence of both
the energy and momentum qy on the plasmonic band structure, highlighting
their interplay with tunneling and above-barrier scattering phenomena.

5.5.2 Cosine Modulation

In contrast to the sharp peaks of the Gaussian array, the cosine modulation
provides a smooth, continuous variation of the dielectric constant, which may
be more representative of realistic systems where the substrate material is
gradually varied. However, due to the broader nature of the cosine modulation,
the turning points move away from each other more rapidly as a function of
qy compared to the Gaussian case. This leads to smaller tunneling coefficients
and, hence, narrower bands. Similarly, in the above-barrier regime, the wider
potential results in the turning points lying deeper in the complex plane,
leading to smaller reflection coefficients and narrower forbidden bands.

We consider a modulation in the background dielectric constant given by

εb(x) =
εb(x1) + εb(x2)

2
+

εb(x1)− εb(x2)

2
cos

2πx
ℓp

, (5.34)

where, again, the maximum dielectric constant is εb(x1) = 9 and the minimum
εb(x2) = 1. The resulting periodic modulation of the background dielectric
constant is shown in Fig. 5.5b.

As before, the turning points depend on qy, which influences the inte-
gration limits in L and K, and thus the quantization conditions. The turning
points for the cosine modulation are plotted in Fig. 5.7a, for a representative
plasmon energy Ep = 0.8 eV. The transition between the tunneling and above-
barrier regimes occurs again at qy, for which the equality Ep = Eg(x2, qy) is
met, indicated by the orange dashed line. The real part of the turning point
(solid black line) remains constant at x2 in the above-barrier regime. In the
tunneling regime, the real part decreases more sharply with increasing qy than
in the Gaussian case, reaching zero for qy, for which Ep = Eg(x1, qy), marked
by the blue dashed line.

As was the case for the Gaussian array in the previous subsection, the
imaginary part of the turning point (black dot-dashed line) in the above-barrier
regime approaches a constant value as qy → 0. For the cosine modulation, this
limit is given by Im(ξ0)qy→0 = cos−1 (εb(x1)/(εb(x1)− εb(x2))). This value is
larger for the cosine function than for the Gaussian, suggesting larger values
of K and, therefore, weaker reflection.

Applying the same theoretical framework, we calculate the allowed and
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Figure 5.7: (a) Real (black solid line) and imaginary (black dashed line) parts of
the turning points in terms of decay length ℓ as functions of the perpendicular
momentum qy for the cosine modulation. Real turning points exist in the
tunneling regime, for large qy up to the dashed blue line (Eg(x1, qy)). For
smaller qy, from the orange dashed line (Eg(x2, qy)), the turning points become
complex, corresponding to the above-barrier scattering regime. (b) Band
structure for the cosine periodic modulation. The thick green lines represent
the top and bottom of the allowed bands, and the lighter green regions are
a continuum of allowed states. The white regions are forbidden bands. The
gray region is the Landau damped region, and the gap energies at x1 and x2
are the dashed curves in blue and orange, respectively.

forbidden bands for the cosine modulation, as shown in Fig. 5.7b. The thick
green lines depict the edges of the allowed bands, which merge at the gap
energy Eg(x2, qy). In the tunneling regime, the allowed bands are narrower
than in the Gaussian case, a consequence of the larger values of K and
correspondingly smaller transmission coefficients. Similarly, in the above-
barrier regime, larger values of K lead to minimal reflection, resulting in very
narrow forbidden bands. Due to spectral broadening at finite temperatures,
these narrow forbidden bands are unlikely to be observable in experiments.

In conclusion, the cosine periodic barriers, which may be more rep-
resentative of realistic systems, are generally broader than their Gaussian
counterparts. This increased barrier width leads to reduced tunneling and
above-barrier scattering probabilities for nearly all energies and momenta qy.
We observe narrow allowed bands in the tunneling regime, resulting from a
lower probability of plasmons tunneling through the barriers compared to the
Gaussian case. Similarly, the very narrow forbidden bands in the above-barrier
regime suggest that plasmons encounter less resistance when propagating
over the barriers, yielding a nearly continuous spectrum. These observations
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Figure 5.7: (a) Real (black solid line) and imaginary (black dashed line) parts of
the turning points in terms of decay length ℓ as functions of the perpendicular
momentum qy for the cosine modulation. Real turning points exist in the
tunneling regime, for large qy up to the dashed blue line (Eg(x1, qy)). For
smaller qy, from the orange dashed line (Eg(x2, qy)), the turning points become
complex, corresponding to the above-barrier scattering regime. (b) Band
structure for the cosine periodic modulation. The thick green lines represent
the top and bottom of the allowed bands, and the lighter green regions are
a continuum of allowed states. The white regions are forbidden bands. The
gray region is the Landau damped region, and the gap energies at x1 and x2
are the dashed curves in blue and orange, respectively.

forbidden bands for the cosine modulation, as shown in Fig. 5.7b. The thick
green lines depict the edges of the allowed bands, which merge at the gap
energy Eg(x2, qy). In the tunneling regime, the allowed bands are narrower
than in the Gaussian case, a consequence of the larger values of K and
correspondingly smaller transmission coefficients. Similarly, in the above-
barrier regime, larger values of K lead to minimal reflection, resulting in very
narrow forbidden bands. Due to spectral broadening at finite temperatures,
these narrow forbidden bands are unlikely to be observable in experiments.

In conclusion, the cosine periodic barriers, which may be more rep-
resentative of realistic systems, are generally broader than their Gaussian
counterparts. This increased barrier width leads to reduced tunneling and
above-barrier scattering probabilities for nearly all energies and momenta qy.
We observe narrow allowed bands in the tunneling regime, resulting from a
lower probability of plasmons tunneling through the barriers compared to the
Gaussian case. Similarly, the very narrow forbidden bands in the above-barrier
regime suggest that plasmons encounter less resistance when propagating
over the barriers, yielding a nearly continuous spectrum. These observations
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highlight the sensitivity of the plasmonic band structure to the shape and
width of the periodic barriers, emphasizing the differences between Gaussian
and cosine modulations in controlling plasmon propagation.

In summary, this numerical computation has demonstrated the efficacy
of our semiclassical theory in computing the band structure for plasmons in
periodic potentials. The strong dependence of the band structure on the mo-
mentum qy suggests that experimental observation of forbidden gaps would
be more readily achievable in systems with a well-defined qy. Conversely, ex-
citation via commonly used SNOM techniques [7, 8], which generates radially
symmetric plasmons propagating outward from the tip, would likely excite
plasmons across a broad range of qy, potentially obscuring the observation of
distinct forbidden gaps [94]. Therefore, for experimental verification of our
theoretical predictions, it is crucial to employ excitation methods that allow
for more precise control over the plasmon momentum.

5.6 Conclusion

In this chapter, we derived an analytical condition for the allowed and forbid-
den plasmon bands in a one-dimensional periodic potential within the frame-
work of the semiclassical approximation for plasmons in two-dimensional
systems. By heuristically applying complex phase integral methods, we ob-
tained a quantization condition for the plasmon band structure analogous to
the semiclassical treatment of systems described by the Schrödinger equation,
but depending on the momentum qy perpendicular to the modulation.

Within this formalism, the plasmon behavior and dynamics are governed
by the effective classical Hamiltonian, given by Eq. (2.26). Compared to
the wavefunction of the Schrödinger equation, the plasmon wavefunction
is represented by the induced potential, as given in Eq. (5.12). Despite the
gapless nature of the plasmon dispersion, classically forbidden regions emerge
under spatially varying conditions, and the presence of a finite momentum
qy, perpendicular to these spatial variations. This momentum effectively
introduces an energy gap in the system, leading to phenomena such as
tunneling and above-barrier scattering, similar to Schrödinger-like systems
with periodic potentials. The role of this perpendicular momentum is now
crucial in determining the turning points, i.e. the start of a classically forbidden
region, and the overall plasmon band structure.

The formation of plasmonic bands follows from Bloch’s theorem and the
eigenvalues of the transfer matrix associated with traversing a single potential
barrier. Unlike conventional bound-state problems for plasmons [69], where
discrete energy levels arise as a function of qy, the periodicity of the system
results in a continuous band structure. For a system with infinite periodicity,
this results in a condition, for the edges of the allowed bands in the tunneling
regime given by Eq. (5.28), similar to the quantization condition in Ch. 4,
but with an extra term that splits the single well spectra into the edges of
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continuous bands. For the above-barrier scattering regime, the edges of the
forbidden bands are given by Eq. (5.31). The band structure is then a function
of the energy, the perpendicular momentum qy, and quantum number m,
labeling the different bands of the plasmon spectrum. An important result is
that the band structure heavily depends on the momentum qy, changing from
a forbidden gap to an allowed band for different values of this momentum.
Therefore, it might be difficult to see the plasmonic band gap experimentally.
Typically these experiments are done by bringing a physical tip close to a
sample and subsequent irradiation of light (SNOM) [8, 94, 101], which excites
a broad range of qy values, due to the symmetry.

From a numerical perspective, we analyzed different potential profiles
and their effects on the band formation. For a Gaussian array and a cosine
potential, the band structure exhibits significant differences based on the
width of the modulation. In the tunneling regime, a narrow potential leads
to well-separated, broad bands, whereas a wider potential results in narrow
bands due to reduced tunneling between adjacent wells. In the above-barrier
scattering regime, the broader potential reduces the reflection, which results in
very narrow forbidden bands, which are probably not visible due to spectral
broadening in experiments. This highlights the strong dependence of the band
width on the periodic potential’s shape and spatial extent.

For wider barriers, such as a tanh(x)-shaped potential, we observed that
the turning points move deeper into the imaginary plane as the barrier width
increases. This leads to a decrease in the tunneling coefficient t, effectively
making the bands thinner, which would result in something similar to a single-
well case. This behavior suggests that wider potentials suppress tunneling
effects, reducing both below-barrier and above-barrier scattering contributions
to the band formation, conform general results for wide barriers in the WKB
approximation. However, in the case of the tanh(x), the analytic continuation
of the potential, particularly the presence of a branch cut at iπ/2, might play
a difficult role in shaping these effects.

All information regarding the dielectric environment is captured in the
effective dielectric function εeff(x). Although we focused on variations in
the dielectric background, our theoretical framework is not limited to these
variations, and similar results might be obtained when the framework is
applied to other modulation mechanisms, such as local doping of the electron
density. It is important to note that a varying electron density also varies the
boundary of the electron-hole continuum (Landau damping). In Ref. [50], it is
argued that a Landau turning point indicates a hard-wall boundary condition,
for which no tunneling is applicable, since the induced potential at such a
turning point goes to zero. In other words, the wave just stops.

Finally, we note that experimental realizations of the predicted plasmonic
band gaps may be affected by spectral broadening and Landau damping at
finite temperatures. These effects could reduce the visibility of forbidden
bands in practical settings. However, our approach provides a foundation
for further studies on controlling plasmon propagation via spatial periodic

138



Chapter 5 Plasmonic crystals and band structures

continuous bands. For the above-barrier scattering regime, the edges of the
forbidden bands are given by Eq. (5.31). The band structure is then a function
of the energy, the perpendicular momentum qy, and quantum number m,
labeling the different bands of the plasmon spectrum. An important result is
that the band structure heavily depends on the momentum qy, changing from
a forbidden gap to an allowed band for different values of this momentum.
Therefore, it might be difficult to see the plasmonic band gap experimentally.
Typically these experiments are done by bringing a physical tip close to a
sample and subsequent irradiation of light (SNOM) [8, 94, 101], which excites
a broad range of qy values, due to the symmetry.

From a numerical perspective, we analyzed different potential profiles
and their effects on the band formation. For a Gaussian array and a cosine
potential, the band structure exhibits significant differences based on the
width of the modulation. In the tunneling regime, a narrow potential leads
to well-separated, broad bands, whereas a wider potential results in narrow
bands due to reduced tunneling between adjacent wells. In the above-barrier
scattering regime, the broader potential reduces the reflection, which results in
very narrow forbidden bands, which are probably not visible due to spectral
broadening in experiments. This highlights the strong dependence of the band
width on the periodic potential’s shape and spatial extent.

For wider barriers, such as a tanh(x)-shaped potential, we observed that
the turning points move deeper into the imaginary plane as the barrier width
increases. This leads to a decrease in the tunneling coefficient t, effectively
making the bands thinner, which would result in something similar to a single-
well case. This behavior suggests that wider potentials suppress tunneling
effects, reducing both below-barrier and above-barrier scattering contributions
to the band formation, conform general results for wide barriers in the WKB
approximation. However, in the case of the tanh(x), the analytic continuation
of the potential, particularly the presence of a branch cut at iπ/2, might play
a difficult role in shaping these effects.

All information regarding the dielectric environment is captured in the
effective dielectric function εeff(x). Although we focused on variations in
the dielectric background, our theoretical framework is not limited to these
variations, and similar results might be obtained when the framework is
applied to other modulation mechanisms, such as local doping of the electron
density. It is important to note that a varying electron density also varies the
boundary of the electron-hole continuum (Landau damping). In Ref. [50], it is
argued that a Landau turning point indicates a hard-wall boundary condition,
for which no tunneling is applicable, since the induced potential at such a
turning point goes to zero. In other words, the wave just stops.

Finally, we note that experimental realizations of the predicted plasmonic
band gaps may be affected by spectral broadening and Landau damping at
finite temperatures. These effects could reduce the visibility of forbidden
bands in practical settings. However, our approach provides a foundation
for further studies on controlling plasmon propagation via spatial periodic
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modulations, which may help understand plasmonic crystals and plasmonic
metamaterials.
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The primary objective of this thesis has been to develop an intuitive,
(semi-)analytical theory for quantum plasmons in two-dimensional inhomo-
geneous media, that can complement numerical research and aid in the
interpretation of experiments. A key challenge in plasmonics has been the
lack of a general framework capable of accurately describing plasmons in
spatially varying environments, where existing approaches often rely on
computationally expensive numerical methods or lack analytical insight. To
address this, we constructed a semiclassical approach within the random
phase approximation (RPA), providing a powerful tool to describe quantum
plasmons with intuitive classical techniques. This approach, outlined in Ch. 2,
naturally led to an effective classical Hamiltonian, which governs plasmonic
behavior in inhomogeneous systems, capturing both plasmon trajectories and
the phase of the induced potential that accounts for the wave-like character.
Our results are particularly relevant for 2D plasmonic systems, which, unlike
their 3D counterparts, exhibit a distinct gapless square-root dispersion relation,
enhanced tunability (invasively and noninvasively), and strong interactions
with the dielectric environment. By providing a tractable and physically
intuitive theoretical framework, this work advances the understanding of
plasmon dynamics in realistic, complex environments, paving the way for
further analytical and experimental developments in the field.

While the semiclassical theory developed in this thesis provides an ana-
lytically tractable and intuitive description of plasmons in 2D inhomogeneous
media, it is subject to specific limitations that must be considered when ap-
plying it to experimental and numerical settings. The primary condition
for its validity is the existence of a small dimensionless parameter h, which
determines the accuracy of the expansion. As discussed in Sec. 2.1.5, this
parameter depends on the ratio between the electron wavelength and the
characteristic length scale of the inhomogeneity. The semiclassical approxi-
mation is only valid when the inhomogeneity varies smoothly compared to
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the electron wavelength, ensuring that local homogeneity can be assumed.
Another important limitation arises from screening effects, which introduce
an additional dimensionless parameter, κ, that quantifies the ratio between
the screening length and the inhomogeneity length scale. If the screening
length is comparable to or larger than the characteristic scale of the system,
the semiclassical approach formally breaks down.

However, in many practical cases, the semiclassical approximation re-
mains applicable beyond its strict formal limit, often providing accurate
qualitative and even quantitative predictions outside its nominal regime of
validity. These constraints set a fundamental lower bound on the spatial
variations that can be accurately described within this framework, making it
less applicable to systems with sharp interfaces, nanoscale defects, or strongly
confined plasmonic waveguides.

Additionally, while our approach correctly captures plasmon dispersion
and wave-like behavior, it is constrained by the limitations of the RPA [2, 28],
which breaks down at low electron densities. This limitation somewhat co-
incides with the semiclassical constraints, since at low densities, the electron
wavelength increases within the Thomas-Fermi approximation, therefore in-
creasing h. Furthermore, the RPA does not account for local interactions and
strong correlation effects in strongly interacting electron systems. A theory
for plasmons in strongly correlated systems is much more complicated (see,
for example, Ref. [102]).

Despite these limitations, the semiclassical approximation applied to the
RPA remains a valuable theoretical tool, particularly for bridging analytical
models with computational techniques and providing physical intuition in
systems where fully numerical methods may lack transparency. For typical
experimental systems, we believe that the validity conditions are satisfied. In
typical metallic systems, the semiclassical approach remains accurate for spa-
tial variations on the order of 4 nm, while in semiconductors, where electronic
wavelengths are larger, the approach extends to length scales around 125 nm.
This suggests that for many realistic plasmonic systems, the semiclassical
framework provides a reliable and insightful description of plasmon dynamics
in inhomogeneous environments.

We applied the general semiclassical framework, developed in this thesis,
to physically relevant and experimentally verifiable problems. In Ch. 3, we
considered the problem of plasmon scattering on radially symmetric inhomo-
geneities. Using a simple model for the dielectric environment, introduced
in Sec. 2.2.1, we analyzed how local variations in electron density affect the
propagation of plasmons. A decrease in electron density was interpreted as
an attractive potential, while an increase acted as a repelling potential. More
generally, any modification of the system that lowers the plasmon dispersion
relation—leading to higher momenta for a given energy—can be understood
as an attractive potential.

The scattering problem was formulated in terms of the effective classical
Hamiltonian, which provided a clear trajectory-based picture of plasmon
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dynamics. The wave-like nature of plasmons was incorporated through
the induced potential, leading to a phase shift in the scattered wave. By
relating this phase shift to the total and differential scattering cross sections,
we established a direct connection between the semiclassical theory and
experimentally measurable quantities. The semiclassical approach successfully
captures key scattering phenomena, including forward scattering, interference
effects, and backscattering, which emerge due to variations in the characteristic
length scale and peak electron density of the inhomogeneity.

By performing explicit calculations for specific systems, we explored
how different inhomogeneity profiles influence the scattering process. We
found that interference effects become increasingly pronounced as the system
enters the deep semiclassical regime (i.e. smooth spatial variations), leading
to oscillatory behavior in the total scattering cross section. These oscillations
were linked to overlapping classical trajectories, and we believe them to be a
direct visualization of constructive and destructive interference patterns. The
numerical results demonstrated that the semiclassical approach provides a
physically intuitive and computationally efficient method for understanding
plasmon scattering in inhomogeneous 2D systems.

Overall, Ch. 3 illustrated how the developed theory can be applied to
experimentally relevant scattering problems. The semiclassical framework not
only provides a direct link between classical trajectories and phase shifts but
also highlights the essential role of inhomogeneities in shaping plasmon prop-
agation. The insights gained here set the stage for further applications of this
theory to more complex plasmonic systems, including plasmon waveguiding
with bound states and plasmonic crystals.

Besides studying plasmon scattering, we also applied the developed
semiclassical framework to plasmonic waveguides, as discussed in Ch. 4. In
this context, we investigated how structured dielectric environments can be
used to confine and guide plasmonic excitations. By extending the concept of
a repelling potential, we demonstrated that spatial variations in the dielectric
constant and electron density can lead to plasmon localization. This allowed
us to identify two distinct waveguiding mechanisms.

The first relies on total internal reflection, where a plasmonic bound state
is formed due to the presence of a forbidden region, analogous to photonic
waveguides. However, such localization is only possible when the plasmon
carries a sufficiently high momentum along the waveguide direction. In
contrast, for plasmons traveling purely parallel to the variations, no forbidden
region emerges, and the momentum simply adjusts to the local dielectric
properties.

The second type of localization arises, among other reasons, due to
these adjustments of the momentum to the local screening, which modifies
the plasmon amplitude without introducing classically forbidden regions.
This quasi-localization effect depends on the interplay between the dielectric
environment and the plasmon dispersion, providing an alternative mechanism
for plasmonic waveguiding.
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Through numerical computation, we studied the conditions under which
these localized states formed, demonstrating that increasing the dielectric
contrast enhanced the degree of localization. By computing the induced
electron density, we observed that there are various complex mechanisms in
this type of quasi-localization, due to the interplay of different effects from
polarization, screening, and momentum changes.

Overall, Ch. 4 illustrated how the semiclassical framework can be applied
to describe plasmonic waveguiding in 2D materials. The results established
a direct connection between dielectric structuring and plasmon localization,
highlighting how variations in the dielectric constant and electron density can
be used to engineer effective plasmonic waveguides. These insights provided a
foundation for exploring more complex plasmonic structures, such as periodic
systems and plasmonic crystals, which were discussed in the subsequent
chapter.

In Ch. 5, we derived a theoretical framework to describe plasmonic band
structures in periodically modulated systems, extending the semiclassical
approach used in previous chapters. We derived an analytical condition
for the allowed and forbidden plasmon bands in a quasi-one-dimensional
periodic potential. By employing Bloch’s theorem, we reduced the problem
to determining the eigenvalues of the transfer matrix for traversing a single
potential barrier. We obtained this transfer matrix by studying the analytical
continuation of our semiclassical expression in the complex plane, which
yields transmission and reflection coefficients.

We considered two distinct scenarios: tunneling and above-barrier scatter-
ing, depending on the momentum perpendicular to the modulation, qy. The
tunneling occurs through a finite classically forbidden region, as discussed
in Sec. 4.2, whereas above-barrier scattering occurs for higher energies. For
both scenarios, we derived analytical expressions that define the allowed
and forbidden bands. These expressions can be interpreted as quantization
conditions, similar to the quantization condition for bound states in Ch. 4, but
now with a splitting into continuous bands.

We numerically computed the band structure for two specific periodic
modulations: a Gaussian array and the cosine function. For the Gaussian
modulation, the plasmonic band spectrum revealed broad allowed bands
in the tunneling regime and relatively broad forbidden bands in the above-
barrier regime, reflecting the narrowness of the Gaussian barriers, which
facilitates both tunneling and above-barrier scattering. In contrast, the cosine
modulation, characterized by broader barriers, exhibited narrower allowed
bands in the tunneling regime and very narrow forbidden bands in the above-
barrier regime, indicating reduced tunneling and above-barrier scattering
probabilities.

The results of Ch. 5 demonstrate that our semiclassical theory provides a
powerful tool for analyzing plasmonic band structures in periodic potentials,
offering valuable insights into the interplay between barrier shape, momentum,
and plasmon propagation. To further this analysis, we can consider a 2D
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crystal with periodic modulation in both in-plane directions, such as done in
experiments in for example Ref. [103]. This 2D array could, in principle, be
studied based on our theory of plasmon scattering developed in Ch. 3. Such
an extension would be similar to the Korringa–Kohn–Rostoker (KKR) theory
of band structure for the Schrödinger equation [2]. This goes beyond the scope
of this thesis, although it would be an interesting subject for future studies.

Finally, let us briefly review some discussion points mentioned through-
out this thesis. First, we did not consider Landau damping or the Landau
turning points considered in Ref. [50], which occur when the plasmon energy
is higher than the critical Landau energy EL in one region, but plasmons
can still exist in another region. This phenomenon was not considered in
this thesis, since it seems to be less applicable for 2D plasmons than for 3D
plasmons, where the region supporting plasmon propagation becomes increas-
ingly limited as the dispersion slowly approaches and ultimately merges with
the Landau-damped region at higher energies (cf. Ref. [28]). Second, finite
temperature effects were not explicitly included in our calculations. However,
as discussed in Ch. 1, they can be added heuristically or phenomenologically
through a broadening factor for the plasmonic states. Lastly, while we con-
sidered only isotropic Hamiltonians of the form p̂2 in this article, which are
Hermitian and do not contribute a Berry phase for our semiclassical Ansatz,
it would be interesting to investigate different (e.g., matrix) Hamiltonians,
as discussed for Dirac systems in Ref. [79], in which this phase could play a
significant role, particularly in influencing the quantization conditions through
an additional phase term.

6.1 Outlook

The semiclassical framework developed in this thesis provides a comprehen-
sive and versatile description of plasmons in two-dimensional inhomogeneous
media. By capturing both the classical trajectories and the wave-like nature
of these collective excitations, this approach offers a powerful tool for analyz-
ing plasmon dynamics in a wide range of experimentally relevant systems.
The theory is not only applicable to well-established plasmonic phenomena,
such as scattering, waveguiding, and periodic structures, but also extends
naturally to new experimental platforms where inhomogeneities play a fun-
damental role. Given its analytical transparency and direct connection to
classical physics, this framework serves as a valuable complement to fully
numerical methods, providing deeper insight into the underlying mechanisms
that govern plasmon behavior.

While the theory is remarkably complete within its domain of validity,
there remains room for further development. As mentioned throughout the
thesis, our semiclassical approach could be extended to incorporate additional
quantum effects beyond the random phase approximation, such as strong
correlations, local interactions, and different electronic Hamiltonians with
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possible Berry phases. Below, we outline several different promising direc-
tions that fit naturally within the semiclassical analysis and could be readily
pursued.

An exciting avenue for further research involves incorporating classical
light, described by Maxwell’s equations, into our semiclassical framework. To
couple light with plasmons, spatial variations at the boundary are crucial. This
is because momentum conservation prevents photons from directly coupling
to the electronic system due to the momentum mismatch; light typically has
a smaller momentum than plasmons at the same energy. One promising
approach to bridge this momentum gap is to introduce a periodic inhomo-
geneity with a period on the order of the wavelength of the plasmon that one
wishes to excite. This inhomogeneity can induce Umklapp scattering [2, 29],
providing the necessary momentum boost to the photons, allowing them to
couple with plasmons. This can be achieved for both 2D and surface plasmons.
To develop this theory, one can consider light in the classical limit, which
is reasonable because light generally has a much longer wavelength than
plasmons for the same energy [2, 77]. This classical limit can be described
by the full Maxwell equations, as given in Sec. 1.2.1. A semiclassical Ansatz
would then be needed not only for the electric field, via the induced potential,
but also for the magnetic field.

Another interesting extension involves the study of bilayer systems, such
as those found in van der Waals heterostructures. In the absence of electronic
hybridization between layers, each layer sustains its own plasmonic excitations,
leading to two distinct polarizations and separate amplitudes of the induced
plasmon potential. Our semiclassical approach can be applied to derive an
effective classical Hamiltonian governing such bilayer systems. The analysis
predicts a splitting of the plasmon dispersion into a higher-energy branch
exhibiting the usual square-root dispersion and a lower-energy branch with a
linear dispersion [104]. Investigating the implications of this double dispersion
relation on plasmonic bound states and transport properties would be a
valuable direction for future research. However, it is important to note that
while the effective Hamiltonian can be obtained straightforwardly, solving
the full transport equation in this scenario presents additional challenges
that require careful consideration. Nevertheless, we would still like to briefly
consider the effective classical Hamiltonian. We can write the left-hand side
of the Poisson equation (2.1), in the form

−4πe2n(x, z) = −4πe2

(
e2Π(0)

0 δ(z) 0
0 Π(d)

0 δ(z − d)

)(
φ
(0)
0

φ
(d)
0

)
Vpl. (6.1)

Following the method of variation of parameters, when then have

f (z′) = −4πe

(
Π(0)

0 δ(z′) 0
0 Π(d)

0 δ(z′ − d)

)
, (6.2)
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Substitution in Eq. (2.21), where the function g(z, z′) Eq. (2.22), now has two
contributions, one at z′ = 0, from the bottom polarization, and the other at
z′ = d from the top polarization. Substituting this in the principal symbol of
Γ0 yields

Γ0(z) =





2πe2 h̄

εeff(0,z)|q|Π
(0)
0

w1(z)
w1(0)

2πe2 h̄
εeff(d,z)|q|Π

(d)
0

w1(z)
w1(d)


, z > d

2πe2 h̄
εeff(0,z)|q|Π

(0)
0

w1(z)
w1(0)

2πe2 h̄
εeff(d,z)|q|Π

(d)
0

w2(z)
w2(d)


, d > z > 0

2πe2 h̄
εeff(0,z)|q|Π

(0)
0

w1(z)
w2(0)

2πe2 h̄
εeff(d,z)|q|Π

(d)
0

w2(z)
w2(d)


, 0 > z

, (6.3)

where we naturally find different effective dielectric functions, depending on
the layer, namely

εeff(zi, zj) =
h̄

2|q|
detW(zi)

w1(zi)w2(zj)
. (6.4)

In this bilayer formulation Γ0 is now a matrix. We use the self-consistency
equation, where the amplitude is also a matrix. This yields a coupled set of
equations between both amplitudes, which can be solved by diagonalizing the
matrix. After eliminating φ

(d)
0 , we obtain the effective classical Hamiltonian

given by

H0(x, q) = 1 − 2πe2h̄
|q| Π(0)

0 (x, q) (6.5)

×


 1

εeff(0, 0)
+

2πe2h̄
|q|εeff(d, 0)εeff(0, d)

Π(d)
0 (x, q)

1− 2πe2 h̄
|q|εeff(d,d)Π(d)

0 (x, q)


 .

As stated before, this result has to be treated with caution, since we did not
look at the behavior of the amplitude φ0, which has to be solved from the
transport equation.

A related extension concerns surface plasmons at metal-dielectric inter-
faces, where screening effects from mobile charges play a crucial role. In
certain limits, such as the Debye-Hückel regime, analytical solutions for the
effective dielectric function can be obtained [70]. Applying our semiclassical
theory to such systems could yield insights into plasmon transport in weakly
screened environments by layers with roaming charges, drawing connections
to previous studies on electrostatic screening at interfaces. The effective
dielectric function for such a system would be given by [70]

εeff(x) = εM(x)
1 − ε̃A(x)ε̃B(x, q)e−2|q|d/h̄

1 + (ε̃A(x) + ε̃B(x, q)) e−|q|d/h̄ + ε̃A(x)ε̃B(x, q)e−2|q|d/h̄
, (6.6)

where ε̃B(x, q)=(εM(x)−εB(x)


1 + κ2
D/|q|2)/(εM(x)+εB(x)


1 + κ2

D/|q|2),
with κD the inverse Debye length for the bottom layer, which characterizes
the distance over which the electrostatic potential is significantly screened.
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The Debye-Hückel theory is valid for moderate charges, which assumes very
low-density metals, and is therefore formally not applicable to a metallic
interface. A more realistic approach would involve transitioning from a
purely two-dimensional model to a three-dimensional picture incorporating
full dynamical screening effects from bulk electrons, potentially unifying
different plasmonic systems within a single theoretical framework. This
might be possible with theory developed in Ref. [50] for plasmons in 3D
inhomogeneous systems. In combination with the transition from 3D to 2D,
as discussed in Ref. [105, 106], which quantizes and therefore localizes the
motion in the third out-of-plane dimension. This would be an interesting
avenue to explore, potentially connecting theories for plasmons in various
dimensions, all of them from a quantum perspective.

Beyond bilayer and surface plasmon systems, it would be valuable to
explore how our semiclassical theory applies to electronic systems with for-
bidden regions, such as charge-density wave materials or semiconductors
and insulators with small band gaps [107–110]. In such systems, the inter-
play between electronic tunneling and plasmon dynamics could lead to novel
transport phenomena, requiring modifications to the standard semiclassical
analysis. Investigating these effects would provide deeper insight into the role
of quantum coherence and nonlocal interactions in plasmonic systems.

Additionally, another promising direction for further study involves
refining the model for the dielectric function in the out-of-plane direction.
While the present work considered specific layered forms for the dielectric
profile, more sophisticated models, such as exponential, hyperbolic cosine,
and hyperbolic tangent functions, could be explored, which can be solved
analytically with hypergeometric or Heun functions, depending on the number
of poles of the underlying differential equations. These models offer the
potential to describe nonlinear screening effects more accurately and may lead
to analytically tractable solutions with richer physical interpretations, similar
to the analytical solvable model in Ref. [96].

Finally, time-dependent extensions of the semiclassical Hamiltonian can
be explored, which would be particularly relevant for experiments involving
time-dependent external fields. In the limit of slow oscillations, a semi-
classical treatment of time evolution could be employed [56], whereas for
high-frequency driving fields, time-averaging techniques could be applied
to engineer effective plasmonic band structures [111, 112]. A full treatment
combining Maxwell’s equations with time-dependent semiclassical plasmon
dynamics would be an exciting step towards a more comprehensive descrip-
tion of driven plasmonic systems.

In summary, while the semiclassical framework developed in this thesis
already provides a robust and widely applicable tool for understanding
plasmons in inhomogeneous systems, there remain many opportunities for
further theoretical development. By extending the approach to include light-
matter interactions, bilayer systems, surface plasmons, electron tunneling
effects, refined dielectric models, and time-dependent fields, the semiclassical
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In summary, while the semiclassical framework developed in this thesis
already provides a robust and widely applicable tool for understanding
plasmons in inhomogeneous systems, there remain many opportunities for
further theoretical development. By extending the approach to include light-
matter interactions, bilayer systems, surface plasmons, electron tunneling
effects, refined dielectric models, and time-dependent fields, the semiclassical
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theory could be made even more powerful, offering deeper insights into the
fundamental physics of plasmonic excitations and their interactions with
structured environments
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Appendix

A Alternative derivation of the induced potential
V(x, z)

In this appendix, we present an alternative derivation of the effective classical
Hamiltonian Eq. (2.26) and the transport equation (2.31), directly applied to
the simple model of the dielectric discussed in Sec. 2.2.1. Instead of using the
operator separation technique discussed in Sec. 2.1.1, we use the Ansatz (2.4)
for V(x, z) to solve the Poisson equation (2.1) order by order in h̄. On the one
hand, we consider this method less elegant, since it mixes the separation of
the in-plane and out-of-plane degrees of freedom with the application of the
semiclassical Ansatz. On the other hand, it may be easier to understand for
readers less familiar with operator techniques.

On the left-hand side of the Poisson equation (2.1), we have

⟨∇, ε(x, z)∇⟩V(x, z)

=

(
− ε(x, z)

h̄2 V0(x, z)
(

∂S
∂x

)2
+

∂

∂z
ε(x, z)

∂V0

∂z

− ε(x, z)
h̄

V1(x, z)
(

∂S
∂x

)2
+ h̄

∂

∂z
ε(x, z)

∂V1

∂z

+ i
2ε(x, z)

h̄

〈
∂V0

∂x
,

∂S
∂x

〉
+ i

ε(x, z)
h̄

V0(x, z)
∂2S
∂x2

+
i
h̄

V0(x, z)
〈

∂ε(x, z)
∂x

,
∂S
∂x

〉)
eiS(x)/h̄, (A.1)

where we left out all higher-order terms. As discussed in Sec. 2.1.1 and
Sec. 2.1.5, the second derivative of V0 with respect to the out-of-plane direction
z belongs to the leading-order term, since the combination h̄/z is of order one
when proper dimensionless parameters are introduced.

The induced electron density n(x, z) on the right-hand side of the Poisson
equation (2.1) is given by Eqs. (2.2) and (1.60). Using our previous Ansatz (1.53)
for the induced potential Vpl(x) in the plane, as well as a relation similar to
Eq. (2.46), cf. Refs. [48, 55], we obtain the first two terms in the asymptotic
expansion of n(x, z). In the following two subsections, we analyze the terms
of leading and subleading order in the Poisson equation, respectively.
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A.1 Leading-order term

Collecting the leading-order terms in Eq. (A.1), we have

(
− 1

h̄2 εi(x)
(

∂S
∂x

)2
+ εi(x)

∂2

∂z2

)
V0(x, z)eiS(x)/h̄ =

− 4πe2δ(z)Π0

(
x,

∂S
∂x

)
φ0(x)eiS(x)/h̄, (A.2)

where we made use of the fact that εi(x) is piecewise constant, see Eq. (2.54).
The right-hand side contains the leading-order term of the induced electron
density n(x, z).

We proceed by noting that the action exponents on both sides cancel out,
given that they do not vanish. We can then solve the remaining differential
equation in the way discussed in Sec. 2.1.2. We find that

V0(x, z) = c0

(
x,

∂S
∂x

)
e−

|z|
h̄ | ∂S

∂x |, (A.3)

with

c0

(
x,

∂S
∂x

)
=

2πe2h̄
εavg(x)|∂S/∂x|Π0

(
x,

∂S
∂x

)
φ0(x), (A.4)

where we used the definition 2εavg(x) ≡ εA(x) + εB(x). Expression (A.3)

corresponds to the leading-order term of
(

Γ̂Vpl

)
(x, z) in the main text, see

Eqs. (2.58) and (2.46).
At this point, we can directly apply the self-consistency condition (2.3) at

z = 0 to the leading-order terms. We have

V0(x, z = 0)eiS(x)/h̄ = φ0(x)eiS(x)/h̄, (A.5)

from which we obtain the Hamilton-Jacobi equation

H0

(
x,

∂S
∂x

)
= 1 − 2πe2h̄

εavg(x)|∂S/∂x|Π0

(
x,

∂S
∂x

)
= 0. (A.6)

This is the same result as the Hamilton Jacobi equation following from the
effective classical Hamiltonian Eq. (2.26) in the main text, taking into account
Eq. (2.58). From a technical point of view, one may say that this derivation of
the leading-order term is not that different from our previous derivation in
Sec. 2.1. The main difference is that the derivatives with respect to x directly
act on the semiclassical Ansatz, leading to the replacement of q by ∂S/∂x.
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A.2 Subleading-order term

The derivation of the subleading-order term V1(x, z) is however quite different
from our derivation in the main text. We first calculate n1(x), the subleading
part of (Π̂Vpl)(x), using a relation similar to Eq. (2.46), cf. Refs. [48, 55]. In
this way, we find

n1(x) = n1,a(x)eiS(x)/h̄

n1,a(x) =Π0

(
x,

∂S
∂x

)
φ1(x) + Π1

(
x,

∂S
∂x

)
φ0(x)

− i
2 ∑

jk

∂2Π0

∂qj∂qk

(
x,

∂S
∂x

)
∂2S

∂xj∂xk
φ0(x)

− i
〈

∂Π0

∂q

(
x,

∂S
∂x

)
,

∂φ0

∂x

〉
, (A.7)

where Π1 (x, ∂S/∂x) satisfies Eq. (1.57).

Next, we consider the terms of subleading order in Eq. (A.1). Inserting
our solution (A.3) for V0(x, z), computing the various derivatives, and using
that ε(x, z) is piecewise constant, we find

(
− 1

h̄2 εi(x)
(

∂S
∂x

)2
+ εi(x)

∂2

∂z2

)
V1(x, z)

= − i
h̄2

(
f1,i(x) + f2,i(x)

|z|
h̄

)
e−

|z|
h̄ | ∂S

∂x | − 4πe2δ(z)n1,a(x), (A.8)

where we canceled the exponent exp(iS(x)/h̄) on both sides. Moreover, we
defined f1,i(x) and f2,i(x) by

f1,i =

〈
∂εi
∂x

,
∂S
∂x

〉
c0 + 2εi

〈
∂c0

∂x
,

∂S
∂x

〉
+ εic0

∂2S
∂x2 , (A.9)

f2,i = − 2εic0

|∂S/∂x| ∑
j,k

∂S
∂xj

∂S
∂xk

∂2S
∂xj∂xk

, (A.10)

where c0 was defined in Eq. (A.4) and the subscript i = A (i = B) denotes the
region above (below) the plane z = 0, just as in Sec. 2.1.1.

We can solve the differential equation for V1 using the methods discussed
in Sec. 2.1.1. We first determine the solution of the homogeneous equation,
given by

V1,i,H(x, z) = c−1,ie
− |z|

h̄ | ∂S
∂x | + c+1,ie

|z|
h̄ | ∂S

∂x |. (A.11)

Second, we solve the inhomogeneous equation using the method of undeter-
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mined coefficients. To this end, we employ the Ansatz

V1,i,P(x, z) =
(

αi
z
h̄
+ βi

z2

h̄2

)
e−

|z|
h̄ | ∂S

∂x |. (A.12)

Inserting this Ansatz into the differential Eq. (A.8), we obtain the constants αi
and βi. After some calculus, we find that the constants βi are the same above
and below the plane, and given by

β = − i
2

2πe2h̄
εavg(x)

Π0

(
x, ∂S

∂x

)

|∂S/∂x|3 φ0(x)∑
j,k

∂S
∂xj

∂2S
∂xj∂xk

∂S
∂xk

, (A.13)

where we dropped the subscript. Although the constant β vanished for the
operator separation, it is non-zero in this derivation. We come back to this
shortly. Using our result for β, we find αi as

αi =
i
2

si
|∂S/∂x|

(
− c0

|∂S/∂x|2 ∑
j,k

∂S
∂xj

∂S
∂xk

∂2S
∂xj∂xk

+
c0

εi

〈
∂εi
∂x

,
∂S
∂x

〉
+ 2

〈
∂c0

∂x
,

∂S
∂x

〉
+ c0

∂2S
∂x2

)
, (A.14)

where si = 1 for i = A and si = −1 for i = B, as in the main text. The full
solution is given by the sum of the homogeneous (A.11), and particular (A.12)
solution.

As before, the constants c−1,i, and c+1,i are determined via the boundary
conditions. First, the induced potential tends to zero as |z| → ∞, which
yields c+1,i = 0. Second, the potential has to be continuous at the interface
z = 0, whence c−1,A = c−1,B = c1. The final boundary condition concerns the
derivative of V at the interface. It can either be derived from the differential
equation (A.8) or from the requirement that the D-field is discontinuous at
the interface, with the discontinuity given by the surface charge determined
by the induced electron density. We find that the constant c1 is given by

c1 =
2πe2h̄
εavg(x)

n1(x)
|∂S/∂x| +

1
|∂S/∂x|

εA(x)αA − εB(x)αB

2εavg(x)
. (A.15)

The total solution for V1,i is then given by

V1,i(x, z) =
(

c1 + αi
z
h̄
+ β

z2

h̄2

)
e−

|z|
h̄ | ∂S

∂x |. (A.16)

We may briefly compare this result with the expression for Γ1,i found in Ref. [1]
(Eq. (49)). The most striking difference between the two is the presence of a
term with z2 in Eq. (A.16). In the main text, this term only arises when one
computes the action of the pseudodifferential operator Γ̂ on the semiclassical
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Ansatz for Vpl, as considered in Eq. (2.30). Specifically, it arises when both
derivatives in ∂2Γ0/∂qj∂qk are applied to the exponent. In both derivations,
one obtains the same result for V1,i.

A.3 Transport equation

Our next step is to apply the self-consistency condition (2.3) at z = 0 to the
subleading-order terms. In this way, we should obtain the transport equation.
The condition reads

V1,i(x, z = 0)eiS(x)/h̄ = φ1(x)eiS(x)/h̄, (A.17)

which directly yields φ1 − c1 = 0. At this point, one has to insert the ex-
pressions (A.14) for αi into Eq. (A.15) and compute all derivatives. One then
computes the derivatives ∂H0/∂qj and ∂2H0/∂qj∂qk, and uses them to rewrite
the terms in c0. After somewhat lengthy calculations, the equation φ1 − c1 = 0
becomes

(
1 − 2πe2h̄

εavg |∂S/∂x|Π0

)
φ1 +

(
−2πie2h̄

εavg|∂S/∂x|3

〈
∂S
∂x

,
∂Π0

∂x

〉

+
i
2

2πe2h̄
ε2

avg|∂S/∂x|3 Π0

〈
∂S
∂x

,
∂εavg

∂x

〉

− 2πe2h̄
εavg|∂S/∂x|Π1

)
φ0 − i

〈
∂H0

∂q
,

∂φ0

∂x

〉

− i
2 ∑

j,k

∂2H0

∂qj∂qk

∂2S
∂xk∂xj

φ0 = 0. (A.18)

First, the terms in front of φ1 cancel because of the Hamilton-Jacobi equa-
tion (A.6). Using the definition of H1(x, q) ≡ −c1, we may write the remaining
terms as

H1

(
x,

∂S
∂x

)
φ0 − i

〈
∂H0

∂q

(
x,

∂S
∂x

)
,

∂φ0

∂x

〉

− i
2 ∑

j,k

∂2H0

∂qj∂qk

(
x,

∂S
∂x

)
∂2S

∂xk∂xj
φ0 = 0, (A.19)

which exactly coincides with our previous transport equation (2.31).
We have thus shown that the Ansatz (2.4) for V(x, z) leads to the same

results as the operator separation discussed in Sec. 2.1.1, namely the effec-
tive classical Hamiltonian (2.26) and the Hamilton-Jacobi equation and the
transport equation (2.31). However, the calculations are more tedious since
this method mixes the separation of the in-plane and out-of-plane degrees of
freedom with the application of the semiclassical Ansatz.
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B Energy density in the plane z = 0

In Sec. 2.1.4, we computed the integrated energy density UI(x) for our two-
dimensional problem. In the derivation, we set the contribution Upl(x) of
the plane z = 0 to zero. In this appendix, we derive a general formula for
the leading-order term of the semiclassical energy density in a medium with
plasmons. Moreover, we show that Upl(x) = 0 in our example, that is, when
the layer is infinitely thin.

As in the main text, the relation between the electric field and the induced
potential is given by E = e−1∇V. However, the relation between the displace-
ment field and the electric field is more complicated than in the main text. We
start from the general relation between the electric field and the displacement
field, namely

D(x, t) =
∫

dt′
∫

dx′ε(x, x′, t − t′)E(x′, t′). (B.1)

We perform a Fourier transform with respect to time, i.e.,

D(x, ω) =
∫

dx′ε(x, x′, ω)E(x′, ω). (B.2)

Throughout this appendix, we use ω instead of E, not only to make a more
explicit connection with the conventions in the literature [25, 77], but also to
create a clear distinction in notation with the electric field. We can rewrite
Eq. (B.2) as

D(x, ω) = (ε̂E)(x, ω), (B.3)

where ε̂ is an operator that corresponds to the dielectric function. We now
need to extract the proper definition of the operator ε̂ from our semiclassical
analysis.

Since plasmons are self-sustained oscillations, they are defined by the van-
ishing of the displacement field. For homogeneous systems [2, 28], this require-
ment translates to the secular equation ε(q, ω)V(q) = 0, generally speaking.
When we consider inhomogeneous systems and apply the semiclassical ap-
proximation [50], the secular equation becomes the operator equation ĤV = 0,
where Ĥ is a pseudodifferential operator. Indeed, we can write the result of
our derivation in Sec. 2.1 as ĤVpl = 0, where Vpl(x, ω) = φ0(x) exp(iS(x)/h̄)
and the principal symbol H0(x, q, ω) of Ĥ is the effective classical Hamil-
tonian given by Eq. (2.26). Comparing this result to Eq. (B.3), we may say
that ε̂ is a pseudodifferential operator. It is, however, not equal to Ĥ, since
its principal symbol should equal εavg in the absence of a polarization. We
therefore argue that the principal symbol ε0(x, q, ω) of ε̂ equals

ε0(x, q, ω) = εavg(x)−
2πe2h̄
|q| Π0(x, q, ω), (B.4)
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our derivation in Sec. 2.1 as ĤVpl = 0, where Vpl(x, ω) = φ0(x) exp(iS(x)/h̄)
and the principal symbol H0(x, q, ω) of Ĥ is the effective classical Hamil-
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which gives the correct result in the homogeneous case.

Equations (B.3) and (B.4) allow us to derive the leading-order term of
the displacement field D(x, ω). Since V(x, ω) has the form of a semiclassical
Ansatz, so does E(x, ω). We can therefore use the general formula for the
commutation of a pseudo-differential operator with a rapidly oscillating
exponent [48, 55], and write

D(x, ω) = (ε̂E)(x, ω) = ε0

(
x,

∂S
∂x

, ω

)
E(x, ω)(1 +O(h̄)), (B.5)

cf. Eq. (2.30). From here on, we only consider the leading-order term, and
therefore omit the O(h̄).

We can now obtain an expression for the energy density by repeating the
derivation in Ref. [77], almost verbatim. Since ε0 (x, ∂S/∂x, ω) depends on ω,
the medium is dispersive and one cannot consider a purely monochromatic
field. Instead, we let E(x, t) = E c(x, t) exp(−iωct), where E c(x, t) varies only
slowly with time. Hence, when we write down the Fourier expansion of
E(x, t), namely,

E(x, t) =
∫ dω

2π
E c(x, ω)e−i(ωc+ω)t, (B.6)

only the components E c(x, ω) with ω ≪ ωc are significant. Expanding the
displacement field D(x, t) in Fourier components up to leading order, and
using Eq. (B.5), we find that

∂D
∂t

=
∫ dω

2π
f (x, ωc + ω)E c(x, ω)e−i(ωc+ω)t, (B.7)

where f (x, ω) = −iωε0 (x, ∂S/∂x, ω), cf. Ref. [77]. Since the Fourier compo-
nents E c(x, ω) are very small for ω ≫ ωc, we can expand f (x, ω) to first order
in ω around ωc, that is,

∂D
∂t

=
∫ dω

2π

(
f (x, ωc) + ω

∂ f
∂ω

(x, ωc)

)
E c(x, ω)e−i(ωc+ω)t. (B.8)

Using the definition of the Fourier transform, the right-hand side can be
rewritten as

∂D
∂t

= −iωε0

(
x,

∂S
∂x

, ω

)
E c(x, t)e−iωt

+
∂

∂ω

(
ωε0

(
x,

∂S
∂x

, ω

))
∂E c

∂t
(x, t)e−iωt, (B.9)

where we now omitted the subscript c on ω.

We now substitute the result (B.9) in the Poynting theorem (2.47). Assum-
ing that ε0 is a real function, we find the leading-order term of the semiclassical
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energy density by taking out the time derivative. We obtain

USC(x) =
1

16π

∂

∂ω

(
ωε0

(
x,

∂S
∂x

, ω

))
E(x, t) · E∗(x, t). (B.10)

Note that this expression reduces to the much simpler result (2.48) when
we consider a function ε(x) that does not depend on ω. When we consider
plasmons, we can simplify this expression by noting that ε0 (x, ∂S/∂x, ω)
vanishes by virtue of the Hamilton-Jacobi equation. We obtain

USC(x) =
ω

16πe2
∂ε0

∂ω

(
x,

∂S
∂x

, ω

)
|∇V(x, t)|2. (B.11)

where we also used the relation between the electric field and the induced
potential.

In deriving the result (B.11), we did not specify the number of dimen-
sions, which means that it is equally valid in three and two dimensions. When
we consider our two-dimensional problem, both D and E gain an additional
coordinate z, and x becomes two-dimensional. Throughout this article, we con-
sidered an infinitely thin charge layer at z = 0. However, one may intuitively
argue that we can use expression (B.11) between z = −ϵ and z = ϵ, where
ϵ is a small number that is determined by the requirement that the induced
potential V(x, z, t) has not yet decayed significantly. Looking at Eq. (2.46), we
observe that this is equivalent to ϵ |∂S/∂x| /h̄ ≪ 1, meaning that ϵ should be
much smaller than the plasmon wavelength, in accordance with the derivation
in Sec. 2.1.1.

We obtain an expression for UP(x), the energy density that comes from
the two-dimensional plane at z = 0, by integrating Eq. (B.11) from z = −ϵ to
z = ϵ. Using Eq. (2.46) for V(x, z, t), we have

Upl(x) =
1

8πe2h̄
|A0

0|2

|J|
ω

εavg

∂ε0

∂ω

(
x,

∂S
∂x

, ω

)(
1 − e−2 ϵ

h̄ | ∂S
∂x |

)
. (B.12)

Since we previously required that ϵ |∂S/∂x| /h̄ ≪ 1, we can Taylor expand the
exponent up to first order, which yields

Upl(x) =
1

8πe2h̄
|A0

0|2

|J|
ω

εavg

∂ε0

∂ω

(
x,

∂S
∂x

, ω

)
× 2

ϵ

h̄

∣∣∣∣
∂S
∂x

∣∣∣∣ . (B.13)

Comparing this to the result (2.50), we observe that it is of higher order.
Because we set out to derive the leading-order term of the integrated energy
density UI(x), we conclude that the contribution of the two-dimensional plane
is effectively zero, i.e. Upl(x) = 0. The derivation shows that the same
result likely holds for layers with a finite thickness, cf. the discussion in the
introduction and the conclusion, provided that ϵ |∂S/∂x| /h̄ ≪ 1.
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Comparing this to the result (2.50), we observe that it is of higher order.
Because we set out to derive the leading-order term of the integrated energy
density UI(x), we conclude that the contribution of the two-dimensional plane
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C Additional derivations for the general description

C.1 Derivation of subprincipal symbol Γ1 at z = 0

In this appendix, we compute the integral (2.41) explicitly at the point z = 0,
using integration by parts. We show that the final result can be cast in the
form (2.42).

Starting from Eqs. (2.41) and (2.39), we have

Γ1(z = 0) = −4πe2Π1g(0, 0) +
∫ ∞

−∞
g(0, z′) f1s(z′)dz′, (C.1)

where g(z, z′) is given by Eq. (2.22) and f1s by Eq. (2.40). The latter quantity
is rather involved and contains F0, F1 and Γ0. We first note that F1 does
not contain any differential operators in z, whereas F0 does, see Eqs. (2.10)
and (2.11). To shorten the notation, we write

F0

(
x, q, z,

∂

∂z

)
= F̂0, (C.2)

and omit the arguments (x, q) throughout most of this appendix.
Given the structure of g(0, z′), see Eq. (2.22), we can split the integration

in Eq. (C.1) into two parts, over the intervals (−∞, 0] and [0, ∞). We start with
the computation of the integral over the interval [0, ∞). From Eqs. (C.1), (2.22)
and (2.40), and applying the product rule to the second term in f1s, we have

∫ ∞

0
g(0, z′) f1s(z′)dz′ =

w2(0)
det(W)

2πe2h̄
εeff|q|

Π0

w1(0)

( ∫ ∞

0
w1(z′)F1(z′)w1(z′)dz′

− i
∫ ∞

0
w1(z′)∑

j

∂F̂0

∂qj

∂w1

∂xj
(z′)dz′

)

− i
w2(0)

det(W) ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1(0)

)

×
∫ ∞

0
w1(z′)

∂F̂0

∂qj
w1(z′)dz′. (C.3)

We proceed by removing F1 from the above expression. Since wi, where
i = {1, 2}, is a solution of the homogeneous differential equation (2.16), we
have F̂0wi = 0. Taking a mixed partial derivative of this relation with respect
to xj and qj, we have

i
2

(
∑

j
F̂0

∂2wi
∂xj∂qj

+∑
j

∂F̂0

∂xj

∂wi
∂qj

+∑
j

∂F̂0

∂qj

∂wi
∂xj

)
= − i

2 ∑
j

∂2 F̂0

∂xj∂qj
wi = F1wi, (C.4)

where the last equality holds by virtue of the last equality in Eq. (2.11). With
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this last relation, we can remove F1 from Eq. (C.3), and obtain

∫ ∞

0
g(0, z′) f1s(z′)dz′ =

i
2

w2(0)
det(W)

2πe2h̄
εeff|q|

Π0

w1(0)
∑

j

∫ ∞

0
w1(z′)

(
F̂0

∂2w1

∂xj∂qj
(z′)

+
∂F̂0

∂xj

∂w1

∂qj
(z′)− ∂F̂0

∂qj

∂w1

∂xj
(z′)

)
dz′

− i
w2(0)

det(W) ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1(0)

)

∫ ∞

0
w1(z′)

∂F̂0

∂qj
w1(z′)dz′. (C.5)

Although this expression looks more complicated than our initial expres-
sion (C.3), it no longer contains F1.

In what follows, we show how we can evaluate each of the terms in
Eq. (C.5) using integration by parts. When we look at the first term in
Eq. (C.5), we observe that it contains the product w1 F̂0(∂

2w1/∂xj∂qj). The idea
of our procedure is to transfer the differential operator F̂0 directly to w1, at
the cost of a few boundary terms, and then to use that F̂0w1 = 0, which holds
because w1 is a solution of the homogeneous differential equation. Explicitly,
we have

∫ ∞

0
w1 F̂0

∂2w1

∂xj∂qj
dz′ =

∫ ∞

0
w1

∂

∂z

(
ε

∂

∂z

)
∂2w1

∂xj∂qj
dz′ −

∫ ∞

0
w1

|q|2

h̄2 ε
∂2w1

∂xj∂qj
dz′

=

[
w1ε

∂

∂z

(
∂2w1

∂xj∂qj

)]∞

0

−
∫ ∞

0

∂w1

∂z
ε

∂

∂z

(
∂2w1

∂xj∂qj

)
dz′

−
∫ ∞

0

|q|2

h̄2 εw1(z′)
∂2w1

∂xj∂qj
dz′

=

[
w1ε

∂

∂z

(
∂2w1

∂xj∂qj

)]∞

0

−
[

∂w1

∂z
ε

∂2w1

∂xj∂qj

]∞

0

+
∫ ∞

0

(
∂

∂z

(
ε

∂w1

∂z

)
− |q|2

h̄2 εw1

)
∂2w1

∂xj∂qj
dz′, (C.6)

where we omitted the argument z′ throughout. The last term now contains
F̂0w1, see Eq. (2.10), which vanishes because w1 solves the homogeneous
equation (2.16). This means that the integral is given by the two boundary
terms. We now recall that we assumed that ε becomes constant for z → ∞,
and constructed our homogeneous solutions in such a way that w1 decays
exponentially as z → ∞. This implies that all of its derivatives also vanish in
this limit, and hence the boundary terms above vanish at infinity.
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this last relation, we can remove F1 from Eq. (C.3), and obtain
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i
2
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det(W)

2πe2h̄
εeff|q|

Π0

w1(0)
∑

j

∫ ∞

0
w1(z′)

(
F̂0

∂2w1

∂xj∂qj
(z′)

+
∂F̂0

∂xj

∂w1

∂qj
(z′)− ∂F̂0

∂qj

∂w1

∂xj
(z′)

)
dz′

− i
w2(0)

det(W) ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1(0)

)
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∂qj
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Although this expression looks more complicated than our initial expres-
sion (C.3), it no longer contains F1.

In what follows, we show how we can evaluate each of the terms in
Eq. (C.5) using integration by parts. When we look at the first term in
Eq. (C.5), we observe that it contains the product w1 F̂0(∂

2w1/∂xj∂qj). The idea
of our procedure is to transfer the differential operator F̂0 directly to w1, at
the cost of a few boundary terms, and then to use that F̂0w1 = 0, which holds
because w1 is a solution of the homogeneous differential equation. Explicitly,
we have

∫ ∞

0
w1 F̂0

∂2w1

∂xj∂qj
dz′ =

∫ ∞

0
w1

∂

∂z

(
ε

∂

∂z

)
∂2w1

∂xj∂qj
dz′ −

∫ ∞

0
w1

|q|2

h̄2 ε
∂2w1

∂xj∂qj
dz′

=

[
w1ε

∂

∂z

(
∂2w1

∂xj∂qj

)]∞

0

−
∫ ∞

0

∂w1

∂z
ε

∂

∂z

(
∂2w1

∂xj∂qj

)
dz′

−
∫ ∞

0

|q|2

h̄2 εw1(z′)
∂2w1

∂xj∂qj
dz′

=

[
w1ε

∂

∂z

(
∂2w1

∂xj∂qj

)]∞

0

−
[

∂w1

∂z
ε

∂2w1

∂xj∂qj

]∞

0

+
∫ ∞

0

(
∂

∂z

(
ε

∂w1

∂z

)
− |q|2

h̄2 εw1

)
∂2w1

∂xj∂qj
dz′, (C.6)

where we omitted the argument z′ throughout. The last term now contains
F̂0w1, see Eq. (2.10), which vanishes because w1 solves the homogeneous
equation (2.16). This means that the integral is given by the two boundary
terms. We now recall that we assumed that ε becomes constant for z → ∞,
and constructed our homogeneous solutions in such a way that w1 decays
exponentially as z → ∞. This implies that all of its derivatives also vanish in
this limit, and hence the boundary terms above vanish at infinity.
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We therefore have

∑
j

∫ ∞

0
w1 F̂0

∂2w1

∂xj∂qj
dz′ = −∑

j
w1ε

∂

∂z

(
∂2w1

∂xj∂qj

)
+ ∑

j

∂w1

∂z
ε

(
∂2w1

∂xj∂qj

)
, (C.7)

where all functions are to be evaluated at z = 0.
Let us now consider the last term in Eq. (C.5). Since F̂0w1 = 0, we have

(∂F̂0/∂qj)w1 + F̂0(∂w1/∂qj) = 0, and

∫ ∞

0
w1

∂F̂0

∂qj
w1dz′=−

∫ ∞

0
w1 F̂0

∂w1

∂qj
dz′=−

[
w1ε

∂

∂z

(
∂w1

∂qj

)]∞

0

+

[
∂w1

∂z
ε

∂w1

∂qj

]∞

0

,

(C.8)
where the last equality follows from repeated integration by parts, just as in
Eq. (C.6).

We now show that the two remaining terms in Eq. (C.5) are equal to

∫ ∞

0
w1

∂F̂0

∂xj

∂w1

∂qj
dz′ −

∫ ∞

0
w1

∂F̂0

∂qj

∂w1

∂xj
dz′ =

[
∂

∂z

(
∂w1

∂qj

)
ε

∂w1

∂xj

]∞

0

+

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

−
[

∂

∂z

(
∂w1

∂xj

)
ε

∂w1

∂qj

]∞

0

. (C.9)

First, note that ∂F̂0/∂qj = 2εqj/h̄2 is not a differential operator, which implies
that
∫ ∞

0
w1

∂F̂0

∂qj

∂w1

∂xj
dz′ =

∫ ∞

0

(
∂F̂0

∂qj
w1

)
∂w1

∂xj
dz′ = −

∫ ∞

0

(
F̂0

∂w1

∂qj

)
∂w1

∂xj
dz′

= −
[

ε
∂

∂z

(
∂w1

∂qj

)
∂w1

∂xj

]∞

0

+
∫ ∞

0
ε

∂

∂z

(
∂w1

∂qj

)
∂

∂z

(
∂w1

∂xj

)
dz′

+
∫ ∞

0

∂w1

∂qj
ε

q2

h̄2
∂w1

∂xj
dz′, (C.10)

where the second equality follows from the text above Eq. (C.8), and the last
equality follows from integration by parts.
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Computing ∂F̂0/∂xj explicitly, repeatedly integrating by parts, and using that
(∂F̂0/∂xj)w1+F̂0(∂w1/∂xj)=0, we also find that

∫ ∞

0
w1

∂F̂0

∂xj

∂w1

∂qj
dz′ =

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

+
∫ ∞

0

(
∂F̂0

∂xj
w1

)
∂w1

∂qj
dz′

=

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

−
∫ ∞

0

(
F̂0

∂w1

∂xj

)
∂w1

∂qj
dz′

=

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

(C.11)

−
[

ε
∂

∂z

(
∂w1

∂xj

)
∂w1

∂qj

]∞

0

+
∫ ∞

0
ε

∂

∂z

(
∂w1

∂xj

)
∂

∂z

(
∂w1

∂qj

)
dz′

+
∫ ∞

0

∂w1

∂xj
ε

q2

h̄2
∂w1

∂qj
dz′.

Subtracting Eq. (C.10) from Eq. (C.11), we see that the remaining integrals
cancel, and we obtain Eq. (C.9).

Inserting the results (C.7), (C.8) and (C.9) in Eq. (C.5) and evaluating all
boundary terms, we obtain

∫ ∞

0
g(0, z′) f1s(z′)dz′ = − i

2
2πe2h̄
εeff|q|

Π0

w1

w2

det(W)

× ∑
j

∂

∂xj

(
w1ε

∂

∂z

(
∂w1

∂qj

)
− ∂w1

∂qj
ε

∂w1

∂z

)

+ i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1

)
w2

det(W)

×
(

∂w1

∂z
ε

∂w1

∂qj
− w1ε

∂

∂z

(
∂w1

∂qj

))
, (C.12)

where all functions of z are to be evaluated at z = 0 from here on. We can
then use the relation

w2
i

∂

∂qj

(
1
wi

ε
∂wi
∂z

)
= wiε

∂

∂z

(
∂wi
∂qj

)
− ∂wi

∂qj
ε

∂wi
∂z

, (C.13)
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Computing ∂F̂0/∂xj explicitly, repeatedly integrating by parts, and using that
(∂F̂0/∂xj)w1+F̂0(∂w1/∂xj)=0, we also find that

∫ ∞

0
w1

∂F̂0

∂xj

∂w1

∂qj
dz′ =

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

+
∫ ∞

0

(
∂F̂0

∂xj
w1

)
∂w1

∂qj
dz′

=

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

−
∫ ∞

0

(
F̂0

∂w1

∂xj

)
∂w1

∂qj
dz′

=

[
w1

∂ε

∂xj

∂

∂z

(
∂w1

∂qj

)]∞

0

−
[

∂w1

∂z
∂ε

∂xj

∂w1

∂qj

]∞

0

(C.11)

−
[

ε
∂

∂z

(
∂w1

∂xj

)
∂w1

∂qj

]∞

0

+
∫ ∞

0
ε

∂

∂z

(
∂w1

∂xj

)
∂

∂z

(
∂w1

∂qj

)
dz′

+
∫ ∞

0

∂w1

∂xj
ε

q2

h̄2
∂w1

∂qj
dz′.

Subtracting Eq. (C.10) from Eq. (C.11), we see that the remaining integrals
cancel, and we obtain Eq. (C.9).

Inserting the results (C.7), (C.8) and (C.9) in Eq. (C.5) and evaluating all
boundary terms, we obtain

∫ ∞

0
g(0, z′) f1s(z′)dz′ = − i

2
2πe2h̄
εeff|q|

Π0

w1

w2

det(W)

× ∑
j

∂

∂xj

(
w1ε

∂

∂z

(
∂w1

∂qj

)
− ∂w1

∂qj
ε

∂w1

∂z

)

+ i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1

)
w2

det(W)

×
(

∂w1

∂z
ε

∂w1

∂qj
− w1ε

∂

∂z

(
∂w1

∂qj

))
, (C.12)

where all functions of z are to be evaluated at z = 0 from here on. We can
then use the relation

w2
i

∂

∂qj

(
1
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ε
∂wi
∂z

)
= wiε

∂

∂z

(
∂wi
∂qj

)
− ∂wi

∂qj
ε

∂wi
∂z

, (C.13)

162

Appendix

to find
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Π0
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det(W) ∑
j

∂

∂xj

(
w2

1
∂

∂qj

(
1

w1
ε

∂w1

∂z

))

− i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

w1

)
w2

det(W)
w2

1
∂

∂qj

(
1

w1
ε

∂w1

∂z

)
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(C.14)

Performing the derivatives of w1 with respect to xj, this can also be written as

∫ ∞

0
g(0, z′) f1s(z′)dz′ = − i

2
2πe2h̄
εeff|q|

Π0
w1w2

det(W) ∑
j

∂2

∂xj∂qj

(
1

w1
ε

∂w1

∂z

)

− i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
w1w2

det(W)

∂

∂qj

(
1

w1
ε

∂w1

∂z

)
.

(C.15)

The integral over the interval (−∞, 0] can be performed in exactly the
same way as in Eqs. (C.6), (C.8) and (C.9). When one interchanges w1 and w2
in those outcomes, and changes the integration limits from [0, ∞) to (−∞, 0],
one obtains the results for the interval (−∞, 0]. One can then perform the
same steps, to arrive at a result similar to Eq. (C.15). Note, however, that the
change of integration limits leads to a relative minus sign between the upper
and lower half, since for the lower half all boundary terms vanish at the lower
limit of integration.

Combining both results, we find that the integral in Eq. (C.1) equals

∫ ∞

−∞
g(0, z′) f1s(z′)dz′ =

i
2

2πe2h̄
εeff|q|

Π0
w1w2

det(W) ∑
j

∂2

∂xj∂qj

(
1

w2
ε

∂w2

∂z
− 1

w1
ε

∂w1

∂z

)

+ i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
w1w2

det(W)

× ∂

∂qj

(
1

w2
ε

∂w2

∂z
− 1

w1
ε

∂w1

∂z

)
. (C.16)

We can now use Eqs.(2.24) and (2.25), which show that w1w2/ det(W) =
h̄/(2|q|εeff). This implies that

∫ ∞

−∞
g(0, z′) f1s(z′)dz′ =

i
2

2πe2h̄
(εeff|q|)2 Π0 ∑

j

∂2(εeff|q|)
∂xj∂qj

+
i

εeff|q| ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
∂(εeff|q|)

∂qj
. (C.17)

This leads us to our final result for Γ1 at z = 0, Eq. (C.1). Using Eq. (2.22) to
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compute g(0, 0), we find

Γ1(z = 0) =
2πe2h̄
εeff|q|

Π1 +
i
2

2πe2h̄
(εeff|q|)2 Π0 ∑

j

∂2(εeff|q|)
∂xj∂qj

+ i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂qj
. (C.18)

As discussed in Sec. 2.1.3, it is the quantity

H1 +
i
2

∂2H0

∂xj∂qj
, (C.19)

that enters in the amplitude of the potential, where H1 = −Γ1(z = 0). In the
final part of this appendix, we compute this quantity, and show that it can be
cast in the form given in Eq. (2.42). Since H0 is given by Eq. (2.26), we have

∂2H0

∂xj∂qj
=

2πe2h̄
(εeff|q|)2 Π0

∂2(εeff|q|)
∂xj∂qj

+
∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂qj

+
∂

∂qj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂xj
− 2πe2h̄

εeff|q|
∂2Π0

∂xj∂qj
. (C.20)

Combining Eqs.(C.18) and (C.20), we find

H1 +
i
2 ∑

j

∂2H0

∂xj∂qj
= −2πe2h̄

εeff|q|

(
Π1 +

i
2 ∑

j

∂2Π0

∂xj∂qj

)

+
i
2 ∑

j

∂

∂qj

(
2πe2h̄
εeff|q|

Π0

)
∂ ln(εeff|q|)

∂xj

− i
2 ∑

j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
∂ ln(εeff|q|)

∂qj
. (C.21)

Using the definition of the Poisson bracket

{ f , g} = ∑
j

(
∂ f
∂xj

∂g
∂qj

− ∂ f
∂qj

∂g
∂xj

)
, (C.22)

and the definition of H0, see Eq. (2.26), we finally arrive at Eq. (2.42).

C.2 Derivation of an expression for the energy density

In this appendix, we compute the integrated energy density for the potential
V(x, z) given by Eq. (2.46). We integrate expression (2.48), which was discussed
in Ref. [1], and show that Eq. (2.50) holds.

164



C. Additional derivations for the general description

compute g(0, 0), we find

Γ1(z = 0) =
2πe2h̄
εeff|q|

Π1 +
i
2

2πe2h̄
(εeff|q|)2 Π0 ∑

j

∂2(εeff|q|)
∂xj∂qj

+ i ∑
j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂qj
. (C.18)

As discussed in Sec. 2.1.3, it is the quantity

H1 +
i
2

∂2H0

∂xj∂qj
, (C.19)

that enters in the amplitude of the potential, where H1 = −Γ1(z = 0). In the
final part of this appendix, we compute this quantity, and show that it can be
cast in the form given in Eq. (2.42). Since H0 is given by Eq. (2.26), we have

∂2H0

∂xj∂qj
=

2πe2h̄
(εeff|q|)2 Π0

∂2(εeff|q|)
∂xj∂qj

+
∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂qj

+
∂

∂qj

(
2πe2h̄
εeff|q|

Π0

)
1

εeff|q|
∂(εeff|q|)

∂xj
− 2πe2h̄

εeff|q|
∂2Π0

∂xj∂qj
. (C.20)

Combining Eqs.(C.18) and (C.20), we find

H1 +
i
2 ∑

j

∂2H0

∂xj∂qj
= −2πe2h̄

εeff|q|

(
Π1 +

i
2 ∑

j

∂2Π0

∂xj∂qj

)

+
i
2 ∑

j

∂

∂qj

(
2πe2h̄
εeff|q|

Π0

)
∂ ln(εeff|q|)

∂xj

− i
2 ∑

j

∂

∂xj

(
2πe2h̄
εeff|q|

Π0

)
∂ ln(εeff|q|)

∂qj
. (C.21)
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and the definition of H0, see Eq. (2.26), we finally arrive at Eq. (2.42).

C.2 Derivation of an expression for the energy density

In this appendix, we compute the integrated energy density for the potential
V(x, z) given by Eq. (2.46). We integrate expression (2.48), which was discussed
in Ref. [1], and show that Eq. (2.50) holds.
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We first note that ∇ in Eq. (2.48) is the three-dimensional gradient, that is,
∇ = (∂/∂x, ∂/∂z). Without much loss of generality, we may assume that Γ0 is
real. This roughly corresponds to an Hermitian Hamiltonian, cf. Eq. (2.15). In
the terminology introduced in Sec. 4.2, see also Refs. [1, 50], we may say that
this situation corresponds to plasmons in a classically allowed region. Note
that having a real-valued Γ0 corresponds to having real-valued functions wi,
see Eq. (2.23). Substituting the potential (2.46) in Eq. (2.48) and only taking
the leading-order terms in h̄ into account, we find

|∇V|2=
∣∣∣∣
∂V
∂x

∣∣∣∣
2
+

∣∣∣∣
∂V
∂z

∣∣∣∣
2
=

|A0
0|2

|J(x)|
1

εeff|∂S/∂x|

(
Γ0(z)

1
h̄2

∣∣∣∣
∂S
∂x

∣∣∣∣
2
Γ0(z)+

∂Γ0

∂z
∂Γ0

∂z

)
.

(C.23)
We note that taking the derivative of either Γ0 or the amplitude with respect
to x leads to higher-order terms in h̄, which we therefore neglect. Moreover,
we remark that this result holds regardless of the Berry phase in Eq. (2.46),
since it cancels upon taking the absolute value.

We consider the integrated energy density UI(x), defined as the integral
of the energy density U(x, z) over z, that is

UI(x) =
∫ ∞

−∞
U (x, z)dz

=
1

16πe2
|A0

0|2

|J(x)|
1

εeff|∂S/∂x|
∫ ∞

−∞

(
ε(x, z)Γ0(z)

1
h̄2

∣∣∣∣
∂S
∂x

∣∣∣∣
2

Γ0(z) + ε(x, z)
∂Γ0

∂z
∂Γ0

∂z

)
dz. (C.24)

As in the previous appendix, we separate the integral into two parts, corre-
sponding to the upper [0, ∞), and lower (−∞, 0] halves of the system. Since
Γ0 is symmetric in z = 0 upon interchanging w1 and w2, see Eq. (2.23), one
can infer the outcome for the lower half from the outcome for the upper half.
Considering the upper half, and inserting our expression (2.23) for Γ0, we
obtain

∫ ∞

0
Udz =

1
16πe2

|A0
0|2

|J(x)|
1

εeff|∂S/∂x|
∫ ∞

0

1
w2

1(0)

(
w1(z)

ε(x, z)
h̄2

∣∣∣∣
∂S
∂x

∣∣∣∣
2

w1(z) +
∂w1

∂z
ε(x, z)

∂w1

∂z

)
dz,

(C.25)

where we applied the Hamilton-Jacobi equation, H0(x, ∂S/∂x) = 0, to impose
the condition that 2πe2h̄Π0/(εeff|∂S/∂x|) must equal 1.
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Integrating the second term by parts, we find

∫ ∞

0
Udz =

1
16πe2

|A0
0|2

|J(x)|
1

εeff|∂S/∂x|
1

w2
1(0)

×
(∫ ∞

0
w1(z)

(
ε(x, z)

h̄2

∣∣∣∣
∂S
∂x

∣∣∣∣
2

w1(z)−
∂

∂z

(
ε(x, z)

∂w1

∂z

))
dz

+

[
w1(z)ε(x, z)

∂w1

∂z

]∞

0

)
. (C.26)

The remaining integral on the right-hand side vanishes because w1(z) satisfies
the homogeneous differential equation F̂0w1(z) = 0, cf. the discussion above
Eq. (C.4) in the previous appendix.

Since both w1 and its derivatives go to zero as z → ∞, part of the
boundary term also vanishes, and we are left with the contribution at z = 0.
Adding the contribution from the lower half, which comes with a relative
minus sign because the boundaries are −∞ and 0, we obtain

UI(x) =
∫ ∞

−∞
U (x, z)dz (C.27)

=
1

16πe2
|A0

0|2

|J(x)|
1

εeff|∂S/∂x|

(
− ε(x, 0)

w1(0)
∂w1(0)

∂z
+

ε(x, 0)
w2(0)

∂w2(0)
∂z

)
.

Finally, using the definition of εeff from Eq. (2.25), we find

UI(x) =
1

16πe2
|A0

0|2

|J(x)|
2εeff|∂S/∂x|
h̄εeff|∂S/∂x| =

1
8πe2h̄

|A0
0|2

|J(x)| . (C.28)

This result exactly coincides with Eq. (81) in Ref. [1]. However, this time we
started from an arbitrary model for ε(x, z), instead of a simplified model.
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Integrating the second term by parts, we find
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Since both w1 and its derivatives go to zero as z → ∞, part of the
boundary term also vanishes, and we are left with the contribution at z = 0.
Adding the contribution from the lower half, which comes with a relative
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This result exactly coincides with Eq. (81) in Ref. [1]. However, this time we
started from an arbitrary model for ε(x, z), instead of a simplified model.
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D Simple turning point

The behavior of qx around a turning point, where it vanishes, is fundamental
to understanding the nature of plasmonic bound states. In this appendix, we
demonstrate that these turning points are simple turning points [48, 75, 76, 86],
independent of the system parameters.

To analyze this behavior, we must consider the role of the effective
dielectric function εeff(x, q). While εeff(x, q) is momentum dependent, we
argue that this variation does not qualitatively alter the scaling of qx near the
turning point. To justify this statement, let us examine two limiting cases: as
seen in Fig. 4.2(b), in the large |q| limit, screening becomes constant at εM.
Conversely, in the small |q| limit, the system behaves similarly as previously
analyzed in Ref. [1]. At both these limits, there are no discontinuities or
divergences in εeff(x, q). Moreover, it behaves smoothly as a function of q,
meaning that we can perform a Taylor expansion to first order in q. We
therefore argue that the variation of εeff(x, q) does not modify the behavior of
qx at the turning points.

When qy is small, we can analyze the behavior near the turning points
analytically. We start our analysis from the effective classical Hamiltonian,
Eq. (2.26), which in the limit of small momenta |q| ≪ 1 takes the approximate
form

H0 ≈ 1 −
gse2 p2

F(x)|q|
2mεavg(x)h̄E2 +O(|q2|), (D.1)

where the average dielectric function is defined as

2εavg = εA + εB, (D.2)

which follows naturally from the effective dielectric function εeff(|q| → 0).
Since plasmons are defined by the equation H0 = 0, we directly have

|q| =
2mεavg(x)h̄E2

gse2 p2
F(x)

. (D.3)

Expressing the total momentum in terms of its components, |q|2 = q2
x + q2

y,
we obtain

q2
x =

2mεavg(x)h̄E2

gse2 p2
F(x)

− q2
y. (D.4)

By definition, qx = 0 at the turning point, which gives us a relation
between xc, qy and E.

q2
y =

(
2mεavg(xc)h̄E2

gse2 p2
F(xc)

)2

. (D.5)

To determine the nature of the turning point, we Taylor-expand q2
x around xc,
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which yields

q2
x =

(
2mεavg(xc)h̄E2

gse2 p2
F(xc)

)2

− q2
y

+ (x − xc)

(
2mεavg(x)h̄E2

gse2 p2
F(x)

)2 (
2

ε′avg(x)
εavg(x)

−4
p′F(x)
pF(x)

)∣∣∣∣
xc

. (D.6)

With Eq. (D.5), we can substitute qy as a function of xc and E. We find

q2
x = (x − xc)

(
2mεavg(x)h̄E2

gse2 p2
F(x)

)2 (
2

ε′avg(x)
εavg(x)

−4
p′F(x)
pF(x)

)∣∣∣∣∣
xc

. (D.7)

By definition, this confirms that the turning point is simple, as q2
x depends

linearly on (x − xc). To eliminate the explicit dependence on xc, we may
express xc as a function of (qy, E), i.e., xc = xc(qy, E).

For small qy, we have thus explicitly shown that the turning points are
simple. For larger values of qy, we numerically confirmed that the proportion-
ality q2

x ∝ x − xc continues to hold, meaning that the turning points remain
simple.
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x ∝ x − xc continues to hold, meaning that the turning points remain
simple.
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[34] T. O. Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and
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174

Catching the Wave: a Guide through the
Electron Sea

In physics, our understanding of the natural world is often built upon theo-
retical models, mathematical frameworks designed to capture the essential
behavior of a system. This approach is particularly powerful in condensed
matter physics, the field that explores the properties of materials that form
the basis of modern technology. While experiments and large-scale computer
simulations provide crucial data, new discoveries, and verification of theories,
the journey of understanding often begins with an analytical theory that
seeks to predict and explain physical phenomena from the fundamentals of
nature. This thesis is a work of analytical theory, translating complex physical
principles into mathematical formulas with the goal of producing interesting
and verifiable predictions.

My research focuses on plasmons, which are collective, wave-like oscil-
lations rippling through the sea of electrons in a conducting material. Much
like waves of water traveling across the surface of an ocean, plasmons are
propagating waves of electron density in metals and semiconductors. And
just like ocean waves, which are essentially two-dimensional surface phenom-
ena on a very deep body of water, the plasmons we study are confined to a
two-dimensional plane. These plasmons are interesting, because they interact
strongly with light, for example light from optic fiber internet cables. However,
plasmons behave on much shorter length scales. This allows for miniaturiza-
tion of optical chips, a significant advance for a field where component size is
a primary drawback.

Now, a wave traveling across the open, uniform ocean is predictable,
perhaps even a little boring and relatively simple to describe. The physics
becomes far more interesting and complex when the wave encounters a
disturbance or inhomogeneity in the environment, such as a coastline or an
island. The same is true for plasmons, which are sensitive to local variations
in the electron density or material they travel through. To understand such
behavior in realistic materials, we need a theory that can handle spatial
interruptions and incorporates inhomogeneous systems.

The specific theory employed in this thesis is the semiclassical approxima-
tion also known as the WKB approximation. This is a powerful mathematical
framework for describing waves in non-uniform environments, with one im-
portant condition: the changes or variations must be smooth. In physical
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terms, this means that the properties of the material change over length scales
that are much larger than the wavelength of the wave itself. Think of it this
way: our theory is excellent at describing an ocean wave rolling up a long,
gentle beach. It would be less suited for describing a wave crashing abruptly
on a sea stack. Fortunately, at the microscopic scale of materials, changes are
often quite smooth. Atoms at the boundary between two different materials
tend to mingle, and the sea of electrons naturally smooths out any sharp edges.
This makes the semiclassical theory a perfect fit for describing plasmons in
these real-world, inhomogeneous systems. The theory itself involves a lot of
complex and lengthy mathematics (which the interested reader can find in
chapter 2 of this thesis!), but its application to three specific physical scenarios
yields intuitive and beautiful results.

Scattering: what happens when a plasmon hits an “island”? Just as an
ocean wave scatters and changes direction when it hits an island or smooth
rock, a plasmon scatters when it encounters a local change in the material
or electron density, altering its path and intensity. Our theory shows that
plasmons are attracted to regions with lower electron density and repelled
by regions with higher density. This can induce some interesting effects.
A circular symmetric inhomogeneity of reduced electron density pulls and
bends the incoming plasmon towards it like a sink. The plasmons turn inward
towards the valley, before they are scattered away. For deep enough valleys
they even turn 180 degrees, going backwards after scattering. An increase in
electron density serves as a kind of potential barrier, pushing the plasmon
outward, away from the peak. We demonstrated that the scattered waves can
exhibit interference: scattered waves overlap and can combine constructively
(amplifying each other) or destructively (canceling each other out), a hallmark
of wave-like behavior.

Bound states: trapping a plasmon in a “canal”. What if a wave isn’t in
an open unrestricted space like a sea or ocean, but is confined to a narrow
channel like a river or canal flowing between two banks? The walls of this
canal force the wave to bounce back and forth, and due to the boundaries
only certain wave patterns, or “modes”, are allowed to exist. We showed
that the same thing can happen with plasmons. By creating two parallel
walls of, for example, high electron density, which repel plasmons, we can
trap a plasmon wave. However, creating these plasmon waveguides isn’t as
simple as just building higher walls. Due to the unique nature of these 2D
waves, the barriers only become effective if the plasmon is already moving
with some forward momentum along the length of the canal. Subsequently,
this momentum creates what we call bound states, where the plasmon is
guided along a specific path. The lowest energy allowed plasmon mode, is
the one with only one node in the canal, and when the energy of the plasmon
increases, so does the number of nodes in between the walls.

Periodic structures: when trapped plasmons “talk” to each other. Fi-
nally, we looked at something a bit more abstract, where the water analogy
begins to fade and we need to incorporate quantum-like behavior like tunnel-
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ing. Imagine an array of these previously discussed plasmonic waveguides
placed side-by-side. If the barriers between the canals are not too high or wide,
plasmons can “tunnel” from one canal to the next, a quantum mechanical phe-
nomenon where a particle penetrates a barrier it classically cannot surmount.
This interaction creates a collective behavior across the entire array, leading to
the formation of a so-called band structure. This means that for certain energy
ranges (the allowed bands), plasmons can propagate freely throughout the pe-
riodic structure. For other energies (the band gaps), propagation is forbidden.
This is, once more, highly dependent on the velocity of the plasmon in the
direction of the waveguides.

These three applications, scattering, bound states, and periodic structures,
are demonstrations of a versatile theoretical framework for predicting plasmon
behavior. The ability to guide plasmons in waveguides, for instance, is a key
requirement for using them to transmit information on a microchip. For
example, if we can excite plasmons with light from our long distance optical
fibers, we can pass this information locally through plasmonic waveguides,
interact with them and perform computational steps on a much smaller scale
than conventional optics. At its core, this thesis develops a fundamental
theory. The next logical step is the experimental verification of its predictions,
which can in turn refine our understanding and guide the design of novel
plasmonic devices and new technologies. The path from a fundamental theory
to new technology is often long, but it begins with a robust and predictive
mathematical model of the physical world and a desire to understand the
beautiful and complex behavior of waves in the microscopic sea of electrons.

177





Een Handleiding door de Elektronenzee:
Geen Golf te Hoog

In de natuurkunde is ons begrip van de wereld vaak gebaseerd op theoretische
modellen: wiskundige kaders die zijn ontworpen om het gedrag van een
systeem te beschrijven. Deze aanpak is bijzonder krachtig in de vastestoffysica,
het vakgebied dat de eigenschappen van materialen onderzoekt die de basis
vormen van moderne technologie. Hoewel experimenten en grootschalige
computersimulaties cruciale data leveren, begint de ontdekkingsreis vaak
met een theorie die natuurkundige fenomenen probeert te voorspellen en
te verklaren vanuit de fundamentele wetten van de natuur. Dit proefschrift
beschrijft zo een analytische theorie, dat complexe fysische principes vertaalt in
wiskundige formules met als doel interessante en verifieerbare voorspellingen
te doen.

Dit onderzoek richt zich op plasmonen: collectieve, golfachtige trillingen
die door de zee van elektronen in een geleidend materiaal deinen. Net zoals
dat water golft over het oppervlak van een oceaan, golft voor een plasmon
de elektronendichtheid als het ware door een materiaal. De systemen die
we in dit proefschrift bestuderen zijn tweedimensionaal. Dit betekent dat
de plasmonen beperkt zijn tot een oppervlak. We kunnen dit wederom
vergelijken met oceaangolven, welke ten opzichte van de diepte van de oceaan
ook beschouwd kunnen worden als een oppervlaktefenomeen. Plasmonen
zijn interessant, omdat ze een sterke interactie hebben met licht. Echter, een
belangrijk voordeel van plasmonen is dat hun golflengte veel kleiner is dan
die van licht met dezelfde frequentie. Hierdoor kunnen we mogelijk optische
chips miniaturiseren, een belangrijke vooruitgang voor een vakgebied waar
de grootte van componenten een primair nadeel is.

Een golf die door een uniform medium beweegt, is relatief eenvoudig te
beschrijven. De fysica wordt veel interessanter en complexer wanneer de golf
een verstoring of inhomogeniteit in de omgeving tegenkomt, zoals een kustlijn
of een eiland voor een oceaangolf. Hetzelfde geldt voor plasmonen, die
gevoelig zijn voor lokale variaties in de elektronendichtheid of het materiaal
waar ze doorheen reizen. Om hun gedrag in realistische systemen te begrijpen,
is een geavanceerde theorie nodig.

Het specifieke wiskundige hulpmiddel dat in dit proefschrift wordt
toegepast, is de semiklassieke theorie. Dit is een krachtig wiskundig raamwerk
voor het beschrijven van golven in niet-homogene omgevingen, op voorwaarde
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dat deze variaties geleidelijk zijn. Fysisch gezien betekent dit dat de eigen-
schappen van het materiaal veranderen over lengteschalen die veel groter
zijn dan de golflengte van de golf zelf. Het is als het beschrijven van een
oceaangolf die een lang, zacht strand oprolt, in tegenstelling tot een golf die
abrupt op een rots slaat. Deze benadering is zeer geschikt voor veel elektro-
nensystemen, waar de overgangen tussen verschillende componenten zelden
abrupt zijn, omdat verschillende materialen vaak al een beetje mengen op
het grensvlak. Het beschrijven van deze theorie vergt veel gecompliceerde
formules (neem vooral een kijkje in hoofdstuk 2!), maar de toepassing van
deze theorie op drie fysische scenario’s levert mooie en intuı̈tieve resultaten.

Verstrooiing: het botsen van plasmonen op een ‘eiland’. Een oceaangolf
kan worden verstoord door een verandering in de omgeving, zoals het botsen
tegen een eiland. Wanneer een plasmon een gelokaliseerde verandering in
het materiaal tegenkomt wijzigt zijn pad en intensiteit, het verstrooit. Onze
theorie toont aan dat plasmonen worden aangetrokken tot gebieden met
een lagere elektronendichtheid en worden afgestoten door gebieden met een
hogere elektronendichtheid. Een circulair symmetrische inhomogeniteit met
een verlaagde elektronendichtheid trekt en buigt het inkomende plasmon naar
zich toe als een afvoerputje. Wanneer de put diep genoeg is, kan de plasmon
zelfs gedeeltelijk 180 graden omdraaien. Verder hebben we aangetoond dat de
verstrooide golven gedeeltelijk kunnen overlappen en daardoor interferentie
vertonen: ze kunnen op twee manieren combineren, namelijk constructief
(elkaar versterken) of destructief (elkaar uitdoven), kenmerkend voor golven.

Gebonden toestanden: plasmonen gevangen in een ‘kanaal’. Wanneer
een golf door een kanaal stroomt, wordt zijn beweging beperkt door de wa-
terkant, waardoor hij heen en weer kaatst tussen de randen. In principe staat
deze beperking slechts een discrete set van gekwantiseerde stabiele golfpatro-
nen, of ‘modes’, toe. We hebben aangetoond dat hetzelfde principe geldt voor
plasmonen. Door een kanaal te creëren, afgescheiden door twee ‘muren’ van
bijvoorbeeld hoge elektronendichtheden (die plasmonen afstoten), kunnen
we de golf vangen. Het creëren van deze plasmon-golfgeleiders is echter niet
zo eenvoudig als simpelweg hoge muren bouwen. Vanwege de unieke aard
van deze 2D-golven worden de barrières pas effectief als het plasmon al met
een voorwaartse impuls in de lengterichting van het kanaal beweegt. Deze
structuur fungeert dan als een plasmonische golfgeleider, die de golf langs
een gedefinieerd kanaal leidt in de vorm van deze gekwantiseerde gebonden
toestanden.

Periodieke structuren: wanneer gevangen plasmonen ‘communiceren’.
Tot slot hebben we een complexer systeem onderzocht: een reeks van de zo-
juist besproken golfgeleiders naast elkaar. Als de barrières tussen de kanalen
niet oneindig hoog zijn, moeten we kwantumachtig gedrag zoals ‘tunneling’
meenemen. Dit is een fenomeen waarbij een golf of deeltje door een barrière
dringt waar het klassiek gezien niet doorheen kan. Deze interactie of com-
municatie tussen aangrenzende kanalen creëert een collectief gedrag over de
hele reeks, wat leidt tot de vorming van een bandstructuur. Dit betekent dat
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plasmonen. Door een kanaal te creëren, afgescheiden door twee ‘muren’ van
bijvoorbeeld hoge elektronendichtheden (die plasmonen afstoten), kunnen
we de golf vangen. Het creëren van deze plasmon-golfgeleiders is echter niet
zo eenvoudig als simpelweg hoge muren bouwen. Vanwege de unieke aard
van deze 2D-golven worden de barrières pas effectief als het plasmon al met
een voorwaartse impuls in de lengterichting van het kanaal beweegt. Deze
structuur fungeert dan als een plasmonische golfgeleider, die de golf langs
een gedefinieerd kanaal leidt in de vorm van deze gekwantiseerde gebonden
toestanden.

Periodieke structuren: wanneer gevangen plasmonen ‘communiceren’.
Tot slot hebben we een complexer systeem onderzocht: een reeks van de zo-
juist besproken golfgeleiders naast elkaar. Als de barrières tussen de kanalen
niet oneindig hoog zijn, moeten we kwantumachtig gedrag zoals ‘tunneling’
meenemen. Dit is een fenomeen waarbij een golf of deeltje door een barrière
dringt waar het klassiek gezien niet doorheen kan. Deze interactie of com-
municatie tussen aangrenzende kanalen creëert een collectief gedrag over de
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voor bepaalde energiebereiken, de toegestane banden, plasmonen door de
periodieke structuur mogen bewegen. Voor andere energieën, de verboden
banden of ‘bandgaps’, is voortbeweging echter verboden. Met deze periodieke
structuren kan je dus reguleren welke selectie aan energieën in het systeem
kunnen propageren.

Deze drie toepassingen, verstrooiing, plasmonische golfgeleiders en pe-
riodieke structuren, zijn demonstraties van het veelzijdige theoretisch kader
voor het voorspellen van het gedrag van plasmonen. De mogelijkheid om
plasmonen in golfgeleiders te sturen is bijvoorbeeld een vereiste om ze te
gebruiken voor het overbrengen of verplaatsen van informatie op een mi-
crochip. In de kern ontwikkelt dit proefschrift een fundamentele theorie. De
volgende logische stap is de experimentele verificatie van de voorspellingen,
wat op haar beurt ons begrip kan verfijnen en het ontwerp van plasmonische
toepassingen in de technologie kan sturen. De weg van een fundamentele
theorie naar zo’n nieuwe technologie is vaak lang, maar begint met een robu-
ust en voorspellend model van het gedrag, noem het een handleiding van de
golven in de elektronenzee.
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