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Samenvatting

Maer want een beclaghelicke verblintheyt,
als duer Tschicsel veroirdent,
t’verstant van velen alsoo verduystert ofte
betoouert heeft, dat sy t’licht vande Sonne
bouen dat der Sterren,
ick meen de weerdicheyt deses Taels
bouen al d’ander,
niet en connen bemercken, tot groot
achterdeel des Duytschen gheslachts

Beghinselen der Weeghconst
Simon Stevin

Dit proefschrift gaat over algebraïsche meetkunde. Meetkunde is de oudste vorm
van wiskunde en gaat over het beschrijven en classificeren van vormen. Meer dan
2000 jaar geleden bestudeerden de eerstewiskundigen al vormen die je kanmaken
met passer en liniaal: lijnen, cirkels, driehoeken, enzovoort. Algebraïsche meetkun-
de gaat over vormen die je kan maken met algebraïsche formules, ook wel poly-
nomen genoemd. Polynomen zijn formules met getallen en variabelen waarbij je
mag optellen, vermenigvuldigen enmachtsverheffen. Lijnen kan je bijvoorbeeld be-
schrijvenmet formules zoals y = 2x+3. Ook de cirkel kan je beschrijvenmet zo’n
formule. De stelling van Pythagoras vertelt ons namelijk dat een cirkel met straal r
te beschrijven ismet de formulex2+y2 = r2. Zoals je ziet kunnenpolynomenalles
wat de passer en liniaal kunnen,maar polynomen kunnen daarnaast nog veelmeer.
Door meer variabelen te gebruiken kunnen vormen met meer dimensies beschre-
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ven worden, en door ingewikkeldere of meerdere polynomen tegelijk te gebruiken
kunnen complexere vormen worden beschreven.

Een ander soort vorm die we in dit proefschrift behandelen is een “stack” of stapel.
Een stapel is wat je krijgt als je een algebraïsche vorm vouwt. Soms kan je een ge-
vouwen vorm voor een groot deel weer beschrijven met formules, maar formules
kunnen geen vouwrandjes beschrijven. Een stapel kan op een technische manier
de interactie tussen de formules en de vouwrandjes bevatten. Vouwen zorgt trou-
wens niet altijd voor vouwrandjes. Als je bijvoorbeeld een feestmutsje vouwt krijg
je bovenop een vouwpuntje.

Er zijn veel te veel vormenomze allemaal te kunnen beschrijven, duswe richten ons
op een klein deel van de vormen. De basisvormen voor dit proefschrift zijn krom-
men, dat zijn 1-dimensionale vormen zoals lijnen en cirkels. De vernieuwing in het
proefschrift ligt in de theorie van stapelkrommen: krommen met vouwpuntjes. In
hoofdstuk 2 vind je een tabel waarin we de simpelste stapelkrommen classificeren.

De vormen waaraan we de meeste aandacht besteden zijn schoven. Schoven zijn
meerdimensionale vormen die opgebouwd zijn uit stapelkrommen en vectorruim-
tes. Een vectorruimte is een vorm die oneindig recht is, zoals een lijn, vlak of de
3-dimensionale ruimte om ons heen. Een schoof maak je in twee stappen: je kiest
eerst een stapelkromme als fundament en vervolgens plak je op elk punt van de
kromme een vectorruimte. Schoven hebben twee belangrijke eigenschappen waar-
mee ze geclassificeerd kunnen worden. De eerste is de dimensie van de vector-
ruimtes die we gebruiken. De tweede is hoeveel de richting van de vectorruimtes
veranderd als je over de kromme heen beweegt.

Zelfs als we deze twee eigenschappen weten zijn er nog oneindig veel verschillende
schovenmet dezelfde kromme als fundament. Het zijn er zelfs zoveel dat we ze niet
in lijst kunnen zetten, zelfs al was de lijst oneindig lang. Om vat te krijgen op al deze
schoven worden ze gerangschikt in eenmoduliruimte. De moduliruimte is een we-
reld waarin elke plek correspondeert met één schoof. Als je door de moduliruimte
heen beweegt zie je dus één voor één alle schoven. Deze wereld is erg complex
en heeft oneindig veel dimensies. Om je een idee te geven van hoe deze wereld
eruitziet kan je in hoofdstuk 3 plaatjes vinden van de allersimpelste uithoekjes van
deze wereld. Het belangrijkste doel van dit proefschrift is het geven van een soort
routebeschrijving door de moduliruimte heen. Hierdoor begrijpen we beter welke
soorten vormen er mogelijk zijn en hoe we ze kunnen beschrijven.
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Introduction

en hoe verder hij ging
des te langer
was zijn terugweg

C.C.S. Crone

This thesis contributes to the field of algebraic geometry and more specifically to
the study of algebraic curves and vector bundles on algebraic curves. Algebraic
geometry is the study of algebraic varieties: topological spaces which are “locally”
zero sets of polynomials, glued along rational maps. Historically the coefficients
of the polynomials were complex numbers, in which case algebraic varieties are
closely related to complex manifolds. We will take the more general perspective
and allow the coefficients of our polynomials to lie in an arbitrary field. In addition
to algebraic varieties we like to study basic algebraic structures over them such as
vector bundles. A vector bundle is a way to associate to each point of an algebraic
variety a vector space, such that the vector space varies “algebraically” as we move
around the variety.

We will first give a historical overview of the study of algebraic curves and vector
bundles on them. Then we will explain how this thesis fits into and builds on top of
the existing theory.
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Algebraic curves

One of the most fundamental problems in algebraic geometry is classification: to
give a “list” of all the algebraic varieties. In general this problem is incredibly difficult;
there are simply too many varieties and we have no idea what most of them look
like. However, a lot of partial progress has been made by considering restricted
classes of varieties. The most famous one is probably the class of smooth compact
1-dimensional varieties or algebraic curves.

If we assume our field is the complex numbers, then there is a correspondence
between algebraic curves and Riemann surfaces, which are closed 1-dimensional
complex manifolds. The underlying topological space of a Riemann surface is a
topological surface and topological surfaces are classified by their genus: the num-
ber of “holes” in the surface. The classification problem for algebraic curves then
becomes to describe all the ways to endow the genus g surface with a complex
structure up to isomorphism.

The solution depends dramatically on the genus. For g = 0, the underlying surface
is a sphere, which has a unique complex structure called the Riemann sphere or the
complex projective line. For g = 1, the underlying surface is a torus and every com-
plex structure can be obtained as a quotient C/L, where L is a two dimensional
lattice insideC. This reduces the genus 1 classification to the algebraic problem of
classifying lattices. For g ≥ 2, the situation becomes more complicated. Riemann
showed that a Riemann surface depends on exactly 3g − 3 parameters, which he
calledmoduli [Rie57].

Riemann’s work implicitly assumes the existence of a space intowhich these param-
eters are arranged, which we now call a moduli space. More precisely, a moduli
space is itself an algebraic variety, such that, in this example, the points precisely
classify the Riemann surfaces of genus g up to isomorphism. The classification
problem is now twofold: first show that a moduli space exists and then describe its
geometry in as much detail as possible.

Oneof themost basic geometric problems is to identify the connected components
of amoduli space. TwoRiemann surfaces lie in the same connected component of a
moduli space if and only if they can be continuously deformed into one another, so
identifying the connected components corresponds to solving the simplified prob-
lem of classifying Riemann surfaces up to continuous deformations.
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Moduli spaces as quotients

A common approach to showing the existence of moduli spaces is to present them
as quotients. We start by giving an overparameterizationX together with a group
G which acts onX , such that the orbits of the action correspond precisely to the
isomorphism classes of objects that need to be classified. The problem with this
perspective is that orbit spaces are in general not themselves varieties.

This problem led to the development of geometric invariant theory by Mumford
[Mum65]. When X is a projective variety (a very strong notion of compactness)
and the group action is compatible with the projectivity, Mumford defines (up to
some choices) two G-invariant open subsetsXs ⊂ Xss ⊂ X , called the stable
and semistable locus respectively, with particularly nice behavior. The orbit space
Xs/G of the stable locus actually admits a natural structure of a variety. The or-
bit spaceXss/G of the semistable locus almost admits the structure of a variety:
one first needs to identify orbits whose closures intersect. The resulting variety is
called the GIT quotient, denoted byXss//G, and it is a projective compactification
of Xs/G. One major application of the theory was to define stable vector bun-
dles and show the existence of a quasi-projective moduli space classifying stable
bundles [Mum63].

Vector bundles

The classification of vector bundles on curves depends again on the genus of the
underlying curve. Vector bundles on the projective line were classified by Dedekind
and Weber: all vector bundles can be decomposed into line bundles and a line
bundle is determined by its degree (a measure of twistedness) [DW82]. In genus
1 there is an explicit (but quite complicated) description of vector bundles due to
Atiyah [Ati57].

When g ≥ 2 we again end up in the realm of moduli theory. Equipped with the
new notion of stable and semistable bundles, Narasimhan and Seshadri showed
that over the complex numbers there is a correspondence between (twisted) irre-
ducible unitary representations of the fundamental group of a Riemann surface
and stable vector bundles on the Riemann surface [NS65]. Remarkably the moduli
space of unitary representations is a priori only a real-analytic manifold, however
this correspondence shows that it also admits the structure of a complex algebraic
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variety.

They also showed that the connected components of themoduli space are given by
semistable bundles with fixed rank and degree. Moreover the dimension of each
component is n2(g− 1)+ 1, where n is the rank of the bundles. Finally they gave
an explicit description of the identifications between semistable bundles that are
needed to form the GIT quotient, which is now known as S-equivalence.

The correspondence was later generalized by Mehta and Seshadri to the represen-
tations of the fundamental group of punctured Riemann surfaces [MS80]. On the
other side of the correspondence they obtained vector bundles with added data
around the punctures and called these parabolic bundles. They then carried out
Mumford’s GIT to show that there exists a projective moduli space of semistable
parabolic bundles and gave an explicit description of the identification between
semistable objects that is abstractly defined by GIT.

Algebraic stacks

Ever since Deligne and Mumford’s seminal paper [DM69] it is widely understood
thatmoduli spaces aremore naturallymoduli stacks. Algebraic stacks are a natural
generalization of varieties that allow for quotients by algebraic groups. When we
quotient a topological space by a continuous group action we naturally obtain a
topological groupoid, so a good way to visualize a stack is as a topological space
together with automorphisms groups attached at certain points.

From the quotient perspective of moduli spaces, it is already clear why we would
like to work with stacks, as the existence problem is solved almost tautologically.
However from the classification perspective there is an added bonus: when we
classify objects which have non-trivial automorphism groups, a moduli stack can
naturally record these automorphisms as well.

In their paper Deligne and Mumford gave a treatment of the moduli stack Mg of
algebraic curves. There are several ways to show that there exists a moduli space
Mg of curves of genus g and, over the complex numbers, it was quickly shown to
be connected using analytic techniques, which could not be generalized to arbitrary
fields. Deligne and Mumford’s breakthrough was to instead show that the moduli
stackMg over an arbitrary base field was connected, which then implied the result
for the moduli spaceMg as well.

xiv



The most important stack from the perspective of this thesis is the moduli stack of
vector bundles on a given curve. For technical reasons is it is often convenient to
slightly extend the class of vector bundles by taking kernels and cokernels of vector
bundlemorphisms to obtain the class of coherent sheaves. Fixing a curveC , there
is a moduli stack Coh(C) of coherent sheaves, together with an open substack of
vector bundles Bun(C).

The connected components are the substacks Bunn,d(C) ⊂ Cohn,d(C), consist-
ing of bundles with fixed rank n and degree d. The dimension of Cohn,d(C) is
n2(g−1), which is 1 less than the dimension of Narasimhan and Seshadri’s variety.
This is because vector bundles have positive dimensional automorphism groups
and the dimension of a stack incorporates the dimension of the automorphism
groups. In particular all vector bundles are invariant under scalar multiplication,
which is the reason for the difference of 1. One nice consequence is that the stacky
dimension formula also holds for g = 0 and g = 1.

Good moduli spaces

Another breakthrough in the theory of moduli spaces was a stack-theoretic treat-
ment of Mumford’s GIT. For an arbitrary stack we can ask if there is a variety (more
precisely an algebraic space) that best approximates it. If such a variety exists and
satisfies a list of technical properties, it is deemed a good moduli space for the
stack [Alp13]. The motivating example is the fact that the GIT quotientXss//G is
a good moduli space for the stack quotient [Xss/G]. Alper, Halpern-Leistner and
Heinloth have given two valuative criteria for the existence of good moduli spaces
[AHH23], which can actually be checked in practice.

For example the moduli stack of semistable vector bundles admits a good moduli
space, which is in fact the same moduli space constructed by Narasimhan and Se-
shadri [ABBLT22]. The same is true for the stack of semistable parabolic bundles
and the corresponding variety constructed by Mehta and Seshadri. Note that in
these cases the goodmoduli space only parameterizes objects up to S-equivalence,
and in general the map from the stack to the good moduli space is a topological
quotient.

One major advantage of this approach is that we no longer need any projectivity
assumptions. However the theory also does not explain when the resulting good
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moduli space is projective. For this reason the modern approach to good moduli
spaces has two parts, first check the existence criteria of [AHH23] and then give a
separate proof of projectivity.

Cohomology and motives

Identifying connected components is only a first step for understanding a moduli
stack. A very popular approach to understanding complicated varieties and stacks
in algebraic geometry is via cohomology theories, such as singular cohomology or
étale cohomology. Cohomology theories are functors from some geometric cate-
gory (such as stacks over a fixed field) to a linear category (such as graded Abelian
groups) satisfying somenatural properties. Cohomology theories are useful as they
take away some of the complexity, letting us isolate some specific geometric infor-
mation.

The idea of Voevodsky motives is to build a universal functorM and a category
of motives through which other cohomology theories factor, and which encodes
the Chow groups of smooth varieties, another important invariant. In practice this
means that if we can make computations in the category of motives, we automat-
ically obtain computations in other cohomology theories and Chow groups. As an
illustration, the geometric fact that projective space Pn can be naturally stratified
by affine spaces

Pn = An q An−1 q · · · q A1 q pt,

gives rise to a motivic formula

M(Pn) '
n⊕
i=0

Z{i},

where Z{1} is a fundamental object called the Tatemotive and Z{i} = Z{1}⊗i.
This formula implies the classic computations of singular cohomology, étale coho-
mology and Chow groups:

H∗
sing(PnC,Z) ' Z[x]/(xn+1),

H∗
ét(PnFp

,Qℓ) ' Qℓ[x]/(x
n+1),

CH∗(Pn) ' Z[H]/(Hn+1).
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Note that a priori themotivic formula only gives us these objects as Abelian groups,
to compute the ring structure one needs to do some extra work.

There are very nice formulas for the motives of moduli stacks of vector bundles
on a curve C , expressed in terms of the motive of symmetric powers of C and its
Picard stack Pic0(C) [HP22; HP21a]. Namely, for n ≥ 1 we have

M (Bunn,d(C)) =M(Pic0(C))⊗
n−1⊗
i=1

⊕
j≥0

M(Symj(C)){ij},

M (Cohn,d(C)) =M(Pic0(C))⊗
⊗
i≥1

⊕
j≥0

M(Symj(C)){ij}.

Geometrically the tensor product ofmotives corresponds to products of stacks and
the direct sum corresponds to a disjoint union. This means that we can interpret
the formulas as saying that the moduli space of vector bundles is “made up” of
products of the Picard stack and symmetric powers of the curve.

Stacky curves

This thesis investigates coherent sheaves on stacky curves. Stacky curves are reg-
ular 1-dimensional stacks with finite stabilizer groups at finitely many points (Def-
inition 1.1.1). Stacky curves naturally arise as quotients of curves by finite group
actions. More generally they can be obtained by gluing together several such quo-
tients. The underlying topological space of a stacky curve always admits the struc-
ture of an algebraic curve and is called the coarse space of the stacky curve. There-
fore we like to intuitively think of a stacky curve as a curve together with stabilizer
groups attached at finitely many points, which we call the stacky points.

When the field has positive characteristic it is often important to assume that the
order of the stabilizer groups is not divisible by the characteristic. In this casewe call
the stacky curve tame. In the tame setting a stacky curve is completely determined
by the coarse space and the order of the stabilizer groups. This is formalized in the
following theorem, whichwas possiblywell-known to ahandful of experts; however,
our proof addresses some subtleties over non-separably closed fields which had
not been considered previously.
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Theorem A (Proposition 1.1.27 and Theorem 1.1.31) Every tame regular stacky
curve is a root stack over its coarse space and conversely every root stack over
a regular algebraic curve is a regular stacky curve.

The above theoremclassifies stacky curves as curves togetherwith a set ofweighted
marked points; however the spherical stacky curves with genus g < 1 are partic-
ularly well behaved and we show that there is a particularly nice classification in
terms of root systems. Note that stacky curves can have a fractional genus, this
reflects the idea that a stacky point can be thought of as a “fractional” point.

Theorem B (Section 2.1) Let C be a smooth projective stacky curve of genus
g < 1. Then there exists a natural irreducible root system in a quotient of the
Grothendieck group K0(C). This root system together with the residue fields of
the stacky points uniquely determines the stacky curve up to isomorphism.

Sheaves on stacky curves

In his thesis [Nir09] Nironi proves that there exists a moduli stack of coherent
sheaves on a projective Deligne-Mumford stack. Moreover, using the concept of
generating sheaves from [OS03], he introduces a notion of semistability and shows
that the substack of semistable sheaves admits a projective good moduli space by
using GIT. This notion of semistability depends on the chosen generating sheaf and
thus gives many different substacks and corresponding moduli spaces.

In this thesis we specialize to the case of a stacky curveC and define discrete invari-
ants called twisted degrees that together with the rank determine the connected
components of Coh(C) and Bun(C). The twisted degrees are a finite set of in-
tegers that encode the action of the stabilizer groups on the fibers at the stacky
points.

Theorem C (Corollary 3.1.9 and Theorem 3.1.12) Let C be a smooth projective
stacky curve. The stack Cohn,d(C) of coherent sheaves with fixed rank n and
twisted degrees d is smooth and connected.

There are forgetfulmapsBunn,d(C) → Bunn,d(C) fromvector bundles on a stacky
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curve C to vector bundles on its coarse space C . These forgetful maps are fibra-
tions by flag varieties (Example 3.2.3), which gives a motivic formula

M(Bunn,d(C)) =M(Bunn,d(C))⊗M(Flagd
(
k⊕n

)
).

The correspondingmap Cohn,d(C) → Cohn,d(C) is not a fibration and themotive
seems to be much more complicated. Although we do not quite obtain a motivic
formula, we can give a qualitative statement.

Theorem D (Corollary 3.3.18) Let k = k̄ be an algebraically closed field. The
motive with rational coefficientsM(Cohn,d(C)) lies in the thick tensor subcate-
gory generated byM(C).

Sheaves on stacky curves are closely related to parabolic bundles on the curve ob-
tained by puncturing all the stacky points. This has been observed in several forms,
first in [Bis97], via the existence of specific covers of the stacky curve. In fact there is
a categorical equivalence between quasi-parabolic bundles and vector bundles on
stacky curves [Bor07]. This categorical equivalence is upgraded to an equivalence
of moduli stacks in [Nir09]. We analyze how these equivalences interact with the
different notions of semistability and the discrete invariants, to give equivalences
between stacks of semistable parabolic bundles and semistable vector bundles on
stacky curves.

Theorem E (Corollary 3.2.7) Every connected component of the moduli stack of
semistable parabolic bundles on a smooth projective curve is isomorphic to a
stack BunE-ssn,d (C) of vector bundles on some smooth projective stacky curve C,
with rank n and twisted degrees d, that are semistable with respect to some
generating sheaf E.

This shows that the moduli theory of parabolic bundles can be completely under-
stood by considering vector bundles on stacky curves.

Even though Nironi has proven the existence of projective moduli spaces using GIT,
these techniques are not effective: they do not explain in any way how to obtain
actual embeddings of the moduli space into projective space. In joint work with C.
Damiolini, V. Hoskins, S. Makarova we generalize the approach of [ABBLT22] from
classical curves to stacky curves to give an effective proof of projectivity.
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Theorem F (Corollary 4.5.4) The stack BunE-ssn,d (C) admits a good moduli space

B. Moreover there is a line bundle LE on BunE-ssn,d (C) and there are effective

bounds for a power of LE to define a finite map B → PN , giving an effective
proof of projectivity ofB.

By the previous theorem, this is also an effective strengthening of the results of
[MS80].

Structure of the thesis

Chapter 1 gives a basic treatment of the structure of stacky curves and their cate-
gories of sheaves. We show that every tame stacky curve is a root stack (see The-
orem A) and thus a stacky curve is Zariski-locally a quotient of a curve by a finite
group. This is a “well-known” result, certainly over the complex numbers, but we
take some care to give these descriptions over an arbitrary (possibly non-separably
closed) field. On the side of sheaves we give a computation of the Grothendieck
group K0(C) in terms of the geometry of the stacky curve C. Finally we describe a
relation between the category of (semistable) vector bundles on smooth projective
stacky curves and the category of (semistable) parabolic bundles .

In Chapter 2 we focus on spherical stacky curves, which are the curves of genus
< 1. These have the simplest behavior and we show that a quotient of their
Grothendieck group contains a natural irreducible root system. This enables us
to classify spherical stacky curves using Dynkin diagrams as described in Theo-
rem B. We show that there is a close relation between spherical curves and finite
subgroups of PGL2(k), and we classify which bundles on P1 admit an equivariant
structure for a particular finite group.

Chapter 3 considers the moduli theory of coherent sheaves on smooth projective
stacky curves and several related moduli problems. We show that the stack of
coherent sheaves on a stacky curve is smooth and show that the substacks with
fixed invariants are irreducible, proving Theorem C. We also show that any stack
of semistable parabolic bundles is isomorphic to a stack of semistable vector bun-
dles on a stacky curve as in Theorem E. Finally we show that the stack of coherent
sheaves on a stacky curve is stratified by the invariants of the torsion part and these
strata admit the structure of vector bundle stacks and the stack of torsion sheaves

xx



is in turn stratified by (graded) Young diagrams. These stratifications are used to
prove Theorem D.

Chapter 4 proves Theorem F and is based on joint workwith C. Damiolini, V. Hoskins
and S. Makarova. We apply the existence theorem of [AHH23] to obtain a proper
good moduli space for the stack of E-semistable vector bundles on a stacky curve
for any generating sheafE. We then construct an explicit determinantal line bundle
on the stack and give effective bounds for the global generation of a power of this
line bundle. We show this defines a finite map from the good moduli space to
projective space, showing that the good moduli space is projective.

Appendix A is a technical appendix where we construct a universal flattening strat-
ification for cyclotomic stacks, which is applied in Chapter 3. This construction is a
specific case of the conjectured construction in [OS03].

Appendix B collects some facts about Voevodsky motives, which will be used in
Chapter 3.
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CHAPTER 1

Fundamentals of stacky curves

Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.

the Elements
Euclides

In this chapter we will introduce and develop the basic theory of stacky curves. In
the first section we cover the local and global structure results for stacky curves,
which relate stacky curves to classical curves, proving Theorem A. In the second
section we start our analysis of coherent sheaves on stacky curves and prove ana-
logues of many of the classical results, like the existence of a torsion filtration and
a description of invertible sheaves. In the third section we study projective stacky
curves and give analogues of Serre-duality, the Riemann-Roch theorem and the
Riemann-Hurwitz theorem. We also discuss Hilbert polynomials and stability for
vector bundles on projective stacky curves. In the final section we will relate vector
bundles on stacky curves to parabolic vector bundles on stacky curves and compare
the notions of stability on both sides.

1.1 Structure results for stacky curves

In this sectionwewill describe the basic geometry of stacky curves. Themain results
are two structure results for stacky curves: a local structure result describing stacky
curves locally as finite quotients of classical curves and a global structure result

1



1 Fundamentals of stacky curves

describing stacky curves as a classical curve together with finite ramification data.
The results in this chapter are certainly well-known; however, they are often stated
in such high generality that it might obfuscate the simplicity of the case of curves.
Consequently, we will restate these results in the case of curves and use the fact
that we are on a curve to give simplified proofs. What is new is that we work over
an arbitrary (potentially imperfect) base field. For this reason we will have to work
with regular curves rather than smooth curves.

Definition 1.1.1 A stacky curve is a regular separated finite type geometrically
connected Deligne-Mumford stack C of dimension 1 over a field k, such that
there exists a (non-empty) schemeX and an open immersionX → C.

The condition that C contains an open subscheme excludes things like gerbes over
curves and ensures that C has only finitely many stacky points. We will only con-
sider regular stacky curves, which is why we include it in the definition. Note that
by definition a curve is just a stacky curve that happens to be a scheme. When we
want to emphasize that a curve is scheme, we will call it a classical curve.

We will now define the basic properties of points on a stacky curve. For a nice
discussion on residual gerbes of points of an algebraic stack see [BL24, Appendix A].

Definition 1.1.2 Let C be a stacky curve and p be a closed point of C. We define
the residual gerbe of p to be the unique reduced closed substack ofC supported
on p and denote it by ιp : Gp ↪→ C. There is a field κ(p), called the residue field
of p, with amapGp → Spec(κ(p)) that is initial among suchmaps. We say that
p is a stacky point if Gp is a stack, i.e. is not the spectrum of a point. Let l be a
finite extension ofκ(p) over whichGp splits, so (Gp)l ' [Spec(l)/Gp,l], where
Gp,l acts trivially on l. We say thatp is a tamepoint if the order ofGp,l is coprime
to the order of k for any (or every) such l. We say thatC is tame if all of its points
are tame.

Note that, since stacky curves are locally Noetherian, this definition of the residual
gerbe is equivalent to the more general definition of [Stacks, Definition 06MU] via
[Stacks, Lemma 0H27].

We will refer toGp,l as the stabilizer group of a closed point p and denote it byGp.

2
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1.1 Structure results for stacky curves

Strictly speaking this is not well defined, since we need to choose a field extension l,
but sincewe are usually working étale locally this is not a big problem. Moreover we
will see in Lemma 1.1.35 that for tame stacky curves the residual gerbe always splits
over κ(p) andGp is a well defined group scheme defined over κ(p) isomorphic to
µe.

The motivating example of a stacky curve is the following.

Example 1.1.3 Let C be a curve over a field k and G be a finite subgroup of
Aut(C); then the stack quotient [C/G] is a stacky curve. The stacky points
of [C/G] correspond to the orbits ofG with non-trivial inertia. Let p be a fixed
point of theG-action and denote byGs(p) the stabilizer group and byGi(p) ⊂
Gs(p) the inertia group, i.e. the subgroup that acts trivially on the residue field
κ(p) of p (see [SGA1, Exposé V.2]). The residual gerbe GGp is isomorphic to
[Spec

(
κ(p)Gs(p)/Gi(p)

)
/Gi(p)].

In the next example we glue together two quotient curves to get a stacky curve that
is not itself a quotient of a curve (see Proposition 1.3.5 for the proof of this claim).

Definition 1.1.4 The football space F(p, q), with weights p, q ∈ N≥1, is given
by gluing the two stacky curves U0 = [A1

k/µp] and U1 = [A1
k/µq], where µp

and µq act by multiplication and the gluing map Spec
(
k[x, x−1]

)
' [A1

k −
{0}/µp] → [A1

k − {0}/µq] ' Spec
(
k[y, y−1]

)
is defined by y → x−1.

The football spaceF(1, 1) is simply the projective lineP1
k and topologicallyF(p, q)

is just P1
k where the points 0 and∞ are stacky with residual gerbesBµp andBµq

respectively. Over the complex numbers, we can think of this as a sphere with
two pointy sides, i.e. an American football. When p and q are coprime, F(p, q)
is isomorphic to the weighted projective stack P(p, q) := [A2

k − {(0, 0)}/Gm],
whereGm acts as λ · (x, y) = (λpx, λqy). When gcd(p, q) = e > 1, there is a
map P(p, q) → F(p/e, q/e), making P(p, q) into a µe-gerbe over F(p/e, q/e).

Definition 1.1.5 Let C be a stacky curve. A coarse space morphism for C is a
morphism π : C → C to an algebraic space satisfying the following properties.

3



1 Fundamentals of stacky curves

• Anymorphismf : C → X to an algebraic space factors uniquely through
π.

• The inducedmap |C(Ω)| → |C(Ω)| is a bijection for algebraically closed
fieldsΩ.

The algebraic spaceC is called the coarse space of C.

By the factorization property, the coarse space morphism is unique up to unique
isomorphism if it exists. Tomirror the idea that the coarse space is a rough (coarse)
approximation of the stacky curve we will write stacky curves with calligraphic let-
ters and their coarse spaces with the same non-calligraphic letter. In the litera-
ture coarse spaces are sometimes called coarsemoduli spaces, in analogy with the
concept of fine/coarse moduli spaces. Since stacky curves are not (always) moduli
spaces, we omit the word “moduli”.

To show the existence of coarse spaceswe can apply the Keel-Mori theorem [KM97];
see for example [Con05] for a proof.

Theorem 1.1.6 (Keel-Mori) LetX be an Artin stack that is locally of finite presen-
tation over a field k, with finite inertia stack I(X). Then there exists a coarse
space morphism π : X → X with the following additional properties.

(1) IfX is separated, then so isX .

(2) The coarse spaceX is locally of finite type over k.

(3) The map π is proper and quasi-finite.

(4) For any flat mapX ′ → X of algebraic spaces, the pullback π′ : X ×X

X ′ → X ′ is also a coarse space morphism.

Clearly stacky curves satisfy the conditions of the Keel-Mori theorem, so they always
have a coarse spacemorphism. Using this fact we can give the local structure result
for stacky curves we alluded to above.

Proposition 1.1.7 (Local form of stacky curves) Let C be a stacky curve with
coarse space map π : C → C and p be a closed point ofC with stabilizer group
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1.1 Structure results for stacky curves

Gp. Then there exists an étale morphism V → C from a classical curve, with
p in its image, and a (possibly disconnected) classical curve U with an action of
Gp such that C×C V ' [U/Gp].

Proof. The existence of the schemes V, U and the action by Gp follows from the
proof of [AV02, Lemma 2.2.3]. The quotient U → [U/Gp] is finite and smooth,
so U is finite and smooth over C. It follows that U is regular separated and 1-
dimensional over k, so it is a (possibly disconnected) classical curve. ⭔

Proposition 1.1.8 Let C be a stacky curve with coarse spaceC , thenC is a clas-
sical curve.

Proof. By Proposition 1.1.7, we know there exists a surjective étale cover by a (pos-
sibly disconnected) curve f : V → C . It follows that C is regular and a fortiori
normal. By Theorem 1.1.6 (1), we know thatC is separated and since π is a home-
omorphism, C is irreducible. Finally we have an open substackX → C that is a
1-dimensional scheme. Now the coarse space of X , which is X , is an open sub-
space ofC . ThusC is 1-dimensional as it contains an open 1-dimensional scheme.
By [Knu71, Theorem V.4.4], a normal, separated, irreducible algebraic space over a
field is a scheme in codimension 1. It followsC is a scheme and hence a curve. ⭔

Ramification theory and root stacks

Wewill now develop some basic ramification theory for stacky curves. This is based
on [GS17], which gives a treatment for more general (smooth) DM-stacks. The goal
is to understand the ramification of the coarse space map and see how it charac-
terizes the curves.

Definition 1.1.9 Let f : C → D be a morphism of stacky curves. Let p ∈ C

be a closed point with image f(p) = q ∈ D. Take an étale cover by a scheme
V → D and then another étale cover by a scheme U → V ×D C. Then take
a point u ∈ U that maps to p and let v be its image in V . Then we define the
ramification index ep/q to be the ramification index eu/v of u over v.
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1 Fundamentals of stacky curves

Lemma 1.1.10 The above definition is independent of the chosen covers.

Proof. Fix an étale cover V → D and choose two different U and U ′. Then
U ×V×DC U

′ is also étale over V ×D C, so we may assume there is an étale
morphismU ′ → U commuting with the map to V ×D C. Let v, u, u′ be such that
u′ 7→ u 7→ v; then eu′/v = eu′/ueu/v = eu/v . Now pick two pairs of étale covers
U, V andU ′, V ′. Since V ×D V

′ is étale overD, we may assume that there is an
étale morphism V ′ → V . By the first point, we may replace U ′ by U ×D U ′ so
that we have a commutative diagram,

U ′ V ′

U V

where the vertical arrows are étale. Now pick u, v, u′, v′ appropriately; then we
have eu/v = eu′/ueu/v = eu′/v′ev′/v = eu′/v′ . ⭔

Definition 1.1.11 For f as above, the ramification locusRf is the set of closed
points p ∈ C such that ep/f(p) > 1. The branch locus is the image ofRf inside
D. We denote by ef the set of ramification indices ep/f(p) for p ∈ Rf . A map
f is called unramified if Rf is empty. We say that f is tamely ramified at p if
the characteristic of k does not divide ep/f(p). The map f is tamely ramified if
it is tamely ramified at every point. The pair (Rf , ef ) is the ramification data
of f .

The ramification data of tame quotients is particularly well behaved.

Lemma 1.1.12 LetG be a finite group acting faithfully on a curve C . Consider
the coarse space morphism π : [C/G] → C/G from the stack quotient to the
schematic quotient. Assume that the orders of the inertia groups Gi(x) are
not divisible by the characteristic of k for any closed point x ∈ C , i.e. [C/G]
is tame. Then for any closed point y ∈ [C/G], with z := π(y), we have that
the ramification index ey/z is equal to the order of the inertia groupGi(x) for
a point x ∈ C lying above y.
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1.1 Structure results for stacky curves

Proof. Since C/G is already a scheme, we can take the identity map as its étale
cover. ThemapC → [C/G] is étale by the assumption on the orders of the inertia
groups, so we may pick a point x in C that maps to y and compute ex/z = ey/z
using the mapC → C/G. Now the result is classical. ⭔

Lemma 1.1.13 An unramified map C → D between tame stacky curves is rep-
resentable.

Proof. Let U → D be an étale cover ofD by a scheme U , then C×D U → U is
also unramified, so we may assume thatD is a scheme. Let [V/G] → C be as in
the local form of Proposition 1.1.7 around any point. The map [V/G] → C → D

is unramified and factors through the coarse space V/G asD is a scheme. Since
ramification indices are multiplicative in compositions, the map [V/G] → V/G is
unramified. This means thatG acts freely on V by Lemma 1.1.12, hence [V/G] =
V/G. It follows that the coarse space map C → C is étale locally an isomorphism,
so C is a scheme. ⭔

Lemma 1.1.14 Let f : C → D be an unramifiedmap of tame stacky curves that
induces an isomorphism of coarse spacesC ' D; then f is an isomorphism.

Proof. Since being an isomorphism can be checked étale locally, we can assume
D = [V/G] andD = V/G for a curve V and finite groupG by Proposition 1.1.7.
Since f is unramified, it is representable by Lemma 1.1.13, so V ′ := C ×D V is
a scheme. As V ′ → C is a finite étale morphism, V ′ is also a curve. By definition
there are non-empty open subschemes X ⊂ C and Y ⊂ D and we can take
their intersectionX ∩ Y ⊂ C ' D in the coarse spaces. NowX ∩ Y is a non-
empty open subscheme of bothC andD and f restricts to an isomorphism on this
open subscheme. It follows that the morphism V ′ → V between regular curves
is birational and a bijection on points, hence an isomorphism. Consequently f is
an isomorphism. ⭔

Definition 1.1.15 LetC be a stacky curve. AWeil divisorD onC is a finite formal
sum

∑
Z nZZ of reduced closed substacks Z of C of codimension 1. If all the
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1 Fundamentals of stacky curves

coefficients nZ ≥ 0, we sayD is effective.

The reduced closed substacks of C of codimension 1 are in one to one correspon-
dence with the reduced closed subschemes of the coarse spaceC , hence they are
in one to one correspondence with the closed points of both C andC . When p is a
stacky point, the associated closed substack is precisely the residual gerbe Gp of p.
This is the motivation for the following definition.

Definition 1.1.16 Letpbe a stacky point of order ep on a stacky curve. Wedefine
1
ep
p to be the Weil divisor Gp. This lets us write a Weil divisor as a formal sum of

closed points with coefficients inQ, namely we define
∑

p
np

ep
p :=

∑
Gp
npGp.

Definition 1.1.17 Let C be a stacky curve. An effective Cartier divisorD on C
is a non-zero mapD : C → [A1/Gm] i.e. a line bundleL on C together with a
non-zero section s ofL.

Note that one can similarly define a possibly non-effective Cartier divisor to be a
map to [P1/Gm]. This definition is more familiar than it might look on first glance,
namely the isomorphism classes of maps into [A1/Gm] are nothing more than
elements of H0(O/O×). Similarly maps into [P1/Gm] are parameterized by
H0(K×/O×), whereK is the sheaf of meromorphic functions.

Definition 1.1.18 For a closed substack Z ⊂ C, we define the ideal sheaf

OC(−Z) ⊂ OC

on étale covers of C as follows. Let f : U → C be an étale cover; then

OC(−Z)|U = OU (−Z ×C U) ⊂ OU .

Given an effective Weil divisorD, we can associate an ideal sheaf

OC(−D) :=
⊗
p

O
(
− 1

ep
p

)⊗np

⊂ OC

8



1.1 Structure results for stacky curves

and the corresponding effective Cartier divisor (OC(D), sD), where OC(D) :=
Hom(OC(−D),OC), and sD corresponds to the inclusion map OC(−D) →
OC. This process can be inverted by sending (L, s) to

∑
p
vp(s)
ep

p, where vp(s) is

defined by considering the inclusion ιp : Gp → C and setting vp(s) to be one less
than the length of ι−1

p L considered as an ι−1
p OC-module via ι−1

p s : ι−1
p OC →

i−1L. To see that these two operations are inverse to each other, we can pass to
an étale cover, where it follows from the case of classical curves.

Definition 1.1.19 Let f : C → D be a non-constant map of stacky curves and
D be an effective Cartier divisor onD. We define the pullback f∗D ofD to be
the composition C → D →

[
A1/Gm

]
.

The following proposition expresses the pullback of a divisor in terms of Weil divi-
sors and ramification data.

Proposition 1.1.20 Let f : C 7→ D be a tamely ramified map of stacky curves
and let q be a closed point of D, with pre-images {pi} = f−1(q). We have
f∗Gq =

∑
pi
epi/qGpi .

Proof. We first show the case where C = C is a scheme and f is étale. We then
have f∗Gq := (O(Gq ×D C), sGq×DC) =

∑
i pi.

For the general case, we let u : U → D be an étale neighborhood of q such that q
has a unique preimage q̃ and let V → U ×D C be an étale cover, so we have the
following diagram.

V

U ×D C U

C D

v

g

w u

f

We can now verify the equality by passing to the cover V , i.e. we have to show

v∗w∗f∗Gq = v∗w∗
∑
pi

epi/qGpi .

9



1 Fundamentals of stacky curves

Note that v∗w∗f∗Gq = v∗g∗u∗Gq = (v◦g)∗q̃. Let rij be the preimages of the pi
under (v ◦ w), then by the first case v∗w∗∑

pi
epi/qGpi =

∑
rij
epi/qrij . Note

that the rij are exactly the preimages of q̃ under (v ◦ g) and epi/q = erij/q̃ . So
we have reduced to the case of classical curves, which is [Liu02, Chapter 7, Exer-
cise 2.3(b)]. ⭔

We now go over the construction of root stacks, which should be viewed as “degree
1 covers” with specified ramification data. We will prove that all stacky curves are
actually root stacks over their coarse space in Theorem 1.1.31. For a more general
treatment of root stacks see [Cad07].

Definition 1.1.21 Let C be a stacky curve, p be a closed point and e > 1 be
a natural number not divisible by the characteristic of k. Consider the Cartier
divisor (O(Gp), sp) associated to p. The root stack

e√
p/C is defined as the

fiber product of the diagram

e√
p/C

[
A1
k/Gm

]
C

[
A1
k/Gm

]
,

ρ θe

(O(Gp),sp)

where the right arrow is induced by the e-th power maps on A1 and Gm and
the bottom arrow is induced by p. The top map

e√
p/C →

[
A1/Gm

]
defines

an effective Cartier divisor (Tp, sp), which is called the tautological divisor. We

refer to Tp as the tautological line bundle. The left arrow ρ :
e√
p/C → C is

called the root morphism.

For a finite set of points p = (p1, . . . pn) and multiplicities e = (e1, . . . en) we
define the iterated root stack

e√
p/C :=

e1√
p1/C×C

e2√
p2/C×C · · · ×C

en√
pn/C,

which comes with tautological Cartier divisors (Tpi , spi) for each i and an iter-

ated root morphism
e√
p/C → C.

Technically the root construction also allows us to root in non-reduced divisors;
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1.1 Structure results for stacky curves

however this might result in singular stacks, so we avoid it. We do note that rooting
in f ·D with degree fe is the same as rooting inD with degree e.

Since root stacks commute with pullback by construction, the following lemma ex-
plains the local structure of root stacks.

Lemma 1.1.22 LetC = Spec(A) be an affine curve and let x ∈ A correspond
to a point p = (x). We have

e√
p/C ' [Spec(A[t]/(te − x))/µe],

where µe acts by multiplication on the variable t.

Proof. Since OC(p) ' OC , the morphism C
p→ [A1/Gm] factors as C

x→
A1 → [A1/Gm]. First consider the diagram of Cartesian squares.

X
[
A1/Gm

]
A1

[
A1/Gm

]
Spec(k) BGm

θe

We claim thatX := A1 ×[A1/Gm] [A1/Gm] ' [A1/µe]. Indeed

X ' Spec(k)×BGm [A1/Gm] ' [A1/(ker θe : Gm → Gm)] = [A1/µe].

Now consider another commutative diagram of Cartesian squares (pictorially rep-
resented in Figure 1.1).

Spec(A[t]/(te − x)) A1

e√
p/C

[
A1/µe

] [
A1/Gm

]
C A1

[
A1/Gm

]
11



1 Fundamentals of stacky curves

The action of µe on A1 pulls back to an action on Spec(A[t]/(te − x)) and the
result follows. ⭔

p

Bµ3

0

Bµ3

Figure 1.1: The local structure of a root stack with e = 3. The horizontal maps can
be thought of as projections to the tangent space of the point p. We can see that
the root stack sits in between the curve and a ramified cover of the curve. Note
that the nodes are branch points, not singular points.

Remark 1.1.23 In the case that we are rooting in a non-stacky point this example
shows that theWeil divisor associated to (Tp, sp) is supported on the single closed
point lying above p and has stabilizer µe. We abuse notation and the point lying
above p will also be called p, so that the corresponding Weil divisor is denoted by
1
ep. By construction we have π∗(OC(p)) = OC(

1
ep)

e, which motivates the “root”
terminology.

Lemma 1.1.24 The root morphism ρ :
e√
p/C → C is an isomorphism away

from the rooted point.

Proof. Away from the rooted point the section sp does not vanish, therefore the
restriction C − {p} → [A1

k/Gm] factors through the open substack Spec(k) =
[A1
k − {0}/Gm] ⊂ [A1

k/Gm] and the restricted map θe : [A1
k − {0}/Gm] →

[A1
k − {0}/Gm] is the identity. ⭔
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1.1 Structure results for stacky curves

For completeness we will prove two lemmas on the regularity and smoothness
properties of branched coverings.

Lemma1.1.25 LetA be a regular local ringwithmaximal idealm andk = A/m.
Let s ∈ A − {0} such that A/(s) is regular and e be a positive integer that is
invertible inA. ThenB := A[t]/(te − s) is regular.

Proof. We split up the proof into two cases. First assume s /∈ m; then we claim
that A → B is étale. Indeed ΩB/A = 〈dt|ete−1dt = 0〉 and ete−1 ∈ B× by
assumption. HenceΩB/A = 0.

Now assume that s ∈ m. We see that m + (t) is the unique maximal ideal of B
and we compute

dimk
m+ (t)

(m+ (t))2
= dimk

m⊕ tA⊕ · · · ⊕ te−1A

(m2 + (s))⊕ tm⊕ t2A⊕ · · · ⊕ te−1A

= dimk
m

m2 + (s)
+ dimk A/m < dimk

m

m2
+ 1.

The final inequality follows as s ∈ m, but s /∈ m2, because A/(s) was assumed

to be regular. It follows that we must have dimk
m+(t)

(m+(t))2
= dimk m

m2 , so B is
regular. ⭔

Lemma 1.1.26 LetA be a smooth k-algebra, s ∈ A be an irreducible element
and e ≥ 2 an integer invertible in k. LetB = A[t]/(te−s). ThenB is smooth
over k if and only ifA/(s) is smooth over k.

Proof. First notice that Bt is smooth, since it is étale over As. Any prime ideal
of B containing s also contains t so they are in bijection with the prime ideals of
B/(t, s) = A/(s). Let p ⊂ B be such a prime and let q be the correspond-
ing prime in A/(s). We may assume that A has a standard smooth presentation
A ' k[x1, . . . xn]/(f1, . . . , fc), andwriteB = k[x1, . . . xn, t]/(f1, . . . , fc, h),
where h = te − s.
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1 Fundamentals of stacky curves

If A/(s) is smooth, then by [Stacks, Lemma 00TE], for any q, we can rename vari-
ables so that

det
[
∂fi
∂xj

∂s
∂xj

]
1≤i≤c,1≤j≤c+1

does not map to an element of q. It then follows that

det
[
∂fi
∂xj

∂te−s
∂xj

]
1≤i≤c,1≤j≤c+1

does not map to p, so B is smooth at p for all p. (Note that ∂t
e−s
∂xj

= ∂s
∂xj

, so the
determinant does not have any t-terms.)

On the other hand assume that A/(s) is not smooth. Then, again by [Stacks,
Lemma 00TE], there is a prime q such that for every relabeling of the xi, the de-
terminant

det
[
∂fi
∂xj

∂s
∂xj

]
1≤i≤c,1≤j≤c+1

maps to an element of q. It follows that if we want a relabeling on the level of B
we need to include t. Now consider

det

[
∂fi
∂xj

∂te−s
∂xj

∂fi
∂t

∂te−s
∂t

]
1≤i,j≤c

= ete−1 det
[
∂fi
∂xj

]
1≤i,j≤c

,

where we use ∂fi
∂t = 0 and ∂te−s

∂t = ete−1. So we see also for relabelings contain-
ing t, the determinant lands in q. It follows thatB is not smooth at q. ⭔

Proposition 1.1.27 Let C be a stacky curve, p be a closed point and e > 1 be
a natural number that is not divisible by the characteristic of k. The root stack
e√
p/C is a stacky curve. Moreover,

e√
p/C is smooth over k if and only if C and

Gp are smooth over k.

Proof. The only non-trivial facts are that
e√
p/C is a DM-stack and that

e√
p/C is

regular. By Proposition 1.1.7 and Lemma 1.1.22, we can cover C by affine curves
Spec(A) → C such that Spec(A) ×C

e√
p/C ' [Spec(B)/µe], where B =

A[t]/(te − s) and s ∈ A is a section corresponding to a reduced point. Since s is
assumed to be reduced,B is regular by Lemma 1.1.25 and it follows that

e√
p/C is

a regular DM stack. The smoothness statement is immediate from Lemma 1.1.26.
⭔
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1.1 Structure results for stacky curves

This proposition shows that root stacks naturally give rise to regular, but non-
smooth stacky curves, since over an imperfect base we can have closed points of a
smooth curve that are not smooth themselves.

Example 1.1.28 Let k = Fp(t) and consider the curveA1
k = Spec(k[x]), with

the point (−xp − t). Then
e√
p/A1 is the curve

[Spec(k[x, y]/(xp + ye + t))/µe] ,

so it is singular at the point y = 0, x = t1/p by [Zar47, Example 3].

Proposition 1.1.29 LetC be a curve and let p be a set of closed points together

with a set of multiplicities e and consider the root stackX :=
e√
p/C . The root

morphismX → C is the coarse space morphism.

Proof. Let π : X → X be the coarse space morphism. By the universal prop-
erty of the coarse space, X → C factors through a map X → C . We can
check that this is an isomorphism Zariski-locally. Take an affine open Spec(A) =
U ⊂ C containing a single p ∈ p. By Lemma 1.1.22, we have X ×C U =
[Spec(A[t]/(te − s))/µe] and

X ×C U = Spec(A[t]/(te − s)µe) = Spec(A) = U.

Since C can be covered by affine opens of this type, we conclude thatX → C is
an isomorphism. ⭔

Proposition 1.1.30 Let C be a stacky curve, let p be a closed point on C and let
e be a natural number that is not divisible by the characteristic of k. The root
morphismX =

e√
p/C → C is ramified above pwith degree e and it is universal

(terminal) with respect to this property.

Proof. The ramification at p can be computed using Lemmas 1.1.12 and 1.1.22. Let
f : X → C be a map of stacky curves and q be a point of X ramified with degree

15



1 Fundamentals of stacky curves

e above p ∈ C; then (O( 1
eq
q), sq) defines a map to [A1

k/Gm] and by Proposi-

tion 1.1.20 f∗(OC(
1
ep
p), sp) = (OX(

1
eq
q)⊗eq , s

eq
q ). Hence f factors through

X → C by the universal property of the fiber product. ⭔

Theorem 1.1.31 Let C be a tame stacky curve with coarse space π : C → C
and letRπ be the ramification locus. Identifying the ramification locus with the
branch locus, we have that C is canonically isomorphic to

eπ√
Rπ/C .

Proof. Note that by the tameness assumption the integers e ∈ eπ are not divis-
ible by the characteristic of k. By the universal property of root stacks it follows
that π factors via a map C → eπ√

Rπ/C . This map is unramified and induces an
isomorphism of coarse spaces. By Lemma 1.1.14 it is an isomorphism. ⭔

One immediate consequence of this important structure result is a strengthening
of Proposition 1.1.7 for tame stacky curves.

Corollary 1.1.32 Let C be a tame stacky curve with coarse space map π : C →
C and let p be a point of C with automorphism group of order e. Then there
exists an open neighbourhood V ⊂ C containing π(p) and a curve U with a
µe-action such that V ' U/µe, fitting into a Cartesian square.

[U/µe] C

V C

We also obtain a somewhat mysterious characterization of fixed points of finite
group actions on curves in positive characteristic.

Corollary 1.1.33 LetG be a finite group of order not divisible by the character-
istic of k acting on a smooth curve C . Then for any fixed point x, the residue
field κ(x) is separable over k.

16



1.1 Structure results for stacky curves

Remark 1.1.34 In [VZ22], the authors define a separably rooted smooth stacky
curve to be a smooth stacky curve such that the residual gerbes of stacky points
admit an l-point for a separable extension l/k. By Theorem 1.1.31 and Proposi-
tion 1.1.27, it follows that all smooth tame stacky curves are separably rooted.

The root stack description also defines a canonical isomorphism from the residual
gerbe of a stacky point toBµe.

Lemma 1.1.35 Consider the following commutative diagram.

Gp
e√
p/C

[
A1/Gm

]
BGm

Spec(κ(p)) C
[
A1/Gm

]
BGm

p

The outer square is a 2-Cartesian diagram. As a consequence, the residual gerbe
Gp is naturally isomorphic to Bµe, where Bµe is considered as the kernel of
the map θe : BGm → BGm i.e. the map Bµe → BGm is induced by the
inclusion µe → Gm.

Proof. By the universal property of the 2-fiber product, we get a morphism Gp →
(Bµe)κ(p) = BGm×BGm Spec(κ(p)). On the other hand, the inclusionBµe →
BGm factors through

[
A1/Gm

]
, so again by the universal property of 2-fiber

products we get amorphism (Bµe)κ(p) →
e√
p/C . The image of thismorphism is

precisely p and sinceBµe is reduced it follows that it factors through Gp. Summa-

rizing we get a factorisation Gp → (Bµe)κ(p) → Gp → e√
p/C → (BGm)κ(p),

showing that the natural morphism Gp → Bµe is an isomorphism. ⭔

We end this section with a technical definition that will be used when we want to
reduce to the case of a stacky curve with a single stacky point.

Definition 1.1.36 Let C be a stacky curve. A coarsening f : C → C′ is a map to
a stacky curve C′ inducing an isomorphism on coarse spaces.

17



1 Fundamentals of stacky curves

Proposition 1.1.37 Letπ : C → C′ be a coarsening of tame stacky curves. Then
C is canonically isomorphic to

eπ√
Rπ/C

′.

Proof. This follows immediately by applying Theorem 1.1.31 to C and C′. ⭔

Example 1.1.38 let C be a stacky curve with coarse space π : C → C and
ramification divisor Rπ =

∑n
i=1 eipi. Set C0 = C and Ci =

ei√
pi/Ci−1.

Then Cn = C and the maps ri : Ci → Ci−1 are all coarsenings such that
π = r1 ◦ · · · ◦ rn−1 ◦ rn.

1.2 Sheaves on stacky curves

In this sectionwewill develop the basic theory of coherent sheaves on stacky curves.
We start by giving technical results relating sheaves on a stacky curve to sheaves
on its coarse space. We then describe the discrete data of coherent sheaves on a
stacky curve and explain some of their computational properties. We classify the
invertible bundles in terms of invertible sheaves on the coarse space, and we de-
scribe torsion sheaves in terms of cyclic quiver representations. We then compute
the Grothendieck group of a stacky curve by showing that a coherent sheaf has a
torsion filtration and that a locally free sheaf has a filtration by invertible sheaves.
We end with a computation of the canonical sheaf of a stacky curve.

The functors π∗ and π∗

We begin by giving an equivalent characterization of the tameness condition for a
stacky curve in terms of coherent sheaves.

Proposition 1.2.1 ([AOV08, Theorem 3.2]) Let C be a stacky curve with coarse
space map π : C → C ; then C is tame if and only if the pushforward on the
categories of quasi-coherent sheaves π∗ : QCoh(C) → QCoh(C) is exact.

Note that the forward implication, which is most relevant for us, is already in [AV02,
Lemma 2.3.4].

18



1.2 Sheaves on stacky curves

Proposition 1.2.2 ([AV02, Lemma 2.3.4]) Let C be a tame stacky curve with
coarse space morphism π : C → C . The functor π∗ restricts to a functor
of coherent sheaves Coh(C) → Coh(C) and to a functor of vector bundles
Vect(C) → Vect(C).

Proposition 1.2.3 Let C be a tame stacky curve. The functor π∗ : Coh(C) →
Coh(C) is exact.

Proof. Themap θe : [A1
k/Gm] → [A1

k/Gm] is faithfully flat, so by Theorem 1.1.31,
the map π is also faithfully flat. ⭔

The formal properties of the pushforward π∗ are essential for our applications to
coherent sheaves, so from this point onward all our stacky curves will be assumed
to be tame unless stated otherwise.

Proposition 1.2.4 Let π : C → C be a stacky curve and F be a quasi-coherent
sheaf on C. Then the following statements hold.

1. The natural mapOC → π∗OC is an isomorphism.

2. The natural map HomC(OC, π
∗π∗F) → HomC(OC,F) is an isomorphism.

3. There is a natural isomorphism HomC(OC , π∗F) → HomC(OC,F) and
as a consequenceH i(C,F) ' H i(C, π∗F).

Proof. For the first part letU → C be étale; thenU ×C C → U is a coarse space
morphism by Theorem 1.1.6, so any morphism U ×C C → A1 factors uniquely
through amorphismU → A1. For the second part, the inverse is given by sending
a section s : OC → F to the composition

OC → π∗OC → π∗π∗OC → π∗π∗F.

For the final part, we can compose a series of natural isomorphisms.

HomC(OC , π∗F) → HomC(π∗OC, π∗F) → HomC(OC, π
∗π∗F) → HomC(OC,F)
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1 Fundamentals of stacky curves

By [Nir09, Lemma 1.10], the functor π∗ sends injective sheaves to flasque sheaves,
so we may apply [Stacks, Lemma 015M] to conclude that

R HomC(OC, ) = R HomC(OC , Rπ∗( )) = R HomC(OC , π∗( )).

⭔

The optimistic interpretation of this theorem is that it is easy to compute sheaf co-
homology on stacky curves; in fact it is just as easy as computing sheaf cohomology
on classical curves. The pessimistic interpretation is that sheaf cohomology does
not help us understand anything about the stacky structure of either the curve or
the sheaves. However, the above theorem is very specific to the structure sheafOC,
so there is no analogue for Ext groups. In other words Ext groups do see the stacky
structure. Therefore, we will phrase our results in terms of Ext groups whenever
possible.

Using the local form for stacky curves, we can make the functors π∗ and π∗ very
concrete.

Lemma 1.2.5 LetV be a curve together with the action of a finite groupG, such
that [V/G] is a stacky curve. View a coherent sheaf on [V/G] as aG-equivariant
sheaf F on V . Then π∗F = FG is theG-invariant part of F. If F is a coherent
sheaf on V/G then π∗F is the pullback to V together with the trivialG-action.

Proof. This follows from the definitions. ⭔

Using the local form for stacky curves we get the following corollary.

Corollary 1.2.6 Let π : C → C be a stacky curve and let F be a coherent sheaf
onC . Then the canonical morphism F → π∗π

∗F is an isomorphism.

Discrete Invariants

Classically, coherent sheaves on curves contain twopieces of discrete data: the rank
and the degree. These discrete data uniquely determine a connected component
of the moduli stack of coherent sheaves. This reflects the fact that the Hilbert poly-
nomial of a sheaf on a curve is given by a linear polynomial, whose coefficients are
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1.2 Sheaves on stacky curves

determined by the rank and degree, and the Hilbert polynomial uniquely identifies
a connected component.

For stacky curves, the situation is more subtle. Even though our Hilbert polynomi-
als are still linear, they no longer identify a unique connected component of the
moduli space. To remedy this we we have to introduce more discrete invariants. It
turns out that for different applications it is convenient to consider different (but
equivalent) ways to package these discrete invariants.

Definition 1.2.7 Let C be a tame stacky curve and F be a coherent sheaf on C.
Let p be a stacky point with multiplicity ep and ιp : Gp ' Bµep → C be the
inclusion of the residual gerbe at p, where the isomorphism is the canonical one
from Lemma 1.1.35. The coherent sheaf ι∗pF onBµep corresponds to aZ/epZ-
graded vector space, so ι∗pF '

⊕
i∈Z/epZ k(i)

mp,i , where k(i) is the vector

space k in grade i. The numbersmp,i = mp,i(F) are called the multiplicities
ofF atp. We take the convention that0 ≤ i ≤ ep−1 anddefine themultiplicity
vector of F at p by

mp(F) = mp := (mp,0, · · · ,mp,ep−1).

Finally the collection of all the multiplicity vectorsmp for every stacky point p is
called themultiplicities of F denoted bym = m(F).

We define the twisted degrees of F to be dp,i = dp,i(F) =:= degπ∗F ⊗
OC(

i
ep
p). We write dp(F) = dp := (dp,0, . . . , dp,ep−1) for the twisted de-

grees at p and finally d = d(F) for the collection of all twisted degrees.

Example 1.2.8 The tautological line bundleTp = OC(
1
ep) on

e√
p/C has mul-

tiplicity vectormp = (0, 1, 0, . . . , 0).

Proof. The pullback of the tautological line bundle corresponds to the composition

Bµe →
e√
p/C →

[
A1/Gm

]
→ BGm,

which is the inclusion map by Lemma 1.1.35. ⭔
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1 Fundamentals of stacky curves

Since pullback commutes with taking tensor products and k(i) ⊗ k(1) = k(i +
1), we see that tensoring with the tautological sheaf at p acts as a (cyclical) shift
operator on the multiplicities at p.

Example 1.2.9 Let C :=
e√
p/C and letF be a coherent sheaf onC , then π∗F

has multiplicity vectormp = (n, 0, . . . , 0), where n is the rank of F |p.

Proof. We have a commutative diagram.

Gp C

Spec(k) C

i

ϕ π

i

So we have i∗π∗F = φ∗i
∗
F , so i∗π∗F lies completely in grade 0. ⭔

The above example actually classifies the coherent sheaves with “trivial” multiplici-
ties.

Proposition 1.2.10 LetC be a stacky curve andF be a coherent sheaf onC such
thatmp = (n, 0, . . . , 0) for every stacky point p. Then the canonical morphism
π∗π∗F → F is an isomorphism.

Proof. Consider the local form of Corollary 1.1.32 around a stacky point p,

[V/µe] C

V/µe C

f

π′ π

g

where µe is the stabilizer of p. By [Nir09, Proposition 1.5] we have f∗π∗π∗F =
π′∗g∗π∗F = π′∗π′∗f

∗F, so we can check that the canonical isomorphism is an iso-
morphism locally. ViewF as aµe-equivariant sheaf onV , so thatF '

⊕
i∈Z/eZ Fi
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1.2 Sheaves on stacky curves

decomposes into graded pieces. Then π∗π∗F = F0, so we have to show that
Fi = 0 for i 6= 0. We have a Cartesian square.

Spec(k) V

Bµe [V/G]

p

i

Showing that i∗F is the same as the fiber of F at p together with the µe action on
this fiber. Since i∗F is a trivial representation it follows that Fi = 0 for i 6= 0. ⭔

Corollary 1.2.11 Let C be a stacky curve and let L be a line bundle on C. For
each stacky point p, let ep be the order and let ap be the unique number such
thatmp,ap(L) 6= 0. We haveL ' π∗L⊗

⊗
pO( 1

ep
p)⊗ap for a unique (up to

isomorphism) line bundle L onC .

Proof. We can apply the Proposition 1.2.10 toL⊗
⊗

pO( 1
ep
p)⊗−ap to see

π∗π∗

(
L⊗

⊗
p

O
(

1

ep
p

)⊗−ap
)

= L⊗
⊗
p

O
(

1

ep
p

)⊗−ap
.

Now set L := π∗

(
L⊗

⊗
pO( 1

ep
p)⊗−ap

)
to get

π∗L⊗
⊗
p

O
(

1

ep
p

)⊗ap
= L.

Finally, if π∗L⊗
⊗

pO( 1
ep
p)⊗ap ' π∗L′ ⊗

⊗
pO( 1

ep
p)⊗ap , then π∗L ' π∗L′,

so L = π∗π
∗L ' π∗π

∗L′ = L′. ⭔

Corollary 1.2.12 Let π : C → C be a stacky curve with stacky points pi of order
ei for 1 ≤ i ≤ n. Denote by PicC the Picard group of C, i.e. the set of line
bundles over C up to isomorphism. We have an isomorphism of abelian groups

PicC [x1, . . . , xn]/(e1x1 −OC(p1), . . . , enxn −OC(pn)) ' PicC,
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1 Fundamentals of stacky curves

given by L 7→ π∗L and xi 7→ OC(
1
ei
pi).

For completeness we also rephrase Corollary 1.2.11 in terms of Weil divisors.

Corollary 1.2.13 Let π : C → C be a stacky curve and p ∈ C be a stacky point
of order e. Form ∈ Z we have π∗(mp) = em

e p and π∗(
m
e p) = bme cp, where

bxc is the floor of x, i.e. the largest integer n such that n ≤ x.

Proof. Consider the division with remainder m = ae + b. Then OC(
m
e p) =

π∗OC(ap)⊗OC(
b
ep) and it follows that π∗OC(

m
e p) = OC(ap)⊗π∗OC(

b
ep) =

OC(ap). ⭔

Another consequence is that we can compute the twisted degrees of line bundles.

Corollary 1.2.14 LetC :=
e√
p/C . LetL = π∗L⊗OC(

i
ep), with 0 ≤ i ≤ e−1

and d = degL. ThenL has twisted degrees

dp,j =

{
d j < e− i
d+ 1 j ≥ e− i

.

Proposition 1.2.15 Let 0 → E → F → G → 0 be a short exact sequence of
locally free sheaves on a stacky curve thenm(E) +m(G) = m(F).

Proof. This is immediate as the pullback functor to the residual gerbe Gp is exact
on locally free sheaves. ⭔

The above proposition is false for general coherent sheaves. Consider for example
a short exact sequence of the form 0 → O(−Gp) → OC → T → 0. Then pulling
back to Gp we get the short exact sequence k(e − 1) → k(0) → ι∗pT → 0. The
first arrow must be the zero map, so we getmp(T) = mp(OC).

Proposition 1.2.16 Let 0 → E → F → G → 0 be a short exact sequence of
coherent sheaves on a stacky curve; then d(E) + d(G) = d(F).
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1.2 Sheaves on stacky curves

Proof. This is immediate as tensoring with OC(
i
ep
p) is exact, π∗ is exact and deg

is additive in short exact sequences of coherent sheaves onC . ⭔

Locally free sheaves

Having classified line bundles on stacky curves, we now show that every torsion-
free sheaf is a vector bundle i.e. locally free, and that vector bundles are iterated
extensions of line bundles, as in the case of classical curves. Note that “locally free”
should always be interpreted in the étale topology. For a stacky point p there is
no Zariski neighborhood U of p such thatOC|U ' OC(

1
ep)|U , since they are not

isomorphic after pulling back to Gp.

Definition 1.2.17 Let C be a stacky curve and E be a coherent sheaf on C. We
define the torsion subsheaf Etor ⊂ E to be the maximal subsheaf of E that is
torsion. We say that E is torsion-free if Etor = 0.

Classically torsion-free sheaves on curves are locally free, and the same is true for
stacky curves.

Lemma 1.2.18 Let C be a stacky curve and E be a torsion-free sheaf on C; then
E is locally free.

Proof. By Proposition 1.1.7 there is an étale cover f : U → C of C by a classical
curve. Then f∗E is a torsion-free sheaf on a (possibly disconnected) classical (reg-
ular) curve U , thus locally free. It follows that E is locally free. ⭔

Corollary 1.2.19 Let C be a stacky curve and E be a coherent sheaf on C. We
have a short exact sequence

0 → Etor → E → F → 0,

where Etor is the torsion subsheaf of E and F is locally free.

Proof. Let q : E → E/Etor =: F be the quotient map and let Ftor be the torsion
subsheaf of F, then q−1(Ftor) + Etor is torsion, so by maximality of Etor we have
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1 Fundamentals of stacky curves

that q−1(Ftor) ⊂ Etor, so Ftor = 0. ⭔

Lemma 1.2.20 LetF be a locally free sheaf of rank r on a stacky curve C. There
exists a sequence of surjective maps

F = E0 � E1 � · · ·� Er = 0,

such that Ei is locally free and Li := ker (Ei → Ei+1) is an invertible sheaf.
Moreoverm(F) =

∑r
i=1m(Li).

Proof. Let D � 0 be a positive divisor of large degree on the coarse space C ;
then π∗F(D) admits a non-zero section, so by Proposition 1.2.4 we get a non-zero
section OC → F ⊗ π∗OC(D). This gives rise to a subsheaf π∗OC(−D) → F.
Let T be the torsion sheaf of F/π∗OC(−D) and take the saturation

L0 = π∗OC(−D) := ker (F → (F/π∗OC(−D))/T)

and set E1 := (F/π∗OC(−D))/T. The saturation of an invertible sheaf is again
an invertible sheaf and E1 is locally free by construction. The vector bundle E1 has
rank r − 1, so iteratively applying this construction finishes the proof. ⭔

We can now relate the twisted degrees and multiplicities for locally free sheaves.

Corollary 1.2.21 Let F be a vector bundle; thenmp,i = dp,i − dp,i−1 for 1 ≤
i < ep andmp,0 = rankF −

∑e−1
i=1 mp,i.

This corollary shows that for a vector bundle F, we can recover (d(F ), rank(F))
from (m(F), degπ∗F) and visa versa. Twisted degrees have better computational
behavior with respect to short exact sequences of coherent sheaves, so we will
usually prefer them for general arguments. On the other hand the multiplicities
are more geometric, so they are usually what we think about for intuition.

Torsion sheaves

Now that we have a basic understanding of vector bundles, we move on to torsion
sheaves. We start by giving a very explicit description of torsion sheaves in terms
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1.2 Sheaves on stacky curves

of quiver representations.

Definition 1.2.22 A k-quiver representation of the cyclic quiver with e ver-
tices is a Z/eZ-graded k-vector space V together with a degree 1 endomor-
phism u. More explicitly, it is a collection of k-vector spaces Vi and linear maps
ui : Vi → Vi+1 indexed by i ∈ Z/eZ. See Figure 1.2 for a pictorial interpreta-
tion. A morphism of quiver representations (Vi, ui) → (Wi, wi) is a collection
of linear maps φi : Vi →Wi, such that φi ◦ ui = wi ◦ φi.

A quiver representation is said to be nilpotent if u is nilpotent.

V0

Ve−1

V3

V2

V1

u0ue−1

u2

u1

u3

ue−2

Figure 1.2: A quiver representation of the cyclic quiver

A form of the following proposition was stated in the language of parabolic torsion
sheaves in [Hei04, Lemma 3.6].

Proposition 1.2.23 LetC be a stacky curve and p a stacky point of order e. There
is an equivalence of categories between the category of torsion sheaves sup-
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1 Fundamentals of stacky curves

ported on p and the category of nilpotent κ(p)-quiver representations of the
cyclic quiver with e vertices.

Proof. Take a local form [V/µe] around the point p, such that the µe-action fixes
a unique point q ∈ V . Now the category of torsion sheaves on C supported on p
is equivalent to the category of µe-equivariant torsion sheaves on V supported on
q.

LetR := OV,q be the local ring at q withmaximal idealm; then there is an induced
µe-action on Spec(R), which induces a Z/eZ-grading R =

⊕
i∈Z/eZRi. Since

the µe-action fixes m, it is a homogeneous ideal of R for this grading. It follows
that there is a homogeneous uniformizer u ∈ m, which using the conventions of
Lemma 1.1.35 has degree 1. Now the category of µe-equivariant torsion sheaves
supported on q is naturally equivalent to the category ofZ/eZ-graded torsionmod-
ules overR.

Next we notice that the torsion modules over R are precisely the R-module M
such that unM = 0 for some n. This means that the category of torsion R-
modules is equivalent to the category of pairs (M,n), where M is an R/mn-
module such that un−1M 6= 0, together with the pair (0,−∞), and the mor-
phisms are morphisms of R-modules after extending scalars. Moreover R/mn

inherits the grading of R and this equivalence respects gradings. Denote by R̂
the completion of R in m. Since R/mn = R̂/mn, it follows that the category
of graded torsion modules over R is equivalent to the category of graded torsion
modules over R̂. Note that R̂ has a natural Z/eZ-grading, since we complete in a
homogeneous ideal.

Finally, by the Cohen structure theorem, we know that R̂ ' κ(p)[[X]], where
we can chooseX to map to u. Then the induced grading on κ(p)[[X]] is the one
whereXi is homogeneous of degree i. Aκ(p)[[X]]-module is torsion if and only if
it is finite dimensional as aκ(p)-vector space. It follows that the category of graded
torsion κ(p)[[X]]-modules is equivalent to the category pairs (V, u), where V is
a Z/eZ-graded κ(p)-vector space and u : V → V is a degree 1map. ⭔

If we view non-stacky points as stacky points of order 1, we recover the fact that a
torsion sheaf on a curve supported on single point corresponds to nilpotent repre-
sentation of the Jordan quiver.
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1.2 Sheaves on stacky curves

Example 1.2.24 Let C be a stacky curve and p be a stacky point of order e. For
1 ≤ i ≤ e define torsion sheaves Ti via the exact sequences

0 → OC(−
i

e
p) → OC → Ti → 0.

On the level of κ(p)[[X]]-modules this exact sequence becomes

0 → Xiκ(p)[[X]] → κ(p)[[X]] → κ(p)[[X]]/〈Xi〉 → 0.

We can now see that Ti corresponds to the quiver representation

V0 = V1 = · · ·Vi−1 = κ(q) and Vi = · · · = Ve−1 = 0

with the identity maps if i < e. For Te, the map Ve−1 → V0 is the zero map.

Remark 1.2.25 Chasing through all the definitions, we can see that for a torsion
sheaf supported on a stacky point p corresponding to the quiver representation
(
∑

i∈Z/eZ Vi, u), we havemp,i = dp,i = dimVi.

Lemma 1.2.26 Let C be a stacky curve with a stacky point p of order e. The
irreducible torsion sheaves supported on p are all isomorphic to someTi, fitting
into the exact sequence

0 → O(− i+ 1

e
p) → O(− i

e
p) → Ti → 0,

for some 0 ≤ i ≤ e− 1.

Proof. LetT be an irreducible torsion sheaf supported onp and consider the associ-
ated quiver representation (V, u). Since u is nilpotent it must send some nonzero
vector vi ∈ Vi ⊂ V to 0. Then we have a subrepresentation Ti = (k · vi, 0),
which by irreducibility must be an isomorphism. Such a quiver representation cor-
responds to the module uiκ(p)[[u]]/ui+1κ(p)[[u]], which fits into the exact se-
quence as stated. ⭔
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1 Fundamentals of stacky curves

The Grothendieck Group

We will now combine the results of the previous sections to give a description of
the Grothendieck group K0(C) of coherent sheaves on a tame stacky curve.

Proposition 1.2.27 LetC be a tame stacky curve with stacky points p. Themaps
detC ◦ π∗, rank andmp,i define an injection of Abelian groups

K0(C) ↪→ PicC ⊕Z⊕
⊕
p∈p

K0(Gp).

This induces a non-canonical isomorphism

K0(C) ' PicC ⊕Z⊕
⊕
p∈p

Zep−1.

Proof. Since K0(C) is generated by the classes of vector bundles, we get natural
maps ι∗p : K0(C) → K0(Gp) ' Zep of for each p ∈ p. Note that these maps
applied to a vector bundle are precisely the multiplicity vectors. The natural maps
rankp : K0(Gp) → K0(Spec(κ(p))) ' Z simply add the multiplicities together,
which for a vector bundle is nothing more than the rank. Clearly the maps ι∗p are
surjective and the image of⊕ι∗p : K0(C) →

⊕
p∈p K0(Gp) is the sublattice where

all the rankp agree. This sublattice can then be identified with Z ⊕
⊕

p∈p Zep−1.

The kernel of⊕ι∗p is generated by classes of the form

[π∗L1 ⊗
⊗

OC(
i

ep
p)]− [π∗L2 ⊗

⊗
OC(

i

ep
)] = [π∗L1]− [π∗L2]

= [π∗(L1 ⊗ L∨
2 )]− [OC].

It follows that we have a natural exact sequence

0 → PicC → K0(C) →
⊕
p∈p

K0(Gp),

where PicC → K0(C) is given by L 7→ [π∗L] − [OC]. Finally the map K0(C) →
PicC given by det ◦ π∗ is a retraction of PicC → K0(C), so the result follows. ⭔

We now define the determinant on the level of Grothendieck groups.
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1.2 Sheaves on stacky curves

Definition 1.2.28 We define the determinant det = detC to be the composi-
tion

K0(C) → PicC ⊕
⊕
p∈p

K0(Gp) → PicC,

where the first map is the projection and the second map is given by

(L,m) 7→ π∗L⊗
⊗
p∈p

0<i<ep

OC(
i

ep
p)⊗mp,i .

Note that this map is indeed the unique group homomorphism K0(C) → PicC
which sends the class of a line bundle [L] 7→ L.

Definition 1.2.29 Consider the composition

K0(C)
det→ PicC
∼→ PicC [x1, . . . , xn]/(e1x1 −OC(p1), . . . , enxn −OC(pn))

→ Z[d1/e1, . . . , dn/en] ⊂ Q,

where the last arrow is induced by the degreemap on PicC and di is the degree
of the residue field of pi. Let F be a coherent sheaf on C. We define the degree
degF to be the image under this composition.

Note that we allow fractional degrees, but the denominators of the fractions are
bounded in terms of the orders of the stacky points. This definition is chosen so
that the pullback from the coarse spaceπ∗ : K0(C) → K0(C) is degree preserving
and in fact it is uniquely defined by this property.

The rank of a vector bundle and its pushforward to the coarse space agree. The
same is not true for the degree, but the difference can be expressed in terms of
the multiplicities.

Proposition 1.2.30 Let E be a locally free sheaf with multiplicitiesm. We have
degE = deg(π∗E) +

∑
p

1
ep

∑ep−1
i=0 imp,i.
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1 Fundamentals of stacky curves

Proof. Both sides of the equation are additive in short exact sequences, so we can
reduce to the case of invertible sheaves by Lemma 1.2.20. The case of line bundles
follows from Corollary 1.2.11. ⭔

The cotangent sheaf

We end this section with a discussion on the cotangent sheaf of a stacky curve.
We will start from a very abstract definition and then show that it can be very con-
cretely described. The abstract definition is not necessary for any of our results, so
it should only be viewed as motivation for the concrete description which we will
actually use.

Definition 1.2.31 Following [Ill71], let f : X → Y be a morphism of DM-stacks,
we define the cotangent sheaf ΩX/Y on the étale site of X as follows. Let I
be the kernel of the multiplication morphism OX ⊗f−1OY

OX → OX, then
ΩX/Y := I/I2.

We have two canonical exact sequences.

Lemma 1.2.32 ([Ill71, (1.1.2.12)] and [Ill71, (1.1.2.13)]) Let X
f→ Y → Z be

morphisms of DM-stacks. We have a short exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

IfOX is a locally free f−1OY-module then we can extend the sequence to

0 → f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Lemma 1.2.33 ([Ill71, (1.1.6.2)]) Let i : Y → X be a closed immersion of DM-
stacks with ideal sheaf J. We have a canonical short exact sequence

J/J2 → i∗ΩX → ΩY → 0.

Using the canonical short exact sequences we can compute the cotangent sheaf of
a stacky curve.
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1.2 Sheaves on stacky curves

Theorem 1.2.34 Let π : C → C be a smooth tame stacky curve with stacky
points p. We have

ΩC ' π∗ΩC ⊗
⊗
p∈p

O(
1

ep
p)⊗ep−1.

Proof. Let u : U → C be an étale atlas for C; then U is a smooth (possibly dis-
connected) curve and ΩU is a line bundle. From Lemma 1.2.32, we get an exact
sequence 0 → u∗ΩC → ΩU → ΩU/C = 0, soΩC is a line bundle.

Now apply Lemma 1.2.32 to the coarse space map π : C → C to get a short exact
sequence

π∗ΩC → ΩC → ΩC/C → 0.

The sequence extends to the left sinceπ∗ΩC → ΩC is amap of line bundles that is
generically an isomorphism, hence injective. SinceΩC/C is supported on the stacky

points, it follows from Corollary 1.2.11 that ΩC = π∗ΩC ⊗
⊗

p∈pOC(
1
ep
p)⊗np

for some non-negative integers np.

To compute np, we can take a local form around p as follows.

V

[
V/µep

]
C

V/µep C

ϕ

π′

g

π

ff

Let p also denote the preimage of p under g and let q be the unique point in V
sitting above p. Then pulling back along g we get

Ω[V/µep ]
= g∗ΩC = g∗π∗ΩC ⊗O[V/µep ]

(
1

ep
p)⊗np

= π′∗ΩV/µep ⊗O[V/µep ]
(
1

ep
p)⊗np .

Pulling back once more along φ we see

ΩV = φ∗Ω[V/µep ]
= (φ ◦ π′)∗ΩV/µep ⊗OV (q)

⊗np .
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1 Fundamentals of stacky curves

Now it follows from the ramification theory of classical curves thatnp = ep−1. ⭔

To get a similar result for non-smooth curves one should work with the canonical
sheaf instead, butwewill not develop the theory of canonical sheaves forDM-stacks
here.

1.3 Projective stacky curves

In this section we develop a theory of projective stacky curves analogous to the
theory of classical projective curves. The main difference from the classical theory
is that the polarization of a stacky curve is not given by a line bundle, but by a higher
rank vector bundle called a generating sheaf, introduced in [OS03]. This generating
sheaf is also used to define a notion of (semi)stability for vector bundles. Classically
stability does not depend on the chosen polarization, this is very far from the case
for stacky curves and different generating sheaves give many different notions of
stability.

Definition 1.3.1 A projective stacky curve is a smooth tame stacky curve with
a projective coarse space.

Note that we require projective stacky curves to be smooth and tame. This is prob-
ably not necessary for all the results in this section, but we will use these properties
freely throughout.

Warning: The definition of a projective stack is more subtle, but for stacky curves
this naive definition is good enough. See [Kre09] for the higher-dimensional case.
One of the points is that for curves the existence of a generating sheaf is automatic.

Note that a proper smooth tame stacky curve is automatically projective. Indeed
by Theorem 1.1.6, a stacky curve is proper if and only if its coarse space is, and a
proper curve is projective.

Definition 1.3.2 Let C be a projective stacky curve. We define the Euler charac-
teristic χC : = − degωC. We then define the genus gC via 2− 2gC = χC.
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1.3 Projective stacky curves

Since the canonical bundle can have rational degree, the Euler characteristic and
genus are not integers in general. This means, for example, that there is no coho-
mological description like h1(OC) = gC . One big motivation for this definition is
that it satisfies an analogue of the Riemann-Hurwitz theorem. The following is an
immediate corollary of Theorem 1.2.34.

Corollary 1.3.3 Let π : C → C be a projective stacky curve with stacky points
p. We have

χC = χC −
∑
p∈p

ep − 1

ep
[κ(p) : k]

and

gC = gC +
1

2

∑
p∈p

ep − 1

ep
[κ(p) : k].

Theorem 1.3.4 (Riemann-Hurwitz) Let f : C → D be amap of projective stacky
curves tamely ramified at the points pi with ramification index ei. We have

f∗ωD = ωC ⊗
⊗
i

O(Gpi)
ei−1.

Consequently,

χC = (deg f) · χD −
∑
i

(ei − 1) deg(Gpi).

Proof. Let πC : C → C and πD : D → D be the coarse space morphisms and let
g : C → D be the map induced by πD ◦ f . The result follows from an easy com-
putation using Theorem 1.2.34 for πC and πD and the classical Riemann-Hurwitz
theorem for g. ⭔

We give a short proof of the following well-known result to highlight the usefulness
of the genus.
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1 Fundamentals of stacky curves

Proposition 1.3.5 Letm 6= n by natural numbers not divisible by the charac-
teristic of k; then the football space F(m,n) is not the quotient of a classical
curve by a finite group.

Proof. Assume there is a classical curve C with an action of a finite groupG such
that [C/G] ' F(m,n). Then C/G ' P1

k , so C is projective. The map C →
F(m,n) is unramified, so we can apply Riemann-Hurwitz to see

χC = |G|χF(m,n) = |G|(2− (
m− 1

m
+
n− 1

n
)) = |G|m+ n

mn
.

Since the right hand side is positive it follows that χC = 2. Now write d for the
greatest common divisor ofm and n so thatm = da and n = db for positive inte-
gers a and b. SinceG contains subgroups of orderm and n, namely the stabilizers
of 0,∞ ∈ F(m,n), we must have that dab divides |G|. Write |G| = xdab so the
equation 2 = |G|m+n

mn becomes 2 = x(a + b), which implies that a = b = 1,
but this contradictsm 6= n. ⭔

We move on to proving Serre duality.

Theorem 1.3.6 (Serre Duality) Let E be a coherent sheaf on a projective stacky
curve C. For i = 0, 1, we have a natural isomorphism

Exti(E, ωC) ' Ext1−i(OC,E)
∨.

Proof. Using Corollary 1.2.19 and Lemma 1.2.20 we can reduce to the case that E
is a line bundleL ' π∗L⊗

⊗
pO(

ip
ep
p). Now we apply Serre duality onC to get

ExtiOC
(L, ωC) ' ExtiOC

(
OC , L

∨ ⊗ ωC
)
' Ext1−iOC

(OC , L)
∨

' Ext1−iOC
(OC,L)

∨.

The first isomorphism follows as

π∗(L
∨ ⊗ ωC) = L∨ ⊗ ωC ⊗ π∗

⊗
p

O(
ep − 1− ip

ep
p) = L∨ ⊗ ωC ,

where we use the computation of ωC of Theorem 1.2.34. ⭔
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1.3 Projective stacky curves

Remark 1.3.7 Even though in general we have π∗(F∨) 6= (π∗F)
∨, the above

proof shows that the Serre duals SDC(F) := HomC(F, ωC) and SDC(F ) :=
HomC(F, ωC) do commute with π∗, i.e. π∗ ◦ SC = SC ◦ π∗.

We now state the naive Riemann-Roch theorem for a projective stacky curve [VZ22,
Remark 5.5.12]. The reason for the terminology “naive” is that it does not involve
any stacky structure of the line bundles nor the curve itself.

Proposition 1.3.8 (Naive Riemann-Roch) LetC be a projective stacky curve, with
coarse space π : C → C . LetL be a line bundle on C. Then

h0(L)− h0(L∨ ⊗ ωC) = degπ∗L+ 1− gC .

Proof. By the remark above, we have h0(L) − h0(L∨ ⊗ ωC) = h0(π∗L) −
h0((π∗L)

∨ ⊗ ωC) = degπ∗L+ 1− gC . ⭔

Generating sheaves

Wewill now spend some time defining generating sheaves, which will serve as a po-
larization of a projective curve. Generating sheaves were first introduced in [OS03]
in order to embed Quot schemes for tame DM-stacks into Quot schemes over their
coarse spaces.

Definition 1.3.9 Following [OS03], let π : C → C be a stacky curve and E be a
locally free sheaf on C. We define the functor FE : Coh C → CohC as

FE(F) := π∗Hom(E,F) = π∗(F ⊗ E∨)

and in the other directionGE : CohC → Coh C by

GE(F ) := π∗(F )⊗ E.

The identity map π∗(Hom(E,F)) → π∗(Hom(E,F)) has a left adjoint

π∗π∗(Hom(E,F)) → Hom(E,F),
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1 Fundamentals of stacky curves

which has a left adjoint

π∗π∗(Hom(E,F))⊗ E → F.

We denote this left adjoint of the left adjoint by θE(F) : GE ◦ FE(F) → F.

Definition 1.3.10 Let E be a locally free sheaf on a stacky curve C. If θE(F) is
surjective, then E is called a generator for F. If E is a generator for all coherent
sheaves F on C, then E is a generating sheaf for C.

It is not so obvious how to verify if a sheaf is generating directly, but the following
local condition is easy to check in practice.

Theorem 1.3.11 (Local condition for generation) Let C be a stacky curve with
stacky points p and E be a locally free sheaf. Then E is a generating sheaf if and
only ifmp,j > 0 for every p ∈ p and 0 ≤ j ≤ ep − 1. In other words the
graded vector spaces ι∗pE for ιp : Gp ↪→ C are supported in all grades for all
p ∈ p.

Proof. The condition is certainly necessary: to generate OC(
i
ep) we must have

mp,i > 0. We will now prove that the condition is sufficient. As the surjectivity
of θE(F) can be checked locally, we may assume that C has a single stacky point p
of order e.

Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of coherent sheaves.
We get a commutative diagram.

0 F1 F2 F3 0

0 GE ◦ FE(F1) GE ◦ FE(F2) GE ◦ FE(F3) 0

θF1
θF2

θF3

By the snake lemma, wehave that if θE(F1) and θE(F3) are surjective, so is θE(F3),
andwhen θE(F2) is surjective, so is θE(F3). By Lemma 1.2.20, Corollary 1.2.19 and
the fact that every torsion sheaf admits a surjection by a vector bundlewe only have
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to verify that E generates line bundlesL ' π∗L⊗OC(
j
ep). We can rewrite θL as

π∗π∗Hom
(
E⊗O

(
−j
e
p

)
,OC

)
⊗ π∗L⊗ E → π∗L⊗O

(
j

e
p

)
.

Tensoring both sides byL∨ and setting E′ = E⊗O(−je p), we get the morphism

θL ⊗ L∨ : π∗π∗(Hom
(
E′,OC

)
)⊗ E′ → OC,

which is precisely θE′(OC). Since tensoring with a line bundle cyclically permutes
themultiplicitiesE′ also satisfies the local condition of generation. This means that
we have reduced to the caseL = OC.

Now we apply Lemma 1.2.20 to E′ and get a chain of surjective maps E′ = E0 →
E1 → . . . → Er . From the local condition for E′ it follows that there exists some
index i and a line bundle J = ker(Ei → Ei+1) withmp(J) = (1, 0, . . . , 0), i.e.
J ' π∗J for some line bundle J onC . Now we have a commutative diagram.

π∗π∗J
∨ ⊗ J = OC

π∗π∗E
∨
i ⊗ J

π∗π∗E
∨
i ⊗ Ei

π∗π∗E
∨
i ⊗ E0

π∗π∗E
∨
0 ⊗ E0 OC

The top diagonal arrow is an isomorphism and it follows that all of the other diago-
nal arrows below are surjective. ⭔

The general case of the above theorem is [OS08, Theorem 5.2]. However there it
is claimed that for a stacky point ζ : Spec(k) → C with stabilizer Gζ we have
Spec(k)×C C = BGζ . This is of course not true, since π is ramified above ζ . We
do have (Spec(k)×C C)red = BGζ , which is enough to make their proofs work.
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Definition 1.3.12 Let C be a stacky curve with stacky points p, then

Efav :=
⊗
p∈p

ep−1⊕
j=0

O(
j

ep
p)⊕

⊗
p∈p

ep−1⊕
j=0

O(
−j
ep
p)

is a generating sheaf, which we will call the standard (or favorite) generating
sheaf for C.

From the local condition of generation it is immediate that the standard generating
sheaf is indeed a generating sheaf. The standard generating sheaf is definitely not
very canonical, however it plays a very special role from a computational perspec-
tive. We will see that our formulas massively simplify whenever we apply them to
the standard generating sheaf.

We now give a notion of degree that is relative to a locally free sheaf, which will usu-
ally be a generating sheaf. It is this degree that will show up in the stacky Riemann-
Roch theorem.

Definition 1.3.13 Let C be a projective curve, E be a locally free sheaf andF be
a coherent sheaf on C. We define the E-degree of F by

dE(F) = degπ∗Hom(E,F)− rankF degπ∗Hom(E,O).

Note that the E-degree is additive in short exact sequences in both entries. More-
over dE(−) = dE⊗π∗L for any line bundle L on the coarse space. It follows from
Lemma 1.2.20 that the E-degree only depends on the multiplicities of E. We now
give a notion of “weights”, which is simply a repackaging of the multiplicities, that is
useful for computations with E-degrees.

Definition 1.3.14 LetEbe a locally free sheafwithmultiplicitiesmp,j . We define

the weights of E to be wp,j = wp,j(E) :=
∑j

l=1mp,l(E)

rankE , where j runs from 0
to ep − 1.

Note that by construction 0 = wp,0 ≤ wp,1 ≤ · · · ≤ wp,ep−1 ≤ 1. The inequali-
ties are strict if and only if E is a generating sheaf.
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Example 1.3.15 Let Efav be the standard generating sheaf, thenwp,i =
i
ep

.

In fact we can find a locally free sheaf with arbitrary rational weights.

Example 1.3.16 Let C be a stacky curve and for each stacky point p, let wp,i =
ap,i
dp

be rational numbers with a common denominator dp, such that the numer-
ators satisfy

0 = ap,0 ≤ ap,1 ≤ · · · ≤ ap,ep−1 ≤ dp.

Set bp,i = ap,i − ap,i−1 for 0 < i ≤ ep − 1 and bp,0 = dp − ap,ep−1. The

locally free sheaf E :=
⊗

p

⊕ep−1
i=0 OC(

i
ep
p)⊕bp,i has weightswp,i.

The weights allow us to give a formula for the E-degree in terms of invariants de-
fined on the coarse space and multiplicities.

Proposition 1.3.17 Let E and F be locally free sheaves on C. We have

dE(F) = rankE deg(π∗F) + rankE
∑
p

e−1∑
i=0

mp,i(F)wp,i(E).

In particular, when E = Efav is the standard generating sheaf, dE(F)rankE = degF,
for any coherent sheaf F.

Proof. Note that all the terms of the formula are additive in short exact sequences
of vector bundles, for both E and F, so we may assume E and F are line bundles.
The case of line bundles is immediate from the description in Corollary 1.2.11. For
the case of the standard generating sheaf the result follows fromProposition 1.2.30
and the fact that the formula dE(F) = rankE degF is additive in all short exact
sequences for F. ⭔

Now we state a more refined version of the Riemann-Roch theorem.
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Theorem 1.3.18 (Stacky Riemann-Roch) Let C be a projective stacky curve, E be
a locally free sheaf and F be a coherent sheaf on C. We have

ext0(E,F)−ext1(E,F) = dE(F)+rank(F)
(
ext0(E,OC)−ext1(E,OC)

)
.

In particular when E = Efav, we have

ext0(Efav,F)− ext1(Efav,F)

rankEfav
= degF + rank(F)(1− gC).

Wewill give a proof that is analogous to the classical case, to explain the appearance
of the different terms. A shorter way to prove the theorem would be to apply the
classical Riemann-Roch theorem to π∗Hom(E,F) and π∗(E∨) and combine the
results.

Proof. Since everything is additive in short exact sequences, we may assume F is
a line bundle. Assume F = OC, then dE(OC) = 0, so the formula holds. Assume
the formula holds for a line bundle L and we have a non-zero map L → L′. De-
note the cokernel, which is a torsion sheaf, by T. From the additivity of E-degrees
we get dE(L

′)− dE(L) = dE(T). We also get the long exact sequence

0 → Ext0(E,L) → Ext0
(
E,L′)→ Ext0(E,T) →

→ Ext1(E,L) → Ext1
(
E,L′)→ Ext1(E,T) = 0.

The last Ext group is 0 because Ext1(E,T) = H1(π∗(T ⊗ E∨)) = 0. Also
ext0(E,T) = h0(π∗(T ⊗ E∨)) = dE(T), since T is torsion. Now taking the
Euler characteristic of the long exact sequence, we see that the formula also holds
for L′. A completely analogous argument works when we have a non-zero map
L′ → L.

Now any line bundle has the form L ' OC(D) for some Weil-divisorD. LetD+

be the positive part ofD. We have a non-zeromapOC → O(D+) and a non-zero
mapOC(D) → OC(D+) showing that the formula holds forL.

Finally by Proposition 1.3.17, we have dEfav(F) = rank(Efav) degF and by the
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naive Riemann-Roch theorem

ext0(Efav,OC)− ext1(Efav,OC) = deg(π∗E∨
fav) + rank(Efav)(1− gC) =

−rank(Efav)
1

2

(∑
pi

ei − 1

ei

)
+rank(Efav)(1−gC) = rank(Efav)(1−gC).

Plugging these two computations into the general equation gives the result. ⭔

The numerical Grothendieck group

Many computations with coherent sheaves can be reduced to computations on the
Grothendieck group. In fact some computations can be reduced to an even smaller
group, called the numerical Grothendieck group, which is the group to which the
Riemann-Roch theorem most naturally applies.

Definition 1.3.19 We define the Euler pairing of two coherent sheaves E,F to
be

〈E,F〉 := ext0(E,F)− ext1(E,F).

The Euler pairing is additive in short exact sequences in both coordinates, so de-
scends to give a bilinear form K0(C)× K0(C) → Z.

Definition 1.3.20 LetR be the right radical of 〈 , 〉, i.e. the kernel of themap
[F] 7→ 〈 ,F〉. We define thenumerical Grothendieck group to be Knum0 (C) :=
K0(C)/R. The elements of Knum0 (C) are called numerical invariants.

By Serre duality
〈E,F〉 = −〈F,E⊗ ωC〉,

so the right radical is equal to the left radical. It follows that the Euler pairing de-
scends to a pairing Knum0 (C)× Knum0 (C) → Z. In fact Knum0 (C) is the maximal quo-
tient of K0(C) such that the Euler pairing descends to a non-degenerate bilinear
form.
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Proposition 1.3.21 The right radical of 〈 , 〉 is given by Pic0C ↪→ K0(C). As a
consequence we have an injection of Abelian groups induced by deg ◦π∗, rank,
andmp,i

Knum0 (C) ↪→ Z⊕ Z⊕
⊕
p∈p

K0(Gp).

This induces a non-canonical isomorphism

Knum0 (C) ' Z⊕ Z⊕
⊕
p∈p

Zep−1.

Proof. To compute the right radical, we use Example 1.3.16, Proposition 1.3.17,
and Theorem 1.3.18. The degree defines a short exact sequence 0 → Pic0C →
PicC → Z → 0, so the result follows from Proposition 1.2.27. ⭔

Definition 1.3.22 We say that a numerical invariantα is positive if rankα ≥ 0
and mp,iα ≥ 0 for each p and i. A numerical invariant is generating if the
inequalities are strict.

Note that an invariantα is positive if and only if there exists a vector bundleF such
thatα = [F] and an invariant is generating if and only if there exists a generating
sheaf E such thatα = [E].

Generalized Hilbert polynomials and stability conditions

We will now explain a way to define Hilbert polynomials for sheaves on stacky
curves.

Definition 1.3.23 Let C be a projective stacky curve. We define a polarization
of C to be a pair (E,OC(1)), where E is a generating sheaf for C and OC(1)
is a polarizing line bundle on the coarse space C . For a coherent sheaf F, we
write F(m) := F ⊗ π∗OC(m).

In [FL21] the authors explain how a generating sheaf together with a polariza-
tion of the coarse space induces an embedding of the stacky curve into a twisted
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1.3 Projective stacky curves

Grassmanian stack. The twisted Grassmanians are simultaneous generalizations
of weighted projective spaces and Grassmanians. This justifies calling the pair
(E,OC(1)) a polarization.

Definition 1.3.24 LetC be a projective stacky curve together with a polarization
(E,OC(1)). Let F be a coherent sheaf on C. We define the E-Hilbert polyno-
mial of F to be

PE(F)(m) := χ(Hom(E,F ⊗ π∗OC(m))) = 〈E,F(m)〉.

We define the reduced E-Hilbert polynomial pE(F) to be PE(F) divided by its
leading coefficient.

Note that PE(F) is the Hilbert polynomial of FE(F), so it is a polynomial. More
explicitly, using Theorem 1.3.18 it follows that

PE(F)(m) = rank(F) rank(E) deg(OC(1)) ·m+ dE(F) + rank(F) · CE,

where CE is a constant that does not depend on F. It follows that we can com-
pletely reconstruct the Hilbert polynomial if we know the rank, degree and multi-
plicities of F.

Definition 1.3.25 ([Nir09, Definition 3.14]) Let C be a stacky curve with gener-
ating sheaf E. We say that a coherent sheaf F is Gieseker-(semi)stable with
respect toE if for every proper subsheafF′ ⊂ F we have pE(F

′)
(
≤

)
pE(F). De-

fine the slope ofF to beµE(F) :=
dEF
rankF . We say thatF isE-slope-(semi)stable

if for every proper subsheaf we have µE(F
′)

(
≤

)
µE(F).

Since the slope only depends on the numerical class α of E we may also write
µα := µE.

Remark 1.3.26 We have that µE(F) =
⟨E,F⟩
rankF − CE = pE(F)(0)− CE, so slope

(semi)stability is equivalent to Gieseker-(semi)stability. In practice it is sometimes
more convenient to compare inequalities using Euler pairings than to compare

slopes i.e. F is E-semistable if and only if ⟨E,F′⟩
rankF′ ≤ ⟨E,F⟩

rankF for every proper sub-
bundle F′ ⊂ F. In Chapter 4 formulas are massively simplified by working with
the Euler pairings.
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1 Fundamentals of stacky curves

1.4 Parabolic vector bundles

One important reason to study vector bundles on stacky curves is their close rela-
tion to parabolic bundles. Parabolic bundles where originally considered in [MS80,
Definition 1.5] to give a generalization of theNarasimhan-Seshadri correspondence
for punctured curves. In this section we start by recalling the basic concepts sur-
rounding parabolic bundles. The goal of this section is to give a dictionary between
the parabolic language and the stacky curve language.

Definition 1.4.1 ([MS80, Definition 1.5]) Let C be a classical curve and p be a
finite set of points on C . A quasi-parabolic vector bundle F on (C, p) is a
vector bundle F on C together with filtrations F = F p0 ⊃ F p1 ⊃ . . . ⊃
F pep = F ⊗ OC(−p) for each p ∈ p. The integer ep is called the length of
the parabolic structure at p. The collection of quasi-parabolic vector bundles of
fixed length forms a category qpar

(
C, p, e

)
, where themorphisms are given by

morphism of the underlying vector bundles respecting the filtration. Explicitly
the morphisms are morphisms φ : F → G such that φ(F pj ) ⊂ φ(Gpj ) for all
p, j.

Remark 1.4.2 Instead of a filtration of sheaves, one can equivalently give a flag of
quotients of the fiber F |p = V p

0 � V p
1 � · · · � V p

ep−1 � V p
ep = 0 at each

point p. To see this, send a filtration F• to V p
i = coker(F pep−i → F p0 )|p. To

obtain a flag of injections F |p = W p
0 ⊃ W p

1 ⊃ · · ·W p
ep = 0, instead simply

considerW p
i = ker(V p

0 � V p
ep−i).

Contrary to the classical definition, we do not require the inclusions of the filtrations
to be strict. One reason is that this givesmuch better categorical properties. For ex-
ample, a parabolic subbundle is simply a subobject in the category qpar

(
C, p, e

)
,

whereas classically subbundles might have shorter length filtrations, as the length
would be bounded by the rank.

We now describe how to obtain a quasi-parabolic vector bundle from a vector bun-
dle on a stacky curve.
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1.4 Parabolic vector bundles

Definition 1.4.3 Let C be a stacky curve with stacky points p of degree e. We

define a functor par : Vect(C) → qpar
(
C, p, e

)
as follows. Let F be a vector

bundle onC. Then par(F) is the vector bundleπ∗F together with the filtrations

π∗F ⊃ π∗(F ⊗OC

(
− 1

ep
p

)
) ⊃ · · · ⊃ π∗(F ⊗OC

(
−ep
ep
p

)
),

for each p ∈ p. A morphism f : F → G gets sent to par(f) := π∗f : π∗F →
π∗G.

There is also an inverse functor, but it is much harder to define, so we will omit it
here.

Theorem 1.4.4 ([Bor07, Théorème 4]) The functor par defines an equivalence
of categories.

We will now look at how the functor par interacts with multiplicities.

Definition 1.4.5 Let F be a quasi-parabolic bundle. We define the multiplicities

mp,i(F) := dim coker(F pi+1 → F pi )|p,

where 0 ≤ i < ep.

In the surjective flag picture, we havemp,i = dimV p
ep−i−1 − dimV p

ep−i or in the

injective flag picturemp,i = dimW p
i − dimW p

i+1.

Proposition 1.4.6 LetF be a vector bundle on a stacky curveC :=
e√
p/C ; then

mp,i(F) = mp,i(par(F)).

Proof. We see thatmp,i(parF) is additive in short exact sequences, so it suffices
to show this for line bundles. Then for a line bundleL = π∗L⊗

⊗
p∈pOC(

np

ep
p)

we see that the filtrations of par(L) are given by Lpi = L for 0 ≤ i ≤ np and
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1 Fundamentals of stacky curves

Lpi = L(−p) for np < i ≤ ep. This shows thatmp,np(par(L)) = 1 and the
other multiplicities are 0 as required. ⭔

Now we will discuss the notion of weights and (semi)stability for quasi-parabolic
bundles, following [MS80, Definition 1.5].

Definition 1.4.7 Let C be a classical curve and p be a finite set of points of C .
A parabolic bundle on C is a quasi-parabolic bundle together with a set α of
parabolic weights consisting of αp,j ∈ R for p ∈ p and 0 ≤ j < ep, satisfying

0 ≤ αp,0 < · · · < αp,ep−1 < 1.

The parabolic degree of a parabolic bundle (F, α) is pardeg(F, α) := degF +∑
p

∑ep−1
i=1 αp,imp,i(F) and the parabolic slope is defined by µ(F, α) :=

pardeg(F,α)
rank(F ) . We say that a parabolic bundle (F, α) is (semi)stable if for every

proper quasi-parabolic subbundle F′ ⊂ F we have µ(F′, α)
(
≤

)
µ(F, α).

The functor par respects stability.

Lemma 1.4.8 Let F be a vector bundle on a stacky curve C :=
e√
p/C . Let E

be a generating sheaf; then F is E-(semi)stable if and only if (par(F), wp,i(E))
is a (semi)stable parabolic bundle.

Proof. This is immediate from the fact that degE(F) = pardeg(par(F), w(E)),
which is obtained by combining Propositions 1.3.17 and 1.4.6. ⭔

Theorem 1.4.9 Let qpar
(
C, p, e

)α−(s)s ⊂ qpar
(
C, p, e

)
be the full subcate-

gory of quasi-parabolic bundles that are (semi)stable when endowed with the
parabolic weights α. Then there exists a generating sheaf E on C =

e√
p/C ,

such that the category of (semi)stable vector bundlesVect(C)E−(s)s is equiva-

lent to qpar
(
C, p, e

)α−(s)s
.
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1.4 Parabolic vector bundles

Proof. By [MS80, Corollary 2.9] we can always perturb the weights α to be ratio-
nal without changing the notion of stability. Secondly we can shift the parabolic
weights by a constant without changing the notion of (semi)stability by [MS80, Re-
mark 2.10], so we might as well assume that αp,0 = 0. This means we can pick E
as in Example 1.3.16. ⭔

We end this section with some comments on “strongly” parabolic homomorphisms
and Higgs fields.

Definition 1.4.10 Let F,G ∈ qpar
(
C, p, e

)
be quasi-parabolic bundles. We

define a strongly parabolic morphism to be a morphism f : F → G, such
that f(F pi ) ⊂ Gpi+1 for every p, i. The set of strongly parabolic morphisms is
denoted by sHom(F,G).

Let Dp :=
∑

p∈p p be the parabolic divisor. A Higgs field on F is a strongly

parabolic parabolic morphism φ : F → F⊗ωC(Dp). (Here the tensor product
should be done term-wise on every term of the filtrations of F.)

The notion of a strongly parabolic morphisms might seem quite ad-hoc. In fact the
only reason that it shows up is that the “logarithmic” canonical sheaf ωC(Dp) has
the wrong parabolic structure. On the level of stacky curves this will be apparent.

Proposition 1.4.11 Let C =
e√
p/C and let F,G ∈ Vect(C) be two vector

bundles. We have a natural isomorphism

φ : Hom

(
F,G⊗

⊗
p

OC

(
− 1

ep
p

))
→ sHom(par(F), par(G)).

In particular we have a correspondence of Higgs fields

sHom(par(F), par(F)⊗ ωC(D)) = Hom(F,F ⊗ ωC).

Proof. Denote by ι the inclusion ι : G ⊗
⊗

pOC(− 1
ep
p) ↪→ G. We define φ

by sending a morphism f : F → G ⊗
⊗

pOC(− 1
ep
p) to φ(f) := par(ι ◦ f).
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1 Fundamentals of stacky curves

By definition this defines a strongly parabolic morphism and clearly φ is injective.
To see that φ is surjective, take any strongly parabolic morphism h : par(F) →
par(G); by Theorem 1.4.4 h lifts to a unique morphism h̃ : F → G. We need
to show that h̃ factors through ι. To see this consider the generating sheaf E =⊕

p∈p
⊕ep−1

i=0 OC(
i
ep
p). The fact that h is strongly parabolic ensures that FE(h̃)

factors through FE(G⊗
⊗

pOC(− 1
ep
p)), where FE is as in Definition 1.3.9. Now

consider the following commutative diagram.

GEFE(F) GEFE(G⊗
⊗

pOC(− 1
ep
p) GEFE(G)

F G⊗
⊗

pOC(− 1
ep
p) G

GEFE(h̃)

h̃

This shows that the image of h̃ lies inside G⊗
⊗

pOC(− 1
ep
p). ⭔

The theorem above also explains why Serre duality [Yok95, Proposition 3.7] for
parabolic bundles is perhaps not what we would expect naively. Namely we have

Ext1par(par(F), par(G)) = Ext1OC
(F,G)

= HomOC
(G,F ⊗ ωC)

∨

= sHom(par(G), par(F)⊗ ωC(D))∨.

All the equivalences in this section are on the level of categories, but we will see in
Chapter 3 that they also hold on the level of moduli stacks.
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CHAPTER 2

Spherical curves

Those who build walls
are their own prisoners.
I’m going to go fulfil my proper
function in the social organism.
I’m going to go unbuild walls.

Shevek, in The Disposessed
Ursula K. Le Guin

Classically curves fall into a trichotomy defined by their genus: namely the spherical
curves of genus0, the flat curves of genus1 and the hyperbolic curves of genus≥ 2.
This trichotomy also exists for stacky curves and in this chapter we will study the
most well behaved case, that of spherical stacky curves. Since the genus of a stacky
curve is a rational number the first question is how to classify the curves of genus
0 < gC < 1 and 1 < gC < 2. We will take the following notion.

Definition 2.0.1 A spherical stacky curve is a projective stacky curve C with
genus gC < 1 and a k-point.

The condition thatChas ak-point is there for convenience, ensuring that the coarse
space of C is P1

k . The reason we make this restriction is that want to apply the
theory to stacky curves that are obtained as quotients of P1

k , which always have a
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2 Spherical curves

k-point. It would be interesting to consider also projective stacky curves without k-
points, however this also forces all the stacky points to have residue field of degree
2, giving a much smaller class of curves.

These curves have been studied over k = C in [BN06], allowing for stacky curves
that have generic stacky structure as well. They show that spherical curves are all
quotients of weighted projective lines P(m,n). We generalize this to a separably
closed field, but since we do not allow generic stacky structure, we will see that
all spherical curves are quotients of the football spaces F(m,n), with m and n
coprime.

The categories of sheaves on spherical curves have also been thoroughly studied
by representation theorists, using completely different techniques. We highlight
one such result [GL87, p. 5.4.1.].

2.1 Classification of spherical curves

We start by giving a complete list of all the spherical stacky curves. We then con-
struct a natural root system attached to every spherical curve, thus giving a natural
correspondence between spherical curves and Dynkin diagrams.

Let C be a projective stacky curve with stacky points p. From the inequality

1

4

∑
p∈p

[κ(p) : k] ≤ gP1
k
+

1

2

∑
p∈P

[κ(p) : k] · ep − 1

ep
= gC < 1,

it follows that spherical curves can have at most 3 stacky points, weighted by the
degree of their residue field. We recall the following lemma, which generalizes the
3-transitivity of PGL2.

Lemma 2.1.1 (Strong 3-transitivity) LetD,D′ be two smooth closed codimen-
sion 1 subschemes of P1

k , such that deg(D), deg(D′) ≤ 3 and κ(D) '
κ(D′); then there exists a k-automorphism of P1

k sendingD toD′.

We take the convention that when D is disconnected κ(D) is the product of the
residue fields of the connected components.
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2.1 Classification of spherical curves

Proof. Let F,G ∈ k[X,Y ] be the separable homogeneous polynomials defining
D andD′. By assumption, they are polynomials of degree at most 3 over k, with
the same splitting field l. Choose a Gall/k-equivariant bijection between the linear
factors of F andG. By 3-transitivity of PGL2(l), there exists a unique transforma-
tion φ ∈ PGL2(l) which sendsDl toD′

l respecting the chosen bijection. Now the
action of Gall/k fixes F,G and the bijection of the roots, so by the uniqueness of
φ the action must also fix φ. It follows that φ ∈ PGL2(k). ⭔

It follows that spherical stacky curves are completely determined by the order and
the residue field of their stacky points.

Corollary 2.1.2 Let C be a spherical stacky curve with stacky points p. Then C

falls into one of three groups.

(I) All points p are k-points, in which case we may assume p ⊂ {0, 1,∞}
and the isomorphism class of C is determined by the orders e.

(II) The set p contains a single point p with [κ(p) : k] = 2 and at most one
k-point, in which case the isomorphism class of C is determined by the
quadratic field extension κ(p) and e.

(III) There is a single stacky point q with [κ(q) : k] = 3, in which case the
isomorphism class of C is determined by the field extension κ(q) and eq .

Using the above corollary we give a list of all isomorphism classes of spherical
curves in Table 2.1.

Remark 2.1.3 Recall that by Remark 1.1.34 the residue fields of stacky points of a
smooth curve are separable. It follows that over that over the separable closure
ksep all curves are of type (I), i.e. (Bn,κ(p))ksep ' (F(n, n))ksep , (Cn,κ(p))ksep '
(Dn)ksep , (F4,κ(p))ksep ' (E6)ksep and (G2,κ(q))ksep ' (D4)ksep .

Root systems and Dynkin diagrams

As the suggestive naming of our curves indicates, there is a natural way to obtain a
Dynkin diagram froma spherical stacky curve. To see thiswewill construct a natural
root system on (a quotient of) the Grothendieck group K0(C). The Grothendieck
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2 Spherical curves

Type Orders gC
e√
p/P1

k

(I)

e0 e∞ e1

m n ≤ m 1− m+n
2mn F(m,n)

2 2 n 1− 1
2n Dn

2 3 3 1− 1
12 E6

2 3 4 1− 1
24 E7

2 3 5 1− 1
60 E8

(II)

ep e0

n 1− 1
n Bn,κ(p)

2 n 1− 1
2n Cn,κ(p)

3 2 1− 1
12 F4,κ(p)

(III)
eq

2 1− 1
4 G2,κ(q)

Table 2.1: The isomorphism classes of spherical stacky curves, split up into the
types of Corollary 2.1.2. Each row describes a stacky curve, giving the orders e, the
genus gC and the final column indicates how we will denote each curve.

group comes with a the natural bilinear form K0(C)× K0(C) → Z.

〈α, β〉 := ext0(α, β)− ext1(α, β).

From this we obtain a symmetric bilinear form

〈α, β〉sym =
1

2
(〈α, β〉+ 〈β, α〉〉)

This form is degenerate precisely on the subspace PicC ⊂ K0(C) and we let
E(C) be the R-vector space (K0(C)/ PicC) ⊗ R, together with the inner prod-
uct 〈−,−〉euc induced by 〈−,−〉sym. There is a natural root system ΦC inside
E(C), generated by the classes of indecomposable torsion sheaves andOC. Note
that there are only finitely many classes of indecomposable torsion sheaves in
E(C). Indeed any indecomposable torsion sheaf is equivalent to a class of the form
[OC(

n
ep
)p] − [OC(

m
ep
)p] for some point p andm < n. As [OC(p)] − [OC] = 0
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2.1 Classification of spherical curves

by construction,m and n are only defined modulo ep. We choose a set of simple
roots by letting

αp,i := [OC(
i

ep
)p]− [OC(

i− 1

ep
p)] = O i

ep
p −O i−1

ep
p

for 1 ≤ i ≤ ep − 1. We then set ∆C = {αp,i} ∪ {[OC]}. Notice that the set
of positive roots Φ+

C contains in particular all the classes corresponding to vector
bundles and torsion sheaves of the formOD for a divisorD. We suspect that this
property uniquely specifies our choice of simple roots. We compute

〈OC,OC〉euc = 1,

〈αp,i, αp,i〉euc = [κ(p) : k],

〈αp,i, αp,i+1〉euc = 〈OC, αp,1〉euc = − [κ(p) : k]

2
,

and all other inner products are 0. By comparing Cartan matrices we can see that
our correspondence is as follows.

F(m,n) 7→ Am+n−1

Bn,κ(p) 7→ Bn
Cn,κ(p) 7→ Cn+1

Dn 7→ Dn+2

Ei 7→ Ei
F4,κ(p) 7→ F4

G2,κ(q) 7→ G2

In Figures 2.1 and 2.2 we have visualized this correspondence for some of the low
dimensional root systems. We also obtain a geometric interpretation of the fold-
ing phenomenon. Namely, the following isomorphisms induce foldings of root sys-
tems.

(Bn,κ(p))κ(p) ' (F(n, n))κ(p)

(Cn,κ(p))κ(p) ' (Dn)κ(p)

(F4,κ(p))κ(p) ' (E6)κ(p)

(G2,κ(q))κ(q) ' (D4)κ(p)

→

A2n−1 99K Bn
Dn+1 99K Cn
E6 99K F4

D4 99K G2

To see this, letC be a type (II) or (III) curve and let p be the non-rational stacky point.
Let l be the Galois closure of κ(p), so the map Cl → Ck induces an embedding
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2 Spherical curves

[OC(
2
3p)]

[O 2
3
p]

[OC(
1
3p)]

[OC][O 1
3
p(

1
3p)]

[O 1
3
p]

Figure 2.1: The root system A3 corresponding to C = F(3, 1). The thick black
arrows are the simple roots, the thin black arrows are the positive roots, and the
gray arrows are the negative roots.

[OC(
1
2q)]

[V3]

[U2] [W3][O 1
2
q]

[OC]

Figure 2.2: The root system G2 corresponding to C = G2,κ(q). The thick black
arrows are the simple roots, the thin black arrows are the positive roots, and the
gray arrows are the negative roots. Do the classes [U2], [V3], [W3] have interesting
representatives?
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2.2 Finite subgroups of the projective linear group

E(Ck) → E(Cl). Note that ΦCl
corresponds to a simply laced Dynkin diagram.

The Galois group G = Gall/k acts on Cl by permuting the points lying over p,
hence acts on the simple roots ∆Cl

by switching the αp,i, inducing a diagram au-
tomorphism of ΦCl

. The invariants under this action naturally correspond to the
image ofE(Ck). Moreover, if we set

ΦGCl
:=

{
1

ord(Gx)

∑
σ∈G

σ(x)

}
x∈ΦCl

,

the induced map is in fact an isomorphism of root systems (E(Ck),ΦCk
) '

(E(Cl)
G,ΦGCl

). See Figure 2.3 for a visualization of this folding isomorphism in
the lowest dimensional case.

2.2 Finite subgroups of the projective linear group

We will give a quick application of this classification of spherical stacky curves to
the classification of conjugacy classes of subgroups of PGL2(k) over a separably
closed field. This classification was first obtained for k = C by Klein [Kle88]. In
[Beau10] Beauville gives a classification for an arbitrary field, for groups whose or-
der is not divisible by the characteristic of k. Finally in [Fab23] the classification was
completed by characterizing the groups whose order is divisible by the characteris-
tic. Interestingly the proofs over an arbitrary field depend on first proving the case
of separably closed fields.

Definition 2.2.1 We defineQ to be the map

Q :

{Conjugacy classes of subgroups
of PGL2 with order not divisible
by the characteristic of k.

}
→

{Isomorphism classes of
spherical stacky curves
with a k-point.

}
,

given by sending [H] 7→ CH := [P1
k/H].

To see that the map is well defined, let H ′ = gHg−1 for some g ∈ PGL2(k).
Now the composite map P1

k

g→ P1
k → [P1

k/H
′] is H -invariant and defines an

isomorphism CH → CH′ .
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[OC(
1
2P1)]

[OC(
1
2P2)]

[O 1
2
P2
]

[O 1
2
P1
]

[OC(
1
2p)]

[OC]

[O 1
2
p]

[U2]

Figure 2.3: The folding ofA3 intoB2 induced by the isomorphism (B2,κ(p))κ(p) '
(F(2, 2))κ(p). The point p splits into the two pointsP1, P2. The thick black arrows
are the Galois-invariant roots of A3 and the gray arrows are the roots of A3 that
are folded into roots ofB3. The labeled roots are exactly the positive roots of A3

andB3.
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Lemma 2.2.2 Assume that k is separably closed; then the mapQ is injective.

Proof. Let H and H ′ be two subgroups of PGL2(k) such that there exists an iso-
morphism g : [P1

k/H] ' [P1
k/H

′]. Since P1
k is simply connected, the isomor-

phism lifts to an isomorphism of covering spaces g : P1
k → P1

k . We have H ′ =
Aut[P1

k/H
′]

(
P1
)
= g−1 Aut[P1

k/H]

(
P1
k

)
g = g−1Hg. It follows that H and H ′

are conjugate. ⭔

To understand the image ofQ we will compute some explicit quotients.

Lemma 2.2.3 Let ζn denote a primitive n-th root of unity. Let F denote the
Fermat quadric V (X2 + Y 2 + Z2) ⊂ P2. We have the following quotients.

Let α ∈ k. For

C2 '
〈[

0 1
α 0

]〉
,

we have [P1
k/C2] ' B2,k(

√
α).

Assume n > 2 and ζn + ζ−1
n ∈ k. For

Cn '
〈[

2 + ζn + ζ−1
n (ζn + ζ−1

n )2 − 4
1 2 + ζn + ζ−1

n

]〉
,

we have [P1
k/Cn] ' Bn,k(ζn).

Assume ζn ∈ k. For

D2n '
〈[

1 0
0 ζn

]
,

[
0 1
α 0

]〉
,

we have

[P1
k/D2n] '

{
Dn if n is even
Cn,k(

√
α) if n is odd

.
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2 Spherical curves

For

A4 '

〈−1 0 0
0 1 0
0 0 1

 ,
0 1 0
0 0 1
1 0 0

〉 ⊂ PGL3(k),

we have [F/A4] ' F4,k(ζ3).

For

S4 '

〈1 0 0
0 0 1
0 −1 0

 ,
0 1 0
0 0 1
1 0 0

〉 ⊂ PGL3(k),

we have [F/S4] ' E7.

Assume
√
5 ∈ k and let φ be a root of the polynomial x2 − x− 1 (the golden

ratio) and ω = φ− 1 = 1
ϕ . For

A5 '

〈 1 ω φ
ω φ −1
−φ 1 ω

 ,
0 1 0
0 0 1
1 0 0

〉 ⊂ PGL3(k),

we have [F/A5] ' E8.

Proof. The quotients are automatically spherical curves, so it suffices to compute
the stabilizer and inertia of each action. This is an elementary exercise in linear
algebra, which we leave to the reader. ⭔

Note that the tameness of F(n, n),Dn,E6,E7,E8 restricts the characteristic of
k, so we may assume that ζn,

√
5 etc. are inside ksep when appropriate. It follows

that we obtain the following quotient presentations over k = ksep.

F(n, n) ' [P1
k/Cn],

Dn ' [P1
k/D2n],

E6 ' [P1
k/A4],

E7 ' [P1
k/S4],

E8 ' [P1
k/A5].
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2.3 Equivariant structures on the projective line

Corollary 2.2.4 Assume that k = ksep is separably closed; then the finite sub-
groups of PGL2(k), whose order is not divisible by the characteristic of k, are
isomorphic to one of Cn, D2n, A4, S4, A5 and each isomorphism class has
exactly one conjugacy class.

Proof. By Proposition 1.3.5 the image ofQ does not contain F(m,n) form 6= n.
On the other hand Lemma 2.2.3 and Table 2.1 show that there is a unique curve cor-
responding to the groupsCn,D2n,A4, S4,A5, hence there is only one conjugacy
class for each of the groups. ⭔

2.3 Equivariant structures on the projective line

Let G ⊂ PGL2(k) be a finite subgroup acting on P1
k , then [BM24] asks which

vector bundles on P1
k admit a G-equivariant structure, i.e. what is the image of

Vect
(
[P1/G]

)
→ Vect

(
P1
)
. In [BM24] they answer this question for Abelian

groupsG and k = C. Here we will generalize this to an arbitrary groupG over a
separably closed field k = ksep, such that the order ofG is invertible in k.

We start by showing some basic results about Harder-Narasimhan filtrations on
spherical curves.

Lemma 2.3.1 LetG ⊂ PGL2(k) be a finite group whose order is invertible in k
and write π : P1 → [P1/G] =: C. Let F be a vector bundle on C and let

F0 ⊂ F1 ⊂ · · · ⊂ F,

be the Harder-Narasimhan filtration with respect to the slope function µC =
deg
rank . Then

π∗F0 ⊂ π∗F1 ⊂ · · · ⊂ π∗F

is the Harder-Narasimhan filtration of π∗F.

Proof. Let F ′ ⊂ π∗F be the maximally destabilizing sheaf; by maximality it must
be preserved by the G-equivariant structure on π∗F. It follows that F ′ = π∗F′

for some F′ ⊂ F. Since µC ◦ π∗ = ordG · µ it follows that F′ is the maximally
destabilizing sheaf for F. ⭔
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2 Spherical curves

By the classification of vector bundles on P1
k , the Harder-Narasimhan filtration of

any vector bundle on P1
k splits. This splitting descends to the stacky curve.

Lemma 2.3.2 With the above notation, the Harder-Narasimhan filtration of F
splits.

Proof. Let F′ ↪→ F be the maximally destabilizing sheaf and let Q be the quotient.
By the previous lemma we have a splitting f : π∗Q → π∗F. For γ ∈ G, let γf
denote the natural composition π∗Q → γ∗π∗Q → γ∗π∗F → π∗F induced by
the equivariant structures. The map

f̃ =
1

ordG

∑
γ∈G

γf

is then aG-equivariant splitting, so it descends to a splitting Q → F. ⭔

Corollary 2.3.3 Every vector bundleF on C can be written as a direct sum F =⊕
i Fi, such that π∗Fi ' OP1(i)ni .

We are now ready to classify the vector bundles which admit aG-equivariant struc-
ture.

Theorem2.3.4 LetG be eitherD2n withn odd orCn; then every vector bundle
onP1 admits an equivariant structure. For every other groupG, a vector bundle
admits aG-equivariant structure if and only if it can be written as⊕

i

OP1(2i)⊕ni ⊕
⊕
j

OP1(2j − 1)⊕2nj .

Proof. We will denote the quotient map by π : P1 → [P1/G] =: C. If G = Cn
we note that [P1/G] ' F(n, n) and let p be one of the stacky points of F(n, n).
Then π∗OF(n,n)(

i
np) = OP1(i). As every bundle onP1 is a direct sum of bundles

of the form OP1(i) we conclude that the map Vect
(
[P1/Cn]

)
→ Vect

(
P1
)
is

surjective. Similarly for D2n with n odd let p be the point of order n and q be a
point of order 2 onDn, then π∗ODn(

(1−n)/2)
n p+ 1

2q) ' OP1(1).
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2.3 Equivariant structures on the projective line

For every other group we notice that deg : Vect(C) → Q lands inside Z[ 2
ordG ]

by Definition 1.2.29. It follows that deg ◦π∗ must land in 2Z ⊂ Z, so a bundle
can only admit an equivariant structure if it has even degree. By Corollary 2.3.3 any
equivariant bundle is of the sum of equivariant bundles of the formOP1(i)ni , so if
i is odd, we must have ni even. Now notice that π∗ωC = ωP1 = OP1(−2). Next
we take a non-split extensionωC → E → OC, so π

∗ defines a non-split extension
ωP1 → π∗E → OP1 . It follows that π∗E is isomorphic toOP1(−1)⊕OP1(−1).
Since π∗ preserves direct sums and tensor products the result follows. ⭔
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CHAPTER 3

Moduli Stacks

J’en suis convaincu,
mais je ne peux pas le prouver
parce que rien d’important
ne peut être prouvé;
on peut simplement
le ressentir, le deviner.

Will we continue scientific research?
Alexander Grothendieck

In this chapter we will introduce several moduli stacks that are related to the study
of sheaves on stacky curves. We will give basic properties of these moduli stacks
andmorphisms between them. We endby upgrading the categorical result of Chap-
ter 1 and show that moduli stacks of (semistable) parabolic bundles are isomorphic
to moduli stacks of (semistable) vector bundles on stacky curves.

3.1 Moduli of sheaves

We start with a big definition containing the main moduli problems that we will
study.
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3 Moduli Stacks

Definition 3.1.1 Let C be a stacky curve. We denote by Coh(C) the stack of
coherent sheaves onC. Explicitly the objects overT → Spec(k) are flat families
of sheaves onC overT and amorphism from an objectF/S to an objectG/T is
a pair (f, φ), where f : S → T is an fppfmorphismof schemes andφ : f∗G →
F is an isomorphism of coherent sheaves.

We denote by Bun(C) and BunE-ss(C) the substacks of vector bundles and E-
semistable vector bundles respectively i.e. the stacks of families that are fiber-
wise (semistable) vector bundles. For fixed rank and twisted degrees (n, d), we
denote by

Cohn,d(C) ⊃ Bunn,d(C) ⊃ BunE-ssn,d (C)

the substacks with fixed invariants. We will drop C from the notation when it is
clear from context. Since n, d defines a unique numerical class α ∈ Knum0 (C)
we can alsowrite Cohα instead. When it ismore natural, wewill sometimes refer
to Bunn,d as Bunn,d,m.

Being torsion-free is an open condition, so Bun ⊂ Coh is an open substack. By
[Nir09, Corollary 4.16], BunE-ss ⊂ Coh is an open substack. By [OS03, Lemma 4.3],
Cohn,d ⊂ Coh is an open and closed substack and Coh is the disjoint union of the
Cohn,d, running over all the possible invariants. By [Nir09, Corollary 2.27], Coh is
an algebraic stack, locally of finite presentation over k. It follows that all the stacks
in the definition are algebraic and locally of finite presentation.

Vector bundle stacks

We will now introduce a class of moduli stacks that admit the structure of a vector
bundle stack, the stackified notion of a vector bundle. The definition of a vector
bundle stack first appeared in [BF97].

Definition 3.1.2 A vector bundle stack over a stack X is a morphism V → X,
such that exists an smooth cover U → X and a two term complex of vector
bundles V0 → V1 on U and an isomorphism [V1/V0] ' V×X U .

Note that whenwewriteV1/V0 we interpretV(V ∨
0 ) as an additive group acting on

V(V ∨
1 ) and we secretly mean [V(V ∨

1 )/V(V ∨
0 )]. We could also work with a more

68



3.1 Moduli of sheaves

restrictive notion of vector bundle stacks, asking for étale or even open covers, but
this looser definition is enough for our purposes. The most important example of
a vector bundle stack is the following.

Definition 3.1.3 Denote by SES(C) the stack of short exact sequences of co-
herent sheaves i.e. the objects over T are given by a triple E,F,G of coherent
sheaves on C× T , all flat over T together with a short exact sequence

0 → E → F → G → 0.

The morphisms are morphisms of short exact sequences.

When we consider SES(C) as a stack over Coh(C)× Coh(C) via the forgetful map
that forgets everything except for the outer two sheaves we get a different perspec-
tive of the objects. Namely for an object T → Coh(C)× Coh(C) corresponding to
the pair of sheaves (E,G) on C × T we see that (SES(C) ×Coh(C)×Coh(C) T )(T )
consists of short exact sequences E′ → F′ → G′ together with isomorphisms
E ' E′ and G ' G′. The morphisms are morphisms of short exact sequences
(E′ → F′ → G′) → (E′′ → F′′ → G′′) that respect the isomorphisms on
the outer terms. In other words the objects are extensions and the morphisms are
morphisms of extensions. This implies in particular that the fibers of SES(C) →
Coh(C) × Coh(C) are given by [Ext1(G,E)/ Ext0(G,E)]. This is why this stack
is sometimes said to be “the stack classifying extensions”, see for example [GHS14,
Section 3]. Strictly speaking this is incorrect, since morphisms of extensions are
more restrictive than morphisms of short exact sequences.

Theorem 3.1.4 The forgetful map p : SES(C) → Coh(C) × Coh(C), sending
a short exact sequence 0 → E → F → G → 0 to the pair (E,G) is a vector
bundle stack.

Proof. Pick an ample sheaf OC(1) on C and consider the open substack Ud ⊂
Coh(C) × Coh(C) consisting of pairs (E,G), such that Hom(G,E)(d) has no
higher cohomology. Clearly theUd cover Coh(C)×Coh(C). Let p : Ud×C → Ud
and q : Ud × C → C denote the projection maps. Let (Euniv,Guniv) be the univer-
sal pair of sheaves on Ud × C and set Y := Hom(Guniv,Euniv). We have a short
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3 Moduli Stacks

exact sequence
0 → Y → Y (d) → Q→ 0,

whereQ is defined to be the quotient. We claim that SES(C)|Ud
' [p∗Q/p∗Y (d)].

First of all notice that Q is the twist of Y by the relative effective divisor defined
by OUd

→ q∗OC(d), thus Q is flat over Ud. Applying Rp∗ to the short exact
sequence we get the long exact sequence

0 → R0p∗Y → R0p∗Y (d) → R0p∗Q→ R1p∗Y →
→ R1p∗Y (d) → R1p∗Q→ 0.

From the definition ofUd it follows thatR1p∗Y (d) = 0 and hence alsoR1p∗Q =
0. It follows thatR0p∗Y (d) = p∗Y (d) andR0p∗Q = p∗Q. By the cohomology
and base change theorem [Hal14, Theorem A], it follows that p∗Y (d) and p∗Q are
vector bundles.

Let T be an affine scheme and t : T → Ud correspond to an object (E,G), then
by [GHS14, Proposition 3.1] the objects of ([p∗Q/p∗Y (d)] ×Ud

T )(T ) are given
by

H1(T, t∗
(
R0p∗Y (d) → R0p∗Q

)
) = t∗R1p∗Y = R1p′∗t

′∗Y = Ext1(G,E)

and the morphisms are given by

H0(T, t∗
(
R0p∗Y (d) → R0p∗Q

)
) = Ext0(G,E).

By the discussion above we have SES(C)|Ud
' [p∗Q/p∗Y (d)]. ⭔

It follows that SES(C) is also an Artin stack, locally of finite presentation over
Spec(k). The forgetful map SES(C) → Coh(C) × Coh(C) also lets us define
many natural variants of SES(C) coming from the different substacks of Coh(C)
defined before. We note that the proof given in [GHS14, Corollary 3.2] also works
perfectly well for stacky curves. We give this alternative proof because we think
the ideas can be useful in other situations as well, such as in the construction of
Section 4.3.
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3.1 Moduli of sheaves

Definition 3.1.5 We define SES(n1,d1),(n2,d2)
(C) to be the fiber product

SES(n1,d1),(n2,d2)
(C) SES(C)

Cohn1,d1
(C)× Cohn2,d2

(C) Coh(C)× Coh(C).

Equivalently SES(n1,d1),(n2,d2)
(C) is the stack of short exact sequences, where

we specify the invariants of the first and last term. By construction the projection
to Cohn1,d1

(C)× Cohn2,d2
(C) is again a vector bundle stack.

Smoothness

Wewill study the smoothness of the stacks defined above using the tangent bundle
stack. We take the definition as in [LM00, Définition 17.13]

Definition 3.1.6 LetD := Spec
(
k[ε]/ε2

)
be the spectrumof the dual numbers.

For a stack T , we set T [ε] := T ×D. We denote the natural maps by ι : T →
T [ε] and ρ : T [ε] → T .

Let X be an algebraic stack. We define the tangent bundle TX of X by setting
TX(T ) := X(T [ε]). The tangent bundle comeswith a natural projectionTX →
X and a zero sectionX → TX induced by the maps ι and ρ respectively.

Let X → Y be a morphism of stacks, then there is a natural morphism TX →
TY and we define the relative tangent bundle to beTX ×TY

Y.

Classically smoothness is closely related to the tangent bundle being a vector bun-
dle; this generalizes nicely to algebraic stacks when we consider vector bundle
stacks instead.

Proposition 3.1.7 Let X be a reduced algebraic stack locally of finite presenta-
tion over an algebraically closed field k; then X is smooth if and only if TX is a
vector bundle stack.

Proof. Take a smooth atlas u : X → X. By the proof of [LM00, Théorème 17.16],
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3 Moduli Stacks

we have

u∗TX ' [V(ΩX/k)/V(ΩX/X)].

Assume X is smooth, thenX → X andX → Spec(k) are smooth and we have
that ΩX/X and ΩX/k are locally free, so this presents TX as a quotient of vector
bundles.

AssumeTX is a vector bundle stack, then so is u∗TX and

rankV(ΩX/k)− rankV(ΩX/X)

is constant. SinceΩX/X is locally free it follows that rankV(ΩX/k) is constant, so
X is smooth. ⭔

We will now compute the tangent bundle of Coh explicitly.

Theorem 3.1.8 The tangent bundle TCoh(C) is isomorphic to the stack of short

exact sequences E → Ẽ → E, where the outer two terms are explicitly iden-
tified. The morphisms are morphisms of short exact sequences that respect
the identification of the outer terms. In other words, we have the following 2-
Cartesian square.

TCoh(C) SES(C)

Coh(C) Coh(C)× Coh(C)∆

It follows thatTCoh C is a vector bundle stack.

Proof. Let E ∈ TCoh(C)(T ); then E is a T [ε]-flat family of sheaves on C × T [ε].
We can tensor E with the short exact sequence

εOT → OT [ϵ] → OT

ofOT [ϵ]-modules to get a short exact sequence

E⊗OT → E → E⊗OT
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3.1 Moduli of sheaves

on C× T [ε]. Then we can push this forward along ρ to get a short exact sequence
on C× T .

Starting with a short exact sequence E → Ẽ → E on C × T , we can take the
inverse image ρ−1(E → Ẽ → E), which is an exact sequence of ρ−1OT -modules.

Nowρ−1Ẽ obtains aOT [ϵ]-module structure by defining the action of ε asρ−1Ẽ →
ρ−1E → ρ−1Ẽ.

We leave it to the reader to show that these two constructions give well defined
functors that are inverse to each other. ⭔

Corollary 3.1.9 The stack Coh(C) is smooth, hence so are

Bun(C), SES, Cohα, Bunα(C), BunE-ssα (C), SESα,β .

Using the Euler pairing (Definition 1.3.19) we compute the dimensions to be

dim(Cohα(C)) = −〈α,α〉,
dim(SESα,β) = −〈α,α〉 − 〈β,β〉 − 〈β,α〉.

We can give an explicit formula for the expression 〈α,α〉 in terms of the rank,
degree and multiplicities, but we think it is more informative to give the following
upper and lower bound.

Proposition 3.1.10 Letα be the numerical class of a vector bundle, then

(gC − 1) rank(α)2 ≤ −〈α,α〉 ≤ (gC − 1) rank(α)2.

Moreover, the left hand bound is attained wheneverα = [π∗F ⊗L], for some
vector bundleF onC and a line bundleLonC. The right handbound is attained
whenever the multiplicities are balanced, i.e. mp,i(α) = mp,j(α) for all p and
i, j.

Proof. Asα is positive, we can choose a representativeF =
⊕

iLi of the classα,
which is a sum of line bundles. As in Corollary 1.2.11, we can write Li ' π∗Li ⊗
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3 Moduli Stacks

O(
∑

p
ap,i
ep
ep). Then we calculate

〈Li,Lj〉 =

〈
OC, π

∗(Lj ⊗ L∨
i )⊗

(∑
p

ap,j − ap,i
ep

ep

)〉
= 〈OC , Lj ⊗ L∨

i 〉 −
∑

p : ap,j<ap,i

1.

We havemp,ℓ(Li) = 1 if and only if ap,i = ` and otherwisemp,ℓ(Li) = 0. Thus
mp,ℓ(F ) counts the number of ap,i ’s such that ap,i = `. Using the fact that the
Euler pairing is additive, we obtain

−〈F, F 〉 = (gC − 1) rank(F )2 +
∑
p

ep−2∑
j=0

mp,j(F ) ·
ep−1∑
i=j+1

mp,i(F )

 .

The result now follows from the following combinatorial statement:
Let n =

∑e−1
i=0 mi be a partition of n into e terms. Then

S :=

e−2∑
i=0

mi ·
e∑

j=i+1

mj

 ≤ e− 1

2e
n2,

moreover the bound is attained precisely whenmi = n/e for every i. To see this
note that

2S +

e−1∑
i=0

m2
i =

(∑
mi

)2
= n2,

so S is maximal when
∑
m2
i is minimal. This happens whenmi =

n
e , in which

case we find 2S + ene
2 = n2 or S = e−1

2e n
2. ⭔

Connected components

The following theorem will show that our discrete invariants really are the discrete
invariants, i.e. they uniquely identify a connected component of Coh. Since Coh is
smooth the connected components are the same as the irreducible components.
First we show the result for Coh0,d using the interpretation of torsion sheaves as
quiver representations 1.2.23.
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3.1 Moduli of sheaves

Lemma 3.1.11 The stack of torsion sheaves Coh0,d, with d ≥ 0, is irreducible.

Proof. We first show the case d = (1, . . . , 1). Consider the open embedding

ι : Coh0,1(C) → Coh0,1(C),

given by T 7→ π∗T . We claim that Coh0,1(C) is dense inside Coh0,1(C). To see
this we consult Fig. 3.1. The locus of torsion sheaves which are supported away
from the stacky points is isomorphic to Coh0,1(C−{pi}). On the right we see the
zoomed in locus Lp of torsion sheaves supported at a stacky point p. This locus
is isomorphic to Spec

(
k[x1, . . . , xe]/(x1 · · · · · xep = 0)

)
/(Gm)

×ep using the
quiver interpretation. Now the family

coker
(
OC(−q +

a

e
p) → OC(

a

e
p)
)
, q → p

converges to the point corresponding to the orbit xa = 0 and
∏
b̸=a xb 6= 0.

(These are the outer points in the diagram). Since the union of these orbits lie dense
in Lp the claim follows. Since Coh0,1(C) is irreducible it follows that Coh0,1(C) is
irreducible.

Next we consider the case d contains a zero degree dp,i = 0, we see that all the
sheaves must be supported at p. The corresponding quiver representations are
automatically nilpotent as the i-th vector space is 0. It follows that Coh0,d is iso-
morphic to the quotient of an affine space, thus it is irreducible.

For the general case we proceed by induction. Let d = d′+(1, . . . , 1) and assume
that Coh0,d′ is irreducible. There are maps,

SES(0,d′),(0,(1,...,1)) Coh0,d

Coh0,d′ × Coh0,(1,...,1)

where the vertical arrow is a vector bundle stack, so SES(0,d′),(0,(1,...,1)) is irre-
ducible. The horizontal arrow is surjective, so Coh0,d is irreducible for every d by
induction. ⭔
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3 Moduli Stacks

Oq

Figure 3.1: The topology of Coh0,(1,1,1)(C) for a curve C with a stacky point of or-
der 3. Generically Coh0,(1,1,1)(C) looks like C , via the correspondence q 7→ Oq .
A more complicated specialization structure appears at the stacky point p and is
described further in Figure 3.2.
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Figure 3.2: The specialization structure of sheaves supported at p with twisted de-
grees (1, 1, 1). We will give a general method to obtain these specialization struc-
tures in Section 3.3.

Theorem 3.1.12 The stack Cohn,d is irreducible; hence so are the stacks Bunn,d
and BunE-ssn,d , whenever they are non-empty.

Proof. By Lemma 3.1.11 the result holds for n = 0. We proceed by induction on
the rank n. Consider the maps,

SES′ Cohn,d(C)

Cohn−1,d′−i(C)× Bun1,i(C)
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3.2 Parabolic Moduli and Flag bundles

where SES′ is the stack of short exact sequences of the form π∗L → F → G,
where L ∈ Bun1,i(C) and G ∈ Cohn−1,d′−i(C). The vertical arrow is again a
vector bundle stack, so SES′ is irreducible by induction. As i→ −∞ the images of
the horizontal maps define a filtration by open substacks of Cohn,d, each of which
is irreducible, hence Cohn,d is irreducible. ⭔

3.2 Parabolic Moduli and Flag bundles

The goal of this section is to generalize the categorical equivalence between para-
bolic bundles on classical curves and bundles on stacky curves of Theorem 1.4.9
to an equivalence of stacks. As a consequence we will see that stacks of vector
bundles on a stacky curve are iterated flag bundles over stacks of vector bundles
on the coarse curve. We start by introducing the stack of quasi-parabolic vector
bundles.

Definition 3.2.1 Let C be a smooth projective stacky curve and p be a collec-
tion of non-stacky points, e be corresponding (parabolic) lengths and m be a
set of (parabolic) multiplicities. We define the stack of quasi-parabolic bundles
QParp,e,m(C) whose objects over T are pairs (F,F•), where F is an object of
Bun(C)(T ) and F• is a set of filtrations for each p ∈ p

F = F
p
0 ⊇ F

p
1 ⊇ · · · ⊇ Fpe = F ⊗OC(−p× T ),

such that Fpi /F
p
i+1 is flat over T and rank((Fpi /F

p
i+1)|p) = mp,i. We note

that the flatness condition guarantees that this rank is constant along T . The
morphisms are the natural ones. We let QPar

p,e,m

n,d,m′ be the substack where we
fix the invariants of F.

We can obtain a natural projection QParp,e,m(C) → Bun(C) by forgetting the
quasi-parabolic structure. When we consider a single parabolic point it is a “well
known fact” that the forgetful map is a fibration by flag varieties. We will make
precise what this means and explain how to generalize the result to the case with
more then one parabolic point.
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3 Moduli Stacks

Definition 3.2.2 LetV be a vector bundle on a stackX of rankn andm ∈ Ne≥0,
such that

∑
mi∈mmi = n. A flag of typem is a filtration by subbundles V =

V0 ⊃ V1 ⊃ · · · ⊃ Ve = 0, such that the successive quotients Vi/Vi+1 are
vector bundles of rank(Vi/Vi+1) = mi.

We denote by Flagm(V) → X the flag bundle stack of typem associated to
V, which is defined as follows. The objects over T are given by (x, F ), where x
is an object of X(T ) and F is a flag of x∗V, such that the successive quotients
are flat over T and for every t ∈ T the flag Ft has typem.

Applying the definition to the most simple situation we recover flag varieties.

Example 3.2.3 Taking X = Spec(k) and V = kn, the stack Flagm(kn) is
a smooth projective variety called a (partial) flag variety. In general we have
Flagm

(
On

X

)
' Flagm(kn)× X.

We can always take a Zariski local coveringU → X that trivializes the vector bundle
V. Then we have Flagm(V)×XU ' Flagm(kn)×U . In other words flag bundle
stacks are always (Zariski-local) fibrations by flag varieties.

Lemma 3.2.4 LetC be a stacky curve and p be a non-stacky point onC. LetEuniv

be the universal vector bundle on Bun(C)× C. There is an isomorphism

QParp,e,mp(C) ' Flagmp
(p∗Euniv)

as stacks over Bun(C).

Proof. Note that an object of Flagmp
(p∗Euniv)(T ) consist of a vector bundleF on

C× T , together with a flag of the vector bundle p∗F over T . Let

φ : QParp,e,mp(C) → Flagm(p
∗Euniv)

be defined by sending an object (F,F0 ⊇ F1 ⊇ · · · ⊇ Fe) to (F, (F0/Fe)|p ⊇
(F1/Fe)|p ⊇ · · · ⊇ (Fe/Fe)|p = 0). There is an inverse ψ defined by sending
(F, F0 ⊇ F1 ⊇ · · · ⊇ Fe) to the filtrationF0 ⊇ · · · ⊇ Fe, whereFi is the kernel
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of F → (F0/Fi)⊗Op. We leave it to the reader to check that these two functors
are actually inverse to each other. ⭔

Theorem 3.2.5 Let C be a stacky curve, p be a non-stacky point of C and let
D :=

e√
p/C. Let (n, d,m) be invariants for vector bundles onD and setm′ =

m \mp. The functor par can be extended to an isomorphism of stacks.

Bunn,d,m(D) QPar
p,e,mp

n,d,m′ (C)

Bunn,d,m′(C)

∼

Proof. By [Nir09, Lemma7.9] the functorparofDefinition 1.4.3 and its inverse send
flat families to flat families whenever C is a scheme, however the proofs still apply
when C is a DM-stack. By Proposition 1.4.6 the multiplicities are preserved. ⭔

Corollary 3.2.6 Let C be a stacky curve with stacky points p1, . . . pl and let
π : C → C be the coarse space map. Let (n, d,m) be discrete invariants on C.
The induced map of moduli stacks

π∗ : Bunn,d,m(C) → Bunn,d(C),

is an iterated flag bundle. Explicitly there is a factorization

Bunn,d,m(C) = Bl → Bl−1 → · · · → B0 = Bunn,dC,

such that the mapsBi → Bi−1 are Zariski locally of the form

U × Flagmpi
(kn) → U.

Proof. By viewing C as an iterated root stack over C as in Example 1.1.38, we can
apply Lemma 3.2.4 to Theorem 3.2.5 iteratively. ⭔
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Corollary 3.2.7 Let C be a curve, p be a set of points, e be a set of lengths,m
be a set of parabolic multiplicities and α be a set of parabolic weights. Consider
the open substack

α−ss
QPar

p,e,m

n,d (C) ⊂ QPar
p,e,m

n,d (C)

of bundles that are semistable when endowed with the weights α. Then there
exists a generating sheaf E on C =

e√
p/C such that

α−ss
QPar

p,e,m

n,d (C) ' BunE-ssn,d,m(C).

Proof. Applying Theorem 3.2.5 iteratively we see QPar
p,e,m

n,d (C) ' Bunn,d,m(C),
and by Lemma 1.4.8 this isomorphism respects semistability. ⭔

3.3 Stratifications

In this section wewill describe several stratifications on the connected components
of Cohn,d. The goal is to stratify this stack into completely elementary parts, e.g.
smooth curves and their symmetric products, lines and classifying spaces of alge-
braic groups. As a consequence we will be able to make qualitative statements
about the Voevodsky motive of Coh. We start of by recalling some basic definitions
and lemmas about stratifications. Wewill follow the naming conventions of [Stacks,
Section 09XY].

Definition 3.3.1 LetX be a stack. A partition ofX is a collection of locally closed
substacks Xi → X, indexed by i ∈ I such that

∐
i∈IXi → X is a bijection. A

stratification of X is a partition, together with a partial order≤ on I, such that
Xi ⊂

⋃
j≤iXj . The locally closed substacksXi are called parts or strata.

Note that this is a relatively weak notion of a stratification, in particular we do not
require equality,Xi =

⋃
j≤iXi. We present several ways to construct more strat-

ifications from some given stratifications.
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Definition 3.3.2 Let f : Y → X be a morphism of stacks and
∐
i∈IXi → X a

stratification. Denote Yi := Xi ×X Y → Y, then the pullback
∐
i∈I Yi → Y is

also a stratification.

Let
∐
a∈AXa → X and

∐
b∈B Xb → X be two stratifications. We define the

intersection to be the stratification∐
(a,b)∈A×B

Xa ×X Xb → X,

where the ordering onA×B is the product order.

Let
∐
i∈IXi → X be a stratification, togetherwith stratifications

∐
j∈Ii Xi,j →

Xi of each stratum. We define the refinement to be the stratification∐
(i,j)∈

⋃
i∈I{i}×Ii

Xi,j → X,

where the ordering on
⋃
i∈I{i} × Ii is the lexicographical ordering (reading i

first and then j).

It is an elementary exercise in topology to check that these are all well defined
stratifications. For any stratificationwe can consider themap |X| → I, which sends
a point to the index of the strata it is in. When we endow I with the upper topology
(generated by the closed sets {j | j ≤ i}), this map is continuous if and only if
the sets

∐
j≤iXj are closed. This happens for example when the stratification is

good, i.e. we have equality Xi =
⋃
j≤iXj . By [Stacks, Remark 09Y2] this is also

the case whenever the stratification is locally finite in the following sense.

Definition 3.3.3 Let
∐
i∈IXi → X be a stratification. We say that the stratifica-

tion is locally finite if for every x ∈ X there exists an open subsetU ⊂ X such
that the pullback of this stratification to U has finitely many non-empty strata.

The pullback of a locally finite stratification is locally finite by construction and the
intersection of locally finite stratifications is again locally finite. A refinement of a
locally finite stratification I by finite Ii is also locally finite.
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The following technical lemma lets us descend stratifications along finite group quo-
tients.

Lemma 3.3.4 Let f : X → Y be a morphism of stacks that is a torsor for a
finite group Γ. Let

∐
i∈IXi → X be a (locally finite) stratification, such that Γ

permutes the strata and the action descends to an order preserving action on I.
Then the orbit space I/Γ admits a partial order by setting

jΓ ≤ iΓ ⇔ ∃γ ∈ Γ : γ(j) ≤ i.

We set YiΓ := (Xi · Γ)/Γ = f(Xi), then
∐
iΓ∈I/Γ YiΓ → Y is a (locally finite)

stratification.

Proof. Since Γ is finite, Xi · Γ is locally closed in X and since X → Y is open,
(Xi · Γ)/Γ is locally closed in Y. Next we notice that

YΓi = f(Xi · Γ) = f(Xi · Γ) ⊂ f

∐
j≤i

Xj · Γ

 =
∐
jΓ≤iΓ

YjΓ.

Finally assume
∐
i∈IXi → X is locally finite. Let U ⊂ X be an open containing

finitely many strata, thenU ·Γ is also an open containing finitely many strata, and
(U · Γ)/Γ = f(U) is an open of Y containing finitely many strata. It follows that∐

iΓ∈I/Γ YiΓ → Y is locally finite. ⭔

We now construct two basic stratifications of the symmetric powerC(d) which will
be used later.

Example 3.3.5 Let p be a point on a classical curve C . We can stratify C into
two parts

C = C \ {p} q {p}.

We can pull back this stratification along the n projection maps Cn → C and
intersect these to get a stratification of Cn. The natural action of Sn on Cn

permutes the strata, so we obtain a stratification of [Cn/Sn]. The coarse space
morphism [Cn/Sn] → C(n) is a homeomorphism, so we obtain a stratification
of C(n). The strata are given by (C \ {p})(l) → C(n) for l ≤ n, where the
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map is defined by q1 + · · ·+ ql 7→ (n− l)p+ q1 + · · ·+ ql.

Example 3.3.6 Let∆ ⊂ C2 be the diagonal, so that we have a stratification

C2 = ∆q C2 \∆.

Wewill inductively construct a stratification onCn. Consider thenmapsCn →
Cn−1 obtained by forgetting one coordinate. We pullback the stratification on
Cn−1 along the different maps and intersect them to obtain a stratification of
Cn.

The open stratum consists of tuples of n distinct points and we will denote it
by (Cn)◦. The natural Sn action again permutes the strata, so we also obtain
stratifications of [Cn/Sn] and C(n) for every n. The strata are indexed by (un-
ordered) partitions n = n1 + · · · + nl, with n1 ≥ . . . ≥ nl and are given by
the images of

(C l)◦ → C(n) : (p1, . . . , pl) 7→ n1p1 + · · ·+ nlpl.

The strata in C(n) themselves are isomorphic to the free quotient (C l)◦/Γ,
where Γ is the group which permutes the i-th and j-th coordinate if ni = nj .

Stratification by torsion type

Every coherent sheaf on a stacky curve contains a uniquemaximal torsion subsheaf,
and we will first stratify by the discrete invariants of this torsion subsheaf. This is a
generalization of the stratification considered in [Hei12, Section 3].

Theorem 3.3.7 LetC be a stacky curve with stacky points p of order e. Consider
the partially ordered set I :=

⊕
p∈pNep , where c ≤ c′ if all the entries of c are

less than or equal to the entries of c′. Let Cohtor=cn,d be the substack of coherent
sheaves where the torsion part has twisted degrees c. The decomposition∐

c∈Iop
Cohtor=cn,d (C) → Cohn,d(C),
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3 Moduli Stacks

is a locally finite stratification.

Note that our partial order is the opposite of what you might expect, i.e. the maxi-
mal stratum, corresponding to 0, is the open stratum Bunn,d ⊂ Cohn,d.

Proof. Let Funiv be the universal sheaf on Cohn,d(C) × C and consider its torsion
subsheaf T := (Funiv)tor ⊂ Funiv. Then our decomposition is simply the flattening
stratification forT with respect to the projection Cohn,d(C)×C → Cohn,d(C) as in
Theorem A.2.8, so it is a well defined partition. A priori the flattening stratification
is only a partition, so we are left to show that

Cohtor=cn,d ⊂ Cohtor≥cn,d :=
⋃
c′≤opc

Cohtor=c
′

n,d .

For p ∈ p and 0 ≤ i < ep, consider the maps

πp,i : Cohn,d(C) → Cohn,dp,i(C),

defined byF 7→ π∗

(
F ⊗OC

(
i
ep
p
))

. By exactness ofπp,i wehave (πp,iF)tor =

πp,i (Ftor), so by continuity we get

Cohtor=cn,d (C) ⊂ π−1
p,i πp,i(Coh

tor=c
n,d )(C).

Notice that

πp,i(Coh
tor=c
n,d (C)) ⊂ Cohtor=cp,in,dp,i

(C) and Cohtor=cp,in,dp,i
(C) = Cohtor≥cp,in,dp,i

(C),

so
Cohtor=cn,d (C) ⊂

⋂
p,i

π−1
p,i Coh

tor≥cp,i
n,dp,i

(C) =
⋃
c′≤opc

Cohtor=c
′

n,d (C).

Finally π−1
p,i Coh

tor≤c
0,d (C) is open for any d and c, so Cohtor≤c0,d (C) is open and con-

tains finitely many strata. ⭔

Each stratum admits the structure of a vector bundle stack as follows.
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3.3 Stratifications

Proposition 3.3.8 The map Coh(C)tor=cn,d → Coh0,c(C)× Bunn,d−c(C) sending
a family of sheavesF to the pair (Ftor,Ffree := F/Ftor) is a vector bundle stack.
In particular each stratum Coh(C)tor=cn,d is smooth.

Proof. We have a commutative square,

Cohtor=cn,d SES

Coh0,c× Bunn,d−c Coh× Coh

where the top arrow sends a family F to the short exact sequence Ftor ↪→ F �
Ffree. Notice thatFtor is a flat family, by the universal property of the flattening strat-
ification, so the maps are well defined. We claim that this is a 2-Cartesian square.
This is true since any isomorphismF → F′ of sheaves restricts to an isomorphism
Ftor → F′

tor of torsion parts and thus lifts to an isomorphism of short exact se-
quences (Ftor ↪→ F � Ffree) → (F′

tor ↪→ F′ � F′
free). The result follows as

SES → Coh× Coh is a vector bundle stack by Theorem 3.1.4. ⭔

These stratifications and vector bundle results can be neatly summarized in the
following motivic statement. (See Appendix B for our setup.)

Corollary 3.3.9 Let C be a projective stacky curve with coarse spaceC . The mo-
tiveM(Cohn,d(C)) in DM(k,Q) lies in the thick tensor subcategory generated
byM(C) andM(Coh0,e) for all e ≥ 0.

Proof. Applying Proposition B.2.8, to the stratification of Theorem3.3.7, we see that
M(Cohn,d) lies in the category generated by Cohtor=en,d . Applying Example B.3.4 to
Proposition 3.3.8 we see that

M(Cohtor=en,d ) 'M(Coh0,c(C))⊗M(Bunn,d−c(C)).

Applying B.2.5 to Lemma 3.2.4 we find

M(Bunn,d−c(C)) =M(Bunn,d0−c0(C))⊗
⊗
p∈p

M(Flagmp
(kn)),
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wheremp are themultiplicities corresponding to the twisted degrees dp−cp. Now
M(Flagmp

(kn)) is pure Tate [Hab12, Proposition 4.4.11] andM(Bunn,d0−c0(C))
lies in the thick tensor subcategory generated byM(C) by [HP21b]. ⭔

Stratification by support type

For a classic curve C the stack of torsion sheaves Coh0,d(C) is well understood.
For example Laumon constructs a proper small map C̃oh0,d(C) → Coh0,d(C),
where C̃oh0,d(C) is the stack containing filtrations of torsion sheaves T1 ⊂ T2 ⊂
· · · ⊂ Td, such that Ti has degree i [Lau87, Section 3]. This construction special-
izes to the Grothendieck-Springer resolution when C = A1. For a stacky curve
C, the geometry of Coh0,d(C) is more complicated, for example the natural ana-
logue of the Grothendieck-Springer resolution is not small [Hei04]. In an attempt
to describe the geometry of this stack we will completely stratify it into elementary
parts: symmetric powers of (open) curves and classifying spaces of linear algebraic
groups. We start by defining some relevant partially ordered sets.

Definition 3.3.10 Let d be a positive integer. A marked partition is a partition
d = n0 + n1 + n2 + · · · + nl, such that n1 ≥ n2 ≥ . . . ≥ nl. The positive
integern0 is considered marked. We will say that a marked partition is smaller
than a second marked partition if we can obtain the first by adding together
parts of the second; when adding the marked part to another part the result is
considered marked.

As an example we have given the marked partitions of 3 in Figure 3.3. The arrows
point towards the smaller marked partition.

Definition 3.3.11 LetC be a classical curve with a marked point p. We define a
stratification of the d-th symmetric power ofC∐

n0+n1+···nl=d

Xn0+n1+···+nl
→ C(d),

indexed by marked partitions of d as follows. Let (C l)⋆ ⊂ C l be the open sub-
set of l-tuples of distinct points, none of which are p. We defineXn0+n1+···+nl
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0+ 1 + 1 + 1

1+ 1 + 1 0+ 2 + 1

2+ 1 1+ 2 0+ 3

3

Figure 3.3: The marked partitions of 3.

to be the image of (C l)⋆ → C(d) given by

(q1, . . . , ql) 7→ n0p+ n1q1 + · · ·+ nlql.

Note that this is just the intersection of the stratifications of Example 3.3.5 and
Example 3.3.6. We will use this stratification ofC(d) to construct a stratification by
support type for torsion sheaves.

Definition 3.3.12 Let C be a stacky curve with a single stacky point p of order
e. Consider for 0 ≤ i ≤ e − 1 the “twisted support” maps suppi : Coh0,d →
C(di), given by

T 7→ suppπ∗
(
T ⊗OC

(
i

e
p

))
.

We define the stratification by support type to be the intersection over 0 ≤
i < e, of the pullbacks along suppi of the stratifications of C(di) given in Def-
inition 3.3.11. We will denote the strata by Cohτ0,d and a sheaf inside Cohτ0,d
is said to have support type τ , where τ consists of marked partitions di =
n0,i + n1,i + · · ·+ nli,i for 0 ≤ i < e.

Note that technically a support type τ consists of a set of emarked partitions, how-
ever the unmarked part of the partitions is not affected by twisting. In fact τ is
determined by a single partition n = n1 + · · ·+ nl, such that n ≤ mini(di). The
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marked parts can be recovered via n0,i = di − n and nj,i = nj for 0 ≤ i < e
and 1 ≤ j ≤ l.

In general the strata Cohτ0,d are not smooth, in fact they contain many intersecting
irreducible components. The next stratification will resolve this issue by further
stratifying these irreducible components.

Stratification by graded Young diagrams

As a primer let us first discuss the relation between Young diagrams and torsion
sheaves on classical curves.

Definition 3.3.13 A Young diagram Y of size d is a decreasing sequence of nat-
ural numbers n0, n1, . . . such that

∑
ni = d. Young diagrams of size d are

partially ordered as follows

Y ≤ Y ′ ⇔
j∑
i=0

ni ≤
j∑
i=0

n′i,

for all j. We denote the set of Young diagrams of size d byYd.

Let Coh0,d,q(C) be the stack of degree d torsion sheaves on a classical curve C ,
supported at a fixed k-point q. By Proposition 1.2.23 we see that Coh0,d,q(C) is
isomorphic to the stack NRepd(J), of nilpotent quiver representations of the Jor-
dan quiver of dimension d. Representations of the Jordan quiver correspond to
matrices up to conjugation and are thus in bijection with Jordan normal forms. The
Jordannormal formof a nilpotentmatrix is completely determinedby its block sizes,
so the points of this stack are in bijection with the Young diagrams of size d. In fact
the bijection is very explicit. A torsion sheaf T =

⊕
iOniq , simply gets sent to

n0, n1, . . . up to reordering. Moreover the bijection Coh0,d,q(C) → Yd is a home-
omorphism, when Yd is endowed with the upper topology. The fact that this is a
homeomorphism comes down to the fact that all specializations of torsion sheaves
are iterations of the specialization

T ⊕Omq ⊕Onq  T ⊕O(m−1)q ⊕O(n+1)q,

form ≥ n+ 2.
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The above story has been generalized to the case of stacky points in [Kem82], using
the fact that for a stacky point p of order e the stack Coh0,d,p(C) is isomorphic to
the stack of nilpotent quiver representations NRepd(Qe) of the cyclic quiver Qe
with dimension vector d. (See also [Joh10], for a more modern presentation.) The
correct generalization of Young diagrams in this setting is the following.

Definition 3.3.14 An e-graded Young diagram is a decreasing sequence of pos-
itive numbers ni ∈ Z, together with a sequence of twists εi ∈ Z/eZ. We take
representatives 0 ≤ εi ≤ e− 1 and we require that ni = ni+1 ⇒ εi ≤ εi+1

and if ni = 0 ⇒ εi = 0. We denote the set of e-graded Young diagrams with
signature d byYed.

We think of e-graded Young diagrams as diagrams of marked boxes. In row i we
draw ni boxes and mark the last one with the twist εi. Working backwards in each
rowwemark the next boxwith εi+1, εi+2, . . . until we hit the start of the row. The
signature d of an e-graded Young diagram is the vector (d0, d1, . . . , de−1), where
dj is the number of times the marking j appears. See Figure 3.4 for an example.
Kempken defines a partial order onYed as follows. ForY, Y ′ ∈ Yed we sayY ≤ Y ′

if the first i columns of Y contain more markings j then the first i columns of Y ′,
for every i and j.

2 1 0
0 2 1
1 0
2

Figure 3.4: The 3-graded Young tableau n = (3, 3, 2, 1), ε = (0, 1, 0, 2), with
signature d = (3, 3, 3).

Let C be a stacky curve with a stacky point p of order e. There is a bijection
| Coh0,d,p | → Yed. Namely we send

Coh0,d,p 3 T '
⊕
i

Oni
e
p ⊗OC(

εi
e
p) 7→ (ni, εi)i.

Kempken shows that this bijection is in fact a homeomorphism when Yed is en-
dowed with the upper topology [Kem82, 2.10 Korrolar 2]. In particular the decom-
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position of | Coh0,d,p | into its points is a stratification. See Figure 3.5 for an example
of this homeomorphism.

We are now ready to further stratify Cohτ0,d.

Lemma 3.3.15 Let τ be a support type as in Definition 3.3.12 given by the parti-
tion n = n1 + · · · + nl. Let Γ be the finite subgroup of Sl permuting i and j
whenever ni = nj . Let C̃oh

τ
0,d := Cohτ0,d×C(di)(C

l)⋆, where (C l)⋆ → C(di)

is as in Definition 3.3.11, which is independent of the choice of 0 ≤ i < e. Then

C̃ohτ0,d ' (C l)⋆ × NRepd−n·1(Qe)× NRepn1
(J)× · · · × NRepnl

(J)

and C̃ohτ0,d can be stratified by taking the intersection of the pullback of the strat-
ifications of NRepd−n·1(Qe) and NRepni

(J) by (graded) Young diagrams. More-

over the natural Γ action on C̃ohτ0,d permutes the strata in an order preserving
way.

Proof. By construction C̃ohτ0,d is the stack of torsion sheaves with support type τ ,
together with an ordering of the points in the support. The isomorphism then fol-
lows as Coh0,d,q(C) ' NRepd0(J) is independent of q ∈ C \ p. The action of Γ
onYed−n·1×Yn1 × · · · ×Ynl

simply permutes Young diagrams of the same size,
which is order preserving. ⭔

By Lemma 3.3.4 we can stratify Cohτ0,d by unordered sets of (graded) Young dia-
grams

(Y0, {Y1, . . . , Yn}) ∈ Yed−n·1 × (Yn1 × · · · × Ynl
) /Γ.

See Figure 3.6 for a visualization of this stratification in the case of Coh0,(2,2)(C).

Proposition 3.3.16 Let ∐
CohY0,{Y1,...,Yl} → Coh0,d,

be the refinement of the stratification by support type by the stratifications by
unordered sets of (graded) Young diagrams. For each stratum there is a linear
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algebraic groupG and finite group Γ such that

CohY0,{Y1,...,Yl} '
(
(C l)⋆ ×BG

)
/Γ.

Proof. All the strata of NRepn(J) and NRepd(Qe) have a single point and since
NRepn(J) and NRepd(Qe) are quotient stacks, the strata are isomorphic to BG

for a linear algebraic group G. It follows that the strata of C̃ohτ0,d are of the form

(C l)⋆×BG for some linear algebraic groupG. By construction the strata of Cohτ0,d
are of the form

(
(C l)⋆ ×BG

)
/Γ for a finite group Γ. ⭔

Theorem 3.3.17 Let C be a tame stacky curve over an algebraically closed field
k = k̄. The motiveM(Coh0,d(C)) in DM(k,Q) lies in the thick tensor subcate-
gory generated byM(C).

Proof. We only prove this in the case that C has a single stacky point. It should be
clear that these arguments generalize to any amount of stacky points. The strati-
fication by unordered (graded) Young diagrams shows thatM(Coh0,d(C)) lies in
the category generated byM((C l)⋆ × BG)/Γ). Since we are working with Q-
coefficients, the motive lies in the category generated by M((C l)⋆ × BG). As
k is algebraically closed the motiveM(BG) is pure Tate by Example B.3.6 and it
is clear that M((C l)⋆) lies in the category generated by M(C). It follows that
M(Coh0,d(C)) itself lies in the category generated byM(C). ⭔

Combining this result with Corollary 3.3.9 we obtain the following corollary.

Corollary 3.3.18 Let C be a tame stacky curve over an algebraically closed field
k = k̄. The motiveM(Cohn,d(C)) in DM(k,Q) lies in the thick tensor subcate-
gory generated byM(C).
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1
2p)⊕O 1
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⊕O 1
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( 12p)

Op ⊕Op(
1
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1
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p

O 3
2p

⊕O 1
2p
( 12p) O 3

2p
( 12p)⊕O 1

2p

O2p(
1
2p) O2p

Figure 3.5: The homeomorphism between Y2
(2,2) and | Coh0,(2,2),p |, where p is a

stacky point of order 2.
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🖤 Oq +Oq′

Op(
1
2p) +Oq

O 1
2
p +O 1

2
p(

1
2p) +Oq

Op +Oq

O2q

O⊕2
q

0+ 1 + 1

0+ 2

1+ 1

Figure 3.6: The stratification of Coh0,(2,2)(C), by support type and refined by Young
diagrams, where C has a single stacky point p of order 2. The strata with support
type 2 are given in Figure 3.5.
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CHAPTER 4

Good Moduli Spaces

In short, mathematics only exists in a
living community of mathematicians
that spreads understanding and breaths
life into ideas both old and new. The
real satisfaction from mathematics is in
learning from others and sharing with
others.

What’s a mathematician to do?
Bill Thurston

4.1 Stacks of bundles on stacky curves

This chapter is based on the joint paper [DHMT24] with C. Damiolini, V. Hoskins,
and S. Makarova.

The goal of this chapter is to show that the moduli stack of semistable vector bun-
dles on a smooth projective stacky curve admits a projective good moduli space.
This was first shown by Mehta and Seshadri [MS80], using geometric invariant the-
ory and the language of parabolic vector bundles. We will instead give a “modern”
proof in two steps. First we will apply the existence theorem [AHH23] to show that
a good moduli space (a priori an algebraic space) exists. Next we will define an ex-
plicit line bundle on the stack and show that it induces a finite map from the good
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4 Good Moduli Spaces

moduli space to a projective space. This implies that the good moduli space is in
fact a projective variety.

This modern approach has been applied before to the moduli space of curves
[Kol90], the moduli space of vector bundles on a curve [ABBLT22], and the moduli
space of quiver representations [BDFHMT22]. The major advantage of the modern
approach compared to GIT is the fact that we get effective bounds for the existence
of sections of our line bundle. These effective bounds are a first step towards ob-
taining explicit embeddings of the moduli space in projective space.

We would also like to highlight the convenience of working with stacky curves over
parabolic bundles. Once the correct generalization of the statements in [ABBLT22]
are found it is quite straightforward to generalize proofs from classical curves to
stacky curves. Note that the results in this chapter do not depend on the results of
[ABBLT22], so the arguments specialize to the case of classical curves, and in fact
provide a streamlined proof.

Finiteness

We start by proving that the stack of semistable bundles with fixed invariant is of
finite type. Before we can do that, we cite a preliminary result about Quot schemes
for Deligne-Mumford stacks and prove that semistable vector bundles on stacky
curves can be expressed as quotients.

Theorem 4.1.1 [OS03, Theorem 1.5] Let X be a tame Deligne-Mumford stack,
separated and of finite type over k. Assume thatX is a global quotient and that
its coarse moduli space X is a projective variety. Let E be a quasi-coherent
sheaf onX. Define the Quot stackQ to be the stack whose fiber over a baseB
are groupoids of locally finitely presented quotients of E that are flat and with
proper support overB. Then the connected components ofQ are projective.

For classical curves, the fact that semistable vector bundles can be described as
quotients of a fixed sheaf is key to constructing moduli spaces via GIT. The next
result generalizes this quotient description to stacky curves. Recall the definition
of the slope (semi)stability given in Definition 1.3.25.
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4.1 Stacks of bundles on stacky curves

Lemma 4.1.2 Let α ∈ Knum0 (C) be a generating numerical invariant (Defini-
tion 1.3.22), represented by a generating sheafE. Letβ ∈ Knum0 (C) be another
invariant.

(i) For any sheafF onC, there existsµα,max(F ) such that for all subbundles
F ′ ⊂ F , we have µα(F ′) ≤ µα,max(F ).

(ii) If F is an α-semistable sheaf and µα(F ) > µα,max(E ⊗ ωC), then
Ext1(E,F ) = 0.

(iii) IfF is anα-semistable sheafwithµα(F ) > µα,max(E⊗ωC)+rank(E),
then the map ev : Hom(E,F )⊗ E → F is surjective.

Proof. Part (i) follows as F ′ is a subobject of F , so the degree and multiplicities of
F ′ are bounded above, and the rank is non-negative.

We now prove part (ii). By semistability of F and the assumption on the slopes, it
follows that Hom(F,E ⊗ ωC) = 0. Then Serre duality implies that Ext1(E,F ) =
0.

In order to prove part (iii), we will adapt a classical argument (for example, see
[New78, Chapter 5]). For any point x ∈ C, let ex be the order of x (which will
be equal to 1 if x is chosen to be non-stacky). Note that tensoring by O(−x)
doesn’t change the multiplicities, soF (−x) is still semistable and µE(F (−x)) =
µα(F ) − rank(E), hence by part (ii), we have Ext1(E,F (−x)) = 0. Consider
the long exact sequence obtained from applying Hom(E, ) to the short exact se-
quence

0 −→ F (−x) −→ F

(
− 1

ex
x

)
−→ T −→ 0,

where T is the quotient torsion sheaf. We can see that Ext1(E,F (−x)) surjects
onto Ext1

(
E,F (− 1

ex
x)
)
, hence it also vanishes.

Let ιx : Gx → C denote the inclusion of the residual gerbe (where Gx = Spec(k)
if x is non-stacky), and setFGx

:= ιx∗ι
∗
xF . Applying Hom(E, ) to the short exact

sequence

0 −→ F

(
− 1

ex
x

)
−→ F −→ FGx −→ 0
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4 Good Moduli Spaces

yields an exact sequence

Hom(E,F ) −→ Hom(E,FGx) −→ Ext1
(
E,F

(
− 1

ex
x

))
.

We have already proved that Ext1
(
E,F (− 1

ex
x)
)
= 0, hence we have a surjec-

tion
f : Hom(E,F ) −→ Hom(E,FGx).

We claim that the morphism obtained by adjunction is surjective as well:

evx : Hom(E,F )⊗ E −→ FGx .

Indeed, pick any vector v ∈ FGx . By adjunction, we have

HomC(E,Fx) = Homµex (ι
∗
xE, ι

∗
xF ),

and since E is generating, there is a morphism of Z/eZ-graded vector spaces
g : ι∗xE → ι∗xF such that v = g(w) for some section w in a neighborhood of
x. Since f is surjective, there is a morphism h : E → F such that f(h) = g. But
now we observe that v = evx(h⊗w), and we conclude that evx is surjective. ⭔

Proposition 4.1.3 If α is a generating numerical invariant, then Bunα-ss
β is of

finite type.

Proof. Fix an ample line bundleOC(1) on the goodmoduli space π : C → C , and
for an arbitrary sheaf F on C, denote by F (n) the twist F ⊗ π∗OC(n). Pick a
generating bundleE of classα. For a large enoughm ∈ Z, we have that

µE(F (m)) > µE,max(E ⊗ ωC) + rank(E)

for every F ∈ Bunα-ss
β (k). Therefore, by Lemma 4.1.2 (iii), we have that for every

F ∈ Bunα-ss
β , the following map is surjective:

Hom(E,F (m))⊗ E → F (m).

By Lemma 4.1.2 (ii), we deduce that the dimension of Hom(E,F (m)) is indepen-
dent of F ∈ Bunα-ss

β ; call this dimensionN . Therefore, every F ∈ Bunα-ss
β can be

written as a quotient
E(−m)⊕N → F,
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4.2 Existence and properties of good moduli space

or in other words, realized as an element of the Quot scheme Q of quotients of
E(−m)⊕N that have a fixed numerical invariant β. Since semistability is open,
we find an open subschemeQ◦ ⊂ Q that surjects onto Bunα-ss

β . Since Bunα-ss
β is

connected by Theorem 3.1.12, we find a connected componentQ′ ofQ such that
Q′∩Q◦ still surjects on Bunα-ss

β . But by Theorem 4.1.1,Q′ is projective, so Bunα-ss
β

is bounded. ⭔

Remark 4.1.4 In fact there is an open subscheme Q ⊂ Q and an integerN , such
that Bunα-ss

β ' [Q/ GLN ] [Nir09, Theorem 5.1]. It follows that Bunα-ss
β has affine

diagonal.

4.2 Existence and properties of good moduli space

In this section we apply the existence criterion of Alper, Halpern-Leistner and Hein-
loth [AHH23, Theorem A] to prove that the stack Bunα-ss

β admits a good moduli
space in the sense of Alper [Alp13]. In this section, we will assume that char(k) =
0, as we only apply the existence criterion in characteristic zero due to the differ-
ence in positive characteristic between linearly reductive and reductive stabilizers
(which requires a weaker notion of an adequate moduli space). In this section, α
will denote a generating numerical invariant.

Applying the existence theorem

Since Bunα-ss
β is an algebraic stack of finite type over k with affine diagonal we are in

the position to apply the following existence criterion for good moduli spaces. We
will only state this criterion in characteristic zero, as we cannot verify the additional
local reductivity assumption required in positive characteristic to obtain the étale
local quotient description as in [AHR23] when the stabilizers of closed points are
linearly reductive (in characteristic zero, this is always the case, as S-completeness
implies these stabilizers are reductive).

Theorem 4.2.1 (Existence criteria for stacks, [AHH23, Theorem A]) Let X be an
algebraic stack of finite type over a characteristic zero fieldkwith affine diagonal.
ThenX admits a separated goodmoduli space if and only ifX isΘ-complete and
S-complete.
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4 Good Moduli Spaces

Let us give the definitions of the completeness conditions appearing here, which
are valuative criteria involving verifying codimension 2 filling conditions.

Definition 4.2.2 A stackX isΘ-complete or S-complete if for every DVRR with
uniformizer π, every morphisms from TR \ {0} → X extends to TR where

TR = ΘR := [Spec(R[s])/Gm] or

TR = STR := [Spec(R[s, t]/(π − st))/Gm] respectively,

whereGm acts on s with weight+1 and t with weight−1 and 0 is the unique
closed point of TR.

By definition, ΘR is the base change of Θ := [Spec(Z[s])/Gm] to R. For a de-
tailed discussion of these conditions, we refer to [Alp24, §6.8.2]. If X is a moduli
stack of objects in an Abelian category, morphismsΘR \ {0} → X can be viewed
as a family over R with a filtration over the generic fiber K = Frac(R) whose
associated graded object lies inX, and such amorphism extends toΘR if the filtra-
tion and associated graded object extend to the special fiber κ = R/π. Similarly
in this Abelian setting, a morphism STR \ {0} → X can be viewed as two families
overR whose generic fibers are isomorphic and this extends to STR if the special
fibers admit opposite filtrations whose associated graded objects are isomorphic.

Proposition 4.2.3 The stack Bunα-ss
β admits a separated good moduli space

Bα-ss
β .

Proof. By the above existence criterion [AHH23, Theorem A], it suffices to prove
that Bunα-ss

β isΘ-complete and S-complete. Throughoutwe letR be a discrete valu-
ation ring with residue fieldκ, and denote byπ its uniformizer and byK its fraction
field. Note that whenA is the category of quasi-coherent sheaves on C, the stack
of coherent sheaves Coh coincides with the stackMA introduced in [AHH23, §7, Ex-
ample 7.1 and Definition 7.8], thus Coh is S-complete andΘ-complete by [AHH23,
Lemma 7.16 and 7.17]. Alternatively, one can use the properness of the Quot
scheme of sheaves on C ([OS03, Theorem 1.1]) to prove that Coh isΘ-complete.

We start by showing that Bunα-ss
β is Θ-complete. We can identify ΘR \ {0} with
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4.2 Existence and properties of good moduli space

Spec(R) t
Spec(K)

ΘK , so a morphism ΘR \ {0} → Bunα-ss
β corresponds to a

semistable vector bundle F over CR with a filtration

0 = F−m
K ⊂ · · · ⊂ F ℓ−1

K ⊂ F ℓK ⊂ F ℓ+1
K ⊂ · · · ⊂ FnK = FK

of the generic fiber whose associated graded object gr(F •
K) =

⊕
ℓ F

ℓ
K/F

ℓ−1
K

lies in Bunα-ss
β . In particular, we must have µα(F ℓK) = µα(FK) and all these

sheaves areα-semistable. Thismorphism extends toΘR if the above filtration and
associated graded object extends over the special fibre κ of R in Bunα-ss

β . By the
discussion above, Coh is Θ-complete and so we can extend the above morphism
to φ : ΘR → Coh which gives a filtration 0 = F−M ⊂ · · · ⊂ F ℓ−1 ⊂ F ℓ ⊂
F ℓ+1 ⊂ · · · ⊂ FN = F of coherent sheaves on CR that restricts to the above
filtration ofα-semistable vector bundles over CK .

Since the subsheavesF ℓ are flat overR, they have the sameα-slope as the generic
fibre. Hence we also have µα(F ℓκ) = µα(Fκ) over the special fibre and deduce
each F ℓκ is α-semistable from the semistability of Fκ using that F ℓκ ⊂ Fκ have
the sameα-slope. Since the kernel and cokernel of a map betweenα-semistable
vector bundles is again α-semistable (this is a formal consequence of the seesaw
inequality [Joy07, Definition 4.1]), we deduce that gr(F •

κ ) is alsoα-semistable. This
proves the image of φ is contained in Bunα-ss

β .

Next we show that Bunα-ss
β is S-complete. Note that STR \ {0} can be identified

with Spec(R) t
Spec(K)

Spec(R), so amorphism STR\{0} → Bunα-ss
β corresponds

to two semistable vector bundlesF−∞ andF∞ over CR with a fixed isomorphism
over CK . This extends to STR if we can find a system of vector bundles (Fℓ)ℓ∈Z
which fit in a diagram

· · · Fℓ−2 Fℓ−1 Fℓ Fℓ+1 Fℓ+2 · · ·
sℓ−2 sℓ−1

tℓ−3

sℓ

tℓ−2

sℓ+1

tℓ−1

sℓ+2

tℓ

sℓ+3

tℓ+1 tℓ+2

where

(S1) the maps si and ti are injections such that si ◦ ti−1 and ti ◦ si+1 are given
by multiplication by π (occasionally we will omit the subscripts and denote
these maps by s and t);
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4 Good Moduli Spaces

(S2) there exists anN ∈ Z such that for every n ≥ N one has isomorphisms
Fn ∼= F∞ andF−n ∼= F−∞ commutingwith themorphisms sn+1 : Fn →
Fn+1 and t−n−1 : F−n → F−n−1, respectively; in particular, sn and t−n
are isomorphisms for n > N ;

(S3) the map s induces an injection Fℓ−1/t(Fℓ) → Fℓ/t(Fℓ+1), and analo-
gously the map t induces an injection Fℓ+1/s(Fℓ) → Fℓ/s(Fℓ−1);

(S4) the sheaf over Cκ

gr(F ) :=
⊕
ℓ∈Z

Fℓ/t(Fℓ+1)

s(Fℓ−1/t(Fℓ))
∼=
⊕
ℓ∈Z

Fℓ/s(Fℓ−1)

t(Fℓ+1/s(Fℓ))

∼=
⊕
ℓ∈Z

Fℓ
s(Fℓ−1) + t(Fℓ+1)

is anα-semistable vector bundle.

Since Coh is S-complete, we can find a unique system of coherent sheaves (Fℓ)ℓ∈Z
as in (4.2) satisfying conditions (S1), (S2) and (S3). Since the maps s and t are injec-
tive, this implies that Fℓ is a vector bundle for every ` and thus we are left to show
that (S4) holds. Note that conditions (S1)–(S3) tell us that

0 =
F−∞
F−∞

=
F−N−1

t(F−N )
⊂ F−N
t(F−N+1)

⊂ · · ·

· · · ⊂ FN−1

t(FN )
⊂ FN
t(FN+1)

=
F∞
t(F∞)

= F∞|κ (4.1)

is a finite filtration ofF∞|κ (and similarly forF−∞|κ). Recall thatF∞ has numerical
invariant β and it is α-semistable, with 〈α,β〉 = 0. Combining semistability (as
in Remark 1.3.26) together with (4.1), we obtain

0 = 〈α, F∞〉 ≥
〈
α,

Fℓ−1

t(Fℓ)

〉
= 〈α, Fℓ−1〉 − 〈α, t(Fℓ)〉

= 〈α, Fℓ−1〉 − 〈α, Fℓ〉,

where the last equality follows from the fact that t is injective. Thus we have that
〈α, Fℓ−1〉 ≤ 〈α, Fℓ〉. Repeating the argument with F−∞ we obtain the reverse
inequality 〈α, Fℓ−1〉 ≥ 〈α, Fℓ〉 which forces 〈α, Fℓ−1〉 = 〈α, Fℓ〉 for every `,
and thus 〈α, Fℓ〉 = 0. Since Fℓ ⊂ F∞ is a subbundle of the same α-slope and
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4.3 Determinantal line bundles

F∞ isα-semistable, we concludeFℓ is alsoα-semistable. Again, as the category of
α-semistable vector bundles of fixed slope is Abelian, we deduce that Fℓ−1/t(Fℓ)
and

gr(F )ℓ :=
Fℓ/t(Fℓ+1)

s(Fℓ−1/t(Fℓ))

areα-semistable. By semistability of gr(F )ℓ, this sheaf is torsion free, and thus a
vector bundle, which completes the proof. ⭔

Remark 4.2.4 Note that the above proof cannot be applied to show that Bun is
S-complete (orΘ-complete), as the cokernel of an inclusion of locally free sheaves
may not be locally free (see [Alp13, Proposition 6.8.31 and Remark 6.8.33]).

Corollary 4.2.5 The good moduli spaceBα-ss
β is a normal and proper algebraic

space of finite type over Spec(k), which is irreducible if it is non-empty.

Proof. The stack Bunα-ss
β is irreducible and smooth by Theorem 3.1.12, and Corol-

lary 3.1.9. By [Alp13, Theorem 4.16], the irreducibility and normality of Bunα-ss
β

descend to its good moduli spaceBα-ss
β . We are left to prove properness which, in

view of [AHH23, Theorem A], amounts to showing that the stack Bunα-ss
β satisfies

the existence part of the valuative criterion of properness. For this, we can assume
that k is algebraically closed. For a non-stacky curve, this is a classical result of Lang-
ton [Lan75, Theorem at page 99] which was extended to the case of stacky curves
in [Hua23, Theorem 1.1]. ⭔

The remainder of the chapter is devoted to proving that the good moduli space is
projective, and thus in particular is a scheme rather than just an algebraic space.
Our first step is to construct the line bundle from which we will obtain a projective
embedding.

4.3 Determinantal line bundles

In this section we construct a determinantal line bundle LV over Bunβ naturally
associated to a vector bundle V on C. We will see that when 〈[V ],β〉 = 0, this
line bundle has a global section. The properties of this line bundle will be crucial to
proving the projectivity ofBα-ss

β in Section 4.5.
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Definition and main properties of determinantal line bundles

Consider the diagram

Uβ

V C× Bunβ

C Bunβ

pq

whereUβ is the universal vector bundle on C× Bunβ and V is a vector bundle on
C. Then we define

LV := det (Rp∗Hom(q∗V,Uβ))
∨ (4.2)

and we call this bundle the determinantal line bundle on Bunβ associated to V .
Concretely, by base change [HR17, Corollary 4.13], at a point E ∈ Bunβ(k) the
fiber is given by

LV |E = det Ext0(V,E)∨ ⊗ det Ext1(V,E).

The complex Rp∗Hom(q∗V,Uβ) is locally represented by a complex of vector bun-
dlesK0 → K1 on Bunβ . To see this, let d ≥ 0 be an integer and consider the
open substack Xd ⊂ Bunβ consisting of F such that Ext1(V (−d), F ) = 0. By
base change, this means that the fibers of R1p∗Hom(q∗V (−d),Uβ)|Xd

are zero,
hence this sheaf vanishes. It is clear that these substacks Xd cover Bunβ . Now
consider the short exact sequence of coherent sheaves on C× Xd

0 → Hom(q∗V,Uβ)|Xd
→ Hom(q∗V (−d),Uβ))Xd

→ Qd → 0.

Applying Rp∗ to the short exact sequence we get a long exact sequence

0 → R0p∗Hom(q∗V,Uβ)|Xd
→ R0p∗Hom(q∗V (−d),Uβ)|Xd

→
→ R0p∗Qd → R1p∗Hom(q∗V,Uβ)|Xd

→ 0 → R1p∗Qd → 0.

Notice that Qd is the tensor product of a vector bundle Hom(q∗V,Uβ)|Xd
with

q∗OD(d), where D is a divisor on C corresponding to the embedding OC →
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4.4 Vanishing results

OC(d). Since q
∗OD(d) is flat overXd, it follows thatQd is too. By the cohomology

and base change theorem [Hal14, Theorem A] it follows that

R0p∗Hom(q∗V (−d),Uβ)|Xd
= p∗Hom(q∗V (−d),Uβ)|Xd

and R0p∗Qd = p∗Qd and they are both vector bundles. In particular, we have a
quasi-isomorphism of complexes

Rp∗Hom(q∗V,Uβ)|Xd
'
[
p∗Hom(q∗V (−d),Uβ)|Xd

δd−→ p∗Qd

]
where the latter is a two term complex of vector bundles.

Let V be a vector bundle such that 〈V,β〉 = 0, then from the local picture
we can see that LV comes with a natural section. Namely, we take det(δd) ∈
H0(Xd,LV |Xd

) (the determinant exists since the source and target have the same
rank), and these sections glue together to a global section σV . Note that on the lo-
cusX0 the complex is given by the unique map δ0 : 0X0 → 0X0 between the zero
vector bundles, so LV trivializes on X0 via the canonical section det(δ0) = 1.
Hence forE ∈ Bunβ(k), we have

σV |E 6= 0 if and only if Hom(V,E) = Ext1(V,E) = 0. (4.3)

Given an exact sequence of vector bundles 0 → V ′ → V → V ′′ → 0, we
have by construction LV ∼= LV ′ ⊗ LV ′′ . It follows that LV only depends on
the algebraic class [V ] of V in the Grothendieck ring K0(C). Because of this we
will writeL[V ] rather thanLV from now on. Note that if V is a vector bundle with

algebraic invariantmα̃, thenL[V ]
∼= L⊗m

α̃ . A key point is that the sectionσV does
depend on V and we will leverage this fact to construct many different sections of
L[V ] using different vector bundlesW with the same class as V .

4.4 Vanishing results

We considerα,β ∈ Knum0 (C) such that 〈α,β〉 = 0. We fix an algebraic invariant
α̃ = (L,α) ∈ K0(C), defined by the numerical invariantα, together with a fixed
determinant L ∈ Pic(C). Any algebraic invariant γ̃ ∈ K0(C) gives rise to a
numerical invariant γ and determinant L ∈ Pic(C). Let BGm ↪→ Pic(C) be
the inclusion corresponding to L, then we define Bunγ̃ := BGm ×Pic(C) Bunγ .
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4 Good Moduli Spaces

We will consider the determinantal line bundleLα̃ on Bunβ and produce sections
σV of L⊗m

α̃ using vector bundles V ∈ Bunmα̃ with numerical invariantmα and
fixed determinantL⊗m. First, we show form� 0 (and in fact we give an effective
bound) and for anyα-semistable vector bundle E with invariant β, we can find a
vector bundleV ∈ Bunmα̃(k) such thatHom(V,E) = 0or equivalentlyσV (E) 6=
0, which will allow us to prove that the restriction of Lα̃ to Bunα-ss

β is semiample

in Theorem 4.5.2 below. Throughout this section, we assume k = k̄ to have the
existence of k-points of Bunmα̃.

Hom-vanishing

Wewill describe the codimension of loci where Hom-vanishing fails by using stacks
of short exact sequences. For any numerical invariantsβ1,β2, we let SESβ1,β2 be
the stack of short exact sequences with fixed invariants as in Definition 3.1.5. This
stack admits natural forgetful maps

SESβ1,β2 E1 ↪→ F � E2

Bunβ1 × Bunβ2 Bunβ1+β2 (E1, E2) F

π13 π2

By Corollary 3.1.9 SESβ1,β2 is smooth of dimension −〈β1,β1〉 − 〈β2,β2〉 −
〈β2,β1〉. In addition the projection π2 is representable, which can be seen in two
different ways: the fibers are Quot schemes, or the corresponding functor is faith-
ful, as a morphism of short exact sequences which is the identity on F must also
be the identity onE1 andE2.

The following proposition can be seen as an extension of [ABBLT22, Lemma 5.8];
however we simplify the proof by doing dimension counts directly on the stack of
vector bundles (with fixed invariants and determinant). Because of this we do not
need a result of the form of [ABBLT22, Lemma 5.7] and we do not need to consider
projectivized Ext groups. Moreover we write our formula’s in terms of Euler pairing
to simplify computations.

Proposition 4.4.1 Let α̃ ∈ K0(C) be a positive algebraic invariant, and let β
be a positive numerical invariant such that 〈α̃,β〉 = 0. Let η̃ ∈ K0(C) be
an effective algebraic invariant. Then there exists a constant κ = κα̃,β,η̃ such
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that for any m > κ and any E ∈ Bunβ(k), a general vector bundle V ∈
Bunmα̃+η̃(k) satisfies the following conditions.

(i) Any non-zero morphism f : V → E satisfies 〈α̃, image(f)〉 ≥ 0.

(ii) If we assume E is α̃-stable, then every non-zero map f : V → E is
surjective.

(iii) IfE is α̃-stable and 〈η̃,β〉 ≤ 0, then Hom(V,E) = 0.

Proof. We first show that for the general vector bundleV ∈ Bunmα̃+η̃(k) one has
that π∗V is `-regular for some ` independent ofm. (Recall that F is `-regular if
H1(F (`− 1)) = 0.) Clearly this condition is open, so we just have to show there
exists such a bundle. Let E1 ∈ Bunα̃(k) be such that π∗E1 is `1-regular and
E2 ∈ Bunα̃+η̃(k) such that π∗E2 is `2-regular, for some `1 and `2. Then V =
E⊕m−1

1 ⊕E2 ∈ Bunmα̃+η̃(k) is such that π∗V is `-regular for ` := max(`1, `2),
which is independent ofm.

For (i), we will show that the locus inside Bunmα̃+η̃ where the condition fails has
positive codimension. We will stratify this locus by the possible algebraic invariants
of the image of the non-zero maps f : V → E such that 〈α̃, image(f)〉 < 0
and π∗V is `-regular. Let γ be the numerical invariant of G := image(f), and
recall that α,η are the numerical invariants of α̃, η̃, respectively. We claim that
there are only finitely many values of γ that can appear. Since G ⊂ E, we have
1 ≤ rank(γ) ≤ rank(β) and the multiplicities of G are bounded by those of
E, so it remains to bound the degree ofG. In fact, we will bound theα-degree of
G and see that our bounds are independent ofm. Since π∗V is `-regular, π∗G is
`-regular as well, and we have degπ∗G(`) ≥ 0, so deg(π∗G) ≥ −` rankG. On
the other hand, by our assumption on f , we have degα(γ)+rank(γ) · 〈α,O〉 =
〈α,γ〉 < 0, so combining this with Proposition 1.3.17 as well as the inequality we
already obtained from `-regularity, we get

−` rank(γ) ≤ degπ∗γ ≤ degα(γ) < − rank(γ) · 〈α,O〉. (4.4)

Hence there are finitely many possibilities for γ. For each of these finitely many
γ with 〈α,γ〉 < 0, we let Bγ be the locus of V ∈ Bunmα̃+η̃ where there is a
non-zero morphism f : V → E whose imageG has invariant γ.
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4 Good Moduli Spaces

Now consider the diagram of vector bundles, with specified invariants.

mα+ η − γ mα+ η γ

0 K V G 0

E
β

f

Let Eγ be the substack of SESmα+η−γ,γ , given by short exact sequences where
the determinant of the pushforward of the middle term is equal to detπ∗(mα̃+
η̃). By definition Eγ fits in a Cartesian square:

Eγ SESmα+η−γ,γ

BGm Pic(C)

The right vertical map sends (E1 → F → E2) 7→ detπ∗F , and the bottom
arrow is the inclusion of detπ∗(mα̃+ η̃) in Pic(C). Therefore we can compute
the dimension

dimEγ = dim SESmα+η−γ,γ −gC .
Since the middle projection Eγ → Bunmα̃+η̃ is representable and its image con-
tains the locusBγ , it follows that

codimBγ ≥ dim Bunmα̃+η̃ − dimEγ

= − 〈mα+ η,mα+ η〉 − gC + 〈mα+ η − γ,mα+ η − γ〉
+ 〈γ,γ〉+ 〈γ,mα+ η − γ〉+ gC

= 〈γ,γ〉 −m〈α,γ〉 − 〈η,γ〉. (4.5)

Since 〈α,γ〉 < 0 by assumption, this codimension is positive for sufficiently large

m, namely form > ⟨γ−η,γ⟩
⟨α,γ⟩ .

For statement (ii), if image(f) is a proper subbundle, then by α-stability of E we
conclude 〈α, image(f)〉 < 0, which contradicts (i). Hence image(f) is either 0 or
E.

Finally to prove statement (iii), let f : V → E be a non-zero map. By (ii) we may
assume that f is surjective, so we get an exact sequence

mα+ η − β mα+ η β

0 K V E 0.
f
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4.4 Vanishing results

Let E be the substack of SESmα+η−β,β where the final term is abstractly isomor-
phic to E and the determinant of the pushforward of the middle term is equal to
detπ∗(mα̃+ η̃). Then E has dimension

dimE = dim Bunmα+η−β −〈β,mα+ η − β〉 − dim Aut(E)− g,

and the morphism E → Bunmα̃+η̃ is representable and its image contains the
locus B ⊂ Bunmα̃+η̃ consisting of V such that Hom(V,E) 6= 0. Hence, using
that dim Aut(E) ≥ 1,

codimB ≥ dim Bunmα̃+η̃ − dimE
≥ − 〈mα+ η,mα+ η〉 − gC

− (−〈mα+ η − β,mα+ η − β〉 − 〈β,mα+ η − β〉 − 1− gC)

= − 〈mα+ η,β〉+ 1 = −〈η,β〉+ 1,

which is positive precisely when 〈η,β〉 ≤ 0. ⭔

To prove semiampleness, we only need to apply the above proposition to the case
η̃ = 0. However in Section 4.4, in order to be able to separate points using the
sections σV , we will use this proposition when η̃ = ±δ̃, where δ̃ is the algebraic
invariant of a degree 1 torsion sheaf supported at a non-stacky point

Proposition 4.4.2 Consider the situation of Proposition 4.4.1, and assume in
addition that 〈η,γ〉 ≤ 0 for every positive numerical invariant γ. Then the
constant κ from Proposition 4.4.1 can be chosen to be

κβ := max((gC − 1)(rankβ)2, 0).

Note that the condition on η is satisfied for η = 0 and η = δ is the numerical
class of a skyscraper sheaf at a non-stacky point. Whenη = −δ, we can choose
the bound

κ+β := max
((

gC − 1 +
1

rankβ

)
(rankβ)2, 0

)
.

Proof. We need to ensure that the quantity in (4.5) is positive. It suffices to take

κ ≥ max
γ

(
〈γ,γ〉 − 〈η,γ〉

〈α,γ〉

)
,

109



4 Good Moduli Spaces

where γ runs over the finite list of numerical invariants γ of subbundles ofE, sat-
isfying 〈α,γ〉 < 0. Since 〈α,γ〉 ≤ −1 and by assumption 〈η,γ〉 ≤ 0, it suffices
to take

κ ≥ max
γ
(−〈γ,γ〉),

where γ runs over the invariants of subbundles of E. By Proposition 3.1.10, we
have

−〈γ,γ〉 ≤ (gC − 1)(rankγ)2

and as we need κ ≥ 0, we conclude the claimed bound. For the case η = −δ we
follow the same argument, but note that 〈η,γ〉 = rankγ. ⭔

Corollary 4.4.3 Let α̃ ∈ K0(C) be a positive algebraic invariant, and let β
be a positive numerical invariant such that 〈α̃,β〉 = 0. Let η̃ ∈ K0(C) be
an effective algebraic invariant. Then there exists m � 0 such that for any
E ∈ Bunα-ss

β (k) satisfying 〈η, Ei〉 ≤ 0 for every stable subquotientEi ofE, a
generic vector bundle V with algebraic invariantmα̃+ η̃ satisfies

Hom(V,E) = 0.

Proof. The proof inductively considers the Jordan-Hölder filtration 0 ⊊ E(1) ⊂
· · · ⊊ E(r) = E ofE whose subquotientsEi = E(i)/E(i−1) areα-stable of the
sameα-slope. By applying Proposition 4.4.1 to eachEi we deduce form� 0 that
a general vector bundleV with algebraic invariantmα̃+η̃ satisfies Hom(V,Ei) =
0 for each i = 1, . . . , r. By inductively applying Hom(V, ) to the exact sequences
0 → E(i−1) → E(i) → Ei → 0 we obtain Hom(V,E) = 0. ⭔

Remark 4.4.4 In fact, the same effective bound for m giving Hom-vanishing for
stables given in Proposition 4.4.2 also work for the Hom-vanishing of semistable
vector bundles, as the proof of Corollary 4.4.3 involves applying Proposition 4.4.1
to subinvariants.

Thus semistability can be characterized in terms of a Hom-vanishing condition as
follows. This was originally noticed for Higgs bundles over classical curves by Falt-
ings [Fal93, Theorem I.2].
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4.4 Vanishing results

Proposition 4.4.5 Let α̃ ∈ K0(C) be a positive algebraic invariant, and let β
be a positive numerical invariant such that 〈α̃,β〉 = 0. ThenE ∈ Bunβ(k) is
α-semistable if and only if there is a vector bundle V with algebraic invariant
mα̃ for somem > 0 such that

Hom(V,E) = Ext1(V,E) = 0.

Proof. By assumption 〈mα̃,β〉 = 0, so dim Hom(V,E) = dim Ext1(V,E). Thus
the forward direction follows from Corollary 4.4.3. Conversely suppose V has in-
variantmα̃ and satisfies Hom(V,E) = 0. To showE isα-semistable we consider
a subbundleE′ ⊂ E with quotientE′′ andapplyHom(V, ) to the exact sequence
0 → E′ → E → E′′ → 0 to deduce Hom(V,E′) = 0. This implies

〈mα, [E′]〉 = − dim Ext1
(
V,E′) ≤ 0 = 〈α,β〉,

from which we obtain µα(E′) ≤ µα(E). ⭔

Ext-vanishing and separating stable bundles

Here we prove the key results that enable us to deduce ampleness of the deter-
minantal line bundle. First, we show that Serre duality sends semistable vector
bundles to semistable vector bundles in order to translate Hom-vanishing results
into Ext-vanishing results. Throughout δ̃ = (δ,OC(x)) denotes the numerical in-
variant of a degree 1 torsion sheaf supported at a non-stacky point x ∈ C, that is
δ = (0, 1, 0).

Proposition 4.4.6 Letα be a generating numerical invariant and letE be a vec-
tor bundle on C such that 〈α, E〉 = 0. Then E is α-semistable if and only if
the Serre dual SD(E) := Hom(E,ωC) isα

∨-semistable

Proof. Assume that E is α-semistable. Given a subsheaf F ⊂ SD(E), we apply
Serre duality (Theorem 1.3.6) to get the following equality:

〈α∨, F 〉 = −〈F,α∨ ⊗ ω〉 = −〈α, SD(F )〉.

But SD(F ) is a quotient of the α-semistable sheaf E, hence −〈α, SD(F )〉 ≤ 0,
as desired. For the converse, we just replaceE with SD(E) andα with SD(α) and
notice that SD(SD(E)) ∼= E, hence the argument above applies. ⭔
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4 Good Moduli Spaces

Lemma 4.4.7 Let α̃ ∈ K0(C) be a positive algebraic invariant, and let β be a
positive numerical invariant such that 〈α̃,β〉 = 0. Then for everym > κβ and

for every E ∈ Bunα-ss
β (k), a general vector bundle V with invariantmα̃ − δ̃

satisfies
Ext1(V,E) = 0.

Proof. Note that Ext1(V,E) = Hom(V ∨, SD(E)))∨ and that V ∨ has invariant
mα̃∨ + δ̃. In addition:

(a) 〈δ, G〉 = − rank(G) ≤ 0 for every bundleG.

(b) ifE isα-semistable, then SD(E) is α∨-semistable (see Proposition 4.4.6);

(c) if 〈α,β〉 = 0, then also 〈α∨, SD(β)〉 = 0.

These three conditions ensure that we can apply Corollary 4.4.3 (and Remark 4.4.4)
to theα∨-semistable sheaf SD(E) and conclude the argument. ⭔

Before we can show that the determinantal line bundle has enough sections to
separate most points, we first need a lemma which is a step towards producing
the vector bundle defining the section we want: rather than constructing a vector
bundle with algebraic invariant mα̃ we construct a vector bundle with invariant
mα̃− δ̃. We will later extendV to construct the section needed to separate points.

Lemma 4.4.8 LetE0, . . . , Eℓ beα-stable bundles whose numerical invariants
βi satisfy 〈α̃,βi〉 = 0 and such that E0 6∼= Ei for every i = 1, . . . , `. Then
form > max0≤i≤ℓ κ+2βi

, a generic vector bundle V with invariantmα̃− δ̃ has
the following properties:

(i) Ext1(V,Ei) = 0 for all i = 0, . . . , `;

(ii) for all i = 0, . . . , ` any non-zero homomorphism V → Ei is surjective;

(iii) for all i = 1, . . . , ` and non-zero homomorphisms f0 : V → E0 and
fi : V → Ei, the homomorphism gi = (f0, fi) : V → E0 ⊕ Ei is
surjective.

Proof. Part (i) follows fromLemma4.4.7. For Part (ii), we can apply Proposition 4.4.1
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4.4 Vanishing results

(ii) to the α-stable bundles E0, . . . , Eℓ to deduce that, for m > κβi
a generic

vector bundle V with invariantmα̃− δ̃ every non zero map V → Ei is surjective.

For Part (iii), we apply Proposition 4.4.1 (i) toE0 ⊕Ei to deduce that the image of
gi, which we denoteGi, has necessarily the sameα-slope asE0 ⊕Ei. Note that,
by Remark 1.3.26 and the fact that 〈α,β0〉 = 0 = 〈α,βi〉, the slopes coincide
µα(E0) = µα(Ei) = µα(E0 ⊕ Ei). Since the map gi is non-zero, this implies
that if gi is not surjective, then Gi is either isomorphic to either E0 or Ei. Since
both f0 and fi are surjective, it follows that also the projections Gi → E0 and
Gi → Ei are surjective. SinceE0 6∼= Ei, the conditionsGi ∼= Ei orGi ∼= E0 are
impossible to achieve, thus the map f is surjective. ⭔

Remark 4.4.9 Note that the factor 2 appears in the bound maxi κ+2βi
. This is be-

cause we apply Proposition 4.4.1 to E0 ⊕ Ei, which has invariant β0 + βi ≤
maxi 2βi.

To separate certain polystable vector bundles, we now construct a vector bundle
H with algebraic invariant mα̃ as a Hecke extension of a skyscraper sheaf at a
non-stacky point x ∈ C by a vector bundle V with algebraic invariantmα̃− δ̃ as
outlined before Lemma 4.4.8.

Proposition 4.4.10 Let E = E1 ⊕ · · · ⊕ Eℓ and F = F1 ⊕ · · · ⊕ Fℓ′ be
α-polystable vector bundles onCwith numerical invariantβ, where theEi and
Fj are the stable summands. If 〈α,β〉 = 0 and none of theEi are isomorphic
toF1, then form > κ+2β there exists a vector bundleH with algebraic invariant
mα̃ such that

Hom(H,E) = 0 and Hom(H,F ) 6= 0. (4.6)

Hence there is a section of the determinantal line bundle L⊗m
α̃ , separating E

and F .

Proof. Let βi be the numerical invariants of Ei. Since up to a constant, the α-
slope of any vector bundleGwith invariantγ is 〈α,γ〉/ rank(γ) andwe assumed
〈α,β〉 = 0, we conclude 〈α,βi〉 = 0 for all i.

Since δ̃ is the invariant of a skyscraper sheaf supported at a non-stacky point, we
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4 Good Moduli Spaces

have 〈δ,βi〉 = − rank(βi) < 0, so we may apply Lemma 4.4.8 to the α-stable
vector bundles E0 := F1 and E1, . . . , Eℓ. We now fix a vector bundle V with
invariantmα̃ − δ̃ with the properties stated in this lemma. The rest of the proof
consists of constructing a suitable extension ofOx by V , which will automatically
have invariantmα̃.

Fix a non-zero surjection φ : V � E0 and letK denote the kernel, so that

0 −→ K −→ V
ϕ−→ E0 −→ 0

is an exact sequence. Let H be any non-split extension of Ox by V lying in the
subspace

Ext1(Ox,K) ⊂ Ext1(Ox, V ).

Then H is a vector bundle, as this is a non-split extension of a torsion sheaf by
a vector bundle, and we claim that there exists a non-zero morphism H → E0.
To see this, consider the corresponding extension G of Ox by K , fitting into the
following commutative diagram.

0 K G Ox 0

0 V H Ox 0

E0 coker a

a

(4.7)

By the snake lemmawe get an isomorphismE0 ' coker(a), so we get a non-zero
morphismH → coker(a) → E0.

We will now show that for a general H ∈ Ext1(Ox,K) there are no non-zero
morphisms H → Ei for 1 ≤ i ≤ `. Fix H ∈ Ext1(Ox,K) and let ψ̃i be a
non-zero morphism ψ̃i : H → Ei. The composition V → H → Ei, denoted by
ψi, must be non-zero, otherwise we would obtain a non-zeromorphismOx → Ei.
We obtain a commutative diagram:

0 K V E0 0

0 Ei E0 ⊕ Ei E0 0

ψi

ι ϕ

(ϕ,ψi) =
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4.5 Ampleness of the determinantal line bundle

By the assumption on V , the map (φ, ψi) is surjective, so by the snake lemma we
see that ψi restricts to a surjective morphism ψi : K � Ei. This induces a map
on Ext groups Ext1(Ox,K) � Ext1(Ox, Ei), so we obtain an extension ofOx

byEi, fitting into the following commutative diagram.

0 V H Ox 0

0 Ei Hi Ox 0

ψi b
ψ̃i

Now we notice that ψ̃i ◦ b−1 is a well-defined splitting, soH must lie in the kernel
of Ext1(Ox,K)� Ext1(Ox, Ei).

Let Gr(Ext1(Ox,K), ri) be the Grassmanian of ri dimensional quotients, where
ri is the rank of Ei. For any element J in Ext1(Ox,K), we define the Schubert
variety SJ,i by

SJ,i := {f : Ext1(Ox,K)�W s.t. f(J) = 0} ⊂ Gr(Ext1(Ox,K), ri).

We have shown that for a non-zero morphism φ̃i : H → Ei, the induced quo-
tient Ext1(Ox,K)� Ext1(Ox, Ei) lies in SH,i. The quotient Ext1(Ox,K)�
Ext1(Ox, Ei) only depends on the restriction φi : V � Ei, so we can consider
the maps

qi : P(Hom(V,Ei)) → Gr(Ext1(Ox,K), ri) for each 1 ≤ i ≤ `.

Now notice that dim image(qi) ≤ ri − 1, whereas the codimension of SH,i is
ri. By Kleiman’s theorem, for a general g ∈ GL(Ext1(Ox,K)) we have that
image qi ∩ g · SH,i = ∅. Since g · SH,i = SgH,i we see that for a generalH ∈
Ext1(Ox,K) the intersection image qi∩SH,i = ∅. It follows that for the general
extensionH we have Hom(H,Ei) = 0 for 1 ≤ i ≤ `. We conclude that that there
exists an extensionH ofOx by V , such that Hom(H,F ) ⊃ Hom(H,F1) 6= 0 and
Hom(H,E) =

⊕
1≤i≤l Hom(H,Ei) = 0. ⭔

4.5 Ampleness of the determinantal line bundle

Throughout this section, we fix numerical invariants α and β with α generating,
such that 〈α,β〉 = 0. The following lemma shows that this last assumption can
be made without loss of generality.
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Lemma 4.5.1 Let α be a generating numerical invariant. For any positive nu-
merical invariant β, there exists a generating numerical invariant α′ such that
〈α′,β〉 = 0 and that the notions of (semi)stability with respect to α and α′

coincide.

Proof. Assume that A := 〈α,β〉 6= 0, and let η = [O(q)] ∈ Knum0 (C) for a
non-stacky point q ∈ C. Pick r ∈ Z so thatB = 〈α⊗ η⊗r,β〉 has the opposite
sign fromA. Then it is straightforward to check that the numerical invariant

α′ := |B|α+ |A|α⊗ η⊗r

is orthogonal to β and additionally α′ is generating, as it is a positive linear com-
bination of a generating invariant and an effective invariant. The equivalence of
the corresponding notions of (semi)stability follows from the fact that degα′ =
(|A|+ |B|) degα, as this degree is additive and preserved by tensoring by the line
bundleO(rq), which it is the pullback of a line bundle onC by virtue of q being a
non-stacky point. ⭔

Global generation

Theorem 4.5.2 Let k be an arbitrary field, and assume 〈α̃,β〉 = 0 with α̃ a
generating algebraic invariant. Then the line bundleLα̃ on the stack Bunα-ss

β is
semiample. More precisely, for every positive integerm with

m > (gC − 1)(rankβ)2,

L⊗m
α̃ is basepoint-free. If additionally k has characteristic zero, then the line

bundleLα̃ descends to a semiample line bundleLα̃ on the good moduli space
Bα-ss

β .

Proof. We can assume without loss of generality that k is algebraically closed, as
it suffices to know that the base change to an algebraic closure is semiample (see
[Vak24, Exercise 19.2.I]).

Fix a positive natural number m such that m > (gC − 1)(rankβ)2; this gives
an effective bound for Hom-vanishing by Proposition 4.4.2 and Remark 4.4.4. For
a point of Bunα-ss

β corresponding to an α-semistable vector bundle F on C with
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4.5 Ampleness of the determinantal line bundle

numerical invariants β, we know that a general bundle V with algebraic invariant
mα̃ satisfies Ext1(V, F ) = 0 by Corollary 4.4.3. In particular, we can find such a
vector bundle V so that the associated section σV of LV ∼= L⊗m

α̃ is non-zero at
this point by (4.3). Since Bunα-ss

β is quasi-compact, the non-vanishing loci of finitely

many such sections cover Bunα-ss
β and soL⊗m

α̃ is basepoint-free.

For the final claim, we let σ0, . . . , σn be global sections that generate L⊗m
α̃ and

thus induce a morphism φm : Bunα-ss
β → Pn such that L⊗m

α̃
∼= φ∗OPn(1).

Since the good moduli space map f : Bunα-ss
β → Bα-ss

β is initial amongst mor-
phisms to schemes, φm must factor via f and so there is an induced morphism
ϕm : Bα-ss

β → Pn such thatLm := ϕ∗
mOPn(1) pulls back along f toL⊗m

α̃ . Then

Lα̃ := Lm+1 ⊗ L−1
m pulls back along f toLα̃. ⭔

Ampleness and projectivity

We are ready to prove the main theorem of the chapter.

Theorem 4.5.3 Let k be a field of characteristic zero and assume 〈α̃,β〉 = 0,
where α̃ is a generating algebraic invariant. Then the line bundle Lα̃ onBα-ss

β

is ample andBα-ss
β is projective.

Proof. Since Bα-ss
β is proper (Corollary 4.2.5), by the cohomological criterion for

ampleness [Stacks, Tag 0D38] and flat base change, we can assume without loss of
generality that k is algebraically closed.

As in Theorem4.5.2, we know that a sufficiently large powerm of the determinantal
line bundle on Bunα-ss

β is globally generated by finitely many sections which deter-
mine a morphism φ : Bunα-ss

β → Pn that factors via the good moduli space map
f : Bunα-ss

β → Bα-ss
β and a morphism ϕ : Bα-ss

β → Pn. SinceBα-ss
β is proper, ϕ

is a proper morphism and to conclude the proof it is then enough to show that ϕ
is finite.

To show that ϕ is finite, it suffices to show that the fibres of ϕ are finite by [Stacks,
Tag 0A4X]. SinceBα-ss

β is of finite type, it is enough to check that fibers overk-points
are finite, (see [GW20, Remark 12.16]).

The k-points of the good moduli space Bα-ss
β correspond to the closed points of
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4 Good Moduli Spaces

the stack Bunα-ss
β , which are precisely the α-polystable vector bundles on C with

invariantβ. LetE andF be twopolystable bundles in the samefiber, thenwe claim
that theymust have isomorphic stable summands. Suppose for a contradiction that
they do not. By Proposition 4.4.10 for everym > κ+2β there exists a vector bundle
H with algebraic invariantsmα̃ such that

Hom(H,E) = 0 and Hom(H,F ) 6= 0.

The vector bundleH determines a sectionσH ofL⊗m
α̃ that separates these points:

σH(E) 6= 0 and σH(F ) = 0. It follows thatE and F do not lie in the same fiber,
which is a contradiction. Since there are finitely many polystable bundles for each
fixed set of stable summands we conclude that the fibers of ϕ are finite.

Since ϕ : Bα-ss
β → Pn is a finite morphism of proper schemes, we can conclude

that the ample line bundle OPn(1) pulls back to an ample line bundle, which is a
power of Lα̃, and thus Lα̃ is ample andBα-ss

β is projective. ⭔

We also obtain an explicit bound for when the determinantal line bundle induces a
finite map to projective space.

Corollary 4.5.4 For every positive integerm satisfying the inequality

m > κ+2β = 4

(
gC − 1 +

1

2 rankβ

)
(rankβ)2,

the line bundleL⊗m
α̃ induces a finitemorphism fromBα-ss

β to a projective space.

Proof. This follows from the proof of Proposition 4.4.10 combined with Remark
4.4.9. ⭔

This bound does not seem to be optimal. For example, when C = C is a classical
curvem ≥ rankβ2 + rankβ would suffice [EP04]. This suggests that the factor
4 could probably be removed with a more careful analysis of the bounds, but more
interestingly, the dependence on the genus could potentially be removed.
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APPENDIX A

The flattening stratification

It should be pointed out that the
fancy definitions given cohomology
recently—via standard resolutions,
derived functors, especially in the
category of all sheaves
—which look very uncomputable—
are just technical devices to simplify
somebody’s general theory.

Lectures on curves on an algebraic surface
David Mumford

In this chapter we will recall the basic theory of weighted projective stacks and pro-
vide a “global” flattening stratification of families of coherent sheaves of weighted
projective stacks in the spirit of [Mum66, Lecture 8]. In [OS03] the authors conjec-
ture that a “global” construction exits for all projective stacks. This result gives such
a construction precisely for the cyclotomic stacks of [AH11], which include all stacky
curves.

Question A.0.1 Can the techniques of this chapter be generalized to the twisted
Grassmanians defined in [FL21] or the generalizedweighted projective spaces of
[BOW24]? This would provide a “global” construction of the universal flattening
stratification for very general classes of stacks.
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A The flattening stratification

As an application of the flattening stratification for weighted projective spaces we
obtain a universal flattening stratification for stacky curves, parameterized by the
discrete invariants.

A.1 Weighted projective stacks

Let us recall the definition of a weighted projective stack.

Definition A.1.1 Let w := 0 < w0 ≤ w1 ≤ · · · ≤ wr be a collection
of positive integers. Let A = k[x0, . . . , xr] be a Z-graded ring, where xi
is homogeneous of degree wi. This graded ring corresponds to a Gm-action
Gm × Spec(A) → Spec(A) and we denote the weighted projective stack
P(w) := [(Spec(A)−{0})/Gm]. We will denote the affine space Spec(A) by
A(w). For a schemeS we setP(w)S = P(w)×kS andA(w)S = A(w)×kS.

A weighted projective stack is a smooth tame Artin stack, with a projective coarse
space. These facts are purely computational and can be seen from the following
proposition.

Proposition A.1.2 Let w be as above and letN be the least common multiple
of w. Consider the graded subring A[N ] ⊂ A generated by homogeneous
elements of degree divisible by N . Let A(N) be the graded ring defined by
(A(N))i = (A[N ])i·N .

The graded ringsA(N) andA[N ] are generated in degree 1 andN respectively.
Let 0 ∈ Spec

(
A(N)

)
and 0 ∈ Spec

(
A[N ]

)
denote the points defined by the

ideals generated by all homogeneous elements. We have natural maps

P(w) →
[
(Spec

(
A[N ]

)
− {0})/Gm

]
→[

(Spec
(
A(N)

)
− {0})/Gm

]
=: P(w).

The second arrow is a µN -gerbe and the composition π : P(w) → P(w) is the
coarse space morphism.

The projective schemes P(w) are called weighted projective spaces.
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A.1 Weighted projective stacks

Definition A.1.3 There is a natural map P(w)S → BGm coming from the
quotient structure. The induced line bundle is Serre’s twisting sheaf and is de-
noted by OP(w)S (−1). For a coherent sheaf on P(w)S , we set F(i) := F ⊗
OP(w)S (−1)⊗−i.

We see that by construction π∗OP(w)(1) = OP(w)(N).

Definition A.1.4 For a coherent sheaf F on P(w), we define the Hilbert func-
tion of F to beHFF(m) := dimH0(P(w),F(m)).

We would like to say that the Hilbert function behaves like a polynomial for large
values ofm, which is false, but it is almost true.

Definition/Proposition A.1.5 We define anN -almost-polynomial of degree d
to be a function P : Z → Z, such that there exist polynomials Pa of degree
d with the same leading coefficients, for each integer 0 ≤ a < N , satisfying
P (Nm+ a) = Pa(m).

Let N be the least common multiple of w, and let F be a coherent sheaf on
P(w). There exists anN -almost-polynomialP and integerm0, such that for all
m ≥ m0 we haveHFF(m) = P (m). We call thisN -almost-polynomial the
Hilbert almost-polynomial of F and denote it by PF .

Proof. Let π : P(w) → P(w) be the coarse space map. Let Pa be the Hilbert
polynomial of π∗F(a) with respect toOP(w)(1); then

HFF(Nm+ a) = H0(P(w),F(a)⊗ (π∗OP(w)(1))
⊗m)

= H0(P(w), π∗F(a)⊗OP(w)(m)) = Pa(m).

SinceP0(m) ≤ Pa(m) ≤ P0(m+1) for allm ≥ m0 we see that all thePa have
the same leading coefficient. ⭔

Sheaves

As above we consider P(w) = [A(w) − {0}/Gm]. By construction we have
a functor τ (often denoted by a tilde in the classical unweighted setting) which
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A The flattening stratification

sends quasi-coherent gradedOS ⊗A-modules of finite type to coherentOP(w)S -
modules. The functor τ sends two graded OS ⊗ A-modules to the same OP(w)-

module if and only if they define the same graded OS ⊗ A[ 1
x0
, . . . , 1

xr
]-module.

This happens precisely when their graded parts agree for all arbitrarily large grades.

As with projective space there is a natural right inverse to τ .

Definition A.1.6 Let F be a coherent sheaf on P(w)S , and denote the projec-
tion map by f : P(w)S → S. For each integerm ≥ 0, set Γm(F) := f∗F(m)
and let Γ•(F) :=

⊕
m≥0 Γm(F).

It is clear that for any coherent sheaf F on P(w)S , we have τΓ•(F) = F.

Lemma A.1.7 Let g : T → S be a morphism of Noetherian schemes and let
h : P(w)T → P(w)S be the corresponding morphism of weighted projective
stacks. We have

τ(g∗Γ•(F)) = τ(Γ•(h
∗F)).

As a consequence there exists anm0, such that form ≥ m0

g∗Γm(F) = Γm(h
∗F).

Proof. Since τ commutes with base change by construction, we have

τ(g∗Γ•(F)) = h∗τ(Γ•(F)) = h∗F = τ(Γ•(h
∗F))

and the result follows. ⭔

Cohomology and base change

We now explain how cohomology and Hilbert almost-polynomials behave in fami-
lies of sheaves, of course the best behavior is for flat families of sheaves.

Definition A.1.8 Let S be a scheme over k and X a stacky curve or weighted
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A.1 Weighted projective stacks

projective space. A flat family of sheaves onX is a coherent sheaf F on S × X,
flat over S.

TheoremA.1.9 (Cohomology and base change) LetF be a flat family of sheaves
on p : P(w)S → S and let s ∈ S be a point.

1. If the natural map

φi(s) : Rip∗F ⊗ k(s) → H i(Xs,Fs)

is surjective, then there exists an open subscheme U ⊂ S, containing s,
such that for any diagram

P(w)T P(w)U

T U

q

h

p

g

we have
g∗Rip∗F ' Riq∗(h∗F).

In particular φi(s) is an isomorphism.

2. If φi(s) is surjective, then φi−1 is surjective if and only ifRif∗F is free in
a neighborhood of s.

Proof. This follows from [Bro12, A.1.4-5]. Since our situation is very concrete, we
can also considerD(xi) ⊂ A(w) and let Ui := [D(xi)/Gm]S be the standard
covering ofP(w). The standard opens are isomorphic to [A(w−{wi})/µwi ] and
it is easy to show that Čech cohomology computes sheaf cohomology:

Ȟp((Ui)i,F) = Hp(P(w),F).

Then we can proceed as in [Bro12, A.1.4-5]. ⭔

We recall some standard corollaries of cohomology and base change.
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A The flattening stratification

Corollary A.1.10 LetF be a flat family of coherent sheaves on p : P(w)S → S,
such thatRip∗F = 0 for all i > 0; then p∗F is locally free.

Proof. Let d be the dimension of P(w); then Hd+1(Ps,Fs) = 0 for each point
s ∈ S. Then φd+1(s) : (Rd+1p∗F) ⊗ k(s) → Hd+1(Ps,Fs) is surjective and
Rdp∗F is locally free by assumption. It follows that φd(s) is also surjective and
Rd−1p∗F is again locally free by assumption. Now we iterate this argument to see
that φ0(s) is surjective. Since φ−1(s) is always surjective it follows thatR0p∗F is
free in a neighborhood of s for each s ∈ S. ⭔

Theorem A.1.11 Let F be a sheaf on P(w)S ; then F is flat over S if and only if
Γm(F) is a locally freeOS -module for allm� 0. It follows that for F flat over
S, the Hilbert almost-polynomial PFs for s ∈ S is locally constant.

Proof. Assume first that F is flat over S. Letm0 be such that for allm ≥ m0 and
i > 0 we have Rif∗F(m) = 0. This can be done because of [AH11, Proposi-
tion 2.4.2].

By Corollary A.1.10, it follows that f∗F(m) is locally free.

If Γm(F) is locally free form ≥ m0, consider the module
⊕

m≥m0
Γm(F). This

module is locally free, hence flat over OS . Since F = τ
(⊕

m≥m0
Γm(F)

)
, it

follows that F is flat. ⭔

A.2 Flattening stratifications

What is often called a flattening stratification is in general only a quite weak notion
of stratification. We will follow [Stacks, Definition 09XZ] and call this a partition.

Definition A.2.1 A partition of a scheme S is a collection of schemes (Si)i∈I
together with a bijection

∐
i∈I Si → S, such that the induced maps Si → S

are locally closed embeddings.

The following lemma can be viewed as a flattening stratification result for P0
S = S.
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A.2 Flattening stratifications

Lemma A.2.2 ([Mum66, Lecture 8 Theorem 1◦]) Let S be a Noetherian scheme
and F be a coherent sheaf on S. There exists a partition

∐
Sr → S, such that

any map g : T → S factors through Sr if and only if g∗F is locally free of rank
r.

Theorem A.2.3 (Existence of flattening stratifications) Let S be a Noetherian
scheme and let F be a coherent sheaf on a weighted projective space P(w)S
and letN = lcm(w). There exists a partition

∐
P SP → S parameterized by

sets ofN -almost-polynomialsP , satisfying the following universal property: for
every g : T → S we have that g factors through SP if and only if g∗F is flat
over S with Hilbert almost-polynomial P .

Proof. By [Nir09, Proposition 1.13], there exists some finite partition i0 : S0 :=∐
Si → S such thatF|S0 is flat. As Hilbert almost-polynomials are constant in flat

families it follows that only finitely many sets of Hilbert almost-polynomials appear
for the fibers Fs.

We claim their exists a uniformm0, such that for allm > m0 and all s ∈ S we
have that

H i(P(w),Fs(m)) = 0,

for i > 0 and Γm(F)⊗ k(s) ' H0(P(w),Fs(m)).

To see this, consider the diagram

P(w)S0 P(w)S

S0 S

ĩ0

q p

i0

Apply Lemma A.1.7 to the inclusion map i0 to obtain a positive integerm1, such
that i∗0p∗F(m) = q∗ĩ0

∗
F(m) for allm ≥ m1.

Next apply [AH11, Proposition 2.4.2] to obtain anm2, such thatRiq∗ĩ0
∗
F(m) = 0

for i > 0 andm ≥ m2.

By Corollary A.1.10, it follows that for m0 = sup(m1,m2) we have the desired
claim.
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A The flattening stratification

Letm0 be as above and let g : T → S be any map of Noetherian schemes and
consider the following diagram.

P(w)T P(w)S

T S

q

h

p

g

We claim that h∗F is flat over T if and only if g∗Γm(F) is locally free for allm ≥
m0.

First assume that h∗F is flat over T and consider the morphisms

g∗Γm(F)⊗ k(s) → Γm(h
∗F)⊗ k(s) → H0(P(w),Fs(m)).

For m ≥ m0 the composition is an isomorphism by assumption, so the second
arrow is surjective and by cohomology and base change it is also an isomorphism.
Again by cohomology and base changeΓm(h∗F) is locally free and by Nakayama’s
lemma we have an isomorphism

g∗Γm(F) ' Γm(h
∗F).

Conversely, if g∗Γm(F) is flat for allm ≥ m0 then h∗F is flat by Theorem A.1.11.

Let
∐
Sm,r → S be the flattening stratification of Γm(F) from Lemma A.2.2. We

have shown thath∗F is flat if and only if g factors throughSm,P (m) for allm ≥ m0

and someN -almost-polynomial. A priori this is an infinite limit, but if we let d be
the degree of P , then g factors through Sm,P (m) for allm ≥ m0 if and only if g
factors through Sm,P (m) form0 ≤ m ≤ m0 + d ·N .

Now we see that

SP = Sm0,P (m0) ×S . . .×S Sm0+d·N,P (m0+d·N)

defines the desired flattening stratification. ⭔
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A.2 Flattening stratifications

Hilbert almost-polynomials versus discrete invariants

We will now explain how to relate the discrete invariants of sheaves on a stacky
curve to the Hilbert almost-polynomials. This will allow us to construct a flattening
stratification parameterized by the discrete invariants.

Lemma A.2.4 Let C be a stacky curve with coarse space C , let p be a stacky
point of order e and letTp = OC(

1
ep) be the corresponding tautological sheaf.

Then there is a commutative triangle,

C P(w)

e√
p/C

πp

ιp

where the maps to P(w) are induced by the tautological sheaves at p, defined
as in [AH11, Corollary 2.4.4]. Moreover

e√
p/C → P(w) is an embedding.

Proof. We have πp∗OC(
1
ep) = O e√

p/C
(1ep) and

H0(C,T⊗m
p ) = H0(

e√
p/C, πp∗T

⊗m
p ).

It follows that the inducedmaps to weighted projective space have the same target.
It is clear thatTp is ample on

e√
p/C , so the corresponding map is an embedding

by [AH11, Corollary 2.4.4]. ⭔

Lemma A.2.5 With the notation as in the lemma above, let F be a coherent
sheaf on C and let

F pF(m) := H0(
e√
p/C, πp∗F ⊗ T⊗m

p ) = H0(P(w), ιp∗π
p
∗F(m)),

be the Hilbert function of πp∗F with respect toTp; then form� 0

F p(m) = rank(F)(1− gC) +
⌊m
e

⌋
rankF + dp,mmod e(F).

Proof. This is immediate from the naive Riemann-Roch theorem 1.3.8. ⭔
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A The flattening stratification

It follows that we can completely recover the discrete invariants of a coherent sheaf
by considering the Hilbert functions F pF for each stacky point p and vice versa. We
will denote the Hilbert almost-polynomial at p corresponding to invariants (n, d)
by

P pn,d(m) := n(1− gC) +
⌊m
e

⌋
· n+ dp,mmod e. (A.1)

Since the Hilbert almost-polynomial is constant in flat families, we get the following
immediate corollary.

Corollary A.2.6 Let F be a flat family of sheaves on C × S, the twisted de-
gree functions dp,i(F) : s → dp,i(Fs) and the rank function rank(F) : s 7→
rank(Fs) are locally constant.

Note that the multiplicities are not locally constant in flat families. Consider for
example a family that degenerates O(1ep) into O ⊕ O 1

e
p. One way to construct

such a family is to consider the moduli stack of extensions of O 1
e
p by O, which

is isomorphic to
[
Ext1

(
O 1

e
p,O

)
/ Ext0

(
O 1

e
p,O

)]
hence connected. However

the multiplicities are constant when restricted to natural subclasses of families.

Corollary A.2.7 LetF be a flat family of sheaves onC×S, such that all the fibers
are torsion sheaves or all the fibers are vector bundles; then the multiplicities
mp,i(F) : s 7→ mp,i(Fs) are locally constant.

Proof. This follows from the lemma above, Corollary 1.2.21 and Remark 1.2.25. ⭔

TheoremA.2.8 LetF be a coherent sheaf onC×S, withS aNoetherian scheme.
Then there exists a partition, called the flattening stratification,∐

(n,d)

Sn,d → S,

satisfying the following universal property: for every map g : T → S of Noethe-
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rian schemes we have that g factors through Sn,d if and only if g∗F is a flat
family of sheaves with invariants n, d.

Proof. For each stacky point p ∈ C consider the embedding ιp :
e√
p/C → P(w)

as in Lemma A.2.4 and consider the flattening stratification
∐
P S

p
P → S of the

sheaf ιp∗π
p
∗F. For invariants n, d, we let P pn,d be the Hilbert almost-polynomial at

p as in Equation (A.1). Denote the stacky points of C by p1, . . . , pr . We claim that

Sn,d = Sp1
P

p1
n,d

×S · · · ×S S
pr
P pr
n,d

has the desired properties.

Assume that g∗F is flat, then also πp∗g∗F = g∗πp∗F is flat for each p, and since the
twisted degrees d and rank n are constant in flat families it follows that g factors
through

∐
Sn,d.

Conversely, whenever g factors through the stratification, we get that g∗πp∗F =
πp∗g

∗F is flat for each p. Since πp is an isomorphism away from the stacky points
that are not p, it follows that g∗F is flat away from the stacky points that are not p.
However this holds for all p, so g∗F is flat everywhere. ⭔
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APPENDIX B

Calculus of motives

als de waal
uit het zicht is
stroomt
de verbeelding

Twan Niesten

In this appendix we will collect various tools for the computation of motives. This
appendix is notmeant as an introduction to motives and we will not prove any fun-
damentally new results. Instead we will show how a geometric approach can be
used compute motives. These computations can also be used to describe many
other invariants, such as cohomology or Chow groups, via realization functors and
the description of Chow groups as groups of homomorphism between motives re-
spectively. For an introduction to motives we recommend [Ayo14].

B.1 Setup

In this appendix we will work with Voevodsky’s category of (mixed) motives with ra-
tional coefficients DM(k,Q), which comes with a functorM : Sch/k → DM(k,Q),
sending a scheme X to its (homological) motiveM(X). This functor can be ex-
tended to the category of algebraic stacks M : Stck/k → DM(k,Q) in various
equivalent ways. Themost general construction is due to Khan [Kha19, Appendix A].
See also [HP21b, Appendix A] for a slightly simpler approach. The category of mo-
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B Calculus of motives

tives DM(k,Q) is a monoidal triangulated category, so it has direct sumsM1⊕M2

and tensor products M1 ⊗ M2. Moreover it comes with a translation functor
M 7→M [1] and a collection of distinguished triangles

M → N → L→M [1],

or M → N → L
+→ for short. For every morphism M → N there exists a

unique cone L completing this morphism into a distinguished triangle. Note how-
ever that the cone is not functorial, i.e. it exists up to a potentially non-unique iso-
morphism. A triangle is said to be split if it is isomorphic to the triangle

M1 →M1 ⊕M2 →M2
+→

We denote byQ := M(Spec(k)), which is the neutral object for the tensor prod-
uct. The projection to a point π : P1

k → Spec(k) induces a distinguished triangle

Q{1} := cone(M(π))[−1] →M(P1
k) → Q +→,

which is split by the inclusion of any rational point into P1
k . As a consequence

we have M(P1
k) = Q ⊕ Q{1}. By construction Q{1} has a tensor inverse in

DM(k,Q), which we denote byQ{−1}. For a positive integer n we setQ{n} :=
Q{1}⊗n and Q{−n} := Q{−1}⊗n. For any motive M , we write M{n} :=
M ⊗Q{n} andM{n} is said to be a Tate twist ofM . A motive is said to be pure
Tate if it can be written in terms of sums and tensor products ofQ{±1}. A motive
is said to be pure if it can be written as a Tate twist of a direct summand of the
motive of a projective variety. To “compute” a motive in the strongest sense means
to write it in terms of sums and tensor products of simpler motives. In particular,
saying that a motive is pure (Tate) is a qualitative statement on the complexity of
terms that might appear in a computation.

A slightly weaker notion of computation would be to allow for cones and transla-
tions as well.

Definition B.1.1 thick tensor subcategory For a set S of motives in DM(k,Q),
the thick tensor subcategory generated by S is the smallest full subcategory
〈S〉 ⊂ DM(k,Q) containing S, such that:

• 〈S〉 is closed under taking tensor products.
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• For every distinguished triangle X → Y → Z
+→ such that X,Y ∈

〈S〉, we have Z ∈ 〈S〉.

• ForX ⊕ Y ∈ 〈S〉, we haveX ∈ 〈S〉.

Saying that a motiveM lies in 〈S〉 thus means that there exists a way to compute
M in terms of S in the weak sense mentioned above.

B.2 Computational tools

We now collect some results that let us compute motives. The following properties
of motives are basic consequences of the construction [VSF00].

Proposition B.2.1 LetX and Y be algebraic stacks; then we have

1. M(X × Y ) =M(X)⊗M(Y ),

2. M(X q Y ) =M(X)⊕M(Y ),

3. M(X × An) =M(X).

Proposition B.2.2 (Gysin triangles) Let X be a smooth stack and let Z be a
smooth substack of codimension c and setU = X \Z . There is a distinguished
triangle

M(U) →M(X) →M(Z){c} +→ .

To compute motives in the strong sense it is important to know when a distin-
guished triangle splits. In general this is very complicated, but for pure motives
this is automatic.

Proposition B.2.3 ([HP22, Lemma 4.2]) Let M → N → L
+→ be a distin-

guished triangle, such that M and L are pure, then N is also pure and the
triangle splits.

The next couple of results show that one can obtain motivic computations from
maps with nice fibers.
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Proposition B.2.4 Let B → X be a smooth morphism, such that the fibers
have trivial motive, i.e.M(Bx) → M(Spec(κ(x))) is an isomorphism, then
M(B) →M(X) is an isomorphism.

Proof. This is proven in first half of the proof of [HP22, Proposition 3.2]. ⭔

Proposition B.2.5 (See [AH17]) Let Γ → X be a fibration (locally trivial in the
Zariski topology), such that the fiber F is a cellular variety satisfying Poincaré
duality, thenM(Γ) =M(F )⊗M(X).

The following result applies to small maps [HP21a, Definition 2.1]. See also [CM04]
for a version of this statement on the level of chow motives.

Proposition B.2.6 ([HP21a, Theorem 2.11]) Let X and Y be smooth stacks,
which are locally of finite type over k, and let Y → X be a representable
surjective proper small map, which is generically a Γ-torsor for a finite group Γ.
Then the action of Γ extends toM(Y ) andM(X) =M(Y )Γ.

The most important example of a small map for us is the Grothendieck-Springer
resolution. LetG be a reductive group over an algebraically closed field k with Lie
algebra g and a choice of Borel subgroup B ⊂ G. The set of Borel subalgebras
B := {b | b ⊂ g Borel} is isomorphic toB ' (G/B). We define g̃ ⊂ g× B to
be the subset containing pairs (x, b), where x ∈ b. The natural projection g → g
is the Grothendieck-Springer resolution and is small. Moreover it is generically a
W -torsor for the Weyl groupW .

The following proposition is a technical but extremely flexible approximation result,
showing that motives can be computed by constructing increasingly good approxi-
mations.

Proposition B.2.7 LetX be a smooth stack. LetX• be an increasing sequence
of quasi-compact open substacks covering X . Let V• be a sequence of vector
bundle stacks on X• together with injections Vm → Vm+1 ×Xm+1 Xm. Let
W• ⊂ V• be closed substacks preserved by the injections and denote the com-
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plements by U• := V• \W•. Assume that the codimensions ofWn ⊂ Vn go
to infinity. We call the above data an exhaustive system. For any exhaustive
system we haveM(X) = hocolimmM(Um).

Finally we give an inductive version of Proposition B.2.2 for stratifications.

Proposition B.2.8 Let X be a smooth stack and let
∐
i∈IXi → X be a lo-

cally finite stratification with smooth strata. Assume that Iop is countable and
well-founded (i.e. there is no infinitely increasing sequence of strata). Then the
motiveM(X) lies in the localizing thick tensor subcategory 〈{M(Xi)}i∈I〉. As-
sume in addition that the motivesM(Xi) are pure andXi has codimension ci,
then

M(X) =
⊕
i∈I

M(Xi){ci}.

Proof. As Iop is well-founded and countable, it can be extended to a countable or-
dinal α, so we may assume without loss of generality that Iop = α is an ordinal.
Since the stratification is locally finite the sets Uβ := X \

∐
β≤γ Xγ are open for

every β ≤ α. By construction we have Uβ+1 \Xβ = Uβ , so by Proposition B.2.2
we get a distinguished triangle

M(Uβ) →M(Uβ+1) →M(Xβ){cβ}
+→ .

For a limit ordinal β ≤ α we take any cofinal embedding ρ : N → β and by
Proposition B.2.7 we have

M(Uβ) = hocolimn∈NM(Uρ(n)).

Byordinal induction it follows thatM(Uβ) lies in 〈{M(Xγ)}γ∈β〉 for everyβ ≤ α.
In the case that Xβ is pure for every β ≤ α we notice that the triangles split by
inductively applying Proposition B.2.3, and we have

M(Uβ+1) =M(Uβ)⊕M(Xβ){ci}.

The result again follows from ordinal induction. ⭔
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B.3 Examples

We end by giving some basic examples showcasing the potency of these tools.
For some state of the art applications, see the series of papers [HP21b], [HP21a],
[HP22].

Example B.3.1 We can stratifyPn = AnqAn−1q . . .qA1qSpec(k). Since
M(An) = Q is pure, we getM(Pn) =

⊕n
i=0Q{i}.

Over C the topological classifying space BGm is P∞ and this is reflected on the
level of motives.

ExampleB.3.2 ([Tot16, Example 8.5]) Consider the vector bundles [An/Gm] →
BGm and closed substacksBGm ⊂ [An/Gm] with open complement Pn−1.
This is an exhaustive system, so we haveM(BGm) = hocolimnM(Pn) =⊕

i≥0Q{i}.

We haveA1-homotopy invariance, but alsoBGa-homotopy invariance.

Example B.3.3 The map Spec(k) → BGn
a is smooth and the fiber An has

trivial motive. It follows thatM(BGn
a) = Q.

Example B.3.4 ([HP22, Proposition 3.2]) Let V → X be a vector bundle stack,
then the fibers are isomorphic toAn×BGm

a . By the previous example it follows
that the fibers have trivial motive andM(V) =M(X).

We can even make very general statements about motives of classifying spaces of
algebraic groups.

Example B.3.5 Let k be a perfect field andG be a linear algebraic group. LetU
be its unipotent radical andGred := G/U be the reductive quotient. The map
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BG → BGred has fiber BU . Since k is perfect, U is isomorphic to An as a
variety, so we haveM(BU) = Q andM(BG) =M(BGred).

The following geometric argument is standard, even though it is usually not stated
using stacky language. See for example [CG10, Theorem 3.1.38, Lemma 6.1.6]

Example B.3.6 (Chevalley restriction theorem) Let k = k̄ be an algebraically
closed field and letG be a reductive group with Lie algebra g, a choice of Borel
subgroup H with lie algebra h and Weyl group W . We have M(BG) =
M([g/G]), where G acts by conjugation. The Grothendieck-Springer resolu-
tion [g/G] → [g/G] is a small map, which is generically a W -torsor, so we
have an isomorphism M(BG) = M([g/G])W . The projection [g/G] →
[(G/H)/G] ' BH is a fibration with fiber h. Let T := H/[H,H], which is
isomorphic to the maximal torus of H . The fiber of BH → BT is given by
B[H,H], which is the unipotent subgroup of H , hence affine. It follows that
M([g/G]) =M(BH) =M(BT) andM(BG) =M(BT)W . In particular
M(BG) is pure Tate.

We should remark that with integral coefficients and general fields the story of clas-
sifying spaces is much more interesting [Tot16].

Example B.3.7 LetC be a smooth projective curve and letC(n) be the symmet-
ric power, then themapCn → C(n) is finite and a fortiori small, soM(C(n)) =
M(Cn)Sn andM(C(n)) lies in 〈M(C)〉.
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