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Samenvatting

Maer want een beclaghelicke verblintheyt,
als duer Tschicsel veroirdent,

t'verstant van velen alsoo verduystert ofte
betoouert heeft, dat sy tlicht vande Sonne
bouen dat der Sterren,

ick meen de weerdicheyt deses Taels
bouen al d'ander,

niet en connen bemercken, tot groot
achterdeel des Duytschen gheslachts

Beghinselen der Weeghconst
Simon Stevin

Dit proefschrift gaat over algebraische meetkunde. Meetkunde is de oudste vorm
van wiskunde en gaat over het beschrijven en classificeren van vormen. Meer dan
2000 jaar geleden bestudeerden de eerste wiskundigen al vormen die je kan maken
met passer en liniaal: lijnen, cirkels, driehoeken, enzovoort. Algebraische meetkun-
de gaat over vormen die je kan maken met algebraische formules, ook wel poly-
nomen genoemd. Polynomen zijn formules met getallen en variabelen waarbij je
mag optellen, vermenigvuldigen en machtsverheffen. Lijnen kan je bijvoorbeeld be-
schrijven met formules zoals y = 2x + 3. Ook de cirkel kan je beschrijven met zo'n
formule. De stelling van Pythagoras vertelt ons namelijk dat een cirkel met straal
te beschrijven is met de formule z2+y2 = 2. Zoals je ziet kunnen polynomen alles
wat de passer en liniaal kunnen, maar polynomen kunnen daarnaast nog veel meer.
Door meer variabelen te gebruiken kunnen vormen met meer dimensies beschre-



ven worden, en door ingewikkeldere of meerdere polynomen tegelijk te gebruiken
kunnen complexere vormen worden beschreven.

Een ander soort vorm die we in dit proefschrift behandelen is een “stack” of stapel.
Een stapel is wat je krijgt als je een algebraische vorm vouwt. Soms kan je een ge-
vouwen vorm voor een groot deel weer beschrijven met formules, maar formules
kunnen geen vouwrandjes beschrijven. Een stapel kan op een technische manier
de interactie tussen de formules en de vouwrandjes bevatten. Vouwen zorgt trou-
wens niet altijd voor vouwrandjes. Als je bijvoorbeeld een feestmutsje vouwt krijg
je bovenop een vouwpuntje.

Er zijn veel te veel vormen om ze allemaal te kunnen beschrijven, dus we richten ons
op een klein deel van de vormen. De basisvormen voor dit proefschrift zijn krom-
men, dat zijn 1-dimensionale vormen zoals lijnen en cirkels. De vernieuwing in het
proefschrift ligt in de theorie van stapelkrommen: krommen met vouwpuntjes. In
hoofdstuk 2 vind je een tabel waarin we de simpelste stapelkrommen classificeren.

De vormen waaraan we de meeste aandacht besteden zijn schoven. Schoven zijn
meerdimensionale vormen die opgebouwd zijn uit stapelkrommen en vectorruim-
tes. Een vectorruimte is een vorm die oneindig recht is, zoals een lijn, vlak of de
3-dimensionale ruimte om ons heen. Een schoof maak je in twee stappen: je kiest
eerst een stapelkromme als fundament en vervolgens plak je op elk punt van de
kromme een vectorruimte. Schoven hebben twee belangrijke eigenschappen waar-
mee ze geclassificeerd kunnen worden. De eerste is de dimensie van de vector-
ruimtes die we gebruiken. De tweede is hoeveel de richting van de vectorruimtes
veranderd als je over de kromme heen beweegt.

Zelfs als we deze twee eigenschappen weten zijn er nog oneindig veel verschillende
schoven met dezelfde kromme als fundament. Het zijn er zelfs zoveel dat we ze niet
in lijst kunnen zetten, zelfs al was de lijst oneindig lang. Om vat te krijgen op al deze
schoven worden ze gerangschikt in een moduliruimte. De moduliruimte is een we-
reld waarin elke plek correspondeert met één schoof. Als je door de moduliruimte
heen beweegt zie je dus één voor één alle schoven. Deze wereld is erg complex
en heeft oneindig veel dimensies. Om je een idee te geven van hoe deze wereld
eruitziet kan je in hoofdstuk 3 plaatjes vinden van de allersimpelste uithoekjes van
deze wereld. Het belangrijkste doel van dit proefschrift is het geven van een soort
routebeschrijving door de moduliruimte heen. Hierdoor begrijpen we beter welke
soorten vormen er mogelijk zijn en hoe we ze kunnen beschrijven.
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Introduction

en hoe verder hij ging
des te langer
was zijn terugweg

C.C.S. Crone

This thesis contributes to the field of algebraic geometry and more specifically to
the study of algebraic curves and vector bundles on algebraic curves. Algebraic
geometry is the study of algebraic varieties: topological spaces which are “locally”
zero sets of polynomials, glued along rational maps. Historically the coefficients
of the polynomials were complex numbers, in which case algebraic varieties are
closely related to complex manifolds. We will take the more general perspective
and allow the coefficients of our polynomials to lie in an arbitrary field. In addition
to algebraic varieties we like to study basic algebraic structures over them such as
vector bundles. A vector bundle is a way to associate to each point of an algebraic
variety a vector space, such that the vector space varies “algebraically” as we move
around the variety.

We will first give a historical overview of the study of algebraic curves and vector
bundles on them. Then we will explain how this thesis fits into and builds on top of
the existing theory.
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Algebraic curves

One of the most fundamental problems in algebraic geometry is classification: to
give a“list” of all the algebraic varieties. In general this problem is incredibly difficult;
there are simply too many varieties and we have no idea what most of them look
like. However, a lot of partial progress has been made by considering restricted
classes of varieties. The most famous one is probably the class of smooth compact
1-dimensional varieties or algebraic curves.

If we assume our field is the complex numbers, then there is a correspondence
between algebraic curves and Riemann surfaces, which are closed 1-dimensional
complex manifolds. The underlying topological space of a Riemann surface is a
topological surface and topological surfaces are classified by their genus: the num-
ber of “holes” in the surface. The classification problem for algebraic curves then
becomes to describe all the ways to endow the genus g surface with a complex
structure up to isomorphism.

The solution depends dramatically on the genus. For g = 0, the underlying surface
is a sphere, which has a unique complex structure called the Riemann sphere or the
complex projective line. For g = 1, the underlying surface is a torus and every com-
plex structure can be obtained as a quotient C/L, where L is a two dimensional
lattice inside C. This reduces the genus 1 classification to the algebraic problem of
classifying lattices. For g > 2, the situation becomes more complicated. Riemann
showed that a Riemann surface depends on exactly 3g — 3 parameters, which he
called moduli [Rie57].

Riemann’s work implicitly assumes the existence of a space into which these param-
eters are arranged, which we now call a moduli space. More precisely, a moduli
space is itself an algebraic variety, such that, in this example, the points precisely
classify the Riemann surfaces of genus g up to isomorphism. The classification
problem is now twofold: first show that a moduli space exists and then describe its
geometry in as much detail as possible.

One of the most basic geometric problems is to identify the connected components
of amoduli space. Two Riemann surfaces lie in the same connected component of a
moduli space if and only if they can be continuously deformed into one another, so
identifying the connected components corresponds to solving the simplified prob-
lem of classifying Riemann surfaces up to continuous deformations.
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Moduli spaces as quotients

A common approach to showing the existence of moduli spaces is to present them
as quotients. We start by giving an overparameterization X together with a group
G which acts on X, such that the orbits of the action correspond precisely to the
isomorphism classes of objects that need to be classified. The problem with this
perspective is that orbit spaces are in general not themselves varieties.

This problem led to the development of geometric invariant theory by Mumford
[Mum65]. When X is a projective variety (a very strong notion of compactness)
and the group action is compatible with the projectivity, Mumford defines (up to
some choices) two GG-invariant open subsets X® C X*° C X, called the stable
and semistable locus respectively, with particularly nice behavior. The orbit space
X?* /G of the stable locus actually admits a natural structure of a variety. The or-
bit space X ** /G of the semistable locus almost admits the structure of a variety:
one first needs to identify orbits whose closures intersect. The resulting variety is
called the GIT quotient, denoted by X ¢ //G, and it is a projective compactification
of X*¥/G. One major application of the theory was to define stable vector bun-
dles and show the existence of a quasi-projective moduli space classifying stable
bundles [Mum®63].

Vector bundles

The classification of vector bundles on curves depends again on the genus of the
underlying curve. Vector bundles on the projective line were classified by Dedekind
and Weber: all vector bundles can be decomposed into line bundles and a line
bundle is determined by its degree (a measure of twistedness) [DW82]. In genus
1 there is an explicit (but quite complicated) description of vector bundles due to
Atiyah [Ati57].

When g > 2 we again end up in the realm of moduli theory. Equipped with the
new notion of stable and semistable bundles, Narasimhan and Seshadri showed
that over the complex numbers there is a correspondence between (twisted) irre-
ducible unitary representations of the fundamental group of a Riemann surface
and stable vector bundles on the Riemann surface [NS65]. Remarkably the moduli
space of unitary representations is a priori only a real-analytic manifold, however
this correspondence shows that it also admits the structure of a complex algebraic
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variety.

They also showed that the connected components of the moduli space are given by
semistable bundles with fixed rank and degree. Moreover the dimension of each
component is n2(g — 1) + 1, where n is the rank of the bundles. Finally they gave
an explicit description of the identifications between semistable bundles that are
needed to form the GIT quotient, which is now known as S-equivalence.

The correspondence was later generalized by Mehta and Seshadri to the represen-
tations of the fundamental group of punctured Riemann surfaces [MS8(Q]. On the
other side of the correspondence they obtained vector bundles with added data
around the punctures and called these parabolic bundles. They then carried out
Mumford's GIT to show that there exists a projective moduli space of semistable
parabolic bundles and gave an explicit description of the identification between
semistable objects that is abstractly defined by GIT.

Algebraic stacks

Ever since Deligne and Mumford’'s seminal paper [DM69] it is widely understood
that moduli spaces are more naturally moduli stacks. Algebraic stacks are a natural
generalization of varieties that allow for quotients by algebraic groups. When we
quotient a topological space by a continuous group action we naturally obtain a
topological groupoid, so a good way to visualize a stack is as a topological space
together with automorphisms groups attached at certain points.

From the quotient perspective of moduli spaces, it is already clear why we would
like to work with stacks, as the existence problem is solved almost tautologically.
However from the classification perspective there is an added bonus: when we
classify objects which have non-trivial automorphism groups, a moduli stack can
naturally record these automorphisms as well.

In their paper Deligne and Mumford gave a treatment of the moduli stack M, of
algebraic curves. There are several ways to show that there exists a moduli space
M, of curves of genus g and, over the complex numbers, it was quickly shown to
be connected using analytic techniques, which could not be generalized to arbitrary
fields. Deligne and Mumford's breakthrough was to instead show that the moduli
stack M4 over an arbitrary base field was connected, which then implied the result
for the moduli space M, as well.
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The most important stack from the perspective of this thesis is the moduli stack of
vector bundles on a given curve. For technical reasons is it is often convenient to
slightly extend the class of vector bundles by taking kernels and cokernels of vector
bundle morphisms to obtain the class of coherent sheaves. Fixing a curve C, there
is a moduli stack Coh(C') of coherent sheaves, together with an open substack of
vector bundles Bun(C).

The connected components are the substacks Bun,, 4(C') C Coh,, 4(C), consist-
ing of bundles with fixed rank 7 and degree d. The dimension of Coh,, 4(C) is
n? (g—1), whichis 1 less than the dimension of Narasimhan and Seshadri's variety.
This is because vector bundles have positive dimensional automorphism groups
and the dimension of a stack incorporates the dimension of the automorphism
groups. In particular all vector bundles are invariant under scalar multiplication,
which is the reason for the difference of 1. One nice consequence is that the stacky
dimension formula also holds for g = 0 and g = 1.

Good moduli spaces

Another breakthrough in the theory of moduli spaces was a stack-theoretic treat-
ment of Mumford’s GIT. For an arbitrary stack we can ask if there is a variety (more
precisely an algebraic space) that best approximates it. If such a variety exists and
satisfies a list of technical properties, it is deemed a good moduli space for the
stack [Alp13]. The motivating example is the fact that the GIT quotient X** /G is
a good moduli space for the stack quotient [ X % /G]. Alper, Halpern-Leistner and
Heinloth have given two valuative criteria for the existence of good moduli spaces
[AHH23], which can actually be checked in practice.

For example the moduli stack of semistable vector bundles admits a good moduli
space, which is in fact the same moduli space constructed by Narasimhan and Se-
shadri [ABBLT22]. The same is true for the stack of semistable parabolic bundles
and the corresponding variety constructed by Mehta and Seshadri. Note that in
these cases the good moduli space only parameterizes objects up to S-equivalence,
and in general the map from the stack to the good moduli space is a topological
quotient.

One major advantage of this approach is that we no longer need any projectivity
assumptions. However the theory also does not explain when the resulting good
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moduli space is projective. For this reason the modern approach to good moduli
spaces has two parts, first check the existence criteria of [AHH23] and then give a
separate proof of projectivity.

Cohomology and motives

Identifying connected components is only a first step for understanding a moduli
stack. A very popular approach to understanding complicated varieties and stacks
in algebraic geometry is via cohomology theories, such as singular cohomology or
étale cohomology. Cohomology theories are functors from some geometric cate-
gory (such as stacks over a fixed field) to a linear category (such as graded Abelian
groups) satisfying some natural properties. Cohomology theories are useful as they
take away some of the complexity, letting us isolate some specific geometric infor-
mation.

The idea of Voevodsky motives is to build a universal functor M and a category
of motives through which other cohomology theories factor, and which encodes
the Chow groups of smooth varieties, another important invariant. In practice this
means that if we can make computations in the category of motives, we automat-
ically obtain computations in other cohomology theories and Chow groups. As an
illustration, the geometric fact that projective space IP" can be naturally stratified
by affine spaces

= APTITA™ VI A T pt,

gives rise to a motivic formula

P*) ~ Pz},
1=0

where Z{1} is a fundamental object called the Tate motive and Z{i} = Z{1}*",
This formula implies the classic computations of singular cohomology, étale coho-
mology and Chow groups:

HSTng( ¢ Z) = Zla] /(=" )

HEBE, Q1) =~ Qulel/ ("),
' (P") ~ Z[H]/(H").
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Note that a priori the motivic formula only gives us these objects as Abelian groups,
to compute the ring structure one needs to do some extra work.

There are very nice formulas for the motives of moduli stacks of vector bundles
on a curve C, expressed in terms of the motive of symmetric powers of C and its
Picard stack Pic(C') [HP22; HP21a]. Namely, for n > 1 we have

n—1
M (Bun, o(C)) = M(Pico(C)) @ (R EP) M(sym (O)){if},

i=1 j>0

M (Cohy, 4(C)) = M(Pico(C)) ® @ €D M (sym’ (C)){ij}-

i>1 5>0

Geometrically the tensor product of motives corresponds to products of stacks and
the direct sum corresponds to a disjoint union. This means that we can interpret
the formulas as saying that the moduli space of vector bundles is “made up” of
products of the Picard stack and symmetric powers of the curve.

Stacky curves

This thesis investigates coherent sheaves on stacky curves. Stacky curves are reg-
ular 1-dimensional stacks with finite stabilizer groups at finitely many points (Def-
inition ). Stacky curves naturally arise as quotients of curves by finite group
actions. More generally they can be obtained by gluing together several such quo-
tients. The underlying topological space of a stacky curve always admits the struc-
ture of an algebraic curve and is called the coarse space of the stacky curve. There-
fore we like to intuitively think of a stacky curve as a curve together with stabilizer
groups attached at finitely many points, which we call the stacky points.

When the field has positive characteristic it is often important to assume that the
order of the stabilizer groups is not divisible by the characteristic. In this case we call
the stacky curve tame. In the tame setting a stacky curve is completely determined
by the coarse space and the order of the stabilizer groups. This is formalized in the
following theorem, which was possibly well-known to a handful of experts; however,
our proof addresses some subtleties over non-separably closed fields which had
not been considered previously.
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Theorem A (Proposition and Theorem [1.1.31)) Every tame regular stacky
curve is a root stack over its coarse space and conversely every root stack over
a regular algebraic curve is a regular stacky curve.

The above theorem classifies stacky curves as curves together with a set of weighted
marked points; however the spherical stacky curves with genus g < 1 are partic-
ularly well behaved and we show that there is a particularly nice classification in
terms of root systems. Note that stacky curves can have a fractional genus, this
reflects the idea that a stacky point can be thought of as a “fractional” point.

Theorem B (Section ) Let © be a smooth projective stacky curve of genus
g < 1. Then there exists a natural irreducible root system in a quotient of the
Grothendieck group Ko(€). This root system together with the residue fields of
the stacky points uniquely determines the stacky curve up to isomorphism.

Sheaves on stacky curves

In his thesis [Nir09] Nironi proves that there exists a moduli stack of coherent
sheaves on a projective Deligne-Mumford stack. Moreover, using the concept of
generating sheaves from [0S03], he introduces a notion of semistability and shows
that the substack of semistable sheaves admits a projective good moduli space by
using GIT. This notion of semistability depends on the chosen generating sheaf and
thus gives many different substacks and corresponding moduli spaces.

In this thesis we specialize to the case of a stacky curve € and define discrete invari-
ants called twisted degrees that together with the rank determine the connected
components of Coh(C) and Bun(C). The twisted degrees are a finite set of in-
tegers that encode the action of the stabilizer groups on the fibers at the stacky
points.

Theorem C (Corollary and Theorem ) Let C be a smooth projective
stacky curve. The stack Coh,, 4(C) of coherent sheaves with fixed rank n and
twisted degrees d is smooth and connected.

There are forgetful maps Bun,, 4(€) — Bun,, 4(C') from vector bundles on a stacky
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curve C to vector bundles on its coarse space C. These forgetful maps are fibra-
tions by flag varieties (Example ), which gives a motivic formula

M (Bun,, 4(C)) = M (Bun, 4(C)) ® M(Flagd(k@")).

The corresponding map Coh,, 4(€) — Coh,, 4(C') is not a fibration and the motive
seems to be much more complicated. Although we do not quite obtain a motivic
formula, we can give a qualitative statement.

Theorem D (Corollary ) Let k = k be an algebraically closed field. The
motive with rational coefficients M (Coh,, 4(C)) lies in the thick tensor subcate-
gory generated by M (C).

Sheaves on stacky curves are closely related to parabolic bundles on the curve ob-
tained by puncturing all the stacky points. This has been observed in several forms,
firstin [Bis97]], via the existence of specific covers of the stacky curve. In fact there is
a categorical equivalence between quasi-parabolic bundles and vector bundles on
stacky curves [Bor07]. This categorical equivalence is upgraded to an equivalence
of moduli stacks in [Nir09]. We analyze how these equivalences interact with the
different notions of semistability and the discrete invariants, to give equivalences
between stacks of semistable parabolic bundles and semistable vector bundles on
stacky curves.

Theorem E (Corollary ) Every connected component of the moduli stack of
semistable parabolic bundles on a smooth projective curve is isomorphic to a
stack Buni‘fj(@) of vector bundles on some smooth projective stacky curve C,
with rank Tvziand twisted degrees d, that are semistable with respect to some

generating sheaf €.

This shows that the moduli theory of parabolic bundles can be completely under-
stood by considering vector bundles on stacky curves.

Even though Nironi has proven the existence of projective moduli spaces using GIT,
these techniques are not effective: they do not explain in any way how to obtain
actual embeddings of the moduli space into projective space. In joint work with C.
Damiolini, V. Hoskins, S. Makarova we generalize the approach of [ABBLT22] from
classical curves to stacky curves to give an effective proof of projectivity.
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Theorem F (Corollary ) The stack Buni’sds((i’) admits a good moduli space

B. Moreover there is a line bundle L¢g on Buni‘fj(@) and there are effective

bounds for a power of Lg to define a finite map B — P, giving an effective
proof of projectivity of B.

By the previous theorem, this is also an effective strengthening of the results of
[MS8q].

Structure of the thesis

Chapter ﬁ] gives a basic treatment of the structure of stacky curves and their cate-
gories of sheaves. We show that every tame stacky curve is a root stack (see The-
orem H) and thus a stacky curve is Zariski-locally a quotient of a curve by a finite
group. This is a “well-known" result, certainly over the complex numbers, but we
take some care to give these descriptions over an arbitrary (possibly non-separably
closed) field. On the side of sheaves we give a computation of the Grothendieck
group Ko(C€) in terms of the geometry of the stacky curve C. Finally we describe a
relation between the category of (semistable) vector bundles on smooth projective
stacky curves and the category of (semistable) parabolic bundles .

In Chapter E we focus on spherical stacky curves, which are the curves of genus
< 1. These have the simplest behavior and we show that a quotient of their
Grothendieck group contains a natural irreducible root system. This enables us
to classify spherical stacky curves using Dynkin diagrams as described in Theo-
rem B. We show that there is a close relation between spherical curves and finite
subgroups of PGL2(k), and we classify which bundles on P! admit an equivariant
structure for a particular finite group.

Chapter E considers the moduli theory of coherent sheaves on smooth projective
stacky curves and several related moduli problems. We show that the stack of
coherent sheaves on a stacky curve is smooth and show that the substacks with
fixed invariants are irreducible, proving Theorem @ We also show that any stack
of semistable parabolic bundles is isomorphic to a stack of semistable vector bun-
dles on a stacky curve as in Theorem E Finally we show that the stack of coherent
sheaves on a stacky curve is stratified by the invariants of the torsion part and these
strata admit the structure of vector bundle stacks and the stack of torsion sheaves

XX



is in turn stratified by (graded) Young diagrams. These stratifications are used to
prove Theorem E

Chapter@] proves Theorem E and is based on joint work with C. Damiolini, V. Hoskins
and S. Makarova. We apply the existence theorem of [AHH23] to obtain a proper
good moduli space for the stack of E-semistable vector bundles on a stacky curve
for any generating sheaf €. We then construct an explicit determinantal line bundle
on the stack and give effective bounds for the global generation of a power of this
line bundle. We show this defines a finite map from the good moduli space to
projective space, showing that the good moduli space is projective.

Appendix H is a technical appendix where we construct a universal flattening strat-
ification for cyclotomic stacks, which is applied in Chapter E This construction is a
specific case of the conjectured construction in [0S03].

Appendix E collects some facts about Voevodsky motives, which will be used in
Chapter E
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CHAPTER 1

Fundamentals of stacky curves

ENuEeiGY gotiy, 00 Lépog 0DOév.

the Elements
Euclides

In this chapter we will introduce and develop the basic theory of stacky curves. In
the first section we cover the local and global structure results for stacky curves,
which relate stacky curves to classical curves, proving Theorem H In the second
section we start our analysis of coherent sheaves on stacky curves and prove ana-
logues of many of the classical results, like the existence of a torsion filtration and
a description of invertible sheaves. In the third section we study projective stacky
curves and give analogues of Serre-duality, the Riemann-Roch theorem and the
Riemann-Hurwitz theorem. We also discuss Hilbert polynomials and stability for
vector bundles on projective stacky curves. In the final section we will relate vector
bundles on stacky curves to parabolic vector bundles on stacky curves and compare
the notions of stability on both sides.

1.1 Structure results for stacky curves
In this section we will describe the basic geometry of stacky curves. The main results

are two structure results for stacky curves: alocal structure result describing stacky
curves locally as finite quotients of classical curves and a global structure result
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describing stacky curves as a classical curve together with finite ramification data.
The results in this chapter are certainly well-known; however, they are often stated
in such high generality that it might obfuscate the simplicity of the case of curves.
Consequently, we will restate these results in the case of curves and use the fact
that we are on a curve to give simplified proofs. What is new is that we work over
an arbitrary (potentially imperfect) base field. For this reason we will have to work
with regular curves rather than smooth curves.

Definition 1.1.1 A stacky curve is a regular separated finite type geometrically
connected Deligne-Mumford stack € of dimension 1 over a field k, such that
there exists a (non-empty) scheme X and an open immersion X — C.

The condition that € contains an open subscheme excludes things like gerbes over
curves and ensures that € has only finitely many stacky points. We will only con-
sider regular stacky curves, which is why we include it in the definition. Note that
by definition a curve is just a stacky curve that happens to be a scheme. When we
want to emphasize that a curve is scheme, we will call it a classical curve.

We will now define the basic properties of points on a stacky curve. For a nice
discussion on residual gerbes of points of an algebraic stack see [BL24, Appendix A].

Definition 1.1.2 Let C be a stacky curve and p be a closed point of €. We define
the residual gerbe of p to be the unique reduced closed substack of C supported
onpanddenoteitby,: G, — C. Thereis afield k(p), called the residue field
of p, withamap G, — Spec(x(p)) thatis initial among such maps. We say that
p is a stacky point if Gy, is a stack, i.e. is not the spectrum of a point. Let [ be a
finite extension of k(p) over which G, splits, so (Gp,); = [Spec(l)/Gp,], where
Gy, actstrivially on [. We say that pis atame point if the order of G, ; is coprime
to the order of k for any (or every) such [. We say that C is tame if all of its points
are tame.

Note that, since stacky curves are locally Noetherian, this definition of the residual
gerbe is equivalent to the more general definition of [Stacks, Definition 06MU] via
[Stacks, Lemma OH27].

We will refer to G, ; as the stabilizer group of a closed point p and denote it by G,


https://stacks.math.columbia.edu/tag/06MU
https://stacks.math.columbia.edu/tag/0H27
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Strictly speaking this is not well defined, since we need to choose a field extension [,
but since we are usually working étale locally this is not a big problem. Moreover we
will seein Lemma that for tame stacky curves the residual gerbe always splits
over k(p) and G, is a well defined group scheme defined over x(p) isomorphic to

[he-

The motivating example of a stacky curve is the following.

Example 1.1.3 Let C be a curve over a field k and G be a finite subgroup of

Aut(C); then the stack quotient [C'//G] is a stacky curve. The stacky points

of [C'/G] correspond to the orbits of G with non-trivial inertia. Let p be a fixed

point of the G-action and denote by G5(p) the stabilizer group and by G (p) C

Gs(p) the inertia group, i.e. the subgroup that acts trivially on the residue field

k(p) of p (see [SGAT, Exposé V.2]). The residual gerbe Sap is isomorphic to
[spec (H(p)Gs(p)/Gi(p))/Gi(p)].

In the next example we glue together two quotient curves to get a stacky curve that
is not itself a quotient of a curve (see Proposition for the proof of this claim).

Definition 1.1.4 The football space J(p, ¢), with weights p, ¢ € N>1, is given
by gluing the two stacky curves Uy = [AL/u,] and Uy = [A]/p1,], where p,
and g act by multiplication and the gluing map Spec (k[z, x_l]) ~ [A,}z —
{0}/ pp] = [Af — {0}/ 11q) ~ Spec(kly, y~']) is defined by y — =~ .

The football space F(1, 1) is simply the projective line ]P’,li and topologically F(p, q)
is just ]P’/,lc where the points 0 and oo are stacky with residual gerbes B, and Bjig
respectively. Over the complex numbers, we can think of this as a sphere with
two pointy sides, i.e. an American football. When p and ¢ are coprime, F(p, q)
is isomorphic to the weighted projective stack P(p, q) = [AZ — {(0,0)}/G,],
where G,, actsas A - (z,y) = (APz, A%y). When gecd(p,q) = e > 1, thereis a
map P(p, q) — F(p/e, q/e), making P(p, q) into a p.-gerbe over F(p/e, q/e).

Definition 1.1.5 Let C be a stacky curve. A coarse space morphism for C is a
morphism : € — (' to an algebraic space satisfying the following properties.
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+ Anymorphism f: € — X to an algebraic space factors uniquely through
.

+ Theinduced map |C(€2)| — |C(£2)| is a bijection for algebraically closed
fields €2.

The algebraic space C'is called the coarse space of C.

By the factorization property, the coarse space morphism is unique up to unique
isomorphism if it exists. To mirror the idea that the coarse space is a rough (coarse)
approximation of the stacky curve we will write stacky curves with calligraphic let-
ters and their coarse spaces with the same non-calligraphic letter. In the litera-
ture coarse spaces are sometimes called coarse moduli spaces, in analogy with the
concept of fine/coarse moduli spaces. Since stacky curves are not (always) moduli
spaces, we omit the word “moduli”.

To show the existence of coarse spaces we can apply the Keel-Mori theorem [KM97]];
see for example [Con05] for a proof.

Theorem 1.1.6 (Keel-Mori) Let X be an Artin stack that is locally of finite presen-
tation over a field &, with finite inertia stack 1(X). Then there exists a coarse
space morphism 7: X — X with the following additional properties.

(1) If X is separated, then so is X.
(2) The coarse space X is locally of finite type over k.
(3) The map 7 is proper and quasi-finite.

(4) For any flat map X’ — X of algebraic spaces, the pullback 7’: X X x
X’ — X'is also a coarse space morphism.

Clearly stacky curves satisfy the conditions of the Keel-Mori theorem, so they always
have a coarse space morphism. Using this fact we can give the local structure result
for stacky curves we alluded to above.

Proposition 1.1.7 (Local form of stacky curves) Let C be a stacky curve with
coarse space map 7m: € — C and p be a closed point of C' with stabilizer group
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Gp. Then there exists an étale morphism V' — C' from a classical curve, with
P in its image, and a (possibly disconnected) classical curve U with an action of
Gpsuchthat C x¢ V =~ [U/G,).

Proof. The existence of the schemes V, U and the action by G, follows from the
proof of [AV02, Lemma 2.2.3]. The quotient U — [U/G)] is finite and smooth,
so U is finite and smooth over C. It follows that U is regular separated and 1-
dimensional over k, so it is a (possibly disconnected) classical curve. O

Proposition 1.1.8 Let C be a stacky curve with coarse space C, then C'is a clas-
sical curve.

Proof. By Proposition , we know there exists a surjective étale cover by a (pos-
sibly disconnected) curve f: V' — C. It follows that C'is regular and a fortiori
normal. By Theorem (1), we know that C' is separated and since 7 is a home-
omorphism, C' is irreducible. Finally we have an open substack X — C thatis a
1-dimensional scheme. Now the coarse space of X, which is X, is an open sub-
space of C. Thus C'is 1-dimensional as it contains an open 1-dimensional scheme.
By [Knu71|, Theorem V.4.4], a normal, separated, irreducible algebraic space over a
field is a scheme in codimension 1. It follows C' is a scheme and hence a curve. O

Ramification theory and root stacks

We will now develop some basic ramification theory for stacky curves. This is based
on [GS17], which gives a treatment for more general (smooth) DM-stacks. The goal
is to understand the ramification of the coarse space map and see how it charac-
terizes the curves.

Definition 1.1.9 Let f: C — D be a morphism of stacky curves. Letp € C
be a closed point with image f(p) = ¢ € D. Take an étale cover by a scheme
V' — D and then another étale cover by a scheme U — V' X C. Then take
a point u € U that maps to p and let v be its image in V. Then we define the
ramification index e,, /, to be the ramification index e,, /,, of u over v.
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I] Lemma 1.1.10 The above definition is independent of the chosen covers.

Proof. Fix an étale cover V' — D and choose two different U and U’. Then
U Xvxpe U’ is also étale over V' X g, G, so we may assume there is an étale
morphism U’ — U commuting with the map to V' x ¢ C. Let v, u, %’ be such that
u' — u — v; then €yl v = €y JuCujv = €y /v- NOW pick two pairs of étale covers
U,VandU’, V' Since V xqp V' is étale over D, we may assume that there is an
étale morphism V/ — V. By the first point, we may replace U’ by U X U’ so
that we have a commutative diagram,

U/ V/

Ll

Uu—YV

where the vertical arrows are étale. Now pick u, v, u’,v" appropriately; then we

have Bu/v = eu//ueu/v = eu//vrev//v = Gu//v/. O

Definition 1.1.11 For f as above, the ramification locus R is the set of closed
points p € € such that €p/ f(p) > 1. The branch locus is the image of I2 inside
D. We denote by e the set of ramification indices ep/f(p) forp € Ry. Amap
[ is called unramified if Ry is empty. We say that f is tamely ramified at p if
the characteristic of k does not divide e, ¢(,,). The map f is tamely ramified if
it is tamely ramified at every point. The pair (Rf, ef) is the ramification data

of f.

The ramification data of tame quotients is particularly well behaved.

Lemma 1.1.12 Let G be a finite group acting faithfully on a curve C'. Consider

the coarse space morphism 7: [C'/G] — C'/G from the stack quotient to the

schematic quotient. Assume that the orders of the inertia groups G;(z) are

not divisible by the characteristic of k for any closed pointz € C, i.e. [C'/G]

is tame. Then for any closed pointy € [C'/G], with z := 7(y), we have that

the ramification index e,/ is equal to the order of the inertia group G;(x) for
apointx € C'lying above y.
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Proof. Since C'/G is already a scheme, we can take the identity map as its étale
cover. Themap C' — [C'/G] s étale by the assumption on the orders of the inertia
groups, so we may pick a point z in C' that maps to y and compute e/, = €/,
using the map C' — C'/G. Now the result is classical. O

Lemma 1.1.13 An unramified map € — D between tame stacky curves is rep-
resentable.

Proof. Let U — D be an étale cover of D by a scheme U, then C xp U — U'is
also unramified, so we may assume that D is a scheme. Let [V//G] — € be as in
the local form of Proposition around any point. The map [V/G] —-C=>D
is unramified and factors through the coarse space V/G as D is a scheme. Since
ramification indices are multiplicative in compositions, the map [V/G| — V/G'is
unramified. This means that G acts freely on V by Lemma [i.1.12, hence [V/G] =
V/G. It follows that the coarse space map C — Cis étale locally an isomorphism,
so Cis a scheme. )

Lemma1.1.14 Let f: € — D be an unramified map of tame stacky curves that
induces an isomorphism of coarse spaces C' ~ D; then f is an isomorphism.

Proof. Since being an isomorphism can be checked étale locally, we can assume
D = [V/G]and D = V/G for a curve V and finite group G' by Proposition [i.1.7.
Since f is unramified, it is representable by Lemma[i.1.13, so V' i= € xq V'is
a scheme. As V' — Cis a finite étale morphism, V" is also a curve. By definition
there are non-empty open subschemes X C Cand Y C D and we can take
their intersection X N'Y C C' ~ D in the coarse spaces. Now X NY is a non-
empty open subscheme of both € and D and f restricts to an isomorphism on this
open subscheme. It follows that the morphism V' — V between regular curves
is birational and a bijection on points, hence an isomorphism. Consequently f is
an isomorphism. O

Definition 1.1.15 Let € be a stacky curve. AWeil divisor D on € is afinite formal
sum Y, nzZ of reduced closed substacks Z of € of codimension 1. If all the
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coefficients nz > 0, we say D is effective.

The reduced closed substacks of € of codimension 1 are in one to one correspon-
dence with the reduced closed subschemes of the coarse space C, hence they are
in one to one correspondence with the closed points of both € and C'. When pis a
stacky point, the associated closed substack is precisely the residual gerbe G, of p.
This is the motivation for the following definition.

Definition 1.1.16 Letp be a stacky point of order e;, on a stacky curve. We define
eip to be the Weil divisor Gj,. This lets us write a Weil divisor as a formal sum of
P

closed points with coefficients in QQ, namely we define Zp Z—:p = ZSP np9p.

Definition 1.1.17 Let C be a stacky curve. An effective Cartier divisor D on €
is a non-zero map D: € — [A!/G,,] i.e. aline bundle £ on C together with a
non-zero section s of L.

Note that one can similarly define a possibly non-effective Cartier divisor to be a
map to [Pl/Gm]. This definition is more familiar than it might look on first glance,
namely the isomorphism classes of maps into [Al/Gm] are nothing more than
elements of H°(O/O>). similarly maps into [P!/G,,] are parameterized by
HO(X* /O*), where XK is the sheaf of meromorphic functions.

Definition 1.1.18 For a closed substack Z C C, we define the ideal sheaf
Oe(—2) C O¢
on étale covers of C as follows. Let f: U — € be an étale cover; then

Oc(—Z)|lu = Ou(=Z xe U) C Op.

Given an effective Weil divisor DD, we can associate an ideal sheaf

O¢(—D) = Q)0 <—61pp> C O¢



1.1 Structure results for stacky curves

and the corresponding effective Cartier divisor (O¢(D), sp), where O¢(D) =
Hom (Oe(—D), O¢), and sp corresponds to the inclusion map O¢(—D) —

up(s)
P ep
defined by considering the inclusion ¢;,: G, — € and setting vp(s) to be one less

than the length of L]le considered as an Lljl(’)e-module via L;lsi Lljl(’)e —

i~1L. To see that these two operations are inverse to each other, we can pass to
an étale cover, where it follows from the case of classical curves.

Oe. This process can be inverted by sending (£, s) to > | p, where vy, () is

Definition 1.1.19 Let f: € — D be a non-constant map of stacky curves and
D be an effective Cartier divisor on D. We define the pullback f*D of D to be
the composition € — D — [A!/Gy,].

The following proposition expresses the pullback of a divisor in terms of Weil divi-
sors and ramification data.

Proposition 1.1.20 Let f: C +— D be a tamely ramified map of stacky curves
and let ¢ be a closed point of D, with pre-images {p;} = f~'(g). We have

[*Gq = Zpi €p;/qIpi-

Proof. We first show the case where € = C'is a scheme and f is étale. We then
have f*gq = (O(gq XD C)> SSqXDC) = Z@Pz

For the general case, we let u: U — D be an étale neighborhood of ¢ such that g
has a unique preimage ¢ and let V' — U X C be an étale cover, so we have the
following diagram.
|4
\L’U
UxpC 25U
oo e

e—1 ,p

We can now verify the equality by passing to the cover V, i.e. we have to show

v'w* f*G, = viw* Z €p;/qIpi-

pi
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Note that v*w* f*G, = v*g*u*G, = (vog)*q. Letr;; be the preimages of the p;
under (v o w), then by the first case v w* 3 ey, /49p, = Ew €p, /qTij- Note
that the 7;; are exactly the preimages of ¢ under (vog)and €p;/q = €ry; /g SO
we have reduced to the case of classical curves, which is [Liu02, Chapter 7, Exer-
cise 2.3(b)]. O

We now go over the construction of root stacks, which should be viewed as “degree
1 covers” with specified ramification data. We will prove that all stacky curves are
actually root stacks over their coarse space in Theorem . For a more general
treatment of root stacks see [Cad07].

Definition 1.1.21 Let € be a stacky curve, p be a closed point and e > 1 be
a natural number not divisible by the characteristic of k. Consider the Cartier
divisor (O(9p), sp) associated to p. The root stack Vp/€ is defined as the
fiber product of the diagram

Vp/C —— [AL/Gy)]

lp Lo

@<O(9p)78§) [A}C/Gm] 7

where the right arrow is induced by the e-th power maps on Al and G,,, and
the bottom arrow is induced by p. The top map v p/C — [Al/Gm] defines
an effective Cartier divisor (T, sp,), which is called the tautological divisor. We

refer to T’ as the tautological line bundle. The left arrow p: \/e p/C — Cis
called the root morphism.

For a finite set of points p = (p1, . . . pn) and multiplicities e = (e1, . .. e,) we
define the iterated root stack

gVQ/G = Vp1/€ xe Vp2/€ xe -+ xe Vpn/C,
which comes with tautological Cartier divisors (T}, sp,) for each ¢ and an iter-
ated root morphism \Q/g/e — C.

Technically the root construction also allows us to root in non-reduced divisors;

10
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however this might result in singular stacks, so we avoid it. We do note that rooting
in f - D with degree fe is the same as rooting in D with degree e.

Since root stacks commute with pullback by construction, the following lemma ex-

plains the local structure of root stacks.

Lemma 1.1.22 Let C' = Spec(A) be an affine curve and let x € A correspond
to a point p = (x). We have

Vp/C = [spec(A[t)/(t° — @))/pe,

where 1, acts by multiplication on the variable ¢.

Proof. Since Oc(p) ~ O, the morphism C 5 [A!/G,,] factors as C
Al — [A'/G,,]. First consider the diagram of Cartesian squares.

X —— [AY/Gp)

l Jo

Al —— [AY/G,,]

| |

Spec(k) —— BG,,
We claim that X == A X416, | [A'/G ] ~ [A/p1e]. Indeed
X =~ spec(k) xpg,, [A/G] ~ [AY/(ker b, : G,, — G,,)] = [AY/pe].

Now consider another commutative diagram of Cartesian squares (pictorially rep-
resented in Figure ).

Spec(A[t]/(t¢ — x)) —— Al

! |

Vp/C ———— [A/ne] — [A1/G]

| ! !

C Al (AY/G,]

11
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The action of . on A pulls back to an action on Spec(A[t]/(t® — x)) and the
result follows. o

<
e S

l
P S 0

Figure 1.1: The local structure of a root stack with e = 3. The horizontal maps can
be thought of as projections to the tangent space of the point p. We can see that
the root stack sits in between the curve and a ramified cover of the curve. Note
that the nodes are branch points, not singular points.

Bus

<+ @ <+—

Remark 1.1.23 In the case that we are rooting in a non-stacky point this example
shows that the Weil divisor associated to (Tp, sp) is supported on the single closed
point lying above p and has stabilizer p.. We abuse notation and the point lying
above p will also be called p, so that the corresponding Weil divisor is denoted by
%p. By construction we have 7*(O¢(p)) = (’)@(%p)e, which motivates the “root”
terminology.

Lemma 1.1.24 The root morphism p: \e/p/(i’ — € is an isomorphism away
from the rooted point.

Proof. Away from the rooted point the section s, does not vanish, therefore the
restriction € — {p} — [A}/G,,] factors through the open substack Spec(k) =
[Al —{0}/G,,] C [A}/Gy,) and the restricted map 0. [Af — {0}/G,,] —
[AL — {0}/G,,] is the identity. O

12
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For completeness we will prove two lemmas on the regularity and smoothness
properties of branched coverings.

Lemma1.1.25 Let A be aregular local ring with maximalidealmand k = A/m.
Lets € A — {0} such that A/(s) is regular and e be a positive integer that is
invertible in A. Then B := A[t]/(t® — s) is regular.

Proof. We split up the proof into two cases. First assume s ¢ m; then we claim
that A — Bis étale. Indeed Qp/4 = (dt|et® 'dt = 0) and et®" ! € B* by
assumption. Hence 2,4 = 0.

Now assume that s € m. We see that m + () is the unique maximal ideal of B
and we compute

o om+(t) _ moOtAG---dtLA
dimg ———2 = dimy
(m+(t))? M2+ (s) DtmB2AD---Dte1A
_ . . A . m
_dlmkm+dlmk /m<d1mk@+1.

The final inequality follows as s € m, but s ¢ m?, because A/(s) was assumed

to be regular. It follows that we must have dimg (n'?jét))y = dimg % so B is

regular. O

Lemma 1.1.26 Let A be a smooth k-algebra, s € A be an irreducible element
and e > 2 aninteger invertible in k. Let B = A[t]/(t° — s). Then B is smooth
over k if and only if A/(s) is smooth over k.

Proof. First notice that By is smooth, since it is étale over As. Any prime ideal
of B containing s also contains t so they are in bijection with the prime ideals of
B/(t,s) = A/(s). Letp C B be such a prime and let q be the correspond-
ing prime in A/(s). We may assume that A has a standard smooth presentation
A~ Eklxy,...xn]/(f1,- .., feo),andwrite B = k[x1, ... 20, t]/(f1,. .., fe, ),

where h = t¢ — s.

13



1 Fundamentals of stacky curves

If A/(s) is smooth, then by [Stacks, Lemma 00TE], for any ¢, we can rename vari-
ables so that

sec 3 4]
J I 11<i<e,1<j<ce+1
does not map to an element of q. It then follows that

det |:afz agz—si|
7 11<i<e,1<j<ce+1

. Otc—s __ Os_
does not map to p, so B is smooth at p for all p. (Note that oz, — 0z, 50 the

determinant does not have any t-terms.)

On the other hand assume that A/(s) is not smooth. Then, again by [Stacks,
Lemma 0OTE], there is a prime ¢ such that for every relabeling of the x;, the de-
terminant
8fz 88
det [axj Br;
maps to an element of q. It follows that if we want a relabeling on the level of B
we need to include t. Now consider

} 1<i<e,1<j<c+1

Ofi  Oté—s f
det | 9% 0 = et® ! det {8 ’] ,
ot ot 11<i,j<c Tjl1<i J<c

where we use at = 0and at _5 = et® L. So we see also for relabelings contain-
ing t, the determinant lands i |n q. It follows that B is not smooth at q. O

Proposition 1.1.27 Let C be a stacky curve, p be a closed point and e > 1 be
a natural number that is not divisible by the characteristic of k. The root stack
W is a stacky curve. Moreover, W is smooth over k if and only if € and
Gy are smooth over k.

Proof. The only non-trivial facts are that W is a DM-stack and that W is
regular. By Proposition and Lemma , we can cover € by affine curves
spec(A) — € such that Spec(A) xe¢ vp/€ ~ [spec(B)/pc], where B =
Alt]/(t® — s) and s € A'is a section corresponding to a reduced point. Since s is
assumed to be reduced, B is regular by Lemma and it follows that W is
a regular DM stack. The smoothness statement is immediate from Lemma .

O

14
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This proposition shows that root stacks naturally give rise to regular, but non-
smooth stacky curves, since over an imperfect base we can have closed points of a
smooth curve that are not smooth themselves.

Example 1.1.28 Let k = F,,(¢) and consider the curve A}, = Spec(k|[z]), with
the point (—zP — t). Then v p/Alis the curve

[Spec(klz,y]/(x” +y° + 1))/ el ,

so it is singular at the pointy = 0,z = 1/p by [Zar47, Example 3].

Proposition 1.1.29 Let C be a curve and let p be a set of closed points together

with a set of multiplicities e and consider the root stack X := \E/B/C'. The root
morphism X — C'is the coarse space morphism.

Proof. Let m: X — X be the coarse space morphism. By the universal prop-
erty of the coarse space, X — (' factors through a map X — C. We can
check that this is an isomorphism Zariski-locally. Take an affine open Spec(A) =
U C C containing a single p € p. By Lemma [1.1.23, we have X x¢ U =

[Spec(A[t]/(t° — 5))/pcland
X x¢ U = spec(AJt]/(t® — s)!¢) = Spec(A) = U.

Since C' can be covered by affine opens of this type, we conclude that X — C'is
an isomorphism. O

Proposition 1.1.30 Let C be a stacky curve, let p be a closed point on € and let
e be a natural number that is not divisible by the characteristic of k. The root
morphism X = W — Cisramified above p with degree e and it is universal
(terminal) with respect to this property.

Proof. The ramification at p can be computed using Lemmas andf1.1.22. Let
f: X — € beamap of stacky curves and ¢ be a point of X ramified with degree

15
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e above p € C; then (O(1q),s,) defines a map to [A}/G,,] and by Proposi-

€q
tion 1 (Oe(E£p),sp) = (Ox(2q)®°, sq"). Hence f factors through
P q
X — € by the universal property of the fiber product. O

Theorem 1.1.31 Let C be a tame stacky curve with coarse space 7: € — C

and let R be the ramification locus. Identifying the ramification locus with the
[

branch locus, we have that C is canonically isomorphicto V R, /C.

Proof. Note that by the tameness assumption the integers € € e, are not divis-
ible by the characteristic of k. By the universal property of root stacks it follows
that 7 factors via a map € — % R /C. This map is unramified and induces an
isomorphism of coarse spaces. By Lemma it is an isomorphism. o

One immediate consequence of this important structure result is a strengthening
of Proposition for tame stacky curves.

Corollary 1.1.32 Let C be a tame stacky curve with coarse space map 7: C —
C and let p be a point of € with automorphism group of order e. Then there
exists an open neighbourhood V' C C containing 7(p) and a curve U with a
le-action such that V' ~ U/ ., fitting into a Cartesian square.

U/ — €
[
C

Ve e——

We also obtain a somewhat mysterious characterization of fixed points of finite
group actions on curves in positive characteristic.

Corollary 1.1.33 Let G be a finite group of order not divisible by the character-

istic of k£ acting on a smooth curve C'. Then for any fixed point z, the residue
field () is separable over k.
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1.1 Structure results for stacky curves

Remark 1.1.34 In [VZ22], the authors define a separably rooted smooth stacky
curve to be a smooth stacky curve such that the residual gerbes of stacky points
admit an [-point for a separable extension [/k. By Theorem and Proposi-
tion , it follows that all smooth tame stacky curves are separably rooted.

The root stack description also defines a canonical isomorphism from the residual
gerbe of a stacky point to B ..

Lemma 1.1.35 Consider the following commutative diagram.

Sp —— Vp/C — [AY)G,,] — BG,

| | | )

spec(k(p)) —— C [A'/G,] — BGy,

The outer square is a 2-Cartesian diagram. As a consequence, the residual gerbe

Gy is naturally isomorphic to Bji, where Bl is considered as the kernel of

the map 0.: BG,, — BG,, i.e. the map Bu. — BG,, is induced by the
inclusion e — Gy,

Proof. By the universal property of the 2-fiber product, we get a morphism G,, —
(Bite)x(p) = BGm X Bg,, Spec((p)). Onthe other hand, the inclusion Bz —
BG,, factors through [Al/Gm}, so again by the universal property of 2-fiber
products we get a morphism (Blte ) x(p) — v p/C. The image of this morphism is
precisely p and since B i, is reduced it follows that it factors through G,,. Summa-
rizing we get a factorisation G, — (Be)u(p) —+ Ip — Vp/C — (BGm) x(p)
showing that the natural morphism §,, — B is an isomorphism. O

We end this section with a technical definition that will be used when we want to
reduce to the case of a stacky curve with a single stacky point.

Definition 1.1.36 Let C be a stacky curve. A coarsening f: C — € is amap to
a stacky curve €’ inducing an isomorphism on coarse spaces.

17



1 Fundamentals of stacky curves

Proposition 1.1.37 Let7: € — €' be a coarsening of tame stacky curves. Then

€ is canonically isomorphic to X R,/C.
Proof. This follows immediately by applying Theorem to Cand €. o

Example 1.1.38 let C be a stacky curve with coarse space 7: € — C and

. . L. n [
ramification divisor Rr = Y " ; e;p;. Set Cop = C'and C; = Vp;/Ci_1.
Then G, = C and the maps r;: G; — ©;_1 are all coarsenings such that
MT=17T10+++0Typ_10Tp.

1.2 Sheaves on stacky curves

In this section we will develop the basic theory of coherent sheaves on stacky curves.
We start by giving technical results relating sheaves on a stacky curve to sheaves
on its coarse space. We then describe the discrete data of coherent sheaves on a
stacky curve and explain some of their computational properties. We classify the
invertible bundles in terms of invertible sheaves on the coarse space, and we de-
scribe torsion sheaves in terms of cyclic quiver representations. We then compute
the Grothendieck group of a stacky curve by showing that a coherent sheaf has a
torsion filtration and that a locally free sheaf has a filtration by invertible sheaves.
We end with a computation of the canonical sheaf of a stacky curve.

The functors 7, and 7*
We begin by giving an equivalent characterization of the tameness condition for a

stacky curve in terms of coherent sheaves.

Proposition 1.2.1 ([AOVO8, Theorem 3.2]) Let € be a stacky curve with coarse
space map m: € — C; then C is tame if and only if the pushforward on the
categories of quasi-coherent sheaves 7, : Q€oh(C) — QCoh(C) is exact.

Note that the forward implication, which is most relevant for us, is already in [AV02,
Lemma 2.3.4].

18



1.2 Sheaves on stacky curves

Proposition 1.2.2 ([AV02, Lemma 2.3.4]) Let C be a tame stacky curve with

coarse space morphism 7m: ¢ — (. The functor 7, restricts to a functor

of coherent sheaves Coh(C) — Coh(C') and to a functor of vector bundles
Yect(C) — Vect(O).

Proposition 1.2.3 Let C be a tame stacky curve. The functor 7*: €oh(C) —
Coh(C) is exact.

Proof. Themap fc: [A}/G,] — [AL/G,,] is faithfully flat, so by Theorem fi.1.31,
the map 7 is also faithfully flat. O

The formal properties of the pushforward 7, are essential for our applications to
coherent sheaves, so from this point onward all our stacky curves will be assumed
to be tame unless stated otherwise.

Proposition 1.2.4 Let m: € — (' be a stacky curve and F be a quasi-coherent
sheaf on C. Then the following statements hold.

1. The natural map O¢ — m,Og is an isomorphism.

2. The natural map Home (Og, 7* 1. F) — Home(Oe, F) is an isomorphism.

3. There is a natural isomorphism Hom¢o (O¢, m.F) — Home(Oe, F) and
as a consequence H'(C, F) ~ H'(C, ).

Proof. For the first partlet U — C be étale; then U x o € — U is a coarse space
morphism by Theorem , so any morphism U x¢ € — A factors uniquely
through a morphism U — Al For the second part, the inverse is given by sending
a section s: Q¢ — JF to the composition

O¢ = 1*0¢ — 71, Op — m*m,F.
For the final part, we can compose a series of natural isomorphisms.

Home (Oc, 1 F) — Home (14O, 1 F) — Home (O, 1 F) — Home(Oe, F)
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1 Fundamentals of stacky curves

By [Nir09, Lemma 1.10], the functor 7, sends injective sheaves to flasque sheaves,
so we may apply [Stacks, Lemma 015M] to conclude that

RHome (O, _) = RHomc (Oc, R« (_)) = RHome (O, ().

O

The optimistic interpretation of this theorem is that it is easy to compute sheaf co-
homology on stacky curves; in factitis just as easy as computing sheaf cohomology
on classical curves. The pessimistic interpretation is that sheaf cohomology does
not help us understand anything about the stacky structure of either the curve or
the sheaves. However, the above theorem is very specific to the structure sheaf Op,
so there is no analogue for Ext groups. In other words Ext groups do see the stacky
structure. Therefore, we will phrase our results in terms of Ext groups whenever
possible.

Using the local form for stacky curves, we can make the functors 7, and 7* very
concrete.

Lemma 1.2.5 Let V be a curve together with the action of a finite group G, such
that [V//G] is a stacky curve. View a coherent sheaf on [V/G] as a G-equivariant
sheaf F on V. Then m,F = FC is the G-invariant part of F. If F'is a coherent
sheaf on V/G then 7* F'is the pullback to V' together with the trivial G-action.

Proof. This follows from the definitions. o

Using the local form for stacky curves we get the following corollary.

Corollary 1.2.6 Let7: € — C be a stacky curve and let F' be a coherent sheaf
on C. Then the canonical morphism F' — m,7* Fis an isomorphism.

Discrete Invariants

Classically, coherent sheaves on curves contain two pieces of discrete data: the rank
and the degree. These discrete data uniquely determine a connected component
of the moduli stack of coherent sheaves. This reflects the fact that the Hilbert poly-
nomial of a sheaf on a curve is given by a linear polynomial, whose coefficients are
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1.2 Sheaves on stacky curves

determined by the rank and degree, and the Hilbert polynomial uniquely identifies
a connected component.

For stacky curves, the situation is more subtle. Even though our Hilbert polynomi-
als are still linear, they no longer identify a unique connected component of the
moduli space. To remedy this we we have to introduce more discrete invariants. It
turns out that for different applications it is convenient to consider different (but
equivalent) ways to package these discrete invariants.

Definition 1.2.7 Let C be a tame stacky curve and J be a coherent sheaf on €.
Let p be a stacky point with multiplicity e, and ¢, G ~ Bpu,, — C be the
inclusion of the residual gerbe at p, where the isomorphism is the canonical one
from Lemma(i.1.35. The coherent sheaf 1yF on B, correspondstoa Z/e,Z-
graded vector space, so 1,5 ~ D;cz/. 7 k(i)™7, where k(i) is the vector
space k in grade 7. The numbers my, ; = my, ;(F) are called the multiplicities
of F at p. We take the conventionthat0 < i < e, —1 and define the multiplicity
vector of F at p by

myp(F) = my = (Mpo, -, Mpe,—1)-

Finally the collection of all the multiplicity vectors m,, for every stacky point p is
called the multiplicities of & denoted by m = m(5F).

We define the twisted degrees of J to be d,,; = dp;(F) == degmF ®
Oe(ép)- We write dp(F) = dp = (dpo,...,dpe,—1) for the twisted de-
grees at p and finally d = d(F) for the collection of all twisted degrees.

Example 1.2.8 The tautological line bundle T), = O¢(1p) on Vp/C has mul-
tiplicity vector m, = (0, 1,0,...,0).

Proof. The pullback of the tautological line bundle corresponds to the composition
Bue. — Vp/C — [AY/Gp] — BGyp,
which is the inclusion map by Lemma . O
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1 Fundamentals of stacky curves

Since pullback commutes with taking tensor products and k(7)) ® k(1) = k(i +
1), we see that tensoring with the tautological sheaf at p acts as a (cyclical) shift
operator on the multiplicities at p.

Example 1.2.9 Let C := \E/p/C and let F' be a coherent sheafon C, then 7* F’
has multiplicity vector my, = (n,0, ..., 0), where n is the rank of F" |,,.

Proof. We have a commutative diagram.

gp—i>@

oo

Spec(k) —— C

So we have i, m*F = ¢*i F,soi,m*F lies completely in grade 0. O

The above example actually classifies the coherent sheaves with “trivial” multiplici-
ties.

Proposition 1.2.10 Let € be a stacky curve and & be a coherent sheaf on € such
thatm,, = (n,0,...,0)forevery stacky point p. Then the canonical morphism
1. F — Fis an isomorphism.

Proof. Consider the local form of Corollary around a stacky point p,

V/p] —1 ¢

l’rr/ T

V/ge —— C
where ¢ is the stabilizer of p. By [NirQ09, Proposition 1.5] we have f*n* 71, F =
7*g*m.F = 7" 7l f*F, so we can check that the canonical isomorphism is an iso-

morphism locally. View F as a pi.-equivariant sheafon V/, so that F >~ ®ieZ/eZ Fi
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1.2 Sheaves on stacky curves

decomposes into graded pieces. Then m*m,F = JFy, so we have to show that
F; = 0fori # 0. We have a Cartesian square.

spec(k) —— V

L

Bu. —— [V/G]

Showing that ¢*J is the same as the fiber of J at p together with the . action on
this fiber. Since i*F is a trivial representation it follows that F; = 0 for¢ £ 0. ©

Corollary 1.2.11 Let C be a stacky curve and let £ be a line bundle on €. For
each stacky point p, let e;, be the order and let a,, be the unique number such
that mp,q, (L) # 0. Wehave L ~ "L ® @), O(ép)@’aﬂ for a unique (up to
isomorphism) line bundle L on C.

Proof. We can apply the Proposition to L ® ®p (9(%]))‘8_“p to see
1 \9w 1
e | £ o— =L o —
o ®® <epp) ®® (epp>
P P
Now set L := (L ®Q, O(ép)@’_a?) to get
1 \®%
W*L®®o(ep> 3
> P

Finally, if 7L ® @), (’)(ép)@l?’ ~mL'®Q, (’)(ép)@’%, then m* L ~ 7* L/,
solL =m.n*L ~m.n*L =L )

®_ap

Corollary 1.2.12 Letw: € — C be astacky curve with stacky points p; of order
e; for 1 < ¢ < n. Denote by Pice the Picard group of G, i.e. the set of line
bundles over € up to isomorphism. We have an isomorphism of abelian groups

Pico[z1,...,xn)/(e121 — Oc(p1), ..., enzn — Oc(pn)) =~ Pice,
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1 Fundamentals of stacky curves
” givenby L — 7*L and x; — O@(gpi).

For completeness we also rephrase Corollary in terms of Weil divisors.

Corollary 1.2.13 Let m: C — (' be a stacky curve and p € C be a stacky point
of order e. For m € Z we have m*(mp) = “Z*p and 7. ("2'p) = | % | p, where
| ] is the floor of z, i.e. the largest integer n such that n < z.

Proof. Consider the division with remainder m = ae + b. Then O¢(Zp) =
W*Oc(ap)@)(?@(gp) and it follows that 7, Oc ("2 p) = Oc(ap)®7r*oe(g ) =
Oc(ap). O

Another consequence is that we can compute the twisted degrees of line bundles.

Corollary 1.2.14 Let€ := V/p/C. Let L = T L@0e(Lp),with0 <i < e—1
and d = deg L. Then £ has twisted degrees

4 — d j<e—1i
Pl d+1l j>e—d

Proposition 1.2.15 Let0 — & — F — § — 0 be a short exact sequence of
locally free sheaves on a stacky curve then m(&) + m(G) = m(F).

Proof. This is immediate as the pullback functor to the residual gerbe Gy, is exact
on locally free sheaves. O

The above proposition is false for general coherent sheaves. Consider for example
ashort exact sequence of the form 0 — O(—G,) — O¢ — T — 0. Then pulling
back to G, we get the short exact sequence k(e — 1) — k(0) — ;T — 0. The
first arrow must be the zero map, so we get my,(T) = m,(Oe).

Proposition 1.2.16 Let0 — & — F — § — 0 be a short exact sequence of
coherent sheaves on a stacky curve; then d(€) + d(9) = d(F).
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1.2 Sheaves on stacky curves

Proof. This is immediate as tensoring with O@(eip) is exact, Ty is exact and deg
P
is additive in short exact sequences of coherent sheaves on C. O

Locally free sheaves

Having classified line bundles on stacky curves, we now show that every torsion-
free sheaf is a vector bundle i.e. locally free, and that vector bundles are iterated
extensions of line bundles, as in the case of classical curves. Note that “locally free”
should always be interpreted in the étale topology. For a stacky point p there is
no Zariski neighborhood U of p such that O¢|y ~ O@(ép)]U, since they are not
isomorphic after pulling back to G,

Definition 1.2.17 Let C be a stacky curve and & be a coherent sheaf on C. We
define the torsion subsheaf &, C & to be the maximal subsheaf of € that is
torsion. We say that £ is torsion-free if £, = 0.

Classically torsion-free sheaves on curves are locally free, and the same is true for
stacky curves.

Lemma 1.2.18 Let C be a stacky curve and € be a torsion-free sheaf on C; then
€ is locally free.

Proof. By Proposition there is an étale cover f: U — C of € by a classical
curve. Then f*& is a torsion-free sheaf on a (possibly disconnected) classical (reg-
ular) curve U, thus locally free. It follows that € is locally free. O

Corollary 1.2.19 Let C be a stacky curve and € be a coherent sheaf on C. We
have a short exact sequence

0= & —>EE—=F =0,

where &, is the torsion subsheaf of & and F is locally free.

Proof. Letq: € — &/Ewr = F be the quotient map and let Fi,, be the torsion
subsheaf of F, then ¢ (Fror) + Etor is torsion, so by maximality of €, we have
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1 Fundamentals of stacky curves
that q_l(gjtor) C Etors 50 For = 0. o

Lemma 1.2.20 Let F be a locally free sheaf of rank r on a stacky curve C. There
exists a sequence of surjective maps

F=E » & —» -+ —»E&. =0,

such that &; is locally free and £; = ker (&; — &;4+1) is an invertible sheaf.
Moreover m(F) = Y i, m(L;).

Proof. Let D > 0 be a positive divisor of large degree on the coarse space C;
then 7, F(D) admits a non-zero section, so by Proposition we getanon-zero
section O¢ — F ® 7*O¢(D). This gives rise to a subsheaf 7*O¢(—D) — .
Let T be the torsion sheaf of F/1*O¢(—D) and take the saturation

Lo =7*Oe(—D) = ker (F = (F/7*Oc(—D))/T)

andset &1 = (F/m*Oc(—D))/T. The saturation of an invertible sheaf is again
aninvertible sheaf and €1 is locally free by construction. The vector bundle €1 has
rank 7 — 1, so iteratively applying this construction finishes the proof. O

We can now relate the twisted degrees and multiplicities for locally free sheaves.

Corollary 1.2.21 Let J be a vector bundle; then m,, ; = d,; — dp;—1 for 1 <
i < epandmy=rankF — 3" lm,;.

This corollary shows that for a vector bundle &, we can recover (d(F’), rank(F))
from (m(5), deg 7. F) and visa versa. Twisted degrees have better computational
behavior with respect to short exact sequences of coherent sheaves, so we will
usually prefer them for general arguments. On the other hand the multiplicities
are more geometric, so they are usually what we think about for intuition.

Torsion sheaves

Now that we have a basic understanding of vector bundles, we move on to torsion
sheaves. We start by giving a very explicit description of torsion sheaves in terms
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1.2 Sheaves on stacky curves

of quiver representations.

Definition 1.2.22 A k-quiver representation of the cyclic quiver with e ver-
tices is a Z/eZ-graded k-vector space V together with a degree 1 endomor-
phism u. More explicitly, it is a collection of k-vector spaces V; and linear maps
u;: Vi — Vi1 indexed by i € Z/eZ. See Figure [1.4 for a pictorial interpreta-
tion. A morphism of quiver representations (V;, u;) — (W;, w;) is a collection
of linear maps ¢;: V; — W;, such that ¢; o u; = w; o ¢;.

A quiver representation is said to be nilpotent if u is nilpotent.

Ue—9 uy

Ue—1

Figure 1.2: A quiver representation of the cyclic quiver

A form of the following proposition was stated in the language of parabolic torsion
sheaves in [Hei04, Lemma 3.6].

Proposition 1.2.23 Let € be a stacky curve and p a stacky point of order e. There
is an equivalence of categories between the category of torsion sheaves sup-
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1 Fundamentals of stacky curves

ported on p and the category of nilpotent x(p)-quiver representations of the
cyclic quiver with e vertices.

Proof. Take a local form [V// 1] around the point p, such that the pi.-action fixes
a unique point ¢ € V. Now the category of torsion sheaves on C supported on p
is equivalent to the category of ue-equivariant torsion sheaves on V' supported on

q.

Let R := Oy4 be the local ring at ¢ with maximal ideal m; then there is an induced
fie-action on Spec([?), which induces a Z/eZ-grading R = @;c7/.z, Ri- Since
the pe-action fixes m, it is a homogeneous ideal of R for this grading. It follows
that there is a homogeneous uniformizer © € m, which using the conventions of
Lemma has degree 1. Now the category of .-equivariant torsion sheaves
supported on ¢ is naturally equivalent to the category of Z/eZ-graded torsion mod-
ules over R.

Next we notice that the torsion modules over R are precisely the R-module M
such that w"M = 0 for some n. This means that the category of torsion R-
modules is equivalent to the category of pairs (M, n), where M is an R/m"-
module such that u™ 1M 75 0, together with the pair (O, —oo), and the mor-
phisms are morphisms of R-modules after extending scalars. Moreover R/m"™
inherits the grading of R and this equivalence respects gradings. Denote by R
the completion of R in m. Since R/m"” = R/m", it follows that the category
of graded torsion modules over R is equivalent to the category of graded torsion
modules over 1. Note that 1 has a natural 7/ eZ-grading, since we complete in a
homogeneous ideal.

Finally, by the Cohen structure theorem, we know that R ~ r(p)[[X]], where
we can choose X to map to u. Then the induced grading on x(p)[[X]] is the one
where X is homogeneous of degree i. A x(p)[[X]]-module is torsion if and only if
itis finite dimensional as a x(p)-vector space. It follows that the category of graded
torsion k(p)[[X]]-modules is equivalent to the category pairs (V, u), where V' is
a Z/eZ-graded k(p)-vector space and u: V' — V is a degree 1 map. 9

If we view non-stacky points as stacky points of order 1, we recover the fact that a
torsion sheaf on a curve supported on single point corresponds to nilpotent repre-
sentation of the Jordan quiver.
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1.2 Sheaves on stacky curves

Example 1.2.24 Let C be a stacky curve and p be a stacky point of order e. For
1 < i < e define torsion sheaves T; via the exact sequences

0— Oe(—ép) — O = T; — 0.
On the level of (p)[[X]]-modules this exact sequence becomes
0 — X's(p)[[X]] = s(p)[[X]] = r(p)[X])/(X") = 0.

We can now see that J; corresponds to the quiver representation

Vo=Vi=-Viii=r(g)andV; == Vo1 =0

with the identity maps if ¢ < e. For T, the map V,_1 — Vj is the zero map.

Remark 1.2.25 Chasing through all the definitions, we can see that for a torsion
sheaf supported on a stacky point p corresponding to the quiver representation
(ZiGZ/eZ Vi, u), we have my; = dp,; = dimV;.

Lemma 1.2.26 Let C be a stacky curve with a stacky point p of order e. The
irreducible torsion sheaves supported on p are all isomorphic to some TJ;, fitting
into the exact sequence

1 .
0— O(—%p) — (f)(—ép) — T —0,

forsome( < <e—1.

Proof. LetJ beanirreducible torsion sheaf supported on p and consider the associ-
ated quiver representation (V, u) Since u is nilpotent it must send some nonzero
vector v; € V; C V to 0. Then we have a subrepresentation J; = (k‘ . vi,O),
which by irreducibility must be an isomorphism. Such a quiver representation cor-
responds to the module s (p)[[u]] /u*'k(p)[[u]], which fits into the exact se-
quence as stated. O
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1 Fundamentals of stacky curves

The Grothendieck Group
We will now combine the results of the previous sections to give a description of

the Grothendieck group Ko(C) of coherent sheaves on a tame stacky curve.

Proposition 1.2.27 Let C be a tame stacky curve with stacky points p. The maps
detc o my, rank and m,, ; define an injection of Abelian groups

Ko(C) < Pico BZ & @ Ko(Sp)-

PEP

This induces a non-canonical isomorphism

Ko(C) ~ Picc BZ & @ VAL

peEp

Proof. Since Ko(C) is generated by the classes of vector bundles, we get natural
maps t5: Ko(C) — Ko(Gp) = Z° of for each p € p. Note that these maps
applied to a vector bundle are precisely the multiplicity vectors. The natural maps
rank,: Ko(Gp) — Ko(Spec(k(p))) =~ Z simply add the multiplicities together,
which for a vector bundle is nothing more than the rank. Clearly the maps L;; are
surjective and the image of ©¢;: Ko(C) — @D,¢, Ko(Gp) is the sublattice where

all the rank,, agree. This sublattice can then be identified with Z & @pep A

The kernel of @L; is generated by classes of the form
] ]
*L O¢(—p)] — [7*L Oc(—)] = [r*L1] — [7*L
L1 e e(epp)] 7Ly ® Q) e(ep)] [7" L] — [7"Lo]
= [7"(L1 ® Ly)] — [Oc].
It follows that we have a natural exact sequence

0 — Pico — Ko(€) = D Ko(Sp),
PEP

where Picc — Ko(C) is given by L — [7* L] — [Oe]. Finally the map Ko(C) —
Picc given by det o 7, is a retraction of Picg — KO(G), so the result follows. ©

We now define the determinant on the level of Grothendieck groups.
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1.2 Sheaves on stacky curves

Definition 1.2.28 We define the determinant det = dete to be the composi-
tion
Ko(€) — Picc ® P Ko(Gp) — Pice,
pEP

where the first map is the projection and the second map is given by

(Lym) =7 L® R) Oc(—p)=mr.
€p
pEp
0<i<ep

Note that this map is indeed the unique group homomorphism Ko(C) — Pice
which sends the class of a line bundle [£] — L.

Definition 1.2.29 Consider the composition

Ko(C) d_e;c Pice
= Picgr, .., x0]/(e1m1 — Oc(p1), - - - entn — Oc(pn))
— Z[dl/el, - ,dn/en] C Q,

where the last arrow is induced by the degree map on Picc and d; is the degree
of the residue field of p;. Let F be a coherent sheaf on C. We define the degree
deg J to be the image under this composition.

Note that we allow fractional degrees, but the denominators of the fractions are
bounded in terms of the orders of the stacky points. This definition is chosen so
that the pullback from the coarse space 7 : Ko(C') — Ko(C) is degree preserving
and in fact it is uniquely defined by this property.

The rank of a vector bundle and its pushforward to the coarse space agree. The
same is not true for the degree, but the difference can be expressed in terms of
the multiplicities.

Proposition 1.2.30 Let £ be a locally free sheaf with multiplicities m. We have
21
deg & = deg(m.&) + 3, é >ty imp,i.
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1 Fundamentals of stacky curves

Proof. Both sides of the equation are additive in short exact sequences, so we can
reduce to the case of invertible sheaves by Lemma [1.2.20. The case of line bundles

follows from Corollary f1.2.11]. 9]

The cotangent sheaf

We end this section with a discussion on the cotangent sheaf of a stacky curve.
We will start from a very abstract definition and then show that it can be very con-
cretely described. The abstract definition is not necessary for any of our results, so
it should only be viewed as motivation for the concrete description which we will
actually use.

Definition 1.2.31 Following [IlI71]], let f: X — Y be a morphism of DM-stacks,
we define the cotangent sheaf Qx/y on the étale site of X as follows. Let J

be the kernel of the multiplication morphism Oxy Q-10, Oy — Ox, then
Qx/y = 3/32

We have two canonical exact sequences.

Lemma 1.2.32 ([JlI71, (1.1.2.12)] and [II71, (1.1.2.13)]) Let X i) Y — Z be
morphisms of DM-stacks. We have a short exact sequence

f*Q‘zJ/Z — Qx/z — Qx/y — 0.
If O is a locally free ffl(’)g-module then we can extend the sequence to

0— f*Qld/Z — Qx/z — Qx/g — 0.

Lemma 1.2.33 ([II71, (1.1.6.2)]) Leti: Y — X be a closed immersion of DM-
stacks with ideal sheaf J. We have a canonical short exact sequence

3/32 — i*Qx — Qy — 0.

Using the canonical short exact sequences we can compute the cotangent sheaf of
a stacky curve.

32



1.2 Sheaves on stacky curves

Theorem 1.2.34 Let m: € — (' be a smooth tame stacky curve with stacky
points p. We have

* 1 €y —
Qe ~ 71" Q0 @ ®(9(e—p)® pl,
pEp P

Proof. Let u: U — C be an étale atlas for C; then U is a smooth (possibly dis-
connected) curve and €2 is a line bundle. From Lemma , we get an exact
sequence 0 — u*Qe¢ — Qu — Qe = 0,50 Qe is aline bundle.

Now apply Lemma to the coarse space map 7: € — (' to get a short exact
sequence
™ Qo = Qe — Qejc — 0.

The sequence extends to the left since m* Q¢ — (e is a map of line bundles that is
generically an isomorphism, hence injective. Since QG/C is supported on the stacky

points, it follows from Corollary that Qe = ™ Qc @ @ (’)e(—el p)&ne
P
for some non-negative integers n.

PEP

To compute 1, we can take a local form around p as follows.

.
It
(V/ke,] 2= €

vl
V/pre, —— C

Let p also denote the preimage of p under g and let g be the unique point in V'
sitting above p. Then pulling back along g we get

* * % 1 n
Qv/pe,) =9 Qe =g"1"Qc ® O[V/uep](gp)@’ v

®np

" 1
=7 QV/uep ® O[V/#ep}(zp)
P

Pulling back once more along ¢ we see
QV = ¢*Q[V/Nep] = (Cb o 7I-/)*Slv/llep ® OV(q)(me'
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1 Fundamentals of stacky curves
Now it follows from the ramification theory of classical curves thatn, = ¢,—1. ©

To get a similar result for non-smooth curves one should work with the canonical
sheafinstead, but we will not develop the theory of canonical sheaves for DM-stacks
here.

1.3 Projective stacky curves

In this section we develop a theory of projective stacky curves analogous to the
theory of classical projective curves. The main difference from the classical theory
is that the polarization of a stacky curve is not given by a line bundle, but by a higher
rank vector bundle called a generating sheaf, introduced in [OS03]. This generating
sheafis also used to define a notion of (semi)stability for vector bundles. Classically
stability does not depend on the chosen polarization, this is very far from the case
for stacky curves and different generating sheaves give many different notions of
stability.

Definition 1.3.1 A projective stacky curve is a smooth tame stacky curve with
a projective coarse space.

Note that we require projective stacky curves to be smooth and tame. This is prob-
ably not necessary for all the results in this section, but we will use these properties
freely throughout.

Warning: The definition of a projective stack is more subtle, but for stacky curves
this naive definition is good enough. See [Kre09] for the higher-dimensional case.
One of the points is that for curves the existence of a generating sheaf is automatic.

Note that a proper smooth tame stacky curve is automatically projective. Indeed
by Theorem , a stacky curve is proper if and only if its coarse space is, and a
proper curve is projective.

Definition 1.3.2 Let C be a projective stacky curve. We define the Euler charac-
teristic xye: = — degwe. We then define the genus ge via 2 — 2ge = Xe.
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1.3 Projective stacky curves

Since the canonical bundle can have rational degree, the Euler characteristic and
genus are not integers in general. This means, for example, that there is no coho-

mological description like hl(Oc) = gc¢. One big motivation for this definition is

that it satisfies an analogue of the Riemann-Hurwitz theorem. The following is an

immediate corollary of Theorem .

Corollary 1.3.3 Let m: € — (' be a projective stacky curve with stacky points
p. We have

Xce=><c—zep;1[%(p):k]

e
PEP

and

1 ep—1
= Z k.
ge gc+2§ o [k(p) : K]
pED

Theorem 1.3.4 (Riemann-Hurwitz) Let f: € — D be a map of projective stacky
curves tamely ramified at the points p; with ramification index e;. We have

ffwp =we ® ® O(gpi)eiil.
i
Consequently,

Xe = (deg f) - xp — Y _(ei — 1) deg(Gy,).

i

Proof. Letmme: € — C'andmp: D — D be the coarse space morphisms and let
g: C — D be the map induced by mp o f. The result follows from an easy com-

putation using Theorem for me and mp and the classical Riemann-Hurwitz

theorem for g. O

We give a short proof of the following well-known result to highlight the usefulness
of the genus.
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1 Fundamentals of stacky curves

Proposition 1.3.5 Let m # n by natural numbers not divisible by the charac-
teristic of k; then the football space F(m, n) is not the quotient of a classical
curve by a finite group.

Proof. Assume there is a classical curve C' with an action of a finite group G such
that [C/G] ~ F(m,n). Then C/G ~ P}, so C'is projective. The map C' —
F(m,n) is unramified, so we can apply Riemann-Hurwitz to see

m—1 n-—1 m-4+n
+

xe = Gl = 1GI2 = ("= + 7)) = |61

Since the right hand side is positive it follows that Yo = 2. Now write d for the
greatest common divisor of m and n so that m = da and n = db for positive inte-
gers a and b. Since GG contains subgroups of order m and n, namely the stabilizers
of 0,00 € F(m,n), we must have that dab divides |G|. Write |G| = xdab so the
equation 2 = |G| becomes 2 = x(a + b), which implies thata = b = 1,
but this contradicts m # n. O

We move on to proving Serre duality.

Theorem 1.3.6 (Serre Duality) Let € be a coherent sheaf on a projective stacky
curve C. For ¢ = 0, 1, we have a natural isomorphism

Ext! (&, we) ~ Ext! (O, &)

Proof. Using Corollary and Lemma we can reduce to the case that &
isaline bundle L ~ "L ® ®p O(;—Zp). Now we apply Serre duality on C' to get

Extp, (£,we) ~ Extl, (Oc, LY @ we) ~ Exty (Oc, L)Y
o~ Ext%;ei(O@,L)V.

The first isomorphism follows as

1—1

e, —
m(LY ®we) = LY @ wo ®@ m () O(-——Lp) = LY @ we,
P “p
where we use the computation of we of Theorem . o
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1.3 Projective stacky curves

Remark 1.3.7 Even though in general we have T.(F") # (m.F)V, the above
proof shows that the Serre duals SDe(F) = Home(F,we) and SDo(F) =
Home(F,we) do commute with 7y, i.e. T, © Se = S¢ o .

We now state the naive Riemann-Roch theorem for a projective stacky curve [VZ22,
Remark 5.5.12]. The reason for the terminology “naive” is that it does not involve
any stacky structure of the line bundles nor the curve itself.

Proposition 1.3.8 (Naive Riemann-Roch) Let C be a projective stacky curve, with
coarse space m: € — C. Let £ be a line bundle on €. Then

RO(L) — h2(LY @ we) = degm.L +1 — gc.

Proof. By the remark above, we have h°(£) — h%(LY ® we) = hO(m.L) —
RO((m L)Y @ we) = degme L + 1 — ge. O

Generating sheaves

We will now spend some time defining generating sheaves, which will serve as a po-
larization of a projective curve. Generating sheaves were first introduced in [0S03]
in order to embed Quot schemes for tame DM-stacks into Quot schemes over their
coarse spaces.

Definition 1.3.9 Following [0S03], let m: € — C' be a stacky curve and € be a
locally free sheaf on C. We define the functor F¢: Coh € — Coh C as

Fe(F) = mHom(E,F) = m(F® &)
and in the other direction G¢: Coh C' — Coh C by
Ge(F) =n"(F)® E.
The identity map . (Hom (€, F)) — m«(Hom (€, F)) has a left adjoint

' (Hom (E,F)) — Hom(E,F),
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1 Fundamentals of stacky curves

which has a left adjoint
' (Hom(E,F)) @ € — F.

We denote this left adjoint of the left adjoint by O (F): G¢ o Fe(F) — F.

Definition 1.3.10 Let & be a locally free sheaf on a stacky curve C. If f¢ (F) is
surjective, then € is called a generator for F. If € is a generator for all coherent
sheaves F on G, then € is a generating sheaf for C.

It is not so obvious how to verify if a sheaf is generating directly, but the following
local condition is easy to check in practice.

Theorem 1.3.11 (Local condition for generation) Let € be a stacky curve with
stacky points p and € be a locally free sheaf. Then € is a generating sheaf if and
only if my, ; > 0 for everyp € pand 0 < j < e, — 1. In other words the
graded vector spaces ¢,,C for ¢, :791, — C are supported in all grades for all

pED.

Proof. The condition is certainly necessary: to generate O@(ép) we must have
mp; > 0. We will now prove that the condition is sufficient. As the surjectivity
of O¢ (F) can be checked locally, we may assume that € has a single stacky point p
of order e.

Let0 — F; — F9 — F3 — 0 be a short exact sequence of coherent sheaves.
We get a commutative diagram.

0 I Ts I3 0

eng effﬂ‘ erng

0— Gg OFg(?l) — Gg OFS(?Q) — Gg OFg(?g) — 0

By the snake lemma, we have that if f¢ (1) and O¢ (F3) are surjective, sois ¢ (F3),
and when f¢ (F2) is surjective, so is 0 (F3). By Lemmali.2.2d, Corollary[t.2.19and

the fact that every torsion sheaf admits a surjection by a vector bundle we only have
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1.3 Projective stacky curves

to verify that € generates line bundles £ ~ 7* L ® O@(%p). We can rewrite 0 as
T Hom <8 ® 0 <_‘7p> ,(’)e> RQTLRE—-TLRO <‘7p> )
e e

Tensoring both sides by £ and setting &' = & ® O(%jp), we get the morphism
0, @ LY : ¥ (Hom (&', 0c)) ® & — O,

which is precisely fg/(Oe). Since tensoring with a line bundle cyclically permutes
the multiplicities & also satisfies the local condition of generation. This means that
we have reduced to the case £ = Oe.

Now we apply Lemma to &' and get a chain of surjective maps &' = &y —
&1 — ... — &,. From the local condition for €’ it follows that there exists some
index ¢ and a line bundle § = kexr(&; — &;41) with m,(J) = (1,0,...,0), ie.
d ~ 7*J for some line bundle J on C'. Now we have a commutative diagram.

mmd’ @ 3J = O¢
T

el @3

[

Y ® &;

1

Tl ® &

[

ey ® & —— O

The top diagonal arrow is an isomorphism and it follows that all of the other diago-
nal arrows below are surjective. O

The general case of the above theorem is [0S08, Theorem 5.2]. However there it
is claimed that for a stacky point (: Spec(k) — C with stabilizer G¢ we have
Spec(k) X € = BG. Thisis of course not true, since 7 is ramified above (. We
do have (Spec(k) x¢ €)rea = BG¢, which is enough to make their proofs work.
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1 Fundamentals of stacky curves

Definition 1.3.12 Let C be a stacky curve with stacky points D, then

ep—1 ep—1
tw = QP 0 Ln e QDo
peEp j=0 pep j=0

is a generating sheaf, which we will call the standard (or favorite) generating
sheaf for C.

From the local condition of generation it is immediate that the standard generating
sheaf is indeed a generating sheaf. The standard generating sheaf is definitely not
very canonical, however it plays a very special role from a computational perspec-
tive. We will see that our formulas massively simplify whenever we apply them to
the standard generating sheaf.

We now give a notion of degree that is relative to a locally free sheaf, which will usu-
ally be a generating sheaf. It is this degree that will show up in the stacky Riemann-
Roch theorem.

Definition 1.3.13 Let C be a projective curve, € be a locally free sheaf and F be
a coherent sheaf on C. We define the E-degree of F by

de(F) = degmHom(E,F) — rank Fdeg m. Hom (&, O).

Note that the E-degree is additive in short exact sequences in both entries. More-
over dg(—) = dggr+r, for any line bundle L on the coarse space. It follows from
Lemma that the E-degree only depends on the multiplicities of €. We now
give a notion of “weights”, which is simply a repackaging of the multiplicities, that is
useful for computations with E-degrees.

Definition 1.3.14 Let € be alocally free sheaf with multiplicities 1, ;. We define

Zl 1My (€)

the weights of € to be w), ; = wy, j(€) = ==Lk

toe, — 1.

, where j runs from 0

Note that by construction 0 = wp o < wp1 < -+ < Wpe,—1 < 1. The inequali-
ties are strict if and only if € is a generating sheaf.
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1.3 Projective stacky curves
H Example 1.3.15 Let &, be the standard generating sheaf, then Wy = ei
P

In fact we can find a locally free sheaf with arbitrary rational weights.

Example 1.3.16 Let C be a stacky curve and for each stacky point p, let wy, ; =
%’f be rational numbers with a common denominator d,, such that the numer-
ators satisfy

0= Gp,o < Gp1 < cve < Qp,ep—1 < dp~

Setby; = ap; — ap;—1 for0 < 1@ <e,—1landbyo = dp — ape,—1. The
€p—

locally free sheaf € :== &), ;2 Og( L p)®r:i has weights wp ;.
P

The weights allow us to give a formula for the £-degree in terms of invariants de-
fined on the coarse space and multiplicities.

Proposition 1.3.17 Let € and J be locally free sheaves on C. We have

e—1
de(F) = rank € deg(m,.F) + rank € Z Z myp.i (Fwpi(E).
p =0

de (%)
rank &

In particular, when & = &g, is the standard generating sheaf,
for any coherent sheaf .

= deg F,

Proof. Note that all the terms of the formula are additive in short exact sequences
of vector bundles, for both € and F, so we may assume € and F are line bundles.
The case of line bundles is immediate from the description in Corollary [1.2.11]. For
the case of the standard generating sheaf the result follows from Proposition
and the fact that the formula dg (F) = rank £ deg F is additive in all short exact
sequences for F. O

Now we state a more refined version of the Riemann-Roch theorem.
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1 Fundamentals of stacky curves

Theorem 1.3.18 (Stacky Riemann-Roch) Let € be a projective stacky curve, € be
a locally free sheaf and & be a coherent sheaf on €. We have

ext? (&, F) —ext! (€, F) = de(F)+rank(F) (ext’ (€, Oc)—ext! (€, O¢)).
In particular when & = &,,, we have

ext?(Eqy, F) — ext! (Eray, T)

rank &y

= deg JF + rank(F)(1 — ge).

We will give a proof that is analogous to the classical case, to explain the appearance
of the different terms. A shorter way to prove the theorem would be to apply the
classical Riemann-Roch theorem to T, Hom (&, F) and 7.(€") and combine the
results.

Proof. Since everything is additive in short exact sequences, we may assume JF is
a line bundle. Assume F = Og, then de (Og) = 0, so the formula holds. Assume
the formula holds for a line bundle £ and we have a non-zero map £ — L. De-
note the cokernel, which is a torsion sheaf, by J. From the additivity of E-degrees
we get de (L") — de(L) = de(T). We also get the long exact sequence

0 — Ext’(€, L) — Ext’(€,L') — Ext?(€,7) —
— Ext!(€, L) — Ext! (E,L') — Ext'(€,7) = 0.

The last Ext group is 0 because Ext!(&,T) = H!(m.(T ® &Y)) = 0. Also
ext?(&,7) = hO(m(T ® €Y)) = de(7), since T is torsion. Now taking the
Euler characteristic of the long exact sequence, we see that the formula also holds

for L’. A completely analogous argument works when we have a non-zero map
L' — L.

Now any line bundle has the form £ ~ Qg (D) for some Weil-divisor D. Let D
be the positive part of D. We have a non-zero map O¢ — O(D4.) and a non-zero
map Oce(D) — Oe (D4 ) showing that the formula holds for £.

Finally by Proposition [1.3.17, we have dg,. (F) = rank(&fs ) deg J and by the
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1.3 Projective stacky curves

naive Riemann-Roch theorem
exto(Efav, Oe) — extl(Sfav, Og) = deg(m.&,) + rank(Ey ) (1 — go) =

_ rank(c“,fa\,)1 (Z G- 1) + rank(Ery) (1 —go) = rank(Esay) (1 — ge).

2 €;
Pi '

Plugging these two computations into the general equation gives the result. O

The numerical Grothendieck group

Many computations with coherent sheaves can be reduced to computations on the
Grothendieck group. In fact some computations can be reduced to an even smaller
group, called the numerical Grothendieck group, which is the group to which the
Riemann-Roch theorem most naturally applies.

Definition 1.3.19 We define the Euler pairing of two coherent sheaves &, F to
be
(€,7) == ext(&,T) — ext! (&, 7).

The Euler pairing is additive in short exact sequences in both coordinates, so de-
scends to give a bilinear form Ko(C) X Ko(C) — Z.

Definition 1.3.20 Let R betherightradicalof (_, _),i.e. the kernel of the map
[F] — (_,F). We define the numerical Grothendieck group to be K{"™(€) :=
Ko(C)/R. The elements of Kj"™(C) are called numerical invariants.

By Serre duality
<87"}~> = _<3~78 ®UJ@>,

so the right radical is equal to the left radical. It follows that the Euler pairing de-
scends to a pairing KJ"™(€) x Kg"™(€) — Z. In fact K" (€) is the maximal quo-
tient of Ko(C) such that the Euler pairing descends to a non-degenerate bilinear
form.
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1 Fundamentals of stacky curves

Proposition 1.3.21 Therightradical of (_, _)isgivenbyPic%, < Ko(C). Asa
consequence we have an injection of Abelian groups induced by deg o7, rank,
and my,;

K'™(C) = Z & Z & EPKo(Gp)-
pEP

This induces a non-canonical isomorphism

Kem(©) ~ZoZe @z
pEp

Proof. To compute the right radical, we use Example , Proposition ,
and Theorem . The degree defines a short exact sequence 0 — Picoo —
Picc — Z — 0, so the result follows from Proposition [1.2.27. O

Definition 1.3.22 We say that a numerical invariant cx is positive if rank o > 0
and my ;o > 0 for each p and i. A numerical invariant is generating if the
inequalities are strict.

Note that an invariant a is positive if and only if there exists a vector bundle F such
thatax = [&r] and an invariant is generating if and only if there exists a generating
sheaf € such that o = [€].

Generalized Hilbert polynomials and stability conditions

We will now explain a way to define Hilbert polynomials for sheaves on stacky
curves.

Definition 1.3.23 Let € be a projective stacky curve. We define a polarization
of € to be a pair (£, O¢(1)), where € is a generating sheaf for € and O¢(1)
is a polarizing line bundle on the coarse space C'. For a coherent sheaf &, we
write F(m) = F @ 7*Oc(m).

In [FL21] the authors explain how a generating sheaf together with a polariza-
tion of the coarse space induces an embedding of the stacky curve into a twisted
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1.3 Projective stacky curves

Grassmanian stack. The twisted Grassmanians are simultaneous generalizations
of weighted projective spaces and Grassmanians. This justifies calling the pair
(€,0¢(1)) apolarization.

Definition 1.3.24 Let C be a projective stacky curve together with a polarization
(€,0¢(1)). Let F be a coherent sheaf on C. We define the E-Hilbert polyno-
mial of J to be

Pe(F)(m) == x(Hom(E,F @ 7 Oc(m))) = (€, F(m)).

We define the reduced &-Hilbert polynomial pe (F) to be Pg (F) divided by its
leading coefficient.

Note that Pe(F) is the Hilbert polynomial of F¢ (&), so it is a polynomial. More
explicitly, using Theorem it follows that

Pe(F)(m) = rank(F) rank(€) deg(Oc (1)) - m + de(F) + rank(F) - Ct,

where C¢ is a constant that does not depend on JF. It follows that we can com-
pletely reconstruct the Hilbert polynomial if we know the rank, degree and multi-
plicities of F.

Definition 1.3.25 ([Nir09, Definition 3.14]) Let C be a stacky curve with gener-
ating sheaf &. We say that a coherent sheaf F is Gieseker-(semi)stable with
respect to & if for every proper subsheaf ¥ C F we have pg (F) < pe(F). De-
fine the slope of F to be g (F) = rgﬁfg. We say that J is E-slope-(semi)stable
if for every proper subsheaf we have pig (F') < pe(F).

Since the slope only depends on the numerical class ¢ of & we may also write
Moo = He.

Remark 1.3.26 We have that pg (F) = ffnf; — C¢ = pe(F)(0) — Cg, so slope

(semi)stability is equivalent to Gieseker-(semi)stability. In practice it is sometimes

more convenient to compare inequalities using Euler pairings than to compare
!

slopes i.e. F is E-semistable if and only if jfnf;, < ffnf; for every proper sub-

bundle ¥ C . In Chapter @] formulas are massively simplified by working with

the Euler pairings.
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1 Fundamentals of stacky curves

1.4 Parabolic vector bundles

One important reason to study vector bundles on stacky curves is their close rela-
tion to parabolic bundles. Parabolic bundles where originally considered in [MS80,
Definition 1.5] to give a generalization of the Narasimhan-Seshadri correspondence
for punctured curves. In this section we start by recalling the basic concepts sur-
rounding parabolic bundles. The goal of this section is to give a dictionary between
the parabolic language and the stacky curve language.

Definition 1.4.1 (IMS80, Definition 1.5]) Let C' be a classical curve and p be a
finite set of points on C. A quasi-parabolic vector bundle IF on (C, @ is a
vector bundle F' on C' together with filtrations F = F} > Ff > ... D
Ffp = F ® O¢(—p) foreach p € p. The integer e, is called the length of
the parabolic structure at p. The collection of quasi-parabolic vector bundles of
fixed length forms a category qpat(C, D, g), where the morphisms are given by
morphism of the underlying vector bundles respecting the filtration. Explicitly
the morphisms are morphisms ¢: F' — G such that ¢(F}) C ¢(G?) for all

p,J.

Remark 1.4.2 Instead of a filtration of sheaves, one can equivalently give a flag of
quotients of the fiber F'|, = Vop —» le e —» Vé,l —» Ve][:, = ( at each
point p. To see this, send a filtration Fy to V;” = coker(F, _; — Fy)|p. To
obtain a flag of injections F'|, = W > WV > ... Wfp = 0, instead simply
consider W? = kexr(V" — Vg;_l-).

Contrary to the classical definition, we do not require the inclusions of the filtrations
to be strict. One reason is that this gives much better categorical properties. For ex-
ample, a parabolic subbundle is simply a subobject in the category qpat(C’, D, Q),
whereas classically subbundles might have shorter length filtrations, as the length
would be bounded by the rank.

We now describe how to obtain a quasi-parabolic vector bundle from a vector bun-
dle on a stacky curve.
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1.4 Parabolic vector bundles

Definition 1.4.3 Let C be a stacky curve with stacky points p of degree e. We
define a functor par: Yect(C) — qpat(C,B, Q) as follows. Let F be a vector
bundle on C. Then pax(J) is the vector bundle 7, F together with the filtrations

1
T F D m(F @ Op <—p>) DD m(FROe <_epp>)’
ep €p

for each p € p. Amorphism f: F — G gets sent to par(f) := m.f: mJF —
7+ 9.

There is also an inverse functor, but it is much harder to define, so we will omit it
here.

Theorem 1.4.4 ([Bor07, Théoréme 4]) The functor par defines an equivalence
of categories.

We will now look at how the functor par interacts with multiplicities.

Definition 1.4.5 Let [F be a quasi-parabolic bundle. We define the multiplicities
myp,i(F) = dim coker(F'; — F})|,,

where 0 <1 < ep.

In the surjective flag picture, we have my; = dim Vg;fiil — dim Vg;fi orin the

injective flag picture m,; = dim W/ — dim Wfﬂ.

Proposition 1.4.6 Let J be avector bundle on a stacky curve € = \Q/Q/C; then
mp,i(F) = myi(paz(F)).

Proof. We see that m, ;(par F) is additive in short exact sequences, so it suffices
to show this for line bundles. Then for aline bundle £ = 7°L ® Q),¢,, Oe(22p)

€p
we see that the filtrations of par(£) are given by Lf = Lfor0 < i < ny,and
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LY = L(—p) forn, < i < ep. This shows that m, ,,, (par(£)) = 1 and the
other multiplicities are 0 as required. o

Now we will discuss the notion of weights and (semi)stability for quasi-parabolic
bundles, following [MS8(, Definition 1.5].

Definition 1.4.7 Let C be a classical curve and p be a finite set of points of C.
A parabolic bundle on C'is a quasi-parabolic bundle together with a set o of
parabolic weights consisting of a ; € Rforp € pand 0 < j < ey, satisfying

0< Qpo < -+ < Apep—1 < 1.

The parabolic degree of a parabolic bundle (F, o) is pardeg(F, ) := deg F'+
> Zfﬁ;l apimy i (IF) and the parabolic slope is defined by p(F, o) =
%. We say that a parabolic bundle (F, @) is (semi)stable if for every

proper quasi-parabolic subbundle I C T we have pu(F, o) < p(F, o).

The functor par respects stability.

Proof. This is immediate from the fact that degge (F) = pardeg(par(F), w(&))

Lemma 1.4.8 Let J be a vector bundle on a stacky curve C := \Q/B/C. Let €
be a generating sheaf; then J is E-(semi)stable if and only if (par(JF), wy,;(E))
is a (semi)stable parabolic bundle.

’

which is obtained by combining Propositions and . O
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lent to qput(C’, P, e

Theorem 1.4.9 Let gpar(C, p, g)gf(s)s C qpar(C, p, e) be the full subcate-
gory of quasi-parabolic bundles that are (semi)stable when endowed with the
parabolic weights a.. Then there exists a generating sheaf € on € = v p/C,

such that the category of (semi)stable vector bundles ‘Bect(@)ei(s)s is equiva-
)Q—(S)S



1.4 Parabolic vector bundles

Proof. By [MS80, Corollary 2.9] we can always perturb the weights « to be ratio-
nal without changing the notion of stability. Secondly we can shift the parabolic
weights by a constant without changing the notion of (semi)stability by [MS80, Re-
mark 2.10], so we might as well assume that c, o = 0. This means we can pick &

as in Example [l.3.16. o

We end this section with some comments on “strongly” parabolic homomorphisms
and Higgs fields.

Definition 1.4.10 Let F, G € qpat(C,Q, g) be quasi-parabolic bundles. We
define a strongly parabolic morphism to be a morphism f: F' — G, such
that f(EY) C G?H for every p, 7. The set of strongly parabolic morphisms is
denoted by sHom(F, G).

Let D), = Zpepp be the parabolic divisor. A Higgs field on IF is a strongly

parabolic parabolic morphism ¢: F — F ®@ wc(D)). (Here the tensor product
should be done term-wise on every term of the filtrations of [F.)

The notion of a strongly parabolic morphisms might seem quite ad-hoc. In fact the
only reason that it shows up is that the “logarithmic” canonical sheaf w¢o (Dp) has
the wrong parabolic structure. On the level of stacky curves this will be apparent.

Proposition 1.4.11 Let C = \Q/B/C' and let F,G € Yect(C) be two vector
bundles. We have a natural isomorphism

¢ : Hom (3", S® ®Oe (—elp>> — sHom(pax(J), par(9)).

In particular we have a correspondence of Higgs fields

sHom(par(J), par(F) @ we (D)) = Hom(F, F @ we).

Proof. Denote by ¢ the inclusion ¢t § ® @), Oe(—ép) — G. We define ¢
by sending a morphism f: ¥ — §® ®p (’)@(—ép) to ¢(f) = par(co f).

49



1 Fundamentals of stacky curves

By definition this defines a strongly parabolic morphism and clearly ¢ is injective.
To see that ¢ is surjective, take any strongly parabolic morphism h: par(F) —
par(9); by Theorem h lifts to a unique morphism h: ¥ — §G. We need
to show that A factors through ¢. To see this consider the generating sheaf & =
EBPEE @fial O@(ép). The fact that & is strongly parabolic ensures that F¢ (h)

factors through F= (5 ® @, O@(—ép)), where F¥ is as in Definition [1.3.9. Now
consider the following commutative diagram.

GeFe(h)

T

GgFg(ff) — GgFg(g ®®p OQ(—ép) — Gan(S)

| ! |

F » GO @, Oe(—Lp) ———— §
V

This shows that the image of / lies inside § ® X, O@(—ép). O

The theorem above also explains why Serre duality [Yok95, Proposition 3.7] for
parabolic bundles is perhaps not what we would expect naively. Namely we have

Extpax (par(7), par(9)) = Exto, (5, 9)
= Homp, (5, F ® w@)v
= sHom(pax(§), par(F) ® we(D))".

All the equivalences in this section are on the level of categories, but we will see in
Chapter E that they also hold on the level of moduli stacks.
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CHAPTER 2

Spherical curves

Those who build walls

are their own prisoners.

I'm going to go fulfil my proper
function in the social organism.
I'm going to go unbuild walls.

Shevek, in The Disposessed
Ursula K. Le Guin

Classically curves fall into a trichotomy defined by their genus: namely the spherical
curves of genus 0, the flat curves of genus 1 and the hyperbolic curves of genus > 2.
This trichotomy also exists for stacky curves and in this chapter we will study the
most well behaved case, that of spherical stacky curves. Since the genus of a stacky
curve is a rational number the first question is how to classify the curves of genus
0 <ge <landl < ge < 2. We will take the following notion.

Definition 2.0.1 A spherical stacky curve is a projective stacky curve € with
genus ge < 1and a k-point.

The condition that € has a k-point is there for convenience, ensuring that the coarse
space of C is ]P’,lf. The reason we make this restriction is that want to apply the
theory to stacky curves that are obtained as quotients of ]P’,lc, which always have a
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2 Spherical curves

k-point. It would be interesting to consider also projective stacky curves without k-
points, however this also forces all the stacky points to have residue field of degree
2, giving a much smaller class of curves.

These curves have been studied over k = C in [BNO€], allowing for stacky curves
that have generic stacky structure as well. They show that spherical curves are all
quotients of weighted projective lines P(m, n). We generalize this to a separably
closed field, but since we do not allow generic stacky structure, we will see that
all spherical curves are quotients of the football spaces F(m, n), with m and n
coprime.

The categories of sheaves on spherical curves have also been thoroughly studied
by representation theorists, using completely different techniques. We highlight
one such result [GL87, p. 5.4.1.].

2.1 Classification of spherical curves

We start by giving a complete list of all the spherical stacky curves. We then con-
struct a natural root system attached to every spherical curve, thus giving a natural
correspondence between spherical curves and Dynkin diagrams.

Let C be a projective stacky curve with stacky points p. From the inequality

ep—1

=ge < 1,

%Z[n(p) (k) < gpr + % Z["@(p) k-

e
pEP peP P

it follows that spherical curves can have at most 3 stacky points, weighted by the
degree of their residue field. We recall the following lemma, which generalizes the
3-transitivity of PGL2.

Lemma 2.1.1 (Strong 3-transitivity) Let D, D’ be two smooth closed codimen-
sion 1 subschemes of PP}, such that deg(D),deg(D’) < 3 and k(D) =~
k(D'"); then there exists a k-automorphism of ]P’,lC sending D to D'

We take the convention that when D is disconnected k(D) is the product of the
residue fields of the connected components.
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2.1 Classification of spherical curves

Proof. Let F,G € k[X, Y] be the separable homogeneous polynomials defining
D and D’. By assumption, they are polynomials of degree at most 3 over &, with
the same splitting field [. Choose a Gal;/x-equivariant bijection between the linear
factors of F' and G. By 3-transitivity of PGL2([), there exists a unique transforma-
tion ¢ € PGL2(l) which sends D; to D; respecting the chosen bijection. Now the
action of Gal, /j, fixes F, G and the bijection of the roots, so by the uniqueness of
¢ the action must also fix ¢. It follows that ¢ € PGLy (k). 9)

It follows that spherical stacky curves are completely determined by the order and
the residue field of their stacky points.

Corollary 2.1.2 Let C be a spherical stacky curve with stacky points p. Then €
falls into one of three groups.

() All points p are k-points, in which case we may assume p C {0, 1,00}
and the isomorphism class of € is determined by the orders e.

(I) The set p contains a single point p with [k(p) : k] = 2 and at most one
k-point, in which case the isomorphism class of € is determined by the
quadratic field extension x(p) and e.

(I) There is a single stacky point ¢ with [x(q) : k] = 3, in which case the
isomorphism class of € is determined by the field extension x(q) and €q.

Using the above corollary we give a list of all isomorphism classes of spherical

curves in Table .

Remark 2.1.3 Recall that by Remark the residue fields of stacky points of a
smooth curve are separable. It follows that over that over the separable closure

ksep all curves are of type (1), i.e. (Bn,n(p))ksep ~ (F(1,7)) ke » ((i’ny,ﬁ(p))ksep ~
(Dn)ksep7 (?4,H(p))ksep = (86)ksep and (92,H(q))ksep = (®4)k‘sep'

Root systems and Dynkin diagrams

As the suggestive naming of our curves indicates, there is a natural way to obtain a
Dynkin diagram from a spherical stacky curve. To see this we will construct a natural
root system on (a quotient of) the Grothendieck group Ko(C). The Grothendieck
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2 Spherical curves

Type Orders ge v p/i]’l,lC
€0 €oo €1
m n<m 1— 2 F(m,n)
0 2 2 n — % D,
2 3 3 - % &g
2 3 4 — 5 &7
2 3 5 1-4g &g
€p €0
() n 1—5 Bup
2 o l-g. Conp
3 2 1-5 T
(1) “
2 - i 92,%((1)

Table 2.1: The isomorphism classes of spherical stacky curves, split up into the
types of Corollary . Each row describes a stacky curve, giving the orders e, the
genus ge and the final column indicates how we will denote each curve.

group comes with a the natural bilinear form Ko(C) X Ko(C) — Z.

(o, B) = ext®(a, B) — ext!(a, B).

From this we obtain a symmetric bilinear form

(@, B) + (B, )

N | —

<047 /3>sym -

This form is degenerate precisely on the subspace Picc C Ko(C) and we let
E(C) be the R-vector space (Ko(C)/Picc) ® R, together with the inner prod-
uct (—, —)eyc induced by (—, —)sym. There is a natural root system ®¢ inside
E(C), generated by the classes of indecomposable torsion sheaves and O¢. Note
that there are only finitely many classes of indecomposable torsion sheaves in
E(C). Indeed any indecomposable torsion sheaf is equivalent to a class of the form
[Oe(%)p] — [Oe(%)p] for some point p and m < n. As [O¢(p)] — [Oc] = 0
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2.1 Classification of spherical curves

by construction, m and n are only defined modulo e;,. We choose a set of simple
roots by letting

1 1—1
—)p]l = [Oc(

€p €p

Qpj = [OG(

p

p|=0.,-0ia

€p €p
forl < i < e, — 1. Wethenset Ag = {ay,;} U {[O¢]}. Notice that the set
of positive roots @g contains in particular all the classes corresponding to vector
bundles and torsion sheaves of the form Op, for a divisor D. We suspect that this
property uniquely specifies our choice of simple roots. We compute

<O€7 O€>euc = 1)
<ap,i>ap,i>euc = [H(p) : k]?
k(p) : k
<04p,i7ap,i+1>euc = <O€7 ap,1>euc = _[(;}7

and all other inner products are 0. By comparing Cartan matrices we can see that
our correspondence is as follows.

F(im,n) — Apin-1
Bn,n(p) = Bp
en,n(p) = Cn—i—l

‘Dn — Dn+2
& — E;
354,1&(;)) = Fy
92,/4((1) = G

In Figures R.1 and @ we have visualized this correspondence for some of the low
dimensional root systems. We also obtain a geometric interpretation of the fold-
ing phenomenon. Namely, the following isomorphisms induce foldings of root sys-

tems.
(Brw(p) o) = (F(1,10)) ) Agp1 --» By
(Crr))r) = (Dn)w(p) o Drao Ch
(Fanp))r(p) = (E6)n(p) Eg --» Fy
(G2.x(9))r(q) = (D) x(p) Dy --» Gy

To see this, let € be a type (1) or (ll) curve and let p be the non-rational stacky point.
Let [ be the Galois closure of k(p), so the map €; — Cj induces an embedding
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2 Spherical curves

0 % [Oe(1p)]

Figure 2.1: The root system Ag corresponding to ¢ = (3, 1). The thick black
arrows are the simple roots, the thin black arrows are the positive roots, and the
gray arrows are the negative roots.

Figure 2.2: The root system (G5 corresponding to € = 927/§(q). The thick black
arrows are the simple roots, the thin black arrows are the positive roots, and the
gray arrows are the negative roots. Do the classes [Us], [V3], [W3] have interesting
representatives?
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2.2 Finite subgroups of the projective linear group

E(Cy) — E(C;). Note that ®¢, corresponds to a simply laced Dynkin diagram.
The Galois group G = Gal/y acts on ©; by permuting the points lying over p,
hence acts on the simple roots Ag, by switching the c, ;, inducing a diagram au-
tomorphism of ®¢,. The invariants under this action naturally correspond to the
image of E/(C,). Moreover, if we set

1
e, = {WUZU(@} N

the induced map is in fact an isomorphism of root systems (E(Cj), ®e,) =~
(B(C)%, @g) See Figure R.3 for a visualization of this folding isomorphism in
the lowest dimensional case.

2.2 Finite subgroups of the projective linear group

We will give a quick application of this classification of spherical stacky curves to
the classification of conjugacy classes of subgroups of PGLy (k) over a separably
closed field. This classification was first obtained for k = C by Klein [Kle88]. In
[Beau10] Beauville gives a classification for an arbitrary field, for groups whose or-
der is not divisible by the characteristic of k. Finally in [Fab23] the classification was
completed by characterizing the groups whose order is divisible by the characteris-
tic. Interestingly the proofs over an arbitrary field depend on first proving the case
of separably closed fields.

Definition 2.2.1 We define () to be the map

of PGL9 with order not divisible spherical stacky curves

Conjugacy classes of subgroups Isomorphism classes of
by the characteristic of k. with a k-point.

given by sending [H] — Cp == [P}/H].

To see that the map is well defined, let H' = gHg ! for some g € PGL3(k).
Now the composite map P} EN P} — [Pi/H']is H-invariant and defines an
isomorphism Crr — Cxr.
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2 Spherical curves

Figure 2.3: The folding of A3 into By induced by the isomorphism (BQ’H(],) )R(p) o~
(F(2,2))x(p)- The point p splits into the two points Py, . The thick black arrows
are the Galois-invariant roots of A3 and the gray arrows are the roots of A3 that
are folded into roots of B3. The labeled roots are exactly the positive roots of A3
and Bs.
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2.2 Finite subgroups of the projective linear group

I] Lemma 2.2.2 Assume that k is separably closed; then the map @ is injective.

Proof. Let H and H' be two subgroups of PGLy (k) such that there exists an iso-
morphism g: [PL/H] ~ [PL/H’]. Since P} is simply connected, the isomor-
phism lifts to an isomorphism of covering spaces g: P,lﬁ — P,lg. We have H' =
Autipt g1 (]P’l) =g! Autp1 /gy (P,lﬂ)g = g 'Hg. It follows that H and H'
are conjugate. O

To understand the image of () we will compute some explicit quotients.

Lemma 2.2.3 Let (,, denote a primitive n-th root of unity. Let IF denote the
Fermat quadric V(X2 + Y2 4 Z2) C IP%. We have the following quotients.

(o 1))

we have [P} /C] ~ Bo k(yva)

Let o € k. For

Assumen > 2and (, + ¢, ! € k. For

o N<[2+<n+<;1 (<n+<;1)2—4}>
" 1 24+ G+ Gt/

we have [P1/C),] ~ B k(cn)-

sy 2 )

D if n is even
Cpk(ya) ifnisodd

Assume (,, € k. For

we have

7/ Du) = {
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For
-1 0 0 01 0
Ay < 0 1 0/,]0 0 1 >CPGL3(k),
0 01 1 00

we have [[F/A4] == Fy j(¢,)-

For
1 0 O 010
S42< 0 0 1/,]0 0 1 >CPGL3(k‘),
0 -1 0 1 00

we have [F/Sy] ~ E7.

Assume /5 € k and let ¢ be a root of the polynomial 2?2 — 2 — 1 (the golden
ratio)andw = ¢ — 1 = =. For

1 w ¢ 010
A5:< w ¢ —1(,]0 0 1 >CPGL3(I<:),
- 1 w 1 00

we have [F/A5] ~ Eg.

Proof. The quotients are automatically spherical curves, so it suffices to compute
the stabilizer and inertia of each action. This is an elementary exercise in linear
algebra, which we leave to the reader. O

Note that the tameness of F(n,n), D, Eg, E7, Eg restricts the characteristic of

k,

so we may assume that (j, V5 etc. are inside ksep when appropriate. It follows

that we obtain the following quotient presentations over k = Kep.
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~ [P}/ D2yl

56 ~ [P}./Ad],
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2.3 Equivariant structures on the projective line

Corollary 2.2.4 Assume that k = ks, is separably closed; then the finite sub-
groups of PGLy(k), whose order is not divisible by the characteristic of &, are
isomorphic to one of C,,, Da,, A4, S4, As and each isomorphism class has
exactly one conjugacy class.

Proof. By Proposition the image of () does not contain F(m, n) form # n.
On the other hand Lemma and Table R.1|show that there is a unique curve cor-
responding to the groups C,,, D2y, A4, S4, As, hence there is only one conjugacy
class for each of the groups. O

2.3 Equivariant structures on the projective line

Let G C PGL2(k) be a finite subgroup acting on P}, then [BM24] asks which
vector bundles on IP’%U, admit a G-equivariant structure, i.e. what is the image of
Yect([P'/G]) — Vect(P). In [BM24] they answer this question for Abelian
groups G and k = C. Here we will generalize this to an arbitrary group G over a
separably closed field k = ksep, such that the order of G is invertible in k.

We start by showing some basic results about Harder-Narasimhan filtrations on

spherical curves.

Lemma 2.3.1 Let G C PGL2(k) be a finite group whose order is invertible in k
and write 7: P — [P!/G] =: €. Let F be a vector bundle on € and let

FoCFC---CTF,

be the Harder-Narasimhan filtration with respect to the slope function e =

d
S Then
rank

mFoCcrFLC--CtF

is the Harder-Narasimhan filtration of 7*F.

Proof. Let F' C 7*JF be the maximally destabilizing sheaf; by maximality it must
be preserved by the G-equivariant structure on 7*F. It follows that F/ = 7*F’
for some ' C &F. Since pe o ™ = ord G - u it follows that F’ is the maximally
destabilizing sheaf for JF. O
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2 Spherical curves

By the classification of vector bundles on Pl, the Harder-Narasimhan filtration of
any vector bundle on Pi splits. This splitting descends to the stacky curve.

Lemma 2.3.2 With the above notation, the Harder-Narasimhan filtration of &
splits.

Proof. Let F" < F be the maximally destabilizing sheaf and let Q be the quotient.
By the previous lemma we have a splitting f: 7*Q — 7*F. Fory € G, let 7f
denote the natural composition 7*Q — y*7*Q — A*1*F — 7*F induced by
the equivariant structures. The map

~ 1
— Y
/ ord G Z /
veG
is then a G-equivariant splitting, so it descends to a splitting Q — &. O

Corollary 2.3.3 Every vector bundle & on C can be written as a direct sum &F =
P, Fi, such that 7 F; =~ Opa (4)™.

We are now ready to classify the vector bundles which admit a G-equivariant struc-
ture.

Theorem 2.3.4 Let GG be either Dy, with n odd or C),; then every vector bundle
on P! admits an equivariant structure. For every other group G, a vector bundle
admits a G-equivariant structure if and only if it can be written as

P 051 (20)%™ & P Ops (25 — 1)P2.

J

Proof. We will denote the quotient map by 7: P* — [P!/G] = C. If G = C,,
we note that [P1/G] ~ F(n, n) and let p be one of the stacky points of F(n,n).
Then 7 Og () (%p) = Op1(i). As every bundle on P! is a direct sum of bundles
of the form Op1 (i) we conclude that the map Yect([P1/Cy]) — Vect(P') is
surjective. Similarly for Do, with 1 odd let p be the point of order n and ¢ be a
point of order 2 on D, then 71'*0@”(%}? + 3¢) ~ Opi(1).
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2.3 Equivariant structures on the projective line

For every other group we notice that deg: Uect(€) — Q lands inside Z[ 2]
by Definition [1.2.29. It follows that deg om* must land in 2Z C Z, so a bundle
can only admit an equivariant structure if it has even degree. By Corollary any
equivariant bundle is of the sum of equivariant bundles of the form Op:1 (7)™, so if
i is odd, we must have n; even. Now notice that 7*we = wp1 = Op1(—2). Next
we take a non-split extension we — E — Og, so 7* defines a non-split extension
wpt = ™ E — Opa. It follows that 7* E is isomorphic to Op1 (—1) @ Op1 (—1).
Since m* preserves direct sums and tensor products the result follows. O
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CHAPTER 3

Moduli Stacks

J'en suis convaincu,

mais je ne peux pas le prouver
parce que rien d'important

ne peut étre prouvé;

on peut simplement

le ressentir, le deviner.

Will we continue scientific research?
Alexander Grothendieck

In this chapter we will introduce several moduli stacks that are related to the study
of sheaves on stacky curves. We will give basic properties of these moduli stacks
and morphisms between them. We end by upgrading the categorical result of Chap-
ter ﬁ] and show that moduli stacks of (semistable) parabolic bundles are isomorphic
to moduli stacks of (semistable) vector bundles on stacky curves.

3.1 Moduli of sheaves

We start with a big definition containing the main moduli problems that we will
study.
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3 Moduli Stacks

Definition 3.1.1 Let C be a stacky curve. We denote by Coh(C) the stack of
coherent sheaves on C. Explicitly the objects over T — Spec(k) are flat families
of sheaves on € over 7" and a morphism from an object ¥/ .S to an object G /T is
apair (f,¢),where f: S — T'isan fppf morphism of schemesand ¢: f*G —
F is an isomorphism of coherent sheaves.

We denote by Bun(C) and Bun®*(C) the substacks of vector bundles and &-
semistable vector bundles respectively i.e. the stacks of families that are fiber-
wise (semistable) vector bundles. For fixed rank and twisted degrees (n, d), we
denote by
Cohy, 4(€) D Buny, 4(€) O Bun % (€)

the substacks with fixed invariants. We will drop € from the notation when it is
clear from context. Since n, d defines a unique numerical class & € Kj'™(C)
we can also write Coh,, instead. Whenitis more natural, we will sometimes refer
to Buny, g as Buny, 4 m.

Being torsion-free is an open condition, so Bun C Coh is an open substack. By
[Nir09, Corollary 4.16], BunéSS C Coh is an open substack. By [0S03, Lemma 4.3],
Coh,, 4 C Coh is an open and closed substack and Coh is the disjoint union of the
Cohy, g4, running over all the possible invariants. By [NirQ9, Corollary 2.27], Coh is
an algebraic stack, locally of finite presentation over k. It follows that all the stacks
in the definition are algebraic and locally of finite presentation.

Vector bundle stacks

We will now introduce a class of moduli stacks that admit the structure of a vector
bundle stack, the stackified notion of a vector bundle. The definition of a vector
bundle stack first appeared in [BF97].

Definition 3.1.2 A vector bundle stack over a stack X is a morphism V — X,

such that exists an smooth cover U — X and a two term complex of vector
bundles Vj — V7 on U and an isomorphism [V} /Vp] =~V xx U.

Note that when we write V; /V{ we interpret V(V/)’) as an additive group acting on
V(V1) and we secretly mean [V(V})/V(V[’)]. We could also work with a more
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3.1 Moduli of sheaves

restrictive notion of vector bundle stacks, asking for étale or even open covers, but
this looser definition is enough for our purposes. The most important example of
a vector bundle stack is the following.

Definition 3.1.3 Denote by SES(C) the stack of short exact sequences of co-
herent sheaves i.e. the objects over T are given by a triple &, F, G of coherent
sheaves on € x T, all flat over T" together with a short exact sequence

0—-E&E—=F—=G—0.

The morphisms are morphisms of short exact sequences.

When we consider SES(C) as a stack over Coh(€) x Coh(C) via the forgetful map
that forgets everything except for the outer two sheaves we get a different perspec-
tive of the objects. Namely for an object 7" — Coh(C) x Coh(C) corresponding to
the pair of sheaves (€, G) on C x T' we see that (SES(C) X con(e)xcon(e) T)(T)
consists of short exact sequences & — F' — G’ together with isomorphisms
& ~ & and § ~ §’. The morphisms are morphisms of short exact sequences
& = 3F = 9) = (& - F" — g”) that respect the isomorphisms on
the outer terms. In other words the objects are extensions and the morphisms are
morphisms of extensions. This implies in particular that the fibers of SES(C) —
Coh(€) x Coh(C) are given by [Ext!(G, €)/Ext%(G, €)]. This is why this stack
is sometimes said to be “the stack classifying extensions”, see for example [GHS14,
Section 3]. Strictly speaking this is incorrect, since morphisms of extensions are
more restrictive than morphisms of short exact sequences.

Theorem 3.1.4 The forgetful map p: SES(C) — Coh(C) X Coh(C), sending
a short exact sequence 0 — & — F — G — 0 to the pair (€, 9) is a vector
bundle stack.

Proof. Pick an ample sheaf O¢(1) on C' and consider the open substack Uy C
Coh(C) x Coh(C) consisting of pairs (€, 3), such that Hom (G, €)(d) has no
higher conomology. Clearly the U, cover Coh(€) x Coh(C). Letp: Uy x € — Uy
and ¢: Ug x € — € denote the projection maps. Let (E,niv, Guniv) be the univer-
sal pair of sheaveson Uy X CandsetY = Hom(SUmV, Eum\,). We have a short
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3 Moduli Stacks

exact sequence
0=-Y —=>Yd) —Q—0,

where (Q is defined to be the quotient. We claim that SES(C) |y, ~ [p«Q/p+Y (d)].

First of all notice that @) is the twist of Y by the relative effective divisor defined
by Oy, — ¢*Oe(d), thus Q is flat over Uy. Applying Rp, to the short exact
sequence we get the long exact sequence

0 — R%.Y — R%.,Y(d) = R°p.Q — R'p.Y —
— R'p,Y(d) = R'p.Q — 0.

From the definition of Uy it follows that Rlp*Y(d) = 0 and hence also R'p,Q =
0. It follows that R%p, Y (d) = p.Y (d) and R%p,Q = p.Q. By the cohomology
and base change theorem [Hal14, Theorem A], it follows that p. Y (d) and p,.Q are
vector bundles.

Let T" be an affine scheme and ¢: 1" — U, correspond to an object (€, §), then
by [GHS14, Proposition 3.1] the objects of ([p+Q/p+«Y (d)] Xy, T)(T') are given
by

HY(T,t* (R°p.Y (d) — R%p.Q)) = t*R'p,Y = R'plt"Y = Ext! (S, €)
and the morphisms are given by
HT,t* (R%p.Y (d) — R°p,Q)) = Ext(G, &).
By the discussion above we have SES(C)|y, =~ [p«Q/p+Y (d)]. O

It follows that SES(C) is also an Artin stack, locally of finite presentation over
Spec(k). The forgetful map SES(C) — Coh(€) X Coh(C) also lets us define
many natural variants of SES(C) coming from the different substacks of Coh(C)
defined before. We note that the proof given in [GHS14, Corollary 3.2] also works
perfectly well for stacky curves. We give this alternative proof because we think
the ideas can be useful in other situations as well, such as in the construction of

Section @
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3.1 Moduli of sheaves

Definition 3.1.5 We define SES(,, 4),(ns.d,)(C) to be the fiber product

SES(n.d,),(ns.dy) (C) —————— SES(C)

! |

Cohyy,y 4, (€) X Cohn27¢2(€) —— Coh(C€) x Coh(C).

Equivalently SES(ny,d,),(na,d,) (@) is the stack of short exact sequences, where
we specify the invariants of the first and last term. By construction the projection
to Cohy,, 4, (€) X Cohy, 4, (C) is again a vector bundle stack.

Smoothness

We will study the smoothness of the stacks defined above using the tangent bundle
stack. We take the definition as in [LMO0GQ, Définition 17.13]

Definition3.1.6 Let D := Spec(k[e]/?) be the spectrum of the dual numbers.
For astack T, we set T'[¢] := T x D. We denote the natural maps by ¢: 7' —
Tleland p: Tle] = T.

Let X be an algebraic stack. We define the tangent bundle Ty of X by setting
Tx(T) := X(T[e]). The tangent bundle comes with a natural projection Ty —
X and a zero section X — Ty induced by the maps ¢ and p respectively.

Let X' — Y be a morphism of stacks, then there is a natural morphism Ty —
Tg and we define the relative tangent bundle to be T'y XTy Y.

Classically smoothness is closely related to the tangent bundle being a vector bun-
dle; this generalizes nicely to algebraic stacks when we consider vector bundle
stacks instead.

Proposition 3.1.7 Let X be a reduced algebraic stack locally of finite presenta-

tion over an algebraically closed field k; then X is smooth if and only if Ty is a
vector bundle stack.

Proof. Take a smooth atlas u: X — X. By the proof of [LM0OQ, Théoréme 17.16],
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3 Moduli Stacks

we have
w T 2 [V(Qx/k) /V(Qx /)]

Assume X is smooth, then X — X and X — Spec(k) are smooth and we have
that QX/DC and QX/k are locally free, so this presents Ty as a quotient of vector
bundles.

Assume Ty is a vector bundle stack, then so is u* Ty and
rank V(Qx ;) — rank V(Qx/x)

is constant. Since QX/x is locally free it follows that rank V(QX/k) is constant, so
X is smooth. O

We will now compute the tangent bundle of Coh explicitly.

Theorem 3.1.8 The tangent bundle TCoh(@) is isomorphic to the stack of short

exact sequences & — R €, where the outer two terms are explicitly iden-
tified. The morphisms are morphisms of short exact sequences that respect
the identification of the outer terms. In other words, we have the following 2-
Cartesian square.

Teone) — SES(C)

! |

Coh(€) —2- Coh(€) x Coh(C)

It follows that T'cop @ is a vector bundle stack.

Proof. Let & € Teon(e)(T); then € is a T'[¢]-flat family of sheaves on € x T'[e].
We can tensor € with the short exact sequence

EOT — OT[e] — OT
of OT[g]-moduIes to get a short exact sequence
EROr - & = EROT
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3.1 Moduli of sheaves

on € x T'[e]. Then we can push this forward along p to get a short exact sequence
onC xT.

Starting with a short exact sequence &€ 5 & &onlx T, we can take the
inverse image p~ (€ — & — &), which is an exact sequence of p~*Op-modules.
Now p~ L€ obtainsa Or(g-module structure by defining the action of € as p e —

p e — p_lg.

We leave it to the reader to show that these two constructions give well defined
functors that are inverse to each other. o

Corollary 3.1.9 The stack Coh(C) is smooth, hence so are
Bun(C), SES, Cohg, Bung (C), Bun5 (@), SES4 3 -
Using the Euler pairing (Definition ) we compute the dimensions to be

dim(Cohy(€)) = —(a, ),
dim(SESq g) = —(a, @) — (B,8) — (B, ).

We can give an explicit formula for the expression (@, ) in terms of the rank,
degree and multiplicities, but we think it is more informative to give the following
upper and lower bound.

- Proposition 3.1.10 Let & be the numerical class of a vector bundle, then
(gc — 1) rank(a)? < —(a, @) < (ge — 1) rank(a)?.

Moreover, the left hand bound is attained whenever o« = [W*F X L], for some
vector bundle F'on C and aline bundle L on €. The right hand bound is attained
whenever the multiplicities are balanced, i.e. my, ;(a) = my, j () for all p and

i, j.

Proof. As ax is positive, we can choose a representative F' = @Z L; of the class «,
which is a sum of line bundles. As in Corollary [1.2.11], we can write £; ~ 7*L; ®
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o, aéjpl ep). Then we calculate

(L1, £5) = (O, (L 0 LY) @ | 3 2Ll
P €p

(Oc,Ly® L) - > L

P:ap,<ap,

We have my, ¢(£;) = 1ifand only if a, ; = £ and otherwise my, o(£;) = 0. Thus
mp ¢(F") counts the number of ay, ;s such that a, ; = £. Using the fact that the
Euler pairing is additive, we obtain

ep—2 ep—1
—(FF) = (g0 = ) rank(F)*+ Y 0 > | myp;(F) - D, mpi(F)
p j=0 1=j+1

The result now follows from the following combinatorial statement:
Letn = Zf;g m; be a partition of n into e terms. Then

e—2 e
e—1,
S = m; - E m; | < n*,
, = 2e
1=0 Jj=i+1

moreover the bound is attained precisely when m; = n/e for every i. To see this

note that
e—1 9
25 + Zm? = (Zmz) = n2,
i=0
2

so S is maximal when z:mZ is minimal. This happens when m; = % in which
case we find 25 + e%g =n2orS = %nQ. O

Connected components

The following theorem will show that our discrete invariants really are the discrete
invariants, i.e. they uniquely identify a connected component of Coh. Since Coh is
smooth the connected components are the same as the irreducible components.
First we show the result for Cohg 4 using the interpretation of torsion sheaves as

quiver representations .
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3.1 Moduli of sheaves

H Lemma 3.1.11 The stack of torsion sheaves Cohg 4, with d > 0, is irreducible.

Proof. We first show the case d = (1, ..., 1). Consider the open embedding
L: C0h071(C) — C0h07l(e),

given by T" +— m*T'. We claim that Cohg_; (C') is dense inside Cohg 1(€). To see
this we consult Fig. . The locus of torsion sheaves which are supported away
from the stacky points is isomorphic to Cohg 1 (C' — {p; }). On the right we see the
zoomed in locus L, of torsion sheaves supported at a stacky point p. This locus
is isomorphic to Spec (k[z1, ..., z¢|/(z1 - 2, = 0))/(Gp) X using the
quiver interpretation. Now the family

a a
coker (Oe(—q + gp) — Oe(gP)) yq —p

converges to the point corresponding to the orbit z, = 0 and Hb;ﬁa xp # 0.
(These are the outer points in the diagram). Since the union of these orbits lie dense
in Ly, the claim follows. Since Cohg 1 (C) is irreducible it follows that Cohg 1 (€) is
irreducible.

Next we consider the case d contains a zero degree dp,i = 0, we see that all the
sheaves must be supported at p. The corresponding quiver representations are
automatically nilpotent as the i-th vector space is 0. It follows that Cohg 4 is iso-
morphic to the quotient of an affine space, thus it is irreducible.

For the general case we proceed by induction. Letd = d’+(1, ..., 1) and assume
that Cohg 4 is irreducible. There are maps,

SES(Oyi):(Oy(L...,l)) E— COhO,gl

|

COhO’dil X C0h07(17_._71)
where the vertical arrow is a vector bundle stack, so SES(g 41 (0,(1,...,1)) IS irre-

ducible. The horizontal arrow is surjective, so Cohg 4 is irreducible for every d by
induction. O
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Oy

/NS

Figure 3.1: The topology of COho,(1,1,1)(e) for a curve € with a stacky point of or-
der 3. Generically Coh07(171,1)(€) looks like C, via the correspondence g — O,.
A more complicated specialization structure appears at the stacky point p and is

described further in Figure @

o>< Op(5p) ><p(§p)
02,® 0y,(3p) O2,(3p) © Oy, 02,(3p) © O1,(3p)

Figure 3.2: The specialization structure of sheaves supported at p with twisted de-
grees (1,1, 1). We will give a general method to obtain these specialization struc-

tures in Section @

Theorem 3.1.12 The stack Coh, 4 is irreducible; hence so are the stacks Bun,, ¢

e.
and Bunnz, whenever they are non-empty.

Proof. By Lemma the result holds for n = 0. We proceed by induction on
the rank n. Consider the maps,

SES’ Cohy, 4(C)

|

COhn,Ldi/,g(e) X BunM(C)
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3.2 Parabolic Moduli and Flag bundles

where SES’ is the stack of short exact sequences of the form 7*L — F — G,
where L € Buny;(C) and § € Coh,,_1 4_i(C). The vertical arrow is again a
vector bundle stack, so SES’ is irreducible by induction. As ¢ — —oo the images of
the horizontal maps define a filtration by open substacks of Coh,, 4, each of which
is irreducible, hence Coh,, 4 is irreducible. O

3.2 Parabolic Moduli and Flag bundles

The goal of this section is to generalize the categorical equivalence between para-
bolic bundles on classical curves and bundles on stacky curves of Theorem
to an equivalence of stacks. As a consequence we will see that stacks of vector
bundles on a stacky curve are iterated flag bundles over stacks of vector bundles
on the coarse curve. We start by introducing the stack of quasi-parabolic vector
bundles.

Definition 3.2.1 Let C be a smooth projective stacky curve and p be a collec-
tion of non-stacky points, e be corresponding (parabolic) Iengthsiand m be a
set of (parabolic) multiplicities. We define the stack of quasi-parabolic bundles
QPar2S™(C) whose objects over 1" are pairs (F, F, ), where F is an object of
Bun(C)(T') and T, is a set of filtrations for each p € p

F=F 25 D---DF=F@0e(-pxT),

such that F7 /F7 | is flat over T and rank((F} /J7,,)],) = m,, ;. We note

that the flatness condition guarantees that this rank is constant along 1. The
em

2En 110

. P
morphisms are the natural ones. We let QPar  ,, be the substack where we
fix the invariants of .

We can obtain a natural projection QPar2¢™(C) — Bun(C) by forgetting the
quasi-parabolic structure. When we consider a single parabolic point it is a “well
known fact” that the forgetful map is a fibration by flag varieties. We will make
precise what this means and explain how to generalize the result to the case with
more then one parabolic point.
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3 Moduli Stacks

Definition 3.2.2 Let V be a vector bundle on a stack X of ranknand m € N,
such that Zmiem m; = n. Aflag of type m is a filtration by subbundles V=
Vo D Vi D -+ D V. = 0, such that the successive quotients V;/V,; 1 are
vector bundles of rank(V;/V;11) = m.

We denote by Flag,, (V) — X the flag bundle stack of type m associated to
V, which is defined as follows. The objects over T are given by (x, F'), where x
is an object of X(7") and F'is a flag of ™V, such that the successive quotients
are flat over T and for every t € T the flag F} has type m.

Applying the definition to the most simple situation we recover flag varieties.

Example 3.2.3 Taking X = Spec(k) and V = k", the stack Flag,,(k") is
a smooth projective variety called a (partial) flag variety. In general we have
Flag,, (O%) ~ Flag,, (k") x X.

We can always take a Zariski local covering U — X that trivializes the vector bundle
V. Thenwe have Flag,,, (V) xx U ~ Flag,, (k") x U. In other words flag bundle
stacks are always (Zariski-local) fibrations by flag varieties.

Lemma3.2.4 Let C be a stacky curve and p be a non-stacky point on C. Let & iy
be the universal vector bundle on Bun(C) x €. There is an isomorphism

QPar”“ (€) ~ Flag,, (p*Euniv)

as stacks over Bun(C).
Proof. Note that an object of Flagmp (p*Euniv) (T') consist of a vector bundle F on
C x T, together with a flag of the vector bundle p*JF over T'. Let
¢: QPar”“»(C) — Flag,,(p" Eunw)
be defined by sending an object (F,F9 2 F1 D --- D Fe) to (F, (Fo/Fe)|p 2

(F1/TFe)lp 2 -+ 2 (Fe/TFe)|p = 0). There is an inverse 1) defined by sending
(F,Fy 2 F1 D --- D F,)tothefiltration Fy D - - - D F, where F; is the kernel
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3.2 Parabolic Moduli and Flag bundles

of F — (Fy/F;) ® Op. We leave it to the reader to check that these two functors
are actually inverse to each other. O

Theorem 3.2.5 Let C be a stacky curve, p be a non-stacky point of € and let
€

D = Vp/C. Let (n, d, m) be invariants for vector bundles on D and set m’ =

m\ my,. The functor par can be extended to an isomorphism of stacks.

~ pe,m,

Bun,, 4. (D) » Qpar, ;" (C)

\ /

Bunn,dm/ (G)

Proof. By[Nir09, Lemma 7.9]the functor par of Definition and itsinverse send
flat families to flat families whenever C is a scheme, however the proofs still apply
when € is a DM-stack. By Proposition the multiplicities are preserved. O

Corollary 3.2.6 Let C be a stacky curve with stacky points pi,...p; and let
m: € — C be the coarse space map. Let (n, d, m) be discrete invariants on C.
The induced map of moduli stacks

Ty Bunp 4. (€) — Buny, 4(C),
is an iterated flag bundle. Explicitly there is a factorization
Bunn7d7m(e) = Bl — Bl—l —S e BO — Bunnvd C’

such that the maps B; — B;_1 are Zariski locally of the form

U x Flagmp_(k:”) — U.

Proof. By viewing C as an iterated root stack over C' as in Example [1.1.38, we can

apply Lemma to Theorem iteratively. O
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Corollary 3.2.7 Let C' be a curve, p be a set of points, ¢ be a set of lengths,
be a set of parabolic multiplicities and « be a set of parabolic weights. Consider
the open substack

pb,e,m b.e,m

& Topar, ;" (C) C QPar 5 (C)

of bundles that are semistable when endowed with the weights .. Then there
exists a generating sheaf € on € = \Q/B/C' such that

a-ss__ pem )

QPar, (C) ~ Bunijm((‘f).
Proof. Applying Theorem iteratively we see QPar%i’m(C) ~ Buny, 4., (C),
and by Lemma this isomorphism respects semistability. O

3.3 Stratifications

In this section we will describe several stratifications on the connected components
of Coh,, 4. The goal is to stratify this stack into completely elementary parts, e.g.
smooth curves and their symmetric products, lines and classifying spaces of alge-
braic groups. As a consequence we will be able to make qualitative statements
about the Voevodsky motive of Coh. We start of by recalling some basic definitions
and lemmas about stratifications. We will follow the naming conventions of [Stacks,
Section 09XY].

Definition 3.3.1 Let X be a stack. A partition of X is a collection of locally closed
substacks X'; — X, indexed by i € I'such that [ [;.; X; — X is a bijection. A
stratification of X is a partition, together with a partial order < on I, such that
X; C Uj<z‘ X;. The locally closed substacks X; are called parts or strata.

Note that this is a relatively weak notion of a stratification, in particular we do not
require equality, X; = Uj<i X;. We present several ways to construct more strat-
ifications from some given stratifications.
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Definition 3.3.2 Let f: Y — X be a morphism of stacks and [ [;c; X; — X a
stratification. Denote Y; := X; Xx Y — Y, then the pullback Hz‘eﬂ Y = Yis
also a stratification.

Let [T,c4 Xo = X and [[,c 5 Xs — X be two stratifications. We define the
intersection to be the stratification

T %exaX— X,
(a,b)eAxB

where the ordering on A X B is the product order.

Let [ [,c; Xi — X beastratification, together with stratifications [ [ ;. X; ; —
X; of each stratum. We define the refinement to be the stratification

11 Xij — X,
(iuj)euz‘e]]{i} XHi

where the ordering on | J;c1{i} x I; is the lexicographical ordering (reading i
first and then j).

It is an elementary exercise in topology to check that these are all well defined
stratifications. For any stratification we can consider the map |X| — I, which sends
a point to the index of the strata it is in. When we endow I with the upper topology
(generated by the closed sets {j | 7 < 4}), this map is continuous if and only if
the sets ngi X are closed. This happens for example when the stratification is
good, i.e. we have equalityfi = Uj<i X;. By [Stacks, Remark 09Y2] this is also
the case whenever the stratification is locally finite in the following sense.

Definition 3.3.3 Let [ [,.; X; — X be astratification. We say that the stratifica-
tion is locally finite if for every x € X there exists an open subset U C X such
that the pullback of this stratification to U has finitely many non-empty strata.

The pullback of a locally finite stratification is locally finite by construction and the
intersection of locally finite stratifications is again locally finite. A refinement of a
locally finite stratification I by finite I; is also locally finite.
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The following technical lemma lets us descend stratifications along finite group quo-
tients.

Lemma 3.3.4 Let f: X — Y be a morphism of stacks that is a torsor for a
finite group I'. Let [ [,y Xi — X be a (locally finite) stratification, such that I’
permutes the strata and the action descends to an order preserving action on I
Then the orbit space I/T" admits a partial order by setting

JL<iT & Iy el 4() <i.

We set Y;r == (X; - I') /T = f(X;), then [ [;pey/p Yir — Y is a (locally finite)
| stratification.

Proof. Since I is finite, X; - I is locally closed in X and since X — Y is open,
(X; - T')/Tis locally closed in Y. Next we notice that

U, = fG - D) =fG-D)cf([]x-T) = [T v

§<i 4T<4D

Finally assume [ [;.; X; — Xis locally finite. Let U C X be an open containing
finitely many strata, then U - I is also an open containing finitely many strata, and
(U -T')/T' = f(U) is an open of Y containing finitely many strata. It follows that

[Lirer/r Yir — Y is locally finite. 5

We now construct two basic stratifications of the symmetric power CD which will
be used later.

Example 3.3.5 Let p be a point on a classical curve C'. We can stratify C' into
two parts

C=C\{p} I {p}.

We can pull back this stratification along the n projection maps C"™ — C and
intersect these to get a stratification of C™. The natural action of .S, on C"
permutes the strata, so we obtain a stratification of [C™/.S,,]. The coarse space
morphism [C" /S,,] — C™ is a homeomorphism, so we obtain a stratification
of C(™). The strata are given by (C' \ {p})®) — C™ for | < n, where the
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” map is definedbyq1 +---+q— n—Dp+q1 + -+ + q.

Example 3.3.6 Let A C C? be the diagonal, so that we have a stratification
C%?=ATIC?\ A.

We will inductively construct a stratification on C". Consider the n maps C"" —
C™~! obtained by forgetting one coordinate. We pullback the stratification on
cont along the different maps and intersect them to obtain a stratification of
cn.

The open stratum consists of tuples of n distinct points and we will denote it
by (C™)°. The natural S,, action again permutes the strata, so we also obtain
stratifications of [C™/S,,] and C™) for every n. The strata are indexed by (un-
ordered) partitionsn = ny + - -+ + ny, withny > ... > n; and are given by
the images of

(Cl)o — C(n) (pl,...,pl) — nipp + -+ np;-

The strata in C™) themselves are isomorphic to the free quotient (C*)°/T,
where I is the group which permutes the i-th and j-th coordinate if n; = n;.

Stratification by torsion type

Every coherent sheaf on a stacky curve contains a unique maximal torsion subsheaf,
and we will first stratify by the discrete invariants of this torsion subsheaf. This is a
generalization of the stratification considered in [Hei12, Section 3].

Theorem 3.3.7 Let C be a stacky curve with stacky points p of order e. Consider

the partially ordered set I := @pEp Ner, where ¢ < ¢ if all the entries of c are
- tor=c

less than or equal to the entries of ¢/. Let Coh ", ~ be the substack of coherent
sheaves where the torsion part has twisted degrees c. The decomposition

[T cony (€)= cohy 4(C),

celop
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” is a locally finite stratification.

Note that our partial order is the opposite of what you might expect, i.e. the maxi-
mal stratum, corresponding to 0, is the open stratum Bun,, 4 C Coh,, 4.

Proof. Let JFny be the universal sheaf on Coh,, 4(€) x € and consider its torsion
subsheaf T := (Funiv)tor € Funiv- Then our decomposition is simply the flattening
stratification for T with respect to the projection Coh,, 4(€) x € — Coh,, 4(C) asin
Theorem , so it is a well defined partition. A priori the flattening stratification
is only a partition, so we are left to show that

tor c tor>c . tor !
Coh,e© C Coh 7 = | ] cohy™

C Sopg
Forp € pand 0 < i < ¢, consider the maps
Tpi: Cohnyd(e) — Cohmdw.(C),

defined by F +— m, (ff ® Op (ip) ) By exactness of 7, ; we have (7,;F) . =

Tp,i (Fror), SO by continuity we get

Cohir;Q(@) cm, lﬂ'p’ (Coh:rd f)(e).
Notice that

sz(coh:rd (@) C Coh™ ™ (C) and Coh " P (C) = Cohtorch’i(C),

N n,dp,i N

t > Z
Coh tor c C ﬂ :rd;ip U Co htor c )

C Sopg

SO

Finally 7, Coht°r<c(C) is open for any d and ¢, so CohtOIr £(@) is open and con-

tains fimtely many strata. O

Each stratum admits the structure of a vector bundle stack as follows.
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Proposition 3.3.8 The map Coh ):rd € — Cohg .(€) x Bun,, 4—.(€) sending

(€
a family of sheaves J to the pair (& tors Frree = F/Fror) is avector bundle stack.
In particular each stratum Coh(@) —<is smooth.

Proof. We have a commutative square,

L |

Cohg X Bun,, 4. — Coh X Coh

where the top arrow sends a family F to the short exact sequence Fyoy — F —
Ftree. Notice that F,, is a flat family, by the universal property of the flattening strat-
ification, so the maps are well defined. We claim that this is a 2-Cartesian square.
This is true since any isomorphism & — F” of sheaves restricts to an isomorphism
Fror — Fio, Of torsion parts and thus lifts to an isomorphism of short exact se-

quences (Fror = F = Fpee) = (Fioy = F — Fo). The result follows as
SES — Coh X Coh is a vector bundle stack by Theorem . O

These stratifications and vector bundle results can be neatly summarized in the
following motivic statement. (See Appendix E for our setup.)

Corollary 3.3.9 Let C be a projective stacky curve with coarse space C. The mo-
tive M (Cohy, 4(€)) in DM(k, Q) lies in the thick tensor subcategory generated
by M (C') and M (Cohg ) for all e > 0.

Proof. Applying Proposition - tothe stratification ofTheorem , we see that
M(Cohn d) lies in the category generated by Coh” d Applying Example to
Proposition B - we see that

M (Cohl?"%) = M (Cohgo(€)) @ M (Buny, 4—c(€)).
Applying to Lemma we find

M (Buny, g—c(€)) = M (Buny, gy, (C)) ® Q) M (Flag,, (k"))
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where m,, are the multiplicities corresponding to the twisted degrees dp —¢,- Now

M (Flag,, (k™))ispure Tate[Hab12, Proposition4.4.11]and M (Bun,, q4,—¢,(C))
—P

lies in the thick tensor subcategory generated by M (C') by [HP21b]. O

Stratification by support type

For a classic curve C' the stack of torsion sheaves Cohg 4(C') is well understood.
For example Laumon constructs a proper small map Cohg 4(C) — Cohg 4(C),
where CAo/ho,d(C) is the stack containing filtrations of torsion sheaves J1 C Ja C
--» C TJg, such that J; has degree ¢ [Lau87, Section 3]. This construction special-
izes to the Grothendieck-Springer resolution when C' = Al. For a stacky curve
C, the geometry of Cohgé(e) is more complicated, for example the natural ana-
logue of the Grothendieck-Springer resolution is not small [Hei04]. In an attempt
to describe the geometry of this stack we will completely stratify it into elementary
parts: symmetric powers of (open) curves and classifying spaces of linear algebraic
groups. We start by defining some relevant partially ordered sets.

Definition 3.3.10 Let d be a positive integer. A marked partition is a partition
d=mng+ny+ne+---+ nysuchthatny > ng > ... > ny. The positive
integer Mg is considered marked. We will say that a marked partition is smaller
than a second marked partition if we can obtain the first by adding together
parts of the second; when adding the marked part to another part the result is
considered marked.

As an example we have given the marked partitions of 3 in Figure @ The arrows
point towards the smaller marked partition.

Definition 3.3.11 Let C' be a classical curve with a marked point p. We define a
stratification of the d-th symmetric power of C'

H Xn0+n1+---+nl — C(d)a

no+ni+---n;=d

indexed by marked partitions of d as follows. Let (C')* C C' be the open sub-
set of [-tuples of distinct points, none of which are p. We define Xy, 4y +-..4n,
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Figure 3.3: The marked partitions of 3.

to be the image of (C!)* — C(@) given by

(q15---,q) = nop+ni1qr + - - + myq.

Note that this is just the intersection of the stratifications of Example and
Example . We will use this stratification of C'(%) to construct a stratification by
support type for torsion sheaves.

Definition 3.3.12 Let C be a stacky curve with a single stacky point p of order
e. Consider for 0 < 7 < e — 1 the “twisted support” maps supp; : Cohg 4 —

C(4), given by
T — supp Ty (‘T® Oe <Zp>> )
e

We define the stratification by support type to be the intersection over 0 <
t < e, of the pullbacks along supp; of the stratifications of C/(di) given in Def-
inition . We will denote the strata by COhS,d and a sheaf inside Cohg,d
is said to have support type 7, where T consists of marked partitions d; =
nos; +ni;+--+ngfor0<i<e.

Note that technically a support type 7 consists of a set of e marked partitions, how-
ever the unmarked part of the partitions is not affected by twisting. In fact 7 is
determined by a single partition n. = nj + - - - 4+ ny, such that n < min;(d;). The
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3 Moduli Stacks

marked parts can be recovered via ng,; = d;i —mandn;; =n;jfor0 <i<e
and1 <5 <.

In general the strata Cohg ; are not smooth, in fact they contain many intersecting
irreducible components. The next stratification will resolve this issue by further
stratifying these irreducible components.

Stratification by graded Young diagrams

As a primer let us first discuss the relation between Young diagrams and torsion
sheaves on classical curves.

Definition 3.3.13 A Young diagram Y of size d is a decreasing sequence of nat-
ural numbers ng, n1, ... such that Z n; = d. Young diagrams of size d are
partially ordered as follows

for all j. We denote the set of Young diagrams of size d by Y.

Let Cohg,q,4(C') be the stack of degree d torsion sheaves on a classical curve C,
supported at a fixed k-point ¢. By Proposition we see that Coh07d7q(C) is
isomorphic to the stack NRep,(.J), of nilpotent quiver representations of the Jor-
dan quiver of dimension d. Representations of the Jordan quiver correspond to
matrices up to conjugation and are thus in bijection with Jordan normal forms. The
Jordan normal form of a nilpotent matrix is completely determined by its block sizes,
so the points of this stack are in bijection with the Young diagrams of size d. In fact
the bijection is very explicit. A torsion sheaf T = @Z Ohn,q: Simply gets sent to
ng, N1, ...uptoreordering. Moreover the bijection Coho,d,q(C) — Y, isahome-
omorphism, when Y is endowed with the upper topology. The fact that this is a
homeomorphism comes down to the fact that all specializations of torsion sheaves
are iterations of the specialization

T D qu D an ~ TP O(m—l)q ) O(n+1)q,

form >n + 2.
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3.3 Stratifications

The above story has been generalized to the case of stacky points in [Kem82], using
the fact that for a stacky point p of order e the stack Cohoém(e) is isomorphic to
the stack of nilpotent quiver representations NRep (@) of the cyclic quiver Q)
with dimension vector d. (See also [Joh10], for a more modern presentation.) The
correct generalization of Young diagrams in this setting is the following.

Definition 3.3.14 An e-graded Young diagram is a decreasing sequence of pos-
itive numbers n; € Z, together with a sequence of twists €¢; € Z/eZ. We take
representatives 0 < ¢; < e — 1 and we require that n; = nj4+1 = € < €41
and if n; = 0 = ¢; = 0. We denote the set of e-graded Young diagrams with
signature d by Y§.

We think of e-graded Young diagrams as diagrams of marked boxes. In row ¢ we
draw n; boxes and mark the last one with the twist €;. Working backwards in each
row we mark the next boxwith €;+1, ¢;+2, . . . until we hit the start of the row. The
signature d of an e-graded Young diagram is the vector (do, d1, . . ., de—1), where
d; is the number of times the marking j appears. See Figure @] for an example.
Kempken defines a partial order on Y¢ as follows. For Y, Y’ € Y§wesayY <Y’
if the first i columns of Y contain more markings j then the first 4 columns of Y,
for every ¢ and j.

‘Ml—‘ol\.')
—_

Figure 3.4: The 3-graded Young tableaun = (3,3,2,1),e = (0,1,0,2), with
signature d = (3,3, 3).

Let € be a stacky curve with a stacky point p of order e. There is a bijection
| Cohg g | = Y¢. Namely we send

€
Coho,gp > T = @ O%p ® Oe(ﬁp) = (N, €)i-
i

Kempken shows that this bijection is in fact a homeomorphism when YZ is en-
dowed with the upper topology [Kem82, 2.10 Korrolar 2]. In particular the decom-
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3 Moduli Stacks

position of | Cohg 45 | intoits points is a stratification. See Figure @for anexample
of this homeomorphism.

We are now ready to further stratify Cohgyd

Lemma 3.3.15 Let 7 be a support type as in Definition - given by the parti-
tonn=n1+---+ nyg. L Let I" be the finite subgroup of .S; permuting ¢ and j
whenever n; = n;. Let CohOd = Cohg 4 X o4, ) (CH*, where (CH* — ()
is as in Definition B , which is independent of the choice of 0 < ¢ < e. Then

CohOd (C’l) X NRepy_,,.1(Qc) X NRep,, (J) x - -+ x NRepm(J)

and Coho 4 can be stratified by taking the intersection of the pullback of the strat-
ifications of NRep,_,,.1 (Q.) and NRepn (J) by (graded) Young diagrams. More-
over the natural I' action on Coho,d permutes the strata in an order preserving

way.

Proof. By construction c?fhg@ is the stack of torsion sheaves with support type T,
together with an ordering of the points in the support. The isomorphism then fol-
lows as Cohg g,4(C) ~ NRep, (/) is independent of ¢ € € \ p. The action of I'
on Yy 4 X Yy, X+ XYy, simply permutes Young diagrams of the same size,
which is order preserving. O

By Lemma we can stratify Coh() ; by unordered sets of (graded) Young dia-
grams

(}/Q,{Yl,...,yn}) c Y;_n.l X (Ynl XX YTL[)/F

See Figure @ for a visualization of this stratification in the case of Cohg (2 2) (©).

Proposition 3.3.16 Let

HC°hYo,{Y1,...,Yl} — Cohg g,

be the refinement of the stratification by support type by the stratifications by
unordered sets of (graded) Young diagrams. For each stratum there is a linear
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algebraic group GG and finite group I such that
l
Cohyy 1vy,..v;} & ((C ) % BG)/F.

Proof. All the strata of NRep,,(.J) and NRep,(Q)c) have a single point and since
NRep,,(.J) and NRepi(Qe) are quotient stacks, the strata are isomorphic to BG
for a linear algebraic group G. It follows that the strata of CT)/had are of the form
(CYY* x BG for some linear algebraic group G. By construction the strata of Cohg 4
are of the form ((C')* x BG) /T for a finite group I'. O

Theorem 3.3.17 Let € be a tame stacky curve over an algebraically closed field
k = k. The motive M (Cohg 4(€)) in DM(k, Q) lies in the thick tensor subcate-
gory generated by M (C).

Proof. We only prove this in the case that € has a single stacky point. It should be
clear that these arguments generalize to any amount of stacky points. The strati-
fication by unordered (graded) Young diagrams shows that M (Cohg 4(C)) lies in
the category generated by M ((C!)* x BG)/T). Since we are working with Q-
coefficients, the motive lies in the category generated by M ((C)* x BG). As
k is algebraically closed the motive M ( BG) is pure Tate by Example and it
is clear that M ((C')*) lies in the category generated by M (C). It follows that
M (Cohg 4(C)) itself lies in the category generated by M (C'). O

Combining this result with Corollary we obtain the following corollary.

Corollary 3.3.18 Let C be a tame stacky curve over an algebraically closed field
k = k. The motive M (Cohy, 4(C)) in DM(k, Q) lies in the thick tensor subcate-
gory generated by M (C).
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[0[1]0]1] [1[0]1]0]

| > |

0[1]0] 1]0]1]

=[=]~

Figure 3.5: The homeomorphism between Y%Z?) and | Cohog,(2,2),p
stacky point of order 2.

,wherepis a
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T Oy + Oy

Fgure36:ThesnaﬂﬁcaﬁonofCohOKZQﬂCU,bysuppontypeandreﬁnedbyYoung
diagrams, where € has a single stacky point p of order 2. The strata with support
WpeZamgNaﬂanweEE
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CHAPTER 4

Good Moduli Spaces

In short, mathematics only exists in a
living community of mathematicians
that spreads understanding and breaths
life into ideas both old and new. The
real satisfaction from mathematics is in
learning from others and sharing with
others.

What's a mathematician to do?
Bill Thurston

4.1 Stacks of bundles on stacky curves

This chapter is based on the joint paper [DHMT24] with C. Damiolini, V. Hoskins,
and S. Makarova.

The goal of this chapter is to show that the moduli stack of semistable vector bun-
dles on a smooth projective stacky curve admits a projective good moduli space.
This was first shown by Mehta and Seshadri [MS80], using geometric invariant the-
ory and the language of parabolic vector bundles. We will instead give a “modern”
proof in two steps. First we will apply the existence theorem [AHH23] to show that
a good moduli space (a priori an algebraic space) exists. Next we will define an ex-
plicit line bundle on the stack and show that it induces a finite map from the good
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4 Good Moduli Spaces

moduli space to a projective space. This implies that the good moduli space is in
fact a projective variety.

This modern approach has been applied before to the moduli space of curves
[Kol9Q], the moduli space of vector bundles on a curve [ABBLT22], and the moduli
space of quiver representations [BDFHMT22]. The major advantage of the modern
approach compared to GIT is the fact that we get effective bounds for the existence
of sections of our line bundle. These effective bounds are a first step towards ob-
taining explicit embeddings of the moduli space in projective space.

We would also like to highlight the convenience of working with stacky curves over
parabolic bundles. Once the correct generalization of the statements in [ABBLT22]
are found it is quite straightforward to generalize proofs from classical curves to
stacky curves. Note that the results in this chapter do not depend on the results of
[ABBLT22], so the arguments specialize to the case of classical curves, and in fact
provide a streamlined proof.

Finiteness

We start by proving that the stack of semistable bundles with fixed invariant is of
finite type. Before we can do that, we cite a preliminary result about Quot schemes
for Deligne-Mumford stacks and prove that semistable vector bundles on stacky
curves can be expressed as quotients.

Theorem 4.1.1 [0S03, Theorem 1.5] Let X be a tame Deligne-Mumford stack,
separated and of finite type over k. Assume that X is a global quotient and that
its coarse moduli space X is a projective variety. Let I/ be a quasi-coherent
sheaf on X. Define the Quot stack () to be the stack whose fiber over a base B
are groupoids of locally finitely presented quotients of F that are flat and with
proper support over B. Then the connected components of () are projective.

For classical curves, the fact that semistable vector bundles can be described as
quotients of a fixed sheaf is key to constructing moduli spaces via GIT. The next
result generalizes this quotient description to stacky curves. Recall the definition
of the slope (semi)stability given in Definition .
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4.1 Stacks of bundles on stacky curves

Lemma 4.1.2 Let o € K{"™(C) be a generating numerical invariant (Defini-
tion [1.3.22), represented by a generating sheaf E. Let 3 € K§"™(C) be another
invariant.

(i) ForanysheafF on C, there exists ,ua,max(F) such that for all subbundles
F' C F,wehave pio(F") < piomax(F).

(i) If F'is an a-semistable sheaf and i (F) > flamax(E ® we), then
Ext!(E, F) = 0.

(iii) If F'is an c-semistable sheaf with 1o (F') > fiomax (£ ®we)+rank(E),
thenthe map ev: Hom(E, F') ® E — F'is surjective.

Proof. Part @ follows as F” is a subobject of F, so the degree and multiplicities of
F' are bounded above, and the rank is non-negative.

We now prove part @ By semistability of F' and the assumption on the slopes, it
follows that Hom(F, E ® we) = 0. Then Serre duality implies that Ext! (E, F') =
0.

In order to prove part , we will adapt a classical argument (for example, see
[New78, Chapter 5]). For any point z € C, let e, be the order of x (which will
be equal to 1 if x is chosen to be non-stacky). Note that tensoring by O(—x)
doesn't change the multiplicities, so F'(—x) is still semistable and pp (F(—x)) =
o (F) — rank(E), hence by part [ii], we have Ext! (E, F(—x)) = 0. Consider
the long exact sequence obtained from applying Hom(E, _ ) to the short exact se-
quence

1
0 — F(—z) — F <—x> — T — 0,
ex

where T is the quotient torsion sheaf. We can see that Ext! (E, F'(—x)) surjects
onto Ext! (E, F(—}:p)) hence it also vanishes.

Let ;. : G, — € denote the inclusion of the residual gerbe (where G, = Spec(k)
if z is non-stacky), and set £ = gL} F". Applying Hom (E, _)tothe short exact
sequence

1
0—>F<—x>—>F—>F91_—>O

€x
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4 Good Moduli Spaces

yields an exact sequence

1
Hom(E, F) — Hom(E, Fg, ) — Ext! (E,F (—a:))

€x

We have already proved that Ext’ <E, F(—ém)) = 0, hence we have a surjec-
tion
f: Hom(E, F) — Hom(E, Fg,).

We claim that the morphism obtained by adjunction is surjective as well:
ev,: Hom(E,F)® E — Fg,.
Indeed, pick any vector v € Fyg_. By adjunction, we have
Home (K, F) = Homy,, (1B, 1, F),

and since E is generating, there is a morphism of Z/eZ-graded vector spaces
g: s E — 5 F such thatv = g(w) for some section w in a neighborhood of
x. Since f is surjective, there is a morphism h: E — F'such that f(h) = g. But
now we observe that v = ev,(h ® w), and we conclude that ev,, is surjective. O

Proposition 4.1.3 If «¢ is a generating numerical invariant, then Bung'SS

finite type.

is of

Proof. Fix an ample line bundle O¢ (1) on the good moduli space 7: € — C, and
for an arbitrary sheaf £ on €, denote by F'(n) the twist F' @ 7*O¢(n). Pick a
generating bundle E of class a. For a large enough m € Z, we have that

1p(F(m)) > ppmax(E ® we) 4 rank(E)

for every F' € Bunj*(k). Therefore, by Lemma (i), we have that for every
F e Bung'ss, the following map is surjective:

Hom(E, F\(m)) ® E — F(m).

By Lemma [ii}, we deduce that the dimension of Hom(E, F'(m)) is indepen-
dentof F' € Bung'ss; call this dimension N. Therefore, every F' € Bung"SS can be
written as a quotient

E(—m)®N = F,
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4.2 Existence and properties of good moduli space

or in other words, realized as an element of the Quot scheme () of quotients of
E(—m)EBN that have a fixed numerical invariant 3. Since semistability is open,
we find an open subscheme Q° C () that surjects onto BunG™°. Since Bun%™* is
connected by Theorem , we find a connected component Q' of @ such that
Q' NQ° still surjects on Bung'ss. But by Theorem .1.1, Q' is projective, so Bung'SS
is bounded. O

Remark 4.1.4 In fact there is an open subscheme Q C () and an integer N, such
that Bung™* ~ [Q/GLx] [Nir09, Theorem 5.1]. It follows that Bung™* has affine
diagonal.

4.2 Existence and properties of good moduli space

In this section we apply the existence criterion of Alper, Halpern-Leistner and Hein-
loth [AHH23, Theorem A] to prove that the stack Bung'SS admits a good moduli
space in the sense of Alper [Alp13]. In this section, we will assume that char(k) =
0, as we only apply the existence criterion in characteristic zero due to the differ-
ence in positive characteristic between linearly reductive and reductive stabilizers
(which requires a weaker notion of an adequate moduli space). In this section, «
will denote a generating numerical invariant.

Applying the existence theorem

Since Bung'SS is an algebraic stack of finite type over k with affine diagonal we are in
the position to apply the following existence criterion for good moduli spaces. We
will only state this criterion in characteristic zero, as we cannot verify the additional
local reductivity assumption required in positive characteristic to obtain the étale
local quotient description as in [AHR23] when the stabilizers of closed points are
linearly reductive (in characteristic zero, this is always the case, as S-completeness
implies these stabilizers are reductive).

Theorem 4.2.1 (Existence criteria for stacks, [AHH23, Theorem A]) Let X be an
algebraic stack of finite type over a characteristic zero field k with affine diagonal.
Then X admits a separated good moduli space if and only if X is ©-complete and
S-complete.
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4 Good Moduli Spaces

Let us give the definitions of the completeness conditions appearing here, which
are valuative criteria involving verifying codimension 2 filling conditions.

Definition 4.2.2 A stack X is ©-complete or S-complete if for every DVR R with
uniformizer 7, every morphisms from T \ {0} — X extends to T where

Tr = Op := [Spec(R[s])/G,,] or
Tr = STr = [Spec(R]s, t]/(m — st))/Gy,] respectively,

where G, acts on s with weight +1 and ¢ with weight —1 and 0 is the unique
closed point of Tg.

By definition, ©r is the base change of © = [Spec(Z[s])/G,,] to R. For a de-
tailed discussion of these conditions, we refer to [Alp24, §6.8.2]. If X is a moduli
stack of objects in an Abelian category, morphisms © \ {0} — X can be viewed
as a family over R with a filtration over the generic fiber X' = Frac(R) whose
associated graded object lies in X, and such a morphism extends to © p if the filtra-
tion and associated graded object extend to the special fiber k = R/m. Similarly
in this Abelian setting, a morphism ST \ {0} — X can be viewed as two families
over R whose generic fibers are isomorphic and this extends to ST, if the special
fibers admit opposite filtrations whose associated graded objects are isomorphic.

Proposition 4.2.3 The stack Bunf;j'SS admits a separated good moduli space
Bg‘ss.

Proof. By the above existence criterion [AHH23, Theorem A], it suffices to prove
that Bung"SS is ©-complete and S-complete. Throughout we let R be a discrete valu-
ation ring with residue field , and denote by 7 its uniformizer and by K its fraction
field. Note that when A is the category of quasi-coherent sheaves on €, the stack
of coherent sheaves Coh coincides with the stack M 4 introduced in [AHH23, §7, Ex-
ample 7.1 and Definition 7.8], thus Coh is S-complete and ©-complete by [AHH23,
Lemma 7.16 and 7.17]. Alternatively, one can use the properness of the Quot
scheme of sheaves on € ([0S03, Theorem 1.1]) to prove that Coh is ©-complete.

We start by showing that Bung™* is ©-complete. We can identify O \ {0} with
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4.2 Existence and properties of good moduli space

Spec(R) U ©f, soamorphism O \ {0} — Bung™ corresponds to a
Spec(K)

semistable vector bundle F' over Cg with a filtration
O=F"C--CFElcFycF c...Cc Ft = Fg

of the generic fiber whose associated graded object gr(F'y) = P, Ff}/F;;ﬁl
lies in Bung™*. In particular, we must have pa(FE) = pa(Fk) and all these
sheaves are a-semistable. This morphism extends to Oy, if the above filtration and
associated graded object extends over the special fibre k of R in Bung'ss. By the
discussion above, Coh is ©-complete and so we can extend the above morphism
to ¢ : O — Coh which gives a filtration0 = F~™ ¢ ... ¢ Fi-1 ¢ Ft ¢
Ft1 c ... ¢ FN = F of coherent sheaves on Cg that restricts to the above
filtration of cx-semistable vector bundles over C.

Since the subsheaves F* are flat over R, they have the same a-slope as the generic
fibre. Hence we also have pi(FY) = pa(Fy) over the special fibre and deduce
each F,f is a-semistable from the semistability of F}; using that F,f C Fi have
the same a-slope. Since the kernel and cokernel of a map between cx-semistable
vector bundles is again ax-semistable (this is a formal consequence of the seesaw
inequality [Joy07, Definition 4.1]), we deduce that gr(F,:) is also ax-semistable. This

proves the image of ¢ is contained in Bung'ss.

Next we show that BunG™* is S-complete. Note that ST \ {0} can be identified

with Spec(R) U Spec(R), soamorphism STg\{0} — BunG™ corresponds
Spec(K)

to two semistable vector bundles F_ . and F, over Cg with a fixed isomorphism
over Cg. This extends to ST if we can find a system of vector bundles (Fy)cz,
which fitin a diagram

te—3 lo—2 te—1 ty tot1 toro
Y kT~ L~ L kT~

Fy o Fpq Fy Fyp Fyyo
S~ ~_ ~ ~—> ~_~7
S¢—2 Sp—1 Se Se+1 Sp42 Se+3

where

(S1) the maps s; and ¢; are injections such that s; o t;_1 and ; o s;41 are given
by multiplication by 7 (occasionally we will omit the subscripts and denote
these maps by s and t);
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(S2) there exists an N € Z such that for every n. > N one has isomorphisms
F, = Fyand F_, = F_,, commuting with the morphisms s, 41 : F,, —
Foyiandt_,—1: F,, — F_,,_1, respectively; in particular, s,, and t_,
are isomorphisms forn. > N;

(S3) the map s induces an injection Fy_1 /t(Fy) — Fy/t(Fyy1), and analo-
gously the map ¢ induces an injection Fy1/s(Fy) — Fy/s(Fp—1);

(S4) the sheaf over G

=@ ) oy H )
gr(F) '—ZGB s(Fy_1 JH(E)) @ F1z+1/5 Fy))

@ (Fr—1 +th+1)

is an a-semistable vector bundle.

Since Coh is S-complete, we can find a unique system of coherent sheaves (Fg)gez
asin (@) satisfying conditions , and . Since the maps s and ¢ are injec-
tive, this implies that Fy is a vector bundle for every £ and thus we are left to show
that holds. Note that conditions — tell us that

F_ F_n_ F_
0— © _ N-1 - N C -
Fooo  t(F_n) — t(F-n1)
Fn_ F F,

t(Fy) ~ t(Fny1)  tH(Fx)

is a finite filtration of Fis |,; (and similarly for F_ | ;). Recall that Fi, has numerical
invariant 3 and it is ae-semistable, with (a, 3) = 0. Combining semistability (as
in Remark ) together with (), we obtain

0 (o o) > <a, ﬁ%» — (@, Fot) — (e, t(F)

= <a7F4—1> - <a,Fg>,

where the last equality follows from the fact that ¢ is injective. Thus we have that
(o, Fy—1) < (e, Fy). Repeating the argument with F_ ., we obtain the reverse
inequality (ct, Fy—1) > (a, Fy) which forces (o, Fy_1) = (a, Fy) for every ¢,

and thus (e, Fy) = 0. Since Fy C F is a subbundle of the same c-slope and
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F is a-semistable, we conclude Fy is also a-semistable. Again, as the category of
a-semistable vector bundles of fixed slope is Abelian, we deduce that Fy_1 /t(Fy)
and i )
Fy/t(Fypia
gr(F)e = ————
s(Fp-1/t(Fr))
are a-semistable. By semistability of gr( ")y, this sheaf is torsion free, and thus a
vector bundle, which completes the proof. O

Remark 4.2.4 Note that the above proof cannot be applied to show that Bun is
S-complete (or ©-complete), as the cokernel of an inclusion of locally free sheaves
may not be locally free (see [Alp13, Proposition 6.8.31 and Remark 6.8.33]).

Corollary 4.2.5 The good moduli space Bg'ss is @a normal and proper algebraic
space of finite type over Spec(k), which is irreducible if it is non-empty.

Proof. The stack Bung'SS is irreducible and smooth by Theorem , and Corol-
lary B.1.9. By [Alp13, Theorem 4.16], the irreducibility and normality of Bung™*
descend to its good moduli space Bg'ss. We are left to prove properness which, in
view of [AHH23, Theorem A], amounts to showing that the stack Bun,‘gf'SS satisfies
the existence part of the valuative criterion of properness. For this, we can assume
that k is algebraically closed. For a non-stacky curve, this is a classical result of Lang-
ton [Lan75, Theorem at page 99] which was extended to the case of stacky curves

in [Hua23, Theorem 1.1]. O

The remainder of the chapter is devoted to proving that the good moduli space is
projective, and thus in particular is a scheme rather than just an algebraic space.
Our first step is to construct the line bundle from which we will obtain a projective
embedding.

4.3 Determinantal line bundles

In this section we construct a determinantal line bundle £y, over Bung naturally
associated to a vector bundle V' on €. We will see that when ([V], 8) = 0, this
line bundle has a global section. The properties of this line bundle will be crucial to
proving the projectivity of Bg'ss in Section 4.5.
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Definition and main properties of determinantal line bundles

Consider the diagram

C Bung

where Ug is the universal vector bundle on C X Bung and V' is a vector bundle on
C. Then we define

Ly = det (Rp.Hom (¢*V, Ug))" (4.2)

and we call this bundle the determinantal line bundle on Bung associated to V.
Concretely, by base change [HR17, Corollary 4.13], at a point £/ € Bung(k‘) the
fiber is given by

Ly|g = detExt®(V, E)" @ det Ext!(V, E).

The complexRp, Hom (¢*V, UB) is locally represented by a complex of vector bun-
dles KO — K on Bung. To see this, let d > 0 be an integer and consider the
open substack X4 C Bung consisting of F’ such that Ext!(V(—d), F') = 0. By
base change, this means that the fibers of R p, Hom (¢*V (—d), Ug)‘xd are zero,
hence this sheaf vanishes. It is clear that these substacks X, cover Bung. Now
consider the short exact sequence of coherent sheaves on € x Xy

0— Hom(q*‘/vuﬁﬂxd - Hom(q*v(_d)vuﬁ))xd — Qq — 0.

Applying Rp. to the short exact sequence we get a long exact sequence

0 — R%p.Hom (¢*V, Ug)|x, = R'p.Hom (¢*V (—d), Ug)|x, —
= R%.Qy — Rlp*Hom(q*V, Ug)|x, = 0 — R'p.Qq — 0.

Notice that (4 is the tensor product of a vector bundle Hom (¢*V, Ug)|x, with
q¢*Op(d), where D is a divisor on € corresponding to the embedding O¢ —
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Oc(d). Since ¢*Op(d) is flat over Xy, it follows that ) 4 is too. By the cohnomology
and base change theorem [Hal14, Theorem A] it follows that

ROpHom(q"V (—d), Ug)lx, = psHom(q"V (~d), Ug)lx,

and Rop*Qd = p,Q)q and they are both vector bundles. In particular, we have a
quasi-isomorphism of complexes

* * J
Rp*’Hom(q V, ulg)‘xd ~ p*’Hom(q V(—d),uﬁ)‘xd —d>p*Qd

where the latter is a two term complex of vector bundles.

Let V' be a vector bundle such that (V,3) = 0, then from the local picture
we can see that £y comes with a natural section. Namely, we take det(dq) €
H(X4, Lv|x,) (the determinant exists since the source and target have the same
rank), and these sections glue together to a global section oy/. Note that on the lo-
cus X the complex is given by the unique map d¢: Oy, — Ox, between the zero
vector bundles, so Ly trivializes on Xy via the canonical section det(dp) = 1.
Hence for £ € Bung(k), we have

ov|g # 0 ifand only if Hom(V, E) = Ext!(V, E) = 0. 4.3)

Given an exact sequence of vector bundles 0 — V' — V — V" — 0, we
have by construction £y =2 Ly & Lywn. It follows that Ly only depends on
the algebraic class [V] of V' in the Grothendieck ring Ko(C). Because of this we
will write £y rather than £y from now on. Note that if 1" is a vector bundle with
algebraic invariant ma, then L[V] = L%m. Akey pointis that the section oy does
depend on V' and we will leverage this fact to construct many different sections of

L1y using different vector bundles TV with the same class as V.

4.4 Vanishing results

We consider o, B € K{'™(C) such that (e, 3) = 0. We fix an algebraic invariant
a = (L, a) € Ko(C), defined by the numerical invariant c, together with a fixed
determinant L. € Pic(C'). Any algebraic invariant 4 € Ko(C) gives rise to a
numerical invariant 7y and determinant L € Pic(C). Let BG,, — Pic(C) be
the inclusion corresponding to L, then we define Buny = BG,, Xpic(C) Buny.
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4 Good Moduli Spaces

We will consider the determinantal line bundle £ 5 on Bung and produce sections
oy of L%m using vector bundles V' € Bun,,, g with numerical invariant ma and
fixed determinant L&, First, we show for m >> 0 (and in fact we give an effective
bound) and for any c-semistable vector bundle F with invariant 3, we can find a
vector bundle V' € Bun,,,5 (k) suchthatHom(V, E') = O orequivalently oy (E) #

0, which will allow us to prove that the restriction of £ to Bung"SS

in Theorem below. Throughout this section, we assume k = k to have the
existence of k-points of Bun,,, 5.

is semiample

Hom-vanishing

We will describe the codimension of loci where Hom-vanishing fails by using stacks
of short exact sequences. For any numerical invariants 31, 32, we let SESg, g, be
the stack of short exact sequences with fixed invariants as in Definition B.1.5. This
stack admits natural forgetful maps

SESg, 3, Ei — F — Ey
7r13/ \7:2 /
Bungl X Bunﬁg Bung1+@2 (El, EQ) F

By Corollary SESgB, 3, is smooth of dimension —(B1, 1) — (B2, B2) —
(B2, B1). In addition the projection s is representable, which can be seen in two

different ways: the fibers are Quot schemes, or the corresponding functor is faith-
ful, as a morphism of short exact sequences which is the identity on F' must also
be the identity on F and Fs.

The following proposition can be seen as an extension of [ABBLT22, Lemma 5.8];
however we simplify the proof by doing dimension counts directly on the stack of
vector bundles (with fixed invariants and determinant). Because of this we do not
need a result of the form of [ABBLT22, Lemma 5.7] and we do not need to consider
projectivized Ext groups. Moreover we write our formula’s in terms of Euler pairing
to simplify computations.

Proposition 4.4.1 Let & € K(C) be a positive algebraic invariant, and let 3
be a positive numerical invariant such that (a, 3) = 0. Let ) € Ko(C) be
an effective algebraic invariant. Then there exists a constant K = kg g 7 such
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4.4 Vanishing results

that forany m > kandany E € Bung(k), a general vector bundle V' €
Bun,,,a7 (k) satisfies the following conditions.

(i) Any non-zero morphism f: V — E satisfies (a, image(f)) > 0.

(i) If we assume F is a-stable, then every non-zeromap f: V. — E'is
surjective.

(iii) If Eis ce-stable and (1, 3) < 0, then Hom(V, E') = 0.

Proof. We first show that for the general vector bundle V' € Bunma+ﬁ(k) one has
that 7, V' is {-regular for some ¢ independent of m. (Recall that F' is ¢-regular if
HY(F(¢ — 1)) = 0.) Clearly this condition is open, so we just have to show there
exists such a bundle. Let Fy € Bung(k) be such that 7, E is ¢1-regular and
FEy € Buna+,~,(k) such that 7, F is £o-regular, for some £1 and £5. Then V' =
EP"™ 1 @ By € Bun,,g.5(k) is such that 7,V is L-regular for £ := max ({1, £2),
which is independent of m.

For @ we will show that the locus inside Bun,, g 7 where the condition fails has
positive codimension. We will stratify this locus by the possible algebraic invariants
of the image of the non-zero maps f: V' — E such that (c, image(f)) < 0
and 7,V is -regular. Let 7 be the numerical invariant of G := image(f), and
recall that ax, 17 are the numerical invariants of c, 7], respectively. We claim that
there are only finitely many values of ~y that can appear. Since G C F, we have
1 < rank(vy) < rank(8) and the multiplicities of G are bounded by those of
E, so it remains to bound the degree of G. In fact, we will bound the c-degree of
G and see that our bounds are independent of m. Since .V is {-regular, m,G is
l-regular as well, and we have deg m.G(¢) > 0, so deg(m.G) > —{ rank G. On
the other hand, by our assumption on f, we have deg,, (7y) + rank(y) - (o, O) =
{a, ) < 0, so combining this with Proposition as well as the inequality we
already obtained from f-regularity, we get

—Crank(7y) < degmy < deg, (y) < —rank(7) - (a, O). (4.4)
Hence there are finitely many possibilities for <y. For each of these finitely many
~ with (et,7y) < 0, we let B, be the locus of V' € Bun,, 57 where there is a

non-zero morphism f: V' — E whose image G has invariant 7.
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4 Good Moduli Spaces

Now consider the diagram of vector bundles, with specified invariants.

mo+mn—7y mo+mnm Y

0 K V G
S

E

B

Let €~ be the substack of SES;;at7—~,~. given by short exact sequences where
the determinant of the pushforward of the middle term is equal to det 7, (ma +
7). By definition € fits in a Cartesian square:

€y — SESmatn—v.y

| |

BG,, —— Pic(C)

The right vertical map sends (Ey — F — Ej) +— detm,F, and the bottom
arrow is the inclusion of det 7. (ma + 1) in Pic(C'). Therefore we can compute
the dimension
dim & = dimSES; 49—~y —9C-
Since the middle projection £, — Bun,, &4 is representable and its image con-
tains the locus B., it follows that
codim B, > dimBun,,g545 —dim &,
= —(ma+mn,ma+mn) —gc+ (ma+n—vy,ma+n--7)
+ vy +yyma+n—7) + 90
= (V7)) —mla,y) = (n,7)- (4.5)

Since (a, ) < 0 by assumption, this codimension is positive for sufficiently large

(y=m,7)
m, namely for m > an)

For statement @ if image(f) is a proper subbundle, then by a-stability of £ we
conclude {cx, image(f)) < 0, which contradicts [i]. Hence image(f) is either 0 or
E.

Finally to prove statement , let f: V — E be a non-zero map. By @ we may
assume that f is surjective, so we get an exact sequence

moa+n—0 ma+n B
0 K v—L E 0.
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4.4 Vanishing results

Let € be the substack of SESma-+n—gB,8 Where the final term is abstractly isomor-
phic to F and the determinant of the pushforward of the middle term is equal to
det m,(ma + 1). Then & has dimension

dim & = dimBun,,q4n—g — (B, ma +n — B) — dimAut(E) — g,

and the morphism & — Bun,,, 17 is representable and its image contains the
locus B C Bun,,g4 consisting of V' such that Hom(V, E') # 0. Hence, using
thatdimAut(E) > 1,
codim B > dimBun,,g 5 —dim&
> — (ma+n,ma+mn) —gc
—(—(ma+n-Bma+n—pB)—(Bma+n—pB)—1-gc)

which is positive precisely when (n, 3) < 0. )
To prove semiampleness, we only need to apply the above proposition to the case
711 = 0. However in Section , in order to be able to separate points using the

sections oy, we will use this proposition when 77 = +4, where ¢ is the algebraic
invariant of a degree 1 torsion sheaf supported at a non-stacky point

Proposition 4.4.2 Consider the situation of Proposition .4.1, and assume in
addition that (n,y) < 0 for every positive numerical invariant 7. Then the
constant s from Proposition can be chosen to be

rg = max((ge — 1)(rank 3)2,0).

Note that the condition on 7} is satisfied for = 0 and 7 = 9 is the numerical
class of a skyscraper sheaf at a non-stacky point. When 17 = —§, we can choose

the bound
kh=max | (ge — 1+ L (rank 3)2,0 ) .
B rank 3 ’

Proof. We need to ensure that the quantity in (@) is positive. It suffices to take

()

K > max
¥
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4 Good Moduli Spaces

where ~ runs over the finite list of numerical invariants «y of subbundles of F, sat-
isfying (c, ) < 0. Since (e, ) < —1 and by assumption (1, ) < 0, it suffices
to take

K> mgX(-(%W),

where ~ runs over the invariants of subbundles of E. By Proposition , we
have

—(7,7) < (ge — 1)(ranky)?

and as we need > 0, we conclude the claimed bound. For the case 7 = —d we
follow the same argument, but note that (1, v) = rank-~y. O

Corollary 4.4.3 Let & € Ko(C) be a positive algebraic invariant, and let 3
be a positive numerical invariant such that (a, 3) = 0. Let ) € Ko(C) be
an effective algebraic invariant. Then there exists m > 0 such that for any
E e Bung'ss(k:) satisfying (1, E;) < 0 for every stable subquotient E; of E, a
generic vector bundle V' with algebraic invariant mac + 1) satisfies

Hom(V, E) = 0.

Proof. The proof inductively considers the Jordan-Hélder filtration 0 C EMW ¢
.-+ C E(") = F of E whose subquotients I; = E(*) /E(~1 are a-stable of the
same a-slope. By applying Proposition to each F; we deduce form > 0 that
a general vector bundle V' with algebraic invariant ma -+ satisfies Hom (V, E;) =
Oforeachi = 1,...,r. Byinductively applying Hom(V, _ ) to the exact sequences
0 — EC-D - EG 5 E; — 0 we obtain Hom(V, E) = 0. O

Remark 4.4.4 In fact, the same effective bound for m giving Hom-vanishing for
stables given in Proposition also work for the Hom-vanishing of semistable
vector bundles, as the proof of Corollary involves applying Proposition
to subinvariants.

Thus semistability can be characterized in terms of a Hom-vanishing condition as
follows. This was originally noticed for Higgs bundles over classical curves by Falt-
ings [Fal93, Theorem 1.2].
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4.4 Vanishing results

Proposition 4.4.5 Let & € Ko(C) be a positive algebraic invariant, and let 3
be a positive numerical invariant such that (&, 3) = 0. Then E € Bung(k) is
a-semistable if and only if there is a vector bundle V' with algebraic invariant
ma for some m > 0 such that

Hom(V, E) = Ext!(V, E) = 0.

Proof. By assumption (ma, 3) = 0, so dimHom(V, E) = dimExt!(V, E). Thus
the forward direction follows from Corollary . Conversely suppose V' has in-
variant ma and satisfies Hom(V, E') = 0. To show E is a-semistable we consider
asubbundle ' C F with quotient E” and apply Hom(V/, _ ) to the exact sequence
0— E'— E — E"” — 0todeduce Hom(V, E’) = 0. This implies

(may, [E']) = — dim Extl(V, E’) <0={(a,B),
from which we obtain uq (E') < pa(E). O

Ext-vanishing and separating stable bundles

Here we prove the key results that enable us to deduce ampleness of the deter-
minantal line bundle. First, we show that Serre duality sends semistable vector
bundles to semistable vector bundles in order to translate Hom-vanishing results
into Ext-vanishing results. Throughout § = (8, Og(z)) denotes the numerical in-
variant of a degree 1 torsion sheaf supported at a non-stacky point x € C, that is

6 =(0,1,0).

Proposition 4.4.6 Let & be a generating numerical invariant and let E' be a vec-
tor bundle on € such that (¢, E) = 0. Then E is a-semistable if and only if
the Serre dual SD(E) :== Hom (E,we) is ¥ -semistable

Proof. Assume that E' is ac-semistable. Given a subsheaf F' C SD(FE'), we apply
Serre duality (Theorem ) to get the following equality:

(", F) = —(F,a" ®w) = —(a,SD(F)).

But SD(F") is a quotient of the a-semistable sheaf E, hence —(a, SD(F')) < 0,
as desired. For the converse, we just replace E with SD(F) and a with SD(cx) and
notice that SD(SD(E)) = E, hence the argument above applies. O
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4 Good Moduli Spaces

Lemma 4.4.7 Let & € Ko(C) be a positive algebraic invariant, and let 3 be a
positive numerical invariant such that (&, ﬁ> = 0. Then for every m > kg and
forevery £/ € Bung'ss(k), a general vector bundle V' with invariant max — &
satisfies

Ext!(V, E) = 0.

Proof. Note that Ext!(V, E) = Hom(V", sb(E)))" and that V'V has invariant
ma + 4. In addition:

@ (0,G) = —rank(G) < 0 for every bundle G.
(b) if Eis a-semistable, then SD(E)) is ¥ -semistable (see Proposition );
(© if (a, @) = 0, then also (", SD(3)) = 0.

These three conditions ensure that we can apply Corollary (and Remark )
to the a"'-semistable sheaf SD(E) and conclude the argument. O

Before we can show that the determinantal line bundle has enough sections to
separate most points, we first need a lemma which is a step towards producing
the vector bundle defining the section we want: rather than constructing a vector
bundle with algebraic invariant ma we construct a vector bundle with invariant
maé — 8. We will later extend V to construct the section needed to separate points.

Lemma 4.4.8 Let Ey, ..., Fy be a-stable bundles whose numerical invariants
Bi satisfy (a, 3;) = 0 and such that Fy 2 E; foreveryi = 1,...,/. Then
form > maxg<;<¢ m;ﬁi, a generic vector bundle V' with invariant ma — 8 has
the following properties:

(i) Ext!(V, E;) = Oforalli =0,..., ¢

(i) foralli =0,...,¢anynon-zero homomorphism V' — Ej is surjective;

(iiiy foralli = 1,...,¢ and non-zero homomorphisms fy: V' — Ej and
fi: V. — E;, the homomorphism g; = (fo, fi): V — Ep @ Ejis
surjective.

Proof. Part@follows from Lemma . For Part @ we can apply Proposition
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4.4 Vanishing results

@ to the a-stable bundles FEy, ..., Ey to deduce that, for m > kg, a generic

vector bundle V' with invariant ma — & every non zeromap V' — FE; is surjective.

For Part , we apply Proposition m to By @ F; to deduce that the image of
gi, which we denote GG, has necessarily the same a-slope as Fg & E;. Note that,
by Remark and the fact that (o, B9) = 0 = (e, B;), the slopes coincide
o (Eo) = pa(E;) = pa(Eo ® E;). Since the map g; is non-zero, this implies
that if g; is not surjective, then (; is either isomorphic to either Fy or E;. Since
both fo and f; are surjective, it follows that also the projections G; — FEjq and
G; — E; are surjective. Since £y 2 F;, the conditions G; = F; or G; & Ej are
impossible to achieve, thus the map f is surjective. O

Remark 4.4.9 Note that the factor 2 appears in the bound max; Ii;rﬁz_. This is be-
cause we apply Proposition to By @ E;, which has invariant By + 3; <
max; 23;.

To separate certain polystable vector bundles, we now construct a vector bundle
H with algebraic invariant ma as a Hecke extension of a skyscraper sheaf at a
non-stacky point z € C by a vector bundle V' with algebraic invariant ma — & as

outlined before Lemma .

Proposition 44.10 Let ' = E1 @ --- @ Epand F' = F1 © --- @ Fy be
a-polystable vector bundles on € with numerical invariant 3, where the E; and
F; are the stable summands. If (o, 3) = 0 and none of the E; are isomorphic
to F1, thenform > ,%;rﬁ there exists a vector bundle H with algebraic invariant
ma such that

Hom(H,E) =0 and Hom(H,F') # 0. (4.6)

Hence there is a section of the determinantal line bundle Lgm, separating F/
and F.

Proof. Let (3; be the numerical invariants of F;. Since up to a constant, the -
slope of any vector bundle G with invariant v is (e, 7) / rank(-y) and we assumed
(o, B) = 0, we conclude (a, 3;) = 0 for all i.

Since 4 is the invariant of a skyscraper sheaf supported at a non-stacky point, we
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4 Good Moduli Spaces

have (9, B;) = — rank(3;) < 0, so we may apply Lemma to the a-stable
vector bundles Fy = Fj and E,..., Ey, We now fix a vector bundle V' with

invariant ma — & with the properties stated in this lemma. The rest of the proof
consists of constructing a suitable extension of O, by V/, which will automatically
have invariant ma.

Fix a non-zero surjection ¢: V' — FEj and let K denote the kernel, so that

0—>K—>V1>Eo—>0

is an exact sequence. Let H be any non-split extension of O, by V' lying in the
subspace

Ext' (O,, K) C Ext!(0,, V).

Then H is a vector bundle, as this is a non-split extension of a torsion sheaf by
a vector bundle, and we claim that there exists a non-zero morphism H — FEj.
To see this, consider the corresponding extension G of O, by K, fitting into the
following commutative diagram.

0 K G O, 0
[ “ I
0 %4 H 0, 0 4.7)
! |
Ey cokera

By the snake lemma we get an isomorphism Ej ~ coker(a), so we get a non-zero
morphism H — coker(a) — Ep.

We will now show that for a general H € Ext!(O,, K) there are no non-zero
morphisms H — E;for1 < i < £. Fix H € Ext'(O,, K) and let 1/?1 be a
non-zero morphism 1&2 H — FE;. The composition V' — H — F;, denoted by
1;, must be non-zero, otherwise we would obtain a non-zero morphism O, — FE;.
We obtain a commutative diagram:

0 K—-sv_—* R
B l(@%) l=
0 — F, — Ey®oFE;, — Eg — 0
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4.5 Ampleness of the determinantal line bundle

By the assumption on V/, the map (¢, ;) is surjective, so by the snake lemma we
see that 1); restricts to a surjective morphism 1;: K — FE;. This induces a map
on Ext groups Ext!(0,, K) — Ext!(O,, E;), so we obtain an extension of O,
by E;, fitting into the following commutative diagram.

0 Oy 0

v H
bl

Oy 0

0

Now we notice that 15, o b1 is a well-defined splitting, so H must lie in the kernel
of Ext} (O, K) — Ext! (O, E;).

Let GJ:(Ext1 (Oy, K),r;) be the Grassmanian of r; dimensional quotients, where
r; is the rank of E;. For any element J in Extl((’)x, K), we define the Schubert
variety S; by

Syi={f: Ext’ (O, K) - W st f(J) =0} C Gr(Ext' (O, K), 7).

We have shown that for a non-zero morphism (;gZ H — FEj, the induced quo-
tient Ext! (O, K) — Ext!(Oy, E;) liesin Sy ;. The quotient Ext! (O, K) —»
Extl((’)gg7 E;) only depends on the restriction ¢;: V' — Ej, so we can consider
the maps

i - P(Hom(V, E;)) — Gr(Ext' (O, K),r;) foreach 1 < i < L.

Now notice that dim image(qi) < r; — 1, whereas the codimension of SH,Z- is
7;. By Kleiman's theorem, for a general g € GL(Ext!(O,, K)) we have that
imageq; Ng- Sy = (). Since g - St = Sy, we see that for a general H &
Extl(OI, K) the intersection image g; M SHJ- = (). It follows that for the general
extension H we have Hom(H, E;) = Ofor 1 < ¢ < /. We conclude that that there
exists an extension H of O by V, such that Hom(H, F') D Hom(H, F;) # 0 and
Hom(H, E) = D <;<; Hom(H, E;) = 0. O

4.5 Ampleness of the determinantal line bundle

Throughout this section, we fix numerical invariants a and 3 with « generating,
such that (e, 3) = 0. The following lemma shows that this last assumption can
be made without loss of generality.
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Lemma 4.5.1 Let «¢ be a generating numerical invariant. For any positive nu-
merical invariant 3, there exists a generating numerical invariant o’ such that
(a’, B) = 0 and that the notions of (semi)stability with respect to o and o
coincide.

Proof. Assume that A = (o, 3) # 0, and let = [O(q)] € K}"™(C) for a
non-stacky point ¢ € €. Pick 7 € Z sothat B = (a ® n®", 3) has the opposite
sign from A. Then it is straightforward to check that the numerical invariant

o = |Bla+ |Ala®n®"

is orthogonal to 3 and additionally o’ is generating, as it is a positive linear com-
bination of a generating invariant and an effective invariant. The equivalence of
the corresponding notions of (semi)stability follows from the fact that deg,,, =
(|A| + | B|) deg,, as this degree is additive and preserved by tensoring by the line
bundle O(rq), which it is the pullback of a line bundle on C' by virtue of g being a
non-stacky point. O

Global generation

Theorem 4.5.2 Let k be an arbitrary field, and assume (&, 3) = 0 with & a

generating algebraic invariant. Then the line bundle £ on the stack Bung"SS is

semiample. More precisely, for every positive integer m with

m > (ge — 1)(rank 3)%,

L%m is basepoint-free. If additionally k& has characteristic zero, then the line

bundle £ descends to a semiample line bundle Lg on the good moduli space
Ba-SS.
B

Proof. We can assume without loss of generality that k is algebraically closed, as
it suffices to know that the base change to an algebraic closure is semiample (see
[Vak24, Exercise 19.2.1]).

Fix a positive natural number m such that m > (ge — 1)(rank 3)?; this gives
an effective bound for Hom-vanishing by Proposition and Remark . For

a point of Bung"SS corresponding to an a-semistable vector bundle F' on € with
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4.5 Ampleness of the determinantal line bundle

numerical invariants 3, we know that a general bundle V' with algebraic invariant
ma satisfies Extl(V, F) = 0 by Corollary . In particular, we can find such a
vector bundle V' so that the associated section oy of Ly = L%m is non-zero at
this point by (.3). Since Bun,‘@"'SS is quasi-compact, the non-vanishing loci of finitely

many such sections cover Bung"SS and so Lgm is basepoint-free.

For the final claim, we let o0y, . .., 0y, be global sections that generate Lgm and
thus induce a morphism ¢, : Bung™ — P" such that LE™ = ¢*Opn(1).
Since the good moduli space map f: Bun‘ﬁ"'SS — Bg’ss is initial amongst mor-
phisms to schemes, ¢,, must factor via f and so there is an induced morphism
m: Bg™ — P"suchthat Ly, := @y Opn (1) pulls back along f to L%m. Then

Lg = Lyy1 ® Lt pulls back along f to £ . O

Ampleness and projectivity

We are ready to prove the main theorem of the chapter.

Theorem 4.5.3 Let k be a field of characteristic zero and assume (a, 3) = 0,
where o is a generating algebraic invariant. Then the line bundle Lg on Bg'ss
is ample and Bg'ss is projective.

Proof. Since Bg™* is proper (Corollary k.2.5), by the cohomological criterion for
ampleness [Stacks, Tag 0D38] and flat base change, we can assume without loss of
generality that k is algebraically closed.

AsinTheorem , we know that a sufficiently large power m of the determinantal
line bundle on Bung"SS is globally generated by finitely many sections which deter-
mine a morphism ¢: Bung'SS — IP™ that factors via the good moduli space map
f: Bung"SS — Bg'ss and a morphism ¢ Bg"ss — P™. Since Bg"ss is proper, ¢
is a proper morphism and to conclude the proof it is then enough to show that ¢
is finite.

To show that ¢ is finite, it suffices to show that the fibres of ¢ are finite by [Stacks,
Tag 0A4X]. Since B3™* is of finite type, it is enough to check that fibers over k-points
are finite, (see [GW20, Remark 12.16]).

The k-points of the good moduli space Bg’ss correspond to the closed points of
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the stack Bung'ss, which are precisely the a-polystable vector bundles on € with
invariant 3. Let E/ and F’ be two polystable bundles in the same fiber, then we claim
that they must have isomorphic stable summands. Suppose for a contradiction that
they do not. By Proposition for everym > /@;ﬂ there exists a vector bundle
H with algebraic invariants ma such that

Hom(H,E) =0 and Hom(H,F') # 0.

The vector bundle H determines a section oy ofﬁgm that separates these points:
or(E) # 0andog(F) = 0. It follows that F and F’ do not lie in the same fiber,
which is a contradiction. Since there are finitely many polystable bundles for each
fixed set of stable summands we conclude that the fibers of ¢ are finite.

Since @: Bg'ss — P is a finite morphism of proper schemes, we can conclude
that the ample line bundle Opn (1) pulls back to an ample line bundle, which is a
power of Lg, and thus Lg is ample and B,g"ss is projective. O

We also obtain an explicit bound for when the determinantal line bundle induces a
finite map to projective space.

Corollary 4.5.4 For every positive integer m satisfying the inequality

1
+ _ 2
m> kyg =4 (g@ 1+ S1ankB rank,B) (rank 3)“,

the line bundle L%m induces a finite morphism from Bg"ss to a projective space.

Proof. This follows from the proof of Proposition combined with Remark

4.4.9. o

This bound does not seem to be optimal. For example, when € = C'is a classical
curve m > rank ,@2 + rank 3 would suffice [EP04]. This suggests that the factor
4 could probably be removed with a more careful analysis of the bounds, but more
interestingly, the dependence on the genus could potentially be removed.
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APPENDIX A

The flattening stratification

It should be pointed out that the
fancy definitions given cohomology
recently—via standard resolutions,
derived functors, especially in the
category of all sheaves

—which look very uncomputable—
are just technical devices to simplify
somebody’s general theory.

Lectures on curves on an algebraic surface
David Mumford

In this chapter we will recall the basic theory of weighted projective stacks and pro-
vide a “global” flattening stratification of families of coherent sheaves of weighted
projective stacks in the spirit of [Mume66, Lecture 8]. In [0OS03] the authors conjec-
ture that a “global” construction exits for all projective stacks. This result gives such
a construction precisely for the cyclotomic stacks of [AH11]], which include all stacky
curves.

Question A.0.1 Can the techniques of this chapter be generalized to the twisted
Grassmanians defined in [FL21] or the generalized weighted projective spaces of
[BOW24]? This would provide a “global” construction of the universal flattening
stratification for very general classes of stacks.
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A The flattening stratification

As an application of the flattening stratification for weighted projective spaces we
obtain a universal flattening stratification for stacky curves, parameterized by the
discrete invariants.

A.1 Weighted projective stacks

Let us recall the definition of a weighted projective stack.

Definition A.1.1 Letw = 0 < wg < w; < -+ < w, be a collection
of positive integers. Let A = k[xo, e ,xT] be a Z-graded ring, where x;
is homogeneous of degree w;. This graded ring corresponds to a G,,-action
Gy, % Spec(A) — Spec(A) and we denote the weighted projective stack
P(w) = [(spec(A) —{0})/Gy,]. We will denote the affine space Spec(A) by
A(w). Forascheme SwesetP(w)s = P(w) X Sand A(w)s = A(w) xS,

A weighted projective stack is a smooth tame Artin stack, with a projective coarse
space. These facts are purely computational and can be seen from the following
proposition.

Proposition A.1.2 Let w be as above and let /N be the least common multiple
of w. Consider the graded subring AN A generated by homogeneous
elements of degree divisible by N. Let AD) be the graded ring defined by
(AN, = (AIVD); .

The graded rings AD) and AN are generated in degree 1 and N respectively.
Let 0 € Spec (A(N)) and 0 € Spec (A[N]) denote the points defined by the
ideals generated by all homogeneous elements. We have natural maps

Plw) — [(spec(A[NJ) —{0}) /Gm] N
{(Spec <A(N)> - {0})/Gm} =: P(w).

The second arrow is a 11 y-gerbe and the composition 7: P(w) — P(w) is the
coarse space morphism.

The projective schemes IP(w) are called weighted projective spaces.
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A.1 Weighted projective stacks

Definition A.1.3 There is a natural map P(w)s — BG,, coming from the
quotient structure. The induced line bundle is Serre’s twisting sheaf and is de-
noted by Op(y) ¢ (—1). For a coherent sheaf on P(w)s, we set F(i) == F ®

Opu)s (—1)%7"
We see that by construction 7 Op () (1) = Op(uw) (V).

Definition A.1.4 For a coherent sheaf F on P(w), we define the Hilbert func-
tion of F to be H Fiy(m) := dim H°(P(w), F(m)).

We would like to say that the Hilbert function behaves like a polynomial for large
values of m, which is false, but it is almost true.

Definition/Proposition A.1.5 We define an N-almost-polynomial of degree d
to be a function P: Z — 7, such that there exist polynomials P, of degree
d with the same leading coefficients, for each integer 0 < a < N, satisfying
P(Nm + a) = P,(m).

Let N be the least common multiple of w, and let F be a coherent sheaf on
:P(Q). There exists an [N -almost-polynomial P and integer my, such that for all
m > mg we have H Fy(m) = P(m). We call this N-almost-polynomial the
Hilbert almost-polynomial of & and denote it by Py.

Proof. Let m: P(w) — P(w) be the coarse space map. Let P, be the Hilbert
polynomial of 7, F(a) with respect to Op(,)(1); then

HF5(Nm+a) = H(P(w), F(a) @ (7* Op( (1))*™)
= HO(P(M), mF(a) ® Op(w) (m)) = Py(m).
Since Py(m) < P,(m) < Py(m+1) for allm > mq we see that all the P, have
the same leading coefficient. O
Sheaves

As above we consider P(w) = [A(w) — {0}/G,,]. By construction we have
a functor 7 (often denoted by a tilde in the classical unweighted setting) which
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A The flattening stratification

sends quasi-coherent graded Og ® A-modules of finite type to coherent (’)?@)S—
modules. The functor T sends two graded Og ® A-modules to the same Ogp(y)-
module if and only if they define the same graded Og ® A[;Tlo? . wl |-module.

This happens precisely when their graded parts agree for all arbitrarily large grades.

As with projective space there is a natural right inverse to 7.

Definition A.1.6 Let J be a coherent sheaf on P(w)g, and denote the projec-
tionmap by f: P(w)g — S. For each integer m > 0, setI',,, () := f.F(m)
andletT'o(F) = D,,,50 I'm(F).

Itis clear that for any coherent sheaf F on P(w)gs, we have TI'¢ (F) = F.

Lemma A.1.7 Let g: T — S be a morphism of Noetherian schemes and let
h: P(w)r — P(w)gs be the corresponding morphism of weighted projective
stacks. We have

7(g'Te(F)) = 7(Le(R"F)).

As a consequence there exists an myg, such that for m > mq

G T (F) = Do (W F).
Proof. Since T commutes with base change by construction, we have

T(gTe(F)) = W'7(Te(F)) = B*F = 7(Le(h*F))

and the result follows. O

Cohomology and base change

We now explain how cohomology and Hilbert almost-polynomials behave in fami-
lies of sheaves, of course the best behavior is for flat families of sheaves.

Definition A.1.8 Let S be a scheme over k and X a stacky curve or weighted
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A.1 Weighted projective stacks

projective space. A flat family of sheaves on X is a coherent sheaf ¥ on S x X,
flat over S.

Theorem A.1.9 (Cohomology and base change) Let & be a flat family of sheaves
onp: P(w)s — Sandlets € S beapoint.

1. If the natural map
¢'(s) : R'p.TF @ k(s) — H' (X, F)

is surjective, then there exists an open subscheme U C S, containing s,
such that for any diagram

Pw)r " P(w)y

ls lr

T—2 U

we have
g R'pF ~ R'q*"(W*F).
In particular ¢*(s) is an isomorphism.

2. If ¢(s) is surjective, then ¢'~ ! is surjective if and only if R’ f,F is free in
a neighborhood of s.

Proof. This follows from [Bro12, A.1.4-5]. Since our situation is very concrete, we
can also consider D(z;) C A(w) and let U; = [D(x;)/G,,]s be the standard
covering of P(w). The standard opens are isomorphic to [A(w — {w; })/ fiw,] and
it is easy to show that Cech cohomology computes sheaf cohomology:

HY((U3)i, F) = HP (P(w), 9).
Then we can proceed as in [Bro12, A.1.4-5]. O

We recall some standard corollaries of cohomology and base change.
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A The flattening stratification

Corollary A.1.10 Let J be a flat family of coherent sheaves onp: P(w)s — S,
such that R'p,F = O forall¢ > 0; then p,F is locally free.

Proof. Let d be the dimension of P(w); then H4+(P,, F,) = 0 for each point
s € S. Then ¢91(s): (RM1p,F) @ k(s) — HITL(Py, F,) is surjective and
R, F is locally free by assumption. It follows that (bd(s) is also surjective and
Rd_lp*ff is again locally free by assumption. Now we iterate this argument to see
that ¢%(s) is surjective. Since ¢! (s) is always surjective it follows that R0p,F is
free in a neighborhood of s for each s € S. o

Theorem A.1.11 Let F be a sheaf on P(w)g; then F is flat over S if and only if
I (F) is alocally free Og-module for all m >> 0. It follows that for F flat over
S, the Hilbert almost-polynomial Py, for s € S'is locally constant.

Proof. Assume first that F is flat over S. Let m be such that for all m > mg and
i > 0 we have R"f,F(m) = 0. This can be done because of [AH11, Proposi-
tion 2.4.2].

By Corollary A.1.10, it follows that f,,F(m) is locally free.

If 'y, (F) is locally free for m > my, consider the module €, ,,,, I'm (). This
module is locally free, hence flat over Og. Since F = 7 (@m>m0 Fm(?)>, it
follows that & is flat. o

A.2 Flattening stratifications

What is often called a flattening stratification is in general only a quite weak notion
of stratification. We will follow [Stacks, Definition 09XZ] and call this a partition.

Definition A.2.1 A partition of a scheme S is a collection of schemes (Si)ig
together with a bijection [ [,.; S; — S, such that the induced maps S; — S
are locally closed embeddings.

The following lemma can be viewed as a flattening stratification result for PY =S,
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A.2 Flattening stratifications

Lemma A.2.2 ([Mum66, Lecture 8 Theorem 1°]) Let S be a Noetherian scheme

and F' be a coherent sheaf on S. There exists a partition [ [ S, — S, such that

any map g: T — S factors through .S;. if and only if g* F is locally free of rank
.

Theorem A.2.3 (Existence of flattening stratifications) Let .S be a Noetherian
scheme and let F be a coherent sheaf on a weighted projective space P(w)g
and let N = lem(w). There exists a partition [ [ , Sp — S parameterized by
sets of INV-almost-polynomials P, satisfying the following universal property: for
every g: T — S we have that g factors through Sp if and only if g*F is flat
over S with Hilbert almost-polynomial P.

Proof. By [Nir09, Proposition 1.13], there exists some finite partition ig: Sy =
[1Si — S'suchthat F|g, is flat. As Hilbert almost-polynomials are constant in flat
families it follows that only finitely many sets of Hilbert almost-polynomials appear
for the fibers F.

We claim their exists a uniform my, such that for all m > mg and all s € S we
have that
H'(P(w), Fs(m)) =0,

fori > 0and ', (F) @ k(s) ~ HY(P(w), Fs(m)).

To see this, consider the diagram

Apply Lemma to the inclusion map 7g to obtain a positive integer my, such
. Tk
that i{p.F(m) = qio F(m) forallm > m;.

Next apply [AH11|, Proposition 2.4.2] to obtain an msg, such that Riq*%*?(m) =0
forz > 0and m > mo.

By Corollary , it follows that for o = sup(m1,mg) we have the desired
claim.
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A The flattening stratification

Let mg be as above and let g: T" — S be any map of Noetherian schemes and
consider the following diagram.

Pw)r —= P(w)s

[s lr

T—2 5

We claim that h*F is flat over 7' if and only if g*I',,, (F) is locally free for all m >
mo.

First assume that h*J is flat over T" and consider the morphisms
I T (F) @k(s) = T (WF) @ k(s) — HO(’P(M), Fs(m)).

For m > mg the composition is an isomorphism by assumption, so the second
arrow is surjective and by cohomology and base change it is also an isomorphism.
Again by cohomology and base change I',,, (h*F) is locally free and by Nakayama’s
lemma we have an isomorphism

G T (F) = T (W F).

Conversely, if g*T',, (F) is flat for all m > mq then h*TJ is flat by Theorem . 1.11).

Let [ [ Syn,»r — S be the flattening stratification of Iy, (F) from Lemma A.2.7 we
have shown that 1*J is flatif and only if g factors through \S,,, p(,) forallm > mq
and some N -almost-polynomial. A priori this is an infinite limit, but if we let d be
the degree of P, then g factors through Smjp(m) forallm > mg if and only if g
factors through Smp(m) formg <m < mg-+d-N.

Now we see that
Sp = S, P(mo) XS -+ XS Sig4d-N,P(mo+d-N)
defines the desired flattening stratification. O
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Hilbert almost-polynomials versus discrete invariants

We will now explain how to relate the discrete invariants of sheaves on a stacky
curve to the Hilbert almost-polynomials. This will allow us to construct a flattening
stratification parameterized by the discrete invariants.

Lemma A.2.4 Let C be a stacky curve with coarse space C, let p be a stacky
point of order e and let T, = O@(%p) be the corresponding tautological sheaf.
Then there is a commutative triangle,

C— P(w)

A
Vp/C

where the maps to P(w) are induced by the tautological sheaves at p, defined
as in [AH11, Corollary 2.4.4]. Moreover v/p/C — P(w) is an embedding.

Proof. We have Wf@e(ép) = OW(%p) and

0 m 0/¢ m
HY(€,TP™) = HO(Vp/C,nlT)™).

It follows that the induced maps to weighted projective space have the same target.
Itis clear that T, is ample on \e/p/C, so the corresponding map is an embedding
by [AH11, Corollary 2.4.4]. O

Lemma A.2.5 With the notation as in the lemma above, let F be a coherent
sheaf on € and let

FY(m) = H'(Vp/C,x?F @ T™) = H(P(w), Ex2F(m)),

be the Hilbert function of 78 F with respect to Tp; then form > 0

FP(m) = zank(F)(1 — go) + {%J rank F + dym moa e (F).

Proof. This is immediate from the naive Riemann-Roch theorem . O
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A The flattening stratification

It follows that we can completely recover the discrete invariants of a coherent sheaf
by considering the Hilbert functions Fg for each stacky point p and vice versa. We
will denote the Hilbert almost-polynomial at p corresponding to invariants (n, d)

by

Prf@(m) =n(l—-gc)+ L%J N+ dpmmod e- (A1)

Since the Hilbert almost-polynomial is constant in flat families, we get the following
immediate corollary.

Corollary A.2.6 Let F be a flat family of sheaves on C x 5, the twisted de-
gree functions dy, ;(F): s — dpi(Fs) and the rank function rank(F): s —
rank(J;) are locally constant.

Note that the multiplicities are not locally constant in flat families. Consider for

example a family that degenerates O(%p) into O & (’);p. One way to construct
€

such a family is to consider the moduli stack of extensions of O;p by O, which

is isomorphic to [Ext1 ((’);p, (’))/ Ext? (O;p, O)} hence connected. However

the multiplicities are constant when restricted to natural subclasses of families.

CorollaryA.2.7 Let F be aflat family of sheaves on € X .S, such that all the fibers
are torsion sheaves or all the fibers are vector bundles; then the multiplicities
mpi(F): s — my;(Fs) are locally constant.

Proof. This follows from the lemma above, Corollary and Remarkfi.2.29. ©

TheoremA.2.8 Let F be acoherentsheafon Cx.S, with S a Noetherian scheme.
Then there exists a partition, called the flattening stratification,

II Sea—S.
(n.d)

satisfying the following universal property: for every map g: 1" — .S of Noethe-
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rian schemes we have that g factors through S, 4 if and only if g*JF is a flat
family of sheaves with invariants n, d.

Proof. For each stacky point p € € consider the embedding (P : \e/p/C — P(w)
as in Lemma - and consider the flattening stratification HP Sp — S of the
sheaf (L7l F. For invariants n, d, we let de be the Hilbert almost-polynomial at
p as in Equation (-) Denote the stacky points of € by p1, . .., p,. We claim that

Pp’l

S SPp1 Xg - XsS
n,d

has the desired properties.

Assume that g*J is flat, then also 7k g*F = g*7l F is flat for each p, and since the
twisted degrees d and rank n are constant in flat families it follows that g factors
through [ [ S, 4.

Conversely, whenever g factors through the stratification, we get that g*7LF =
W*g*? is flat for each p. Since 7P is an isomorphism away from the stacky points
that are not p, it follows that g*F is flat away from the stacky points that are not p.
However this holds for all p, so g*F is flat everywhere. O
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APPENDIX B

Calculus of motives

als de waal

uit het zicht is
stroomt

de verbeelding

Twan Niesten

In this appendix we will collect various tools for the computation of motives. This
appendix is not meant as an introduction to motives and we will not prove any fun-
damentally new results. Instead we will show how a geometric approach can be
used compute motives. These computations can also be used to describe many
other invariants, such as cohomology or Chow groups, via realization functors and
the description of Chow groups as groups of homomorphism between motives re-
spectively. For an introduction to motives we recommend [Ayo14].

B.1 Setup

In this appendix we will work with Voevodsky's category of (mixed) motives with ra-
tional coefficients DM(k, Q), which comes with a functor M : Sch/k — DM(k, Q),
sending a scheme X to its (homological) motive M (X'). This functor can be ex-
tended to the category of algebraic stacks M : Stck/k — DM(k, Q) in various
equivalent ways. The most general construction is due to Khan [Kha19, Appendix A].
See also [HP21b, Appendix A] for a slightly simpler approach. The category of mo-
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tives DM(k, Q) is a monoidal triangulated category, so it has direct sums M7 & Mo
and tensor products M7 ® Ms. Moreover it comes with a translation functor
M +— M]|1] and a collection of distinguished triangles

M — N — L — M[1],

or M — N — L 5 for short. For every morphism M — N there exists a
unique cone L completing this morphism into a distinguished triangle. Note how-
ever that the cone is not functorial, i.e. it exists up to a potentially non-unique iso-

M1—>M1@M2—>M2i>

We denote by Q := M (Spec(k)), which is the neutral object for the tensor prod-
uct. The projection to a point 7 : P,lg — Spec(k) induces a distinguished triangle

Q{1} := cone(M(m))[~1] — M(P}) — Q 5,

which is split by the inclusion of any rational point into IP)}C. As a consequence
we have M (P}) = Q @ Q{1}. By construction Q{1} has a tensor inverse in
DM(k, Q), which we denote by Q{—1}. For a positive integer . we set Q{n} =
Q{1}®"™ and Q{—n} = Q{—1}®". For any motive M, we write M{n} =
M ®@Q{n} and M{n} is said to be a Tate twist of /. A motive is said to be pure
Tate if it can be written in terms of sums and tensor products of Q{+£1}. A motive
is said to be pure if it can be written as a Tate twist of a direct summand of the
motive of a projective variety. To “compute” a motive in the strongest sense means
to write it in terms of sums and tensor products of simpler motives. In particular,
saying that a motive is pure (Tate) is a qualitative statement on the complexity of
terms that might appear in a computation.

A slightly weaker notion of computation would be to allow for cones and transla-

tions as well.

Definition B.1.1 thick tensor subcategory For a set .S of motives in DM(k, Q),
the thick tensor subcategory generated by S is the smallest full subcategory
(S) C bM(k, Q) containing .S, such that:

+ (S) is closed under taking tensor products.
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* For every distinguished triangle X — Y — Z % such that XY €
(S), we have Z € (S).

* For X @Y € (S), wehave X € (5).

Saying that a motive M lies in (S') thus means that there exists a way to compute
M in terms of S in the weak sense mentioned above.

B.2 Computational tools

We now collect some results that let us compute motives. The following properties
of motives are basic consequences of the construction [VSFOQ].
Proposition B.2.1 Let X and Y be algebraic stacks; then we have

1. M(X xY) = M(X)® M(®Y),

2 M(XIOY)=MX)od M)

3. M(X x A™) = M(X).

Proposition B.2.2 (Gysin triangles) Let X be a smooth stack and let Z be a
smooth substack of codimension candset U = X \ Z. There is a distinguished
triangle

M(U) = M(X) = M(Z){c} .

To compute motives in the strong sense it is important to know when a distin-
guished triangle splits. In general this is very complicated, but for pure motives
this is automatic.

Proposition B.2.3 ([HP22, Lemma 4.2]) Let M — N — L 2 be a distin-
guished triangle, such that M and L are pure, then IV is also pure and the
triangle splits.

The next couple of results show that one can obtain motivic computations from
maps with nice fibers.
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Proposition B.2.4 Let B — X be a smooth morphism, such that the fibers
have trivial motive, i.e. M (B;) — M (Spec(k(x))) is an isomorphism, then
M(B) — M(X)is an isomorphism.

Proof. This is proven in first half of the proof of [HP22, Proposition 3.2]. O

Proposition B.2.5 (See [AH17]) Let ' — X be a fibration (locally trivial in the

Zariski topology), such that the fiber F'is a cellular variety satisfying Poincaré
duality, then M (T") = M (F) @ M (X).

The following result applies to small maps [HP214, Definition 2.1]. See also [CM04]
for a version of this statement on the level of chow motives.

Proposition B.2.6 ([HP214d, Theorem 2.11]) Let X and Y be smooth stacks,
which are locally of finite type over k, and let Y — X be a representable

surjective proper small map, which is generically a I'-torsor for a finite group I'.
Then the action of I" extends to M (Y) and M (X) = M(Y)'.

The most important example of a small map for us is the Grothendieck-Springer
resolution. Let GG be a reductive group over an algebraically closed field k with Lie
algebra g and a choice of Borel subgroup B C (. The set of Borel subalgebras
B = {b | b C gBorel} isisomorphicto B ~ (G/B). We defineg C g X B to
be the subset containing pairs (x, b), where x € b. The natural projection g — ¢
is the Grothendieck-Springer resolution and is small. Moreover it is generically a
W -torsor for the Weyl group W.

The following proposition is a technical but extremely flexible approximation result,
showing that motives can be computed by constructing increasingly good approxi-
mations.

Proposition B.2.7 Let X be a smooth stack. Let X4 be an increasing sequence
of quasi-compact open substacks covering X. Let V, be a sequence of vector
bundle stacks on X together with injections Vi;, — Vi1 X x,,.; Xim. Let
We C V4 be closed substacks preserved by the injections and denote the com-
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plements by Us = V4 \ W,. Assume that the codimensions of W,, C V}, go
to infinity. We call the above data an exhaustive system. For any exhaustive
system we have M (X) = hocolim,, M (Up,).

Finally we give an inductive version of Proposition for stratifications.

Proposition B.2.8 Let X be a smooth stack and let [[,.; X; — X be a lo-
cally finite stratification with smooth strata. Assume that I°P is countable and
well-founded (i.e. there is no infinitely increasing sequence of strata). Then the
motive M (X)) lies in the localizing thick tensor subcategory ({ M (X;) }icr)- As-
sume in addition that the motives M (X;) are pure and X; has codimension ¢;,
then

M(X) = @@ M(Xi){ei}-

i€l

Proof. As I°P is well-founded and countable, it can be extended to a countable or-
dinal o, so we may assume without loss of generality that I°° = « is an ordinal.
Since the stratification is locally finite the sets Ug := X \ []3., X, are open for
every 3 < a. By construction we have Ug1 \ X3 = Ug, so by Proposition
we get a distinguished triangle

M(Ug) = M(Ugy1) — M(Xg){cs} .

For a limit ordinal 8 < « we take any cofinal embedding p: N — 3 and by

Proposition we have
M (Ug) = hocolim,eny M (Up)-

By ordinal induction it follows that M (Upg) liesin ({ M (X ) },¢p) forevery 5 < a.
In the case that Xz is pure for every B < « we notice that the triangles split by
inductively applying Proposition , and we have

M(Upt1) = M(Ug) ® M(Xp){ci}.
The result again follows from ordinal induction. O
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B.3 Examples

We end by giving some basic examples showcasing the potency of these tools.
For some state of the art applications, see the series of papers [HP21b], [HP21a],
[HP22].

Example B.3.1 We can stratify P" = A" ITA" "' I1... 1T A' ITspec(k). Since
M(A™) = Qis pure, we get M (P") = @, Q{i}.

Over C the topological classifying space BG,,, is P>° and this is reflected on the
level of motives.

Example B.3.2([Tot16, Example 8.5]) Consider the vector bundles [A"/G,,,] —
BG,,, and closed substacks BG,, C [A"/G,,] with open complement P~ 1,
This is an exhaustive system, so we have M (BG,,) = hocolim, M (P") =

Do Q{i}-

We have Al-homotopy invariance, but also BG,-homotopy invariance.

Example B.3.3 The map Spec(k) — BGJ is smooth and the fiber A" has
trivial motive. It follows that M (BGY) = Q.

a

Example B.3.4 ([HP22, Proposition 3.2]) LetV — X be a vector bundle stack,
then the fibers are isomorphicto A" x BGJ". By the previous example it follows
that the fibers have trivial motive and M (V) = M (X).

We can even make very general statements about motives of classifying spaces of
algebraic groups.

Example B.3.5 Let k be a perfect field and G be a linear algebraic group. Let U
be its unipotent radical and Greq := G /U be the reductive quotient. The map

138



B.3 Examples

BG — BGeq has fiber BU. Since k is perfect, U is isomorphic to A" as a
variety, so we have M (BU) = Q and M (BG) = M (BGeq).

The following geometric argument is standard, even though it is usually not stated
using stacky language. See for example [CG10, Theorem 3.1.38, Lemma 6.1.6]

Example B.3.6 (Chevalley restriction theorem) Let & = k be an algebraically
closed field and let G be a reductive group with Lie algebra g, a choice of Borel
subgroup H with lie algebra h and Weyl group W. We have M (BG) =
M ([g/G]), where G acts by conjugation. The Grothendieck-Springer resolu-
tion [g/G] — [g/G] is a small map, which is generically a I¥-torsor, so we
have an isomorphism M (BG) = M([g/G])". The projection [g/G] —
[(G/H)/G]| ~ BH is a fibration with fiber ). Let T := H/[H, H], which is
isomorphic to the maximal torus of H. The fiber of BH — BT is given by
B[H, H|, which is the unipotent subgroup of H, hence affine. It follows that
M([g/G]) = M(BH) = M(BT) and M (BG) = M(BT)W. In particular
M (BQ@) is pure Tate.

We should remark that with integral coefficients and general fields the story of clas-
sifying spaces is much more interesting [[Tot16].

Example B.3.7 Let C be a smooth projective curve and let C™) pe the symmet-
ric power, then the map C™ — C'(" is finite and a fortiori small, so M (C'(")) =
M(C™)5» and M (C™) liesin (M (C)).
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