
Radboud
Dissertation
Series

Institute for Computing  
and Information Sciences

Speech Representations
Adventures in pre-training and fine-tuning 
transformers  for speech technology tasks

Nik Vaessen



Speech Representations

Adventures in pre-training and fine-tuning
transformers for speech technology tasks

Nik Vaessen



Speech Representations
Adventures in pre-training and fine-tuning transformers for speech technology tasks
Nik Vaessen

Radboud Dissertation Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS 
Postbus 9100, 6500 HA Nijmegen, The Netherlands 
www.radbouduniversitypress.nl 

Design: Nik Vaessen
Cover: Nik Vaessen and Proefschrift AIO | Guntra
Printing: DPN Rikken/Pumbo

ISBN: 9789465151090
DOI: 10.54195/9789465151090 
Free download at: https://doi.org/10.54195/789465151090 
 
© 2025 Nik Vaessen

 

This is an Open Access book published under the terms of Creative Commons 
Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0).  
This license allows reusers to copy and distribute the material in any medium or format in 
unadapted form only, for noncommercial purposes only, and only so long as attribution is 
given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.



Speech Representations

Adventures in pre-training and fine-tuning
transformers for speech technology tasks

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

woensdag 10 september 2025
om 10:30 uur precies

door

Nik Vaessen

geboren op 9 april 1996
te Heerlen



Promotor
Prof. dr. ir. D.A. van Leeuwen

Copromoter
Dr. T.M. van Laarhoven

Manuscriptcommissie
Prof. dr. M.A. Larson
Prof. dr. ir. H. Van hamme (KU Leuven, België)
Dr. J.A. Rohdin (Vysoké učení technické v Brně, Tsjechië)



Promotor
Prof. dr. ir. D.A. van Leeuwen

Copromoter
Dr. T.M. van Laarhoven

Manuscriptcommissie
Prof. dr. M.A. Larson
Prof. dr. ir. H. Van hamme (KU Leuven, België)
Dr. J.A. Rohdin (Vysoké učení technické v Brně, Tsjechië)

Ter ere van

Tonny Kusters

En u, mijn moeder, door mij zo geacht,
Vloek, zegen mij met tranen, maar vecht door.

Verdwijn niet zomaar in de zoete nacht.
Vecht, vecht, omdat het licht niet sterven mag.



Table of contents

Samenvatting ........................................................................................ 11

Summary .............................................................................................. 15

1. Introduction ..................................................................................... 19
1.1 The breadth of speech technology ............................................................... 20
1.2 The paradigm of pre-training and fine-tuning ............................................. 21
1.3 What differentiates speech from text and images? ...................................... 22
1.4 Thesis contributions .................................................................................... 23

2. Fine-tuning wav2vec 2.0 for speaker recognition ............................. 27
2.1 Related work ............................................................................................... 29
2.2 Methodology ................................................................................................ 29

2.2.1 The wav2vec 2.0 architecture .............................................................. 29
2.2.2 Three wav2vec 2.0 variants for speaker recognition ............................ 31
2.2.3 Pooling methods ................................................................................. 32

2.3 Experiments ................................................................................................. 32
2.3.1 Data .................................................................................................... 32
2.3.2 Computational budget and fair comparison ........................................ 32
2.3.3 Baseline systems ................................................................................. 33
2.3.4 Variation in pooling ............................................................................ 33
2.3.5 Ablation study .................................................................................... 33

2.4 Results ......................................................................................................... 34
2.4.1 Baseline comparison ............................................................................ 34
2.4.2 Pooling methods ................................................................................. 34
2.4.3 Ablation study .................................................................................... 35

2.5 Conclusion and future work ......................................................................... 36

3. Training speaker recognition systems with limited data .................. 39
3.1 Related work ............................................................................................... 40
3.2 Methodology ................................................................................................ 41

3.2.1 Creating subsets of VoxCeleb2 ............................................................ 41
3.2.2 Speaker recognition networks .............................................................. 43

3.3 Experiments ................................................................................................. 44
3.3.1 Training and evaluation protocol ........................................................ 44
3.3.2 Learning rate search ............................................................................ 45
3.3.3 Varying 𝑛𝑛steps with optimal learning rate ............................................ 45
3.3.4 Ablation study .................................................................................... 47

3.4 Conclusion ................................................................................................... 49



Table of contents

Samenvatting ........................................................................................ 11

Summary .............................................................................................. 15

1. Introduction ..................................................................................... 19
1.1 The breadth of speech technology ............................................................... 20
1.2 The paradigm of pre-training and fine-tuning ............................................. 21
1.3 What differentiates speech from text and images? ...................................... 22
1.4 Thesis contributions .................................................................................... 23

2. Fine-tuning wav2vec 2.0 for speaker recognition ............................. 27
2.1 Related work ............................................................................................... 29
2.2 Methodology ................................................................................................ 29

2.2.1 The wav2vec 2.0 architecture .............................................................. 29
2.2.2 Three wav2vec 2.0 variants for speaker recognition ............................ 31
2.2.3 Pooling methods ................................................................................. 32

2.3 Experiments ................................................................................................. 32
2.3.1 Data .................................................................................................... 32
2.3.2 Computational budget and fair comparison ........................................ 32
2.3.3 Baseline systems ................................................................................. 33
2.3.4 Variation in pooling ............................................................................ 33
2.3.5 Ablation study .................................................................................... 33

2.4 Results ......................................................................................................... 34
2.4.1 Baseline comparison ............................................................................ 34
2.4.2 Pooling methods ................................................................................. 34
2.4.3 Ablation study .................................................................................... 35

2.5 Conclusion and future work ......................................................................... 36

3. Training speaker recognition systems with limited data .................. 39
3.1 Related work ............................................................................................... 40
3.2 Methodology ................................................................................................ 41

3.2.1 Creating subsets of VoxCeleb2 ............................................................ 41
3.2.2 Speaker recognition networks .............................................................. 43

3.3 Experiments ................................................................................................. 44
3.3.1 Training and evaluation protocol ........................................................ 44
3.3.2 Learning rate search ............................................................................ 45
3.3.3 Varying 𝑛𝑛steps with optimal learning rate ............................................ 45
3.3.4 Ablation study .................................................................................... 47

3.4 Conclusion ................................................................................................... 49

4. Towards multi-task learning of speech and speaker recognition ...... 53
4.1 Background .................................................................................................. 54

4.1.1 Related MTL work ............................................................................. 54
4.1.2 Wav2vec 2.0 ........................................................................................ 55

4.2 Methodology ................................................................................................ 56
4.2.1 MTL network architectures ................................................................. 56
4.2.2 Optimization ....................................................................................... 56
4.2.3 Length of audio input during training ................................................ 58

4.3 Experiments ................................................................................................. 58
4.3.1 Data .................................................................................................... 58
4.3.2 Training protocol ................................................................................ 59
4.3.3 Comparing MTL optimization strategies ............................................ 60
4.3.4 Varying architectures .......................................................................... 61
4.3.5 Different evaluation conditions ........................................................... 62

4.4 Conclusion ................................................................................................... 64

5. The effect of batch size on contrastive self-supervised speech represen-
tation learning ...................................................................................... 67

5.1 Related work ............................................................................................... 69
5.1.1 Stochastic gradient descent and large batch sizes ............................... 69
5.1.2 Self-supervised speech representation learning .................................... 70
5.1.3 Scaling self-supervised representation learning ................................... 71
5.1.4 Contrastive learning and batch size .................................................... 71
5.1.5 Self-supervised learning with academic budget ................................... 72

5.2 Methodology ................................................................................................ 72
5.2.1 The CNN + Transformer network for audio ....................................... 72
5.2.2 Self-supervision with contrastive learning ........................................... 75
5.2.3 Batch creation ..................................................................................... 78
5.2.4 Fine-tuning for ASR with varying amount of labels ........................... 78
5.2.5 Frozen fine-tuning using the SUPERB benchmark ............................. 79

5.3 Experiments ................................................................................................. 79
5.3.1 Pre-training with different batch sizes ................................................ 79
5.3.2 ASR fine-tuning with varying amounts of labels ................................ 84
5.3.3 Analysis on effectiveness of large batch sizes ...................................... 86
5.3.4 Observing specific amounts of data during pre-training ..................... 87
5.3.5 Fine-tuning various SUPERB benchmark tasks ................................. 89
5.3.6 Increasing model capacity or changing pre-training dataset ............... 90

5.4 Discussion .................................................................................................... 95
5.5 Conclusions .................................................................................................. 96

6. Self-supervised learning of speech representations with Dutch archival
data ...................................................................................................... 99

6.1 Related work .............................................................................................. 101



6.2 Methodology .............................................................................................. 101
6.2.1 Pre-training and fine-tuning .............................................................. 101
6.2.2 Data quality simulation ..................................................................... 102
6.2.3 Archival data collection ..................................................................... 104
6.2.4 Segmenting the broadcast data ......................................................... 104

6.3 Experiments ............................................................................................... 106
6.3.1 Data quality ...................................................................................... 106
6.3.2 Effective pre-processing methods ...................................................... 108
6.3.3 SSL with 55 k hours of Dutch audio data ......................................... 111

6.4 Discussion and conclusions ........................................................................ 113

7. Conclusions ..................................................................................... 117
7.1 Reflections on presented work .................................................................... 117
7.2 Future developments .................................................................................. 119

Bibliography ....................................................................................... 123

Research data management ................................................................ 137

Curriculum vitae ................................................................................ 139

Acknowledgements ............................................................................. 141



6.2 Methodology .............................................................................................. 101
6.2.1 Pre-training and fine-tuning .............................................................. 101
6.2.2 Data quality simulation ..................................................................... 102
6.2.3 Archival data collection ..................................................................... 104
6.2.4 Segmenting the broadcast data ......................................................... 104

6.3 Experiments ............................................................................................... 106
6.3.1 Data quality ...................................................................................... 106
6.3.2 Effective pre-processing methods ...................................................... 108
6.3.3 SSL with 55 k hours of Dutch audio data ......................................... 111

6.4 Discussion and conclusions ........................................................................ 113

7. Conclusions ..................................................................................... 117
7.1 Reflections on presented work .................................................................... 117
7.2 Future developments .................................................................................. 119

Bibliography ....................................................................................... 123

Research data management ................................................................ 137

Curriculum vitae ................................................................................ 139

Acknowledgements ............................................................................. 141





Samenvatting

Stel je voor dat je iemand moet uitleggen hoe je de stem van je moeder herkent aan
de telefoon, of hoe je kunt verstaan wat een vriend zegt in een druk café. Omdat deze
dingen vanzelf gaan, kunnen we niet echt uitleggen hoe we dat doen. Dit betekent dat
we ook niet weten hoe we een computer moeten instrueren om sprekers te herkennen of
spraak uit te schrijven. In plaats daarvan vertrouwen we op machinaal leren, waarbij
we een computer de instructies geven om patronen in data te onthouden, en deze
patronen later toe te passen op nieuwe, onvoorziene situaties.
Dit proefschrift vertelt een avontuur over zelfgestuurd leren van spraakrepresentaties
– een vorm van machinaal leren, en een mooie manier om te zeggen “computers leren
spraak te begrijpen door ze zelf dingen uit te laten zoeken.” Een vergelijking kan
gemaakt worden met hoe kinderen taal leren: niemand legt elk woord dat ze horen
uit; in plaats daarvan pikken ze patronen op natuurlijke wijze op in het dagelijks
leven.
Het avontuur begint met een neurale netwerkarchitectuur genaamd wav2vec 2.0. Dit
computerprogramma gebruikt het concept van zelfsturing om basisfeiten over spraak
te leren. Deze basisfeiten dienen als springplank, waardoor het netwerk aangepast kan
worden voor taken zoals het herkennen van Engelse spraak, met minimale menselijke
begeleiding. Het blijkt dat deze basisfeiten het ook mogelijk maken om wav2vec 2.0
aan te passen voor andere spraaktechnologietaken. Onze eerste studie bevestigde dat
aanpassing voor sprekerherkenning mogelijk was. In deze studie gebruikten we als
begeleiding echter wel veel voorbeelden van spraak die gekoppeld waren aan een
specifiek individu. Een tweede studie onthulde dat het aanpassen ook kon worden
gedaan met minder menselijke begeleiding, waarbij nog steeds betere capaciteiten
werden waargenomen, ten opzichte van andere neurale netwerkarchitecturen zonder
zelfsturing.
Niet alles werkte echter zoals gehoopt. Toen we probeerden wav2vec 2.0 aan te passen
zodat het tegelijkertijd kon herkennen wie er spreekt én wat er gezegd wordt, ontdekten
we dat de twee taken elkaar hinderen. Dit is niet helemaal verrassend, aangezien
spraakherkenning moet werken ongeacht wie iets zegt, terwijl sprekerherkenning moet
werken ongeacht wat er gezegd wordt. Het concept van zelfgestuurd leren omzeilt dit
fundamentele spraaktechnologieprobleem vooralsnog niet.
Ondanks deze successen blijft zelfsturing computationeel duur. De auteurs van
wav2vec 2.0 gebruikten clusters van gespecialiseerde computers die uren aan spraak
tegelijk kunnen verwerken. Is dit strikt noodzakelijk? Heb je dure supercomputers
nodig om een netwerk zoals wav2vec 2.0 te bouwen? We ontdekten dat dit niet het
geval is. Dezelfde zelfsturingsmethode kan gebruikt worden met slechts één gewone

11



computer – het type met een grafische kaart dat veel mensen hebben voor gaming of
videobewerking. Het nadeel is dat het langer duurt: in plaats van het netwerk in een
dag of twee te kunnen bouwen met veel computers, duurt het tot wel een maand op
één computer.
Ten slotte eindigt het avontuur met het bouwen van een nieuwe versie van wav2vec
2.0 specifiek voor de Nederlandse taal. Samen met het Nederlands Instituut voor
Beeld en Geluid verzamelden we een enorme hoeveelheid Nederlandse spraak uit
televisie-uitzendingen, verspreid over 50 jaar (1972-2022). We gebruikten deze data
voor de zelfsturing van het nieuwe wav2vec 2.0 netwerk. Bij het vergelijken van ons
Nederlands-georiënteerde netwerk met andere versies, gebouwd met tientallen talen,
ontdekten we dat specialisatie in één taal zijn voordelen heeft. Het netwerk dat
alleen met Nederlandse spraak was gebouwd, bleek robuuster wanneer het onbekende
Nederlandse spraak tegenkwam.

12



computer – het type met een grafische kaart dat veel mensen hebben voor gaming of
videobewerking. Het nadeel is dat het langer duurt: in plaats van het netwerk in een
dag of twee te kunnen bouwen met veel computers, duurt het tot wel een maand op
één computer.
Ten slotte eindigt het avontuur met het bouwen van een nieuwe versie van wav2vec
2.0 specifiek voor de Nederlandse taal. Samen met het Nederlands Instituut voor
Beeld en Geluid verzamelden we een enorme hoeveelheid Nederlandse spraak uit
televisie-uitzendingen, verspreid over 50 jaar (1972-2022). We gebruikten deze data
voor de zelfsturing van het nieuwe wav2vec 2.0 netwerk. Bij het vergelijken van ons
Nederlands-georiënteerde netwerk met andere versies, gebouwd met tientallen talen,
ontdekten we dat specialisatie in één taal zijn voordelen heeft. Het netwerk dat
alleen met Nederlandse spraak was gebouwd, bleek robuuster wanneer het onbekende
Nederlandse spraak tegenkwam.

12





Summary

Imagine trying to explain to someone how you recognize your mother’s voice on the
phone, or how you can understand what a friend is saying even in a noisy café. As
these things come naturally, we cannot really explain how to do so. This means we also
do not know how to instruct a computer to recognize speakers or transcribe speech.
Instead, we rely on machine learning, where we give a computer the instructions to
remember patterns in data, and then later apply these patterns to new, unforeseen
scenarios.
This thesis narrates an adventure into self-supervised speech representation learning
– a form of machine learning, and a fancy way of saying “teaching computers to
understand speech by letting them figure things out on their own.” A comparison can
be made to how children learn language: they do not need someone to explain every
word they hear; instead, they pick up patterns naturally through their daily life.
The adventure begins with a neural network architecture called wav2vec 2.0. This
computer program uses the concept of self-supervision to learn basic facts about
speech. These basic facts serve as a stepping stone, allowing the network to be adapted
for new tasks, like recognizing English speech, with minimal human guidance. It
turns out that these basic facts also allow wav2vec 2.0 to be adapted to other speech
technology tasks. Our first study confirmed that adaptation for speaker recognition
was possible. However, this study used a lot examples of speech tied to specific
individuals. A second study revealed that this adaptation was also feasible with less
human guidance, with better capabilities compared to neural network architectures
not using self-supervision.
Not everything worked as hoped, though. When we tried to adapt wav2vec 2.0 so
that it could simultaneously recognize both who’s speaking and what they’re saying,
we found that the two tasks hinder each other. This is not completely surprising, as
speech recognition should work well regardless of who said something, while speaker
recognition should work regardless of what was said. The concept of self-supervised
learning does not circumvent this fundamental speech technology problem yet.
Despite these successes, self-supervision remains computationally expensive. The
authors of wav2vec 2.0 used clusters of specialized computers that can process hours
of speech at once. Is this strictly required? Do you need expensive supercomputers
to build a network like wav2vec 2.0? We found that this is not the case. The same
self-supervision method can be used with just one regular computer – the type with
a graphics card that many people have for gaming or video editing. The catch is that
it takes longer: instead of training the system for a day or two on many computers,
you might need to train it for a month on one computer.

15



Finally, the adventure ends with building a new version of wav2vec 2.0 specifically for
the Dutch language. Together with the Netherlands Institute for Sound and Vision,
we collected a massive amount of Dutch speech from television broadcasts, spanning
50 years (1972-2022). We used this to self-supervise wav2vec 2.0. Comparing our
Dutch-focused model against models trained on dozens of languages, we found that
specializing in a single language has its advantages. The Dutch-only model proved
more robust when encountering unfamiliar Dutch speech.

16



Finally, the adventure ends with building a new version of wav2vec 2.0 specifically for
the Dutch language. Together with the Netherlands Institute for Sound and Vision,
we collected a massive amount of Dutch speech from television broadcasts, spanning
50 years (1972-2022). We used this to self-supervise wav2vec 2.0. Comparing our
Dutch-focused model against models trained on dozens of languages, we found that
specializing in a single language has its advantages. The Dutch-only model proved
more robust when encountering unfamiliar Dutch speech.

16





1 Introduction

In which our adventurer acquaints thee with their quest to
uncover knowledge about speech representations.

Artificial neural networks have taken the world by storm. In 2024, two Nobel prizes
were awarded to research on this specific technology; John J. Hopfield and Geoffrey
Hinton won the Nobel Physics prize “for foundational discoveries and inventions
that enable machine learning with artificial neural networks” (The Royal Swedish
Academy of Sciences, 2024a), while David Baker, Demis Hassabis, and John Jumper
won the Nobel Chemistry prize “for protein structure prediction” (The Royal Swedish
Academy of Sciences, 2024b) with their work on AlphaFold (Jumper et al., 2021),
a family of artificial neural networks which can be used to analyze protein folding
behavior. Besides research, consumers have also started to explicitly use software
products of which the main component is a (very large) artificial neural network. In
September 2024, the Dutch Central Bureau of Statistics (CBS) reported that 23 %
of the Dutch population has used tools like ChatGPT (Ouyang et al., 2022). In the
age group of 18 to 25 years this percentage even increases to 49 %. Implicitly, deep
learning technology has become ubiquitous, as many human-computer interactions
involve software with artificial neural network components, including recommenda-
tion engines (e.g., TikTok, YouTube), search engines (e.g., Google), translation tools,
medical diagnosis, and last but not least, interfacing with computational devices using
speech (e.g., Apple’s Siri and Amazon’s Alexa).
However, speech interfaces are only one use-case of artificial neural networks in the
field of speech technology. In this dissertation, we present research applying artificial
neural networks to speech, building towards a singular neural network with broad
usage capabilities in various problems involving speech, similar to how large language
models like ChatGPT generalize to many text-based tasks. In this introduction, we
will first give a brief overview of these speech technology problems. Further, we will
highlight one of the leading paradigms in deep learning, representation learning, with a
framework of (self-supervised) pre-training and fine-tuning artificial neural networks.
Then, we will explain how this framework differs between the domains of text, images,
and speech, and what challenges arise within the speech context. Finally, we can give
an overview of the contributions of this manuscript to the application of artificial
neural networks in speech technology.

19



1.1 The breadth of speech technology

In this section, we distinguish speech technology tasks into 5 categories, broadly
following the classification in SUPERB (Speech processing Universal PERformance
Benchmark) (Yang et al., 2021). The first and obvious category involves the content
of the speech, or “what” is said. Here, automatic speech recognition (ASR) is the
task which most people are familiar with due to, e.g., the speech interface software
mentioned above. ASR involves the mapping of the speech signal to linguistic units,
often phonemes, letters, or words. The ASR task can be seen as overarching, with
subcategories that practitioners can consider in isolation. One subcategory is based
on different sensor conditions, e.g., far-field microphones, stereo microphones, or an
audio-visual signal. Another subcategory consists of particularly challenging domains,
e.g., air traffic control, speech of children, or pathological speech. Lastly, language
can be seen as a subcategory, as almost all research is conducted on English audio.
Another content-based task is keyword spotting. This task involves the recognition of
a particular phrase, often used to wake-up a device, but it can also be carried out in
forensic or military context. In the wake-up setting, keyword spotting is often heavily
constrained by the computation budget, as it should be executed continuously, on
a device with a power-efficient (thus, slower) CPU, without a GPU, and without
sending the audio signal to a remote server.
The second category involves the speaker of the speech signal, in other words, “who”
said it. The speaker recognition task is about determining the identity of the person
that spoke. Generally, this task involves the comparison of an enrollment segment
(known speaker) and a test segment (speaker has to be determined). This trial of
enrollment and test segments is scored based on two likelihoods: whether the utter-
ances come from the same speaker or from different speakers. The calibration of a
threshold is required to decide whether a particular score implies the test segment is
the same or a different speaker. Another task is speaker diarization. Here, the absolute
identity of the speaker is not of interest. Instead, a model needs to recognize how
many speakers are in a speech signal, and determine, at any given time step, which
of these detected speakers are speaking, if any.
The third category encompasses the prosody of speech, i.e., “how” it was said. This
task can be described as emotion recognition, with a focus on classifying the emotional
state of the speaker. Collecting data for this task is challenging, as emotions are
difficult to capture, and for data-collection purposes they are often acted out instead
of naturally expressed. Moreover, nuances such as sarcasm, or a particular intonation
which, e.g., expresses doubt, are difficult to express in text. Thus, one can also consider
enhancing ASR output with the detection and labeling of this kind of prosodical
information in speech.
The fourth category is on the semantic meaning of the speech, that is, “what is
meant”? Here, intent classification involves directly mapping a speech signal to an
intended outcome. Alternatively, it is possible to use an ASR system to produce

20



1.1 The breadth of speech technology

In this section, we distinguish speech technology tasks into 5 categories, broadly
following the classification in SUPERB (Speech processing Universal PERformance
Benchmark) (Yang et al., 2021). The first and obvious category involves the content
of the speech, or “what” is said. Here, automatic speech recognition (ASR) is the
task which most people are familiar with due to, e.g., the speech interface software
mentioned above. ASR involves the mapping of the speech signal to linguistic units,
often phonemes, letters, or words. The ASR task can be seen as overarching, with
subcategories that practitioners can consider in isolation. One subcategory is based
on different sensor conditions, e.g., far-field microphones, stereo microphones, or an
audio-visual signal. Another subcategory consists of particularly challenging domains,
e.g., air traffic control, speech of children, or pathological speech. Lastly, language
can be seen as a subcategory, as almost all research is conducted on English audio.
Another content-based task is keyword spotting. This task involves the recognition of
a particular phrase, often used to wake-up a device, but it can also be carried out in
forensic or military context. In the wake-up setting, keyword spotting is often heavily
constrained by the computation budget, as it should be executed continuously, on
a device with a power-efficient (thus, slower) CPU, without a GPU, and without
sending the audio signal to a remote server.
The second category involves the speaker of the speech signal, in other words, “who”
said it. The speaker recognition task is about determining the identity of the person
that spoke. Generally, this task involves the comparison of an enrollment segment
(known speaker) and a test segment (speaker has to be determined). This trial of
enrollment and test segments is scored based on two likelihoods: whether the utter-
ances come from the same speaker or from different speakers. The calibration of a
threshold is required to decide whether a particular score implies the test segment is
the same or a different speaker. Another task is speaker diarization. Here, the absolute
identity of the speaker is not of interest. Instead, a model needs to recognize how
many speakers are in a speech signal, and determine, at any given time step, which
of these detected speakers are speaking, if any.
The third category encompasses the prosody of speech, i.e., “how” it was said. This
task can be described as emotion recognition, with a focus on classifying the emotional
state of the speaker. Collecting data for this task is challenging, as emotions are
difficult to capture, and for data-collection purposes they are often acted out instead
of naturally expressed. Moreover, nuances such as sarcasm, or a particular intonation
which, e.g., expresses doubt, are difficult to express in text. Thus, one can also consider
enhancing ASR output with the detection and labeling of this kind of prosodical
information in speech.
The fourth category is on the semantic meaning of the speech, that is, “what is
meant”? Here, intent classification involves directly mapping a speech signal to an
intended outcome. Alternatively, it is possible to use an ASR system to produce

20

1. Introduction

text, and then use a text-based natural language understanding model. However, in
this case, errors from the ASR system can propagate, which can negatively affect
the performance compared to a direct approach. The slot filling task is related,
which should determine the information about the intended action, e.g., an alarm
should be set for 6 o’clock in the morning. The speech translation task involves
transcribing and translating a speech signal at the same time, which requires semantic
understanding. Similar to intent classification, this can also be accomplished with a
two-step approach, but there are benefits to direct translation.
The last category is on the generation or modification of speech. The text-to-speech
task involves, given some text, and optionally, some speaker attributes, the generation
of a speech signal containing said text with the given speaker attributes. Another
task is speech separation. An example for this task is that a speech signal contains
multiple speakers. This signal should be split into multiple signals, where each signal
only has one speaker. Related, speech enhancement involves removing noise from a
speech signal, such that only the actual speech remains.
There is a final task, which is important for any practitioner in the speech technology
field, but which is difficult to place into one of the aforementioned categories. This is
the task of speech activity detection, in other words, detecting whether a given audio
signal actually contains speech. Although this task seems trivial for humans, it is
difficult to build a system which is reliable in all possible circumstances. One reason
for this is that it can be unclear how to exactly define speech. For example, it can
be ambiguous whether singing, rap, or background speech should be seen as speech.
Applying speech activity detection is often carried out as a pre-processing step so
that only audio with speech is processed by a model.

1.2 The paradigm of pre-training and fine-tuning

The tasks in the previous section used to be solved with different signal processing
and classical machine learning techniques, while the necessity of domain knowledge
required a researcher to focus on one particular task. However, the advent of artificial
neural networks has led to a singular method which can be applied to any task, usually
improving performance at the same time. This enables research collaboration and
mutual improvements. One of the important developments which enabled this wide
application of artificial neural networks is the pre-training and fine-tuning paradigm.
Artificial neural networks differentiate from classical machine learning methods by
intrinsically learning representations instead of using hand-crafted features. Usually,
a neural network trained on one particular task, has learned representations which are
also useful for solving a different, related task. This paradigm was initially successful
in computer vision, where neural networks (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016) were first, thus “pre-”, trained on the ImageNet
dataset (Deng et al., 2009) to classify pictures. Then, it was observed that these
trained image classification neural networks could be fine-tuned on another task, e.g.,

21



1.2 The paradigm of pre-training and fine-tuning

object detection on the COCO dataset (Lin et al., 2014). Fine-tuning consisted of
simply initializing a neural network with the obtained weights from the ImageNet
training, and then starting a new training, on another task, with a different dataset.
One trick to make this fine-tune training work was to freeze, i.e., not update, certain
parts of the network, usually the first few layers. This pre-training and fine-tuning
paradigm has two benefits, namely, fine-tuning is much cheaper computationally, and
at the same time, better performance is obtained than training on the other dataset
from scratch.
Later, self-supervised pre-training was introduced. The idea behind self-supervision is
based on one of the properties of artificial neural networks training, namely, compared
to classical approaches, it is computationally feasible to drastically scale the dataset
size, and usually, more data is better. However, increasing the amount of data is
expensive if it requires human labeling. Self-supervised techniques use a pretext task,
with automatic labels generated from the data samples. Examples of such automatic
labels are:
1. transforming a color image into a grey-scale image, and then reconstructing the

color image from the grey image.
2. removing a word form a sentence, and then predicting the word which was removed.
3. removing a segment of audio from a speech utterance, and then being able to select

which segment was removed, when given the choice between a few options.
Self-supervision is beneficial because, in order to solve the pretext task, the neural
network needs to represent the input data in such a way as to be able to perform the
task. If the pretext is appropriately challenging, these representations generalize to
“real” tasks. This is made apparent by self-supervised networks obtaining excellent
performance after being fine-tuned, compared to random initializations.

1.3 What differentiates speech from text and images?

As stated above, (self-supervised) representation learning was initially made popular
in the computer vision (CV) domain. For the natural language processing (NLP)
domain, its use led to the development of the BERT model (Devlin et al., 2019) and
the GPT models (Radford et al., 2018; 2019; Brown et al., 2020). It has become
apparent that the speech community lags behind in the development of overarching
systems, which can solve most tasks in the domain, like ChatGPT. The self-supervised
methods, and the lessons learned therefrom, which led to the GPT model family,
are not directly applicable to speech (Mohamed et al., 2022). These difficulties arise,
when compared to CV or NLP:
1. Speech is a variable-length sequence. In CV, pretext tasks operate on a fixed-size

image. In comparison, speech pretext tasks need to be flexible to the length of the
signal.

2. Speech is a long sequence. In NLP, text is relatively short, e.g., this sentence is 82
characters long. When spoken, the previous sentence is around 7 seconds, implying

22



1.2 The paradigm of pre-training and fine-tuning

object detection on the COCO dataset (Lin et al., 2014). Fine-tuning consisted of
simply initializing a neural network with the obtained weights from the ImageNet
training, and then starting a new training, on another task, with a different dataset.
One trick to make this fine-tune training work was to freeze, i.e., not update, certain
parts of the network, usually the first few layers. This pre-training and fine-tuning
paradigm has two benefits, namely, fine-tuning is much cheaper computationally, and
at the same time, better performance is obtained than training on the other dataset
from scratch.
Later, self-supervised pre-training was introduced. The idea behind self-supervision is
based on one of the properties of artificial neural networks training, namely, compared
to classical approaches, it is computationally feasible to drastically scale the dataset
size, and usually, more data is better. However, increasing the amount of data is
expensive if it requires human labeling. Self-supervised techniques use a pretext task,
with automatic labels generated from the data samples. Examples of such automatic
labels are:
1. transforming a color image into a grey-scale image, and then reconstructing the

color image from the grey image.
2. removing a word form a sentence, and then predicting the word which was removed.
3. removing a segment of audio from a speech utterance, and then being able to select

which segment was removed, when given the choice between a few options.
Self-supervision is beneficial because, in order to solve the pretext task, the neural
network needs to represent the input data in such a way as to be able to perform the
task. If the pretext is appropriately challenging, these representations generalize to
“real” tasks. This is made apparent by self-supervised networks obtaining excellent
performance after being fine-tuned, compared to random initializations.

1.3 What differentiates speech from text and images?

As stated above, (self-supervised) representation learning was initially made popular
in the computer vision (CV) domain. For the natural language processing (NLP)
domain, its use led to the development of the BERT model (Devlin et al., 2019) and
the GPT models (Radford et al., 2018; 2019; Brown et al., 2020). It has become
apparent that the speech community lags behind in the development of overarching
systems, which can solve most tasks in the domain, like ChatGPT. The self-supervised
methods, and the lessons learned therefrom, which led to the GPT model family,
are not directly applicable to speech (Mohamed et al., 2022). These difficulties arise,
when compared to CV or NLP:
1. Speech is a variable-length sequence. In CV, pretext tasks operate on a fixed-size

image. In comparison, speech pretext tasks need to be flexible to the length of the
signal.

2. Speech is a long sequence. In NLP, text is relatively short, e.g., this sentence is 82
characters long. When spoken, the previous sentence is around 7 seconds, implying

22

1. Introduction

more than 100 k audio samples when recorded with the standard sampling rate of
16 kHz. This stark difference in length requires different modeling techniques.

3. Speech is difficult to segment into stand-alone units. In NLP, concrete units of
meaning are easily separable, i.e., spacing and punctuation exist. Currently, for
speech, there is no method to accurately segment an utterance into concrete units
of meaning, be it phonemes, words, or sentences.

4. Speech does not have a clean vocabulary. In NLP, a common pre-text task is to
predict the next word. This is relatively straightforward, as all words in the training
dataset are known beforehand. There is no equivalent task (i.e., a set of discrete
options to predict during training) in speech. It can be argued that phonemes are
the vocabulary of speech, but predicting the next phoneme is a lot more difficult.
It cannot be discretized, as the variability of a phoneme in the speech signal is
quite large, due to, e.g., sensor noise and co-articulation.

5. Speech tasks are orthogonal, with different informational needs. For example,
representations for ASR need to contain phonetic information, while speaker
recognition requires information on speaker attributes. For NLP, a pretext task
does not need to learn information relevant to the writing style of authors, as
this is not required for tasks that are deemed relevant, e.g., question answering or
named entity recognition. For speech, modeling speaker information is important,
as, e.g., ASR benefits from speaker diarization capabilities, and text-to-speech
models want to generate natural sounding voices.

6. Speech, like an image in CV, needs to be captured, thus, the raw signal is
inherently noisy, and models need to be robust to varying sensors. In NLP, the
closest equivalence is words which are new, or misspelled, but these can simply be
filtered out. It is very unlikely that two recordings of a particular speaker saying
a particular word lead to an identical speech signal.

Taken together, it is not surprising that methods for NLP and CV are not directly
applicable for speech, and therefore progress is slower in comparison.

1.4 Thesis contributions

In this dissertation, we present research with the intent to gain insights about self-
supervised speech representation learning, which, on a high level, can help bridge the
gap between speech on one hand, and NLP and CV on the other hand. Each chapter
is based on a stand-alone research article, which can lead to a slight difference in
notation and style. This also means that each chapter will, to varying extent, repeat
some details on, e.g., the wav2vec 2.0 architecture (Baevski et al., 2020a), and the
Librispeech (Panayotov et al., 2015) and VoxCeleb2 (Chung et al., 2018) datasets.
The contributions of each chapter are as follows.
In Chapter 2 we present work on fine-tuning wav2vec 2.0, a self-supervised speech
representation method, for the speaker recognition task. The original publication
(Baevski et al., 2020a) only considered whether the learned speech representations

23



1.4 Thesis contributions

were applicable for automatic speech recognition. From the NLP domain, it was
known that BERT (Devlin et al., 2019), which shared commonalities with wav2vec 2.0,
could be fine-tuned for a wide variety of text-based tasks. This raised the question:
How adaptable is wav2vec 2.0 to other speech tasks? We made evident that the speech
representations from the pre-trained wav2vec 2.0 network can be adequately fine-
tuned for speaker recognition.
One of the main findings in (Baevski et al., 2020a) about the proposed wav2vec 2.0
framework was that fine-tuning (for speech recognition) was feasible with a very
limited amount of labeled data, in this case 10 minutes of transcribed audio. In
Chapter 3 we, similarly, study the performance when fine-tuning with a limited
amount of labeled data, but for speaker recognition instead of ASR. Initial positive
results were found when designing a project for master degree students following
the Machine Learning in Practice course taught at Radboud University. We wanted
to make a machine learning competition similar to those hosted on Kaggle, where
students competed by building a model with the best speaker recognition performance
on the VoxCeleb1 test set. We limited the size of the training dataset to make it
more feasible to converge within the 10 hours of GPU time students were allotted
to use per training run. When testing various baselines, so we knew how to guide
students throughout the project, we found that fine-tuning wav2vec 2.0 gave the best
performance in this setting, prompting further analysis. We made evident that the
low-resource capabilities of wav2vec 2.0 are shared between different speech tasks.
Furthermore we gained insights on which properties are beneficial to good fine-tuning
performance in the (low-resource) training dataset.
Spurred by finding speaker recognition capabilities in wav2vec 2.0, we were interested
in learning speech representations which had intrinsic phonetic and speaker informa-
tion. When fine-tuning for speech recognition, the final network cannot be used for
speaker recognition, and vice versa. In Chapter 4, we conduct experiments with
multi-task learning, where we jointly fine-tune for speaker and speech recognition. The
resulting model should then be able to provide a shared speaker and phonetic repre-
sentation, which should ease development of speaker-attributed speech recognition,
or speaker diarization, with only a single neural network. However, we learned that
the speech and speaker recognition tasks are difficult to combine. First, there is no
good dataset which has labels for both tasks. We show that using the speaker labels
of Librispeech is insufficient to generalize to a well-performing speaker recognition
network. To work around this dataset issue, we optimize with disjoint batches, where
each optimization step consists of two forward steps, one with a speaker-labeled
batch from a speaker recognition dataset, and the other one with a transcription-
labeled batch from a speech recognition dataset. We found that disjoint training was
not mutually beneficial. Although we saw mild improvements in speaker recognition
performance, this was to the detriment of speech recognition performance. Moreover,
we found that this disjoint training setup is not robust to out-of-domain data, with
large degradations in performance compared to single-task learning.

24



1.4 Thesis contributions

were applicable for automatic speech recognition. From the NLP domain, it was
known that BERT (Devlin et al., 2019), which shared commonalities with wav2vec 2.0,
could be fine-tuned for a wide variety of text-based tasks. This raised the question:
How adaptable is wav2vec 2.0 to other speech tasks? We made evident that the speech
representations from the pre-trained wav2vec 2.0 network can be adequately fine-
tuned for speaker recognition.
One of the main findings in (Baevski et al., 2020a) about the proposed wav2vec 2.0
framework was that fine-tuning (for speech recognition) was feasible with a very
limited amount of labeled data, in this case 10 minutes of transcribed audio. In
Chapter 3 we, similarly, study the performance when fine-tuning with a limited
amount of labeled data, but for speaker recognition instead of ASR. Initial positive
results were found when designing a project for master degree students following
the Machine Learning in Practice course taught at Radboud University. We wanted
to make a machine learning competition similar to those hosted on Kaggle, where
students competed by building a model with the best speaker recognition performance
on the VoxCeleb1 test set. We limited the size of the training dataset to make it
more feasible to converge within the 10 hours of GPU time students were allotted
to use per training run. When testing various baselines, so we knew how to guide
students throughout the project, we found that fine-tuning wav2vec 2.0 gave the best
performance in this setting, prompting further analysis. We made evident that the
low-resource capabilities of wav2vec 2.0 are shared between different speech tasks.
Furthermore we gained insights on which properties are beneficial to good fine-tuning
performance in the (low-resource) training dataset.
Spurred by finding speaker recognition capabilities in wav2vec 2.0, we were interested
in learning speech representations which had intrinsic phonetic and speaker informa-
tion. When fine-tuning for speech recognition, the final network cannot be used for
speaker recognition, and vice versa. In Chapter 4, we conduct experiments with
multi-task learning, where we jointly fine-tune for speaker and speech recognition. The
resulting model should then be able to provide a shared speaker and phonetic repre-
sentation, which should ease development of speaker-attributed speech recognition,
or speaker diarization, with only a single neural network. However, we learned that
the speech and speaker recognition tasks are difficult to combine. First, there is no
good dataset which has labels for both tasks. We show that using the speaker labels
of Librispeech is insufficient to generalize to a well-performing speaker recognition
network. To work around this dataset issue, we optimize with disjoint batches, where
each optimization step consists of two forward steps, one with a speaker-labeled
batch from a speaker recognition dataset, and the other one with a transcription-
labeled batch from a speech recognition dataset. We found that disjoint training was
not mutually beneficial. Although we saw mild improvements in speaker recognition
performance, this was to the detriment of speech recognition performance. Moreover,
we found that this disjoint training setup is not robust to out-of-domain data, with
large degradations in performance compared to single-task learning.

24

1. Introduction

Previous chapters have considered fine-tuning wav2vec 2.0. In the last two chapters,
we will study aspects of self-supervised pre-training. In Chapter 5, we analyze the
relationship between the batch size during pre-training, and downstream task perfor-
mance. Self-supervised pre-training is very computationally expensive. While seminal
work reports performances on their models trained with large batch sizes (which
require many GPUs), they do not share results with low(er) computational budgets.
This leaves open questions regarding small batch sizes, e.g., is there a lower bound
on the batch size for self-supervision to converge? Moreover, what is the expected
performance when a practitioner has a certain computational budget? In our analysis,
we show that pre-training can be accomplished with small batch sizes, even those
which can fit on a single consumer-grade GPU. We also show a direct relationship
between the number of training epochs, and downstream task performance.
Lastly, in Chapter 6 we compare pre-training with a mono-lingual and multi-lingual
dataset. We create a large (55 k hours) Dutch dataset based on television broadcasts
from 1972 to 2022, collected from the archives of the Netherlands Institute of Sound
and Vision. To assist with the creation of this dataset, we also studied data quality
assumptions for self-supervised pre-training. State-of-the-art speech recognition for
Dutch is realized with multi-lingual models, such as Whisper (Radford et al., 2023)
and wav2vec 2.0 XLSR (Conneau et al., 2021). We were interested in whether pre-
training wav2vec 2.0 with a mono-lingual dataset, with roughly the same size as
the multi-lingual dataset for XLSR, has better performance for Dutch. Moreover,
seminal works in self-supervised speech representation learning do not make explicit
which properties are needed in pre-training datasets. Knowledge of these properties
can help practitioners who want to create a high-quality pre-training dataset. We
found that clean data is important to stable wav2vec 2.0 pre-training. While small
quantities of noise are acceptable, the presence of music is detrimental. Segmenting
the raw broadcast dataset with Whisper was an effective strategy to pre-process data.
We found that fine-tuning mono-lingual models leads to higher robustness on out-of-
domain data.

25





2 Fine-tuning wav2vec 2.0 for
speaker recognition

In which our adventurer uncovers the usefulness of speech
representations, obtained with contrastive self-supervised
learning, for the speaker recognition task.¹

In the field of natural language processing (NLP) it has become standard to fine-
tune self-supervised pre-trained models, such as BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), and T5 (Raffel et al., 2020), on a wide variety of NLP tasks.
Recently, this framework of pre-training and fine-tuning has also been successfully
used in automatic speech recognition with wav2vec 2.0 (Baevski et al., 2020a).
The BERT and wav2vec 2.0 network have commonalities in their design. Firstly,
they are both encoder-only transformer networks (Vaswani et al., 2017) with the
exact same architectural setup for both the BASE (12 layers, hidden dimension of 768)
and LARGE (24 layers, hidden dimension of 1024) variants. Secondly, they use self-
supervised pre-training with masked input to learn representations, which can later
be fine-tuned for downstream tasks. However, they differ in four major aspects:
1. The input tokens to the transformer layers in wav2vec 2.0 are speech features,

from raw audio processed by a learned convolutional neural network, instead of
WordPiece embeddings (Wu et al., 2016).

2. The self-supervised loss function for wav2vec 2.0 is contrastive, in that the model
needs to distinguish, at a masked time step 𝑡𝑡, the true representation from a set of
distractors. For BERT, the loss function is predictive, as the model can immedi-
ately predict the masked word with a classification over the entire vocabulary,
which is known in advance.

3. Wav2vec 2.0 uses relative positional embeddings computed by a single convolu-
tional layer instead of sinusoidal positional embeddings.

4. There is no “class” and “separator” token, nor a next-sentence prediction task, in
the pre-training procedure of wav2vec 2.0.

The lack of these class and separator tokens raises questions about the adaptability
of wav2vec 2.0 to downstream tasks other than speech recognition. The BERT model

¹This chapter is based on the publication Vaessen, N., and van Leeuwen, D. A. (2022). Fine-
Tuning Wav2Vec2 for Speaker Recognition., in International Conference on Acoustics, Speech and
Signal Processing, 7967–7971. doi: 10.1109/ICASSP43922.2022.9746952.

27



is quite flexible, with four fine-tuning strategies, depending on the downstream task,
which involve these class and separation tokens:
(i) Single-sentence classification tasks, e.g., sentiment analysis, give as input to the

network, in order, the class token, and the sequence of WordPiece tokens of a
sentence. The output sequence of the network is mostly ignored, only the class
token is used as input to a linear layer for, e.g., binary classification.

(ii) Sentence-pair classification tasks, e.g., entailment, give as input to the network,
in order, the class token, the sequence of WordPiece tokens of sentence A, the
separation token, and the sequence of WordPiece tokens of sentence B. Similar to
(i), a final linear layer uses the output class token for, e.g., a binary classification.

(iii) For the question-answering task, the input is, in order, the class token, the tokens
of a question, the separator token, and the tokens of a paragraph which could
contain an answer. Each output token of the paragraph is used to determine a
start and end token spanning the answer to the question.

(iv) For a single-sentence tagging task, e.g., named entity recognition, the input is,
in order, the class token, and all tokens of a sentence. The class token in the
output sequence is not used. For all other tokens, a linear layer is used to classify
each word(piece) independently.

Unlike BERT, the wav2vec 2.0 framework only supports a single output configuration
equivalent to (iv). We speculate the absence of a class and separation token due to
the fact that wav2vec 2.0 was originally designed to be fine-tuned (in low-resource
settings) for speech recognition. A reasonable analogy can be made between sentence
tagging and speech recognition, where each output token of wav2vec 2.0 can represent
a phone or letter. It is unclear whether other speech technology tasks can also be
modelled this way. We think that our task of interest, speaker recognition, should
be seen as either a single-utterance classification task, similar to (i), or a utterance-
pair classification task, similar to (ii). For our purposes, it could be required to have
access to a class token which acts as a representation which summarizes the whole
input sequence.
In this work we focus on the feasibility of fine-tuning wav2vec 2.0 for speaker recog-
nition. We want to know whether wav2vec 2.0, pre-trained on Librispeech (Panayotov
et al., 2015), is an effective initialization not only for speech recognition, but also for
another speech technology task, namely speaker recognition. Concretely, we set out
to answer the following research questions:
RQ 1. Can we fine-tune wav2vec 2.0 for speaker recognition by replacing BERT’s

concept of a class token with a pooling layer, thus modeling speaker recognition
as single-sentence classification?

RQ 2. If so, what pooling method is the most effective?
RQ 3. Alternatively, can we fine-tune wav2vec 2.0 for speaker recognition by model-

ling it as a binary classification of a sentence pair?

28



is quite flexible, with four fine-tuning strategies, depending on the downstream task,
which involve these class and separation tokens:
(i) Single-sentence classification tasks, e.g., sentiment analysis, give as input to the

network, in order, the class token, and the sequence of WordPiece tokens of a
sentence. The output sequence of the network is mostly ignored, only the class
token is used as input to a linear layer for, e.g., binary classification.

(ii) Sentence-pair classification tasks, e.g., entailment, give as input to the network,
in order, the class token, the sequence of WordPiece tokens of sentence A, the
separation token, and the sequence of WordPiece tokens of sentence B. Similar to
(i), a final linear layer uses the output class token for, e.g., a binary classification.

(iii) For the question-answering task, the input is, in order, the class token, the tokens
of a question, the separator token, and the tokens of a paragraph which could
contain an answer. Each output token of the paragraph is used to determine a
start and end token spanning the answer to the question.

(iv) For a single-sentence tagging task, e.g., named entity recognition, the input is,
in order, the class token, and all tokens of a sentence. The class token in the
output sequence is not used. For all other tokens, a linear layer is used to classify
each word(piece) independently.

Unlike BERT, the wav2vec 2.0 framework only supports a single output configuration
equivalent to (iv). We speculate the absence of a class and separation token due to
the fact that wav2vec 2.0 was originally designed to be fine-tuned (in low-resource
settings) for speech recognition. A reasonable analogy can be made between sentence
tagging and speech recognition, where each output token of wav2vec 2.0 can represent
a phone or letter. It is unclear whether other speech technology tasks can also be
modelled this way. We think that our task of interest, speaker recognition, should
be seen as either a single-utterance classification task, similar to (i), or a utterance-
pair classification task, similar to (ii). For our purposes, it could be required to have
access to a class token which acts as a representation which summarizes the whole
input sequence.
In this work we focus on the feasibility of fine-tuning wav2vec 2.0 for speaker recog-
nition. We want to know whether wav2vec 2.0, pre-trained on Librispeech (Panayotov
et al., 2015), is an effective initialization not only for speech recognition, but also for
another speech technology task, namely speaker recognition. Concretely, we set out
to answer the following research questions:
RQ 1. Can we fine-tune wav2vec 2.0 for speaker recognition by replacing BERT’s

concept of a class token with a pooling layer, thus modeling speaker recognition
as single-sentence classification?

RQ 2. If so, what pooling method is the most effective?
RQ 3. Alternatively, can we fine-tune wav2vec 2.0 for speaker recognition by model-

ling it as a binary classification of a sentence pair?

28

2. Fine-tuning wav2vec 2.0 for speaker recognition

The remainder of this chapter is set out as follows. We will first discuss related
work in Section 2.1. Then, in Section 2.2 we detail the wav2vec 2.0 architecture and
propose our adaptions for speaker recognition. The experimental setup is explained in
Section 2.3 and results are shown in Section 2.4. Finally, we will discuss and conclude
the experimental results in Section 2.5.

2.1 Related work

Initial evidence suggests that wav2vec 2.0 network can be applied to a variety of
speech-related tasks. Concurrently to our work, Fan et al. (2021) use the network for
speaker recognition and language identification in both a single and multi-task learn-
ing setting. Tjandra et al. (2022) show good performance for language identification
with 25 languages, but modify wav2vec 2.0 to use log-mel spectrogram input instead
of raw waveforms. In Pepino et al. (2021) the (frozen) wav2vec 2.0 embeddings are
input to a learnable downstream model for emotion recognition. Meanwhile Yuan et
al. (2021a) manages to fine-tune the wav2vec 2.0 model itself on emotion recognition
with CTC loss by using emotion-labeled phonetic units. Finally, the LeBenchmark
proposed by Evain et al. (2021) uses the wav2vec 2.0 models as a baseline and
encapsulates speech recognition, spoken language understanding, emotion recognition
and speech translation in a single benchmark.

2.2 Methodology

This section will describe the wav2vec 2.0 network architecture, the pre-training and
fine-tuning procedure for the original speech recognition task, and will detail the
required adaptations for the speaker recognition task.

2.2.1 The wav2vec 2.0 architecture

The wav2vec 2.0 framework (Baevski et al., 2020a) applies the concept of self-super-
vised pre-training with transformers to automatic speech recognition. In Figure 1 we
show a general overview of the network architecture during fine-tuning. The next
subsections summarize each component.

Feature extraction

The first step is to encode a raw audio waveform (normalized to zero mean and unit
variance) into learned representations with a discrete time unit. The feature extractor
consists of 7 consecutive 1-dimensional convolutions with 512 channels and respective
kernel sizes of (10, 3, 3, 3, 3, 2, 2) and stride (5, 2, 2, 2, 2, 2, 2). The output of the
first convolutional layer is group normalized (Wu and He, 2018) such that each of
the 512 channel sequences has zero mean and unit variance before GELU activation
(Hendrycks and Gimpel, 2016) is applied. The other convolutional layers do not have
any normalization layers and their output is directly activated with GELU. The

29



2.2 Methodology

Figure 1:  Overview of the wav2vec 2.0 architecture. Shapes are specified for a batch
of 𝐵𝐵 audio samples with a length of 3 seconds.

output of the feature extractor is an encoded vector sequence with dimensionality
512. Each vector has a receptive field of 20 ms which is similar to the window sizes
in spectral-based representations.

Projection, SpecAugment & positional embedding

After the feature extraction LayerNorm (Lei Ba et al., 2016) is applied to each encoded
vector representation in the sequence independently. After normalization, the repre-
sentations are projected into 768 dimensions by a single, shared fully-connected layer,
called the feature projector. On all projections dropout is applied (but no activation).
Then, masking is applied over the whole sequence analogous to SpecAugment (Park
et al., 2019); 0 or more random sets of consecutive vectors (masking in time domain)
as well as 0 or more random sets of consecutive channels (masking in “frequency”
domain) have their values blanked to 0. This masked projected sequence is then
convolved by a single layer with a kernel size of 128, a stride of 1, padding of 64
and 16 groups followed by GELU activation in order to create a relative positional
embedding for each projected representation. These relative positional embeddings
are summed with the original input of the convolution, which changes the receptive
field from 20 ms to 2.5 s. As a final step each vector is independently normalized with
LayerNorm and dropout is applied again.

30



2.2 Methodology

Figure 1:  Overview of the wav2vec 2.0 architecture. Shapes are specified for a batch
of 𝐵𝐵 audio samples with a length of 3 seconds.

output of the feature extractor is an encoded vector sequence with dimensionality
512. Each vector has a receptive field of 20 ms which is similar to the window sizes
in spectral-based representations.

Projection, SpecAugment & positional embedding

After the feature extraction LayerNorm (Lei Ba et al., 2016) is applied to each encoded
vector representation in the sequence independently. After normalization, the repre-
sentations are projected into 768 dimensions by a single, shared fully-connected layer,
called the feature projector. On all projections dropout is applied (but no activation).
Then, masking is applied over the whole sequence analogous to SpecAugment (Park
et al., 2019); 0 or more random sets of consecutive vectors (masking in time domain)
as well as 0 or more random sets of consecutive channels (masking in “frequency”
domain) have their values blanked to 0. This masked projected sequence is then
convolved by a single layer with a kernel size of 128, a stride of 1, padding of 64
and 16 groups followed by GELU activation in order to create a relative positional
embedding for each projected representation. These relative positional embeddings
are summed with the original input of the convolution, which changes the receptive
field from 20 ms to 2.5 s. As a final step each vector is independently normalized with
LayerNorm and dropout is applied again.

30

2. Fine-tuning wav2vec 2.0 for speaker recognition

Transformer

The masked and projected sequence with both local and positional information is fed
through a Transformer encoder. We only use the BASE variant, with 12 consecutive
transformer layers. Each transformer layer consists of a residual 12-headed self-
attention module and a residual 2-layer feed forward network with respectively 3072
and 768 hidden units. LayerDrop (Huang et al., 2016; Fan et al., 2020) is applied such
that each transformer layer is potentially skipped. The final output sequence, with
each representation potentially having both local and global information due to self-
attention, is used in a downstream task.

2.2.2 Three wav2vec 2.0 variants for speaker recognition

The original wav2vec 2.0 framework fine-tunes on speech recognition by independently
labeling each wav2vec 2.0 output embedding with a shared fully-connected layer, and
optimizes with CTC loss (Graves et al., 2006). We propose two adaptions to this
design for the speaker recognition task, inspired by BERT’s (Devlin et al., 2019)
single-sentence and sentence-pair classification setup.

Speaker recognition as single-utterance classification

The current paradigm in speaker recognition with deep neural networks is to train
models with a classification-based approach (Snyder et al., 2018; Desplanques et
al., 2020). To mimic this architectural paradigm two modifications to wav2vec 2.0
are made. First, the sequence of wav2vec 2.0 embeddings is reduced to a single
embedding during training by pooling the output sequence. The pooling methods are
described in Section 2.2.3. Second, we add a fully connected layer which uses the
pooled embedding to classify each speaker in the training data with cross-entropy
(CE) or angular additive softmax (AAM) loss (Deng et al., 2019; Liu et al., 2019). A
speaker recognition trial is evaluated with the cosine similarity between two pooled
embeddings. We refer to these variants as w2v2-ce and w2v2-aam.

Speaker recognition as utterance-pair classification

The second approach directly computes a (binary) similarity score. The two audio
segments of a speaker recognition trial are first processed independently up to the
encoder part of the network. Then, the two sequences of input tokens are concate-
nated, accompanied by special tokens at the embedding level: A start (a vector with
all values +1), separator (a vector with all values −1), and end (also all values −1)
token. The first wav2vec 2.0 embedding in the output sequence (corresponding to the
start token) is used as input to a logistic regression with one dense layer. The singular
output is the logit for the binary cross-entropy loss and the score for evaluating a
speaker recognition trial. During training a batch consists of 8 speakers, 4 utterances
per speaker, and 16 pairs each of same and different speakers. We refer to this third
variant as w2v2-bce.

31



2.2 Methodology

2.2.3 Pooling methods

We propose several pooling methods to reduce the variable-length sequence of
wav2vec 2.0 embeddings to a fixed-size speaker embedding. We first consider the
standard statistical pooling methods mean, max, mean&std and quantile. They aggre-
gate each dimension over the time axis. The mean&std variant doubles the embedding
dimensionality while quantile pooling expands each dimension five-fold with quan-
tiles (0, 0.25, 0.5, 0.75, 1). We also assess taking the first, middle or last embedding
of the sequence as a “pooling” strategy as well as selecting the index at random. Lastly
we consider inserting a start token (i.e, a vector with all values +1) before the input
sequence of the encoder and then selecting the first output token as the speaker
embedding. Unlike BERT our start token does not have a meaningful prior due to
the missing next-sentence prediction task during pre-training.

2.3 Experiments

2.3.1 Data

All experiments are conducted on the VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2
(Chung et al., 2018) datasets, which consist of interviews of celebrities extracted from
YouTube. The VoxCeleb2 development set vox2-dev, which contains ~1.1 M audio
files from 6 k speakers, is used for training. A validation set is created based on
~2 % of vox2-dev, which includes all speakers but does not overlap in recordings. For
this validation set a random trial set of 5 k equal and 5 k different speaker pairs is
generated, from which we compute the validation equal-error-rate (EER). This is used
to select the best checkpoint during a training run as well as to tune hyperparameters.
For evaluation we use the cleaned original (vox1-o, 40 speakers, ~37 k trials), extended
(vox1-e, 1251 speakers, ~80 k trials) and hard (vox1-h, 1190 speakers, ~550 k trials,
equal nationality and sex) test sets from VoxCeleb1 (Chung et al., 2018). There is
no speaker overlap between the VoxCeleb1 test sets and the VoxCeleb2 dev set. The
experiments with the wav2vec 2.0 network use the pre-trained weights² on Librispeech
(Panayotov et al., 2015) released on HuggingFace (Wolf et al., 2020) by Fairseq (Ott
et al., 2019).

2.3.2 Computational budget and fair comparison

We compare the performance of models under similar computational budgets. Each
network is trained with a batch size of 3.2 M audio samples (Baevski et al., 2020a)
by randomly sampling a chunk of 3 seconds from 66 different audio files. No data
augmentation techniques are used. We train for 100 k iterations, approximately 6
epochs, with Adam (Kingma and Ba, 2015) and a OneCycle learning rate schedule
(Smith and Topin, 2019). Given a (maximum) learning rate 𝜂𝜂, this learning rate
schedule works as follows. First, in a warm up phase of 30 k iterations, the learning

²See https://huggingface.co/facebook/wav2vec2-base

32



2.2 Methodology

2.2.3 Pooling methods

We propose several pooling methods to reduce the variable-length sequence of
wav2vec 2.0 embeddings to a fixed-size speaker embedding. We first consider the
standard statistical pooling methods mean, max, mean&std and quantile. They aggre-
gate each dimension over the time axis. The mean&std variant doubles the embedding
dimensionality while quantile pooling expands each dimension five-fold with quan-
tiles (0, 0.25, 0.5, 0.75, 1). We also assess taking the first, middle or last embedding
of the sequence as a “pooling” strategy as well as selecting the index at random. Lastly
we consider inserting a start token (i.e, a vector with all values +1) before the input
sequence of the encoder and then selecting the first output token as the speaker
embedding. Unlike BERT our start token does not have a meaningful prior due to
the missing next-sentence prediction task during pre-training.

2.3 Experiments

2.3.1 Data

All experiments are conducted on the VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2
(Chung et al., 2018) datasets, which consist of interviews of celebrities extracted from
YouTube. The VoxCeleb2 development set vox2-dev, which contains ~1.1 M audio
files from 6 k speakers, is used for training. A validation set is created based on
~2 % of vox2-dev, which includes all speakers but does not overlap in recordings. For
this validation set a random trial set of 5 k equal and 5 k different speaker pairs is
generated, from which we compute the validation equal-error-rate (EER). This is used
to select the best checkpoint during a training run as well as to tune hyperparameters.
For evaluation we use the cleaned original (vox1-o, 40 speakers, ~37 k trials), extended
(vox1-e, 1251 speakers, ~80 k trials) and hard (vox1-h, 1190 speakers, ~550 k trials,
equal nationality and sex) test sets from VoxCeleb1 (Chung et al., 2018). There is
no speaker overlap between the VoxCeleb1 test sets and the VoxCeleb2 dev set. The
experiments with the wav2vec 2.0 network use the pre-trained weights² on Librispeech
(Panayotov et al., 2015) released on HuggingFace (Wolf et al., 2020) by Fairseq (Ott
et al., 2019).

2.3.2 Computational budget and fair comparison

We compare the performance of models under similar computational budgets. Each
network is trained with a batch size of 3.2 M audio samples (Baevski et al., 2020a)
by randomly sampling a chunk of 3 seconds from 66 different audio files. No data
augmentation techniques are used. We train for 100 k iterations, approximately 6
epochs, with Adam (Kingma and Ba, 2015) and a OneCycle learning rate schedule
(Smith and Topin, 2019). Given a (maximum) learning rate 𝜂𝜂, this learning rate
schedule works as follows. First, in a warm up phase of 30 k iterations, the learning

²See https://huggingface.co/facebook/wav2vec2-base

32

2. Fine-tuning wav2vec 2.0 for speaker recognition

rate gradually increases from 1
25𝜂𝜂 to 𝜂𝜂 by cosine annealing. Then, for the remaining

70 k iterations, the learning rate gradually decreases from 𝜂𝜂 to 1
25000𝜂𝜂, again with

cosine annealing. We search for a well-performing learning rate 𝜂𝜂 by first conducting
a range test (Smith, 2017) which determines the range and step size for a grid search.
The range test is done by performing 5 k training iterations with a linear learning
rate schedule from 𝜂𝜂 = 0 to 𝜂𝜂 = 1. We observe three values from the resulting training
loss curve, namely the learning rate 𝜂𝜂start at which the loss initially starts decreasing,
the learning rate 𝜂𝜂slope where the loss has the steepest descent, and the learning rate
𝜂𝜂end where the loss stops decreasing, plateaus or diverges. The grid search contains
7 learning rates, consisting of 4 logarithmic steps between 𝜂𝜂start and 𝜂𝜂slope as well
as 4 logarithmic steps between 𝜂𝜂slope and 𝜂𝜂end. Models are evaluated with a cosine
score between speaker embeddings lacking any further post-processing, except for the
w2v2-bce variant which computes scores directly.

2.3.3 Baseline systems

We train two popular baseline models for speaker recognition, X-vector (Snyder
et al., 2018) and ECAPA-TDNN (Desplanques et al., 2020) , implemented in
SpeechBrain (Ravanelli et al., 2021), and compare them to the three wav2vec 2.0
adaptions w2v2-ce, w2v2-aam and w2v2-bce. All five models have the computation
budget described in Section 2.3.2. The X-vector and ECAPA-TDNN networks use
40-dimensional filterbanks as input. The w2v2-ce and w2v2-aam variants use mean&std
pooling which was chosen as it is also used in the x-vector network architecture. The
w2v2-aam variant and ECAPA-TDNN use the AAM softmax loss with a scale of 30
and a margin of 0.2 in this and further experiments. The feature encoder part of the
wav2vec 2.0 architecture is frozen for the whole training procedure following Baevski
et al. (2020a).

2.3.4 Variation in pooling

Next we explore the different pooling methods proposed in Section 2.2.3. This was
carried out for the single-utterance classification variants: w2v2-ce and w2v2-aam. We
use the same training settings as in the baseline comparison and only vary the pooling
method. Note therefore that the learning rate was tuned to the mean&std setup.

2.3.5 Ablation study

We perform several ablations on the best-performing wav2vec 2.0 variant for speaker
recognition. These ablations are trained with 100 k iterations except in the experi-
ments for the batch size. The first set of ablations study the effect of not freezing
the feature extractor in the fine-tuning procedure as well as randomly initializing the
whole network and thus not using any pre-trained weights. The second set of ablations
explore the relative importance of the regularization techniques in the network archi-
tecture. We first disable only LayerDrop, then sequentially disable dropout and the
masking of certain frames as well. The third set studies the effect of increasing or

33



2.3 Experiments

Table 1:  The EER (in %) on three test sets of VoxCeleb1, for the baseline
filterbank-based speaker recognition networks, and the proposed, fine-tuned wav2vec 2.0
variations. We conducted 𝑁𝑁 = 4 training runs to compute the standard deviations.

network EER on vox1-o EER on vox1-e EER on vox1-h
X-vector 5.22 ± 0.12 5.60 ± 0.05 8.75 ± 0.05

ECAPA-TDNN 1.61 ± 0.03 1.69 ± 0.03 3.10 ± 0.05
w2v2-ce 2.25 ± 0.20 2.56 ± 0.10 4.91 ± 0.13
w2v2-aam 1.91 ± 0.12 2.22 ± 0.04 4.33 ± 0.08
w2v2-bce 7.28 ± 0.22 7.19 ± 0.22 11.34 ± 0.83

decreasing the chosen batch size by a factor of 2, but keeping the number of epochs
constant. Thus, batch size 32 was trained for 200 k iterations while batch size 128 was
trained for only 50 k iterations. The last ablations involve the learning rate schedule.
We first test two constant learning rates: 3 ⋅ 10−6 is the LR where the loss started
increasing in the LR range test and 10−5 is the LR with the steepest decrease. The
second schedule exponentially decays the LR from 10−5 to 3 ⋅ 10−6. The final schedule
is the tri-stage learning rate schedule, similar to Baevski et al. (2020a), which includes
a warm-up phase linearly increasing the LR from 10−7 to 10−5 in 10 k iterations, a
constant phase of 40 k iterations, and an exponentially decreasing stage from 10−5 to
10−7 for the remaining iterations.

2.4 Results

2.4.1 Baseline comparison

The LR range test and grid-tuning approach found the following learning rates: 10−4

for x-vector, 10−3 for ECAPA-TDNN, 9 ⋅ 10−5 for w2v2-ce, 5 ⋅ 10−5 for w2v2-aam, and
3 ⋅ 10−5 for w2v2-bce. Table 1 shows four runs with these learning rates. We see that
ECAPA-TDNN performs best on all test sets. The w2v2-aam network is the best
performing wav2vec 2.0 variant. Both w2v2-ce and w2v2-aam improve on the x-vector
architecture. Modeling speaker recognition as utterance-pair classification (w2v2-bce)
performed worst.

2.4.2 Pooling methods

Table 2 compares the 9 different pooling strategies with the w2v2-ce and w2v2-aam
networks. We observe that start pooling performs best for both networks. The
difference between start pooling and the other pooling methods is more pronounced
for w2v2-aam than for w2v2-ce. We also observe that the standard deviations for
w2v2-aam are smaller compared to w2v2-ce. The low inter-model variance of random
pooling shows that each wav2vec 2.0 embedding is a stand-alone speaker embedding.
Although not shown, using random pooling in the evaluation for networks which were

34



2.3 Experiments

Table 1:  The EER (in %) on three test sets of VoxCeleb1, for the baseline
filterbank-based speaker recognition networks, and the proposed, fine-tuned wav2vec 2.0
variations. We conducted 𝑁𝑁 = 4 training runs to compute the standard deviations.

network EER on vox1-o EER on vox1-e EER on vox1-h
X-vector 5.22 ± 0.12 5.60 ± 0.05 8.75 ± 0.05

ECAPA-TDNN 1.61 ± 0.03 1.69 ± 0.03 3.10 ± 0.05
w2v2-ce 2.25 ± 0.20 2.56 ± 0.10 4.91 ± 0.13
w2v2-aam 1.91 ± 0.12 2.22 ± 0.04 4.33 ± 0.08
w2v2-bce 7.28 ± 0.22 7.19 ± 0.22 11.34 ± 0.83

decreasing the chosen batch size by a factor of 2, but keeping the number of epochs
constant. Thus, batch size 32 was trained for 200 k iterations while batch size 128 was
trained for only 50 k iterations. The last ablations involve the learning rate schedule.
We first test two constant learning rates: 3 ⋅ 10−6 is the LR where the loss started
increasing in the LR range test and 10−5 is the LR with the steepest decrease. The
second schedule exponentially decays the LR from 10−5 to 3 ⋅ 10−6. The final schedule
is the tri-stage learning rate schedule, similar to Baevski et al. (2020a), which includes
a warm-up phase linearly increasing the LR from 10−7 to 10−5 in 10 k iterations, a
constant phase of 40 k iterations, and an exponentially decreasing stage from 10−5 to
10−7 for the remaining iterations.

2.4 Results

2.4.1 Baseline comparison

The LR range test and grid-tuning approach found the following learning rates: 10−4

for x-vector, 10−3 for ECAPA-TDNN, 9 ⋅ 10−5 for w2v2-ce, 5 ⋅ 10−5 for w2v2-aam, and
3 ⋅ 10−5 for w2v2-bce. Table 1 shows four runs with these learning rates. We see that
ECAPA-TDNN performs best on all test sets. The w2v2-aam network is the best
performing wav2vec 2.0 variant. Both w2v2-ce and w2v2-aam improve on the x-vector
architecture. Modeling speaker recognition as utterance-pair classification (w2v2-bce)
performed worst.

2.4.2 Pooling methods

Table 2 compares the 9 different pooling strategies with the w2v2-ce and w2v2-aam
networks. We observe that start pooling performs best for both networks. The
difference between start pooling and the other pooling methods is more pronounced
for w2v2-aam than for w2v2-ce. We also observe that the standard deviations for
w2v2-aam are smaller compared to w2v2-ce. The low inter-model variance of random
pooling shows that each wav2vec 2.0 embedding is a stand-alone speaker embedding.
Although not shown, using random pooling in the evaluation for networks which were

34

2. Fine-tuning wav2vec 2.0 for speaker recognition

Table 2:  The performance of different pooling strategies for the single utterance
classification architectures on the vox1-e test set. Each method was trained with 𝑁𝑁 = 3
random seeds. The evaluation of random pooling is shown for a single model (𝑁𝑁 = 1),
as well as averaged over 𝑁𝑁 = 3 models. In both cases, the evaluation of the models is
repeated four times.

pooling method EER with w2v2-ce EER with w2v2-aam
max 4.79 ± 0.55 2.27 ± 0.04
quantile 2.75 ± 0.17 2.21 ± 0.03
mean 2.69 ± 0.06 2.11 ± 0.05
mean&std 2.60 ± 0.08 2.18 ± 0.03
start 2.52 ± 0.11 2.06 ± 0.03
first 2.61 ± 0.10 2.15 ± 0.05
middle 2.55 ± 0.07 2.18 ± 0.03
last 2.58 ± 0.07 2.18 ± 0.03
random (𝑁𝑁 = 1) 2.56 ± 0.00 2.40 ± 0.00
random (𝑁𝑁 = 3) 2.70 ± 0.13 2.37 ± 0.03

trained with start pooling degrades the EER with 0.2% absolute points. Moreover,
creating ensembles out of different embeddings in the output sequence did not improve
performance. This suggests that the transformer layer processes each embedding in
the sequence similarly. We did observe a 0.2% absolute performance improvement
when we averaged the last and penultimate layer of the encoder. This suggests that
the speech representations at different layers potentially hold different information
about the speaker in the utterance.

2.4.3 Ablation study

The results of the ablation study of w2v2-aam with start pooling are shown in Table 3.
We see that unfreezing the feature extractor leads to better performance, but a frozen
feature extractor is more stable across runs with different seeds. We also note a large
degradation in performance when initializing with random weights instead of the pre-
trained weights. We see that the regularization settings for fine-tuning on speech
recognition are also beneficial for fine-tuning on speaker recognition, as disabling
the regularization degrades the performance. Looking at the batch size, we see that
increasing it beyond 3.2M audio samples does not increase performance, although
it does decrease the variance slightly. Finally, we observe that using a learning rate
schedule with a warm-up phase, such as the tri-stage or OneCycle schedule, is critical
for stable training and optimal performance.

35



2.4 Results

Table 3:  The performance under varying ablated configurations for the w2v2-aam
network variant with start pooling. Each configuration was run with 𝑁𝑁 = 3 random
seeds. One run with exponential decay diverged and we therefore show 𝑁𝑁 = 2 results
for that row.

ablation EER on vox-e
default 2.06 ± 0.03
unfrozen feature extractor 1.88 ± 0.08
unfrozen feature extractor and random init 5.08 ± 0.08
no Layerdrop 2.45 ± 0.05
no LayerDrop, no dropout 2.39 ± 0.04
no LayerDrop, no dropout, no SpecAugment 2.39 ± 0.09
batch size 32 2.12 ± 0.10
batch size 128 2.05 ± 0.01
constant LR 10−5 50.00 ± 0.00
constant LR 3 ⋅ 10−6 3.71 ± 0.08
exponential decay (𝑁𝑁 = 2) 2.42 ± 0.07
tri-stage schedule 1.97 ± 0.04

2.5 Conclusion and future work

We have shown that the wav2vec 2.0 framework can be successfully adapted to the
speaker recognition task and that the pre-trained weights used for fine-tuning on
speech recognition are also useful for fine-tuning on speaker recognition. All pooling
methods we experimented with seemed to adequately replace the “class” token
concept of the BERT model. However, fine-tuning wav2vec 2.0 did not result in
better performance than the state-of-the-art ECAPA-TDNN. Good results with start
pooling indicate that including a class token in the pre-training procedure is promising
future work to improve speaker recognition performance, potentially improving on
ECAPA-TDNN.³
Our proposed method w2v2-bce, which modeled speaker recognition as a paired-
utterance classification problem, did not perform well. That said, it performed better
than random chance, so the method does lead to speaker recognition capabilities. We
hypothesize that optimizing with binary cross-entropy is more difficult compared to
using multi-class cross-entropy, as the learning signal is significantly reduced. This
reduction is due to the fact that multi-class cross-entropy enforces the network to

³Later work in the field (Chen et al., 2022a) has used the ECAPA-TDNN model on top of a self-
supervised transformer network to achieve state-of-the-art results. In this chapter we simply use a
linear layer as speaker recognition head.

36



2.4 Results

Table 3:  The performance under varying ablated configurations for the w2v2-aam
network variant with start pooling. Each configuration was run with 𝑁𝑁 = 3 random
seeds. One run with exponential decay diverged and we therefore show 𝑁𝑁 = 2 results
for that row.

ablation EER on vox-e
default 2.06 ± 0.03
unfrozen feature extractor 1.88 ± 0.08
unfrozen feature extractor and random init 5.08 ± 0.08
no Layerdrop 2.45 ± 0.05
no LayerDrop, no dropout 2.39 ± 0.04
no LayerDrop, no dropout, no SpecAugment 2.39 ± 0.09
batch size 32 2.12 ± 0.10
batch size 128 2.05 ± 0.01
constant LR 10−5 50.00 ± 0.00
constant LR 3 ⋅ 10−6 3.71 ± 0.08
exponential decay (𝑁𝑁 = 2) 2.42 ± 0.07
tri-stage schedule 1.97 ± 0.04

2.5 Conclusion and future work

We have shown that the wav2vec 2.0 framework can be successfully adapted to the
speaker recognition task and that the pre-trained weights used for fine-tuning on
speech recognition are also useful for fine-tuning on speaker recognition. All pooling
methods we experimented with seemed to adequately replace the “class” token
concept of the BERT model. However, fine-tuning wav2vec 2.0 did not result in
better performance than the state-of-the-art ECAPA-TDNN. Good results with start
pooling indicate that including a class token in the pre-training procedure is promising
future work to improve speaker recognition performance, potentially improving on
ECAPA-TDNN.³
Our proposed method w2v2-bce, which modeled speaker recognition as a paired-
utterance classification problem, did not perform well. That said, it performed better
than random chance, so the method does lead to speaker recognition capabilities. We
hypothesize that optimizing with binary cross-entropy is more difficult compared to
using multi-class cross-entropy, as the learning signal is significantly reduced. This
reduction is due to the fact that multi-class cross-entropy enforces the network to

³Later work in the field (Chen et al., 2022a) has used the ECAPA-TDNN model on top of a self-
supervised transformer network to achieve state-of-the-art results. In this chapter we simply use a
linear layer as speaker recognition head.

36

2. Fine-tuning wav2vec 2.0 for speaker recognition

create an embedding space in the last layer, over which 5994 distinct speakers can be
classified using a single linear layer. For binary cross-entropy, there only need to be 2
clusters. The implicit bias to create 5994 clusters will benefit speaker recognition, as
this many clusters can represent most variability between speakers, while 2 clusters
cannot capture a lot of speaker variation. Future work could look into limiting the
attention mechanism to the opposite utterance to simplify the learning task.

37





3 Training speaker recognition
systems with limited data

In which our adventurer uncovers the capabilities of fine-
tuning wav2vec 2.0 for speaker recognition in low-resource
settings, and finds guidelines for collecting fine-tuning
datasets in these limited data conditions.4

Recently, the wav2vec 2.0 framework (Baevski et al., 2020a) proposed a self-supervised
pre-training, and consecutive fine-tuning approach for automatic speech recognition
with a transformer network. Such a procedure has become the de facto standard in
NLP with models like BERT (Devlin et al., 2019). One of the benefits of pre-training
is the possibility to use large, unlabeled datasets, which are relatively inexpensive
to obtain. Another benefit is that these pre-trained networks are flexible, and can
be fine-tuned to a variety of related tasks. This has been shown to be the case for
wav2vec 2.0 as well, which, while originally designed for speech recognition (Baevski
et al., 2020a), has also been used for tasks like speaker recognition (Evain et al., 2021;
Fan et al., 2021; Vaessen and van Leeuwen, 2022) and emotion recognition (Evain
et al., 2021; Pepino et al., 2021; Yuan et al., 2021a). One property of fine-tuning a
pre-trained network is that it requires less labeled data than training from scratch.
For example, the authors of wav2vec 2.0 pre-train on 53 k hours of unlabeled speech
data, fine-tune on 10 minutes of labeled speech data, and achieve a word-error-rate
of 4.8 % on the clean test set of Librispeech (Panayotov et al., 2015). For comparison,
in 2016 the DeepSpeech2 system (Amodei et al., 2016) achieved a 5.3 % word-error-
rate with 3600 hours of labeled training data.
In this chapter, we want to study the behavior of wav2vec 2.0 under similar low-
resource data conditions, but for speaker recognition instead of speech recognition.
We are interested in the following research questions:
RQ 1. How well does the self-supervised, pre-trained wav2vec 2.0 network perform

when fine-tuned for speaker recognition with only a small labeled dataset?
RQ 2. What is the most effective way to structure a small training dataset? Is there

a trade-off to be made between speaker variability and session variability?

4This chapter is based on the publication Vaessen, N., and van Leeuwen, D. A. (2022). Training
speaker recognition systems with limited data., in Interspeech 2022, 4760–4764. doi: 10.21437/
Interspeech.2022-135.

39



3.1 Related work

We hypothesize that the pre-trained wav2vec 2.0 network will be effective in the low-
resource speaker recognition setting, as the learned speech representations appear to
be phonetic units, with high mutual information between these units and phonemes
(Baevski et al., 2020a). This was shown useful as a basis for speech recognition, and
it seems plausible that speaker recognition can benefit from these phonetic units of
speech. Although we compare wav2vec 2.0 against non-self-supervised neural networks
designed specifically for speaker recognition (Snyder et al., 2018; Desplanques et
al., 2020) we speculate that these (or similar) networks can also benefit from self-
supervised training. There has been work on self-supervised learning for speaker
recognition (Thienpondt et al., 2020; Cai et al., 2021), and consecutive fine-tuning
(Chen et al., 2022a), but to the extent of our knowledge, not for common speaker
recognition networks (Snyder et al., 2018; Desplanques et al., 2020). Also, note that
a frequent solution to limited data is data augmentation (Shorten and Khoshgoftaar,
2019). In this work, we explicitly skip data augmentation in order to observe the
effects of self-supervised weights. The second research question is focused on data
collection. There might be scenarios, related to, e.g., licensing, or the domain, where
one needs to construct a dataset for fine-tuning. In this scenario, we hypothesize that
maximizing the number of speakers in the dataset is the most effective strategy to
achieve good fine-tuning performance.

3.1 Related work

Earlier work, such as Jayanna and Mahadeva Prasanna (2009), Das et al. (2014),
and Poddar et al. (2018), interpret limited data availability not in the size of the
training dataset, but in the length of the utterances. However, since the advent of
neural approaches for speaker recognition, it has become standard practice to train
with short audio segments, often between 0.5 and 3 seconds, as can be seen in,
e.g., Snyder et al. (2018), Desplanques et al. (2020) and Lin and Mak (2020). In
Wang et al. (2020) the contemporary field of few-shot learning is introduced, which
considers low resource scenarios where (neural) models need to adapt to new classes
(“N-way”) with only a few samples (“K-shot”). In Li et al. (2020), the Librispeech
dataset (Panayotov et al., 2015) is used to study low resource conditions for speaker
identification. They vary the total training data length per speaker between 20, 40 or
60 segments of 3 seconds, and show only minor degradation in test accuracies when
using either a prototypical loss (introduced by Snell et al. (2017)), or their proposed
adversarial few-shot learning-based speaker identification framework. In Wang et al.
(2019), speaker verification is considered within the few-shot learning paradigm with
a subset of VoxCeleb2 (Chung et al., 2018), containing 71 train speakers and 30 test
speakers. They compare the prototypical loss by Snell et al. (2017) against a triplet
loss from Zhang and Koishida (2017), and train with 200 segments of 2 seconds. They
show the prototypical loss achieves better equal-error-rates than the triplet loss in
this scenario.

40



3.1 Related work

We hypothesize that the pre-trained wav2vec 2.0 network will be effective in the low-
resource speaker recognition setting, as the learned speech representations appear to
be phonetic units, with high mutual information between these units and phonemes
(Baevski et al., 2020a). This was shown useful as a basis for speech recognition, and
it seems plausible that speaker recognition can benefit from these phonetic units of
speech. Although we compare wav2vec 2.0 against non-self-supervised neural networks
designed specifically for speaker recognition (Snyder et al., 2018; Desplanques et
al., 2020) we speculate that these (or similar) networks can also benefit from self-
supervised training. There has been work on self-supervised learning for speaker
recognition (Thienpondt et al., 2020; Cai et al., 2021), and consecutive fine-tuning
(Chen et al., 2022a), but to the extent of our knowledge, not for common speaker
recognition networks (Snyder et al., 2018; Desplanques et al., 2020). Also, note that
a frequent solution to limited data is data augmentation (Shorten and Khoshgoftaar,
2019). In this work, we explicitly skip data augmentation in order to observe the
effects of self-supervised weights. The second research question is focused on data
collection. There might be scenarios, related to, e.g., licensing, or the domain, where
one needs to construct a dataset for fine-tuning. In this scenario, we hypothesize that
maximizing the number of speakers in the dataset is the most effective strategy to
achieve good fine-tuning performance.

3.1 Related work

Earlier work, such as Jayanna and Mahadeva Prasanna (2009), Das et al. (2014),
and Poddar et al. (2018), interpret limited data availability not in the size of the
training dataset, but in the length of the utterances. However, since the advent of
neural approaches for speaker recognition, it has become standard practice to train
with short audio segments, often between 0.5 and 3 seconds, as can be seen in,
e.g., Snyder et al. (2018), Desplanques et al. (2020) and Lin and Mak (2020). In
Wang et al. (2020) the contemporary field of few-shot learning is introduced, which
considers low resource scenarios where (neural) models need to adapt to new classes
(“N-way”) with only a few samples (“K-shot”). In Li et al. (2020), the Librispeech
dataset (Panayotov et al., 2015) is used to study low resource conditions for speaker
identification. They vary the total training data length per speaker between 20, 40 or
60 segments of 3 seconds, and show only minor degradation in test accuracies when
using either a prototypical loss (introduced by Snell et al. (2017)), or their proposed
adversarial few-shot learning-based speaker identification framework. In Wang et al.
(2019), speaker verification is considered within the few-shot learning paradigm with
a subset of VoxCeleb2 (Chung et al., 2018), containing 71 train speakers and 30 test
speakers. They compare the prototypical loss by Snell et al. (2017) against a triplet
loss from Zhang and Koishida (2017), and train with 200 segments of 2 seconds. They
show the prototypical loss achieves better equal-error-rates than the triplet loss in
this scenario.

40

3. Training speaker recognition systems with limited data

In the well-known series of NIST Speaker Recognition evaluations, the 2016 and 2018
editions (NIST, 2016; 2018) focused on language adaptation, which can be seen as a
specific version of domain adaptation in a low-resource setting. For these evaluations,
the test data contains speech in languages outside the background labeled training
data, and some (i.e., low-resource) additional unlabeled training data in the evaluation
languages is provided. Approaches include aligning the embedding distributions of
source and target domain (Alam et al., 2018) and adding an adversarial loss in an end-
to-end setting (Rohdin et al., 2019), where a critic is adversarially trained, along with
the speaker recognition network, to discriminate between embeddings from source
and target domain.

3.2 Methodology

3.2.1 Creating subsets of VoxCeleb2

In order to experiment with smaller dataset size conditions, we artificially limit
ourselves to a subset of data from the so-called development set of VoxCeleb2 (Chung
et al., 2018), which we use as train and validation set. This development set contains
nearly 6 k speakers distributed over 1 M speech utterances, with a mean length of
7.8 seconds and a standard deviation of 5.2 seconds. Each speaker has a number of
associated video recordings (sessions), and from each recording one or more speech
utterances are automatically extracted by using face tracking, face verification, and
active speaker verification. This ensures each speech utterance is attributed to a

Table 4: Statistics on the vox2 training split and the three low-resource subsets
few-speakers, few-sessions and many-sessions we created for fine-tuning.

statistic vox2 few-speakers few-sessions many-sessions

duration (h) 2314 113 100 97
# speakers 5 994 100 5 994 5 994
# sessions 136 632 5 066 6 275 46 813
# utterances 1 068 871 49 400 47 952 47 952
sessions per speaker
mean 23 51 1 8
min 4 22 1 4
max 89 87 4 8
utterances per session
mean 8 10 8 1
min 1 1 1 1
max 264 264 8 3

41



3.2 Methodology

single speaker, although some labeling noise is expected. Recordings were collected
by Chung et al. (2018) from the top 100 results of a YouTube search. The search
query included the name of the celebrity and the word “interview”. We limit each
subset to 50 k utterances, but vary the amount of speakers, the amount of sessions
per speaker, or the amount of utterances per session. Throughout this chapter, we
will refer to these datasets as vox2, few-speakers, few-sessions, and many-sessions.
Statistics are shown in Table 4, and their creation is explained in more detail below.
The vox2 entry refers to the train part of our train and validation split of the
VoxCeleb2 development dataset. The validation split is used for monitoring overfit-
ting, and selecting the best checkpoint. For each speaker in the original development
set, we randomly move sessions to the validation split, until less than 99% of all
utterances from the respective speaker are remaining. The validation split is created
before choosing the utterances for the other subsets, i.e., few-speakers, few-sessions
and many-sessions are subsets of the train split vox2. To calculate a validation EER,
we create a random trial list with 15 k positive and negative (same-sex) trials. The
validation set is equal for vox2, few-sessions and many-sessions. For few-speakers,
we modify the validation set such that it only contains the 100 speakers in the subset,
and a different random trial list, with 2 k positive and 2 k negative (same-sex) trials
is created.
The few-speakers subset is designed to have relatively few speakers, but many
sessions per speaker, and many utterances per session. The utterances in this subset
are chosen by grouping the speakers from vox2 by gender, and sorting descendingly
by the amount of recordings available. We select the 50 female and male speakers
with the highest number of recordings to be included in the subset.
The few-sessions subset is designed to have many speakers, but few sessions per
speaker, and relatively many utterances per session. This subset contains all speakers
in vox2. For each speaker, we sort their sessions descendingly by the number of
utterances. We then select 8 utterances from each speaker. We start sampling from
the session with the most utterances. If a session is exhausted (i.e., the session with
the most utterances has less than 8 utterances), we continue with the next session
according to the sorted collection, and so forth, until 8 utterances are collected.
The many-sessions subset, in contrast with few-sessions, is designed to have many
speakers, relatively many sessions per speaker, but few utterances per session. Just
as in few-sessions, we select 8 utterances from all speakers in vox2. However, the
difference is that we sample only one utterance per session. When a speaker has fewer
than 8 sessions available, we cycle through the sorted collection, selecting only one
utterance per session per cycle, until 8 utterances are selected.

42



3.2 Methodology

single speaker, although some labeling noise is expected. Recordings were collected
by Chung et al. (2018) from the top 100 results of a YouTube search. The search
query included the name of the celebrity and the word “interview”. We limit each
subset to 50 k utterances, but vary the amount of speakers, the amount of sessions
per speaker, or the amount of utterances per session. Throughout this chapter, we
will refer to these datasets as vox2, few-speakers, few-sessions, and many-sessions.
Statistics are shown in Table 4, and their creation is explained in more detail below.
The vox2 entry refers to the train part of our train and validation split of the
VoxCeleb2 development dataset. The validation split is used for monitoring overfit-
ting, and selecting the best checkpoint. For each speaker in the original development
set, we randomly move sessions to the validation split, until less than 99% of all
utterances from the respective speaker are remaining. The validation split is created
before choosing the utterances for the other subsets, i.e., few-speakers, few-sessions
and many-sessions are subsets of the train split vox2. To calculate a validation EER,
we create a random trial list with 15 k positive and negative (same-sex) trials. The
validation set is equal for vox2, few-sessions and many-sessions. For few-speakers,
we modify the validation set such that it only contains the 100 speakers in the subset,
and a different random trial list, with 2 k positive and 2 k negative (same-sex) trials
is created.
The few-speakers subset is designed to have relatively few speakers, but many
sessions per speaker, and many utterances per session. The utterances in this subset
are chosen by grouping the speakers from vox2 by gender, and sorting descendingly
by the amount of recordings available. We select the 50 female and male speakers
with the highest number of recordings to be included in the subset.
The few-sessions subset is designed to have many speakers, but few sessions per
speaker, and relatively many utterances per session. This subset contains all speakers
in vox2. For each speaker, we sort their sessions descendingly by the number of
utterances. We then select 8 utterances from each speaker. We start sampling from
the session with the most utterances. If a session is exhausted (i.e., the session with
the most utterances has less than 8 utterances), we continue with the next session
according to the sorted collection, and so forth, until 8 utterances are collected.
The many-sessions subset, in contrast with few-sessions, is designed to have many
speakers, relatively many sessions per speaker, but few utterances per session. Just
as in few-sessions, we select 8 utterances from all speakers in vox2. However, the
difference is that we sample only one utterance per session. When a speaker has fewer
than 8 sessions available, we cycle through the sorted collection, selecting only one
utterance per session per cycle, until 8 utterances are selected.

42

3. Training speaker recognition systems with limited data

3.2.2 Speaker recognition networks

We train three different speaker recognition models on the datasets in Section 3.2.1.
We use third-party library network implementations, but train and evaluate with our
own PyTorch (Paszke et al., 2019) code.

X-vector

The X-vector architecture (Snyder et al., 2018) is a popular neural network for
speaker recognition and diarization, initially from the Kaldi framework (Povey et al.,
2011). The X-vector network consists of 5 consecutive layers with 1-d convolutions,
ReLU activation, and BatchNorm, followed by mean and standard deviation pooling,
and two fully-connected (FC) layers. During training, a third FC layer is used for
computing the classification loss. We extract the speaker embeddings from the first
FC layer. We use the implementation by SpeechBrain (Ravanelli et al., 2021), with
the default settings, such that the speaker embeddings have a dimensionality of 1024.

ECAPA-TDNN

The ECAPA-TDNN architecture (Desplanques et al., 2020) is a more recent speaker
recognition network that showed best performance in the VoxCeleb 2020 challenge
(Nagrani et al., 2020). It builds on top of the X-vector paradigm by adding global
context through network architecture modifications. First, it makes use of three
consecutive res2blocks (Gao et al., 2021), consisting of three 1-d convolutions, a
squeeze-and-excitation layer (Hu et al., 2018) and a skip connection (He et al.,
2016). They also aggregate the output of each res2block, before using channel-wise
attentive statistical pooling to compute a fixed-size speaker embedding. We use the
SpeechBrain (Ravanelli et al., 2021) implementation, with the default settings, such
that the speaker embeddings have a dimensionality of 128.

Wav2vec 2.0

The wav2vec 2.0 architecture applies self-supervised pre-training to speech data, and
has been used for multiple speech-related tasks. We only fine-tune the network. There
is a BASE and LARGE variant, we only consider the BASE network. The architecture
consists of three components. First, raw audio is processed by a 7-layer CNN with
1-d convolutions, LayerNorm (Lei Ba et al., 2016), and GELU activation (Hendrycks
and Gimpel, 2016). Secondly, a linear projection, consisting of a LayerNorm and a
single FC layer, is applied. Then, an additive relative positional embedding is added
with the use of a 1-layer CNN. Lastly, the hidden state sequence is processed by 12
transformer blocks. We use the Transformers (Wolf et al., 2020) implementation, with
self-supervised weights provided by Fairseq5. The self-supervision was carried out (by
Fairseq (Baevski et al., 2020a)) on the Librispeech (Panayotov et al., 2015) dataset.

5We downloaded the weights from https://huggingface.co/facebook/wav2vec2-base

43



3.2 Methodology

For the speaker recognition task, the final hidden state sequence is mean-pooled into
a fixed-size speaker embedding of dimensionality 768 (Fan et al., 2021; Vaessen and
van Leeuwen, 2022). During training, a single FC layer is used for classification.

3.3 Experiments

The experiments consist of finding the best learning rate for each network and
dataset combination (Section 3.3.2), multiple runs with the best learning rate while
varying the amount of training iterations (Section 3.3.3), and an ablation study
(Section 3.3.4).

3.3.1 Training and evaluation protocol

We base the following training protocol on the ECAPA-TDNN (Desplanques et al.,
2020) and wav2vec 2.0 (Baevski et al., 2020a) articles. Each network is trained for
𝑛𝑛steps steps with the Adam (Kingma and Ba, 2015) optimizer. We use a cyclic learning
rate (LR) schedule (Smith, 2017) with a decaying maximum LR according to the
triangular2 policy. We always use 4 cycles, one cycle is therefore 𝑛𝑛steps / 4 iterations.
The minimum LR each cycle is 10−8. For the vox2 dataset we validate every 5 k steps,
for the low-resource datasets we validate after each epoch. To create a batch, we shuffle
the order of the utterances each epoch, select 100 utterances, and take a random 2
second chunk from each utterance. This matches the total batch size of 3.2 M audio
samples used in Baevski et al. (2020a) and Vaessen and van Leeuwen (2022). For
the X-vector and ECAPA-TDNN network we input a 80-dimensional MFCC with
a window length of 25 ms and a 12.5 ms shift. All three network are trained with
angular additive margin softmax loss (Deng et al., 2019; Liu et al., 2019). We use a
margin of 0.2 and a scale of 30. We do not use any weight decay in order to reduce
the search space. For X-vector and ECAPA-TDNN, we use SpecAugment (Park et
al., 2019) with 5 to 10 masks of length 10 in the time axis, and 1 to 3 masks of length
4 in the channel axis. For wav2vec 2.0, we use LayerDrop (Huang et al., 2016; Fan
et al., 2020) of 10% in the transformer layers, and dropout of 10% is applied after
each fully-connected layer in the network. The wav2vec 2.0 network also includes
masking before the relative positional embedding is added, similar to SpecAugment;
10% of the channel dimensions are randomly masked, and 50% of the time steps are
randomly masked. We freeze the whole wav2vec 2.0 network for the first 12.5 k steps,
except for the last FC layer used for the logits of the speaker classification task. We
also freeze the feature extractor CNN for the whole training run (𝑛𝑛steps iterations).
Training is conducted on a RTX 3090 GPU for wav2vec 2.0, and a GTX 2080Ti GPU
for X-vector and ECAPA-TDNN. All experiments are capped to 32 GB RAM and 6
CPU cores. In total 209 days of GPU time was used for experiments.
We evaluate trials using a cosine score between speaker embeddings, without any
other processing. We use the original VoxCeleb1 (Nagrani et al., 2017) test set (40
speakers, henceforth vox1-o) as a development set, and the VoxCeleb1 hard test

44



3.2 Methodology

For the speaker recognition task, the final hidden state sequence is mean-pooled into
a fixed-size speaker embedding of dimensionality 768 (Fan et al., 2021; Vaessen and
van Leeuwen, 2022). During training, a single FC layer is used for classification.

3.3 Experiments

The experiments consist of finding the best learning rate for each network and
dataset combination (Section 3.3.2), multiple runs with the best learning rate while
varying the amount of training iterations (Section 3.3.3), and an ablation study
(Section 3.3.4).

3.3.1 Training and evaluation protocol

We base the following training protocol on the ECAPA-TDNN (Desplanques et al.,
2020) and wav2vec 2.0 (Baevski et al., 2020a) articles. Each network is trained for
𝑛𝑛steps steps with the Adam (Kingma and Ba, 2015) optimizer. We use a cyclic learning
rate (LR) schedule (Smith, 2017) with a decaying maximum LR according to the
triangular2 policy. We always use 4 cycles, one cycle is therefore 𝑛𝑛steps / 4 iterations.
The minimum LR each cycle is 10−8. For the vox2 dataset we validate every 5 k steps,
for the low-resource datasets we validate after each epoch. To create a batch, we shuffle
the order of the utterances each epoch, select 100 utterances, and take a random 2
second chunk from each utterance. This matches the total batch size of 3.2 M audio
samples used in Baevski et al. (2020a) and Vaessen and van Leeuwen (2022). For
the X-vector and ECAPA-TDNN network we input a 80-dimensional MFCC with
a window length of 25 ms and a 12.5 ms shift. All three network are trained with
angular additive margin softmax loss (Deng et al., 2019; Liu et al., 2019). We use a
margin of 0.2 and a scale of 30. We do not use any weight decay in order to reduce
the search space. For X-vector and ECAPA-TDNN, we use SpecAugment (Park et
al., 2019) with 5 to 10 masks of length 10 in the time axis, and 1 to 3 masks of length
4 in the channel axis. For wav2vec 2.0, we use LayerDrop (Huang et al., 2016; Fan
et al., 2020) of 10% in the transformer layers, and dropout of 10% is applied after
each fully-connected layer in the network. The wav2vec 2.0 network also includes
masking before the relative positional embedding is added, similar to SpecAugment;
10% of the channel dimensions are randomly masked, and 50% of the time steps are
randomly masked. We freeze the whole wav2vec 2.0 network for the first 12.5 k steps,
except for the last FC layer used for the logits of the speaker classification task. We
also freeze the feature extractor CNN for the whole training run (𝑛𝑛steps iterations).
Training is conducted on a RTX 3090 GPU for wav2vec 2.0, and a GTX 2080Ti GPU
for X-vector and ECAPA-TDNN. All experiments are capped to 32 GB RAM and 6
CPU cores. In total 209 days of GPU time was used for experiments.
We evaluate trials using a cosine score between speaker embeddings, without any
other processing. We use the original VoxCeleb1 (Nagrani et al., 2017) test set (40
speakers, henceforth vox1-o) as a development set, and the VoxCeleb1 hard test

44

3. Training speaker recognition systems with limited data

set (1190 speakers, henceforth vox1-h) as the evaluation set. There is no overlap
between the VoxCeleb1 (Nagrani et al., 2017) dataset, used for evaluation, and the
VoxCeleb2 (Chung et al., 2018) dataset, used as source for our fine-tuning data. There
is an overlap between the development set vox1-o and evaluation set vox1-h, but we
verified that the results are not significantly different when the trials from overlapping
speakers are removed.

3.3.2 Learning rate search

We conduct a learning rate search for the maximum LR in the cyclic schedule.
This is done for all three networks and all four datasets. We conduct this search
in two phases. In the first phase we scan over a large magnitude: we consider
10−𝑖𝑖, with 𝑖𝑖 ∈ {2, 3, 4, 5, 6, 7}. Based on the development set, we select the LR 10−𝑗𝑗

with the lowest EER. In the second phase, we scan around this LR: we consider
{1.78, 3.16, 5.62} × {10−𝑗𝑗−1, 10−𝑗𝑗}. After the second phase, the LR with the lowest
EER is used for the remaining experiments. The random seed is kept constant across
all training runs in the grid search, and thus every learning rate is attempted only
once. Each run has 𝑛𝑛steps = 50 k.
The best LR, and the respective EER on the development set vox1-o, are shown in
Table 5. We see that wav2vec 2.0 performs best on all datasets. However, performance
on few-sessions is suboptimal for all three networks. In Figure 2 we plot the learning
rate against the EER. In general, we can see that wav2vec 2.0 requires a lower learning
rate. Moreover, for all three networks, the optimal learning rate is dependent on
the dataset.

3.3.3 Varying 𝑛𝑛steps with optimal learning rate

In the following experiments, we vary 𝑛𝑛steps to 25 k, 50 k, 100 k, and 400 k for each
network and dataset combination. Additionally, we run each experiment with 3
different random seeds, and we use the optimal LR found in the learning rate search.
The networks are evaluated on the vox1-h evaluation set.
The results are shown in Table 6. First, we see that ECAPA-TDNN has the best
performance on vox2, while wav2vec 2.0 is slightly worse than ECAPA-TDNN but
better than the X-vector network. We observe the same on the few-sessions dataset,
although the EER values are much higher compared to the other three datasets.
On few-speakers and many-sessions, we see that wav2vec 2.0 has the best perfor-
mance, while ECAPA-TDNN is slightly worse, but better than the X-vector network.
Moreover, we see that on all three low-resource datasets the wav2vec 2.0 network
achieved the best performance with 50 k steps, while ECAPA-TDNN and X-vector
almost always have the best performance after 400 k steps.

45



3.3 Experiments

Figure 2: The results of the learning rate search. We plot the learning rates of phase
1 and phase 2 of the grid search on the x-axis, and the EER on the vox1-o devel-
opment set on the y-axis. Each sample represents a single experiment, no variation
is measured.

46



3.3 Experiments

Figure 2: The results of the learning rate search. We plot the learning rates of phase
1 and phase 2 of the grid search on the x-axis, and the EER on the vox1-o devel-
opment set on the y-axis. Each sample represents a single experiment, no variation
is measured.

46

3. Training speaker recognition systems with limited data

Table 5:  The best-performing learning rate for each network and dataset combi-
nation, trained for 50k steps. The EER is measured on the vox1-o development set.

data X-vector ECAPA-TDNN wav2vec 2.0
vox2 LR 3.16 ⋅ 10−3 5.62 ⋅ 10−3 1.78 ⋅ 10−4

EER 6.30 % 2.91 % 2.40 %
few-speakers LR 1.78 ⋅ 10−2 1.78 ⋅ 10−2 5.62 ⋅ 10−6

EER 12.91 % 12.19 % 7.46 %
few-sessions LR 1.00 ⋅ 10−4 5.62 ⋅ 10−3 1.78 ⋅ 10−4

EER 21.70 % 15.97 % 15.72 %
many-sessions LR 1.78 ⋅ 10−3 5.62 ⋅ 10−3 1.78 ⋅ 10−4

EER 9.75 % 6.04 % 3.60 %

3.3.4 Ablation study

For the last set of experiments we perform an ablation study on the baseline training
protocol described in Section 3.3.1. We perform the ablations on the few-speakers
and many-sessions datasets with the wav2vec 2.0 network. All training runs are done
with 𝑛𝑛steps = 50 k, and the best LR found in the grid search.
In the first set of ablations, we are interested in the importance of the cycling learning
rate schedule. To observe this, we test the following variations in the learning rate
schedule:
1. using a constant learning rate instead of a cyclic schedule, where the constant

learning rate is equal to the maximum learning rate of the original schedule.
2. an exponentially decaying schedule, i.e., no warm-up effect, where we start with

the maximum learning rate of the original schedule and decrease it in 𝑛𝑛steps to the
minimum learning rate of the original schedule.

3. the original cyclic schedule but modified to have only one cycle instead of four
cycles, meaning 25 k steps up and 25 k steps down.

In the second set of ablations, we focus on the pre-trained weights and how they are
updated. We use the following variations:
1. randomly initializing the wav2vec 2.0 network.
2. starting with the self-supervised weights, but without freezing any layers at any

point during fine-tuning.
3. starting with the self-supervised weights, and freezing the feature extractor CNN

for 50 k steps, i.e., for the whole fine-tuning procedure.
4. starting with the self-supervised weights, and freezing the whole network, except

for the classification FC layer, for the first learning rate cycle (12.5 k steps). For
the remaining three cycles (37.5 k steps) all weights are updated.

47



3.3 Experiments

Table 6: Each network and dataset combination is trained for 25k, 50k, 100k, and
400k steps with the learning rate from Table 5. The EER values are measured on the
vox1-h evaluation set. Each experiment was run 3 times.

steps X-vector ECAPA-TDNN wav2vec 2.0
vox2

25k 16.30 ± 0.64 6.80 ± 0.06 7.76 ± 0.07
50k 11.21 ± 0.33 5.46 ± 0.07 4.66 ± 0.15
100k 7.21 ± 0.10 4.61 ± 0.13 4.20 ± 0.16
400k 5.01 ± 0.04 3.93 ± 0.07 5.90 ± 0.77

few-speakers

25k 18.93 ± 0.15 18.27 ± 0.03 22.48 ± 0.16
50k 18.02 ± 0.08 17.59 ± 0.40 15.19 ± 0.24
100k 18.00 ± 0.22 17.48 ± 0.07 15.60 ± 0.20
400k 18.04 ± 0.31 16.95 ± 0.15 18.50 ± 0.43

few-sessions

25k 28.46 ± 0.12 22.67 ± 0.23 23.78 ± 0.10
50k 27.23 ± 0.14 21.25 ± 0.44 21.88 ± 0.16
100k 26.29 ± 0.30 20.58 ± 0.25 22.08 ± 0.29
400k 24.00 ± 0.19 19.52 ± 0.12 23.31 ± 0.10

many-sessions

25k 18.00 ± 0.11 11.51 ± 0.39 10.41 ± 0.52
50k 16.05 ± 0.31 9.78 ± 0.06 6.72 ± 0.04
100k 13.53 ± 0.73 9.12 ± 0.11 7.66 ± 0.83
400k 10.58 ± 0.25 9.36 ± 0.08 7.93 ± 0.37

The third set of ablations consider regularization techniques applied during fine-
tuning. We test the following variants:
1. disabling all regularization parameters (so no dropout, LayerDrop, nor masking).
2. only enabling dropout.
3. only enabling LayerDrop.
4. only enabling masking.
The results of the ablation study are shown in Table 7. When we ablate on the learning
rate schedule, we observe that for few-speakers all three schedules perform worse
than the baseline. For many-sessions, an exponentially decaying schedule seems to
perform slightly better than our baseline, while a constant schedule, as well as a cyclic
schedule with one cycle, perform worse. Next, we looked at the network weights and

48



3.3 Experiments

Table 6: Each network and dataset combination is trained for 25k, 50k, 100k, and
400k steps with the learning rate from Table 5. The EER values are measured on the
vox1-h evaluation set. Each experiment was run 3 times.

steps X-vector ECAPA-TDNN wav2vec 2.0
vox2

25k 16.30 ± 0.64 6.80 ± 0.06 7.76 ± 0.07
50k 11.21 ± 0.33 5.46 ± 0.07 4.66 ± 0.15
100k 7.21 ± 0.10 4.61 ± 0.13 4.20 ± 0.16
400k 5.01 ± 0.04 3.93 ± 0.07 5.90 ± 0.77

few-speakers

25k 18.93 ± 0.15 18.27 ± 0.03 22.48 ± 0.16
50k 18.02 ± 0.08 17.59 ± 0.40 15.19 ± 0.24
100k 18.00 ± 0.22 17.48 ± 0.07 15.60 ± 0.20
400k 18.04 ± 0.31 16.95 ± 0.15 18.50 ± 0.43

few-sessions

25k 28.46 ± 0.12 22.67 ± 0.23 23.78 ± 0.10
50k 27.23 ± 0.14 21.25 ± 0.44 21.88 ± 0.16
100k 26.29 ± 0.30 20.58 ± 0.25 22.08 ± 0.29
400k 24.00 ± 0.19 19.52 ± 0.12 23.31 ± 0.10

many-sessions

25k 18.00 ± 0.11 11.51 ± 0.39 10.41 ± 0.52
50k 16.05 ± 0.31 9.78 ± 0.06 6.72 ± 0.04
100k 13.53 ± 0.73 9.12 ± 0.11 7.66 ± 0.83
400k 10.58 ± 0.25 9.36 ± 0.08 7.93 ± 0.37

The third set of ablations consider regularization techniques applied during fine-
tuning. We test the following variants:
1. disabling all regularization parameters (so no dropout, LayerDrop, nor masking).
2. only enabling dropout.
3. only enabling LayerDrop.
4. only enabling masking.
The results of the ablation study are shown in Table 7. When we ablate on the learning
rate schedule, we observe that for few-speakers all three schedules perform worse
than the baseline. For many-sessions, an exponentially decaying schedule seems to
perform slightly better than our baseline, while a constant schedule, as well as a cyclic
schedule with one cycle, perform worse. Next, we looked at the network weights and

48

3. Training speaker recognition systems with limited data

Table 7: Ablation on the wav2vec 2.0 network trained on the few-speakers and
many-sessions datasets. Evaluation is done on the vox1-h evaluation set. Each exper-
iment is run 3 times.

ablation few-speakers many-sessions

baseline (Table 6) 15.19 ± 0.24 6.72 ± 0.04
LR schedule
constant 16.77 ± 0.26 8.80 ± 0.44
exponential decay 16.68 ± 0.20 6.67 ± 0.04
1 cycle 15.79 ± 0.23 8.59 ± 0.23
weights
random init 33.35 ± 0.16 46.24 ± 0.06
pre-trained (nothing frozen) 15.16 ± 0.17 7.18 ± 0.19
pre-trained + CNN frozen 15.48 ± 0.25 7.83 ± 0.45
pre-trained + frozen 1st cycle 14.52 ± 0.11 6.38 ± 0.17
regularisation
none 16.67 ± 0.27 7.73 ± 0.07
only dropout 16.67 ± 0.11 8.01 ± 0.12
only LayerDrop 15.03 ± 0.14 6.72 ± 0.21
only masking 16.21 ± 0.18 7.87 ± 0.24

the freezing schedule. We observe that using randomly initialized weights prevents
convergence to a reasonable performance. When using the self-supervised pre-trained
weights without any freezing, the performance is slightly worse than the baseline. This
is also the case for freezing the feature extractor CNN for 𝑛𝑛steps. However, freezing the
whole network for the first learning rate cycle seemed beneficial, as it improves on the
baseline. This is due to the fact that, compared to the baseline, the feature extractor
CNN can be updated for the last three cycles. Finally, we observe that disabling all
regularization degrades performance. With only enabling LayerDrop regularization
we achieve similar performance to the baseline, while only enabling masking, and
only enabling dropout, perform similar to disabling regularization.

3.4 Conclusion

We have shown that the wav2vec 2.0 network, when initialized with self-supervised
weights, has better performance, and needs fewer training iterations, than the X-
vector and ECAPA-TDNN network on two out of the three low-resource fine-tuning
datasets. Although ECAPA-TDNN performed slightly better on the few-sessions
dataset, all three networks demonstrated suboptimal performance. As indicated by

49



3.4 Conclusion

the results on few-sessions, a dataset with many speakers but no session variability
leads to poor performance. As all networks had better performance on few-speakers
compared to few-sessions, it seems that a low-resource speaker recognition dataset
should have fewer speakers with more sessions per speaker. However, few-speakers
has a mean of 51 sessions per speaker, compared to a mean of 8 for many-sessions,
while achieving worse EERs. It would be interesting future work to find an optimal
balance between the amount of speakers and the amount of sessions per speaker.
Currently, the self-supervised learning optimization of wav2vec 2.0 uses a contrastive
loss to distinguish a masked segment from other segments in the same utterance. For
speaker recognition, it might be beneficial to include segments from other utterances,
which could allow for modelling inter- and intra-speaker variance. Such a change could
then perhaps result in even better performance when fine-tuning with low-resource
datasets, and specifically with few-sessions. We are also interested in future work on
pre-training with a dataset other than Librispeech, which has limited variability per
speaker. The pre-training might be more effective for speaker recognition if the dataset
has more session variability. It might also be relevant to pre-train on VoxCeleb2, so
that the model has been fine-tuned on in-domain data, which might lead to better
fine-tuning performance while requiring less labeled data.

50



3.4 Conclusion

the results on few-sessions, a dataset with many speakers but no session variability
leads to poor performance. As all networks had better performance on few-speakers
compared to few-sessions, it seems that a low-resource speaker recognition dataset
should have fewer speakers with more sessions per speaker. However, few-speakers
has a mean of 51 sessions per speaker, compared to a mean of 8 for many-sessions,
while achieving worse EERs. It would be interesting future work to find an optimal
balance between the amount of speakers and the amount of sessions per speaker.
Currently, the self-supervised learning optimization of wav2vec 2.0 uses a contrastive
loss to distinguish a masked segment from other segments in the same utterance. For
speaker recognition, it might be beneficial to include segments from other utterances,
which could allow for modelling inter- and intra-speaker variance. Such a change could
then perhaps result in even better performance when fine-tuning with low-resource
datasets, and specifically with few-sessions. We are also interested in future work on
pre-training with a dataset other than Librispeech, which has limited variability per
speaker. The pre-training might be more effective for speaker recognition if the dataset
has more session variability. It might also be relevant to pre-train on VoxCeleb2, so
that the model has been fine-tuned on in-domain data, which might lead to better
fine-tuning performance while requiring less labeled data.

50





4 Towards multi-task learning
of speech and speaker
recognition

In which our adventurer uncovers the difficulty of training
a model capable of simultaneous speech and speaker recog-
nition.6

Speech and speaker recognition are, in a sense, orthogonal speech technology tasks.
When we develop automatic speech recognition (ASR) systems, a very desirable
property is speaker independence: we want the system to perform well irrespective
of who uttered the words. Therefore, neural ASR models should learn to generate
speech embeddings which have minimal variability when the same text is spoken by
different speakers. In contrast, when developing speaker recognition (SKR) systems,
a very desirable property is text independence: we want the system to perform well
irrespective of what was said. Neural SKR models, then, should learn to generate
speaker embeddings which have minimal variability when the same speaker utters
different texts. We observe a dichotomy where ASR models should be invariant to who
speaks while SKR models should be invariant to what is being said. This raises the
question: is it possible to train a multi-task learning (MTL) model which can do both
speaker and speech recognition, while the ASR and SKR components respectively
need to be invariant to who is speaking, and what is said?
Besides this interesting academic question, fully-fledged ASR applications often
involve speaker recognition components, in order to provide, e.g., speaker-attributed
transcriptions, or speaker diarization. Moreover, previous work has used speaker
information to improve the performance of ASR models, in the classical hybrid
artificial neural network and hidden Markov model approach (BenZeghiba and
Bourlard, 2003), and in more recent recurrent neural network models (Peddinti et
al., 2015). However, in these cases, there are still two explicit models for speech and
speaker information, which are combined ad hoc to achieve performance gains. We
are interested in a network implicitly learning speech and speaker representations,

6This chapter is based on the publication Vaessen, N., and van Leeuwen, D. A. (2023). Towards
Multi-task Learning of Speech and Speaker Recognition., in INTERSPEECH 2023, 4898–4902. doi:
10.21437/Interspeech.2023-353.

53



4.1 Background

and internally making use of these representations to achieve the same gains. As an
added benefit, this could reduce the complexity of fully-fledged ASR applications to
a single neural network model.
However, we observe the following obstacles in bringing these tasks together:
1. Differences in neural architectures for respective tasks, although transformers are

bridging this gap.
2. Datasets for ASR lack session variability, while datasets for SKR lack transcrip-

tions.
3. ASR training must be carried out on complete utterances. Typically, ASR datasets

do not have time-aligned transcriptions at the word level, while SKR network
training is done on short segments as training on long utterances prevents gener-
alization.

We choose to build on top of the wav2vec 2.0 framework, as the same architecture
has been fine-tuned in a single-task learning (STL) setting to both ASR (Baevski et
al., 2020a), and SKR (Fan et al., 2021; Vaessen and van Leeuwen, 2022), bridging the
gap between neural architectures for ASR and SKR. Our proposed multi-task model
is trained with Librispeech (Panayotov et al., 2015) for ASR and VoxCeleb2 (Chung
et al., 2018) for SKR. We train with disjoint steps, meaning batches only contain
data from one of the two datasets. This enables ASR training on complete utterances
and SKR training on short segments. This allows us to answer the following research
questions:
RQ. 1 Can a transformer-based architecture perform ASR and SKR simultaneously?
RQ. 2 Is it feasible to train an MTL model with state-of-the-art datasets for speech

recognition and speaker recognition?
RQ. 3 Can we train with the complete sentence as input for ASR while using short

segments as input for SKR?
As wav2vec 2.0 has been shown to work for both the ASR and SKR task, we hypoth-
esize that the transformer based architecture can learn embeddings which contain
both speech and speaker information. Prior work (Vaessen, 2020) on disjoint multi-
task learning for object detection and segmentation has shown feasibility of disjoint
optimization. Therefore, we expect this training strategy to also work for ASR and
SKR. Finally, we hypothesize that the input length difference for ASR and SKR is
solvable due to the fact that wav2vec 2.0 naturally uses variable-length input, during
training and inference for ASR, and for inference for SKR as well.

4.1 Background

4.1.1 Related MTL work

Fan et al. (2021) use the wav2vec 2.0 network for multi-task learning between the
speech technology tasks of speaker recognition and language identification. Their
MTL model did not improve on baseline STL performances. Adi et al. (2019)

54



4.1 Background

and internally making use of these representations to achieve the same gains. As an
added benefit, this could reduce the complexity of fully-fledged ASR applications to
a single neural network model.
However, we observe the following obstacles in bringing these tasks together:
1. Differences in neural architectures for respective tasks, although transformers are

bridging this gap.
2. Datasets for ASR lack session variability, while datasets for SKR lack transcrip-

tions.
3. ASR training must be carried out on complete utterances. Typically, ASR datasets

do not have time-aligned transcriptions at the word level, while SKR network
training is done on short segments as training on long utterances prevents gener-
alization.

We choose to build on top of the wav2vec 2.0 framework, as the same architecture
has been fine-tuned in a single-task learning (STL) setting to both ASR (Baevski et
al., 2020a), and SKR (Fan et al., 2021; Vaessen and van Leeuwen, 2022), bridging the
gap between neural architectures for ASR and SKR. Our proposed multi-task model
is trained with Librispeech (Panayotov et al., 2015) for ASR and VoxCeleb2 (Chung
et al., 2018) for SKR. We train with disjoint steps, meaning batches only contain
data from one of the two datasets. This enables ASR training on complete utterances
and SKR training on short segments. This allows us to answer the following research
questions:
RQ. 1 Can a transformer-based architecture perform ASR and SKR simultaneously?
RQ. 2 Is it feasible to train an MTL model with state-of-the-art datasets for speech

recognition and speaker recognition?
RQ. 3 Can we train with the complete sentence as input for ASR while using short

segments as input for SKR?
As wav2vec 2.0 has been shown to work for both the ASR and SKR task, we hypoth-
esize that the transformer based architecture can learn embeddings which contain
both speech and speaker information. Prior work (Vaessen, 2020) on disjoint multi-
task learning for object detection and segmentation has shown feasibility of disjoint
optimization. Therefore, we expect this training strategy to also work for ASR and
SKR. Finally, we hypothesize that the input length difference for ASR and SKR is
solvable due to the fact that wav2vec 2.0 naturally uses variable-length input, during
training and inference for ASR, and for inference for SKR as well.

4.1 Background

4.1.1 Related MTL work

Fan et al. (2021) use the wav2vec 2.0 network for multi-task learning between the
speech technology tasks of speaker recognition and language identification. Their
MTL model did not improve on baseline STL performances. Adi et al. (2019)

54

4. Towards multi-task learning of speech and speaker recognition

consider whether ASR systems can benefit from MTL learning of speaker recognition,
or whether adversarial learning (AL) as proposed by Ganin et al. (2016) is more
beneficial. Using the WSJ dataset by Paul and Baker (1992), and a CNN model,
they find similar, but small, improvement gains with MTL and AL. Also, Tang et
al. (2016) train a MTL speech and speaker recognition network on WSJ. They use
two interconnected LSTMs, one for each task. The output of each LSTM is shared
in the next time step. Concurrently, Pironkov et al. (2016) train an LSTM for ASR,
with SKR as auxiliary task, on the TIMIT dataset by Garofolo (1993). Lastly, the
recent Whisper model by Radford et al. (2023) is a multi-task transformer model with
impressive ASR performance, which is also capable of doing speech activity detection,
language identification and speech translation. However, the absence of the speaker
recognition task in Whisper is notable, and indicates that more work on combining
speech and speaker recognition is desirable.

4.1.2 Wav2vec 2.0

An important aspect of the wav2vec 2.0 framework (Baevski et al., 2020a) is the
application of self-supervised learning to initialize the network weights based on
unlabeled data, before fine-tuning the network on (a smaller amount of) labeled
data. In this work, we limit ourselves to fine-tuning the network in a multi-task
configuration. Further details on the self-supervised learning aspect can be found in
the seminal work (Baevski et al., 2020a).
The wav2vec 2.0 architecture consists of three components. First, a 1-d feature
extractor CNN processes a raw audio waveform 𝒳𝒳 = 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 into frames of speech
features 𝒵𝒵 = 𝑧𝑧1, . . . , 𝑧𝑧𝑚𝑚, with a window size of 20 ms. These features are projected,
potentially masked in the time and feature dimension to mimic SpecAugment (Park et
al., 2019) regularization, and a relative positional embedding is added. The resulting
sequence of input vectors, with a receptive field of 2.5 s, are processed by an encoder
network (Devlin et al., 2019) with multi-head attention transformer layers (Vaswani et
al., 2017) to produce a sequence of output vectors 𝒞𝒞𝐿𝐿 = 𝑐𝑐𝐿𝐿

1 , . . . , 𝑐𝑐𝐿𝐿
𝑚𝑚, where 𝐿𝐿 specifies

the output sequence of a specific transformer layer. The output sequence (of any layer,
but usually the last one) can be used by a downstream task.
For ASR, the output vectors of the wav2vec 2.0 network can represent phones or
letters. A single fully-connected (FC) layer can be used to classify each vector, and
with CTC loss (Graves et al., 2006) the network is trained end-to-end. For SKR, the
output vectors are pooled into a fixed-length speaker embedding (Fan et al., 2021;
Vaessen and van Leeuwen, 2022). The network is trained end-to-end by classifying
speaker identities using the speaker embedding and a single FC layer.

55



4.2 Methodology

4.2.1 MTL network architectures

Two task-specific heads

Throughout the work we only use the BASE wav2vec 2.0 network architecture with
12 transformer layers. We only make slight modifications for our multi-task purposes
by adding two task-specific heads; one for speech recognition, and one for speaker
recognition. The automatic speech recognition head consists of a single FC layer which
predicts a softmax probability distribution over the vocabulary, for each wav2vec 2.0
output token in the sequence 𝒞𝒞12 = 𝑐𝑐12

1 , . . . , 𝑐𝑐12
𝑚𝑚. This is equivalent to the original ASR

design (Baevski et al., 2020a).
The speaker recognition head consists of two components. The first part transforms
the output sequence into a speaker embedding by using a pooling method. We will
detail these pooling methods in more detail below. The second part, only used during
training, is a single FC layer used to classify the speaker identity based on the pooled
speaker embedding.
We consider both heads using 𝒞𝒞12 as input, which implies 𝒞𝒞12 contains speaker and
speech information. However, we also experiment with using 𝒞𝒞𝑛𝑛 as input for the
speaker head instead. In this configuration, the network can gradually remove speaker
information from 𝒞𝒞𝑛𝑛+1 onward. We chose layer 𝑛𝑛 = 6 so that half of the transformer
network can be solely focused on speech recognition.

Speaker embeddings

We compare three strategies to extract a speaker embedding from an output
sequence 𝒞𝒞𝑛𝑛. The first, mean pooling, simply aggregates each feature dimension of the
wav2vec 2.0 output vectors 𝑐𝑐𝑛𝑛

1 , . . . , 𝑐𝑐𝑛𝑛
𝑚𝑚 over the time-axis (Fan et al., 2021) by taking

the average. The second, first pooling (Vaessen and van Leeuwen, 2022), does not
consider the actual output sequence. Instead, we simply use the first token 𝑐𝑐𝑛𝑛

1  as a
speaker embedding. The third variant ecapa uses the ECAPA-TDNN (Desplanques
et al., 2020) architecture to compute a speaker embedding, with the sequence 𝒞𝒞𝑛𝑛

as input to ECAPA-TDNN, similar to WavLM (Chen et al., 2022a). Note that by
using mean or ecapa pooling, there needs to be speaker information throughout the
output sequence, while for first pooling the speech and speaker information can be
separated by the transformer layers.

4.2.2 Optimization

We want to train the network on state-of-the-art datasets for speaker and speech
recognition. In this section, we suggest two methods for MTL optimization for these
tasks. They are based on using Librispeech (Panayotov et al., 2015), a well-known
dataset for speech recognition, and VoxCeleb2 (Chung et al., 2018), a well-known

56



4.2 Methodology

4.2.1 MTL network architectures

Two task-specific heads

Throughout the work we only use the BASE wav2vec 2.0 network architecture with
12 transformer layers. We only make slight modifications for our multi-task purposes
by adding two task-specific heads; one for speech recognition, and one for speaker
recognition. The automatic speech recognition head consists of a single FC layer which
predicts a softmax probability distribution over the vocabulary, for each wav2vec 2.0
output token in the sequence 𝒞𝒞12 = 𝑐𝑐12

1 , . . . , 𝑐𝑐12
𝑚𝑚. This is equivalent to the original ASR

design (Baevski et al., 2020a).
The speaker recognition head consists of two components. The first part transforms
the output sequence into a speaker embedding by using a pooling method. We will
detail these pooling methods in more detail below. The second part, only used during
training, is a single FC layer used to classify the speaker identity based on the pooled
speaker embedding.
We consider both heads using 𝒞𝒞12 as input, which implies 𝒞𝒞12 contains speaker and
speech information. However, we also experiment with using 𝒞𝒞𝑛𝑛 as input for the
speaker head instead. In this configuration, the network can gradually remove speaker
information from 𝒞𝒞𝑛𝑛+1 onward. We chose layer 𝑛𝑛 = 6 so that half of the transformer
network can be solely focused on speech recognition.

Speaker embeddings

We compare three strategies to extract a speaker embedding from an output
sequence 𝒞𝒞𝑛𝑛. The first, mean pooling, simply aggregates each feature dimension of the
wav2vec 2.0 output vectors 𝑐𝑐𝑛𝑛

1 , . . . , 𝑐𝑐𝑛𝑛
𝑚𝑚 over the time-axis (Fan et al., 2021) by taking

the average. The second, first pooling (Vaessen and van Leeuwen, 2022), does not
consider the actual output sequence. Instead, we simply use the first token 𝑐𝑐𝑛𝑛

1  as a
speaker embedding. The third variant ecapa uses the ECAPA-TDNN (Desplanques
et al., 2020) architecture to compute a speaker embedding, with the sequence 𝒞𝒞𝑛𝑛

as input to ECAPA-TDNN, similar to WavLM (Chen et al., 2022a). Note that by
using mean or ecapa pooling, there needs to be speaker information throughout the
output sequence, while for first pooling the speech and speaker information can be
separated by the transformer layers.

4.2.2 Optimization

We want to train the network on state-of-the-art datasets for speaker and speech
recognition. In this section, we suggest two methods for MTL optimization for these
tasks. They are based on using Librispeech (Panayotov et al., 2015), a well-known
dataset for speech recognition, and VoxCeleb2 (Chung et al., 2018), a well-known

56

4. Towards multi-task learning of speech and speaker recognition

speaker recognition dataset. We chose to include VoxCeleb2 as Librispeech is not
well-suited for speaker recognition. This is because Librispeech has relatively few
speakers (2484 versus 5994), and little session variation. This low variation is due to
the fact that most speakers in the Librispeech dataset record the whole book in a
single acoustic environment. In contrast, VoxCeleb2 has high variation in speakers,
as it includes interviews of celebrities in different settings, including, for example, a
TV studio, a football stadium, or a red carpet at a formal event. However, VoxCeleb2
does not have transcriptions, which complicates multi-task learning. We suggest a
joint optimization strategy, where we make use of ASR pseudo-labels for VoxCeleb2,
and a disjoint optimization strategy, where we have two batches and forward steps for
each optimization step, with each batch containing either speaker or speech labels.

Disjoint training

In order to train with Librispeech and VoxCeleb2, we propose to optimize our network
with a disjoint forward step. We assume the availability of two data sources,7 namely
a speech dataset 𝐷𝐷𝑠𝑠 and a speaker dataset 𝐷𝐷𝑘𝑘, as well as a base network weights 𝜃𝜃𝑏𝑏,
speech head weights 𝜃𝜃𝑠𝑠, and speaker head weights 𝜃𝜃𝑘𝑘. We also have a base network
function 𝑁𝑁 , a speech recognition head function 𝐻𝐻𝑠𝑠 with loss function 𝐿𝐿𝑠𝑠, as well as
a speaker recognition head function 𝐻𝐻𝑘𝑘 with loss function 𝐿𝐿𝑘𝑘.
Each iteration 𝑖𝑖, we sample a speech batch (𝑥𝑥𝑖𝑖

𝑠𝑠, 𝑦𝑦𝑖𝑖
𝑠𝑠) ∈ 𝐷𝐷𝑠𝑠 and a speaker batch

(𝑥𝑥𝑖𝑖
𝑘𝑘, 𝑦𝑦𝑖𝑖

𝑘𝑘) ∈ 𝐷𝐷𝑘𝑘. We then apply two forward passes, one on the speech batch and one
on the speaker batch, where we write 𝑝𝑝 ∈ {𝑠𝑠, 𝑘𝑘}:

𝑞𝑞𝑖𝑖
𝑝𝑝 = 𝑁𝑁(𝑥𝑥𝑖𝑖

𝑝𝑝, 𝜃𝜃𝑖𝑖
𝑏𝑏)

𝑦𝑦𝑖𝑖
𝑝𝑝 = 𝐻𝐻𝑝𝑝(𝑞𝑞𝑖𝑖

𝑝𝑝, 𝜃𝜃𝑖𝑖
𝑝𝑝)

𝐿𝐿𝑖𝑖
𝑝𝑝 = 𝐿𝐿𝑝𝑝(𝑦𝑦𝑝𝑝, 𝑦𝑦𝑖𝑖

𝑝𝑝)

The total loss 𝐿𝐿𝑖𝑖 is a weighted sum over the speech and speaker loss:

𝐿𝐿𝑖𝑖 = 𝜆𝜆𝑠𝑠𝐿𝐿𝑖𝑖
𝑠𝑠 + 𝜆𝜆𝑘𝑘𝐿𝐿𝑖𝑖

𝑘𝑘

with 𝜆𝜆{𝑠𝑠,𝑘𝑘} the weights for speech and speaker and 𝜆𝜆𝑠𝑠 + 𝜆𝜆𝑘𝑘 = 1. The gradients for the
different parts of the network become:

∇𝜃𝜃𝑘𝑘
𝐿𝐿𝑖𝑖 = 𝜆𝜆𝑘𝑘∇𝜃𝜃𝑘𝑘

𝐿𝐿𝑖𝑖
𝑘𝑘

∇𝜃𝜃𝑠𝑠
𝐿𝐿𝑖𝑖 = 𝜆𝜆𝑠𝑠∇𝜃𝜃𝑠𝑠

𝐿𝐿𝑖𝑖
𝑠𝑠

∇𝜃𝜃𝑏𝑏
𝐿𝐿𝑖𝑖 = 𝜆𝜆𝑘𝑘∇𝜃𝜃𝑏𝑏

𝐿𝐿𝑖𝑖
𝑘𝑘 + 𝜆𝜆𝑠𝑠∇𝜃𝜃𝑏𝑏

𝐿𝐿𝑖𝑖
𝑠𝑠

The weights for the next iteration 𝜃𝜃𝑖𝑖+1
𝑏𝑏 , 𝜃𝜃𝑖𝑖+1

𝑠𝑠 , and 𝜃𝜃𝑖𝑖+1
𝑘𝑘  are obtained with an optimizer

step such as Adam (Kingma and Ba, 2015).

7𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑘𝑘 can be the same dataset, i.e., we have experiments where we use Librispeech for
both. This still implies that two batches are sampled from the dataset independently during each
optimization step.

57



4.2 Methodology

Joint training

Most work on MTL assumes training can be done with a “joint” forward step, namely
each sample has labels for all tasks. As a baseline, we want to see if training with joint
forward steps is effective for MTL of ASR and SKR. We tried two settings of joint
optimization. The first setting uses only data from Librispeech, which has both speech
and speaker labels. We do not expect this to be effective due to the aforementioned
lack of session variability in Librispeech. The second setting uses an ASR model to
generate pseudo-labels for the VoxCeleb2 dataset. We decided to do this with the
BASE8 Whisper (Radford et al., 2023) model. We remove any data labeled as non-
English by Whisper, and normalize the transcripts to the character vocabulary of
Librispeech.

4.2.3 Length of audio input during training

We note that the discrepancy between audio input lengths for training ASR and SKR
systems is a potential issue, as the network will observe drastically different sequence
lengths for each task. We therefore suggest two strategies for cropping the speaker
recognition audio segments. The first strategy follows the current paradigm (Snyder
et al., 2018; Chung et al., 2020; Desplanques et al., 2020; Lin and Mak, 2020; Vaessen
and van Leeuwen, 2022) and uses short crops of 2 s. The second strategy is to use
crops of 10 s, a value close to the average length of audio in Librispeech.

4.3 Experiments

4.3.1 Data

We used the Librispeech (Panayotov et al., 2015) dataset to train and evaluate for
speech recognition. The dataset consists of utterances from audio books, read by
volunteers. We used all three train subsets, for a total of 960 hours of training data
with 2484 speakers, indicated as ls. The training audio utterances have a mean of
12.3 seconds, and a standard deviation of 3.84 seconds. To minimize right-padding
(with 0) in the speech batches, a batch was collected by sampling utterances with
similar length. We used the dev-other subset to determine a validation word error rate
(WERval). Evaluation was done on the difficult test-other subset. The transcriptions
were greedily decoded, we did not use a language model. We also create a trial list for
dev-other and test-other in order to evaluate speaker recognition performance on
Librispeech. We use all possible speaker pairs in the respective subset, but exclude
positive trials from the same session (book), and only include same-sex negative trials.
The VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2 (Chung et al., 2018) datasets
were used to train and evaluate on speaker recognition. The datasets consist of videos
of celebrities taken from YouTube. Each speaker has multiple recordings (videos), and

8with https://pypi.org/project/openai-whisper/

58



4.2 Methodology

Joint training

Most work on MTL assumes training can be done with a “joint” forward step, namely
each sample has labels for all tasks. As a baseline, we want to see if training with joint
forward steps is effective for MTL of ASR and SKR. We tried two settings of joint
optimization. The first setting uses only data from Librispeech, which has both speech
and speaker labels. We do not expect this to be effective due to the aforementioned
lack of session variability in Librispeech. The second setting uses an ASR model to
generate pseudo-labels for the VoxCeleb2 dataset. We decided to do this with the
BASE8 Whisper (Radford et al., 2023) model. We remove any data labeled as non-
English by Whisper, and normalize the transcripts to the character vocabulary of
Librispeech.

4.2.3 Length of audio input during training

We note that the discrepancy between audio input lengths for training ASR and SKR
systems is a potential issue, as the network will observe drastically different sequence
lengths for each task. We therefore suggest two strategies for cropping the speaker
recognition audio segments. The first strategy follows the current paradigm (Snyder
et al., 2018; Chung et al., 2020; Desplanques et al., 2020; Lin and Mak, 2020; Vaessen
and van Leeuwen, 2022) and uses short crops of 2 s. The second strategy is to use
crops of 10 s, a value close to the average length of audio in Librispeech.

4.3 Experiments

4.3.1 Data

We used the Librispeech (Panayotov et al., 2015) dataset to train and evaluate for
speech recognition. The dataset consists of utterances from audio books, read by
volunteers. We used all three train subsets, for a total of 960 hours of training data
with 2484 speakers, indicated as ls. The training audio utterances have a mean of
12.3 seconds, and a standard deviation of 3.84 seconds. To minimize right-padding
(with 0) in the speech batches, a batch was collected by sampling utterances with
similar length. We used the dev-other subset to determine a validation word error rate
(WERval). Evaluation was done on the difficult test-other subset. The transcriptions
were greedily decoded, we did not use a language model. We also create a trial list for
dev-other and test-other in order to evaluate speaker recognition performance on
Librispeech. We use all possible speaker pairs in the respective subset, but exclude
positive trials from the same session (book), and only include same-sex negative trials.
The VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2 (Chung et al., 2018) datasets
were used to train and evaluate on speaker recognition. The datasets consist of videos
of celebrities taken from YouTube. Each speaker has multiple recordings (videos), and

8with https://pypi.org/project/openai-whisper/

58

4. Towards multi-task learning of speech and speaker recognition

each recording has multiple utterances. The VoxCeleb2 development set was used as
to create a training, validation, and development split. It has a total of 2305 hours of
data, with 5994 speakers, and a mean utterance length of 7.79 seconds and a standard
deviation of 5.22 seconds. We held-out 194 speakers (97 male/female) to create a
development subset vox2-dev. The remaining 5800 speakers were used as training
data, indicated as vc. To be able to compute a validation EER (EERval) on vox2-dev
we randomly sampled 100 k positive and 100 k negative trial pairs, while ensuring
that negative trials are same-sex, and positive trials are from two different sessions.
The final evaluation of experiment was done on the VoxCeleb1 dataset. We used the
“original” and “hard” trial list, dubbed respectively vox1-o and vox1-h. vox1-o has
only 40 speakers, and is the original test set of VoxCeleb1. On the other hand, vox1-h
has 1190 speakers, includes all the data from the train and test set of VoxCeleb1, and
each negative trial pair has the same sex and nationality. There is no speaker overlap
between VoxCeleb1 and VoxCeleb2. During training and validation, all utterances
are randomly cropped to either 2 or 10 seconds. During evaluation, we use the full
length of the utterance unless stated otherwise. Trials are scored by computing the
cosine similarity between two speaker embeddings, without any further processing.
To test on out-of-distribution (OOD) data, we also evaluate speech recognition on
the English part of HUB5 2000,9 and speaker recognition on NIST SRE08 (Martin and
Greenberg, 2009). For HUB5, we segment the audio based on the ground truth reference
to make evaluation easier. We also pre-process the text by removing all annotations
and normalizing to the Librispeech character vocabulary. For SRE08 we only make
use of the first condition, where each trial has an enrollment and test segment with
a length of 10 seconds. For both datasets we resample the audio to 16 kHz.

4.3.2 Training protocol

We use the following training protocol, unless stated otherwise, to balance between
spending an equal amount of computational resources on each method, and limiting
the required computational budget. Each network variant under study is initialized
with available10 self-supervised, pre-trained weights (Baevski et al., 2020a), with an
identical random seed for all experiments. We use a batch size of up to 3.2 M audio
samples (≤ 200 seconds) for both tasks (Baevski et al., 2020a). We use the default
regularization methods for wav2vec 2.0, namely LayerDrop (Huang et al., 2016; Fan
et al., 2020), Dropout (Srivastava et al., 2014), and SpecAugment masking (Park
et al., 2019). The optimizer is Adam (Kingma and Ba, 2015) using learning rate 𝜂𝜂
which is varied according to a tri-stage learning rate schedule (Baevski et al., 2020a)
with 200 k steps. For a given learning rate 𝜂𝜂max, this schedule consists of a warm
up phase of 20 k steps where 𝜂𝜂 is linearly increased from 1

100𝜂𝜂max to 𝜂𝜂max, followed
by a constant phase of 80 k steps where 𝜂𝜂 = 𝜂𝜂max, and a decay phase of 100 k steps
where cosine annealing is used to decrease from 𝜂𝜂max to 1

20𝜂𝜂max. We clip gradients

9Available at https://catalog.ldc.upenn.edu/LDC2002T43
10The pre-trained weights were retrieved from https://huggingface.co/facebook/wav2vec2-base.

59



4.3 Experiments

to the range [−1, 1]. In the disjoint MTL setting clipping is done before summing
the gradients for the respective tasks unless stated otherwise. For the first 3 k steps
the whole wav2vec 2.0 network is frozen, only the heads are updated (Baevski et al.,
2020a). The feature extractor CNN is always frozen (Baevski et al., 2020a). We use
CTC loss (Graves et al., 2006) as the speech recognition loss, and AAM softmax loss
(Deng et al., 2019; Liu et al., 2019) for the speaker recognition loss with a scale of 30
and a margin of 0.2 (Desplanques et al., 2020). For each network variant we perform
a grid search over the learning rates {1, 3} × 10−{4,5,6}, We validate every 5 k steps,
and stop early if the validation loss has not decreased for 8 times in a row i.e., 40 k
steps. For the evaluation, we select a learning rate based on 1

4WERval + 3
4EERval to

roughly equate the ranges of the WER and EER values, which leads to a fair balance
between both tasks in the hyperparameter search. Training is done on a machine with
12 CPU cores, 32 GB of RAM, and a single GPU¹¹ using at most 24 GB of VRAM.
In total 313 days of GPU time was spent on experiments.

4.3.3 Comparing MTL optimization strategies

The first set of experiments are focused on comparing optimization strategies and
are shown in Table 8. The network architecture in these experiments is fixed; the
speech and speaker head both use 𝒞𝒞12, and the speaker head uses mean pooling. For
each MTL strategy we train with either Librispeech or a combination of Librispeech
and VoxCeleb2. We also vary the loss weights 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑘𝑘 to be equal (each 0.5) or
favoring speech (respectively 0.9 and 0.1). For disjoint MTL training, we also vary
whether the SKR batch has 2 s samples or 10 s samples. We evaluate each task on an
in-domain and out-of-domain test set. Note that for speaker recognition evaluation
we compute the speaker embedding over the full test utterance.
First, we observe that single-task training for SKR with Librispeech compared to
VoxCeleb2 achieves much worse performance on the in-domain evaluation set vox1-h
and the out-of-domain evaluation set SRE08. This pattern repeats, where for joint
and disjoint MTL we also observe worse SKR performance when only Librispeech
is used. When we do joint optimization with whisper-transcribed VoxCeleb2, the
speaker recognition performance drastically improves. Note that MTL training using
only Librispeech data has worse performance than STL training with only LS data,
for both SKR and ASR. Looking at disjoint MTL training, we see that using 2 s
SKR chunks during training seemingly leads to no speaker recognition capabilities
(discussed further in Section 4.3.5). Using 10 s SKR chunks, however, makes the MTL
outperform the STL baseline on the vox1-h test set, but also a slightly degraded ASR
performance on test-other. We also see that the choice of 𝜆𝜆𝑠𝑠 = 0.9 versus 𝜆𝜆𝑠𝑠 = 0.5
is a trade-off between SKR and ASR performance. Lastly, we observe that all MTL
models have drastically degraded performance on out-of-distribution evaluation data
(HUB5, SRE08) compared to the STL baselines.

¹¹Experiments were done with NVIDIA A5000, A6000 and A100 GPUs.

60



4.3 Experiments

to the range [−1, 1]. In the disjoint MTL setting clipping is done before summing
the gradients for the respective tasks unless stated otherwise. For the first 3 k steps
the whole wav2vec 2.0 network is frozen, only the heads are updated (Baevski et al.,
2020a). The feature extractor CNN is always frozen (Baevski et al., 2020a). We use
CTC loss (Graves et al., 2006) as the speech recognition loss, and AAM softmax loss
(Deng et al., 2019; Liu et al., 2019) for the speaker recognition loss with a scale of 30
and a margin of 0.2 (Desplanques et al., 2020). For each network variant we perform
a grid search over the learning rates {1, 3} × 10−{4,5,6}, We validate every 5 k steps,
and stop early if the validation loss has not decreased for 8 times in a row i.e., 40 k
steps. For the evaluation, we select a learning rate based on 1

4WERval + 3
4EERval to

roughly equate the ranges of the WER and EER values, which leads to a fair balance
between both tasks in the hyperparameter search. Training is done on a machine with
12 CPU cores, 32 GB of RAM, and a single GPU¹¹ using at most 24 GB of VRAM.
In total 313 days of GPU time was spent on experiments.

4.3.3 Comparing MTL optimization strategies

The first set of experiments are focused on comparing optimization strategies and
are shown in Table 8. The network architecture in these experiments is fixed; the
speech and speaker head both use 𝒞𝒞12, and the speaker head uses mean pooling. For
each MTL strategy we train with either Librispeech or a combination of Librispeech
and VoxCeleb2. We also vary the loss weights 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑘𝑘 to be equal (each 0.5) or
favoring speech (respectively 0.9 and 0.1). For disjoint MTL training, we also vary
whether the SKR batch has 2 s samples or 10 s samples. We evaluate each task on an
in-domain and out-of-domain test set. Note that for speaker recognition evaluation
we compute the speaker embedding over the full test utterance.
First, we observe that single-task training for SKR with Librispeech compared to
VoxCeleb2 achieves much worse performance on the in-domain evaluation set vox1-h
and the out-of-domain evaluation set SRE08. This pattern repeats, where for joint
and disjoint MTL we also observe worse SKR performance when only Librispeech
is used. When we do joint optimization with whisper-transcribed VoxCeleb2, the
speaker recognition performance drastically improves. Note that MTL training using
only Librispeech data has worse performance than STL training with only LS data,
for both SKR and ASR. Looking at disjoint MTL training, we see that using 2 s
SKR chunks during training seemingly leads to no speaker recognition capabilities
(discussed further in Section 4.3.5). Using 10 s SKR chunks, however, makes the MTL
outperform the STL baseline on the vox1-h test set, but also a slightly degraded ASR
performance on test-other. We also see that the choice of 𝜆𝜆𝑠𝑠 = 0.9 versus 𝜆𝜆𝑠𝑠 = 0.5
is a trade-off between SKR and ASR performance. Lastly, we observe that all MTL
models have drastically degraded performance on out-of-distribution evaluation data
(HUB5, SRE08) compared to the STL baselines.

¹¹Experiments were done with NVIDIA A5000, A6000 and A100 GPUs.

60

4. Towards multi-task learning of speech and speaker recognition

Table 8:  Comparison of STL baselines versus joint and disjoint MTL training.
Evaluation is done on in-distribution (test-other, vox1-h) and out-of-distribution
(HUB5, SRE08) datasets. The second column indicates which training data was used.
* indicates ASR labels generated with Whisper.

ASR (WER %) SKR (EER %)
network train data test-other HUB5 vox1-h SRE08

STL (baseline)
ASR ls 10.4 40 - -
ASR vc* 16.6 25 - -
SKR (2s) ls - - 33 42
SKR (2s) vc - - 5.1 16
MTL (joint, full length samples)
𝜆𝜆𝑠𝑠 = 0.5 ls 15.3 48 36 40
𝜆𝜆𝑠𝑠 = 0.5 ls+vc* 18.1 36 10.3 24
𝜆𝜆𝑠𝑠 = 0.9 ls+vc* 17.5 36 7.2 26
MTL (disjoint, 2 sec SKR samples)
𝜆𝜆𝑠𝑠 = 0.5 ls 14.5 54 45 46
𝜆𝜆𝑠𝑠 = 0.5 ls+vc 11.1 46 41 45
𝜆𝜆𝑠𝑠 = 0.9 ls+vc 11.5 48 42 46
MTL (disjoint, 10 sec SKR samples)
𝜆𝜆𝑠𝑠 = 0.5 ls 13.6 49 36 44
𝜆𝜆𝑠𝑠 = 0.5 ls+vc 11.1 80 4.8 39
𝜆𝜆𝑠𝑠 = 0.9 ls+vc 11.2 84 4.7 27

4.3.4 Varying architectures

In the second set of experiments we focus on different strategies for extracting
speaker embeddings for the SKR task, and effectively combining it with the speech
information for ASR. For all MTL experiments we use 𝜆𝜆𝑠𝑠 = 0.5 and only train with
disjoint steps. We train with either 2 s or 10 s SKR chunks, and for MTL training we
place the speaker head at either 𝒞𝒞6 or 𝒞𝒞12. The speech head is always at 𝒞𝒞12. We also
applied gradient clipping after summing the gradients instead of before.¹² The results
can be seen in Table 9. The first observation, unexpected based on contemporary work
in SKR, is that in the STL setting the speaker recognition performance was actually

¹²This was a configuration error. Clipping after summation changes how the 𝜆𝜆 values in the
loss function affect optimization. We did not repeat the experiments with the correct configuration
because we believe that this will not change the results in a major way, with the added benefit of
preventing the release of some CO2 into the atmosphere.

61



4.3 Experiments

Table 9:  Comparing three methods to extract speaker embeddings from wav2vec 2.0.
Evaluation is done on in-distribution (ls-to, vox1-h) and out-of-distribution (HUB5,
SRE08) datasets. We vary training with 2 s or 10 s chunks, and for MTL also using 𝒞𝒞6

or 𝒞𝒞12 as input to the speaker recognition head. We used ls+vc as MTL training data.

ASR (WER %) SKR (EER %)
SKR head test-other HUB5 vox1-h SRE08

STL, x/x implies 2 s/10 s SKR samples
mean - - 5.1/5.1 17/13
first - - 5.4/5.2 19/14
ecapa - - 6.3/5.8 21/13
MTL disjoint, 2 sec SKR samples, x/x implies 𝒞𝒞6/𝒞𝒞12

mean 13.5/13.4 53/52 21/34 40/44
first 13.6/13.9 52/53 12/34 29/40
ecapa 13.2/13.9 45/53 9/35 25/39
MTL disjoint, 10 sec SKR samples, x/x implies 𝒞𝒞6/𝒞𝒞12

mean 12.9/12.8 51/79 3.9/4.0 31/33
first 13.2/13.4 46/79 3.9/4.0 15/16
ecapa 13.2/12.7 42/83 4.2/4.7 19/16

better when using 10 s chunks during training. This is more noticeable on the SRE08
data. Secondly, the specific variant of the speaker head has only a minor effect on the
ASR performance. However, using ecapa alongside 𝒞𝒞6 seems very effective compared
to mean or first pooling. Noticeably, when training with 2 s second chunks, using 𝒞𝒞6

instead of 𝒞𝒞12 seems to result in some SKR capabilities. Lastly, ASR performance on
test-other is worse compared to Table 8 with equivalent settings, likely due to the
change in the gradient clipping strategy.

4.3.5 Different evaluation conditions

In the last set of experiments we further analyze the results described in Table 8. As
we observed decreased performance on out-of-distribution data for the MTL models,
we also wanted to observe the performance on cross-disjoint-task data, namely, can
we do SKR on Librispeech data, and ASR on VoxCeleb2 data? To evaluate for ASR
on VoxCeleb2 we use the smaller vox1-o set and use the pseudo-labels from Whisper
as the reference. In Table 10 we see that cross-disjoint task performance is lacking.
Noticeably, disjoint MTL with 10 s chunks has a 100 % WER on vox1-o and a 42 %
EER on test-other. Furthermore, we observed that MTL disjoint training with 2 s
SKR chunks and mean pooling did not show any SKR capabilities. Therefore, perhaps
counter-intuitively, we also evaluate on SKR by only using the first 2 s of the utterance,

62



4.3 Experiments

Table 9:  Comparing three methods to extract speaker embeddings from wav2vec 2.0.
Evaluation is done on in-distribution (ls-to, vox1-h) and out-of-distribution (HUB5,
SRE08) datasets. We vary training with 2 s or 10 s chunks, and for MTL also using 𝒞𝒞6

or 𝒞𝒞12 as input to the speaker recognition head. We used ls+vc as MTL training data.

ASR (WER %) SKR (EER %)
SKR head test-other HUB5 vox1-h SRE08

STL, x/x implies 2 s/10 s SKR samples
mean - - 5.1/5.1 17/13
first - - 5.4/5.2 19/14
ecapa - - 6.3/5.8 21/13
MTL disjoint, 2 sec SKR samples, x/x implies 𝒞𝒞6/𝒞𝒞12

mean 13.5/13.4 53/52 21/34 40/44
first 13.6/13.9 52/53 12/34 29/40
ecapa 13.2/13.9 45/53 9/35 25/39
MTL disjoint, 10 sec SKR samples, x/x implies 𝒞𝒞6/𝒞𝒞12

mean 12.9/12.8 51/79 3.9/4.0 31/33
first 13.2/13.4 46/79 3.9/4.0 15/16
ecapa 13.2/12.7 42/83 4.2/4.7 19/16

better when using 10 s chunks during training. This is more noticeable on the SRE08
data. Secondly, the specific variant of the speaker head has only a minor effect on the
ASR performance. However, using ecapa alongside 𝒞𝒞6 seems very effective compared
to mean or first pooling. Noticeably, when training with 2 s second chunks, using 𝒞𝒞6

instead of 𝒞𝒞12 seems to result in some SKR capabilities. Lastly, ASR performance on
test-other is worse compared to Table 8 with equivalent settings, likely due to the
change in the gradient clipping strategy.

4.3.5 Different evaluation conditions

In the last set of experiments we further analyze the results described in Table 8. As
we observed decreased performance on out-of-distribution data for the MTL models,
we also wanted to observe the performance on cross-disjoint-task data, namely, can
we do SKR on Librispeech data, and ASR on VoxCeleb2 data? To evaluate for ASR
on VoxCeleb2 we use the smaller vox1-o set and use the pseudo-labels from Whisper
as the reference. In Table 10 we see that cross-disjoint task performance is lacking.
Noticeably, disjoint MTL with 10 s chunks has a 100 % WER on vox1-o and a 42 %
EER on test-other. Furthermore, we observed that MTL disjoint training with 2 s
SKR chunks and mean pooling did not show any SKR capabilities. Therefore, perhaps
counter-intuitively, we also evaluate on SKR by only using the first 2 s of the utterance,

62

4. Towards multi-task learning of speech and speaker recognition

Table 10:  Evaluation of STL and MTL models on cross-disjoint-task and out-of-
distribution data. MTL models are trained with 𝜆𝜆𝑠𝑠 = 0.9 and mean pooling. The joint
model is trained ls+vc*, * indicates ASR labels from Whisper. The disjoint models
are trained with ls+vc. For ASR evaluation on Voxceleb we use the vox1-o test set,
with labels from Whisper. For SKR evaluation we show results using only the first 2
seconds, or the full utterance of each audio file.

STL MTL
evaluation ASR SKR joint disjoint (2 s) disjoint (10 s)
ASR (WER in %)
test-other 10.4 - 17.5 11.5 11.2
vox1-o 35 - 27 35 100
HUB5 40 - 36 48 84
SKR, full sample evaluation (EER in %)
test-other - 2.2 8.5 40 42
vox1-h - 5.1 7.2 42 4.7
SRE08 - 16 26 46 27
SKR, 2 s sample evaluation (EER in %)
test-other - 4.9 13.4 7.9 44
vox1-h - 11 21 12.4 16
SRE08 - 32 41 33 41

instead of the whole utterance. With this evaluation strategy, we observe that for
STL SKR, MTL joint, and MTL disjoint with 10 s chunks, the SKR performance is
worse compared to using the whole audio file. However, MTL disjoint training with 2 s
chunks has decent performance when also evaluating with 2 s of audio. This compares
to no capabilities when evaluating on the full sample.
We also analyzed how the speaker information differs throughout the transformer
layers of wav2vec 2.0. This was done by first training a model in a specific setting,
and then evaluating the output of each layer independently, with mean pooling as the
method for speaking embedding extraction. The evaluation was done on the vox2-dev
set and trial list. We show the results in Figure 3. First, we see that self-supervised
weights contain little speaker information, although there is a slight increase until the
last two layers, which seem to remove most speaker information. In the single-task
learning setting, we see a gradual improvement each layer, although there is some
plateauing around layer 7, 8 and 9. The disjoint MTL model with 10 s chunks and
using 𝒞𝒞12 seems to follow the STL line closely. Moreover, we see that MTL models with
a speaker head at 𝒞𝒞6 actually lose speaker information after the 6th layer, indicating
the models attempt to separate speech and speaker information. Lastly, the joint

63



4.3 Experiments

Figure 3:  The performance of each wav2vec 2.0 transformer layer by mean pooling
the output sequence before (i.e., only self-supervised weights) and after fine-tuning
wav2vec 2.0 (STL and 5 MTL variants). MTL models use either 𝒞𝒞6 or  𝒞𝒞12 as input to
the speaker recognition head during training, but change the layer during evaluation,
i.e., we vary 𝒞𝒞𝑛𝑛 with 𝑛𝑛 ∈ [1, 12] at test time. Evaluation is done on vox2-dev.

MTL model has interesting behavior, where performance starts decreasing at layer 7,
but starts improving again at layer 11 and 12.

4.4 Conclusion

We have shown that creating a MTL model for speech and speaker recognition is
challenging. First, we need multi-labeled data with session variability, as Librispeech
is insufficient for creating a good SKR model. Our mitigation strategies with either
pseudo-labels, or disjoint training, have degraded ASR performance on in-domain
test data. Moreover, optimizing a model with disjoint steps does not generalize
to out-of-distribution data. We further saw that MTL models have increased SKR
performance, at the cost of decreased ASR performance. It is difficult to include
speaker information without harming ASR performance. In our MTL setup we did
not see that speaker information benefitted ASR performance. This is different from
prior work (BenZeghiba and Bourlard, 2003; Peddinti et al., 2015), as we wanted the
model to implicitly generate the speaker information throughout the feed-forward
process, instead of explicitly adding it as input to the network. This might be inherent

64



4.3 Experiments

Figure 3:  The performance of each wav2vec 2.0 transformer layer by mean pooling
the output sequence before (i.e., only self-supervised weights) and after fine-tuning
wav2vec 2.0 (STL and 5 MTL variants). MTL models use either 𝒞𝒞6 or  𝒞𝒞12 as input to
the speaker recognition head during training, but change the layer during evaluation,
i.e., we vary 𝒞𝒞𝑛𝑛 with 𝑛𝑛 ∈ [1, 12] at test time. Evaluation is done on vox2-dev.

MTL model has interesting behavior, where performance starts decreasing at layer 7,
but starts improving again at layer 11 and 12.

4.4 Conclusion

We have shown that creating a MTL model for speech and speaker recognition is
challenging. First, we need multi-labeled data with session variability, as Librispeech
is insufficient for creating a good SKR model. Our mitigation strategies with either
pseudo-labels, or disjoint training, have degraded ASR performance on in-domain
test data. Moreover, optimizing a model with disjoint steps does not generalize
to out-of-distribution data. We further saw that MTL models have increased SKR
performance, at the cost of decreased ASR performance. It is difficult to include
speaker information without harming ASR performance. In our MTL setup we did
not see that speaker information benefitted ASR performance. This is different from
prior work (BenZeghiba and Bourlard, 2003; Peddinti et al., 2015), as we wanted the
model to implicitly generate the speaker information throughout the feed-forward
process, instead of explicitly adding it as input to the network. This might be inherent

64

4. Towards multi-task learning of speech and speaker recognition

to the MTL loss function, which always needs to trade-off the CTC loss versus the
AAM-softmax loss. We believe that future work could focus on integrating speaker
information into the CTC loss, by adding e.g., speaker-related targets, and foregoing
the need to use two loss functions and two output heads. We did see promising results
with the ecapa strategy alongside using 𝒞𝒞6 as input. This indicates that there is only
a limited amount of weights which should be shared between the tasks. Thus, future
work could perhaps also analyze this kind of shared architecture more deeply, where
the focus is on a smaller shared backbone network, and larger task-specific heads.
Most importantly, we think that research into MTL of ASR and SKR can benefit
significantly from future work creating a proper dataset, with high speaker session
variability and accurate speech labels.

65





5 The effect of batch size on
contrastive self-supervised
speech representation
learning

In which our adventurer uncovers the relationship between
the amount of data observed during self-supervised pre-
training, and the subsequent performance when fine-tuning
on downstream tasks.¹³

Foundation models have become the norm in deep learning research. In the audio
domain, popular models with open weights include wav2vec 2.0 (Baevski et al.,
2020a; Conneau et al., 2021), HuBERT (Hsu et al., 2021), and WavLM (Chen et al.,
2022a). These transformer models all use a form of self-supervised learning (SSL)
with the use of a pretext task to learn (“pre-train”) speech representations. The
models can then be fine-tuned on a myriad of downstream tasks (Yang et al., 2021),
including speech recognition, speaker recognition, emotion recognition, and intent
classification. However, self-supervised pre-training takes a tremendous amount of
resources, exceeding high-end consumer grade hardware at the time of writing. First,
due to the unlabeled nature of self-supervision, it is relatively cheap to increase the
dataset size. Over a span of two years, we have seen public training datasets increase
by two orders of magnitude,14 with wav2vec 2.0 using 1 k hours of audio (circa 100 GB)
from Librispeech (Panayotov et al., 2015), to WavLM using 94 k hours (circa 10 TB)
by combining Libri-light (Kahn et al., 2020), GigaSpeech (Chen et al., 2021) and
VoxPopuli (Wang et al., 2021). Second, the seminal works mentioned above all report
results of models trained with large batch sizes using data parallelism across many
GPUs. For example, for models with 94 M parameters, WavLM and HuBERT use 32
GPUs, and wav2vec 2.0 uses 64 GPUs, with batch sizes of respectively 3 hours, 45
minutes, and 90 minutes of audio. The number of GPUs needed to work with these

¹³Research work based on this chapter is currently submitted for double-blind peer review.
14Excluding Whisper (Radford et al., 2023) and Google USM (Zhang et al., 2023), with respectively

680 k hours and 12 M hours of private training datasets.

67



large batches in a timely manner, as well as the required disk space for the datasets,
make it non-trivial to apply these algorithms.
While the effect of dataset size on performance is (at least partially) known (Baevski
et al., 2020a; Conneau et al., 2021), to our knowledge there are no studies on the
scaling behavior of SSL algorithms with respect to the batch size and number of
training iterations. This can be of interest to researchers who do not have the resources
to study these algorithms under large batch size conditions, or practitioners who need
to make a trade-off between time, computational budget, and desired performance.
Given a fixed model complexity, dataset size, and number of training iterations, how
much is gained by increasing the batch size? How well do these techniques work with
fewer resources, and can the academic community do meaningful experiments without
industrial-scale data centers? Although we aim to answer these questions generally,
for precisely the reason of available computational resources, we limit ourselves to
studying the wav2vec 2.0 (Baevski et al., 2020a) model extensively, leaving other SSL
methods for future work. Concretely, we set out to address the following research
questions:
RQ 1. How does the batch size affect the pre-training procedure of wav2vec 2.0?
RQ 2. How does the batch size during pre-training of wav2vec 2.0 affect downstream

fine-tuning?
RQ 3. Can we compensate for a reduction of the batch size by increasing the amount

of training iterations by the same factor?
Regarding all three RQs, and given the existing literature on speech SSL (Baevski
et al., 2020a; Hsu et al., 2021; Chen et al., 2022a), we hypothesize that large batch
sizes are essential for pre-training convergence and the model’s ability to be properly
fine-tuned to the downstream task. For RQ 1, we are interested in knowing whether
a large batch size is a necessity for optimizing the objective. It would be valuable
to know the smallest possible converging batch size, and how optimization behaves
with this batch size compared to the canonical, large batch size. For RQ 2, we expect
that a larger batch size will lead to better downstream task performance, but we are
especially interested in how much the performance improves with each doubling of
the batch size. What is the minimum batch size at which we see that fine-tuning
is possible, and how does this depend on the amount of labeled data available for
fine-tuning? For RQ 3, we are interested in knowing whether training twice as long
with half the batch size results in the same performance. There is evidence that
contrastive methods benefit from large batch sizes (Chen et al., 2022b), although in
wav2vec 2.0 the quantity of potential negatives samples does not increase with the
batch size, only with the sequence length. Moreover, according to work on optimizer
scaling laws (Goyal et al., 2018; Malladi et al., 2022), with a fixed number of epochs,
learning rates can be adjusted accordingly with the batch size to obtain a very similar
optimization trajectory. Therefore, we hypothesize that performance for wav2vec 2.0
is only a function of how much data is seen during self-supervision, and that with
patience, people with fewer resources can also carry out pre-training.

68



large batches in a timely manner, as well as the required disk space for the datasets,
make it non-trivial to apply these algorithms.
While the effect of dataset size on performance is (at least partially) known (Baevski
et al., 2020a; Conneau et al., 2021), to our knowledge there are no studies on the
scaling behavior of SSL algorithms with respect to the batch size and number of
training iterations. This can be of interest to researchers who do not have the resources
to study these algorithms under large batch size conditions, or practitioners who need
to make a trade-off between time, computational budget, and desired performance.
Given a fixed model complexity, dataset size, and number of training iterations, how
much is gained by increasing the batch size? How well do these techniques work with
fewer resources, and can the academic community do meaningful experiments without
industrial-scale data centers? Although we aim to answer these questions generally,
for precisely the reason of available computational resources, we limit ourselves to
studying the wav2vec 2.0 (Baevski et al., 2020a) model extensively, leaving other SSL
methods for future work. Concretely, we set out to address the following research
questions:
RQ 1. How does the batch size affect the pre-training procedure of wav2vec 2.0?
RQ 2. How does the batch size during pre-training of wav2vec 2.0 affect downstream

fine-tuning?
RQ 3. Can we compensate for a reduction of the batch size by increasing the amount

of training iterations by the same factor?
Regarding all three RQs, and given the existing literature on speech SSL (Baevski
et al., 2020a; Hsu et al., 2021; Chen et al., 2022a), we hypothesize that large batch
sizes are essential for pre-training convergence and the model’s ability to be properly
fine-tuned to the downstream task. For RQ 1, we are interested in knowing whether
a large batch size is a necessity for optimizing the objective. It would be valuable
to know the smallest possible converging batch size, and how optimization behaves
with this batch size compared to the canonical, large batch size. For RQ 2, we expect
that a larger batch size will lead to better downstream task performance, but we are
especially interested in how much the performance improves with each doubling of
the batch size. What is the minimum batch size at which we see that fine-tuning
is possible, and how does this depend on the amount of labeled data available for
fine-tuning? For RQ 3, we are interested in knowing whether training twice as long
with half the batch size results in the same performance. There is evidence that
contrastive methods benefit from large batch sizes (Chen et al., 2022b), although in
wav2vec 2.0 the quantity of potential negatives samples does not increase with the
batch size, only with the sequence length. Moreover, according to work on optimizer
scaling laws (Goyal et al., 2018; Malladi et al., 2022), with a fixed number of epochs,
learning rates can be adjusted accordingly with the batch size to obtain a very similar
optimization trajectory. Therefore, we hypothesize that performance for wav2vec 2.0
is only a function of how much data is seen during self-supervision, and that with
patience, people with fewer resources can also carry out pre-training.

68

5. The effect of batch size on contrastive self-supervised speech representation learning

To answer these questions, we pre-train wav2vec 2.0 with batch sizes ranging from
87.5 seconds to 80 minutes. We then fully fine-tune these models for speech recognition
(updating most weights), with 10 minutes to 960 hours of labeled speech. To include
other speech technology tasks, we also fine-tune following the SUPERB benchmark
protocol, where small downstream models are trained on different categories of speech
tasks. Here, the foundation model weights are frozen, and the (trainable) weighted
sum of all layer outputs of the foundation model are used as input. Hereby, we make
the following contributions:
1. We perform a comprehensive study of the effect of batch size and amount of

training iterations for pre-training wav2vec 2.0, helping practitioners to make
trade-offs when deciding on downstream task performance.

2. We show that the most important factor for the downstream task performance
is the amount of data seen during self-supervision, indicating that fixing the
product of batch size and training iterations in a benchmark can provide valuable
information.

3. We provide the pre-training model checkpoints, with an interval of 5 k steps, for
further analysis.15

The rest of this chapter is structured as follows. First, we will cover related work
in Section 5.1, including studies on batch sizes with stochastic gradient descent,
(contrastive) SSL (in speech) and its scaling behavior, and research on SSL with
smaller budgets. Then, Section 5.2 will explain wav2vec 2.0 pre-training and fine-
tuning, followed by experimental setup and results in Section 5.3, and we will close
with a discussion and conclusion in Section 5.4 and Section 5.5.

5.1 Related work

5.1.1 Stochastic gradient descent and large batch sizes

McCandlish et al. (2018) studied the trade-off between time and computational
resources when choosing a batch size. It is argued that a small batch size leads to
gradients dominated by noise, which is averaged out by consecutive update steps,
or more efficiently, by using data parallelism. However, when a batch size is very
large, the gradient estimate contains little noise, and therefore sampling two (large)
batches and averaging their gradient will not lead to a significantly better estimate.
In this case doubling the batch size does not serve a practical purpose anymore. Thus,
there is a critical batch size, the exact value varying for each task and domain, after
which an increase in batch size has strongly diminishing returns. Complementarily,
Shallue et al. (2019) conducted a study on the batch size affecting generalization
performance, across multiple datasets (5 vision, 2 text), neural network families (FC,
3 CNNs, LSTM, Transformer) and optimizers (SGD, with (Nesterov) momentum).
They experimentally confirm the existence of a critical batch size, and observe the

15See the code repository in Research Data Management for a link to the model checkpoints.

69



5.1 Related work

magnitude of this critical batch size depends on the dataset, neural network type,
and optimizer, but no clear relationship is found. With respect to the optimization
trajectory, Smith et al. (2018) showed that a decaying learning rate schedule is
equivalent to increasing the batch size during training, up to a batch size around 10 %
of the training dataset size. There is also work on a linear scaling law for SGD by
Goyal et al. (2018) and square root scaling law for adaptive methods such as Adam
by Malladi et al. (2022). These laws suggest that, for a fixed number of epochs, the
same optimization trajectory can be obtained with different batch sizes by adjusting
the learning rate.

5.1.2 Self-supervised speech representation learning

Representation learning, as defined by Goodfellow et al. (2016), concerns itself with
being able to encode information in such a way that it makes learning a subsequent
downstream task straightforward. For speech, a good representation would allow,
e.g., phonemes to be linearly separable in order to perform speech recognition, or
speaker attributes to be distinctly clustered, so that a distance metric can be used
to recognize speakers. Models which are trained in a supervised fashion already learn
task-specific representations, as usually the output of a penultimate layer is used for
classification purposes. In self-supervised representation learning, a pretext task is
used instead, with the hope that solving this task requires learning representations
which are also helpful for learning the actual downstream task(s) of interest. These
pretext tasks are designed such that they use some property of the input data itself
as a label. This allows using much larger, and cheaper to collect, datasets, and for
representations to potentially be useful for multiple distinct processing tasks. A good
overview of pretext tasks used for speech representation learning is given by Mohamed
et al. (2022). They define three categories of pretext tasks, namely reconstructive,
contrastive, and predictive.
Reconstructive pretext tasks limit the view of the speech signal, whereafter the model
needs to fill in or complete the signal in some fashion. Models using a reconstructive
pretext task include VQ-VAE by van den Oord et al. (2017), Mockingjay by Liu et
al. (2020), the DeCoAR variants introduced by Ling et al. (2020) and Ling and Liu
(2020), and TERA by Liu et al. (2021). Later, Mohamed et al. (2022) argue that
reconstruction of speech results in heavily entangled representations, which makes
them less useful for downstream tasks.
Contrastive pretext tasks also limit the view of the speech signal. However, instead of
simply reconstructing, the objective focuses on predicting what information should or
should not be encoded at a certain (unseen) time step of the signal. This is done with
an anchor representation, for which a target representation (which should be there) is
distinguished from distractor representations (which should not be there), thus cre-
ating contrast between learned representations. Wav2vec 2.0 is a popular contrastive
model, which this thesis focuses on exploring more deeply. Other contrastive models
include Unspeech by Milde and Biemann (2018), CPC by van den Oord et al. (2018),

70



5.1 Related work

magnitude of this critical batch size depends on the dataset, neural network type,
and optimizer, but no clear relationship is found. With respect to the optimization
trajectory, Smith et al. (2018) showed that a decaying learning rate schedule is
equivalent to increasing the batch size during training, up to a batch size around 10 %
of the training dataset size. There is also work on a linear scaling law for SGD by
Goyal et al. (2018) and square root scaling law for adaptive methods such as Adam
by Malladi et al. (2022). These laws suggest that, for a fixed number of epochs, the
same optimization trajectory can be obtained with different batch sizes by adjusting
the learning rate.

5.1.2 Self-supervised speech representation learning

Representation learning, as defined by Goodfellow et al. (2016), concerns itself with
being able to encode information in such a way that it makes learning a subsequent
downstream task straightforward. For speech, a good representation would allow,
e.g., phonemes to be linearly separable in order to perform speech recognition, or
speaker attributes to be distinctly clustered, so that a distance metric can be used
to recognize speakers. Models which are trained in a supervised fashion already learn
task-specific representations, as usually the output of a penultimate layer is used for
classification purposes. In self-supervised representation learning, a pretext task is
used instead, with the hope that solving this task requires learning representations
which are also helpful for learning the actual downstream task(s) of interest. These
pretext tasks are designed such that they use some property of the input data itself
as a label. This allows using much larger, and cheaper to collect, datasets, and for
representations to potentially be useful for multiple distinct processing tasks. A good
overview of pretext tasks used for speech representation learning is given by Mohamed
et al. (2022). They define three categories of pretext tasks, namely reconstructive,
contrastive, and predictive.
Reconstructive pretext tasks limit the view of the speech signal, whereafter the model
needs to fill in or complete the signal in some fashion. Models using a reconstructive
pretext task include VQ-VAE by van den Oord et al. (2017), Mockingjay by Liu et
al. (2020), the DeCoAR variants introduced by Ling et al. (2020) and Ling and Liu
(2020), and TERA by Liu et al. (2021). Later, Mohamed et al. (2022) argue that
reconstruction of speech results in heavily entangled representations, which makes
them less useful for downstream tasks.
Contrastive pretext tasks also limit the view of the speech signal. However, instead of
simply reconstructing, the objective focuses on predicting what information should or
should not be encoded at a certain (unseen) time step of the signal. This is done with
an anchor representation, for which a target representation (which should be there) is
distinguished from distractor representations (which should not be there), thus cre-
ating contrast between learned representations. Wav2vec 2.0 is a popular contrastive
model, which this thesis focuses on exploring more deeply. Other contrastive models
include Unspeech by Milde and Biemann (2018), CPC by van den Oord et al. (2018),

70

5. The effect of batch size on contrastive self-supervised speech representation learning

and other wav2vec variants, as presented by Schneider et al. (2019), Baevski et al.
(2020b), Sadhu et al. (2021) and Conneau et al. (2021). The challenge of contrastive
models, according to Mohamed et al. (2022), is the sampling of distractors. For
example, the learned representations can become invariant to speaker information if
they are sampled from the same utterance. Moreover, it is not clear how relatable the
target and distractors are to the anchor, due to the difficulty of segmenting speech
signals.
Finally, predictive pretext tasks have known targets for the parts of the speech
signal which were hidden. It is these targets that the models learn to predict. For
example, HuBERT by Hsu et al. (2021) uses cluster centroids of MFCCs computed
over the training dataset as targets during self-supervision. At one or more points
during training, new targets are generated, by clustering the hidden representation
outputs from the model, replacing the initial MFCC-based clusters. Other examples
of predictive approaches are WavLM by Chen et al. (2022a), which is similar to
HuBERT, but adds background speech to the input data which the model needs to
learn to ignore, and data2vec by Baevski et al. (2022) as well as DinoSR by Liu et
al. (2023), which use a teacher-student approach, where targets are provided by a
teacher model, which is updated with an exponentially moving average of the student
model weights. As argued in Mohamed et al. (2022), the challenges of the mentioned
models are mostly computational; HuBERT and WavLM require multiple iterations
and good initial targets, whereas teacher-student approaches require twice as many
model parameters during training.

5.1.3 Scaling self-supervised representation learning

Kaplan et al. (2020) analyse the scaling behavior of pre-training large language
models, with respect to model size, dataset size, and the number of training steps.
Their primary finding is that the test loss follows a power law in relation to all
three aspects, as long as model size is increased according to the dataset size, and
training length is not made a bottleneck. It is also found that very large models
are more sample efficient, i.e., fewer iteration or less data is required compared to
smaller models. Goyal et al. (2019) study the scaling behavior of visual representation
learning, with respect to model size, dataset size, and complexity of the pretext task.
They found that increasing both the dataset size, and complexity of the pretext task,
is beneficial, as long as the model size is large enough. For speech SSL, the scaling
behavior of the model size and the fine-tuning dataset size is studied by Pu et al.
(2021). They use the reconstructive pretext task Mockingjay by Liu et al. (2020), and
their results match Kaplan et al. (2020); larger model size leads to better performance,
and larger models require less fine-tuning data.

5.1.4 Contrastive learning and batch size

Contrastive self-supervision benefits from large batch sizes, as ablated by Chen et al.
(2020) who introduced the SimCLR method, and shown by, e.g., the method CLIP

71



5.1 Related work

introduced by Radford et al. (2021) and Florence method introduced by Yuan et al.
(2021b). A hypothesis for this observation is that distractors are often sampled within
the same mini-batch, and thus more (and potentially better) distractors are available
as the batch size increases. However, Mitrovic et al. (2020) show that computing
the contrastive objective with fewer (e.g., only two) distractors per anchor leads to
better performance, indicating that large batch sizes are the key factor of improved
performance, and not the amount of available negative samples. Chen et al. (2022b)
argue that small batch sizes in contrastive learning suffer from a gradient bias, which
large batches sizes alleviate. Note that in wav2vec 2.0, negative samples are only
taken from the same utterance. The batch size does not have any effect on the quality
and quantity of negative samples, so there might be a gradient bias even with large
batch sizes.

5.1.5 Self-supervised learning with academic budget

The apparent effectiveness of large batch sizes makes it difficult to do research without
a large computational budget. There has been some work on trying to reduce the
resources required to do pre-training. For example, Izsak et al. (2021) pre-trained
a BERT model to nearly equivalent performance with only 8 GPUs (with 12 GB
VRAM) in 1 day, compared to 4 days with 16 TPUs (having 32 GB RAM) in the
original work by Devlin et al. (2019). This was done by reducing the maximum
sequence length, focusing on large models, pre-masking data, and using specialized
software packages such as DeepSpeed by Rajbhandari et al. (2020) and Apex by
Micikevicius et al. (2018). Similar work has been done for the HuBERT model by
Chen et al. (2023). They show that using target representations from a fine-tuned
ASR model in the first iteration of HuBERT pre-training (instead of MFCCs) leads
to better performance, while needing fewer GPU hours. Another line of thinking is
presented by Cao and Wu (2021), where it is shown that self-supervised learning in
vision can be done on small datasets, with low resolution images, and with models
with relatively few parameters.

5.2 Methodology

We will describe the architecture and pre-training procedure of wav2vec 2.0 (Baevski
et al., 2020a), explicitly mentioning details we found to be essential for performance
that received less attention in the original paper. We provide a schematic overview of
wav2vec 2.0 in Figure 4, which can aid in understanding the dependence of different
components and mathematical variables of the framework, which we will introduce
below.

5.2.1 The CNN + Transformer network for audio

In this chapter we use the standard architectural setup for self-supervised learning
with audio (Baevski et al., 2020a; Hsu et al., 2021; Chen et al., 2022a). First, the

72



5.1 Related work

introduced by Radford et al. (2021) and Florence method introduced by Yuan et al.
(2021b). A hypothesis for this observation is that distractors are often sampled within
the same mini-batch, and thus more (and potentially better) distractors are available
as the batch size increases. However, Mitrovic et al. (2020) show that computing
the contrastive objective with fewer (e.g., only two) distractors per anchor leads to
better performance, indicating that large batch sizes are the key factor of improved
performance, and not the amount of available negative samples. Chen et al. (2022b)
argue that small batch sizes in contrastive learning suffer from a gradient bias, which
large batches sizes alleviate. Note that in wav2vec 2.0, negative samples are only
taken from the same utterance. The batch size does not have any effect on the quality
and quantity of negative samples, so there might be a gradient bias even with large
batch sizes.

5.1.5 Self-supervised learning with academic budget

The apparent effectiveness of large batch sizes makes it difficult to do research without
a large computational budget. There has been some work on trying to reduce the
resources required to do pre-training. For example, Izsak et al. (2021) pre-trained
a BERT model to nearly equivalent performance with only 8 GPUs (with 12 GB
VRAM) in 1 day, compared to 4 days with 16 TPUs (having 32 GB RAM) in the
original work by Devlin et al. (2019). This was done by reducing the maximum
sequence length, focusing on large models, pre-masking data, and using specialized
software packages such as DeepSpeed by Rajbhandari et al. (2020) and Apex by
Micikevicius et al. (2018). Similar work has been done for the HuBERT model by
Chen et al. (2023). They show that using target representations from a fine-tuned
ASR model in the first iteration of HuBERT pre-training (instead of MFCCs) leads
to better performance, while needing fewer GPU hours. Another line of thinking is
presented by Cao and Wu (2021), where it is shown that self-supervised learning in
vision can be done on small datasets, with low resolution images, and with models
with relatively few parameters.

5.2 Methodology

We will describe the architecture and pre-training procedure of wav2vec 2.0 (Baevski
et al., 2020a), explicitly mentioning details we found to be essential for performance
that received less attention in the original paper. We provide a schematic overview of
wav2vec 2.0 in Figure 4, which can aid in understanding the dependence of different
components and mathematical variables of the framework, which we will introduce
below.

5.2.1 The CNN + Transformer network for audio

In this chapter we use the standard architectural setup for self-supervised learning
with audio (Baevski et al., 2020a; Hsu et al., 2021; Chen et al., 2022a). First, the

72

5. The effect of batch size on contrastive self-supervised speech representation learning

Figure 4:  Schematic overview of the wav2vec 2.0 framework during self-supervision.
Dashed arrows indicate a projection using a linear layer without activation to match
a target dimension.

raw audio is processed into speech features with a 1-d convolutional neural network
(CNN) called the feature encoder. This network has 7 convolutional layers, all of them
with 512 channels. For each respective layer, the kernel sizes are [10, 3, 3, 3, 3, 2, 2]
with strides [5, 2, 2, 2, 2, 2, 2]. We include padding of [3, 1, 1, 1, 1, 0, 0] on both
sides in order to change the output rate of the CNN to 50 feature vectors per second
of audio, instead of slightly less as in (Baevski et al., 2020a). Each layer is followed
by GELU activation, with tanh approximation. For the first convolutional layer, each
output channel (thus, along the time dimension) is independently normalized to a
learned mean and variance, by using GroupNorm (Wu and He, 2018) with 512 groups
and a learnable affine transform, before applying the activation function. The CNN is
followed by a gradient scaling layer, which during the forward pass acts as an identity
function, but during the backward pass multiplies the global gradient with a constant.
Hereby the magnitude of the gradients of the CNN can be controlled. The gradient
scale constant is set to 1

10  (Baevski et al., 2020a). Mathematically, the feature encoder

73



5.2 Methodology

𝑓𝑓(⋅) processes the raw 16 kHz audio segment 𝐗𝐗 = 𝐱𝐱1, . . . , 𝐱𝐱𝑟𝑟 to a sequence of latent
speech feature vectors 𝐙𝐙 = 𝐳𝐳1, . . . , 𝐳𝐳𝑇𝑇 , with 𝑇𝑇 = ⌊ 𝑟𝑟

320⌋.
The latent speech feature vectors are a local representation of the speech signal, in
that each vector encapsulates speech factors in a window of 20 ms. A vanilla encoder-
only transformer network called the context network is used to create contextualized
representations based on the local representations. Due to self-attention in the
transformer network, a contextual representation encapsulates speech factors from
the entire audio segment. In the BASE configuration, the transformer network has 12
layers, with an hidden dimension of 768 in the self-attention module, 12 attention
heads, and a scale-up to 2048 dimensions in the feed-forward network, with GELU
activation. In the LARGE configuration, there are 24 layers, 1024 hidden dimensions, 16
attention heads, and a scale-up to 4096 dimensions. LayerNorm (Lei Ba et al., 2016)
is applied after the residual self-attention and feed-forward operations, such that the
contextual representations follow a multivariate normal distribution with a learned
mean and variance, before a learned transformation is applied.
The local representation sequence 𝐙𝐙 cannot directly be used as input to the trans-
former network. First, LayerNorm is applied, so that each feature vector 𝐳𝐳𝐢𝐢 ∈ 𝐙𝐙 follows
a learned multivariate normal distribution. Then, a single linear layer (without acti-
vation) projects the local representation from 512 to 768 dimensions. The projected
representations are then masked, which is described in more detail in Section 5.2.2.
The masking is an important aspect for pre-training, but is also beneficial during
fine-tuning. During inference no masking is done. As transformers need explicit
positional information, a relative positional embedding is computed from the masked
latent vectors, with a single convolutional layer, followed by GELU activation. The
convolutional layer has 768 output channels, a kernel size of 128, padding of 64 on
both sides, and 16 groups. Moreover, weight normalization (Salimans and Kingma,
2016) is applied on the kernel weights to aid convergence speed. The stride is 1,
therefore a relative positional embedding can be added to each latent vector. Due to
this summation, the input vectors of the transformer have a context of 1.25 seconds
from both sides.
To regularize the network, dropout is applied on 3 locations16 in the transformer
layers, namely on the self-attention scores (before weighted sum of values), on the
output of the self-attention module (before residual addition), and on the output of
the feed-forward network (before residual addition).
To allow for independent modifications to the dimensions of each component in
wav2vec 2.0, there are three so-called projection layers, consisting of a single fully-
connected layer without activation. In our notation we will use the accent ′ to
indicate a projected vector. The first projection layer is before the context network

16In (Baevski et al., 2020a) dropout is also applied on the latent speech features, after the
projection layer. Additionally during SSL only, it is applied before quantization as well. They also
apply LayerDrop, which we skip to simplify the data-parallel implementation.

74



5.2 Methodology

𝑓𝑓(⋅) processes the raw 16 kHz audio segment 𝐗𝐗 = 𝐱𝐱1, . . . , 𝐱𝐱𝑟𝑟 to a sequence of latent
speech feature vectors 𝐙𝐙 = 𝐳𝐳1, . . . , 𝐳𝐳𝑇𝑇 , with 𝑇𝑇 = ⌊ 𝑟𝑟

320⌋.
The latent speech feature vectors are a local representation of the speech signal, in
that each vector encapsulates speech factors in a window of 20 ms. A vanilla encoder-
only transformer network called the context network is used to create contextualized
representations based on the local representations. Due to self-attention in the
transformer network, a contextual representation encapsulates speech factors from
the entire audio segment. In the BASE configuration, the transformer network has 12
layers, with an hidden dimension of 768 in the self-attention module, 12 attention
heads, and a scale-up to 2048 dimensions in the feed-forward network, with GELU
activation. In the LARGE configuration, there are 24 layers, 1024 hidden dimensions, 16
attention heads, and a scale-up to 4096 dimensions. LayerNorm (Lei Ba et al., 2016)
is applied after the residual self-attention and feed-forward operations, such that the
contextual representations follow a multivariate normal distribution with a learned
mean and variance, before a learned transformation is applied.
The local representation sequence 𝐙𝐙 cannot directly be used as input to the trans-
former network. First, LayerNorm is applied, so that each feature vector 𝐳𝐳𝐢𝐢 ∈ 𝐙𝐙 follows
a learned multivariate normal distribution. Then, a single linear layer (without acti-
vation) projects the local representation from 512 to 768 dimensions. The projected
representations are then masked, which is described in more detail in Section 5.2.2.
The masking is an important aspect for pre-training, but is also beneficial during
fine-tuning. During inference no masking is done. As transformers need explicit
positional information, a relative positional embedding is computed from the masked
latent vectors, with a single convolutional layer, followed by GELU activation. The
convolutional layer has 768 output channels, a kernel size of 128, padding of 64 on
both sides, and 16 groups. Moreover, weight normalization (Salimans and Kingma,
2016) is applied on the kernel weights to aid convergence speed. The stride is 1,
therefore a relative positional embedding can be added to each latent vector. Due to
this summation, the input vectors of the transformer have a context of 1.25 seconds
from both sides.
To regularize the network, dropout is applied on 3 locations16 in the transformer
layers, namely on the self-attention scores (before weighted sum of values), on the
output of the self-attention module (before residual addition), and on the output of
the feed-forward network (before residual addition).
To allow for independent modifications to the dimensions of each component in
wav2vec 2.0, there are three so-called projection layers, consisting of a single fully-
connected layer without activation. In our notation we will use the accent ′ to
indicate a projected vector. The first projection layer is before the context network

16In (Baevski et al., 2020a) dropout is also applied on the latent speech features, after the
projection layer. Additionally during SSL only, it is applied before quantization as well. They also
apply LayerDrop, which we skip to simplify the data-parallel implementation.

74

5. The effect of batch size on contrastive self-supervised speech representation learning

𝑔𝑔(⋅), where the projection operates on normalized 𝐳𝐳. This 𝐳𝐳′ is masked by a masking
function 𝑚𝑚(𝐳𝐳′). Then, the context network processes the masked local representa-
tions 𝐙̂𝐙′ = 𝐳̂𝐳′

1, . . . , 𝐳̂𝐳′
𝑇𝑇  to contextual representations 𝐂𝐂 = 𝐜𝐜1, . . . , 𝐜𝐜𝑇𝑇 . We will write

𝐂𝐂 = 𝑔𝑔(𝐙̂𝐙′) to indicate that each representation 𝐜𝐜𝑡𝑡 had access to the entire sequence
𝐙̂𝐙′. The other locations where projection occurs is in the the computation of the
contrastive loss, which we will describe below.

5.2.2 Self-supervision with contrastive learning

In this chapter we study only one self-supervised learning approach for speech repre-
sentation learning, namely wav2vec 2.0 (Baevski et al., 2020a). Intuitively, the pretext
task is to mask multiple regions of 𝐙𝐙, the local speech representation sequence, and
feed this into the context network to predict the masked-out representations. By
enforcing contrast, i.e., dissimilarity, between predicted representations, the feature
encoder has to place different information at different locations in the sequence 𝐙𝐙.
This can be seen as an intrinsic bias to learn phonetic units, as phones are also
expected to differ throughout an utterance of speech. However, the context network
does not directly predict masked 𝐳𝐳𝑡𝑡 values. Instead, each 𝐳𝐳𝑡𝑡 is mapped to a quantized
vector 𝐪𝐪𝑡𝑡. This 𝐪𝐪𝑡𝑡 is part of a learned discrete set, and can be seen as a cluster centroid
of the latent speech representation space, the cluster including 𝐳𝐳𝑡𝑡. It is this 𝐪𝐪𝑡𝑡 the
context network is trained to predict. This is an additional intrinsic bias to learn
phonetic units, as speech naturally clusters into acoustic units related to phonemes.
We will follow with a detailed description of the quantization process, the masking
strategy, and the objective function(s) of the pretext task.

Quantization

Each 𝐳𝐳𝑡𝑡 in a sequence is individually classified to a quantized vector 𝐪𝐪𝑡𝑡, thereby
creating 𝐐𝐐 = 𝐪𝐪1, . . . , 𝐪𝐪𝑇𝑇 . The possible quantized vectors are learned, and represented
by codebook s, discrete sets of real-valued vectors. A codebook 𝐺𝐺 is a set of 𝑉𝑉  entries
(vectors, or codewords) of a particular dimension 𝑑𝑑𝐺𝐺, representable as a matrix of size
𝑉𝑉 × 𝑑𝑑𝐺𝐺. A single linear layer with softmax activation can be used to get a probability
distribution over 𝑉𝑉  different classes. The class with maximum probability can then
be used to determine 𝐪𝐪𝑡𝑡 from 𝐳𝐳𝑡𝑡. To (efficiently) increase the number of possible
vectors, multiple codebooks and linear layers can be used, where the final quantized
vector is the concatenation of the classification result from each codebook. In the
BASE configuration of wav2vec 2.0 there are two codebooks with each 𝑉𝑉 = 320 entries
of size 𝑑𝑑𝐺𝐺 = 128, resulting in 3202 = 102 400 quantized vectors with dimensionality
𝑑𝑑𝑞𝑞 = 256. In the LARGE configuration 𝑑𝑑𝐺𝐺 = 384, resulting in 𝑑𝑑𝑞𝑞 = 768.
However, the procedure above is not differentiable due to the selection operation.
This is circumvented by using the gumbel-softmax operation (Jang et al., 2017) after
the linear layer, instead of using argmax on the softmax output. The gumbel-softmax
returns a one-hot logits vector during the forward pass, which implies that the discrete

75



5.2 Methodology

vector can be (differentially) selected with a weighted sum of the one-hot logits over
the entries of 𝑉𝑉  in 𝐺𝐺. Additionally, like softmax, the gumbel-softmax can be controlled
with a temperature parameter 𝜏𝜏 . At the start of training, 𝜏𝜏 = 2, which makes the
gradient of codebook entries more uniform. This is gradually decreased to 𝜏𝜏 = 0.5
with a step-wise factor of 0.999995 during training, which makes the gradient of the
non-selected codebook entries smaller.

Masking

The masking is done in the context network, after the normalization and projection,
but before computing the relative positional embedding. The mask consists of multiple
regions of 𝐿𝐿𝑚𝑚 = 10 consecutive latent speech vectors which are all replaced by the
same (learned) mask vector. In total 𝑝𝑝𝑚𝑚 = 50% of the latent vector sequence 𝑍𝑍 are
masked, with the possibility that some regions overlap. The set of time steps where
masking is applied is indicated by 𝐌𝐌. Formally, we write ̂𝐳𝐳𝑡𝑡 = 𝑚𝑚(𝐳𝐳𝑡𝑡), where 𝑚𝑚(⋅) is the
masking function. The number of mask regions for a given length 𝑇𝑇  is 𝑛𝑛𝑟𝑟 = ⌊𝑇𝑇 𝑝𝑝𝑚𝑚

𝐿𝐿𝑚𝑚
⌋.

The length 𝑇𝑇  is excluding potential padding vectors, in the case a batch of utterances
have different length. The starting positions of the masked regions is determined by
randomly choosing 𝑛𝑛𝑟𝑟 = ⌊ 𝑇𝑇

20⌋ distinct time indices in the range 1, . . . , 𝑇𝑇 .

Objective function

The objective function during self-supervised pre-training consists of a weighted sum
of the main contrastive loss ℒ𝑐𝑐, together with an auxiliary diversity loss ℒ𝑑𝑑 with
weighing 𝜆𝜆𝑑𝑑, and an auxiliary 𝐿𝐿2-penalty loss ℒ𝑝𝑝 with weighting 𝜆𝜆𝑝𝑝:

ℒssl = ℒ𝑐𝑐 + 𝜆𝜆𝑑𝑑ℒ𝑑𝑑 + 𝜆𝜆𝑝𝑝ℒ𝑝𝑝

Contrastive loss

The contrastive loss ℒ𝑐𝑐 encapsulates the pretext task, where we use the masked 𝐙̂𝐙′ as
input to the transformer in 𝑔𝑔(⋅), which has to predict the cluster centroids 𝐐𝐐 of the
masked values in the output 𝐂𝐂. This prediction is done contrastively, such that for
a given 𝐪𝐪𝑡𝑡, the predicted value at 𝐜𝐜𝑡𝑡 needs to be as similar as possible. At the same
time, 𝐜𝐜𝑡𝑡 needs to be as dissimilar as possible to time steps in 𝐐𝐐 \ {𝑞𝑞𝑡𝑡}. Dissimilarity
is encouraged by sampling 𝑘𝑘 distractors from 𝐐𝐐. The network is explicitly penalized
if 𝐜𝐜𝑡𝑡 is similar to any distractors sampled from 𝐐𝐐. Similarity is measured with the
cosine similarity, written as sim(𝐚𝐚, 𝐛𝐛). The loss can then be defined as

ℒ𝑐𝑐(𝐂𝐂, 𝐐𝐐, 𝐌𝐌) = ∑
𝑡𝑡∈𝐌𝐌

− log

(
((
((
((
((
( exp(sim(𝐜𝐜′

𝑡𝑡, 𝐪𝐪′
𝑡𝑡)

𝜏𝜏𝑐𝑐
)

∑
𝑑𝑑∈𝐷𝐷𝑡𝑡∪{𝑡𝑡}

exp(sim(𝐜𝐜′
𝑡𝑡, 𝐪𝐪′

𝑑𝑑)
𝜏𝜏𝑐𝑐

)
)
))
))
))
))
)

76



5.2 Methodology

vector can be (differentially) selected with a weighted sum of the one-hot logits over
the entries of 𝑉𝑉  in 𝐺𝐺. Additionally, like softmax, the gumbel-softmax can be controlled
with a temperature parameter 𝜏𝜏 . At the start of training, 𝜏𝜏 = 2, which makes the
gradient of codebook entries more uniform. This is gradually decreased to 𝜏𝜏 = 0.5
with a step-wise factor of 0.999995 during training, which makes the gradient of the
non-selected codebook entries smaller.

Masking

The masking is done in the context network, after the normalization and projection,
but before computing the relative positional embedding. The mask consists of multiple
regions of 𝐿𝐿𝑚𝑚 = 10 consecutive latent speech vectors which are all replaced by the
same (learned) mask vector. In total 𝑝𝑝𝑚𝑚 = 50% of the latent vector sequence 𝑍𝑍 are
masked, with the possibility that some regions overlap. The set of time steps where
masking is applied is indicated by 𝐌𝐌. Formally, we write ̂𝐳𝐳𝑡𝑡 = 𝑚𝑚(𝐳𝐳𝑡𝑡), where 𝑚𝑚(⋅) is the
masking function. The number of mask regions for a given length 𝑇𝑇  is 𝑛𝑛𝑟𝑟 = ⌊𝑇𝑇 𝑝𝑝𝑚𝑚

𝐿𝐿𝑚𝑚
⌋.

The length 𝑇𝑇  is excluding potential padding vectors, in the case a batch of utterances
have different length. The starting positions of the masked regions is determined by
randomly choosing 𝑛𝑛𝑟𝑟 = ⌊ 𝑇𝑇

20⌋ distinct time indices in the range 1, . . . , 𝑇𝑇 .

Objective function

The objective function during self-supervised pre-training consists of a weighted sum
of the main contrastive loss ℒ𝑐𝑐, together with an auxiliary diversity loss ℒ𝑑𝑑 with
weighing 𝜆𝜆𝑑𝑑, and an auxiliary 𝐿𝐿2-penalty loss ℒ𝑝𝑝 with weighting 𝜆𝜆𝑝𝑝:

ℒssl = ℒ𝑐𝑐 + 𝜆𝜆𝑑𝑑ℒ𝑑𝑑 + 𝜆𝜆𝑝𝑝ℒ𝑝𝑝

Contrastive loss

The contrastive loss ℒ𝑐𝑐 encapsulates the pretext task, where we use the masked 𝐙̂𝐙′ as
input to the transformer in 𝑔𝑔(⋅), which has to predict the cluster centroids 𝐐𝐐 of the
masked values in the output 𝐂𝐂. This prediction is done contrastively, such that for
a given 𝐪𝐪𝑡𝑡, the predicted value at 𝐜𝐜𝑡𝑡 needs to be as similar as possible. At the same
time, 𝐜𝐜𝑡𝑡 needs to be as dissimilar as possible to time steps in 𝐐𝐐 \ {𝑞𝑞𝑡𝑡}. Dissimilarity
is encouraged by sampling 𝑘𝑘 distractors from 𝐐𝐐. The network is explicitly penalized
if 𝐜𝐜𝑡𝑡 is similar to any distractors sampled from 𝐐𝐐. Similarity is measured with the
cosine similarity, written as sim(𝐚𝐚, 𝐛𝐛). The loss can then be defined as

ℒ𝑐𝑐(𝐂𝐂, 𝐐𝐐, 𝐌𝐌) = ∑
𝑡𝑡∈𝐌𝐌

− log

(
((
((
((
((
( exp(sim(𝐜𝐜′

𝑡𝑡, 𝐪𝐪′
𝑡𝑡)

𝜏𝜏𝑐𝑐
)

∑
𝑑𝑑∈𝐷𝐷𝑡𝑡∪{𝑡𝑡}

exp(sim(𝐜𝐜′
𝑡𝑡, 𝐪𝐪′

𝑑𝑑)
𝜏𝜏𝑐𝑐

)
)
))
))
))
))
)

76

5. The effect of batch size on contrastive self-supervised speech representation learning

where 𝐷𝐷𝑡𝑡 is random sample of 𝑘𝑘 values from 𝐌𝐌 \ {𝑡𝑡}. Note that at any time the current
time step 𝑡𝑡 is excluded from the sampling. The values 𝐜𝐜𝑡𝑡 and 𝐪𝐪𝑡𝑡, with dimensionality
𝑑𝑑𝑐𝑐 = 768 and 𝑑𝑑𝑞𝑞 = 256 in the BASE configuration, are respectively projected to 𝐜𝐜𝑡𝑡′ and
𝐪𝐪𝑡𝑡′ , both with dimension 𝑑𝑑sim = 𝑑𝑑𝑞𝑞 so that the cosine similarity can be computed. A
temperature 𝜏𝜏𝑐𝑐 = 0.1 leads to a hard softmax distribution, controlling the gradient
to focus on making correct predictions more than being dissimilar to distractors. The
contrastive loss can be interpreted as a standard 1 + 𝑘𝑘 classification task with the
cross-entropy criterion. The logits are provided by sim, softmax is applied over the
logits, and the target is always the class index representing 𝑞𝑞𝑡𝑡.

Diversity loss

A shortcut to optimizing the contrastive loss is to map all values in 𝐙𝐙 to the
same quantized vector. To prevent this, a diversity loss is applied, which encourages
uniform predictions over the codebook entries. A codebook 𝐺𝐺 with 𝑉𝑉  entries has
classified the sequence 𝐙𝐙 to 𝐐𝐐, using logits from a softmax activations of a linear
layer 𝐏𝐏 = 𝐩𝐩1, . . . , 𝐩𝐩𝑇𝑇 . For uniform predictions the average probability distribution

𝐩̃𝐩 = 1
𝑇𝑇

∑
𝑇𝑇

𝑡𝑡=1
𝐩𝐩𝑡𝑡

should be flat. In this best case, the entropy 𝐻𝐻(𝐩̃𝐩) = log 𝑉𝑉 , and the perplexity
𝑒𝑒𝐻𝐻(𝐩̃𝐩) = 𝑉𝑉 . In the shortcut case, a single class has probability 1, which means the
entropy 𝐻𝐻(𝐩̃𝐩) = 0 and the perplexity 1. Therefore, to penalize a shortcut case, and
hopefully preventing it from occurring, the diversity loss minimizes the number of
the entries in a codebook subtracted by the perplexity of the predictions:

ℒ𝑑𝑑(𝐏𝐏) = 𝑉𝑉 − exp
(
((− ∑

𝑑𝑑𝑞𝑞

𝑗𝑗=1
𝑝𝑝(𝑗𝑗) log 𝑝𝑝(𝑗𝑗)

)
))

where 𝑝𝑝(𝑗𝑗) is the 𝑗𝑗th component of 𝐩̃𝐩. Note that for the diversity loss, the logits of
the linear layer are activated with vanilla softmax, while the selection of 𝑄𝑄 is done
by activating the logits with the gumbel softmax (including a temperature 𝜏𝜏). In
practise, there can be multiple codebooks, in our case we have 𝐺𝐺1 and 𝐺𝐺2, with equal
number of entries 𝑉𝑉  and dimension 𝑑𝑑𝐺𝐺. We compute the loss separately for both
codebooks and sum the result. The weighting 𝜆𝜆𝑑𝑑 = 1

10  throughout this work.

𝐿𝐿2-penalty loss

The third loss is a regularization term, which keeps the values of 𝐙𝐙 as small as possible.
This loss is defined as

ℒ𝑝𝑝(𝐙𝐙) = 1
𝑇𝑇 𝑑𝑑𝑧𝑧

∑
𝑇𝑇

𝑡𝑡=1
∑
𝑑𝑑𝑧𝑧

𝑗𝑗=1
(𝑧𝑧(𝑗𝑗)

𝑡𝑡 )
2

77



5.2 Methodology

where 𝑧𝑧(𝑗𝑗)
𝑡𝑡  is the 𝑗𝑗th component of 𝐳𝐳𝑡𝑡, and 𝑑𝑑𝑧𝑧 = 512. The weighting 𝜆𝜆𝑝𝑝 = 10 through-

out this work.

5.2.3 Batch creation

The methodology description so far has assumed a single utterance 𝐗𝐗, while training is
done with a batch of the dataset, split into multiple gpu-batches for distributed data-
parallel training. For pre-training we mainly use the Librispeech dataset, implying
utterances have variable lengths, at minimum 0.83 seconds, and at most 30 seconds.
As each utterance in a gpu-batch needs to have the same length, all but the longest
raw waveform in a batch are padded with zeros. To minimize the amount of padding,
the utterances are sorted by length, and put into bins of 5000 utterances. Each
gpu-batch is sampled from only a single bin. Random samples from the bin feed a
priority queue of length 300, from which gpu-batches are formed by taking samples
prioritized by shortest or longest duration, whichever results in the fewest padding,
until the total speech duration in the gpu-batch exceeds a threshold, in our case 2.4 M
samples. Because of limitation in GPU memory caching, a gpu-batch is discarded if
the difference between the shortest and longest utterance is more than 10 seconds.
This helped alleviate spontaneous CUDA out-of-memory errors.
The CNN also processes the padded part of utterances. However, all time steps with
a 𝐳𝐳𝑡𝑡 which results purely from padding in the raw waveform are ignored in the self-
attention of the transformer by setting their attention score to −∞. When creating
the mask 𝐌𝐌, the padded vectors 𝐳𝐳𝑡𝑡 are also not considered part of the utterance. The
contrastive loss is computed independently for each masked token in each utterance
of the gpu-batch, and summed afterwards. For the diversity loss, the probability
distribution 𝐩̃𝐩 is computed by averaging over the predictions of all tokens of all
utterances in the gpu-batch, before computing the perplexity. The 𝐿𝐿2-penalty loss is
simply the mean of each representation value in the gpu-batch. The gradient resulting
from each gpu-batch are averaged before the weights of the networks are updated.

5.2.4 Fine-tuning for ASR with varying amount of labels

To (fully) fine-tune a pre-trained model for speech recognition, 𝐙𝐙 and 𝐂𝐂 can be
computed from 𝐗𝐗, disregarding the quantization. The network still applies a mask,
but only 𝑝𝑝𝑚𝑚 = 5% of the utterance is replaced with the learned masking vector. This
acts as a regularization method, similar to SpecAugment (Park et al., 2019). Each
vector 𝐜𝐜𝑖𝑖 ∈ 𝐂𝐂 can be separately classified to a character (or blank) with a softmax-
activated linear layer, and optimized with CTC loss (Graves et al., 2006). The CNN
is not updated during fine-tuning, and the transformer network is only updated after
the first 5 k iterations. We fine-tune on 10 min, 1 hour, 10 hours, 100 hours and 960
hours of Librispeech following (Baevski et al., 2020a).

78



5.2 Methodology

where 𝑧𝑧(𝑗𝑗)
𝑡𝑡  is the 𝑗𝑗th component of 𝐳𝐳𝑡𝑡, and 𝑑𝑑𝑧𝑧 = 512. The weighting 𝜆𝜆𝑝𝑝 = 10 through-

out this work.

5.2.3 Batch creation

The methodology description so far has assumed a single utterance 𝐗𝐗, while training is
done with a batch of the dataset, split into multiple gpu-batches for distributed data-
parallel training. For pre-training we mainly use the Librispeech dataset, implying
utterances have variable lengths, at minimum 0.83 seconds, and at most 30 seconds.
As each utterance in a gpu-batch needs to have the same length, all but the longest
raw waveform in a batch are padded with zeros. To minimize the amount of padding,
the utterances are sorted by length, and put into bins of 5000 utterances. Each
gpu-batch is sampled from only a single bin. Random samples from the bin feed a
priority queue of length 300, from which gpu-batches are formed by taking samples
prioritized by shortest or longest duration, whichever results in the fewest padding,
until the total speech duration in the gpu-batch exceeds a threshold, in our case 2.4 M
samples. Because of limitation in GPU memory caching, a gpu-batch is discarded if
the difference between the shortest and longest utterance is more than 10 seconds.
This helped alleviate spontaneous CUDA out-of-memory errors.
The CNN also processes the padded part of utterances. However, all time steps with
a 𝐳𝐳𝑡𝑡 which results purely from padding in the raw waveform are ignored in the self-
attention of the transformer by setting their attention score to −∞. When creating
the mask 𝐌𝐌, the padded vectors 𝐳𝐳𝑡𝑡 are also not considered part of the utterance. The
contrastive loss is computed independently for each masked token in each utterance
of the gpu-batch, and summed afterwards. For the diversity loss, the probability
distribution 𝐩̃𝐩 is computed by averaging over the predictions of all tokens of all
utterances in the gpu-batch, before computing the perplexity. The 𝐿𝐿2-penalty loss is
simply the mean of each representation value in the gpu-batch. The gradient resulting
from each gpu-batch are averaged before the weights of the networks are updated.

5.2.4 Fine-tuning for ASR with varying amount of labels

To (fully) fine-tune a pre-trained model for speech recognition, 𝐙𝐙 and 𝐂𝐂 can be
computed from 𝐗𝐗, disregarding the quantization. The network still applies a mask,
but only 𝑝𝑝𝑚𝑚 = 5% of the utterance is replaced with the learned masking vector. This
acts as a regularization method, similar to SpecAugment (Park et al., 2019). Each
vector 𝐜𝐜𝑖𝑖 ∈ 𝐂𝐂 can be separately classified to a character (or blank) with a softmax-
activated linear layer, and optimized with CTC loss (Graves et al., 2006). The CNN
is not updated during fine-tuning, and the transformer network is only updated after
the first 5 k iterations. We fine-tune on 10 min, 1 hour, 10 hours, 100 hours and 960
hours of Librispeech following (Baevski et al., 2020a).

78

5. The effect of batch size on contrastive self-supervised speech representation learning

5.2.5 Frozen fine-tuning using the SUPERB benchmark

Another fine-tuning strategy is used in the SUPERB benchmark (Yang et al., 2021),
where the (upstream) CNN and transformer layers will be frozen and used only to
generate input features for a task-dependent, small downstream model, e.g., a 2-layer
biLSTM for speech recognition, or a single dense layer followed by mean pooling for
speaker identification. The input features 𝐅𝐅 = 𝐟𝐟1, . . . , 𝐟𝐟𝑇𝑇  are a weighted-sum of 𝐙𝐙′

and 𝐂𝐂, i.e., 𝐟𝐟𝑡𝑡 = 𝑤𝑤0𝐳𝐳′
𝑡𝑡 + ∑𝐼𝐼

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝐜𝐜
{𝑖𝑖}
𝑡𝑡 , where {𝑖𝑖} indicates the output sequence of the

𝑖𝑖th transformer layer. This is in contrast with pre-training and full fine-tuning, where
only the last output sequence is considered, i.e., 𝐼𝐼 = 12 for BASE or 𝐼𝐼 = 24 for LARGE.
The weights 𝑤𝑤𝑖𝑖 are learned during fine-tuning. We use a subset of tasks in (Yang et
al., 2021) to limit computational resources, while including at least one task from 4
out of the 5 categories: phoneme recognition (content), ASR in English (content), out-
of-distribution ASR in Mandarin (content), speaker verification (speaker), emotion
recognition (prosody), and intent classification (semantics). We use the default down-
stream model for each task, and keep most settings to the default value. We make the
following modifications to reduce the run-time: half- instead of single-precision floats,
200 k instead of 500 k train steps for Mandarin ASR, and gradient accumulation of 1
for all tasks, while increasing the batch size such that the effective batch size is equal
to the default settings. A constant learning rate of 10−4 is used for all tasks.

5.3 Experiments

5.3.1 Pre-training with different batch sizes

The first experiment aims to directly answer RQ 1, and is a prerequisite for answering
all others.

Setup

We pre-train the BASE wav2vec 2.0 network with batch sizes ranging from 87.5 seconds
to 80 minutes of audio, as seen in Table 11. Each pre-training starts with the same
initial weights, and we use all 960 hours of training data in Librispeech (Panayotov
et al., 2015), with 5 % held-out randomly as a validation set. We validate and store
a checkpoint every 5 k steps. We adhere to the hyperparameters as published in the
seminal paper (Baevski et al., 2020a) as much as possible. We use 400 k training
iterations with AdamW (Loshchilov and Hutter, 2019), a weight decay of 10−2, and
scan over 3 learning rates (LRs), based on choices explained below. We change from
a tri-stage LR schedule to a 8-cycle triangular LR schedule, where one cycle has 25 k
linear steps up and 25 k linear steps down. This allows us to fairly compare fine-tuning
results of checkpoints at multiples of 50 k iterations. The minimum LR of the cycle is
100 times smaller than the maximum LR. We show the maximum LRs in Table 11.
We also use GPUs (A5000) with at least 24 GB of VRAM , and therefore fill each
GPU with a maximum of 2.4 M audio samples (150 seconds) for full utilization of the

79



5.3 Experiments

Table 11:  All batch sizes used for SSL pre-training, together with the number of
GPUs, the number of gradient accumulation steps (acc.), the runtime in days and
hours of a single run, and three possible learning rate heuristics. The bold learning
rates resulted in the lowest validation loss. For the 80-minute batch size setting, we
only tried one learning rate.

batch size learning rate heuristics
sec min GPUs acc. runtime ℎconst ℎsqrt ℎlin

87.5 1.5 1 1 1d 13h 5.00 ⋅ 10−4 6.04 ⋅ 10−5 7.29 ⋅ 10−6

150 2.5 1 1 2d 4h 5.00 ⋅ 10−4 7.91 ⋅ 10−5 1.25 ⋅ 10−5

300 5 1 2 3d 22h 5.00 ⋅ 10−4 1.12 ⋅ 10−4 2.50 ⋅ 10−5

600 10 4 1 2d 14h 5.00 ⋅ 10−4 1.58 ⋅ 10−4 5.00 ⋅ 10−5

1200 20 2 4 7d 20h 5.00 ⋅ 10−4 2.24 ⋅ 10−4 1.00 ⋅ 10−4

2400 40 4 4 7d 18h 5.00 ⋅ 10−4 3.16 ⋅ 10−4 2.00 ⋅ 10−4

4800 80 8 4 7d 19h 5.00 ⋅ 10−4 - -

device, which compares to 1.4 M samples (87.5 seconds, 90 minutes batch size with
64 GPUs) in (Baevski et al., 2020a). The experiments, including initial development
runs, took 246 days of GPU time.
For each batch size of duration 𝑠𝑠, we need to find a well-performing maximum
learning rate for the cyclic schedule. As a full hyperparameter search would exceed
our computational budget, we use heuristics to choose three different learning rates,
and settle on a run with the lowest overall validation loss. The first heuristic is the
linear scaling law from (Goyal et al., 2018). As a reference, a maximum learning rate
of 𝑚𝑚lr = 5 ⋅ 10−4 was used in (Baevski et al., 2020a) together with a batch size of circa
1.6 hours. Therefore we use

ℎlin(𝑠𝑠) = 𝑚𝑚lr
𝑠𝑠

𝑠𝑠orig

as the first heuristic for the learning rate, with 𝑠𝑠orig = 6000 seconds. In (Baevski et
al., 2020a) a batch size of 5600 seconds is used, but we use 6000 seconds for this
heuristic calculation so that ℎlin rounds nicely. We still find well-performing LRs. The
second heuristic

ℎsqrt(𝑠𝑠) = 𝑚𝑚lr√
𝑠𝑠

𝑠𝑠orig

applies the square root scaling law according to (Malladi et al., 2022). For each batch
size we also try the constant

ℎconst(𝑠𝑠) = 𝑚𝑚lr

although this led to divergence for 𝑠𝑠 ≤ 600 seconds.

80



5.3 Experiments

Table 11:  All batch sizes used for SSL pre-training, together with the number of
GPUs, the number of gradient accumulation steps (acc.), the runtime in days and
hours of a single run, and three possible learning rate heuristics. The bold learning
rates resulted in the lowest validation loss. For the 80-minute batch size setting, we
only tried one learning rate.

batch size learning rate heuristics
sec min GPUs acc. runtime ℎconst ℎsqrt ℎlin

87.5 1.5 1 1 1d 13h 5.00 ⋅ 10−4 6.04 ⋅ 10−5 7.29 ⋅ 10−6

150 2.5 1 1 2d 4h 5.00 ⋅ 10−4 7.91 ⋅ 10−5 1.25 ⋅ 10−5

300 5 1 2 3d 22h 5.00 ⋅ 10−4 1.12 ⋅ 10−4 2.50 ⋅ 10−5

600 10 4 1 2d 14h 5.00 ⋅ 10−4 1.58 ⋅ 10−4 5.00 ⋅ 10−5

1200 20 2 4 7d 20h 5.00 ⋅ 10−4 2.24 ⋅ 10−4 1.00 ⋅ 10−4

2400 40 4 4 7d 18h 5.00 ⋅ 10−4 3.16 ⋅ 10−4 2.00 ⋅ 10−4

4800 80 8 4 7d 19h 5.00 ⋅ 10−4 - -

device, which compares to 1.4 M samples (87.5 seconds, 90 minutes batch size with
64 GPUs) in (Baevski et al., 2020a). The experiments, including initial development
runs, took 246 days of GPU time.
For each batch size of duration 𝑠𝑠, we need to find a well-performing maximum
learning rate for the cyclic schedule. As a full hyperparameter search would exceed
our computational budget, we use heuristics to choose three different learning rates,
and settle on a run with the lowest overall validation loss. The first heuristic is the
linear scaling law from (Goyal et al., 2018). As a reference, a maximum learning rate
of 𝑚𝑚lr = 5 ⋅ 10−4 was used in (Baevski et al., 2020a) together with a batch size of circa
1.6 hours. Therefore we use

ℎlin(𝑠𝑠) = 𝑚𝑚lr
𝑠𝑠

𝑠𝑠orig

as the first heuristic for the learning rate, with 𝑠𝑠orig = 6000 seconds. In (Baevski et
al., 2020a) a batch size of 5600 seconds is used, but we use 6000 seconds for this
heuristic calculation so that ℎlin rounds nicely. We still find well-performing LRs. The
second heuristic

ℎsqrt(𝑠𝑠) = 𝑚𝑚lr√
𝑠𝑠

𝑠𝑠orig

applies the square root scaling law according to (Malladi et al., 2022). For each batch
size we also try the constant

ℎconst(𝑠𝑠) = 𝑚𝑚lr

although this led to divergence for 𝑠𝑠 ≤ 600 seconds.

80

5. The effect of batch size on contrastive self-supervised speech representation learning

Moreover, we initially used a diversity loss weight 𝜆𝜆𝑑𝑑 = 0.1 as in (Baevski et al.,
2020a), but found this led to divergence of the diversity loss for the batch size of 87.5
seconds. By decreasing 𝜆𝜆𝑑𝑑 from 0.1 to 0.05, with the reasoning that the contrastive
loss is almost twice as small (only 1.4 M samples instead of 2.4 M), and the ratio
between the contrastive loss and the diversity loss should stay the same, we managed
to get converging results for the batch size of 87.5 seconds. This does seem counter-
intuitive as the original work uses 1.4 M samples on each of the 64 GPUs together
with 𝜆𝜆𝑑𝑑 = 0.1.

Results

First, we show various metrics during the training procedure in Figure 5. For each
batch size, the metrics of the run with the lowest validation loss are displayed. For the
contrastive loss (A), we see that overall a larger batch size leads to a lower contrastive
loss. Note that the smallest batch size, 87.5 seconds, has a different range because
the loss is sum-reduced over 1.4 M sampled instead of 2.4 M samples, we corrected
for this by doubling the values. For the diversity loss (B), we see that a large batch
size (40, 80 min) causes the loss to drop quickly, but then plateau. The other batch
sizes steadily decrease. Notably, for batch sizes of 10 and 20 minutes the diversity loss
surpassed the values of batch sizes 40 and 80 minutes after 150 k to 200 k steps. The
scale of the lowest batch size, 87.5 seconds, is halved, as 𝜆𝜆𝑑𝑑 = 0.05. We corrected for
this by multiplying the values by 2. The same patterns visible in the diversity loss are
also seen in the perplexity of the codebooks (H and I, with the vertical scale reversed).
Without exceptions, for the 𝐿𝐿2-penalty loss (C), larger batch sizes lead to a higher
loss. For accuracy (D), a larger batch size leads to higher accuracies. There are minor
differences between the perplexity of the codebooks. Note that the numbering of the
the codebooks is arbitrary. We decided that “codebook 1” generates the top half of
the quantized vectors 𝐪𝐪𝑖𝑖 ∈ 𝐐𝐐, and “codebook 2” generates the bottom half. The two
codebooks are initialized differently compared to each other, but these initializations
are constant for all training runs. First, we note that the perplexity values are slightly
lower in codebook 2. Secondly, the perplexity of a 10 min batch size grows larger in
codebook 1 than codebook 2. Also, in codebook 1, the perplexity of 80 min batch size
is larger than 40 min batch size, but in codebook 2, this is the other way around.
Secondly, we plot the similarity between codewords within the codebooks for each
batch size in Figure 6. We see that the average (A, B) and minimum (C, D) cosine
similarity between codewords only goes down steeply with large batch sizes (40 and 80
min). Additionally, for batch sizes of 10 and 20 minutes, we observe a lower minimum
similarity over the training procedure. For the maximum similarity values, we observe
that they stay relatively stable, although for the larger batch sizes they increase
slightly at the start of training, but decrease again during the training procedure,
which can be related to the decay strategy of 𝜏𝜏  used in the gumbel-softmax.

81



5.3 Experiments

Figure 5:  Various metrics on validation data (interval of 5 k training steps) during
self-supervised pre-training with different batch sizes, namely all three losses (A, B, C),
the accuracy of predicting the correct masked quantized vector (D), and the perplexity
of codebook 1 (E) and codebook 2 (F).
82



5.3 Experiments

Figure 5:  Various metrics on validation data (interval of 5 k training steps) during
self-supervised pre-training with different batch sizes, namely all three losses (A, B, C),
the accuracy of predicting the correct masked quantized vector (D), and the perplexity
of codebook 1 (E) and codebook 2 (F).
82

5. The effect of batch size on contrastive self-supervised speech representation learning

Figure 6:  The average, minimum, and maximum value of the pair-wise cosine
similarity of all codewords in codebook 1 (A, C, E) and codebook 2 (B, D, F) during
self-supervised pre-training for various batch sizes, with an interval of 100 steps.

83



5.3 Experiments

5.3.2 ASR fine-tuning with varying amounts of labels

The second experiment focuses on RQ 2. How is downstream fine-tuning affected by
the batch size during pre-training?

Setup

For each batch size in Table 11 we have self-supervised training runs of 400 k steps,
with checkpoints saved every 5 k steps. For each setting we select the run (and step)
with the lowest overall validation loss, resulting in a single checkpoint which is used
as initialization for training a speech recognition system. This is the checkpoint at
step 400 k for all runs, expect for batch size of 32 GPUs (80 minutes), which had the
lowest validation loss at step 305 k. For each of these selected checkpoints we perform
a fine-tuning on 10 minutes, 1 hour, 10 hours, 100 hours, and 960 hours of labeled
Librispeech data, with hyperparameters detailed below. We use the same number of
steps as in (Baevski et al., 2020a). We show results with greedy letter decoding and
word decoding using a 4-gram Librispeech language model. For word decoding we use
a beam size and threshold of 50, a language model weight of 2, and a word insertion
score of 0 for all settings. These experiments were done using one A5000 GPU, with
a maximum run-time of 2 days when fine-tuning with 960h of labels (320k steps). In
total 205 days of GPU time was used, including experiments in Section 5.3.4.
We use similar fine-tuning parameters for each labeled data condition as stated in
(Baevski et al., 2020a), but make some changes such that the only variation is in the
number of iterations. We use 12 k, 13 k, 20 k, 80 k and 320 k iterations, respectively
for 10 minutes, 1 hour, 10 hours, 100 hours, and 960 hours of labeled fine-tuning
data. We use a learning rate of 5 ⋅ 10−5 with Adam, not using weight decay. We use
the same tri-stage learning rate schedule, where the first 10% of iterations warm up
the LR linearly from 5 ⋅ 10−7 to 5 ⋅ 10−5, the next 40 % of iterations keep the LR
constant at 5 ⋅ 10−5, and the last 50 % of iterations exponentially decay the learning
rate from 5 ⋅ 10−5 to 2.5 ⋅ 10−6. We fine-tune with a single GPU, using a batch size of
3.2 M samples (200 seconds). The CNN network is frozen for all iterations, while the
Transformer network is frozen for the first 5 k iterations. Masking is applied on the 𝐙𝐙
sequence, but only 5 % of the sequence is masked. We do not apply masking on the
feature dimension. We also do not use LayerDrop, as we did not use LayerDrop during
pre-training to simplify data-parallelism. Dropout is set to 10 % in the Transformer
layer (also during SSL).

Results

We show the word-error-rate (WER), evaluated on Librispeech test-clean and
test-other, for each fine-tuning condition in Figure 7. Two clear patterns are visible.
First, independent of the amount of labels available, we observe that fine-tuning a
random initialization leads to the highest WER. Then, each consecutive increase in
the batch size during self-supervised learning leads to lower WERs after fine-tuning.

84



5.3 Experiments

5.3.2 ASR fine-tuning with varying amounts of labels

The second experiment focuses on RQ 2. How is downstream fine-tuning affected by
the batch size during pre-training?

Setup

For each batch size in Table 11 we have self-supervised training runs of 400 k steps,
with checkpoints saved every 5 k steps. For each setting we select the run (and step)
with the lowest overall validation loss, resulting in a single checkpoint which is used
as initialization for training a speech recognition system. This is the checkpoint at
step 400 k for all runs, expect for batch size of 32 GPUs (80 minutes), which had the
lowest validation loss at step 305 k. For each of these selected checkpoints we perform
a fine-tuning on 10 minutes, 1 hour, 10 hours, 100 hours, and 960 hours of labeled
Librispeech data, with hyperparameters detailed below. We use the same number of
steps as in (Baevski et al., 2020a). We show results with greedy letter decoding and
word decoding using a 4-gram Librispeech language model. For word decoding we use
a beam size and threshold of 50, a language model weight of 2, and a word insertion
score of 0 for all settings. These experiments were done using one A5000 GPU, with
a maximum run-time of 2 days when fine-tuning with 960h of labels (320k steps). In
total 205 days of GPU time was used, including experiments in Section 5.3.4.
We use similar fine-tuning parameters for each labeled data condition as stated in
(Baevski et al., 2020a), but make some changes such that the only variation is in the
number of iterations. We use 12 k, 13 k, 20 k, 80 k and 320 k iterations, respectively
for 10 minutes, 1 hour, 10 hours, 100 hours, and 960 hours of labeled fine-tuning
data. We use a learning rate of 5 ⋅ 10−5 with Adam, not using weight decay. We use
the same tri-stage learning rate schedule, where the first 10% of iterations warm up
the LR linearly from 5 ⋅ 10−7 to 5 ⋅ 10−5, the next 40 % of iterations keep the LR
constant at 5 ⋅ 10−5, and the last 50 % of iterations exponentially decay the learning
rate from 5 ⋅ 10−5 to 2.5 ⋅ 10−6. We fine-tune with a single GPU, using a batch size of
3.2 M samples (200 seconds). The CNN network is frozen for all iterations, while the
Transformer network is frozen for the first 5 k iterations. Masking is applied on the 𝐙𝐙
sequence, but only 5 % of the sequence is masked. We do not apply masking on the
feature dimension. We also do not use LayerDrop, as we did not use LayerDrop during
pre-training to simplify data-parallelism. Dropout is set to 10 % in the Transformer
layer (also during SSL).

Results

We show the word-error-rate (WER), evaluated on Librispeech test-clean and
test-other, for each fine-tuning condition in Figure 7. Two clear patterns are visible.
First, independent of the amount of labels available, we observe that fine-tuning a
random initialization leads to the highest WER. Then, each consecutive increase in
the batch size during self-supervised learning leads to lower WERs after fine-tuning.

84

5. The effect of batch size on contrastive self-supervised speech representation learning

Figure 7:  The WER (left column: Librispeech test-clean, right column: Librispeech
test-other) against the batch size during pre-training of a self-supervised initializa-
tion. The self-supervised models are fine-tuned for speech recognition using 5 different
magnitudes of labeled data. Scratch indicates fine-tuning a random initialization
instead of a self-supervised initialization. The upper row shows the WER with letter
decoding, while the bottom row shows the WER with word decoding using a 4-gram
language model.

There is one exception: on test-other, the 40 min batch size initialization performs
better than the 80 min batch size initialization, but only when fine-tuning with 10
or more hours of labeled data. We observed similar degraded performance after fine-
tuning the 400 k checkpoint with batch size of 80 minutes (not shown in Figure 7).
Secondly, having more labeled data for fine-tuning leads to a lower WER for each self-
supervised batch size. However, the larger the batch size, the smaller the difference in
WER between the amount of labels available during fine-tuning. Notably, (Baevski et
al., 2020a) reports 9 % and 47% WER on test-clean, respectively with and without a
language model, when fine-tuning with 10 minutes of labeled audio. In this experiment
we observe a WER of respectively 24 % and 41 % instead. This large difference in LM

85



5.3 Experiments

performance we attribute to our much smaller beam size in decoding. Finally, we see
diminishing returns at a batch size of 80 min.

5.3.3 Analysis on effectiveness of large batch sizes

So far, we have observed that larger batch sizes lead to a lower contrastive validation
loss, and less similarity between codewords. We have also seen that larger batches
result in better fine-tuning performance for speech recognition, irrespective of the
amount of labels available. Why are large batch sizes more effective? Are better
gradients approximations beneficial, or is the amount of observed data an explaining
factor?

Variance of gradients

First, we compare the gradient between different batch sizes. If the gradients are more
precise, and less noisy, with increased batch sizes, we expect the variance between

Figure 8:  The standard deviation of the gradient of ℒssl for each batch size, computed
over 10 random batches, and averaged over all parameters, against consecutive check-
points during pre-training.

86



5.3 Experiments

performance we attribute to our much smaller beam size in decoding. Finally, we see
diminishing returns at a batch size of 80 min.

5.3.3 Analysis on effectiveness of large batch sizes

So far, we have observed that larger batch sizes lead to a lower contrastive validation
loss, and less similarity between codewords. We have also seen that larger batches
result in better fine-tuning performance for speech recognition, irrespective of the
amount of labels available. Why are large batch sizes more effective? Are better
gradients approximations beneficial, or is the amount of observed data an explaining
factor?

Variance of gradients

First, we compare the gradient between different batch sizes. If the gradients are more
precise, and less noisy, with increased batch sizes, we expect the variance between

Figure 8:  The standard deviation of the gradient of ℒssl for each batch size, computed
over 10 random batches, and averaged over all parameters, against consecutive check-
points during pre-training.

86

5. The effect of batch size on contrastive self-supervised speech representation learning

gradients to decrease. To verify this we use the saved checkpoints (every 5 k steps)
during pre-training. For each checkpoint, we compute 10 gradient vectors using new,
independently sampled batches from the training set. These 10 batches are kept
constant over all checkpoints of the same batch size. We do not update the weights
during this process, and we do not use the AdamW optimizer state nor the learning
rate to scale the gradients. For each parameter, we separately compute the standard
deviation between gradient vectors, after which we average over the parameters to get
a standard deviation of the whole gradient, shown in Figure 8. We observe that the
standard deviation decreases as the batch size increases. For the smallest batch size,
the training run with 𝜆𝜆𝑑𝑑 = 1

20  has a significantly lower gradient variance compared to
𝜆𝜆𝑑𝑑 = 1

10 . Furthermore, at a critical batch size of 40 minutes the standard deviation
barely decreases when the batch size is doubled to 80 minutes. Furthermore, for small
batch sizes the standard deviation increases over the training procedure, while it stays
constant for large batch sizes. Moreover, we observe that the batch sizes of 87.5 (with
𝜆𝜆𝑑𝑑 = 1

10) and 150 seconds converge at the end of training. Finally, the cyclic learning
rate schedule seems to affect the gradient variance, as the standard deviation peeks
for all batch sizes when the cycle is at the minimum learning rate (every interval of
50 k steps).

5.3.4 Observing specific amounts of data during pre-training

The second hypothesis on why large batch sizes are more effective, namely that the
model can simply observe more hours of data in the same amount of steps, is related
to RQ 3, which asks whether a model trained with half the batch size but twice the
amount of steps has equivalent performance. We will try to answer RQ 3 by comparing
the performance of batch sizes at different stages during pre-training. Because we use
a cyclic learning rate, there are equivalences at each end of a cycle, namely at multiples
of 50 k steps. Different batch sizes overlap on the amount data seen at particular
checkpoints. For example, 16.7 k hours of data was observed with batch sizes of 150
sec, 5 min, 10 min, and 20 min respectively at 400 k, 200 k, 100 k, and 50 k steps. If
less noisy gradient approximations are beneficial to learning, we expect a performance
difference when we compare the fine-tuning performance of these checkpoints, in favor
of larger batch sizes. However, if all that matters is observing more data, we should
see no difference in performance.

Setup

For each batch size, we fine-tune the checkpoints with an interval of 50 k steps,
resulting in 8 checkpoints per batch size. We use the training methodology as
described in Section 5.3.2. For this experiment we focus on fine-tuning on 10 minutes
and 100 hours of labeled data, with letter decoding, evaluating on the Librispeech
test-clean evaluation dataset.

87



5.3 Experiments

Figure 9:  The WER, after fine-tuning, against the hours of data processed during
self-supervision.

Results

The results are shown in Figure 9. We observe a direct relationship between the
amount data observed during pre-traing and the WER after fine-tuning. There are
only minor differences between the WER of different checkpoints with the same
amount of data, which we attribute to noise. The curves for each batch size blend
into each other, especially for the case of fine-tuning with 100 hours of data. With
10 minutes of data we observe that a batch size of 40 minutes has slightly better
performance at the start of training, and worse performance at the end of training,
compared to batches of 20 minutes and 80 minutes. Also, we see that a batch size
of 87.5 seconds performs slightly better than the batch size of 150 seconds. We
hypothesize that the diversity weight 𝜆𝜆𝑑𝑑 = 1

20  generalized slightly better than 𝜆𝜆𝑑𝑑 = 1
10 .

Note that we used the naive, upper bound of the amounts of data hours observed.
Due to fact that audio samples in Librispeech are varied, batch sizes are filled up
to a specific threshold, as explained in Section 5.2.3. The product of the batch size

88



5.3 Experiments

Figure 9:  The WER, after fine-tuning, against the hours of data processed during
self-supervision.

Results

The results are shown in Figure 9. We observe a direct relationship between the
amount data observed during pre-traing and the WER after fine-tuning. There are
only minor differences between the WER of different checkpoints with the same
amount of data, which we attribute to noise. The curves for each batch size blend
into each other, especially for the case of fine-tuning with 100 hours of data. With
10 minutes of data we observe that a batch size of 40 minutes has slightly better
performance at the start of training, and worse performance at the end of training,
compared to batches of 20 minutes and 80 minutes. Also, we see that a batch size
of 87.5 seconds performs slightly better than the batch size of 150 seconds. We
hypothesize that the diversity weight 𝜆𝜆𝑑𝑑 = 1

20  generalized slightly better than 𝜆𝜆𝑑𝑑 = 1
10 .

Note that we used the naive, upper bound of the amounts of data hours observed.
Due to fact that audio samples in Librispeech are varied, batch sizes are filled up
to a specific threshold, as explained in Section 5.2.3. The product of the batch size

88

5. The effect of batch size on contrastive self-supervised speech representation learning

Table 12:  The number of epochs and total amount of data observed throughout pre-
training for each batch size. The training dataset contains 912 hours of data and
we train for 400k iterations. Note that the batch size is an upper bound as they are
constructed with variable length samples.

batch size upper bound measured
sec min epochs hours epochs hours
87.5 1.5 11 10 k 11 9 k
150 2.5 18 17 k 18 16 k
300 5 37 33 k 36 31 k
600 10 73 67 k 71 62 k
1200 20 146 133 k 140 124 k
2400 40 292 267 k 277 248 k
4800 80 585 533 k 554 497 k

and number of iterations is therefore an upper bound on the amount and duration of
samples observed, as the total size of a batch will rarely by equal to the threshold.17

During pre-training, we stored the identifiers of every utterance in all 400 k batches.
Afterwards, we could compute the actual amount of data observed, looking up the
length of each utterance without padding. The results are shown in Table 12. We can
see that the largest batch size has actually seen only 497 k hours of data, instead of
the theoretical 533 k hours. This shows the importance of creating batches with as
little length variability as possible, because our results have shown that seeing more
hours of data in the same amount of iterations matters for downstream performance.

5.3.5 Fine-tuning various SUPERB benchmark tasks

To further strengthen the observation that the amount of hours seen during pre-train-
ing is the main indicator of downstream task performance, we repeat the experiment
in Section Section 5.3.4 on 6 tasks in the SUPERB benchmark (Yang et al., 2021),
namely phoneme recognition, speech recognition in English and Mandarin, speaker
verification, emotion recognition, and intent classification. There are 3 important
differences compared to the results shown in Figure 9.
1. We are interested to see whether the pattern holds for tasks other than (English)

speech recognition.
2. The speech representation features are frozen during fine-tuning, so the quality of

the representations are more fairly judged.

17Moreover, we discard some batches when the difference between the minimum and maximum file
is larger than 10 seconds, as this prevented GPU out-of-memory errors. However, this is so infrequent
(every end of an epoch) that the contribution of these skipped batches to the measured amount of
observed data is negligible.

89



5.3 Experiments

3. Other than phoneme recognition and English ASR, these tasks fine-tune on out-
of-domain data with respect to the pre-training, so that we can see whether the
observation holds in cross-domain adaptation settings.

Note that following datasets are used for fine-tuning and evaluation:
1. Librispeech (Panayotov et al., 2015) for phoneme recognition and English ASR.
2. Mozilla Common Voice (Ardila et al., 2020) for Mandarin ASR,
3. VoxCeleb1 (Nagrani et al., 2017) for speaker verification.
4. Fluent speech commands (Lugosch et al., 2019) for intent classification.
5. IEMOCAP (Busso et al., 2008) for emotion recognition.

Setup

For each of the 6 tasks, we fine-tune with 4 checkpoints of each SSL batch size,
namely the checkpoint at 100 k, 200 k, 300 k and 400 k steps. We use a learning rate
of 10−4 for each fine-tuning, and keep all other hyperparameters equal to the default
value for the task, expect that mandarin ASR is fine-tuned for 200 k steps instead of
500 k steps.

Results

We show the results in Figure 10. In general, we observe similar patterns compared
to Figure 9, meaning curves blending into each other, and following the pattern of
better performance after seeing more data. We also see signs of overfitting with the
batch size of 80 minutes at 400 k steps. We observe that the in-domain tasks (English
ASR, and phoneme recognition) have the smoothest curve, followed by mandarin
ASR. The other 3 tasks seem more noisy, where sometimes there is no improvement
following a consecutive checkpoint of the same batch size, e.g., this is visible for
speaker and emotion recognition at 10 k hours, and intent classification at 30 k hours
of observed data during SSL. Also, emotion recognition is the only task where there
is no clear upward trend with more observed data. For emotion recognition, the best
performance was obtained with the checkpoint at 300 k steps with the batch size of
20 minutes, and the batch sizes of 40 and 80 minutes perform noticeably worse.

5.3.6 Increasing model capacity or changing pre-training dataset

All experiments so far have used the BASE wav2vec 2.0 network alongside pre-training
on the 960 hour training split of Librispeech. In this section we will verify whether our
observations generalize to a larger model capacity or a different pre-training dataset.

Setup

We pre-train with batch sizes of 5 minutes, 10 minutes, and 40 minutes of audio.
To change the pre-training dataset, we use VoxCeleb2 (Chung et al., 2018) with
wav2vec 2.0 BASE. The VoxCeleb2 dataset differs from Librispeech in that it is
primarily designed for speaker recognition and created by automatically extracting

90



5.3 Experiments

3. Other than phoneme recognition and English ASR, these tasks fine-tune on out-
of-domain data with respect to the pre-training, so that we can see whether the
observation holds in cross-domain adaptation settings.

Note that following datasets are used for fine-tuning and evaluation:
1. Librispeech (Panayotov et al., 2015) for phoneme recognition and English ASR.
2. Mozilla Common Voice (Ardila et al., 2020) for Mandarin ASR,
3. VoxCeleb1 (Nagrani et al., 2017) for speaker verification.
4. Fluent speech commands (Lugosch et al., 2019) for intent classification.
5. IEMOCAP (Busso et al., 2008) for emotion recognition.

Setup

For each of the 6 tasks, we fine-tune with 4 checkpoints of each SSL batch size,
namely the checkpoint at 100 k, 200 k, 300 k and 400 k steps. We use a learning rate
of 10−4 for each fine-tuning, and keep all other hyperparameters equal to the default
value for the task, expect that mandarin ASR is fine-tuned for 200 k steps instead of
500 k steps.

Results

We show the results in Figure 10. In general, we observe similar patterns compared
to Figure 9, meaning curves blending into each other, and following the pattern of
better performance after seeing more data. We also see signs of overfitting with the
batch size of 80 minutes at 400 k steps. We observe that the in-domain tasks (English
ASR, and phoneme recognition) have the smoothest curve, followed by mandarin
ASR. The other 3 tasks seem more noisy, where sometimes there is no improvement
following a consecutive checkpoint of the same batch size, e.g., this is visible for
speaker and emotion recognition at 10 k hours, and intent classification at 30 k hours
of observed data during SSL. Also, emotion recognition is the only task where there
is no clear upward trend with more observed data. For emotion recognition, the best
performance was obtained with the checkpoint at 300 k steps with the batch size of
20 minutes, and the batch sizes of 40 and 80 minutes perform noticeably worse.

5.3.6 Increasing model capacity or changing pre-training dataset

All experiments so far have used the BASE wav2vec 2.0 network alongside pre-training
on the 960 hour training split of Librispeech. In this section we will verify whether our
observations generalize to a larger model capacity or a different pre-training dataset.

Setup

We pre-train with batch sizes of 5 minutes, 10 minutes, and 40 minutes of audio.
To change the pre-training dataset, we use VoxCeleb2 (Chung et al., 2018) with
wav2vec 2.0 BASE. The VoxCeleb2 dataset differs from Librispeech in that it is
primarily designed for speaker recognition and created by automatically extracting

90

5. The effect of batch size on contrastive self-supervised speech representation learning

Figure 10:  The performance of 6 SUPERB tasks against the hours of data processed
during self-supervision. For each SSL batch size we fine-tune the checkpoints at step
100 k, 200 k, 300 k and 400 k with learning rate 10−4.

91



5.3 Experiments

utterances from YouTube videos. Compared to Librispeech it has more speakers (2338
versus 5994) and high intra-speaker variability. We split the VoxCeleb2 development
set into a train and validation partition. The train partition has approximately 1 M
utterances, with a duration ranging from 4 to 30 seconds averaging at 7.8 seconds,
and a total of 2300 hours of audio. The validation partition is created by randomly
selecting 2 utterances from each speaker session, and has a total of 23 hours of data.
For pre-training we do not make any changes to the network or optimization procedure
detailed in Section 5.3.1, other than performing a learning rate scan. For each batch
size we perform a grid search in the range 10−4 to 7 ⋅ 10−4 with increments of 5 ⋅ 10−5.
To increase the model capacity, we use wav2vec 2.0 LARGE with Librispeech. The
LARGE network has 24 transformer layers, with 16 heads, and a hidden dimensionality
of 1024 which is scaled up to 4096 in the feed-forward network. Furthermore, the
codeword dimensionality 𝑑𝑑𝐺𝐺 is increased from 128 to 384, hence the dimensionality
of the projection sim(𝑐𝑐𝑡𝑡′, 𝑞𝑞𝑑𝑑′) in the contrastive loss is increased from 256 to 768.
These modifications increase the amount of parameters from 95 M to 316 M. We also
changed the floor of the gumbel softmax temperature in the quantization module
from 0.5 to 0.1. Finally, we changed the diversity loss weighting from 𝜆𝜆𝑑𝑑 = 0.1 to
𝜆𝜆𝑑𝑑 = 0.01, because we observed that for all learning rates 𝜆𝜆𝑑𝑑 = 0.1 resulted in the
diversity loss immediately converging and the contrastive loss never improving. We
trained for 400 k steps with a batch size of 5 minutes and 250 k steps for batch sizes
of 10 and 40 minutes. As in Section 5.3.1, we performed a learning rate scan for each
batch size using the 3 heuristics ℎconst, ℎsqrt, and ℎlin. We used 𝑚𝑚lr = 3 ⋅ 10−4 and
𝑠𝑠orig = 9600 seconds taken from (Baevski et al., 2020a).

Results

For BASE with VoxCeleb2, we found the best performing LR for batch size 5, 10 and
40 minutes to be respectively 2 ⋅ 10−4, 3 ⋅ 10−4 and 5 ⋅ 10−4, and for LARGE with
Librispeech respectively 5.3 ⋅ 10−5, 7.5 ⋅ 10−5 and 1.5 ⋅ 10−4. We fine-tune consecutive
checkpoints (50 k steps for LARGE, and 100 k steps for VoxCeleb2) on the 6 SUPERB
tasks. Each checkpoint is fine-tuned with learning rate 10−4. We show the results with
VoxCeleb2 as pre-training data in Figure 11 and for LARGE in Figure 12. For both
settings we confirm the general trend of better performance as the visible training
hours during pre-training increases. We observe for Mandarin speech recognition, and
pre-training with VoxCeleb2, that the batch size of 40 minutes has slightly better
performance across the amount of data observed, compared to the batch sizes of 5 and
10 minutes. For the speaker recognition task, we see for both VoxCeleb2 and LARGE
that the EER does not monotonically decrease with the amount of hours of observed
data within the optimization trajectory of a single batch size. This is consistent with
observations in Figure 10. We see better EERs for speaker recognition with the BASE
model pre-trained on in-domain data (VoxCeleb2) compared to the BASE and LARGE
model pre-trained on out-of-domain data (Librispeech). Finally, for the phoneme

92



5.3 Experiments

utterances from YouTube videos. Compared to Librispeech it has more speakers (2338
versus 5994) and high intra-speaker variability. We split the VoxCeleb2 development
set into a train and validation partition. The train partition has approximately 1 M
utterances, with a duration ranging from 4 to 30 seconds averaging at 7.8 seconds,
and a total of 2300 hours of audio. The validation partition is created by randomly
selecting 2 utterances from each speaker session, and has a total of 23 hours of data.
For pre-training we do not make any changes to the network or optimization procedure
detailed in Section 5.3.1, other than performing a learning rate scan. For each batch
size we perform a grid search in the range 10−4 to 7 ⋅ 10−4 with increments of 5 ⋅ 10−5.
To increase the model capacity, we use wav2vec 2.0 LARGE with Librispeech. The
LARGE network has 24 transformer layers, with 16 heads, and a hidden dimensionality
of 1024 which is scaled up to 4096 in the feed-forward network. Furthermore, the
codeword dimensionality 𝑑𝑑𝐺𝐺 is increased from 128 to 384, hence the dimensionality
of the projection sim(𝑐𝑐𝑡𝑡′, 𝑞𝑞𝑑𝑑′) in the contrastive loss is increased from 256 to 768.
These modifications increase the amount of parameters from 95 M to 316 M. We also
changed the floor of the gumbel softmax temperature in the quantization module
from 0.5 to 0.1. Finally, we changed the diversity loss weighting from 𝜆𝜆𝑑𝑑 = 0.1 to
𝜆𝜆𝑑𝑑 = 0.01, because we observed that for all learning rates 𝜆𝜆𝑑𝑑 = 0.1 resulted in the
diversity loss immediately converging and the contrastive loss never improving. We
trained for 400 k steps with a batch size of 5 minutes and 250 k steps for batch sizes
of 10 and 40 minutes. As in Section 5.3.1, we performed a learning rate scan for each
batch size using the 3 heuristics ℎconst, ℎsqrt, and ℎlin. We used 𝑚𝑚lr = 3 ⋅ 10−4 and
𝑠𝑠orig = 9600 seconds taken from (Baevski et al., 2020a).

Results

For BASE with VoxCeleb2, we found the best performing LR for batch size 5, 10 and
40 minutes to be respectively 2 ⋅ 10−4, 3 ⋅ 10−4 and 5 ⋅ 10−4, and for LARGE with
Librispeech respectively 5.3 ⋅ 10−5, 7.5 ⋅ 10−5 and 1.5 ⋅ 10−4. We fine-tune consecutive
checkpoints (50 k steps for LARGE, and 100 k steps for VoxCeleb2) on the 6 SUPERB
tasks. Each checkpoint is fine-tuned with learning rate 10−4. We show the results with
VoxCeleb2 as pre-training data in Figure 11 and for LARGE in Figure 12. For both
settings we confirm the general trend of better performance as the visible training
hours during pre-training increases. We observe for Mandarin speech recognition, and
pre-training with VoxCeleb2, that the batch size of 40 minutes has slightly better
performance across the amount of data observed, compared to the batch sizes of 5 and
10 minutes. For the speaker recognition task, we see for both VoxCeleb2 and LARGE
that the EER does not monotonically decrease with the amount of hours of observed
data within the optimization trajectory of a single batch size. This is consistent with
observations in Figure 10. We see better EERs for speaker recognition with the BASE
model pre-trained on in-domain data (VoxCeleb2) compared to the BASE and LARGE
model pre-trained on out-of-domain data (Librispeech). Finally, for the phoneme

92

5. The effect of batch size on contrastive self-supervised speech representation learning

Figure 11:  The performance of 6 SUPERB tasks against the hours of data processed
during self-supervision while pre-training on the VoxCeleb2 dataset. Each checkpoint
is fine-tuned with learning rate 10−4.

93



5.3 Experiments

Figure 12:  The performance of 6 SUPERB tasks against the hours of data processed
during self-supervision with the LARGE model. Each checkpoint is fine-tuned with
learning rate 10−4.

94



5.3 Experiments

Figure 12:  The performance of 6 SUPERB tasks against the hours of data processed
during self-supervision with the LARGE model. Each checkpoint is fine-tuned with
learning rate 10−4.

94

5. The effect of batch size on contrastive self-supervised speech representation learning

recognition task, we see, for both conditions, the least amount of noise in the trend
of performance versus the amount of data observed.

5.4 Discussion

Research questions

From the extensive search of batch sizes reported in Figure 5, we see that larger batch
sizes result in better pre-training convergence, if given the same amount of iterations.
This is consistent with the hypothesis of RQ 1 and RQ 2. We were surprised to observe
convergence with all batch sizes, with the caveat that we had to change the diversity
loss weighting for the smallest batch size of 87.5 seconds. It seems this problem with
the loss weighting parameter choice could have been prevented if the contrastive loss
would be mean-reduced instead of sum-reduced, but in this work we followed the
implementation of (Baevski et al., 2020a) as closely as possible. A good indicator
for well chosen hyperparameters is a continuous increase of the perplexity of the
codebook logits (Figure 5 E–F). With larger batch sizes, the similarity of codebook
vectors decreases, as seen in Figure 6, which is an indication of the diversity of the
learnt representations.
Regarding RQ 2 and Figure 7, we show, for the first time, how pre-training batch
size affects the downstream ASR performance: with a fixed number of iterations, the
performance increases with larger batch size. All results with the 80 min batch size are
in accordance with the original paper (Baevski et al., 2020a), except for the 10 minute
fine-tuning results, where they decoded using the (impractical) beam size of 500. Our
cyclic LR schedule does not perform worse than (Baevski et al., 2020a), while allowing
for a fair comparison when conducting fine-tuning experiments at regular intervals.
The largest batch size we investigated showed a little worse performance. We might
have reached a limit of the generalization ability of the pretext task, as corroborated
by the minimum validation loss at 305 k steps. We expect this limit can be increased
by more regularization, e.g., using a larger data set (Conneau et al., 2021; Radford et
al., 2023), or, to a lesser extent, higher dropout rates or higher value of 𝜆𝜆𝑝𝑝 and 𝑝𝑝𝑚𝑚.
In looking for an answer to why larger batch sizes are more effective, we saw in
Figure 8 that the standard deviation of the gradients reduces almost consistently with
larger batch size, up to a value of 40 min. However, we do not see an indication that
this has an effect on downstream task performance, cf. Figure 9 and Figure 10. The
reduced variance in the gradient as a result of a larger batch size does not appear
to be the reason for better performance. Rather, we found that the most important
factor for downstream task performance is the total amount of data seen during pre-
training, i.e., the product of batch size and number of iterations (RQ 3), as shown
convincingly in Figure 9, Figure 10, Figure 11 and Figure 12. This means that it is
still possible to carry out pre-training with limited amount of GPUs and/or memory,
but one needs to be more patient, or accept a penalty in performance, where Figure 7
can help in decision making.

95



5.4 Discussion

For the non-content tasks in Figure 10, namely speaker, emotion and intent recog-
nition, there appears to be more noise in relation between amount of data seen and
performance. This noise is strongest for emotion recognition, however, the results lie
in a 10 % accuracy bandwidth, which is similar to the range of worst to best systems
in the SUPERB leaderboard (Yang et al., 2021). The small size of the IEMOCAP
dataset (10 speakers with 5-fold cross validation) probably adds to the noisy behavior.
We believe this task may not be the best to indicate the quality of the learned speech
representations. When the pre-training dataset is out-of-domain with respect to the
fine-tuning dataset, we also see more noisy behavior, cf. Figure 11, however, the
general trend still is visible. Finally, we see that the trend also holds when we increase
the model capacity, cf. Figure 12.

Broader impact

Based on these results, we believe that it could benefit the community to benchmark
SSL algorithms (in speech) by constraining the amount of data seen in training, e.g.,
to 100 k hours. In experiments with different algorithms, one might use 10 k hours of
seen data to reduce the computational burden, and verify conclusions at the 100 k
hours pre-training condition.

5.5 Conclusions

We conclude that the batch size during contrastive pre-training can be varied over
a large range of values without a performance penalty, but only if hyperparameters
like the learning rate are adapted accordingly. As a caveat, our results have only
looked at contrastive algorithms where distractors are not taken from other samples
in the batch. Future work could look at algorithms where this is the case, such as
SimCLR (Chen et al., 2020), or a modified wav2vec 2.0 (Baevski et al., 2020a), paying
special attention to the square root scaling law of the learning rate (Malladi et al.,
2022), so that all batch sizes have similar well-performing optimization trajectories.
Moreover, other speech representation learning algorithms could be considered, such
as predictive methods like HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2022a)
and DinoSR (Liu et al., 2023), and reconstructive methods like VQ-VAE (van den
Oord et al., 2017) and DeCoAR (Ling et al., 2020). The range of the batch sizes
we found effective for wav2vec 2.0 may be specific to the architecture (wav2vec 2.0
BASE, with approximately 95 M parameters) and our pre-training datasets, but we
have shown that also a larger model, and a different pre-training dataset, show a
dependence on the amount of data seen, as seen in Figure 11 and Figure 12, in terms
of the fine-tuning performance.

96



5.4 Discussion

For the non-content tasks in Figure 10, namely speaker, emotion and intent recog-
nition, there appears to be more noise in relation between amount of data seen and
performance. This noise is strongest for emotion recognition, however, the results lie
in a 10 % accuracy bandwidth, which is similar to the range of worst to best systems
in the SUPERB leaderboard (Yang et al., 2021). The small size of the IEMOCAP
dataset (10 speakers with 5-fold cross validation) probably adds to the noisy behavior.
We believe this task may not be the best to indicate the quality of the learned speech
representations. When the pre-training dataset is out-of-domain with respect to the
fine-tuning dataset, we also see more noisy behavior, cf. Figure 11, however, the
general trend still is visible. Finally, we see that the trend also holds when we increase
the model capacity, cf. Figure 12.

Broader impact

Based on these results, we believe that it could benefit the community to benchmark
SSL algorithms (in speech) by constraining the amount of data seen in training, e.g.,
to 100 k hours. In experiments with different algorithms, one might use 10 k hours of
seen data to reduce the computational burden, and verify conclusions at the 100 k
hours pre-training condition.

5.5 Conclusions

We conclude that the batch size during contrastive pre-training can be varied over
a large range of values without a performance penalty, but only if hyperparameters
like the learning rate are adapted accordingly. As a caveat, our results have only
looked at contrastive algorithms where distractors are not taken from other samples
in the batch. Future work could look at algorithms where this is the case, such as
SimCLR (Chen et al., 2020), or a modified wav2vec 2.0 (Baevski et al., 2020a), paying
special attention to the square root scaling law of the learning rate (Malladi et al.,
2022), so that all batch sizes have similar well-performing optimization trajectories.
Moreover, other speech representation learning algorithms could be considered, such
as predictive methods like HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2022a)
and DinoSR (Liu et al., 2023), and reconstructive methods like VQ-VAE (van den
Oord et al., 2017) and DeCoAR (Ling et al., 2020). The range of the batch sizes
we found effective for wav2vec 2.0 may be specific to the architecture (wav2vec 2.0
BASE, with approximately 95 M parameters) and our pre-training datasets, but we
have shown that also a larger model, and a different pre-training dataset, show a
dependence on the amount of data seen, as seen in Figure 11 and Figure 12, in terms
of the fine-tuning performance.

96





6 Self-supervised learning of
speech representations with
Dutch archival data

In which our adventurer considers the quality requirements
for a pre-training dataset and uncovers the benefits of pre-
training on a large-scale, mono-lingual dataset.18

Speech foundation models, such as wav2vec 2.0 (Baevski et al., 2020a), HuBERT (Hsu
et al., 2021), and WavLM (Chen et al., 2022a), see widespread usage in various speech
technology tasks (Yang et al., 2021). While these models differ in their self-supervised
learning (SSL) objective function, they have in common that they are all developed
and tuned with clean, pre-processed, labeled dataset(s), namely Librispeech (Panay-
otov et al., 2015) and Libri-light (Kahn et al., 2020) for wav2vec 2.0 and HuBERT,
while WavLM also uses GigaSpeech19 (Chen et al., 2021) and VoxPopuli (Wang et al.,
2021). The nature of these datasets is predominantly prepared speech, with varying
microphone quality, quiet recording conditions, known (pseudo-anonymous) speaker
labels, and the knowledge that a full recording often contains a single speaker. Even
though the dataset labels are not used during SSL pre-training, they aid in dataset
pre-processing (especially single-speaker recordings), and we argue they cause implicit
assumptions on the data SSL algorithms require to work well.
One particular use-case of self-supervised learning is the paradigm of multi-lingual
pre-training, followed by fine-tuning for a low-resource language, as introduced by
the wav2vec 2.0 XLSR model (Conneau et al., 2021), but also relevant (with caveats)
to the design of Whisper (Radford et al., 2023). Also for the Dutch language, this
paradigm of a fine-tuning (XLSR), or directly using (Whisper), a multi-lingual model,
is a popular approach (Wang and Van Hamme, 2023; Bălan et al., 2024). This is
partially due to the fact that, to our knowledge, there is only one foundation model
specifically designed for the Dutch language, released by Conneau et al. (2021). In
this work, we want to find out whether there is an inherent benefit to multi-lingual

18This chapter is based on the publication Vaessen, N., and van Leeuwen, D. A. (2025). Self-
supervised learning of speech representations with Dutch archival data., in INTERSPEECH 2025..

19The authors of WavLM specifically state they use a 10 k hour subset of the 40 k hour GigaSpeech
dataset which is validated to not have utterances containing silence or noise.

99



pre-training, or whether, given the same computational budget and dataset size, a
Dutch mono-lingual pre-training is more beneficial for Dutch speech recognition.
In order to answer this question, we construct a 55 k hour Dutch audio dataset for pre-
training. For this purpose, we made use of the collection of archival Dutch television
broadcast data from the Netherlands Institute for Sound and Vision. However, in
order to create a high-quality pre-training dataset from this collection, we need to
know the data quality required for convergence of a well-performing foundation model.
Based on the datasets mentioned above, we speculate, first and foremost, that it needs
to be easy to segment the dataset into sequences of audio with speech (utterances).
These utterances must be relatively short, in the order of 1 to 30 seconds, and
always contain speech for the full length of the utterance. Moreover, the speech in
an utterance must be of a single speaker. Finally, there is limited background noise
in the dataset, and no music is present, either instrumental, vocal, or a mix of both.
Unfortunately, none of these conditions immediately apply to our collection of Dutch
broadcast audio, which prompts us to perform an analysis on how to effectively clean
our dataset.
Concretely, we ask the following research questions regarding self-supervised speech
representation learning, and in particular, the contrastive wav2vec 2.0 algorithm,
which is the only SSL algorithm we focus on due due to limited computational
resources:
1. What constitutes a high quality dataset for self-supervised speech representation

learning?
2. Can we construct such a dataset from television broadcast data?
3. Is pre-training on mono-lingual audio data better than pre-training on multi-

lingual audio data?
Firstly, our hypothesis on high-quality datasets is that they need to be as similar
to Librispeech as possible. We note that most self-supervised learning methods are
solely developed on Librispeech-like data, simply due to ease of access and availability
of read speech. However, this implies that SSL methods are overfit on a meta level,
designed to work well with the particularities of Librispeech, but not on other kinds
of datasets. To test the hypothesis, we will simulate various data quality scenarios by
augmentation LibriSpeech with noise. Doing so will tell us what aspects are important
for pre-processing our archival data. This neatly aligns with the second research
question, where we assume that, by pre-processing our broadcast data correctly, it
will be similar in quality to Librispeech, and therefore it can be used as a qualitative
pre-training dataset. For the last research question, we will perform large-scale pre-
training experiments with the pre-processing archival dataset. We hypothesize that,
when equally sized, a mono-lingual dataset leads to higher-quality speech represen-
tations in that language, compared to a multi-lingual dataset, as more variation of
that specific language can be observed, such as local dialects.

100



pre-training, or whether, given the same computational budget and dataset size, a
Dutch mono-lingual pre-training is more beneficial for Dutch speech recognition.
In order to answer this question, we construct a 55 k hour Dutch audio dataset for pre-
training. For this purpose, we made use of the collection of archival Dutch television
broadcast data from the Netherlands Institute for Sound and Vision. However, in
order to create a high-quality pre-training dataset from this collection, we need to
know the data quality required for convergence of a well-performing foundation model.
Based on the datasets mentioned above, we speculate, first and foremost, that it needs
to be easy to segment the dataset into sequences of audio with speech (utterances).
These utterances must be relatively short, in the order of 1 to 30 seconds, and
always contain speech for the full length of the utterance. Moreover, the speech in
an utterance must be of a single speaker. Finally, there is limited background noise
in the dataset, and no music is present, either instrumental, vocal, or a mix of both.
Unfortunately, none of these conditions immediately apply to our collection of Dutch
broadcast audio, which prompts us to perform an analysis on how to effectively clean
our dataset.
Concretely, we ask the following research questions regarding self-supervised speech
representation learning, and in particular, the contrastive wav2vec 2.0 algorithm,
which is the only SSL algorithm we focus on due due to limited computational
resources:
1. What constitutes a high quality dataset for self-supervised speech representation

learning?
2. Can we construct such a dataset from television broadcast data?
3. Is pre-training on mono-lingual audio data better than pre-training on multi-

lingual audio data?
Firstly, our hypothesis on high-quality datasets is that they need to be as similar
to Librispeech as possible. We note that most self-supervised learning methods are
solely developed on Librispeech-like data, simply due to ease of access and availability
of read speech. However, this implies that SSL methods are overfit on a meta level,
designed to work well with the particularities of Librispeech, but not on other kinds
of datasets. To test the hypothesis, we will simulate various data quality scenarios by
augmentation LibriSpeech with noise. Doing so will tell us what aspects are important
for pre-processing our archival data. This neatly aligns with the second research
question, where we assume that, by pre-processing our broadcast data correctly, it
will be similar in quality to Librispeech, and therefore it can be used as a qualitative
pre-training dataset. For the last research question, we will perform large-scale pre-
training experiments with the pre-processing archival dataset. We hypothesize that,
when equally sized, a mono-lingual dataset leads to higher-quality speech represen-
tations in that language, compared to a multi-lingual dataset, as more variation of
that specific language can be observed, such as local dialects.

100

6. Self-supervised learning of speech representations with Dutch archival data

6.1 Related work

Ashihara et al. (2023) compare mono-lingual pre-training with Japanese data to
fine-tuning multi-lingual pre-trained models, specifically, XLSR from Conneau et al.
(2021). They show that a BASE wav2vec 2.0 model, pre-trained on a dataset of 500
hours of spontaneous Japanese speech, outperforms the LARGE XLSR model, when
fine-tuned (50 hours) and evaluated (3.5 hours) on the Japanese newspaper reading
dataset from Itou et al. (1999). Moreover, they show that pre-training on 200 hours
of Japanese data is enough to achieve equal or better performance to XLSR on
this dataset. Meng et al. (2022) study aspects of data quality when applying speech
representation learning. They vary the gender, content and prosody of Librispeech
for pre-training, and evaluate these models on the SUPERB benchmark from Yang
et al. (2021). They found that pre-training performance does not decrease when
the pre-training has a (significant) gender imbalance. Moreover, the complexity of
the audio, i.e., whether or not the dataset contains audio with a large vocabulary
of words, did not affect downstream performance either. However, they observe a
significant decrease in downstream task performance when the pre-training audio is
sped up, and a significant increase in performance when the pre-training audio is
slowed down. Lam-Yee-Mui et al. (2023) continue pre-training XLSR with South-
African soap opera broadcast data, which is shown to be an effective method to
improve ASR performance for these low-resource languages, which are often used in
a code-switching setting. Jacobs et al. (2023) build a dataset from radio broadcasts
to evaluate hate speech detection in the low-resource Swahili and Wolof languages.
Mateju et al. (2023) train a Swedish ASR system from scratch, using multiple labeled
data sources, including television news from SVT, the Swedish public broadcasting
organization. Lehečka et al. (2024) explore bi-lingual and tri-lingual pre-training on a
multi-lingual oral archive dataset. Their pre-trained mono-lingual models performed
well, but they did not have the computational resources to scale; they observed the
best performance with the large-v2 Whisper model from Radford et al. (2023).

6.2 Methodology

6.2.1 Pre-training and fine-tuning

In this chapter we use the contrastive learning approach of wav2vec 2.0 for pre-
training speech representations. We also fine-tune the wav2vec 2.0 network for
automatic speech recognition with labeled data using CTC loss (Graves et al., 2006).
We do not make any modification to the network architecture, making use of the BASE
(12 transformer layers) and LARGE (24 transformer layers) variant. We do not apply
LayerDrop (Fan et al., 2020) to simplify the distributed data-parallel training. For
fine-tuning and evaluating for English, we use Librispeech data. For fine-tuning and
evaluating for Dutch, we use the Dutch split of multi-lingual Librispeech (Pratap et
al., 2020) and the Dutch split of CommonVoice, version 18 (Ardila et al., 2020). We

101



6.2 Methodology

normalize Dutch text such that the train and test data matches the letter vocabulary
used in (Baevski et al., 2020a) for English, i.e., 26 letters and an apostrophe. All
other punctuation, including hyphens, are substituted with spaces. Accented letters
are converted to their closest form in the English alphabet.

6.2.2 Data quality simulation

To study the effect of data quality on self-supervised speech representation learning,
we use the canonical 960 hour train set of the Librispeech (Panayotov et al., 2015)
dataset as the baseline SSL training data. This training set contains ~281 k English
utterances, with a minimum duration of 0.8 seconds, a maximum duration of 29.7
seconds, and an average duration of 12.3 seconds. In total, there are 2338 unique
speakers (1210 male, 1128 female), with 51.7%/48.3% of the utterances being spoken
by a male/female speaker. Each utterance is read speech, sourced from volunteers
recording public domain audiobooks. This implies that there is little session vari-
ability for speakers, as it is unlikely volunteers would change recording conditions
(microphone, room conditions, time factors such as sickness, or aging). We use the
median length utterance in all chapters (“sessions”) of each speaker for a validation
set consisting of 2% (20 hours) of the train set. The dev-clean and dev-other set are
used for choosing hyperparameters, and final (fine-tuning) results are reported on the
test-clean and test-other set.
We augment the 960h train set of Librispeech in various ways to simulate different
data qualities. For these augmentations, we make use of two other datasets. First,
we use the MUSAN dataset (Snyder et al., 2015) as a source of background noise
samples. MUSAN consists of three subsets (speech, music, noise). We only make use
of the noise subset, which consists of 929 files with an average duration of 25 seconds,
for a total of ~6 hours of data. There are three categories of noise:
1. technical sounds, e.g., dial tones
2. ambient sounds, such as creaking doors and police sirens
3. intelligible speech, i.e., recordings of crowd noises.
Secondly, the FMA (Free Music Archive) dataset (Defferrard et al., 2017) is used to
provide music audio. We use the large subset, which consists of 104 k music segments
which are all 30 second random chunks taken from the music recordings in the full
database. The music has 16 top-level genres, including, e.g., classical, rock, and jazz.
Using these datasets, we simulate various forms of unclean data, which can arise when
trying to pre-process a raw dataset into a pre-training dataset with the use of speech
activity detection (SAD) tools.

Speaker overlap

One common scenario is a dialogue between two or more individuals, where the
speaker turn is nearly instantaneous, making segmentation by SAD infeasible. In this
case, one would use a high-quality diarization model to distinguish between speakers.

102



6.2 Methodology

normalize Dutch text such that the train and test data matches the letter vocabulary
used in (Baevski et al., 2020a) for English, i.e., 26 letters and an apostrophe. All
other punctuation, including hyphens, are substituted with spaces. Accented letters
are converted to their closest form in the English alphabet.

6.2.2 Data quality simulation

To study the effect of data quality on self-supervised speech representation learning,
we use the canonical 960 hour train set of the Librispeech (Panayotov et al., 2015)
dataset as the baseline SSL training data. This training set contains ~281 k English
utterances, with a minimum duration of 0.8 seconds, a maximum duration of 29.7
seconds, and an average duration of 12.3 seconds. In total, there are 2338 unique
speakers (1210 male, 1128 female), with 51.7%/48.3% of the utterances being spoken
by a male/female speaker. Each utterance is read speech, sourced from volunteers
recording public domain audiobooks. This implies that there is little session vari-
ability for speakers, as it is unlikely volunteers would change recording conditions
(microphone, room conditions, time factors such as sickness, or aging). We use the
median length utterance in all chapters (“sessions”) of each speaker for a validation
set consisting of 2% (20 hours) of the train set. The dev-clean and dev-other set are
used for choosing hyperparameters, and final (fine-tuning) results are reported on the
test-clean and test-other set.
We augment the 960h train set of Librispeech in various ways to simulate different
data qualities. For these augmentations, we make use of two other datasets. First,
we use the MUSAN dataset (Snyder et al., 2015) as a source of background noise
samples. MUSAN consists of three subsets (speech, music, noise). We only make use
of the noise subset, which consists of 929 files with an average duration of 25 seconds,
for a total of ~6 hours of data. There are three categories of noise:
1. technical sounds, e.g., dial tones
2. ambient sounds, such as creaking doors and police sirens
3. intelligible speech, i.e., recordings of crowd noises.
Secondly, the FMA (Free Music Archive) dataset (Defferrard et al., 2017) is used to
provide music audio. We use the large subset, which consists of 104 k music segments
which are all 30 second random chunks taken from the music recordings in the full
database. The music has 16 top-level genres, including, e.g., classical, rock, and jazz.
Using these datasets, we simulate various forms of unclean data, which can arise when
trying to pre-process a raw dataset into a pre-training dataset with the use of speech
activity detection (SAD) tools.

Speaker overlap

One common scenario is a dialogue between two or more individuals, where the
speaker turn is nearly instantaneous, making segmentation by SAD infeasible. In this
case, one would use a high-quality diarization model to distinguish between speakers.

102

6. Self-supervised learning of speech representations with Dutch archival data

Another scenario is that, e.g., two speakers are speaking into the same channel at the
same time. To disentangle the audio, one would require a speech separation model.
However, for these simulations, we are simply interested in the effect on pre-training
when these scenarios are not accounted for. To that end, we perform the following
augmentations:
1. 1spk-concat concatenates two random utterances from the same session of Lib-

rispeech; thus, all utterances contain only a single speaker. This acts as a baseline,
where the audio is simply twice as long on average, with a minimal, but detectable,
concatenation artifact, as the utterances are not in order.

2. 2spk-concat concatenates two random utterances from different speakers of Lib-
rispeech. This simulates a speaker turn which was not detected by diarization
tools. We do not control for the sex of the speakers, thus, there are same-sex and
different-sex speaker turns. Compared to the baseline, the utterances, similarly,
includes the concatenation artifact, but also adds the necessity for the SSL method
to model two speakers.

3. 2spk-mix-x mixes two utterances from two different speaker of Librispeech. This
simulates the necessity of a speech separation model. At batch creation time, we
randomly select a fraction of utterances in the batch to apply the mixing to. The
remaining utterances are not modified, and thus clean data. The mixing is done
with uniformly sampling a signal-to-noise ratio between 0 and 15 dB. We vary the
fraction to 10 %, 33 %, or 50 %. Note that due variable lengths of utterances, these
fractions are cannot be obtained precisely, but we aim to be as close as possible,
always ensuring at least one utterance is selected.

Noise and music

The other scenarios we want to study is the inclusion of noise or music in utterances. In
our archival dataset the presence of these are quite common. For example, a broadcast
could simply be a recording of a concert, documentaries usually have background
music, or interviews could be conducted in a busy street. To quantify the effect of
these non-speech audio fragments on speech representation learning, we set-up the
following augmentations:
1. sub-noise-x replaces one or more utterances in a batch with noise from MUSAN.

Utterances are randomly cropped, or repeated, to match the exact length of the
replaced utterance.

2. sub-music-x replaces one or more utterances in a batch with music from FMA. As
all segments from FMA are 30 seconds long, we can, in each case, randomly crop to
equal length of the Librispeech utterance.

3. mix-noise-x mixes one or more utterances in a batch with noise from MUSAN.
We use all three categories of noise, including crowd noises.

4. mix-music-x mixes one or more utterances in a batch with music segments from
FMA.

103



6.2 Methodology

5. mix-instr-x mixes one or more utterances in a batch with music segments from
FMA, which were stemmed to only contain the instrumental audio of the song track.

6. mix-vocal-x mixes one or more utterances in a batch with the music segments
from FMA, which were stemmed to only contain the vocal audio of the song track.
We applied a basic SAD on the vocal stem to filter out songs where were already
instrumental before stemming.

For all settings, we select utterances to be mixed or replaced as done in 2spk-mix-x,
with fractions varying between 10 %, 33 %, and 50 %, ensuring at least one utterance
is mixed or replaced. For mixing, we use a signal-to-noise ratio uniformly sampled
between 0 and 15 dB. Stemming of FMA into vocal and instrumental tracks was done
with Demucs20 (Rouard et al., 2023), and SAD on potentially silent vocal tracks was
done with Pyannote²¹ (Bredin et al., 2020).

6.2.3 Archival data collection

To obtain a large quantity of Dutch audio data for self-supervised learning, we
obtained television broadcasts within a 50-year period, from 1972 to 2022, collected
by the Netherlands Institute for Sound and Vision (NIBG). This initial dump of
data contained ~182 k hours of audio. First, we used meta-data to filter out genres
which were unlikely to contain a good variety of speech, such as nightly news and
sports broadcasting, and kept genres such as in-depth news analysis, quizzes, and
documentaries. We also removed any broadcast which lasted longer than three hours,
and de-duplicated some data by heuristically removing consecutive broadcasts with
the same title, summary, and publication date. The remaining broadcasts contained ~
81 k hours of audio, with most audio files having a length of 30 minutes to 1 hour. We
refer to this 81 k hour dataset as nibg throughout this chapter. For pre-training, short
segments are required, thus, we need the data to be segmented into short utterances.

6.2.4 Segmenting the broadcast data

To perform the segmentation, we initially attempted to apply SAD with Pyannote.
However, we found the resulting segmentations to contain a lot of speaker overlap,
music and noise. Moreover, initial pre-training experiments were unsuccessful,
prompting experiments with simulating data quality, as detailed above. The second
approach to segment the data involved Whisper (Radford et al., 2023) and WhisperX
(Bain et al., 2023), with the idea that audio which can be successfully transcribed
by Whisper contains speech with high-enough quality to be useful for self-supervised
pre-training. Furthermore, WhisperX is able to perform speaker diarization on top
of the transcription, potentially leading to utterances with a single speaker, like
Librispeech. We experiment with 3 variations of segmenting with Whisper, and 5
variations segmenting with WhisperX.

20https://github.com/facebookresearch/demucs
²¹https://huggingface.co/pyannote/voice-activity-detection

104



6.2 Methodology

5. mix-instr-x mixes one or more utterances in a batch with music segments from
FMA, which were stemmed to only contain the instrumental audio of the song track.

6. mix-vocal-x mixes one or more utterances in a batch with the music segments
from FMA, which were stemmed to only contain the vocal audio of the song track.
We applied a basic SAD on the vocal stem to filter out songs where were already
instrumental before stemming.

For all settings, we select utterances to be mixed or replaced as done in 2spk-mix-x,
with fractions varying between 10 %, 33 %, and 50 %, ensuring at least one utterance
is mixed or replaced. For mixing, we use a signal-to-noise ratio uniformly sampled
between 0 and 15 dB. Stemming of FMA into vocal and instrumental tracks was done
with Demucs20 (Rouard et al., 2023), and SAD on potentially silent vocal tracks was
done with Pyannote²¹ (Bredin et al., 2020).

6.2.3 Archival data collection

To obtain a large quantity of Dutch audio data for self-supervised learning, we
obtained television broadcasts within a 50-year period, from 1972 to 2022, collected
by the Netherlands Institute for Sound and Vision (NIBG). This initial dump of
data contained ~182 k hours of audio. First, we used meta-data to filter out genres
which were unlikely to contain a good variety of speech, such as nightly news and
sports broadcasting, and kept genres such as in-depth news analysis, quizzes, and
documentaries. We also removed any broadcast which lasted longer than three hours,
and de-duplicated some data by heuristically removing consecutive broadcasts with
the same title, summary, and publication date. The remaining broadcasts contained ~
81 k hours of audio, with most audio files having a length of 30 minutes to 1 hour. We
refer to this 81 k hour dataset as nibg throughout this chapter. For pre-training, short
segments are required, thus, we need the data to be segmented into short utterances.

6.2.4 Segmenting the broadcast data

To perform the segmentation, we initially attempted to apply SAD with Pyannote.
However, we found the resulting segmentations to contain a lot of speaker overlap,
music and noise. Moreover, initial pre-training experiments were unsuccessful,
prompting experiments with simulating data quality, as detailed above. The second
approach to segment the data involved Whisper (Radford et al., 2023) and WhisperX
(Bain et al., 2023), with the idea that audio which can be successfully transcribed
by Whisper contains speech with high-enough quality to be useful for self-supervised
pre-training. Furthermore, WhisperX is able to perform speaker diarization on top
of the transcription, potentially leading to utterances with a single speaker, like
Librispeech. We experiment with 3 variations of segmenting with Whisper, and 5
variations segmenting with WhisperX.

20https://github.com/facebookresearch/demucs
²¹https://huggingface.co/pyannote/voice-activity-detection

104

6. Self-supervised learning of speech representations with Dutch archival data

First, we will first detail our methods using the large-v2 version of Whisper (Radford
et al., 2023). The Whisper model operates on 30 seconds of audio. Therefore, the
ASR output intrinsically has a maximum length of 30 seconds. Whisper outputs a list
of segments, with a predicted start and end-time for the spoken sentence. The first
variation, w-raw, simply uses these output sequences, where utterances are simply cut
by using the indicated start and end-time in each output segment. However, due to
the nature of transcribing consecutive chunks of 30 seconds, many utterances of a
single speaker are cut between multiple segments. These cuts are often indicated by
ellipses (...) in the transcription. Moreover, the model often transcribes non-speech
fragments by describing it, with phrases like music or laughing. Furthermore, the
model tends to “hallucinate” on silent audio, an artifact from training on scraped,
subtitled audio, which frequently has copyright information as a subtitle at the end,
without paired speech. As a second and third variation, we apply post-processing to
the Whisper output in an attempt to resolve these issues. The post-processing steps
are as follows:
1. Filter out segments with transcriptions exactly matching (case-insensitive) these

text phrases: muziek, gelach, tv gelderland, applaus, gezang, ***, and . (a single
dot).

2. If the transcription of a segment does not end with sentence-ending punctuation
(a dot, question or exclamation mark), we recursively merge it with the next
segment until a (merged) segment does end with such punctuation. We do not
merge segments if the gap between the current and next segment is longer than 3
seconds.

3. We remove segments which are shorter than a threshold, with the observations
that many short segments are simply phrases like “yes” or “that is right”; long
segments are more likely to be clean, varied speech.

If, due to the merging, segments end up longer than 30 seconds, we simply cut the
segment in half recursively until all subsegments are shorter than 30 seconds. The two
variations we use are w-pp-1s and w-pp-3s, which apply these post-processing steps
on the segments from w-raw, with the threshold in the third step being respectively
1 and 3 seconds.
Secondly, WhisperX (Bain et al., 2023) operates in three stages. In the first stage,
Pyannote SAD is applied to chunk the audio, with a cut and merge operation which
aims to create chunks close to 30 seconds. These chunk can then be transcribed by
Whisper (in our case, large-v2) in batches, allowing for an inference speed-up. Our
first variation, wx-asr, uses the resulting output for segmenting the broadcast data.
The second stage applies a forced alignment between the chunks and their respective
transcriptions, using a wav2vec 2.0 model fine-tuned for ASR,²² after which sentences
are broken up in separate segments. The second variation, wx-align, uses the output
of this stage as segmentations for the broadcast data. The third stage applies speaker

²²For Dutch: https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch

105



6.2 Methodology

diarization,²³ labelling each segment to a particular speaker. The third variant wx-diar
uses the output after the third stage for segmentation. Our fourth and fifth variant
apply, to wx-diar, the three post-processing steps mentioned above, similar to how
w-pp-1s and w-pp-3s are created. However, instead of merging on punctuation in the
second step, we merge on speaker labels instead, such that consecutive segments of
the same speaker become a single segment. If this segment is longer than 30 seconds,
we simply cut it, as described above. We use wx-diar-1s and wx-diar-3s, with a
threshold for 1 and 3 seconds in the third post-processing step, respectively.

6.3 Experiments

6.3.1 Data quality

Setup

We pre-train the BASE wav2vec 2.0 variant on the 960 hours of training data from
Librispeech, but apply various augmentations as described in Section 6.2.2. We use the
default settings for pre-training as described in (Baevski et al., 2020a), i.e., diversity
loss scaling of 0.1, 𝐿𝐿2-penalty loss scaling of 10, gumbel-softmax temperature 𝜏𝜏 = 2 to
𝜏𝜏 = 0.5 with factor 0.999995, contrastive loss temperature 𝜏𝜏𝑐𝑐 = 0.1, dropout of 10 %
throughout the network, and the feature extractor CNN gradients are scaled by a
factor 0.1. We also use 2 codebooks for quantization, with each codebook containing
320 entries of 128-dimensional codewords. However, we do not apply LayerDrop
(Huang et al., 2016; Fan et al., 2020), as this complicates distributed data-parallel
training (DDP).
For optimization, we use AdamW (Loshchilov and Hutter, 2019) with a weight decay
of 0.1, 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.98. We use a batch size of 5 minutes for all settings,
which means a batch contains up to 4.8 M frames, in order to fill up all available
VRAM in a single NVIDIA A100 gpu. We train with a triangular cyclic learning rate
schedule, with 25 k linear steps up and down. The minimum learning rate is a 100
times smaller than the maximum learning rate. For each condition we scan for the
best maximum learning rate (LR) in the cycle with a 2-phased approach. In the first
phase we attempt LR 3.2 ⋅ 10−5, 10−4 and 3.2 ⋅ 10−4 with 50 k training steps, i.e., a
single cycle. In the second phase we train for 400 k steps, i.e., 8 cycles, with the best
learning rate in phase 1, and 2 additional LRs, based a reasonable step size upwards
or downwards, respectively:
1. If 3.2 ⋅ 10−5 was best in phase 1, we also attempt LR 1.0 ⋅ 10−5 and 1.8 ⋅ 10−5.
2. If 10−4 was best in phase 1, we also attempt LR 5.6 ⋅ 10−5 and 1.8 ⋅ 10−4

3. If 3.2 ⋅ 10−4 was best in phase 1, we also attempt LR 5.6 ⋅ 10−4 and 1.0 ⋅ 10−3

The best LR is chosen according to the run with the lowest validation loss. The
validation split, made beforehand, holds out a single utterance from each session in

²³https://huggingface.co/pyannote/speaker-diarization

106



6.2 Methodology

diarization,²³ labelling each segment to a particular speaker. The third variant wx-diar
uses the output after the third stage for segmentation. Our fourth and fifth variant
apply, to wx-diar, the three post-processing steps mentioned above, similar to how
w-pp-1s and w-pp-3s are created. However, instead of merging on punctuation in the
second step, we merge on speaker labels instead, such that consecutive segments of
the same speaker become a single segment. If this segment is longer than 30 seconds,
we simply cut it, as described above. We use wx-diar-1s and wx-diar-3s, with a
threshold for 1 and 3 seconds in the third post-processing step, respectively.

6.3 Experiments

6.3.1 Data quality

Setup

We pre-train the BASE wav2vec 2.0 variant on the 960 hours of training data from
Librispeech, but apply various augmentations as described in Section 6.2.2. We use the
default settings for pre-training as described in (Baevski et al., 2020a), i.e., diversity
loss scaling of 0.1, 𝐿𝐿2-penalty loss scaling of 10, gumbel-softmax temperature 𝜏𝜏 = 2 to
𝜏𝜏 = 0.5 with factor 0.999995, contrastive loss temperature 𝜏𝜏𝑐𝑐 = 0.1, dropout of 10 %
throughout the network, and the feature extractor CNN gradients are scaled by a
factor 0.1. We also use 2 codebooks for quantization, with each codebook containing
320 entries of 128-dimensional codewords. However, we do not apply LayerDrop
(Huang et al., 2016; Fan et al., 2020), as this complicates distributed data-parallel
training (DDP).
For optimization, we use AdamW (Loshchilov and Hutter, 2019) with a weight decay
of 0.1, 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.98. We use a batch size of 5 minutes for all settings,
which means a batch contains up to 4.8 M frames, in order to fill up all available
VRAM in a single NVIDIA A100 gpu. We train with a triangular cyclic learning rate
schedule, with 25 k linear steps up and down. The minimum learning rate is a 100
times smaller than the maximum learning rate. For each condition we scan for the
best maximum learning rate (LR) in the cycle with a 2-phased approach. In the first
phase we attempt LR 3.2 ⋅ 10−5, 10−4 and 3.2 ⋅ 10−4 with 50 k training steps, i.e., a
single cycle. In the second phase we train for 400 k steps, i.e., 8 cycles, with the best
learning rate in phase 1, and 2 additional LRs, based a reasonable step size upwards
or downwards, respectively:
1. If 3.2 ⋅ 10−5 was best in phase 1, we also attempt LR 1.0 ⋅ 10−5 and 1.8 ⋅ 10−5.
2. If 10−4 was best in phase 1, we also attempt LR 5.6 ⋅ 10−5 and 1.8 ⋅ 10−4

3. If 3.2 ⋅ 10−4 was best in phase 1, we also attempt LR 5.6 ⋅ 10−4 and 1.0 ⋅ 10−3

The best LR is chosen according to the run with the lowest validation loss. The
validation split, made beforehand, holds out a single utterance from each session in

²³https://huggingface.co/pyannote/speaker-diarization

106

6. Self-supervised learning of speech representations with Dutch archival data

Table 13:  The WER on Librispeech after fine-tuning pre-trained models, with
simulated variations in pre-training data quality. Fine-tuning results are shown for
fine-tuning with 10 minutes of labels and 100 hours of labels. We also show the
minimum self-supervised validation loss for each pre-training condition, where DIV
indicates that the training diverged and no pre-trained model was obtained. This was
the case for mix-music and mix-vocal, for all three fractions.

10 m labels 100 h labels
pre-training
data

SSL loss test-clean test-other test-clean test-other

baseline 11862 59.56% 69.90% 12.40% 31.48%
1spk-concat 11775 62.01% 72.58% 12.82% 32.92%
2spk-concat 12390 75.56% 84.16% 16.84% 39.24%
2spk-mix-10 12021 62.51% 72.30% 12.23% 31.94%
2spk-mix-33 12264 63.86% 73.63% 13.36% 33.39%
2spk-mix-50 12527 71.74% 80.51% 14.65% 36.28%
sub-noise-10 12357 63.86% 74.61% 13.30% 33.91%
sub-noise-33 13518 77.74% 86.77% 18.50% 41.99%
sub-noise-50 14605 87.02% 92.19% 23.92% 48.40%
sub-music-10 12321 66.45% 76.56% 14.39% 35.31%
sub-music-33 12832 69.88% 79.30% 15.36% 37.45%
sub-music-50 13383 75.33% 84.97% 17.41% 40.50%
mix-noise-10 12042 61.56% 71.72% 12.65% 32.30%
mix-noise-33 12395 65.71% 75.67% 13.25% 33.24%
mix-noise-55 12640 68.73% 78.19% 14.81% 35.88%
mix-music->=10 DIV / / / /
mix-vocal->=10 DIV / / / /
mix-instr-10 12055 64.00% 73.24% 12.53% 31.80%
mix-instr-33 12463 69.60% 78.42% 14.57% 35.56%
mix-instr-50 12887 70.76% 79.55% 15.60% 37.41%

the training data of Librispeech. We do not apply the data quality simulation to the
validation data, as we want to evaluate the quality of the speech representations on
data which is similar to the fine-tuning dataset.
Fine-tuning is done with the 10 min and 100 hour labeled data conditions, using
Librispeech training data, as done in (Baevski et al., 2020a). We use the default tri-
stage learning rate with a 10 % warm up, 40 % constant, and 50 % exponential decay

107



6.3 Experiments

phase, with the Adam optimizer (Kingma and Ba, 2015), with 𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.98,
and no weight decay. For both settings we use an initial LR of 5 ⋅ 10−7, a constant
LR of 5 ⋅ 10−5, and a final LR of 2.5 ⋅ 10−6. We mask 5 % of the latent speech feature
sequence, and use a dropout of 10 %. Inference is done greedily with letter-decoding,
we do not use a language model. For 10 minutes of labels we train for 12 k steps, for
100 hours of labels we fine-tune for 80 k steps. The feature CNN is frozen for the first
5 k steps.

Results

We show fine-tuning performance of all data quality simulation in Table 13. First,
we see that baseline, where we trained on the vanilla Librispeech training dataset
without any data manipulations, has the best performance, compared to all other
settings. There is one exception, namely for 2spk-mix-10 the 12.23% on test-clean
with 100 h labeled data is slightly better than the baseline of 12.40 %. Secondly,
we see that there is a minor performance drop when concatenating two utterances
from the same speaker (1spk-concat), and a more significant performance drop when
utterances from two different speakers are concatenated (2spk-concat). Thirdly, we
see that substituting 10% of the data in a batch with pure noise (sub-noise-10) has
a minor effect on performance, comparatively with concatenating the same speaker
to all utterances (1spk-concat). A much larger effect is visible when the fractions of
substitutions is increased to 33% and 50%. We also observe that noise substitutions
are less harmful than music substitutions in minor fractions (sub-music-10), but
for the larger fractions, music substitutions lead to less degradation, although the
performance is still substantially worse compared to baseline. Fourthly, we observe
that for all three conditions of mix-music and mix-vocal, pre-training is not stable.
We only managed to find a converging learning rate when mixing instrumental music.
For mix-music (which can be any combination of vocal and instrumental music), or
mix-vocal, we see that even when mixing a small amount of the data in a batch (10 %)
the contrastive loss diverges. Fifthly, we see mixing in a second speaker (2spk-mix)
only leads to relatively small performance drops. The performance of 2spk-mix sits
between the performance of the baseline and 2spk-concat. Note that the impact of
mixing a speaker in 50 % of the data is on par with substituting 10 % of the data
with music.

6.3.2 Effective pre-processing methods

From the analysis of data quality above, it seems paramount that pre-training data
contains as little music as possible. To this end, we proposed the pre-processing
methods described in Section 6.3.2, with the hope that music sections will either be
ignored, or transcribed as such, by the Whisper model. As pre-processing the whole
nibg dataset with Whisper is computationally intensive, we decided to first analyze
the performance of different variations on a subset of nibg. At random, we selected
4000 broadcasts, with a total duration of ~2500 hours of data. We applied the various

108



6.3 Experiments

phase, with the Adam optimizer (Kingma and Ba, 2015), with 𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.98,
and no weight decay. For both settings we use an initial LR of 5 ⋅ 10−7, a constant
LR of 5 ⋅ 10−5, and a final LR of 2.5 ⋅ 10−6. We mask 5 % of the latent speech feature
sequence, and use a dropout of 10 %. Inference is done greedily with letter-decoding,
we do not use a language model. For 10 minutes of labels we train for 12 k steps, for
100 hours of labels we fine-tune for 80 k steps. The feature CNN is frozen for the first
5 k steps.

Results

We show fine-tuning performance of all data quality simulation in Table 13. First,
we see that baseline, where we trained on the vanilla Librispeech training dataset
without any data manipulations, has the best performance, compared to all other
settings. There is one exception, namely for 2spk-mix-10 the 12.23% on test-clean
with 100 h labeled data is slightly better than the baseline of 12.40 %. Secondly,
we see that there is a minor performance drop when concatenating two utterances
from the same speaker (1spk-concat), and a more significant performance drop when
utterances from two different speakers are concatenated (2spk-concat). Thirdly, we
see that substituting 10% of the data in a batch with pure noise (sub-noise-10) has
a minor effect on performance, comparatively with concatenating the same speaker
to all utterances (1spk-concat). A much larger effect is visible when the fractions of
substitutions is increased to 33% and 50%. We also observe that noise substitutions
are less harmful than music substitutions in minor fractions (sub-music-10), but
for the larger fractions, music substitutions lead to less degradation, although the
performance is still substantially worse compared to baseline. Fourthly, we observe
that for all three conditions of mix-music and mix-vocal, pre-training is not stable.
We only managed to find a converging learning rate when mixing instrumental music.
For mix-music (which can be any combination of vocal and instrumental music), or
mix-vocal, we see that even when mixing a small amount of the data in a batch (10 %)
the contrastive loss diverges. Fifthly, we see mixing in a second speaker (2spk-mix)
only leads to relatively small performance drops. The performance of 2spk-mix sits
between the performance of the baseline and 2spk-concat. Note that the impact of
mixing a speaker in 50 % of the data is on par with substituting 10 % of the data
with music.

6.3.2 Effective pre-processing methods

From the analysis of data quality above, it seems paramount that pre-training data
contains as little music as possible. To this end, we proposed the pre-processing
methods described in Section 6.3.2, with the hope that music sections will either be
ignored, or transcribed as such, by the Whisper model. As pre-processing the whole
nibg dataset with Whisper is computationally intensive, we decided to first analyze
the performance of different variations on a subset of nibg. At random, we selected
4000 broadcasts, with a total duration of ~2500 hours of data. We applied the various

108

6. Self-supervised learning of speech representations with Dutch archival data

Table 14:  The result of applying 3 pre-processing techniques (naively, using Whisper,
and using WhisperX) on a subset of 4000 files of nibg. The “discarded” column
indicates the amount of data which was left unused after the pre-processing. Note
that wx-diar-1s and wx-diar-3s are both a cleaned version of wx-diar, respectively
filtering out segments shorter than 1 or 3 seconds.

subset segments duration discarded avg min
naive
sequential (seq) 296,357 2469 h 0.65% 30.0 30.0
Whisper (Radford et al., 2023)
raw output (w-raw) 2 183 647 1 998 h 19.63% 3.29 0.5
clean 1 s (w-pp-1s) 2 089 314 1 868 h 24.86% 3.22 1.0
clean 3 s (w-pp-3s) 1 156 881 1 370 h 44.90% 4.26 3.0
WhisperX (Bain et al., 2023)
transcribed (wx-asr) 347 178 2 158 h 13.20% 22.37 0.5
aligned (wx-align) 1 680 228 1 779 h 28.44% 3.81 0.5
diarized (wx-diar) 1 674 252 1 773 h 28.65% 3.81 0.5
clean 1 s (wx-diar-1s) 588 866 1 725 h 30.59% 10.55 1.0
clean 3 s (wx-diar-3s) 473 831 1 663 h 33.10% 12.63 3.0

Table 15: For each pre-processing subset shown in Table 14 we show the lowest SSL
validation loss (batch size of 5 minutes), the step at which this loss was reached,
and fine-tuning performance on two datasets, the Dutch multi-lingual Librispeech and
CommonVoice. Evaluation is done on both test set of the respective datasets, shown as
WER in %. The in-domain test set is italicized. The ∗ indicates that training diverged.

SSL ft. on MLS-train ft. on CV-train
subset loss step MLS-test CV-test MLS-test CV-test

seq 15255 400 k 31.0 58.0 53.2 39.7
w-raw 24765∗ 270 k 100 100 100 100
w-pp-1s 25066∗ 15 k 100 100 100 100
w-pp-3s 15267 400 k 25.3 49.3 46.7 31.3
wx-asr 15061 355 k 31.3 57.7 53.1 39.8
wx-align 15281 400 k 27.6 52.6 48.1 33.9
wx-diar 15203 400 k 27.6 51.3 48.1 33.8
wx-diar-1s 15076 400 k 27.2 52.4 47.5 34.6
wx-diar-3s 15009 400 k 27.9 53.0 49.3 35.4

109



6.3 Experiments

pre-processing techniques to this subset. The resulting subsets and their statistics are
displayed in Table 14. The sequential subset can be seen as a baseline with minimal
pre-processing; the discard of 0.65% of data is simply the truncation at the end of
each file, as we discard the last segment of each file if it is not exactly 30 seconds.
Furthermore, we note that wx-diar-3s discards a lot of data, almost a third, but has
the closest characteristics to Librispeech, with a minimum duration of 3 seconds for
each utterance, and an average duration of 12.63 seconds.
For each subset we perform self-supervised pre-training with hyperparameters equiv-
alent to Section 6.3.1. First, we pre-train with all subsets, using a batch size of 5
minutes. On the most promising subsets we also pre-train with a batch size of 40
minutes. Instead of a learning rate scan, we simply use the cyclic schedule, with a
minimum LR of 10−6 and a maximum LR of 10−4. We selected the checkpoint with
the lowest validation loss for fine-tuning. As validation data we combine the validation
split of Dutch MLS (MLS) and Dutch CV.
The checkpoints are fine-tuned and evaluated with the respective splits of the Dutch
CV and MLS datasets. We note the training splits as MLS-nl and CV-nl, and the test
sets as MLS-test and CV-test. Fine-tuning is done with the exact same configuration
as the 100 h fine-tuning condition in Section 6.3.1, including the maximum learning
rate of 5 ⋅ 10−5.
The fine-tuning results with a pre-training batch size of 5 minutes are shown
in Table 15. Firstly, looking at Whisper-based segmentation, we see that pre-
training with w-raw data leads to divergence. This is also the case for w-pp-1s.
However, w-pp-3s has the best overall fine-tuning performance. Secondly, looking at
WhisperX-based segmentation, we see that the first stage, wx-asr, together with the
naive baseline seq, have the worst fine-tuning performance (ignoring divergence). It is
noticeable that seq and wx-asr have very similar performance, even though for wx-asr
13.2 % of the data is discarded, while seq only discards a marginal 0.65 %. Doing
a forced alignment with a pre-trained wav2vec 2.0 model, as done with wx-align,
leads to a large improvement in performance. Performing diarization (as done with
wx-diar) seems to barely affect the performance. Finally, we see that the cleaning
steps applied on wx-diax only decrease performance.
When pre-training with a batch size of 40 minutes (not shown in Table 15), we
observed a different ranking for wx-diar and wx-diar-3s. The w-pp-3s dataset still had
the best performance, with 16.5 % WER when fine-tuning and evaluating on MLS.
However, for wx-diar-3s, wx-diar, and seq we respectively observed a WER of 17.1%,
17.5%, and 19.7%. When fine-tuning and evaluating on CV, we observed, respectively
for w-pp-3s, wx-diar-3s, wx-diar and seq, a WER of 12.8%, 14.0%, 14.6%, and 17.7%.
We note that these performances all substantially improved compared to pre-training
with a batch size of 5 minutes, indicating that all pre-processing techniques are
suitable for scaling-up, although we do not know to what extent. Finally, we note that

110



6.3 Experiments

pre-processing techniques to this subset. The resulting subsets and their statistics are
displayed in Table 14. The sequential subset can be seen as a baseline with minimal
pre-processing; the discard of 0.65% of data is simply the truncation at the end of
each file, as we discard the last segment of each file if it is not exactly 30 seconds.
Furthermore, we note that wx-diar-3s discards a lot of data, almost a third, but has
the closest characteristics to Librispeech, with a minimum duration of 3 seconds for
each utterance, and an average duration of 12.63 seconds.
For each subset we perform self-supervised pre-training with hyperparameters equiv-
alent to Section 6.3.1. First, we pre-train with all subsets, using a batch size of 5
minutes. On the most promising subsets we also pre-train with a batch size of 40
minutes. Instead of a learning rate scan, we simply use the cyclic schedule, with a
minimum LR of 10−6 and a maximum LR of 10−4. We selected the checkpoint with
the lowest validation loss for fine-tuning. As validation data we combine the validation
split of Dutch MLS (MLS) and Dutch CV.
The checkpoints are fine-tuned and evaluated with the respective splits of the Dutch
CV and MLS datasets. We note the training splits as MLS-nl and CV-nl, and the test
sets as MLS-test and CV-test. Fine-tuning is done with the exact same configuration
as the 100 h fine-tuning condition in Section 6.3.1, including the maximum learning
rate of 5 ⋅ 10−5.
The fine-tuning results with a pre-training batch size of 5 minutes are shown
in Table 15. Firstly, looking at Whisper-based segmentation, we see that pre-
training with w-raw data leads to divergence. This is also the case for w-pp-1s.
However, w-pp-3s has the best overall fine-tuning performance. Secondly, looking at
WhisperX-based segmentation, we see that the first stage, wx-asr, together with the
naive baseline seq, have the worst fine-tuning performance (ignoring divergence). It is
noticeable that seq and wx-asr have very similar performance, even though for wx-asr
13.2 % of the data is discarded, while seq only discards a marginal 0.65 %. Doing
a forced alignment with a pre-trained wav2vec 2.0 model, as done with wx-align,
leads to a large improvement in performance. Performing diarization (as done with
wx-diar) seems to barely affect the performance. Finally, we see that the cleaning
steps applied on wx-diax only decrease performance.
When pre-training with a batch size of 40 minutes (not shown in Table 15), we
observed a different ranking for wx-diar and wx-diar-3s. The w-pp-3s dataset still had
the best performance, with 16.5 % WER when fine-tuning and evaluating on MLS.
However, for wx-diar-3s, wx-diar, and seq we respectively observed a WER of 17.1%,
17.5%, and 19.7%. When fine-tuning and evaluating on CV, we observed, respectively
for w-pp-3s, wx-diar-3s, wx-diar and seq, a WER of 12.8%, 14.0%, 14.6%, and 17.7%.
We note that these performances all substantially improved compared to pre-training
with a batch size of 5 minutes, indicating that all pre-processing techniques are
suitable for scaling-up, although we do not know to what extent. Finally, we note that

110

6. Self-supervised learning of speech representations with Dutch archival data

Table 16: The WER on the test splits of Dutch multi-lingual Librispeech and
CommonVoice, after fine-tuning various pre-trained models, including those from
previous work (Baevski et al., 2020a; Conneau et al., 2021). For both fine-tuning
conditions we evaluate on the in-domain test set (in italics) and the out-of-domain test
set. Note that MLS and CV are multi-lingual, while MLS-nl and CV-nl are the respective
Dutch subsets. We shortened MLS-test and CV-test to MLS-t and CV-t. VP-nl is the
Dutch subset of the VoxPopuli datset. (Wang et al., 2021).

SSL configuration ft. on MLS-nl ft. on CV-nl
model data batch size steps MLS-t CV-t MLS-t CV-t

pre-trained models by (Baevski et al., 2020a) and (Conneau et al., 2021)
LARGE LS 80 min 400k 15.9 34.9 33.4 18.5
LARGE VP-nl 80 min 250k 16.1 23.9 25.6 12.8
LARGE MLS,CV,BABEL 80 min 250k 13.0 25.1 20.5 12.0
baseline pre-training on English and Dutch datasets
BASE LS 5 min 400k 25.8 53.1 45.4 32.8
BASE CV-nl 5 min 400k 38.9 67.3 70.5 56.3
BASE MLS-nl 5 min 400k 31.3 62.7 50.5 41.2
pre-training with 55 k hours of Dutch data
BASE nibg-pp 5 min 400k 30.9 55.3 45.5 32.1
BASE nibg-pp 40 min 400k 16.8 27.8 26.2 13.8
LARGE nibg-pp 40 min 500k 13.3 21.2 22.5 9.9

the run-time for creating the wx-diar-3s dataset is lower than w-pp-3s, respectively
40 and 50 hours, using a single NVIDIA A100 GPU.

6.3.3 SSL with 55k hours of Dutch audio data

Setup

In the last set of experiments we scale the pre-training to the whole nibg dataset. To
save time and resources, we apply the wx-diar-3s pre-processing technique, although
based on Section 6.3.2 we expect that the w-pp-3s method should have lead to slightly
better performance. After applying the wx-diar-3s pre-processing on the raw 81 k
hour dataset, we obtain the pre-training dataset nibg-pp with 55 671 hours of data,
having discarded 31 % of the raw dataset (~25 k hours). The dataset has 16 876 597
segments, with an average of 11.9 seconds, and a minimum and maximum length
of respectively 3 and 30 seconds. The length distribution peaks at 3 seconds, with
~1.8 M utterances with a length between 3.0 and 3.1 seconds, compared to ~75 k

111



6.3 Experiments

utterances with a length between 11.9 and 12 seconds, and ~90 k utterances with a
length between 29 and 30 seconds.
We pre-train with the BASE and LARGE variant of wav2vec 2.0. We use the same config-
uration as detailed in Section 6.3.1. However, we change the learning rate schedule to
a two-stage approach as in (Conneau et al., 2021) for a fairer comparison. The two-
stage schedule linearly warms-up for the first 10% of total steps, the remaining 90%
of steps decay the LR with cosine annealing. The initial LR is 1000 times smaller than
the peak LR, while the final LR is 100 times smaller. For both network variants, we
first perform a grid scan for the (peak) LR with a batch size of 5 minutes. The grid
has a range of [10−4, 10−3] and a step size of 10−4. We use the best-performing LR to
scale to a batch of 40 minutes with the square root scaling law (Malladi et al., 2022).
For a baseline, we also pre-train with English Librispeech (960 hours), Dutch multi-
lingual Librispeech (1550 hours), and Dutch CommonVoice data (50 hours). For the
baseline we use a 5 minute batch size and use the BASE model variant. Fine-tuning and
evaluation is done on multi-lingual Librispeech and CommonVoice as in Section 6.3.2,
without scanning over any hyperparameters; only the initial SSL checkpoint is varied.

Results

The results are shown in Table 16. First, we fine-tune pre-existing checkpoints, namely
the LARGE network pre-trained with many GPUs on Librispeech24 in (Baevski et al.,
2020a), the Dutch split of VoxPopuli25 (Wang et al., 2021) in (Conneau et al., 2021),
and the multi-lingual pre-training26 on the MLS, CV and BABEL, also in (Conneau
et al., 2021). We see that the Librispeech pre-training has a better WER on MLS
compared to the network pre-trained on VoxPopuli data, but only in the in-domain
setting. For CommonVoice, the multi-lingual pre-training has the best performance.
When looking at our baseline experiments with a small batch size, we see that
pre-training on Librispeech, compared to Dutch multi-lingual Librispeech, or Dutch
CommonVoice, is more effective, with substantially lower WERs on both multi-lingual
Librispeech and CommonVoice evaluation data. We think this is quite notable, as the
Librispeech pre-training is out-of-domain both linguistically (English versus Dutch)
and acoustically (in the case of CommonVoice). When we pre-train on 55 k hours of
nibg-pp with the BASE network and the 5 minute batch size, we still see that the
Librispeech pre-training outperforms on MLS evaluation data, although for the CV
data we see slightly better performance with nibg-pp. When we scale the batch size
from 5 to 40 minutes, we see the WERs reduce more than 50%, closely matching the
performance in the pre-existing pre-trainings (Conneau et al., 2021). When we scale
the network from BASE to LARGE, we see that the WERs are mostly lower compared to
the multi-lingual training by Conneau et al. (2021). Only on the in-domain evaluation
on MLS does the multi-lingual pre-training slightly outperform our mono-lingual pre-

24https://huggingface.co/facebook/wav2vec2-large
25https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli
26https://huggingface.co/facebook/wav2vec2-large-xlsr-53

112



6.3 Experiments

utterances with a length between 11.9 and 12 seconds, and ~90 k utterances with a
length between 29 and 30 seconds.
We pre-train with the BASE and LARGE variant of wav2vec 2.0. We use the same config-
uration as detailed in Section 6.3.1. However, we change the learning rate schedule to
a two-stage approach as in (Conneau et al., 2021) for a fairer comparison. The two-
stage schedule linearly warms-up for the first 10% of total steps, the remaining 90%
of steps decay the LR with cosine annealing. The initial LR is 1000 times smaller than
the peak LR, while the final LR is 100 times smaller. For both network variants, we
first perform a grid scan for the (peak) LR with a batch size of 5 minutes. The grid
has a range of [10−4, 10−3] and a step size of 10−4. We use the best-performing LR to
scale to a batch of 40 minutes with the square root scaling law (Malladi et al., 2022).
For a baseline, we also pre-train with English Librispeech (960 hours), Dutch multi-
lingual Librispeech (1550 hours), and Dutch CommonVoice data (50 hours). For the
baseline we use a 5 minute batch size and use the BASE model variant. Fine-tuning and
evaluation is done on multi-lingual Librispeech and CommonVoice as in Section 6.3.2,
without scanning over any hyperparameters; only the initial SSL checkpoint is varied.

Results

The results are shown in Table 16. First, we fine-tune pre-existing checkpoints, namely
the LARGE network pre-trained with many GPUs on Librispeech24 in (Baevski et al.,
2020a), the Dutch split of VoxPopuli25 (Wang et al., 2021) in (Conneau et al., 2021),
and the multi-lingual pre-training26 on the MLS, CV and BABEL, also in (Conneau
et al., 2021). We see that the Librispeech pre-training has a better WER on MLS
compared to the network pre-trained on VoxPopuli data, but only in the in-domain
setting. For CommonVoice, the multi-lingual pre-training has the best performance.
When looking at our baseline experiments with a small batch size, we see that
pre-training on Librispeech, compared to Dutch multi-lingual Librispeech, or Dutch
CommonVoice, is more effective, with substantially lower WERs on both multi-lingual
Librispeech and CommonVoice evaluation data. We think this is quite notable, as the
Librispeech pre-training is out-of-domain both linguistically (English versus Dutch)
and acoustically (in the case of CommonVoice). When we pre-train on 55 k hours of
nibg-pp with the BASE network and the 5 minute batch size, we still see that the
Librispeech pre-training outperforms on MLS evaluation data, although for the CV
data we see slightly better performance with nibg-pp. When we scale the batch size
from 5 to 40 minutes, we see the WERs reduce more than 50%, closely matching the
performance in the pre-existing pre-trainings (Conneau et al., 2021). When we scale
the network from BASE to LARGE, we see that the WERs are mostly lower compared to
the multi-lingual training by Conneau et al. (2021). Only on the in-domain evaluation
on MLS does the multi-lingual pre-training slightly outperform our mono-lingual pre-

24https://huggingface.co/facebook/wav2vec2-large
25https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli
26https://huggingface.co/facebook/wav2vec2-large-xlsr-53

112

6. Self-supervised learning of speech representations with Dutch archival data

training. Note that the multi-lingual pre-training is only evaluated on in-domain data,
while our nibg-pp pre-training is only evaluated on out-of-domain data.

6.4 Discussion and conclusions

Our first research question focused on the data requirements for self-supervised
learning of speech representations with the contrastive wav2vec 2.0 framework. Most
notably, we observed that mixing music with the speech utterance lead to divergence
during training. Only the music consisting solely of instrumental tracks had converg-
ing behavior, most likely because instrumental music can be seen, acoustically, as
noise instead of speech. Overall, each studied data quality condition lead to worse
fine-tuning performance, indicating that wav2vec 2.0 requires datasets as clean as
Librispeech to perform optimally. We expect that other SSL techniques, like HuBERT
(Hsu et al., 2021) and DinoSR (Liu et al., 2023), are similarly overfitted, on a meta-
level, to Librispeech. In particular, WavLM (Chen et al., 2022a) requires utterances
to be single-speaker, as the pre-training relies on mixing a second speaker into the
utterance, which the models needs to learn to separate. We hope that future work on
speech SSL is more explicit in the data quality assumptions, and can focus on more
robust methods which work with noisier data.
Our second research questions involved the required steps to create a qualitative pre-
training datasets. This question is quite specific to our nibg dataset, but we think our
observations generalize for all cases with noisy (raw) datasets. We found naive speech
activity detection to be insufficient on our television broadcasting data, due to the
relatively high error rate regarding music, and overlapped speech. We found Whisper
to be an effective, albeit computationally intensive, tool for pre-processing the audio.
Noticeably, we needed to filter out segments shorter than 3 seconds to have a robust
pre-training. Coincidentally, Librispeech utterances are at least 3 seconds, however, we
did manage to have successful pre-trainings with the WhisperX-based subsets which
had a minimum length of 0.5 seconds. We assume that removing short segments was
an effective heuristic to remove low-quality speech utterances, due to limited acoustic
signals, or noisy overlapped speech. We note that our naive sequential baseline,
which simply segmented by taking consecutive 30 seconds chunks of the audio, did
successfully pre-train, albeit with lower performance. We are curious whether, at the
limit of computational resources, there is a convergence between the naive baseline,
and the “smart” segmentation. We hope that future work can analyze whether simply
training for more epochs closes the performance gap between clean and noisy data,
or whether clean data inherently leads to better learned representations. For now, we
conclude that using clean speech data is more efficient.
Our last research questions involved a comparison between mono-lingual and multi-
lingual pre-training. We found that our mono-lingual pre-training had better perfor-
mance on the CommonVoice dataset, but equivalent performance on the multi-lingual
Librispeech dataset. We were also surprised by the relatively good performance of

113



6.4 Discussion and conclusions

fine-tuning for Dutch when using a model pre-trained only using (English) Librispeech
data. This could be seen for the LARGE model by (Conneau et al., 2021), but also
our own pre-trained BASE model. The good performance of English Librispeech could
be due to the fact that it is very clean data, and that SSL techniques, including
wav2vec 2.0, are initially developed using Librispeech data. We conclude that mono-
lingual pre-training seems more robust to out-of-domain data within the same
language, although we believe future work could analyze the distinction between in-
domain data during pre-training, and during fine-tuning.

114



6.4 Discussion and conclusions

fine-tuning for Dutch when using a model pre-trained only using (English) Librispeech
data. This could be seen for the LARGE model by (Conneau et al., 2021), but also
our own pre-trained BASE model. The good performance of English Librispeech could
be due to the fact that it is very clean data, and that SSL techniques, including
wav2vec 2.0, are initially developed using Librispeech data. We conclude that mono-
lingual pre-training seems more robust to out-of-domain data within the same
language, although we believe future work could analyze the distinction between in-
domain data during pre-training, and during fine-tuning.

114





7 Conclusions

In which our adventurer reflects on the journey through
speech representation research.

7.1 Reflections on presented work

The research presented in this dissertation has covered two aspects of self-supervised
speech representation learning. First, in Chapter 2, Chapter 3 and Chapter 4, we
studied the adaptability of speech representations learned with wav2vec 2.0, by fine-
tuning the network in various settings. Later, in Chapter 5 and Chapter 6, we studied
the self-supervised learning process of wav2vec 2.0 in more detail, with an analysis
on the batch size, data quality assumptions, and a mono-lingual versus multi-lingual
dataset comparison.
In Chapter 2, we were one of the first to show that wav2vec 2.0 could be fine-tuned
for speaker recognition. However, our work considered extracting speaker embeddings
directly from the last transformer layer, with various pooling techniques. Instead of
pooling the transformer output directly, it became standard to add a relatively large
network, such as X-vector or ECAPA-TDNN, on top of the transformer layers (Chen
et al., 2022a), while also using a weighted sum of all encoder layers. While these
additions achieved state-of-the-art speaker recognition performance, we believe large
task-specific heads will not unify speech technology tasks.
In Chapter 3, we showed how wav2vec 2.0 enables speaker recognition in low-resource
settings. Our work considered relatively small datasets, namely 100 hours of audio
with roughly 50 k utterances. We observed that the (small) dataset with the maximum
number of speakers and session had the best performance. Note that the reduced
versions of VoxCeleb2 were smaller than using a single 3 second segment from each
session of each speaker in VoxCeleb2, which results in 113 hours of data compared
to the full dataset with 2314 hours. For ASR, it was seen that wav2vec 2.0 could
be fine-tuned with 10 minutes of audio. However, the result with 10 minutes of data
uses an impractically large beam search with a n-gram language model. Reflecting
on our work, it would have been interesting to test smaller datasets than 100 hours,
although for speaker recognition we do not expect any reasonable results with only
10 minutes of data, as there is no beam search equivalence.
We also note that the pre-training of wav2vec 2.0 is primarily designed for ASR.
Specifically, the contrastive loss only considers negative samples within the same

117



7.1 Reflections on presented work

utterance, and thus, from the same speaker and session. The loss function of WavLM is
designed to model speaker information by learning to separate a second speaker which
is mixed into pre-training data. Separating the second speaker is a noise reduction
task, but to perform this separation, the model needs to be able to recognize which
parts of the speech signal are from a background speaker, which should require some
form of modelling speaker information. Therefore, it would be interesting to repeat
the experiments in Chapter 3 with the WavLM model.
In Chapter 4, we analyzed the feasibility of a MTL model for speech and speaker
recognition. We observed that the orthogonality of speech and speaker made perfor-
mance a trade-off, these tasks did not jointly benefit from each other. It could be that
the BASE wav2vec 2.0 network did not have a large enough capacity to model both
tasks, and that experiments with the LARGE network would show better performance.
However, it could also be that, like mentioned above, the wav2vec 2.0 representations
do not have enough intrinsic speaker information, and that fine-tuning speaker
recognition is too disruptive to the learned representation. Here we are also interested
in repeating the experiments with WavLM. If WavLM alleviates the performance
trade-off, even if only moderately, this hints that research towards more unified self-
supervised learning techniques is a promising direction. We are also curious whether
a better dataset could prevent the MTL model from failing to generalize to out-of-
domain data.
In Chapter 5, we found a direct relationship between the amount of data seen
during self-supervision, and downstream task performance, independent from the SSL
batch size, for wav2vec 2.0. Due to the fact that seminal SSL papers, originating
from industry research labs, reported results with only large batch sizes, we thought
applying these techniques with small batch sizes might be infeasible. From our results,
we know small batches do converge, where performance improves as the product
of batch size and the number of iterations increases. Due to this relationship, we
think there are possibilities for practitioners with low(er) computational budgets to
contribute to SSL methodology research. As long as the amount of data seen is kept
constant, comparisons can be made regarding, e.g., the data efficiency of SSL methods.
In Chapter 6, we created a large mono-lingual dataset from television broadcast data.
We learned that wav2vec 2.0 requires specific data quality conditions, where pre-
training needs to be done on clean, prepared speech. Specifically, we observed that the
presence of music led to divergence. We think it is plausible that these observations
generalize to other methods like HuBERT, WavLM and DinoSR. Thus, while it is
often argued that self-supervised learning is beneficial due to the ease of scaling an
unlabeled dataset, in practice these data assumptions enforce soft label requirements
on the data. Moreover, we saw that mono-lingual pre-training was able to achieve
better performance than multi-lingual pre-training with the same computational
budget, but this was dependent on the dataset. It would be valuable to perform an
evaluation on a dataset that is out-of-distribution for both the mono-lingual and

118



7.1 Reflections on presented work

utterance, and thus, from the same speaker and session. The loss function of WavLM is
designed to model speaker information by learning to separate a second speaker which
is mixed into pre-training data. Separating the second speaker is a noise reduction
task, but to perform this separation, the model needs to be able to recognize which
parts of the speech signal are from a background speaker, which should require some
form of modelling speaker information. Therefore, it would be interesting to repeat
the experiments in Chapter 3 with the WavLM model.
In Chapter 4, we analyzed the feasibility of a MTL model for speech and speaker
recognition. We observed that the orthogonality of speech and speaker made perfor-
mance a trade-off, these tasks did not jointly benefit from each other. It could be that
the BASE wav2vec 2.0 network did not have a large enough capacity to model both
tasks, and that experiments with the LARGE network would show better performance.
However, it could also be that, like mentioned above, the wav2vec 2.0 representations
do not have enough intrinsic speaker information, and that fine-tuning speaker
recognition is too disruptive to the learned representation. Here we are also interested
in repeating the experiments with WavLM. If WavLM alleviates the performance
trade-off, even if only moderately, this hints that research towards more unified self-
supervised learning techniques is a promising direction. We are also curious whether
a better dataset could prevent the MTL model from failing to generalize to out-of-
domain data.
In Chapter 5, we found a direct relationship between the amount of data seen
during self-supervision, and downstream task performance, independent from the SSL
batch size, for wav2vec 2.0. Due to the fact that seminal SSL papers, originating
from industry research labs, reported results with only large batch sizes, we thought
applying these techniques with small batch sizes might be infeasible. From our results,
we know small batches do converge, where performance improves as the product
of batch size and the number of iterations increases. Due to this relationship, we
think there are possibilities for practitioners with low(er) computational budgets to
contribute to SSL methodology research. As long as the amount of data seen is kept
constant, comparisons can be made regarding, e.g., the data efficiency of SSL methods.
In Chapter 6, we created a large mono-lingual dataset from television broadcast data.
We learned that wav2vec 2.0 requires specific data quality conditions, where pre-
training needs to be done on clean, prepared speech. Specifically, we observed that the
presence of music led to divergence. We think it is plausible that these observations
generalize to other methods like HuBERT, WavLM and DinoSR. Thus, while it is
often argued that self-supervised learning is beneficial due to the ease of scaling an
unlabeled dataset, in practice these data assumptions enforce soft label requirements
on the data. Moreover, we saw that mono-lingual pre-training was able to achieve
better performance than multi-lingual pre-training with the same computational
budget, but this was dependent on the dataset. It would be valuable to perform an
evaluation on a dataset that is out-of-distribution for both the mono-lingual and

118

7. Conclusions

multi-lingual model, as the multi-lingual model was pre-trained on the training set
of the evaluation datasets, while the mono-lingual model was not.

7.2 Future developments

How will we achieve a single artificial neural network for all speech technology tasks?
While foundation models like wav2vec 2.0, HuBERT, and WavLM, can be fine-tuned,
separately, for all tasks in the SUPERB benchmark, there is no multi-task model
capable of all tasks simultaneously. In Chapter 4 we saw that building such a multi-
task learning (MTL) model negatively impacts performance, and more research is
required to understand how we can combine these orthogonal tasks. The Whisper
model is a promising direction towards a unified MTL model for speech technology
tasks, capable of ASR, speech translation, and some form of speech activity detection.
However, Whisper does not consider speaker, prosodical or generational aspects of
speech technology. What are our projections for future developments towards a single
MTL model?

Richer datasets

To enable the fine-tuning of a MTL model for speech and speaker recognition, we
believe we need a dataset with transcripts and high session variability. For the speaker
diarization task, it could also be valuable for such a dataset to include speaker turns.
We speculate that synthetic data generation, with high-quality text-to-speech models,
could be an approach to generate better fine-tuning datasets, although currently,
model collapse is an open problem.

Tokenization of speech tasks

A rich dataset as described above, could allow models like Whisper to be fine-tuned
to include non-text tokens, related to e.g., speaker labels, speaker turns and emotion.
Thus, we envision that other speech technology tasks can be achieved by having a
richer transcription output. This trend of directly learning tasks in an end-to-end
fashion has been shown to be effective throughout development of deep learning
methods, and we believe that future work in speech technology will also focus on
end-to-end approaches, which include more speech technology tasks directly into
encoder-decoder transformer models.

Improving SSL methods

Currently, most SSL techniques are primarily designed for, and evaluated on, the ASR
downstream task. WavLM is a noticeable exception, with a specific goal of modelling
speaker information, and it has the best overall performance on the SUPERB
benchmark. We believe that unifying speech SSL methods, so that not only phonetic
information needs to be learned, is a promising future direction. Moreover, it would
be valuable to develop SSL methods which are more robust to noise and music, so

119



7.2 Future developments

that it is easier to scale the dataset size. Furthermore, it seems plausible that scaling
the data and model parameters might eventually hit limits in performance gains. We
believe that more research effort could be spent on increasing the data efficiency of
SSL methods, e.g., a benchmark could be created where SSL methods have a fixed
amount of data seen during pre-training.

120



7.2 Future developments

that it is easier to scale the dataset size. Furthermore, it seems plausible that scaling
the data and model parameters might eventually hit limits in performance gains. We
believe that more research effort could be spent on increasing the data efficiency of
SSL methods, e.g., a benchmark could be created where SSL methods have a fixed
amount of data seen during pre-training.

120





Bibliography

Adi, Y., Zeghidour, N., Collobert, R., Usunier, N., Liptchinsky, V., and Synnaeve,
G. (2019). To reverse the gradient or not: An empirical comparison of adversarial
and multi-task learning in speech recognition., in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
3742–3746.

Alam, J., Bhattacharya, G., and Kenny, P. (2018). Speaker Verification in Mismatched
Conditions with Frustratingly Easy Domain Adaptation., in Odyssey 2018 The
Speaker and Language Recognition Workshop, 176–180.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,
et al. (2016). Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin., in Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, (New York, NY, USA: JMLR.org),
173–182.

Ardila, R., Branson, M., Davis, K., Kohler, M., Meyer, J., Henretty, M., et al.
(2020). Common Voice: A Massively-Multilingual Speech Corpus., in Proceedings
of the Twelfth Language Resources and Evaluation Conference, (Marseille, France:
European Language Resources Association), 4218–4222. Available at: https://
aclanthology.org/2020.lrec-1.520

Ashihara, T., Moriya, T., Matsuura, K., and Tanaka, T. (2023). Exploration of Lan-
guage Dependency for Japanese Self-Supervised Speech Representation Models.,
in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 1–5. doi: 10.1109/ICASSP49357.2023.10096318

Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., and Auli, M. (2022). Data2vec: A
general framework for self-supervised learning in speech, vision and language., in
International Conference on Machine Learning, 1298–1312. Available at: https://
proceedings.mlr.press/v162/baevski22a.html

Baevski, A., Schneider, S., and Auli, M. (2020b). vq-wav2vec: Self-Supervised
Learning of Discrete Speech Representations., in 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
(OpenReview.net). Available at: https://openreview.net/forum?id=rylwJxrYDS

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020a). wav2vec 2.0: A
Framework for Self-Supervised Learning of Speech Representations., in Advances
in Neural Information Processing Systems, (Curran Associates, Inc.), 12449–
12460. Available at: https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1
cd6f9fba3227870bb6d7f07-Abstract.html

123



Bain, M., Huh, J., Han, T., and Zisserman, A. (2023). WhisperX: Time-Accurate
Speech Transcription of Long-Form Audio., in INTERSPEECH 2023, 4489–4493.
doi: 10.21437/Interspeech.2023-78

BenZeghiba, M. F., and Bourlard, H. (2003). On the combination of speech
and speaker recognition., in Proc. 8th European Conference on Speech Com-
munication and Technology (Eurospeech 2003), 1361–1364. doi: 10.21437/
Eurospeech.2003-421

Bredin, H., Yin, R., Coria, J. M., Gelly, G., Korshunov, P., Lavechin, M., et al. (2020).
Pyannote.Audio: Neural Building Blocks for Speaker Diarization., in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 7124–7128. doi: 10.1109/ICASSP40776.2020.9052974

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al.
(2020). Language models are few-shot learners. Advances in neural information
processing systems 33, 1877–1901.

Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., et al.
(2008). IEMOCAP: Interactive emotional dyadic motion capture database. Lan-
guage resources and evaluation 42, 335–359. Available at: https://sail.usc.edu/
publications/files/bussolre2008.pdf

Bălan, D. A., Ordelman, R. J., Truong, K., and Heuvel, H. van den (2024).
Benchmarking and Research Infrastructures: Evaluating Dutch Automatic Speech
Recognition., in CLARIAH Annual Conference 2024.

Cai, D., Wang, W., and Li, M. (2021). An Iterative Framework for Self-Supervised
Deep Speaker Representation Learning., in ICASSP 2021 - 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 6728–
6732. doi: 10.1109/ICASSP39728.2021.9414713

Cao, Y.-H., and Wu, J. (2021). Rethinking Self-supervised Learning: Small is Beau-
tiful. arXiv preprint arXiv:2103.13559. Available at: https://arxiv.org/abs/2103.
13559

Chen, C., Zhang, J., Xu, Y., Chen, L., Duan, J., Chen, Y., et al. (2022b).
Why do We Need Large Batchsizes in Contrastive Learning? A Gradient-Bias
Perspective., in Advances in Neural Information Processing Systems, (Curran As-
sociates, Inc.), 33860–33875. Available at: https://proceedings.neurips.cc/paper_
files/paper/2022/file/db174d373133dcc6bf83bc98e4b681f8-Paper-Conference.pdf

Chen, G., Chai, S., Wang, G.-B., Du, J., Zhang, W.-Q., Weng, C., et al.
(2021). GigaSpeech: An Evolving, Multi-Domain ASR Corpus with 10,000 Hours
of Transcribed Audio., in Proc. Interspeech 2021, 3670–3674. doi: 10.21437/
Interspeech.2021-1965

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., et al. (2022a). WavLM:
Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing. IEEE

124



Bain, M., Huh, J., Han, T., and Zisserman, A. (2023). WhisperX: Time-Accurate
Speech Transcription of Long-Form Audio., in INTERSPEECH 2023, 4489–4493.
doi: 10.21437/Interspeech.2023-78

BenZeghiba, M. F., and Bourlard, H. (2003). On the combination of speech
and speaker recognition., in Proc. 8th European Conference on Speech Com-
munication and Technology (Eurospeech 2003), 1361–1364. doi: 10.21437/
Eurospeech.2003-421

Bredin, H., Yin, R., Coria, J. M., Gelly, G., Korshunov, P., Lavechin, M., et al. (2020).
Pyannote.Audio: Neural Building Blocks for Speaker Diarization., in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 7124–7128. doi: 10.1109/ICASSP40776.2020.9052974

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al.
(2020). Language models are few-shot learners. Advances in neural information
processing systems 33, 1877–1901.

Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., et al.
(2008). IEMOCAP: Interactive emotional dyadic motion capture database. Lan-
guage resources and evaluation 42, 335–359. Available at: https://sail.usc.edu/
publications/files/bussolre2008.pdf

Bălan, D. A., Ordelman, R. J., Truong, K., and Heuvel, H. van den (2024).
Benchmarking and Research Infrastructures: Evaluating Dutch Automatic Speech
Recognition., in CLARIAH Annual Conference 2024.

Cai, D., Wang, W., and Li, M. (2021). An Iterative Framework for Self-Supervised
Deep Speaker Representation Learning., in ICASSP 2021 - 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 6728–
6732. doi: 10.1109/ICASSP39728.2021.9414713

Cao, Y.-H., and Wu, J. (2021). Rethinking Self-supervised Learning: Small is Beau-
tiful. arXiv preprint arXiv:2103.13559. Available at: https://arxiv.org/abs/2103.
13559

Chen, C., Zhang, J., Xu, Y., Chen, L., Duan, J., Chen, Y., et al. (2022b).
Why do We Need Large Batchsizes in Contrastive Learning? A Gradient-Bias
Perspective., in Advances in Neural Information Processing Systems, (Curran As-
sociates, Inc.), 33860–33875. Available at: https://proceedings.neurips.cc/paper_
files/paper/2022/file/db174d373133dcc6bf83bc98e4b681f8-Paper-Conference.pdf

Chen, G., Chai, S., Wang, G.-B., Du, J., Zhang, W.-Q., Weng, C., et al.
(2021). GigaSpeech: An Evolving, Multi-Domain ASR Corpus with 10,000 Hours
of Transcribed Audio., in Proc. Interspeech 2021, 3670–3674. doi: 10.21437/
Interspeech.2021-1965

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., et al. (2022a). WavLM:
Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing. IEEE

124

Bibliography

Journal of Selected Topics in Signal Processing 16, 1505–1518. doi: 10.1109/
JSTSP.2022.3188113

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A Simple Framework
for Contrastive Learning of Visual Representations., in Proceedings of the 37th
International Conference on Machine Learning, (PMLR), 1597–1607. Available
at: https://proceedings.mlr.press/v119/chen20j.html

Chen, W., Chang, X., Peng, Y., Ni, Z., Maiti, S., and Watanabe, S. (2023).
Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Aca-
demic Compute., in Proc. INTERSPEECH 2023, 4404–4408. doi: 10.21437/
Interspeech.2023-1176

Chung, J. S., Huh, J., Mun, S., Lee, M., Heo, H.-S., Choe, S., et al. (2020).
In Defence of Metric Learning for Speaker Recognition., in Interspeech 2020,
21st Annual Conference of the International Speech Communication Association,
Virtual Event, Shanghai, China, 25-29 October 2020, eds.H. Meng, B. Xu, and T.
F. Zheng (ISCA), 2977–2981. doi: 10.21437/Interspeech.2020-1064

Chung, J. S., Nagrani, A., and Zisserman, A. (2018). VoxCeleb2: Deep Speaker Recog-
nition., in Proc. Interspeech 2018, 1086–1090. doi: 10.21437/Interspeech.2018-1929

Conneau, A., Baevski, A., Collobert, R., Mohamed, A., and Auli, M. (2021).
Unsupervised Cross-Lingual Representation Learning for Speech Recognition., in
Interspeech 2021, (ISCA), 2426–2430. doi: 10.21437/Interspeech.2021-329

Das, R. K., Abhiram, S., Prasanna, S. R. M., and Ramakrishnan, A. G. (2014).
Combining source and system information for limited data speaker verification.,
in Proc. Interspeech 2014, 1836–1840. doi: 10.21437/Interspeech.2014-417

Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson, X. (2017). FMA: A
Dataset For Music Analysis., in ISMIR 2017.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database., in 2009 IEEE conference on computer
vision and pattern recognition, 248–255.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). ArcFace: Additive Angular
Margin Loss for Deep Face Recognition., in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Desplanques, B., Thienpondt, J., and Demuynck, K. (2020). ECAPA-TDNN: Em-
phasized Channel Attention, Propagation and Aggregation in TDNN Based
Speaker Verification., in Proc. Interspeech 2020, 3830–3834. doi: 10.21437/
Interspeech.2020-2650

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding., in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and

125



Short Papers), (Association for Computational Linguistics), 4171–4186. Available
at: https://aclanthology.org/N19-1423

Evain, S., Nguyen, H., Le, H., Boito, M. Z., Mdhaffar, S., Alisamir, S., et al.
(2021).  LeBenchmark: A Reproducible Framework for Assessing Self-Supervised
Representation Learning from Speech., in Proc. Interspeech 2021, 1439–1443. doi:
10.21437/Interspeech.2021-556

Fan, A., Grave, E., and Joulin, A. (2020). Reducing Transformer Depth on Demand
with Structured Dropout., in International Conference on Learning Representa-
tions. Available at: https://openreview.net/forum?id=SylO2yStDr

Fan, Z., Li, M., Zhou, S., and Xu, B. (2021). Exploring wav2vec 2.0 on Speaker
Verification and Language Identification., in Proc. Interspeech 2021, 1509–1513.
doi: 10.21437/Interspeech.2021-1280

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., et al.
(2016). Domain-adversarial training of neural networks. The journal of machine
learning research 17, 2096–2030.

Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr,
P. (2021). Res2Net: A New Multi-Scale Backbone Architecture. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 43, 652–662. doi: 10.1109/
TPAMI.2019.2938758

Garofolo, J. S. (1993). Timit acoustic phonetic continuous speech corpus. Linguistic
Data Consortium, 1993.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (chapter 15). MIT
press. Available at: https://www.deeplearningbook.org/contents/representation.
html

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al.
(2018). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Available
at: https://arxiv.org/abs/1706.02677

Goyal, P., Mahajan, D., Gupta, A., and Misra, I. (2019). Scaling and bench-
marking self-supervised visual representation learning., in Proceedings of
the ieeeCommonVoicef International Conference on computer vision, 6391–
6400. Available at: https://openaccess.thecvf.com/content_ICCV_2019/papers/
Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_
Learning_ICCV_2019_paper.pdf

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks., in Proceedings of the 23rd international conference on Machine learning,
369–376.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition., in Proceedings of the IEEE conference on computer vision and pattern
recognition, 770–778.

126



Short Papers), (Association for Computational Linguistics), 4171–4186. Available
at: https://aclanthology.org/N19-1423

Evain, S., Nguyen, H., Le, H., Boito, M. Z., Mdhaffar, S., Alisamir, S., et al.
(2021).  LeBenchmark: A Reproducible Framework for Assessing Self-Supervised
Representation Learning from Speech., in Proc. Interspeech 2021, 1439–1443. doi:
10.21437/Interspeech.2021-556

Fan, A., Grave, E., and Joulin, A. (2020). Reducing Transformer Depth on Demand
with Structured Dropout., in International Conference on Learning Representa-
tions. Available at: https://openreview.net/forum?id=SylO2yStDr

Fan, Z., Li, M., Zhou, S., and Xu, B. (2021). Exploring wav2vec 2.0 on Speaker
Verification and Language Identification., in Proc. Interspeech 2021, 1509–1513.
doi: 10.21437/Interspeech.2021-1280

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., et al.
(2016). Domain-adversarial training of neural networks. The journal of machine
learning research 17, 2096–2030.

Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr,
P. (2021). Res2Net: A New Multi-Scale Backbone Architecture. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 43, 652–662. doi: 10.1109/
TPAMI.2019.2938758

Garofolo, J. S. (1993). Timit acoustic phonetic continuous speech corpus. Linguistic
Data Consortium, 1993.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (chapter 15). MIT
press. Available at: https://www.deeplearningbook.org/contents/representation.
html

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al.
(2018). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Available
at: https://arxiv.org/abs/1706.02677

Goyal, P., Mahajan, D., Gupta, A., and Misra, I. (2019). Scaling and bench-
marking self-supervised visual representation learning., in Proceedings of
the ieeeCommonVoicef International Conference on computer vision, 6391–
6400. Available at: https://openaccess.thecvf.com/content_ICCV_2019/papers/
Goyal_Scaling_and_Benchmarking_Self-Supervised_Visual_Representation_
Learning_ICCV_2019_paper.pdf

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks., in Proceedings of the 23rd international conference on Machine learning,
369–376.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition., in Proceedings of the IEEE conference on computer vision and pattern
recognition, 770–778.

126

Bibliography

Hendrycks, D., and Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv
preprint arXiv:1606.08415.

Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed,
A. (2021). HuBERT: Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 29, 3451–3460. doi: 10.1109/TASLP.2021.3122291

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-Excitation Networks., in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7132–7141.
doi: 10.1109/CVPR.2018.00745

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep networks
with stochastic depth., in European conference on computer vision, 646–661.

Itou, K., Yamamoto, M., Takeda, K., Takezawa, T., Matsuoka, T., Kobayashi, T., et
al. (1999). JNAS: Japanese speech corpus for large vocabulary continuous speech
recognition research. Journal of the Acoustical Society of Japan (E) 20, 199–206.

Izsak, P., Berchansky, M., and Levy, O. (2021). How to Train BERT with an Academic
Budget., in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 10644–10652. doi: 10.18653/v1/2021.emnlp-main.831

Jacobs, C., Rakotonirina, N. C., Chimoto, E. A., Bassett, B. A., and Kamper, H.
(2023). Towards hate speech detection in low-resource languages: Comparing ASR
to acoustic word embeddings on Wolof and Swahili., in INTERSPEECH 2023,
436–440. doi: 10.21437/Interspeech.2023-421

Jang, E., Gu, S., and Poole, B. (2017). Categorical Reparameterization with Gumbel-
Softmax., in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Available
at: https://openreview.net/forum?id=rkE3y85ee

Jayanna, H., and Mahadeva Prasanna, S. (2009). An experimental comparison of
modelling techniques for speaker recognition under limited data condition. Sad-
hana 34, 717–728. doi: https://doi.org/10.1007/s12046-009-0042-9

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. nature 596,
583–589.

Kahn, J., Rivière, M., Zheng, W., Kharitonov, E., Xu, Q., Mazaré, P.-E., et al. (2020).
Libri-light: A benchmark for ASR with limited or no supervision., in ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 7669–7673. Available at: https://arxiv.org/abs/1912.07875

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., et al.
(2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
Available at: https://arxiv.org/abs/2001.08361

127



Kingma, D. P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization.,
in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Available at:
http://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems 25.

Lam-Yee-Mui, L.-M., Yang, L. O., and Klejch, O. (2023). Comparing Self-Supervised
Pre-Training and Semi-Supervised Training for Speech Recognition in Languages
with Weak Language Models., in INTERSPEECH 2023, 87–91. doi: 10.21437/
Interspeech.2023-1802

Lehečka, J., Psutka, J. V., Smidl, L., Ircing, P., and Psutka, J. (2024). A Compar-
ative Analysis of Bilingual and Trilingual Wav2Vec Models for Automatic Speech
Recognition in Multilingual Oral History Archives., in Interspeech 2024, 1285–
1289. doi: 10.21437/Interspeech.2024-472

Lei Ba, J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. ArXiv e-
prints, arXiv–1607.

Li, R., Jiang, J.-Y., Li, J. L., Hsieh, C.-C., and Wang, W. (2020). Automatic Speaker
Recognition with Limited Data., in Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, (New York, NY, USA: Association for
Computing Machinery), 340–348. Available at: https://doi.org/10.1145/3336191.
3371802

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
Microsoft coco: Common objects in context., in ECCV 2014, 740–755.

Lin, W., and Mak, M.-W. (2020). Wav2Spk: A Simple DNN Architecture for Learn-
ing Speaker Embeddings from Waveforms., in Interspeech 2020, 3211–3215. doi:
10.21437/Interspeech.2020-1287

Ling, S., and Liu, Y. (2020). Decoar 2.0: Deep contextualized acoustic representations
with vector quantization. arXiv preprint arXiv:2012.06659. Available at: https://
arxiv.org/abs/2012.06659

Ling, S., Liu, Y., Salazar, J., and Kirchhoff, K. (2020). Deep contextualized acoustic
representations for semi-supervised speech recognition., in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6429–6433. Available at: https://arxiv.org/abs/1912.01679

Ling, S., Liu, Y., Salazar, J., and Kirchhoff, K. (2020). Deep Contextualized Acoustic
Representations for Semi-Supervised Speech Recognition., in ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6429–6433. doi: 10.1109/ICASSP40776.2020.9053176

Liu, A. H., Chang, H.-J., Auli, M., Hsu, W.-N., and Glass, J. R. (2023). DinoSR:
Self-Distillation and Online Clustering for Self-supervised Speech Representation

128



Kingma, D. P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization.,
in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Available at:
http://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems 25.

Lam-Yee-Mui, L.-M., Yang, L. O., and Klejch, O. (2023). Comparing Self-Supervised
Pre-Training and Semi-Supervised Training for Speech Recognition in Languages
with Weak Language Models., in INTERSPEECH 2023, 87–91. doi: 10.21437/
Interspeech.2023-1802

Lehečka, J., Psutka, J. V., Smidl, L., Ircing, P., and Psutka, J. (2024). A Compar-
ative Analysis of Bilingual and Trilingual Wav2Vec Models for Automatic Speech
Recognition in Multilingual Oral History Archives., in Interspeech 2024, 1285–
1289. doi: 10.21437/Interspeech.2024-472

Lei Ba, J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. ArXiv e-
prints, arXiv–1607.

Li, R., Jiang, J.-Y., Li, J. L., Hsieh, C.-C., and Wang, W. (2020). Automatic Speaker
Recognition with Limited Data., in Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, (New York, NY, USA: Association for
Computing Machinery), 340–348. Available at: https://doi.org/10.1145/3336191.
3371802

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
Microsoft coco: Common objects in context., in ECCV 2014, 740–755.

Lin, W., and Mak, M.-W. (2020). Wav2Spk: A Simple DNN Architecture for Learn-
ing Speaker Embeddings from Waveforms., in Interspeech 2020, 3211–3215. doi:
10.21437/Interspeech.2020-1287

Ling, S., and Liu, Y. (2020). Decoar 2.0: Deep contextualized acoustic representations
with vector quantization. arXiv preprint arXiv:2012.06659. Available at: https://
arxiv.org/abs/2012.06659

Ling, S., Liu, Y., Salazar, J., and Kirchhoff, K. (2020). Deep contextualized acoustic
representations for semi-supervised speech recognition., in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6429–6433. Available at: https://arxiv.org/abs/1912.01679

Ling, S., Liu, Y., Salazar, J., and Kirchhoff, K. (2020). Deep Contextualized Acoustic
Representations for Semi-Supervised Speech Recognition., in ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6429–6433. doi: 10.1109/ICASSP40776.2020.9053176

Liu, A. H., Chang, H.-J., Auli, M., Hsu, W.-N., and Glass, J. R. (2023). DinoSR:
Self-Distillation and Online Clustering for Self-supervised Speech Representation

128

Bibliography

Learning. arXiv preprint arXiv:2305.10005. Available at: https://arxiv.org/abs/
2305.10005

Liu, A. T., Li, S.-W., and Lee, H.-y. (2021). Tera: Self-supervised learning of trans-
former encoder representation for speech. IEEE/ACM Transactions on Audio,
Speech, and Language Processing 29, 2351–2366. Available at: https://arxiv.org/
abs/2007.06028

Liu, A. T., Yang, S.-w., Chi, P.-H., Hsu, P.-c., and Lee, H.-y. (2020). Mockingjay:
Unsupervised speech representation learning with deep bidirectional transformer
encoders., in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 6419–6423. Available at: https://arxiv.
org/abs/1910.12638

Liu, Y., He, L., and Liu, J. (2019). Large Margin Softmax Loss for Speaker Verifica-
tion., in Proc. Interspeech 2019, 2873–2877. doi: 10.21437/Interspeech.2019-2357

Loshchilov, I., and Hutter, F. (2019). Decoupled Weight Decay Regularization.,
in International Conference on Learning Representations. Available at: https://
openreview.net/forum?id=Bkg6RiCqY7

Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V. S., and Bengio, Y. (2019). Speech
Model Pre-Training for End-to-End Spoken Language Understanding., in Proc.
Interspeech 2019, 814–818. doi: 10.21437/Interspeech.2019-2396

Malladi, S., Lyu, K., Panigrahi, A., and Arora, S. (2022). On the SDEs and Scaling
Rules for Adaptive Gradient Algorithms., in Advances in Neural Information
Processing Systems, eds.S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, and A. Oh (Curran Associates, Inc.), 7697–7711. Available at: https://
proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05
a44fe08-Paper-Conference.pdf

Martin, A. F., and Greenberg, C. S. (2009). NIST 2008 speaker recognition evaluation:
Performance across telephone and room microphone channels., in Tenth Annual
Conference of the International Speech Communication Association.

Mateju, L., Nouza, J., Červa, P., Zdansky, J., and Kynych, F. (2023). Com-
bining Multilingual Resources and Models to Develop State-of-the-Art E2E
ASR for Swedish., in INTERSPEECH 2023, 3252–3256. doi: 10.21437/
Interspeech.2023-737

McCandlish, S., Kaplan, J., Amodei, D., and OpenAI DotA team (2018). An empirical
model of large-batch training. arXiv preprint arXiv:1812.06162. Available at:
https://arxiv.org/abs/1812.06162

Meng, Y., Chou, Y.-H., Liu, A. T., and Lee, H.-y. (2022). Don't Speak Too Fast:
The Impact of Data Bias on Self-Supervised Speech Models., in ICASSP 2022 -
2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 3258–3262. doi: 10.1109/ICASSP43922.2022.9747897

129



Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., García, D., et al.
(2018). Mixed Precision Training., in 6th International Conference on Learning
Representations, ICLR 2018. Available at: https://openreview.net/forum?id=r1
gs9JgRZ

Milde, B., and Biemann, C. (2018). Unspeech: Unsupervised Speech Context Embed-
dings., in Proc. Interspeech 2018, 2693–2697. doi: 10.21437/Interspeech.2018-2194

Mitrovic, J., McWilliams, B., and Rey, M. (2020). Less can be more in contrastive
learning., in Proceedings on "I Can't Believe It's Not Better!" at NeurIPS Work-
shops, (PMLR), 70–75. Available at: https://proceedings.mlr.press/v137/mitrovic
20a.html

Mohamed, A., Lee, H.-y., Borgholt, L., Havtorn, J. D., Edin, J., Igel, C., et al. (2022).
Self-supervised speech representation learning: A review. IEEE Journal of Selected
Topics in Signal Processing. Available at: https://arxiv.org/abs/2205.10643

Nagrani, A., Chung, J. S., and Zisserman, A. (2017). VoxCeleb: A Large-Scale Speaker
Identification Dataset., in Proc. Interspeech 2017, 2616–2620. doi: 10.21437/
Interspeech.2017-950

Nagrani, A., Chung, J. S., Huh, J., Brown, A., Coto, E., Xie, W., et al. (2020).
Voxsrc 2020: The second voxceleb speaker recognition challenge. arXiv preprint
arXiv:2012.06867.

NIST (2016). NIST 2016 Speaker Recognition Evaluation plan. Available at: https://
www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016

NIST (2018). NIST 2018 Speaker Recognition Evaluation plan. Available at: https://
www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., et al. (2019). FAIRSEQ:
A Fast, Extensible Toolkit for Sequence Modeling., in Proceedings of NAACL-
HLT 2019: Demonstrations.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., et al.
(2022). Training language models to follow instructions with human feedback.,
in Advances in Neural Information Processing Systems, 27730–27744. Avail-
able at: https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be
364a73914f58805a001731-Paper-Conference.pdf

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: an
ASR corpus based on public domain audio books., in 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP), 5206–5210.

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., et
al. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic
Speech Recognition., in Proc. Interspeech 2019, 2613–2617. doi: 10.21437/
Interspeech.2019-2680

130



Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., García, D., et al.
(2018). Mixed Precision Training., in 6th International Conference on Learning
Representations, ICLR 2018. Available at: https://openreview.net/forum?id=r1
gs9JgRZ

Milde, B., and Biemann, C. (2018). Unspeech: Unsupervised Speech Context Embed-
dings., in Proc. Interspeech 2018, 2693–2697. doi: 10.21437/Interspeech.2018-2194

Mitrovic, J., McWilliams, B., and Rey, M. (2020). Less can be more in contrastive
learning., in Proceedings on "I Can't Believe It's Not Better!" at NeurIPS Work-
shops, (PMLR), 70–75. Available at: https://proceedings.mlr.press/v137/mitrovic
20a.html

Mohamed, A., Lee, H.-y., Borgholt, L., Havtorn, J. D., Edin, J., Igel, C., et al. (2022).
Self-supervised speech representation learning: A review. IEEE Journal of Selected
Topics in Signal Processing. Available at: https://arxiv.org/abs/2205.10643

Nagrani, A., Chung, J. S., and Zisserman, A. (2017). VoxCeleb: A Large-Scale Speaker
Identification Dataset., in Proc. Interspeech 2017, 2616–2620. doi: 10.21437/
Interspeech.2017-950

Nagrani, A., Chung, J. S., Huh, J., Brown, A., Coto, E., Xie, W., et al. (2020).
Voxsrc 2020: The second voxceleb speaker recognition challenge. arXiv preprint
arXiv:2012.06867.

NIST (2016). NIST 2016 Speaker Recognition Evaluation plan. Available at: https://
www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016

NIST (2018). NIST 2018 Speaker Recognition Evaluation plan. Available at: https://
www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., et al. (2019). FAIRSEQ:
A Fast, Extensible Toolkit for Sequence Modeling., in Proceedings of NAACL-
HLT 2019: Demonstrations.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., et al.
(2022). Training language models to follow instructions with human feedback.,
in Advances in Neural Information Processing Systems, 27730–27744. Avail-
able at: https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be
364a73914f58805a001731-Paper-Conference.pdf

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: an
ASR corpus based on public domain audio books., in 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP), 5206–5210.

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., et
al. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic
Speech Recognition., in Proc. Interspeech 2019, 2613–2617. doi: 10.21437/
Interspeech.2019-2680

130

Bibliography

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et
al. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning
Library., in Advances in Neural Information Processing Systems, . Available
at: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f
2bfa9f7012727740-Paper.pdf

Paul, D. B., and Baker, J. (1992). The design for the Wall Street Journal-based
CSR corpus., in Speech and Natural Language: Proceedings of a Workshop Held
at Harriman, New York, February 23-26, 1992.

Peddinti, V., Chen, G., Manohar, V., Ko, T., Povey, D., and Khudanpur, S.
(2015). JHU ASpIRE system: Robust LVCSR with TDNNS, iVector adaptation
and RNN-LMS., in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), 539–546.

Pepino, L., Riera, P., and Ferrer, L. (2021). Emotion Recognition from Speech Using
wav2vec 2.0 Embeddings., in Proc. Interspeech 2021, 3400–3404. doi: 10.21437/
Interspeech.2021-703

Pironkov, G., Dupont, S., and Dutoit, T. (2016). Speaker-aware long short-term
memory multi-task learning for speech recognition., in 2016 24th European Signal
Processing Conference (EUSIPCO), 1911–1915.

Poddar, A., Sahidullah, M., and Saha, G. (2018). Speaker verification with short
utterances: a review of challenges, trends and opportunities. IET Biometrics 7,
91–101. doi: https://doi.org/10.1049/iet-bmt.2017.0065

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al.
(2011). The Kaldi Speech Recognition Toolkit., in IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding, (Hilton Waikoloa Village, Big
Island, Hawaii, US: IEEE Signal Processing Society).

Pratap, V., Xu, Q., Sriram, A., Synnaeve, G., and Collobert, R. (2020). MLS: A
Large-Scale Multilingual Dataset for Speech Research., in Interspeech 2020, 2757–
2761. doi: 10.21437/Interspeech.2020-2826

Pu, J., Yang, Y., Li, R., Elibol, O., and Droppo, J. (2021). Scaling Effect of Self-
Supervised Speech Models., in Proc. Interspeech 2021, 1084–1088. doi: 10.21437/
Interspeech.2021-1935

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al. (2021).
Learning Transferable Visual Models From Natural Language Supervision., in
Proceedings of the 38th International Conference on Machine Learning, (PMLR),
8748–8763. Available at: https://proceedings.mlr.press/v139/radford21a.html

Radford, A., Kim, J. W., Xu, T., Brockman, G., Mcleavey, C., and Sutskever,
I. (2023). Robust Speech Recognition via Large-Scale Weak Supervision., in
Proceedings of the 40th International Conference on Machine Learning, (PMLR),
28492–28518. Available at: https://proceedings.mlr.press/v202/radford23a.html

131



Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving
language understanding by generative pre-training. OpenAI blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog 1, 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former. Journal of Machine Learning Research 21, 1–67. Available at: http://jmlr.
org/papers/v21/20-074.html

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory opti-
mizations toward training trillion parameter models., in SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis,
1–16. Available at: https://arxiv.org/abs/1910.02054

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., et al.
(2021). SpeechBrain: A General-Purpose Speech Toolkit.

Rohdin, J., Stafylakis, T., Silnova, A., Zeinali, H., Burget, L., and Plchot, O. (2019).
Speaker Verification Using End-to-end Adversarial Language Adaptation., in
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 6006–6010. doi: 10.1109/ICASSP.2019.8683616

Rouard, S., Massa, F., and Défossez, A. (2023). Hybrid Transformers for Music
Source Separation., in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 1–5. doi: 10.1109/
ICASSP49357.2023.10096956

The Royal Swedish Academy of Sciences (2024b). The Nobel Prize in Chemistry 2024.
The Royal Swedish Academy of Sciences (2024a). The Nobel Prize in Physics 2024.
Sadhu, S., He, D., Huang, C.-W., Mallidi, S. H., Wu, M., Rastrow, A., et al. (2021).

wav2vec-C: A Self-Supervised Model for Speech Representation Learning., in Proc.
Interspeech 2021, 711–715. doi: 10.21437/Interspeech.2021-717

Salimans, T., and Kingma, D. P. (2016). Weight Normalization: A Simple Repara-
meterization to Accelerate Training of Deep Neural Networks., in Advances in
Neural Information Processing Systems. Available at: https://proceedings.neurips.
cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). Wav2vec: Unsupervised
Pre-Training for Speech Recognition., in Proc. Interspeech 2019, 3465–3469. doi:
10.21437/Interspeech.2019-1873

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., and Dahl, G. E.
(2019). Measuring the Effects of Data Parallelism on Neural Network Training.
Journal of Machine Learning Research 20, 1–49. Available at: http://jmlr.org/
papers/v20/18-789.html

132



Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving
language understanding by generative pre-training. OpenAI blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog 1, 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former. Journal of Machine Learning Research 21, 1–67. Available at: http://jmlr.
org/papers/v21/20-074.html

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory opti-
mizations toward training trillion parameter models., in SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis,
1–16. Available at: https://arxiv.org/abs/1910.02054

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., et al.
(2021). SpeechBrain: A General-Purpose Speech Toolkit.

Rohdin, J., Stafylakis, T., Silnova, A., Zeinali, H., Burget, L., and Plchot, O. (2019).
Speaker Verification Using End-to-end Adversarial Language Adaptation., in
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 6006–6010. doi: 10.1109/ICASSP.2019.8683616

Rouard, S., Massa, F., and Défossez, A. (2023). Hybrid Transformers for Music
Source Separation., in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 1–5. doi: 10.1109/
ICASSP49357.2023.10096956

The Royal Swedish Academy of Sciences (2024b). The Nobel Prize in Chemistry 2024.
The Royal Swedish Academy of Sciences (2024a). The Nobel Prize in Physics 2024.
Sadhu, S., He, D., Huang, C.-W., Mallidi, S. H., Wu, M., Rastrow, A., et al. (2021).

wav2vec-C: A Self-Supervised Model for Speech Representation Learning., in Proc.
Interspeech 2021, 711–715. doi: 10.21437/Interspeech.2021-717

Salimans, T., and Kingma, D. P. (2016). Weight Normalization: A Simple Repara-
meterization to Accelerate Training of Deep Neural Networks., in Advances in
Neural Information Processing Systems. Available at: https://proceedings.neurips.
cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). Wav2vec: Unsupervised
Pre-Training for Speech Recognition., in Proc. Interspeech 2019, 3465–3469. doi:
10.21437/Interspeech.2019-1873

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., and Dahl, G. E.
(2019). Measuring the Effects of Data Parallelism on Neural Network Training.
Journal of Machine Learning Research 20, 1–49. Available at: http://jmlr.org/
papers/v20/18-789.html

132

Bibliography

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. Journal of big data 6, 1–48.

Simonyan, K., and Zisserman, A. (2015). Very Deep Convolutional Networks for
Large-Scale Image Recognition., in International Conference on Learning Repre-
sentations.

Smith, L. N. (2017). Cyclical learning rates for training neural networks., in 2017
IEEE winter conference on applications of computer vision (WACV), 464–472.

Smith, L. N., and Topin, N. (2019). Super-convergence: Very fast training of neural
networks using large learning rates., in Artificial Intelligence and Machine Learn-
ing for Multi-Domain Operations Applications, 1100612.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. (2018). Don't Decay the
Learning Rate, Increase the Batch Size., in International Conference on Learning
Representations. Available at: https://openreview.net/forum?id=B1Yy1BxCZ

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical Networks for Few-shot
Learning., in Advances in Neural Information Processing Systems, eds.I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al.
(Curran Associates, Inc.), . Available at: https://proceedings.neurips.cc/paper_
files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf

Snyder, D., Chen, G., and Povey, D. (2015). Musan: A music, speech, and noise
corpus. arXiv preprint arXiv:1510.08484.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. (2018).
X-vectors: Robust DNN embeddings for speaker recognition., in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
5329–5333.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research 15, 1929–1958.

Tang, Z., Li, L., and Wang, D. (2016). Multi-task recurrent model for speech and
speaker recognition., in 2016 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), 1–4.

Thienpondt, J., Desplanques, B., and Demuynck, K. (2020). The idlab vox-
celeb speaker recognition challenge 2020 system description. arXiv preprint
arXiv:2010.12468.

Tjandra, A., Choudhury, D. G., Zhang, F., Singh, K., Conneau, A., Baevski, A.,
et al. (2022). Improved Language Identification Through Cross-Lingual Self-
Supervised Learning., in ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 6877–6881. doi: 10.1109/
ICASSP43922.2022.9747667

133



Vaessen, N. (2020). Training Multi-Task Deep Neural Networks with Disjoint
Datasets., in dissertation for Master of Science at KTH royal institute of tech-
nology.

Vaessen, N., and van Leeuwen, D. A. (2022). Fine-Tuning Wav2Vec2 for Speaker
Recognition., in International Conference on Acoustics, Speech and Signal Pro-
cessing, 7967–7971. doi: 10.1109/ICASSP43922.2022.9746952

Vaessen, N., and van Leeuwen, D. A. (2022). Training speaker recognition
systems with limited data., in Interspeech 2022, 4760–4764. doi: 10.21437/
Interspeech.2022-135

Vaessen, N., and van Leeuwen, D. A. (2023). Towards Multi-task Learning of Speech
and Speaker Recognition., in INTERSPEECH 2023, 4898–4902. doi: 10.21437/
Interspeech.2023-353

Vaessen, N., and van Leeuwen, D. A. (2025). Self-supervised learning of speech
representations with Dutch archival data., in INTERSPEECH 2025.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with con-
trastive predictive coding. arXiv preprint arXiv:1807.03748. Available at: https://
arxiv.org/abs/1807.03748

van den Oord, A., Vinyals, O., and others (2017). Neural discrete represen-
tation learning. Advances in neural information processing systems 30. Avail-
able at: https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e
96d03992fbc-Abstract.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). Attention is all you need. Advances in Neural Information Processing
Systems.

Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., et al. (2021). Vox-
Populi: A Large-Scale Multilingual Speech Corpus for Representation Learning,
Semi-Supervised Learning and Interpretation., in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
(Online: Association for Computational Linguistics), 993–1003. doi: 10.18653/
v1/2021.acl-long.80

Wang, J., Wang, K.-C., Law, M. T., Rudzicz, F., and Brudno, M. (2019). Centroid-
based Deep Metric Learning for Speaker Recognition., in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 3652–3656. doi: 10.1109/ICASSP.2019.8683393

Wang, P., and Van Hamme, H. (2023). Benefits of pre-trained mono-and cross-lingual
speech representations for spoken language understanding of Dutch dysarthric
speech. EURASIP Journal on Audio, Speech, and Music Processing 2023, 15.

134



Vaessen, N. (2020). Training Multi-Task Deep Neural Networks with Disjoint
Datasets., in dissertation for Master of Science at KTH royal institute of tech-
nology.

Vaessen, N., and van Leeuwen, D. A. (2022). Fine-Tuning Wav2Vec2 for Speaker
Recognition., in International Conference on Acoustics, Speech and Signal Pro-
cessing, 7967–7971. doi: 10.1109/ICASSP43922.2022.9746952

Vaessen, N., and van Leeuwen, D. A. (2022). Training speaker recognition
systems with limited data., in Interspeech 2022, 4760–4764. doi: 10.21437/
Interspeech.2022-135

Vaessen, N., and van Leeuwen, D. A. (2023). Towards Multi-task Learning of Speech
and Speaker Recognition., in INTERSPEECH 2023, 4898–4902. doi: 10.21437/
Interspeech.2023-353

Vaessen, N., and van Leeuwen, D. A. (2025). Self-supervised learning of speech
representations with Dutch archival data., in INTERSPEECH 2025.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with con-
trastive predictive coding. arXiv preprint arXiv:1807.03748. Available at: https://
arxiv.org/abs/1807.03748

van den Oord, A., Vinyals, O., and others (2017). Neural discrete represen-
tation learning. Advances in neural information processing systems 30. Avail-
able at: https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e
96d03992fbc-Abstract.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). Attention is all you need. Advances in Neural Information Processing
Systems.

Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., et al. (2021). Vox-
Populi: A Large-Scale Multilingual Speech Corpus for Representation Learning,
Semi-Supervised Learning and Interpretation., in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
(Online: Association for Computational Linguistics), 993–1003. doi: 10.18653/
v1/2021.acl-long.80

Wang, J., Wang, K.-C., Law, M. T., Rudzicz, F., and Brudno, M. (2019). Centroid-
based Deep Metric Learning for Speaker Recognition., in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 3652–3656. doi: 10.1109/ICASSP.2019.8683393

Wang, P., and Van Hamme, H. (2023). Benefits of pre-trained mono-and cross-lingual
speech representations for spoken language understanding of Dutch dysarthric
speech. EURASIP Journal on Audio, Speech, and Music Processing 2023, 15.

134

Bibliography

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Generalizing from a
Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv. 53. doi:
10.1145/3386252

Wolf, T., Lysandre Debut, Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). Transformers: State-of-the-Art Natural Language Processing., in Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, (Online: Association for Computational Linguistics), 38–
45. Available at: https://www.aclweb.org/anthology/2020.emnlp-demos.6

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., et al. (2016).
Google's neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144.

Wu, Y., and He, K. (2018). Group normalization., in Proceedings of the European
conference on computer vision (ECCV), 3–19.

Yang, S.-w., Chi, P.-H., Chuang, Y.-S., Lai, C.-I. J., Lakhotia, K., Lin, Y. Y., et
al. (2021). SUPERB: Speech Processing Universal PERformance Benchmark., in
Proc. Interspeech 2021, 1194–1198. doi: 10.21437/Interspeech.2021-1775

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
XLNet: Generalized Autoregressive Pretraining for Language Understanding., in
Advances in Neural Information Processing Systems, (Curran Associates, Inc.), .

Yuan, J., Cai, X., Zheng, R., Huang, L., and Church, K. (2021a). The Role of Phonetic
Units in Speech Emotion Recognition. arXiv preprint arXiv:2108.01132.

Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., et al. (2021b). Florence:
A new foundation model for computer vision. arXiv preprint arXiv:2111.11432.
Available at: https://arxiv.org/abs/2111.11432

Zhang, C., and Koishida, K. (2017). End-to-End Text-Independent Speaker Verifica-
tion with Triplet Loss on Short Utterances., in Proc. Interspeech 2017, 1487–1491.
doi: 10.21437/Interspeech.2017-1608

Zhang, Y., Han, W., Qin, J., Wang, Y., Bapna, A., Chen, Z., et al. (2023).
Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages. doi:
10.48550/arXiv.2303.01037

135





Research data management

This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Sciences at Radboud University, The
Netherlands.27 For each chapter the data and source code availability will be listed:
• Chapter 2

‣ source code: https://github.com/nikvaessen/w2v2-speaker
‣ data:

– VoxCeleb1: https://doi.org/10.1016/j.csl.2019.101027
– VoxCeleb2: https://doi.org/10.21437/Interspeech.2018-1929

• Chapter 3
‣ source code: https://github.com/nikvaessen/w2v2-speaker-few-samples
‣ data

– VoxCeleb1 and VoxCeleb 2
• Chapter 4:

‣ source code: https://github.com/nikvaessen/2022-repo-mt-w2v2
‣ data

– VoxCeleb1 and VoxCeleb2
– LibriSpeech: https://doi.org/10.1109/ICASSP.2015.7178964

• Chapter 5:
‣ source code: https://github.com/nikvaessen/w2v2-batch-size
‣ data:

– VoxCeleb1, VoxCeleb2, Librispeech
– SUPERB benchmark: https://doi.org/10.1109/TASLP.2024.3389631

• Chapter 6:
‣ source code:

– https://github.com/nikvaessen/wav2sr for training
– https://github.com/nikvaessen/adf for data processing

‣ data:
– Multi-Lingual Librispeech: https://doi.org/10.21437/Interspeech.2020-2826
– Common Voice: https://doi.org/10.48550/arXiv.1912.06670
– MUSAN: https://doi.org/10.48550/arXiv.1510.08484
– Free Music Archive: https://doi.org/10.48550/arXiv.1612.01840
– Dutch archive data: https://doi.org/10.5281/zenodo.14883498

27Available at https://www.ru.nl/en/institute-for-computing-and-information-sciences/research
Last accessed on July 15, 2025

137





Curriculum vitae

Nik Vaessen began his academic career at Maastricht University, earning a bachelor’s
degree in Data Science and Knowledge Engineering. During this time, contributions
to Jitsi Meet through Google Summer of Code and an internship at Atlassian were
made, alongside developing jiwer—a widely-used software package for measuring
speech recognition performance—as part of the bachelor thesis.
The academic journey continued with a master’s degree in computer science at KTH
Royal Institute of Technology in Stockholm, specializing in Deep Learning. A master
thesis was completed at Scania’s AI team for autonomous driving, complemented by
work experience at fintech startup Mysaly.
In 2020, a PhD in multi-task learning for diverse speech technology tasks commenced
at Radboud University’s Data Science department within the Institute for Computing
and Information Sciences. During his PhD, an internship at Amazon AGI was
completed, for which research on LLM safety was conducted. He is currently employed
at VoxAI, focusing on developing speech recognition technology for drive-thru appli-
cations.

139





Acknowledgements

An adventure cannot be undertaken without mentorship and companionship! I want
to thank everyone who took part in this journey, even those who may-not-be-named
due to no mistake but my own faulty memory. The PhD experience has its up and
downsides, and the people around you make the difference.
First and foremost, I would like to thank David van Leeuwen for his steadfast men-
torship and support. Our meetings usually lasted way longer than intended because
we simply could not stop talking about the field of speech technology, and you were
always ready to answer questions and brainstorm ideas. As a supervisor, you were
very hands-off, which I appreciated. You did not mind when I went on a tangent, and
you trusted me to deliver eventually. Thank you for guiding me through the PhD
process, and I wish you all the best in your own rebellious adventures.
I would also like to give my sincere gratitude to Twan van Laarhoven, Marco Loog,
and Gijs van Tulder, who suffered through my occasional, impromptu brainstorm
sessions. I would also like to express my gratitude to my manuscript committee in
Martha Larson, Hugo Van hamme, and Johan Rohdin for reading and accepting my
thesis.
The PhD process is not complete without your fellow colleagues. The data science
department had a great atmosphere, with interesting, albeit heavy, conversations
during lunch, and of course the nearly-monthly board game sessions cannot be left
unmentioned. In alphabetical order, this atmosphere was made possible by Roel
Bouman, Gabriel Bucur, Franka Buytenhuijs, David Cicchetti, Marene Dimmendaal,
Mohanna Hoveyda, Hideaki Joko, Chris Kamphuis, Alex Kolmus, Zhuoran Liu,
Evgenia Martynova, Paulus Meessen, Jelle Piepenbrock, Koert Schreurs, Yuliya
Shapovalova, Wieske de Swart, Lin Wouters, and Inge Wortel. I would like to give
a special shoutout to Mirthe van Diepen and Emma Gerritse, for which I’m grateful
for being able to vent about and discussing personal issues. Finally, I would like
to thank my paranymphs Charlotte Cambier van Nooten and Olivier Claessen for
humbly accepting this special role in the PhD process, on top of the other things
already mentioned!
My stay at Radboud would not have been the same without joining PhD Organisation
Nijmegen and the people I met there. Violette Charteau, this manuscript would not
have existed without your unrelenting support. A big thanks for providing me with
a much-needed social life, in alphabetical order, to Matteo Calzari, Lucía Gómez-
Zaragozá, Ayşegül Güneyli, Marc Hermes, Simone Hooijer, Lisa Huis in ‘t Veld, Jurgen
Moonen, Tom van der Most, Daniel Ostkamp, Jessica Ramos-Sanchez, Lucy Spoliar,
Etienne Walraven, Kim Wijnant, and Xinyu Zhang.

141



Before I started this PhD, I was grateful to enjoy the companionship of others outside
of Nijmegen. Without their friendship, I would not have been where I am today. Thank
you for the role you have played in my life, and for ensuring I ended up where I am
today, in alphabetic order, to Sri Datta Budaraju, Maï Cock, Philippe Debie, Esther
Kemper, Jan Lucas, Peter Mastnak, Robin Sims, Nina Vogels and Carla Wrede.
I’ve also had the pleasure to grow professionally due to mentorship of Erik Poromaa
at Mysaly and Boris Grozev, Saúl Ibarra Corretgé, and others from the Jitsi Team.
Under their supervision I was able to grow my software engineer skills, which provided
the backbone of this manuscript. Thank you for contributing to the skills I needed
to complete this PhD!
Finally, a heartfelt thank you to my family, who have been there through both the
highs and lows of this journey, and especially to my mother, whose absence has been
deeply felt throughout the last year and a half. Mam, we hadden allen gewild dat
jij dit moment had kunnen meemaken. Je zou ontzettend trots zijn geweest, en met
de grootste glimlach hebben genoten van de verdediging. Elke mijlpaal in het leven
gaat bitterzoet zijn zonder jouw aanwezigheid. Dit proefschrift is opgedragen in jouw
naam. Je zal nooit vergeten worden. Het licht zou niet mogen sterven, maar het is
helaas toch gebeurd. Geef mijn groeten aan Nika. Rös in vree.

142



9 789465 151090


	AIO.016.03 Nik Vaessen (RUP)-cover-digital
	AIO.016.03 Nik Vaessen (RUP)

