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1
General introduction

CLinical trials have played a pivotal role in the history of medical practice, dramatically improving our

ability to understand and treat diseases. From early controlled clinical trials [1], [2], and the randomized

controlled trial reported in the second issue of the British Medical Journal [3], clinical research design

has since continually evolved. Today, we are in the era of precision medicine, where treatments are increasingly

tailored to individual patient characteristics such as genetics, lifestyle, and environmental factors [4] [5]. This

evolutionbringsnewchallenges indesigningandanalyzing clinical trials, requiring innovative statisticalmethods.

Accurate estimation of treatment effects is central to clinical trial methodology, providing the quantitative

evidence required for evaluating treatment efficacy, safety and cost-effectiveness. Reliable estimation informs

decision-making across different stages of drug development: from initial evaluations (go/no-go decisions) to

confirmatory studies, influencing regulatory approvals, reimbursement decisions and future research planning

[6] , [7]. Fundamental to accurate estimation is the clear definition of the estimand, based on the precise clinical

question the trial aims to address and theway the answer(s) will be quantified based on trial results.

The International Council for Harmonisation’s E9(R1) [8] guideline provides a structured framework for

defining estimands, clarifying precisely what clinical trials aim to estimate, typically a treatment effect, and how

intercurrent events, such as treatment discontinuation or additional therapies occurring after randomization,

should be handled. This guideline ensures trial objectives, data analyses, and interpretation of results are clearly

aligned, enhancing the robustness and validity of conclusions.

In oncology, rapid advancements in targeted therapies and genomic diagnostics have complicated trial designs

and estimation methods. Conventional randomized controlled trial designs face challenges due to the small and

heterogeneous patient populations often encountered in precision oncology, particularly when studying rare can-

cer types or genetic aberrations acrossmultiple tumorhistologies [9]. Novel trial designs such asmaster protocols

have emerged as innovative approaches that facilitate the simultaneous evaluation ofmultiple hypotheses within

a single protocol structure. Master protocols allow coordinated evaluation of multiple treatments, diseases, or

both, and include three distinct types: basket, umbrella, and platform trials [10]. Specifically, basket trials evaluate

a single targeted therapy across different cancer types sharing a common molecular alteration. Umbrella trials
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Figure 1.1: The basket trial scheme as presented in the following article https://www.thelancet.com/journals/lanonc/article/PIIS1470‐
2045(19)30271‐2/abstract

investigatemultiple targeted therapies within a single disease, and platform trials continuously evaluatemultiple

treatments and disease subtypes within a perpetual framework [10]–[12].

The growing use ofmaster protocols, such as for basket trials, needs to alignwith regulatory guidance provided

by the ICH E9(R1) guideline [8]. Collignon et al. [13] specifically discuss the application of the estimand framework

in oncology, highlighting that precise estimand definition is essential for accurately interpreting the results of

basket trials and ensuring their conclusions are robust.

Basket trials (fig 1.1) offer substantial operational advantages by efficiently using resources and accelerating

drug development, particularly for rare cancers or genetically-defined patient subgroups. However, these trials

also introduce statistical challenges, mainly regarding how to accurately estimate treatment effectiveness across

diverse patient groups. Mostmethods proposed in the literature for basket trials have primarily focused on binary

endpoints, like tumor response rates [14]. Recently, approaches have also been developed for more complicated

endpoints, such as time-to-event outcomes [15].

Basket trial designs vary significantly, including substudies with traditional single-stage trial designs to

adaptive and two-stage designs, such as Simon’s two-stage [16] approach (see details below) or substudies with

randomized designs. A recent systematic review by Kasim et al. [17] revealed a wide variety of basket trial designs

used in practice, with most adopting single-arm, phase II trials without randomization. Traditional frequentist

methods for analysis [18]–[20] are most common due to their simplicity, more and more Bayesian approaches

have been developed to address the heterogeneity across tumor types, including methods that allow for borrow-

1
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ing information between substudies. Bayesian hierarchical models and model averaging methods have become

increasingly common in this context [14]. If such Bayesian approaches are used to drive adaptive features for

decisions in sub-studies, theywill introducesaunique trial design, andcareful consideration isnecessarywhense-

lecting thebest approach toachieveaccurateandmeaningful conclusions. Thiswill be the topicof chapters4and5.

Simon’s two-stage design [16] is a sequential design frequently used in early-phase clinical trials, especially

in oncology, to quickly evaluate whether a new treatment is promising enough for further testing. It works by

dividing the trial into two stages. In the first stage, a small group of patients receives the treatment, and if the treat-

ment shows enough promise, the study continues to the second stage, recruiting more patients. If the treatment

appears ineffective after the first stage, the trial stops early to avoid wasting resources or exposingmore patients

to a potentially ineffective therapy. While this design is practical and efficient, it can cause estimation biases due

to the early stopping rules. [21]. In STS design, the trial can only stop early for futility. The estimation problem in

this case has been addressed by Jung et al. [22], who provide the uniformlyminimumvariance unbiased estimator

(UMVUE). Several curtailment designs [23]–[25] have been proposed to allow early stopping in Simon’s two-stage

design, either when we can conclude that the treatment is ineffective or when it seems effective. However, these

methods do not provide an UMVUE estimator when early stopping is allowed for. In Chapter 2, we provide an

analytical proof of the UMVUE for trials that allow early stopping for either efficacy or futility, conditional on

passing the first stage.

An endpoint in oncology trials which is becoming increasingly valuable is the Duration of Response (DoR),

particularly in evaluating the efficacy of treatments that provide sustained therapeutic benefits. DoR is defined as

the time from the onset of the initial response to progression of disease or death. This measure provides further

insights into treatment effectiveness compared to evaluating initial response rates. Recent research highlights its

increasing relevance, especially in immuno-oncology, where traditional measures like Objective Response Rate

(ORR) or Progression-Free Survival (PFS) might not fully capture treatment impacts due to delayed or durable

responses typical of immune checkpoint inhibitors (ICIs) (Hu et al. [26]).

DoR’s sensitivity and reliability as a clinical endpoint are particularly advantageous in randomized Phase II

studies. It has shown a stronger capability in identifying true positive results and correctly predicting overall

survival benefits compared to conventional endpoints like ORR and PFS, thus making it highly relevant for

decision-making in early-phase trials (Hu et al. [26]). Furthermore, Weber et al. [27] advocate for defining DoR

within the ICH E9(R1) estimand framework, underscoring the importance of clearly specifying how intercurrent

events, such as treatment discontinuation, should be handled to enhance interpretability and robustness of trial

outcomes.

The practical relevance of DoR is also illustrated in frameworks such as the Dutch PASKWIL criteria [28], which

incorporate DoR alongside ORR to assess clinical relevance of results from non-randomized studies in rare can-

cers. According to these guidelines, treatments are considered clinically relevant if they meet certain thresholds

linking ORR and minimum DoR durations (e.g., ORR > 40% with DoR > 4 months) (Dutch Society for Oncology,

2021). Thus, accurately estimating DoR aligns closely with both clinical practice and regulatory frameworks.

However, estimating DoR, presents methodological challenges primarily due to right censoring and interval

censoring associatedwith scheduling intervals for patient radiological orMRI scans used to assess tumor size and



10 | 1. GENERAL INTRODUCTION

ing information between substudies. Bayesian hierarchical models and model averaging methods have become

increasingly common in this context [14]. If such Bayesian approaches are used to drive adaptive features for

decisions in sub-studies, theywill introducesaunique trial design, andcareful consideration isnecessarywhense-

lecting thebest approach toachieveaccurateandmeaningful conclusions. Thiswill be the topicof chapters4and5.

Simon’s two-stage design [16] is a sequential design frequently used in early-phase clinical trials, especially

in oncology, to quickly evaluate whether a new treatment is promising enough for further testing. It works by

dividing the trial into two stages. In the first stage, a small group of patients receives the treatment, and if the treat-

ment shows enough promise, the study continues to the second stage, recruiting more patients. If the treatment

appears ineffective after the first stage, the trial stops early to avoid wasting resources or exposingmore patients

to a potentially ineffective therapy. While this design is practical and efficient, it can cause estimation biases due

to the early stopping rules. [21]. In STS design, the trial can only stop early for futility. The estimation problem in

this case has been addressed by Jung et al. [22], who provide the uniformlyminimumvariance unbiased estimator

(UMVUE). Several curtailment designs [23]–[25] have been proposed to allow early stopping in Simon’s two-stage

design, either when we can conclude that the treatment is ineffective or when it seems effective. However, these

methods do not provide an UMVUE estimator when early stopping is allowed for. In Chapter 2, we provide an

analytical proof of the UMVUE for trials that allow early stopping for either efficacy or futility, conditional on

passing the first stage.

An endpoint in oncology trials which is becoming increasingly valuable is the Duration of Response (DoR),

particularly in evaluating the efficacy of treatments that provide sustained therapeutic benefits. DoR is defined as

the time from the onset of the initial response to progression of disease or death. This measure provides further

insights into treatment effectiveness compared to evaluating initial response rates. Recent research highlights its

increasing relevance, especially in immuno-oncology, where traditional measures like Objective Response Rate

(ORR) or Progression-Free Survival (PFS) might not fully capture treatment impacts due to delayed or durable

responses typical of immune checkpoint inhibitors (ICIs) (Hu et al. [26]).

DoR’s sensitivity and reliability as a clinical endpoint are particularly advantageous in randomized Phase II

studies. It has shown a stronger capability in identifying true positive results and correctly predicting overall

survival benefits compared to conventional endpoints like ORR and PFS, thus making it highly relevant for

decision-making in early-phase trials (Hu et al. [26]). Furthermore, Weber et al. [27] advocate for defining DoR

within the ICH E9(R1) estimand framework, underscoring the importance of clearly specifying how intercurrent

events, such as treatment discontinuation, should be handled to enhance interpretability and robustness of trial

outcomes.

The practical relevance of DoR is also illustrated in frameworks such as the Dutch PASKWIL criteria [28], which

incorporate DoR alongside ORR to assess clinical relevance of results from non-randomized studies in rare can-

cers. According to these guidelines, treatments are considered clinically relevant if they meet certain thresholds

linking ORR and minimum DoR durations (e.g., ORR > 40% with DoR > 4 months) (Dutch Society for Oncology,

2021). Thus, accurately estimating DoR aligns closely with both clinical practice and regulatory frameworks.

However, estimating DoR, presents methodological challenges primarily due to right censoring and interval

censoring associatedwith scheduling intervals for patient radiological orMRI scans used to assess tumor size and

1.1. OBJECTIVES | 11

growth. Toaddress thesechallenges, Chapter3of this thesiswill present theRestrictedMeanDurationofResponse

(RMDoR). RMDoR represents the expected ORR and DoR within a pre-specified time window by quantifying the

area between two survival curves: one for the time to progression or death and another for the time to response,

progression, or death. Unlike the classical DoR, which is only defined for responders, RMDoR is a population-level

measure that includes both responders and non-responders—assigning a DoR of zero to the latter. This means

RMDoR naturally incorporates information about the response rate: if two treatments show similar DoR among

responders but differ in overall response rates, RMDoRwill favor the treatmentwithmore responders, as it should.

In contrast, classical DoR cannot capture this distinction and must therefore be interpreted together with ORR.

RMDoR aims to provide amore integrated and clinicallymeaningful summary of treatment effects, particularly in

early-phase oncology trials.

1.1 Objectives

This thesis addresses statistical andmethodological challenges in estimation of treatment effects, specifically fo-

cusing on innovative trial designs. It contributes by evaluating and developingmethodologies aimed at improving

estimation accuracy and reliability. Specifically, the thesis objectives include:

• Developing a uniformlyminimum variance unbiased estimator (UMVUE) for Simon’s two-stage trials when

early stopping is possible.

• Investigating the duration of response outcome, addressing possible issues and proposing a robust estima-

tor for the RMDoR in the presence of interval censoring.

• Evaluating Bayesian estimation methods for information borrowing in basket trials. We explore different

settings in Basket trials like single or two-stage designs andwe provide practical guidance on parameter se-

lection for optimal estimation performance.

1.2 Thesis outline

In Chapter 2, we address estimation issues associated with Simon’s two-stage designs. This chapter introduces

and evaluates the sample proportion estimate and we propose a uniformly minimum-variance unbiased estima-

tor (UMVUE) specifically designed to address biases introduced when the decision of early stopping can be made

either for futility or for efficacy.

In Chapter 3, we investigate methods for estimating the RMDoR in oncology trials. It compares various ap-

proaches through simulation studies, highlighting how effectively these methods handle interval censoring in

survival data.

In Chapter 4, we evaluate and compare various Bayesian estimation methods that enable borrowing informa-

tion across cohorts in basket trials. Simulation studies, considering single stage baskets, assess the performance

of these estimators in terms of bias,mean squared error, and the extent of borrowing, providing guidance on their

practical implementation.

1
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In Chapter 5, we applied a selection of these Bayesianmethods to the Drug Rediscovery Protocol (DRUP) study,

a real-worldmaster protocol trial in oncology. We developed a parameter optimizationmethod based on the root

mean square error measure and we evaluated the estimators performance in realistic clinical settings, offering

recommendations for clinical researchers.

Through addressing thesemethodological challenges, this thesis aims to improve the accuracy and robustness

of statistical estimation in clinical trials, supportingmore informed and reliable decisions in oncology research.
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Abstract

In early phase clinical studies in oncology, Simon’s two-stage designs are widely used. The trial design could be

made more efficient by stopping early in the second stage when the required number of responses is reached,

or when it has become clear that this target can no longer be met (a form of non-stochastic curtailment). Early

stopping, however, will affect proper estimation of the response rate. We propose a uniformlyminimum-variance

unbiased estimator (UMVUE) for the response rate in this setting. The estimator is proven to be UMVUE using the

Rao-Blackwell theorem. We evaluate the estimator’s properties in terms of bias and MSE, both analytically and

via simulations. We derive confidence intervals based on sample space orderings, and assess the coverage. For

various design options, we evaluate the reduction in expected sample size as a function of the true response rate.

Ourmethodprovides a solution for estimating response rates in case of a non-stochastic curtailment Simon’s two-

stage design.
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2.1 Introduction

Simon’s [16] two-stage (STS) design is a well known single arm study design that is commonly used in early phase

oncology studies. The design is focused on deciding whether or not the response rate (p) is sufficiently promising

for further evaluation. In the first stage of the trial, n1 patients are enrolled and receive the treatment of interest.

Thenumber of subjectswith a positive treatment response (x1) is recorded. If thenumber of responses is less than

the pre-specified threshold r1, the trial stops. Otherwise, n2 additional patients are included. If the total number

of responses (xt) is equal to or greater than threshold rt, the treatment is considered promising and will typically

undergomore rigorous testing.

Theprimary purpose of theSTSdesign is tomakea go / no-godecisionwhether the treatment seemspromising

or not. Yet, typically, it is desirable to also present an estimate of the response rate along with a confidence inter-

val [29], [30]. Commonly, the response rate is estimated by the sample proportion. Doing so, however, ignores the

sequential nature of the trial and introduces bias [21]. For this reason, various alternative estimators have been

proposed. The Uniformly Minimum Variance Unbiased Estimator (UMVUE) is given by Jung et al. [22], based on

Chang’s et al. [31] work and they provide the proof analytically. Other estimation options (so-called ‘bias-reduced’

estimators) were suggested in Guo et al. [32] and Whitehead et al. [21]. Koyama et al. [29] proposed a median-

unbiased estimator. In addition, estimators optimized in terms of the mean squared error (MSE) have been sug-

gested (e.g. Kunzmann et al. [33]). If we are interested in the estimate of the response rate only when the trial at

least succeeded to the second stage, further options exist. [34] [35] [36] [37]. Pocher and Desseaux [30] published

an analytical overview of thesemethods.

These estimators, however, require the practical implementation of the study to follow the design exactly as

planned. TheUMVUE [22] requires that either the sample size in the first stage is fully achieved (if the trial is halted

after the first stage) or the total sample size is exactly achieved (if the trial succeeds to the secondstage). Inpractice,

however, the number of responses required tomake a decisionmaybe observed before thenominal target sample

size is reached. Alternatively, it may become apparent at some point during the trial that there is no possibility to

actually reach the required number of responses it could be a researcher’s option to stop the trial earlier than the

STS design, for efficacy or futility.

This is commonly referred to as ’non-stochastic curtailment’ (NSC), and the approach presented in this paper

is one such approach. Note that, so-called ’stochastic curtailment’ (SC) approaches have been described as well.

These approaches allow for stopping early not only when it is certain that the trial will or will not meet its target,

but also when one of these outcomes has become likely. Chi and Chen [24] (CC) proposed a NSC design that stops

early when the decision in the original STS design can be made earlier for efficacy or futility in both stages of the

trial. Ayanlowo’s and Redden’s[23] (AR) SC design stops early in the second stage using the conditional power cal-

culation given a pre-specified threshold θ. Kunz and Kieser[25] (KK) proposed a SC design similar to AR allowing

for early stopping using a conditional power threshold in both stages of the trial. The use of the conditional power

is amethodologically interesting approach but introduces complexity in the trial design. The focus of the existing

literature is about the design properties, the estimation of the observed effect is not addressed in this topic.

In this paper, we describe a simple approach to non-stochastic curtailment for the STS design (whichwewill re-

fer to as the ’stoppedSTS’ designorSSTS), and focus specifically on theestimationof the response ratebyproviding

the UMVUE as well as a method for deriving the bounds of the confidence interval using sample space orderings.

In practice, e.g. in oncology basket trials whichmay consists of a large number of related sub-studies with the STS

design, such an approachmay considerably reduce the total number of subjects that needs to be included before

inference onanovel treatment across studies canbemade. A simulation studywasperformed to compare thepro-

2
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posed estimator properties (bias, MSE) against the sample proportion in the SSTS design and assess the coverage

of the confidence interval. In addition, a comparison of the estimators is made between the standard STS and the

SSTS design (using Jung’s UMVUE for the STS design). Also, the expected sample size of the proposed design and

the probability of early termination for efficacy and futility is compared with the standard STS design under the

null hypothesis.

2.2 Proposed design SSTS

Suppose that the practical implementation of a STS design will always follow the design for the first stage of the

trial, but that, in the second stage, the trial is stopped as soon as the go / no-go decision can be made. In the first

stage n1 patients enter the trial and get treatment, whereas this is at most n2 in the second stage. The outcome of

allnt = n1 + n2 patients (responders or non-responders) whomay enter the trial are assumed to be independent

realizations of aBernoulli(p) distribution. The total number of responders in stage 1 is denoted asX1 and follows

aBinomial(n1; p) distribution. If the observed number of responders x1 is less than the pre-specified threshold

x1 < r1 *, then the treatment is considered to be not promising, and the trial stops for futility. Stopping for effi-

cacy, can be claimed by the end of the first stage, if the number of responders is already larger than or equal to the

threshold rt. If r1 ≤ x1 < rt, the trial proceeds to stage 2 inwhichatmostn2 patients enter the study. LetY denote

the number of observed patients at time of stopping and letXt be the number of responders at time of stopping. If

it proceeds to the second stage, we could distinguish the following cases:

• Case I: Stop early in stage 2 due to efficacy, once the required number of responses rt has been reached in

the yth patient, where y ≤ n1 + n2 and y > n1.

• Case II: Stop early in stage 2 due to futility, once there are at least lt = nt − rt + 1 non responders since the
total number of responses cannot reach rt even if you enroll the rest of the patients and all of them would

respond, thus if xt = y − lt.

In the situation where the number of responders in the first stage exceeds rt, the trial is halted for efficacy di-

rectly after stage 1 is completed. For example, consider a trial with an optimal STS design, where n1 = 8 patients
are enrolled in stage 1. If the number of responders is more than equal to the threshold r1 = 1, the trial proceeds
to the second stage and another n2 = 16 patients are added. The null hypothesis will be rejected if at least rt = 5
responders areobserved in total. Assume that a total of 5 patients respondafter evaluating theoutcomeof the12th

patient. Then the decisionwould be the same as the decisionwewould havemade if the trial would have included

allnt = 8 + 16 subjects, so we could stop after the 12th patient, fig 2.1. (Case I) On the other hand, if only 2 patients

out of 22 respond to the treatment, thenwe could stop the trial early sincewe have only another 2 patients left and

the design requires at least 3 additional responses. In that case, the treatment is not considered promising. fig 2.1.

(Case II)

2.3 Uniformly Minimum Variance Unbiased Estimator (UMVUE)

The property of unbiasedness is desirable for an estimator. InAppendixA it is shown thatV = (Y, Xt) is complete

andsufficient, and is thereforeuse toderiveanunbiasedestimatorwithminimumvariance. TheUMVUE isderived

using the Rao-Blackwell theorem and the fact that sample proportion in the first stage p̃1 = X1
n1

is an unbiased

*The definition of the required responses is different than in the Simon’s original paper, r1 = rSimon′s
1 + 1
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Figure 2.1: Case I,II: Boxes with red colour are the non‐responders and responders denoted with green. The black lines indicated the end of the first
stage and a pre‐planned interim analysis. The gray boxes indicate the unused patients.

estimator of the response rate. Considering the sequential nature of the trial, we propose as an estimator for p the

conditional expectation of the sample proportion given the sufficient statistic, p̂ = E(p̃1|(Y, Xt)). Following the
calculations in Appendix B the UMVUE is derived:

p̂ =





Xt

n1
if Y = n1

∑rt−1
j=r1

(Y −n1−1
Xt−j

)(n1−1
j−1 )∑rt−1

j=r1
(Y −n1−1

Xt−j
)(n1

j
) if Y > n1, Xt < rt

∑rt−1
j=r1

(Y −n1−1
Xt−j−1)(n1−1

j−1 )∑rt−1
j=r1

(Y −n1−1
Xt−j−1)(n1

j
) if Y > n1, Xt = rt

(2.1)

where the estimator by the end of the first stage is the same if we stop due to futility, xt < r1 or efficacy xt ≥ rt.

Other estimators

The UMVUE can directly be comparedwith the sample proportion in the stopped Simon’s two-stage (SSTS) design

proposed, i.e. the total number of responders divided by the total number of patients observed:

p̂sSST S = Xt

Y

In the simulations that follow, we also compare the performance of the two estimators described above against

the performance of the UMVUE and sample proportion in the setting without early stopping (i.e. the standard ap-

plication of the STS design), to evaluate the loss in precision that can be expectedwhen allowing for early stopping.

The sample proportion (sST S) is the number of responders divided by the total number of patients: p̂sST S = Xt

nt

and the UMVUE [22] uses the sufficient and complete statistic (M, S), where M ∈ 1, 2 is the stage after which

the trial is stopped and S is the total number of responders. If the trial stops in the first stage with S1 = s, then

p̂uST S (1, S) = S
n1
. If the trial continues to the second stagewithS2 = s then:

p̂uST S (2, S) =
∑min(S,n1)

i=r1

(
n1−1
i−1

)(
n2−n1

S−1
)

∑min(S,n1)
i=r1

(
n1
i

)(
n2−n1

S−1
)

2
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The proposed estimator only becomes relevant if the designwith early stopping is relevant and useful given study

objectivesandspecific context. Thecomparisonagainst the full designestimator is to illustrate the loss inprecision

such a design choice causes. †

2.3.1 Confidence interval

A common strategy in clinical trials inference is to present the response rate estimation alongside with a confi-

dence interval. However, standard confidence intervals do not take the sequential nature of the trial into account.

A natural choicewould be a one-sided instead of a two-sided confidence interval for the response rate, so that it is

consistentwith theone-sidedhypothesis testing in aSTSdesign (remember that in aSTS stagedesign, a one-sided

hypothesis is tested to study whether the treatment is sufficiently promising). Recently Shan [38] introduced an

onesidedexactCI basedon thep-values in two-stagedesigns. In thecurrentpapera two-sidedconfidence interval

is proposed, since the primary goal of the paper is estimation of the response rate. However, a one-sided interval

can be constructed in a similar way. The two sided CI is constructed, similarly to Jung [22], by ordering the sample

spacebasedon thestatistic (Y, Xt) following theSSTSdesign. Thestatisticused in this case isnot amonotonicpos-

itive function. Similarly to Jennison and Turnbull [39] orderings applied in the sample space, based on theUMVUE

p̂(Y, Xt). The ordering is made using the sufficient statistic (Y, Xt), as illustrated in Table 4.1. Using the sample

space orderings and tail probabilities (analogous to Jung [22], [39], [40]), an exact 100(1 − α) percent confidence
interval for all values of p contains that satisfy both inequalities: (see in Appendix C the detailed calculations)

Pp(p̂(Y, Xt) ≥ p̂(y, xt) | p = p0) >
a

2
Pp(p̂(Y, Xt) > p̂(y, xt) | p = p0) < 1 − a

2

Abisectionmethod is used to calculate the lower andupperboundof the confidence interval. Based on the table 4.1

sample space orderings, the sumof the probabilities of the lower side of the CI should be at least equal to a
2 and the

upper side atmost equal to 1 − a
2 respectively. E.g. assume that we observe xt = 3 andwewant to calculate a 95%

confidence interval. We then sum all the probabilities below the observed design (row in bold table 4.1) given the

initial value 0.25 (the initial value doesn’t play any role in the algorithms convergence speed). The sum is 0.485. As
theprocedure continuesusingdifferent values ofpL andpU , the solution for thenominal level of a95% confidence

interval in the current example is (0.055, 0.518).

2.3.2 Simulation studies

To evaluate the characteristics of the SSTS and confidence interval in comparison to the alternative estima-

tors/settings, we performed a simulation study for various STS designs. The designs chosen were selected to

provide a range of null (p0) and alternative (p1) hypothesis with the same type I/II error (see table 1 and 2 in

supplementarymaterial for an overview).

Data was generated as n1 + n2 Bernoulli(p) trials. For reference, the stopping rules were used following the

standard application of the STS design. In this setting, the sample proportion and the UMVUE [22] are evaluated.

Next, the stopping rules as outlined in section 2.2 are applied (the ‘stopped STS design‘), and again the sample pro-

portion and our UMVUE estimate are determined. The estimators are evaluated in terms of the bias, MSE and the

expected sample size. The performance of the confidence interval proposed in section 2.4.2 is evaluated in terms

†”u” in p̂uST S is used as abbreviation for UMVUE and ”s” for Sample proportion in the formulas.
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sample space orderings, the sumof the probabilities of the lower side of the CI should be at least equal to a
2 and the

upper side atmost equal to 1 − a
2 respectively. E.g. assume that we observe xt = 3 andwewant to calculate a 95%

confidence interval. We then sum all the probabilities below the observed design (row in bold table 4.1) given the

initial value 0.25 (the initial value doesn’t play any role in the algorithms convergence speed). The sum is 0.485. As
theprocedure continuesusingdifferent values ofpL andpU , the solution for thenominal level of a95% confidence

interval in the current example is (0.055, 0.518).

2.3.2 Simulation studies

To evaluate the characteristics of the SSTS and confidence interval in comparison to the alternative estima-

tors/settings, we performed a simulation study for various STS designs. The designs chosen were selected to

provide a range of null (p0) and alternative (p1) hypothesis with the same type I/II error (see table 1 and 2 in
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Data was generated as n1 + n2 Bernoulli(p) trials. For reference, the stopping rules were used following the

standard application of the STS design. In this setting, the sample proportion and the UMVUE [22] are evaluated.

Next, the stopping rules as outlined in section 2.2 are applied (the ‘stopped STS design‘), and again the sample pro-

portion and our UMVUE estimate are determined. The estimators are evaluated in terms of the bias, MSE and the
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†”u” in p̂uST S is used as abbreviation for UMVUE and ”s” for Sample proportion in the formulas.
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n1 n2obs ∆ xt y P (Y = y, Xt = xt|p = 0.25) P (Y = y, Xt = xt|p = 0.055) P (Y = y, Xt = xt|p = 0.518)

9 ‐ F 0 9 0.075 0.601 0.001
9 7 F 1 16 0.030 0.212 0.000
9 8 F 2 17 0.083 0.128 0.000
9 8 T 3 17 0.028 0.008 0.001
9 7 T 3 16 0.033 0.007 0.001
9 6 T 3 15 0.040 0.007 0.002
9 5 T 3 14 0.048 0.006 0.003
9 4 T 3 13 0.056 0.006 0.006
9 3 T 3 12 0.063 0.006 0.011
9 2 T 3 11 0.070 0.005 0.018
9 1 T 3 10 0.075 0.004 0.030
9 ‐ T 3 9 0.234 0.010 0.147
9 ‐ T 4 9 0.117 0.001 0.236
9 ‐ T 5 9 0.039 0.000 0.254
9 ‐ T 6 9 0.009 0.000 0.181
9 ‐ T 7 9 0.001 0.000 0.084
9 ‐ T 8 9 0.000 0.000 0.022
9 ‐ T 9 9 0.000 0.000 0.003

Table 2.1: All possible outcomes of a design where, n1 = 9, nt = 17, r1 = 1, rt = 3 to test H0 : p0 = 0.05 vs H1 : p1 = 0.25 with
α = 0.05 and β = 0.2. The ”∆” column indicates if the trial is successful or not, F=False, T=True. The row in bold indicates the design we
used as an example above. When the design stops in the first stage due to efficacy or futility, we set the second column n2obs a ”‐”

of the coverage. 1000000 simulations were used for all measures except the coverage, due to the computational

complexity of the algorithm,we perform 10000 simulation runs (The simulationswere performedusing R, version

4.0.2).

2.4 Comparisons and Results

2.4.1 Estimator properties

In figure 2.2, the four estimators are compared in terms of MSE and bias. The first row shows the comparison in

termsof bias across different optimal STSdesignswith different properties and the second row shows the compar-

ison in terms of MSE in the same designs. The unbiased estimators in the simulation study behave as expected in

theory. The red dashed line indicates the UMVUE of the STS design, as expected the bias overlaps with the respec-

tive bias of the UMVUE of the SSTS design (grey continuous line), equal to 0. In both cases the MSE bottom panel,

reflects the variance of the estimators. The SSTS estimator will always give an estimate based on less data, due to

the design’s stopping rules. For this reason the uSST S MSE is higher than the uST S MSE in fig 2.2. In the standard

application of the STS design, the sample proportion has a downward bias. When early stopping is allowed, how-

ever, the bias can be in both directions (although the upward bias is less pronounced for designs such us the last

one presented in fig 2.2). The MSE of the SSTS sample proportion seems to be lower than the proposed UMVUE

in the respective areas where the sample proportion is biased. That means that the variance in these areas of the

UMVUE ismuch larger. It is remarkable, given the PET graph, that theMSE of the uSST S is less than the respective

MSE of the sample proportion of SSTS when the PET due to efficacy in the interim (yellow line fig 2.5) crosses with

the PET due to futility (red line fig 2.5) by the end of stage I. In addition, the effect of stopping early due to efficacy

by the end of the first stage can be seen clearly in figure 2.2 when in the first upper panel of the figure 2.2 the true

RR is p > 0.6. This design requires at least rt = 7 responders in total out of n1 = 18 by the end of the first stage.

2
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When the true RR of p is greater than 0.6 it is highly probable to observe at least 7 responses out of the 18 patients,
so thedesign is highly likely to stopdue to efficacy by the endof the first stage. Finally, in trials designedwith ahigh

null and alternative hypothesis, like the last design in figure 2.2, the UMVUE of the SSTS design performs better

when the true p is close to the alternative hypothesis, even in comparison with the STS design. Considering this,

a trade-off between bias and variance can be detected. Similar results are observed across all designs that were

evaluated. (see, fig 2.6,2.7 supplementarymaterial) It is common in phase II oncology designs that the decision of a

treatment activity is mostly important. Estimation when the trial stops early seems to play also a role in the plan-

ning of the trial’s design. Given the results of the figure 2.2 the MSE difference in the first design panel between

SSTS and STS estimates seems to be significant when the estimate is away from the region of the shaded area. A

clinical researchermight bewhiling to choose a curtailed design that reduces the number of expected sample size

and the compromise in the trial’s effect won’t be that important based on the simulations.
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Figure 2.2: Comparison across different null/alternative hypothesis. The blue solid line represents the sample proportion in SSTS design. The gray line
denotes the UMVUE of the SSTS design. The yellow and the red dashed lines represent the sample proportion and the UMVUE of the STS respectively.
The shaded area indicates the null’s and alternative’s hypothesis region of the respective design.

2.4.2 Coverage probability

The coverage of the confidence interval is evaluated for a variety of designs, as discussed before. Figure 2.10 shows

the simulation results. The coverage appears to be close to the nominal level of 95%, but on average higher (up

to 96.8%) across all designs. When the true value of p is close to 0 or 1 a trend can be detected. The coverage is

larger than the nominal level, because when all patients respond or no patient does, the method always includes

the true value (0 lower bound or respective 1 upper bound). In between of the design’s hypothesis range, with gray

shadedcolour, thecoverage is close to thenominal95% (greyshadedarea). Thatmeans that theappliedconfidence

interval is slightly conservative.
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when the true p is close to the alternative hypothesis, even in comparison with the STS design. Considering this,

a trade-off between bias and variance can be detected. Similar results are observed across all designs that were
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2.4.2 Coverage probability

The coverage of the confidence interval is evaluated for a variety of designs, as discussed before. Figure 2.10 shows

the simulation results. The coverage appears to be close to the nominal level of 95%, but on average higher (up

to 96.8%) across all designs. When the true value of p is close to 0 or 1 a trend can be detected. The coverage is

larger than the nominal level, because when all patients respond or no patient does, the method always includes

the true value (0 lower bound or respective 1 upper bound). In between of the design’s hypothesis range, with gray
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Figure 2.3: Coverage probability across different designs of 10000 simulations. The shaded area indicates the null’s and alternative’s hypothesis region
of the respective design.

2.4.3 Expected sample size

The expected sample size (ESS) of SSTS is compared with the STS’s ESS. Based on simulations, we provide (fig. 2.4)

the whole range of true values of p, where p ∈ [0, 1]. TheESSSST S ≤ ESSST S for any value of p. This can easily

be seen in fig 2.4, the NSC design stops when the required responses can be reached or cannot be reached. An

interestingpoint that is explainedby thedesignproperties, is that thepurple line (first line, fig 2.4) becomesalmost

astraight linewhenthe truevalueofp is greater than0.6. The total requiredresponsesrt in thisdesign isa relatively

small number, so the bigger the true p becomes, the more frequent responders observed and the trial stops. The

ESS reduction is based on the efficacy boundary in this case. STS designs can be used in practice in a variety of

ranges of p0 and p1 depending on the definition of ”low” or ”high” based on the researchers expectations of the

effect. The SSTS design provides a sample size reduction for every observed outcome. In table 2.2 the expected

sample size difference of STS and SSTS is depicted. Under the null hypothesis, almost 2 patients could be saved

on average per trial. The SSTS would have lower expected sample size than STS, as expected theoretically. Given

the simulated designs, where the power is 90%, the ESS difference with the STS design is in a range of 0.58 to 2.01

patients, with an average of 1.47. When the power is 80%, the ESS difference range is from 0.56 to 3.11, with an

average of 1.56.

The ESS of the SSTS compared with other curtailed designs will have always bigger ESS. The AR design stopping

rules are similar with the SSTS in the second stage, the ESS is the same when the conditional power threshold θ

equals to 0, if the threshold choice is greater than 0, then theESSSST S ≥ ESSAR. Using the same reasoning, in

KK or in Chi and Chen designwhere early stopping is allowed in the first stage as well has a lower ESS.

2.4.4 Probability of early termination

To evaluate further the SSTS design against the STS design, the probability of early termination is calculated via

simulations. The PET of STS design is coded in the fig 2.5 as the PET stage I futility (red line) and is the same for

SSTS and STS design. An interesting point is to observe that the probability of early termination in stage I due to

2
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ESS

p0 p1 SSTS STS

P ower = 80%
0.1 0.3 14.45 15.01
0.2 0.4 19.75 20.58
0.3 0.5 22.51 23.63
0.4 0.6 22.35 23.95
0.5 0.7 21.83 23.50
0.6 0.8 18.47 20.48
0.7 0.9 11.71 14.82

P ower = 90%
0.1 0.3 21.94 22.53
0.2 0.4 29.16 30.43
0.3 0.5 33.41 34.72
0.4 0.6 34.48 35.98
0.5 0.7 32.31 34.01
0.6 0.8 27.59 29.47
0.7 0.9 19.22 21.23

Table 2.2: Comparison between STS optimal design and the SSTS under the null hypothesis for p1 − p0 = 0.2 at alpha = 0.05.
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Figure 2.4: ESS difference between STS and the SSTS across the range of possible values for p. The bold solid lines represents the design’s null and
alternative respective range of the studied design

efficacy is considerably high in the upper left panel, where 7 responses are required in total to claimefficacy based

on the specific design’s properties. This is the only design in the graph where the total required responses is less

than the first stage patients(rt < n1). PET at the end of the first stage due to efficacy, introduces bias that affects

the estimation. The MSE of the referred design in fig 2.2 is affected by the reduced sample size. When the yellow

line of fig 2.5 starts to increase the trial stopsmore often by the end of the first stage.

2.4.5 Empirical application

A Malignant pleural mesothelioma study [41] is an example for Case I (fig 2.1). The trial followed the STS design

(n1 = 18, n2 = 15, r1 = 5, rt = 11). The authors [41] estimated the response rate by means of the standard

sample proportion as 47% with a 95% CI (30%, 65%). If the UMVUE described in [22] and a CI based on Koyama

[29] would have been used, the estimate would be equal to 47.5%with a 95% CI (32.2%, 59.7%). If the researchers

would have allowed for early stopping, the estimation procedure proposed in this paper would yield 47.6% with a

95% CI (28.2%, 70.2%) and the trial could have been halted after the 22nd subject out of 33 , allowing some lose of

precision. The sample proportion in the SSTSwould be 50%with a 95% CI (30.7%, 69.3%))
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Figure 2.5: Probability of early termination as a function of p, where the 4 different stopping rules are calculated separately. The beginning and the
end of the shaded area represents p0 and p1 of the respective design.

2.5 Discussion and Conclusion

In this paper, an efficient approach to the Simon’s two-stage design is introduced, in situations where the go/no

go decision can be made before the nominal target sample size is reached. We presented the UMVUE with cor-

responding confidence interval for the response rate for STS studies that stop as soon as a decision can be taken.

Using simulations, the proposed estimator is compared against the sample proportion in terms of bias andMSE in

varioussettings. Inaddition, it is shownhowitperformsagainst thesampleproportionandUMVUE in thestandard

application of the STS design. Also, the coverage of the CI is investigated, as is the expected reduction in sample

size. Theproposedprocedure is showntobeavalidapproachwith thepotential to substantially reduce therequired

sample size. The SSTS design can prevent some patients from receiving ineffective treatments or, if the treatment

is promising, a confirmatory trial can start sooner.

The ESS reduction could be particularly interesting inmaster protocols includingmany sub-studies that use a STS

design. Recent examples like TAPURstudy includesmore than336unique trial cohorts [42] and theDRUP trial also

includes more than 165 cohorts [43]. As a result, if stopped early for futility, it prevents patients exposed to treat-

ments that are not promising. If stopped early for efficacy, rigorous evaluation starts sooner, or even treatment

may become available sooner.

An important benefit of the proposed approach is the simplicity in the execution: No adjustments are needed in

the design stage. Compared tomost alternative curtailed designs [23],[24],[25], the SSTS design is not themost ef-

ficient in the sample size reduction, but the complexity is reduced. The stopping rules are easy to be adapted and

the first stage remains the same.

Estimation becomes a part of the design, allowing for early stopping will inmost cases reduce the precision of the

estimate (fig 2.2). Whether this is acceptable or not is a choice that depends on the context and aims of the study,

e.g. on the expected difficulty or costs of accruing newpatients, aswell as on the anticipated response rate and the

chosen STS design. The option to provide a NSC design alongside with a UMVUE could be considered as an extra

valid option when a STS design is applied. When slow accrual of patients in a rare type of cancer is observed, the

2
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researcher should have the possibility of early stopping. Inmaster protocols there is a variety ofmethods that take

into account the trial’s estimated effect for the homogeneity assessment of a collection of cohorts. An interesting

point is that fig. 2.2MSEgraphs shows that sometimes the proposed estimator ismore precise even in comparison

with the complete STS design. The bias-variance trade off should be exploredmore, especially since we observed

estimators to have a lot smaller MSE when some bias is allowed and the UMVUE are introducing substantial vari-

ability. It seems not clear which strategy ismore efficient in this case. The proposed procedure is an option worth

considering by any researcher involved in the design and conduct of trials following a STS design with an early

stopping rule and the estimator alongsidewith the CI should then be used if unbiased estimation is of importance.

DATA AVAILABILITY STATEMENT

The R-script to replicate the results of the simulation study is submitted as a data file alongwith themanuscript.

Appendix A: Sufficiency and Completeness proof

To determine a sufficient statistic, we applied the Factorization theorem (Theorem6.4) [44]:

Suppose that the statistical model for X consists of discrete distributions. A statistic V = V (X) is sufficient if and
only if thereexist functionsgθ andhsuch that forallxandθ,pθ(x) = gθ(V (x))h(x),wherepθ is theprobabilitydensity

ofX .

In order to apply this theorem, we need to write the distribution of the observation (X1, . . . , Xn1+n2 , Y, ∆) in the
”correct” form. Where, (X1, . . . , Xn1+n2) are Bernoulli trials, with probability p that represent the responders or

non-responders and∆ = δ is a binary variable indicates the decision by the end of the trial, 0 for failure and 1 for

success. The distribution of (X1, . . . , XY , Y, ∆) is equal to:
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x1 (1 − p)n1−x1 (2.2)

with h(Obs) a function of the observations only and not dependent of the unknown parameter p. This is true,

because given Y = y, ∆ = δ and X1 = x1 it is given how many successes will be among Xn1+1, . . . , Xy−1.

Only the order of responders and non-responders is unknown, but this does not depend on p. If Y = n1 (the

study is stopped after stage 1), the expression is simplified to px1(1 − p)n1−x1 . In the following the probability

Pp(Y = y, ∆ = δ|X1 = x1)px1(1 − p)n1−x1 is rewritten in order to obtain the sufficient statistic with aminimum

dimension.

In the following, the conditional probability Pp(Y = y, ∆ = δ|X1 = x1) in the expression (2.2) is expressed in
the parameters. In the two cases δ = 1 and x1 ≥ rt, or δ = 0 and x1 < r1, the study is stopped for efficacy and
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futility, respectively, and:

Pp(Y = y, ∆ = δ|X1 = x1) =
{

1 if y = n1,

0 otherwise.

If r1 ≤ x1 < rt and δ = 0, the study is (early) stopped for futility in stage 2

Pp(Y = y, ∆ = 0|X1 = x1) = Pp(Xy = 0, X1 + · · · + Xy−1 = (y − 1) − (lt − 1)|X1 = x1)

= Pp(Xy = 0)P ((X1 + · · · + Xy−1) − (X1 + · · · + Xn1 ) = y − lt − x1|X1 = x1)

= (1 − p)
(y − n1 − 1

y − lt − x1

)
py−lt−x1 (1 − p)lt+x1−n1−1

=
(y − n1 − 1

y − lt − x1

)
py−lt−x1 (1 − p)lt+x1−n1

If r1 ≤ x1 < rt and δ = 1 the study is (early) stopped for efficacy in stage 2

Pp(Y = y, ∆ = 1|X1 = x1) = Pp(Xy = 1, (X1 + · · · + Xy−1) = rt − 1|X1 = x1)

= Pp(Xy = 1)P ((X1 + · · · + Xy−1) − (X1 + · · · + Xn1 ) = rt − x1 − 1)

=
(y − n1 − 1

rt − x1 − 1
)

prt−x1 (1 − p)y+x1−n1−rt .

Combining the different expression yields thatPp(Y = y, ∆ = δ|X1 = x1)px1(1 − p)n1−x1 in (2.2) can bewritten
as

Pp(Y = y, ∆ = 0|X1 = x1)px1 (1 − p)n1−x1 =





(
y−n1−1
y−lt−x1

)
py−lt (1 − p)lt if r1 ≤ x1 < rt

px1 (1 − p)n1−x1 if y = n1, x1 < r1

0 if x1 < r1, y ̸= n1

(2.3)

and

Pp(Y = y, ∆ = 1|X1 = x1)px1 (1 − p)n1−x1 =





(
y−n1−1
rt−x1−1

)
prt (1 − p)y−rt if r1 ≤ x1 < rt

px1 (1 − p)n1−x1 if y = n1, x1 ≥ rt

0 if x1 ≥ rt, y ̸= n1

(2.4)

By realizing that X1 = Xt if Y = n1, and r1 ≤ X1 < rt is equivalent to Y > n1 and ∆ = 1 is equivalent to

Xt ≥ rt, it can be seen that the distributionPp(X1 = x1, . . . , XY = xY , Y = y, ∆ = δ) of the data can be split up
in a part that depends on the observations, but is independent of the parameter p (the function h in the theorem)

and a function that depends on the vector (Y, Xt) and p (the function g in the factorization theorem). The binomial

coefficients in the previous displayswill be part of the term that depends on the observations only. By applying the

Factorization theorem it follows that the vector (Y, Xt) is sufficient.

Completeness of V = (Y, Xt) can be proved via the definition of a complete statistic: A statistic V is called

complete ifEpg(V ) = 0 for all p in its parameter space, can hold only for functions g such thatPp(g(V ) = 0) = 1
for all p. In our case, wemust show that, for a function g, h(p) = Ep g(Y, Xt) = 0 for all p ∈ [0, 1], is only possible
if g(Y, Xt) = 0 almost surely. This can be proved along the same lines as in the proof of completeness in [22].
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Let g be a functionwith

h(p) = Ep g(Y, Xt) =
∑

y

∑

xt

g(y, xt)Pp(Y = y, Xt = xt) = 0.

Where, the probability distribution function of V is:

Pp(Y = y, Xt = xt) =
n1∑

j=0

Pp(X1 = xt, Y = y, Xt = xt)

=





Pp(X1 = j, Y = y, Xt = xt) if y = n1, xt < r1
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)(
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j=r1
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)(
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j

)
prt (1 − p)y−rt if y > n1, xt = rt

(2.5)

We nowneed to prove that g(y, xt) = 0 for all values (y, xt) in the sample space of (Y, Xt).

By inserting the probability distribution of (Y, Xt) in the sum in the previous display, we obtain a sum of four

terms. These terms correspondwith the following situations: in case the trial stops in the first stage due to futility,

the trial stops in the first stage due to efficacy and the last two sums refer to the second stage stopping rules for

futility (Xt = Y − lt) and efficacy (Xt = rt), respectively. If rt > n1 early stopping for efficacy is not possible and

the second term disappears.

h(p) =
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=
r1−1∑

xt=0
g(n1, xt)

(
n1
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+
nt∑
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g(y, y − lt)
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)(
n1
j

)
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+
nt∑
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g(y, rt)
(
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)(
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h(p) = Ep g(Y, Xt) =
∑

y

∑

xt

g(y, xt)Pp(Y = y, Xt = xt) = 0.

Where, the probability distribution function of V is:

Pp(Y = y, Xt = xt) =
n1∑

j=0

Pp(X1 = xt, Y = y, Xt = xt)

=





Pp(X1 = j, Y = y, Xt = xt) if y = n1, xt < r1

Pp(X1 = j, Y = y, Xt = xt) if y = n1, xt ≥ rt

∑rt−1
j=r1

Pp(Y = y, Xt = xt|X1 = xt)
(

n1
j

)
pj(1 − p)n1−j if y > n1, xt < rt

∑rt−1
j=r1

Pp(Y = y, Xt = xt|X1 = j)
(

n1
j

)
pj(1 − p)n1−j if y > n1, xt = rt

=





(
n1
xt

)
pxt (1 − p)n1−xt if y = n1, xt < r1

(
n1
xt

)
pxt (1 − p)n1−xt if y = n1, xt ≥ rt

∑rt−1
j=r1

(
y−n1−1

xt−j

)(
n1
j

)
pxt (1 − p)lt if y > n1, xt < rt

∑rt−1
j=r1

(
y−n1−1
rt−j−1

)(
n1
j

)
prt (1 − p)y−rt if y > n1, xt = rt

(2.5)

We nowneed to prove that g(y, xt) = 0 for all values (y, xt) in the sample space of (Y, Xt).

By inserting the probability distribution of (Y, Xt) in the sum in the previous display, we obtain a sum of four

terms. These terms correspondwith the following situations: in case the trial stops in the first stage due to futility,

the trial stops in the first stage due to efficacy and the last two sums refer to the second stage stopping rules for

futility (Xt = Y − lt) and efficacy (Xt = rt), respectively. If rt > n1 early stopping for efficacy is not possible and

the second term disappears.

h(p) =
∑

y

∑

xt

g(y, xt)Pp(Y = y, Xt = xt)

=
r1−1∑

xt=0
g(n1, xt)

(
n1
xt

)
pxt(1 − p)n1−xt +

n1∑

xt=rt

g(n1, xt)
(

n1
xt

)
pxt(1 − p)n1−xt

+
nt∑

y=(n1+1)∨lt

rt−1∑

j=r1

g(y, y − lt)
(

y − n1 − 1
y − lt − j

)(
n1
j

)
py−lt(1 − p)lt

+
nt∑

y=(n1+1)∨rt

rt−1∑

j=r1

g(y, rt)
(

y − n1 − 1
rt − j − 1

)(
n1
j

)
prt(1 − p)y−rt .
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For ease of notation define the functions

c1,xt = g(n1, xt)
(

n1
xt

)

c2,y = g(y, y − lt)
rt−1∑

j=r1

(
y − n1 − 1
y − lt − j

)(
n1
j

)

c3,y = g(y, rt)
rt−1∑

j=r1

(
y − n1 − 1
rt − j − 1

)(
n1
j

)
,

all independent of p. With these definitions h(p) can bewritten as

h(p) =
r1−1∑

xt=0
c1,xt

pxt(1 − p)n1−xt +
n1∑

xt=rt

c1,xt
pxt(1 − p)n1−xt

+
nt∑

y=(n1+1)∨lt

c2,ypy−lt(1 − p)lt +
nt∑

y=(n1+1)∨rt

c3,yprt(1 − p)y−rt . (2.6)

The functionh(p) iswritten as a linear combinationof terms pµi(1−p)νi (where i indicates the ith term in the sum

of h) with µi + νi equal to the number of patients in the trial (Y ), which equals n1, in the first and the second sum,

and runs from (n1 + 1) ∨ lt or (n1 + 1) ∨ rt to nt in the third and the fourth sums. By a close look at the terms in

the sums it can be seen that for all pairs (µi, νi) and (µj , νj)with i ̸= j in the sums, (µi, νi) ̸= (µj , νj).

By taking p = 0, the function h(0) = c1,0; that is for the termwith xt = 0. Since h ≡ 0 by assumption, c1,0 = 0
and therefore g(n1, 0) = 0 as well (here we implicitly assume that r1 > 0, otherwise the first sum in h should be

left out). Now, take p = 1. Thenh(1) = c1,n1 if rt ≤ n1 (correspondingwith the situation that is stopped after stage

1) and h(1) = c3,rt
if rt > n1; that is for the termwith y = rt (corresponding with the situation that is continued

after stage 1). Since h ≡ 0, it follows that c1,n1 = 0, and thus g(n1, n1) = 0, andmoreover, c3,rt
= 0 and as a result

g(rt, rt) = 0. The corresponding terms can (and should) be removed from the definition of h in (2.6).

Define Ps(p) = h(p)/ps and Qt(p) = h(p)/(1 − p)t for p ∈ (0, 1) and s, t = 0, 1, 2, . . . , nt. First, take s = 1.
Remind that the termwith p0 equals zero (if these existed) and are left out from the definition of h. Then,P1(p) =
h(p)/p ≡ 0, since h(p) ≡ 0. Let p ↓ 0. Then, limp↓0 P1(p) = c1,1 and c1,1 must be equal to zero. In a similar way it

can be shown that thismust hold for c1,2 = . . . = c1,r1−1; the first sum in h can be removed. Now, take s = r1 and

considerPr1(p) = h(p)/pr1 = 0 and let p ↓ 0, then 0 = limp↓0 Pr1(p) = c2,lt+r1 (so that py−lt = pr1 ). This implies

that c2,lt+r1 = 0. In analogy, it follows that c2,lt+r1+1 = . . . = c2,lt+rt−1 = 0; all constants in the third sum in h

in the expression (2.6) equal zero and the third sumcan be left out. By the reasoning in the previous paragraph, the

first and the third sum in (2.6) equal zero.

Suppose that rt > n1, the second term disappears (it is not possible to stop after stage 1 for efficacy). The rea-

soning as before can be repeatedwithQt and 1 − p, in stead ofPs and p to show that c3,n1+1∨rt
= . . . = c3,nt

= 0.

Now, suppose that rt ≤ n1. Also now the same reasoning as before withQt and 1 − p, shows that c1,rt = . . . =
c1,n1 = 0 and c3,n1+1 = . . . = c3,nt = 0.

Conclude that c1,xt
= 0 for all xt ∈ {0, . . . , n1}, c2,y = 0 for y ∈ {(n1 + 1) ∨ lt, . . . , nt} and c3,y = 0 for

y ∈ {(n1 +1)∨rt, . . . , nt}. All binomials in c1,xt
, c2,y and c3,y are positive, which implies that g(Y, Xt) = 0 almost

surely.

2
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Appendix B

As an estimator for p we take p̂ = E(X1/n1|(Y, Xt)), the conditional expectation of X1/n1 given the sufficient

and complete statistic V = (Y, Xt). This estimator is a function of V by construction and unbiased since:

E(Y,Xt) E(X1/n1|(Y, Xt)) = E(X1/n1) = p. The explicit expression of this estimator using the sufficient statistic

estimates is given by

p̂ = 1
n1

E(X1|Y = y, Xt = xt) = 1
n1

n1∑

j=0
jPp(X1 = j|Y = y, Xt = xt)

p̂ =





xt

n1
if y = n1

∑rt−1
j=0

jPp(X1=j,Y =y,Xt=xt)
n1Pp(Y =y,Xt=xt) if y > n1

=





xt

n1
if y = n1

∑rt−1
j=r1

j(y−n1−1
xt−j

)(n1
j

)pxt (1−p)lt

n1
∑rt−1

j=r1
(y−n1−1

xt−j
)(n1

j
)pxt (1−p)lt

if y > n1, xt < rt

∑rt−1
j=r1

j(y−n1−1
rt−j−1 )(n1

j
)prt (1−p)y−rt

n1
∑rt−1

j=r1
(y−n1−1

rt−j−1 )(n1
j

)prt (1−p)y−rt
if y > n1, xt = rt

=





xt

n1
if y = n1

∑rt−1
j=r1

(y−n1−1
xt−j

)(n1−1
j−1 )∑rt−1

j=r1
(y−n1−1

xt−j
)(n1

j
) if y > n1, xt < rt

∑rt−1
j=r1

(y−n1−1
rt−j−1 )(n1−1

j−1 )∑rt−1
j=r1

(y−n1−1
rt−j−1 )(n1

j
) if y > n1, xt = rt

So the estimator for p is given by:

p̂ =





Xt

n1
if Y = n1

∑rt−1
j=r1

(Y −n1−1
Xt−j

)(n1−1
j−1 )∑rt−1

j=r1
(Y −n1−1

Xt−j
)(n1

j
) if Y > n1, Xt < rt

∑rt−1
j=r1

(Y −n1−1
Xt−j−1)(n1−1

j−1 )∑rt−1
j=r1

(Y −n1−1
Xt−j−1)(n1

j
) if Y > n1, Xt = rt

The proposed estimator p̂ is a function of the sufficient and complete statistic V = (Y, Xt) and is unbiased.

Then, by applying Theorem6.18 in (Bijma, Jonker, van der Vaart)[44] it follows that p̂ is a UMVUE for p. The proof of

this theorem relies heavily on the Theorem of Rao-Blackwell.

Appendix C

Suppose testing thenull hypothesisH0 : p = p0 againstH1 : p ̸= p0, the confidence interval for p equals all values

for p0 for which the test does not reject the null hypothesis. The null hypothesis is rejected if the p-value is smaller
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j
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xt
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if y = n1
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j=r1
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xt−j
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j−1 )∑rt−1

j=r1
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xt−j
)(n1

j
) if y > n1, xt < rt

∑rt−1
j=r1
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j=r1
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than α
2 forα the pre-specified significance level. So, if

Pp(p̂(Y, Xt) ≥ p̂(y, xt) | p = p0) ≤ a

2

OR

Pp(p̂(Y, Xt) ≤ p̂(y, xt) | p = p0) ≤ a

2

Thatmeans that the null hypothesis is not rejected if:

Pp(p̂(Y, Xt) ≥ p̂(y, xt) | p = p0) >
a

2 (2.7)

AND

Pp(p̂(Y, Xt) ≤ p̂(y, xt) | p = p0) >
a

2 (2.8)

So, the confidence interval for p contains all values p0 for which both inequalities hold.

The probability Pp(p̂(Y, Xt) ≥ p̂(y, xt) | p = p0) is increasing as a function of p0, so the inequality in (7) will give

a lower bound of the confidence interval (p0 = pL) and similarly, the inequality in (8) will give an upper bound

(p0 = pU ).

Note: the latter inequality, can be rewritten as:

Pp(p̂(Y, Xt) ≤ p̂(y, xt) | p = p0) >
a

2
⇐⇒ 1 − Pp(p̂(Y, Xt) > p̂(y, xt) | p = p0) >

a

2
⇐⇒ Pp(p̂(Y, Xt) > p̂(y, xt) | p = p0) < 1 − a

2

So, the confidence interval for p contains all values for p0 that satisfy both inequalities:

Pp(p̂(Y, Xt) ≥ p̂(y, xt) | p = p0) >
a

2
Pp(p̂(Y, Xt) > p̂(y, xt) | p = p0) < 1 − a

2

Appendix D

In this appendix the supplementary material of the main paper is presented. Following the same procedure as

before, presenting all the designs explored in the simulation study as described in section 2.3.2. In the following

table the properties of the Simon’s two stage designs is presented.

2
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Simon’s two stage optimal design properties

p0 p1 r1 n1 rt nt

P ower = 80%
0.1 0.3 2 10 6 29
0.2 0.4 4 13 13 43
0.3 0.5 6 16 19 46
0.4 0.6 8 16 24 46
0.5 0.7 9 15 27 43
0.6 0.8 8 11 31 43
0.7 0.9 5 6 23 27

P ower = 90%
0.1 0.3 3 18 7 35
0.2 0.4 5 19 16 54
0.3 0.5 9 24 25 63
0.4 0.6 12 25 33 66
0.5 0.7 14 24 37 61
0.6 0.8 13 19 37 53
0.7 0.9 12 15 30 36

Differentp0 − p1
0.3 0.45 14 40 41 110
0.3 0.5 9 24 25 63
0.3 0.55 6 15 17 40

Table 2.3: Optimal Simon two stage designs used for evaluation of the new proposed design
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Figure 2.6: Compare across different null/alternative hypothesis designs with 90% power, the ”naive” simple proportion (yellow line) to the proposed
estimator (blue line). Early stopping estimators with a continues line, full trial with a dashed line. With grey color is the sample proportion and with the
red line the UMVUE. The shaded area indicates the null’s and alternative’s hypothesis region of the respective design.
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Figure 2.6: Compare across different null/alternative hypothesis designs with 90% power, the ”naive” simple proportion (yellow line) to the proposed
estimator (blue line). Early stopping estimators with a continues line, full trial with a dashed line. With grey color is the sample proportion and with the
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Figure 2.10: Coverage probability across different designs of 10000 simulations. The shaded area indicates the null’s and alternative’s hypothesis
region of the respective design.
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Figure 2.11: Coverage probability across different designs of 10000 simulations. The shaded area indicates the null’s and alternative’s hypothesis
region of the respective design.
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Abstract

The Duration of Response (DoR) is defined as the time from onset of response-to-treatment up to progression-

of-disease or death due to any reason, whichever occurs earlier. The expectedDoR could be a suitable estimand to

measure the efficacy of a treatment, but is in practice difficult to estimate, sincepatients’ follow-up times areoften

right-censored. Instead, the RestrictedMeanDuration of Response (RMDoR) is often used. The RMDoR in a time τ

is equal to the expected DoR restricted to the interval [0, τ ]. In this paper we consider the behaviour of the RMDoR

as a function of τ and its suitability as a measure to quantify the efficacy of a treatment. Besides, we focus on the

estimation of the RMDoR. In oncology the events response-to-treatment and progression-of-disease are typically

detected through time scheduled scans and are therefore interval censored. We describe multiple estimators for

the RMDoR that deal with the interval censoring in different ways and study the performance of these estimators

in single arm trials and randomized controlled trials.
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3.1 Introduction

In oncology, but also in other research fields, the efficacy of a new treatment is preferably evaluated in a ran-

domised clinical trial with a time-to-event endpoint. Overall survival is frequently regarded as the ”gold standard”.

A disadvantage of this endpoint is its time-consuming nature in combination with the fact that sufficient events

need tobeobserved tohavesufficient statistical power for concludingefficacy. Thishas led toanexplorationof sur-

rogate clinical endpoints that are less time consuming, for instance progression free survival, objective response

rate (ORR) and duration of response (DoR). An overview of different endpoints is given by Delgado.[45]

The DoR is becoming a more popular endpoint in oncology trials.[26], [46], [47] In the Netherlands, the Dutch

Society for Oncology has includedDoR into its criteria for clinical relevance in case of rare cancerswithout further

treatment options, when investigated in a non-randomized design. A new treatment is deemed clinically relevant

in this setting if one of the following conditions holds for the estimates: ORR > 40% and DoR > 4months; ORR be-

tween 30% and 40% and DoR > 8months or ORR between 20% and 30% and DoR > 12 months [28]. It is therefore

highly relevant to understand definitions and estimation properties of the duration of response, including how it

relates to the design (randomised or not) and assessment procedures.

An often used definition of the DoR is: the time from response initiation to disease progression or death (which

one occurs earlier) in a patient who achieves complete or partial response. That means that the expected DoR is

defined as the average response timewithin the population of patients who do respond to the treatment. So, even

if the treatment is beneficial to a small proportion of the patients only, the expected DoR may be high. Because

this is counter intuitive, Huang et al[48]–[50] proposed a new definition. They defined the DoR as the time from

the onset of the response to disease progression or death in a patient who receives the treatment. So, they left out

the condition that the patientmust be a responder and, thus, changed the target population. In the newdefinition,

patients who do not respond (before progression or death) have a DoR equal to zero. Huang and Tian[50] proved

that the expected DoR equals the area between the survival curves SP D and SRP D , where SP D is defined as the

survival curve for the time to progression or death, which one occurred earlier, andSRP D is the survival curve for

the time to either response, progression or death, which one happened earlier.

Thesurvival curvesSP D andSRP D in the formula for theexpectedDoRcanbeestimatedby their corresponding

Kaplan-Meier curves.[51] However, most trials stop before all patients have had an event (progression or death).

Hence, the data are right censored and the Kaplan-Meier curves for SP D and possibly also for SRP D do not reach

zero. As a consequence, the expected DoR can not be estimated properly. As an alternative the restricted mean

DoR (RMDoR) is considered. The RMDoR is defined as the expected DoR that is truncated at a pre-specified value

τ . It turns out that the RMDoR is equal to the area between SP D and SRP D on the interval [0, τ ]. By definition, the
RMDoR(τ) increases with τ and will approximate the expected DoR for τ sufficiently large. For a sensible choice

of τ the RMDoR can be estimated by estimating SP D and SRP D by their Kaplan-Meier curves and computing the

areabetween these curveson [0, τ ]. Whichvalues for τ are sensible dependson the survival curvesSP D andSRP D

and the follow-up time of the patients.

In oncology, a response to treatment and progression of the disease are typically detected through (scheduled)

scans. These scans aremadewhenpatients visit the hospital formonitoring. Thatmeans that the exact start times

of response or progression are not observed, but are known to have happened before the detection time point and

after the time point of the previous scan; the start times of response and progression are said to be interval cen-

sored [52]. Since the time of the event death is observed exactly, the data are partly interval censored. In practice

interval censoring is often ignored when estimating survival curves; the response and progression onset are set

equal to the detection times. It is well known that by doing this the Kaplan-Meier curves overestimate their corre-
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sponding survival curves SP D and SRP D [52]. This bias can be large, depending on the scanning schedule of the

patients and the survival curves SP D and SRP D . The RMDoR is estimated as the area between the Kaplan-Meier

curves forSP D andSRP D . It is not clear beforehandwhether the biases in theKaplan-Meier curves also affect the

performanceof theestimatorof theRMDoR.This is because thebiases inbothKaplan-Meier curvesare in thesame

direction (overestimation) and a part of the biasmay therefore cancel out if the RMDoR is estimated as the area in

between the two Kaplan-Meier curves. In this paper one of the main aims is to study the bias in the estimator of

the RMDoR if the interval censoring of the observations is ignored and the observed times are used as true onset

times. A simple correction for the interval censoring would be to use the midpoints of the intervals in which the

response or progression occurred, in stead of the right endpoint of the interval. The corresponding Kaplan-Meier

curves are still asymptotically biased, but it is expected that the bias of the correspondingRMDoRestimatorwill be

smaller.

The aim of this paper is twofold. First, the behaviour of the RMDoR at [0, τ ] as a function of τ is studied. By

definition, the RMDoR increases with τ , but the question is how strong this increase is in realistic settings. The

RMDoR is used in guidelines to decide upon efficacy of a treatment and the clinical relevance of treatment effects.

A strongdependenceon τ maymake interpretationof theRMDoRdifficult and its applicability fordecisionmaking

debatable. The second aim of this paper is to studymultiple estimators for the RMDoR. These estimators differ in

the way they deal with the interval censoring. For different choices of the underlying distributions of the time to

response to the treatment, progression of the disease and death, the scanning schedule of the patients and the

value of τ , the performance of the estimators of the RMDoR will be studied by means of simulation studies for

single andmulti arm trial designs.

The paper is structured as follows. In Section 3.2 the setting in which we work and the notation is introduced.

Moreover, multiple estimators for the RMDoR are defined. Thereafter, in Section 3.3, the results from the simula-

tion study for different scenarios are described. We finish the paper with a discussion and concluding remarks in

Section 3.4.

3.2 Estimation of RMDoR

In this sectionwe introduce the notation (Subsection 3.2.1) and definemultiple estimators for the RMDoR (Subsec-

tion 3.2.2). The estimators differ in theway they deal with the interval-censoring of the observations.

3.2.1 Notation and setting

For a patient the time from entering the trial (time of randomization in a randomized trial, and typically start of

treatment (cycle) in a single arm trial) to response to the treatment is denoted asR, to progressionof thedisease as

P , and to death as D. The progression free survival (PFS) time of this patient is defined as the time from entering

the trial to either progression or death, which one was experienced earlier: TP D := min{P, D}. Similarly, the

response-progression-free survival (RPFS) of the patient is defined as the time from entering the trial to either

response, progression or death, which onewas occurred earliest: TRP D := min{R, P, D}.
Following the arguments in the paper byHuang and Tian [50], the expectedDoR is defined as the expected time

between the response to the treatment and the progression of the disease or death, where this time is defined as
zero if the patient experiences progression or death before a response to the treatment. Forx+ := max{x, 0}, this
means that the expected DoR equals

E (DoR) := E
((

min{P, D} − R
)+)

= E
(

min{P, D} − min{R, P, D}
)

= E
(
TP D − TRP D

)

3
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It can be deduced that the expected DoR is equal to the area between the survival curves SP D and SRP D , where

SP D andSRP D are the survival curves for the variables TP D and TRP D , respectively:

E (DoR) = E
(
TP D − TRP D

)
= ETP D − ETRP D

= −
∫ ∞

0
t dSP D(t) +

∫ ∞

0
t dSRP D(t) =

∫ ∞

0
SP D(t) dt −

∫ ∞

0
SRP D(t) dt

=
∫ ∞

0
SP D(t) − SRP D(t) dt.

The RMDoR on the interval [0, τ ], denoted as RMDoR(τ), is defined as the expected DoR truncated at timepoint τ :

RMDoR(τ) := E
(

min{TP D, τ} − min{TRP D, τ}
)

=
∫ τ

0
SP D(t) − SRP D(t) dt, (3.1)

theareabetweenthesurvival curvesSP D andSRP D onthe interval [0, τ ]. Since, bydefinition,SP D(t)−SRP D(t) ≥
0 foreveryvalueof t, thevalueofRMDoR(τ) isnon-negativeandnon-decreasingasa functionofτ . Forτ increasing

to infinity, RMDoR(τ) approaches the expectedDoR. The behaviour of RMDoR(τ) as a function of τ depends on the
underlying survival function for the time to a response of the disease, time to progression of the disease and death.

In practice, every situation is different and it may be unknown beforehand how to best choose a value for τ . More

discussion on the choice of the value of τ is given in the sections 3.3 and 3.4.

Suppose that theprogressionof thedisease and the response to the treatment canonly bedetectedby aCT scan

(or another medical procedure) that is performed during one of the scheduled visits to the hospital. Define 0 =
V0, V1, V2, . . . as the timepoints (counted from themoment of entering the study) of these schedulednon-random

visits. When an event (response or progression) is detected at visit time Vk , the event was actually experienced

in the half open interval (Vk−1, Vk]; the event is interval censored. So, the actual time to progression, P , and the

time to response,R, are never observed exactly. Instead the times of the first visit after the actual progression and

response times may be observed. These times are denoted as P̃ and R̃, and must, by definition, equal one of the

visit times. The time of the event “death”, D, is assumed to be observed exactly. Let T̃P D and T̃RP D be defined

as T̃P D := min{P̃ , D} and T̃RP D := min{R̃, P̃ , D}. Furthermore, define C as the independent censoring time

(lost to follow-up or end of trial). Because of the nature of the data, it might happen that for a patient, P < D (the

true unobserved time of progression is before death), but P̃ ≥ D (the moment the progression would have been

detected is after the patient died and therefore never observed).

3.2.2 Estimators for RMDoR

The expression of the RMDoR(τ) given in (3.1) depends on the survival curves SP D and SRP D . After estimating

these curves, the RMDoR(τ) can be estimated by the area between these estimated curves on the interval [0, τ ]. If
thedatawouldnotbe (partially) interval censored theKaplan-Meier curvesbasedon the true (unobserved) survival

times TP D and TRP D (possibly censored by C) would be asymptotically pointwise (and uniformly) unbiased and

the corresponding estimator for RMDoR would be asymptotically unbiased as well. However, TP D and TRP D are

not observed, but T̃P D and T̃RP D instead (up to the censoring). Belowwe discuss some estimators for the survival

curves.

Ignoring the fact that the data are (partially) interval censored and estimating SRP D and SP D by the Kaplan-

Meier curves based on the observed events that equal min{T̃P D, C} and min{T̃RP D, C} for every patient, would
give biased estimators. Since T̃P D ≥ TP D and T̃RP D ≥ TRP D , these Kaplan-Meier estimators will overestimate
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It can be deduced that the expected DoR is equal to the area between the survival curves SP D and SRP D , where
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(
TP D − TRP D

)
= ETP D − ETRP D

= −
∫ ∞

0
t dSP D(t) +

∫ ∞

0
t dSRP D(t) =

∫ ∞

0
SP D(t) dt −

∫ ∞

0
SRP D(t) dt

=
∫ ∞

0
SP D(t) − SRP D(t) dt.
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time to response,R, are never observed exactly. Instead the times of the first visit after the actual progression and

response times may be observed. These times are denoted as P̃ and R̃, and must, by definition, equal one of the

visit times. The time of the event “death”, D, is assumed to be observed exactly. Let T̃P D and T̃RP D be defined

as T̃P D := min{P̃ , D} and T̃RP D := min{R̃, P̃ , D}. Furthermore, define C as the independent censoring time

(lost to follow-up or end of trial). Because of the nature of the data, it might happen that for a patient, P < D (the

true unobserved time of progression is before death), but P̃ ≥ D (the moment the progression would have been

detected is after the patient died and therefore never observed).

3.2.2 Estimators for RMDoR

The expression of the RMDoR(τ) given in (3.1) depends on the survival curves SP D and SRP D . After estimating

these curves, the RMDoR(τ) can be estimated by the area between these estimated curves on the interval [0, τ ]. If
thedatawouldnotbe (partially) interval censored theKaplan-Meier curvesbasedon the true (unobserved) survival

times TP D and TRP D (possibly censored by C) would be asymptotically pointwise (and uniformly) unbiased and

the corresponding estimator for RMDoR would be asymptotically unbiased as well. However, TP D and TRP D are

not observed, but T̃P D and T̃RP D instead (up to the censoring). Belowwe discuss some estimators for the survival

curves.

Ignoring the fact that the data are (partially) interval censored and estimating SRP D and SP D by the Kaplan-

Meier curves based on the observed events that equal min{T̃P D, C} and min{T̃RP D, C} for every patient, would
give biased estimators. Since T̃P D ≥ TP D and T̃RP D ≥ TRP D , these Kaplan-Meier estimators will overestimate
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(pointwise) the true survival curves SP D and SRP D . They are shifted to the right compared to the Kaplan-Meier

curves based on the true (partly) unobserved observations, due to delayed detection of response and progression.

However, both estimators overestimate the true survival curves, but it is not directly clear what the effect is on the

estimator for the RMDoR (defined as the area between the Kaplan-Meier curves), as both curves are biased in the

samedirectionandpartof thebiasmaybecancelledout. Thebias in thesurvival curves, andprobably in theRMDoR

aswell, depends on the schedule of the visits. This will be considered in a simulation study in Section 3.3.

To take the interval censoring of the data into accountwhen estimating the survival curvesSRP D andSP D , one

could set the time points of progression and response equal to themid-points of the intervals in which they were

experienced, in stead of the observed right end points (the visit times). The RMDoR(τ) is estimated as the area

between the newly obtained Kaplan-Meier curves on [0, τ ] again. Summarized, we consider two estimators of the

RMDoR(τ)which are based on the end-point and themid-point strategy as just described:

E1. The scanning time point at which response or progression is detected is seen as the true event time-point.

E2. The responseandprogression timepoints are set equal to themidpoint of the interval inwhich theeventwas

experienced andwas detected at the right endpoint.

In clinical practice, medical doctors use a variety of definitions of response and progression. Sometimes a con-

firmation of an observed response (progression) onemonth later is needed. If the response is not confirmed, the

patient is said not to have responded. We, therefore, also consider the end-point and midpoint estimators of the

RMDoR(τ)with this alternative definition. In analogy of the estimators E1 and E2, we define the estimators based

on the following definitions:

D1. The time of progression of the disease is set equal to the time-point progression was confirmed. The re-

sponse to the treatment is set equal to the time-point of first detection.

D2. Similar to D1, but now themid-points are used.

3.3 Simulation Study

In this section we describe the results of a simulation study. We consider the behaviour of the RMDoR(τ) as a
function of τ (Subsection 3.3.2), the performance of the proposed estimators for the RMDoR (Subsection 3.3.3) and

whether they are sensible for detecting efficacy of a new treatment in a randomized comparative setting (Subsec-

tion 3.3.4). We start with describing the assumptions for the simulation study (Subsection 3.3.1).

3.3.1 Simulation setting

We consider two settings with different time to response and progression distributions. Because we aimed for

realisticdistributionswechose thesebasedonananexistingclinical trial, theBavencio trial [53]. TheBavencio trial

is a randomised two arm trial in patientswith renal cell carcinomawhodid not have disease progressionwith first-

linechemotherapy. In theexperimental armthepatientsare treatedwithAvelumabandaxitinib, and in thecontrol

arm the patients got Sunitinib. In total, 886 were included in the trial, of which 442 patients in the experimental

arm and 444 in the control arm. In both arms every patient had a minimum follow up time of 26 months. In the

experimental arm 52.5% of the patients responds to the treatment and the reported average duration of response

is 9.3months. In the control arm these numbers equal 27.3% and 5.1months.
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Tobaseoursurvivalmodelsonthedata fromtheBavencio trial,wechoseWeibulldistributions for the time (from

diagnosis) toresponse, timetoprogression, andtimefromprogressiontodeath inbotharms,withparameterssuch

that the survival functions for PFS and RPFS are similar to the Kaplan-Meier curves found in the Bavencio study.

More specifically, the parameter valueswere chosen so that the assumed survival functions for PFS andRPFSwere

equal to the corresponding Kaplan-Meier curves from the Bavencio study at some selected quantiles.

Since, in the first instance,weare interested in thebehaviorof theRMDoR(τ)andtheperformanceof theestima-

tors for individual treatment arms (andnot comparatively in a two-armclinical trial), we refer to the settings in the

two arms as setting A (experimental arm) and setting B (control arm). In setting A the distribution from random-

ization to response and progression are assumed to be Weibull(shape=1.50, scale=6.00) and Weibull(shape=0.76,

scale=21.54), respectively. The distribution for the time between progression and death was taken equal to the

Weibull(shape=3.00, scale=6.00). In setting B these three distributions are taken equal to the Weibull(shape=1.70,

scale=10.00),Weibull(shape=0.72, scale=13.36), andWeibull(shape=3.00, scale=6.00), respectively. The correspond-

ing survival curvesSP D andSRP D are given in Figure 3.1, togetherwith the RMDoR on the interval [0, 26], the grey
area.

Although response and progression can, in principle, happen at any time, we assume that they can only be de-

tected during one of themoments the patients is scanned. In the simulation studies four different scanning sched-

ules (scenarios) are considered:

S1: Everymonth,

S2: Every twomonths,

S3: Every threemonths,

S4: Every 1.5months until 18months, next every 3months.

In the first threeschedules thepatientsarescannedeverymonth, every twomonthsandevery threemonths. These

make it possible to study how the bias of the RMDoR behaves in case the scanning frequency goes down. Scanning

schedule S4 was used in the Bavencio/Javelin101 trial. The moment of death is assumed to be observed exactly (if

the patient died before the end of trial).

For both settings, A and B,M = 1000 data-sets with data of n = 400 patients have been simulated. Next, based

on the chosen scanning schedule the observed time to response and progression are computed. For both settings

and every simulation round, theRMDoR(τ) is estimated for every scanning schedule and all estimators. This gives,

forevery setting, everyestimatorandeveryvalueof τ ,M estimatesof theRMDoR.TheseM estimatesareaveraged

and plotted. A pointwise 95% confidence interval of the estimator for RMDoR(τ) is computed as the interval from

the 2.5% sample quantile to the 97.5% sample quantile.

3.3.2 Estimating the RMDoR(τ) as a function of τ in the single arm design

In this subsectionwe focuson thebehaviourof theestimatesofRMDoR(τ)asa functionof τ , in thenext subsection
we compare the different estimates. For both settings, every scanning schedule, and in every of theM rounds, the

RMDoR is estimated based on the actual event data (say the daily scan data) and by the estimators given in the

previous section. See Figure 3.2 for the averages over the M rounds. From the plots we see that the estimates of

RMDoR(τ) increase with τ . There is a steep increase for small values of τ , but it persists for larger values of τ . The

curveswouldflattenwhentheestimates forSP D andSRP D getcloser toeachother, for instancewhenbothKaplan-

Meier curves reach zero. The latter will only occur if the follow-up of every patient is sufficiently long. The widths
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Tobaseoursurvivalmodelsonthedata fromtheBavencio trial,wechoseWeibulldistributions for the time (from
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that the survival functions for PFS and RPFS are similar to the Kaplan-Meier curves found in the Bavencio study.

More specifically, the parameter valueswere chosen so that the assumed survival functions for PFS andRPFSwere

equal to the corresponding Kaplan-Meier curves from the Bavencio study at some selected quantiles.

Since, in the first instance,weare interested in thebehaviorof theRMDoR(τ)andtheperformanceof theestima-

tors for individual treatment arms (andnot comparatively in a two-armclinical trial), we refer to the settings in the
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ization to response and progression are assumed to be Weibull(shape=1.50, scale=6.00) and Weibull(shape=0.76,

scale=21.54), respectively. The distribution for the time between progression and death was taken equal to the

Weibull(shape=3.00, scale=6.00). In setting B these three distributions are taken equal to the Weibull(shape=1.70,

scale=10.00),Weibull(shape=0.72, scale=13.36), andWeibull(shape=3.00, scale=6.00), respectively. The correspond-

ing survival curvesSP D andSRP D are given in Figure 3.1, togetherwith the RMDoR on the interval [0, 26], the grey
area.

Although response and progression can, in principle, happen at any time, we assume that they can only be de-

tected during one of themoments the patients is scanned. In the simulation studies four different scanning sched-

ules (scenarios) are considered:

S1: Everymonth,

S2: Every twomonths,

S3: Every threemonths,

S4: Every 1.5months until 18months, next every 3months.

In the first threeschedules thepatientsarescannedeverymonth, every twomonthsandevery threemonths. These

make it possible to study how the bias of the RMDoR behaves in case the scanning frequency goes down. Scanning

schedule S4 was used in the Bavencio/Javelin101 trial. The moment of death is assumed to be observed exactly (if

the patient died before the end of trial).

For both settings, A and B,M = 1000 data-sets with data of n = 400 patients have been simulated. Next, based

on the chosen scanning schedule the observed time to response and progression are computed. For both settings

and every simulation round, theRMDoR(τ) is estimated for every scanning schedule and all estimators. This gives,

forevery setting, everyestimatorandeveryvalueof τ ,M estimatesof theRMDoR.TheseM estimatesareaveraged

and plotted. A pointwise 95% confidence interval of the estimator for RMDoR(τ) is computed as the interval from

the 2.5% sample quantile to the 97.5% sample quantile.

3.3.2 Estimating the RMDoR(τ) as a function of τ in the single arm design

In this subsectionwe focuson thebehaviourof theestimatesofRMDoR(τ)asa functionof τ , in thenext subsection
we compare the different estimates. For both settings, every scanning schedule, and in every of theM rounds, the

RMDoR is estimated based on the actual event data (say the daily scan data) and by the estimators given in the

previous section. See Figure 3.2 for the averages over the M rounds. From the plots we see that the estimates of

RMDoR(τ) increase with τ . There is a steep increase for small values of τ , but it persists for larger values of τ . The

curveswouldflattenwhentheestimates forSP D andSRP D getcloser toeachother, for instancewhenbothKaplan-

Meier curves reach zero. The latter will only occur if the follow-up of every patient is sufficiently long. The widths
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Figure 3.1: Survival curves for progression free survival (PFS) and the response and progression free survival (RPFS) in the two settings used
in the simulation study. These curves are similar to the survival curves in the Bavencio trial (setting A = experimental arm, setting B = control
arm). The grey area is the RMDoR on the interval [0, 26].
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Figure 3.2: Different estimates of the RMDoR as a function of τ . Upper row: Setting A (experimental arm). Bottom row: Setting B (control
arm). Every column corresponds to a scanning schedule. The estimates are represented by a dashed line, the boundaries of the confidence
intervals by solid lines. Note: the estimated curves are sometimes not visible, as they overlap. The estimates D1 and D2 are not displayed,
because they overlap with other curves.
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of the pointwise confidence intervals increasewith τ . This is due to the increasing inaccuracy of the Kaplan-Meier

curves for higher values of time (and a consequence of a decreasing number of patients at risk).

3.3.3 Comparison between estimators in a single arm design

In this subsection we focus on the different estimates for the RMDoR and compare themwith the estimate found

based on the daily scan data in which there is no interval censoring (golden standard). The (averaged) RMDoR es-

timated curves were seen already in Figure 3.2. The curves are very similar; it seems that the way the interval cen-

soring is dealt with hardly affects the estimate, especially if the times between the scans are short (schedule S1).

If we zoom in, the structural biases in the estimators are better visible. They are computed by the difference of

the estimators E1, E2, D1, D2 and the one that is based on the daily scan data (the golden standard) and averaged

over the M rounds (see Figure 3.3). A negative value of the difference is an underestimation of the RMDoR. The

lower the curve, the more the estimator underestimates the RMDoR. Some bias-curves become positive for large

values of τ , which indicates an overestimation of the RMDoR. In all plots we see the same pattern: the degree of

underestimation increases with τ up to a certain value of τ (approximately 10months), and decreases thereafter.
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Figure 3.3: The bias (in months) in the estimation of the RMDoR(τ) for the four scanning schedules, S1,. . ., S4. The bias of the four estimators,
E1, E2, D1, D2 on the interval [0, τ ] are given for setting A (experimental arm) and B (control arm) (see legend) as a function of τ . The bias is
computed as the estimated RMDoR based on the four estimators minus the one based on daily scans (no interval censoring). The grey vertical
lines indicate the time‐points the patients had a scan. In the first plot the red and green lines are not visible as they overlap with the blue and
purple lines, respectively.

The scanning schedules S1, S2, and S3 (in the first three plots) are decreasing in intensity: S1 (every month), S2

(every twomonths), and S3 (every threemonths). The degree of underestimation of the RMDoR increaseswith the

time between the scans. From the plots it can be seen that the degree of bias in the mid-point estimators (E2 and

D2) is smaller than for the end-point estimators (E1 and D1). These biases are due to the way the interval censor-

ing is taken into account when computing the Kaplan-Meier curves. If the scanning time-points are used instead

of the actual time-points, the event times are assumed to be larger than they actually are (“a delayed event”). As

a consequence, the jumps in the Kaplan-Meier curves are shifted to the right. Every delayed event or jump in the
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of the pointwise confidence intervals increasewith τ . This is due to the increasing inaccuracy of the Kaplan-Meier

curves for higher values of time (and a consequence of a decreasing number of patients at risk).

3.3.3 Comparison between estimators in a single arm design

In this subsection we focus on the different estimates for the RMDoR and compare themwith the estimate found

based on the daily scan data in which there is no interval censoring (golden standard). The (averaged) RMDoR es-

timated curves were seen already in Figure 3.2. The curves are very similar; it seems that the way the interval cen-

soring is dealt with hardly affects the estimate, especially if the times between the scans are short (schedule S1).

If we zoom in, the structural biases in the estimators are better visible. They are computed by the difference of

the estimators E1, E2, D1, D2 and the one that is based on the daily scan data (the golden standard) and averaged

over the M rounds (see Figure 3.3). A negative value of the difference is an underestimation of the RMDoR. The

lower the curve, the more the estimator underestimates the RMDoR. Some bias-curves become positive for large

values of τ , which indicates an overestimation of the RMDoR. In all plots we see the same pattern: the degree of

underestimation increases with τ up to a certain value of τ (approximately 10months), and decreases thereafter.

Scenario3 Scenario4

Scenario1 Scenario2

0 10 20 30 40 0 10 20 30 40

−0.6

−0.3

0.0

0.3

−0.6

−0.3

0.0

0.3

Tau

R
M

D
oR

 d
iff

er
en

ce
(e

st
im

at
ed

 −
 e

xa
ct

)

Censoring

D1

D2

E1

E2

Setting A

Setting B

Figure 3.3: The bias (in months) in the estimation of the RMDoR(τ) for the four scanning schedules, S1,. . ., S4. The bias of the four estimators,
E1, E2, D1, D2 on the interval [0, τ ] are given for setting A (experimental arm) and B (control arm) (see legend) as a function of τ . The bias is
computed as the estimated RMDoR based on the four estimators minus the one based on daily scans (no interval censoring). The grey vertical
lines indicate the time‐points the patients had a scan. In the first plot the red and green lines are not visible as they overlap with the blue and
purple lines, respectively.

The scanning schedules S1, S2, and S3 (in the first three plots) are decreasing in intensity: S1 (every month), S2

(every twomonths), and S3 (every threemonths). The degree of underestimation of the RMDoR increaseswith the

time between the scans. From the plots it can be seen that the degree of bias in the mid-point estimators (E2 and

D2) is smaller than for the end-point estimators (E1 and D1). These biases are due to the way the interval censor-

ing is taken into account when computing the Kaplan-Meier curves. If the scanning time-points are used instead

of the actual time-points, the event times are assumed to be larger than they actually are (“a delayed event”). As

a consequence, the jumps in the Kaplan-Meier curves are shifted to the right. Every delayed event or jump in the
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Kaplan-Meier curve forSRP D decreases the area between the curves and, thus, decreases the estimate of the RM-

DoR. On the other hand, every delayed jump in the Kaplan-Meier curve for SP D increases the area between the

curves and, thus, increases the estimate of the RMDoR. This is illustrated in Figure 3.4. The steeper the survival

curve, the larger the overestimation of the curve and the stronger the effect on the RMDoR. In setting B (control

arm) the decrease in the survival curve is more gradually in the beginning compared to setting A (experimental

arm), which leads to less underestimation of the RMDoR. This is alsowhatwe see in Figure 3.3. FromFigure 3.4 it is

also directly clear why the bias in themid-point estimator E2 is smaller than in the right-end point estimator.
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Figure 3.4: In both plots the continuous lines are the survival curves SRP D and SRP D in setting A. The dashed step‐functions equal the
Kaplan‐Meier curves (for large sample size) in the case of the scanning schemes S2 (scan every two months), left plot, and S3 (scan every three
months), right plot, without taking the interval censoring into account (estimator E1). For illustration purposes the event death is not taken
into account.

3.3.4 Comparisons between arms in a randomized trial

In a two arm randomized trial the aim is to compare the estimated RMDoRs between the two arms for a pre-

specified value of τ , by considering their difference or ratio. In this subsection we show the results of the

simulation study to compare the RMDoRs in two arms (setting A and B), as a function of τ . These differences

and ratios are displayed in the figures 3.5 and 3.6, respectively. For every scenario, the curves nicely overlap; we

conclude that the choice of the estimator hardly affects the estimates of the differences and the ratios. Although

the estimators E1 and E2 (right and mid point estimators) are biased due to the way they deal with the censoring,

this bias (almost) disappears when computing the difference or ratio of the estimated RMDoRs in the two arms. It

can also be seen that the estimated ratio of the RMDoRs is increasing with τ for small values of τ , but flattens out

and seems to converge to fixed value close to 0.6 (for this example). In applications the value of τ is usually chosen

as large as reasonable for the trial design. In this application, the ratio of the estimated RMDoRs in the two arms

is constant as function of τ for large values of τ and, therefore, the ratio is the perfect quantity to compare the

efficacy in the two arms. In other applications the fraction of the RMDoRs does not need to be constant for large

3



44 | 3. ESTIMATIONOF THE RESTRICTEDMEANDURATIONOF RESPONSE (RMDOR) INONCOLOGY

values of τ .

Scenario3 Scenario4

Scenario1 Scenario2

0 10 20 30 40 0 10 20 30 40

0

2

4

6

0

2

4

6

Tau

R
M

D
oR

 d
iff

er
en

ce

Censoring

Daily

Daily_CI_hi

Daily_CI_low

E1

E1_CI_hi

E1_CI_low

E2

E2_CI_hi

E2_CI_low

Type

CI_hi

CI_low

Est

Figure 3.5: For the scanning schedules S1, …, S4 and every estimator, the estimated difference of the RMDoR between the two arms (experi‐
mental arm minus control arm) are shown as a function of τ . Some curves are difficult to see, due to overlapping curves.

3.4 Discussion

In this paper we considered the estimation of the RMDoR. This quantity is proposed as an approximation to the

expected DoR, as the latter can not be estimated accurately in the case of right-censoring. Most researchers pre-

fer to take the follow-up time τ as large as possible, because for large values of τ the RMDoR(τ) is almost equal to

the expected DoR. However, if τ is ”too large”, the estimate becomes unreliable, especially in trial designs with lim-

ited follow-up duration. This is because the RMDoR is estimated as the area between Kaplan-Meier curves, which

become inaccurate for larger time points at which only a few patients are still at risk. In Huang and Tian [50] an

algorithm is proposed for choosing the value of τ based on the data. The idea of this algorithm is to use the max-

imum available information from the data; so to choose the window in which the RMDoR is estimated as large as

possible.

Interpretation in general of the RMDoR(τ) is difficult as it is a function of τ , and in the settings we considered,

increases fast with τ . That makes an estimate of RMDoR(τ) without explicit reference to the value of τ useless.

Comparing estimates of RMDoR(τ) between different patients groups or treatments is only sensible if the same

valueof τ isused. Thiswill be rarely thecase, unless thedataof the twogroupsarecollectedwithin thesameclinical

trial. That also means that this outcome should only be used in guidelines for efficacy or clinical relevance of a

treatment if a value of τ is specified. The choice of this value may be specific for the underlying disease setting.

However, if more clarity on a suitable choice of the value τ is given, designs of future studies can take this into

account; e.g., the follow-up of the patients should be sufficiently long to accurately estimate the RMDoR.

However, when publishing the results of a study, one need not limit oneself to an estimate of the RMDoR at a

givenpoint in time. Instead, theestimatedRMDoR(τ ) canbeplottedasa functionof τ ina figure (or table), as isdone

in thepresent paper. The timewindow for theplot (i.e., the largest value of τ forwhich theRMDoR is estimated) can
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Figure 3.6: For the scanning schedules S1, …, S4 and every estimator, the estimated ratio of the RMDoR (experimental arm/control arm) are
shown as a function of τ . Some curves are difficult to see, due to overlapping of the curves.

be chosen as large as possible, for example with the data-driven algorithm proposed by Huang and Tian [50]. For

comparison between studies, trial arms or patient populations, estimates of the RMDoRs at one or more specific

values for τ canbeextracted fromthegraph (or table), or comparisonscanbedonebasedon thecourseof thewhole

curve.

In the simulation studies we have seen that in two arm trials the difference of the RMDoRs in the two arms sig-

nificantly increase with the value of τ , whereas the ratio was reasonable stable. This was also seen by Huang and

Tian [50] in their simulations for two arm trials. So, for comparison between the RMDoRs in two arms at a chosen

value of τ , the ratio of the RMDoRs is preferred due to the mild dependence of the choice of τ . However, the dif-

ference of the RMDORs in the two arms gives the absolute treatment benefit, andmay therefore bemore clinically

meaningful than the ratio. Presenting the study results by plotting the difference and/or ratio of the RMDoRs as a

function of τ may help interpretation.

In oncology the time to response and progression of the disease are often interval censored. In this paper we

consideredmultiple ways to account for this interval censoringwhich led to different estimators of the RMDoR. In

thesimulationstudiespresented in thepaperwehaveconsideredrealisticsettings, differentschedules, estimators,

definitions and values of τ and compared the obtained estimates of the RMDoR to the estimates that would have

been found if the patients visit themedical clinic daily. In all situations and for all estimators the relative bias was

small, both in the single arm and comparative setting.

Alternatively, one could try to take the interval censoring into account by using a likelihood function adjusted

for the interval censoring. The NPMLEs (non-parametric maximum likelihood estimators) that are obtained by

maximizing this likelihood function are not unique, but can be defined as any function that lies between the lower

and upper step functions which are obtained by assuming that the events took place directly after the last visit at

which the event hadnot takenplace yet, or at the visit atwhich theywere observed. Because the visits are the same

for every patient, the number of jumps in the curves are limited and theNPMLEswill not accurately estimateSP D

andSRP D , also not for high sample sizes.
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In thepaper,wedescribed the results ofmultiple simulationstudies to investigate thebehaviorof theRMDoR(τ ),

the performance of some estimators, and a quantity to compare the estimated RMDoRs between two arms. In the

simulation study, the sample size was set at 400. This is a reasonable sample size for a phase 3 study. The same

simulation study was repeated with a sample size of 100 (the figures are given in Appendix A). This sample size is

more in linewith the typical samplesize foraphase2study. Fromthesimulationstudy,weconclude that theresults

regarding biaswerenot dependent on sample size, but as expected the confidence intervalswere slightlywider for

a smaller sample size. In conclusion, from the simulation studies it follows that ignoring the interval censoring of

the observations in the estimation strategy has only aminor effect on the estimate of RMDoR(τ). More important

is the choice of the value τ and the associated follow-up time in clinical trial designs. If estimates of the RMDoR(τ)
are used to decide upon efficacy of a treatment and clinical relevance of the effect size, more guidance is needed

about the choice of τ and the trial design.
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Appendix A: Results simulation results, small sample size

We have repeated the simulation study as explained in Section 3.3, but this time with a small sample size: 100 pa-

tients in each setting or arm. The results are shown in Figure 3.7 to Figure 3.10.
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Figure 3.7: Different estimates of the RMDoR as a function of τ . Upper row: Setting A (experimental arm). Bottom row: Setting B (control
arm). Every column corresponds to a scanning schedule. The estimates are represented by a dashed line, the boundaries of the confidence
intervals by solid lines. Note: the estimated curves are sometimes not visible, as they overlap. The estimates D1 and D2 are not displayed,
because they overlap with other curves. In this simulation 100 patients per setting is used.
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Figure 3.8: The bias (in months) in the estimation of the RMDoR(τ) for the four scanning schedules, S1,. . ., S4. The bias of the four estimators,
E1, E2, D1, D2 on the interval [0, τ ] are given for setting A (experimental arm) and B (control arm) (see legend) as a function of τ . The bias is
computed as the estimated RMDoR based on the four estimators minus the one based on daily scans (no interval censoring). The grey vertical
lines indicate the time‐points the patients had a scan. In the first plot the red and green lines are not visible as they overlap with the blue and
purple lines, respectively. In this simulation 100 patients per setting is used.
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Figure 3.9: For the scanning schedules S1, …, S4 and every estimator, the estimated difference of the RMDoR between the two arms (exper‐
imental arm minus control arm) are shown as a function of τ . Some curves are difficult to see, due to overlapping curves. In this simulation
100 patients per arm is used.
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Figure 3.9: For the scanning schedules S1, …, S4 and every estimator, the estimated difference of the RMDoR between the two arms (exper‐
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Figure 3.10: For the scanning schedules S1, …, S4 and every estimator, the estimated ratio of the RMDoR (experimental arm/control arm) are
shown as a function of τ . Some curves are difficult to see, due to overlapping of the curves. In this simulation 100 patients per arm is used.
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Abstract

Therapeutic advancements in oncology have transitioned towards targeted therapy based on specific genomic

aberrations. This shift necessitates innovative statistical approaches in clinical trials, notably in the emerging

paradigm of master protocol studies. Basket trials, a type of master protocol, evaluate a single treatment across

cohorts sharing a common genomic aberration but differing in tumor histology. While offering operational ad-

vantages, the analysis of basket trials introduces challenges with respect to statistical inference. Basket trials can

be used to decide for which tumor histology the target treatment is promising enough to move to confirmatory

clinical evaluation and can employ a Bayesian design to support this decisionmaking. In addition to decisionmak-

ing, estimation of the cohort-specific response rates is highly relevant to inform design of subsequent trials. This

study evaluates seven Bayesian estimation methods for basket trials with a binary outcome, contrasted with the

(frequentist) sample proportion estimate, through a simulation study. The objective is to estimate cohort-specific

response rates,witha focusonaveragebias, averagemeansquarederror, and thedegreeof informationborrowing.

A variety of scenarios are explored, covering homogeneous, heterogeneous and clustered response rates across

cohorts. The performance of the evaluated methods shows considerable trade-offs in bias and precision, empha-

sizing the importance of method selection based on trial characteristics. Berry’s method excels in scenarios with

limited heterogeneity. No clearwinner emerges in amore general scenario, withmethod performance influenced

by the amount of shrinkage towards the overallmean, bias and the choice of priors and tuning parameters inmore

complex settings. Challenges include the computational complexity ofmethods, the need for careful tuning of pa-

rameters and prior distribution specification, and the absence of clear guidance on their selection. Researchers

should consider these factors in designing and analyzing basket trials.
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4.1 Introduction

Therapeutic approaches in oncology have shifted from conventional chemotherapy to targeted therapy on a spe-

cific genomic aberration across different cancer types. The progress in the field of precisionmedicine required a

different statistical approach to clinical trials. Master protocol studies appear to become increasingly common in

practice, particularly in non-randomized exploratory phase I/II research. [12] [11] An example of amaster protocol

study is the basket trial design, the focus of this paper. In such trials, the same treatment is evaluated in multiple

cohorts of patients with different tumour histologies that share the same genomic aberration.

Basket trials can be seen as a series of single-arm trials (usually designed as either single or two-stage) per-

formed in distinct histology-based patient cohorts. An operational advantage of this design compared to conduct-

ing multiple individual trials for each tumor histology, is that it requires only a single protocol, a single database,

and a single medical ethical review board application. As such it results in time and cost savings. With respect to

the analysis of studieswith a basket trial design, a straightforward inference strategy is to analyse each cohort sep-

arately, or to pool the data and provide a total estimate for the patients regardless of the patient’s tumour histology.

Either pooling or independently analyzing trial results in practical applicationsmay not necessarily represent the

optimal choice in all cases. When there is high heterogeneity the pooling estimate introduces type I error infla-

tion and in lowheterogeneity the independent analysis lacks of statistical power compared to alternativemethods.

A third option is to use a procedure which, like independent analyses, performs inference on individual cohorts,

but which allows for borrowing information across cohorts. Such methods may provide advantages in terms of

statistical efficiency. (see, e.g. Pohl et al. [14] for a comprehensive review).

Methods or designs that allow for borrowing information are typically based on Bayesian procedures and as-

sume that theprimary outcomeof interest is the response rate: the fractionof patients in each cohortwho showed,

upon treatment, a clinically significant shrinkage in their tumor volume, a commonendpoint in early phase oncol-

ogy trials. Although the primary focus of the methods review in current article is on decision-making, posterior

point estimates of the cohort-specific response rates can be derived as well. Such estimates are of relevance to

plan subsequent trials or to provide estimates to support benefit-risk assessment and communicate expected ef-

fects to patients. While operating characteristics of the decision-making process are important as well, the focus

of the current simulation study is on the performance (bias, MSE) of the response rate estimator derived from the

posterior distribution used in the Bayesian procedures.

An overviewof the performance of estimators based on sevenBayesian analysismethods that allow for borrow-

ing is presented for a range of scenarios. Additionally, we investigate the influence of prior distribution choice on

the performance of Bayesian estimators. All the estimators are applied in a variety of scenarios all considering

parallel single stage cohorts. A range of scenarios is addressed, encompassing homogeneous, heterogeneous, and

varied levels of response rate distribution across cohorts.

In section4.2.1 themethodsused in this paper arepresented indetail. In section4.2.2 the setting, the simulation

methodology and the explored scenarios are discussed, including the approach to compare the results. In section

4.3, the results from our simulation study are presented as the evaluation of the methods in terms of bias, MSE

and amount of information borrowing. The methodology and the limitations of the comparative evaluation are

discussed in the Discussion section 4.4 of this paper, where we also provide suggestions for trialists.



52 | 4. RESPONSE RATE ESTIMATION IN SINGLE-STAGE BASKET TRIALS: A COMPARISONOF ESTIMATORS THATALLOW
FORBORROWINGACROSS COHORTS

4.1 Introduction

Therapeutic approaches in oncology have shifted from conventional chemotherapy to targeted therapy on a spe-

cific genomic aberration across different cancer types. The progress in the field of precisionmedicine required a

different statistical approach to clinical trials. Master protocol studies appear to become increasingly common in

practice, particularly in non-randomized exploratory phase I/II research. [12] [11] An example of amaster protocol

study is the basket trial design, the focus of this paper. In such trials, the same treatment is evaluated in multiple

cohorts of patients with different tumour histologies that share the same genomic aberration.

Basket trials can be seen as a series of single-arm trials (usually designed as either single or two-stage) per-

formed in distinct histology-based patient cohorts. An operational advantage of this design compared to conduct-

ing multiple individual trials for each tumor histology, is that it requires only a single protocol, a single database,

and a single medical ethical review board application. As such it results in time and cost savings. With respect to

the analysis of studieswith a basket trial design, a straightforward inference strategy is to analyse each cohort sep-

arately, or to pool the data and provide a total estimate for the patients regardless of the patient’s tumour histology.

Either pooling or independently analyzing trial results in practical applicationsmay not necessarily represent the

optimal choice in all cases. When there is high heterogeneity the pooling estimate introduces type I error infla-

tion and in lowheterogeneity the independent analysis lacks of statistical power compared to alternativemethods.

A third option is to use a procedure which, like independent analyses, performs inference on individual cohorts,

but which allows for borrowing information across cohorts. Such methods may provide advantages in terms of

statistical efficiency. (see, e.g. Pohl et al. [14] for a comprehensive review).

Methods or designs that allow for borrowing information are typically based on Bayesian procedures and as-

sume that theprimary outcomeof interest is the response rate: the fractionof patients in each cohortwho showed,

upon treatment, a clinically significant shrinkage in their tumor volume, a commonendpoint in early phase oncol-

ogy trials. Although the primary focus of the methods review in current article is on decision-making, posterior

point estimates of the cohort-specific response rates can be derived as well. Such estimates are of relevance to

plan subsequent trials or to provide estimates to support benefit-risk assessment and communicate expected ef-

fects to patients. While operating characteristics of the decision-making process are important as well, the focus

of the current simulation study is on the performance (bias, MSE) of the response rate estimator derived from the

posterior distribution used in the Bayesian procedures.

An overviewof the performance of estimators based on sevenBayesian analysismethods that allow for borrow-

ing is presented for a range of scenarios. Additionally, we investigate the influence of prior distribution choice on

the performance of Bayesian estimators. All the estimators are applied in a variety of scenarios all considering

parallel single stage cohorts. A range of scenarios is addressed, encompassing homogeneous, heterogeneous, and

varied levels of response rate distribution across cohorts.

In section4.2.1 themethodsused in this paper arepresented indetail. In section4.2.2 the setting, the simulation

methodology and the explored scenarios are discussed, including the approach to compare the results. In section

4.3, the results from our simulation study are presented as the evaluation of the methods in terms of bias, MSE

and amount of information borrowing. The methodology and the limitations of the comparative evaluation are

discussed in the Discussion section 4.4 of this paper, where we also provide suggestions for trialists.

4.2. METHODS | 53

4.2 Methods

4.2.1 Estimators

The objective of estimation in the trial is to produce, for each cohort i, an estimate p̂i of the true response rate pi

of that cohort, i.e. the probability of responding to the treatment for a randomly chosen patient in the ith cohort.

Somemethods assess pi through the the log odds parameter θi defined as θi = log( pi

1−pi
), or, equivalently, pi =

1
1+exp(−θi) .

In this paper, besides the cohort-specific sample proportion (the observed number of responders divided by

the total number of subjects), seven Bayesian procedures to estimate cohort-specific response rates allowing for

borrowing are evaluated:

Estimator based on Berry et al.[54]

Berry et al. [54] discussed the use of a Bayesian hierarchical model (BHM) as a method that allows for borrowing

information across all cohorts. The BHM assumes that the log odds parameters θi are exchangeable between co-

horts,* meaning that all cohorts follow the same distribution i.e. N(µ, σ2). The hyper-priors, for µ and σ2, are

defined as a normal distributionN(µ0, σ2
0) and an inverse gamma distribution σ2 ∼ IG(λ1, λ2) respectively.

Estimator based on Neuenschwander et al.[55]

The EXNEX [55](exchangable-nonexchangable) method is a BHM method that extends the conventional Berry’s

BHM by relaxing the assumption of all cohorts being exchangeable. Less information is being borrowed between

non-similar cohorts. The log odds parameter θi for each cohort follows either a distribution which allows to ex-

change information, EX: θi ∼ N(µ0, σ2
0)with probabilityw, or a distribution that is non-exchangeablewith a prob-

ability 1- w, NEX: θi ∼ N(mi, v2
i ). The hyper-parameters employed in the NEX component, namely mi, v2

i and

w, are fixed. In this study, priors and parameters were specified in accordance with the recommendations of the

EXNEX[55]authors. Thehyper-parametersused in theEXcomponentareµ0 ∼ N(0, 10)andσ2
0 ∼ half-normal(1).

For the purposes of this paper the ‘bhmbasket’ R package is used for the calculation of the estimate.

Estimator based on Psioda et al.[57]

Here, response rates are estimated following the procedure in Psioda et al. [57], who propose a Bayesian model

averaging approach. All possible models (ranging from the most parsimonious model in which all estimates are

constrained to be equal to themost complexmodel inwhich all estimates are allowed to differ) are assigned aprior

probability of being true. In addition, a beta prior is used for the response rate estimate in each cohort. Based on

the observed data, the posterior model probabilities and model-specific posterior distributions for the response

rates are determined. Cohort-specific response rates are calculated as the weighted average of the mean of the

model-specific beta posterior distributions, with weights equal to the posterior model probabilities. Estimates

were obtained using the function ‘bma‘ (version 0.1.2) in the R package ‘bmabasket‘. We use the default parame-

ter specifications, with the exception of the prior for the response rates, which are defined to be uniform (Beta(1,1)),

instead of weakly informative.

*Themethods Berry et al. [54], EXNEX [55](exchangeable-non exchangeable) and Jin et al. [56]model the response rate pi using the log odds
transformation. Instead ofmodelling pi directly, theymodel the distribution of θi = logit(pi) = log( pi

1−pi
).
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Estimator based on Fujikawa et al. [58]

The Fujikawa et al. [58]method is a Bayesian approach that borrows information across cohorts based on the simi-

larity of their response rates. First, a uniform (Beta(1, 1)) prior is used for the response rate in each cohort, which
is updated based on the observed data. The pairwise similarity between the resulting posterior Beta distributions

is then determined using the Jensen-Shannon divergence. If the similarity exceeds a given pre-specified thresh-

old (denoted by τ ), the posteriors are ‘combined’ (i.e. borrowing will take place, by updating the parameters of the

posterior distribution for a given cohort as a ‘weighted average’ of the initial posterior with all the other cohorts

with similar effect size). We use the means of the possibly updated posterior distributions as the point estimates

for the response rates.

Estimator based on Jin et al. [56]

The Bayesian hierarchical model with a correlated prior (CBHM) proposed by Jin et al. [56] is a method that allows

borrowing more information between possibly homogeneous cohorts and less when the treatment effect seems

heterogeneous. For the logoddsparameterθi, it is assumedthat it is specifiedas: θi = θ0+ηi+ϵi. Theηi arecohort-

specific effects which follow a multivariate normal distribution with correlation matrix Ω, ηi ∼ MV N(0, σ2Ω).
The similarity between two cohorts is identified in the Ω matrix, a correlation function is generated by the pair-

wise distancemeasures dij . Three different distancemeasures are considered in the original paper (the Kullback-

Leibler distance (KL), theHellinger (H) distance and theBhattacharyya (B) distance). For the purposes of this paper,

wewill use theH distance.

Estimator based on Chen & Lee [59]

Chen&Lee[59] proposed aBayesian cluster hierarchicalmodel. A two-stepprocedure, first theChinese restaurant

process (CRP) [60] identifies the partitioning into clusters of each cohort using anon-parametricDirichlet process

mixturemodel (DPM). The values of the clusteringmatrixCij are the proportion of two cohorts being classified in

the same cluster. The second step is to use a Bayesian hierarchical model to estimate the log odds of the response

rate θi ∼ N(µ1, 1
τ1mi

), given the cluster structure. Themi in this model is set toCij for the specific subgroup i. A

hyper-prior for the mean µ1 follows a normal distribution N(µ2, 1
τ2

), a hyper-prior for the precision controlling

the amount of borrowing between cohorts i and j, τ1 ∼ Gamma(α1, β1) and µi is the respectivemodel indicated

by theCij matrix. The variance of the hyper-priorwas explored by Chen& Lee [61], τ2 = 0.1. The clusteringmatrix

probability of subgroup i and j to share information influences the variance of the θi distribution. As the similarity

value increases, the information sharing becomes larger and the posterior distribution variance decreases. The

‘BCHM’ R package is used for the response rate calculation given the default parameters proposed by the authors.

(More details in Appendix B)

Estimator based on Liu et al.[62]

Liu et al. [62] propose a method that evaluates the probabilities of all possible models (referred to as ’partitions’),

assigning a prior probability to each partition differently than Psioda et al. [57]. The choice of prior is carefully

discussed, with a parameter, delta, introduced to determine the level of influence eachmodel exerts. The authors

suggest values of 0 (uniformprior), 1, and 2 for delta. Unlike the Psiodamethod,whichuses aweighted average, Liu

et al.[62] select themost probable partition to compute the pairwise similaritymatrix among cohorts. Thismatrix

is then used to calculate the parameters of the Beta posterior distribution. In the local multiple exchangeability
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with similar effect size). We use the means of the possibly updated posterior distributions as the point estimates
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Estimator based on Jin et al. [56]

The Bayesian hierarchical model with a correlated prior (CBHM) proposed by Jin et al. [56] is a method that allows

borrowing more information between possibly homogeneous cohorts and less when the treatment effect seems

heterogeneous. For the logoddsparameterθi, it is assumedthat it is specifiedas: θi = θ0+ηi+ϵi. Theηi arecohort-

specific effects which follow a multivariate normal distribution with correlation matrix Ω, ηi ∼ MV N(0, σ2Ω).
The similarity between two cohorts is identified in the Ω matrix, a correlation function is generated by the pair-

wise distancemeasures dij . Three different distancemeasures are considered in the original paper (the Kullback-

Leibler distance (KL), theHellinger (H) distance and theBhattacharyya (B) distance). For the purposes of this paper,

wewill use theH distance.

Estimator based on Chen & Lee [59]

Chen&Lee[59] proposed aBayesian cluster hierarchicalmodel. A two-stepprocedure, first theChinese restaurant

process (CRP) [60] identifies the partitioning into clusters of each cohort using anon-parametricDirichlet process

mixturemodel (DPM). The values of the clusteringmatrixCij are the proportion of two cohorts being classified in

the same cluster. The second step is to use a Bayesian hierarchical model to estimate the log odds of the response

rate θi ∼ N(µ1, 1
τ1mi

), given the cluster structure. Themi in this model is set toCij for the specific subgroup i. A

hyper-prior for the mean µ1 follows a normal distribution N(µ2, 1
τ2

), a hyper-prior for the precision controlling

the amount of borrowing between cohorts i and j, τ1 ∼ Gamma(α1, β1) and µi is the respectivemodel indicated

by theCij matrix. The variance of the hyper-priorwas explored by Chen& Lee [61], τ2 = 0.1. The clusteringmatrix

probability of subgroup i and j to share information influences the variance of the θi distribution. As the similarity

value increases, the information sharing becomes larger and the posterior distribution variance decreases. The

‘BCHM’ R package is used for the response rate calculation given the default parameters proposed by the authors.

(More details in Appendix B)

Estimator based on Liu et al.[62]

Liu et al. [62] propose a method that evaluates the probabilities of all possible models (referred to as ’partitions’),

assigning a prior probability to each partition differently than Psioda et al. [57]. The choice of prior is carefully

discussed, with a parameter, delta, introduced to determine the level of influence eachmodel exerts. The authors

suggest values of 0 (uniformprior), 1, and 2 for delta. Unlike the Psiodamethod,whichuses aweighted average, Liu

et al.[62] select themost probable partition to compute the pairwise similaritymatrix among cohorts. Thismatrix

is then used to calculate the parameters of the Beta posterior distribution. In the local multiple exchangeability
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model (local MEM), this similarity matrix is used to determine which baskets are grouped together based on the

highest posterior probability partition. Information borrowing is then carried out locally within these identified

groups. Specifically, baskets that belong to the same block, as defined by the selected partition, are treated as ex-

changeable, and data from these baskets are used to update the parameters of their Beta posterior distributions.

This localized borrowing approach allows for precise information sharing while respecting differences between

dissimilar baskets.

4.2.2 Simulation study

Setup

In the simulation study, we construct a basket trial with six different cohorts, which we consider to be a realistic

choice. For simplicity, all cohorts of the study are assumed to be single-stage and have equal size. Limited to no

prior knowledge is assumed to be available. The total number of patients per cohort is denoted byni and the num-

ber of responses is indicated by ri.

Scenarios

Thescenarios inwhichweevaluate the response rateestimatorsdiffer in thedistributionof the true response rates

pi across cohorts and thenumber of patients per cohort. We classify these scenarios into two types: homogeneous

and heterogeneous (table 4.1). The choice of the different scenarios is based on themethodological aspects of the

methods, but also extreme practical examples, like the KEYTRUDA [63] trial, lead us to consider a broad range of

scenarios.

• Homogeneous Scenarios:

In homogeneous scenarios, all cohorts have similar or identical true response rates. These scenarios are

designed to evaluate how well the estimators perform when there is little to no variation between cohorts.

Specifically:

Scenarios 1.A.1 to 1.A.3: The true response rate is the same across all six cohorts, with values set at 0.1, 0.3, or

0.5, respectively.

• Heterogeneous Scenarios:

In heterogeneous scenarios, the cohorts have more distinct response rates, representing a wider range of

treatment effects across the different groups. These scenarios are designed to test the ability of the estima-

tors to handle substantial variability:

Scenarios 1.B.1 to 1.B.4: Small variations in true response rates are introduced between cohorts. In scenarios

1.B.1 and 1.B.2, the response rates differ slightly (by 0.025 and 0.05 respectively) around an overallmean of 0.5.

In scenarios 1.B.3 and 1.B.4, the overall mean is 0.3, with variations of 0.025 and 0.05 respectively.

Scenarios 2.A.1 to 2.D.3: These scenarios represent situations where two distinct groups of cohorts have dif-
ferent response rates. Scenarios 2.A.1 to 2.B.3 response rate with difference of 0.2. Scenarios 2.C.1 to 2.C.3

represent a larger response rate difference of 0.4, while scenarios 2.D.1 to 2.D.3 consider an even greater dif-

ference of 0.6 between the two groups.

4
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Scenarios3.A.1, 3.A.3, 3.B.1, and3.B.3: In scenarios, 3.A.1, 3.A.3, 3.B.1, 3.B.3,weassume threedifferent response

rates, where four of the cohorts have the same response rate, while the remaining two cohorts havedifferent

rates. Scenarios3.A.2 and3.B.2describe caseswhere threepairs of cohorts eachhave the sameresponse rate,

resulting in three different groups.

The responses of subjects in each cohort were generated from a binomial distribution with true probability

pi, where i ∈ {1, 2, ..., 6}. The number of subjects per cohort was assumed to beN = {10, 20, 30, 100}.

Details concerning the specification of prior distribution parameters and tuning parameters of the seven

estimators are provided in Appendix B. R-code is available as online supplementarymaterial.

Scenarios Coh A Coh B Coh C Coh D Coh E Coh F
1.A.1 0.1 0.1 0.1 0.1 0.1 0.1
1.A.2 0.3 0.3 0.3 0.3 0.3 0.3
1.A.3 0.5 0.5 0.5 0.5 0.5 0.5
1.B.1 0.4375 0.4625 0.4875 0.5125 0.5375 0.5625
1.B.2 0.375 0.425 0.475 0.525 0.575 0.625
1.B.3 0.2375 0.2625 0.2875 0.3125 0.3375 0.3625
1.B.4 0.175 0.225 0.275 0.325 0.375 0.425
2.A.1 0.3 0.5 0.5 0.5 0.5 0.5
2.A.2 0.3 0.3 0.3 0.5 0.5 0.5
2.A.3 0.3 0.3 0.3 0.3 0.3 0.5
2.B.1 0.1 0.3 0.3 0.3 0.3 0.3
2.B.2 0.1 0.1 0.1 0.3 0.3 0.3
2.B.3 0.1 0.1 0.1 0.1 0.1 0.3
2.C.1 0.1 0.5 0.5 0.5 0.5 0.5
2.C.2 0.1 0.1 0.1 0.5 0.5 0.5
2.C.3 0.1 0.1 0.1 0.1 0.1 0.5
2.D.1 0.1 0.7 0.7 0.7 0.7 0.7
2.D.2 0.1 0.1 0.1 0.7 0.7 0.7
2.D.3 0.1 0.1 0.1 0.1 0.1 0.7
3.A.1 0.1 0.4 0.7 0.7 0.7 0.7
3.A.2 0.1 0.1 0.4 0.4 0.7 0.7
3.A.3 0.1 0.1 0.1 0.1 0.4 0.7
3.B.1 0.1 0.4 0.9 0.9 0.9 0.9
3.B.2 0.1 0.1 0.4 0.4 0.9 0.9
3.B.3 0.1 0.1 0.1 0.1 0.4 0.9

Table 4.1: Scenarios used in the explored simulations. The first 3 scenarios are the Homogeneous scenarios and the rest are referred to the
Heterogeneous scenarios.

Evaluation criteria

The estimators will be compared based on the average absolute bias and averageMSE, as defined in Table 4.2.

An additionalmeasure used to provide further insight in the results, is the Shrinkage to the totalmean,which is

defined as the difference between themaximum and theminimum estimated response rate, divided by the simu-

latedmax andmin. We use the form as presented in table 4.2, such that the closer this value is to 1, the greater the

shrinkage. When the shrinkage is close to 0, it indicates that themethods are not borrowingmuch information.
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rates, where four of the cohorts have the same response rate, while the remaining two cohorts havedifferent

rates. Scenarios3.A.2 and3.B.2describe caseswhere threepairs of cohorts eachhave the sameresponse rate,

resulting in three different groups.

The responses of subjects in each cohort were generated from a binomial distribution with true probability

pi, where i ∈ {1, 2, ..., 6}. The number of subjects per cohort was assumed to beN = {10, 20, 30, 100}.

Details concerning the specification of prior distribution parameters and tuning parameters of the seven

estimators are provided in Appendix B. R-code is available as online supplementarymaterial.

Scenarios Coh A Coh B Coh C Coh D Coh E Coh F
1.A.1 0.1 0.1 0.1 0.1 0.1 0.1
1.A.2 0.3 0.3 0.3 0.3 0.3 0.3
1.A.3 0.5 0.5 0.5 0.5 0.5 0.5
1.B.1 0.4375 0.4625 0.4875 0.5125 0.5375 0.5625
1.B.2 0.375 0.425 0.475 0.525 0.575 0.625
1.B.3 0.2375 0.2625 0.2875 0.3125 0.3375 0.3625
1.B.4 0.175 0.225 0.275 0.325 0.375 0.425
2.A.1 0.3 0.5 0.5 0.5 0.5 0.5
2.A.2 0.3 0.3 0.3 0.5 0.5 0.5
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2.B.2 0.1 0.1 0.1 0.3 0.3 0.3
2.B.3 0.1 0.1 0.1 0.1 0.1 0.3
2.C.1 0.1 0.5 0.5 0.5 0.5 0.5
2.C.2 0.1 0.1 0.1 0.5 0.5 0.5
2.C.3 0.1 0.1 0.1 0.1 0.1 0.5
2.D.1 0.1 0.7 0.7 0.7 0.7 0.7
2.D.2 0.1 0.1 0.1 0.7 0.7 0.7
2.D.3 0.1 0.1 0.1 0.1 0.1 0.7
3.A.1 0.1 0.4 0.7 0.7 0.7 0.7
3.A.2 0.1 0.1 0.4 0.4 0.7 0.7
3.A.3 0.1 0.1 0.1 0.1 0.4 0.7
3.B.1 0.1 0.4 0.9 0.9 0.9 0.9
3.B.2 0.1 0.1 0.4 0.4 0.9 0.9
3.B.3 0.1 0.1 0.1 0.1 0.4 0.9

Table 4.1: Scenarios used in the explored simulations. The first 3 scenarios are the Homogeneous scenarios and the rest are referred to the
Heterogeneous scenarios.

Evaluation criteria

The estimators will be compared based on the average absolute bias and averageMSE, as defined in Table 4.2.

An additionalmeasure used to provide further insight in the results, is the Shrinkage to the totalmean,which is

defined as the difference between themaximum and theminimum estimated response rate, divided by the simu-

latedmax andmin. We use the form as presented in table 4.2, such that the closer this value is to 1, the greater the

shrinkage. When the shrinkage is close to 0, it indicates that themethods are not borrowingmuch information.
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Formula

MeanAbsBias =
∑6

i=1
|E(p̂i)−pi|

6

MeanMSE =
∑6

i=1
[Bias(p̂i)2+V ar(p̂i)]

6

Shrinkage = 1 − max(E(p̂1),...,E(p̂6))−min(E(p̂1),...,E(p̂6))
max(p1,...,p6)−min(p1,...,p6)

Table 4.2: Evaluation criteria

4.3 Results

4.3.1 Homogeneous scenario

In the homogeneous scenarios with exactly equal true response rates across the baskets (scenarios 1.A.1 to 1.A.3,

fig 4.1 all Bayesian estimators except Chen & Lee show on average positive bias for response rates 0.1 and 0.3, but

not when the response rate is 0.5. The Chen & Lee shows negative bias when the true estimates are lower than

0.5. Among the Bayesian estimators, Berry’s BHM [54] shows the smallest bias and average MSE, regardless of

the sample size per basket. The EXNEX and Jinmethods are slightly shifting towards 0.5. When the sample size is

small, the average absolute bias for some of the other estimators, particularly those based on Liu and Fujikawa,

appears quite substantial towards 0.5 when the true common response rate is 0.1, but overall bias decreases to

negligible when the true response rate gets closer to 0.5.

To determine whether this effect is actually due to the prior choices, we conducted additional simulations, (Ap-

pendix C, fig 4.3,4.4) in which the parameters of each method were tuned to have a prior mean of 0.3. The results

indicate that the priormean plays a role and influenceswhether the estimates overestimate or underestimate the

effect, towards to the chosen prior mean. Berry’s method is not affected by the prior, as well as Chen & Lee. The

EXNEX and Jin methods are affected slightly. The Psioda method is affected, but less than the Fujikawa and Liu

methods.
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Figure 4.1: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.5
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Figure 4.1: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.5
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4.3.2 Heterogeneous Scenario

If we allow for some heterogeneity in the true RRs of the six cohorts (scenarios 1.B.1 to 1.B.4, fig 4.8 and 4.9), the

observed bias of the different Bayesian estimators increases. The average mean squared errors of the different

estimators overall increase and becomemore similar.

In fig 4.8, in the first row the estimates can again be seen to be biased towards 0.5, regardless of the variation

level. In fig 4.6 it can be seen that different true RRs across the 6 cohorts centered around 0.5, that the estimates

shift to thismeanof 0.5 of the cluster. In fig 4.9, themeanof trueRRsof the cohorts is 0.3, andmost of the estimates

show shift towards 0.5, whichwas not observed in scenarios where the overall clustermean of the true RRs is 0.5.

In these scenarios, Berry’s BHM estimator has the lowest MSE when the response rate is less heterogeneous,

compared to the othermethods. However, with increasing variability, the average absolute bias appears relatively

large, even with a large sample size. Also for other estimators, bias still appears to be present even with samples

sizes as large as 100 per cohort.

Whenconsidering scenarios involving thegroupingof cohorts (i.e., twoor threedistinct groupings), allmethods

effectively capture the structure (fig 4.2). As anticipated, the sample proportion has the smallest average absolute

bias (theoretically 0), but its average Mean Squared Error (MSE) is among the highest (see fig 4.2). In this setting,

Berry’s Bayesian Hierarchical Model (BHM) estimator demonstrates the largest average absolute bias acrossmost

scenarios. Estimators following Fujikawa and Liu’s approaches tend to shrink more towards the prior of 0.5, com-

pared to other estimates. Jin’s estimator shrinkage is small. EXNEX, Psioda, and Chen& Lee estimates also show a

tendency towards themeanof0.5, butwithanotableexception for theChen&Leeestimator (see fig4.6): it uniquely

shifts towards 0when the estimated totalmean is below 0.5 and towards 1 when above 0.5.

In scenarios as in fig 4.11, where the actual response rate of five out of 6 cohorts is equal to 0.5 and one cohort

deviates, themethods that tend to shift estimates towards 0.5 (such as Fujikawa’s) perform better in terms of MSE.

Berry’s BHM estimator appears favourable with respect to average MSE when the heterogeneity is small (see fig

4.10, 4.9). However, as the heterogeneity increases (see fig 4.11, 4.12, 4.7), Berry’s estimator’s MSE grows relative to

others. The observed patterns remain similar across all scenarios.

Thediversity acrossdifferent cohorts impacts thedegreeof shrinkage to theoverallmeanobserved inouranaly-

sis. Specifically, as the heterogeneity between cohorts increases, we notice a corresponding decrease in shrinkage

(see fig 4.5). Berry’smethod consistently shrinksmore towards the overallmean, irrespective of the level of hetero-

geneity. In contrast, Liu’smethod exhibits the least shrinkage across all scenarios. TheChenandLeemethod tends

to shrink towards the overall mean, similar to most methods when variability is low, but more prominently than

others in scenarios with large between cohort heterogeneity. Overall, shrinkage decreases with greater cohort

heterogeneity. Additionally, we observe that shrinkage tends to diminish as the sample size increases, although

certainmethods—like Berry’s—maintain high shrinkage under conditions of small heterogeneity.

As described in the homogeneous scenarios, the choice of prior has an impact on the results, particularly by

shifting estimates towards the priormean. This effect is evident in fig 4.4, which contrasts the results when using

a prior mean of 0.3, compared to the prior mean of 0.5 shown in fig 4.2. Most estimates shift accordingly to the

homogeneous scenarios, illustrating the sensitivity of eachmethod to the choice of prior.

In general, the differences becomemore apparentwith smaller cohort sample sizes, thoughno consistent rank-

ing emerges amongestimators. As sample sizes increase, estimators generally becomemore accurate and similar.

Specifically,mostmethods converge to the trueRRwith cohort sizes of 100ormore. The advantages of thesemeth-

ods over the sample proportion in terms of lowerMSE diminish in larger sample contexts.

A concise summary of these results can be found in Table 3.
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Figure 4.2: Estimates on scenarios 2.B.1 to 2.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates. The prior
distribution in this graph is having a mean of the 0.5
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Figure 4.2: Estimates on scenarios 2.B.1 to 2.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates. The prior
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4.4 Discussion

In this paper, we present a comprehensive review of Bayesian methodology for a basket-type design with single

arm cohorts from the perspective of estimation. We evaluated various Bayesianmethods and included the cohort

sample proportion for reference. We limited the evaluation to the setting of parallel single-stage cohorts using

identical sample sizes. The main objective of this paper is to assess how these methods perform with respect to

estimation of success proportions for the different cohorts in the basket trial. To ensure fair comparisons, we use

flat or weakly informative prior distributions, following the original author’s recommendations. The evaluation

of the estimates considers frequentist properties including mean absolute bias and average mean squared error

(MSE) and shrinkage metrics. The motivation for this research is the limited availability of research results that

evaluate estimation properties when information borrowing is applied, whereas such estimation is particularly

relevant for early phase basket trials that inform subsequent larger (confirmatory) trials.

In a basket trial, statistical borrowing from other cohorts to improve estimation of the response rate for an in-

dividual cohort should essentially serve to improve the estimation compared to the cohort (sample) proportion.

It is typically considered when the cohorts target rare conditions, and thus sample sizes per cohort are relatively

small. Therationaleof thebasket trial (e.g. sharedmolecular target) typicallyprovides justification for suchborrow-

ing. Evenwhen such (mechanistic) justification is strong, heterogeneity in response rates between cohorts usually

cannot be excluded a priori. Therefore, key desirable properties of Bayesianmethods for estimation in this setting

are twofold: improved precision at cohort level when heterogeneity is limited or absent, and sufficiently sensitive

to adapt (i.e., limit bias at cohort level) when heterogeneity between cohorts is clearly present.

Whenputagainst thesecriteria,weconclude that there isnoclearwinneramongtheBayesianmethods in terms

of optimal average MSE and average absolute bias across the scenarios evaluated. (See also table 4.3) Berry’s et al.

[54] demonstrates the smallest averageMSE and average absolute biaswhen the true response rate belongs to the

homogeneous scenario. When a higher heterogeneity level is introduced there is no optimal choice. Except for

large cohort sample sizes, overall bias andmean squared errors are relatively substantial in some cases, especially

as heterogeneity increases. The methods differ in the amount of shrinkage and in the amount that the estimate

is influenced by the prior. All the methods shrink towards the overall mean across the cohorts. Berry’s et al. [54],

Jin’s et al. [56], and Chen & Lee [59] estimates shrink more towards the overall mean compared to other Bayesian

estimates. Fujikawa et al. [58] and Liu et al. [62] seem to be pulled towards 0.5 compared to the other estimates, as

clearly seen in fig 4.6. Chen & Lee [59] estimate, on the other hand, differs from the other estimators as it appears

to shrink towards 0 if the overall true response rate mean is smaller than 0.5 and towards 1 if this is larger is over

0.5. Given the set criteria Berry’s et al. [54], Fujikawa et al. [58] and Liu et al. [62] methods are less preferred, and

EXNEX, Psioda’s, Jin’s et al. [56], and Chen & Lee [59] methods are more suitable, with the EXNEX method to be

more consistent than the other methods. Notably, the performance of the sample proportion is equal or superior

compared to theBayesianmethods in termsofMSEwhen theheterogeneity increases, and of course it is unbiased.

In this paper, the focus was on evaluating themethods under a setting where there is no formal prior information

concerning thehomogeneity and theheterogeneity structure that couldbe included in theestimation. Usingmore

informative priors does fit within some ofmethods, which could lead tomore precise outcomes.

The complexity of themethods introduces a potential limitation to the present work and applications. The tun-

ingparameters needed for the differentmethods imply that there is substantial flexibility (henceheterogeneity) in

their implementation, without clear a priory guidance to optimally set these parameters. We used default values

and non-informative priors in a simple setting, but in practice other choices may be made. The non-informative

prior distributions has a prior mean of 0.5, when we made a different prior mean choice, we see a different be-

4
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haviour in the estimated results.

In our effort to (computationally) replicate these methods for our simulation study, we facedmany difficulties

in selecting the appropriate parameters and ensuring that our implementation was indeed exactly equal to the

published results and scripts and also occasionally found discrepancies between the publicly shared script and

the scientific paper (that were subsequently resolved). Researchersmay face similar struggles in determining the

method most suitable for each situation and ensuring an appropriate computational implementation. Addition-

ally, fully understanding themethods and their implementation is not straightforward, with usually guidance lack-

ing in addressing estimation.

Several simplifying assumptions were used in the simulation study. The choice for 6 cohorts of equal sample

size with a single-stage design only covers a limited number of potential scenarios. In practical settings, it is com-

mon to suggest at least one interim analysis (e.g., following Simon’s two-stage designs). In the single-stage setting,

the sample proportion is an unbiased estimator, hence it was included as reference in our study. The proposed

Bayesianmethods do allow for interim analyses. Jin et al. [56] proposed the use of a single interim analysis, while

Fujikawa et al. [58] and Psioda et al. [57] allow several interim futility assessments. Berry et al. [54] proposed an

interim analysis when a certain number of patients are included (e.g., 10) and more assessments allowed after a

pre-specifiednumberof patients (e.g., 5). Simonet al. [64] considers the futility assessment after eachobservation.

Neuenschwander et al. [55] and Chen & Lee [59] do not propose an interim analysis stage, but an interim analysis

couldbeappliedat any timepoint of the trial. Wedidnot evaluate the resulting verybroad rangeof possible scenar-

ios, whichmay lead to some differences between themethods when interim analyses are implemented. However,

as the number of cohorts with similar response rates investigated correspond to realistic practical settings and a

range of sample sizes was explored, we do believe the present provides basis for an initial choice ofmethods.

The explored methods offer a potentially valuable tool for researchers in efficiently designing and analyzing

basket trials. Estimators based onmethods that allow borrowing of information across cohorts introduce bias, but

areexpected tohaveasmallerMSE,due toan increase inprecision. However, therearemanyavailableoptionseven

within each method, with most methods requiring choices of tuning parameters in addition to priors for model

parameters. A priory guidance on precise settings of these parameters for practical applications is challenging,

which may limit the possibility to pre-specify the full estimation procedure. A simulation study, such as the one

performed here, but targeted to a specific context of a particular study, could give a better insight.
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Appendix A

Methods Prior effect Homogeneous scenario Heterogeneous scenario Shrinkage

Psioda bias toward the prior mean Small MSE, slightly biased estimate Borrowing to the mean and bias to the

prior

Moderate to small shrinkage in all

scenarios

Berry no effect Smallest MSE, no bias Bias estimate to the total mean Extreme shrinkage to the total

mean

EXNEX limited ‐ no influence Small MSE Shares less information when 1 vs 5 true

RR basket, small MSE

Small shrinkage in small

heterogeneity. Almost no

shrinkage in high heterogeneity

Jin (CBHM) Slight influence Small MSE, slightly biased Slight prior influence, Small MSE Moderate shrinkage in small

heterogeneity. Small shrinkage in

high heterogeneity

Chen & Lee (BCHM) No influence Small MSE, almost unbiased, estimates to

0 if true RR < 0.5 or towards 1 if true RR

> 0.5

Shrinkage to the total mean, the smallest

MSE

Small shrinkage in small

heterogeneity. Moderate

shrinkage in high heterogeneity

Fujikawa bias toward the prior mean Bias to prior mean, small MSE Extreme bias to the prior mean Moderate shrinkage in small

heterogeneity. Small shrinkage in

high heterogeneity

Liu bias toward the prior mean Bias to prior mean, moderate MSE Extreme bias to the prior mean Almost no shrinkage regardless

the heterogeneity level

Sample prop The largest MSE MSE close to the Bayesian methods, in

highly heterogeneous trials smaller MSE

No shrinkage

Table 4.3: Results overview table
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Appendix B

Prior and parameters choice

Thechoiceof theprior is ahard task tohandle, especially since thechoiceusually affects theestimation. Wemadea

choice to useweakly informative or uninformative priors to compare themethods under the same rules, following

the suggestions of the respective authors for uninformative priors to use in theirmethod.

Jin et al. [56], Berry et al. [54], and EXNEX [55] do recommend somewhat informative priors involving pre-

specified response rates q0 and q1 that correspond to inactive and active treatments respectively. Many of the

methods are originally designed for a setting in which the goal of the study is to decide whether the treatment is

active or not (represented by posterior probabilities of response rate≥ q1 and≤ q0 respectively). However, in our

simulation studywe focus on estimation of the response rates rather thandecisionmaking anduseuninformative

priors as specified below for eachmethod.

• TheBerry etal.[54]method, proposesastrategy toprovidenon informativechoicesofhyper-parameters. For

this case, we set the hyper-parameters as follows:

µ ∼ N(µ0, σ2
0) = N(0, 100)

σ2 ∼ IG(λ1, λ2) = IG(0.0005, 0.00005)

• TheEXNEX[55] following the suggestions in theoriginal paperweusea single exchangeability distributionof
the EXNEX. The probabilities of each distribution is fixed, in the simple EXNEXmodel, the EXpart is pi = 0.5,
and theNEX is1−pi = 0.5. Anormalpriordistribution is proposedand themeancan reflect theexpectation

of the researcher in the logit scale. Inorder tomakeasimilar choicewith themethods thatusesBeta(1,1) prior

and themean of this prior is the 0.5, we set themean of the EXNEXprior to be 0, which is the analogous of 0.5

in the logit scale.

θEX
i ∼ N(µ0, σ2

0)

µ0 ∼ N(0, 10)

σ2
0 ∼ half − normal(1)

(pi, 1 − pi) = (0.5, 0.5)

θNEX
i ∼ N(mi, vi)

mi = 0

vi = 10

• Psioda’s[57] method in the original paper is to set the a weakly informative Jeffreys priorBeta(0.5, 0.5). For
the purpose of this paper, we use the uninformativeBeta(1, 1). A priormodel is set for the all possiblemod-

els. The default settings of the package allow us to have a weakly informative prior where the model proba-

bilities are giving greater weight to themore complicatedmodels (less borrowing allowed).

• Fujikawa-like [58] method estimates uses a beta prior Beta(aj , bj) = Beta(1, 1). and the amount of bor-

rowing is tuned by the parameter of τ = 0.5.



64 | 4. RESPONSE RATE ESTIMATION IN SINGLE-STAGE BASKET TRIALS: A COMPARISONOF ESTIMATORS THATALLOW
FORBORROWINGACROSS COHORTS

Appendix B

Prior and parameters choice

Thechoiceof theprior is ahard task tohandle, especially since thechoiceusually affects theestimation. Wemadea

choice to useweakly informative or uninformative priors to compare themethods under the same rules, following

the suggestions of the respective authors for uninformative priors to use in theirmethod.

Jin et al. [56], Berry et al. [54], and EXNEX [55] do recommend somewhat informative priors involving pre-

specified response rates q0 and q1 that correspond to inactive and active treatments respectively. Many of the

methods are originally designed for a setting in which the goal of the study is to decide whether the treatment is

active or not (represented by posterior probabilities of response rate≥ q1 and≤ q0 respectively). However, in our

simulation studywe focus on estimation of the response rates rather thandecisionmaking anduseuninformative

priors as specified below for eachmethod.

• TheBerry etal.[54]method, proposesastrategy toprovidenon informativechoicesofhyper-parameters. For

this case, we set the hyper-parameters as follows:

µ ∼ N(µ0, σ2
0) = N(0, 100)

σ2 ∼ IG(λ1, λ2) = IG(0.0005, 0.00005)

• TheEXNEX[55] following the suggestions in theoriginal paperweusea single exchangeability distributionof
the EXNEX. The probabilities of each distribution is fixed, in the simple EXNEXmodel, the EXpart is pi = 0.5,
and theNEX is1−pi = 0.5. Anormalpriordistribution is proposedand themeancan reflect theexpectation

of the researcher in the logit scale. Inorder tomakeasimilar choicewith themethods thatusesBeta(1,1) prior

and themean of this prior is the 0.5, we set themean of the EXNEXprior to be 0, which is the analogous of 0.5

in the logit scale.

θEX
i ∼ N(µ0, σ2

0)

µ0 ∼ N(0, 10)

σ2
0 ∼ half − normal(1)

(pi, 1 − pi) = (0.5, 0.5)

θNEX
i ∼ N(mi, vi)

mi = 0

vi = 10
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• Fujikawa-like [58] method estimates uses a beta prior Beta(aj , bj) = Beta(1, 1). and the amount of bor-

rowing is tuned by the parameter of τ = 0.5.
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• Jin et al.[56] made an extensive simulation study to address the effect of weakly informative prior distribu-

tions on the proposed design, specifying each set of priors for the respective distancemeasure of the corre-

lationmatrix.

Hellinger (H) distance also introduces an exponential correlation, where the ϕ = Gamma(1.5, 1) has a dif-
ferent priormean. Similarly the parameters are specified by:

θ0 ∼ N(µ0, σ2
0)

σ2 ∼ IG(cσ2 , dσ2) = IG(0.01, 0.01)

τ2 ∼ IG(cτ2 , dτ2) = IG(0.01, 0.01)

σ2
0 ∼ IG(cσ2

0
, dσ2

0
) = IG(0.1, 0.1)

• Chen&Lee [59] present the choice of the prior and theparameters used in their paper in detail. For the classi-

ficationmodel a choice of non-informative conjugate normal distributed prior µ = 0.2 and σ2
0 = 10 is used

to calculate the posterior probability of the true response rate. The parameter α = 10−60 and σ2
d = 0.001

choice can affect the cluster number, which are used in the Dirichlet process (DP). The hyper-prior parame-

ters calculated in order to propose a non-informative prior choice.

θi ∼ N(µ1,
1

τ1mi
)

µ1 ∼ N(µ2,
1

0.1)

τ1 ∼ Gamma(50, 10)

• Liu [62] proposed an uninformative prior for the posterior distribution which follows aBeta(1, 1). The level
of leverage thateachof thecomplicatedmodelshas, is chosenby theparameterδ. Wechoose touse theδ = 0,
so eachmodel is weighted equally.
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Figure 4.3: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.3
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Figure 4.3: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.3
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Figure 4.4: Estimates on scenarios 2.B.1 to 2.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates. The prior
distribution in this graph is having a mean of the 0.3
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Figure 4.5: Shrinkage of the estimates. Compare the range of the maximum and the minimum distance of the estimates with the true distance. Closer
to 1 on y axis means the estimator shrinkage to the total mean is extreme. On the contrary if it’s closer to 0, then the borrowing information is limited.
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Figure 4.6: Difference between the mean true RR of all cohorts with the mean of the simulated response rates in each method and every scenario.
Each row indicates the different sample size points.
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Figure 4.7: Estimates on scenarios 3.A.1 to 3.A.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates.
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Figure 4.7: Estimates on scenarios 3.A.1 to 3.A.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates.
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Figure 4.8: Estimates on scenarios 1.A.3 to 1.B.2, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.9: Estimates on scenarios 1.A.2, 1.B.3 and 1.B.4, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average
absolute Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.9: Estimates on scenarios 1.A.2, 1.B.3 and 1.B.4, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average
absolute Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.10: Estimates on scenarios 2.A.1 to 2.A.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.11: Estimates on scenarios 2.C.1 to 2.C.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.11: Estimates on scenarios 2.C.1 to 2.C.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.12: Estimates on scenarios 2.D.1 to 2.D.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.13: Estimates on scenarios 3.B.1 to 3.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.13: Estimates on scenarios 3.B.1 to 3.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Abstract

In the era of precision medicine, basket trials have emerged as a core methodology for evaluating the activity of

treatments across different patient populationswith sharedmolecular characteristics. This study investigates the

application of various Bayesian methods in the context of the DRUP (Drug Rediscovery Protocol) trial, which em-

ploys a Simon’s two-stage design (STS) for each sub-study within a basket. These methods have in common that

they allow for borrowing of information across cohorts. Focusing on estimation of the response rates in each of

the baskets, simulations were used to determine optimal values for each method’s required parameter settings,

as well as to compare the performance of the different estimation procedures. The results underscore the impor-

tance of a priori selecting optimal tuning parameters tailored to specific trial conditions to enhance the reliability

of response rate estimates. The different simulation settings suggest that the EXNEXmethodmay offer enhanced

robustness compared to the other evaluated methods. This study provides practical recommendations for apply-

ing these methods in basket trials, aiming to improve the accuracy of estimation of treatment efficacy in basket

trials in oncology.

5.1 Introduction

In the evolving landscape of precisionmedicine, master protocol studies have emerged as a pivotal methodology,

particularly in (non-randomised) exploratory phase I/II research. [12] [11] Basket trials that we address in this pa-

per involve multiple substudies of the same drug, each with a single-arm trial design under a unified treatment

protocol. The basket trials target patients with varying tumor histologies that share a commonmolecular profile,

related to themechanismof actionof the drug. This innovative approach allows for the simultaneous evaluationof

treatmenteffects acrossdifferentpatientpopulations, optimizing resourceutilizationandaccelerating theclinical

development process.

Basket trials present considerablemethodological challenges, in terms of design and statistical analysis. A sin-

gle or two-stage design is usually proposed for substudies in this methodology. Kasim et. al [17] conducted an ex-

tensive literature review of ongoing, completed and terminated basket trials, identifying that out of 79 trials, 41 are

using two-stage designs or fully sequential designs. Simon’s two-stage design (STS)[16], was used in 30 basket tri-

als. However, Kasim et. al [17] highlights that the lack of standardized statistical tools and clear guidance presents

a challenge for consistent implementation and reproducibility of such trials.

The STS design is thus a popular design choice in exploratory trials with the ability to balance between prevent-

ing exposure to ineffective treatments and power while minimizing the required sample size. Although alterna-

tives for the STS design have been proposed (by Zhou et. al [65], Wu et. al [66] and Jing et. al [67]) the STS design

remainswidelyusedpractice. TheDrugRediscoveryProtocol (DRUP)[43] trial isanongoingprospectivemulti-drug

and pan-cancer trial. Patients with progression of an advanced or metastatic solid tumour, multiple myeloma or

B-cell non-Hodgkin lymphoma who lack standard treatment options, are eligible for this trial. DRUP consists of

a collection of baskets of substudies designed with a STS design. Baskets are defined based on the combination

of a molecular alteration shared by the patients and a drug given in the study. Some baskets are subdivided into

different substudies based on histology, some consist of a single, tumor-agnostic sub-study. All drugs studied in

theDRUP trial have alreadybeenapproved for other tumor types than theones studiedhere, hence thenamedrug-

rediscovery. The primary purpose of the STS design is to make a go/no-go decision on whether the drug studied

seems promising or not in the given patient group. The DRUP trial is designed with STS design assuming a Null

hypothesis that the clinical benefit rate of 0.1 is unacceptable and an alternative hypothesis of 0.3 clinical benefit
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rate is a desired effect size. The ”type I error” alpha, used across all cohorts, is 0.078 at a power of 0.85. According

to the admissible design as proposed by Jung et. al [68] the trial proceeds to a second stage if at least 1 response is

observed among the first 8 patients, with a total of 24 patients required to confirm treatment is not futile if at least

five responses are recorded. Clinical benefit in this context is definedas a complete response (CR), partial response

(PR), or stable disease lasting at least 16 weeks.

The estimation of response (or clinical benefit) rates within a two-stage design introduces additional statistical

complexities. Porcher et. al [30] suggested how to obtain proper inference on the response rate in a STS design,

and noted that the sample proportion is a biased estimate (underestimation of the true response rate) [21] for se-

quential designs. Alternative estimatorswere proposed that reduce the bias or provide unbiased estimates. These

include the uniformlyminimum-variance unbiased estimator (UMVUE) for themulti-stage approach proposed by

Junget. al [22]. Manybasket trialsaimtoestimate theresponseratebyeitherpoolingacrossall cohortsoranalyzing

each cohort independently [69]. Each strategy has its drawbacks, the pooled strategy has the risk to inflate the type

I error in case of large heterogeneity of treatment effects, while the independent analysis in small heterogeneity

scenarios lacks statistical power compared to alternative methods. Bayesian methods allow for estimation of the

basket-specific response rates, whilemaking use of results fromother baskets. Such approachesmay improve the

performance of the estimators, particularly when sample sizes are limited. [17], [14]. A methodological review for

the estimation of the response rate in a basket trial using single stage designs for sub-studies can be found in our

previous work [70].

This paper aims to evaluate and compare various estimation procedures for the response rates that allow for bor-

rowing, from an application perspective, using the DRUP trial as example. The methods require specification of

prior distributions and tuning parameters, which may affect the performance of the estimators. As it is impor-

tant to pre-specify analysis methods in full at the design stage, we use the design and characteristics of the DRUP

substudies in different baskets to illustrate an approach to set these parameters a priori, as well as compare the

differentmethods. A similar approach as Sauer et. al [71] andBaumannet. al [72] is followed, that suggestmethods

to select optimal tuning parameters through themaximisation of the expected number of correct decisions (ECD)

under a collection of various scenarios. As our focus is on estimation rather than decisionmaking, we use average

Root Means Square Error (aRMSE) basedmetrics (themin-mean aRMSE and themin-max aRMSE) as utility func-

tions, evaluated over a range of selected scenarios. The range of possible scenarios given the design choices of the

DRUP study is selected as basis to rationally select prior(s) and tuning parameters for each method and evaluate

themethods. The overall approach provides the basis for suggestions to the researches for the optimal application

of themethods.

Section 5.2 details the basket trial examples selected from the DRUP study and presents the response rate estima-

tion based on the parameters as suggested in the original papers. Section 5.3 explains the simulation scenario sets

anddiscussesparameteroptimizationgiven thedifferentutility functioncriteria. Resultsofbothparameterchoice

and the resulting estimation for theDRUPbaskets are presented in section 5.4 and theAppendix A. The discussion

section5.5addresses thestrengthsand limitationsandoffers suggestions forapplicationofourapproach indesign

and analysis of basket trials with the aim to provide reliable estimation.

5
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5.2 Methodology

DRUP trial example and initial estimation

Three different examples of actual basket trials under the DRUP study are used in this paper. The DRUP trial is an

ongoing trial and not all of the baskets used in this paper are published yet, so the histologies and the genomic

aberration types aremasked. In the DRUP platform trial a large number of baskets withmultiple substudies have

alreadyopened, ofwhichonly a small part hasbeencompleted. In table 5.1 theactual results (response) of the three

basket trial examples from the DRUP study are presented. Basket trial 1 includes 4 cohorts (substudies), of which

Cohort 1Ddidnot complete the first stageyet (8patients) and the remainingcohorts areongoing in stage2. Cohorts

1A and 1C have already reached the designs target of at least 5 responses to claim that the treatment is active for

this genomic aberrations. Basket trial 2 has already 2 completed and successful cohorts and 2 cohorts recruiting

patients in the second stage. Basket trial 3 is the one with the most completed cohorts so far. Cohorts 3A, 3B and

3C have been completed, with the cohort 3A having one patient less than the required design, but the number of

responses ismore thanneeded to reach success in this STSdesign. Cohort 3Chasonemorepatient than thedesign

requires, becauseduring theaccrual twopatientswhereeligible to take the treatmentat that time. Cohort 3D is still

recruiting in the second stage of the design.

Basket trial 1 (Lenvatinib)
Clinical benefit Total Patient

Cohort 1A 6 16
Cohort 1B 3 14
Cohort 1C 8 11
Cohort 1D 3 5

Basket trial 2 (Trastuzumab)
Cohort 2A 9 24
Cohort 2B 11 24
Cohort 2C 4 19
Cohort 2D 3 8

Basket trial 3 (Olaparib)
Cohort 3A 14 23
Cohort 3B 10 24
Cohort 3C 8 25
Cohort 3D 3 17

Table 5.1: DRUP basket trials and the respective cohorts masked

We examine how the selected estimation methods can be used for estimation of the response rates, given the

STS design in each cohort, including the scenario that the targeted sample size is not yet reached. It is important

for practical applications to keep in mind that it might not be feasible to complete the pre-specified sample size

for all substudies. The natural option for estimation is the sample proportion: the observed number of responses

divided by the total number of patients. This is, however, biased for most cohorts. The alternative Jung estimator

for the analysis of independent cohort level response rate following theSTSdesignmightnot be appropriate in this

case, since the trial sample size is not completed for a number of cohorts. Berry et. al [54], EXNEX [55], Psioda et. al

[57] and Fujikawa et. al [58], described inmore detail below, are Bayesianmethods to estimate the response rates

in each basket trial. To conduct an analysis using these methods, parameters need to be specified. The authors

proposed tuning parameters and prior distribution parameters. Following our previouswork [70], if flat priors are

applied to the example data from DRUP, results are as displayed in Table 5.2 below. As can be seen from Table 5.2,
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1A and 1C have already reached the designs target of at least 5 responses to claim that the treatment is active for

this genomic aberrations. Basket trial 2 has already 2 completed and successful cohorts and 2 cohorts recruiting

patients in the second stage. Basket trial 3 is the one with the most completed cohorts so far. Cohorts 3A, 3B and

3C have been completed, with the cohort 3A having one patient less than the required design, but the number of

responses ismore thanneeded to reach success in this STSdesign. Cohort 3Chasonemorepatient than thedesign

requires, becauseduring theaccrual twopatientswhereeligible to take the treatmentat that time. Cohort 3D is still

recruiting in the second stage of the design.

Basket trial 1 (Lenvatinib)
Clinical benefit Total Patient

Cohort 1A 6 16
Cohort 1B 3 14
Cohort 1C 8 11
Cohort 1D 3 5

Basket trial 2 (Trastuzumab)
Cohort 2A 9 24
Cohort 2B 11 24
Cohort 2C 4 19
Cohort 2D 3 8

Basket trial 3 (Olaparib)
Cohort 3A 14 23
Cohort 3B 10 24
Cohort 3C 8 25
Cohort 3D 3 17

Table 5.1: DRUP basket trials and the respective cohorts masked

We examine how the selected estimation methods can be used for estimation of the response rates, given the

STS design in each cohort, including the scenario that the targeted sample size is not yet reached. It is important

for practical applications to keep in mind that it might not be feasible to complete the pre-specified sample size

for all substudies. The natural option for estimation is the sample proportion: the observed number of responses

divided by the total number of patients. This is, however, biased for most cohorts. The alternative Jung estimator

for the analysis of independent cohort level response rate following theSTSdesignmightnot be appropriate in this

case, since the trial sample size is not completed for a number of cohorts. Berry et. al [54], EXNEX [55], Psioda et. al

[57] and Fujikawa et. al [58], described inmore detail below, are Bayesianmethods to estimate the response rates

in each basket trial. To conduct an analysis using these methods, parameters need to be specified. The authors

proposed tuning parameters and prior distribution parameters. Following our previouswork [70], if flat priors are

applied to the example data from DRUP, results are as displayed in Table 5.2 below. As can be seen from Table 5.2,
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the response rates estimates presented can vary substantially depending on the estimator used.

Basket trial 1 (Lenvatinib)
x/n Sample prop Psioda Fujikawa Berry EXNEX

Cohort 1A 6/16 0.375 0.385 0.369 0.416 0.391
Cohort 1B 3/14 0.214 0.282 0.310 0.363 0.261
Cohort 1C 8/11 0.727 0.664 0.655 0.533 0.673
Cohort 1D 3/5 0.6 0.548 0.542 0.480 0.543

Basket trial 2 (Trastuzumab)
Cohort 2A 9/24 0.375 0.379 0.386 0.362 0.371
Cohort 2B 11/24 0.4583 0.430 0.422 0.374 0.425
Cohort 2C 4/19 0.2105 0.277 0.315 0.340 0.264
Cohort 2D 3/8 0.375 0.381 0.382 0.361 0.371

Basket trial 3 (Olaparib)
Cohort 3A 14/23 0.609 0.568 0.6 0.473 0.570
Cohort 3B 10/24 0.417 0.413 0.382 0.401 0.407
Cohort 3C 8/25 0.320 0.337 0.339 0.364 0.336
Cohort 3D 3/17 0.177 0.248 0.269 0.320 0.225

Table 5.2: DRUP basket trials and the respective cohorts masked. Numbers represent the estimate of the clinical benefit rate obtained by each
method using a flat prior

Themethodologicalquestion thatarises iswhether theestimatespresented inTable5.2areoptimal for thegiven

design or if a different (a priori) choice of parameter values can yield better estimates. We investigate this by op-

timizing parameter selection based on the minimization of the Root Mean Square Error (RMSE) under a suitable

collection of scenarios. This is done through the simulation study described below. It is noted that such a simula-

tion study can be performed at the design stage, generally allowing for pre-specification of the estimationmethod.

The four Bayesianmethods evaluated are summarised as follows.

Estimator based on Berry et al.[54]

The Berry method employs a Bayesian hierarchical model (BHM) to estimate the response rates in different

cohorts, assuming exchangeability between cohorts, which allows for information sharing.

The observed responses yj for each cohort j follow a binomial distribution:

yi ∼ Binomial(nj , πj)

The logit-transformed response rates θj := logit(πj) are assumed to be normally distributed:

θj ∼ N (µ, σ2)

The hyperparameters for the priors are:

µ ∼ N (0, 100), σ2 ∼ IG(0.0005, 0.00005)

The posterior distribution is obtained by updating the priors with the observed data using Bayes’ theorem. In-

formation is borrowed between cohorts through the hierarchical structure, assuming that the response rates are

exchangeable.
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Estimator based on Neuenschwander et al.[55]

The EXNEX (Exchangeable-Non-Exchangeable) method, proposed by Neuenschwander et al.[55] , combines ex-

changeable and non-exchangeable components to model response rates in different cohorts, providing a flexible

framework for information borrowing.

The observed responses yj for each cohort j follow a binomial distribution:

yj ∼ Binomial(nj , πj)

The logit-transformed response rates θj := logit(πj) are modelled using a mixture of exchangeable and non-

exchangeable components:

θj |µ, τ2 ∼ N (µ, τ2)with probabilityw

θj ∼ N (mi, vi)with probability 1 − w

The hyper-parameters for the priors are:

µ ∼ N (0, 3), τ2 ∼ half-normal(1)

The mixture weights w determine the extent of borrowing between cohorts. It is a fixed value that needs to be

set beforehand. Ifw is high,more information is borrowed from other cohorts.

The EXNEX method uses Markov Chain Monte Carlo (MCMC) methods to estimate the posterior distributions

of the response rates, accounting for both exchangeable and non-exchangeable components. For the purposes of

this paper the ‘bhmbasket’ R package is used for the calculation of the estimate.

Estimator based on Psioda et al.[57]

The Psioda method employs a Bayesian Model Averaging (BMA) approach to enhance the estimation of cohort-

specific response rates in basket trials. This method combines information from multiple cohorts by averaging

over all possiblemodels that describe the relationships between cohorts.

The observed responses yj for each cohort j follow a binomial distribution:

yi ∼ Binomial(nj , πj)

where nj is the number of subjects in cohort j and πj is the response rate for cohort j . The prior distribution for

the response rate πj is given by a Beta distribution:

πi ∼ Beta(aj , bj)

The posterior distribution of πj is obtained by updating the prior with the observed data:

πi|yi ∼ Beta(aj + yj , bj + nj − yj)

Model averaging is performed by computing the posterior distribution for each possible model and then

averaging these distributions, weighted by the posteriormodel probabilities.
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Information borrowing is achieved by assigning probabilities to all possiblemodels that include different com-

binations of cohorts. The posterior distributions of the response rates areweighted averages of themodel-specific

posterior distributions, allowing for adaptive borrowing based on the similarity of response rates across cohorts.

Estimates were obtained using the function ‘bma‘ (version 0.1.2) in the R package ‘bmabasket‘.

Estimator based on Fujikawa et al. [58]

The Fujikawa method is a Bayesian approach that borrows information across cohorts based on the similarity of

their response rates. This method uses a similarity measure to determine the extent of borrowing, allowing for

more accurate estimation of response rates when cohorts are similar.

The observed responses yj for each cohort j follow a binomial distribution:

yj ∼ Binomial(nj , πj)

The prior distribution for the response rate πj is a Beta distribution:

πj ∼ Beta(aj , bj)

The posterior distribution is updated based on the observed data:

πj |yj ∼ Beta(aj + yj , bj + nj − yj)

Themethod employs similarity measures such as the Jensen-Shannon (JS) divergence or the Kullback-Leibler

(KL) distance to quantify the similarity between cohorts. The similarity measure wjh between cohorts j and h is

defined as:

wjh = 1 − JS(P ∥ Q)

Borrowing is allowed if the similaritymeasure exceeds a threshold τ . Theupdatedprior forπi is aweighted sum

of the Beta distributions from similar cohorts:

πj ∼ Beta

(
K∑

h=1
I(wih > τ)wϵ

iha′
h,

K∑

h=1
I(wih > τ)wϵ

ihb′
h

)

Themethod adaptively borrows information based on the similarity between cohorts.

5.3 Simulation study for parameter selection

Response data for four cohorts of patients are simulated based on a binomial distributionwith specified probabili-

ties p. The simulations were designed to reflect the DRUP trial and incorporate the STS-based decision criteria for

each cohort.

We simulated with probabilities p = 0.1, p = 0.3, and p = 0.6 to generate patient response data. Each simula-

tion scenario was repeatedS = 10, 000 times.

Scenarioset 1and2 followedcompletely theSTSdesign, so thepossiblesamplesizescouldbeeither8, if stopping

in the first stage is decided, or 24 if the first stage is completed successfully. The Scenario set ”reduced” addresses
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that in practice the total STS sample size may not be reached, due to various reasons (e.g., recruitment). It follows

the same response rate scenarios as the Scenario set 1, table 5.3. For ”Scenario reduced”, the first stage is assumed

to be completed and if it is possible to proceed in the second stage, the trial is assumed to stop after a random

number of patients in the second stage. This randomness is implemented by choosing the second stage sample

size by a uniform distribution, where theminimumnumber of patients is 0 and themaximum is 16.

The following scenarios were thus simulated:

1. Scenario Set 1: Probabilities pwere set to low (0.1), mid (0.3), and high (0.6) values for different combinations

across the four cohorts.

2. ScenarioSet 2: To test the sensitivity of the tuning parameters under extreme conditions, probabilitieswere

set to 0.4, 0.7, and 0.9.

3. Scenario Set reduced: To test the sensitivity of the tuning parameters under a realistic setting, where the

sample size is smaller than in Scenario Set 1, probabilities were set to 0.1, 0.3, and 0.6.

The specific combinations of responseprobabilities across the cohorts in each scenario set are detailed in Table

5.3 and Table 5.7 respectively.

Cohort A Cohort B Cohort C Cohort D
a 0.1 0.1 0.1 0.1
b 0.1 0.1 0.1 0.3
c 0.1 0.1 0.1 0.6
d 0.1 0.1 0.3 0.3
e 0.1 0.1 0.3 0.6
f 0.1 0.1 0.6 0.6
g 0.1 0.3 0.3 0.3
h 0.1 0.3 0.3 0.6
i 0.1 0.3 0.6 0.6
j 0.1 0.6 0.6 0.6
k 0.3 0.3 0.3 0.3
l 0.3 0.3 0.3 0.6
m 0.3 0.3 0.6 0.6
n 0.3 0.6 0.6 0.6
o 0.6 0.6 0.6 0.6

Table 5.3: Scenarios selected in the simulation studies for Scenario Set 1 and Scenario Set reduced. Numbers represent the true response
probability in each cohort in each scenario

The RMSE for each cohort j is defined as the square root of the mean of the squared differences between the

estimated and true values. It is calculated as:

RMSEj =

√√√√ 1
S

S∑

i=1
(p̂ij − pj)2

where p̂ij is theestimatedvalue insimulation iandpj is the truevalue foreachcohort j . TheaverageRMSE(aRMSE)

across all cohorts is then calculated as:

aRMSE = 1
4

4∑

j=1
RMSEj

Inorder tooptimize the selectionof thedifferentparameter choices ineachmethod, twostrategies are followed:



84 | 5. EVALUATINGBASKET TRIALMETHODOLOGY INONCOLOGY: A COMPARATIVE ANALYSIS USING THEDRUP STUDY

that in practice the total STS sample size may not be reached, due to various reasons (e.g., recruitment). It follows

the same response rate scenarios as the Scenario set 1, table 5.3. For ”Scenario reduced”, the first stage is assumed

to be completed and if it is possible to proceed in the second stage, the trial is assumed to stop after a random

number of patients in the second stage. This randomness is implemented by choosing the second stage sample

size by a uniform distribution, where theminimumnumber of patients is 0 and themaximum is 16.

The following scenarios were thus simulated:

1. Scenario Set 1: Probabilities pwere set to low (0.1), mid (0.3), and high (0.6) values for different combinations

across the four cohorts.

2. ScenarioSet 2: To test the sensitivity of the tuning parameters under extreme conditions, probabilitieswere

set to 0.4, 0.7, and 0.9.

3. Scenario Set reduced: To test the sensitivity of the tuning parameters under a realistic setting, where the

sample size is smaller than in Scenario Set 1, probabilities were set to 0.1, 0.3, and 0.6.

The specific combinations of responseprobabilities across the cohorts in each scenario set are detailed in Table

5.3 and Table 5.7 respectively.

Cohort A Cohort B Cohort C Cohort D
a 0.1 0.1 0.1 0.1
b 0.1 0.1 0.1 0.3
c 0.1 0.1 0.1 0.6
d 0.1 0.1 0.3 0.3
e 0.1 0.1 0.3 0.6
f 0.1 0.1 0.6 0.6
g 0.1 0.3 0.3 0.3
h 0.1 0.3 0.3 0.6
i 0.1 0.3 0.6 0.6
j 0.1 0.6 0.6 0.6
k 0.3 0.3 0.3 0.3
l 0.3 0.3 0.3 0.6
m 0.3 0.3 0.6 0.6
n 0.3 0.6 0.6 0.6
o 0.6 0.6 0.6 0.6

Table 5.3: Scenarios selected in the simulation studies for Scenario Set 1 and Scenario Set reduced. Numbers represent the true response
probability in each cohort in each scenario

The RMSE for each cohort j is defined as the square root of the mean of the squared differences between the

estimated and true values. It is calculated as:

RMSEj =

√√√√ 1
S

S∑

i=1
(p̂ij − pj)2

where p̂ij is theestimatedvalue insimulation iandpj is the truevalue foreachcohort j . TheaverageRMSE(aRMSE)

across all cohorts is then calculated as:

aRMSE = 1
4

4∑

j=1
RMSEj

Inorder tooptimize the selectionof thedifferentparameter choices ineachmethod, twostrategies are followed:

5.3. SIMULATION STUDY FOR PARAMETER SELECTION | 85

1. minimization of theMean of the aRMSE: An optimal combinations of parameter values is selected bymini-

mizing themean aRMSE across all scenarios.

2. minimization of the Maximum of the aRMSE: An optimal combination of parameter values is selected by

minimizing the maximum aRMSE. It thus controls that the selected parameter set does not have an excep-

tionally high aRMSE in any scenario.

For the notation of the paper wewill use the following utility functions:

1. Ûmin-mean aRMSE: Indicating theminimization of theMean of the aRMSE across all scenarios.

2. Ûmin-max aRMSE: Indicating theminimization of theMaximumof the aRMSE across all scenarios.

By exploring a comprehensive parameter space, we aim to identify the parameter settings for each Bayesian

method that ensure reliable and accurate response rate estimates in the context of basket trials using the STS de-

sign.

5.3.1 Parameter Space for Simulation

Eachmethod has a number of parameters and priors to specify. In our previous research work [70], we used flat-

uninformative priors and parameters as suggested by the authors. In this paper, we explore a variety of parameter

combinations within the parameter space for eachmethod.

For Berry’smethod, the following parameter space is explored:

Targetmean: [0.1, 0.5, 0.9]

Variance parameter: τ ∼ dgamma(τdisp, τdisp/100), τdisp = [0.00005, 0.0005, 0.005]

Hyper-parameters of themean:





µ = [−2, −1, 0, 1, 2]

var = [0.001, 0.01, 0.1, 1]

*

For the EXNEXmethod the following parameter space is explored, including different values for the weight be-

tween the EX andNEX parts:
w = [0.1, 0.3, 0.5, 0.7, 0.9]

τ2 = [0.1, 0.75, 1, 1.25]

EXmean: = [0.1, 0.5]

NEXmean: = [0.1, 0.5]

For the Psioda method [57], three different parameters need to be set: the mean of the prior, the dispersion

parameter, and the prior distribution applied to the possible model choice. The explored parameter space is as

follows:
Priormean: µ = [0.1, 0.3, 0.5, 0.7, 0.9]

Dispersion parameter: ϕ = [0.5, 1, 2, 3, 5, 8, 10]

Priormodel parameter: pmp = [−10, −8, −6, −4, −3, −2, −1, 0, 1, 2, 3, 4, 6, 8, 10]

*The number of examined tuning parameters and prior parameters was limited because of the computational time required to run all the
possible scenarios. The Psiodamethodwas fastest so the parameter spacewas extended.
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The pmp parameter assigns relative weights to the independent (heterogeneity between cohorts) model (positive

value) or to the homogeneous model (negative value). Although Psioda initially proposed using zero or positive

values for thepmpparameter,weextend thisbyalsoexploringnegativevalues. This allowsus toexaminescenarios

favouring homogeneousmodels, thus providing a comprehensive evaluation of themethod’s performance under

a wider range of cohort similarity assumptions.

For the Fujikawamethod, the following parameter space is explored:

α = [1]

β = [1, 2.33333]

τ = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]

ϵ = [0.5, 1, 1.5, 2, 2.5, 3, 4, 6]

5.4 Results

In Fig. 5.1, the mean aRMSE of all scenarios for the four examined methods are presented. The overall graphical

representationof theresults isbasedonacolourpalette (heat-map)wheregreen indicates the lowestmeanaRMSE,

black the highest, and white, yellow and red represent intermediate values. In all heat-map figures, the mean or

max aRMSE value is presented using the same colour limits, so the graphs can be directly compared.

Berry’smethod exhibited relatively uniformperformance across parameter combinations, showing onlyminor

variations in bothmean andmax aRMSE (fig 5.2,5.1). The tuning parameters influencedmean aRMSE slightly, but

max aRMSE remained largely unaffected across parameter settings. In general, themethod showed limited sensi-

tivity to prior specification, with small differences in performance between parameter combinations. The ”target

mean” parameter, reflecting the expected response rate, had anoptimal value of 0.5 inmost cases. However, differ-

encesbetween the twoutility functions,min-meanandmin-maxaRMSEwereobserved inotherprior settings. For

example, the optimal prior mean for the normal distribution was -2 for min-mean aRMSE in scenario set 1, while

formin-max aRMSE the values shifted to 1 in scenario set 1 and 2 in theReduced set patient scenarios. The optimal

prior variance remained fixed at 1 across all cases, despite the authors recommending a smaller value (0.01), indi-

cating that a higher dispersion, which does not allow the prior to spreadmore around itsmean, seems to improve

the estimation process. Additionally, the choice of the parameter of inverse gamma distribution for the variance

had minimal effect on the results. These findings suggest that Berry’s method is relatively stable under different

parametrizations, on average. Finally, although bias was generally low across all settings, an expected trade-off

was observed: parameter sets with the lowestmean absolute bias tended to produce highermean aRMSE values.

The EXNEX method, which combines exchangeable (EX) and non-exchangeable (NEX) components, demon-

strated consistent performance in terms of mean and max aRMSE across the different tuning parameters. Opti-

mal aRMSE valueswere observedwhen both the EX andNEXpriormeanswere set to 0.5, withminimization of the

aRMSE occurring at a high weight parameter (w = 0.9), favouringmore borrowing of information across baskets.

In both mean aRMSE and max aRMSE, fig 5.2,5.1, it was observed that as the weight (w) increased in favour of the

EX component, thus allowingmore borrowing, the aRMSE values decreased. However, an exception was noted at

lowervaluesof thepriorvarianceparameter (tau.HN=0.1),where increasingtheweight (w) actually led to increased

aRMSE values. Other EX andNEX priormean parameter values exhibited the same general pattern as the optimal

0.5 setting, but resulted in slightly highermean andmax aRMSE values. The optimal values for the tau.HN param-

eter ranged from 1 for the min-mean aRMSE scenario set 1 to 1.25 for both the min-max aRMSE and the reduced

patient scenarios, aligning closely with the authors’ suggested value of 1. Optimal parameters remained similar
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was observed: parameter sets with the lowestmean absolute bias tended to produce highermean aRMSE values.

The EXNEX method, which combines exchangeable (EX) and non-exchangeable (NEX) components, demon-

strated consistent performance in terms of mean and max aRMSE across the different tuning parameters. Opti-

mal aRMSE valueswere observedwhen both the EX andNEXpriormeanswere set to 0.5, withminimization of the
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EX component, thus allowingmore borrowing, the aRMSE values decreased. However, an exception was noted at
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patient scenarios, aligning closely with the authors’ suggested value of 1. Optimal parameters remained similar
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under the ”Reduced set” scenarios. Additionally, mean absolute bias was consistently low across parameter sets,

with the smallestmean aRMSE observedwhen amoderate level of bias was allowed.

Psioda’smethodwas influenced by the selection of the parameters, the priormean (µ0), dispersion (ϕ0), and the

prior model parameter (pmp0). In general, the method followed consistent patterns across parameter combina-

tions, though theperformancedifferedacrossutility functions and settings. Regarding thepriormean (µ0), a value

of 0.3 resulted in the lowestmean aRMSE, while 0.5 was optimal forminimizingmax aRMSE. These values aligned

closelywith the average true response rate across the scenario set. In scenario set 1 the average true response rate

is 0.33 and in scenario set 2 is 0.7. Similarly, the priormodel parameter (pmp0) had a clear effect on aRMSE values.

For min-mean aRMSE, lower values such as pmp0 = 0 or slightly above led to better performance, favouring the

uninformative priormodel. In contrast, formin-max aRMSE, higher values were preferred (pmp0 = 4 in scenario
set 1 andpmp0 = 6 in the reducedpatient scenario), indicatingbetterperformancewhenassigningmoreweight to

modelswithmoreparameters, like the independentmodel. While theauthors recommendedaweakly informative

priorwithϕ0 = 1, our simulations indicated that higher dispersion values improved estimation performance. The

smaller aRMSE values in parameterϕ0 ranged from 1 to 5, withϕ0 = 5 providing the best results formost settings,

and ϕ0 = 3 performing best in the reduced sample size scenario under min-max aRMSE. Psioda’s method em-

phasizes the importance of careful parameter tuning. While optimal settings differ slightly between the twoutility

functions, multiple parameter combinations can lead to good estimation performance. A trade-off was observed

betweenaRMSEandbias,whereparameter sets yielding loweraRMSEdidnot alwaysminimizemeanabsolutebias.

This underlines the need to balance precision and accuracy when selecting prior settings for Psioda’smethod.

The Fujikawa method facilitates information borrowing across baskets by adjusting two key parameters: τ ,

whichdetermineswhether borrowing is permitted, and ϵ, which regulates the extent of borrowing. While Fujikawa

et al. caution against using ϵ > 2 to avoid underestimating similarity between baskets, our simulation results

suggest otherwise. We find that the performance — measured by both mean and max aRMSE — varies notably

with parameter choices. Specifically, combinations of small τ (≤ 0.5) and small ϵ (≤ 2) lead to higher error. In

contrast, better performance is achieved when either τ > 0.5 or ϵ > 2, regardless of the other parameter’s value.

Interestingly, our findings consistently indicate that setting τ = 0 — allowing borrowing in all cases — yields

optimal outcomes across utility functions. Moreover, although larger ϵ values (e.g., ϵ = 6) reduce the degree of
borrowing, the differences in estimation accuracy and aRMSE compared to moderate values (e.g., ϵ = 4) remain

minimal. The beta prior parameters seem to play an important role in the mean and max aRMSE. The optimal

value of α = 1 and β = 2.333 is observed for the Reduced set and the full patient scenarios but in scenario set

2,the optimal values areα = 1 and β = 1 as suggested by the authors as well.

5



88 | 5. EVALUATINGBASKET TRIALMETHODOLOGY INONCOLOGY: A COMPARATIVE ANALYSIS USING THEDRUP STUDY

Method Parameter Ûmin‐mean aRMSE Ûmin‐mean aRMSE reduced Ûmin‐max aRMSE Ûmin‐max aRMSE reduced Uninformative

Fujikawa

τ 0 0 0 0 0.5
ϵ 4 6 4 6 2
α 1 1 1 1 1
β 2.333 2.333 2.333 2.333 1

Psioda
ϕ0 5 5 5 3 2

pmp0 0 0 4 6 1
µ0 0.3 0.3 0.5 0.5 0.5

Berry

mean 0.5 0.5 0.5 0.5 0.5
priorµ.mean ‐2 ‐2 1 2 0
priorµ.var 1 1 1 1 0.01

τdisp 0.005 0.005 0.005 0.005 0.0005

EXNEX

ex.p.w 0.5 0.5 0.5 0.5 0.5
nex.p.w 0.5 0.5 0.5 0.5 0.5

w 0.9 0.9 0.9 0.9 0.5
tau.HN.scale 1 1.25 1.25 1.25 1

Table 5.4: Parameters optimal values on the different utility functions
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Figure 5.1: Results of the scenario set 1. A heat‐map figure of theMean aRMSE for all the 4 methods, representing all the parameter combi‐
nations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.1: Results of the scenario set 1. A heat‐map figure of theMean aRMSE for all the 4 methods, representing all the parameter combi‐
nations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.2: Results of the scenario set 1. A heat‐map figure of theMax aRMSE for all the 4 methods, representing all the parameter combina‐
tions used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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5.4.1 Sensitivity analysis

The Berry method is slightly sensitive in the target mean parameter. In scenario set 1 the 0.1 and 0.5 are showing

the best aRMSEvalues in bothmeanormax functions, and in scenario set 2 the0.5 and0.9 arehaving smaller error

values. Although the observed differences in performance are relativelyminor, acknowledging these variations is

important for a comprehensive understanding.

The EXNEX method does not show sensitivity in the patterns of aRMSE across the two scenario sets, or even

when a reduced number of patients is used, indicating that its parameter choices are robust to variations in the

true response rates.

For the Psioda method, sensitivity to the prior mean choice is evident. In scenario set 1, the smallest mean

aRMSE values occur when the prior mean was set to 0.3, matching the average response probability in that sce-

nario set. Similarly, in scenario set 2, a priormeanof 0.7 yields the lowestmean aRMSEvalues. These results are an

indication that the Psiodamethod’smean is sensitive to the underlying scenario conditions. This effect also exists

in the Reduced set scenario (Fig 5.1,5.2,5.5 for themean and fig 5.9 for themax aRMSE).

For the Fujikawamethod, similar sensitivity to the priormean is observed, between the two scenario sets. Mean

aRMSE is more affected by prior choices than max aRMSE, suggesting that this method is relatively robust to ex-

treme errors but more sensitive to average-case performance. In scenario set 1, where the average true response

rate is 0.3, a priormean of 0.3 gives the smallest aRMSE values. In scenario set 2, where the average true response

rate is 0.7, a prior mean of 0.5 gives a more accurate aRMSE. Scenario set reduced suggested the optimal ϵ = 6,
which is higher value than in Scenario set 1, ϵ = 4. This choice does not greatly impact the results, even the differ-

ence in aRMSE is really small in every scenario set.

The Bayesian methods consistently outperformed the sample proportion in terms of mean and max aRMSE.

In scenario set 1, under min-mean aRMSE, the sample proportion estimator had a mean aRMSE of 0.099, while

Bayesian methods showed lower values: Fujikawa (0.077), Psioda (0.076), EXNEX (0.080), and Berry (0.083) (Table

5.5). Although Bayesian methods introduced slightly higher mean absolute bias compared to the sample propor-

tion estimator, ranging from 0.022 to 0.034 versus 0.013, they improved overall estimation precision, clearly re-

flected by their lower aRMSE values. Similarly, under themin-max aRMSE scenario, Bayesianmethods continued

to present lower aRMSE values than simpler estimators. For example, the max aRMSE for the sample proportion

estimator was higher (0.113) compared to Bayesian approaches like Fujikawa (0.095), Psioda (0.090), EXNEX (0.101),

and Berry (0.107). Even in reduced patient scenarios, Bayesian methods maintained their advantage: while the

sample proportion estimator reached amax aRMSEof 0.132, Bayesianmethods such as Fujikawa (0.113) and Psioda

(0.107) provided considerably lower values. A further comparison between optimized and uninformative priors

reveals that tuning can improve performance. For example, in scenario set 1 under the min-mean aRMSE utility,

Fujikawa’s method had amean aRMSE of 0.077 with optimized priors versus 0.080 with uninformative priors, and

correspondingmean absolute biases of 0.034 and 0.022, respectively. Psioda showed a similar pattern, withmean

aRMSE increasing from 0.076 to 0.078 and mean absolute bias decreasing from 0.031 to 0.017 when moving from

optimized to uninformative priors. While uninformative priors sometimes led to lower bias, the optimization re-

sulted in better aRMSE values.
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5.4.2 DRUP trial results with selected parameters

The simulation study identified optimal parameter choices for each utility function used to evaluate themethods:

min-mean aRMSE and min-max aRMSE. These optimal parameters were derived based on the specific design of

the DRUP study’s Simon’s two-stage design (STS), but using two possible settings. Strictly follow the design and

simulate full cohorts, or simulate a reduced number of patients, given a random stop after completing the first

stage. Table 5.4 presents the results of these optimizations, while Table 5.6 provides the corresponding response

rate estimates for each basket.

In table 5.5, the mean aRMSE and the max aRMSE for the two different optimal utility functions and settings

and the uninformative parameters are presented. The Bayesian methods have a smaller mean aRMSE and max

aRMSE compared to the sample proportion in almost all cases. The results across the Bayesian methods appear

similar at the parameter settings optimised with the above approach. The results between the Bayesianmethods

are comparable in terms of aRMSE, but the EXNEXmethod has smaller mean bias at the selected parameters for

both utility functions.

scenario set 1
Ûmin‐mean aRMSE Ûmin‐max aRMSE Uninformative

Method mean aRMSE (mean abias) max aRMSE (max abias) mean aRMSE (mean abias) max aRMSE (max abias) mean aRMSE (mean abias) max aRMSE (max abias)

Sample proportion 0.099 (0.013) 0.113 (0.028) ‐ ‐ ‐ ‐
Fujikawa 0.077 (0.034) 0.095 (0.043) 0.077 (0.034) 0.095 (0.043) 0.08 (0.022) 0.099 (0.037)
Psioda 0.076 (0.031) 0.095 (0.039) 0.088 (0.044) 0.09 (0.080) 0.078 (0.017) 0.095 (0.024)
EXNEX 0.08 (0.022) 0.101 (0.037) 0.080 (0.02 ) 0.101 (0.033) 0.084 (0.01) 0.104 (0.019)
Berry 0.083 (0.031) 0.109 (0.055) 0.086 (0.031) 0.107 (0.055) 0.086 (0.031) 0.111 (0.057)

scenario set reduced
Ûmin‐mean aRMSE Ûmin‐max aRMSE Uninformative

mean aRMSE (mean abias) max aRMSE (max abias) mean aRMSE (mean abias) max aRMSE (max abias) mean aRMSE (mean abias) max aRMSE (max abias)

Sample proportion 0.117 (0.01) 0.132 (0.019) ‐ ‐ ‐ ‐
Fujikawa 0.093 (0.039) 0.113 (0.053) 0.093 (0.039) 0.113 (0.053) 0.099 (0.034) 0.118 (0.051)
Psioda 0.092 (0.044) 0.11 (0.057) 0.102 (0.04 ) 0.107 (0.072) 0.096 (0.026) 0.113 (0.034)
EXNEX 0.097 (0.029) 0.118 (0.045) 0.097 (0.029) 0.118 (0.045) 0.101 (0.014) 0.122 (0.025)
Berry 0.1 (0.044) 0.126 (0.069) 0.107 (0.034) 0.108 (0.061) 0.103 (0.042) 0.111 (0.074)

Table 5.5: aRMSE and abias values on the different utility functions for scenario set 1 and reduced number of patients

Table 5.6 summarizes the response rate estimates for eachmethod, based on the optimal parameter configura-

tions identified through the simulation study. Across all methods, there was a clear tendency for the estimates to

shrink toward themean, regardless of parameter choice. The estimated response rates of everymethod are lower

than the sample proportions in Cohort 1C,where 8 out of 11 patients responded to treatment. Themethods provide

estimates that are larger than the sample proportion for Cohort 3D. This discrepancy highlights the challenge of

balancing borrowing across baskets whilemaintaining accuracy in individual cohort estimates.

5
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Û

m
in‐m

ax
aRM

SE
U
ninf

Û
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(0.377)
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(0.395)
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0.365
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(0.385)
0.433

(0.439)
0.416

0.403
(0.401)

0.401
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0.391
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0.284

(0.284)
0.291

(0.265)
0.282
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(0.321)
0.370

(0.361)
0.363
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(0.297)

0.261
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Û
m
in‐m

ean
aRM

SE
Û
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5.5 Discussion

This research study aimed to explore an approach to determine prior distribution and tuning parameter config-

urations essential for Bayesian methods used in estimating response rates within basket trial designs. The focus

was on estimation, by developing a prior and tuning parameters selectionmethod designed to be predefined and

reproducible (table 5.4). Employing Simon’s two-stage design in each independent cohort, we demonstrated our

methodological frameworkusingboth simulation scenarios and real-worlddata fromtheDRUPstudy. Utility func-

tions, specificallymin-mean andmin-max average RootMean Square Error (aRMSE), determined the selection of

optimal parameters performance. We applied themethods in a simulation environmentwhere the study enrolled

as planned 8 or 24 patient, as well as in a realistic to the DRUP study setting, where a reduced number of patients

are observed in the second stage for some cohorts at a point when estimation becomes relevant.

A key strength of our approach is the systematic and transparent methodology for parameter optimization, al-

lowing pre-specification and reproducibility of optimal choices based on clear performance metrics. Prior and

tuning parameter selection is often arbitrary or unclear in existing Bayesian basket trial literature. Explicit distinc-

tions between ’prior parameters’ and ’tuning parameters’ should be clarified, given their substantial influence on

model behaviour. Additionally, by applying this approach directly to realistic scenarios from the DRUP study, we

demonstrated its practical relevance and potential utility in real-world oncology trials.

Overall, we found that optimal parameter selections based on mean aRMSE and max aRMSE generally con-

verged, producing similar estimated response rates across methods in the DRUP application (table 5.6). Although

parameter patterns showed similarities across the utility functions, small differenceswere still influential for spe-

cific estimationoutcomes. This emphasizes the importanceof explicitly defining and justifying theutility criterion

at the design stage.

Eachmethod displayed distinct characteristics. The Berrymethod, provided generally low values formean and

maximumaRMSE, indicating good average performance. However, in heterogeneous conditions, itmaynot be the

best choice. TheEXNEX, althoughslightlyunder-performing inhomogeneous scenarios (e.g., scenarios a, k, ando),

consistently provided reliable and robust estimates in scenarios with higher heterogeneity. Psioda demonstrated

parameter regionswith lowaRMSE,butwithmoresensitivity to thescenarios.TheFujikawamethodshowedconsis-

tent performance and stability in parameter selection across different scenario sets,making it a reliable choice for

a range of trial conditions. The sample proportion is known to be biased for these STS designs, but is nevertheless

often used. Our results indicate that borrowing information across baskets generally reduces estimation errors.

Jung et. al introduced an UMVUE to provide an unbiased estimator for the STS design, as an alternative to the bi-

ased sample proportion. However, it assumes that each cohort reaches the full sample sizewhich is not always the

case in practice. Simulations in Scenario set 1 using the Jung estimator show that the mean aRMSE is 0.1 and the

max aRMSE is 0.107.

The pooled estimate, commonly used in clinical practice, calculates the average of observed patient responses

divided by the total number of available patients across all cohorts in the same basket. We applied the pooled esti-

mate to our simulation study (Scenario Set 1), resulting in a mean aRMSE of 0.14, a maximum aRMSE of 0.26, and

anaveragebias (aBias) of 0.12. However,we caution that this estimate’s assumption, that thepopulations across co-

horts are homogeneous, complicates the interpretation of bias and limits direct comparability withmethods that

explicitlymodel heterogeneity.

The sensitivity analysis underscored method-specific considerations, emphasizing implications rather than

direct comparisons. Scenario set 2, characterized by higher true response probabilities (0.4, 0.7, 0.9), resulted in

improved accuracy and reduced aRMSE. This improvement arises from the trial design’s null hypothesis of 0.1, as

5
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higher true response rates reduce early termination in the first stage, thereby reaching full planned enrollment

andenhancingestimatorprecision. ThePsioda, FujikawaandBerrymethods,were sensitive topriormeanchoices,

whereas EXNEXdisplayed relative robustnesswithin its limited parameter exploration. Thus, choosing a Bayesian

method necessitates careful consideration of sensitivity to the prior and realistic trial scenarios during the design

phase.

The process of determining optimal parameters involves inherent limitations. Firstly, despite small observed

differences in parameter space, selecting a single optimal setting remains challenging. This challenge canbe over-

comeby sufficiently large simulation studies to reduce the impact of inter-simulation variability, thereby enabling

robust and reliable parameter selection. Additionally, our use ofmin-mean andmin-max aRMSEutility functions,

although logically justified andoperationally sound, inherently involves trade-offs. Averaging performance across

diverse scenariosmaymaskextremeestimationerrors specific to certain scenarios. Conversely, focusingonmaxi-

mumerrorsmight emphasize outliers, potentially sacrificing generalizability. Alternative or combinedutilitymet-

rics couldyielddifferentoptimalparameters, and thuscareful considerationandexplicit justificationof thechosen

metrics are crucial. Another consideration is the scenario set design itself. If future researchers adopt similar ap-

proaches, careful scenarioandparameter-spacedefinitionat thedesignstage isessential. Realistic scenario repre-

sentation, balanced across plausible trial outcomes, impacts both optimal parameter selection and the robustness

of estimation. Hence, scenariochoice itself is a critical designdecisionandapotential limitation if inadequatelyad-

dressed. The computational burden of our proposedmethod restricted the number of Bayesianmethods explored,

compared to our previous work [70].

The simulation study provides valuable insights into the performance of differentmethods for basket trial anal-

ysis under the DRUP design. The approach described allows for rational prior and tuning parameter choice at the

design stageof a basket trial. Future research should aimat refining theseoptimizationmethodologies to enhance

robustness acrosswider scenario ranges and utility functions. Additional information fromother evenmore com-

plex endpoints could also be included in a more robust development of a basket trial estimator. Developing clear,

practical guidelines forpriordistributionandparameter selection inBayesianbasket trialmodels cansubstantially

increase their applicability and reliability in precisionmedicine.
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Appendix A

Basket A Basket B Basket C Basket D
a 0.9 0.9 0.9 0.9
b 0.9 0.9 0.9 0.7
c 0.9 0.9 0.9 0.4
d 0.9 0.9 0.7 0.7
e 0.9 0.9 0.7 0.4
f 0.9 0.9 0.4 0.4
g 0.9 0.7 0.7 0.7
h 0.9 0.7 0.7 0.4
i 0.9 0.7 0.4 0.4
j 0.9 0.4 0.4 0.4
k 0.7 0.7 0.7 0.7
l 0.7 0.7 0.7 0.4
m 0.7 0.7 0.4 0.4
n 0.7 0.4 0.4 0.4
o 0.4 0.4 0.4 0.4

Table 5.7: Scenarios set 2 which is used in the validation and comparison of the methods outcome

5
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Appendix B

5.5.1 Scenario set 1

Prior mean 0.5 Prior mean 0.3

0 0.1 0.3 0.5 0.7 0.9 1 0 0.1 0.3 0.5 0.7 0.9 1

0.5

1

1.5

2

2.5

3

4

6

tau

e
p
si

lo
n

Fujikawa
mu0 = 0.1 mu0 = 0.3 mu0 = 0.5 mu0 = 0.7 mu0 = 0.9

0.5 1 2 3 5 8 10 0.5 1 2 3 5 8 10 0.5 1 2 3 5 8 10 0.5 1 2 3 5 8 10 0.5 1 2 3 5 8 10

−10

−8

−6

−4

−3

−2

−1

0

1

2

3

4

6

8

10

phi0

p
m

p
0

Psioda

prior mu = −2 prior mu = −1 prior mu = 0 prior mu = 1 prior mu = 2

m
e

a
n

 =
 0

.1
m

e
a

n
 =

 0
.5

m
e

a
n

 =
 0

.9

5e−05 5e−04 0.005 5e−05 5e−04 0.005 5e−05 5e−04 0.005 5e−05 5e−04 0.005 5e−05 5e−04 0.005

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0.001

0.01

0.1

1

tau_disp

p
ri

o
r_

m
u
_
va

r

Berry
Nex P W = 0.1 Nex P W = 0.5

E
X

 P
 W

 =
 0

.1
E

X
 P

 W
 =

 0
.5

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1

0.75

1

1.25

0.1

0.75

1

1.25

w_j

ta
u
.H

N
.s

ca
le

EXNEX

Max RMSE

0.05

0.10

0.15

0.20

Figure 5.3: Results of the scenario set 1. A heat‐map figure of the aBias for all the 4 methods, representing all the parameter combinations
used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.3: Results of the scenario set 1. A heat‐map figure of the aBias for all the 4 methods, representing all the parameter combinations
used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.4: Results of the scenario set reduced number of patients. A heat‐map figure of the aBias for all the 4 methods, representing all the
parameter combinations used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.5: Results of the scenario set reduced number of patients. A heat‐map figure of theMean aRMSE for all the 4 methods, representing
all the parameter combinations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.5: Results of the scenario set reduced number of patients. A heat‐map figure of theMean aRMSE for all the 4 methods, representing
all the parameter combinations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.6: Results of the scenario set reduced number of patients. A heat‐map figure of theMax aRMSE for all the 4 methods, representing
all the parameter combinations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.7: Results of the scenario set 2. A heat‐map figure of the aBias for all the 4 methods, representing all the parameter combinations
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Figure 5.7: Results of the scenario set 2. A heat‐map figure of the aBias for all the 4 methods, representing all the parameter combinations
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Figure 5.8: Results of the scenario set 2. A heat‐map figure of theMean aRMSE for all the 4 methods, representing all the parameter combi‐
nations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.9: Results of the scenario set 2. A heat‐map figure of theMax aRMSE for all the 4 methods, representing all the parameter combina‐
tions used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.9: Results of the scenario set 2. A heat‐map figure of theMax aRMSE for all the 4 methods, representing all the parameter combina‐
tions used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Appendix C

Method Parameter Ûmin‐mean aRMSE Ûmin‐mean aRMSE set 2 Ûmin‐max aRMSE Ûmin‐max aRMSE set 2 Uninformative

Fujikawa

τ 0 0 0 0 0.5
ϵ 4 3 4 4 2
α 1 1 1 1 1
β 2.333 1 2.333 1 1

Psioda
ϕ0 5 5 5 5 2

pmp0 0 0 4 3 1
µ0 0.3 0.7 0.5 0.5 0.5

Berry

mean 0.5 0.5 0.5 0.9 0.5
priorµ.mean ‐2 2 1 0 0
priorµ.var 1 1 1 1 0.01

τdisp 0.005 0.005 0.005 0.005 0.0005

EXNEX

ex.p.w 0.5 0.5 0.5 0.5 0.5
nex.p.w 0.5 0.5 0.5 0.5 0.5

w 0.9 0.9 0.9 0.9 0.5
tau.HN.scale 1 1 1.25 1.25 1

Table 5.8: Parameters optimal values on the different utility functions and the uninformative case, including both simulation set 1 and 2.
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6
General discussion

EStimation of treatment effects in clinical trials connects the trial design with real-world applications be-

yond merely rejecting a null hypothesis of ”no effect”. This is even more relevant in the era of precision

medicineandpersonalized treatments. Modernclinical trials, includingbasket trialsandadaptivedesigns,

arebecoming increasinglycomplex, highlighting theneed for tailoredestimationmethods. Goodestimationmeth-

ods are essential for evaluating the true effectiveness of new therapies and for guiding healthcare decisions that

can affect patient outcomes and overall treatment strategies. With recent improvements in statistical techniques,

we can now better understand the varied responses among different patient groups. Thismakes accurate estima-

tion evenmore important, ensuring trial results aremeaningful and applicable across diverse clinical trial designs.

Basket trials and master protocol designs represent an important evolution in clinical research methodology,

particularly within oncology [10]. These trial frameworks are distinct in their ability to simultaneously explore

multiple hypotheses, treatments, or patient groups within a single study, which significantly enhances research

efficiency and the speed of drug development. Master protocols, including basket, umbrella, and platform trials,

have gained prominence due to their potential to personalize medicine and optimize resource use, especially in

complex diseases and rare genetic conditions.

However, the uptake of these innovative designs has not come without challenges. A primary difficulty iden-

tified across recent literature is the lack of consistent and standardized definitions and outcome reporting. This

inconsistency complicates efforts to synthesize and compare trial results, creating barriers to broader implemen-

tation and regulatory acceptance, Siden et al. [73]. A notable gap remains between theoretical potential and prac-

tical implementation. Zhou and Ji [20] highlight that Bayesian statistical techniques can significantly enhance the

precision and statistical power of basket trials by borrowing information across subgroups, yet their adoption re-

mains limited. Kasimetal. [17] furtherpoint out that simpler, traditional trial designs still predominate, suggesting

a hesitation or lack of readinesswithin the research community to fully embracemore complex but beneficial sta-

tistical methodologies. Operational complexities further challenge the effective deployment of master protocols.

Themanagementofmulti-grouppatientenrollment, adaptive trialmodifications, andappropriateuseofhistorical

or external control data demands substantial logistical andmethodological expertise. Bofill et al. [74] underscore

these challenges, specifically noting potential biases introduced when non-concurrent controls are improperly

handled, which can adversely affect the validity of trial conclusions.

A notable complexity arises from Bayesian methods employed in basket trial analyses, such as hierarchical
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models and adaptive borrowing techniques [15], [18], [54]–[59], [62], [64], [65], [72], [75]–[78]. Although these

Bayesian approaches can be powerful, they introduce challenges, such as including computational intensity,

parameter tuning complexities, and the subjective nature of prior distribution selection. In basket trials, choosing

these parameters effectively implies assumptions about the similarity or heterogeneity of treatment effects

across patient groups, and the anticipated treatment response characteristics within each basket. Thus, careful,

pragmatic and biologically informed decisions about these parameters before trial initiation are crucial. However,

current literature often lacks comprehensive guidance on optimal parameter selection, highlighting an important

area for further methodological clarity and practical improvement in basket trial designs. While a practical dis-

tinction is often made between ”prior parameters” and ”tuning parameters,” this separation is arguably artificial:

both are pre-specified and influence model behavior in ways that reflect assumptions about the data. Should

these two categories be unified under a broader conception of prior assumptions, and howmight that shift affect

the transparency and interpretability of Bayesian basket trial designs? Against this background, estimation in

complex trials inoncologyemergedasa relevant researchquestion. Furthermore, theDRUPstudy [43]presentsan

important example of such a complex design, including multiple baskets and treatments and platform elements.

This ongoing study gave rise to these questions, and was thus used as application for themethodology. In light of

the basket trial design, estimationmethods were addressed at the level of individual cohorts (substudies), as well

as at the basket level.

In this thesis I systematically addressed statistical andmethodological challenges associatedwithestimation in

innovative clinical trial designs, with a particular focus on oncology. Across the four chapters, several insights and

methodological contributions emerged, each addressing central issues in today’s evolving clinical research land-

scape. These include improving estimation procedures under early stopping in two-stage designs, developing ro-

bustmethods for censored survival data, and evaluatingBayesian approaches for informationborrowing in basket

trials. Collectively, this work contributes to a deeper understanding of how estimation interacts with trial design,

and offers practical strategies for achievingmore reliable and interpretable results in complex trial settings.

In Chapter 2, I address the need for improved estimation methods in STS trial designs when early stopping is

applied. I focus on a specific design variant, the stopped STS (SSTS), where the trial stops as soon as a decision

for efficacy or futility can be made, potentially before reaching the planned sample size. I develop a UMVUE for

the response rate in the SSTS design and show that it maintains unbiasedness despite the flexible stopping rules.

I also propose a method to construct exact confidence intervals based on sample space orderings, which aligns

with the sequential nature of the design. Through simulation studies, I compare the SSTS UMVUE with standard

estimators from the STS framework, evaluating their performance in terms of bias,mean squared error, coverage,

and expected sample size. I demonstrate that while early stopping can reduce precision, it can also lead in time

and resources efficiency and patient benefit.

In Chapter 3, I investigate the estimation of the Restricted Mean Duration of Response (RMDoR) in oncology. I

focus on RMDoR as an alternative to the expected Duration of Response (DoR), particularly when right-censoring

makes the latter difficult to estimate. Response durations are typically determined based on imaging of tumors at

scheduled intervals, andbecauseassessment schedules candifferbetweenstudies, comparing results across stud-

ies becomes challenging due to varying degrees of interval censoring. Additionally, the length of patient follow-up

may vary substantially between studies, further complicating comparisons and potentially introducing bias. I ex-

amine how RMDoR behaves as a function of the truncation time τ , and explore how its interpretation depends on

the choice of τ . I define multiple estimators for the RMDoR, considering practical aspects of interval censoring,

either by using detection times directly or correcting with midpoint imputation. Through extensive simulation

6
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studies, I assess the performance of these estimators in both single-arm and two-arm randomized trials under

various scanning schedules and realistic survival scenarios. My results show that while interval censoring intro-

duces bias in survival estimates, this has only a minor effect on RMDoR estimation. I highlight that the choice of

τ plays a much larger role, especially for comparisons across treatments. I advocate for careful reporting of RM-

DoR estimates as a function of τ , and propose that RMDoR ratios may offer a stable and interpretable measure of

treatment efficacy.

ThePASKWIL-criteria 2021 [28] assess theclinical relevanceofnon-randomized studiesbyevaluating the lower

bound of the 95%-CI of the objective response rate (ORR), paired with a point estimate of the median DoR. This

framework does not account for the uncertainty in the DoR estimation, nor does it reflect the total patient popu-

lation when response is rare. We contribute to this discussion by exploring the RMDoR as an alternative efficacy

measure that incorporates both responders and non-responders, consistent with the updated estimand perspec-

tive proposed by Huang et al. [50]. We show that RMDoR can be reliably estimated even under interval censor-

ing and right-censoring, and investigate how its behavior varies with respect to the choice of τ . To use RMDoR in

decision-making,we recommendsetting clear and interpretable thresholds. These couldbebasedonexisting clin-

ical guidelines (e.g. translating PASKWIL’s median DoR cutoffs into RMDoR equivalents), historical data, or expert

consensusonwhatconstitutesmeaningfulbenefit. IncludingRMDoRalongsideORRmayprovideamorecomplete

picture of treatment efficacy, and help refine clinical guidelines such as PASKWIL by explicitly linking treatment

benefit to both effect size and estimation uncertainty.

In Chapter 4, I examine the problem of estimating cohort-specific response rates in single-stage basket tri-

als, where a single treatment is evaluated across diverse cancer types sharing a molecular target. These designs,

while operationally efficient, introduce statistical challenges when it comes to inference, particularly under the

Bayesian frameworkwhich allows for information borrowing across cohorts. The primary aim of this chapter is to

assess the accuracy and robustness of various Bayesian estimators that implement such borrowing, compared to

the standard frequentist sample proportion. Using a comprehensive simulation study, I compare seven Bayesian

estimatorsacrossawidearrayof scenariosvarying inresponserateheterogeneityandsamplesize. I focuson three

performance criteria: average absolute bias, mean squared error (MSE), and the degree of shrinkage towards the

overall mean response. I show that in settings with little to no heterogeneity, the estimator proposed by Berry et

al. achieves the lowest bias andMSE, benefiting fromstrong borrowing. However, inmore heterogeneous settings,

no single estimator consistently outperforms others. Instead, performance becomes highly context-dependent,

influenced bymodel priors, tuning parameters, and the nature of between-cohort variation. My findings highlight

the trade-off inherent in borrowing: while it can reduce variance, it may also introduce bias, especially when true

response rates differ substantially between cohorts. Importantly, I reveal how prior specification, particularly the

priormean, can shift posterior estimates and impact conclusions. This underscores the need for careful prior elic-

itation in practice. Ultimately, I advocate for a context-aware selection of estimationmethods in basket trials, en-

couraging the use of simulations during trial planning to guide the choice of model and hyperparameters. The

insights from this work aim to inform researchers designing early-phase basket trials, where accurate estimation

of response rates is crucial fordecidingwhichcombinationsof drugand tumor typeswarrant further investigation.

In Chapter 5, I provide a simulations based approach to guide the choice of model and tuning parameters that

can be used at the planning stage. To ensure applicability to the details of, e.g., the DRUP study design, I extended

the evaluation of response rate estimation to basket trials that follow Simon’s two-stage (STS) design, using

selected examples from the DRUP study. Compared to single-stage settings, the two-stage design introduces

additional complexities, particularly when patient accrual is incomplete or early stopping occurs. This chapter

focuses on four Bayesian estimation approaches, Berry, EXNEX, Psioda, and Fujikawa, that facilitate information
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studies, I assess the performance of these estimators in both single-arm and two-arm randomized trials under
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τ plays a much larger role, especially for comparisons across treatments. I advocate for careful reporting of RM-

DoR estimates as a function of τ , and propose that RMDoR ratios may offer a stable and interpretable measure of

treatment efficacy.

ThePASKWIL-criteria 2021 [28] assess theclinical relevanceofnon-randomized studiesbyevaluating the lower

bound of the 95%-CI of the objective response rate (ORR), paired with a point estimate of the median DoR. This

framework does not account for the uncertainty in the DoR estimation, nor does it reflect the total patient popu-

lation when response is rare. We contribute to this discussion by exploring the RMDoR as an alternative efficacy

measure that incorporates both responders and non-responders, consistent with the updated estimand perspec-

tive proposed by Huang et al. [50]. We show that RMDoR can be reliably estimated even under interval censor-

ing and right-censoring, and investigate how its behavior varies with respect to the choice of τ . To use RMDoR in

decision-making,we recommendsetting clear and interpretable thresholds. These couldbebasedonexisting clin-

ical guidelines (e.g. translating PASKWIL’s median DoR cutoffs into RMDoR equivalents), historical data, or expert

consensusonwhatconstitutesmeaningfulbenefit. IncludingRMDoRalongsideORRmayprovideamorecomplete

picture of treatment efficacy, and help refine clinical guidelines such as PASKWIL by explicitly linking treatment

benefit to both effect size and estimation uncertainty.

In Chapter 4, I examine the problem of estimating cohort-specific response rates in single-stage basket tri-

als, where a single treatment is evaluated across diverse cancer types sharing a molecular target. These designs,

while operationally efficient, introduce statistical challenges when it comes to inference, particularly under the

Bayesian frameworkwhich allows for information borrowing across cohorts. The primary aim of this chapter is to

assess the accuracy and robustness of various Bayesian estimators that implement such borrowing, compared to

the standard frequentist sample proportion. Using a comprehensive simulation study, I compare seven Bayesian

estimatorsacrossawidearrayof scenariosvarying inresponserateheterogeneityandsamplesize. I focuson three

performance criteria: average absolute bias, mean squared error (MSE), and the degree of shrinkage towards the

overall mean response. I show that in settings with little to no heterogeneity, the estimator proposed by Berry et

al. achieves the lowest bias andMSE, benefiting fromstrong borrowing. However, inmore heterogeneous settings,

no single estimator consistently outperforms others. Instead, performance becomes highly context-dependent,

influenced bymodel priors, tuning parameters, and the nature of between-cohort variation. My findings highlight
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sharing across cohorts. A key contribution of this work is the use of simulation-based parameter tuning, that can

be used at the design stage. By exploring a broad grid of hyperparameter values, I identify optimal configurations

under two utility functions: the minimization of the mean absolute Root Mean Square Error (min-mean aRMSE)

and theminimizationof theworst-case scenario error (min-maxaRMSE). These choices reflect different priorities:

achieving accurate estimation on average versus avoiding extreme errors. I also consider a reduced sample size

scenario, simulating situations where the second stage of a cohort is not fully accrued. The results show that,

in terms of these utility functions, all four Bayesian methods can outperform the frequentist sample proportion

and UMVUE estimators, particularly under incomplete accrual. All methods could provide parameter sets where

the aRMSE performance was strong. Berry, Fujikawa and Psioda, proved sensitive to the choice of priors in some

scenarios, highlighting the importance of careful parameter tuning. Overall, EXNEX was most stable across all

parameter spaces and scenario sets, though it should be noted that the parameter space explored for EXNEXwas

not as extensive as for the other methods. By applying these methods to actual DRUP data, I demonstrate how

different estimators yield varying results across cohorts. This has direct implications for clinical interpretation.

For example, in cohorts with high observed response, borrowing can shrink estimates downward, conversely, in

smaller oruncertain cohorts, borrowing can lead tomoreoptimistic estimates. Thesedynamicshighlight theneed

for pre-specifying estimation strategies in basket trial protocols. This chapter shows that Bayesian borrowing

is not a universal solution, but a flexible strategy that needs careful tuning of parameters. While simulations

take time and computing power, they help identify the best settings for accurate estimates in multi-cohort trials

with two-stage designs. These findings aim to help researchers working on basket trials especially in precision

oncologymakemore informed choices at the design stage by balancing accuracy, consistency, and clarity.

Oneof themain conclusions of this thesis is that estimation and trial design aredeeply connected in the context

of basket trials. The type of design, whether single-stage, Simon’s two-stage, or an adaptive structure, not only

frames the trial, but also directly impacts how estimation should be performed. Estimation is not just something

that follows data collection, it is embeddedwithin the design itself, shaped by features like sample size restrictions,

early stopping criteria, and the expected variability between cohorts.

This becomes particularly clear when estimation takes place under incomplete accrual, which is often the case

in trials targeting rare patient groups. In such situations, standard estimators like the sample proportion or even

the UMVUEmay fail to perform adequately. As shown in this work, Bayesian estimators that borrow information

acrosscohortscanprovidemorestableresults, thoughtheydependstronglyonpriorandtuningparameterchoices.

These parameters are not neutral they reflect assumptions about how similar or different the response rates are

expected to be across baskets.

This introduces a broader methodological challenge: how to define and justify these assumptions clearly and

transparently, ideally before the trial begins. For example, in the simulation studies, EXNEXappearedmore robust

across awide rangeof scenarios, but thismaybedue to the limitedparameter space,whichcouldmake themethod

appear more reliable than it actually is. On the other hand, methods like Psioda, Fujikawa, and Berry allowed for

greaterflexibility, but also showedmore sensitivity to parameter tuninghighlighting the trade-offbetween robust-

ness and adaptability.

This suggests that parameter tuning should be considered part of the trial design process itself, rather than

something addressed only during analysis. Although simulations can be computationally intensive, they enable

researchers to identify optimal configurations tailored to the specific goals and constraints of a trial. Just as we

predefine sample sizes or stopping rules, estimation strategies and tuningprocedures shouldbe incorporated into

the protocol from the start.

6
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At the same time, this work underlines a lack of formal guidance around the use of Bayesian estimators in trial

designs. Regulatory documents like the ICHE9(R1) focus on the estimand framework andhandling of intercurrent

events, but give less attention to how Bayesian methods, particularly those sensitive to prior and tuning choices,

fit within this framework. The distinction often made between ”prior parameters” and ”tuning parameters” may

not be meaningful in practice, since both influence the final estimates. Treating them jointly as part of the prior

structure could improve transparency and facilitate clearer reporting and justification.

Overall, this work points to a broader tension between simplicity and realism. Simple estimators are easy to ap-

ply, understand, and justify, butmay overlook key sources of uncertainty or variation. Bayesian approaches, when

well-calibrated, can offer a compromise: improving stability in estimation for small cohorts while still accounting

for heterogeneity. However, their value depends on transparent assumptions, thoughtful design, and a clear un-

derstanding of their limitations.

This thesis has several limitations that should be acknowledged. The study design in basket trialswas restricted

to estimationunder single-stageandSimon’s two-stagedesigns,without exploringalternative approaches suchas

more complexBayesianor adaptive trial designs. The rangeof estimationmethods consideredwas limitedby com-

putational feasibility, as many advancedmethods require significant resources and time, which also constrained

the breadth of the parameter space examined in Chapter 5 and limited the generalizability of the results. Addition-

ally, only one Simon’s two-stage design configuration was investigated, and no comparison was made regarding

the efficacy of estimators across different design choices. The scenarios and the number of cohorts used in the

simulation studies were limited due to computational constraints, which prevented assessment of how the pro-

posed methods perform under greater heterogeneity or with larger numbers of cohorts, an important consider-

ation in practice. The procedure for optimizing Bayesian parameters followed a single specific approach and did

not include comparisons with alternative parameter search strategies, potentially limiting recommendations for

parameter tuning. Furthermore, the simulations in chapter 5 were primarily based on complete cohorts, whereas

in real clinical trials, recruitment is often incomplete, especially in rare disease contexts, whichmay require analy-

ses that deviate from the original design. Taken together, these limitations highlight the need for further research

on awider variety of designs,methods, and real-world data complexities to enhance the practical applicability and

robustness of statistical approaches in basket trials.

Future research directions

Thisworkopensseveralpaths for futureresearch thatcould further improve thedesignandanalysisofbasket trials.

A central area of development lies in theuse ofmore complex endpoints beyondbinary outcomes. While response

rate remains a commonly used measure in early-phase oncology trials, it inevitably discards part of the available

information, especially regarding the timing and durability of response. Continuous endpoints, or combination

of response and Time-to-event endpoints such as progression-free survival (PFS), duration of response (DoR), or

even the restricted mean survival time (RMST) could offer richer insights if adapted appropriately to the basket

trial context. Exploring robust estimation techniques for these endpoints, particularly under censoring and small

sample constraints, could allow formore nuanced decision-making.

Another direction is the development of trial designs that integrate both treatment activity thresholds and es-

timation performance as core elements. Many current designs focus heavily on decision rules (e.g., Simon’s two-

stage) while treating estimation as secondary. However, as this thesis shows, estimation is part of the design, and

separating the two can lead to inefficiencies or misleading conclusions. Future work could explore designs that

optimize both decision-making and estimation accuracy, while still maintaining interpretability and feasibility in
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rare populations. In addition,more clarity is needed around the role of Bayesian prior parameters. Their influence

extends beyond just estimation, they shape the trial’s behavior and outcomes from the design phase. Understand-

ing this dual role and investigating whether common prior structures could serve both design and estimation ob-

jectives would be a valuable contribution to themethodology of basket trials.

Methodological advances in estimation procedures also remain a critical need. While this thesis evaluated sev-

eral Bayesian estimators and highlighted the importance of prior and tuning parameter selection, there is room

for improvement. Newmethods that are less sensitive to priormis-specification, more computationally efficient,

or better suited to small-sample inferencewould be highly valuable. Likewise, adapting techniques frommachine

learning or shrinkage-based approaches may help in producing more stable estimates while maintaining trans-

parency.

Finally, there is a strong need for clearer guidance on how basket trials should be designed, analyzed, and re-

ported when using advanced estimationmethods. At present, manymethodological decisions are left implicit or

are made ad hoc. Developing best practice recommendations covering issues such as prior specification, tuning

parameter grids, choice of estimators, and handling of incomplete data would help researchers planmore robust

trials. In particular, trial protocols should clearly specify the estimation strategy alongside other key design ele-

ments, ensuring alignment with the estimand framework and regulatory expectations.

By addressing these areas, future work can build on the findings of this thesis to make basket trials more effi-

cient, reliable, and impactful in precision oncology and beyond.
6
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116

Samenvatting in het Nederlands

Inditproefschriftheb iksystematischstatistischeenmethodologischeoplossingonderzochtvoorhet schattenvan

behandeleffecten in innovatieve klinische proefopzetten,met een bijzondere focus op oncologie. In de vier hoofd-

stukken komen verschillende inzichten enmethodologische bijdragen naar voren, die specifiek problemen in het

huidige, snel veranderende landschap van innovatieve designs van klinische studies adresseren. Deze omvatten

het verbeteren van schattingsprocedures bij vroegtijdige stopzetting in het bekende Simon’s Two-Stage (STS) de-

sign, het ontwikkelen van robuuste methoden voor het schatten van “duration of response” op basis van gecen-

sureerde overlevingsdata, en het evalueren vanBayesiaanse benaderingen voor informatie-uitwisseling (‘borrow-

ing’) in basket trials. Gezamenlijk draagt dit werk bij aan een dieper begrip van hoe schatting samenhangt met

onderzoeksopzet, en biedt het praktische strategieën voor betrouwbaardere en beter interpreteerbare resultaten

in complexe onderzoeksdesigns.

In Hoofdstuk 2 behandel ik verbeterde schattingsmethoden in STS onderzoeksopzetten wanneer de studie

voortijdig wordt gestopt. Ik richt mij op een specifieke variant, het gestopte STS (SSTS)-ontwerp, waarbij de

studie wordt gestopt zodra een beslissing over werkzaamheid of futuliteit kan worden genomen, mogelijk nog

vóór het bereiken van de geplande steekproefgrootte. Ik ontwikkel een uniform unbiased estimator (UMVUE)

voor het responspercentage in dit SSTS-ontwerp en toon aan dat deze inderaad zuiver is, ondanks de flexibele

stopregels. Ook stel ik een methode voor om exacte betrouwbaarheidsintervallen te construeren op basis van

de steekproefruimte-ordening, wat aansluit bij het sequentiële karakter van het ontwerp. Via simulatiestudies

vergelijk ik de SSTS UMVU met standaard schatters, op basis van bias, mean squared error, dekkingsgraad, en

verwachte steekproefgrootte. Ik laat zien dat vroegtijdige stopzetting weliswaar precisie kan verminderen, maar

ook kan leiden tot efficiënter gebruik van tijd enmiddelen, en tot voordeel voor patiënten.

InHoofdstuk 3 onderzoek ik de schatting van de Restricted Mean Duration of Response (RMDoR) in de oncolo-

gie. Ik focus op RMDoR als alternatief voor de verwachte duur van respons (DoR), met name wanneer rechtscen-

surering de DoR lastig te schatten maakt. Responsduur wordt doorgaans bepaald op basis van tumorbeeldvorm-

ing op geplande tijdstippen. Doordat beoordelingsschema’s tussen studies kunnen verschillen, wordt vergelijk-

ing van resultaten bemoeilijkt omdat dit leidt tot door verschillen in intervalcensurenring. Ook kan de follow-up

duur van patiënten sterk uiteenlopen tussen studies, wat vergelijkingen van resultaten tussen studies verder be-

moeilijkt enmogelijk bias introduceert. Ik onderzoek hoe de RMDoR zich gedraagt als functie van de truncatietijd

τ , en hoe de interpretatie afhangt van de keuze van τ . Ik definieer meerdere schatters voor de RMDoR, reken-

ing houdendmet praktische aspecten van intervalcensoring, hetzij door directe detectietijden te gebruiken, hetzij

door correctie met mid-point imputatie. Met uitgebreide simulaties bestudeer ik de prestaties van deze schat-

ters in zowel enkelarmige als gerandomiseerde studies onder diverse scanregimes en realistische overlevingss-

cenario’s. Mijn resultaten tonen aan dat intervalcensoring weliswaar bias introduceert in overlevingsschattingen,

maar dat het effect op RMDoR beperkt is. Ik onderstreep dat de keuze van τ een veel grotere rol speelt, vooral
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sureerde overlevingsdata, en het evalueren vanBayesiaanse benaderingen voor informatie-uitwisseling (‘borrow-

ing’) in basket trials. Gezamenlijk draagt dit werk bij aan een dieper begrip van hoe schatting samenhangt met

onderzoeksopzet, en biedt het praktische strategieën voor betrouwbaardere en beter interpreteerbare resultaten

in complexe onderzoeksdesigns.

In Hoofdstuk 2 behandel ik verbeterde schattingsmethoden in STS onderzoeksopzetten wanneer de studie

voortijdig wordt gestopt. Ik richt mij op een specifieke variant, het gestopte STS (SSTS)-ontwerp, waarbij de

studie wordt gestopt zodra een beslissing over werkzaamheid of futuliteit kan worden genomen, mogelijk nog

vóór het bereiken van de geplande steekproefgrootte. Ik ontwikkel een uniform unbiased estimator (UMVUE)

voor het responspercentage in dit SSTS-ontwerp en toon aan dat deze inderaad zuiver is, ondanks de flexibele
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verwachte steekproefgrootte. Ik laat zien dat vroegtijdige stopzetting weliswaar precisie kan verminderen, maar

ook kan leiden tot efficiënter gebruik van tijd enmiddelen, en tot voordeel voor patiënten.

InHoofdstuk 3 onderzoek ik de schatting van de Restricted Mean Duration of Response (RMDoR) in de oncolo-

gie. Ik focus op RMDoR als alternatief voor de verwachte duur van respons (DoR), met name wanneer rechtscen-

surering de DoR lastig te schatten maakt. Responsduur wordt doorgaans bepaald op basis van tumorbeeldvorm-

ing op geplande tijdstippen. Doordat beoordelingsschema’s tussen studies kunnen verschillen, wordt vergelijk-

ing van resultaten bemoeilijkt omdat dit leidt tot door verschillen in intervalcensurenring. Ook kan de follow-up

duur van patiënten sterk uiteenlopen tussen studies, wat vergelijkingen van resultaten tussen studies verder be-

moeilijkt enmogelijk bias introduceert. Ik onderzoek hoe de RMDoR zich gedraagt als functie van de truncatietijd

τ , en hoe de interpretatie afhangt van de keuze van τ . Ik definieer meerdere schatters voor de RMDoR, reken-

ing houdendmet praktische aspecten van intervalcensoring, hetzij door directe detectietijden te gebruiken, hetzij

door correctie met mid-point imputatie. Met uitgebreide simulaties bestudeer ik de prestaties van deze schat-

ters in zowel enkelarmige als gerandomiseerde studies onder diverse scanregimes en realistische overlevingss-

cenario’s. Mijn resultaten tonen aan dat intervalcensoring weliswaar bias introduceert in overlevingsschattingen,

maar dat het effect op RMDoR beperkt is. Ik onderstreep dat de keuze van τ een veel grotere rol speelt, vooral
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voor vergelijkingen tussen behandelingen. Ik pleit voor zorgvuldige rapportage van RMDoR-schattingen als func-

tie van τ , en stel voor dat RMDoR-ratio’s een stabiele en interpreteerbare maat van behandelresultaat kunnen

bieden. De PASKWIL-criteria 2021 [28] beoordelen de klinische relevantie van niet-gerandomiseerde studies aan

de hand van de ondergrens van het 95%-betrouwbaarheidsinterval van het objectieve responspercentage (ORR),

samenmet een puntschatting van demediane DoR. Dit raamwerk houdt geen rekeningmet de onzekerheid in de

DoR-schatting, noch met de gehele populatie bij zeldzame respons. Ik draag bij aan deze discussie door de RM-

DoR te verkennen als alternatieve uitkomstmaat die zowel responders als non-responders omvat, in lijn met het

aangepaste estimand-perspectief voorgesteld door Huang et al. [50]. Ik toon aan dat RMDoR betrouwbaar kan

worden geschat, zelfs bij interval- en rechtscensoring, en laat zien hoe het gedrag varieert afhankelijk van τ . Voor

gebruik van RMDoR in besluitvorming raden we aan om duidelijke en interpreteerbare drempelwaarden te for-

muleren, bijvoorbeeld door PASKWIL’s DoR-drempels te vertalen naar RMDoR-equivalenten, historische data of

expert consensus. Het toevoegen van RMDoR naast ORR kan een completer beeld geven van behandelingseffec-

tiviteit en bijdragen aan verfijning van klinische richtlijnen zoals PASKWIL, door expliciet het voordeel te koppelen

aan zowel effectgrootte als schattingsonzekerheid.

In Hoofdstuk 4 onderzoek ik het schatten van cohort-specifieke responspercentages in basket trials, waarbij

één behandeling wordt geëvalueerd in verschillende kankersoorten met een gedeeld moleculair target. Deze de-

signs zijn operationeel efficient. Statistische efficiëntie winst is mogelijk, met name door Bayesiaanse metho-

den die informatie-uitwisseling tussen cohorten mogelijk maken. Het doel van dit hoofdstuk is het evalueren

van de nauwkeurigheid en robuustheid van diverse Bayesiaanse schatters die deze ‘borrowing’ implementeren,

vergelekenmet de standaard frequentistische steekproef proportie. Met een uitgebreide simulatiestudie vergelijk

ik zeven Bayesiaanse schatters in uiteenlopende scenario’s van heterogeniteit in response percentage tussen co-

hortenenverschillende cohort steekproefgroottes. Deevaluatie is gebaseerdopdrie prestatiecriteria: gemiddelde

absolute bias, mean squared error (MSE), en de mate van shrinkage richting het overall gemiddelde respons per-

centage. Ik laatziendatbij geringeheterogeniteitdedoorBerryetal. voorgesteldeschatterhetkleinstebiasenMSE

bereikt dankzij sterke ‘borrowing’. Echter, in secnario’s met meer heterogeniteot tussen cohorten presteert geen

enkele schatter consistent het best; de prestatie wordt context afhankelijk en beïnvloed door model priors, tun-

ing parameters en de aard van variatie tussen cohorten. Mijn bevindingen illustreren de bekende “bias-variance

trade-off” bij ‘borrowing’: het kan variantie verminderen, maar ook bias introduceren, vooral als de werkelijke re-

sponspercentages sterk verschillen tussen cohorten. Ik laat zienhoe specificatie vandepriors,metnamevoorhet

gemiddelde, de posterior-schattingen en conclusies kan beïnvloeden. Dit benadrukt het belang van zorgvuldige

prior-elicitatie in de praktijk. Ik bepleit een context afhankelijke keuze van schattingsmethoden in basket trials en

het gebruik van simulaties bij de onderzoeksplanning om de keuze vanmodel en. hyperparameters te sturen. De

inzichten kunnen onderzoekers ondersteunen bij het ontwerpen van basket trials, waar nauwkeurige schatting

van responspercentages essentieel is voor vervolgonderzoek naar veelbelovende behandelingen.

In Hoofdstuk 5 volg ik een simulatie-gebaseerde aanpak om de keuze van model en tuning parameters te

ondersteunen bij de onderzoeksplanning. Om toepasbaarheid te waarborgen voor de DRUP-studie, breidde

ik de evaluatie van respons percentages uit naar basket trials die het Simon’s two-stage (STS)-ontwerp volgen,

aan de hand van geselecteerde voorbeelden uit de DRUP-studie. Dit hoofdstuk richt zich op vier Bayesiaanse

schattingsmethoden (Berry, EXNEX, Psioda en Fujikawa) die informatie-uitwisseling tussen cohorten mogelijk

maken. Een belangrijke bijdrage is het gebruik van simulatie-gebaseerde parameter keuze (‘tuning’), bruikbaar

tijdensdeontwerpfase. Door eenbreed raster vanhyperparameterwaarden te verkennen, identificeer ik optimale

configuraties onder twee gedefinieerde nutsfuncties (“utilities”): het minimaliseren van de gemiddelde absolute

RootMean Squared Error (min-mean aRMSE) en hetminimaliseren van de fout in het slechtstmogelijke scenario
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(min-max aRMSE). Deze keuzes weerspiegelen verschillende prioriteiten: nauwkeurige schatting gemiddeld ver-

sus het vermijden van extreme fouten. Ook simuleer ik een scenario met door verkleinde steekproefgrootte, als

de tweede fase van een cohort nogniet volledig kanworden geïncludeerd in de schatting van respons percantages.

De resultaten laten ziendat, volgensdezenutsfuncties, alle vier deBayesiaansemethodenbeter kunnenpresteren

dan de frequentistische steekproefproportie en UMVUE, met name bij incomplete inclusie. Voor alle methoden

konden parametersetsworden gevondenmet sterke aRMSE-prestaties. Berry, Fujikawa en Psioda bleken gevoelig

voor de keuze van priors in sommige scenario’s, wat het belang van zorgvuldige tuning onderstreept. Over het

geheel genomenwas EXNEXhetmeest stabiel over alle parameter- en scenario-ruimtes, hoewel het verkennings

gebied voor EXNEX beperkter was dan voor de andere methoden. Door deze methoden toe te passen op daadw-

erkelijke DRUP-data, laat ik zien hoe verschillende schatters uiteenlopende resultaten geven per cohort. Dit heeft

directe gevolgen voor de klinische interpretatie. In cohortenmet eenhoogwaargenomen respons, kan ‘borrowing’

leiden tot lagere schattingen, terwijl in kleinere of onzekere cohorten het juist optimistisch kan uitpakken. Deze

dynamiek benadrukt de noodzaak om de preciezemethode van schatten vooraf te specificeren in het onderzoek-

sprotocol. Dit hoofdstuk toont aan dat Bayesiaans ‘borrowing’ geen universele oplossing is, maar een flexibele

strategie die zorgvuldige keuzes van prior en tuning parameters vereist. Hoewel simulaties tijd en rekenkracht

kosten, helpen ze bij het identificeren van optimale parameter instellingen voor nauwkeurige schattingen in

multi-cohort studies met Simon’s Two-Stage of andere sequentiële opzetten. Deze bevindingen zijn bedoeld

om onderzoekers, vooral in de precisie-oncologie, te ondersteunen bij het maken van geïnformeerde keuzes

tijdens de ontwerp- en planningsfase door een goede balans te vinden tussen nauwkeurigheid, consistentie en

interpreteerbaarheid.

Een van de belangrijkste conclusies van dit proefschrift is dat schatten van behandeleffecten en onderzoek-

sopzet nauwmet elkaar verbonden zijn in basket trials. Het typeontwerp– single arm, Simon’s Two-Stage, of adap-

tief – bepaalt niet alleen het onderzoek, maar beïnvloedt ook direct de wijze van schatten. Schatten is niet slechts

een analyse die volgt op dataverzameling,maar is verweven met het ontwerp zelf, beïnvloed door elementen als

steekproefbeperkingen, stopregels, en verwachte variabiliteit tussen cohorten. Ditwordt vooral duidelijk bij schat-

ten onder incomplete inclusie, wat vaak voorkomt bij studies gericht op zeldzame patiëntengroepen. In dergelijke

situaties schieten standard schatters zoals de steekproefproportie of zelfs de UMVUE tekort. Zoals aangetoond in

dit proefschrift, kunnenBayesiaanse schatters die informatie delen tussen cohorten stabielere resultaten leveren,

hoewel ze sterk afhankelijk zijn van gekozen priors en tuning parameters. Deze parameters zijn niet neutraal; ze

weerspiegelen aannames over de verwachte gelijkenis of verschillen in responspercentages tussen baskets. Dit

roept een bredere methodologische vraag op: hoe deze aannames duidelijk en transparant te definiëren en ver-

antwoorden, idealiter vóór de start van het onderzoek.



118 | SAMENVATTING INHETNEDERLANDS

(min-max aRMSE). Deze keuzes weerspiegelen verschillende prioriteiten: nauwkeurige schatting gemiddeld ver-

sus het vermijden van extreme fouten. Ook simuleer ik een scenario met door verkleinde steekproefgrootte, als

de tweede fase van een cohort nogniet volledig kanworden geïncludeerd in de schatting van respons percantages.

De resultaten laten ziendat, volgensdezenutsfuncties, alle vier deBayesiaansemethodenbeter kunnenpresteren

dan de frequentistische steekproefproportie en UMVUE, met name bij incomplete inclusie. Voor alle methoden

konden parametersetsworden gevondenmet sterke aRMSE-prestaties. Berry, Fujikawa en Psioda bleken gevoelig

voor de keuze van priors in sommige scenario’s, wat het belang van zorgvuldige tuning onderstreept. Over het

geheel genomenwas EXNEXhetmeest stabiel over alle parameter- en scenario-ruimtes, hoewel het verkennings

gebied voor EXNEX beperkter was dan voor de andere methoden. Door deze methoden toe te passen op daadw-

erkelijke DRUP-data, laat ik zien hoe verschillende schatters uiteenlopende resultaten geven per cohort. Dit heeft

directe gevolgen voor de klinische interpretatie. In cohortenmet eenhoogwaargenomen respons, kan ‘borrowing’

leiden tot lagere schattingen, terwijl in kleinere of onzekere cohorten het juist optimistisch kan uitpakken. Deze

dynamiek benadrukt de noodzaak om de preciezemethode van schatten vooraf te specificeren in het onderzoek-

sprotocol. Dit hoofdstuk toont aan dat Bayesiaans ‘borrowing’ geen universele oplossing is, maar een flexibele

strategie die zorgvuldige keuzes van prior en tuning parameters vereist. Hoewel simulaties tijd en rekenkracht

kosten, helpen ze bij het identificeren van optimale parameter instellingen voor nauwkeurige schattingen in

multi-cohort studies met Simon’s Two-Stage of andere sequentiële opzetten. Deze bevindingen zijn bedoeld

om onderzoekers, vooral in de precisie-oncologie, te ondersteunen bij het maken van geïnformeerde keuzes

tijdens de ontwerp- en planningsfase door een goede balans te vinden tussen nauwkeurigheid, consistentie en

interpreteerbaarheid.

Een van de belangrijkste conclusies van dit proefschrift is dat schatten van behandeleffecten en onderzoek-

sopzet nauwmet elkaar verbonden zijn in basket trials. Het typeontwerp– single arm, Simon’s Two-Stage, of adap-

tief – bepaalt niet alleen het onderzoek, maar beïnvloedt ook direct de wijze van schatten. Schatten is niet slechts

een analyse die volgt op dataverzameling,maar is verweven met het ontwerp zelf, beïnvloed door elementen als

steekproefbeperkingen, stopregels, en verwachte variabiliteit tussen cohorten. Ditwordt vooral duidelijk bij schat-

ten onder incomplete inclusie, wat vaak voorkomt bij studies gericht op zeldzame patiëntengroepen. In dergelijke

situaties schieten standard schatters zoals de steekproefproportie of zelfs de UMVUE tekort. Zoals aangetoond in

dit proefschrift, kunnenBayesiaanse schatters die informatie delen tussen cohorten stabielere resultaten leveren,

hoewel ze sterk afhankelijk zijn van gekozen priors en tuning parameters. Deze parameters zijn niet neutraal; ze

weerspiegelen aannames over de verwachte gelijkenis of verschillen in responspercentages tussen baskets. Dit

roept een bredere methodologische vraag op: hoe deze aannames duidelijk en transparant te definiëren en ver-

antwoorden, idealiter vóór de start van het onderzoek.

119

Περίληψη στα Ελληνικά

Στη διατριβή αυτή, διερευνώνται συστηματικά στατιστικές και μεθοδολογικές προσεγγίσεις για την εκτίμηση των

θεραπευτικών αποτελεσμάτων σε καινοτόμα σχέδια κλινικών μελετών, με ιδιαίτερη έμφαση στην ογκολογία. Τα τέσ‐

σερα κεφάλαια που ακολουθούν περιλαμβάνουν νέες θεωρητικές και πρακτικές μεθοδολογίες, οι οποίες αντιμετω‐

πίζουν συγκεκριμένες προκλήσεις που ανακύπτουν στο σύγχρονο και διαρκώς εξελισσόμενο τοπίο των καινοτόμων

σχεδίων κλινικών δοκιμών. Στις συνεισφορές αυτές περιλαμβάνονται: η βελτίωση διαδικασιών εκτίμησης σε περιπτώ‐

σεις πρόωρης διακοπής στο κλασικό σχέδιο δύο σταδίων του Simon, η ανάπτυξη μεθόδων εκτίμησης της διάρκειας

ανταπόκρισης με βάση λογοκριμένα δεδομένα επιβίωσης, καθώς και η αξιολόγηση Bayesian προσεγγίσεων για τη δια‐

μοίραση πληροφορίας ("borrowing") σε basket trials. Συνολικά, η εργασία αυτή συνεισφέρει στη βαθύτερη κατανόηση

του πώς η διαδικασία εκτίμησης αλληλεπιδρά με το σχεδιασμό της μελέτης, και προσφέρει πρακτικές στρατηγικές για

πιο αξιόπιστα και ερμηνεύσιμα αποτελέσματα σε σύνθετα ερευνητικά πρωτόκολλα.

Στο Κεφάλαιο 2, εξετάζω βελτιωμένες μεθόδους εκτίμησης σε σχέδια STS όταν η μελέτη διακόπτεται πρόωρα.

Εστιάζω σε μία ειδική παραλλαγή, διακοπής του σχεδίου δύο σταδίων του Simon (SSTS), όπου η μελέτη σταματά μόλις

μπορεί να ληφθεί απόφαση ως προς την αποτελεσματικότητα ή μη της θεραπείας, ακόμη και πριν συμπληρωθεί το

αρχικά προβλεπόμενο μέγεθος δείγματος. Αναπτύσσω έναν ομοιόμορφα αμερόληπτο εκτιμητή ελαχίστης διασποράς

(UMVUE) για το ποσοστό ανταπόκρισης στη θεραπεία στο SSTS και αποδεικνύω ότι παραμένει αμερόληπτος, παρά

τους ευέλικτους κανόνες διακοπής. Επιπλέον, προτείνω μία μέθοδο κατασκευής διαστημάτων εμπιστοσύνης με βάση

τη διάταξη του δειγματικού χώρου, η οποία ανταποκρίνεται στον διαδοχικό χαρακτήρα του σχεδίου. Μέσω εκτεταμέ‐

νων προσομοιώσεων, συγκρίνω τον UMVUE του SSTS με τους συμβατικούς εκτιμητές ως προς τη μεροληψία, το μέσο

τετραγωνικό σφάλμα, την πιθανότητα κάλυψης και το αναμενόμενο μέγεθος δείγματος. Τα ευρήματά μου δείχνουν ότι

η πρόωρη διακοπή ενδέχεται να μειώσει την ακρίβεια, αλλά ταυτόχρονα οδηγεί σε πιο αποδοτική χρήση χρόνου και

πόρων, προσφέροντας δυνητικό όφελος στους ασθενείς.

ΣτοΚεφάλαιο 3μελετάται η εκτίμηση τηςΠεριορισμένηςΜέσηςΔιάρκειας Ανταπόκρισης (RestrictedMeanDuration

of Response, RMDoR) στη θεραπεία, στον τομέα της ογκολογίας. Η RMDoRπροτείνεται ως εναλλακτική της αναμενόμε‐

νης διάρκειας ανταπόκρισης (DoR), ειδικά όταν η δεξιά λογοκρισία καθιστά δύσκολη την εκτίμηση της DoR. Η διάρκεια

ανταπόκρισης συνήθως βασίζεται σε απεικονιστικά ευρήματα σε προκαθορισμένα χρονικά διαστήματα. Οι διαφορές

στα πρωτόκολλα αξιολόγησης μεταξύ μελετών καθιστούν δύσκολη τη σύγκριση των αποτελεσμάτων, κυρίως λόγω

διακυμάνσεων στην λογοκρισία διαστημάτων, με άλλα λόγια το πρόγραμμα εξέτασης. Παράλληλα, η διάρκεια παρα‐

κολούθησης μπορεί να διαφέρει σημαντικά μεταξύ μελετών, περιπλέκοντας περαιτέρω τις συγκρίσεις και εισάγοντας

ενδεχόμενη μεροληψία. Εξετάζω πώς συμπεριφέρεται η RMDoR ως συνάρτηση του χρόνου (τ) και πώς η ερμηνεία της

επηρεάζεται από την επιλογή της τιμής αυτής. Προτείνω διαφορετικούς εκτιμητές της RMDoR, λαμβάνοντας υπόψη

πρακτικές πτυχές της λογοκρισίας διαστημάτων, είτε χρησιμοποιώντας άμεσα χρόνους ανίχνευσης, είτε με διόρθωση

μέσω της εκτίμησης του μέσου διαστήματος (mid‐point imputation). Μέσω εκτεταμένων προσομοιώσεων, αξιολογώ

την απόδοση αυτών των εκτιμητών τόσο σε δοκιμές με μόνο μία πειραματική θεραπεία όσο και σε τυχαιοποιημένες με‐
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λέτες, υπό διάφορα σενάρια επιβίωσης και πρωτόκολλα απεικόνισης. Τα αποτελέσματά μου δείχνουν ότι η λογοκρισία

διαστημάτων μπορεί να εισάγει μεροληψία στις εκτιμήσεις επιβίωσης, ωστόσο το αποτέλεσμα αυτό είναι περιορισμένο

στην RMDoR. Επισημαίνω ότι η επιλογή του τ διαδραματίζει καθοριστικό ρόλο, ιδιαίτερα σε συγκρίσεις μεταξύ θερα‐

πειών. Τονίζω τη σημασία της προσεκτικής αναφοράς των εκτιμήσεων RMDoR ως συνάρτηση του τ και προτείνω τη

χρήση του λόγου RMDoR ως ένα σταθερό και ερμηνεύσιμο μέτρο. Τα κριτήρια PASKWIL 2021 [28] αξιολογούν την

κλινική σημασία μη τυχαιοποιημένων μελετών βασιζόμενα στο κατώτατο όριο του 95% διαστήματος εμπιστοσύνης

του αντικειμενικού ποσοστού ανταπόκρισης (ORR), καθώς και σε σημειακή εκτίμηση της διάμεσης DoR. Το εν λόγω

πλαίσιο δεν λαμβάνει υπόψη την αβεβαιότητα της εκτίμησης DoR ούτε το σύνολο του πληθυσμού σε περιπτώσεις

σπάνιας ανταπόκρισης. Η συνεισφορά του RMDoR στη σχετική συζήτηση, εξετάζοντας την ως εναλλακτικό μέτρο που

περιλαμβάνει τόσο τους ανταποκρινόμενους όσο και τους μη ανταποκρινόμενους στη θεραπεία ασθενείς, εναρμονι‐

ζόμενο με την οπτική των estimands που πρότειναν οι Huang et al. [50]. Δείχνω ότι η RMDoR μπορεί να εκτιμηθεί

αξιόπιστα, ακόμη και με λογοκρισία διαστημάτων ή δεξιά λογοκρισία, και καταδεικνύω τη μεταβλητότητα της ως προς

την τιμή του τ. Για τη χρήση της RMDoR στη λήψη αποφάσεων, συνιστάται ο σαφής και ερμηνεύσιμος καθορισμός

ορίων, όπως η μετάφραση των ορίων της DoR των PASKWIL σε ισοδύναμα της RMDoR, με χρήση ιστορικών δεδομέ‐

νων ή εμπειρογνωμόνων. Η ενσωμάτωση της RMDoR δίπλα στο ORR μπορεί να προσφέρει πληρέστερη εικόνα της

αποτελεσματικότητας μιας θεραπείας και να συνεισφέρει στην αναβάθμιση των κλινικών οδηγιών όπως τα κριτήρια

PASKWIL, συσχετίζοντας το όφελος με το μέγεθος του αποτελέσματος και την αβεβαιότητα εκτίμησης.

Στο Κεφάλαιο 4 εστιάζω στην εκτίμηση ποσοστών ανταπόκρισης ανά υπό‐μελέτη σε basket trials, όπου μία θερα‐

πεία αξιολογείται σε διαφορετικούς τύπους καρκίνου με κοινό μοριακό στόχο. Τα σχέδια αυτά προσφέρουν λειτουργική

αποδοτικότητα και, μέσω Bayesian μεθόδων που επιτρέπουν διαμοίραση πληροφορίας μεταξύ υπό‐μελετών, δύνανται

να προσδώσουν και στατιστική αποδοτικότητα. Το κεφάλαιο αυτό επικεντρώνεται στην αξιολόγηση της ακρίβειας και

της αποδοτικότητας διαφόρων Bayesian εκτιμητών που υλοποιούν αυτή τη διαμοίραση πληροφορίας (“borrowing”), συ‐

γκριτικά με τη συμβατική δειγματική εκτίμηση (sample proportion). Μέσω εκτεταμένης προσομοίωσης, συγκρίνω επτά

Bayesian εκτιμητές σε ποικίλα ετερογενή σενάρια ποσοστών ανταπόκρισης μεταξύ υπό‐μελετών και με διαφορετικά

μεγέθη δειγμάτων. Η αξιολόγηση βασίζεται σε τρία κριτήρια: μέση απόλυτη μεροληψία, μέσο τετραγωνικό σφάλμα

(MSE) και τον βαθμό συρρίκνωσης προς το συνολικό μέσο ποσοστό ανταπόκρισης. Αποδεικνύω ότι σε περιπτώσεις χα‐

μηλής ετερογένειας, ο εκτιμητής των Berry επιτυγχάνει τη μικρότερη μεροληψία και MSE, λόγω ισχυρής διαμοίρασης

πληροφορίας. Σε σενάρια με μεγαλύτερη ετερογένεια μεταξύ υπό‐μελετών, κανένας εκτιμητής δεν υπερέχει συστημα‐

τικά, η απόδοση εξαρτάται από τα χαρακτηριστικά των δεδομένων, τις εκ των προτέρων παραμέτρους του μοντέλου

και τις ιδιαιτερότητες κάθε περίπτωσης. Τα ευρήματα μου αναδεικνύουν το γνωστό δίλημμα μεροληψίας‐διασποράς

(“bias‐variance trade‐off”) της διαμοίρασης πληροφορίας: μπορεί να μειώνει τη διασπορά, αλλά και να εισάγει μερο‐

ληψία, κυρίως όταν τα πραγματικά ποσοστά ανταπόκρισης διαφέρουν σημαντικά μεταξύ υπό‐μελετών. Εξετάζω πώς

η επιλογή εκ των προτέρων μεταβλητών (priors), ιδίως για τη παράμετρο του μέσου όρου, μπορεί να επηρεάσει τις

εκτιμήσεις και τα συμπεράσματα. Το εύρημα αυτό υπογραμμίζει τη σημασία προσεκτικής επιλογής παραμέτρων στην

πράξη. Τονίζω την ανάγκη για επιλογή εκτιμητικής μεθόδου ανάλογα με το πλαίσιο και τη χρήση προσομοιώσεων στον

σχεδιασμό, ώστε να καθοδηγείται η επιλογή μοντέλου και παραμέτρων. Οι παρατηρήσεις αυτές δύνανται να υποστη‐

ρίξουν τους ερευνητές στον σχεδιασμό basket trials, όπου η ακριβής εκτίμηση ποσοστών ανταπόκρισης είναι κρίσιμη

για μελλοντική έρευνα σε ελπιδοφόρες θεραπείες.

Στο Κεφάλαιο 5 ακολουθώ μια προσέγγιση βασισμένη σε προσομοιώσεις για τη βέλτιστη επιλογή μοντέλου και

ρύθμιση παραμέτρων (tuning) κατά τον σχεδιασμό της μελέτης. Για να διασφαλίσω τη συνάφεια με τη μελέτη DRUP,

επεκτείνω την αξιολόγηση των ποσοστών ανταπόκρισης σε basket trials που ακολουθούν το σχέδιο δύο σταδίων του

Simon, και όχι σε ένα στάδιο όπως στο κεφάλαιο 4, χρησιμοποιώντας χαρακτηριστικά παραδείγματα από τη μελέτη

DRUP. Εστιάζω σε τέσσερις Bayesian μεθόδους εκτίμησης (Berry, EXNEX, Psioda και Fujikawa) που επιτρέπουν δια‐



120 | ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

λέτες, υπό διάφορα σενάρια επιβίωσης και πρωτόκολλα απεικόνισης. Τα αποτελέσματά μου δείχνουν ότι η λογοκρισία
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μοίραση πληροφορίας μεταξύ υπο‐μελετών. Η επιλογή παραμέτρων μέσω προσομοίωσης (“simulation‐based tuning”),

είναι ιδιαίτερα χρήσιμη στη φάση σχεδιασμού. Εξερευνώντας ένα ευρύ φάσμα τιμών υπερπαραμέτρων, προσδιορίζω

βέλτιστες ρυθμίσεις σύμφωνα με δύο κριτήρια χρησιμότητας (“utilities”): την ελαχιστοποίηση της μέσης απόλυτης ρί‐

ζας μέσου τετραγωνικού σφάλματος (min‐mean aRMSE) και την ελαχιστοποίηση του σφάλματος στο δυσμενέστερο

σενάριο (min‐max aRMSE). Τα κριτήρια αυτά αντανακλούν διαφορετικές προτεραιότητες: ακριβή εκτίμηση κατά μέσο

όρο έναντι αποφυγής ακραίων λαθών. Προσομοιώνω επίσης σενάριο με περιορισμένο μέγεθος δείγματος, αν η δεύ‐

τερη φάση μιας υπο‐μελέτης δεν μπορεί να συμπεριληφθεί πλήρως στην εκτίμηση του ποσοστού ανταπόκρισης. Τα

αποτελέσματα καταδεικνύουν ότι, με βάση τα παραπάνω κριτήρια, και οι τέσσερις Bayesian μέθοδοι μπορούν να υπε‐

ρέχουν του δειγματικου εκτιμητή, ειδικά σε περιπτώσεις ελλιπούς συμμετοχής. Για όλες τις μεθόδους εντοπίστηκαν

παραμετρικές ρυθμίσεις με εξαιρετική επίδοση ως προς το aRMSE. Οι μέθοδοι Berry, Fujikawa και Psioda έδειξαν ευαι‐

σθησία στην επιλογή priors σε ορισμένα σενάρια, γεγονός που υπογραμμίζει τη σημασία προσεκτικού tuning. Η μέ‐

θοδος EXNEX αποδείχθηκε η πιο σταθερή σε όλο το φάσμα παραμέτρων και σεναρίων, αν και το εύρος διερεύνησης

παραμέτρων ήταν πιο περιορισμένο σε σύγκριση με τις υπόλοιπες. Εφαρμόζοντας τις μεθόδους αυτές σε πραγματικά

δεδομένα DRUP, αποδεικνύω πώς διαφορετικοί εκτιμητές οδηγούν σε διαφορετικά αποτελέσματα ανά μελέτη, γεγο‐

νός με άμεσες επιπτώσεις στην κλινική ερμηνεία. Σε υπο‐μελέτες με υψηλό παρατηρούμενο ποσοστό ανταπόκρισης,

η διαμοίραση πληροφορίας ενδέχεται να οδηγήσει σε χαμηλότερες εκτιμήσεις, λόγω της συρρίκνωσης προς τον μέσο,

ενώ σε μικρές ή αβέβαιες υπο‐μελέτες το αποτέλεσμα μπορεί να είναι το αντίστροφο. Η δυναμική αυτή αναδεικνύει

την αναγκαιότητα προκαθορισμού της εκτιμητικής μεθόδου στο ερευνητικό πρωτόκολλο. Το κεφάλαιο καταδεικνύει

ότι η Bayesian διαμοίραση πληροφορίας δεν αποτελεί πανάκεια, αλλά μια ευέλικτη στρατηγική που απαιτεί προσεκτική

επιλογή priors και tuning παραμέτρων. Αν και οι προσομοιώσεις απαιτούν χρόνο και υπολογιστική ισχύ, συμβάλλουν

στον εντοπισμό βέλτιστων ρυθμίσεων για ακριβείς εκτιμήσεις σε μελέτες με πολλαπλές υπο‐μελέτες και σχέδια δύο

σταδίων. Τα συμπεράσματα αυτά στοχεύουν στην υποστήριξη των ερευνητών, κυρίως στην εξατομικευμένη ογκολογία,

κατά τη λήψη τεκμηριωμένων αποφάσεων στο σχεδιασμό και την προγραμματισμό μελετών, με έμφαση στην επίτευξη

ισορροπίας μεταξύ ακρίβειας, συνέπειας και ερμηνευσιμότητας.

Ένα από τα σημαντικότερα συμπεράσματα της διατριβής είναι ότι η εκτίμηση των θεραπευτικών αποτελεσμάτων

και ο σχεδιασμός της μελέτης είναι στενά συνδεδεμένα στα basket trials. Ο τύπος του σχεδίου, είτε πρόκειται για δο‐

κιμή ενός σταδίου, είτε για σχέδιο δύο σταδίων του Simon ή για προσαρμοστικό σχέδιο, δεν καθορίζει μόνο τον τρόπο

διεξαγωγής της μελέτης, αλλά επηρεάζει άμεσα και τον τρόπο εκτίμησης των αποτελεσμάτων. Η εκτίμηση δεν αποτε‐

λεί απλώς μια στατιστική ανάλυση μετά τη συλλογή των δεδομένων, αλλά επηρεάζει άμεσα με τον ίδιο το σχεδιασμό

της μελέτης, υπό την επίδραση παραγόντων όπως οι περιορισμοί του δείγματος, οι κανόνες διακοπής και η αναμε‐

νόμενη μεταβλητότητα μεταξύ υπο‐μελετών. Αυτό γίνεται ιδιαίτερα εμφανές σε περιπτώσεις ελλιπούς συμμετοχής,

που συχνά παρατηρούνται σε μελέτες με ασθενών με σπάνιες παθήσεις. Σε τέτοιες περιπτώσεις, οι κλασικοί εκτιμητές,

όπως η δειγματική αναλογία, συχνά δεν επαρκεί. Όπως καταδεικνύεται στη διατριβή, οι Bayesian εκτιμητές που επι‐

τρέπουν διαμοίραση πληροφορίας μεταξύ υπο‐μελετών μπορούν να προσφέρουν σταθερότερα αποτελέσματα, αν και

εξαρτώνται έντονα από την επιλογή των priors και των παραμέτρων tuning. Αυτές οι παράμετροι δεν είναι ουδέτερες,

αντανακλούν υποθέσεις σχετικά με την αναμενόμενη ομοιότητα ή διαφορά στα ποσοστά ανταπόκρισης μεταξύ baskets.

Το γεγονός αυτό αναδεικνύει ένα ευρύτερο μεθοδολογικό ερώτημα: πώς οι υποθέσεις αυτές μπορούν να οριστούν και

να αιτιολογηθούν με σαφήνεια και διαφάνεια, ιδανικά πριν από την έναρξη της μελέτης.
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