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General introduction

Linical trials have played a pivotal role in the history of medical practice, dramatically improving our
ability to understand and treat diseases. From early controlled clinical trials [1], [2], and the randomized
controlled trial reported in the second issue of the British Medical Journal [3], clinical research design
has since continually evolved. Today, we are in the era of precision medicine, where treatments are increasingly
tailored to individual patient characteristics such as genetics, lifestyle, and environmental factors [4] [5]. This

evolution brings new challenges in designing and analyzing clinical trials, requiring innovative statistical methods.

Accurate estimation of treatment effects is central to clinical trial methodology, providing the quantitative
evidence required for evaluating treatment efficacy, safety and cost-effectiveness. Reliable estimation informs
decision-making across different stages of drug development: from initial evaluations (go/no-go decisions) to
confirmatory studies, influencing regulatory approvals, reimbursement decisions and future research planning
[6], [7]. Fundamental to accurate estimation is the clear definition of the estimand, based on the precise clinical
question the trial aims to address and the way the answer(s) will be quantified based on trial results.

The International Council for Harmonisation's E9(R1) [8] guideline provides a structured framework for
defining estimands, clarifying precisely what clinical trials aim to estimate, typically a treatment effect, and how
intercurrent events, such as treatment discontinuation or additional therapies occurring after randomization,
should be handled. This guideline ensures trial objectives, data analyses, and interpretation of results are clearly

aligned, enhancing the robustness and validity of conclusions.

In oncology, rapid advancements in targeted therapies and genomic diagnostics have complicated trial designs
and estimation methods. Conventional randomized controlled trial designs face challenges due to the small and
heterogeneous patient populations often encountered in precision oncology, particularly when studying rare can-
cer types or genetic aberrations across multiple tumor histologies [9]. Novel trial designs such as master protocols
have emerged as innovative approaches that facilitate the simultaneous evaluation of multiple hypotheses within
a single protocol structure. Master protocols allow coordinated evaluation of multiple treatments, diseases, or
both, and include three distinct types: basket, umbrella, and platform trials [10]. Specifically, basket trials evaluate
a single targeted therapy across different cancer types sharing a common molecular alteration. Umbrella trials
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Figure 1.1: The basket trial scheme as presented in the following article https:/www.thelancet.com/journals/lanonc/article/PI1S1470-
2045(19)30271-2/abstract

investigate multiple targeted therapies within a single disease, and platform trials continuously evaluate multiple

treatments and disease subtypes within a perpetual framework [10]-[12].

The growing use of master protocols, such as for basket trials, needs to align with regulatory guidance provided
by the ICH E9(R1) guideline [8]. Collignon et al. [13] specifically discuss the application of the estimand framework
in oncology, highlighting that precise estimand definition is essential for accurately interpreting the results of

basket trials and ensuring their conclusions are robust.

Basket trials (fig 1.1) offer substantial operational advantages by efficiently using resources and accelerating
drug development, particularly for rare cancers or genetically-defined patient subgroups. However, these trials
also introduce statistical challenges, mainly regarding how to accurately estimate treatment effectiveness across
diverse patient groups. Most methods proposed in the literature for basket trials have primarily focused on binary
endpoints, like tumor response rates [14]. Recently, approaches have also been developed for more complicated

endpoints, such as time-to-event outcomes [15].

Basket trial designs vary significantly, including substudies with traditional single-stage trial designs to
adaptive and two-stage designs, such as Simon’s two-stage [16] approach (see details below) or substudies with
randomized designs. A recent systematic review by Kasim et al. [17] revealed a wide variety of basket trial designs
used in practice, with most adopting single-arm, phase II trials without randomization. Traditional frequentist
methods for analysis [18]-[20] are most common due to their simplicity, more and more Bayesian approaches

have been developed to address the heterogeneity across tumor types, including methods that allow for borrow-
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ing information between substudies. Bayesian hierarchical models and model averaging methods have become
increasingly common in this context [14]. If such Bayesian approaches are used to drive adaptive features for
decisions in sub-studies, they will introduces a unique trial design, and careful consideration is necessary when se-

lecting the best approach to achieve accurate and meaningful conclusions. This will be the topic of chapters 4 and 5.

Simon'’s two-stage design [16] is a sequential design frequently used in early-phase clinical trials, especially
in oncology, to quickly evaluate whether a new treatment is promising enough for further testing. It works by
dividing the trial into two stages. In the first stage, a small group of patients receives the treatment, and if the treat-
ment shows enough promise, the study continues to the second stage, recruiting more patients. If the treatment
appears ineffective after the first stage, the trial stops early to avoid wasting resources or exposing more patients
to a potentially ineffective therapy. While this design is practical and efficient, it can cause estimation biases due
to the early stopping rules. [21]. In STS design, the trial can only stop early for futility. The estimation problem in
this case has been addressed by Jung et al. [22], who provide the uniformly minimum variance unbiased estimator
(UMVUE). Several curtailment designs [23]-[25] have been proposed to allow early stopping in Simon’s two-stage
design, either when we can conclude that the treatment is ineffective or when it seems effective. However, these
methods do not provide an UMVUE estimator when early stopping is allowed for. In Chapter 2, we provide an
analytical proof of the UMVUE for trials that allow early stopping for either efficacy or futility, conditional on

passing the first stage.

An endpoint in oncology trials which is becoming increasingly valuable is the Duration of Response (DoR),
particularly in evaluating the efficacy of treatments that provide sustained therapeutic benefits. DoR is defined as
the time from the onset of the initial response to progression of disease or death. This measure provides further
insights into treatment effectiveness compared to evaluating initial response rates. Recent research highlights its
increasing relevance, especially in immuno-oncology, where traditional measures like Objective Response Rate
(ORR) or Progression-Free Survival (PFS) might not fully capture treatment impacts due to delayed or durable

responses typical of immune checkpoint inhibitors (ICIs) (Hu et al. [26]).

DoR’s sensitivity and reliability as a clinical endpoint are particularly advantageous in randomized Phase II
studies. It has shown a stronger capability in identifying true positive results and correctly predicting overall
survival benefits compared to conventional endpoints like ORR and PFS, thus making it highly relevant for
decision-making in early-phase trials (Hu et al. [26]). Furthermore, Weber et al. [27] advocate for defining DoR
within the ICH E9(R1) estimand framework, underscoring the importance of clearly specifying how intercurrent
events, such as treatment discontinuation, should be handled to enhance interpretability and robustness of trial

outcomes.

The practical relevance of DoR is also illustrated in frameworks such as the Dutch PASKWIL criteria [28], which
incorporate DoR alongside ORR to assess clinical relevance of results from non-randomized studies in rare can-
cers. According to these guidelines, treatments are considered clinically relevant if they meet certain thresholds
linking ORR and minimum DoR durations (e.g, ORR > 40% with DoR > 4 months) (Dutch Society for Oncology,

2021). Thus, accurately estimating DoR aligns closely with both clinical practice and regulatory frameworks.

However, estimating DoR, presents methodological challenges primarily due to right censoring and interval

censoring associated with scheduling intervals for patient radiological or MRI scans used to assess tumor size and
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growth. To address these challenges, Chapter 3 of this thesis will present the Restricted Mean Duration of Response
(RMDoR). RMDoR represents the expected ORR and DoR within a pre-specified time window by quantifying the
area between two survival curves: one for the time to progression or death and another for the time to response,
progression, or death. Unlike the classical DoR, which is only defined for responders, RMDoR is a population-level
measure that includes both responders and non-responders—assigning a DoR of zero to the latter. This means
RMDoR naturally incorporates information about the response rate: if two treatments show similar DoR among
responders but differ in overall response rates, RMDoR will favor the treatment with more responders, as it should.
In contrast, classical DoR cannot capture this distinction and must therefore be interpreted together with ORR.
RMDoR aims to provide a more integrated and clinically meaningful summary of treatment effects, particularly in

early-phase oncology trials.

1.1 Objectives

This thesis addresses statistical and methodological challenges in estimation of treatment effects, specifically fo-
cusing on innovative trial designs. It contributes by evaluating and developing methodologies aimed at improving
estimation accuracy and reliability. Specifically, the thesis objectives include:

- Developing a uniformly minimum variance unbiased estimator (UMVUE) for Simon’s two-stage trials when

early stopping is possible.

- Investigating the duration of response outcome, addressing possible issues and proposing a robust estima-

tor for the RMDoR in the presence of interval censoring.

- Evaluating Bayesian estimation methods for information borrowing in basket trials. We explore different
settings in Basket trials like single or two-stage designs and we provide practical guidance on parameter se-

lection for optimal estimation performance.

1.2 Thesis outline

In Chapter 2, we address estimation issues associated with Simon’s two-stage designs. This chapter introduces
and evaluates the sample proportion estimate and we propose a uniformly minimum-variance unbiased estima-
tor (UMVUE) specifically designed to address biases introduced when the decision of early stopping can be made

either for futility or for efficacy.

In Chapter 3, we investigate methods for estimating the RMDoR in oncology trials. It compares various ap-
proaches through simulation studies, highlighting how effectively these methods handle interval censoring in

survival data.

In Chapter 4, we evaluate and compare various Bayesian estimation methods that enable borrowing informa-
tion across cohorts in basket trials. Simulation studies, considering single stage baskets, assess the performance
of these estimators in terms of bias, mean squared error, and the extent of borrowing, providing guidance on their

practical implementation.
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In Chapter 5, we applied a selection of these Bayesian methods to the Drug Rediscovery Protocol (DRUP) study,
a real-world master protocol trial in oncology. We developed a parameter optimization method based on the root
mean square error measure and we evaluated the estimators performance in realistic clinical settings, offering

recommendations for clinical researchers.

Through addressing these methodological challenges, this thesis aims to improve the accuracy and robustness

of statistical estimation in clinical trials, supporting more informed and reliable decisions in oncology research.
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Abstract

In early phase clinical studies in oncology, Simon’s two-stage designs are widely used. The trial design could be
made more efficient by stopping early in the second stage when the required number of responses is reached,
or when it has become clear that this target can no longer be met (a form of non-stochastic curtailment). Early
stopping, however, will affect proper estimation of the response rate. We propose a uniformly minimum-variance
unbiased estimator (UMVUE) for the response rate in this setting. The estimator is proven to be UMVUE using the
Rao-Blackwell theorem. We evaluate the estimator’s properties in terms of bias and MSE, both analytically and
via simulations. We derive confidence intervals based on sample space orderings, and assess the coverage. For
various design options, we evaluate the reduction in expected sample size as a function of the true response rate.
Our method provides a solution for estimating response rates in case of a non-stochastic curtailment Simon’s two-

stage design.
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2.1 Introduction

Simon'’s [16] two-stage (STS) design is a well known single arm study design that is commonly used in early phase
oncology studies. The design is focused on deciding whether or not the response rate (p) is sufficiently promising
for further evaluation. In the first stage of the trial, n; patients are enrolled and receive the treatment of interest.
The number of subjects with a positive treatment response (z1) is recorded. If the number of responses is less than
the pre-specified threshold r, the trial stops. Otherwise, n, additional patients are included. If the total number
of responses (z;) is equal to or greater than threshold 7, the treatment is considered promising and will typically
undergo more rigorous testing.

The primary purpose of the STS design is to make a go/no-go decision whether the treatment seems promising
or not. Yet, typically, it is desirable to also present an estimate of the response rate along with a confidence inter-
val [29], [30]. Commonly, the response rate is estimated by the sample proportion. Doing so, however, ignores the
sequential nature of the trial and introduces bias [21]. For this reason, various alternative estimators have been
proposed. The Uniformly Minimum Variance Unbiased Estimator (UMVUE) is given by Jung et al. [22], based on
Chang’s et al. [31] work and they provide the proof analytically. Other estimation options (so-called ‘bias-reduced’
estimators) were suggested in Guo et al. [32] and Whitehead et al. [21]. Koyama et al. [29] proposed a median-
unbiased estimator. In addition, estimators optimized in terms of the mean squared error (MSE) have been sug-
gested (e.g. Kunzmann et al. [33]). If we are interested in the estimate of the response rate only when the trial at
least succeeded to the second stage, further options exist. [34] [35] [36] [37]. Pocher and Desseaux [30] published
an analytical overview of these methods.

These estimators, however, require the practical implementation of the study to follow the design exactly as
planned. The UMVUE [22] requires that either the sample size in the first stage is fully achieved (if the trial is halted
after the first stage) or the total sample size is exactly achieved (if the trial succeeds to the second stage). In practice,
however, the number of responses required to make a decision may be observed before the nominal target sample
size is reached. Alternatively, it may become apparent at some point during the trial that there is no possibility to
actually reach the required number of responses it could be a researcher’s option to stop the trial earlier than the
STS design, for efficacy or futility.

This is commonly referred to as non-stochastic curtailment’ (NSC), and the approach presented in this paper
is one such approach. Note that, so-called 'stochastic curtailment’ (SC) approaches have been described as well.
These approaches allow for stopping early not only when it is certain that the trial will or will not meet its target,
but also when one of these outcomes has become likely. Chi and Chen [24] (CC) proposed a NSC design that stops
early when the decision in the original STS design can be made earlier for efficacy or futility in both stages of the
trial. Ayanlowo’s and Redden’s[23] (AR) SC design stops early in the second stage using the conditional power cal-
culation given a pre-specified threshold 6. Kunz and Kieser[25] (KK) proposed a SC design similar to AR allowing
for early stopping using a conditional power threshold in both stages of the trial. The use of the conditional power
is a methodologically interesting approach but introduces complexity in the trial design. The focus of the existing
literature is about the design properties, the estimation of the observed effect is not addressed in this topic.

In this paper, we describe a simple approach to non-stochastic curtailment for the STS design (which we will re-
ferto as the 'stopped STS' design or SSTS), and focus specifically on the estimation of the response rate by providing
the UMVUE as well as a method for deriving the bounds of the confidence interval using sample space orderings.
In practice, e.g. in oncology basket trials which may consists of a large number of related sub-studies with the STS
design, such an approach may considerably reduce the total number of subjects that needs to be included before

inference on a novel treatment across studies can be made. A simulation study was performed to compare the pro-
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posed estimator properties (bias, MSE) against the sample proportion in the SSTS design and assess the coverage
of the confidence interval. In addition, a comparison of the estimators is made between the standard STS and the
SSTS design (using Jung's UMVUE for the STS design). Also, the expected sample size of the proposed design and
the probability of early termination for efficacy and futility is compared with the standard STS design under the
null hypothesis.

2.2 Proposed design SSTS

Suppose that the practical implementation of a STS design will always follow the design for the first stage of the
trial, but that, in the second stage, the trial is stopped as soon as the go / no-go decision can be made. In the first
stage n; patients enter the trial and get treatment, whereas this is at most n, in the second stage. The outcome of
all n; = ny + no patients (responders or non-responders) who may enter the trial are assumed to be independent
realizations of a Bernoulli(p) distribution. The total number of responders in stage 1is denoted as X; and follows
a Binomial(ny;p) distribution. If the observed number of responders z; is less than the pre-specified threshold
x1 < rp %, then the treatment is considered to be not promising, and the trial stops for futility. Stopping for effi-
cacy, can be claimed by the end of the first stage, if the number of responders is already larger than or equal to the
threshold ;. If 1y < zy < 1, thetrial proceeds to stage 2 in which at most n, patients enter the study. Let Y denote
the number of observed patients at time of stopping and let X; be the number of responders at time of stopping. If

it proceeds to the second stage, we could distinguish the following cases:

« CaseI: Stop early in stage 2 due to efficacy, once the required number of responses r; has been reached in

the y*" patient, where y < n; 4+ ngandy > ny.

- Casell: Stop early in stage 2 due to futility, once there are at least [; = n; — r; + 1 non responders since the
total number of responses cannot reach r; even if you enroll the rest of the patients and all of them would
respond, thusifz; =y — ;.

In the situation where the number of responders in the first stage exceeds r, the trial is halted for efficacy di-
rectly after stage 1is completed. For example, consider a trial with an optimal STS design, where n; = 8 patients
are enrolled in stage 1. If the number of responders is more than equal to the threshold ; = 1, the trial proceeds
to the second stage and another n, = 16 patients are added. The null hypothesis will be rejected if at least r, = 5
responders are observed in total. Assume that a total of 5 patients respond after evaluating the outcome of the 124"
patient. Then the decision would be the same as the decision we would have made if the trial would have included
alln; = 8 + 16 subjects, so we could stop after the 12*" patient, fig 2.1. (Case I) On the other hand, if only 2 patients
out of 22 respond to the treatment, then we could stop the trial early since we have only another 2 patients left and
the design requires at least 3 additional responses. In that case, the treatment is not considered promising. fig 2.1.
(CaseII)

2.3 Uniformly Minimum Variance Unbiased Estimator (UMVUE)

The property of unbiasedness is desirable for an estimator. In Appendix A it is shown that V' = (Y, X;) is complete
and sufficient, and is therefore use to derive an unbiased estimator with minimum variance. The UMVUE is derived

using the Rao-Blackwell theorem and the fact that sample proportion in the first stage p; = f—]‘ is an unbiased

*The definition of the required responses is different than in the Simon's original paper, r; = 'rf imon’s | |
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Figure 2.1: Case I,II: Boxes with red colour are the non-responders and responders denoted with green. The black lines indicated the end of the first
stage and a pre-planned interim analysis. The gray boxes indicate the unused patients.

estimator of the response rate. Considering the sequential nature of the trial, we propose as an estimator for p the
conditional expectation of the sample proportion given the sufficient statistic, p = E(p1|(Y, X;)). Following the
calculations in Appendix B the UMVUE is derived:

Xi i _
o ifY =n,

Z’"t*l (Y—nl—l)(nl—l)
j=r1 Xt—d i—1
R ETRICN
j=ry \ X¢—j J
ZT:—I (Y—nl—l)(nl—l)
j=rq \Xt—J—1/\j-1
Zrt—l (Y—nl—l)(nl)
Xp—j—1/\j

J=r1

ifY>Tl1,Xt < Ty (21)

)
I

ifY > 7"L17Xt =Tt

where the estimator by the end of the first stage is the same if we stop due to futility, z; < 7, orefficacy z; > ;.

Other estimators

The UMVUE can directly be compared with the sample proportion in the stopped Simon's two-stage (SSTS) design
proposed, i.e. the total number of responders divided by the total number of patients observed:

X,
ASSSTS
b =5

In the simulations that follow, we also compare the performance of the two estimators described above against

the performance of the UMVUE and sample proportion in the setting without early stopping (i.e. the standard ap-

plication of the STS design), to evaluate the loss in precision that can be expected when allowing for early stopping.

Xy
n

and the UMVUE [22] uses the sufficient and complete statistic (1, S), where M € 1,2 is the stage after which

The sample proportion (ssrs) is the number of responders divided by the total number of patients: p5s7s =

the trial is stopped and S is the total number of responders. If the trial stops in the first stage with S; = s, then
pUsTs(1,8) = n—sl If the trial continues to the second stage with Sy = s then:

DD (e [

ﬁuSTS (27 S) = Z:y;i:l(s,nl) (nll) (ng:rlu)
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The proposed estimator only becomes relevant if the design with early stopping is relevant and useful given study
objectives and specific context. The comparison against the full design estimatoris toillustrate the loss in precision

such a design choice causes. '

2.3.1 Confidence interval

A common strategy in clinical trials inference is to present the response rate estimation alongside with a confi-
dence interval. However, standard confidence intervals do not take the sequential nature of the trial into account.
A natural choice would be a one-sided instead of a two-sided confidence interval for the response rate, so that it is
consistent with the one-sided hypothesis testing in a STS design (remember that in a STS stage design, a one-sided
hypothesis is tested to study whether the treatment is sufficiently promising). Recently Shan [38] introduced an
one sided exact CI based on the p-values in two-stage designs. In the current paper a two-sided confidence interval
is proposed, since the primary goal of the paper is estimation of the response rate. However, a one-sided interval
can be constructed in a similar way. The two sided CI is constructed, similarly to Jung [22], by ordering the sample
space based on the statistic (Y, X} ) following the SSTS design. The statistic used in this case is not a monotonic pos-
itive function. Similarly to Jennison and Turnbull [39] orderings applied in the sample space, based on the UMVUE
p(Y, X;). The ordering is made using the sufficient statistic (Y, X;), as illustrated in Table 4.1. Using the sample
space orderings and tail probabilities (analogous to Jung [22], [39], [40]), an exact 100(1 — «) percent confidence
interval for all values of p contains that satisfy both inequalities: (see in Appendix C the detailed calculations)

By(p(Y, Xt) 2 Dy, x¢) | p = po) >

P,(p(Y, Xt) > Dy, ) | p=po) <1—

[NIRSE IS

Abisection method is used to calculate the lower and upperbound of the confidence interval. Based on the table 4.1
sample space orderings, the sum of the probabilities of the lower side of the CI should be at least equal to § and the
upper side at most equal to 1 — § respectively. E.g. assume that we observe z; = 3 and we want to calculate a 95%
confidence interval. We then sum all the probabilities below the observed design (row in bold table 4.1) given the
initial value 0.25 (the initial value doesn't play any role in the algorithms convergence speed). The sum is 0.485. As
the procedure continues using different values of p;, and py/, the solution for the nominal level of a 95% confidence

interval in the current example is (0.055, 0.518).

2.3.2 Simulation studies

To evaluate the characteristics of the SSTS and confidence interval in comparison to the alternative estima-
tors/settings, we performed a simulation study for various STS designs. The designs chosen were selected to
provide a range of null (py) and alternative (p;) hypothesis with the same type I/II error (see table 1 and 2 in
supplementary material for an overview).

Data was generated as n; + ny Bernoulli(p) trials. For reference, the stopping rules were used following the
standard application of the STS design. In this setting, the sample proportion and the UMVUE [22] are evaluated.
Next, the stopping rules as outlined in section 2.2 are applied (the ‘stopped STS design’), and again the sample pro-
portion and our UMVUE estimate are determined. The estimators are evaluated in terms of the bias, MSE and the

expected sample size. The performance of the confidence interval proposed in section 2.4.2 is evaluated in terms

4" in p¥STS is used as abbreviation for UMVUE and "s” for Sample proportion in the formulas.
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N1 N2obs A Tt Y P(Y =y, Xy = xz¢|p = 0.25) P(Y =y, X¢ = a¢|p = 0.055) P(Y =y, Xy = x¢|p = 0.518)
9 - F 0 9 0.075 0.601 0.001
9 7 F 1 16 0.030 0.212 0.000
9 8 F 2 17 0.083 0.128 0.000
9 8 T 3 17 0.028 0.008 0.001
9 7 T 3 16 0.033 0.007 0.001
9 [ T 3 15 0.040 0.007 0.002
9 5 T 3 14 0.048 0.006 0.003
9 4 T 3 13 0.056 0.006 0.006
9 3 T 3 12 0.063 0.006 0.011
9 2 T 3 11 0.070 0.005 0.018
9 1 T 3 10 0.075 0.004 0.030
9 - T 3 9 0.234 0.010 0.147
9 T 4 9 0.117 0.001 0.236
9 - T 5 9 0.039 0.000 0.254
9 - T 6 9 0.009 0.000 0.181
9 - T 7 9 0.001 0.000 0.084
9 - T 8 9 0.000 0.000 0.022
9 - T 9 9 0.000 0.000 0.003

Table 2.1: All possible outcomes of a design where, n1 = 9, ny = 17,71 = 1,7, = 3totest Hp : po = 0.05vs Hy : p1 = 0.25 with
a = 0.05 and 8 = 0.2. The "A” column indicates if the trial is successful or not, F=False, T=True. The row in bold indicates the design we
used as an example above. When the design stops in the first stage due to efficacy or futility, we set the second column 12, a ™"

of the coverage. 1000000 simulations were used for all measures except the coverage, due to the computational
complexity of the algorithm, we perform 10000 simulation runs (The simulations were performed using R, version
4.0.2).

2.4 Comparisons and Results

2.4.1 Estimator properties

In figure 2.2, the four estimators are compared in terms of MSE and bias. The first row shows the comparison in
terms of bias across different optimal STS designs with different properties and the second row shows the compar-
ison in terms of MSE in the same designs. The unbiased estimators in the simulation study behave as expected in
theory. The red dashed line indicates the UMVUE of the STS design, as expected the bias overlaps with the respec-
tive bias of the UMVUE of the SSTS design (grey continuous line), equal to 0. In both cases the MSE bottom panel,
reflects the variance of the estimators. The SSTS estimator will always give an estimate based on less data, due to
the design’s stopping rules. For this reason the uss7s MSE is higher than the ugps MSE in fig 2.2. In the standard
application of the STS design, the sample proportion has a downward bias. When early stopping is allowed, how-
ever, the bias can be in both directions (although the upward bias is less pronounced for designs such us the last
one presented in fig 2.2). The MSE of the SSTS sample proportion seems to be lower than the proposed UMVUE
in the respective areas where the sample proportion is biased. That means that the variance in these areas of the
UMVUE is much larger. It is remarkable, given the PET graph, that the MSE of the ugs7g is less than the respective
MSE of the sample proportion of SSTS when the PET due to efficacy in the interim (yellow line fig 2.5) crosses with
the PET due to futility (red line fig 2.5) by the end of stage I. In addition, the effect of stopping early due to efficacy
by the end of the first stage can be seen clearly in figure 2.2 when in the first upper panel of the figure 2.2 the true

RRisp > 0.6. This design requires at least r; = 7 responders in total out of n; = 18 by the end of the first stage.
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When the true RR of p is greater than 0.6 it is highly probable to observe at least 7 responses out of the 18 patients,
so the design is highly likely to stop due to efficacy by the end of the first stage. Finally, in trials designed with a high
null and alternative hypothesis, like the last design in figure 2.2, the UMVUE of the SSTS design performs better
when the true p is close to the alternative hypothesis, even in comparison with the STS design. Considering this,
a trade-off between bias and variance can be detected. Similar results are observed across all designs that were
evaluated. (see, fig %27 supplementary material) It is common in phase II oncology designs that the decision of a
treatment activity is mostly important. Estimation when the trial stops early seems to play also a role in the plan-
ning of the trial's design. Given the results of the figure 2.2 the MSE difference in the first design panel between
SSTS and STS estimates seems to be significant when the estimate is away from the region of the shaded area. A
clinical researcher might be whiling to choose a curtailed design that reduces the number of expected sample size

and the compromise in the trial's effect won't be that important based on the simulations.

n=18,n=35,r=3,r=7 ni=24,n=63,r,=9,r=25 ny=24,n=61,r,=13,r,=36 n=15,n=36,r,=12,r,=30
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Figure 2.2: Comparison across different null/alternative hypothesis. The blue solid line represents the sample proportion in SSTS design. The gray line
denotes the UMVUE of the SSTS design. The yellow and the red dashed lines represent the sample proportion and the UMVUE of the STS respectively.
The shaded area indicates the null’s and alternative’s hypothesis region of the respective design.

2.4.2 Coverage probability

The coverage of the confidence interval is evaluated for a variety of designs, as discussed before. Figure 2.10 shows
the simulation results. The coverage appears to be close to the nominal level of 95%, but on average higher (up
to 96.8%) across all designs. When the true value of p is close to 0 or 1 a trend can be detected. The coverage is
larger than the nominal level, because when all patients respond or no patient does, the method always includes
the true value (0 lower bound or respective 1upper bound). In between of the design’s hypothesis range, with gray
shaded colour, the coverage is close to the nominal 95% (grey shaded area). That means that the applied confidence
interval is slightly conservative.
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Figure 2.3: Coverage probability across different designs of 10000 simulations. The shaded area indicates the null’s and alternative’s hypothesis region
of the respective design.

2.4.3 Expected sample size

The expected sample size (ESS) of SSTS is compared with the STS’s ESS. Based on simulations, we provide (fig. 2.4)
the whole range of true values of p, where p € [0, 1]. The ESSssrs < ESSsrs for any value of p. This can easily
be seen in fig 2.4, the NSC design stops when the required responses can be reached or cannot be reached. An
interesting point that is explained by the design properties, is that the purple line (first line, fig 2.4) becomes almost
astraightline when the true value of pis greater than 0.6. The total required responses r; in this design is a relatively
small number, so the bigger the true p becomes, the more frequent responders observed and the trial stops. The
ESS reduction is based on the efficacy boundary in this case. STS designs can be used in practice in a variety of
ranges of py and p; depending on the definition of "low” or "high” based on the researchers expectations of the
effect. The SSTS design provides a sample size reduction for every observed outcome. In table 2.2 the expected
sample size difference of STS and SSTS is depicted. Under the null hypothesis, almost 2 patients could be saved
on average per trial. The SSTS would have lower expected sample size than STS, as expected theoretically. Given
the simulated designs, where the power is 90%, the ESS difference with the STS design is in a range of 0.58 to 2.01
patients, with an average of 147. When the power is 80%, the ESS difference range is from 0.56 to 3.11, with an
average of 1.56.

The ESS of the SSTS compared with other curtailed designs will have always bigger ESS. The AR design stopping
rules are similar with the SSTS in the second stage, the ESS is the same when the conditional power threshold 6
equals to 0, if the threshold choice is greater than O, then the £\SSssrs > ESSag. Using the same reasoning, in
KK or in Chi and Chen design where early stopping is allowed in the first stage as well has a lower ESS.

2.4.4 Probability of early termination

To evaluate further the SSTS design against the STS design, the probability of early termination is calculated via
simulations. The PET of STS design is coded in the fig 2.5 as the PET stage I futility (red line) and is the same for
SSTS and STS design. An interesting point is to observe that the probability of early termination in stage I due to

:

100
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ESS
Po p1 SSTS STS
Power = 80%
0.1 0.3 14.45 15.01
0.2 0.4 19.75 20.58
0.3 0.5 22.51 23.63
0.4 0.6 22.35 23.95
0.5 0.7 21.83 23.50
0.6 0.8 18.47 20.48
0.7 0.9 11.71 14.82
Power = 90%
0.1 0.3 21.94 22.53
0.2 0.4 29.16 30.43
0.3 0.5 33.41 34.72
0.4 0.6 34.48 35.98
0.5 0.7 32.31 34.01
0.6 0.8 27.59 2947
0.7 0.9 19.22 21.23

Table 2.2: Comparison between STS optimal design and the SSTS under the null hypothesis for p1 — po = 0.2 at alpha = 0.05.

Designs with 80% power Designs with 90% power

40 40

g

ESS difference
3
ESS difference

3

050 050
True p True p

= 07-0.9 mm 05-0.7 == 03-0.5 == 0.1-0.3

Figure 2.4: ESS difference between STS and the SSTS across the range of possible values for p. The bold solid lines represents the design’s null and
alternative respective range of the studied design

efficacy is considerably high in the upper left panel, where 7 responses are required in total to claim efficacy based
on the specific design’s properties. This is the only design in the graph where the total required responses is less
than the first stage patients(r; < n). PET at the end of the first stage due to efficacy, introduces bias that affects
the estimation. The MSE of the referred design in fig 2.2 is affected by the reduced sample size. When the yellow
line of fig 2.5 starts to increase the trial stops more often by the end of the first stage.

2.4.5 Empirical application

A Malignant pleural mesothelioma study [41] is an example for Case I (fig 2.1). The trial followed the STS design
(ny = 18,ny = 15,71 = 5,7, = 11). The authors [41] estimated the response rate by means of the standard
sample proportion as 47% with a 95% CI (30%, 65%). If the UMVUE described in [22] and a CI based on Koyama
[29] would have been used, the estimate would be equal to 47.5% with a 95% CI (32.2%, 59.7%). If the researchers
would have allowed for early stopping, the estimation procedure proposed in this paper would yield 47.6% with a
95% CI(28.2%, 70.2%) and the trial could have been halted after the 2ond subject out of 33, allowing some lose of
precision. The sample proportion in the SSTS would be 50% with a 95% CI (30.7%, 69.3%))
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Figure 2.5: Probability of early termination as a function of p, where the 4 different stopping rules are calculated separately. The beginning and the
end of the shaded area represents po and p1 of the respective design.

2.5 Discussion and Conclusion

In this paper, an efficient approach to the Simon's two-stage design is introduced, in situations where the go/no
go decision can be made before the nominal target sample size is reached. We presented the UMVUE with cor-
responding confidence interval for the response rate for STS studies that stop as soon as a decision can be taken.
Using simulations, the proposed estimator is compared against the sample proportion in terms of bias and MSE in
various settings. In addition, itis shown how it performs against the sample proportion and UMVUE in the standard
application of the STS design. Also, the coverage of the CI is investigated, as is the expected reduction in sample
size. The proposed procedure is shown to be a valid approach with the potential to substantially reduce the required
sample size. The SSTS design can prevent some patients from receiving ineffective treatments or, if the treatment
is promising, a confirmatory trial can start sooner.

The ESS reduction could be particularly interesting in master protocols including many sub-studies that use a STS
design. Recent examples like TAPUR study includes more than 336 unique trial cohorts [42] and the DRUP trial also
includes more than 165 cohorts [43]. As a result, if stopped early for futility, it prevents patients exposed to treat-
ments that are not promising. If stopped early for efficacy, rigorous evaluation starts sooner, or even treatment
may become available sooner.

An important benefit of the proposed approach is the simplicity in the execution: No adjustments are needed in
the design stage. Compared to most alternative curtailed designs [23],[24],[25], the SSTS design is not the most ef-
ficient in the sample size reduction, but the complexity is reduced. The stopping rules are easy to be adapted and
the first stage remains the same.

Estimation becomes a part of the design, allowing for early stopping will in most cases reduce the precision of the
estimate (fig 2.2). Whether this is acceptable or not is a choice that depends on the context and aims of the study,
e.g. on the expected difficulty or costs of accruing new patients, as well as on the anticipated response rate and the
chosen STS design. The option to provide a NSC design alongside with a UMVUE could be considered as an extra

valid option when a STS design is applied. When slow accrual of patients in a rare type of cancer is observed, the
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researcher should have the possibility of early stopping. In master protocols there is a variety of methods that take
into account the trial’s estimated effect for the homogeneity assessment of a collection of cohorts. An interesting
pointisthat fig. 2.2 MSE graphs shows that sometimes the proposed estimator is more precise even in comparison
with the complete STS design. The bias-variance trade off should be explored more, especially since we observed
estimators to have a lot smaller MSE when some bias is allowed and the UMVUE are introducing substantial vari-
ability. It seems not clear which strategy is more efficient in this case. The proposed procedure is an option worth
considering by any researcher involved in the design and conduct of trials following a STS design with an early
stopping rule and the estimator alongside with the CI should then be used if unbiased estimation is of importance.

DATA AVAILABILITY STATEMENT
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Appendix A: Sufficiency and Completeness proof

To determine a sufficient statistic, we applied the Factorization theorem (Theorem 6.4) [44]:
Suppose that the statistical model for X consists of discrete distributions. A statistic V = V(X)) is sufficient if and
onlyifthere exist functions gg and h such that forallz and 6, pp(z) = go(V (z))h(z), where py is the probability density

of X.
In order to apply this theorem, we need to write the distribution of the observation (X!,..., X™*"2 Y, A) in the
"correct” form. Where, (X!,..., X"1*"2) are Bernoulli trials, with probability p that represent the responders or

non-responders and A = ¢ is a binary variable indicates the decision by the end of the trial, O for failure and 1 for
success. The distribution of (X!, ..., XYY, A) isequal to:

Py (X' =2 .. XY =a¥,Y =y, A=0)
= Py(X'=a', ., XY =2YY =y, A =0)

= Py(X™MT =Mt XY =6, Y =y, A=6|X" =2, .., X" =2 " )p (1 — p)"1 L

= Py(X™FT = gmt XY =5y =y, A =8X, =a)pUi(l—p)"tTl

= Py(X™ = gmt XY =5y =y, A =6, X1 =a1)Pp(Y =y, A = §|X; = @1)p"t (1 —p)"1T 71

= Py(x™tl = gmitt XY gV Y =g A= 6, X =a1)Pp(Y =y, A = 6|X; = @1)pt (1 —p)"tT L

= h(Obs)Pp(Y =y, A =6|X; =z1)p"t (1 —p)"t "1 (22)

with h(Obs) a function of the observations only and not dependent of the unknown parameter p. This is true,
because given Y = y,A = §and X; = z; it is given how many successes will be among X™ ! ... Xv~1
Only the order of responders and non-responders is unknown, but this does not depend on p. If Y = n; (the
study is stopped after stage 1), the expression is simplified to p** (1 — p)™~*'. In the following the probability
P,(Y =y, A =6|X; = x)p™ (1 — p)™ " is rewritten in order to obtain the sufficient statistic with a minimum

dimension.

In the following, the conditional probability P,(Y = y, A = §|X; = x1) in the expression (2.2) is expressed in
the parameters. In the two cases 6 = landz; > r;,ord = Oand z; < 7y, the study is stopped for efficacy and
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futility, respectively, and:

1 ify=ny,

P(Y =y A=0lX|=21) =
i v X ) {0 otherwise.

Ifry <1 < ryandd = 0, the study is (early) stopped for futility in stage 2
Py(Y =y, A=0/X1 =21) = Py(XY =0, X" + -+ XV~ = (y = 1) — (It — 1)| X1 = 21)

Pp(XY=0)P((X' + -+ XV = (X -+ X™M) =y — Iy — 21| X1 = 1)

y—mn;—1

= (=)

vl z1)py*lr*w1 = p)lt+ﬁ"r1*"1*1
— 1l —

S U
Ifr1 <1 < r¢and§ = 1 the study is (early) stopped for efficacy in stage 2
P(Y =y, A=1X1=z1)= Pp(XY=1,(X '+ + XV D =r — 1|X1 = 1)
= Pp(XY=1)P((X 4 4+ XV H - (X 4+ X)) =y — 21 — 1)
_ (y —n1— l)pnle (1 = pyvter—ni—re,

Ty —xp — 1

Combining the different expression yields that P,(Y = y, A = 6| Xy = z1)p®* (1 — p)"*~** in (2.2) can be written
as

(11*71171)py—lt,(1 717)11 ifry < a1 <1t

y—li—z1
Pp(Y =y, A = 0]X1 = a1)p™ (1 — p)™1 —%1 = poL(1—p)m—T ify =ni, @1 <m @3)
0 ife) <ri,y#n
and
(e —pre i <o <
Py(Y =y, A=1|X1 =z1)p" (1 —p)™ ~"1 = pT1(1 — p)n1—=1 ify =ni,z1 >r (24)
0 ifxy > re,y #ny

By realizing that X; = X;ifY = ny,andr; < X; < ryisequivalenttoY > n; and A = 1 is equivalent to
X, > 1y, it canbe seen that the distribution P, (X! = z!,..., XY = 2Y Y =y, A = §) of the data can be split up
in a part that depends on the observations, but is independent of the parameter p (the function 4 in the theorem)
and a function that depends on the vector (Y, X;) and p (the function g in the factorization theorem). The binomial
coefficients in the previous displays will be part of the term that depends on the observations only. By applying the
Factorization theorem it follows that the vector (Y, X;) is sufficient.

Completeness of V' = (Y, X;) can be proved via the definition of a complete statistic: A statistic V' is called
complete if E,g(V') = 0 for all p in its parameter space, can hold only for functions g such that P,(g(V) = 0) = 1
for all p. In our case, we must show that, for a function g, h(p) = E, (¥, X;) = 0forallp € [0, 1], is only possible
if g(Y, X;) = 0 almost surely. This can be proved along the same lines as in the proof of completeness in [22].
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Let g be a function with

h(p) = Epg(Y, Xy) Zzgyft Y=y Xi=2) = 0.

Where, the probability distribution function of V is:

P(Y =y Xe=az)= Y Pp(X1=a,Y =y X =)
j=0

Py(X1=45Y =y, Xt =x¢) ify =ni,z¢ <71
_ Pp(X1 =5,Y =y, X¢ = z4) ify =ni,a >
1 .
Z;'”Pp(Y—y,Xf = x| X1 —If)(m)P (I=p)" =7 ify >ni,z <7y
1 .
Z;t 7‘1P (Y =y, X = x| X1 *J)(nl)p]u* Py TIify > ny,me =1t
(1 )pre(1 = pym—ee ify =ni,z <m
(h)per (1 = pymae ify =ni,ae > 29
= e . )
S (o) () 0> mas <
1 1 _ )
S ) () ity > nr,me =

We now need to prove that g(y, z;) = 0 for all values (y, z;) in the sample space of (Y, X;).

By inserting the probability distribution of (Y, X) in the sum in the previous display, we obtain a sum of four
terms. These terms correspond with the following situations: in case the trial stops in the first stage due to futility,
the trial stops in the first stage due to efficacy and the last two sums refer to the second stage stopping rules for
futility (X; = Y — ;) and efficacy (X; = r;), respectively. If r, > n; early stopping for efficacy is not possible and

the second term disappears.

h(p) = D gy, x)Py(Y =y, X, = 21)
Yy T

r1—1 n1
ny . 1 . .
=> g(nhr:)( >p“(1 P+ Y g, ( >p“(1*p)"1 o
xy=0 Tt TE=T¢ Tt

re—1
_ nlfl ny YL _ 1
8 Sl (s

y=(n1+1)Vly j=r1

re—1
—ny—1
+ Z > gy (7 _njl_l)(nl)p”(l—p)y’“-

y=(n1+1)Vry j=r1
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For ease of notation define the functions

ny
Clz, = g(n1,74) o

re—1
y—mng—1\/m
C2y = Q(Z/»y*lt)z <y7[f7j><j>

Jj=r1
oy —ng =1\ (n
—ni— 1
S ()
” 2 i)

all independent of p. With these definitions i (p) can be written as

ry—1 ny
h(p) = D cra ™ (L=p)" 7" + D crgp™(L—p)™ "
xy=0 Tp=r¢
ng ne
+ Z Coyp? (1 —p)tt + Z Cayp" (1 —p)V7Te. (2.6)
y=(n1+1)Vi; y=(n1+1)Vr,

The function /(p) is written as a linear combination of terms p*: (1 — p)¥+ (where i indicates the i*" term in the sum
of h) with y1; + v; equal to the number of patients in the trial (Y), which equals n;, in the first and the second sum,
and runs from (n; + 1) V [y or (ny + 1) V r; to n; in the third and the fourth sums. By a close look at the terms in

the sums it can be seen that for all pairs (y;, v;) and (p15, v;) with @ # j inthe sums, (i, ;) # (15, v5).

By taking p = 0, the function h(0) = ¢ o; that is for the term with z; = 0. Since h = 0 by assumption, ¢;,0 = 0
and therefore g(ny,0) = 0 as well (here we implicitly assume that y > 0, otherwise the first sum in & should be
left out). Now, take p = 1. Then h(1) = ¢y ,, if r; < ny (corresponding with the situation that is stopped after stage
1) and h(1) = cs,, if 1y > ny;thatis for the term with y = r; (corresponding with the situation that is continued
after stage 1). Since h = 0, it follows that ¢ ,,, = 0, and thus g(nq,n;) = 0, and moreover, c; ,, = 0 and as a result

g(re,m¢) = 0. The corresponding terms can (and should) be removed from the definition of % in (2.6).

Define Ps(p) = h(p)/p* and Qi(p) = h(p)/(1 — p)tforp € (0,1)and s, ¢ = 0,1,2,...,n,. First, take s = 1.
Remind that the term with p” equals zero (if these existed) and are left out from the definition of h. Then, P, (p) =
h(p)/p = 0,since h(p) = 0. Let p | 0. Then, lim, o P (p) = ¢1,1 and ¢1,; must be equal to zero. In a similar way it
can be shown that this musthold for¢; » = ... = ¢1,,, —1; the first sum in / can be removed. Now, take s = 7 and
consider P, (p) = h(p)/p"* = Oandletp | 0,then0 = lim,o P, (p) = c2,4,+r, (S0 that p~" = p). This implies
that ca7, 4+, = 0. Inanalogy, it follows that ¢z ;, 4+, +1 = ... = ¢24,4+,—1 = 0; all constants in the third sum in &
in the expression (2.6) equal zero and the third sum can be left out. By the reasoning in the previous paragraph, the

first and the third sum in (2.6) equal zero.

Suppose that 7, > ny, the second term disappears (it is not possible to stop after stage 1 for efficacy). The rea-

soning as before can be repeated with (), and 1 — p, in stead of P, and p to show that sy, 41vr, = ... = €30, = 0.

Now, suppose thatr; < n;. Also now the same reasoning as before with ¢); and 1 — p, shows thatc; ,, = ... =

Cln, = Oand C3ny+1 = .. = C3n, = 0.
Conclude that ¢, ,, = Oforallz, € {0,...,n1},¢2y = Ofory € {(ny +1)Vi,...,ns}and ¢z, = 0for

y € {(n1+1)Vre,...,n}. Allbinomialsin ¢ 4, , ¢2,, and cs ,, are positive, which implies that g(Y, X;) = 0almost

surely.
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Appendix B

As an estimator for p we take p = E(X;/n;|(Y, X)), the conditional expectation of X; /ny given the sufficient
and complete statistic V' = (Y, X;). This estimator is a function of V' by construction and unbiased since:
E(v,x,) E(X1/n1|(Y, X¢)) = E(X1/n1) = p. The explicit expression of this estimator using the sufficient statistic
estimates is given by

ny

1 1
p= EE(Xl\Y:y,Xt:xt) = fZJP (X1 =jY =y, X, =)

7=0
Tt ifar — 9
R o ify =ny
= re—1 . .

p Z: JPp(X1=3,Y =y, X1=2¢) .

= ify >n

n1 P,(Y=y,X¢=z¢) Y 1

Lo ify=m

ni
ST (e
= nlz:tnl (yzfnljl)("l) =t (1—p)te
S D

ify >ny,xe <1y

ny Z;t:;l (g-rj]ljll)(njl)l’”(1—P>yir" lfy Z =T
Z—'l' ify=ny
St ) ()
Zl% ify >ny,x <r
_ Zjlyz(,”,il DIED) 1, Tt t

Y

rt—1 (y—ny—1)(ny
Z_,:,,l (’“rfjfl)( 1) lfy > ni, T =1y

i—
}:"t*l (y—nl 1)(
j=ry \Tt—i—1 J

So the estimator for p is given by:

Xe ifY =ng

ni
E:W*I (y—ul—l)(wl 1)
j=r1 Xe—J
13‘: Zr;—l (Y—nl 1)(111)
j=r1 Xt—J J
2:”*1 (Y—n]—l)(nl—l)
j=ry \X¢—i-1/\j-1
)
1

m
Z]:rl Xt—J J

ifY >ny, X <1y
ifY > nl,Xt =T

The proposed estimator p is a function of the sufficient and complete statistic V' = (Y, X;) and is unbiased.
Then, by applying Theorem 6.18 in (Bijma, Jonker, van der Vaart)[44] it follows that p is a UMVUE for p. The proof of
this theorem relies heavily on the Theorem of Rao-Blackwell.
Appendix C

Suppose testing the null hypothesis Hy : p = pp against H; : p # po, the confidence interval for p equals all values
for py for which the test does not reject the null hypothesis. The null hypothesis is rejected if the p-value is smaller
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than & for a the pre-specified significance level. So, if

B (oY, Xi) = ply, @) | p = po) <

e

OR

Po(p(Y, X1) <ply, ) | p=po) <

N e

That means that the null hypothesis is not rejected if:

By(p(Y, Xt) > ply, x¢) | p = po) >

ol e

AND

P,(A(Y, X1) < By, 1) | p=po) > = 28)

Do

So, the confidence interval for p contains all values p, for which both inequalities hold.
The probability P, (p(Y, X;) > p(y,a:) | p = po) is increasing as a function of py, so the inequality in (7) will give
a lower bound of the confidence interval (py = pr) and similarly, the inequality in (8) will give an upper bound
(po = pu).

Note: the latter inequality, can be rewritten as:

By(p(Y, Xt) < Dy, x¢) | p = po) >

= 1-P,(pY,Xe) >y, @) | p=po) >

SENIESE IS

= B0, Xi) > ply, 20) [p=po) <1-3
So, the confidence interval for p contains all values for py that satisfy both inequalities:

P,(p(Y, Xt) > Py, 1) | p = po) >

P,(p(Y, X:) > Py, 2t) [ p=po) <1—

NN

Appendix D

In this appendix the supplementary material of the main paper is presented. Following the same procedure as
before, presenting all the designs explored in the simulation study as described in section 2.3.2. In the following

table the properties of the Simon’s two stage designs is presented.
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Simon’s two stage optimal design properties

Po p1 T1 n1 Tt ne
Power = 80%
0.1 0.3 2 10 6 29
0.2 0.4 4 13 13 43
0.3 0.5 6 16 19 46
0.4 0.6 8 16 24 46
0.5 0.7 9 15 27 43
0.6 0.8 8 11 31 43
0.7 0.9 5 6 23 27
Power = 90%
0.1 0.3 3 18 7 35
0.2 0.4 5 19 16 54
0.3 0.5 9 24 25 63
0.4 0.6 12 25 33 66
0.5 0.7 14 24 37 61
0.6 0.8 13 19 37 53
0.7 0.9 12 15 30 36
Dif ferentpo — p1
0.3 0.45 14 40 41 110
0.3 0.5 9 24 25 63
0.3 0.55 6 15 17 40

Table 2.3: Optimal Simon two stage designs used for evaluation of the new proposed design
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Abstract

The Duration of Response (DoR) is defined as the time from onset of response-to-treatment up to progression-
of-disease or death due to any reason, whichever occurs earlier. The expected DoR could be a suitable estimand to
measure the efficacy of a treatment, but is in practice difficult to estimate, since patients’ follow-up times are often
right-censored. Instead, the Restricted Mean Duration of Response (RMDoR) is often used. The RMDoR in a time 7
is equal to the expected DoR restricted to the interval [0, 7). In this paper we consider the behaviour of the RMDoR
as a function of 7 and its suitability as a measure to quantify the efficacy of a treatment. Besides, we focus on the
estimation of the RMDoR. In oncology the events response-to-treatment and progression-of-disease are typically
detected through time scheduled scans and are therefore interval censored. We describe multiple estimators for
the RMDoR that deal with the interval censoring in different ways and study the performance of these estimators

in single arm trials and randomized controlled trials.
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3.1 Introduction

In oncology, but also in other research fields, the efficacy of a new treatment is preferably evaluated in a ran-
domised clinical trial with a time-to-event endpoint. Overall survival is frequently regarded as the "gold standard”.
A disadvantage of this endpoint is its time-consuming nature in combination with the fact that sufficient events
need to be observed to have sufficient statistical power for concluding efficacy. This has led to an exploration of sur-
rogate clinical endpoints that are less time consuming, for instance progression free survival, objective response
rate (ORR) and duration of response (DoR). An overview of different endpoints is given by Delgado.[45]

The DoR is becoming a more popular endpoint in oncology trials.[26], [46], [47] In the Netherlands, the Dutch
Society for Oncology has included DoR into its criteria for clinical relevance in case of rare cancers without further
treatment options, when investigated in a non-randomized design. A new treatment is deemed clinically relevant
in this setting if one of the following conditions holds for the estimates: ORR > 40% and DoR > 4 months; ORR be-
tween 30% and 40% and DoR > 8 months or ORR between 20% and 30% and DoR > 12 months [28]. It is therefore
highly relevant to understand definitions and estimation properties of the duration of response, including how it
relates to the design (randomised or not) and assessment procedures.

An often used definition of the DoR is: the time from response initiation to disease progression or death (which
one occurs earlier) in a patient who achieves complete or partial response. That means that the expected DoR is
defined as the average response time within the population of patients who do respond to the treatment. So, even
if the treatment is beneficial to a small proportion of the patients only, the expected DoR may be high. Because
this is counter intuitive, Huang et al[48]-[50] proposed a new definition. They defined the DoR as the time from
the onset of the response to disease progression or death in a patient who receives the treatment. So, they left out
the condition that the patient must be a responder and, thus, changed the target population. In the new definition,
patients who do not respond (before progression or death) have a DoR equal to zero. Huang and Tian[50] proved
that the expected DoR equals the area between the survival curves Spp and Sgpp, Where Spp is defined as the
survival curve for the time to progression or death, which one occurred earlier, and Sg pp is the survival curve for
the time to either response, progression or death, which one happened earlier.

The survival curves Spp and Sgpp in the formula for the expected DoR can be estimated by their corresponding
Kaplan-Meier curves.[51] However, most trials stop before all patients have had an event (progression or death).
Hence, the data are right censored and the Kaplan-Meier curves for Spp and possibly also for Sgppp do not reach
zero. As a consequence, the expected DoR can not be estimated properly. As an alternative the restricted mean
DoR (RMDoR) is considered. The RMDoR is defined as the expected DoR that is truncated at a pre-specified value
7. It turns out that the RMDoR is equal to the area between Spp and Sgpp on the interval [0, 7]. By definition, the
RMDoR(7) increases with 7 and will approximate the expected DoR for 7 sufficiently large. For a sensible choice
of 7 the RMDoR can be estimated by estimating Spp and Sgpp by their Kaplan-Meier curves and computing the
area between these curves on [0, 7]. Which values for 7 are sensible depends on the survival curves Spp and Sgpp
and the follow-up time of the patients.

In oncology, a response to treatment and progression of the disease are typically detected through (scheduled)
scans. These scans are made when patients visit the hospital for monitoring. That means that the exact start times
of response or progression are not observed, but are known to have happened before the detection time point and
after the time point of the previous scan; the start times of response and progression are said to be interval cen-
sored [52]. Since the time of the event death is observed exactly, the data are partly interval censored. In practice
interval censoring is often ignored when estimating survival curves; the response and progression onset are set

equal to the detection times. It is well known that by doing this the Kaplan-Meier curves overestimate their corre-
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sponding survival curves Spp and Sgpp [52]. This bias can be large, depending on the scanning schedule of the
patients and the survival curves Spp and Sgpp. The RMDOoR is estimated as the area between the Kaplan-Meier
curves for Spp and Sgpp. Itis not clear beforehand whether the biases in the Kaplan-Meier curves also affect the
performance of the estimator of the RMDoR. This is because the biases in both Kaplan-Meier curves are in the same
direction (overestimation) and a part of the bias may therefore cancel out if the RMDoR is estimated as the area in
between the two Kaplan-Meier curves. In this paper one of the main aims is to study the bias in the estimator of
the RMDoR if the interval censoring of the observations is ignored and the observed times are used as true onset
times. A simple correction for the interval censoring would be to use the midpoints of the intervals in which the
response or progression occurred, in stead of the right endpoint of the interval. The corresponding Kaplan-Meier
curves are still asymptotically biased, but it is expected that the bias of the corresponding RMDoR estimator will be
smaller.

The aim of this paper is twofold. First, the behaviour of the RMDoR at [0, 7] as a function of 7 is studied. By
definition, the RMDoR increases with 7, but the question is how strong this increase is in realistic settings. The
RMDoR is used in guidelines to decide upon efficacy of a treatment and the clinical relevance of treatment effects.
A strong dependence on 7 may make interpretation of the RMDoR difficult and its applicability for decision making
debatable. The second aim of this paper is to study multiple estimators for the RMDoR. These estimators differ in
the way they deal with the interval censoring. For different choices of the underlying distributions of the time to
response to the treatment, progression of the disease and death, the scanning schedule of the patients and the
value of 7, the performance of the estimators of the RMDoR will be studied by means of simulation studies for
single and multi arm trial designs.

The paper is structured as follows. In Section 3.2 the setting in which we work and the notation is introduced.
Moreover, multiple estimators for the RMDoR are defined. Thereafter, in Section 3.3, the results from the simula-
tion study for different scenarios are described. We finish the paper with a discussion and concluding remarks in
Section 34.

3.2 Estimation of RMDoR

In this section we introduce the notation (Subsection 3.2.1) and define multiple estimators for the RMDoR (Subsec-

tion 3.2.2). The estimators differ in the way they deal with the interval-censoring of the observations.

3.2.1 Notation and setting

For a patient the time from entering the trial (time of randomization in a randomized trial, and typically start of
treatment (cycle) in a single arm trial) to response to the treatment is denoted as R, to progression of the disease as
P, and to death as D. The progression free survival (PFS) time of this patient is defined as the time from entering
the trial to either progression or death, which one was experienced earlier: Tpp := min{P, D}. Similarly, the
response-progression-free survival (RPFS) of the patient is defined as the time from entering the trial to either
response, progression or death, which one was occurred earliest: Trpp := min{R, P, D}.

Following the arguments in the paper by Huang and Tian [50], the expected DoR is defined as the expected time
between the response to the treatment and the progression of the disease or death, where this time is defined as
zero if the patient experiences progression or death before a response to the treatment. For 27 := max{z, 0}, this
means that the expected DoR equals

E (DoR) := IE((min{P7 D} — R)+) = H*:(Inin{];'7 D} — min{R, P, D}) = IE(TpD — TRpD)
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It can be deduced that the expected DoR is equal to the area between the survival curves Spp and Sgpp, where
Spp and Sgpp are the survival curves for the variables Tpp and Tr pp, respectively:

E (DoR) = E(Tpp — Trpp) = ETpp —ETrpp
= —/ tdSl)D(t)+/ tdSRp]_)(t) = / S])D(t)dt— / SRPL)(t)dt
Jo Jo Jo Jo
= / SPD(t)—SRPD(t)th
0
The RMDoR on the interval [0, 7], denoted as RMDoR(7), is defined as the expected DoR truncated at timepoint 7:
T
RMDOR(T) = E(min{TpD,T}7min{TRpD,T}) = / SPD(t) 7SRPD(t)dt, (3.1)
0

the areabetween the survival curves Spp and Sgpp ontheinterval [0, 7). Since, by definition, Spp (¢)—Sgrpp(t) >
0foreveryvalue of ¢, the value of RMDoR(7) is non-negative and non-decreasing as a function of 7. For 7 increasing
to infinity, RMDoR(7) approaches the expected DoR. The behaviour of RMDoR(7) as a function of 7 depends on the
underlying survival function for the time to a response of the disease, time to progression of the disease and death.
In practice, every situation is different and it may be unknown beforehand how to best choose a value for 7. More
discussion on the choice of the value of 7 is given in the sections 3.3 and 34.

Suppose that the progression of the disease and the response to the treatment can only be detected by a CT scan
(or another medical procedure) that is performed during one of the scheduled visits to the hospital. Define 0 =
Vo, V1, Va, . . . as the time points (counted from the moment of entering the study) of these scheduled non-random
visits. When an event (response or progression) is detected at visit time V}, the event was actually experienced
in the half open interval (V}_1, Vk]; the event is interval censored. So, the actual time to progression, P, and the
time to response, R, are never observed exactly. Instead the times of the first visit after the actual progression and
response times may be observed. These times are denoted as P and R, and must, by definition, equal one of the
visit times. The time of the event “death’, D, is assumed to be observed exactly. Let Tpp and TR pp be defined
asTpp = min{ﬁ, D} and Trpp = mim{ff7 P, D}. Furthermore, define C' as the independent censoring time
(lost to follow-up or end of trial). Because of the nature of the data, it might happen that for a patient, P < D (the
true unobserved time of progression is before death), but P > D (the moment the progression would have been

detected is after the patient died and therefore never observed).

3.2.2 Estimators for RMDoR

The expression of the RMDoR(7) given in (3.1) depends on the survival curves Spp and Sgpp. After estimating
these curves, the RMDoR(7) can be estimated by the area between these estimated curves on the interval [0, 7]. If
the datawould not be (partially) interval censored the Kaplan-Meier curves based on the true (unobserved) survival
times Tpp and Trpp (possibly censored by C) would be asymptotically pointwise (and uniformly) unbiased and
the corresponding estimator for RMDoR would be asymptotically unbiased as well. However, Tpp and Trpp are
not observed, but 7 and T pp instead (up to the censoring). Below we discuss some estimators for the survival
curves.

Ignoring the fact that the data are (partially) interval censored and estimating Sgpp and Spp by the Kaplan-
Meier curves based on the observed events that equal min{7pp, C'’} and min{Trpp, C'} for every patient, would

give biased estimators. Since Tpp > Tppand Trpp > Trpp, these Kaplan-Meier estimators will overestimate
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(pointwise) the true survival curves Spp and Sgpp. They are shifted to the right compared to the Kaplan-Meier
curves based on the true (partly) unobserved observations, due to delayed detection of response and progression.
However, both estimators overestimate the true survival curves, but it is not directly clear what the effect is on the
estimator for the RMDoR (defined as the area between the Kaplan-Meier curves), as both curves are biased in the
same direction and part of the bias may be cancelled out. The bias in the survival curves, and probably in the RMDoR
as well, depends on the schedule of the visits. This will be considered in a simulation study in Section 3.3.

To take the interval censoring of the data into account when estimating the survival curves Sgpp and Spp, one
could set the time points of progression and response equal to the mid-points of the intervals in which they were
experienced, in stead of the observed right end points (the visit times). The RMDoR(7) is estimated as the area
between the newly obtained Kaplan-Meier curves on [0, 7| again. Summarized, we consider two estimators of the

RMDoR(7) which are based on the end-point and the mid-point strategy as just described:
El. The scanning time point at which response or progression is detected is seen as the true event time-point.

E2. Theresponse and progression time points are set equal to the midpoint of the interval in which the event was

experienced and was detected at the right endpoint.

In clinical practice, medical doctors use a variety of definitions of response and progression. Sometimes a con-
firmation of an observed response (progression) one month later is needed. If the response is not confirmed, the
patient is said not to have responded. We, therefore, also consider the end-point and midpoint estimators of the
RMDoR(7) with this alternative definition. In analogy of the estimators E1 and E2, we define the estimators based

on the following definitions:

D1. The time of progression of the disease is set equal to the time-point progression was confirmed. The re-
sponse to the treatment is set equal to the time-point of first detection.

D2. Similar to D1, but now the mid-points are used.

3.3 Simulation Study

In this section we describe the results of a simulation study. We consider the behaviour of the RMDoR(7) as a
function of 7 (Subsection 3.3.2), the performance of the proposed estimators for the RMDoR (Subsection 3.3.3) and
whether they are sensible for detecting efficacy of a new treatment in a randomized comparative setting (Subsec-

tion 3.3.4). We start with describing the assumptions for the simulation study (Subsection 3.3.1).

3.3.1 Simulation setting

We consider two settings with different time to response and progression distributions. Because we aimed for
realistic distributions we chose these based on an an existing clinical trial, the Bavencio trial [53]. The Bavencio trial
isarandomised two arm trial in patients with renal cell carcinoma who did not have disease progression with first-
line chemotherapy. In the experimental arm the patients are treated with Avelumab and axitinib, and in the control
arm the patients got Sunitinib. In total, 886 were included in the trial, of which 442 patients in the experimental
arm and 444 in the control arm. In both arms every patient had a minimum follow up time of 26 months. In the
experimental arm 52.5% of the patients responds to the treatment and the reported average duration of response

is 9.3 months. In the control arm these numbers equal 27.3% and 5.1 months.
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Tobase our survival models on the data from the Bavencio trial, we chose Weibull distributions for the time (from
diagnosis) to response, time to progression, and time from progression to death in both arms, with parameters such
that the survival functions for PFS and RPFS are similar to the Kaplan-Meier curves found in the Bavencio study.
More specifically, the parameter values were chosen so that the assumed survival functions for PFS and RPFS were
equal to the corresponding Kaplan-Meier curves from the Bavencio study at some selected quantiles.

Since, inthe firstinstance, we are interested in the behavior of the RMDoR(7) and the performance of the estima-
tors for individual treatment arms (and not comparatively in a two-arm clinical trial), we refer to the settings in the
two arms as setting A (experimental arm) and setting B (control arm). In setting A the distribution from random-
ization to response and progression are assumed to be Weibull(shape=1.50, scale=6.00) and Weibull(shape=0.76,
scale=21.54), respectively. The distribution for the time between progression and death was taken equal to the
Weibull(shape=3.00, scale=6.00). In setting B these three distributions are taken equal to the Weibull(shape=170,
scale=10.00), Weibull(shape=0.72, scale=13.36), and Weibull(shape=3.00, scale=6.00), respectively. The correspond-
ing survival curves Spp and Sgpp are given in Figure 3.1, together with the RMDoR on the interval [0, 26], the grey
area.

Although response and progression can, in principle, happen at any time, we assume that they can only be de-
tected during one of the moments the patients is scanned. In the simulation studies four different scanning sched-
ules (scenarios) are considered:

S1: Every month,

S2: Every two months,

S3: Every three months,

S4: Every 1.5 months until 18 months, next every 3 months.

Inthefirst three schedules the patients are scanned every month, every two months and every three months. These
make it possible to study how the bias of the RMDoR behaves in case the scanning frequency goes down. Scanning
schedule S4 was used in the Bavencio/Javelin101 trial. The moment of death is assumed to be observed exactly (if
the patient died before the end of trial).

For both settings, A and B, M = 1000 data-sets with data of n = 400 patients have been simulated. Next, based
on the chosen scanning schedule the observed time to response and progression are computed. For both settings
and every simulation round, the RMDoR(7) is estimated for every scanning schedule and all estimators. This gives,
forevery setting, every estimator and every value of 7, M estimates of the RMDoR. These M estimates are averaged
and plotted. A pointwise 95% confidence interval of the estimator for RMDoR(7) is computed as the interval from
the 2.5% sample quantile to the 97.5% sample quantile.

3.3.2 Estimating the RMDoR(T) as a function of 7 in the single arm design

In this subsection we focus on the behaviour of the estimates of RMDoR(7) as a function of 7, in the next subsection
we compare the different estimates. For both settings, every scanning schedule, and in every of the M rounds, the
RMDOoR is estimated based on the actual event data (say the daily scan data) and by the estimators given in the
previous section. See Figure 3.2 for the averages over the M/ rounds. From the plots we see that the estimates of
RMDoR(7) increase with 7. There is a steep increase for small values of 7, but it persists for larger values of 7. The
curves would flatten when the estimates for Spp and Sg pp get closerto each other, for instance when both Kaplan-

Meier curves reach zero. The latter will only occur if the follow-up of every patient is sufficiently long. The widths
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Figure 3.1: Survival curves for progression free survival (PFS) and the response and progression free survival (RPFS) in the two settings used
in the simulation study. These curves are similar to the survival curves in the Bavencio trial (setting A = experimental arm, setting B = control
arm). The grey area is the RMDoR on the interval [0, 26].
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Figure 3.2: Different estimates of the RMDoR as a function of 7. Upper row: Setting A (experimental arm). Bottom row: Setting B (control
arm). Every column corresponds to a scanning schedule. The estimates are represented by a dashed line, the boundaries of the confidence
intervals by solid lines. Note: the estimated curves are sometimes not visible, as they overlap. The estimates D1 and D2 are not displayed,
because they overlap with other curves.
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of the pointwise confidence intervals increase with 7. This is due to the increasing inaccuracy of the Kaplan-Meier
curves for higher values of time (and a consequence of a decreasing number of patients at risk).

3.3.3 Comparison between estimators in a single arm design

In this subsection we focus on the different estimates for the RMDoR and compare them with the estimate found
based on the daily scan data in which there is no interval censoring (golden standard). The (averaged) RMDoR es-
timated curves were seen already in Figure 3.2. The curves are very similar; it seems that the way the interval cen-
soring is dealt with hardly affects the estimate, especially if the times between the scans are short (schedule S1).

If we zoom in, the structural biases in the estimators are better visible. They are computed by the difference of
the estimators E1, E2, D1, D2 and the one that is based on the daily scan data (the golden standard) and averaged
over the M rounds (see Figure 3.3). A negative value of the difference is an underestimation of the RMDoR. The
lower the curve, the more the estimator underestimates the RMDoR. Some bias-curves become positive for large
values of 7, which indicates an overestimation of the RMDoR. In all plots we see the same pattern: the degree of

underestimation increases with 7 up to a certain value of 7 (approximately 10 months), and decreases thereafter.
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Figure 3.3: The bias (in months) in the estimation of the RMDOR(T) for the four scanning schedules, S1,. . ., S4. The bias of the four estimators,
E1, E2, D1, D2 on the interval [0, 7] are given for setting A (experimental arm) and B (control arm) (see legend) as a function of 7. The bias is
computed as the estimated RMDoR based on the four estimators minus the one based on daily scans (no interval censoring). The grey vertical
lines indicate the time-points the patients had a scan. In the first plot the red and green lines are not visible as they overlap with the blue and
purple lines, respectively.

The scanning schedules S1, S2, and S3 (in the first three plots) are decreasing in intensity: S1 (every month), S2
(every two months), and S3 (every three months). The degree of underestimation of the RMDoR increases with the
time between the scans. From the plots it can be seen that the degree of bias in the mid-point estimators (E2 and
D2) is smaller than for the end-point estimators (E1 and D1). These biases are due to the way the interval censor-
ing is taken into account when computing the Kaplan-Meier curves. If the scanning time-points are used instead
of the actual time-points, the event times are assumed to be larger than they actually are (“a delayed event”). As

a consequence, the jumps in the Kaplan-Meier curves are shifted to the right. Every delayed event or jump in the
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Kaplan-Meier curve for S pp decreases the area between the curves and, thus, decreases the estimate of the RM-
DoR. On the other hand, every delayed jump in the Kaplan-Meier curve for Spp increases the area between the
curves and, thus, increases the estimate of the RMDoR. This is illustrated in Figure 3.4. The steeper the survival
curve, the larger the overestimation of the curve and the stronger the effect on the RMDoR. In setting B (control
arm) the decrease in the survival curve is more gradually in the beginning compared to setting A (experimental
arm), which leads to less underestimation of the RMDoR. This is also what we see in Figure 3.3. From Figure 34 it is

also directly clear why the bias in the mid-point estimator E2 is smaller than in the right-end point estimator.

survival
survival

time (months) time (months)

Figure 3.4: In both plots the continuous lines are the survival curves Sgpp and Srpp in setting A. The dashed step-functions equal the
Kaplan-Meier curves (for large sample size) in the case of the scanning schemes S2 (scan every two months), left plot, and S3 (scan every three
months), right plot, without taking the interval censoring into account (estimator E1). For illustration purposes the event death is not taken
into account.

3.3.4 Comparisons between arms in a randomized trial

In a two arm randomized trial the aim is to compare the estimated RMDoRs between the two arms for a pre-
specified value of 7, by considering their difference or ratio. In this subsection we show the results of the
simulation study to compare the RMDoRs in two arms (setting A and B), as a function of 7. These differences
and ratios are displayed in the figures 3.5 and 3.6, respectively. For every scenario, the curves nicely overlap; we
conclude that the choice of the estimator hardly affects the estimates of the differences and the ratios. Although
the estimators E1 and E2 (right and mid point estimators) are biased due to the way they deal with the censoring,
this bias (almost) disappears when computing the difference or ratio of the estimated RMDoRs in the two arms. It
can also be seen that the estimated ratio of the RMDoRs is increasing with 7 for small values of 7, but flattens out
and seems to converge to fixed value close to 0.6 (for this example). In applications the value of 7 is usually chosen
as large as reasonable for the trial design. In this application, the ratio of the estimated RMDoRs in the two arms
is constant as function of 7 for large values of 7 and, therefore, the ratio is the perfect quantity to compare the

efficacy in the two arms. In other applications the fraction of the RMDoRs does not need to be constant for large




44 | 3.ESTIMATION OF THE RESTRICTED MEAN DURATION OF RESPONSE (RMDOR) IN ONCOLOGY

values of 7.
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Figure 3.5: For the scanning schedules S1, ..., S4 and every estimator, the estimated difference of the RMDoR between the two arms (experi-
mental arm minus control arm) are shown as a function of 7. Some curves are difficult to see, due to overlapping curves.

3.4 Discussion

In this paper we considered the estimation of the RMDoR. This quantity is proposed as an approximation to the
expected DoR, as the latter can not be estimated accurately in the case of right-censoring. Most researchers pre-
fer to take the follow-up time 7 as large as possible, because for large values of 7 the RMDoR(7) is almost equal to
the expected DoR. However, if 7 is "too large”, the estimate becomes unreliable, especially in trial designs with lim-
ited follow-up duration. This is because the RMDoR is estimated as the area between Kaplan-Meier curves, which
become inaccurate for larger time points at which only a few patients are still at risk. In Huang and Tian [50] an
algorithm is proposed for choosing the value of 7 based on the data. The idea of this algorithm is to use the max-
imum available information from the data; so to choose the window in which the RMDoR is estimated as large as
possible.

Interpretation in general of the RMDoR(r) is difficult as it is a function of 7, and in the settings we considered,
increases fast with 7. That makes an estimate of RMDoR(7) without explicit reference to the value of 7 useless.
Comparing estimates of RMDoR(7) between different patients groups or treatments is only sensible if the same
value of 7 isused. This will be rarely the case, unless the data of the two groups are collected within the same clinical
trial. That also means that this outcome should only be used in guidelines for efficacy or clinical relevance of a
treatment if a value of 7 is specified. The choice of this value may be specific for the underlying disease setting.
However, if more clarity on a suitable choice of the value 7 is given, designs of future studies can take this into
account; e.g., the follow-up of the patients should be sufficiently long to accurately estimate the RMDoR.

However, when publishing the results of a study, one need not limit oneself to an estimate of the RMDoR at a
given point in time. Instead, the estimated RMDoR(7) can be plotted as a function of 7 in a figure (or table), as is done

in the present paper. The time window for the plot (i.e., the largest value of 7 for which the RMDoR is estimated) can
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Figure 3.6: For the scanning schedules S1, ..., S4 and every estimator, the estimated ratio of the RMDoR (experimental arm/control arm) are
shown as a function of 7. Some curves are difficult to see, due to overlapping of the curves.

be chosen as large as possible, for example with the data-driven algorithm proposed by Huang and Tian [50]. For
comparison between studies, trial arms or patient populations, estimates of the RMDoRs at one or more specific
values for T can be extracted from the graph (or table), or comparisons can be done based on the course of the whole
curve.

In the simulation studies we have seen that in two arm trials the difference of the RMDoRs in the two arms sig-
nificantly increase with the value of 7, whereas the ratio was reasonable stable. This was also seen by Huang and
Tian [50] in their simulations for two arm trials. So, for comparison between the RMDoRs in two arms at a chosen
value of 7, the ratio of the RMDoRs is preferred due to the mild dependence of the choice of 7. However, the dif-
ference of the RMDORSs in the two arms gives the absolute treatment benefit, and may therefore be more clinically
meaningful than the ratio. Presenting the study results by plotting the difference and/or ratio of the RMDoRs as a
function of 7 may help interpretation.

In oncology the time to response and progression of the disease are often interval censored. In this paper we
considered multiple ways to account for this interval censoring which led to different estimators of the RMDoR. In
the simulation studies presented in the paper we have considered realistic settings, different schedules, estimators,
definitions and values of 7 and compared the obtained estimates of the RMDoR to the estimates that would have
been found if the patients visit the medical clinic daily. In all situations and for all estimators the relative bias was
small, both in the single arm and comparative setting.

Alternatively, one could try to take the interval censoring into account by using a likelihood function adjusted
for the interval censoring. The NPMLEs (non-parametric maximum likelihood estimators) that are obtained by
maximizing this likelihood function are not unique, but can be defined as any function that lies between the lower
and upper step functions which are obtained by assuming that the events took place directly after the last visit at
which the event had not taken place yet, or at the visit at which they were observed. Because the visits are the same
for every patient, the number of jumps in the curves are limited and the NPMLEs will not accurately estimate Spp

and Srpp, also not for high sample sizes.
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Inthe paper, we described the results of multiple simulation studies to investigate the behavior of the RMDoR(7),
the performance of some estimators, and a quantity to compare the estimated RMDoRs between two arms. In the
simulation study, the sample size was set at 400. This is a reasonable sample size for a phase 3 study. The same
simulation study was repeated with a sample size of 100 (the figures are given in Appendix A). This sample size is
more inline with the typical sample size for a phase 2 study. From the simulation study, we conclude that the results
regarding bias were not dependent on sample size, but as expected the confidence intervals were slightly wider for
a smaller sample size. In conclusion, from the simulation studies it follows that ignoring the interval censoring of
the observations in the estimation strategy has only a minor effect on the estimate of RMDoR(7). More important
is the choice of the value 7 and the associated follow-up time in clinical trial designs. If estimates of the RMDoR(7)
are used to decide upon efficacy of a treatment and clinical relevance of the effect size, more guidance is needed
about the choice of 7 and the trial design.
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Appendix A: Results simulation results, small sample size

We have repeated the simulation study as explained in Section 3.3, but this time with a small sample size: 100 pa-
tients in each setting or arm. The results are shown in Figure 3.7 to Figure 3.10.
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Figure 3.7: Different estimates of the RMDoR as a function of 7. Upper row: Setting A (experimental arm). Bottom row: Setting B (control
arm). Every column corresponds to a scanning schedule. The estimates are represented by a dashed line, the boundaries of the confidence
intervals by solid lines. Note: the estimated curves are sometimes not visible, as they overlap. The estimates D1 and D2 are not displayed,
because they overlap with other curves. In this simulation 100 patients per setting is used.
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Figure 3.8: The bias (in months) in the estimation of the RMDoR () for the four scanning schedules, S1,. . ., S4. The bias of the four estimators,
E1, E2, D1, D2 on the interval [0, 7] are given for setting A (experimental arm) and B (control arm) (see legend) as a function of 7. The bias is
computed as the estimated RMDoR based on the four estimators minus the one based on daily scans (no interval censoring). The grey vertical
lines indicate the time-points the patients had a scan. In the first plot the red and green lines are not visible as they overlap with the blue and
purple lines, respectively. In this simulation 100 patients per setting is used.
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Figure 3.9: For the scanning schedules S1,

..., S4 and every estimator, the estimated difference of the RMDoR between the two arms (exper-

imental arm minus control arm) are shown as a function of 7. Some curves are difficult to see, due to overlapping curves. In this simulation
100 patients per arm is used.
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Figure 3.10: For the scanning schedules S1, ..., S4 and every estimator, the estimated ratio of the RMDoR (experimental arm/control arm) are
shown as a function of 7. Some curves are difficult to see, due to overlapping of the curves. In this simulation 100 patients per arm is used.
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Abstract

Therapeutic advancements in oncology have transitioned towards targeted therapy based on specific genomic
aberrations. This shift necessitates innovative statistical approaches in clinical trials, notably in the emerging
paradigm of master protocol studies. Basket trials, a type of master protocol, evaluate a single treatment across
cohorts sharing a common genomic aberration but differing in tumor histology. While offering operational ad-
vantages, the analysis of basket trials introduces challenges with respect to statistical inference. Basket trials can
be used to decide for which tumor histology the target treatment is promising enough to move to confirmatory
clinical evaluation and can employ a Bayesian design to support this decision making. In addition to decision mak-
ing, estimation of the cohort-specific response rates is highly relevant to inform design of subsequent trials. This
study evaluates seven Bayesian estimation methods for basket trials with a binary outcome, contrasted with the
(frequentist) sample proportion estimate, through a simulation study. The objective is to estimate cohort-specific
response rates, with a focus on average bias, average mean squared error, and the degree of information borrowing.
A variety of scenarios are explored, covering homogeneous, heterogeneous and clustered response rates across
cohorts. The performance of the evaluated methods shows considerable trade-offs in bias and precision, empha-
sizing the importance of method selection based on trial characteristics. Berry's method excels in scenarios with
limited heterogeneity. No clear winner emerges in a more general scenario, with method performance influenced
by the amount of shrinkage towards the overall mean, bias and the choice of priors and tuning parameters in more
complex settings. Challenges include the computational complexity of methods, the need for careful tuning of pa-
rameters and prior distribution specification, and the absence of clear guidance on their selection. Researchers

should consider these factors in designing and analyzing basket trials.
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4.1 Introduction

Therapeutic approaches in oncology have shifted from conventional chemotherapy to targeted therapy on a spe-
cific genomic aberration across different cancer types. The progress in the field of precision medicine required a
different statistical approach to clinical trials. Master protocol studies appear to become increasingly common in
practice, particularly in non-randomized exploratory phase I/II research. [12] [11] An example of a master protocol
study is the basket trial design, the focus of this paper. In such trials, the same treatment is evaluated in multiple

cohorts of patients with different tumour histologies that share the same genomic aberration.

Basket trials can be seen as a series of single-arm trials (usually designed as either single or two-stage) per-
formed in distinct histology-based patient cohorts. An operational advantage of this design compared to conduct-
ing multiple individual trials for each tumor histology, is that it requires only a single protocol, a single database,
and a single medical ethical review board application. As such it results in time and cost savings. With respect to
the analysis of studies with a basket trial design, a straightforward inference strategy is to analyse each cohort sep-
arately, or to pool the data and provide a total estimate for the patients regardless of the patient’s tumour histology.
Either pooling or independently analyzing trial results in practical applications may not necessarily represent the
optimal choice in all cases. When there is high heterogeneity the pooling estimate introduces type I error infla-
tion and in low heterogeneity the independent analysis lacks of statistical power compared to alternative methods.
A third option is to use a procedure which, like independent analyses, performs inference on individual cohorts,
but which allows for borrowing information across cohorts. Such methods may provide advantages in terms of

statistical efficiency. (see, e.g. Pohl et al. [14] for a comprehensive review).

Methods or designs that allow for borrowing information are typically based on Bayesian procedures and as-
sume that the primary outcome of interest is the response rate: the fraction of patients in each cohort who showed,
upon treatment, a clinically significant shrinkage in their tumor volume, a common endpoint in early phase oncol-
ogy trials. Although the primary focus of the methods review in current article is on decision-making, posterior
point estimates of the cohort-specific response rates can be derived as well. Such estimates are of relevance to
plan subsequent trials or to provide estimates to support benefit-risk assessment and communicate expected ef-
fects to patients. While operating characteristics of the decision-making process are important as well, the focus
of the current simulation study is on the performance (bias, MSE) of the response rate estimator derived from the

posterior distribution used in the Bayesian procedures.

An overview of the performance of estimators based on seven Bayesian analysis methods that allow for borrow-
ing is presented for a range of scenarios. Additionally, we investigate the influence of prior distribution choice on
the performance of Bayesian estimators. All the estimators are applied in a variety of scenarios all considering
parallel single stage cohorts. A range of scenarios is addressed, encompassing homogeneous, heterogeneous, and
varied levels of response rate distribution across cohorts.

Insection4.2.1the methods used in this paper are presented in detail. In section 4.2.2 the setting, the simulation
methodology and the explored scenarios are discussed, including the approach to compare the results. In section
4.3, the results from our simulation study are presented as the evaluation of the methods in terms of bias, MSE
and amount of information borrowing. The methodology and the limitations of the comparative evaluation are

discussed in the Discussion section 4.4 of this paper, where we also provide suggestions for trialists.
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4.2 Methods

4.2.1 Estimators

The objective of estimation in the trial is to produce, for each cohort 7, an estimate p; of the true response rate p;
of that cohort, i.e. the probability of responding to the treatment for a randomly chosen patient in the i** cohort.

Some methods assess p; through the the log odds parameter 6; defined as 6; = log( ""p

L), or, equivalently, p; =

. i
1+exp(—6;)°
In this paper, besides the cohort-specific sample proportion (the observed number of responders divided by

the total number of subjects), seven Bayesian procedures to estimate cohort-specific response rates allowing for

borrowing are evaluated:

Estimator based on Berry et al.[54]

Berry et al. [54] discussed the use of a Bayesian hierarchical model (BHM) as a method that allows for borrowing
information across all cohorts. The BHM assumes that the log odds parameters ; are exchangeable between co-
horts,” meaning that all cohorts follow the same distribution i.e. N(u,o2). The hyper-priors, for ; and o2, are

defined as a normal distribution N (4, 02) and an inverse gamma distribution 02 ~ IG(A1, \2) respectively.

Estimator based on Neuenschwander et al.[55]

The EXNEX [55](exchangable-nonexchangable) method is a BHM method that extends the conventional Berry's
BHM by relaxing the assumption of all cohorts being exchangeable. Less information is being borrowed between
non-similar cohorts. The log odds parameter 6; for each cohort follows either a distribution which allows to ex-
change information, EX: §; ~ N (j10, o3) with probability w, or a distribution that is non-exchangeable with a prob-
ability 1- w, NEX: §; ~ N(m;,v?). The hyper-parameters employed in the NEX component, namely m;, v? and
w, are fixed. In this study, priors and parameters were specified in accordance with the recommendations of the
EXNEX [55] authors. The hyper-parameters used in the EX componentare yg ~ N (0, 10) and o2 ~ half-normal(1).

For the purposes of this paper the ‘bhmbasket’ R package is used for the calculation of the estimate.

Estimator based on Psioda et al.[57]

Here, response rates are estimated following the procedure in Psioda et al. [57], who propose a Bayesian model
averaging approach. All possible models (ranging from the most parsimonious model in which all estimates are
constrained to be equal to the most complex model in which all estimates are allowed to differ) are assigned a prior
probability of being true. In addition, a beta prior is used for the response rate estimate in each cohort. Based on
the observed data, the posterior model probabilities and model-specific posterior distributions for the response
rates are determined. Cohort-specific response rates are calculated as the weighted average of the mean of the
model-specific beta posterior distributions, with weights equal to the posterior model probabilities. Estimates
were obtained using the function ‘bma’ (version 0.1.2) in the R package ‘bmabasket’. We use the default parame-
ter specifications, with the exception of the prior for the response rates, which are defined to be uniform (Beta(1,1)),

instead of weakly informative.

*The methods Berry et al. [54], EXNEX [55](exchangeable-non exchangeable) and Jin et al. [56] model the response rate p; using the log odds
transformation. Instead of modelling p; directly, they model the distribution of 6; = logit(p;) = log(y D ip -)-
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Estimator based on Fujikawa et al. [58]

The Fujikawa et al. [58] method is a Bayesian approach that borrows information across cohorts based on the simi-
larity of their response rates. First, a uniform (Beta(1, 1)) prior is used for the response rate in each cohort, which
is updated based on the observed data. The pairwise similarity between the resulting posterior Beta distributions
is then determined using the Jensen-Shannon divergence. If the similarity exceeds a given pre-specified thresh-
old (denoted by 7), the posteriors are ‘combined’ (i.e. borrowing will take place, by updating the parameters of the
posterior distribution for a given cohort as a ‘weighted average’ of the initial posterior with all the other cohorts
with similar effect size). We use the means of the possibly updated posterior distributions as the point estimates

for the response rates.

Estimator based on Jin et al. [56]

The Bayesian hierarchical model with a correlated prior (CBHM) proposed by Jin et al. [56] is a method that allows
borrowing more information between possibly homogeneous cohorts and less when the treatment effect seems
heterogeneous. For the log odds parameter ¢;, it is assumed that it is specified as: 8; = 6y+n;+¢;. Then; are cohort-
specific effects which follow a multivariate normal distribution with correlation matrix 2, 7; ~ MV N(0, c%).
The similarity between two cohorts is identified in the {2 matrix, a correlation function is generated by the pair-
wise distance measures d;;. Three different distance measures are considered in the original paper (the Kullback-
Leibler distance (KL), the Hellinger (H) distance and the Bhattacharyya (B) distance). For the purposes of this paper,

we will use the H distance.

Estimator based on Chen & Lee [59]

Chen & Lee[59] proposed a Bayesian cluster hierarchical model. A two-step procedure, first the Chinese restaurant
process (CRP) [60] identifies the partitioning into clusters of each cohort using a non-parametric Dirichlet process
mixture model (DPM). The values of the clustering matrix C;; are the proportion of two cohorts being classified in
the same cluster. The second step is to use a Bayesian hierarchical model to estimate the log odds of the response
rate 0; ~ N(uq, ﬁ), given the cluster structure. The m; in this model is set to C;; for the specific subgroup i. A
hyper-prior for the mean 4, follows a normal distribution N (ua2, é) a hyper-prior for the precision controlling
the amount of borrowing between cohorts ¢ and j, 71 ~ Gamma(aq, £1) and y; is the respective model indicated
by the C;; matrix. The variance of the hyper-prior was explored by Chen & Lee [61], 7o = 0.1. The clustering matrix
probability of subgroup ¢ and j to share information influences the variance of the 6; distribution. As the similarity
value increases, the information sharing becomes larger and the posterior distribution variance decreases. The
‘BCHM' R package is used for the response rate calculation given the default parameters proposed by the authors.

(More details in Appendix B)

Estimator based on Liu et al.[62]

Liu et al. [62] propose a method that evaluates the probabilities of all possible models (referred to as 'partitions’),
assigning a prior probability to each partition differently than Psioda et al. [57]. The choice of prior is carefully
discussed, with a parameter, delta, introduced to determine the level of influence each model exerts. The authors
suggest values of 0 (uniform prior), 1, and 2 for delta. Unlike the Psioda method, which uses a weighted average, Liu
et al.[62] select the most probable partition to compute the pairwise similarity matrix among cohorts. This matrix

is then used to calculate the parameters of the Beta posterior distribution. In the local multiple exchangeability
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model (local MEM), this similarity matrix is used to determine which baskets are grouped together based on the

highest posterior probability partition. Information borrowing is then carried out locally within these identified

groups. Specifically, baskets that belong to the same block, as defined by the selected partition, are treated as ex-

changeable, and data from these baskets are used to update the parameters of their Beta posterior distributions.

This localized borrowing approach allows for precise information sharing while respecting differences between

dissimilar baskets.

4.2.2 Simulation study

Setup

In the simulation study, we construct a basket trial with six different cohorts, which we consider to be a realistic

choice. For simplicity, all cohorts of the study are assumed to be single-stage and have equal size. Limited to no

prior knowledge is assumed to be available. The total number of patients per cohort is denoted by n; and the num-

ber of responses is indicated by r;.

Scenarios

The scenarios in which we evaluate the response rate estimators differ in the distribution of the true response rates

p; across cohorts and the number of patients per cohort. We classify these scenarios into two types: homogeneous

and heterogeneous (table 4.1). The choice of the different scenarios is based on the methodological aspects of the

methods, but also extreme practical examples, like the KEYTRUDA [63] trial, lead us to consider a broad range of

scenarios.

Homogeneous Scenarios:

In homogeneous scenarios, all cohorts have similar or identical true response rates. These scenarios are
designed to evaluate how well the estimators perform when there is little to no variation between cohorts.
Specifically:

Scenarios 1.A.1to 1.A.3: The true response rate is the same across all six cohorts, with values set at 0.1, 0.3, or

0.5, respectively.

Heterogeneous Scenarios:

In heterogeneous scenarios, the cohorts have more distinct response rates, representing a wider range of
treatment effects across the different groups. These scenarios are designed to test the ability of the estima-

tors to handle substantial variability:

Scenarios 1.B.1to 1.B.4: Small variations in true response rates are introduced between cohorts. In scenarios
1B.land 1.B.2, the response rates differ slightly (by 0.025 and 0.05 respectively) around an overall mean of 0.5.
In scenarios 1.B.3 and 1.B4, the overall mean is 0.3, with variations of 0.025 and 0.05 respectively.

Scenarios 2.A.1to 2.D.3: These scenarios represent situations where two distinct groups of cohorts have dif-
ferent response rates. Scenarios 2.A.1to 2.B.3 response rate with difference of 0.2. Scenarios 2.C.1to 2.C.3
represent a larger response rate difference of 0.4, while scenarios 2.D.1to 2.D.3 consider an even greater dif-

ference of 0.6 between the two groups.

4
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Scenarios 3.A.1,3.A.3,3.B.1,and 3.B.3: In scenarios, 3.A.1,3.A.3,3.B1, 3.B.3, we assume three different response
rates, where four of the cohorts have the same response rate, while the remaining two cohorts have different
rates. Scenarios 3.A.2 and 3.B.2 describe cases where three pairs of cohorts each have the same response rate,

resulting in three different groups.

The responses of subjects in each cohort were generated from a binomial distribution with true probability
p;, wherei € {1,2,...,6}. The number of subjects per cohort was assumed to be N = {10, 20, 30, 100}.

Details concerning the specification of prior distribution parameters and tuning parameters of the seven
estimators are provided in Appendix B. R-code is available as online supplementary material.

Scenarios Coh A Coh B CohC Coh D CohE Coh F
1A1 0.1 0.1 0.1 0.1 0.1 0.1
1.A2 0.3 0.3 0.3 0.3 0.3 0.3
1.A3 0.5 0.5 0.5 0.5 0.5 0.5
1.B.1 0.4375 0.4625 0.4875 0.5125 0.5375 0.5625
1.B.2 0.375 0.425 0.475 0.525 0.575 0.625
1.B3 0.2375 0.2625 0.2875 0.3125 0.3375 0.3625
1.B4 0.175 0.225 0.275 0.325 0.375 0.425
2A1 0.3 0.5 0.5 0.5 0.5 0.5
2A2 0.3 0.3 0.3 0.5 0.5 0.5
2A3 0.3 0.3 0.3 0.3 0.3 0.5
2B.1 0.1 0.3 0.3 0.3 0.3 0.3
2.B.2 0.1 0.1 0.1 0.3 0.3 0.3
2.B.3 0.1 0.1 0.1 0.1 0.1 0.3
2C1 0.1 0.5 0.5 0.5 0.5 0.5
2.C2 0.1 0.1 0.1 0.5 0.5 0.5
2.C3 0.1 0.1 0.1 0.1 0.1 0.5
2.D.1 0.1 0.7 0.7 0.7 0.7 0.7
2.D.2 0.1 0.1 0.1 0.7 0.7 0.7
2.D.3 0.1 0.1 0.1 0.1 0.1 0.7
3A1 0.1 0.4 0.7 0.7 0.7 0.7
3.A2 0.1 0.1 0.4 0.4 0.7 0.7
3A3 0.1 0.1 0.1 0.1 0.4 0.7
3B.1 0.1 0.4 0.9 0.9 0.9 0.9
3.B.2 0.1 0.1 0.4 0.4 0.9 0.9
3.B.3 0.1 0.1 0.1 0.1 0.4 0.9

Table 4.1: Scenarios used in the explored simulations. The first 3 scenarios are the Homogeneous scenarios and the rest are referred to the
Heterogeneous scenarios.

Evaluation criteria

The estimators will be compared based on the average absolute bias and average MSE, as defined in Table 4.2.

An additional measure used to provide further insight in the results, is the Shrinkage to the total mean, which is
defined as the difference between the maximum and the minimum estimated response rate, divided by the simu-
lated max and min. We use the form as presented in table 4.2, such that the closer this value is to 1, the greater the

shrinkage. When the shrinkage is close to 0, it indicates that the methods are not borrowing much information.
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Formula
° E(pi)—pi
MeanAbsBias = w
6
Do [Biasi)? +Var(p:))
MeanMSE = =1 5
Shrinkage - 1- maz(E(p1),..,E(We)) —min(E(p1),....E(re))

max(p1,...,p6) —min(p1,...,pe)

Table 4.2: Evaluation criteria

4.3 Results

4.3.1 Homogeneous scenario

In the homogeneous scenarios with exactly equal true response rates across the baskets (scenarios 1.A1to 1.A.3,
fig 41 all Bayesian estimators except Chen & Lee show on average positive bias for response rates 0.1 and 0.3, but
not when the response rate is 0.5. The Chen & Lee shows negative bias when the true estimates are lower than
0.5. Among the Bayesian estimators, Berry's BHM [54] shows the smallest bias and average MSE, regardless of
the sample size per basket. The EXNEX and Jin methods are slightly shifting towards 0.5. When the sample size is
small, the average absolute bias for some of the other estimators, particularly those based on Liu and Fujikawa,
appears quite substantial towards 0.5 when the true common response rate is 0.1, but overall bias decreases to

negligible when the true response rate gets closer to 0.5.

To determine whether this effect is actually due to the prior choices, we conducted additional simulations, (Ap-
pendix C, fig 4.3,4.4) in which the parameters of each method were tuned to have a prior mean of 0.3. The results
indicate that the prior mean plays a role and influences whether the estimates overestimate or underestimate the
effect, towards to the chosen prior mean. Berry’'s method is not affected by the prior, as well as Chen & Lee. The
EXNEX and Jin methods are affected slightly. The Psioda method is affected, but less than the Fujikawa and Liu
methods.
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Figure 4.1: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.5



4.3. RESULTS | 59

4.3.2 Heterogeneous Scenario

If we allow for some heterogeneity in the true RRs of the six cohorts (scenarios 1.B.1 to 1.B4, fig 4.8 and 4.9), the
observed bias of the different Bayesian estimators increases. The average mean squared errors of the different
estimators overall increase and become more similar.

In fig 4.8, in the first row the estimates can again be seen to be biased towards 0.5, regardless of the variation
level. In fig 4.6 it can be seen that different true RRs across the 6 cohorts centered around 0.5, that the estimates
shift to this mean of 0.5 of the cluster. In fig 4.9, the mean of true RRs of the cohorts is 0.3, and most of the estimates
show shift towards 0.5, which was not observed in scenarios where the overall cluster mean of the true RRs is 0.5.

In these scenarios, Berry's BHM estimator has the lowest MSE when the response rate is less heterogeneous,
compared to the other methods. However, with increasing variability, the average absolute bias appears relatively
large, even with a large sample size. Also for other estimators, bias still appears to be present even with samples
sizes as large as 100 per cohort.

When considering scenarios involving the grouping of cohorts (i.e., two or three distinct groupings), all methods
effectively capture the structure (fig 4.2). As anticipated, the sample proportion has the smallest average absolute
bias (theoretically 0), but its average Mean Squared Error (MSE) is among the highest (see fig 4.2). In this setting,
Berry's Bayesian Hierarchical Model (BHM) estimator demonstrates the largest average absolute bias across most
scenarios. Estimators following Fujikawa and Liu's approaches tend to shrink more towards the prior of 0.5, com-
pared to other estimates. Jin's estimator shrinkage is small. EXNEX, Psioda, and Chen & Lee estimates also show a
tendency towards the mean of 0.5, but with a notable exception for the Chen & Lee estimator (see fig 4.6): it uniquely
shifts towards O when the estimated total mean is below 0.5 and towards 1 when above 0.5.

In scenarios as in fig 4.11, where the actual response rate of five out of 6 cohorts is equal to 0.5 and one cohort
deviates, the methods that tend to shift estimates towards 0.5 (such as Fujikawa’s) perform better in terms of MSE.
Berry's BHM estimator appears favourable with respect to average MSE when the heterogeneity is small (see fig
4.0, 4.9). However, as the heterogeneity increases (see fig 4.11, 412, 4.7), Berry's estimator’s MSE grows relative to
others. The observed patterns remain similar across all scenarios.

The diversity across different cohorts impacts the degree of shrinkage to the overall mean observed in our analy-
sis. Specifically, as the heterogeneity between cohorts increases, we notice a corresponding decrease in shrinkage
(see fig 4.5). Berry's method consistently shrinks more towards the overall mean, irrespective of the level of hetero-
geneity. In contrast, Liu's method exhibits the least shrinkage across all scenarios. The Chen and Lee method tends
to shrink towards the overall mean, similar to most methods when variability is low, but more prominently than
others in scenarios with large between cohort heterogeneity. Overall, shrinkage decreases with greater cohort
heterogeneity. Additionally, we observe that shrinkage tends to diminish as the sample size increases, although
certain methods—like Berry's—maintain high shrinkage under conditions of small heterogeneity.

As described in the homogeneous scenarios, the choice of prior has an impact on the results, particularly by
shifting estimates towards the prior mean. This effect is evident in fig 4.4, which contrasts the results when using
a prior mean of 0.3, compared to the prior mean of 0.5 shown in fig 4.2. Most estimates shift accordingly to the
homogeneous scenarios, illustrating the sensitivity of each method to the choice of prior.

In general, the differences become more apparent with smaller cohort sample sizes, though no consistent rank-
ing emerges among estimators. As sample sizes increase, estimators generally become more accurate and similar.
Specifically, most methods converge to the true RR with cohort sizes of 100 or more. The advantages of these meth-
ods over the sample proportion in terms of lower MSE diminish in larger sample contexts.

A concise summary of these results can be found in Table 3.
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Figure 4.2: Estimates on scenarios 2.B.1 to 2.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates. The prior
distribution in this graph is having a mean of the 0.5
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4.4 Discussion

In this paper, we present a comprehensive review of Bayesian methodology for a basket-type design with single
arm cohorts from the perspective of estimation. We evaluated various Bayesian methods and included the cohort
sample proportion for reference. We limited the evaluation to the setting of parallel single-stage cohorts using
identical sample sizes. The main objective of this paper is to assess how these methods perform with respect to
estimation of success proportions for the different cohorts in the basket trial. To ensure fair comparisons, we use
flat or weakly informative prior distributions, following the original author’'s recommendations. The evaluation
of the estimates considers frequentist properties including mean absolute bias and average mean squared error
(MSE) and shrinkage metrics. The motivation for this research is the limited availability of research results that
evaluate estimation properties when information borrowing is applied, whereas such estimation is particularly
relevant for early phase basket trials that inform subsequent larger (confirmatory) trials.

In a basket trial, statistical borrowing from other cohorts to improve estimation of the response rate for an in-
dividual cohort should essentially serve to improve the estimation compared to the cohort (sample) proportion.
It is typically considered when the cohorts target rare conditions, and thus sample sizes per cohort are relatively
small. The rationale of the basket trial (e.g. shared molecular target) typically provides justification for such borrow-
ing. Even when such (mechanistic) justification is strong, heterogeneity in response rates between cohorts usually
cannot be excluded a priori. Therefore, key desirable properties of Bayesian methods for estimation in this setting
are twofold: improved precision at cohort level when heterogeneity is limited or absent, and sufficiently sensitive
to adapt (i.e., limit bias at cohort level) when heterogeneity between cohorts is clearly present.

When put against these criteria, we conclude that there is no clear winner among the Bayesian methods in terms
of optimal average MSE and average absolute bias across the scenarios evaluated. (See also table 4.3) Berry's et al.
[54] demonstrates the smallest average MSE and average absolute bias when the true response rate belongs to the
homogeneous scenario. When a higher heterogeneity level is introduced there is no optimal choice. Except for
large cohort sample sizes, overall bias and mean squared errors are relatively substantial in some cases, especially
as heterogeneity increases. The methods differ in the amount of shrinkage and in the amount that the estimate
is influenced by the prior. All the methods shrink towards the overall mean across the cohorts. Berry's et al. [54],
Jin's et al. [56], and Chen & Lee [59] estimates shrink more towards the overall mean compared to other Bayesian
estimates. Fujikawa et al. [58] and Liu et al. [62] seem to be pulled towards 0.5 compared to the other estimates, as
clearly seen in fig 4.6. Chen & Lee [59] estimate, on the other hand, differs from the other estimators as it appears
to shrink towards O if the overall true response rate mean is smaller than 0.5 and towards 1 if this is larger is over
0.5. Given the set criteria Berry’s et al. [54], Fujikawa et al. [58] and Liu et al. [62] methods are less preferred, and
EXNEX, Psioda’s, Jin's et al. [56], and Chen & Lee [59] methods are more suitable, with the EXNEX method to be
more consistent than the other methods. Notably, the performance of the sample proportion is equal or superior
compared to the Bayesian methods in terms of MSE when the heterogeneity increases, and of course it is unbiased.
In this paper, the focus was on evaluating the methods under a setting where there is no formal prior information
concerning the homogeneity and the heterogeneity structure that could be included in the estimation. Using more
informative priors does fit within some of methods, which could lead to more precise outcomes.

The complexity of the methods introduces a potential limitation to the present work and applications. The tun-
ing parameters needed for the different methods imply that there is substantial flexibility (hence heterogeneity) in
their implementation, without clear a priory guidance to optimally set these parameters. We used default values
and non-informative priors in a simple setting, but in practice other choices may be made. The non-informative

prior distributions has a prior mean of 0.5, when we made a different prior mean choice, we see a different be-
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haviour in the estimated results.

In our effort to (computationally) replicate these methods for our simulation study, we faced many difficulties
in selecting the appropriate parameters and ensuring that our implementation was indeed exactly equal to the
published results and scripts and also occasionally found discrepancies between the publicly shared script and
the scientific paper (that were subsequently resolved). Researchers may face similar struggles in determining the
method most suitable for each situation and ensuring an appropriate computational implementation. Addition-
ally, fully understanding the methods and their implementation is not straightforward, with usually guidance lack-
ing in addressing estimation.

Several simplifying assumptions were used in the simulation study. The choice for 6 cohorts of equal sample
size with a single-stage design only covers a limited number of potential scenarios. In practical settings, it is com-
mon to suggest at least one interim analysis (e.g., following Simon’s two-stage designs). In the single-stage setting,
the sample proportion is an unbiased estimator, hence it was included as reference in our study. The proposed
Bayesian methods do allow for interim analyses. Jin et al. [56] proposed the use of a single interim analysis, while
Fujikawa et al. [58] and Psioda et al. [57] allow several interim futility assessments. Berry et al. [54] proposed an
interim analysis when a certain number of patients are included (e.g., 10) and more assessments allowed after a
pre-specified number of patients (e.g,, 5). Simon et al. [64] considers the futility assessment after each observation.
Neuenschwander et al. [55] and Chen & Lee [59] do not propose an interim analysis stage, but an interim analysis
could be applied at any time point of the trial. We did not evaluate the resulting very broad range of possible scenar-
ios, which may lead to some differences between the methods when interim analyses are implemented. However,
as the number of cohorts with similar response rates investigated correspond to realistic practical settings and a
range of sample sizes was explored, we do believe the present provides basis for an initial choice of methods.

The explored methods offer a potentially valuable tool for researchers in efficiently designing and analyzing
basket trials. Estimators based on methods that allow borrowing of information across cohorts introduce bias, but
are expected to have a smaller MSE, due to an increase in precision. However, there are many available options even
within each method, with most methods requiring choices of tuning parameters in addition to priors for model
parameters. A priory guidance on precise settings of these parameters for practical applications is challenging,
which may limit the possibility to pre-specify the full estimation procedure. A simulation study, such as the one

performed here, but targeted to a specific context of a particular study, could give a better insight.



Appendix A

Methods Prior effect Homogeneous scenario Heterogeneous scenario Shrinkage
Psioda bias toward the prior mean Small MSE, slightly biased estimate Borrowing to the mean and bias to the Moderate to small shrinkage in all
prior scenarios
Berry no effect Smallest MSE, no bias Bias estimate to the total mean Extreme shrinkage to the total
mean
EXNEX limited - no influence Small MSE Shares less information when 1 vs 5 true Small shrinkage in small
RR basket, small MSE heterogeneity. Almost no
shrinkage in high heterogeneity
Jin (CBHM) Slight influence Small MSE, slightly biased Slight prior influence, Small MSE Moderate shrinkage in small

Chen & Lee (BCHM)

Fujikawa

Sample prop

No influence

bias toward the prior mean

bias toward the prior mean

Small MSE, almost unbiased, estimates to
0iif true RR < 0.5 or towards 1 if true RR
>05

Bias to prior mean, small MSE

Bias to prior mean, moderate MSE

The largest MSE

Shrinkage to the total mean, the smallest
MSE

Extreme bias to the prior mean

Extreme bias to the prior mean

MSE close to the Bayesian methods, in

highly heterogeneous trials smaller MSE

heterogeneity. Small shrinkage in
high heterogeneity

Small shrinkage in small
heterogeneity. Moderate
shrinkage in high heterogeneity
Moderate shrinkage in small
heterogeneity. Small shrinkage in
high heterogeneity

Almost no shrinkage regardless

the heterogeneity level

No shrinkage

Table 4.3: Results overview table
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Appendix B

Prior and parameters choice

The choice of the prior is a hard task to handle, especially since the choice usually affects the estimation. We made a
choice to use weakly informative or uninformative priors to compare the methods under the same rules, following
the suggestions of the respective authors for uninformative priors to use in their method.

Jin et al. [56], Berry et al. [54], and EXNEX [55] do recommend somewhat informative priors involving pre-
specified response rates gy and ¢; that correspond to inactive and active treatments respectively. Many of the
methods are originally designed for a setting in which the goal of the study is to decide whether the treatment is
active or not (represented by posterior probabilities of response rate > ¢; and < ¢q respectively). However, in our
simulation study we focus on estimation of the response rates rather than decision making and use uninformative

priors as specified below for each method.

- The Berry et al.[54] method, proposes a strategy to provide non informative choices of hyper-parameters. For

this case, we set the hyper-parameters as follows:

ft~ N(po,05) = N(0,100)
02 ~ IG(\1, A2) = IG(0.0005,0.00005)

The EXNEX[55] following the suggestions in the original paper we use a single exchangeability distribution of
the EXNEX. The probabilities of each distribution is fixed, in the simple EXNEX model, the EX partis p; = 0.5,
andthe NEXis 1 —p; = 0.5. Anormal prior distribution is proposed and the mean can reflect the expectation
of theresearcherin the logit scale. In order to make a similar choice with the methods that uses Beta(1,1) prior
and the mean of this prior is the 0.5, we set the mean of the EXNEX prior to be O, which is the analogous of 0.5

in the logit scale.

07X ~ N(po,03)

o ~ N(0,10)

~ half — normal(1)
(pz-.l p) = (05,05)
ONEX L N(mi, v;)
m; =0

vizl()

Psioda’s[57] method in the original paper is to set the a weakly informative Jeffreys prior Beta(0.5,0.5). For
the purpose of this paper, we use the uninformative Beta(1,1). A prior model is set for the all possible mod-
els. The default settings of the package allow us to have a weakly informative prior where the model proba-
bilities are giving greater weight to the more complicated models (less borrowing allowed).

Fujikawa-like [58] method estimates uses a beta prior Beta(a;,b;) = Beta(1,1). and the amount of bor-
rowing is tuned by the parameter of 7 = 0.5.
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« Jin et al.[56] made an extensive simulation study to address the effect of weakly informative prior distribu-

tions on the proposed design, specifying each set of priors for the respective distance measure of the corre-
lation matrix.

Hellinger (H) distance also introduces an exponential correlation, where the ¢ = Gamma(1.5, 1) has a dif-
ferent prior mean. Similarly the parameters are specified by:

0o ~ N(po, )

02 ~ IG(cy2,dy2) = 1G(0.01,0.01)
72~ IG(cr2,dy2) = IG(0.01,0.01)
g ~ IG(cp2,dy2) = 1G(0.1,0.1)

Chen & Lee [59] present the choice of the prior and the parameters used in their paper in detail. For the classi-
fication model a choice of non-informative conjugate normal distributed prior 1 = 0.2 and 0 = 10isused
to calculate the posterior probability of the true response rate. The parameter o = 10~% and 03 = 0.001
choice can affect the cluster number, which are used in the Dirichlet process (DP). The hyper-prior parame-
ters calculated in order to propose a non-informative prior choice.

0; ~ N
i (/’le Tlmi)

1
01
71 ~ Gamma(50,10)

g1~ N(p2,

« Liu [62] proposed an uninformative prior for the posterior distribution which follows a Beta(1, 1). The level
ofleverage that each of the complicated models has, is chosen by the parameter §. We choosetousethed = 0,
so each model is weighted equally.
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Appendix C
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Figure 4.3: Estimates on scenarios of the same true response rate 1.A.1 to 1.A.3 in 4 sample size points, 10, 20, 30, 100 (patients per cohort). In the
1st row the estimates are presented, in the second and third, the average absolute bias and the average MSE of the respective scenarios. The gray lines
in the first row reflect the true response rates. The prior distribution in this graph is having a mean of the 0.3
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Figure 4.4: Estimates on scenarios 2.B.1 to 2.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates. The prior
distribution in this graph is having a mean of the 0.3
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Each row indicates the different sample size points.
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Figure 4.7: Estimates on scenarios 3.A.1 to 3.A.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE. The gray lines in the first row reflect the true response rates.
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Figure 4.8: Estimates on scenarios 1.A.3 to 1.B.2, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.9: Estimates on scenarios 1.A.2, 1.B.3 and 1.B.4, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average
absolute Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.10: Estimates on scenarios 2.A.1 to 2.A.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.



74 | 4. RESPONSE RATE ESTIMATION IN SINGLE-STAGE BASKET TRIALS: A COMPARISON OF ESTIMATORS THAT ALLOW
FOR BORROWING ACROSS COHORTS

True response rates: (0.1;0.1; 0.1; 0.5, 0.5; 0.5) True response rates: (0.1;
” " ? 05 ;;',_.
§o4 o4 §o4
T T K
£ E £
203 203 203
5 5 5
2 2 2
] ] ]
[§ 3} 5}
$oz 8oz Qo2

01) o 01 b‘
%

% ) 7 10 ) 75 10 » 5 7 10

Sample size Sample size Sample size
008 008 008
2006 0006 0006
a 4 4
@ @ @
2 2 2
3 E 3
3 ] 3
20 Bon 200
@ @ 3
° o °
-3 ) -3
g 4 g
H 2 H
<o <o <ow
000 000{ &= 000
» 5 7 10 % 5 7 10 » 5 75 10
Sample size Sample size Sample size
0025 0025 0025
0020 0020 0020
8 8 8
0015 00154 0015
2 2 2
o o °
-3 -3 -3
g 4 g
Qoo Qo010 80010
H < 2
0005 0005 0005
0000 0000 0000
% 50 7 100 2% 50 7 100 % 50 7 100
Sample size ‘Sample size Sample size

@ Bery @ BNEX © Jn @ Psods
Method
® Chendlee ® Fujkawa ® L @ SampleProporion

Figure 4.11: Estimates on scenarios 2.C.1 to 2.C.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.12: Estimates on scenarios 2.D.1 to 2.D.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Figure 4.13: Estimates on scenarios 3.B.1 to 3.B.3, in 4 sample size points, 10, 20, 30, 100, in the 1st row. In the second row, is the average absolute
Bias of the respective scenarios and the third row is the average of MSE.
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Abstract

In the era of precision medicine, basket trials have emerged as a core methodology for evaluating the activity of
treatments across different patient populations with shared molecular characteristics. This study investigates the
application of various Bayesian methods in the context of the DRUP (Drug Rediscovery Protocol) trial, which em-
ploys a Simon'’s two-stage design (STS) for each sub-study within a basket. These methods have in common that
they allow for borrowing of information across cohorts. Focusing on estimation of the response rates in each of
the baskets, simulations were used to determine optimal values for each method’s required parameter settings,
as well as to compare the performance of the different estimation procedures. The results underscore the impor-
tance of a priori selecting optimal tuning parameters tailored to specific trial conditions to enhance the reliability
of response rate estimates. The different simulation settings suggest that the EXNEX method may offer enhanced
robustness compared to the other evaluated methods. This study provides practical recommendations for apply-
ing these methods in basket trials, aiming to improve the accuracy of estimation of treatment efficacy in basket

trials in oncology.

5.1 Introduction

In the evolving landscape of precision medicine, master protocol studies have emerged as a pivotal methodology,
particularly in (non-randomised) exploratory phase I/1I research. [12] [11] Basket trials that we address in this pa-
per involve multiple substudies of the same drug, each with a single-arm trial design under a unified treatment
protocol. The basket trials target patients with varying tumor histologies that share a common molecular profile,
related to the mechanism of action of the drug. This innovative approach allows for the simultaneous evaluation of
treatment effects across different patient populations, optimizing resource utilization and accelerating the clinical
development process.

Basket trials present considerable methodological challenges, in terms of design and statistical analysis. A sin-
gle or two-stage design is usually proposed for substudies in this methodology. Kasim et. al [17] conducted an ex-
tensive literature review of ongoing, completed and terminated basket trials, identifying that out of 79 trials, 41 are
using two-stage designs or fully sequential designs. Simon'’s two-stage design (STS)[16], was used in 30 basket tri-
als. However, Kasim et. al [17] highlights that the lack of standardized statistical tools and clear guidance presents
a challenge for consistent implementation and reproducibility of such trials.

The STS design is thus a popular design choice in exploratory trials with the ability to balance between prevent-
ing exposure to ineffective treatments and power while minimizing the required sample size. Although alterna-
tives for the STS design have been proposed (by Zhou et. al [65], Wu et. al [66] and Jing et. al [67]) the STS design
remains widely used practice. The Drug Rediscovery Protocol (DRUP)[43] trial is an ongoing prospective multi-drug
and pan-cancer trial. Patients with progression of an advanced or metastatic solid tumour, multiple myeloma or
B-cell non-Hodgkin lymphoma who lack standard treatment options, are eligible for this trial. DRUP consists of
a collection of baskets of substudies designed with a STS design. Baskets are defined based on the combination
of a molecular alteration shared by the patients and a drug given in the study. Some baskets are subdivided into
different substudies based on histology, some consist of a single, tumor-agnostic sub-study. All drugs studied in
the DRUP trial have already been approved for other tumor types than the ones studied here, hence the name drug-
rediscovery. The primary purpose of the STS design is to make a go/no-go decision on whether the drug studied
seems promising or not in the given patient group. The DRUP trial is designed with STS design assuming a Null

hypothesis that the clinical benefit rate of 0.1 is unacceptable and an alternative hypothesis of 0.3 clinical benefit
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rate is a desired effect size. The "type I error” alpha, used across all cohorts, is 0.078 at a power of 0.85. According
to the admissible design as proposed by Jung et. al [68] the trial proceeds to a second stage if at least 1 response is
observed among the first 8 patients, with a total of 24 patients required to confirm treatment is not futile if at least
five responses are recorded. Clinical benefit in this context is defined as a complete response (CR), partial response
(PR), or stable disease lasting at least 16 weeks.

The estimation of response (or clinical benefit) rates within a two-stage design introduces additional statistical
complexities. Porcher et. al [30] suggested how to obtain proper inference on the response rate in a STS design,
and noted that the sample proportion is a biased estimate (underestimation of the true response rate) [21] for se-
quential designs. Alternative estimators were proposed that reduce the bias or provide unbiased estimates. These
include the uniformly minimum-variance unbiased estimator (UMVUE) for the multi-stage approach proposed by
Junget. al [22]. Many basket trials aim to estimate the response rate by either pooling across all cohorts or analyzing
each cohortindependently [69]. Each strategy has its drawbacks, the pooled strategy has the risk to inflate the type
I error in case of large heterogeneity of treatment effects, while the independent analysis in small heterogeneity
scenarios lacks statistical power compared to alternative methods. Bayesian methods allow for estimation of the
basket-specific response rates, while making use of results from other baskets. Such approaches may improve the
performance of the estimators, particularly when sample sizes are limited. [17], [14]. A methodological review for
the estimation of the response rate in a basket trial using single stage designs for sub-studies can be found in our
previous work [70].

This paper aims to evaluate and compare various estimation procedures for the response rates that allow for bor-
rowing, from an application perspective, using the DRUP trial as example. The methods require specification of
prior distributions and tuning parameters, which may affect the performance of the estimators. As it is impor-
tant to pre-specify analysis methods in full at the design stage, we use the design and characteristics of the DRUP
substudies in different baskets to illustrate an approach to set these parameters a priori, as well as compare the
different methods. A similar approach as Sauer et. al [71] and Baumann et. al [72] is followed, that suggest methods
to select optimal tuning parameters through the maximisation of the expected number of correct decisions (ECD)
under a collection of various scenarios. As our focus is on estimation rather than decision making, we use average
Root Means Square Error (aRMSE) based metrics (the min-mean aRMSE and the min-max aRMSE) as utility func-
tions, evaluated over a range of selected scenarios. The range of possible scenarios given the design choices of the
DRUP study is selected as basis to rationally select prior(s) and tuning parameters for each method and evaluate
the methods. The overall approach provides the basis for suggestions to the researches for the optimal application
of the methods.

Section 5.2 details the basket trial examples selected from the DRUP study and presents the response rate estima-
tion based on the parameters as suggested in the original papers. Section 5.3 explains the simulation scenario sets
and discusses parameter optimization given the different utility function criteria. Results of both parameter choice
and the resulting estimation for the DRUP baskets are presented in section 5.4 and the Appendix A. The discussion
section 5.5 addresses the strengths and limitations and offers suggestions for application of our approach in design

and analysis of basket trials with the aim to provide reliable estimation.
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5.2 Methodology

DRUP trial example and initial estimation

Three different examples of actual basket trials under the DRUP study are used in this paper. The DRUP trial is an
ongoing trial and not all of the baskets used in this paper are published yet, so the histologies and the genomic
aberration types are masked. In the DRUP platform trial a large number of baskets with multiple substudies have
already opened, of which only a small part has been completed. In table 5.1 the actual results (response) of the three
basket trial examples from the DRUP study are presented. Basket trial 1 includes 4 cohorts (substudies), of which
Cohort 1D did not complete the first stage yet (8 patients) and the remaining cohorts are ongoing in stage 2. Cohorts
1A and 1C have already reached the designs target of at least 5 responses to claim that the treatment is active for
this genomic aberrations. Basket trial 2 has already 2 completed and successful cohorts and 2 cohorts recruiting
patients in the second stage. Basket trial 3 is the one with the most completed cohorts so far. Cohorts 34, 3B and
3C have been completed, with the cohort 3A having one patient less than the required design, but the number of
responses is more than needed to reach success in this STS design. Cohort 3C has one more patient than the design
requires, because during the accrual two patients where eligible to take the treatment at that time. Cohort 3D is still

recruiting in the second stage of the design.

Basket trial 1 (Lenvatinib)

Clinical benefit ~ Total Patient

Cohort 1A 6 16
Cohort 1B 3 14
Cohort 1C 8 11
Cohort 1D 3 5
Basket trial 2 (Trastuzumab)
Cohort 2A 9 24
Cohort 2B 11 24
Cohort 2C 4 19
Cohort 2D 3 8
Basket trial 3 (Olaparib)
Cohort 3A 14 23
Cohort 3B 10 24
Cohort 3C 8 25
Cohort 3D 3 17

Table 5.1: DRUP basket trials and the respective cohorts masked

We examine how the selected estimation methods can be used for estimation of the response rates, given the
STS design in each cohort, including the scenario that the targeted sample size is not yet reached. It is important
for practical applications to keep in mind that it might not be feasible to complete the pre-specified sample size
for all substudies. The natural option for estimation is the sample proportion: the observed number of responses
divided by the total number of patients. This is, however, biased for most cohorts. The alternative Jung estimator
for the analysis of independent cohort level response rate following the STS design might not be appropriate in this
case, since the trial sample size is not completed for a number of cohorts. Berry et. al [54], EXNEX [55], Psioda et. al
[57] and Fujikawa et. al [58], described in more detail below, are Bayesian methods to estimate the response rates
in each basket trial. To conduct an analysis using these methods, parameters need to be specified. The authors
proposed tuning parameters and prior distribution parameters. Following our previous work [70], if flat priors are

applied to the example data from DRUP, results are as displayed in Table 5.2 below. As can be seen from Table 5.2,
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the response rates estimates presented can vary substantially depending on the estimator used.

Basket trial 1 (Lenvatinib)

x/n Sample prop  Psioda  Fujikawa Berry = EXNEX

Cohort 1A 6/16 0.375 0.385 0.369 0416  0.391
Cohort 1B 3/14 0.214 0.282 0.310 0.363  0.261
Cohort 1C 8/11 0.727 0.664 0.655 0.533 0.673
Cohort 1D 3/5 0.6 0.548 0.542 0480  0.543
Basket trial 2 (Trastuzumab)
Cohort 2A 9/24 0.375 0.379 0.386 0.362 0.371
Cohort 2B 11/24 0.4583 0.430 0.422 0.374 0.425
Cohort 2C 4/19 0.2105 0.277 0.315 0.340 0.264
Cohort 2D 3/8 0.375 0.381 0.382 0.361 0371
Basket trial 3 (Olaparib)
Cohort 3A 14/23 0.609 0.568 0.6 0473  0.570
Cohort 3B 10/24 0.417 0.413 0.382 0.401 0.407
Cohort 3C 8/25 0.320 0.337 0.339 0.364 0.336
Cohort 3D 3/17 0.177 0.248 0.269 0.320  0.225

Table 5.2: DRUP basket trials and the respective cohorts masked. Numbers represent the estimate of the clinical benefit rate obtained by each
method using a flat prior

The methodological question that arisesis whetherthe estimates presented in Table 5.2 are optimal for the given
design or if a different (a priori) choice of parameter values can yield better estimates. We investigate this by op-
timizing parameter selection based on the minimization of the Root Mean Square Error (RMSE) under a suitable
collection of scenarios. This is done through the simulation study described below. It is noted that such a simula-
tion study can be performed at the design stage, generally allowing for pre-specification of the estimation method.

The four Bayesian methods evaluated are summarised as follows.

Estimator based on Berry et al.[54]

The Berry method employs a Bayesian hierarchical model (BHM) to estimate the response rates in different

cohorts, assuming exchangeability between cohorts, which allows for information sharing.

The observed responses y; for each cohort j follow a binomial distribution:
y; ~ Binomial(n;, ;)
The logit-transformed response rates 6; := logit(;) are assumed to be normally distributed:
05 ~ N (u, o)
The hyperparameters for the priors are:
u~ N(0,100), 0% ~ 1G(0.0005, 0.00005)

The posterior distribution is obtained by updating the priors with the observed data using Bayes' theorem. In-
formation is borrowed between cohorts through the hierarchical structure, assuming that the response rates are

exchangeable.
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Estimator based on Neuenschwander et al.[55]

The EXNEX (Exchangeable-Non-Exchangeable) method, proposed by Neuenschwander et al.[55] , combines ex-
changeable and non-exchangeable components to model response rates in different cohorts, providing a flexible
framework for information borrowing.

The observed responses y; for each cohort j follow a binomial distribution:
y; ~ Binomial(n;, ;)

The logit-transformed response rates §; := logit(w;) are modelled using a mixture of exchangeable and non-
exchangeable components:

0|1, 7% ~ N (1, %) with probability w
60; ~ N (m;,v;) with probability 1 — w
The hyper-parameters for the priors are:

w~ N(0,3),7% ~ half-normal(1)

The mixture weights w determine the extent of borrowing between cohorts. It is a fixed value that needs to be
set beforehand. If w is high, more information is borrowed from other cohorts.

The EXNEX method uses Markov Chain Monte Carlo (MCMC) methods to estimate the posterior distributions
of the response rates, accounting for both exchangeable and non-exchangeable components. For the purposes of
this paper the ‘bhmbasket’ R package is used for the calculation of the estimate.

Estimator based on Psioda et al.[57]

The Psioda method employs a Bayesian Model Averaging (BMA) approach to enhance the estimation of cohort-
specific response rates in basket trials. This method combines information from multiple cohorts by averaging

over all possible models that describe the relationships between cohorts.

The observed responses y; for each cohort j follow a binomial distribution:
y; ~ Binomial(n;, 7;)

where n; is the number of subjects in cohort j and 7 is the response rate for cohort j. The prior distribution for

the response rate 7; is given by a Beta distribution:
m; ~ Beta(ay, b))
The posterior distribution of 7, is obtained by updating the prior with the observed data:
milyi ~ Beta(a; +y;,b; +n; — y;)

Model averaging is performed by computing the posterior distribution for each possible model and then

averaging these distributions, weighted by the posterior model probabilities.
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Information borrowing is achieved by assigning probabilities to all possible models that include different com-
binations of cohorts. The posterior distributions of the response rates are weighted averages of the model-specific
posterior distributions, allowing for adaptive borrowing based on the similarity of response rates across cohorts.
Estimates were obtained using the function ‘bma’ (version 0.1.2) in the R package ‘bmabasket’.

Estimator based on Fujikawa et al. [58]

The Fujikawa method is a Bayesian approach that borrows information across cohorts based on the similarity of
their response rates. This method uses a similarity measure to determine the extent of borrowing, allowing for
more accurate estimation of response rates when cohorts are similar.

The observed responses y; for each cohort j follow a binomial distribution:

y; ~ Binomial(n;, 7;)

The prior distribution for the response rate r; is a Beta distribution:
mj ~ Beta(a;,b;)
The posterior distribution is updated based on the observed data:
mjly; ~ Beta(a; + y;,b; +n; —y;)

The method employs similarity measures such as the Jensen-Shannon (JS) divergence or the Kullback-Leibler
(KL) distance to quantify the similarity between cohorts. The similarity measure w;; between cohorts j and h is
defined as:

wjn =1-JS(P || Q)

Borrowing is allowed if the similarity measure exceeds a threshold 7. The updated prior for ; is a weighted sum
of the Beta distributions from similar cohorts:

K K
m; ~ Beta (Z I(win, > T)ws,al, Z[ Wip, > T)1 mbﬁz)
h=1

h=1

The method adaptively borrows information based on the similarity between cohorts.

5.3 Simulation study for parameter selection

Response data for four cohorts of patients are simulated based on a binomial distribution with specified probabili-
ties p. The simulations were designed to reflect the DRUP trial and incorporate the STS-based decision criteria for
each cohort.

We simulated with probabilities p = 0.1, p = 0.3, and p = 0.6 to generate patient response data. Each simula-
tion scenario was repeated S = 10, 000 times.

Scenario set1and 2 followed completely the STS design, so the possible sample sizes could be either 8, if stopping

in the first stage is decided, or 24 if the first stage is completed successfully. The Scenario set "reduced” addresses
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that in practice the total STS sample size may not be reached, due to various reasons (e.g., recruitment). It follows
the same response rate scenarios as the Scenario set 1, table 5.3. For "Scenario reduced’, the first stage is assumed
to be completed and if it is possible to proceed in the second stage, the trial is assumed to stop after a random
number of patients in the second stage. This randomness is implemented by choosing the second stage sample
size by a uniform distribution, where the minimum number of patients is 0 and the maximum is 16.

The following scenarios were thus simulated:

1. Scenario Set 1: Probabilities p were set to low (0.1), mid (0.3), and high (0.6) values for different combinations

across the four cohorts.

2. Scenario Set 2: To test the sensitivity of the tuning parameters under extreme conditions, probabilities were
setto 04,07, and 0.9.

3. Scenario Set reduced: To test the sensitivity of the tuning parameters under a realistic setting, where the

sample size is smaller than in Scenario Set 1, probabilities were set to 0.1, 0.3, and 0.6.

The specific combinations of response probabilities across the cohorts in each scenario set are detailed in Table

5.3 and Table 5.7 respectively.

Cohort A CohortB  CohortC  Cohort D

a 0.1 0.1 0.1 0.1
b 0.1 0.1 0.1 0.3
c 0.1 0.1 0.1 0.6
d 0.1 0.1 0.3 0.3
e 0.1 0.1 0.3 0.6
f 0.1 0.1 0.6 0.6
g 0.1 0.3 0.3 0.3
h 0.1 0.3 0.3 0.6
i 0.1 0.3 0.6 0.6
j 0.1 0.6 0.6 0.6
k 0.3 0.3 0.3 0.3
| 0.3 0.3 0.3 0.6
m 0.3 0.3 0.6 0.6
n 0.3 0.6 0.6 0.6
o 0.6 0.6 0.6 0.6

Table 5.3: Scenarios selected in the simulation studies for Scenario Set 1 and Scenario Set reduced. Numbers represent the true response
probability in each cohort in each scenario

The RMSE for each cohort j is defined as the square root of the mean of the squared differences between the

estimated and true values. It is calculated as:

where p;; is the estimated value in simulation i and p; is the true value for each cohort j. The average RMSE (aRMSE)

across all cohorts is then calculated as:

Inorder to optimize the selection of the different parameter choices in each method, two strategies are followed:
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1. minimization of the Mean of the aRMSE: An optimal combinations of parameter values is selected by mini-

mizing the mean aRMSE across all scenarios.

2. minimization of the Maximum of the aRMSE: An optimal combination of parameter values is selected by
minimizing the maximum aRMSE. It thus controls that the selected parameter set does not have an excep-

tionally high aRMSE in any scenario.
For the notation of the paper we will use the following utility functions:

1 Amin_mean armse: Indicating the minimization of the Mean of the aRMSE across all scenarios.

2. Umin_max armsg: [ndicating the minimization of the Maximum of the aRMSE across all scenarios.

By exploring a comprehensive parameter space, we aim to identify the parameter settings for each Bayesian
method that ensure reliable and accurate response rate estimates in the context of basket trials using the STS de-

sign.

5.3.1 Parameter Space for Simulation

Each method has a number of parameters and priors to specify. In our previous research work [70], we used flat-
uninformative priors and parameters as suggested by the authors. In this paper, we explore a variety of parameter
combinations within the parameter space for each method.

For Berry's method, the following parameter space is explored:

Target mean: [0.1,0.5,0.9]
Variance parameter: 7 ~ dgamma(7g;sp, Taisp/100), T4isp = [0.00005,0.0005, 0.005]
p=1[-2,-1,0,1,2]

Hyper-parameters of the mean:
var = [0.001,0.01,0.1,1]

For the EXNEX method the following parameter space is explored, including different values for the weight be-

tween the EX and NEX parts:
w =[0.1,0.3,0.5,0.7,0.9

]

72 =1[0.1,0.75,1,1.25)

EXmean: = [0.1,0.5]
NEX mean: = [0.1,0.5]

For the Psioda method [57], three different parameters need to be set: the mean of the prior, the dispersion

parameter, and the prior distribution applied to the possible model choice. The explored parameter space is as

follows:
Prior mean: p = [0.1,0.3,0.5,0.7,0.9]

Dispersion parameter: ¢ = [0.5,1,2,3,5,8,10]
Prior model parameter: pmp = [—10, -8, -6, —4, -3, —-2,-1,0,1,2,3,4,6,8,10]

*The number of examined tuning parameters and prior parameters was limited because of the computational time required to run all the
possible scenarios. The Psioda method was fastest so the parameter space was extended.
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The pmp parameter assigns relative weights to the independent (heterogeneity between cohorts) model (positive
value) or to the homogeneous model (negative value). Although Psioda initially proposed using zero or positive
values for the pmp parameter, we extend this by also exploring negative values. This allows us to examine scenarios
favouring homogeneous models, thus providing a comprehensive evaluation of the method's performance under
awider range of cohort similarity assumptions.

For the Fujikawa method, the following parameter space is explored:

a=1]

3 = [1,2.33333]

7 =100,0.1,0.3,0.5,0.7,0.9,1]
€=0.5,1,1.5,2,2.5,3,4, 6]

5.4 Results

In Fig. 51, the mean aRMSE of all scenarios for the four examined methods are presented. The overall graphical
representation of the results is based on a colour palette (heat-map) where green indicates the lowest mean aRMSE,
black the highest, and white, yellow and red represent intermediate values. In all heat-map figures, the mean or
max aRMSE value is presented using the same colour limits, so the graphs can be directly compared.

Berry's method exhibited relatively uniform performance across parameter combinations, showing only minor
variations in both mean and max aRMSE (fig 5.2,5.1). The tuning parameters influenced mean aRMSE slightly, but
max aRMSE remained largely unaffected across parameter settings. In general, the method showed limited sensi-
tivity to prior specification, with small differences in performance between parameter combinations. The "target
mean’ parameter, reflecting the expected response rate, had an optimal value of 0.5 in most cases. However, differ-
ences between the two utility functions, min-mean and min-max aRMSE were observed in other prior settings. For
example, the optimal prior mean for the normal distribution was -2 for min-mean aRMSE in scenario set 1, while
for min-max aRMSE the values shifted to 1in scenario set 1and 2 in the Reduced set patient scenarios. The optimal
prior variance remained fixed at 1 across all cases, despite the authors recommending a smaller value (0.01), indi-
cating that a higher dispersion, which does not allow the prior to spread more around its mean, seems to improve
the estimation process. Additionally, the choice of the parameter of inverse gamma distribution for the variance
had minimal effect on the results. These findings suggest that Berry’s method is relatively stable under different
parametrizations, on average. Finally, although bias was generally low across all settings, an expected trade-off
was observed: parameter sets with the lowest mean absolute bias tended to produce higher mean aRMSE values.

The EXNEX method, which combines exchangeable (EX) and non-exchangeable (NEX) components, demon-
strated consistent performance in terms of mean and max aRMSE across the different tuning parameters. Opti-
mal aRMSE values were observed when both the EX and NEX prior means were set to 0.5, with minimization of the
aRMSE occurring at a high weight parameter (w = 0.9), favouring more borrowing of information across baskets.
In both mean aRMSE and max aRMSE, fig 5.2,5.1, it was observed that as the weight (w) increased in favour of the
EX component, thus allowing more borrowing, the aRMSE values decreased. However, an exception was noted at
lower values of the priorvariance parameter (tau. HN = 0.1), where increasing the weight (w) actually led to increased
aRMSE values. Other EX and NEX prior mean parameter values exhibited the same general pattern as the optimal
0.5 setting, but resulted in slightly higher mean and max aRMSE values. The optimal values for the tau.HN param-
eter ranged from 1 for the min-mean aRMSE scenario set 1 to 1.25 for both the min-max aRMSE and the reduced

patient scenarios, aligning closely with the authors’ suggested value of 1. Optimal parameters remained similar
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under the "Reduced set” scenarios. Additionally, mean absolute bias was consistently low across parameter sets,
with the smallest mean aRMSE observed when a moderate level of bias was allowed.

Psioda’s method was influenced by the selection of the parameters, the prior mean (11¢), dispersion (¢), and the
prior model parameter (pmpy). In general, the method followed consistent patterns across parameter combina-
tions, though the performance differed across utility functions and settings. Regarding the prior mean (;10), a value
of 0.3 resulted in the lowest mean aRMSE, while 0.5 was optimal for minimizing max aRMSE. These values aligned
closely with the average true response rate across the scenario set. In scenario set 1 the average true response rate
is 0.33 and in scenario set 2 is 0.7. Similarly, the prior model parameter (pmpg) had a clear effect on aRMSE values.
For min-mean aRMSE, lower values such as pmp, = 0 or slightly above led to better performance, favouring the
uninformative prior model. In contrast, for min-max aRMSE, higher values were preferred (pmpo = 4 in scenario
setland pmpy = 6 inthe reduced patient scenario), indicating better performance when assigning more weight to
models with more parameters, like the independent model. While the authors recommended a weakly informative
prior with ¢y = 1, our simulations indicated that higher dispersion values improved estimation performance. The
smaller aRMSE values in parameter ¢, ranged from 1to 5, with ¢y = 5 providing the best results for most settings,
and ¢y = 3 performing best in the reduced sample size scenario under min-max aRMSE. Psioda’s method em-
phasizes the importance of careful parameter tuning. While optimal settings differ slightly between the two utility
functions, multiple parameter combinations can lead to good estimation performance. A trade-off was observed
between aRMSE and bias, where parameter sets yielding lower aRMSE did not always minimize mean absolute bias.
This underlines the need to balance precision and accuracy when selecting prior settings for Psioda’'s method.

The Fujikawa method facilitates information borrowing across baskets by adjusting two key parameters: 7,
which determines whether borrowing is permitted, and ¢, which regulates the extent of borrowing. While Fujikawa
et al. caution against using ¢ > 2 to avoid underestimating similarity between baskets, our simulation results
suggest otherwise. We find that the performance — measured by both mean and max aRMSE — varies notably
with parameter choices. Specifically, combinations of small 7 (< 0.5) and small € (< 2) lead to higher error. In
contrast, better performance is achieved when either 7 > 0.5 or ¢ > 2, regardless of the other parameter’s value.
Interestingly, our findings consistently indicate that setting 7 = 0 — allowing borrowing in all cases — yields
optimal outcomes across utility functions. Moreover, although larger € values (e.g., ¢ = 6) reduce the degree of
borrowing, the differences in estimation accuracy and aRMSE compared to moderate values (e.g., ¢ = 4) remain
minimal. The beta prior parameters seem to play an important role in the mean and max aRMSE. The optimal
value of « = 1and § = 2.333 is observed for the Reduced set and the full patient scenarios but in scenario set

2,the optimal values are « = 1 and 8 = 1 as suggested by the authors as well.
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Method Parameter Unnin-mean aRMsE Unnin-mean aRMSE reduced Umin-max aRMSE Umin-max aRMSE reduced Uninformative
T 0 0 0 0 0.5
. € 4 6 4 6 2
Fujikawa
o 1 1 1 1 1
B 2.333 2.333 2.333 2.333 1
b0 5 5 5 3 2
Psioda pmpo 0 0 4 6 1
1o 0.3 0.3 0.5 0.5 0.5
mean 0.5 0.5 0.5 0.5 0.5
[0 . mean -2 -2 1 2 0
Berry prioty.
Priory var 1 1 1 1 0.01
Tdisp 0.005 0.005 0.005 0.005 0.0005
ex.p.w 0.5 0.5 0.5 0.5 0.5
nex.p.w 0.5 0.5 0.5 0.5 0.5
EXNEX
w 0.9 0.9 0.9 0.9 0.5
tau.H N.scale 1 1.25 1.25 1.25 1

Table 5.4: Parameters optimal values on the different utility functions
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Figure 5.1: Results of the scenario set 1. A heat-map figure of the Mean aRMSE for all the 4 methods, representing all the parameter combi-
nations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.2: Results of the scenario set 1. A heat-map figure of the Max aRMSE for all the 4 methods, representing all the parameter combina-

tions used. The bar on the side of the graph indicates the aRMSE values and colour combination.



90 | 5. EVALUATING BASKET TRIAL METHODOLOGY IN ONCOLOGY: A COMPARATIVE ANALYSIS USING THE DRUP STUDY

5.4.1 Sensitivity analysis

The Berry method is slightly sensitive in the target mean parameter. In scenario set 1the 0.1 and 0.5 are showing
the best aRMSE values in both mean or max functions, and in scenario set 2 the 0.5 and 0.9 are having smaller error
values. Although the observed differences in performance are relatively minor, acknowledging these variations is
important for a comprehensive understanding.

The EXNEX method does not show sensitivity in the patterns of aRMSE across the two scenario sets, or even
when a reduced number of patients is used, indicating that its parameter choices are robust to variations in the
true response rates.

For the Psioda method, sensitivity to the prior mean choice is evident. In scenario set 1, the smallest mean
aRMSE values occur when the prior mean was set to 0.3, matching the average response probability in that sce-
nario set. Similarly, in scenario set 2, a prior mean of 0.7 yields the lowest mean aRMSE values. These results are an
indication that the Psioda method’s mean is sensitive to the underlying scenario conditions. This effect also exists
in the Reduced set scenario (Fig 5.1,5.2,5.5 for the mean and fig 5.9 for the max aRMSE).

For the Fujikawa method, similar sensitivity to the prior mean is observed, between the two scenario sets. Mean
aRMSE is more affected by prior choices than max aRMSE, suggesting that this method is relatively robust to ex-
treme errors but more sensitive to average-case performance. In scenario set 1, where the average true response
rate is 0.3, a prior mean of 0.3 gives the smallest aRMSE values. In scenario set 2, where the average true response
rate is 0.7, a prior mean of 0.5 gives a more accurate aRMSE. Scenario set reduced suggested the optimal e = 6,
which is higher value than in Scenario set 1, ¢ = 4. This choice does not greatly impact the results, even the differ-
ence in aRMSE is really small in every scenario set.

The Bayesian methods consistently outperformed the sample proportion in terms of mean and max aRMSE.
In scenario set 1, under min-mean aRMSE, the sample proportion estimator had a mean aRMSE of 0.099, while
Bayesian methods showed lower values: Fujikawa (0.077), Psioda (0.076), EXNEX (0.080), and Berry (0.083) (Table
5.5). Although Bayesian methods introduced slightly higher mean absolute bias compared to the sample propor-
tion estimator, ranging from 0.022 to 0.034 versus 0.013, they improved overall estimation precision, clearly re-
flected by their lower aRMSE values. Similarly, under the min-max aRMSE scenario, Bayesian methods continued
to present lower aRMSE values than simpler estimators. For example, the max aRMSE for the sample proportion
estimator was higher (0.113) compared to Bayesian approaches like Fujikawa (0.095), Psioda (0.090), EXNEX (0.101),
and Berry (0107). Even in reduced patient scenarios, Bayesian methods maintained their advantage: while the
sample proportion estimator reached a max aRMSE of 0.132, Bayesian methods such as Fujikawa (0.113) and Psioda
(0.107) provided considerably lower values. A further comparison between optimized and uninformative priors
reveals that tuning can improve performance. For example, in scenario set 1 under the min-mean aRMSE utility,
Fujikawa's method had a mean aRMSE of 0.077 with optimized priors versus 0.080 with uninformative priors, and
corresponding mean absolute biases of 0.034 and 0.022, respectively. Psioda showed a similar pattern, with mean
aRMSE increasing from 0.076 to 0.078 and mean absolute bias decreasing from 0.031 to 0.017 when moving from
optimized to uninformative priors. While uninformative priors sometimes led to lower bias, the optimization re-
sulted in better aRMSE values.
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5.4.2 DRUP trial results with selected parameters

The simulation study identified optimal parameter choices for each utility function used to evaluate the methods:
min-mean aRMSE and min-max aRMSE. These optimal parameters were derived based on the specific design of
the DRUP study’s Simon’s two-stage design (STS), but using two possible settings. Strictly follow the design and
simulate full cohorts, or simulate a reduced number of patients, given a random stop after completing the first
stage. Table 5.4 presents the results of these optimizations, while Table 5.6 provides the corresponding response
rate estimates for each basket.

In table 5.5, the mean aRMSE and the max aRMSE for the two different optimal utility functions and settings
and the uninformative parameters are presented. The Bayesian methods have a smaller mean aRMSE and max
aRMSE compared to the sample proportion in almost all cases. The results across the Bayesian methods appear
similar at the parameter settings optimised with the above approach. The results between the Bayesian methods
are comparable in terms of aRMSE, but the EXNEX method has smaller mean bias at the selected parameters for
both utility functions.

scenario set 1

Umin—mean aRMSE

Umin—max aRMSE

Uninformative

Method mean aRMSE (meanabias) ~ maxaRMSE (maxabias) | meanaRMSE (meanabias)  max aRMSE (maxabias) | mean aRMSE (meanabias)  max aRMSE (max abias)
Sample proportion 0.099 (0.013)  0.113(0.028) - - - -
Fujikawa 0.077 (0.034) 0.095 (0.043) 0.077 (0.034) 0.095 (0.043) 0.08 (0.022) 0.099 (0.037)
Psioda 0.076 (0.031) 0.095 (0.039) 0.088 (0.044) 0.09 (0.080) 0.078 (0.017) 0.095 (0.024)
EXNEX 0.08 (0.022) 0.101 (0.037) 0.080 (0.02) 0.101 (0.033) 0.084 (0.01) 0.104 (0.019)
Berry 0.083 (0.031) 0.109 (0.055) 0.086 (0.031) 0.107 (0.055) 0.086 (0.031) 0.111 (0.057)
scenario set reduced

Umin—mean aRMSE

Umin—max aRMSE

Uninformative

mean aRMSE (mean abias)

max aRMSE (max abias)

mean aRMSE (mean abias)

max aRMSE (max abias)

mean aRMSE (mean abias)

max aRMSE (max abias)

Sample proportion 0.117 (0.01) 0.132(0.019) - - - -
Fujikawa 0.093(0.039) 0.113(0.053) | 0.093(0.039) 0.113(0.053) | 0.099(0.034) 0.118(0.051)
Psioda 0.092 (0.044) 0.11 (0.057) 0.102 (0.04) 0.107 (0.072) | 0.096(0.026) 0.113(0.034)
EXNEX 0.097(0.029) 0.118(0.045) | 0.097(0.029) 0.118(0.045) | 0.101(0.014) 0.122(0.025)
Berry 0.1 (0.044) 0.126 (0.069) | 0.107 (0.034) 0.108(0.061) | 0.103(0.042) 0.111(0.074)

Table 5.5: aRMSE and abias values on the different utility functions for scenario set 1 and reduced number of patients

Table 5.6 summarizes the response rate estimates for each method, based on the optimal parameter configura-
tions identified through the simulation study. Across all methods, there was a clear tendency for the estimates to
shrink toward the mean, regardless of parameter choice. The estimated response rates of every method are lower
than the sample proportions in Cohort 1C, where 8 out of 11 patients responded to treatment. The methods provide
estimates that are larger than the sample proportion for Cohort 3D. This discrepancy highlights the challenge of

balancing borrowing across baskets while maintaining accuracy in individual cohort estimates.
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Basket 1 (Lenvatinib)

Cohort x/n Sample prop Psioda Fujikawa Berry EXNEX

Unin-meanajMse  Unmin-maxarmse — UnInf | Uinmeanarvse  Umin-maxarmse — Uninf | Unin-meanakmse  Umin-maxarvise — UNINf | Unin-meanarmse— Unin-maxarmse — Uninf

Cohort 1A 6/16 0.375 0.377(0.377) 0.404(0.395) 0.385 0.365(0.361) 0.365(0.361) 0.369 = 0.385(0.385) 0.433(0.439) 0416 0.403(0.401) 0.401(0.401) 0.391
Cohort 1B 3/14 0.214 0.284(0.284) 0.291(0.265) 0282 0.296(0.275) 0.296(0.275) 0.310 = 0.321(0.321) 0.370(0.361) 0.363 0.304 (0.297) 0.297(0.297) 0.261
Cohort 1C  8/11 0.727 0.557(0.557) 0.654(0.678) 0.664 0.554(0.583) 0.554(0.583) 0.655 = 0.519(0.519) 0.572(0.617) 0.533 0.615(0.625) 0.625(0.625) 0.673
Cohort 1D 3/5 0.6 0477 (0.477) 0.548(0.562) 0.548 0.444(0.455) 0.444(0.455) 0.542 0.448(0.448) 0.516(0.555) 0480 0.512(0.519) 0.519(0.519) 0.543

Basket 2 (Trastuzumab)

Cohort2A  9/24 0.375 0.365 (0.365) 0.395(0.389) 0379 0.371(0.376) 0.371(0.376) 0.386 = 0.367(0.367) 0.381(0.361) 0362 0.367(0.367) 0.367(0.367) 0.371
Cohort 2B 11/24 0.458 0.401(0.401) 0.463(0.463) 0.430 0.392(0.401) 0.392(0.401) 0.422 = 0.406(0.406) 0.396(0.374) 0.374 0.406(0.409) 0.409 (0.409) 0.425
Cohort 2C 4/19 0.211 0.278 (0.278)  0.274(0.251) 0.277 0.291(0.27) 0.291(0.27) 0.315 | 0.295(0.295) 0.354(0.340) 0.340 0.295(0.293) 0.293(0.293) 0.264
Cohort 2D 3/8 0.375 0.354(0.354) 0.420(0.409) 0.381 0.357(0.36) 0.357(0.36) 0.382 = 0.365(0.365) 0.383(0.398) 0.361 0.365(0.366) 0.366(0.366) 0.371
Basket 3 (Olaparib)
Cohort 3A  14/23 0.609 0.508 (0.508) 0.587(0.596) 0.568 0.517(0.544) 0.517(0.544) 0.6 0.475(0.475) 0.496(0.522) 0.473 0.536(0.541) 0.541(0.541) 0.570
Cohort 3B 10/24 0.417 0.405 (0.405) 0.429(0.426) 0413 0.385(0.384) 0.385(0.384) 0.382 = 0.388(0.388) 0.415(0.425) 0401 0.405(0.406) 0.406(0.406) 0.407
Cohort3C  8/25 0.32 0.334(0.334) 0.350(0.339) 0.337 0.336(0.333) 0.336(0.333) 0.339 = 0.344(0.344) 0.374(0.376) 0364 0.343(0.341) 0.341(0.341) 0.336
Cohort3D  3/17 0.177 0.252(0.252) 0.253(0.225) 0.248 0.261(0.237) 0.261(0.237) 0.269 = 0.288(0.288) 0.326(0.318) 0.320 0.261(0.256) 0.256(0.256)  0.225

Table 5.6: DRUP basket trials and the respective Cohorts masked. Under each utility function, the estimates are the scenario set 1 optimal mean and max aRMSE choice and in the parenthesis is the
estimate based on the scenario set reduced optimal in mean and max aRMSE.
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5.5 Discussion

This research study aimed to explore an approach to determine prior distribution and tuning parameter config-
urations essential for Bayesian methods used in estimating response rates within basket trial designs. The focus
was on estimation, by developing a prior and tuning parameters selection method designed to be predefined and
reproducible (table 5.4). Employing Simon’s two-stage design in each independent cohort, we demonstrated our
methodological framework using both simulation scenarios and real-world data from the DRUP study. Utility func-
tions, specifically min-mean and min-max average Root Mean Square Error (RRMSE), determined the selection of
optimal parameters performance. We applied the methods in a simulation environment where the study enrolled
as planned 8 or 24 patient, as well as in a realistic to the DRUP study setting, where a reduced number of patients
are observed in the second stage for some cohorts at a point when estimation becomes relevant.

A key strength of our approach is the systematic and transparent methodology for parameter optimization, al-
lowing pre-specification and reproducibility of optimal choices based on clear performance metrics. Prior and
tuning parameter selection is often arbitrary or unclear in existing Bayesian basket trial literature. Explicit distinc-
tions between 'prior parameters’ and 'tuning parameters’ should be clarified, given their substantial influence on
model behaviour. Additionally, by applying this approach directly to realistic scenarios from the DRUP study, we
demonstrated its practical relevance and potential utility in real-world oncology trials.

Overall, we found that optimal parameter selections based on mean aRMSE and max aRMSE generally con-
verged, producing similar estimated response rates across methods in the DRUP application (table 5.6). Although
parameter patterns showed similarities across the utility functions, small differences were still influential for spe-
cific estimation outcomes. This emphasizes the importance of explicitly defining and justifying the utility criterion
at the design stage.

Each method displayed distinct characteristics. The Berry method, provided generally low values for mean and
maximum aRMSE, indicating good average performance. However, in heterogeneous conditions, it may not be the
best choice. The EXNEX, although slightly under-performing in homogeneous scenarios (e.g., scenarios a, k, and o),
consistently provided reliable and robust estimates in scenarios with higher heterogeneity. Psioda demonstrated
parameter regions with low aRMSE, but with more sensitivity to the scenarios.The Fujikawa method showed consis-
tent performance and stability in parameter selection across different scenario sets, making it a reliable choice for
arange of trial conditions. The sample proportion is known to be biased for these STS designs, but is nevertheless
often used. Our results indicate that borrowing information across baskets generally reduces estimation errors.
Jung et. al introduced an UMVUE to provide an unbiased estimator for the STS design, as an alternative to the bi-
ased sample proportion. However, it assumes that each cohort reaches the full sample size which is not always the
case in practice. Simulations in Scenario set 1 using the Jung estimator show that the mean aRMSE is 0.1 and the
max aRMSE is 0.107.

The pooled estimate, commonly used in clinical practice, calculates the average of observed patient responses
divided by the total number of available patients across all cohorts in the same basket. We applied the pooled esti-
mate to our simulation study (Scenario Set 1), resulting in a mean aRMSE of 0.14, a maximum aRMSE of 0.26, and
an average bias (aBias) of 0.12. However, we caution that this estimate’s assumption, that the populations across co-
horts are homogeneous, complicates the interpretation of bias and limits direct comparability with methods that
explicitly model heterogeneity.

The sensitivity analysis underscored method-specific considerations, emphasizing implications rather than
direct comparisons. Scenario set 2, characterized by higher true response probabilities (0.4, 0.7, 0.9), resulted in

improved accuracy and reduced aRMSE. This improvement arises from the trial design’s null hypothesis of 01, as
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higher true response rates reduce early termination in the first stage, thereby reaching full planned enrollment
and enhancing estimator precision. The Psioda, Fujikawa and Berry methods, were sensitive to prior mean choices,
whereas EXNEX displayed relative robustness within its limited parameter exploration. Thus, choosing a Bayesian
method necessitates careful consideration of sensitivity to the prior and realistic trial scenarios during the design
phase.

The process of determining optimal parameters involves inherent limitations. Firstly, despite small observed
differences in parameter space, selecting a single optimal setting remains challenging. This challenge can be over-
come by sufficiently large simulation studies to reduce the impact of inter-simulation variability, thereby enabling
robust and reliable parameter selection. Additionally, our use of min-mean and min-max aRMSE utility functions,
although logically justified and operationally sound, inherently involves trade-offs. Averaging performance across
diverse scenarios may mask extreme estimation errors specific to certain scenarios. Conversely, focusing on maxi-
mum errors might emphasize outliers, potentially sacrificing generalizability. Alternative or combined utility met-
rics could yield different optimal parameters, and thus careful consideration and explicit justification of the chosen
metrics are crucial. Another consideration is the scenario set design itself. If future researchers adopt similar ap-
proaches, careful scenario and parameter-space definition at the design stage is essential. Realistic scenario repre-
sentation, balanced across plausible trial outcomes, impacts both optimal parameter selection and the robustness
of estimation. Hence, scenario choiceitselfis a critical design decision and a potential limitation if inadequately ad-
dressed. The computational burden of our proposed method restricted the number of Bayesian methods explored,
compared to our previous work [70].

The simulation study provides valuable insights into the performance of different methods for basket trial anal-
ysis under the DRUP design. The approach described allows for rational prior and tuning parameter choice at the
design stage of a basket trial. Future research should aim at refining these optimization methodologies to enhance
robustness across wider scenario ranges and utility functions. Additional information from other even more com-
plex endpoints could also be included in a more robust development of a basket trial estimator. Developing clear,
practical guidelines for prior distribution and parameter selection in Bayesian basket trial models can substantially
increase their applicability and reliability in precision medicine.
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Appendix A

Basket A BasketB  Basket C  Basket D

a 0.9 0.9 0.9 0.9
b 0.9 0.9 0.9 0.7
c 0.9 0.9 0.9 04
d 0.9 0.9 0.7 0.7
e 0.9 0.9 0.7 04
f 0.9 0.9 04 04
g 0.9 0.7 0.7 0.7
h 0.9 0.7 0.7 04
i 0.9 0.7 04 04
i 0.9 0.4 0.4 04
k 0.7 0.7 0.7 0.7
[ 0.7 0.7 0.7 04
m 0.7 0.7 0.4 04
n 0.7 04 04 04
o 04 0.4 0.4 04

Table 5.7: Scenarios set 2 which is used in the validation and comparison of the methods outcome
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Appendix B
5.5.1 Scenario set 1
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Figure 5.3: Results of the scenario set 1. A heat-map figure of the aBias for all the 4 methods, representing all the parameter combinations
used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.4: Results of the scenario set reduced number of patients. A heat-map figure of the aBias for all the 4 methods, representing all the
parameter combinations used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.5: Results of the scenario set reduced number of patients. A heat-map figure of the Mean aRMSE for all the 4 methods, representing
all the parameter combinations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.6: Results of the scenario set reduced number of patients. A heat-map figure of the Max aRMSE for all the 4 methods, representing
all the parameter combinations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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5.5.2 Scenario set 2
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Figure 5.7: Results of the scenario set 2. A heat-map figure of the aBias for all the 4 methods, representing all the parameter combinations
used. The bar on the side of the graph indicates the aBias values and colour combination.
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Figure 5.8: Results of the scenario set 2. A heat-map figure of the Mean aRMSE for all the 4 methods, representing all the parameter combi-
nations used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Figure 5.9: Results of the scenario set 2. A heat-map figure of the Max aRMSE for all the 4 methods, representing all the parameter combina-
tions used. The bar on the side of the graph indicates the aRMSE values and colour combination.
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Appendix C
Method Parameter Umin-mean aRMSE Umin-mean arMsE et 2 Unnin-max aRMSE Umin»maxaRMSE set 2 Uninformative
T 0 0 0 0 0.5
" € 4 3 4 4 2
Fujikawa
o 1 1 1 1 1
B 2.333 1 2.333 1 1
$0 5 5 5 5 2
Psioda pmp0 0 0 4 3 1
10 0.3 0.7 0.5 0.5 0.5
mean 0.5 0.5 0.5 0.9 0.5
i mean -2 2 1 0 0
Berry PrioTy.
Priory.var 1 1 1 1 0.01
Tdisp 0.005 0.005 0.005 0.005 0.0005
exr.p.w 0.5 0.5 0.5 0.5 0.5
nex.p.w 0.5 0.5 0.5 0.5 0.5
EXNEX
w 0.9 0.9 0.9 0.9 0.5
tau.H N.scale 1 1 1.25 1.25 1

Table 5.8: Parameters optimal values on the different utility functions and the uninformative case, including both simulation set 1 and 2.



General discussion

stimation of treatment effects in clinical trials connects the trial design with real-world applications be-
yond merely rejecting a null hypothesis of "no effect”. This is even more relevant in the era of precision
medicine and personalized treatments. Modern clinical trials, including basket trials and adaptive designs,
are becoming increasingly complex, highlighting the need for tailored estimation methods. Good estimation meth-
ods are essential for evaluating the true effectiveness of new therapies and for guiding healthcare decisions that
can affect patient outcomes and overall treatment strategies. With recent improvements in statistical techniques,
we can now better understand the varied responses among different patient groups. This makes accurate estima-
tion even more important, ensuring trial results are meaningful and applicable across diverse clinical trial designs.

Basket trials and master protocol designs represent an important evolution in clinical research methodology,
particularly within oncology [10]. These trial frameworks are distinct in their ability to simultaneously explore
multiple hypotheses, treatments, or patient groups within a single study, which significantly enhances research
efficiency and the speed of drug development. Master protocols, including basket, umbrella, and platform trials,
have gained prominence due to their potential to personalize medicine and optimize resource use, especially in
complex diseases and rare genetic conditions.

However, the uptake of these innovative designs has not come without challenges. A primary difficulty iden-
tified across recent literature is the lack of consistent and standardized definitions and outcome reporting. This
inconsistency complicates efforts to synthesize and compare trial results, creating barriers to broader implemen-
tation and regulatory acceptance, Siden et al. [73]. A notable gap remains between theoretical potential and prac-
tical implementation. Zhou and Ji [20] highlight that Bayesian statistical techniques can significantly enhance the
precision and statistical power of basket trials by borrowing information across subgroups, yet their adoption re-
mains limited. Kasim et al. [17] further point out that simpler, traditional trial designs still predominate, suggesting
a hesitation or lack of readiness within the research community to fully embrace more complex but beneficial sta-
tistical methodologies. Operational complexities further challenge the effective deployment of master protocols.
The management of multi-group patient enrollment, adaptive trial modifications, and appropriate use of historical
or external control data demands substantial logistical and methodological expertise. Bofill et al. [74] underscore
these challenges, specifically noting potential biases introduced when non-concurrent controls are improperly
handled, which can adversely affect the validity of trial conclusions.

A notable complexity arises from Bayesian methods employed in basket trial analyses, such as hierarchical
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models and adaptive borrowing techniques [15], [18], [54]-[59], [62], [64], [65], [72], [75]-[78]. Although these
Bayesian approaches can be powerful, they introduce challenges, such as including computational intensity,
parameter tuning complexities, and the subjective nature of prior distribution selection. In basket trials, choosing
these parameters effectively implies assumptions about the similarity or heterogeneity of treatment effects
across patient groups, and the anticipated treatment response characteristics within each basket. Thus, careful,
pragmatic and biologically informed decisions about these parameters before trial initiation are crucial. However,
current literature often lacks comprehensive guidance on optimal parameter selection, highlighting an important
area for further methodological clarity and practical improvement in basket trial designs. While a practical dis-
tinction is often made between "prior parameters” and "tuning parameters,” this separation is arguably artificial:
both are pre-specified and influence model behavior in ways that reflect assumptions about the data. Should
these two categories be unified under a broader conception of prior assumptions, and how might that shift affect
the transparency and interpretability of Bayesian basket trial designs? Against this background, estimation in
complex trials in oncology emerged as a relevant research question. Furthermore, the DRUP study [43] presents an
important example of such a complex design, including multiple baskets and treatments and platform elements.
This ongoing study gave rise to these questions, and was thus used as application for the methodology. In light of
the basket trial design, estimation methods were addressed at the level of individual cohorts (substudies), as well

as at the basket level.

Inthis thesis I systematically addressed statistical and methodological challenges associated with estimation in
innovative clinical trial designs, with a particular focus on oncology. Across the four chapters, several insights and
methodological contributions emerged, each addressing central issues in today’s evolving clinical research land-
scape. These include improving estimation procedures under early stopping in two-stage designs, developing ro-
bust methods for censored survival data, and evaluating Bayesian approaches for information borrowing in basket
trials. Collectively, this work contributes to a deeper understanding of how estimation interacts with trial design,
and offers practical strategies for achieving more reliable and interpretable results in complex trial settings.

In Chapter 2, I address the need for improved estimation methods in STS trial designs when early stopping is
applied. I focus on a specific design variant, the stopped STS (SSTS), where the trial stops as soon as a decision
for efficacy or futility can be made, potentially before reaching the planned sample size. I develop a UMVUE for
the response rate in the SSTS design and show that it maintains unbiasedness despite the flexible stopping rules.
I also propose a method to construct exact confidence intervals based on sample space orderings, which aligns
with the sequential nature of the design. Through simulation studies, I compare the SSTS UMVUE with standard
estimators from the STS framework, evaluating their performance in terms of bias, mean squared error, coverage,
and expected sample size. [ demonstrate that while early stopping can reduce precision, it can also lead in time
and resources efficiency and patient benefit.

In Chapter 3, I investigate the estimation of the Restricted Mean Duration of Response (RMDoR) in oncology.
focus on RMDOR as an alternative to the expected Duration of Response (DoR), particularly when right-censoring
makes the latter difficult to estimate. Response durations are typically determined based on imaging of tumors at
scheduled intervals, and because assessment schedules can differ between studies, comparing results across stud-
ies becomes challenging due to varying degrees of interval censoring. Additionally, the length of patient follow-up
may vary substantially between studies, further complicating comparisons and potentially introducing bias. I ex-
amine how RMDoR behaves as a function of the truncation time 7, and explore how its interpretation depends on
the choice of 7. I define multiple estimators for the RMDoR, considering practical aspects of interval censoring,

either by using detection times directly or correcting with midpoint imputation. Through extensive simulation
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studies, I assess the performance of these estimators in both single-arm and two-arm randomized trials under
various scanning schedules and realistic survival scenarios. My results show that while interval censoring intro-
duces bias in survival estimates, this has only a minor effect on RMDoR estimation. I highlight that the choice of
7 plays a much larger role, especially for comparisons across treatments. I advocate for careful reporting of RM-
DoR estimates as a function of 7, and propose that RMDoR ratios may offer a stable and interpretable measure of
treatment efficacy.

The PASKWIL-criteria 2021 [28] assess the clinical relevance of non-randomized studies by evaluating the lower
bound of the 95%-CI of the objective response rate (ORR), paired with a point estimate of the median DoR. This
framework does not account for the uncertainty in the DoR estimation, nor does it reflect the total patient popu-
lation when response is rare. We contribute to this discussion by exploring the RMDoR as an alternative efficacy
measure that incorporates both responders and non-responders, consistent with the updated estimand perspec-
tive proposed by Huang et al. [50]. We show that RMDoR can be reliably estimated even under interval censor-
ing and right-censoring, and investigate how its behavior varies with respect to the choice of 7. To use RMDoR in
decision-making, we recommend setting clear and interpretable thresholds. These could be based on existing clin-
ical guidelines (e.g. translating PASKWIL's median DoR cutoffs into RMDoR equivalents), historical data, or expert
consensus onwhat constitutes meaningful benefit. Including RMDoR alongside ORR may provide a more complete
picture of treatment efficacy, and help refine clinical guidelines such as PASKWIL by explicitly linking treatment
benefit to both effect size and estimation uncertainty.

In Chapter 4, I examine the problem of estimating cohort-specific response rates in single-stage basket tri-
als, where a single treatment is evaluated across diverse cancer types sharing a molecular target. These designs,
while operationally efficient, introduce statistical challenges when it comes to inference, particularly under the
Bayesian framework which allows for information borrowing across cohorts. The primary aim of this chapter is to
assess the accuracy and robustness of various Bayesian estimators that implement such borrowing, compared to
the standard frequentist sample proportion. Using a comprehensive simulation study, I compare seven Bayesian
estimators across a wide array of scenarios varying in response rate heterogeneity and sample size. I focus on three
performance criteria: average absolute bias, mean squared error (MSE), and the degree of shrinkage towards the
overall mean response. I show that in settings with little to no heterogeneity, the estimator proposed by Berry et
al. achieves the lowest bias and MSE, benefiting from strong borrowing. However, in more heterogeneous settings,
no single estimator consistently outperforms others. Instead, performance becomes highly context-dependent,
influenced by model priors, tuning parameters, and the nature of between-cohort variation. My findings highlight
the trade-off inherent in borrowing: while it can reduce variance, it may also introduce bias, especially when true
response rates differ substantially between cohorts. Importantly, I reveal how prior specification, particularly the
prior mean, can shift posterior estimates and impact conclusions. This underscores the need for careful prior elic-
itation in practice. Ultimately, I advocate for a context-aware selection of estimation methods in basket trials, en-
couraging the use of simulations during trial planning to guide the choice of model and hyperparameters. The
insights from this work aim to inform researchers designing early-phase basket trials, where accurate estimation
of response rates is crucial for deciding which combinations of drug and tumor types warrant further investigation.

In Chapter 5, I provide a simulations based approach to guide the choice of model and tuning parameters that
can be used at the planning stage. To ensure applicability to the details of, e.g., the DRUP study design, I extended
the evaluation of response rate estimation to basket trials that follow Simon's two-stage (STS) design, using
selected examples from the DRUP study. Compared to single-stage settings, the two-stage design introduces
additional complexities, particularly when patient accrual is incomplete or early stopping occurs. This chapter

focuses on four Bayesian estimation approaches, Berry, EXNEX, Psioda, and Fujikawa, that facilitate information
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sharing across cohorts. A key contribution of this work is the use of simulation-based parameter tuning, that can
be used at the design stage. By exploring a broad grid of hyperparameter values, [ identify optimal configurations
under two utility functions: the minimization of the mean absolute Root Mean Square Error (min-mean aRMSE)
and the minimization of the worst-case scenario error (min-max aRMSE). These choices reflect different priorities:
achieving accurate estimation on average versus avoiding extreme errors. I also consider a reduced sample size
scenario, simulating situations where the second stage of a cohort is not fully accrued. The results show that,
in terms of these utility functions, all four Bayesian methods can outperform the frequentist sample proportion
and UMVUE estimators, particularly under incomplete accrual. All methods could provide parameter sets where
the aRMSE performance was strong. Berry, Fujikawa and Psioda, proved sensitive to the choice of priors in some
scenarios, highlighting the importance of careful parameter tuning. Overall, EXNEX was most stable across all
parameter spaces and scenario sets, though it should be noted that the parameter space explored for EXNEX was
not as extensive as for the other methods. By applying these methods to actual DRUP data, I demonstrate how
different estimators yield varying results across cohorts. This has direct implications for clinical interpretation.
For example, in cohorts with high observed response, borrowing can shrink estimates downward, conversely, in
smaller or uncertain cohorts, borrowing can lead to more optimistic estimates. These dynamics highlight the need
for pre-specifying estimation strategies in basket trial protocols. This chapter shows that Bayesian borrowing
is not a universal solution, but a flexible strategy that needs careful tuning of parameters. While simulations
take time and computing power, they help identify the best settings for accurate estimates in multi-cohort trials
with two-stage designs. These findings aim to help researchers working on basket trials especially in precision

oncology make more informed choices at the design stage by balancing accuracy, consistency, and clarity.

One of the main conclusions of this thesis is that estimation and trial design are deeply connected in the context
of basket trials. The type of design, whether single-stage, Simon’s two-stage, or an adaptive structure, not only
frames the trial, but also directly impacts how estimation should be performed. Estimation is not just something
that follows data collection, it is embedded within the design itself, shaped by features like sample size restrictions,
early stopping criteria, and the expected variability between cohorts.

This becomes particularly clear when estimation takes place under incomplete accrual, which is often the case
in trials targeting rare patient groups. In such situations, standard estimators like the sample proportion or even
the UMVUE may fail to perform adequately. As shown in this work, Bayesian estimators that borrow information
across cohorts can provide more stable results, though they depend strongly on prior and tuning parameter choices.
These parameters are not neutral they reflect assumptions about how similar or different the response rates are
expected to be across baskets.

This introduces a broader methodological challenge: how to define and justify these assumptions clearly and
transparently, ideally before the trial begins. For example, in the simulation studies, EXNEX appeared more robust
across awide range of scenarios, but this may be due to the limited parameter space, which could make the method
appear more reliable than it actually is. On the other hand, methods like Psioda, Fujikawa, and Berry allowed for
greater flexibility, but also showed more sensitivity to parameter tuning highlighting the trade-off between robust-
ness and adaptability.

This suggests that parameter tuning should be considered part of the trial design process itself, rather than
something addressed only during analysis. Although simulations can be computationally intensive, they enable
researchers to identify optimal configurations tailored to the specific goals and constraints of a trial. Just as we
predefine sample sizes or stopping rules, estimation strategies and tuning procedures should be incorporated into

the protocol from the start.
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At the same time, this work underlines a lack of formal guidance around the use of Bayesian estimators in trial
designs. Regulatory documents like the ICH E9(R1) focus on the estimand framework and handling of intercurrent
events, but give less attention to how Bayesian methods, particularly those sensitive to prior and tuning choices,
fit within this framework. The distinction often made between "prior parameters” and "tuning parameters” may
not be meaningful in practice, since both influence the final estimates. Treating them jointly as part of the prior
structure could improve transparency and facilitate clearer reporting and justification.

Overall, this work points to a broader tension between simplicity and realism. Simple estimators are easy to ap-
ply, understand, and justify, but may overlook key sources of uncertainty or variation. Bayesian approaches, when
well-calibrated, can offer a compromise: improving stability in estimation for small cohorts while still accounting
for heterogeneity. However, their value depends on transparent assumptions, thoughtful design, and a clear un-
derstanding of their limitations.

This thesis has several limitations that should be acknowledged. The study design in basket trials was restricted
to estimation under single-stage and Simon's two-stage designs, without exploring alternative approaches such as
more complex Bayesian or adaptive trial designs. The range of estimation methods considered was limited by com-
putational feasibility, as many advanced methods require significant resources and time, which also constrained
the breadth of the parameter space examined in Chapter 5 and limited the generalizability of the results. Addition-
ally, only one Simon's two-stage design configuration was investigated, and no comparison was made regarding
the efficacy of estimators across different design choices. The scenarios and the number of cohorts used in the
simulation studies were limited due to computational constraints, which prevented assessment of how the pro-
posed methods perform under greater heterogeneity or with larger numbers of cohorts, an important consider-
ation in practice. The procedure for optimizing Bayesian parameters followed a single specific approach and did
not include comparisons with alternative parameter search strategies, potentially limiting recommendations for
parameter tuning. Furthermore, the simulations in chapter 5 were primarily based on complete cohorts, whereas
inreal clinical trials, recruitment is often incomplete, especially in rare disease contexts, which may require analy-
ses that deviate from the original design. Taken together, these limitations highlight the need for further research
on awider variety of designs, methods, and real-world data complexities to enhance the practical applicability and

robustness of statistical approaches in basket trials.

Future research directions

This work opens several paths for future research that could further improve the design and analysis of basket trials.
A central area of development lies in the use of more complex endpoints beyond binary outcomes. While response
rate remains a commonly used measure in early-phase oncology trials, it inevitably discards part of the available
information, especially regarding the timing and durability of response. Continuous endpoints, or combination
of response and Time-to-event endpoints such as progression-free survival (PFS), duration of response (DoR), or
even the restricted mean survival time (RMST) could offer richer insights if adapted appropriately to the basket
trial context. Exploring robust estimation techniques for these endpoints, particularly under censoring and small
sample constraints, could allow for more nuanced decision-making.

Another direction is the development of trial designs that integrate both treatment activity thresholds and es-
timation performance as core elements. Many current designs focus heavily on decision rules (e.g., Simon’s two-
stage) while treating estimation as secondary. However, as this thesis shows, estimation is part of the design, and
separating the two can lead to inefficiencies or misleading conclusions. Future work could explore designs that

optimize both decision-making and estimation accuracy, while still maintaining interpretability and feasibility in
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rare populations. In addition, more clarity is needed around the role of Bayesian prior parameters. Their influence
extends beyond just estimation, they shape the trial's behavior and outcomes from the design phase. Understand-
ing this dual role and investigating whether common prior structures could serve both design and estimation ob-
jectives would be a valuable contribution to the methodology of basket trials.

Methodological advances in estimation procedures also remain a critical need. While this thesis evaluated sev-
eral Bayesian estimators and highlighted the importance of prior and tuning parameter selection, there is room
for improvement. New methods that are less sensitive to prior mis-specification, more computationally efficient,
or better suited to small-sample inference would be highly valuable. Likewise, adapting techniques from machine
learning or shrinkage-based approaches may help in producing more stable estimates while maintaining trans-
parency.

Finally, there is a strong need for clearer guidance on how basket trials should be designed, analyzed, and re-
ported when using advanced estimation methods. At present, many methodological decisions are left implicit or
are made ad hoc. Developing best practice recommendations covering issues such as prior specification, tuning
parameter grids, choice of estimators, and handling of incomplete data would help researchers plan more robust
trials. In particular, trial protocols should clearly specify the estimation strategy alongside other key design ele-
ments, ensuring alignment with the estimand framework and regulatory expectations.

By addressing these areas, future work can build on the findings of this thesis to make basket trials more effi-

cient, reliable, and impactful in precision oncology and beyond.
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Samenvatting in het Nederlands

Indit proefschrift heb ik systematisch statistische en methodologische oplossing onderzocht voor het schatten van
behandeleffecten in innovatieve klinische proefopzetten, met een bijzondere focus op oncologie. In de vier hoofd-
stukken komen verschillende inzichten en methodologische bijdragen naar voren, die specifiek problemen in het
huidige, snel veranderende landschap van innovatieve designs van klinische studies adresseren. Deze omvatten
het verbeteren van schattingsprocedures bij vroegtijdige stopzetting in het bekende Simon’s Two-Stage (STS) de-
sign, het ontwikkelen van robuuste methoden voor het schatten van “duration of response” op basis van gecen-
sureerde overlevingsdata, en het evalueren van Bayesiaanse benaderingen voor informatie-uitwisseling (‘borrow-
ing’) in basket trials. Gezamenlijk draagt dit werk bij aan een dieper begrip van hoe schatting samenhangt met
onderzoeksopzet, en biedt het praktische strategieén voor betrouwbaardere en beter interpreteerbare resultaten
in complexe onderzoeksdesigns.

In Hoofdstuk 2 behandel ik verbeterde schattingsmethoden in STS onderzoeksopzetten wanneer de studie
voortijdig wordt gestopt. Ik richt mij op een specifieke variant, het gestopte STS (SSTS)-ontwerp, waarbij de
studie wordt gestopt zodra een beslissing over werkzaamheid of futuliteit kan worden genomen, mogelijk nog
voor het bereiken van de geplande steekproefgrootte. Tk ontwikkel een uniform unbiased estimator (UMVUE)
voor het responspercentage in dit SSTS-ontwerp en toon aan dat deze inderaad zuiver is, ondanks de flexibele
stopregels. Ook stel ik een methode voor om exacte betrouwbaarheidsintervallen te construeren op basis van
de steekproefruimte-ordening, wat aansluit bij het sequentiéle karakter van het ontwerp. Via simulatiestudies
vergelijk ik de SSTS UMVU met standaard schatters, op basis van bias, mean squared error, dekkingsgraad, en
verwachte steekproefgrootte. Ik laat zien dat vroegtijdige stopzetting weliswaar precisie kan verminderen, maar

ook kan leiden tot efficiénter gebruik van tijd en middelen, en tot voordeel voor patiénten.

In Hoofdstuk 3 onderzoek ik de schatting van de Restricted Mean Duration of Response (RMDoR) in de oncolo-
gie. Tk focus op RMDoR als alternatief voor de verwachte duur van respons (DoR), met name wanneer rechtscen-
surering de DoR lastig te schatten maakt. Responsduur wordt doorgaans bepaald op basis van tumorbeeldvorm-
ing op geplande tijdstippen. Doordat beoordelingsschema'’s tussen studies kunnen verschillen, wordt vergelijk-
ing van resultaten bemoeilijkt omdat dit leidt tot door verschillen in intervalcensurenring. Ook kan de follow-up
duur van patiénten sterk uiteenlopen tussen studies, wat vergelijkingen van resultaten tussen studies verder be-
moeilijkt en mogelijk bias introduceert. Ik onderzoek hoe de RMDoR zich gedraagt als functie van de truncatietijd
7, en hoe de interpretatie afhangt van de keuze van 7 . Ik definieer meerdere schatters voor de RMDoR, reken-
ing houdend met praktische aspecten van intervalcensoring, hetzij door directe detectietijden te gebruiken, hetzij
door correctie met mid-point imputatie. Met uitgebreide simulaties bestudeer ik de prestaties van deze schat-
ters in zowel enkelarmige als gerandomiseerde studies onder diverse scanregimes en realistische overlevingss-
cenario’s. Mijn resultaten tonen aan dat intervalcensoring weliswaar bias introduceert in overlevingsschattingen,

maar dat het effect op RMDoR beperkt is. Ik onderstreep dat de keuze van 7 een veel grotere rol speelt, vooral
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voor vergelijkingen tussen behandelingen. Ik pleit voor zorgvuldige rapportage van RMDoR-schattingen als func-
tie van 7, en stel voor dat RMDoR-ratio’s een stabiele en interpreteerbare maat van behandelresultaat kunnen
bieden. De PASKWIL-criteria 2021 [28] beoordelen de klinische relevantie van niet-gerandomiseerde studies aan
de hand van de ondergrens van het 95%-betrouwbaarheidsinterval van het objectieve responspercentage (ORR),
samen met een puntschatting van de mediane DoR. Dit raamwerk houdt geen rekening met de onzekerheid in de
DoR-schatting, noch met de gehele populatie bij zeldzame respons. 1k draag bij aan deze discussie door de RM-
DoR te verkennen als alternatieve uitkomstmaat die zowel responders als non-responders omvat, in lijn met het
aangepaste estimand-perspectief voorgesteld door Huang et al. [50]. Ik toon aan dat RMDoR betrouwbaar kan
worden geschat, zelfs bij interval- en rechtscensoring, en laat zien hoe het gedrag varieert afhankelijk van 7. Voor
gebruik van RMDoR in besluitvorming raden we aan om duidelijke en interpreteerbare drempelwaarden te for-
muleren, bijvoorbeeld door PASKWIL's DoR-drempels te vertalen naar RMDoR-equivalenten, historische data of
expert consensus. Het toevoegen van RMDoR naast ORR kan een completer beeld geven van behandelingseffec-
tiviteit en bijdragen aan verfijning van klinische richtlijnen zoals PASKWIL, door expliciet het voordeel te koppelen
aan zowel effectgrootte als schattingsonzekerheid.

In Hoofdstuk 4 onderzoek ik het schatten van cohort-specifieke responspercentages in basket trials, waarbij
één behandeling wordt geévalueerd in verschillende kankersoorten met een gedeeld moleculair target. Deze de-
signs zijn operationeel efficient. Statistische efficiéntie winst is mogelijk, met name door Bayesiaanse metho-
den die informatie-uitwisseling tussen cohorten mogelijk maken. Het doel van dit hoofdstuk is het evalueren
van de nauwkeurigheid en robuustheid van diverse Bayesiaanse schatters die deze ‘borrowing’ implementeren,
vergeleken met de standaard frequentistische steekproef proportie. Met een uitgebreide simulatiestudie vergelijk
ik zeven Bayesiaanse schatters in uiteenlopende scenario’s van heterogeniteit in response percentage tussen co-
horten enverschillende cohort steekproefgroottes. De evaluatie is gebaseerd op drie prestatiecriteria: gemiddelde
absolute bias, mean squared error (MSE), en de mate van shrinkage richting het overall gemiddelde respons per-
centage. Iklaat zien dat bij geringe heterogeniteit de door Berry et al. voorgestelde schatter het kleinste biasen MSE
bereikt dankzij sterke ‘borrowing’. Echter, in secnario’s met meer heterogeniteot tussen cohorten presteert geen
enkele schatter consistent het best; de prestatie wordt context afhankelijk en beinvloed door model priors, tun-
ing parameters en de aard van variatie tussen cohorten. Mijn bevindingen illustreren de bekende “bias-variance
trade-off” bij ‘borrowing” het kan variantie verminderen, maar ook bias introduceren, vooral als de werkelijke re-
spons percentages sterk verschillen tussen cohorten. Iklaat zien hoe specificatie van de priors, met name voor het
gemiddelde, de posterior-schattingen en conclusies kan beinvloeden. Dit benadrukt het belang van zorgvuldige
prior-elicitatie in de praktijk. Ik bepleit een context afhankelijke keuze van schattingsmethoden in basket trials en
het gebruik van simulaties bij de onderzoeksplanning om de keuze van model en. hyperparameters te sturen. De
inzichten kunnen onderzoekers ondersteunen bij het ontwerpen van basket trials, waar nauwkeurige schatting

van responspercentages essentieel is voor vervolgonderzoek naar veelbelovende behandelingen.

In Hoofdstuk 5 volg ik een simulatie-gebaseerde aanpak om de keuze van model en tuning parameters te
ondersteunen bij de onderzoeksplanning. Om toepasbaarheid te waarborgen voor de DRUP-studie, breidde
ik de evaluatie van respons percentages uit naar basket trials die het Simon’s two-stage (STS)-ontwerp volgen,
aan de hand van geselecteerde voorbeelden uit de DRUP-studie. Dit hoofdstuk richt zich op vier Bayesiaanse
schattingsmethoden (Berry, EXNEX, Psioda en Fujikawa) die informatie-uitwisseling tussen cohorten mogelijk
maken. Een belangrijke bijdrage is het gebruik van simulatie-gebaseerde parameter keuze (‘tuning’), bruikbaar
tijdens de ontwerpfase. Door een breed raster van hyperparameter waarden te verkennen, identificeer ik optimale
configuraties onder twee gedefinieerde nutsfuncties (“utilities”): het minimaliseren van de gemiddelde absolute

Root Mean Squared Error (min-mean aRMSE) en het minimaliseren van de fout in het slechtst mogelijke scenario
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(min-max aRMSE). Deze keuzes weerspiegelen verschillende prioriteiten: nauwkeurige schatting gemiddeld ver-
sus het vermijden van extreme fouten. Ook simuleer ik een scenario met door verkleinde steekproefgrootte, als
de tweede fase van een cohort nog niet volledig kan worden geincludeerd in de schatting van respons percantages.
Deresultaten laten zien dat, volgens deze nutsfuncties, alle vier de Bayesiaanse methoden beter kunnen presteren
dan de frequentistische steekproefproportie en UMVUE, met name bij incomplete inclusie. Voor alle methoden
konden parametersets worden gevonden met sterke aRMSE-prestaties. Berry, Fujikawa en Psioda bleken gevoelig
voor de keuze van priors in sommige scenario’s, wat het belang van zorgvuldige tuning onderstreept. Over het
geheel genomen was EXNEX het meest stabiel over alle parameter- en scenario-ruimtes, hoewel het verkennings
gebied voor EXNEX beperkter was dan voor de andere methoden. Door deze methoden toe te passen op daadw-
erkelijke DRUP-data, laat ik zien hoe verschillende schatters uiteenlopende resultaten geven per cohort. Dit heeft
directe gevolgen voor de klinische interpretatie. In cohorten met een hoog waargenomen respons, kan ‘borrowing’
leiden tot lagere schattingen, terwijl in kleinere of onzekere cohorten het juist optimistisch kan uitpakken. Deze
dynamiek benadrukt de noodzaak om de precieze methode van schatten vooraf te specificeren in het onderzoek-
sprotocol. Dit hoofdstuk toont aan dat Bayesiaans ‘borrowing’ geen universele oplossing is, maar een flexibele
strategie die zorgvuldige keuzes van prior en tuning parameters vereist. Hoewel simulaties tijd en rekenkracht
kosten, helpen ze bij het identificeren van optimale parameter instellingen voor nauwkeurige schattingen in
multi-cohort studies met Simon’s Two-Stage of andere sequentiéle opzetten. Deze bevindingen zijn bedoeld
om onderzoekers, vooral in de precisie-oncologie, te ondersteunen bij het maken van geinformeerde keuzes
tijdens de ontwerp- en planningsfase door een goede balans te vinden tussen nauwkeurigheid, consistentie en
interpreteerbaarheid.

Een van de belangrijkste conclusies van dit proefschrift is dat schatten van behandeleffecten en onderzoek-
sopzet nauw met elkaar verbonden zijn in basket trials. Het type ontwerp - single arm, Simon’s Two-Stage, of adap-
tief - bepaalt niet alleen het onderzoek, maar beinvloedt ook direct de wijze van schatten. Schatten is niet slechts
een analyse die volgt op dataverzameling,maar is verweven met het ontwerp zelf, beinvloed door elementen als
steekproefbeperkingen, stopregels, en verwachte variabiliteit tussen cohorten. Dit wordt vooral duidelijk bij schat-
ten onder incomplete inclusie, wat vaak voorkomt bij studies gericht op zeldzame patiéntengroepen. In dergelijke
situaties schieten standard schatters zoals de steekproefproportie of zelfs de UMVUE tekort. Zoals aangetoond in
dit proefschrift, kunnen Bayesiaanse schatters die informatie delen tussen cohorten stabielere resultaten leveren,
hoewel ze sterk afhankelijk zijn van gekozen priors en tuning parameters. Deze parameters zijn niet neutraal; ze
weerspiegelen aannames over de verwachte gelijkenis of verschillen in responspercentages tussen baskets. Dit
roept een bredere methodologische vraag op: hoe deze aannames duidelijk en transparant te definiéren en ver-
antwoorden, idealiter voor de start van het onderzoek.
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> SatpPBn autn, SLEPELVIVTAL CUCTNUATIKA OTATIOTIKEG KAl LEBOBONOYIKEG TIPOTEYYIOELG YId TNV EKTIMNOT TWV
OEPAITEVTIKWY ATTOTEAECUATWY O KAWVOTOMA OXESLA KAVIKWY UEAETWY, Ue 8laitepn £ugacn oty oykohoyia. Ta téo-
OEPA KEPANALA TTIOU AKOAOUBOUV TTEPINAUPBAVOUV VEEG BEWPNTIKEG KAl TTIPAKTIKEG LEOOSONOYIEG, Ol OTTOIEG AVTIHETW-
TI{OUV CUYKEKPIUEVEG TIPOKANTELG TTOU AVAKUTTTOUV OTO GUYXPOVO Kal SLapKws eEEMOOOUEVO TOTTIO TWV KAVOTOUWY
OXESIWV KAWVIKWV SOKIUWV. ITIG CUVELOPOPESG AUTEG TTEpINapBavovTtat: N BEATIWOT SLAdIKACIWY EKTIUNONG OE TEPUTTW-
O€LG TIPOWPNG SLAKOTNG 0TO KAAOIKO ox€dLo dUo otadiwv Tou Simon, n avamtuén pHeBodwv ekTiunoNng TG Slapkelag
avTanokplong Ke Baomn Aoyokpiuéva dedopéva emiBiwong, kabwg kat ) a§lohdynon Bayesian npooeyyioewv ya m dla-
Hoipaon mAnpopopiag ("borrowing") oe basket trials. Zuvolika, n epyacia auty) cuvelo@epel otn BabuTeEPN Katavonon
TOU TWG 1 Stadikaaoia eKTIUNONG AAANAETIOPA LE TO OXESLATHO TNG LEAETNG, KAL TIDOCPEPEL TIPAKTIKEG OTPATNYLKES Yld
7O A&LOTILOTA KAl EPUNVEVUCIA ATOTEAECHATA O CUVOETA EPEVVNTIKA TTPWTOKOAAA.

310 Keahao 2, fetdlw PBektiwpéveg neBodoug ektipnong oe oxedla STS otav 1 HEAETN SLAKOMTETAL TIPOWPA.
Eotiadw o pia eldkr) mapaihayn, Stakormmg tou oxediou do otadiwv tou Simon (SSTS), 61tou N LEAETN OTAUATA HOALG
wtopei va AngBel and@aon wg mpog TNV WIOTEAECUATIKOTNTA 1 UN TNG BEPATEiag, akOUn Kal TPV CUMITANPWOEL To
apXIKA TIPOPAEMOUEVO pEYEDOG SElYHATOG. AvamTUooW £vay OPOLOHOPMA AUEPOANITTO EKTIUNTY) EAAXioTNG Slaomopdg
(UMVUE) yia to 10000t avtanokplong ot Oeparteia oto SSTS kat armoSelkviw OTL TTAPAUEVEL AUEPOANTTTOG, TTAPA
TOUG EVENIKTOUG KaVoOveg Slakormg. EnutAéoy, mpoteivw pia péBodo KATaoKeLT G SIAOTNUATWY EUTILOTOOUVNG ME BAom
™ SLatagn tou SelyUATIKOU XWPOU, 1 OToid AVTATTOKPIVETAL OTOV SLaSOXIKO XapaKThpd Tou oxediou. Méow eKTeTAUE-
VWV TIPOCOUOLWOEWY, cUYKpivw tov UMVUE Ttou SSTS pe Toug oupBatikoug EKTIUNTEG WG TTIPOG TN HEpoAnwia, To péco
TETPAYWVIKO OQAAUA, TNV TIBavoTnTa KAAUWYNG Kat To avapevopevo péyebog deiypatog. Ta euprjpatd pou Seixvouv ott
N TPOWPN SLAKOT EVOEXETAL VA HELWOEL TNV AKPIBELA, AANA TAUTOXPOVA OBNYEL O€ TILO ATTOSOTIKA XPNOY XPOVOU Kal
TIOPWV, TPOCYEPOVTAG SUVNTIKO OPENOG OTOUG AODEVEIG.

Y10 KedAato 3 peletdratn extipmon g MNeploplopévng Méong Alapketag Avtamnokpiong (Restricted Mean Duration
of Response, RMDoR) otn Beparteia, otov topga g oykoloyiag. H RMDoR rnipoteivetal wg eVAANAKTIKY) TNG AVAUEVOUE-
vng dlapketag avrtanokplong (DoR), edikda otav n €l Aoyokpioia kablotd SUokoAn tnv ektipnon g DoR. H Stapkela
avTanokplong cuvnoOwg Bacoiletal o€ ATMEIKOVIOTIKA EUPTIUATA OE TIPOKABOPLOMEVA XPOoVIKA Staotpata. Ot Slapopeg
oTa TPWTOKOAAA A§LOAGYNONG METAEY MEAETWY KABLOTOUV SUGKOAN TN CUYKPLOT TWV AITOTEAECUATWY, KUPIWG AOYw
Slakupavoewv oty Aoyokplaia dlaompudtwy, pe aAla Adyla To mpoypaupa eéétaong. MapdAinia, n dlapkela mapa-
KOAOUONONG WITOPEL VA SLaPEPEL ONUAVTIKA LETAEY UEAETWY, TIEPUTAEKOVTAG TTEPALTEPW TIG CUYKPIOELG KAl ELTAYOVTAG
evdexOuevn peponyia. EEetalw nmwg ouprmepipépetal n RMDoR wg cuvaptnon tou xpovou (T) Kat wg ) epunveia mg
ermpeadetal artd v €AOYN TG TUNG autG. Mpoteivw dlapopetikoug ektiuntég ™G RMDoR, AauBavovtag urtogn
TIPOAKTIKEG TITUXEG TNG AOYOKPLOIAG SLACTNUATWY, E(TE XPNOOTOWVTAG APETA XPOVOUG AVIXVEUONG, €ite pe SLOpOwaon
HEOW TNG EKTIUNONG TOou Héoou Slaothuatog (mid-point imputation). Méow eKTETAUEVWY TIPOCOMOWITEWY, AELOAOYW

™V andd00n AUTWY TWV EKTIUNTWY TOOO O€ SOKIUEG PE LOVO ia TIEPAATIKN BEpareia 000 Kal O€ TUXALOTIONUEVES UE-
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AETEG, UTIO Slaopa oevapla eMPBIWONG KAl TTPWTOKOANA AITEKOVIONG. Ta ATOTEAECUATA POU SEiXVOUV OTL 1) AOYOKpPLoia
SLAOTNUATWY WITOPEL VA EL0AYEL LEPOANYIA OTLG EKTIUNOELS EMBIWONG, WOTATGO TO WTOTEAECHA AUTO EIVAL TTEPLOPLOUEVO
otV RMDoR. Enttlonpaivw ot n erhoyn tou T dladpapatilel Kaboplatikd polo, 18laitepa g cuykpioelg petagl Ospa-
nelwv. Tovidw TN onpacia g TPOCEKTIKNG AvaPOopAg TwV ekt oewv RMDoR wg cuvaptmon tou T Kat mpoteivw
Xprion tou Aoyou RMDoR wg éva otabepd kat eppnvevoio pétpo. Ta kprrpia PASKWIL 2021 [28] a§lohoyolv v
KAWVIKY) onuacia pn tuxalomompévwy HeAeTwy Bact{OUeva OTo KATWTATO OPLo Tou 95% SlaoTHUATOG EUTLOTOCUVNG
TOU QVTIKEIMEVIKOU TTocooTol avtanokplong (ORR), kabwg kat o onuelaky ektipnon g diapeong DoR. To ev Aoyw
mAaiolo dev Aappavel untoym ™My apepadmrta ™G ekTiunong DoR oUte To cUvVolo Tou MANOUCUOU OE TIEPUTTWOELG
onaviag avtanokpong. H cuvela@opd tou RMDoR o1 oxeTikY) cudiiton, eéetaovtag TV WG eVOAAAKTIKO LETPO TTOU
EPAAPBAVEL TOCO TOUG AVTATTOKPIVOUEVOUG OCO KAl TOUG U AVTATIOKPLVOUEVOUG 0Tt Bepaneia aoBeveig, evapuovi-
{OMEVO Ue TNV ONTIKY) TwV estimands mou mpotewvav ot Huang et al. [50]. Asixvw 61t 1 RMDoR ptopei va ektiunOsi
a€lomoTa, akoun Kat e AoyoKpLoia SlacTnuatwy 1 6e€ld AoyoKpLoia, Kal KATadelkviw T METABANTOTNTA TNG WG TTPOG
™mv T Tou T. [Ma ™m Xprion ¢ RMDoR ot Andm amo@doewy, cuvioTatal 0 oa®ng Kat EPUNVEVCLUOG KABoPLopog
opiwy, OGN HETaPpPaon Twv opiwv ™ DoR twv PASKWIL ot tooduvaua g RMDOoR, pe xprion LloTopikwyv Sedoueé-
VWV Y] EWTEPOYVWHOVWY. H evowpdatwaon g RMDoR 6imAa oto ORR utopei va mpoo@Epel TANPECTEPN EKOVA TNG
QTOTEAECUATIKOTNTAG HLAG Beparteiag Kal va CUVELTEPEPEL TNV avaBABULOT TWV KAWVIKWY 08NYLWV Omwe Ta KPLThpLa

PASKWIL, cuoxetidovtag 1o 0@eNOG e TO HEYEOOG TOU QTOTEAECHATOG KAL TNV aBeRALOTNTA EKTINONG.

1o Kepahato 4 £0tiddw oMV KTIUNOT TOCOOTWY AVTATIOKPLONG ava UTO-UeAETn ot basket trials, omou pia Bgpa-
neia afloloyeital oe SLAPOPETIKOUG TUTTOUG KAPKIVOU LE KOWVO LOPLAKO OTOXO. Ta OxESLA AUTA TTPOCPEPOUV AELTOUPYIKT|
anodoTIKOTNTA Kal, LEow Bayesian ue®oddwv mou emitpémnouyv dlapoipacm mAnpo@opiag LETAY UTd-UEAETWY, SuvavTal
Va TTPOCSWOOULV KAl OTATIOTIKY ArToS0TIKOTNTA. TO KEQAAALO QUTO ETILKEVTPWVETAL OTNV a§loOAOYNON TNG akpifelag kat
NG WtodoTIKOTNTAG Slawopwy Bayesian ekTUNTWY 1Tou LAOTTIOLOVY auTh T Stapoipacn mAnpogopiag (“borrowing”), ou-
YKPLTIKA HE TN OUMBATIKA SELYMATIKT eKTiUNnon (sample proportion). M€ow eKTETAUEVNC TTIPOTOMOIWONG, CUYKPIVW ENTTA
Bayesian eKTIUNTEG OE TIOWKINA ETEPOYEVT] OEVAPLA TIOCOOTWY AVTATTOKPLONG UETAEY UTTO-UEAETWYV KaL HE SLAPOPETIKA
peyEdN Setypdtwy. H aflohoynon Baoiletal og tpia kpimmpla: péon amdAutn pepoAnyia, HECO TETPAYWVIKO O@ANUA
(MSE) kat tov Babpo ouppikvwaong ipog To GUVOALKO HECO TTO00OTO AVTATOKPLONG. ATTOSEIKVUW OTL OE TTEPUTTWOELG Xa-
UNANG ETEPOYEVELAG, O EKTIUNTNG TWV Berry emtuyxavel ) (ikpotepn pepoAndia kat MSE, Adyw oxupng dtapoipaong
TIANPOYOPIAG. X€ OEVAPLA PE LEYANUTEPT) ETEPOYEVELA LETAED UTIO-UEAETWY, KAVEVAG EKTIUNTNG SEV UTTEPEXEL CUCTNA-
TIKA, N art0d00M €£0PTATAL ATTO TA XAPAKTNPLOTIKA TWV SES0UEVWY, TIG €K TWV TTPOTEPWY TTAPAUETPOUG TOU LOVTENOU
KAl TIG 18latepdTeg KABe mepinmtwong. Ta eupriuata pou avadelkvlouy To YVWoTo SiAnuua pepoAndiag-slacmopdg
(“bias-variance trade-off”) ¢ Stapoipaong mAnpo@opiag: Wtopel va HelWVEL TN SlaoTtopd, aAAA Kal va EL0AYEL LEPO-
Anwia, Kupiwg OTav Ta MPAYHATIKA TTOCOOTA AVTATTOKPLONG SLAPEPOUV ONUAVTIKA HETAEU UTTO-UENETWY. EEeTaldw mwg
N €TUAOYT €K TWV TMPOTEPWY UETARBANTWYV (priors), 18lwg yla TN MAPAUETPO TOU UECOU OPOU, MITOPEL VA EMNPEATEL TIG
EKTIUNOELS KAl Ta ouprtepdopata. To elpnua autod UNoYPAppIlEL TN ONUACIA TTPOTEKTIKNAG ETIIAOYYG TTAPAUETPWY OTNYV
npagn. Tovidw ™V avaykn yla ETAOYT EKTIUNTIKNG LEBOSOU avaloya LE TO TTAAIOLO KAl TN XPT|0T TIPOCOHOWCEWY GTOV
oxedlaopd, wote va kabodnyeital n emAoyn LOVTEAOU Kal TApAUETPWY. OL TapaTnpnoElg auTég Suvavtal va unmooTn-
pi€ouv TOUG EpEUVNTEG OTOV OXeSLAOUO basket trials, 6rtou 1) akpIPYG EKTIUNOT TOCOCTWY AVTATIOKPLONG Eivat Kpiowun
Yla LEANOVTIKY) €pguva o€ EATILOOPOPEG BepATTEiEG.

310 Kedahaio 5 akohouBw pia mpoceyylon Baclopévn o€ TTPOCOUOLWOELS YIa TN BENTIOTN MTAOYN MOVTEAOU Kal
pUBULOT TTapapETpwWY (tuning) KATA Tov oXedlaopd TG HEAETNG. Ma va Slac@aliow tn cuvagela pe  pehétn DRUP,
ETEKTEIVW TNV A§LOAOYNOY TWV NTOCOOTWY AVTATTOKpLoNG ot basket trials mou akoAouBouv To ox€dlo SUo otadiwv Tou
Simon, Kal OxL o€ €éva oTAdI0 OMWE OTO KEPAAALO 4, XPNOLUOTTOLWVTAG XOPAKTNPLOTIKA TTapadsiypata amd tn HeAET

DRUP. Eotiadw oe téooepig Bayesian pe@odoug extipnong (Berry, EXNEX, Psioda kat Fujikawa) mou ermutpénouv dua-
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Hoipaon mAnpo@opiag HeTa&l umo-peNETWY. H emloyr) mapapEtpwy Héow npooopoiwaong (“simulation-based tuning”),
eival 1dlaitepa xpnoun otn @daon oxedlacpou. Eggpeuvwvtag éva eupl ATUA TILWY UTIEPTIAPAMETPWY, TTPOTSLOPIlWw
BéNTIOTEG pUBUioELG cUpPWVA pe SUO Kpltnpla Xpnotpotmtag (“utilities”): Tnv ehaxlotonoinom ™mg péong anoAutng pi-
{ag HECOU TETPAYWVIKOU G@AAHaTog (min-mean aRMSE) kat Tnv €AAXLOTOTONGOT TOU O@AAUATOG OTO SUCUEVETTEPO
oevapto (min-max aRMSE). Ta kptthpla autéd avtavak AoV SLa@OPETIKES TIPOTEPALOTNTEG: AKPLPT EKTIUNON KATA HECO
0pOo €vavTl Ao@UYNG akpaiwv Aadwv. MNMpocopolwvw emiong oevAaplo pe eploplopévo péyebog Seiypartog, av n dev-
TEPN PAOT ULAG UTTO-PEAETNG SEV UITOPEL va SUUTTEPIAN@OEL TTAY)PWG 0NV EKTIUNOT TOU TOCOOTOU avtanokplong. Ta
QTOTEAEOMATA KATASEIKVUOULV OTL, PE BAOT TA MAPATTAvW KPLTNpLa, Kat ol Téooeplg Bayesian pébodol prmopouv va ure-
PEXOUV TOU SELYUATIKOU EKTIUNTT, ELBIKA OE TIEPUTTWOELG EAAUTOUG CUMMETOXNG. Ma OAeg TIg uebddoug evromiotnkav
TIAPAUETPIKEG PUBUIOELG pe eEalpeTIkY) EMidoom WG tpog To aRMSE. Ot pébodol Berry, Fujikawa kat Psioda €dei§av evat-
oOnoia oV em\oy) priors og OpLOPEVA OEVAPLA, YEYOVOG TTOU UTTOYPAUUI(EL TN onuaoia mpooektikou tuning. H pé-
0080¢ EXNEX armodeixOnke n mio otabepn oe OAO TO (pACHA TTAPAUETPWY KAl OEVAPIWY, AV Kal To eUPOG SlePeLVNONG
TIAPAMETPWY NTAV TILO TIEPLOPLOUEVO OE GUYKPLOT UE TIG UTTONOUTES. Epappolovtag Tig peBodoug auteég O TTPAYMATIKA
Sedopéva DRUP, amodelkviw mwg SLapopeTIKOL EKTIUNTEG 08NYOUV OE SLAPOPETIKA ATTOTEAECUATA AVA UEAETT, YEYO-
VOG UE AUEDEG EMUTTWOELG OTNV KALVIKN EPUNVELQ. Y€ UTTO-UENETEG pe LPNASG TTAPATNPOUUEVO TTOCOCTO AVTATTIOKPLONG,
n Slapoipacn mANpo@opiag evEEXETAL VA 08NYNOEL OE XAUNAOTEPEG EKTIUY|OELG, AOYW TNG CUPPIKVWONG TTPOG TOV HETO,
EVW O€ UIKPEG 1 aBEPALEG UTIO-UENETEG TO ATTOTEAECHA WITOPEL va eival To avtioTpoo. H Suvauikn autr avadelkvuel
NV avayKadTnTa TPoKaboploptol TNG EKTIUNTIKNG LEBOSOU OTO €PEUVNTIKO TPWTOKOANO. To KEPANALO KATASEIKVUEL
otLn Bayesian lapoipaon mAnpo@opiag Sev amoteAel TAVAKELR, AANA LA EVENIKTT OTPATNYLKE TTOU QITALTEL TIPOOEKTIKT
€TTLAOYY) priors Kal tuning MapauETPWY. AV KAl Ol TIPOCOUOLWOELG ATTAULTOUV XPOVO KAl UTTOAOYLOTIKY) LOXU, CUMBAAAOUV
OTOV EVTOTILOUO BEATIOTWY PUBUICEWY Yla OKPLPBEIG EKTIUNTELG OE MENETEG e TIOMAATTIAEG UTIO-MENETEG Kal OXESLA SUO
otadiwv. Ta CUUITEPACHATA AUTA GTOXEUOUV OTNV UNTOCTHPLEN TWV EPEUVNTWY, KUPIWG 0TNV eEATOMIKEUEV OYKOAOYIA,
KATA TN AN TEKUNPLWUEVWY ATTOPACEWVY OTO OXESLAOUS KAL TNV TIPOYPAUUATIOMO LEAETWY, LE EUPAOT) OTNV ETTTEVEN
LoOPPOTTiaG HETAEY akpiBeLAg, OUVETELOG KAl EPUNVEUCILOTNTAG.

‘Eva aro ta onuavTtikoTepa CUMMEPACHATA TNG SLATPLPYG EIVal OTL 1) EKTIUNOT TWV BEPATEVTIKWY QITOTEAECTUATWY
KOl 0 OXeSLAOMOG TNG HENETNG eival aTtevd ouvdedepéva ota basket trials. O tUMog tou oxediou, gite mMpokelTal yla do-
KLU evog otadiou, eite yia oxédlo SUo atadiwv tou Simon 1| yla TIPOcaproaTIKO OXESLO, Sev Kabopilel LOVO TOV TPOTIO
Slefaywyng ™G HEAETNG, AN ernpeadel ApeTa KAl TOV TPOTIO EKTIUNONG TWV ATOTEAECUATWY. H ekTiunon dev amnote-
A&l AIAWG LA OTATIOTIKN AVAAUOT) LETA TN GUANOYT TWV §€50UEVWY, AAAA EMNPEAlEL AUECA UE TOV (8l0 TO OXESLIAOUO
™G MEAETNG, LUTTO TNV EMidPACT TAPAYOVTWY OMWGE OL TIEPLOPLOUOL TOU SElYUATOG, Ol KAVOVEG SLOKOTYG KAL 1) AVAUE-
vouevn petafAntomrta petafl umo-HEAETWY. AuTO yiveTal WOLlaiTEPA ELPAVEG O TTEPUTTWOELG EANUTOUG GUHUETOXNG,
JIOU OUXVA TTaPATNPOUVTAL O MEAETEG UE AOOEVWV E OTTAVIEG TTAOTOELG. € TETOLEG TEPUTTWOELG, Ol KAAOIKOL EKTIUNTEG,
OMWG N SeLypatikn avahoyia, ouxva dev enapkel. Onwg katadeikvuetal otn datplPn, ol Bayesian ektiuntég mou eri-
TpEMouV dlapoipacm mAnpoopiag LETAY UTTO-UEAETWY WTOPOUV VA TIPOCPEPOUV OTAOEPOTEPA ATOTEAETUATA, AV KAl
efapTwvTal £€vIova amo TV eAOYN TWV Priors Kal TWV MAPAUETPWY tuning. AUTEG OL TTAPAUETPOL SEV Eival OUSETEPES,
avtavakAoUV UITOBETELG OXETIKA LE TNV AVAUEVOUEVT opoldTNTa Y) Sla@opd oTa T0coaTd aviandkplong Letagu baskets.
To yeyovog autd avadelkvUEL éva eUpUTEPO EBOSONOYIKO EPWTNAL TIWG OL UTTOBETELS AUTEG LITOPOUV VA 0OPLOTOUV Kal

Va alTloAoynBouV Pe oa@nVELd Kal SLapAveld, IBAVIKA TPV amno TV Evapin g HEAETNG.
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