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Part I

Theory

This part is composed of an introduction to the area of research and to the theory upon which the re-
search chapters are based.
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1 Introduction

This is a thesis about the design and analysis of secret-key cryptography. In accordance with standard
practice, we begin by dissecting each of these words and setting the scene.

Theword cryptography is derived fromtheAncientGreekwords κρυπτός, which translates to “hidden”
or “secret”, and γράφειν, which translates to “writing” [21]. Indeed, since ancient times, cryptography has
been used tomake sure that the contents of a message that is transmitted between a sender and a receiver
through an insecure channel are not disclosed to an unauthorized entity, the adversary. This objective
is called confidentiality. Usually, a receiver also needs to detect if a message has been tampered with.
Hence, cryptography is also used to protect against message forgery. This objective is called integrity.
A broader objective that encompasses integrity is authentication, which additionally verifies the origin
of the message. Further objectives can be defined, e.g., preventing denial-of-service attacks (to protect
availability of systems), stopping traffic analysis, etc. While these are important for security, we do not
consider them in this thesis.

We distinguish between two types of communication. In the first type of communication, sender and
receiver are separated in space. For example, the sender may be a client, the receiver may be a server and
the message may be a private datagram that the client sends to the server over the public Internet. In the
second type of communication, sender and receiver represent the same entity that communicates with
itself over time. For example, the sender may be storing the message, a private file, on a disk and try to
recover it at a later time.

Cryptography achieves its objectives by transforming the message in a way that is difficult to predict
by the adversary. In the general setting, a message is divided into two parts that form the inputs to the
transformation: a part for which both confidentiality and integrity are required, and a part for which
only integrity is needed. The part requiring confidentiality and integrity is called the plaintext, and the
part requiring only integrity is called associated data.

To achieve confidentiality, the plaintext is transformed into a ciphertext through a process called en-
cryption; the inverse process, which recovers the original plaintext, is called decryption. Themethods used
for encryption and decryption are specified by a system called a cryptosystem, an encryption scheme, or a
cipher. In this context, the goal of a cryptosystem is to ensure that an adversary cannot (efficiently) learn
any information about the plaintext from public information, such as the ciphertext, except for some
properties such as length or format, depending on the scheme.

To achieve integrity, there exist two popular approaches. The first approach is for the cryptosystem to
produce a short piece of data called an authenticator, which serves as a fingerprint for both the plaintext
and the associated data. An authenticator is also called a tag or amessage authentication code (MAC).The
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1 Introduction

second approach is to treat the entire message as plaintext and add a highly structured part to it. With
high probability, a modified ciphertext decrypts to a plaintext for which the structured part is modified.

To make this possible, sender and receiver need to have access to a random element about which the
adversary has more uncertainty than they do. Hence, for simplicity, we make the assumption that the
sender and receiver have access to the same known sequence of randomly and uniformly generated sym-
bols from some alphabet set, e.g., a string of bits. We call this sequence the secret, key, or secret key, and
call this setting secret-key cryptography. Although secret-key cryptography primarily concerns systems
with a shared secret, its building blocks and techniques are also employed in settings without one, for
example in the construction of hash functions.

We assume that all details of the cryptosystem are known to the adversary. This is called Kerckhoffs’s
principle [32]. Accordingly, wemay think of secret-key cryptography as a tool for reducing security prob-
lems to the problem of protecting secret keys.

We do not concern ourselves with how this secret was generated and shared in the first place. This
key distribution is a problem in itself. In practice, it often (but not necessarily) makes use of public-key
cryptography, e.g., the Diffie-Hellman key exchange protocol [23].
Different cryptosystems can achieve the same security objectives. The deciding factor frequently re-

volves around implementation cost. In the remainder of this thesis, we explore how such cryptosystems
are designed, analyzed, and optimized for real-world constraints.
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2 Preliminaries

This chapter outlines the fundamental mathematical and theoretical concepts necessary for understand-
ing the research chapters. We assume that the reader has a working knowledge of the most basic notions
of set theory. Moreover, we assume that the reader has had exposure to algebraic structures and proba-
bility theory.

2.1 Structure and randomness

This section provides the language to discuss structure and randomness through algebra, probability
theory, and discrete mathematics. For (universal) algebra, we refer to [1] and [12]. For probability theory
as it applies to secret-key cryptography, a good summary is found in the appendix of [7]. For general
discrete mathematics, we refer to [39].

Functions between sets. Let 𝑆𝑆𝑆 𝑆𝑆, and𝑈𝑈 be sets. A function ormapping 𝑓𝑓 from 𝑆𝑆 to𝑇𝑇 is a subset
of𝑆𝑆𝑆𝑆𝑆 such that for each 𝑠𝑠 𝑠 𝑠𝑠 there is exactly one 𝑡𝑡 𝑡𝑡𝑡 with (𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠 𝑠𝑠. This is abbreviated as𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓
and 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓. In some cases, we do not want to give a name to a function. An anonymous function is
defined by its assignment rule. We write this as 𝑠𝑠 𝑠 𝑠𝑠. If 𝑆𝑆 equals 𝑇𝑇, we may call it a transformation.
We write Maps[𝑆𝑆𝑆 𝑆𝑆𝑆 for the set of all functions from 𝑆𝑆 to 𝑇𝑇. For a subset 𝐴𝐴 𝐴 𝐴𝐴, the restriction of
𝑓𝑓 to 𝐴𝐴 is the function 𝑓𝑓𝑓𝛢𝛢 ∶ 𝐴𝐴 𝐴𝐴𝐴  given by 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 for all 𝑎𝑎 𝑎𝑎𝑎 . The kernel of 𝑓𝑓 is the set
ker(𝑓𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓. If ker(𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓𝑓𝑓𝑓𝑓  𝑓, then 𝑓𝑓 is called injective or one-to-
one. The 𝑓𝑓-image of 𝐴𝐴 is defined as 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓  𝑓. If 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓, then 𝑓𝑓 is called surjective or
onto. The function is called bijective if it is both injective and surjective. A bijective transformation of a
finite set 𝑆𝑆 is called a permutation. The set of all permutations of 𝑆𝑆 is denoted as Perms[𝑆𝑆𝑆. The domain
of 𝑓𝑓 is 𝑆𝑆, its codomain is 𝑇𝑇, and its range is 𝑓𝑓𝑓𝑓𝑓𝑓.

Let 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 and 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔   , then the composition of 𝑓𝑓 and 𝑔𝑔 is the function 𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔     defined
by (𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 for all 𝑠𝑠 𝑠 𝑠𝑠. The identity function 𝑒𝑒𝑆𝑆 on a set 𝑆𝑆 is defined by 𝑒𝑒𝑆𝑆(𝑠𝑠𝑠 𝑠 𝑠𝑠 for all
𝑠𝑠 𝑠 𝑠𝑠. If 𝑓𝑓 is bijective, then there is a unique inverse function 𝑓𝑓−1 ∶𝑇𝑇𝑇𝑇𝑇    defined by 𝑓𝑓−1 ∘ 𝑓𝑓 𝑓 𝑓𝑓𝑆𝑆. In
that case, we also call 𝑓𝑓 invertible. An invertible function for which 𝑓𝑓−1 equals 𝑓𝑓 is called an involution.
Two functions are the same if they have the same domain, the same range, and are equal as sets.

Predicates. A predicate 𝜙𝜙 is a mathematical assertion that contains variables and that may be true or
false depending on the assignment of values from a set 𝑆𝑆 to these variables. Denoting true as ⊤ and false
as ⊥, a predicate is thus a function 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙    .
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2 Preliminaries

Orders. Let𝑆𝑆 be a set. A partial order ≤ on𝑆𝑆 is a subset of𝑆𝑆𝑆𝑆𝑆 that satisfies the following properties:

• (Reflexivity) For each 𝑠𝑠 𝑠 𝑠𝑠, (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠.

• (Antisymmetry) For each 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   , (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    and (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠 implies 𝑠𝑠 𝑠 𝑠𝑠.

• (Transitivity) For each 𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟 𝑟𝑟𝑟 , (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    and (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠 implies (𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟  .

For example, ≤ = {(0, 0), (0, 1), (1, 1)} is a partial order on the subset {0, 1} of the integers. Instead of
writing (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   , we use the notation 𝑟𝑟 𝑟𝑟𝑟 .
A total order ≤ on 𝑆𝑆 is a partial order on 𝑆𝑆 with the additional property that 𝑟𝑟 𝑟𝑟𝑟  or 𝑠𝑠 𝑠𝑠𝑠  for all

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   . In other words, any two elements are comparable.
Awell-order ≤ on 𝑆𝑆 is a total order on 𝑆𝑆with the property that every nonempty subset of 𝑆𝑆 has a least

element with respect to ≤.
An example of a total order that is not a well-order is the usual order ≤ on the real numbers.

Function families and sequences. Let 𝐼𝐼 be a set. A family of elements of 𝑆𝑆 is a function from
𝐼𝐼 to 𝑆𝑆. Technically, families of elements and functions are the same object, except that we view them
differently. Write 𝑠𝑠𝑖𝑖 for the element of 𝑆𝑆 corresponding to 𝑖𝑖 𝑖𝑖𝑖 . We denote the family as 𝑠𝑠 𝑠 𝑠𝑠𝑠𝑖𝑖 ∶ 𝑖𝑖 𝑖𝑖𝑖𝑖 ,
we call 𝑖𝑖 the index, and we call 𝐼𝐼 the index set. We call the element 𝑠𝑠𝑖𝑖 the 𝑖𝑖th component of 𝑠𝑠.
If 𝐼𝐼 𝐼𝐼𝐼𝐼  𝐼 𝐼 𝐼𝐼 𝐼 𝐼𝐼 for some positive integer 𝑛𝑛 𝑛 𝑛, then we call 𝑠𝑠 a finite sequence or tuple. We may

write 𝑛𝑛-tuple if we want to make the number of elements explicit. We identify 1-tuples with the single
element of which they are comprised. The total order on 𝐼𝐼 (inherited by the integers) induces an order
on the elements of 𝑠𝑠. Hence, it makes sense to speak of a smallest or largest element of 𝑠𝑠 that satisfies
some predicate. To avoid confusion in the case that 𝑆𝑆 is already ordered, we write leftmost for smallest
and rightmost for largest with respect to the order that is determined by 𝐼𝐼.

If 𝑠𝑠 𝑠𝑠𝑠  𝑠 𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠 is a family of functions from a set𝑋𝑋 to a set𝑌𝑌, then 𝑠𝑠 can also be seen as a function
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹     . Indeed, 𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝑖𝑖(𝑥𝑥𝑥 for all 𝑥𝑥𝑥𝑥𝑥  . By abuse of language, we may call 𝑠𝑠 invertible if 𝑠𝑠𝑖𝑖
is invertible for each 𝑖𝑖 𝑖𝑖𝑖 .

Equivalence relations, partitions, and quotients. An equivalence relation ∼ on a set 𝑆𝑆 is a
subset of 𝑆𝑆 𝑆 𝑆𝑆 that satisfies the following properties:

• (Reflexivity) For each 𝑠𝑠 𝑠 𝑠𝑠, (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠.

• (Symmetry) For each 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   , (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    implies (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠.

• (Transitivity) For each 𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟 𝑟𝑟𝑟 , (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    and (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠 implies (𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟  .

Instead of writing (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   , we use the notation 𝑟𝑟 𝑟𝑟𝑟 . The equivalence class of 𝑠𝑠 modulo ∼ is the set
𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠  𝑠𝑠 𝑠𝑠𝑠𝑠 . We may also write this as [𝑠𝑠𝑠∼ or [𝑠𝑠𝑠 if the relation used it clear from the context.
We can pick any 𝑡𝑡𝑡𝑡𝑡𝑡𝑡   as a representative of that class. The quotient space is the set𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆      𝑆𝑆𝑆.
The quotient map is the function 𝜙𝜙∼ ∶ 𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆 defined by 𝜙𝜙∼(𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠 for all 𝑠𝑠 𝑠 𝑠𝑠. Importantly, the
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2.1 Structure and randomness

equivalence classes form a partition of 𝑆𝑆. That is, 𝑆𝑆 𝑆 𝑆𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝐵𝐵 and for all 𝐵𝐵𝐵 𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵 such that 𝐵𝐵 𝐵 𝐵𝐵,
we have 𝐵𝐵 𝐵 𝐵𝐵 𝐵 𝐵. Each partition of a set arises in this way. Hence, if we want to study a function
𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 with the property that 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 whenever 𝑟𝑟𝑟𝑟𝑟  , then we need only to study it on a set of
representatives. A function with this property is called an invariant of ∼.

Operations. Let 𝑆𝑆 be a nonempty set. Define 𝑆𝑆0 ∶= {∅} and 𝑆𝑆𝑛𝑛 ∶= 𝑆𝑆𝑛𝑛𝑛𝑛 × 𝑆𝑆 for integers 𝑛𝑛 𝑛 𝑛. An
𝑛𝑛-ary operation on𝑆𝑆 is a function𝑓𝑓𝑓 𝑓𝑓𝑛𝑛 → 𝑆𝑆. The number 𝑛𝑛 is called the arity of𝑓𝑓. Afinitary operation
is an 𝑛𝑛-ary operation for some fixed 𝑛𝑛. For example, a 0-ary operation is a function from {∅} to 𝑆𝑆, which
can be identified with an element of 𝑆𝑆. In practice, we mostly work with 2-ary (or binary) operations.

Congruence relations. Let 𝑓𝑓 be an 𝑛𝑛-ary operation on a set 𝑆𝑆 for some positive integer 𝑛𝑛 𝑛 𝑛.
Moreover, let 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 ∈ 𝑆𝑆 for 𝑖𝑖 𝑖𝑖𝑖  𝑖 𝑖𝑖𝑖  𝑖 𝑖. An equivalence relation ∼ on 𝑆𝑆 is called a congruence relation
with respect to 𝑓𝑓 if 𝑓𝑓𝑓𝑓𝑓0,…,   𝑎𝑎𝑛𝑛𝑛𝑛)∼  𝑓𝑓𝑓𝑓𝑓0,…,   𝑏𝑏𝑛𝑛𝑛𝑛) whenever 𝑎𝑎𝑖𝑖 ∼ 𝑏𝑏𝑖𝑖 for 𝑖𝑖 𝑖𝑖𝑖  𝑖 𝑖𝑖𝑖  𝑖 𝑖. For example,
fix a positive integer𝑚𝑚 𝑚𝑚 . Define a relation ∼ on the integers by

𝑎𝑎 𝑎𝑎𝑎  if and only if𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑚

Then ∼ is a congruence relation with respect to the usual addition and multiplication on the integers.
Typically, this is written as 𝑎𝑎 𝑎𝑎𝑎𝑎  mod 𝑚𝑚𝑚.

Algebraic structures. An algebraic structure is an ordered pair𝐴𝐴 𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴 where 𝑆𝑆 is the under-
lying set and 𝐹𝐹𝐹𝐹𝐹𝐹  𝑜𝑜 ∶ 𝑜𝑜 𝑜 𝑜𝑜𝑜 is a family of finitary operations on 𝑆𝑆 indexed by 𝐼𝐼. The index set contains
operation symbols and for each such symbol 𝑜𝑜 𝑜 𝑜𝑜 we write 𝑜𝑜𝛢𝛢 for the operation in𝐴𝐴 indexed by 𝑜𝑜. Typ-
ically, we use the same symbol to refer to the algebraic structure and its underlying set and assume that
the operations are understood from the context. We call𝐴𝐴 finite if 𝑆𝑆 is a finite set. The signature of𝐴𝐴 is
the function 𝜎𝜎 𝜎𝜎𝜎𝜎   𝜎where 𝜎𝜎𝜎𝜎𝜎𝜎 is equal to the arity of 𝑜𝑜𝛢𝛢 for each 𝑜𝑜 𝑜 𝑜𝑜. Two algebraic structures are
called similar if they have the same signature.

Let 𝑆𝑆 and 𝑇𝑇 be similar algebraic structures. Then 𝑆𝑆 is a substructure of 𝑇𝑇 if 𝑆𝑆 𝑆 𝑆𝑆 and if 𝑜𝑜𝑆𝑆 = 𝑜𝑜𝛵𝛵|𝑆𝑆 for
each 𝑜𝑜 𝑜 𝑜𝑜.

Direct products. Let (𝐴𝐴𝑖𝑖 ∶ 𝑖𝑖 𝑖𝑖𝑖𝑖  be a family of algebraic structures with the same signature. The
direct product of (𝐴𝐴𝑖𝑖 ∶ 𝑖𝑖 𝑖𝑖𝑖𝑖  is the algebraic structure 𝐴𝐴 𝐴𝐴 ∏𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖,( 𝑓𝑓𝑜𝑜 ∶ 𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜 with the same
signature. The family of operations (𝑓𝑓𝑜𝑜 ∶ 𝑜𝑜 𝑜 𝑜𝑜𝑜 is defined as follows. Put 𝑛𝑛𝑜𝑜 ∶= 𝜎𝜎𝜎𝜎𝜎𝜎. For each 𝑖𝑖 𝑖𝑖𝑖 , for
each 𝑜𝑜 𝑜 𝑜𝑜, and for all 𝑎𝑎0,…,   𝑎𝑎𝑛𝑛𝑜𝑜−1 ∈ ∏𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖, we have

(𝑜𝑜𝛢𝛢(𝑎𝑎0,…,   𝑎𝑎𝑛𝑛𝑜𝑜−1))𝑖𝑖 = 𝑜𝑜𝛢𝛢𝑖𝑖(𝑎𝑎0,𝑖𝑖,…,   𝑎𝑎(𝑛𝑛𝑜𝑜−1),𝑖𝑖).

For each 𝑖𝑖 𝑖𝑖𝑖  there is a projection operator Proj𝑖𝑖 ∶ ∏𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖 → 𝐴𝐴𝑖𝑖 that is defined by Proj𝑖𝑖(𝑎𝑎𝑎𝑎  𝑎𝑎𝑖𝑖.
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2 Preliminaries

Homomorphisms between algebraic structures. Let 𝑆𝑆 and𝑇𝑇 be two similar algebraic struc-
tures. Put 𝑛𝑛𝑜𝑜 ∶= 𝜎𝜎𝜎𝜎𝜎𝜎. A function 𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓𝑓 is called a homomorphism if for every 𝑜𝑜 𝑜 𝑜𝑜we have

𝑓𝑓𝑓𝑓𝑓𝑆𝑆(𝑎𝑎0, … , 𝑎𝑎𝑛𝑛𝑜𝑜−1)) = 𝑜𝑜𝛵𝛵(𝑓𝑓𝑓𝑓𝑓0), … , 𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑜𝑜−1))

for all 𝑎𝑎0, … , 𝑎𝑎𝑛𝑛𝑜𝑜−1 ∈ 𝑆𝑆. It is called an isomorphism if 𝑓𝑓 is a bijection. In this case, we call 𝑆𝑆 and 𝑇𝑇
isomorphic and denote this as 𝑆𝑆 𝑆 𝑆𝑆.

Suppose that 𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓𝑓 is a homomorphism. Let 𝑅𝑅 be a congruence relation on 𝑆𝑆. Let 𝜙𝜙𝑅𝑅 be the
quotient map from 𝑆𝑆 to 𝑆𝑆𝑆𝑆𝑆. Then ker(𝑓𝑓𝑓 is a congruence relation, the map 𝜙𝜙𝑅𝑅 is a homomorphism,
and the unique function 𝑔𝑔 from 𝑆𝑆𝑆ker(𝑓𝑓𝑓 to 𝑇𝑇 satisfying 𝑔𝑔 𝑔 𝑔𝑔ker(𝑓𝑓𝑓 = 𝑓𝑓 is an isomorphism.

Semigroups. A semigroup is an algebraic structure (𝑆𝑆𝑆 𝑆𝑆 such that (𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 for all 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎

Monoids. A monoid is an algebraic structure (𝑀𝑀𝑀𝑀𝑀  𝑀𝑀𝑀 such that (𝑀𝑀𝑀𝑀𝑀  is a semigroup and 𝑎𝑎 𝑎𝑎𝑎𝑎 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     for all 𝑎𝑎 𝑎𝑎𝑎

Groups. A group is an algebraic structure (𝐺𝐺𝐺𝐺𝐺  −1, 𝑒𝑒𝑒 such that (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   is a monoid and 𝑔𝑔 𝑔 𝑔𝑔−1 =
𝑔𝑔−1 ⋅ 𝑔𝑔 𝑔𝑔𝑔  for all 𝑔𝑔 𝑔𝑔𝑔 . A group is called abelian if 𝑔𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔𝑔 for all 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔 . The exponent of a
group is the smallest positive integer 𝑛𝑛 𝑛 𝑛 such that 𝑔𝑔𝑛𝑛 = 𝑒𝑒 for all 𝑔𝑔 𝑔𝑔𝑔 , where 𝑔𝑔𝑛𝑛 = 𝑔𝑔 𝑔 𝑔 𝑔 𝑔𝑔 (𝑛𝑛 times).
If such an 𝑛𝑛 does not exist, the exponent is defined as 0. For each 𝑔𝑔 𝑔𝑔𝑔 , the coset of a subgroup𝐻𝐻 by 𝑔𝑔
is the set 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔   𝑔𝑔𝑔 𝑔 𝑔 𝑔 𝑔 𝑔𝑔𝑔 𝑔. The subgroup𝐻𝐻 defines an equivalence relation on𝐺𝐺. Indeed, define
𝑔𝑔 𝑔 𝑔 if 𝑔𝑔−1 ⋅ℎ∈   𝐻𝐻. The equivalence classes of this relation are the cosets of𝐻𝐻. The order of a group is
its cardinality as a set. If 𝐺𝐺 has finite order, then 𝑔𝑔|𝐺𝐺𝐺 = 𝑒𝑒 for all 𝑔𝑔 𝑔𝑔𝑔  by Lagrange’s theorem. We will
make implicit use of this identity when we perform arithmetic on exponents.

Rings. A ring is an algebraic structure (𝑅𝑅𝑅 𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅   such that (𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅  is an abelian group, (𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
is a monoid, and for all 𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟𝑟 we have

𝑟𝑟 𝑟𝑟 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟  𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 and

(𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟  𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟

The ring 𝑅𝑅 is called commutative if 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 for all 𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟𝑟 . The characteristic of 𝑅𝑅 is the exponent of
the additive group of 𝑅𝑅.

An ideal of 𝑅𝑅 is a subset 𝐼𝐼 𝐼 𝐼𝐼 that is a subgroup of (𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅  and satisfies 𝑟𝑟 𝑟 𝑟𝑟 𝑟𝑟𝑟  and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     for
each 𝑟𝑟 𝑟𝑟𝑟  and 𝑠𝑠𝑠𝑠𝑠  . The set √𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼      𝑛𝑛 ∈𝐼𝐼  for some 𝑛𝑛 𝑛 𝑛𝑛 is called the radical of 𝐼𝐼. If 𝐼𝐼𝐼  √𝐼𝐼,
then we say that 𝐼𝐼 is radical. The ideal generated by a subset 𝑆𝑆 𝑆𝑆𝑆  is the smallest ideal that contains 𝑆𝑆.
We denote it as ⟨𝑆𝑆𝑆.

There is a correspondence between ideals of 𝑅𝑅 and congruence relations on 𝑅𝑅. On the one hand, if 𝐼𝐼
is an ideal, then we can define a congruence relation ∼ on𝑅𝑅with 𝐼𝐼𝐼𝐼𝐼𝐼   by 𝑟𝑟 𝑟 𝑟𝑟 if and only if 𝑟𝑟 𝑟 𝑟𝑟 𝑟𝑟𝑟
for all 𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟𝑟 . On the other hand, if ∼ is a congruence relation on 𝑅𝑅, then 0/∼ is an ideal of 𝑅𝑅.
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2.1 Structure and randomness

The standard example of a ring is the setℤ of integers with the usual addition, subtraction, andmulti-
plication. Inmany cases, we consider subsets ofℤ that do not form a ring (or even a group). For example,
we write ℤ≥0 for the set of nonnegative integers and ℤ>0 for the set of positive integers.

Modulesoveraring. Suppose that𝑅𝑅 is a ring. An𝑅𝑅-module is an algebraic structure (𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀 𝑀𝑀 𝑀𝑀𝑀𝑟𝑟)𝑟𝑟𝑟𝑟𝑟)
such that (𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀 𝑀𝑀 is an abelian group and for all 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎 and 𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟𝑟 we have

𝑓𝑓𝑟𝑟𝑟𝑟(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑟𝑟(𝑓𝑓𝑠𝑠(𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑟𝑟(𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎𝑟𝑟(𝑎𝑎𝑎𝑎𝑎𝑎  𝑟𝑟(𝑏𝑏𝑏𝑏

𝑓𝑓𝑟𝑟𝑟𝑟𝑟(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑟𝑟(𝑎𝑎𝑎𝑎𝑎𝑎  𝑠𝑠(𝑎𝑎𝑎𝑎

𝑓𝑓1(𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎

The span of a subset 𝑆𝑆 𝑆 𝑆𝑆, denoted as Span(𝑆𝑆𝑆, is the subset of all finite 𝑅𝑅-linear combinations of
elements of 𝑆𝑆. We call 𝑆𝑆 linearly independent if for all 𝑛𝑛 𝑛 𝑛, 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛 ∈ 𝑅𝑅, and distinct𝑚𝑚1, … ,𝑚𝑚𝑛𝑛 ∈ 𝑆𝑆,
we have

𝑟𝑟1𝑚𝑚1 + ⋯ + 𝑟𝑟𝑛𝑛𝑚𝑚𝑛𝑛 =0  if and only if 𝑟𝑟1 = ⋯ = 𝑟𝑟𝑛𝑛 =0. 

If𝑀𝑀 contains a finite subset 𝑆𝑆 with Span(𝑆𝑆𝑆𝑆𝑆𝑆  , then𝑀𝑀 is called finitely generated. We call 𝑆𝑆 a basis
if Span(𝑆𝑆𝑆𝑆𝑆𝑆   and 𝑆𝑆 is linearly independent. If𝑀𝑀 has a basis, then it is called a free 𝑅𝑅-module.

A finitely generated free𝑅𝑅-module𝑀𝑀 is isomorphic to𝑅𝑅𝑛𝑛 for some integer 𝑛𝑛 𝑛 𝑛. The standard basis
of 𝑅𝑅𝑛𝑛 is the set {𝑒𝑒𝑛𝑛𝑖𝑖 ∶ 1 ≤ 𝑖𝑖 𝑖𝑖𝑖 𝑖with

𝑒𝑒𝑛𝑛𝑖𝑖𝑖𝑖𝑖 ∶= {
1 if 𝑖𝑖 𝑖 𝑖𝑖 𝑖

0 if 𝑖𝑖 𝑖 𝑖𝑖 𝑖

Let𝑀𝑀 be a finitely generated free 𝑅𝑅-module with basis 𝐵𝐵 𝐵𝐵𝐵𝐵 1, … ,𝑏𝑏 𝑛𝑛}. Moreover, let𝑁𝑁 be a finitely
generated𝑅𝑅-module with generating set 𝑆𝑆 𝑆𝑆𝑆𝑆 1, … ,𝑠𝑠 𝑚𝑚}. Suppose that 𝜙𝜙𝜙𝜙𝜙  𝜙 𝜙𝜙 is a homomorphism
(also called an𝑅𝑅-linearmap), then it can be represented by an𝑚𝑚𝑚𝑚𝑚matrix𝐴𝐴with coefficients in the ring
𝑅𝑅. The entries of 𝐴𝐴 are determined by applying 𝜙𝜙 to the elements of 𝐵𝐵 and writing the images in terms
of the elements of 𝑆𝑆. In particular, the matrix depends on the choice of both 𝐵𝐵 and 𝑆𝑆. The transpose of
𝐴𝐴, denoted as𝐴𝐴⊤, is defined by𝐴𝐴⊤

𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑗𝑗𝑗𝑗𝑗. Typically, we identify the function 𝜙𝜙 and the matrix𝐴𝐴.

Fields, vector spaces, andaffine subspaces. Afield is a commutative ring𝐹𝐹with the property
that for every 𝑎𝑎 𝑎 𝑎𝑎with 𝑎𝑎 𝑎𝑎  there exists a 𝑏𝑏𝑏𝑏𝑏   such that 𝑎𝑎𝑎𝑎 𝑎 𝑎. A vector space is a free𝐹𝐹-module that
we denote as𝑉𝑉. Its elements are called vectors. The cardinality of any basis of𝑉𝑉 is called its dimension; it
can be finite or infinite. Substructures of𝑉𝑉 are called (linear) subspaces. An affine subspace of𝑉𝑉 is a coset
𝐴𝐴 of a subspace𝑈𝑈 of𝑉𝑉. In other words,𝐴𝐴 𝐴 𝐴𝐴 𝐴𝐴𝐴  for some 𝑣𝑣𝑣𝑣𝑣  .
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2 Preliminaries

Table 2.1: Truth table of 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓0, 𝑥𝑥0𝑥𝑥1).

𝑥𝑥 00 01 10 11

𝑓𝑓𝑓𝑓𝑓𝑓 00 00 10 11

Polynomial rings. Amonomial in the variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 is a product

𝑥𝑥𝑢𝑢 ∶=(𝑥𝑥 1, … , 𝑥𝑥𝑛𝑛)(𝑢𝑢1,…,𝑢𝑢𝑛𝑛) ∶=
𝑛𝑛

∏
𝑖𝑖𝑖𝑖

𝑥𝑥𝑢𝑢𝑖𝑖𝑖𝑖

where the 𝑢𝑢𝑖𝑖 ≥ 0 are nonnegative integers. The degree of 𝑥𝑥𝑢𝑢 is equal to∑𝑛𝑛
𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖. If𝑅𝑅 is a ring, we can form

finite𝑅𝑅-linear combinations ofmonomials. The resulting objects are called polynomials. In other words,
a polynomial in the variables𝑥𝑥1, … , 𝑥𝑥𝑛𝑛with coefficients in𝑅𝑅 is an expression of the form∑𝑢𝑢𝑢𝑢𝑛𝑛≥0

𝑎𝑎𝑢𝑢𝑥𝑥𝑢𝑢with
𝑎𝑎𝑢𝑢 ∈ 𝑅𝑅 and only finitely many of the 𝑎𝑎𝑢𝑢 are non-zero. This ring is denoted as𝑅𝑅𝑅𝑅𝑅1, … , 𝑥𝑥𝑛𝑛]. The degree of
a polynomial is the largest of the degrees of its monomials. It is defined as −∞ if the polynomial is zero.
A polynomial is called homogeneous if its monomials all have the same degree.

Finite fields. The order of any finite field is of the form 𝑞𝑞 𝑞 𝑞𝑞𝑛𝑛 for some prime number 𝑝𝑝 and
positive integer 𝑛𝑛 𝑛 𝑛. Because all finite fields of order 𝑞𝑞 are isomorphic, we denote any one of them by
𝔽𝔽𝑞𝑞. In the case that 𝑛𝑛 equals 1, the ring ℤ/⟨𝑝𝑝𝑝 is a finite field of order 𝑝𝑝.
A nonconstant polynomial𝑓𝑓 𝑓𝑓𝑓 𝑝𝑝[𝑥𝑥𝑥 is called irreducible over 𝔽𝔽𝑝𝑝 if it is impossible to find nonconstant

polynomials 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑝𝑝[𝑥𝑥𝑥 such that 𝑓𝑓 𝑓 𝑓𝑓𝑓. Given an irreducible polynomial 𝑓𝑓 𝑓𝑓𝑓 𝑝𝑝[𝑥𝑥𝑥 of degree 𝑛𝑛 𝑛 𝑛,
the ring 𝔽𝔽𝑝𝑝[𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is a finite field of order 𝑝𝑝𝑛𝑛.
For both constructions of finite fields, we identify the set of equivalence classes with a set of represen-

tatives. For example, we take {0, … , 𝑝𝑝𝑝𝑝  𝑝 as the underlying set of 𝔽𝔽𝑝𝑝.

Boolean functions. Functions 𝔽𝔽𝑛𝑛2 → 𝔽𝔽2 are called Boolean functions. More generally, functions
𝔽𝔽𝑛𝑛2 → 𝔽𝔽𝑚𝑚2 are called vectorial Boolean functions. They are completely specified by a truth table, which is a
tabular array, where each column corresponds to an input and the corresponding output of the function.
For example, the function 𝑥𝑥 𝑥 𝑥𝑥𝑥0, 𝑥𝑥0𝑥𝑥1) is specified by the truth table in Table 2.1.

Strings. Let 𝑆𝑆 be a nonempty finite set. In this context, its elements are called symbols. Suppose a
designated zero symbol exists. A string over 𝑆𝑆 is a finite sequence of symbols from 𝑆𝑆. The Hamming
weight of a string is equal to the number of its symbols that differ from the zero symbol. The set of
strings over 𝑆𝑆 of length 𝑛𝑛 𝑛𝑛  is denoted as 𝑆𝑆𝑛𝑛. The (unique) string of length 0 has no symbols. We
denote it as 𝜖𝜖. The set of all strings over 𝑆𝑆 of length at most 𝐿𝐿 is equal to 𝑆𝑆≤𝐿𝐿 ∶= ∪𝐿𝐿𝑛𝑛𝑛𝑛𝑆𝑆𝑛𝑛. The set of all
strings over 𝑆𝑆 is denoted as 𝑆𝑆∗ ∶= ∪∞𝑛𝑛𝑛𝑛𝑆𝑆𝑛𝑛. Moreover, the set 𝑆𝑆∗ ∖ {𝜖𝜖𝜖 is denoted as 𝑆𝑆+. If 𝑠𝑠 and 𝑡𝑡 are two
strings, then their concatenation is denoted as 𝑠𝑠 𝑠 𝑠𝑠. A string 𝑠𝑠 is a substring of a string 𝑡𝑡 if there exist
strings 𝑢𝑢 and 𝑣𝑣 (possibly of length 0) such that 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     . In applications, a string 𝑠𝑠 𝑠𝑠𝑠 ≤𝐿𝐿 is often
divided into substrings of a fixed length, called blocks. We may need to pad 𝑠𝑠 to align it with the block
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2.1 Structure and randomness

size by concatenating it with a padding string 𝑝𝑝𝑝𝑝𝑝𝑝, which is typically dependent on the length of 𝑠𝑠. For
example, the padding might involve appending a nonzero symbol followed by as many zero symbols as
needed to reach the next multiple of the block size. In this thesis, we often assume that 𝑆𝑆 is a finite field
𝔽𝔽𝑞𝑞 with 𝑞𝑞 elements. Hence, we will typically view a string 𝑠𝑠 𝑠 𝑠𝑠𝑛𝑛 as a vector in 𝔽𝔽𝑛𝑛𝑞𝑞 .

Finite probability spaces. We model a random process with finitely many outcomes as a finite
probability space. A finite probability space is an ordered pair (Ω, 𝜇𝜇𝜇 consisting of a nonempty finite set
Ω and a probability measure 𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇 𝜇𝜇. That is, 𝜇𝜇 satisfies

• 𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇, and

• 𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇𝜇 for any two disjoint subsets𝐴𝐴 and 𝐵𝐵 ofΩ.

The setΩ is called the sample space and its elements are the possible outcomes of the random process.
Subsets ofΩ are called events. An event occurs if the outcome of the random process is included in the
event. The probability that the event𝐴𝐴 occurs is 𝜇𝜇𝜇𝜇𝜇𝜇.

Let𝐵𝐵 be an event with 𝜇𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇 and define 𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇. This is called the conditional
probability that the event 𝐴𝐴 occurs given that 𝐵𝐵 occurs. With this definition, (Ω,𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   is a
finite probability space.

Two events are said to be independent if 𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇.

Random elements. Let 𝑆𝑆 be a nonempty finite set. A function 𝑋𝑋𝑋𝑋𝑋𝑋𝑋    is called a random
element of 𝑆𝑆. If 𝑆𝑆 contains “objects”, we may abbreviate “random element of 𝑆𝑆” as “random object.”
For example, a random string is a random element of the set of strings. As the name suggests, we think
of𝑋𝑋 as an element of 𝑆𝑆 and use it in expressions as such. We abstract away the process that is responsible
for producing the random element.

For any predicate 𝜙𝜙𝜙𝜙𝜙𝜙   𝜙𝜙𝜙 𝜙𝜙, we write 𝜙𝜙𝜙𝜙𝜙𝜙 for the event {𝜔𝜔 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔   𝜔𝜔𝜔𝜔𝜔. We define the
distribution of𝑋𝑋 as the (induced) probability measure 𝜇𝜇𝛸𝛸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵     for all 𝐵𝐵 𝐵 𝐵𝐵. This makes 𝑆𝑆
into a finite probability space. The random element𝑋𝑋 is called uniform if 𝜇𝜇𝛸𝛸(𝐵𝐵𝐵𝐵  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. We denote
a uniform random element of 𝑆𝑆 as𝑋𝑋

$
← 𝑆𝑆.

Graphs. A graph is an ordered pair 𝐺𝐺 𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺𝐺 of disjoint sets that satisfy 𝑉𝑉𝑉𝑉𝑉𝑉    𝑉 and 𝐸𝐸𝐸
{{𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢 𝑢𝑢𝑢𝑢 . The elements of 𝑉𝑉 are its vertices and the elements of 𝐸𝐸 are its edges. For
an edge {𝑢𝑢𝑢 𝑢𝑢𝑢, we call the nodes 𝑢𝑢 and 𝑣𝑣 its ends. To depict a graph, we draw its vertices as dots and
connect two dots with a line if they form an edge. A path 𝑃𝑃 is a graph of the form𝑉𝑉𝑉𝑉𝑉𝑉  0, … , 𝑣𝑣𝑛𝑛𝑛𝑛} and
𝐸𝐸𝐸𝐸𝐸𝐸𝐸  0, 𝑣𝑣1}, … , {𝑣𝑣𝑛𝑛𝑛𝑛, 𝑣𝑣𝑛𝑛𝑛𝑛}}. We say that 𝑃𝑃 is a path from 𝑣𝑣0 to 𝑣𝑣𝑛𝑛𝑛𝑛. A graph 𝐺𝐺′ =(𝑉𝑉 ′, 𝐸𝐸′) is called a
subgraph of 𝐺𝐺 𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺𝐺 if 𝑉𝑉′ ⊆𝑉𝑉  and 𝐸𝐸′ ⊆𝐸𝐸 . A graph is called connected if it contains (as a subgraph)
a path from 𝑢𝑢 to 𝑣𝑣 for every 𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢 . Let 𝑛𝑛 𝑛 𝑛 be an integer. A graph is called 𝑛𝑛-partite if 𝑉𝑉 can be
partitioned into 𝑛𝑛 subsets 𝑉𝑉0, … , 𝑉𝑉𝑛𝑛𝑛𝑛 called levels such that every edge has its ends in different levels. In
the case that 𝑛𝑛 equals 2, then we call the graph bipartite. If we only allow edges between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑖𝑖𝑖𝑖 for
each 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑖 𝑖, then we call the 𝑛𝑛-partite graph ordered, although this is not standard terminology.
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2 Preliminaries

2.2 Provable security

In this section, we present two cryptosystems that are provably secure for some notion of security. Impor-
tantly, their security analysis makes no assumptions about the computation time budget of an adversary.

2.2.1 Secret-key encryption

Fix a finite abelian group𝐺𝐺. Suppose that the sender and receiver want to communicate amessage𝑚𝑚 𝑚 𝑚𝑚
over an insecure communication channel. How do we guarantee the confidentiality of the message? To
that end, the sender and receiver agree on a uniform random secret 𝑘𝑘

$
← 𝐺𝐺 for use as a so-called one-time

pad [42]. The sender encrypts the message𝑚𝑚 as 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 and transmits the ciphertext 𝑐𝑐. The receiver
recovers𝑚𝑚 by computing𝑚𝑚 𝑚𝑚𝑚  𝑚 𝑚𝑚.

How do we formalize that the one-time pad cryptosystem achieves confidentiality of the message?
Here is one attempt.

We view any function 𝑓𝑓 as an oracle that prints 𝑓𝑓𝑓𝑓𝑓𝑓when queried with an input 𝑥𝑥. We allow queries
to be adaptive, i.e., the 𝑖𝑖th query may depend on the (𝑖𝑖 𝑖 𝑖𝑖th query, for some positive integer 𝑖𝑖 𝑖 𝑖. In
practice, the number of times that 𝑓𝑓may be queried is upper bounded by some positive integer 𝑛𝑛 𝑛𝑛 .
If this is the case, we refer to the oracle as an 𝑛𝑛-time oracle. An oracle algorithm is an algorithm that uses
one or more oracles during its execution and returns either 0 or 1. Throughout this thesis, we model
adversaries as oracle algorithms, which may be probabilistic.

Let 𝒪𝒪 and𝒫𝒫 be two 𝑙𝑙-tuples of oracles for some integer 𝑙𝑙 𝑙𝑙  with the property that for each 𝑖𝑖 𝑖
0, … , 𝑙𝑙 𝑙𝑙 , the oracles𝒪𝒪𝑖𝑖 and𝒫𝒫𝑖𝑖 have the same domain and codomain. Once we introduce the notion of
pseudorandomness, it will become apparent why we sometimes give𝒜𝒜 access to multiple oracles. Based
on the outcome of a random experiment in which a fair coin is flipped, an adversary 𝒜𝒜 is given oracle
access to either 𝒪𝒪 or 𝒫𝒫. The goal of 𝒜𝒜 is to determine what the outcome was. Loosely speaking, its
output value, say 𝑑𝑑, encodes a binary statement of the form “I believe the outcome of the experiment to
be 𝑑𝑑.” The quality of𝒜𝒜 ismeasured by the𝒜𝒜-distance between 𝒪𝒪 and𝒫𝒫, which is defined as

Δ𝒜𝒜(𝒪𝒪𝒪𝒪𝒪𝒪𝒪𝒪  𝒪Pr[𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜  𝒜 𝒜 Pr[𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜  𝒜𝒜 𝒜

Assume that the adversary is capable of choosing the message that is encrypted. Hence, fix any message.
From the point of view of the adversary, the corresponding ciphertext is a random element, because it is a
function of the uniform random secret and themessage. By eavesdropping on the channel, the adversary
is sampling from the distribution of this ciphertext. If different messages induce identical ciphertext
distributions, then the ciphertext gives no information on the message.

Given a one-time pad 𝑘𝑘
$
← 𝐺𝐺, let𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚 for all𝑚𝑚 𝑚 𝑚𝑚 be the corresponding encryption function.

Moreover, given a uniform random element 𝑟𝑟
$
← 𝐺𝐺, let 𝑚𝑚 𝑚 𝑚𝑚 for all 𝑚𝑚 𝑚 𝑚𝑚 be a uniform random

constant function. Importantly, we view both functions as one-time oracles. The advantage of 𝒜𝒜 in
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2.2 Provable security

distinguishing between a ciphertext of the one-time pad cryptosystem and a uniform random element
of𝐺𝐺 is defined as

Advrandom ciphertexts
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝒜𝒜𝒜 𝒜𝒜 𝒜𝒜𝒜(𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚

where the probabilities are computed with respect to 𝑘𝑘𝑘𝑘𝑘
$
← 𝐺𝐺. We claim that the advantage of any

adversary is 0. Indeed, for all𝑚𝑚𝑚 𝑚𝑚 𝑚 𝑚𝑚, we have

Pr[𝑐𝑐 𝑐𝑐𝑐 𝑐 𝑐 Pr[𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚

= Pr[𝑘𝑘𝑘𝑘𝑘   𝑘 𝑘𝑘𝑘

= 1/|𝐺𝐺𝐺 𝐺

In words, the distribution of the ciphertext is uniform for any givenmessage. It does notmatter whether
the adversary has oracle access to 𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚 or 𝑚𝑚 𝑚 𝑚𝑚; in both cases it receives a uniform random
element. As a consequence, the advantage is 0.

To conclude, we illustrate the importance of never reusing the one-time pad for multiple messages.
Suppose that the adversary knows two messages𝑚𝑚0,𝑚𝑚1 ∈ 𝐺𝐺 that are encrypted with the same one-time
pad 𝑘𝑘. It follows that

𝑐𝑐1 − 𝑐𝑐0 = (𝑚𝑚1 +𝑘𝑘𝑘  𝑘 𝑘𝑘𝑘0 +𝑘𝑘𝑘𝑘𝑘𝑘   1 − 𝑚𝑚0 .

Hence, knowing either𝑚𝑚0 or𝑚𝑚1 immediately reveals the value of the other.

2.2.2 Secret-key message authentication

In addition to eavesdropping, we allow the adversary to actively corrupt the message in the communi-
cation channel. To address this problem, sender and receiver compute a one-time authenticator in the
following way. We assume that the message is a polynomial𝑚𝑚 𝑚 𝑚𝑚𝑞𝑞[𝑥𝑥𝑥 with𝑚𝑚𝑚𝑚𝑚𝑚𝑚   and deg(𝑚𝑚𝑚 𝑚 𝑚𝑚
for some positive integer 𝑑𝑑 𝑑 𝑑. The sender and receiver agree on a pair of uniform random secrets
(𝑟𝑟𝑟𝑟𝑟𝑟

$
← 𝔽𝔽𝑞𝑞 × 𝔽𝔽𝑞𝑞. The sender computes the authenticator 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    and sends (𝑚𝑚𝑚 𝑚𝑚𝑚 to the receiver.

The security of the authenticator is closely related to the probability of the adversary winning the
following game.

MAC security

• The adversary chooses a message𝑚𝑚 𝑚 𝑚𝑚𝑞𝑞[𝑥𝑥𝑥 and gives it to the challenger.

• The challenger computes secrets (𝑟𝑟𝑟𝑟𝑟𝑟
$
← 𝔽𝔽𝑞𝑞 × 𝔽𝔽𝑞𝑞, the authenticator 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , and gives 𝑎𝑎 to

the adversary.

• The adversary computes (𝑚𝑚′, 𝑎𝑎′) for a new message𝑚𝑚′ ≠ 𝑚𝑚.

13
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The adversary wins the game if (𝑚𝑚′, 𝑎𝑎′) is a valid message-authenticator pair, i.e., if 𝑎𝑎′ = 𝑚𝑚′(𝑟𝑟𝑟 𝑟 𝑟𝑟.
From the point of viewof the adversary, given the pair (𝑚𝑚𝑚𝑚𝑚𝑚 , each of the possible values for 𝑟𝑟 is equally

likely. This is due to the addition of the one-time pad 𝑠𝑠. A forgery attempt (𝑚𝑚′, 𝑎𝑎′)with𝑚𝑚′ ≠ 𝑚𝑚 succeeds
if𝑚𝑚′(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Equivalently, it succeeds if𝑚𝑚′(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′ = 0. This is a polynomial in
the variable 𝑟𝑟of degree atmost𝑑𝑑. Hence, it has atmost𝑑𝑑 roots. It follows that the probability of correctly
guessing 𝑟𝑟 is at most 𝑑𝑑𝑑𝑑𝑑. Sender and receiver can make this probability arbitrarily small by choosing a
suitable 𝑞𝑞.

2.2.3 Multiple messages

Suppose that sender and receiver want to protect the integrity of an 𝑛𝑛-tuple of messages. To that end,
they share a secret 𝑟𝑟 𝑟 𝑟𝑟𝑞𝑞 and a secret sequence (𝑠𝑠0, … , 𝑠𝑠𝑛𝑛𝑛𝑛) ∈𝔽𝔽 𝑛𝑛𝑞𝑞 . The message number is used to index
into the sequence, e.g., the 𝑖𝑖th message selects the secret 𝑠𝑠𝑖𝑖. The sender computes an authenticator 𝑎𝑎𝑖𝑖 for
the 𝑖𝑖thmessage as 𝑎𝑎𝑖𝑖 ∶= 𝑚𝑚𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖. Because it is important that each 𝑠𝑠𝑖𝑖 is used only once (as it is a one-time
pad), the index is called a nonce.

2.3 Security assurance through cryptanalysis

We have seen that the confidentiality of a message can be protected by the application of the one-time
pad cryptosystem. We have also seen that forgeries of a message can be detected with high probability
by computing an authenticator and transmitting it along. Is this the whole story? The problem with
these cryptosystems is scalability; the number of secrets that the sender and receiver need to agree on is
proportional to the number ofmessages. By assuming that the amount of resources that is available to an
adversary is bounded, we are able to design cryptosystems that rely on amuch smaller number of random
symbols for their security. Let us call such an adversary a bounded adversary.

How do we design a cryptosystem that relies on a short secret key? The usual approach is to define a
mode of operation, which is an algorithm that calls some underlying primitive. Itmay have other respon-
sibilities. For example, it may pad the input string, partition the padded string into blocks, or include
diversifier symbols. We define a primitive to be a function family that is indexed by a large set of keys
that have a short description, e.g., a single key may be described as 256 bits, but the cardinality of the set
of keys is 2256. Examples of primitives are block ciphers and deck functions. A nonexample of a primitive
is a cryptographic permutation. Indeed, for our purposes, primitives allow for clearly specified security
definitions. Primitives may follow a dedicated design. Alternatively, they may be constructed on top of
some building block like a cryptographic permutation or an existing primitive.

How do we reason about the security of such a cryptosystem? In the so-called standard model, the
security of the mode is reduced to the pseudorandomness of the underlying primitive. Loosely speaking,
a primitive is PRF secure if it is statistically “close” to a uniform random function, as measured by a
particular distance function. Substituting “permutation” for “function” leads to the notion of a PRP-
secure primitive. Then there are SPRP-secure primitives, which allow for querying the inverses. If the
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primitive relies on some building block, then this building block is often modeled as a uniform random
element to be able to prove a bound on the aforementioned distance. For example, if the building block
is a cryptographic permutation, then this leads to the random permutation model, which is an example
of an ideal model.

What is the point of a proof in some ideal model? The answer is that it makes it possible to reason
about security against generic attacks. These are attacks that do not exploit the structure of the building
block. For a concrete cryptosystem, the designersmake a security claim and rely on cryptanalysis to falsify
this claim. An example of a claim may be “there is no attack that is better than exhaustive key search”
or “we believe the distance function to be bounded as follows.” Hence, any such cryptosystem is only
conjectured to be secure against a bounded adversary. This is true for all practically usable cryptosystems.

2.3.1 Random oracles

Suppose that an abelian group𝐺𝐺 is the 𝑛𝑛-fold direct product of an abelian group𝐻𝐻with itself, i.e., sup-
pose that𝐺𝐺 𝐺 𝐺𝐺𝑛𝑛 for some positive integer 𝑛𝑛 𝑛 𝑛. In this case, we can view the one-time pad cryptosys-
tem of Section 2.3 as a mode of operation for a uniform random function. The one-time pad is of the
form 𝑘𝑘 𝑘 𝑘𝑘𝑘0, … , 𝑘𝑘𝑛𝑛𝑛𝑛), which we can think of as a uniform random element of Maps[{0, … , 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛
by mapping the index 𝑖𝑖 to the corresponding secret 𝑘𝑘𝑖𝑖. It is an example of a fixed-length random ora-
cle [6]. Because the indices can be obtained by incrementing a counter, this mode is a simple variant of
the so-called counter mode of operation [24].

2.3.2 Pseudorandomness

Fix finite sets 𝐾𝐾, 𝑋𝑋, and 𝑌𝑌. Note that this finiteness assumption is not a restriction in practice, as we
can always choose sets of sufficiently large cardinality. We generalize the previous discussion to elements
of Maps[𝑋𝑋𝑋𝑋𝑋𝑋 . Suppose that we replace the uniform random element of Maps[𝑋𝑋𝑋𝑋𝑋𝑋 , i.e., the random
oracle, in counter mode with a nonuniform random element ofMaps[𝑋𝑋𝑋𝑋𝑋𝑋 . Loosely speaking, if no ad-
versary is able to detect this nonuniformity with high probability, then the replacement does not change
the security properties of themodemuch. If this is the case, thenwe say that the nonuniform randomele-
ment is pseudorandom against any adversary. Let us formalize this, using the concrete security approach [5].

PRF security. Suppose that 𝐹𝐹𝐹 𝐹𝐹 𝐹𝐹𝐹 𝐹 𝐹𝐹 is a family of elements ofMaps[𝑋𝑋𝑋𝑋𝑋𝑋  that is indexed by
a finite set𝐾𝐾 of keys. Moreover, we assume that it is based on some building block, e.g., a cryptographic
permutation. We view 𝐹𝐹𝑘𝑘 as a (nonuniform) random element of Maps[𝑋𝑋𝑋𝑋𝑋𝑋  by selecting a uniform ran-
dom element 𝑘𝑘

$
← 𝐾𝐾. The pseudorandomness of𝐹𝐹 against an adversary𝒜𝒜 is measured by the advantage

of𝒜𝒜 in distinguishing between 𝐹𝐹𝑘𝑘 and a uniform random function, i.e.,

Advprf𝐹𝐹 (𝒜𝒜𝒜𝒜𝒜  𝒜𝒜𝒜(𝐹𝐹𝑘𝑘, 𝑓𝑓𝑓𝑓
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where the probabilities are computedwith respect to 𝑘𝑘
$
← 𝐾𝐾,𝑓𝑓

$
← Maps[𝑋𝑋𝑋 𝑋𝑋𝑋, and the randomchoices

that the adversary𝒜𝒜makes (if any).

Recall that we are only considering bounded adversaries. We specify two important resourcemeasures
that are associated with an adversary.

First, there is its online or data complexity, which is equal to the amount of data that is exchanged
between the adversary and the oracle, either 𝐹𝐹𝑘𝑘 or 𝑓𝑓. For example, if𝑋𝑋 𝑋 𝑋𝑋 𝑋 𝑋𝑋𝑋 𝑋𝑋≤2128, then the data
complexity can be measured as the number of input bits to and output bits of the oracle. The quantity
|𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋 is a natural upper bound on the online complexity, as the unknown function is completely
specified by the set of all input-output pairs. In practice, an upper bound on the online complexity is
determined by the use case. For example, a system that implements the oracle may update the secret after
every 𝑛𝑛 calls to the oracle, for some positive integer 𝑛𝑛 𝑛 𝑛 that is relatively small.

Second, there is its offline or computational complexity, which is determined by all the computations
that the adversary can perform that do not require knowledge of the secret (this definition does not
exclude guessing the secret). It is often measured in a number of computationally equivalent calls to the
building block that it used to implement 𝐹𝐹. The cardinality of𝐾𝐾 is a natural upper bound on the offline
complexity, as trying out all the possible values for the secret is sufficient to break the scheme, assuming
that the online complexity is sufficiently large. Wewillmake thismore precise shortly. In practice, amore
useful upper bound that wemay assume is determined by the financial resources that an adversary is able
and willing to invest.

Consider the set 𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 of all adversaries that have online complexity at most𝑀𝑀 and have offline
complexity at most𝑁𝑁. The PRF advantage function of 𝐹𝐹 is defined as

Advprf𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 sup{𝒜𝒜 𝒜 𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜  Advprf𝐹𝐹 (𝒜𝒜𝒜𝒜 𝒜

Loosely speaking, we call 𝐹𝐹 a “PRF-secure function” if Advprf𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀 is “small” for “practical” values
of𝑀𝑀 and𝑁𝑁. Clearly, the meaning of these words depends on the use case. PRF-secure functions are
indistinguishable from uniform random functions by suitably bounded adversaries.

Exhaustive key search. Clearly, lower bounds of the PRF advantage function are determined by
concrete adversaries (i.e., attacks). Here is an example of a generic attack on 𝐹𝐹 that highlights the impor-
tance of an upper bound on the offline complexity. The attack𝒜𝒜 is called exhaustive key search. Suppose
that𝒜𝒜 is given an 𝑛𝑛-time oracle. It queries that oracle for inputs 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑛𝑛, obtains the corresponding
outputs 𝑦𝑦0, … , 𝑦𝑦𝑛𝑛𝑛𝑛, and determines, offline, the subset of keys 𝑘𝑘 𝑘𝑘𝑘  for which 𝑦𝑦𝑖𝑖 = 𝐹𝐹𝑘𝑘(𝑥𝑥𝑖𝑖) holds, for
𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑖 𝑖. If this subset of keys is nonempty, then it outputs 0, i.e., it believes that the oracle is an
oracle for 𝐹𝐹, as opposed to a uniform random function. For this particular𝒜𝒜, we find that

Advprf𝐹𝐹 (𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜    𝒜𝒜𝒜𝒜𝒜𝑛𝑛 .
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To reiterate, without an upper bound on the offline complexity, the adversary can trivially distinguish
between 𝐹𝐹 and a fixed-length random oracle.

Random permutation model. On the other hand, upper bounds of the PRF advantage func-
tion can typically be derived only when the underlying primitives are replaced by their uniform random
counterparts. Here is an example. Suppose that 𝐹𝐹 is built around an 𝑛𝑛-tuple 𝑃𝑃 𝑃 𝑃𝑃𝑃1, … , 𝑃𝑃𝑛𝑛) of per-
mutations on some finite set 𝑍𝑍 for some positive integer 𝑛𝑛 𝑛 𝑛. Denote the 𝑛𝑛-tuple of their inverses by
𝑃𝑃−1 =( 𝑃𝑃−1

1 , … , 𝑃𝑃−1
𝑛𝑛 ). To define the pseudorandomness of 𝐹𝐹, the oracles in the definition are changed

from 𝐹𝐹𝑘𝑘 and 𝑓𝑓 to (𝐹𝐹𝑘𝑘, 𝑃𝑃𝑃 𝑃𝑃−1) and (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  −1), respectively. This model is called the random permutation
model.

Security claims. If the analysis is performed with respect to the actual building blocks (as opposed
to the uniform random counterpart), upper bounds of the PRF advantage function are conjectural and
based on cryptanalysis. Such upper bounds typically appear in a so-called security claim. Security claims
may also refer to the infeasibility of specific adversaries. For example, a claim may state that there exists
no attack that is “better” than exhaustive key search.

Security strength. Comparing the pseudorandomness of two function families is often bother-
some to do by comparing the upper bounds of the respective PRF advantage functions. Instead, we
would like to have a single number, the security strength [38]. The security strength of 𝐹𝐹 is 𝑛𝑛 bits if

log2(
𝑀𝑀 𝑀𝑀𝑀

Advprf𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀
) < 𝑛𝑛 𝑛

Deck functions. In this paragraph, we specialize to the case of variable-length input and variable-
length output. To that end, let 𝑆𝑆 be a nonempty finite set of symbols. A doubly-extendable cryptographic
keyed (deck) function [16] is a function family 𝐹𝐹𝐹 𝐹𝐹 𝐹 𝐹≥0 ×ℤ ≥0 ×( 𝑆𝑆∗)+ → 𝑆𝑆∗ that satisfies the following
properties. It outputs an infinite sequence of symbols. From this infinite sequence, a finite subsequence
is obtained by specifying an offset and a length. Itmust allow for efficient incremental computation; given
any two sequences 𝑠𝑠𝑠 𝑠𝑠 𝑠 𝑠𝑠𝑠∗)+, if 𝑠𝑠 has already been processed, then the processing time of 𝑠𝑠 𝑠 𝑠𝑠 should
depend only 𝑡𝑡. Moreover, the time it takes to generate additional output symbols should depend only on
the number of additional symbols that is requested. Both are accomplished by remembering the internal
state. The security of a deck function ismeasured by its PRF advantage function against a randomoracle
with the same interface, and the security claim is expressed as an upper bound on this function.

Blockciphers. In contrast with the countermode of operation, somemodes of operation require𝐹𝐹
to be invertible. In this paragraph, we therefore specialize to the case that𝑋𝑋 equals 𝑌𝑌 and 𝐹𝐹 is invertible.
This is called a block cipher. Invertibility implies additional structure. Hence, we require a slightly differ-
ent notion of pseudorandomness to formalize what it means for𝐹𝐹 to be secure. The pseudorandomness
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of 𝐹𝐹 against an adversary 𝒜𝒜 is the advantage of 𝒜𝒜 in distinguishing between 𝐹𝐹𝑘𝑘 and a uniform random
permutation, i.e.,

Advprp𝐹𝐹 (𝒜𝒜𝒜 𝒜𝒜 𝒜𝒜𝒜(𝐹𝐹𝑘𝑘, 𝑝𝑝𝑝𝑝

where the probabilities are computed with respect to 𝑘𝑘
$
← 𝐾𝐾, 𝑝𝑝

$
← Perms[𝑋𝑋𝑋, and the random choices

that𝒜𝒜makes (if any).

Consider the set 𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 of all adversaries that have online complexity at most𝑀𝑀 and have offline
complexity at most𝑁𝑁. The PRP advantage function of 𝐹𝐹 is defined as

Advprp𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  sup{𝒜𝒜 𝒜 𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜𝒜 𝒜 Advprp𝐹𝐹 (𝒜𝒜𝒜𝒜 𝒜

Loosely speaking, we call𝐹𝐹 a “PRP-secure block cipher” ifAdvprp𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀 is “small” for “practical” values
of𝑀𝑀 and𝑁𝑁. PRP-secure block ciphers are indistinguishable from uniform random permutations by
suitably bounded adversaries.

While PRP security models the block cipher as an efficiently computable permutation that is indis-
tinguishable from a random permutation, it only considers access to the forward direction of the cipher.
The security definition implicitly relies on the invertibility of 𝐹𝐹𝑘𝑘, but the inverse function itself does not
appear in it. To strengthen the model, one can also give the adversary access to the inverse oracle. The
resulting notion, where (𝐹𝐹𝑘𝑘, 𝐹𝐹−1𝑘𝑘 )must be indistinguishable from (𝑝𝑝𝑝 𝑝𝑝−1), is known as SPRP security.

Formally, the SPRP advantage of an adversary𝒜𝒜 against 𝐹𝐹 is its advantage in distinguishing between
oracle access to (𝐹𝐹𝑘𝑘, 𝐹𝐹−1𝑘𝑘 ) and oracle access to (𝑝𝑝𝑝 𝑝𝑝−1), where 𝑘𝑘

$
← 𝐾𝐾 and 𝑝𝑝

$
← Perms[𝑋𝑋𝑋. We write

Advsprp𝐹𝐹 (𝒜𝒜𝒜 𝒜𝒜 𝒜𝒜𝒜((𝐹𝐹𝑘𝑘, 𝐹𝐹−1𝑘𝑘 ), (𝑝𝑝𝑝 𝑝𝑝−1)) .

Loosely speaking, we call 𝐹𝐹 an “SPRP-secure block cipher” if Advsprp𝐹𝐹 (𝑀𝑀𝑀𝑀𝑀𝑀 is “small” for “practical”
values of𝑀𝑀 and𝑁𝑁.

PRP-PRF switching lemma. Sometimes, a mode that requires a PRF-secure function is instanti-
atedwith a block cipher. How is the PRF security of a block cipher related to its PRP security? By defini-
tion, a permutation has no collisions, whereas a uniform random function is expected to have collisions.
Indeed, the probability that at least one collision occurs after 𝑛𝑛 queries to a uniform random function is
approximately equal to 𝑛𝑛2/2|𝑋𝑋𝑋. This follows from the solution to the famous birthday problem [28].

The PRP-PRF switching lemma [11] uses this fact to bound the PRF advantage of a block cipher 𝐹𝐹 in
terms of its PRP advantage. In particular, it states that

Advprf𝐹𝐹 (𝒜𝒜𝒜 𝒜 Advprp𝐹𝐹 (𝒜𝒜𝒜 𝒜 𝑛𝑛2

2|𝑋𝑋𝑋 ,
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for all adversaries 𝒜𝒜 with access to an 𝑛𝑛-time oracle. This observation forms the foundation of the
Sweet32 attacks on the TLS protocol [9]. However, if |𝑋𝑋𝑋 is sufficiently large, then the PRP-PRF switch
poses no problems.

2.3.3 Cryptanalysis

Loosely speaking, cryptanalysis is about trying to falsify some security claim. Arguably the most impor-
tant branches of cryptanalysis of secret-key primitives are differential [10], linear [15, 37], algebraic [3],
integral [17], and higher-order differential cryptanalysis [35]. If a primitive is defined over a field of char-
acteristic 2, then the latter two are essentially the same. A detailed explanation of these techniques is
presented in later sections. What follows now is a very brief summary of the core ideas that underlie each
technique.

Differential cryptanalysis. Differential cryptanalysis is the branch of cryptanalysis that deals
with the propagation of differences through a function. Concretely, let 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 be a function be-
tween finite abelian groups𝐺𝐺 and𝐻𝐻. Moreover, let 𝑥𝑥

$
← 𝐺𝐺 be a uniform random element, let 𝑎𝑎 𝑎 𝑎𝑎 be

an input difference, and let 𝑏𝑏 𝑏𝑏𝑏  be an output difference. The cryptanalyst is interested in the proba-
bility that the predicate 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓 is true. This is called the differential probability (DP) of
the differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over 𝑓𝑓.

For a uniform random𝑓𝑓, theDP of any differential over𝑓𝑓 is a random element of [0, 1]with expected
value 𝜇𝜇 𝜇𝜇 𝜇𝜇𝜇𝜇𝜇 and variance 𝜎𝜎2 = 1/(|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. Indeed, the number of elements 𝑥𝑥 𝑥𝑥𝑥  that satisfy the
predicate is a random element of [0, |𝐺𝐺𝐺𝐺 that has, approximately, a Poisson distribution with expected
value and variance equal to 𝜆𝜆 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆  [20] if |𝐺𝐺𝐺 is sufficiently large and |𝐻𝐻𝐻 is sufficiently small.
Hence, any significant deviation from 𝜆𝜆 could lead to a distinguishing attack. The number of samples
that is required to detect this deviation is approximately equal to the inverse of theDP of the differential.

Instead of considering individual input and output differences, the cryptanalyst may consider the
propagation of sets of differences. Given subsets 𝐴𝐴 𝐴 𝐴𝐴 and 𝐵𝐵 𝐵𝐵𝐵 , we now consider the conditional
probability that the predicate 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓′)∈  𝐵𝐵 is true given that 𝑥𝑥𝑥𝑥𝑥′ ∈ 𝐴𝐴. This generalization is called
truncated differential cryptanalysis.

Linear cryptanalysis. Linear cryptanalysis is the branch of cryptanalysis that deals with linear
approximations of functions. Concretely, let𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑛𝑛2 →𝔽𝔽 2 be two Boolean functions. The distance, say
𝛿𝛿, between𝑓𝑓 and 𝑔𝑔 is defined as the probability that𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 for a uniform random element 𝑥𝑥

$
← 𝔽𝔽𝑛𝑛2 .

The distance between 𝑓𝑓 and a subset 𝑃𝑃 of Boolean functions is defined as 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   min{𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   
𝑃𝑃𝑃. In particular, the cryptanalyst is interested in the case that 𝑃𝑃 𝑃𝑃𝑃𝑃  𝑃 𝑃𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ∶ 𝑎𝑎 𝑎 𝑎𝑎
𝑛𝑛
2 } is the set

of linear functionals.
It turns out that a convenient quantity to work with is the correlation, say 𝑐𝑐, between 𝑓𝑓 and 𝑔𝑔, which

is equal to 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐   . Let 𝑔𝑔𝑔𝑔𝑔   and let 𝑓𝑓 be a uniform random Boolean function, then 𝑐𝑐 is a random
element of [0, 1] that is approximated by a normal distribution with expected value 𝜇𝜇 𝜇𝜇  and variance
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𝑓𝑓

𝑥𝑥𝑙𝑙 𝑥𝑥𝑟𝑟

𝑦𝑦𝑙𝑙 𝑦𝑦𝑟𝑟

Figure 2.1: The Feistel structure.

𝜎𝜎2 = 2−𝑛𝑛 [20]. Any significant deviation from 0 could potentially lead to a distinguishing attack. The
number of samples that is required to detect this deviation is approximately equal to the inverse of 𝑐𝑐2.
We should note that zero-correlation attacks exist as well.

Shortly, we will see how to generalize this to functions between any two finite abelian groups and how
linear cryptanalysis effectively is Fourier analysis. In the Fourier domain, the Fourier transform turns
translations (e.g., by a subkey or a round constant) intomodulations, which aremuch easier to deal with
and understand.

Integral cryptanalysis. Let𝑋𝑋 and 𝑌𝑌 be sets. Integral cryptanalysis is the branch of cryptanalysis
that deals with predicting the sum of outputs of a function 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 over a multiset of inputs 𝑆𝑆 𝑆 𝑆𝑆.
In other words, the cryptanalyst is interested in the value of∑𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓. Predictions are typically based
on the propagation of some integral property, e.g., knowing that if some input variable takes on all the
values, then some output variable will take on all the values. If𝑋𝑋 and𝑌𝑌 are finite fields of characteristic 2,
then the “best” multisets 𝑆𝑆 are often affine subspaces of𝑋𝑋. In this case, an important subclass of integral
attacks is formed by the so-called higher-order differential attacks. These attacks rely on estimates of the
degree of a polynomial representation of 𝑓𝑓.

2.3.4 Constructing block ciphers

A block cipher is designed with two properties in mind. First, for every key 𝑘𝑘 𝑘 𝑘𝑘, both 𝐹𝐹𝑘𝑘 and 𝐹𝐹−1𝑘𝑘

should be efficiently implementable. Second, it should withstand known cryptanalysis techniques.

Internally, the key is usually, but not always, processed by a key schedule, which is responsible for the
derivation of subkeys. The data is processed by a data path, which makes use of the subkeys. Hence,
subkeys flow from the key schedule into the data path, but data does not flow from the data path into
the key schedule.

The data path is usually obtained as the composition of a number of relatively simple round functions,
which are often the same, perhaps up to the addition of a round constant or subkey. There is a lot of
freedom indesigning a round function. Importantly, any design should try to balance the computational
complexity,whichdepends on the computing environment, and the security that it offers. We summarize
important structures that frequently make an appearance in the design of round functions.
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𝑁𝑁

𝐿𝐿

𝑥𝑥

𝑐𝑐

𝑦𝑦

Figure 2.2: The SPN structure.

Suppose that the set of inputs forms a direct product of an abelian group 𝐺𝐺 with itself. In that case,
we can design a function on that set that has the Feistel structure [36]. Input pairs (𝑥𝑥𝑙𝑙, 𝑥𝑥𝑟𝑟) ∈ 𝐺𝐺 𝐺 𝐺𝐺
are transformed by the function (𝑥𝑥𝑙𝑙, 𝑥𝑥𝑟𝑟) ↦ (𝑥𝑥𝑟𝑟, 𝑥𝑥𝑙𝑙 + 𝑓𝑓𝑓𝑓𝑓𝑟𝑟)) that is parameterized by some function
𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 that may depend on a subkey. This is illustrated in Figure 2.1. An important property
of the Feistel structure is that it is invertible, regardless of the invertibility of 𝑓𝑓. Indeed, the inverse is
equal to (𝑦𝑦𝑙𝑙, 𝑦𝑦𝑟𝑟) ↦ (𝑦𝑦𝑟𝑟 − 𝑓𝑓𝑓𝑓𝑓𝑙𝑙), 𝑦𝑦𝑙𝑙). Moreover, observe that the function (𝑥𝑥𝑙𝑙, 𝑥𝑥𝑟𝑟) ↦ (𝑥𝑥𝑟𝑟, 𝑥𝑥𝑙𝑙) is, in fact,
an involution. If the exponent of 𝐺𝐺 is 2, then the function (𝑥𝑥𝑙𝑙, 𝑥𝑥𝑟𝑟) ↦ (𝑥𝑥𝑙𝑙 + 𝑓𝑓𝑓𝑓𝑓𝑟𝑟), 𝑥𝑥𝑟𝑟) is also an invo-
lution. In that case, encryption and decryption are essentially the same operation, the difference lying
in the order in which the subkeys are supplied. In other words, encryption and decryption can use the
same circuit in hardware. Another important property is that an SPRP-secure function can be obtained
from a PRF-secure function 𝑓𝑓 (in that case, 𝑓𝑓 should depend on a subkey) by repeating the structure 4
times [36].

Some functions have the SPN structure, which stands for substitution permutation network. It usu-
ally consists of the following layers, not necessarily in that order.

• (constant addition layer): This layer adds round constants and/or subkeys to the internal state.
Round constants introduce asymmetry between the different rounds. Subkeys add uncertainty
about the function’s internal state.

• (nonlinear layer): This layer prevents straightforward linear modeling of the function. Usually, it
is composed of a number of S-boxes. An S-box has certain algebraic properties, e.g., its degree, and
statistical properties, e.g., its differential probabilities.

• (linear layer): This layer consists of a transposition step that shuffles the symbols of the internal
state, and, optionally, a mixing step, that adds internal state symbols together.
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𝑥𝑥 𝑓𝑓 𝑦𝑦

𝑘𝑘0 𝑘𝑘1

Figure 2.3: The Even-Mansour construction.

Figure 2.4: The full-state keyed duplex construction.

It is the interaction between the various layers that gives the function good cryptographic properties.
Informally, diffusion ensures that each output symbol is a function of every input symbol, and confusion
means that this function is highly complex. The SPN structure is illustrated in Figure 2.2.

Some functions are basedon theoperationsofmodular addition, rotation, andbitwise addition (XOR).
They are said to have the ARX structure. One advantage of ARX-based functions is that they tend to
have efficient software implementations, each operation usually taking only a single CPU cycle to com-
pute. In particular, this is true for the addition operation, which exhibits good differential, linear, and
algebraic complexity. There are also several disadvantages. A hardware implementation of the addition
operation requires a circuit for the propagation of carry bits. Such a circuit has either a small area or a
short critical path, but not both. Moreover, the security of ARX structures is more difficult to analyze
compared to structures that are based on S-boxes.

Suppose that 𝑘𝑘 𝑘 𝑘𝑘𝑘0, 𝑘𝑘1). The Even-Mansour construction [25] can be used to obtain a block cipher
from a cryptographic permutation. It is illustrated in Figure 2.3.

Note that some of these structures may appear as substructures of the others. For example, the 𝑓𝑓-
function that appears in the Feistel structure could have the SPN structure. In turn, the S-boxes that
appear in an SPN structure could have an ARX structure.

2.3.5 Constructing deck functions

We present a number of constructions of deck functions that are useful to know about for better under-
standing of the contents of this thesis.
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Figure 2.5: The Farfalle construction.

Full-statekeyedduplexconstruction. Figure 2.4 illustrates the full-state keyed duplex (FKD)
construction [18]. FKD is a serial construction that is based on a cryptographic permutation 𝑓𝑓 that
operates on a 𝑏𝑏-bit state. A user can make two types of calls: initialization calls and duplex calls. In an
initialization call, a key index 𝛿𝛿 is used to select a 𝑘𝑘-bit key from a key array𝐾𝐾 and it is loaded togetherwith
a (𝑏𝑏 𝑏 𝑏𝑏𝑏-bit string iv into the state. Next, an 𝑟𝑟-bit string 𝑍𝑍 is returned and a 𝑏𝑏-bit user-supplied string
𝜎𝜎 is injected into the state. In a duplex call, the state is transformed by 𝑓𝑓, an 𝑟𝑟-bit string 𝑍𝑍 is returned to
the user and a 𝑏𝑏-bit user-supplied string 𝜎𝜎 is injected into the state. Loosely speaking, the PRF security
of FKD is given in terms of a somewhat complicated looking upper bound on its𝒜𝒜-distance to the Ideal
eXtendable Input Function (IXIF). The IXIF has the same interface as the FKD, but is implemented
with a random oracle “under the hood.”

Farfalle construction. Figure 2.5 illustrates the Farfalle construction [8]. Farfalle is a parallel
construction that is based on a cryptographic permutation and it consists of a mask derivation layer,
a compression layer, and an expansion layer. Masks are derived from the input key and added to input
blocks. Each input block is transformed by a permutation in the compression layer, independently from
the other blocks. The resulting output blocks are added to each other into an accumulator. After being
transformed by another permutation, the accumulator is used to generate pseudorandom output blocks
in the expansion layer by adding different masks to it.
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2.3.6 Constructing cryptographic permutations

Acryptographicpermutation𝑃𝑃 is an element of the set Perms[𝑋𝑋𝑋 that is efficiently implementable. In the
construction of some primitives, there is the requirement that its inverse𝑃𝑃−1 is efficiently implementable
as well. Typically, the design of 𝑃𝑃 closely follows that of the data path of a block cipher; it uses the same
structures that we have discussed in the corresponding subsection. Importantly, there is no dedicated
secret key input.

What it means for a cryptographic permutation to be secure cannot be formalized. Indeed, it is only
at the level of the primitive that uses 𝑃𝑃, where there is a secret key involved, that we are able to formally
define security, such as PRF security and PRP security. Loosely speaking, however, 𝑃𝑃 should not have
any structural properties that allow for falsifying the security claim of the primitive that uses it.

2.4 Implementation security

So far, security has been defined in terms of an adversary that queries an oracle a number of times and
needs to determine which object it has access to. Crucially, the oracle is treated as a black box. Although
its specification is typically known, its secret key is not. In practice, an adversary may also be able to
exploit the interaction between the algorithm and its implementation.

Such implementation attacks are best classified along two independent axes. The first axis is the
methodof access: non-invasive, semi-invasive, or invasive. Non-invasivemethodsoperate entirely through
standard interfaces or external observation. Semi-invasive methods expose the chip’s internals without
damaging its internal structures. Invasive methods involve physically tampering with the chip.

The second axis is the type of technique used, such as side-channel analysis or fault injection. Side-
channel attacks rely on passively observing physical leakages, such as power consumption or electromag-
netic emissions, which may depend on secret data. Fault attacks, by contrast, involve actively disturbing
the device’s normal operation, e.g., by injecting voltage glitches or laser pulses, so that internal secrets can
be inferred from incorrect outputs. Both types of attacks can be mounted using any of the three access
methods, depending on the attacker’s capabilities.

Countermeasures against side-channel attacks often involve masking techniques that randomize in-
termediate computations. Fault attacks are typically mitigated by introducing redundancy or error de-
tectionmechanisms. Physical protections, such as tamper sensors or shielding, can further increase resis-
tance against invasive and semi-invasive attacks.

2.5 Algebraic cryptanalyis

In this section, we introduce the notion of a Gröbner basis for an ideal and its application to computing
the solutions of a system of polynomial equations. As a motivating example, the cryptosystem itself can
be modeled as a system of equations in the secret symbols, which may allow for recovery of the secret.
Throughout, we write 𝑅𝑅𝑛𝑛 ∶= 𝑘𝑘𝑘𝑘𝑘0, … , 𝑥𝑥𝑛𝑛𝑛𝑛] for the set of polynomials in the variables 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑛𝑛 and
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with coefficients in the field 𝑘𝑘. The interpretation of the variables depends on the model being used;
typically, the 𝑖𝑖th variable represents the 𝑖𝑖th input symbol.

Loosely speaking, a Gröbner basis is a set of polynomials that generates the ideal and for which mul-
tivariate division always leads to a unique remainder, regardless of the order in which reductions are
applied. The standard algorithm for computing a Gröbner basis is Buchberger’s algorithm. Most of the
state-of-the-art algorithms are essentially (sophisticated) optimizations of this algorithm. Buchberger’s
algorithm can be seen as a generalization of both the Gaussian elimination algorithm from linear algebra
and Euclid’s algorithm for computing the polynomial greatest common divisor. The contents of this
section are based on the exposition of [34].

2.5.1 Monomial orders

It is useful to have a unique representation of the polynomials in 𝑅𝑅𝑛𝑛. To that end, we equip 𝑅𝑅𝑛𝑛 with a
monomial order by identifying 𝑥𝑥𝛼𝛼 with the exponent vector 𝛼𝛼 𝛼 𝛼𝑛𝑛≥0, and imposing an order on ℤ𝑛𝑛≥0.

Definition 1. Amonomial order on 𝑅𝑅𝑛𝑛 is a relation > on the set ℤ𝑛𝑛≥0 that satisfies:

• > is a well-order.

• If 𝛼𝛼 𝛼 𝛼𝛼 and 𝛾𝛾 𝛾𝛾 𝑛𝑛≥0, then 𝛼𝛼 𝛼 𝛼𝛼𝛼  𝛼𝛼 𝛼 𝛼𝛼.

We write 𝑥𝑥𝛼𝛼 > 𝑥𝑥𝛽𝛽 if 𝛼𝛼 𝛼 𝛼𝛼 and use the convention that 𝑥𝑥𝛼𝛼 > 0 for all 𝛼𝛼 𝛼 𝛼𝑛𝑛≥0. An example of a
monomial order is the lexicographic order. It is important for reasoning about the shape of a Gröbner
basis.

Definition 2. We have 𝛼𝛼 𝛼𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽 if the leftmost nonzero component of 𝛼𝛼 𝛼 𝛼𝛼 is positive.

A second example of a monomial order is the graded reverse lexicographic (grevlex) order. This order
is important for the computation of Gröbner bases, as it leads to the shortest computation times.

Definition 3. We have 𝛼𝛼 𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝛽𝛽 if either∑
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖 > ∑𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 𝛽𝛽𝑖𝑖 or∑
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 𝛼𝛼 𝛼 𝛼𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 𝛽𝛽 and the rightmost
nonzero entry of 𝛼𝛼 𝛼 𝛼𝛼 is negative.

Now that 𝑅𝑅𝑛𝑛 is ordered, we can speak of leading monomial, leading term, etc.

Definition 4. Let 𝑓𝑓 𝑓𝑓 𝛼𝛼 𝑐𝑐𝛼𝛼𝑥𝑥
𝛼𝛼 be a non-zero polynomial in 𝑅𝑅𝑛𝑛 and let > be a monomial order.

• We callmultideg(𝑓𝑓𝑓 𝑓 max>{𝛼𝛼 𝛼 𝛼𝑛𝑛≥0 ∶ 𝑐𝑐𝛼𝛼 ≠ 0} the multidegree of 𝑓𝑓.

• The leading coefficient of 𝑓𝑓 is lc>(𝑓𝑓𝑓 𝑓 lc(𝑓𝑓𝑓 𝑓𝑓𝑓 multideg(𝑓𝑓𝑓.

• The leading monomial of 𝑓𝑓 is lm>(𝑓𝑓𝑓 𝑓 lm(𝑓𝑓𝑓 𝑓𝑓𝑓 multideg(𝑓𝑓𝑓.

• The leading term of 𝑓𝑓 is lt>(𝑓𝑓𝑓 𝑓 lt(𝑓𝑓𝑓 𝑓 lc(𝑓𝑓𝑓 lm(𝑡𝑡𝑡.

Example 1. Consider 𝑓𝑓 𝑓𝑓𝑓 0 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥2 ∈ 𝔽𝔽2[𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2] with the lexicographic order. Its multidegree is
equal to (1, 0, 0), its leading coefficient is equal to 1, its leading monomial is equal to 𝑥𝑥0, and its leading
term is equal to 𝑥𝑥0.
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2.5.2 Multivariate polynomial division

Originally, Gröbner bases were introduced to solve the ideal membership problem, which asks to decide
whether a polynomial 𝑓𝑓 is in the ideal ⟨𝐹𝐹𝐹 that is generated by polynomials 𝐹𝐹 𝐹𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑚𝑚𝑚𝑚} or not.
If we suppose that 𝑓𝑓 and the 𝑓𝑓𝑖𝑖 are elements of the univariate polynomial ring 𝑘𝑘𝑘𝑘𝑘𝑘, then the problem is
easily solved. Indeed, the ideal ⟨𝐹𝐹𝐹 is generated by 𝑔𝑔 𝑔 gcd(𝑓𝑓0, … , 𝑓𝑓𝑚𝑚𝑚𝑚). It follows that we only need to
check whether 𝑓𝑓 is a multiple of 𝑔𝑔. This is a simple application of the univariate division algorithm. It is
this concept of division that we want to generalize to 𝑅𝑅𝑛𝑛.
As a first step, we recall how the univariate division algorithm works. Suppose that we wish to divide

𝑓𝑓 𝑓 𝑓𝑓0 + 𝑎𝑎1𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥 𝑛𝑛𝑥𝑥𝑛𝑛 by 𝑔𝑔 𝑔 𝑔𝑔0 + 𝑏𝑏1𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥 𝑚𝑚𝑥𝑥𝑚𝑚, assuming that both 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑚𝑚 are non-zero.
Notice that the terms of 𝑓𝑓 and 𝑔𝑔 are ordered by degree. We divide the leading term (with respect to this
ordering) of 𝑓𝑓 by the leading term of 𝑔𝑔. That is, we calculate 𝑞𝑞𝑖𝑖 ∶= (𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛)/(𝑏𝑏𝑚𝑚𝑥𝑥𝑚𝑚) and recursively apply
this principle to𝑓𝑓𝑖𝑖 ∶= 𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑔𝑔 and 𝑔𝑔. When the leading term of 𝑔𝑔 no longer divides𝑓𝑓𝑖𝑖 we end the recursion
and store∑𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 𝑞𝑞𝑖𝑖 in 𝑞𝑞 and 𝑓𝑓𝑖𝑖 in 𝑟𝑟. The polynomial 𝑞𝑞 is called the quotient and the polynomial 𝑟𝑟 is called
the remainder.

Let us now try to mimic this procedure in 𝑅𝑅𝑛𝑛. Some definitions are in order. Let 𝑓𝑓 and 𝑔𝑔 be polyno-
mials in𝑅𝑅𝑛𝑛. We say that 𝑓𝑓 is top-reducible by 𝑔𝑔 if lm(𝑔𝑔𝑔 divides lm(𝑓𝑓𝑓. The corresponding top-reduction
is given by 𝑓𝑓𝑓 𝑓lt(𝑓𝑓𝑓𝑓 lt(𝑔𝑔𝑔𝑔𝑔𝑔. The effect of a top-reduction is that the leading term of 𝑓𝑓 is canceled. We
say that 𝑓𝑓 is top-reducible by 𝐹𝐹 if there exists an 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 such that 𝑓𝑓 is top-reducible by 𝑓𝑓𝑖𝑖. When
no 𝑓𝑓𝑖𝑖 top-reduces 𝑓𝑓we say that 𝑓𝑓 is top-irreducible by𝐹𝐹. When 𝑓𝑓 is top-irreducible by𝐹𝐹, wemay proceed
and try to reduce 𝑓𝑓 𝑓 lt(𝑓𝑓𝑓. If there is a term of 𝑓𝑓 that is divisible by a leading monomial of some 𝑓𝑓𝑖𝑖, we
say that 𝑓𝑓 is reducible by 𝐹𝐹. When 𝑓𝑓 is no longer reducible, we call it irreducible and we end up with a
remainder 𝑟𝑟. In general, this remainder is not unique, as it depends on the order in which the reductions
were applied.

Proposition 1. Let 𝐹𝐹 𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑚𝑚𝑚𝑚) be an𝑚𝑚-tuple of polynomials in 𝑅𝑅𝑛𝑛 and fix a monomial order >.
Every polynomial 𝑓𝑓 𝑓𝑓𝑓 𝑛𝑛 can be written as

𝑓𝑓 𝑓
𝑚𝑚𝑚𝑚

∑
𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑟𝑟

where 𝑞𝑞𝑖𝑖, 𝑟𝑟 𝑟𝑟𝑟 𝑛𝑛 and either 𝑞𝑞𝑖𝑖𝑓𝑓𝑖𝑖 =0  or lt(𝑓𝑓𝑓𝑓  lt(𝑞𝑞𝑖𝑖𝑓𝑓𝑖𝑖) for 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖. Moreover, we either have 𝑟𝑟 equal
to 0 or 𝑟𝑟 is a linear combination of monomials that are not divisible by any lt(𝑓𝑓𝑖𝑖) for 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖. We
will call 𝑟𝑟 a remainder of 𝑓𝑓 on division by 𝐹𝐹.

To obtain the quotients 𝑞𝑞𝑖𝑖 and the remainder 𝑟𝑟, we apply Algorithm 1.
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Algorithm 1Multivariate division
1: Input: A sequence 𝐹𝐹 𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑚𝑚𝑚𝑚) of polynomials in 𝑅𝑅𝑛𝑛, a polynomial 𝑓𝑓 𝑓 𝑓𝑓𝑛𝑛, and a monomial

order >.
2: Output: Polynomials 𝑟𝑟𝑟 𝑟𝑟0, … , 𝑞𝑞𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑛𝑛 such that 𝑓𝑓𝑓  𝑓𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 𝑞𝑞𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑟𝑟.
3: 𝑟𝑟 𝑟 𝑟
4: ℎ ←𝑓𝑓
5: for 𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖 do
6: 𝑞𝑞𝑖𝑖 ←0
7: end for
8: while ℎ ≠ 0 do
9: 𝑗𝑗 𝑗𝑗
10: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
11: while 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 do
12: if lt(𝑓𝑓𝑗𝑗) divides lt(ℎ) then
13: ℎ ← ℎ − lt(ℎ)

lt(𝑓𝑓𝑗𝑗)
lt(𝑓𝑓𝑗𝑗)

14: 𝑞𝑞𝑗𝑗 ←𝑞𝑞 𝑗𝑗 +
lt(ℎ)

lt(𝑓𝑓𝑗𝑗)
15: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
16: else
17: 𝑗𝑗 𝑗 𝑗𝑗 𝑗𝑗
18: end if
19: end while
20: if ¬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 then
21: ℎ ← ℎ − lt(ℎ)
22: 𝑟𝑟 𝑟 𝑟𝑟 𝑟 lt(ℎ)
23: end if
24: end while
25: return 𝑟𝑟𝑟 𝑟𝑟0, … , 𝑞𝑞𝑚𝑚𝑚𝑚
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2.5.3 Gröbner bases

Throughout, let 𝐼𝐼 be any ideal of 𝑅𝑅𝑛𝑛 and fix some monomial order > on 𝑅𝑅𝑛𝑛. We are now ready to define
what a Gröbner basis is.

Definition 5. A finite subset 𝐺𝐺 𝐺 𝐺𝐺𝐺0, … , 𝑔𝑔𝑙𝑙𝑙𝑙} ⊆ 𝐼𝐼 is said to be aGröbner basis for 𝐼𝐼 with respect to > if
every polynomial in 𝐼𝐼 is top-reducible by𝐺𝐺.

Proposition 2. There exists a Gröbner basis𝐺𝐺 for 𝐼𝐼 with respect to > and it generates 𝐼𝐼.

Multivariate division leads to a unique remainder if the order of the reductions is fixed. If we are
reducing modulo a Gröbner basis, then the order does not matter. This is the content of the following
proposition.

Proposition 3. Let 𝐺𝐺 𝐺 𝐺𝐺𝐺0, … , 𝑔𝑔𝑙𝑙𝑙𝑙} be a Gröbner basis for 𝐼𝐼 with respect to >. There exists a unique
polynomial 𝑟𝑟 𝑟 𝑟𝑟𝑛𝑛 that satisfies the following.

• The polynomial 𝑟𝑟 is irreducible by𝐺𝐺, and

• there is a 𝑔𝑔𝑔𝑔𝑔   such that 𝑓𝑓 𝑓𝑓𝑓  𝑓 𝑓𝑓.

The polynomial 𝑟𝑟 is often called the normal form of 𝑓𝑓 with respect to𝐺𝐺 and we denote it by 𝑓𝑓 rem𝐺𝐺.

Let us apply this to the ideal membership problem. We compute a Gröbner basis 𝐺𝐺 for the ideal ⟨𝐹𝐹𝐹
with respect to > and compute 𝑓𝑓 rem𝐺𝐺. The normal form will tell us whether 𝑓𝑓 is in the ideal or not.

Corollary 1. The polynomial 𝑓𝑓 is in 𝐼𝐼 if and only if 𝑓𝑓 rem𝐺𝐺 𝐺 𝐺.

Proof. Suppose that𝑓𝑓 𝑓𝑓𝑓 . By proposition 3𝑓𝑓 rem𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺 for some 𝑔𝑔𝑔𝑔𝑔  . It follows that𝑓𝑓 rem𝐺𝐺 𝐺𝐺𝐺 .
However, no term of𝑓𝑓 rem𝐺𝐺 is divisible by any lt(𝑔𝑔𝑔with 𝑔𝑔𝑔𝑔𝑔  . The fact that𝐺𝐺 is a Gröbner basis then
implies that 𝑓𝑓 rem𝐺𝐺 𝐺 𝐺. To prove the converse, we assume that 𝑓𝑓 rem𝐺𝐺 𝐺 𝐺. Again, by proposition
3, we deduce that there exists a 𝑔𝑔𝑔𝑔𝑔   such that 𝑓𝑓 𝑓𝑓𝑓  𝑓 𝑓𝑓𝑓 rem𝐺𝐺𝐺. Our assumption then implies that
𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   .

In general, an ideal can have many different Gröbner bases with respect to >. However, by imposing
some restrictions, it is possible to guarantee uniqueness.

Definition 6. AGröbner basis𝐺𝐺 for 𝐼𝐼 with respect to > is said to be reduced if

• lc(𝑔𝑔𝑔 𝑔 𝑔 for all 𝑔𝑔𝑔𝑔𝑔  , and

• 𝑔𝑔 rem𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺 𝐺𝐺 for all 𝑔𝑔𝑔𝑔𝑔  .

Proposition 4. The ideal 𝐼𝐼 has a unique reduced Gröbner basis with respect to >.
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2.5.4 Systems of polynomial equations

Suppose that we are given a system of polynomial equations of the form 𝑓𝑓0 = ⋯ = 𝑓𝑓𝑚𝑚𝑚𝑚 = 0. The
equations define an ideal 𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼0, … , 𝑓𝑓𝑚𝑚𝑚𝑚}⟩. The set 𝑍𝑍𝑍𝑍𝑍𝑍 𝑍𝑍𝑍 𝑍𝑍 𝑍 𝑍𝑍𝑛𝑛 ∶ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   for each 𝑓𝑓 𝑓𝑓𝑓𝑓
contains the solutions to the equations. How do we obtain 𝑍𝑍𝑍𝑍𝑍𝑍 from 𝐼𝐼? It turns out that this is easy to
do when we have the reduced Gröbner basis for 𝐼𝐼with respect to the lexicographic order.

To explain this, we need a fewmore definitions. An ideal 𝐼𝐼 is called zero-dimensional if𝑍𝑍𝑍𝑍𝑍𝑍 contains
only finitely many points. Suppose that 𝐼𝐼 is a zero-dimensional ideal and let 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖. We say that 𝐼𝐼
is in normal 𝑥𝑥𝑖𝑖-position if any two points 𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎  satisfy 𝑎𝑎𝑖𝑖 ≠ 𝑏𝑏𝑖𝑖.

Proposition 5. Let 𝑘𝑘 be a field of characteristic 0 or a finite field. Moreover, let 𝐹𝐹 be a sequence of poly-
nomials in 𝑅𝑅𝑛𝑛. Put 𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼. Assume that 𝐼𝐼 is zero-dimensional, radical, and in normal 𝑥𝑥𝑛𝑛𝑛𝑛-position.
Write 𝑚𝑚 for |𝑍𝑍𝑍𝑍𝑍𝑍𝑍. Let 𝐺𝐺 be the reduced Gröbner basis for 𝐼𝐼 with respect to the lexicographic order with
𝑥𝑥0 > 𝑥𝑥1 > ⋯ > 𝑥𝑥𝑛𝑛𝑛𝑛. Under these assumptions,𝐺𝐺 is of the form

{𝑥𝑥0 − 𝑔𝑔0(𝑥𝑥𝑛𝑛𝑛𝑛), 𝑥𝑥1 − 𝑔𝑔1(𝑥𝑥𝑛𝑛𝑛𝑛), … , 𝑥𝑥𝑛𝑛𝑛𝑛 − 𝑔𝑔𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛𝑛𝑛), 𝑥𝑥𝑚𝑚𝑛𝑛𝑛𝑛 − 𝑔𝑔𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛𝑛𝑛)}

where each 𝑔𝑔𝑖𝑖 is a univariate polynomial in 𝑘𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛] of degree at most𝑚𝑚 𝑚𝑚 . In particular, this shows that

𝑍𝑍𝑍𝑍𝑍𝑍 𝑍𝑍 𝑍𝑍𝑍0(𝑎𝑎𝑖𝑖), … , 𝑔𝑔𝑛𝑛𝑛𝑛(𝑎𝑎𝑖𝑖), 𝑎𝑎𝑖𝑖)∶  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖  𝑖 𝑖𝑖𝑖𝑖

where 𝑎𝑎0, … , 𝑎𝑎𝑚𝑚𝑚𝑚 are the roots of 𝑥𝑥𝑚𝑚𝑛𝑛𝑛𝑛 − 𝑔𝑔𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛𝑛𝑛).

The assumptions of Proposition 5 are not too restrictive. Indeed, if 𝑘𝑘 is a finite field, say 𝔽𝔽𝑞𝑞, then the
ideal 𝐼𝐼𝑞𝑞 ∶= 𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞0 −𝑥𝑥0, … , 𝑥𝑥𝑞𝑞𝑛𝑛𝑛𝑛 −𝑥𝑥𝑛𝑛𝑛𝑛⟩ is zero-dimensional and radical. Ensuring that 𝐼𝐼𝑞𝑞 is in normal 𝑥𝑥𝑛𝑛𝑛𝑛-
positionmay requiremoving to an extension field of 𝔽𝔽𝑞𝑞 and a linear change of coordinates. However, this
is not a problem, as the solutions are guaranteed to be in 𝔽𝔽𝑞𝑞 due to the relations 𝑥𝑥

𝑞𝑞
𝑖𝑖 −𝑥𝑥𝑖𝑖 for 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖    𝑖𝑖𝑖𝑖.

2.5.5 Algorithms

Given the usefulness of Gröbner bases, we address how to find such a basis. Buchberger gave the first al-
gorithm for computing a Gröbner basis. His algorithm relies heavily on the concept of the S-polynomial
of two polynomials.

Definition 7. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   𝑛𝑛 be non-zero polynomials. The S-polynomial of 𝑓𝑓 and 𝑔𝑔 is defined as

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   𝑥𝑥𝛾𝛾

lt(𝑓𝑓𝑓 ⋅ 𝑓𝑓 𝑓
𝑥𝑥𝛾𝛾

lt(𝑔𝑔𝑔 ⋅ 𝑔𝑔

where 𝑥𝑥𝛾𝛾 = lcm(lm(𝑓𝑓𝑓𝑓 lm(𝑔𝑔𝑔𝑔.

The S-polynomial of two polynomials is constructed in such a way that their leading terms are can-
celed. Buchberger’s criterion, which is stated in Proposition 6, gives us an algorithmic test for checking
whether a set of polynomials is a Gröbner basis or not.
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Proposition 6. A finite subset 𝐹𝐹 𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑙𝑙𝑙𝑙} is a Gröbner basis for 𝐼𝐼 with respect to > if and only if for
all pairs (𝑖𝑖𝑖 𝑖𝑖𝑖 of distinct indices the S-polynomial 𝑆𝑆𝑆𝑆𝑆𝑖𝑖, 𝑓𝑓𝑗𝑗) reduces to 0modulo𝐺𝐺.

Using Proposition 6, one readily obtains Buchberger’s algorithm, which is stated in Algorithm 2.

Algorithm 2 Buchberger’s algorithm
Input: A sequence of polynomials 𝐹𝐹 𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑚𝑚𝑚𝑚} and a monomial order >.
Output: AGröbner basis𝐺𝐺 for ⟨𝐹𝐹𝐹with respect to >.
𝐺𝐺 𝐺 𝐺𝐺
𝑃𝑃 𝑃 Sort({(𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝 𝑝 𝑝𝑝𝑝)
while 𝑃𝑃 𝑃 𝑃 do

(𝑝𝑝𝑝 𝑝𝑝𝑝𝑝  the first element of 𝑃𝑃
𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   rem𝐺𝐺
if 𝑟𝑟 𝑟𝑟  then

𝑃𝑃 𝑃 Sort(𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃 𝑃𝑃𝑃𝑃 )
𝐺𝐺 𝐺 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺

end if
end while
return𝐺𝐺

Proposition 7. Buchberger’s algorithm 2 terminates in a finite number of steps and outputs a Gröbner
basis for ⟨{𝑓𝑓0, … , 𝑓𝑓𝑚𝑚𝑚𝑚}⟩.

Proof. Write 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼 . We first prove correctness. Wewant to use proposition 6 to prove this. To this end,
we need to show two things. First, that 𝐺𝐺 is a subset of 𝐼𝐼 during the entire execution of the algorithm.
Second, at the end𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆 rem𝐺𝐺 𝐺𝐺  for all 𝑔𝑔𝑔𝑔𝑔𝑔𝑔   with 𝑔𝑔𝑔𝑔  . At the start of the algorithm𝐺𝐺 𝐺𝐺𝐺  𝐺 𝐺𝐺.
During each iteration of the while loop𝐺𝐺 is augmented with 𝑟𝑟. Since 𝑝𝑝𝑝 𝑝𝑝 𝑝 𝑝𝑝 it follows that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  
and since 𝐺𝐺 𝐺 𝐺𝐺 we deduce that 𝑟𝑟 𝑟𝑟𝑟 . Therefore, 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺  𝐺 𝐺𝐺. Whenever we process a new pair, if the
remainder of the S-polynomial by𝐺𝐺 didn’t already equal zero, then we add the remainder. This ensures
that subsequent computation of the remainder will yield zero. Hence if the algorithm terminates we
have that 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆 rem𝐺𝐺 𝐺𝐺  for all 𝑔𝑔𝑔𝑔𝑔𝑔𝑔    with 𝑔𝑔𝑔𝑔  . Next, we prove that the algorithm indeed
terminates. Every time a nonzero remainder is added to 𝐺𝐺 the ideal ⟨lt(𝐺𝐺𝐺𝐺 strictly increases. This leads
to an ascending chain of ideals in𝑅𝑅𝑛𝑛. ByNoetherianity of𝑅𝑅𝑛𝑛 this chain eventually stabilizes. This means
that eventually the if-branch is never executed. Therefore the set 𝑃𝑃 eventually becomes empty and the
algorithm terminates.

In practice. Algorithm 2 is not very efficient. Every time an S-polynomial is reduced to zero, we
do not discover any new element of the Gröbner basis. As the reduction step is the most time consum-
ing step, it is natural to consider strategies that avoid these useless reductions. Since it is impossible to
avoid reducing S-polynomials altogether, much effort has also gone in speeding up the reduction step.
Finally, the order in which critical pairs are processed has an effect on performance as well. This becomes
important when the input polynomials are comprised of terms having different degrees.
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From a theoretical point of view, state-of-the-art Gröbner basis algorithms are simply improvements
to Buchberger’s algorithm that include enhanced selection criteria, a faster reduction step that makes
use of fast linear algebra, and an attempt to predict reductions to zero. A fast algorithm is Faugère’s F5
algorithm [4, 26].

Experiments highlighted that computing a Gröbner basis with respect to the lexicographic order is
a slow process. Computing a Gröbner basis with respect to the grevlex order can be done in a faster
manner. However, we need the lexicographic order to be able to apply Proposition 5. Fortunately, the
FGLM algorithm [27] makes it possible to transform a Gröbner basis with respect to the grevlex order
to another with respect to the lexicographic order. To summarize, an adversary adopts the following
strategy:

1. Using the F5 algorithm, compute a Gröbner basis with respect to the grevlex order.

2. Using the FGLM algorithm, transform the previous basis into a Gröbner basis with respect to the
lexicographic order.

3. Using polynomial factorization and back substitution, solve the resulting system of equations.

CostoftheF5Algorithm. In thebest adversarial scenario,we assume that the sequenceofpolyno-
mials associated with the system of equations is regular. A sequence of polynomials (𝑓𝑓0, … , 𝑓𝑓𝑚𝑚𝑚𝑚) ∈ 𝑅𝑅𝑚𝑚

𝑛𝑛

is called a regular sequence on 𝑅𝑅𝑛𝑛 if the multiplication map

𝑚𝑚𝑓𝑓𝑖𝑖 ∶ 𝑅𝑅𝑛𝑛/⟨{𝑓𝑓0, … , 𝑓𝑓𝑖𝑖𝑖𝑖}⟩ → 𝑅𝑅𝑛𝑛/⟨{𝑓𝑓0, … , 𝑓𝑓𝑖𝑖𝑖𝑖}⟩

given by𝑚𝑚𝑓𝑓𝑖𝑖([𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖]=  [𝑔𝑔𝑔𝑔𝑖𝑖] is injective for all 𝑖𝑖 𝑖𝑖 𝑖𝑖𝑖𝑖  𝑖 𝑖𝑖. In this case, the F5 algorithm does
not perform any redundant reductions to zero.

Write𝑅𝑅𝑛𝑛𝑛𝑛𝑛 for the set of homogeneous polynomials of degree𝑑𝑑 in𝑅𝑅𝑛𝑛 and 𝐼𝐼𝑑𝑑 for the set of homogeneous
polynomials of degree 𝑑𝑑 in 𝐼𝐼. The Hilbert function is defined as 𝐹𝐹𝑅𝑅𝑛𝑛/𝛪𝛪(𝑑𝑑𝑑𝑑  dim(𝑅𝑅𝑛𝑛𝑛𝑛𝑛/𝐼𝐼𝑑𝑑) for all 𝑑𝑑 𝑑 𝑑,
i.e., it maps 𝑑𝑑 to the dimension of𝑅𝑅𝑛𝑛𝑛𝑛𝑛/𝐼𝐼𝑑𝑑 as a vector space over 𝑘𝑘. Define theHilbert series by𝐻𝐻𝑅𝑅𝑛𝑛/𝛪𝛪(𝑡𝑡𝑡𝑡
∑∞

𝑑𝑑𝑑𝑑 𝐹𝐹𝑅𝑅𝑛𝑛/𝛪𝛪(𝑑𝑑𝑑𝑑𝑑
𝑑𝑑. For sufficiently large 𝑑𝑑, the Hilbert function agrees with a univariate polynomial in 𝑑𝑑

over the rational numbers, called the Hilbert polynomial. The degree of regularity 𝐷𝐷reg is the smallest
integer such that this is true. The quantity𝐷𝐷reg plays an important role in the cost of the algorithm. The
degree of 𝐼𝐼, denoted by deg(𝐼𝐼𝐼, is the dimension of𝑅𝑅𝑛𝑛/𝐼𝐼 as a 𝑘𝑘-vector space. If the ideal 𝐼𝐼 is generated by
a regular sequence of degrees 𝑑𝑑0, … , 𝑑𝑑𝑚𝑚𝑚𝑚, then its Hilbert series equals

𝐻𝐻𝑅𝑅𝑛𝑛/𝛪𝛪(𝑡𝑡𝑡𝑡
∏𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 (1 + 𝑡𝑡 𝑡 𝑡𝑡
2 + ⋯ + 𝑡𝑡𝑑𝑑𝑖𝑖−1)

(1−  𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛

=
∏𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 (1−  𝑡𝑡
𝑑𝑑𝑖𝑖)

(1−  𝑡𝑡𝑡𝑛𝑛 .

From this, we deduce that deg(𝐼𝐼𝐼𝐼  ∏𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 and𝐷𝐷reg =1  +∑𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 (𝑑𝑑𝑖𝑖 −1 ).
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Themain result is that if𝑓𝑓0, … , 𝑓𝑓𝑚𝑚𝑚𝑚 is a regular sequence on𝑅𝑅𝑛𝑛, then computing aGröbner basis with
respect to the grevlex order using the F5 algorithm can be performed within

𝒪𝒪((
𝑛𝑛 𝑛 𝑛𝑛reg

𝐷𝐷reg
)
𝜔𝜔

)

operations in 𝑘𝑘, where 𝜔𝜔 𝜔 𝜔𝜔𝜔 𝜔𝜔 is the matrix multiplication exponent.

CostsofGröbnerbasis conversionandofbacksubstitution. FGLMis an algorithm that
converts a Gröbner basis for 𝐼𝐼with respect to one order, to a Gröbner basis for 𝐼𝐼with respect to a second
order in𝒪𝒪𝒪𝒪𝒪 deg(𝐼𝐼𝐼3)operations in 𝑘𝑘. Finally, if 𝑘𝑘 equals𝔽𝔽𝑝𝑝𝑛𝑛, the cost of factoring a univariate polynomial
in 𝔽𝔽𝑝𝑝𝑛𝑛[𝑥𝑥𝑥 of degree 𝑑𝑑 is 𝒪𝒪𝒪𝒪𝒪3𝑛𝑛2 + 𝑑𝑑𝑑𝑑3), as proved in [29].

2.6 Integral cryptanalysis

Throughout this paper, we use integral attacks as an umbrella term for attacks relying on summing the
outputs of a function over a well-chosen input set, each using a different heuristic for constructing the
set. We restrict ourselves to input sets that form an affine space over the field 𝔽𝔽2.

This section is organized as follows. In subsection 2.6.1, we make explicit the link between functions
defined on an affine space and their representation on this space as a multivariate polynomial, called
the algebraic normal form. In subsection 2.6.2, we introduce an intuitive notion of the derivative of a
function and show how it can be computed bymeans of summation of outputs of the function. Finally,
we present the high-level idea behind an integral attack in subsection 2.6.4.

2.6.1 Algebraic normal form

To understand how to find input spaces for an integral attack, we need to explain how to represent the
restriction of a vectorial Boolean function to some affine space as a tuple of multivariate polynomials:
the algebraic normal form (ANF). We present the necessary tools and results from computational com-
mutative algebra and make the relation between the algebraic normal form and substitutions, which
determine the input sets, explicit.

Variables correspond to the bits which are controlled by an adversary, e.g., the diversifier symbols. We
also refer to these symbols as the input symbols. Let 𝑝𝑝0, … , 𝑝𝑝𝑛𝑛𝑛𝑛 be polynomials of the form 𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖 or
𝑝𝑝𝑖𝑖 = 𝑐𝑐𝑖𝑖 +∑

𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 for constants 𝑐𝑐𝑖𝑖 ∈ 𝔽𝔽2 and coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝔽𝔽2. During cryptanalysis, wemake use of

a set of rewrite rules of the form 𝑥𝑥𝑖𝑖 → 𝑝𝑝𝑖𝑖, i.e., we substitute 𝑥𝑥𝑖𝑖 with the polynomial 𝑝𝑝𝑖𝑖. Rules of the form
𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 are said to be trivial in the sense that no substitution is performed. A set of rewrite rules defines
a set of polynomials of the form 𝑥𝑥𝑖𝑖 − 𝑝𝑝𝑖𝑖, which is completely specified by a tuple (𝐴𝐴𝐴𝐴𝐴𝐴 , where𝐴𝐴 𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖)
is an 𝑛𝑛 𝑛 𝑛𝑛matrix over 𝔽𝔽2 and 𝑐𝑐 𝑐𝑐 𝑐𝑐0, … , 𝑐𝑐𝑛𝑛𝑛𝑛) is a vector in 𝔽𝔽𝑛𝑛2 . The matrix𝐴𝐴 is in row echelon form, up
to a permutation of its rows, which implies that the order in which the corresponding rewrite rules are
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applied does not matter. The tuple (𝐴𝐴𝐴 𝐴𝐴𝐴 defines the affine space 𝑉𝑉 𝑉 𝑉𝑉𝑉 𝑉 𝑉𝑉𝑛𝑛2 ∶ 𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴 of points that
satisfy the equation𝐴𝐴𝐴𝐴𝐴  𝐴𝐴.

We have seen that a rewrite rule of the form 𝑥𝑥𝑖𝑖 → 𝑝𝑝𝑖𝑖 give us a relation of the form 𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑖𝑖. Moreover,
we have relations of the form 𝑥𝑥2𝑖𝑖 = 𝑥𝑥𝑖𝑖 due to the fact that the square on 𝔽𝔽2 is the identity map. We can
introduce these relations by working with polynomials modulo the ideal 𝐼𝐼 generated by the set

𝐺𝐺 𝐺𝐺𝐺𝐺 20 − 𝑥𝑥0, … , 𝑥𝑥2𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑛𝑛, 𝑥𝑥0 − 𝑝𝑝0, … , 𝑥𝑥𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑛𝑛𝑛𝑛} .

For our purposes, the central algebraic object is the quotient ring 𝑅𝑅𝑛𝑛/𝐼𝐼.
Polynomials in𝑅𝑅𝑛𝑛 give rise to elements of Maps[𝑉𝑉𝑉 𝑉𝑉2]. Indeed, for any point 𝑎𝑎 𝑎𝑎𝑎 , there is a unique

ring homomorphism 𝜀𝜀𝑎𝑎 ∶ 𝑅𝑅𝑛𝑛 → 𝔽𝔽2 with 𝜀𝜀𝑎𝑎(𝑥𝑥𝑖𝑖)=  𝑎𝑎𝑖𝑖 given by substituting 𝑥𝑥𝑖𝑖 by 𝑎𝑎𝑖𝑖. This leads to a map
𝜙𝜙𝜙𝜙𝜙 𝑛𝑛 → 𝔽𝔽𝑉𝑉2 that is defined by 𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙 with 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑎𝑎(𝑝𝑝𝑝 for all 𝑎𝑎 𝑎𝑎𝑎 . The kernel of 𝜙𝜙 is equal to 𝐼𝐼.
By the first isomorphism theorem for rings [13, p. 247], there is an isomorphism 𝜙𝜙 between 𝔽𝔽𝑉𝑉2 and𝑅𝑅𝑛𝑛/𝐼𝐼.

The set 𝐺𝐺 forms a Gröbner basis [13, p. 78] for 𝐼𝐼 with respect to the lexicographic order. Define
𝑊𝑊 𝑊𝑊 𝑊𝑊 𝑊𝑊𝑊 𝑛𝑛2 ∶ 𝑢𝑢𝑖𝑖 = 0 if 𝑥𝑥𝑖𝑖 ≠ 𝑝𝑝𝑖𝑖} as the set of vectors for which the 𝑖𝑖th component is zero if 𝑥𝑥𝑖𝑖 is
eliminated by a substitution. The remainder of any polynomial 𝑝𝑝 𝑝𝑝𝑝 𝑛𝑛 on division by 𝐺𝐺 is unique and
of the form

𝑝𝑝 rem𝐺𝐺 𝐺 𝐺
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑢𝑢𝑥𝑥𝑢𝑢 ,

for certain constant bits 𝛼𝛼𝑢𝑢 ∈𝔽𝔽 2 [13, p. 83]. Therefore, the set of all possible remainders after division by
𝐺𝐺, which we denote as𝑅𝑅𝐺𝐺, forms a complete set of coset representatives of 𝐼𝐼 in𝑅𝑅𝑛𝑛. Indeed, let𝜓𝜓𝜓𝜓𝜓 𝑛𝑛 →
𝑅𝑅𝑛𝑛 be defined by 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓   rem𝐺𝐺 for all 𝑝𝑝 𝑝𝑝𝑝 𝑛𝑛. The kernel of 𝜓𝜓 is equal to 𝐼𝐼. By the first isomorphism
theorem for rings, there is an isomorphism 𝜓𝜓 between 𝑅𝑅𝑛𝑛/𝐼𝐼 and 𝑅𝑅𝐺𝐺.
To conclude, we have an isomorphism𝒩𝒩𝐺𝐺 = 𝜓𝜓 𝜓 𝜙𝜙 between the set of Boolean functions defined on

𝑉𝑉 and the set of remainders 𝑅𝑅𝐺𝐺. We are now able to make precise how a function is represented on𝑉𝑉.

Definition 8. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   2 be a Boolean function defined on 𝑉𝑉. The representation of 𝑓𝑓 as a multi-
variate polynomial, called the algebraic normal form (ANF) of 𝑓𝑓, is defined as𝒩𝒩𝐺𝐺(𝑓𝑓𝑓.

The degree of a remainder𝑝𝑝 𝑝𝑝𝑝 𝐺𝐺with𝑝𝑝 𝑝𝑝  is equal to deg(𝑝𝑝) = max{HW(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢     and 𝛼𝛼𝑢𝑢 ≠ 0},
which follows from the definition and the algebraic relations between the variables.

Definition 9. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   2 be a Boolean function defined on 𝑉𝑉. The algebraic degree of 𝑓𝑓, denoted by
deg(𝑓𝑓𝑓, is defined as the degree of its ANF.

If 𝑓𝑓 depends on a secret vector 𝑠𝑠 𝑠𝑠𝑠 𝜅𝜅2 , for some integer 𝑘𝑘 𝑘 𝑘, e.g., a secret key or state, then the
coefficients 𝛼𝛼𝑢𝑢 of 𝒩𝒩𝒩𝒩𝒩𝒩 are Boolean functions of the secret bits, i.e., 𝛼𝛼𝑢𝑢 maps the secret 𝑠𝑠 to some bit
𝛼𝛼𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠  2. In this case, we can rewrite the definition of the degree as deg(𝑓𝑓) = max{HW(𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
𝑊𝑊 and there exists an 𝑠𝑠 𝑠𝑠𝑠 𝜅𝜅2 with 𝛼𝛼𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠  . Note that our definitions coincide with the usual defini-
tions of algebraic normal form and algebraic degree in the case that both𝐴𝐴 and 𝑐𝑐 are zero.
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Table 2.2: Truth table of 𝑓𝑓.

𝑥𝑥 000 001 010 011 100 101 110 111

𝑓𝑓𝑓𝑓𝑓𝑓 0 1 0 0 1 0 1 1

There is a straightforward generalization of these notions to vectorial Boolean functions defined on
𝑉𝑉.

Definition 10. The algebraic normal form of 𝐹𝐹 𝐹 𝐹𝐹𝐹0, … , 𝑓𝑓𝑚𝑚𝑚𝑚) ∶ 𝑉𝑉 𝑉 𝑉𝑉𝑚𝑚2 is defined as 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩
(𝒩𝒩𝒩𝒩𝒩0), … ,𝒩𝒩𝒩𝒩𝒩𝑚𝑚𝑚𝑚)) ∈ 𝑅𝑅𝑚𝑚

𝑛𝑛 . Its algebraic degree is defined as deg(𝐹𝐹𝐹𝐹 𝐹 max{deg(𝑓𝑓0), … , deg(𝑓𝑓𝑚𝑚𝑚𝑚)}.

We illustrate how to apply rewrite rules to𝒩𝒩𝒩𝒩𝒩𝒩, where𝑓𝑓 is someBoolean function, in order to change
its properties, such as the presence of certain monomials. The resulting polynomial is the ANF of the
restriction of 𝑓𝑓 to the affine space determined by the rewrite rules.

Example 2. The function 𝑓𝑓𝑓𝑓𝑓 32 →𝔽𝔽 2 is defined by the truth table in Table 2.2. It follows that

𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩0, 𝑥𝑥1, 𝑥𝑥2)=  𝑥𝑥0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2 .

Therefore, the algebraic degree of 𝑓𝑓 is 2. Now we make the isomorphism𝒩𝒩 implicit.
We apply the rewrite rule 𝑥𝑥1 → 𝑥𝑥2. This rule, together with the trivial rules, defines the matrix

𝐴𝐴 𝐴 (
0 0 0
0 1 1
0 0 0

) .

and the constant 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   . Clearly,𝐴𝐴 is in row echelon form, up to a permutation of its rows. Moreover,
𝑉𝑉 𝑉𝑉 𝑉𝑉 𝑉 𝑉𝑉32 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴      32 ∶ 𝑣𝑣1 =𝑣𝑣 2}. Whenwe restrict𝑓𝑓 to𝑉𝑉, i.e., when we consider𝑓𝑓𝑓𝑉𝑉 ∶ 𝑉𝑉 𝑉 𝑉𝑉2,
we find that its ANF is equal to 𝑥𝑥0. The restriction has algebraic degree 1 and it depends on a single variable.
An alternative way of wording this is that we compose 𝑓𝑓 with the map 𝐿𝐿𝐿𝐿𝐿 22 → 𝑉𝑉 given by (𝑥𝑥0, 𝑥𝑥1) ↦

(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥1) and that the algebraic normal form of 𝑓𝑓 𝑓 𝑓𝑓 is equal to 𝑥𝑥0.

Like in the example, we will make the correspondence between Boolean functions and their represen-
tation as a tuple of remainders implicit in the following sections.
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2.6 Integral cryptanalysis

2.6.2 Properties of derivatives

The integral attacks that we consider in this section, rely on practically computable properties of the
derivative of a Boolean function. All definitions and results are extended to the case of vectorial Boolean
functions by applying them to each coordinate Boolean function. We define a partial order ≤ on 𝔽𝔽𝑛𝑛2 by
declaring 𝑢𝑢 𝑢 𝑢𝑢 if and only if 𝑢𝑢𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 𝑖𝑖 𝑖 𝑖, interpreting elements of 𝔽𝔽2 as the integers 0 and
1 and employing the standard total order on ℤ.

Definition 11. For vectors 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛2 , define the derivative of the monomial 𝑥𝑥𝑣𝑣 with respect to 𝑢𝑢 by

𝜕𝜕𝑢𝑢𝑥𝑥𝑣𝑣 = {
𝑥𝑥𝑣𝑣𝑣𝑣𝑣 if 𝑢𝑢 𝑢 𝑢𝑢 𝑢

0 otherwise ,

and extend linearly to functions 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2. We call 𝜕𝜕𝑢𝑢𝑓𝑓 the derivative of 𝑓𝑓 with respect to 𝑢𝑢.

Note that this definition coincides with that of the usual partial derivative.

Example 3. Let 𝑓𝑓𝑓 𝑓𝑓32 → 𝔽𝔽2 be given by 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2. Its derivatives are equal to

𝜕𝜕(0,0,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2
𝜕𝜕(0,0,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 1 + 1

𝜕𝜕(0,1,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 2
𝜕𝜕(0,1,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(1,0,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(1,0,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(1,1,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(1,1,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

The first important property of the derivative is the duality between the derivatives of 𝑓𝑓 and outputs
of 𝑓𝑓 on an affine space by means of summation.

Proposition 8. Let 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝑛𝑛2 . We have

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓 𝑓
0≤𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 and

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓
0≤𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓
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Proof. The first equality can be seen as follows. Using the ANF of 𝑓𝑓, we find that

𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓
0≤𝑤𝑤

𝛼𝛼𝑤𝑤(𝑥𝑥𝑥𝑥𝑥𝑥  𝑤𝑤

=∑
0≤𝑤𝑤

𝛼𝛼𝑤𝑤( ∑
0≤𝑢𝑢𝑢𝑢𝑢

𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢)

=∑
0≤𝑤𝑤

( ∑
0≤𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢)

=∑
0≤𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢)

=∑
0≤𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤)𝑎𝑎𝑢𝑢

=∑
0≤𝑢𝑢𝑢𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤)

=∑
0≤𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

where we have applied the definition of the derivative and used the fact that 𝑎𝑎𝑢𝑢 = 1 if and only if 0 ≤ 𝑢𝑢 𝑢
𝑎𝑎. The second equality follows from theMöbius inversion formula [40, p. 264] applied to the first.

The following corollary shows how to compute the coefficient 𝛼𝛼𝑢𝑢 of 𝑥𝑥𝑢𝑢 in 𝑓𝑓 by summing over the
outputs of 𝑓𝑓 corresponding to inputs for which 𝑢𝑢 takes on all possible values.

Corollary 2. Let 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2 and 𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎𝑛𝑛2 . We have

𝛼𝛼𝑢𝑢 =∑
0≤𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

Proof. This follows from the second equality in 8 and the fact that 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑢𝑢, by definition.

The second important property of the derivative concerns its degree.

Proposition 9. The degree of the derivative of 𝑓𝑓 with respect to 𝑢𝑢 satisfies

deg(𝜕𝜕𝑢𝑢𝑓𝑓) ≤ deg(𝑓𝑓) −HW(𝑢𝑢𝑢𝑢

Proof. Bydefinition, wehave 𝜕𝜕𝑢𝑢𝑓𝑓 𝑓 𝑓𝑢𝑢𝑢𝑢𝑢 𝛼𝛼𝑣𝑣𝑥𝑥
𝑣𝑣𝑣𝑣𝑣. Let𝑤𝑤be such that𝛼𝛼𝑤𝑤 ≠ 0 anddeg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓 𝑓 HW(𝑤𝑤𝑤𝑤𝑤𝑤.

Using that 𝑢𝑢 𝑢𝑢𝑢  and that 𝑥𝑥𝑤𝑤 is a monomial in 𝑓𝑓, we find that deg(𝜕𝜕𝑢𝑢𝑓𝑓) = HW(𝑤𝑤 𝑤𝑤𝑤𝑤𝑤   HW(𝑤𝑤𝑤𝑤
HW(𝑢𝑢𝑢𝑢  deg(𝑓𝑓) −HW(𝑢𝑢𝑢.

The coefficient of any monomial 𝑥𝑥𝑢𝑢 with the Hamming weight of 𝑢𝑢 exceeding the degree of the func-
tion is 0.

Proposition 10. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 is the coefficient 𝛼𝛼𝑢𝑢 of 𝑥𝑥𝑢𝑢 in 𝑓𝑓. In particular, if
HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then this coefficient 𝛼𝛼𝑢𝑢 is 0.
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Proof. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then deg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓) ≤ 0. This implies that 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 is a constant, i.e.,
𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 for any 𝑎𝑎 𝑎 𝑎𝑎𝑛𝑛2 . In particular, this is true for 𝑎𝑎 equal to 0. By definition, it follows that
𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑢𝑢. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then deg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓) < 0, which implies that 𝛼𝛼𝑢𝑢 is 0.

2.6.3 Division properties

The various division properties are generalizations of the integral properties from [33]. In some cases,
they allow us to accurately predict the coefficient of a monomial in the ANF of a function.

Definition 12. Let𝑋𝑋 be a multisubset of 𝔽𝔽𝑛𝑛2 and let𝐾𝐾 be a subset of 𝔽𝔽𝑛𝑛2 . We say that𝑋𝑋 has the𝐾𝐾-division
property if for all 𝑢𝑢 𝑢𝑢𝑢 𝑛𝑛2 we have that

∑
𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑢𝑢 = {
unknown if there exists a 𝑘𝑘 𝑘𝑘𝑘  such that 𝑘𝑘 𝑘𝑘𝑘  𝑘

0 otherwise.

We can trade computation time for a higher resolution.

Definition 13. Let 𝑋𝑋 be a multisubset of 𝔽𝔽𝑛𝑛2 and let 𝐾𝐾 and 𝐿𝐿 be subsets of 𝔽𝔽𝑛𝑛2 . We say that 𝑋𝑋 has the
(𝐾𝐾𝐾𝐾𝐾𝐾 -division property if for all 𝑢𝑢 𝑢𝑢𝑢 𝑛𝑛2 we have that

∑
𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑢𝑢 = {

unknown if there exists a 𝑘𝑘 𝑘𝑘𝑘  such that 𝑘𝑘 𝑘𝑘𝑘  𝑘

1 if there exists an 𝑙𝑙 𝑙𝑙𝑙  such that 𝑙𝑙 𝑙𝑙𝑙𝑙 

0 otherwise.

Propagation rules. Any function 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽𝑚𝑚2 can be modeled as the composition of “copy and
expand”, “multiply and compress”, “add and compress”, and “secret key addition” functional blocks.
Hence, we give rules for the propagation of the (𝐾𝐾𝐾𝐾𝐾𝐾 -division property through each of these blocks. In
this paragraph, the binary operator + denotes addition in ℤ and the binary operator⊕ denotes addition
in 𝔽𝔽2. In other words, to compute the propagation of a division property, we treat bits as integers.

Copy and expand. Consider the propagation through the copy and expand function

(𝑥𝑥 𝑥 𝑥𝑥𝑥0,𝑥𝑥 0,𝑥𝑥 1, … ,𝑥𝑥 𝑛𝑛𝑛𝑛))∶𝔽𝔽  𝑛𝑛2 → 𝔽𝔽𝑛𝑛𝑛𝑛2 .

Suppose that themultiset at the input has the (𝐾𝐾𝐾𝐾𝐾𝐾 -divisionproperty. Themultiset at the output
has the (𝐾𝐾′, 𝐿𝐿′)-division property, where𝐾𝐾′ and 𝐿𝐿′ are computed as follows. Write𝐴𝐴 𝐴 𝐴𝐴 for the
insertion of the element 𝑎𝑎 into the multiset𝐴𝐴. For each 𝑘𝑘 𝑘𝑘𝑘 , do

𝐾𝐾′ ← {
(0, 0, 𝑘𝑘1, … , 𝑘𝑘𝑛𝑛𝑛𝑛) if 𝑘𝑘0 = 0 ,

(1, 0, 𝑘𝑘1, … , 𝑘𝑘𝑛𝑛𝑛𝑛), (0, 1, 𝑘𝑘1, … , 𝑘𝑘𝑛𝑛𝑛𝑛) if 𝑘𝑘0 = 1 .
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For each 𝑙𝑙 𝑙 𝑙𝑙, do

𝐿𝐿′ ← {
(0, 0, 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛𝑛𝑛) if 𝑙𝑙0 = 0 ,

(1, 0, 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛𝑛𝑛), (0, 1, 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛𝑛𝑛), (1, 1, 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛𝑛𝑛) if 𝑙𝑙0 = 1 .

Multiply and compress. Consider the propagation through the multiply and compress function

(𝑥𝑥 𝑥 𝑥𝑥𝑥0𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛𝑛𝑛)) ∶ 𝔽𝔽𝑛𝑛2 → 𝔽𝔽𝑛𝑛𝑛𝑛2 .

Suppose that themultiset at the input has the (𝐾𝐾𝐾𝐾𝐾𝐾 -divisionproperty. Themultiset at the output
has the (𝐾𝐾′, 𝐿𝐿′)-division property, where𝐾𝐾′ and 𝐿𝐿′ are computed as follows. For each 𝑘𝑘 𝑘𝑘𝑘 , do

𝐾𝐾′ ← (⌈
𝑘𝑘0 + 𝑘𝑘1
2 ⌉, 𝑘𝑘2, … , 𝑘𝑘𝑛𝑛𝑛𝑛) .

For each 𝑙𝑙 𝑙 𝑙𝑙 such that (𝑙𝑙0, 𝑙𝑙1) equals (0, 0) or (1, 1), do

𝐿𝐿′ ← (⌈
𝑙𝑙0 + 𝑙𝑙1
2 ⌉, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛𝑛𝑛) .

Add and compress. Consider the propagation through the add and compress function

(𝑥𝑥 𝑥 𝑥𝑥𝑥0 ⊕ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛𝑛𝑛)) ∶ 𝔽𝔽𝑛𝑛2 → 𝔽𝔽𝑛𝑛𝑛𝑛2 .

Suppose that themultiset at the input has the (𝐾𝐾𝐾𝐾𝐾𝐾 -divisionproperty. Themultiset at the output
has the (𝐾𝐾′, 𝐿𝐿′)-division property, where𝐾𝐾′ and 𝐿𝐿′ are computed as follows, for each 𝑘𝑘 𝑘𝑘𝑘  and
𝑙𝑙 𝑙 𝑙𝑙, respectively. For each 𝑘𝑘 𝑘𝑘𝑘  such that (𝑘𝑘0, 𝑘𝑘1) equals (0, 0), (1, 0), or (0, 1), do

𝐾𝐾′ ← (𝑘𝑘0 + 𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑛𝑛𝑛𝑛) .

Write𝐴𝐴 𝐴 𝐴𝐴 for the insertion of the element 𝑎𝑎 into themultiset𝐴𝐴 if it is not present and removal
otherwise. For each 𝑙𝑙 𝑙 𝑙𝑙 such that (𝑙𝑙0, 𝑙𝑙1) equals (0, 0), (1, 0), or (0, 1), do

𝐿𝐿′ ⇄ (𝑙𝑙0 + 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛𝑛𝑛) .

This propagation rule has the so-called cancellation property; in effect, we are only keeping those
vectors that appear an odd number of times.

Secret key addition. Let 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖. Consider the propagation through the function

(𝑥𝑥 𝑥 𝑥𝑥𝑥0, … , 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖 + 𝑠𝑠𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖, … , 𝑥𝑥𝑛𝑛𝑛𝑛)) ∶ 𝔽𝔽𝑛𝑛2 → 𝔽𝔽𝑛𝑛2
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that adds a secret bit 𝑠𝑠𝑖𝑖 to𝑥𝑥𝑖𝑖. For every 𝑙𝑙 𝑙 𝑙𝑙with 𝑙𝑙𝑖𝑖 = 0, we insert the vector (𝑙𝑙0, … , 𝑙𝑙𝑖𝑖𝑖𝑖, 1, 𝑙𝑙𝑖𝑖𝑖𝑖, … , 𝑙𝑙𝑛𝑛𝑛𝑛)
into𝐾𝐾. This propagation rule has the so-called unknown-producing property.

Algorithms. Suppose that we can write 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽𝑚𝑚2 as 𝑓𝑓 𝑓 𝑓𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖 R𝑖𝑖 for some positive integer 𝑙𝑙 𝑙 𝑙

and functional blocks R𝑖𝑖 of the types that were described in the previous paragraph andwith compatible
domains and codomains. Using the appropriate propagation rule of the previous paragraph,we compute
the (𝐾𝐾𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖)-division property at the output of R𝑖𝑖 from the (𝐾𝐾𝑖𝑖, 𝐿𝐿𝑖𝑖)-division property at the input of
R𝑖𝑖 for all 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖. Conceptually, this leads to the following ordered (𝑙𝑙𝑙𝑙𝑙-partite graph𝐺𝐺 𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺𝐺.
Put 𝑉𝑉𝑖𝑖 = {(𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖 ∪ 𝐿𝐿𝑖𝑖} for the 𝑖𝑖th level, where we put the index to make the nodes unique. The
set of nodes is equal to𝑉𝑉𝑉𝑉  𝑙𝑙𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖. The set of edges𝐸𝐸 is formed by all unordered pairs {(𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖𝑖  𝑖𝑖𝑖𝑖
(𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖) forwhich𝑤𝑤 is generated by 𝑣𝑣 through a propagation rule. We summarize several algorithms
for finding sets of paths in, or, more generally, subgraphs of𝐺𝐺.

Breadth-first search. The breadth-first search (BFS) algorithm traverses the graph level by level by ap-
plying the propagation rules to generate the nodes. Because it explores the entire graph, it requires
generation of every node, which makes it very expensive. Hence, we mention it for historical rea-
sons and because it is conceptually the easiest algorithm to understand.

Binary integer programming. By combining functional blocks and propagation rules, we may as-
sume that the R𝑖𝑖 are the round functions of 𝑓𝑓. In this context, an 𝑙𝑙-round division trail is a path
in the graph that contains one node from each of the levels. We can specify a start node and an
end node, typically a standard basis vector. This determines a set of division trails. We can effi-
ciently model this set as a system of linear inequalities in variables that are required to be either 0
or 1. This is called a binary integer programming (BIP) model. Various models (for various divi-
sion properties) exist with different solving times. See, for example, [22] and [30]. At the time of
writing a popular solver for BIP models is the one by Gurobi.

Graph pruning. In many cases, we do not need to visit every node in the graph to be able to answer a
query like “does the 𝑖𝑖th output bit of 𝑓𝑓 sum to zero over a given multiset𝑋𝑋 or not?” Like before,
we use the BFS algorithm to traverse each of the 𝑙𝑙 levels. However, when we traverse the 𝑗𝑗th level,
we use a BIP model of the propagation of the𝐾𝐾-division property through 𝑙𝑙 𝑙𝑙𝑙  rounds of 𝑓𝑓 to
efficiently identify subgraphs that we do not need to visit. For more details, we refer to [43].

2.6.4 Framework of an integral attack

Integral attacks consist of an offline phase followed by an online phase:

Offline phase. The offline phase is an analysis step where the adversary accesses the polynomial repre-
sentations of the step functions of a primitive that depends on some secret. They apply rewrite
rules to these polynomial representations in order to simplify it, e.g., eliminating variables and low-
ering the degree. Importantly, the rewrite rules determine an affine input space 𝑉𝑉. Using combi-
natorial arguments involving the degree or by propagating an initial division property vector [41],
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the adversary is able to determine the vector of coefficients of some target monomial. To be able
to mount a successful attack, this vector should either be a constant that does not depend on the
secret at all or depend on the secret in a way that leads to a system of equations that is easy to solve,
e.g., linear dependence. The outcome of this step is an affine input space𝑉𝑉 and a targetmonomial
𝑥𝑥𝑢𝑢.

Online phase. The online phase is an execution stepwhere the adversary accesses a cryptographic oracle
for a fixed secret. They recover the vector of coefficients of the target monomial 𝑥𝑥𝑢𝑢 by summing
over the affine input space𝑉𝑉 that was obtained during the offline phase. The vector of coefficients
is then used as a distinguisher or to set up a system of equations in the secret bits that may lead to
recovery of the secret.

2.7 Differential cryptanalysis

Suppose that 𝐺𝐺 and 𝐻𝐻 are finite abelian groups and consider a function 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 between 𝐺𝐺 and
𝐻𝐻. Differential cryptanalysis of 𝑓𝑓 is about answering the following question. Given a uniform random
element 𝑥𝑥

$
← 𝐺𝐺 and a fixed elementΔin ∈ 𝐺𝐺, what is the shape of the distribution of the random element

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓𝑓in) ∈ 𝐻𝐻? For example, what is the probability that the random element equalsΔout ∈ 𝐻𝐻?
To study this question systematically, we introduce some basic terminology.

2.7.1 Differential probability

The tuple (Δin, Δout) ∈ 𝐺𝐺 𝐺 𝐺𝐺 is called a differential over 𝑓𝑓, Δin is called an input difference, and Δout

is called an output difference. The main quantity of interest is the probability that a given differential
occurs.

Definition 14. The differential probability (DP) of (Δin, Δout) is defined as

DP𝑓𝑓(Δin, Δout)∶ = Pr[𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓in) = Δout] .

The definition provides a concrete method to compute DP𝑓𝑓 by counting the number of solutions to
the differential equation. This motivates the definition of a solution set.

Definition 15. The solution set of (Δin, Δout) is the set

𝑍𝑍𝑓𝑓(Δin, Δout)∶ = {𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥   𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥 in) = Δout} .

Because 𝑥𝑥 is a uniform randomelement, we readily obtain the following correspondence betweenDP𝑓𝑓
and the cardinality of the solution set.
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Proposition 11. The DP of (Δin, Δout) is equal to

DP𝑓𝑓(Δin, Δout) =
|𝑍𝑍𝑓𝑓(Δin, Δout)|

|𝐺𝐺𝐺 .

Tuples (𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥in)with 𝑥𝑥 𝑥 𝑥𝑥𝑓𝑓(Δin, Δout) are said to follow the differential (Δin, Δout). If such tuples
exist, then we say that the input difference Δin is compatible with the output difference Δout over 𝑓𝑓 and
call (Δin, Δout) a valid differential.

2.7.2 Differential trails

Suppose now that 𝑓𝑓 is obtained as the composition of 𝑘𝑘 round functions. That is, we assume that

𝑓𝑓 𝑓
𝑘𝑘𝑘𝑘
○
𝑖𝑖𝑖𝑖

R𝑖𝑖 .

Here, R𝑖𝑖 ∶ 𝐺𝐺𝑖𝑖 → 𝐺𝐺𝑖𝑖𝑖𝑖 is a function between finite abelian groups 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑖𝑖𝑖𝑖. We write 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 R𝑟𝑟𝑟𝑟 ∘
⋯ ∘ R0 and define 𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 id with id the identity function. To study differentials over 𝑓𝑓, we study the
propagation of differences through the R𝑖𝑖.

Definition 16. A 𝑘𝑘-round differential trail over 𝑓𝑓 is a sequence

𝑄𝑄 𝑄𝑄 𝑄𝑄(0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) ∈
𝑘𝑘

∏
𝑖𝑖𝑖𝑖

𝐺𝐺𝑖𝑖

that satisfiesDPR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) > 0 for 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑖 𝑖.

Let us further suppose that R𝑖𝑖 = 𝜄𝜄𝑖𝑖 ∘ L𝑖𝑖 ∘N𝑖𝑖 is the composition of a round constant addition, a linear
layer, and a non-linear layer. Sometimes we specify a higher-resolution differential trail as

𝑄𝑄 𝑄𝑄𝑄 𝑄𝑄−1, 𝑎𝑎0, 𝑏𝑏0, 𝑏𝑏0, … , 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑏𝑏𝑘𝑘)

by giving the intermediate differences between N𝑖𝑖 and L𝑖𝑖 as well. They are related by the equations
𝑏𝑏𝑖𝑖 = L𝑖𝑖(𝑎𝑎𝑖𝑖) = 𝑞𝑞𝑖𝑖𝑖𝑖 for 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑖 𝑖.

We write DT(Δin, Δout) for the set of all differential trails in the differential (Δin, Δout). These are
the trails with 𝑞𝑞(0) = Δin and 𝑞𝑞(𝑘𝑘𝑘 = Δout. We call (Δin, Δout) the enveloping differential of the trails
in DT(Δin, Δout). If |DT(Δin, Δout)| ≥ 2, then we say that trails cluster together in the differential
(Δin, Δout). By deleting the initial difference Δin and final difference Δout of a differential trail we are
left with a differential trail core A differential trail core obtained in this way is said to be in the differen-
tial (Δin, Δout). Note that a differential trail core actually defines a set of differential trails with the same
inner differences.

Let 𝐸𝐸𝑖𝑖 be the event that corresponds to the predicate R𝑖𝑖(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  R𝑖𝑖(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (𝑖𝑖𝑖) = 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖. We
now define the DP of a differential trail.
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Definition 17. TheDP of a differential trail is defined as

DP𝑓𝑓(𝑄𝑄𝑄 𝑄𝑄
𝑘𝑘

∏
𝑖𝑖𝑖𝑖

Pr[𝐸𝐸𝑖𝑖 ∣
𝑖𝑖𝑖𝑖

⋂
𝑗𝑗𝑗𝑗

𝐸𝐸𝑗𝑗] .

Each round differential (𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) has a solution set 𝑍𝑍R𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖). Consider the transformed set

of points𝑍𝑍𝑖𝑖 ∶= 𝑓𝑓𝑓𝑓𝑓𝑓−1(𝑍𝑍R𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖)) at the input of𝑓𝑓. For a tuple (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥(0)) to follow the differential

trail, it is required that 𝑥𝑥 𝑥 𝑥𝑥𝑓𝑓(𝑄𝑄𝑄 𝑄𝑄 ⋂𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖. The DP of the trail is the fraction of states 𝑥𝑥 that satisfy

this equation.

Proposition 12. TheDP of a differential trail is equal to

DP𝑓𝑓(𝑄𝑄𝑄 𝑄
|𝑍𝑍𝑓𝑓(𝑄𝑄𝑄𝑄
|𝐺𝐺𝐺 .

Definition 18. The round differentials are said to be independent if the corresponding events are, i.e., if

DP𝑓𝑓(𝑄𝑄𝑄 𝑄
𝑘𝑘𝑘𝑘

∏
𝑖𝑖𝑖𝑖

Pr[𝐸𝐸𝑖𝑖]

=
𝑘𝑘𝑘𝑘

∏
𝑖𝑖𝑖𝑖

DPR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) .

Any given tuple (𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥in) follows exactly one differential trail. Hence, the DP of the differential
(Δin, Δout) is the sum of the DPs of all differential trails with initial difference Δin and final difference
Δout.

Proposition 13.

DP𝑓𝑓(Δin, Δout)=  ∑
𝑄𝑄𝑄DT(Δin,Δout)

DP𝑓𝑓(𝑄𝑄𝑄 𝑄

Proof.

DP𝑓𝑓(Δin, Δout)=  Pr[𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  in)=Δ  out]

= ∑
𝑄𝑄𝑄DT(Δin,Δout)

Pr[{𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  in)=Δ  out} ∩
𝑘𝑘𝑘𝑘

⋂
𝑖𝑖𝑖𝑖

𝐸𝐸𝑖𝑖]

= ∑
𝑄𝑄𝑄DT(Δin,Δout)

DP𝑓𝑓(𝑄𝑄𝑄 𝑄

Given any differential (Δin, Δout) over a round functionR, it is typically easy to compute its DP value.
By specifying the intermediate differences we obtain a differential trail (Δin, 𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 out). Suppose that N
is the application of𝑚𝑚 S-boxes in parallel. Thanks to the linearity of L, we have 𝑐𝑐𝑐  L(𝑏𝑏𝑏 and due to the
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2.8 Linear cryptanalysis

fact that a difference is invariant under addition of a constant, all valid such differential trails are of the
form (Δin,L−1(Δout), Δout, Δout). Therefore, the differential (Δin, Δout) contains only a single trail and
its DP is the DP of the differential (Δin,L−1(Δout)) over N:

DPR(Δin, Δout) = ∏
0≤𝑗𝑗𝑗𝑗𝑗

DPS𝑗𝑗(Proj𝑗𝑗(Δin), Proj𝑗𝑗(L
−1(Δout))) .

Hence, the DP of a round differential is the product of the DP values of its S-box differentials.

2.7.3 Restrictionweight

The DP of a differential (Δin, Δout) depends on the cardinality of its solution set. In the following, we
suppose that 𝐺𝐺 and𝐻𝐻 are vector spaces of dimension 𝑛𝑛 over a finite field 𝔽𝔽𝑞𝑞. If 𝑍𝑍𝑓𝑓(Δin, Δout) is an affine
space, then the DP is equal to 𝑞𝑞dim𝑍𝑍𝑓𝑓(Δin,Δout)−𝑛𝑛. This inspires the following definition.

Definition 19. The restriction weight of a differential (Δin, Δout) that satisfies DP𝑓𝑓(Δin, Δout) > 0 is
defined as

wr(Δin, Δout) = − log𝑞𝑞DP𝑓𝑓(Δin, Δout) .

Theweight represents the number of independent linear equations over𝔽𝔽𝑞𝑞 that is necessary to describe
the solution set.

A tuple (𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥(0)) follows a trail 𝑄𝑄 𝑄𝑄𝑄𝑄 (0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) if and only if 𝑥𝑥 𝑥 𝑥𝑥𝑓𝑓(𝑄𝑄𝑄. The solution
set of each round differential can be defined by a number of equations that is equal to the weight of this
round differential. For a differential trail, we sum the weights of the round differentials.

Definition 20. The restriction weight of a differential trail𝑄𝑄 𝑄𝑄𝑄𝑄 (0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) is defined as

wr(𝑄𝑄𝑄 𝑄𝑄
𝑘𝑘𝑘𝑘

∑
𝑖𝑖𝑖𝑖

wr(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) .

We now explain the significance of this definition. If the round differentials are independent in the
sense of Definition 18, then we have that DP𝑓𝑓(𝑄𝑄𝑄𝑄𝑄𝑄  −wr(𝑄𝑄𝑄. In general, the approximation can not be
good if wr(𝑄𝑄𝑄𝑄𝑄𝑄  , since DP𝑓𝑓(𝑄𝑄𝑄 𝑄 𝑄𝑄−𝑛𝑛 if𝑄𝑄 has any tuples following it.

2.8 Linear cryptanalysis

Linear analysis of cryptographic primitives effectively is Fourier analysis on finite abelian groups. As
such, the theory is well-understood and this section serves as a recap. The ideas that we present here are
based on the works of Daemen [15], Baignères et al. [2], and Daemen and Rijmen [19]. Many of the
proofs can be found in the book by Hou [31].
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2 Preliminaries

2.8.1 Characters

Let (𝐺𝐺𝐺 𝐺𝐺 be a finite abelian group and let 𝑒𝑒 be the (finite) exponent of𝐺𝐺, i.e., the smallest integer 𝑛𝑛 such
that 𝑛𝑛𝑛𝑛 𝑛 𝑛 for all 𝑎𝑎 𝑎 𝑎𝑎.

A character of 𝐺𝐺 is a homomorphism from 𝐺𝐺 into the subgroup of C∗ consisting of the 𝑒𝑒th roots of
unity. The set of characters of𝐺𝐺 is denoted by 𝐺̂𝐺 and it forms a group under the multiplication defined
by (𝜒𝜒𝜒𝜒′)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ′(𝑎𝑎𝑎 for all 𝑎𝑎 𝑎 𝑎𝑎 and 𝜒𝜒𝜒 𝜒𝜒′ ∈ 𝐺̂𝐺. The groups 𝐺𝐺 and 𝐺̂𝐺 are isomorphic, but this
isomorphism is not canonical.

For a fixed isomorphism between 𝐺𝐺 and 𝐺̂𝐺 and for each 𝑎𝑎 𝑎 𝑎𝑎, we write 𝜒𝜒𝑎𝑎 for the image of 𝑎𝑎 under
this isomorphism. In particular, the character 𝜒𝜒0 that is defined by 𝜒𝜒0(𝑎𝑎𝑎𝑎  𝑎 for all 𝑎𝑎 𝑎 𝑎𝑎 is called the
trivial character and it is the identity element of the group 𝐺̂𝐺.

Now, let (𝐺𝐺𝐺 𝐺𝐺 𝐺𝐺 be the commutative ring that is obtained by introducing a multiplicative structure
on𝐺𝐺. This is always possible by the fundamental theorem of finite abelian groups. A character 𝜒𝜒 𝜒 𝐺̂𝐺 is
called a generating character for𝐺𝐺 if𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏 for all 𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎. If a commutative ring has a generating
character for its additive group, then 𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏(𝑎𝑎𝑎. In the case that𝐺𝐺 is the direct sum
of 𝑛𝑛 copies of a commutative ring𝑅𝑅 and if𝑅𝑅has a generating character, say𝜙𝜙, thenwe obtain a generating
character 𝜒𝜒 for𝐺𝐺 by setting 𝜒𝜒𝜒𝜒𝜒1, … ,𝑎𝑎 𝑛𝑛)=  𝜙𝜙𝜙𝜙𝜙1) ⋯ 𝜙𝜙𝜙𝜙𝜙𝑛𝑛). It holds that 𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ⊤𝑏𝑏𝑏, where
the multiplication in𝐺𝐺 is defined component-wise.

As an example, consider 𝐺𝐺 equal to 𝔽𝔽𝑞𝑞 with 𝑞𝑞 𝑞 𝑞𝑞𝑑𝑑 and put 𝜔𝜔 𝜔𝜔𝜔 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋. Let Tr ∶ 𝔽𝔽𝑞𝑞 → 𝔽𝔽𝑝𝑝 be the
absolute trace function that is defined by Tr(𝑥𝑥𝑥𝑥  𝑥𝑑𝑑𝑑𝑑

𝑖𝑖𝑖𝑖 𝑥𝑥
𝑝𝑝𝑖𝑖. This is a linear mapping. Each 𝑢𝑢 𝑢𝑢𝑢 𝑞𝑞

defines a generating character 𝜒𝜒𝑢𝑢 for 𝔽𝔽𝑞𝑞 that is defined by

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥𝑥  Tr(𝑢𝑢𝑢𝑢𝑢, 𝑥𝑥 𝑥𝑥𝑥 𝑞𝑞 .

As a second example, consider 𝐺𝐺 equal to 𝔽𝔽𝑛𝑛𝑞𝑞 , which is a direct sum of 𝑛𝑛 copies of 𝔽𝔽𝑞𝑞. Hence, each
𝑢𝑢 𝑢𝑢𝑢 𝑛𝑛𝑞𝑞 gives a generating character 𝜒𝜒𝑢𝑢 for 𝔽𝔽𝑛𝑛𝑞𝑞 that is defined by

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥𝑥  Tr(𝑢𝑢⊤𝑥𝑥𝑥, 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 .

2.8.2 The Fourier transform

Consider the setC𝐺𝐺 of functions𝑓𝑓𝑓𝑓𝑓𝑓   C. Fix anorderingof the element of𝐺𝐺, e.g.,𝐺𝐺 𝐺 𝐺𝐺𝐺0, … ,𝑎𝑎 𝑛𝑛𝑛𝑛}.
We write 𝜐𝜐𝑓𝑓 = (𝑓𝑓𝑓𝑓𝑓0), … , 𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛)) for the finite sequence of the output values of 𝑓𝑓. By identifying a
function 𝑓𝑓 with the vector 𝜐𝜐𝑓𝑓 ∈ C|𝐺𝐺𝐺, C𝐺𝐺 can be seen as a finite-dimensional complex inner product
space with inner product

⟨𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓
𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    C𝐺𝐺 .
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For any 𝑓𝑓 𝑓 C𝐺𝐺, the inner product induces a norm by setting

‖𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓
1

2 .

The standard basis of C𝐺𝐺 is formed by the set of Dirac delta functions {𝛿𝛿𝑎𝑎 ∈ C𝐺𝐺 ∶ 𝑎𝑎 𝑎 𝑎𝑎𝑎, which are
defined by

𝛿𝛿𝑎𝑎(𝑏𝑏𝑏 𝑏 {
1 if 𝑎𝑎 𝑎𝑎𝑎𝑎 

0 if 𝑎𝑎 𝑎 𝑎𝑎𝑎

In the context of linear analysis, the solution to the problem of secret key translation lies in changing
the basis of C𝐺𝐺 to the set of characters of 𝐺𝐺. For any 𝑎𝑎𝑎𝑎𝑎𝑎   𝑎𝑎, the corresponding characters satisfy
⟨𝜒𝜒𝑎𝑎, 𝜒𝜒𝑏𝑏⟩=  |𝐺𝐺𝐺𝐺𝐺𝑎𝑎(𝑏𝑏𝑏. By normalizing the characters, we obtain an orthonormal basis

Φ𝐺𝐺 = {𝜙𝜙𝑎𝑎 ∶ 𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎

where 𝜙𝜙𝑎𝑎 = |𝐺𝐺𝐺−
1

2 𝜒𝜒𝑎𝑎. By projecting 𝑓𝑓 ontoΦ𝐺𝐺, we find that

𝑓𝑓 𝑓 𝑓
𝑎𝑎𝑎𝑎𝑎

⟨𝑓𝑓𝑓 𝑓𝑓𝑎𝑎⟩𝜙𝜙𝑎𝑎 .

The operatorℱ∶ C𝐺𝐺 → C𝐺𝐺 that is defined byℱ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑎𝑎⟩ for all 𝑎𝑎 𝑎 𝑎𝑎 is called the Fourier
transform. By identifying a function𝑓𝑓with 𝜐𝜐𝑓𝑓, the Fourier transform is best described as assigning to𝑓𝑓 its
coordinates in the normalized character basis. The Plancherel theorem asserts that the Fourier transform
is unitary, i.e., we have

⟨ℱ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓𝑓 𝑓 C𝐺𝐺 .

Let us return to the question of how to address the problem of secret key translation. Let 𝑏𝑏 𝑏𝑏𝑏 . We
define the translation operator𝑇𝑇𝑏𝑏 ∶ C𝐺𝐺 → C𝐺𝐺 by (𝑇𝑇𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for all 𝑎𝑎 𝑎 𝑎𝑎. Moreover, we define
themodulation operator𝑀𝑀𝑏𝑏 ∶ C𝐺𝐺 → C𝐺𝐺 by (𝑀𝑀𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑏𝑏(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 for all 𝑎𝑎 𝑎 𝑎𝑎. The big insight is that
translation turns into modulation when changing from the standard basis to the normalized character
basis, i.e.,

𝑇𝑇𝑏𝑏 = ℱ−1 ∘ 𝑀𝑀𝑏𝑏 ∘ ℱ, 𝑏𝑏 𝑏𝑏𝑏𝑏 

Let 𝐻𝐻 be a finite abelian group and let 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    be a mapping between 𝐺𝐺 and 𝐻𝐻. We want a
representation of 𝐹𝐹 in C𝐺𝐺. To that end, let 𝜒𝜒 be any character of 𝐻𝐻. We take as representation the
function 𝜒𝜒 𝜒𝜒𝜒𝜒   C𝐺𝐺.
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2.8.3 Correlation

We now specialize to the case that𝐺𝐺 and𝐻𝐻 are each equal to the vector space 𝔽𝔽𝑛𝑛𝑞𝑞 over the finite field 𝔽𝔽𝑞𝑞.
Let 𝛼𝛼 𝛼 𝛼𝛼𝑛𝑛𝑞𝑞 → 𝔽𝔽𝑛𝑛𝑞𝑞 be a transformation of 𝔽𝔽𝑛𝑛𝑞𝑞 . We consider pairs (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 that we call linear ap-

proximations of 𝛼𝛼. We refer to 𝑢𝑢 as the outputmask and to 𝑣𝑣 as the inputmask. The linear approximation
(0, 0) is called trivial. The correlation of the linear approximation is defined as

C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢−
𝑛𝑛

2ℱ(𝜒𝜒𝑢𝑢 ∘ 𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝛼

We call the masks 𝑢𝑢 and 𝑣𝑣 compatible over 𝛼𝛼 if C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 is nonzero. In general, correlations are complex
numbers.

2.8.4 Linear trails

Suppose now that 𝛼𝛼 is obtained as the composition of 𝑘𝑘 round functions. That is, we assume that

𝛼𝛼 𝛼
𝑘𝑘𝑘𝑘
○
𝑖𝑖𝑖𝑖

R𝑖𝑖 .

The analysis of a linear approximation of 𝛼𝛼 relies on linear approximations of its rounds. This naturally
leads to the notion of a linear trail [14].

Definition 21. A sequence 𝑄𝑄 𝑄𝑄𝑄𝑄 (0),𝑞𝑞 (1), … ,𝑞𝑞 (𝑘𝑘𝑘)∈  (𝔽𝔽𝑛𝑛𝑞𝑞 )𝑘𝑘𝑘𝑘 that satisfies CR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖,𝑞𝑞 (𝑖𝑖𝑖𝑖𝑖) ≠ 0 for

0 ≤ 𝑖𝑖 𝑖𝑖𝑖  𝑖 𝑖 is called a linear trail.

We write LT(𝑢𝑢𝑢 𝑢𝑢𝑢 for the set of all linear trails in the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢. These are the trails
with 𝑞𝑞(0) = 𝑢𝑢 and 𝑞𝑞(𝑘𝑘𝑘 =𝑣𝑣 . We call (𝑢𝑢𝑢 𝑢𝑢𝑢 the enveloping linear approximation of the trails in LT(𝑢𝑢𝑢 𝑢𝑢𝑢. If
|LT(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢 𝑢, then we say that trails cluster together in the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢.

By deleting the initial linear mask 𝑢𝑢 and final linear mask 𝑣𝑣 of a linear trail (𝑢𝑢𝑢 𝑢𝑢(1), … ,𝑞𝑞 (𝑘𝑘𝑘𝑘𝑘,𝑣𝑣𝑣 we are
left with a linear trail core. A linear trail core obtained in this way is said to be in the linear approximation
(𝑢𝑢𝑢 𝑢𝑢𝑢. Note that a linear trail core actually defines a set of linear trails with the same inner linear masks.

Definition 22. The correlation contribution of a linear trail𝑄𝑄 over 𝛼𝛼 equals

C𝛼𝛼(𝑄𝑄𝑄𝑄
𝑘𝑘𝑘𝑘

∏
𝑖𝑖𝑖𝑖

CR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖,𝑞𝑞 (𝑖𝑖𝑖𝑖𝑖).

From the theory of correlation matrices [14], it follows that

C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢
𝑄𝑄𝑄LT(𝑢𝑢𝑢𝑢𝑢𝑢

C𝛼𝛼(𝑄𝑄𝑄𝑄

Given any linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢over a round functionR, it is easy to compute its correlation. By
specifying the intermediate linear masks we obtain a linear trail (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢. Thanks to the linearity of L,
we have 𝑏𝑏𝑏  L⊤(𝑐𝑐𝑐 and due to the fact that a linearmask is invariant under addition of a constant, all valid
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such linear trails are of the form (𝑢𝑢𝑢L⊤(𝑣𝑣𝑣𝑣 𝑣𝑣𝑣 𝑣𝑣𝑣. Hence the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 contains only a
single trail and its correlation contribution is the correlation of the linear approximation (𝑢𝑢𝑢L⊤(𝑣𝑣𝑣𝑣 over
the S-box layer, where the round constant addition affects the sign:

CR(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑣𝑣(𝜄𝜄𝜄𝜄𝜄𝜄 ∏
0≤𝑗𝑗𝑗𝑗𝑗

CS𝑗𝑗(Proj𝑗𝑗(𝑢𝑢𝑢𝑢 Proj𝑗𝑗(L
⊤(𝑣𝑣𝑣𝑣 𝑣

2.8.5 Linear potential andweight

Definition 23. The linear potential (LP) of a linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 is a real number and related
to the correlation by

LP𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 24. If 𝑢𝑢 and 𝑣𝑣 are compatible over 𝛼𝛼, then we can define the correlation weight of the linear
approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 as

w𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢 𝑢 log𝑞𝑞(LP𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢

Definition 25. The correlation weight of a linear trail𝑄𝑄 𝑄𝑄 𝑄𝑄(0),𝑞𝑞 (1), … ,𝑞𝑞 (𝑘𝑘𝑘) is defined as

wc(𝑄𝑄𝑄𝑄𝑄
𝑘𝑘𝑘𝑘

∑
𝑖𝑖𝑖𝑖

wc(𝑞𝑞(𝑖𝑖𝑖,𝑞𝑞 (𝑖𝑖𝑖𝑖𝑖).
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3 Research question

The central research question of this thesis is:

“Can we increase our understanding of how to design an efficient function family defined
over an arbitrary finite field that is conjectured to be PRF-secure?”

Themeaning of theword efficiency depends on the computational context and the relevant performance
measure. In hardware implementations, typical measures include latency and throughput, whereas in
the context of garbled circuits, multiplicative depth is a more appropriate measure.

This thesis focuses on function families built on cryptographic permutations, with an emphasis on
studying the interaction between their components through the lenses of differential, linear, and integral
cryptanalysis.

In chapter 4, we discuss how aligned designs have been favored due to their inherent structure, which
facilitates combinatorial reasoning about trail bounds. However, it is precisely this structure that leads
to various clustering effects. In contrast, unaligned designs avoid such clustering. However, the lack of
structure in unaligned designs makes manual trail bound analysis impractical, necessitating the use of
computer programs. Given these considerations, I prefer unaligned designs, as I believe structure to be
the foundation of any kind of successful cryptanalysis.

In chapter 6, chapter 7, and chapter 8, the nonlinear layer is based on the multiplication, either be-
tween two field elements or as a squaring operation. This operation not only exhibits ideal differen-
tial and linear properties but also remains field-agnostic, making it a versatile building block for crypto-
graphic designs.

Rather than analyzing the cryptographic permutation in isolation, we state a security claim for the
overall primitive. This allows us to reduce the number of rounds in the permutation, improving ef-
ficiency without compromising the targeted notion of security. An example of this approach is given
in chapter 6.

Finally, chapter 5 demonstrates that combining strong individual components does not automatically
result in a secure construction. This observation underscores the importance of understanding how
cryptographic building blocks interact, highlighting the need for careful integration of components to
ensure security.
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Part II

Research chapters
This part contains the scientific contributions of the author of this thesis. The publications are included
in a format that closely resembles their original presentation in the respective journals or conference pro-
ceedings. Only minor editorial changes, such as formatting adjustments, have been made. Substantive
content has not been altered; any errors present in the original publications have been retained to reflect
the state of the work at the time of publication.
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Mycontributions. This chapter is based onwork that was accepted at Crypto 2021. I contributed
significantly to its content, including the software for generating data and histograms, the attempt to
formalize the notion of alignment, and the writing of the text. The exceptions are subsection 4.6.4 and
section 4.7. Some shortcomings in our formalization have been addressed by Lambin et al. in [27].

Abstract. The design of a block cipher or cryptographic permutation can be approached in many
different ways. One such approach, popularized by AES, consists in grouping the bits along the S-box
boundaries, e.g., in bytes, and in consistently processing them in these groups. This aligned approach
leads to hierarchical structures like superboxes that make it possible to reason about the differential and
linear propagation properties using combinatorial arguments. In contrast, an unaligned approach avoids
any such grouping in the design of transformations. However, without hierarchical structure, sophisti-
cated computer programs are required to investigate the differential and linear propagation properties
of the primitive. In this paper, we formalize this notion of alignment and study four primitives that are
exponents of different design strategies. We propose a way to analyze the interactions between the lin-
ear and the nonlinear layers w.r.t. the differential and linear propagation, and we use it to systematically
compare the four primitives using non-trivial computer experiments. We show that alignment naturally
leads to different forms of clustering, e.g., of active bits in boxes, of two-round trails in activity patterns,
and of trails in differentials and linear approximations.

4.1 Introduction

Modern block ciphers and cryptographic permutations consist of the iteration of a round function. In
many cases this round function consists of a layer of nonlinear S-boxes, a mixing layer, a shuffle layer
(AKA a bit transposition or bit permutation), and the addition of a round key (in block ciphers) or
constant (in cryptographic permutations).

Many papers investigate S-boxes and try to find a good compromise between implementation cost and
propagation properties or provide a classification of all invertible S-boxes of a given width, see, e.g., [28,
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35]. Similarly, there is a rich literature on certain types of mixing layers. In particular, there have been
many papers written about finding maximum-distance separable (MDS) mappings or near-MDS map-
pings with minimum implementation cost according to some metric, see, e.g., [29, 38]. Building a good
cipher starts with taking a good S-box and mixing layer and the rich cryptographic literature on these
components provides us with ample choice. However, how these building blocks are combined in a
round function and the resulting propagation properties has received much less systematic attention.

A standard way for designing a good round function from an S-box and anMDSmapping is the one
followed in theAdvancedEncryption Standard (AES) [33] and is known as thewide trail strategy [14, 21].
This strategy gives criteria for the shuffle layer and comes with easy-to-verify bounds for the differential
probability (DP) of differential trails (also known as characteristics) and the linear potential (LP) of linear
trails. These bounds and its simplicity havemade it one of themost applied design strategies, andAEShas
inspired a plethora of primitive designs, including lightweight ones. By adopting 4-bit S-boxes instead
of 8-bit ones andmodern lightweightMDS layers in a smart structure, multiple lightweight ciphers have
been constructed. Many lessons were learned and this line of design has culminated in the block cipher
of the NIST lightweight competition candidate Saturnin [13], a truly modern version of AES.

Naturally, there are alternative design approaches. A popular design approach is the one underlying
the 64-bit lightweight block cipher Present [10]. Its round function has no MDS layer and simply
consists of an S-box layer, a bit shuffle, and a key addition. It gets its diffusion from the combination of
a smart choice of the bit shuffle and specific propagation criteria from its well-chosen S-box and doing
many rounds. ThePresent line of design has also been refined in the formof theGift (64- and 128-bit)
block ciphers [2] and the cryptographic permutations of the Spongent lightweight hash function [9]

that is standardized in [1].

Another distinctive design approach is that of the cryptographic permutation of the SHA-3 stan-
dard [34], Keccak-f. Unlike Present, its round function does have a mixing layer, and it actually has
all ingredients that AES has. Specifically, in their rationale, the designers also refer to the wide trail de-
sign strategy [7]. However, this wide-trail flavor does not appear to come with the simple bounds as in
the case of AES, and designers have to resort to tedious and time-consuming programming efforts to
obtain similar bounds. This is related to the fact that AES operates on bytes and Keccak-f on bits. The
Keccak-f designers have discussed the difference between these two design approaches in [18]. In that
paper, they have coined the term alignment to characterize this difference and supported it with some
propagation experiments on Keccak-f. The Keccak-f line of design has also been refined and led to
the 384-bit permutation that is used in Xoodyak [15], namely Xoodoo [16], a truly modern version
of Keccak-f.

This treatment is not exhaustive and other distinctive design strategies exist. Some of them do not
even use S-boxes or mixing layers, but they are based on alternating Additions with Rotations and XOR
(ARX) such as Salsa [5], or they iterate very simple round functions many times such as Simon [3].

In this paper we systematically analyze the impact of alignment on the differential and linear propa-
gation properties of ciphers. We show that certain design choices regarding how the S-box and mixing
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layers are combined have a profound impact on the propagation properties. We identify and name a
number of effects that are relevant in this context. Furthermore, we believe that this makes it possible to
give a meaningful and non-ambiguous definition of the term alignment.

To illustrate this, we study the four primitives Rijndael-256 [20], Saturnin, Spongent-384, and
Xoodoo. They have comparable width and all have a nonlinear layer consisting of equally-sized S-boxes
that have the lowest knownmaximumDP and LP for their dimensions, see Section 4.2. They represent
the three different design strategies, where we include both Rijndael-256 and Saturnin to illustrate
the progress made in the last twenty years. We investigate their difference propagation and correlation
properties, where for multiple rounds we adopt a fixed-key perspective. This, combined with the choice
of relatively wide primitives, is geared towards their usage in permutation-based cryptography, but most
findings are also relevant for the key-alternating block cipher case.

4.1.1 Outline and contributions

After discussing notation and conventions, we review the notions of differential and linear cryptanalysis
in Section 4.2. In Section 4.3 we show how the nonlinear layer defines a so-called box partition, and
we present a non-ambiguous definition of alignment. In Section 4.4 we present our four ciphers from
the perspective of alignment and compare the costs of their round functions. Surprisingly, Spongent,
despite being specified at bit level like Keccak-f, turns out to be aligned.

In Section 4.5 we recall the notions of bit and box weight as a measure of the mixing power of a linear
layer. We report on thismixingpowerbymeans ofhistograms of states by theirweight before and after the
linear layer, rather than the usual branch number criterion. For all ciphers we observe a decay in mixing
power from bit to box weight and describe and name the effect that causes this: huddling. This effect
is more pronounced in aligned ciphers. This translates directly to the two-round differential and linear
trail weight distributions, and we list them for all four ciphers. For the two most competitive proposals,
we include histograms for three-round trails and a comparison for four rounds. Remarkably, despite
the fact that Saturnin has a more expensive S-box layer and a mixing layer with better bit-level mixing
power, Xoodoo has better differential and linear trail histograms for more than two rounds.

In Section 4.6, we show that trails that cluster necessarily share the same activity pattern, andwe intro-
duce the cluster histogram as a quantitative tool for the relation between the linear layer and the clustering
of two-round trails in ciphers. We see that there is more clustering in the aligned than in the unaligned
ciphers. We present the cluster histogram of the four primitives and, for three of them, we also analyze
their two-round trail weight histograms. We conclude with a discussion on the clustering of trails in two
and three rounds, and show that, at least up to weight 50, differentials over three rounds of Xoodoo
admit only one trail, hence they do not cluster.

Finally, in Section 4.7 we study the independence of round differentials in trails. We show that, again
at least up to weight 50, three-round differentials of Xoodoo are independent.
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The generation of our histograms was non-trivial and the computation methods could be considered
a contribution in themselves. See Section A after the paper. Software is available at https://github.
com/ongetekend/ThinkingOutsideTheSuperbox under the CC0 license (public domain).

4.1.2 Notation and conventions

In this paper, we use the following conventions and notation. We write ℤ≥0 for the nonnegative integers
and ℤ>0 for the positive integers. We write 𝑘𝑘 with 𝑘𝑘 𝑘 𝑘≥0 for nonnegative integer variables. In other
words, 𝑘𝑘 is used as a placeholder for any nonnegative integer value.

Whenever we use indices, they always begin at 0. We define [0, 𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘 𝑘≥0 ∶ 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖    𝑖.
Given a set 𝑆𝑆 and an equivalence relation ∼ on 𝑆𝑆, we write [𝑎𝑎𝑎∼ for the equivalence class of 𝑎𝑎 𝑎𝑎𝑎 . We
denote the cardinality of 𝑆𝑆 by |𝑆𝑆𝑆.

We study permutations 𝑓𝑓𝑓 𝑓𝑓𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 . Any block cipher is transformed into a permutation by fixing
the key, e.g., we fix all of its bits to 0.

We use the term state for a vector of 𝑏𝑏 bits. It is either a vector that the permutation is applied to,
a difference, or a linear mask (See Section 4.2). Given a state 𝑎𝑎 𝑎𝑎𝑎 𝑏𝑏2 , we refer to its 𝑖𝑖th component
as 𝑎𝑎𝑖𝑖. In this paper, we consider index sets B𝑖𝑖 ⊆ [0, 𝑏𝑏 𝑏𝑏𝑏  that form an ordered partition. We write
𝑃𝑃𝑖𝑖(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑏𝑏2 → 𝔽𝔽|B𝑖𝑖 |2 for the projection onto the bits of 𝑎𝑎 indexed by B𝑖𝑖.
We write 𝑒𝑒𝑘𝑘𝑖𝑖 for the 𝑖𝑖th standard basis vector in 𝔽𝔽𝑘𝑘2 , i.e., for 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     we have that 𝑒𝑒𝑘𝑘𝑖𝑖𝑖𝑖 =1  if 𝑖𝑖𝑖𝑖𝑖 

and 0 otherwise. We write + for vector addition in 𝔽𝔽𝑘𝑘2 .
Permutations are typically built by composing anumber of lightweight round functions, i.e.,𝑓𝑓 𝑓 R𝑟𝑟𝑟𝑟∘

⋯ ∘ R1 ∘ R0 for some 𝑟𝑟 𝑟𝑟 >0. We write 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  R𝑟𝑟𝑟𝑟 ∘ ⋯ ∘ R0 and define 𝑓𝑓𝑓𝑓𝑓𝑓  id with id the identity
function. A round function is composed of step functions, i.e., R𝑖𝑖 = 𝜄𝜄𝑖𝑖 ∘ L𝑖𝑖 ∘N𝑖𝑖, where N𝑖𝑖 is a nonlinear
map, L𝑖𝑖 is a linear map, and 𝜄𝜄𝑖𝑖 is addition of a round constant. Apart from the round constant addition,
these round functions are often, but not always, identical. For this reason, we will often simply write N
or L, without reference to an index if the context allows for this, and we call N the nonlinear layer of 𝑓𝑓
and L the linear layer of 𝑓𝑓. We write 𝑛𝑛 for the number of S-boxes of N and denote their size by𝑚𝑚. In this
context, we suppose that B𝑗𝑗 ={ 𝑗𝑗𝑗𝑗𝑗 𝑗 𝑗𝑗 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   .

Permutations of the index space are written as τ ∶ [0, 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏    𝑏𝑏 𝑏𝑏𝑏 . By shuffle (layer), we mean
a linear transformation π ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 given by π(𝑎𝑎𝑎 𝑎 Pτ 𝑎𝑎, where Pτ is the permutation matrix associated
with some τ, i.e., obtained by permuting the columns of the (𝑏𝑏 𝑏 𝑏𝑏𝑏 identity matrix according to τ.

Given a linear transformation L ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 , there exists a matrix M ∈𝔽𝔽 𝑏𝑏𝑏𝑏𝑏2 such that L(𝑎𝑎𝑎 𝑎 M 𝑎𝑎. We
define its transpose L⊤ ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 by L⊤(𝑎𝑎𝑎 𝑎 M⊤ 𝑎𝑎 and we denote the inverse of L⊤, when it exists, by
L−⊤.

4.2 Differential and linear cryptanalysis

A major motivation behind the tools developed in this paper is better understanding of the interplay
between the linear and nonlinear layer in relation to differential and linear cryptanalysis. We want to be
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4.2 Differential and linear cryptanalysis

able to use the associated language freely when discussing these tools. Therefore, in this section, we go
over the basic notions to make sure they are on hand when needed.

4.2.1 Differential cryptanalysis

Differential cryptanalysis [8] is a chosen-plaintext attack that exploits the non-uniformity of the distri-
bution of differences at the output of a permutation when it is applied to pairs of inputs with a fixed
difference. We call an ordered pair of an input and output difference (Δin, Δout) ∈ (𝔽𝔽𝑏𝑏2 )2 a differential.

Definition 26. Let 𝑓𝑓𝑓 𝑓𝑓𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 be a permutation and define𝑈𝑈𝑓𝑓(Δin, Δout) = {𝑥𝑥 𝑥𝑥𝑥 𝑏𝑏2 ∶ 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓
Δin) = Δout}. We call𝑈𝑈𝑓𝑓(Δin, Δout) the solution set of the differential (Δin, Δout).

Definition 27. The differential probability (DP) of adifferential (Δin, Δout) over the permutation𝑓𝑓𝑓 𝑓𝑓𝑏𝑏2 →
𝔽𝔽𝑏𝑏2 is defined asDP𝑓𝑓(Δin, Δout) =

|𝑈𝑈𝑓𝑓(Δin,Δout)|

2𝑏𝑏
.

If there exists an ordered pair (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥in)with𝑥𝑥 𝑥𝑥𝑥 𝑓𝑓(Δin, Δout), then it is said to follow the differential
(Δin, Δout). In this case, we say that the input differenceΔin is compatiblewith the output differenceΔout

through 𝑓𝑓 and call (Δin, Δout) a valid differential.

Definition 28. A sequence 𝑄𝑄 𝑄𝑄 𝑄𝑄(0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) ∈ (𝔽𝔽𝑏𝑏2 )
𝑘𝑘𝑘𝑘 that satisfies DPR𝑖𝑖

(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) > 0 for
0 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 is called a 𝑘𝑘-round differential trail.

Sometimes we specify a trail as 𝑄𝑄 𝑄𝑄 𝑄𝑄−1, 𝑎𝑎0, 𝑏𝑏0, … , 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) by giving the intermediate differences be-
tween N𝑖𝑖 and L𝑖𝑖 as well, where 𝑏𝑏𝑖𝑖 = L𝑖𝑖(𝑎𝑎𝑖𝑖) = 𝑞𝑞𝑖𝑖𝑖𝑖. We write DT(Δin, Δout) for the set of all differential
trails in the differential (Δin, Δout), so with 𝑞𝑞(0) = Δin and 𝑞𝑞(𝑘𝑘𝑘 = Δout. We call (Δin, Δout) the enveloping
differential of the trails in DT(Δin, Δout). If |DT(Δin, Δout)| > 1, then we say that trails cluster together
in the differential (Δin, Δout).
By deleting the initial differenceΔin and final differenceΔout of a differential trail

(Δin, 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘𝑘𝑘, Δout)

we are left with a differential trail core. A differential trail core obtained in this way is said to be in the
differential (Δin, Δout). Note that a differential trail core actually defines a set of differential trails with
the same inner differences.

We now define the DP of a differential trail. Each round differential (𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) has a solution set
𝑈𝑈R𝑖𝑖

(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖). Consider the transformed set of points𝑈𝑈𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓−1(𝑈𝑈R𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖)) at the input of𝑓𝑓.

For an ordered pair (𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 (0)) to follow the differential trail, it is required that 𝑥𝑥 𝑥𝑥𝑥 𝑓𝑓(𝑄𝑄𝑄𝑄  ⋂𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖.

The fraction of states 𝑥𝑥 that satisfy this equation is the DP of the trail.

Definition 29. TheDP of a differential trail is defined asDP𝑓𝑓(𝑄𝑄𝑄𝑄
|𝑈𝑈𝑓𝑓(𝑄𝑄𝑄𝑄

2𝑏𝑏
.

Definition 30. The round differentials are said to be independent if

DP𝑓𝑓(𝑄𝑄𝑄𝑄
𝑘𝑘𝑘𝑘

∏
𝑖𝑖𝑖𝑖

DPR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) .
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Any given ordered pair (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥in) follows exactly one differential trail. Hence, theDP of the differen-
tial (Δin,Δ out) is the sum of the DPs of all differential trails with initial differenceΔin and final difference
Δout.

DP𝑓𝑓(Δin,Δ out) = ∑
𝑄𝑄𝑄DT(Δin,Δout)

DP𝑓𝑓(𝑄𝑄𝑄 𝑄

Given any differential (Δin,Δ out) over a round functionR, it is easy to compute itsDP value. By speci-
fying the intermediate differences we obtain a differential trail (Δin, 𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 out). Thanks to the linearity of
L, we have 𝑐𝑐𝑐  L(𝑏𝑏𝑏 and due to the fact that a difference is invariant under addition of a constant, all valid
such differential trails are of the form (Δin,L−1(Δout),Δ out,Δ out). Therefore, the differential (Δin,Δ out)
contains only a single trail and its DP is the DP of the differential (Δin,L−1(Δout)) over the S-box layer:

DPR(Δin,Δ out) = ∏
0≤𝑗𝑗𝑗𝑗𝑗

DPS𝑗𝑗(𝑃𝑃𝑗𝑗(Δin), 𝑃𝑃𝑗𝑗(L−1(Δout))) .

Hence, the DP of a round differential is the product of the DP values of its S-box differentials.

Definition 31. The restriction weight of a differential (Δin,Δ out) that satisfies DP𝑓𝑓(Δin,Δ out) > 0 is
defined aswr(Δin,Δ out) = − log2DP𝑓𝑓(Δin,Δ out).

For a differential trail, we sum the weights of the round differentials.

Definition 32. The restriction weight of a differential trail𝑄𝑄 𝑄𝑄 𝑄𝑄(0),𝑞𝑞 (1), … ,𝑞𝑞 (𝑘𝑘𝑘) is defined as

wr(𝑄𝑄𝑄𝑄
𝑘𝑘𝑘𝑘

∑
𝑖𝑖𝑖𝑖

wr(𝑞𝑞(𝑖𝑖𝑖,𝑞𝑞 (𝑖𝑖𝑖𝑖𝑖) .

If the round differentials are independent in the sense of Definition 30, then we have that DP𝑓𝑓(𝑄𝑄𝑄𝑄
2−wr(𝑄𝑄𝑄.

4.2.2 Linear cryptanalysis

Linear cryptanalysis [30] is a known-plaintext attack. It exploits large correlations (in absolute value)
between linear combinations of input bits and linear combinations of output bits of a permutation.

Definition 33. The (signed) correlation between the linearmask 𝑢𝑢 𝑢 𝑢𝑢𝑏𝑏2 at the input and the linearmask
𝑣𝑣 𝑣𝑣𝑣 𝑏𝑏2 at the output of a function 𝑓𝑓𝑓 𝑓𝑓𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 is defined as

C𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
1
2𝑏𝑏

∑
𝑥𝑥𝑥𝑥𝑥𝑏𝑏2

(−1)𝑢𝑢⊤𝑥𝑥𝑥𝑥𝑥⊤𝑓𝑓𝑓𝑓𝑓𝑓 .

If C𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢  𝑢 𝑢, then we say that 𝑢𝑢 is compatible with 𝑣𝑣. We call the ordered pair of linear masks
(𝑢𝑢𝑢𝑢𝑢𝑢  a linear approximation. We note that in the literature (e.g., in the linear cryptanalysis attack by
Matsui [30]) the term linear approximation has several meanings. It should not be confused with what
we call a linear trail.
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4.2 Differential and linear cryptanalysis

Definition 34. A sequence 𝑄𝑄 𝑄 𝑄𝑄𝑄(0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) ∈ (𝔽𝔽𝑏𝑏2 )
𝑘𝑘𝑘𝑘 that satisfies CR𝑖𝑖

(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) ≠ 0 for
0 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 is called a linear trail.

Wewrite LT(𝑢𝑢𝑢 𝑢𝑢𝑢 for the set of all linear trails in the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢, so with 𝑞𝑞(0) = 𝑢𝑢 and
𝑞𝑞(𝑘𝑘𝑘 =𝑣𝑣 . We call (𝑢𝑢𝑢 𝑢𝑢𝑢 the enveloping linear approximation of the trails in LT(𝑢𝑢𝑢 𝑢𝑢𝑢. If |LT(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢 𝑢,
then we say that trails cluster together in the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢.

By deleting the initial linear mask 𝑢𝑢 and final linear mask 𝑣𝑣 of a linear trail (𝑢𝑢𝑢𝑢𝑢 (1), … , 𝑞𝑞(𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑣we are
left with a linear trail core. A linear trail core obtained in this way is said to be in the linear approximation
(𝑢𝑢𝑢 𝑢𝑢𝑢. Note that a linear trail core actually defines a set of linear trails with the same inner linear masks.

Definition 35. The correlation contribution of a linear trail𝑄𝑄 over 𝑓𝑓 equals

C𝑓𝑓(𝑄𝑄𝑄 𝑄
𝑘𝑘𝑘𝑘

∏
𝑖𝑖𝑖𝑖

CR𝑖𝑖
(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) .

From the theory of correlation matrices [14], it follows that

C𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢
𝑄𝑄𝑄LT(𝑢𝑢𝑢𝑢𝑢𝑢

C𝑓𝑓(𝑄𝑄𝑄𝑄

Given any linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢over a round functionR, it is easy to compute its correlation. By
specifying the intermediate linear masks we obtain a linear trail (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢. Thanks to the linearity of L,
we have 𝑏𝑏𝑏  L⊤(𝑐𝑐𝑐 and due to the fact that a linearmask is invariant under addition of a constant, all valid
such linear trails are of the form (𝑢𝑢𝑢L⊤(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  . Hence the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 contains only a
single trail and its correlation contribution is the correlation of the linear approximation (𝑢𝑢𝑢L⊤(𝑣𝑣𝑣𝑣 over
the S-box layer, where the round constant addition affects the sign:

CR(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑣𝑣⊤𝜄𝜄𝜄𝜄𝜄 ∏
0≤𝑗𝑗𝑗𝑗𝑗

CS𝑗𝑗(𝑃𝑃𝑗𝑗(𝑢𝑢𝑢𝑢𝑢𝑢 𝑗𝑗(L
⊤(𝑣𝑣𝑣𝑣𝑣

Definition 36. The linear potential (LP) of a linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 is defined as LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢
C𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢2.

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 37. The correlation weight of a linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 with LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢   is given by
wc(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢   log2 LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢.

Definition 38. The correlation weight of a linear trail𝑄𝑄 𝑄 𝑄𝑄𝑄(0), 𝑞𝑞(1), … , 𝑞𝑞(𝑘𝑘𝑘) is defined as

wc(𝑄𝑄𝑄 𝑄
𝑘𝑘𝑘𝑘

∑
𝑖𝑖𝑖𝑖

wc(𝑞𝑞(𝑖𝑖𝑖, 𝑞𝑞(𝑖𝑖𝑖𝑖𝑖) .
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4.3 Box partitioning and alignment

In this section, we consider the partition of the index space defined by the nonlinear layer N. The align-
ment properties of the other step functions with respect to this partition have an important impact on
the propagation properties of the round function.

The nonlinear layer N consists of the parallel application of 𝑛𝑛 S-boxes of size𝑚𝑚 to disjoint parts of the
state, indexed by B𝑖𝑖. Formally, this means that we can write N as S0 × ⋯ × S𝑛𝑛𝑛𝑛 and that it is characterized
by

𝑃𝑃𝑖𝑖 ∘ (S0 × ⋯ × S𝑛𝑛𝑛𝑛) = S𝑖𝑖 ∘𝑃𝑃𝑖𝑖 for 0 ≤ 𝑖𝑖 𝑖𝑖𝑖  𝑖 𝑖 𝑖

Hence, N defines a unique ordered partitionΠN = (B0, … ,B𝑛𝑛𝑛𝑛) of the index space [0, 𝑏𝑏 𝑏𝑏 𝑏. We call
ΠN the box partition defined byN and the𝐵𝐵𝑖𝑖 N-boxes. If there is no ambiguity, we call the box partition
Π and its members boxes.

Besides the box partition, it is clearly possible to define other partitions of the index space as well. We
call a partition non-trivial if it has at least two members. Between any two partitions of the index space
there may be a relation that we denote as refinement.

Definition 39. We callΠ a refinement ofΠ′ and writeΠ ≤ Π′ if for every (𝑖𝑖𝑖B𝑖𝑖) ∈ Π there exists a
(𝑗𝑗𝑗B′𝑗𝑗) ∈ Π′ such that B𝑖𝑖 ⊆ B′𝑗𝑗.

Let Π be a partition of the index space consisting of 𝑘𝑘 boxes, each of size 𝑙𝑙. We call a shuffle layer a
Π-shuffle if the associated permutation matrix can be partitioned into 𝑘𝑘 identity matrices of dimension
(𝑙𝑙 𝑙 𝑙𝑙𝑙. If this is the case, then bit index permutation can be specified as a box index permutation.

Definition 40. We call 𝜙𝜙𝜙 𝜙𝜙𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 aligned toΠ if we can decompose it as

𝜙𝜙0 × ⋯ × 𝜙𝜙𝑘𝑘𝑘𝑘 ∶
𝑘𝑘𝑘𝑘
⨉
𝑖𝑖𝑖𝑖

𝔽𝔽𝑙𝑙2 →
𝑘𝑘𝑘𝑘
⨉
𝑖𝑖𝑖𝑖

𝔽𝔽𝑙𝑙2 ,

In this case, we call the 𝜙𝜙𝑖𝑖 box functions.

Definition 41. Given a round function that is composed of the parallel applicationN of equally-sized S-
boxes, a linear layerL, and the addition 𝜄𝜄 of a round constant, we say it is aligned if it is possible to decompose
the linear layer L as L = π ∘M in such a way that

• π is aΠN-shuffle;

• M is aligned to a non-trivial partitionΠM that satisfiesΠN ≤ ΠM.

We assume that the split between the linear and nonlinear layer is chosen so as to maximize the number of
S-boxes inN.

Note that 𝜄𝜄 does not play a role in the alignment properties. If all of the round functions of a primitive
are aligned, then we call the primitive aligned. If the primitive is not aligned, then we call it unaligned.
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4.4 The ciphers we investigate

Any aligned primitive has a superbox structure [36], that is helpful when investigating distributions
and bounds on the DP of two-round differentials and the LP of two-round trails. We explain what this
means. Consider a two-round structure

π ∘M ∘N ∘ π ∘M ∘N .

Thefinal two linear steps π andMhaveno effect on thedistributions, sowe can simplify this expression to
N ∘ π ∘M ∘N. Clearly, N ∘ π = π ∘N′, withN′ ∶= π−1 ∘N ∘ π. Hence, this is equivalent to π ∘N′ ∘M ∘N.
Discarding the shuffle layer at the end gives N′ ∘M ∘N. Since ΠN′ = ΠN ≤ ΠM, we can view this as
the parallel application of a number of superboxes. We call this a superbox layer. In a sequence of two
rounds, N′ ∘M ∘N is a (composite) nonlinear layer and π ∘M ∘ π is a (composite) linear layer. If the latter
is aligned to a non-trivial partitionΠ such thatΠM ≤ Π, then we call this two-round structure aligned
toΠM.

4.4 The ciphers we investigate

In this sectionwe describe the round functions of the cipherswe investigate in this paper, their alignment
properties, and compare their implementation cost.

4.4.1 Rijndael

Rijndael [20] is a block cipher family supporting all block and key lengths of 𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏 bits, with 4 ≤
𝑘𝑘𝑘  𝑘, i.e., ranging from 128 up to and including 256 bits. The case 𝑏𝑏 𝑏 𝑏𝑏𝑏 is of great importance as
Rijndaelwith that block length is the ubiquitousAES [33]. In this paperwe investigateRijndael-256,
the instance with 𝑏𝑏 𝑏 𝑏𝑏𝑏, a width closer to those of the other ciphers we investigate. In the remainder
of this paper we will write Rijndael for Rijndael-256.

TheRijndael round function consists of four steps: a nonlinear layerSubBytes, a box shuffleShiftRows,
a mixing layer MixColumns, and round key addition AddRoundKey. As its name suggest,ΠS𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 par-
titions the state in bytes and ShiftRows is aΠS𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢-shuffle. The mixing layer, MixColumns, is aligned
to a non-trivial partitionΠM𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 that corresponds to the 8 columns, each containing 4 bytes, and we
haveΠS𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ≤ ΠM𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. It follows that Rijndael is aligned. Figure 4.1 shows Rijndael-128 that
is is easier to draw due to its dimensions, but the alignment properties for Rijndael-256 are the same.

4.4.2 Saturnin

The Saturnin [13] block cipher has a 256-bit key and block length. The state has several representa-
tions: three-dimensional, two-dimensional, and flat. In three dimensions, the 256-bit state is represented
as a 4 × 4 × 4 cube of 4-bit nibbles. Nibbles in the cube are indexed by triples (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥. A slice is a subset
of the nibbles with 𝑧𝑧 constant. A sheet is a subset of the nibbles with 𝑥𝑥 constant. A column is a subset of
the nibbles with 𝑥𝑥 and 𝑧𝑧 constant.
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Figure 4.1: Alignment properties of Rijndael.

The Saturnin permutation is composed of a number of so-called super-rounds and a super-round
consists of two consecutive rounds with indices 2𝑟𝑟 and 2𝑟𝑟 𝑟 𝑟. Round 2𝑟𝑟 is composed as MC ∘ S,
where MC is a mixing layer and S is a nonlinear layer. There are two different rounds with odd in-
dices. Round 4𝑟𝑟 𝑟 𝑟 is composed as follows: RC ∘RK ∘ SR−1

slice ∘MC ∘ SRslice ∘ S. Round 4𝑟𝑟 𝑟 𝑟 consists
of RC ∘RK ∘ SR−1

sheet ∘MC ∘ SRsheet ∘ S. Here, RC denotes addition of a round constant, RK denotes
addition of a round key, and SRslice and SRsheet shuffle nibbles. The partitionΠS divides the state into
64 nibbles. The shuffles SRslice and SRsheet are ΠS-shuffles. The mixing layer MC is aligned to a non-
trivial partitionΠMC that divides the state into 16 columns, each consisting of 4nibbles, and that satisfies
ΠS ≤ ΠMC. It follows that Saturnin is aligned. In a super-roundwe identify the sequence S ∘MC ∘ S as
a superbox layer with partitionΠMC and the linear layer of such a round is SR−1

slice ∘MC ∘ SRslice. This is a
mixing layer that is aligned to a non-trivial partitionΠslice that divides the state into 4 slices, each contain-
ing 4 columns, and we haveΠMC ≤ Πslice. Similarly, for the other type of super-round, the mixing layer
is aligned to a non-trivial partitionΠsheet that divides the state into 4 sheets, and we haveΠMC ≤ Πsheet.
It follows that the super-rounds of Saturnin are aligned and hence have their own superboxes. These
have width 64 bits and we call them hyperboxes. Figure 4.2 shows the alignment properties of the steps.

4.4.3 Spongent

Spongent [9] is a sponge-based hash function family that uses a Present-like permutation. The per-
mutation is defined for any 𝑏𝑏 that is a multiple of 4. In this paper, we only consider the case 𝑏𝑏 𝑏 𝑏𝑏𝑏, to
match the state size of the largest of the other permutations that we investigate, Xoodoo. The round
function of Spongent consists of three steps: a round constant addition lCounter, a 4-bit S-box layer
sBoxLayer, and a bit shuffle pLayer.

The index permutation of the bit shuffle pLayer is:

p𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 {
96𝑗𝑗 mod 383, if 𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗 𝑗

383, if 𝑗𝑗𝑗𝑗𝑗𝑗 

As indicated by the Spongent designers in [9], we can decompose it into amixing layer, followed by a box
shuffle:
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Figure 4.2: Alignment properties of Saturnin.

1. S𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 applies the same mixing function S𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in parallel to the 24 sub-
groups (following the terminology of [9]). It is a bit shuffle associated with the index permutation
τsubgroup ∶ [0, 15] → [0, 15]:

τsubgroup(𝑗𝑗𝑗 𝑗 {
4𝑗𝑗 mod 15, if 𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗𝑗𝑗

15, if 𝑗𝑗 𝑗 𝑗𝑗

2. S𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a box shuffle that is associated with the box index permutation

τbox ∶ [0, 95] → [0, 95]

defined by:

τbox(𝑗𝑗𝑗 𝑗 ⌊
𝑗𝑗
4⌋ + 24(𝑗𝑗 mod 4) .
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Figure 4.3: Alignment properties of Spongent.

Π𝜒𝜒 Π𝜌𝜌east

Figure 4.4: Alignment properties of Xoodoo.

The sBoxLayer defines a box partitionΠs𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣 corresponding to the 96 4-bit boxes. The box shuffle
S𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is aΠs𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣-shuffle. The bit shuffle S𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is aligned to a non-
trivial partition ΠS𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 that divides the state into 96 16-bit subgroups, each grouping four
consecutive boxes, and we have Πs𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣𝛣 ≤ ΠS𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. It follows that Spongent is aligned.
Figure 4.3 shows these steps and their alignment properties.

4.4.4 Xoodoo

Xoodoo [16] is a permutation with 𝑏𝑏 𝑏 𝑏𝑏𝑏. The state consists of 3 equally sized horizontal planes,
each one consisting of 4 parallel 32-bit lanes. Alternatively, the state can be seen as a set of 128 columns
of 3 bits, arranged in a 4 × 32 array.

The round function of Xoodoo consists of the following five steps: a mixing layer 𝜃𝜃, a bit shuffle
𝜌𝜌east, round constant addition 𝜄𝜄, a nonlinear layer 𝜒𝜒, and a bit shuffle 𝜌𝜌west. The 𝜒𝜒 step applies the same
3-bit S-box to the columns of the state. The nonlinear layer𝜒𝜒 defines a box partitionΠ𝜒𝜒 that corresponds
to the 128 columns. The bit shuffles 𝜌𝜌east and 𝜌𝜌west perform translations of planes and are not aligned to
Π𝜒𝜒. The mixing layer 𝜃𝜃 defines no non-trivial box partition at all. Due to the properties of the 𝜌𝜌 steps
and 𝜃𝜃 it is impossible to split the linear layer in a column shuffle and a mixing layer that is aligned to a
partition thatΠ𝜒𝜒 is a refinement of. In other words, Xoodoo is unaligned. See Section E for a more
formal proof. Figure 4.4 shows the alignment properties of the steps.
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4.4.5 Round cost

In this section, we compare the implementation complexity of the round functions of the four ciphers.
This depends on the platform and the requirements. Platforms may range from low-end 8-bit CPUs to
multi-core high-end workstation CPUs, FPGAs, and even dedicated hardware. Requirements include
throughput, latency, usage of resources such as power and energy consumption, area in hardware, and
RAM/ROM usage in software. Moreover, protection against fault attacks and/or side channel attacks
may be required.

In our comparison of the round functionswe let their three layers guide us: the S-box layer, themixing
layer (if any), and the shuffle layer. We also discuss the presence of key addition in block ciphers and its
relative cost.

S-box layer

Given that our ciphers have invertible S-boxes with lowest knownmaximumDP and LP values that can
be achieved for their width, their implementation cost increases with width.

We report on the implementations with minimum number of binary XOR, binary AND/OR, and
unary NOT operations that we found in the literature. For Spongent we found no such numbers. We
have also determined a minimal sum-of-products (SOP) form in Boolean algebra of the S-boxes using
the Espresso algorithm [31] for two-level logic optimization. For Rijndael, finding the minimal SOP
was infeasible. We refer to Section B for the SOP expressions. Using De Morgan’s laws, the SOP form
can be implemented by two layers of nand gates. Table 4.1 lists the number of nand gates per bit for each
of the S-boxes.

We can see in Table 4.1 that the cost of the Saturnin and Spongent S-boxes is comparable. The
cost of the Xoodoo S-box is roughly half of that, but is only 3 bits wide instead of 4. The Rijndael
S-box is a roughly a factor 10 more costly than that of Saturnin and Spongent, a very high price for
its better max DP/LP value. These numbers give an indication for the size of a hardware circuit and the
number of cycles in bit-sliced software implementations. The number of and/or operations is related to
the cost of masking countermeasures.

Mixing layer

Spongent has nomixing layer, so there is no cost. Xoodoo-𝜃𝜃 requires 2 binary xor operations per bit,
while Saturnin’s MC can be implemented with 2.25 binary xor operations per bit [13]. The circuit
depth for these computations is in both cases 4 xor gates. Despite the difference in design philosophy,
their computational costs are almost the same.

A simple implementation of Rijndael’s MixColumns takes 3.875 binary xor operations per bit and
has a circuit depth of 3 xor gates. This was reduced to 97/32 ≈ 3 additions per bit [25] at the expense
of a higher circuit depth. Despite the fact that both MixColumns and Saturnin’s MC implement an
MDS mapping operating on 5 boxes, their costs diverge. The main difference between the two is that
MixColumns operates on bytes while MC operates on nibbles. However, this is not the reason for the
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higher cost per bit of MixColumns. The reason is that there have been significant advances in building
efficient MDSmappings andMC reaps the benefits of that.

Shuffle layer

Rijndael, Spongent, and Xoodoo consist of the iteration of a single round function. In a hardware
architecture that implements the full round in combinational logic, a bit shuffle consists of wiring be-
tween gates. Saturnin has three different rounds, so this is more complex in a hardware architecture in
which a single round is implemented in combinational logic. However, in a combinational block that
implements a sequence of four rounds, the shuffle operations do correspond to wiring.

We compare software implementation on a particular platform: the ARMCortex-M4 processor. We
choose this because it is a popular lightweight platform for benchmarks and for three of our ciphers there
is assembly code available. On this platform, it is difficult to assess the cost of the shuffle layer in isolation
due to the barrel shifter. This feature of the ARM architecture allows applying (cyclic) shift operations
to one of the two operands in arithmetic and bitwise Boolean instructions at no additional cost. To
compare, we measure the number of cycles of the entire round function, revealing the marginal cost of
the shuffle layer. Table 4.2 lists the performance of the round functions of our four ciphers expressed in
number of cycles per byte as measured on a Cortex-M4 processor. In addition, it includes references to
the bit-sliced implementations that we have used in order tomeasure the cycle counts. In Rijndael and
Saturninwe removed any operations related to the key addition tomake a fair comparison possible and
inSaturninwemeasured thenumber of cycles for4 rounds anddivided that by4. Wehavenot included
Spongent because we do not have access to any (optimized) assembly code. However, considering that
it was designed with hardware in mind, we do not believe it is competitive in software.

4.5 Huddling

In this section, we describe a phenomenon that we call huddling. We present the bit and box weight his-
tograms as natural extensions of the bit and box branch numbers, respectively. Using these histograms,
we analyze the huddling properties of the ciphers described in Section 4.4. We see that these properties
are more pronounced in ciphers that are aligned. Finally, we look at the relation between huddling and
the distribution of trail weights.

4.5.1 Definitions of bit weight, box weight and their histograms

The weight of a two-round trail (𝑞𝑞in, 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 out) over N ∘L ∘N can be bounded from below by the sum
of the number of active boxes at the input and output of L. This number is fully determined by 𝑎𝑎 as
𝑏𝑏 𝑏 L(𝑎𝑎𝑎 in differential trails and 𝑎𝑎 𝑎 L⊤(𝑏𝑏𝑏 in linear trails. The distribution of states 𝑎𝑎 according to this
number determines themixing power of the linear layer with respect toΠN.

First, we formally define what it means for a box to be active. To this end, we define an indicator
function 1𝑖𝑖 ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽2with respect to a box partitionΠ by 1𝑖𝑖(𝑎𝑎𝑎𝑎  𝑎 if𝑃𝑃𝑖𝑖(𝑎𝑎𝑎𝑎  𝑎 and 1𝑖𝑖(𝑎𝑎𝑎𝑎𝑎   otherwise.
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We call the box B𝑖𝑖 active in the difference or linear mask 𝑎𝑎 𝑎 𝑎𝑎𝑏𝑏2 if 1𝑖𝑖(𝑎𝑎𝑎 𝑎 𝑎 and passive otherwise. The
natural metric associated with box activity is the box weight of 𝑎𝑎, defined by wΠ(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎 𝑎
1𝑖𝑖(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎. Clearly, a box is active in a difference or linear mask if at least one of the bits in that box is
non-zero. We call the bit 𝑖𝑖 active in 𝑎𝑎 if 𝑎𝑎𝑖𝑖 = 1 and passive otherwise. The number of active bits is given
by the bit weight of 𝑎𝑎, i.e., w2(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑖𝑖 ≠0}| . The activity pattern of 𝑎𝑎 is defined by
𝑟𝑟Π(𝑎𝑎𝑎 𝑎 𝑎𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 1B𝑖𝑖(𝑎𝑎𝑎𝑎𝑎
𝑛𝑛
𝑖𝑖 . It is the vectorwhose 𝑖𝑖th component is one if box B𝑖𝑖 is active and zero otherwise.

In order to quantify the mixing power of a linear transformation L, we consider the weight distri-
bution of (𝑎𝑎𝑎L(𝑎𝑎𝑎𝑎 over all differences or linear masks 𝑎𝑎 𝑎 𝑎𝑎𝑏𝑏2 and embed it in a histogram. This is a
well-known concept in coding theory, where weight distributions are embedded in so-called weight enu-
merator polynomials that classify the code [23].

Definition 42. The weight histogram of a linear transformation L ∶𝔽𝔽 𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 is a function𝒩𝒩⋅,L ∶ ℤ≥0 →
ℤ≥0 given by

𝒩𝒩⋅,L(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑏𝑏2 ∶ w⋅(𝑎𝑎𝑎 𝑎 w⋅(L(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎

The cumulative version on the same domain and codomain is given by

𝒞𝒞⋅,L(𝑘𝑘𝑘𝑘  𝑘
𝑙𝑙𝑙𝑙𝑙

𝒩𝒩L(𝑙𝑙𝑙𝑙

Here, ⋅ denotes either 2 orΠ.

The tail of the histogram consists of the left-most values that correspond to low weight.

If the primitive is aligned, then π is a box shuffle and this implies that the box weight histograms of
L = M ∘ π and M are the same. The superbox structure of an aligned primitive makes it possible to
use a divide-and-conquer approach to compute the weight histograms. Indeed, let 𝑆𝑆𝑆w)={  𝑣𝑣 𝑣𝑣 𝑠𝑠≥0 ∶
∑𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖 = w} with 𝑠𝑠 the number of superboxes. Then we can compute the weight histograms of M by
convolving the weight histograms of its box functions:

𝒩𝒩⋅,M(w)=∑ 
𝑣𝑣𝑣𝑣𝑣𝑣w)

𝑠𝑠𝑠𝑠

∏
𝑖𝑖𝑖𝑖

𝒩𝒩⋅,M𝑖𝑖
(𝑣𝑣𝑖𝑖).  (4.1)

We note that the differential branch number [14] is simply the smallest non-zero entry of this his-
togram, i.e., min{w > 0∶  𝒩𝒩⋅,L(w) > 0}. The linear branch number is the smallest non-zero entry in the
corresponding histogram of L⊤ and can be different from its differential counterpart. This is not the case
for the mappings in this paper and we will omit the qualifier in the remainder. A higher branch number
typically implies higher mixing power. However, the weight histogram is more informative than just the
branch number. The number of differences or linear masks meeting the branch number is valuable in-
formation as well. In general, the weight histogram allows a more nuanced comparison of mixing layers
than the branch number.
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Figure 4.5: Cumulative bit weight and box weight histograms.

The boxweight histogram is the relevant histogram in the context of thewide trail design strategy [21].
A linear layer that systematically has lower values in the tail of its box weight histogram than the other
does typically has fewer two-round trails with low weight, given equal nonlinear layers.

4.5.2 Bit and boxweight histograms

We discuss the cumulative bit and box weight histograms for the linear layers of our four ciphers, given
in Figure 4.5. We include the histogram for the identity function, assuming 4-bit S-boxes for the box
weight to allow for comparison with Spongent and Saturnin.

The bit weight histogram for Spongent coincides with that of the identity permutation. This is
because its linear layer is a bit shuffle. As the identity permutation maps inputs to identical outputs, it
has only non-zero entries for even bit weights. Its bit branch number is 2. In conclusion, its mixing
power is the lowest possible.

The bit branch number of the mixing layer of Rijndael, MixColumns, is 6, that of Saturnin-MC
is 5, and that of Xoodoo-𝜃𝜃 is 4.

Similar to Spongent, the bit weight histograms of Rijndael and Xoodoo have only non-zero en-
tries at even bit weights. This is because both Xoodoo-𝜃𝜃 and Rijndael-MixColumns can be modeled
as 𝑎𝑎 𝑎 𝑎I+M)𝑎𝑎 for some matrix M ∈ 𝔽𝔽𝑏𝑏𝑏𝑏𝑏2 with the property that the bit weight of M 𝑎𝑎 is even for
all 𝑎𝑎 𝑎𝑎𝑎 𝑏𝑏2 . Saturnin-MC cannot be modeled in that way and does have non-zero entries at odd bit
weights.

The bit weight histograms of Rijndael and Saturnin are very close and that of Xoodoo is some-
what higher. The ranking per bit weight histogram reflects the computational resources invested in the
mixing layer: Rijndael uses 3.5 additions per bit, Saturnin 2.25, Xoodoo 2, and Spongent 0.

In the box weight histograms we see the following. For Spongent the box branch number is 2, the
same as the bit branch number. However, the box weight histogram of Spongent has a lower tail than
the identity permutation. What it shows is themixing power ofS𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in our factorization
of p𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, operating on 4-box superboxes.
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4.5 Huddling

The box branch number of the linear layers of Rijndael, MixColumns, and of Saturnin-MC are
both 5, while for Xoodoo it is 4.

The discrepancy between the bit and box weight histogram brings us to the notion of bit huddling:
many active bits huddle together in few active boxes. We say that the bit huddling in a linear layer is high
if the concentration is high and we say that the bit huddling is low otherwise.

Huddling has an effect on the contribution of states 𝑎𝑎 to the histogram, i.e., by definitionwe have that
wΠ(𝑎𝑎𝑎𝑎wΠ(L(𝑎𝑎𝑎𝑎 𝑎 w2(𝑎𝑎𝑎𝑎w2(L(𝑎𝑎𝑎𝑎. In words, from bit to boxweight, huddlingmoves states to the
left in the histogram, thereby raising the tail. Huddling therefore results in the decay of mixing power at
box level as compared to bit level. In the absence of huddling, the bit and box weight histogram would
be equal. However, huddling cannot be avoided altogether as states do exist with multiple active bits in
a box (note that𝑚𝑚 𝑚 𝑚).

We see Rijndael has high bit huddling. In moving from bit weights to box weights, the branch
number decreases from 6 to 5 and the tail rises from being the lowest of the four to the highest. This
is a direct consequence of the large width of the Rijndael S-boxes, namely 8, and the byte alignment.
Indeed, MixColumns onlymixes bits within the 32-bit columns. We call this the superbox huddling effect.
Of course, there is a reason for these large S-boxes: they have low maximum DP/LP values. They were
part of a design approach assuming table-lookup implementations where the main impact of the S-box
size is the size of the lookup tables. Unfortunately table-lookups are expensive in dedicated hardware and
on modern CPUs lookup tables are kept in cache making such implementations susceptible to cache-
timing attacks [4].

Saturnin, with its Rijndael-like structure also exhibits the superbox huddling effect, though less
pronounced than Rijndael. From bits to boxes the branch number does not decrease and the tail rises
less than for Rijndael. Clearly, its smaller S-box size, namely 4, allows for less bit huddling. Due to its
alignment, Spongent exhibits the superbox huddling effect, but less so than Saturnin. The reason
for this is the already high tail in the bit weight histogram, due to the absence of bit-level diffusion in the
mixing layer.

Finally, Xoodoohas the lowest bit huddling of the four primitives studied. This is the consequence of
twodesign choices: having very small S-boxes (3-bit) and the absence of alignment, avoiding the superbox
huddling effect altogether.

4.5.3 Two-round trail weight histograms

We define the trail weight histogram analogous to Definition 42 with the change that

𝒩𝒩⋅(𝑘𝑘𝑘 𝑘 𝑘{trails𝑄𝑄 𝑄 w⋅(𝑄𝑄𝑄𝑄𝑄𝑄  }| ,

where ⋅ is either 𝑟𝑟 for differential trails or 𝑐𝑐 for linear trails. Like for the other diagrams, the lower the tail,
the lower the number of states with small weights, the better.

Figure 4.6 reports on the distribution of the weight of two-round differential and linear trails of our
four ciphers. To compute the trail weight histograms of the aligned ciphers, we convolved the histograms
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4 Thinking Outside the Superbox

of the superbox structures (See Equation 4.1). The distribution of the linear trails for Rijndael is an
approximation that was obtained by first taking the integer part of the correlation weights of its S-box to
allow for integer arithmetic. The other distributions are exact.

While Rijndael performed the worst with respect to the box weight metric, we see that it performs
the best with respect to the trail weights. The reasons are the low maximum DP/LP value of its S-box
and its high branch number. However, as seen in Section 4.4.5, one pays a price in terms of the imple-
mentation cost. The relative ranking of the other ciphers does not change inmoving from box weight to
trail weights. Still, Xoodoo loses some terrain due to its more lightweight S-box layer.

Despite the difference in design approach, Xoodoo and Saturnin have quite similar two-round
trail weight histograms. It is therefore interesting how the trail weight histograms compare for three and
four rounds.

4.5.4 Three-round trail weight histograms

We have computed the three-round differential and linear trail weight histograms for Saturnin and
Xoodoo and give them in Figure 4.7. We did not do it for Rijndael due to the prohibitively high cost
of its round function and neither for Spongent due to its non-competitive bounds for multiple-round
trails as reported in [9]. Hence, we focus on Saturnin and Xoodoo as exponents of the aligned and
unalignedwide-trail design approaches. Computing the three-round Saturnin trail histograms turned
out to be very computationally intensive for higher weights (see Subsection A.3 for more details) and
we were forced to stop at weight 36. Still, the diagrams show the big difference in histograms between
Saturnin and Xoodoo.

Despite the fact that the box branch number of Xoodoo is 4 and that of Saturnin is 5, we see that
for three-round trails, Xoodoo performsmuch better than Saturnin. In particular, Xoodoo has no
trails withweight below 36, whereas Saturnin has about 243 linear trails withweight below 36, starting
fromweight 18. Moreover, it has about 247 differential trails with weight below 36, starting fromweight
19. This confirms the idea that branch number alone does not paint the whole picture and that these
histograms prove to be very useful in comparing the different design approaches.

4.5.5 Four rounds and beyond

We did not conduct experiments for four or more rounds, but can make use of available information.
According to [15], there exist no differential or linear trails over four rounds of Xoodoo with weight
below74. In contrast, Saturninhas roughly282 four-rounddifferential trailswith25 active S-boxes and
it has more than 294.5 such linear trails. See Section C for a derivation of this estimate. Since each S-box
has a weight of 2 or 3, this implies many four-round differential trails with weights in the range [50, 75].
The linear trails have weights in the range [50, 100] due to the fact that active S-boxes have weight 2 or 4.
Naturally, in both cases there are also trails with 26, 27, … active S-boxes and their number grows quickly
with the box weight due to the additional degrees of freedom in building them. It follows that the trend
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Figure 4.6: Two rounds: cumulative differential and linear trail weight histograms.

0 5 10 15 20 25 30 35 40 45 50

Differential Trail Weight

0

10

20

30

40

50

60

L
o
g
2
(
N
u
m
b
e
r
 
o
f
 
T
r
a
i
l
s
)

Saturnin

Xoodoo

0 5 10 15 20 25 30 35 40 45 50

Linear Trail Weight

0

10

20

30

40

50

60

L
o
g
2
(
N
u
m
b
e
r
 
o
f
 
T
r
a
i
l
s
)

Saturnin

Xoodoo

Figure 4.7: Three rounds: cumulative differential and linear trail weight histograms.

we see in three-round trails persists for four-round trails: unaligned Xoodoo has a significantly lower
tail than aligned Saturnin, despite its lighter round function and lower branch number.

For trails over five rounds and more we report on the known lower bounds on weight in Table 4.6 in
Section D. We see that up to 6 rounds Xoodoo remains ahead of Saturnin. For higher weights the
trail scan programs in Xoodoo reach their computational limit and Saturnin overtakes Xoodoo.
Advances in trail scanning are likely to improve the bounds for Xoodoo while for Saturnin the cur-
rently known bounds aremuchmore tight. For thewhole rangeRijndael is well ahead and Spongent
is invisible with its weight of 28 for 6 rounds.

4.6 Clustering

In this section, we investigate clustering of differential trails and of linear trails. The occurrence of such
clustering in two-round differentials and linear approximations requires certain conditions to be satis-
fied. In particular, we define an equivalence relation of states with respect to a linear layer and an S-box
partition that partitions the state space in candidate two-round trail cores and the size of its equivalence
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4 Thinking Outside the Superbox

classes upper bounds the amount of possible trail clustering. This is the so-called cluster partition. We
present the partitions of our four ciphers by means of their cluster histograms. For all four ciphers, we
report on two-round trail clustering and for Xoodoo in particular we look at the three-round case.
With its unaligned structure, we found little clustering in Xoodoo. However, the effects of clustering
are apparent in the aligned primitives Rijndael, Saturnin, and Spongent, with them being most
noticeable in Rijndael.

4.6.1 The cluster histogram

To define the cluster histogram we need to define two equivalence classes.

Definition 43. Two states are box-activity equivalent if they have the same activity pattern with respect to
a box partitionΠ:

𝑎𝑎 𝑎 𝑎𝑎′ if and only if 𝑟𝑟Π(𝑎𝑎𝑎 𝑎 𝑎𝑎Π(𝑎𝑎′) .

We denote the set of states that are box-activity equivalent with 𝑎𝑎 by [𝑎𝑎𝑎∼ and call it the box-activity class
of 𝑎𝑎.

Box-activity equivalence has an application in the relation between trail cores and differentials and
linear approximations.

Proposition 14. Two trail cores (𝑎𝑎0, 𝑏𝑏0 … , 𝑎𝑎𝑟𝑟𝑟𝑟, 𝑏𝑏𝑟𝑟𝑟𝑟) and (𝑎𝑎∗0, 𝑏𝑏∗0 … 𝑎𝑎∗𝑟𝑟𝑟𝑟, 𝑏𝑏∗𝑟𝑟𝑟𝑟) over a function

𝑓𝑓 𝑓 N𝑟𝑟𝑟𝑟 ∘L𝑟𝑟𝑟𝑟 ∘N𝑟𝑟𝑟𝑟 ∘ ⋯ ∘ L0 ∘N0

that are in the same differential (or linear approximation) satisfy 𝑎𝑎0 ∼ 𝑎𝑎∗0 and 𝑏𝑏𝑟𝑟𝑟𝑟 ∼ 𝑏𝑏∗𝑟𝑟𝑟𝑟.

Proof. Let (Δin, Δout) be the differential over 𝑓𝑓 that the trail cores are in. Since N0 and N𝑟𝑟𝑟𝑟 preserve
activity patterns, wehave thatΔin ∼ 𝑎𝑎0, andΔin ∼ 𝑎𝑎∗0, andΔout ∼ 𝑏𝑏𝑟𝑟𝑟𝑟, andΔout ∼ 𝑏𝑏∗𝑟𝑟𝑟𝑟. From the symmetry
and transitivity of ∼ it follows that 𝑎𝑎0 ∼ 𝑎𝑎∗0 and 𝑏𝑏𝑟𝑟𝑟𝑟 ∼ 𝑏𝑏∗𝑟𝑟𝑟𝑟.

Considering the case 𝑟𝑟 𝑟 𝑟 in Proposition 14 immediately gives rise to a refinement of box-activity
equivalence.

Definition 44. Two states are cluster-equivalent with respect to a linear mapping L ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 and a box
partitionΠ if they are box-activity equivalent before L and after it (See Figure 4.8):

𝑎𝑎 𝑎 𝑎𝑎′ if and only if 𝑎𝑎 𝑎 𝑎𝑎′ and L(𝑎𝑎𝑎 𝑎L(𝑎𝑎′) .

We denote the set of states that are cluster-equivalent with 𝑎𝑎 by [𝑎𝑎𝑎≈ and call it the cluster class of 𝑎𝑎. The
partition of 𝔽𝔽𝑏𝑏2 according to these cluster classes is called the cluster partition.

Corollary 3. If two two-round trail cores (𝑎𝑎𝑎L(𝑎𝑎𝑎𝑎 and (𝑎𝑎∗,L(𝑎𝑎∗)) over 𝑓𝑓 𝑓 N ∘L ∘N are in the same
differential, then 𝑎𝑎 𝑎 𝑎𝑎∗.
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[L(𝑎𝑎𝑎𝑎∼[𝑎𝑎𝑎∼

L

L

[𝑎𝑎𝑎≈

L

Figure 4.8: Partitions of 𝔽𝔽𝑏𝑏2 defined by ∼ and ≈.

Proof. If we apply Proposition 14 to the case 𝑟𝑟 𝑟 𝑟, we have 𝑎𝑎 𝑎 𝑎𝑎∗ and L(𝑎𝑎𝑎 𝑎L(𝑎𝑎∗). It follows that
𝑎𝑎 𝑎 𝑎𝑎∗.

Corollary 3 shows that the defining differences of any two-round trail cores that cluster together are
in the same cluster class. It follows that if these cluster classes are small, then there is little clustering.

For all 𝑎𝑎′ ∈ [𝑎𝑎𝑎≈ the box weight wΠ(𝑎𝑎′) + wΠ(L(𝑎𝑎′)) is the same. We denote this weight by w̃([𝑎𝑎𝑎≈).

Definition 45. Let L ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 be a linear transformation. Let ≈ be the equivalence relation given in
Definition 44. The cluster histogram NΠ,L ∶ ℤ≥0 × ℤ≥0 → ℤ≥0 of L with respect to the box partitionΠ is
given by

NΠ,L(𝑘𝑘𝑘 𝑘𝑘𝑘𝑘  𝑘𝑘𝑘𝑘𝑘𝑘≈ ∈ 𝔽𝔽𝑏𝑏2 /≈ ∶ w̃([𝑎𝑎𝑎≈)=  𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘≈|=𝑐𝑐  𝑐𝑐 𝑐

For a fixed box weight, the cluster histogram shows the distribution of the sizes of the cluster classes
with that box weight. Ideally, for small box weights, the cluster classes are all very small. Large cluster
classes of small weight may lead to two-round trails with a large DP or LP.

4.6.2 The cluster histograms of our ciphers

Next, we present the cluster histograms of the superboxes ofRijndael, Saturnin, and Spongent and
of the Saturnin hyperbox. Moreover, we present a partial cluster histogram of Xoodoo. The results
for Rijndael and Saturnin are found in Table 4.3, for Spongent in Table 4.4, and for Xoodoo in
Table 4.5. In these tables,𝐶𝐶 denotes the cardinality of a cluster class and𝑁𝑁 denotes the number of cluster
classes with that cardinality. For instance, an expression such as (32 × 1) (36 × 7)means that there are 32
cluster classes of cardinality 1 and 36 classes of cardinality 7. Looking at w̃ = 8 across the three tables, we
see that Rijndael, Saturnin, and Spongent have only a single cluster class containing all the states
with wΠ(𝑎𝑎𝑎 𝑎 wΠ(L(𝑎𝑎𝑎𝑎 𝑎𝑎 . In contrast, for Xoodoo, each state 𝑎𝑎 sits in its own cluster class. This
means that L(𝑎𝑎𝑎 is in a different box activity class than L(𝑏𝑏𝑏 for any 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏 ∼ and 𝑏𝑏 𝑏 𝑏𝑏.

Thanks to the fact that the mixing layers of Rijndael and Saturnin have the MDS property, the
entries of their cluster histograms are combinatorial expressions of𝑚𝑚, the box size, and 𝑛𝑛, the number of
boxes. We describe these methods in detail in Subsection A.2.
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4 Thinking Outside the Superbox

Table 4.4 gives the cluster histogramof Spongent’s superbox. Forweights above 4we see large cluster
equivalence classes.

Now, consider the cluster histogram of Xoodoo in Table 4.5. We see that up to and including box
weight13, we have |[𝑎𝑎𝑎≈| = 1. For boxweight14, 15, and16, we see that |[𝑎𝑎𝑎≈| ≤ 2. Due to its unaligned
structure, it is less likely that equal activity patterns are propagated to equal activity patterns. Therefore,
many cluster classes contain only a single state.

4.6.3 Two-round trail clustering

Two-round trail clustering in the keyed Rijndael superbox was investigated in [22]. In that paper the
expected DP values of trails and differentials are studied, where expected means averaged over all keys.
We see considerable clustering in differentials with 5 active S-boxes. For these, the maximum expected
DP of differentials is more than a factor 3 higher than themaximum expectedDP of 2-round trails, with
differentials containing up to 75 trails. For more active S-boxes the number of trails per differential is
much higher and hence clustering is worse, but their individual contributions to the expected DP are
much smaller and all differentials have expected DP very close to 2−32. For fixed keys or in an unkeyed
superbox these differentials and trails have aDP that is amultiple of 2−31. For trails this effect was studied
in [19].

In this section we report on our experiments on the other three of our ciphers where we compare
two-round differentials with differential trails and linear approximations with linear trails. Figure 4.9
shows the number of differentials and differential trails up to a given weight of the Saturnin and the
Spongent superboxes. In both cases, we see that for low weight the histograms are close and as the
weight grows, these histograms diverge. For Saturnin there are roughly 50 times more differentials
with weight 15 or less than differential trails with weight 15 or less. For Spongent this ratio is roughly
20. This divergence is due to two reasons: clustering and what we call clipping. Due to the large number
of differential trails and the limitedwidth of the superbox, the trails cluster. This effect is especially strong
for trails with almost all S-boxes active and would give rise to many differentials with DP close to 2−16 as
the superbox has width 16. What we observe is a majority of differentials with DP equal to 2−15. This is
the result of the fact that any differential over a superbox has an even number of ordered pairs and hence
the minimum DP is 2−15, yielding weight 15. We call this effect clipping: the weight of differentials
cannot be strictly greater than 15. A trail over a 𝑘𝑘-bit superbox with weight w > 𝑘𝑘 𝑘 𝑘 cannot have a
DP = 2−w as this would imply a fractional number of pairs. This effect has been studied in AES and we
refer to Section 4.7 for a discussion.

Figure 4.10 shows the weight histograms for two-round differentials and linear approximations. The
full-state correlation weight histogram of Saturnin was obtained from that of any of its columns by
first rounding the correlationweights to the nearest integer tomake integer arithmetic possible. The full-
state correlationweight histogramof Spongentwas obtained in a similarmanner. The remainder of the
histograms is exact. Table 4.5 shows that in Xoodoo almost all differentials contain only a single trail.
Thismeans that the clustering is negligible. Therefore, there is nodifferencebetweenFigures 4.6 and4.10
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Figure 4.9: Differentials and differential trails in the superboxes of Saturnin and Spongent.
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Figure 4.10: Two rounds: cumulative restriction and correlation weight histograms.

for Xoodoo. For Saturnin the clustering is the most striking. For linear trails we observe a similar
effect. For Spongent the clustering is less outspoken due to the fact that the trail weight histogram is
quite bad to start with.

The effect of clustering in four-round (or two super-round) Saturnin is interesting. Four-round
Saturnin consists of the parallel application of four 64-bit hyperboxes. The consequence is that for a
fixed key, the roughly 2127 ⋅ 4 differentials that are active in a single hyperbox and have non-zero DP, all
have weight below 63. When computing expected DP values averaging the DP over all round keys, this
is closer to 64.

The cluster classes also determine the applicability of the very powerful truncated differential at-
tacks [24]. These attacks exploit sets of differentials that share the same box activity pattern in their input
difference and the same box activity pattern in their output difference. Despite the fact that the individ-
ual trails in these truncated differentials may have very low DP, the joint probability can be significant
due to the massive numbers. For two-round differentials the cluster classes are exactly the trail cores in a
given truncated differential. In Table 4.3 we see that the cluster classes for the Rijndael superbox and
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Saturnin hyperbox are very large. This clustering leads to powerful distinguishers for e.g., 4-round
AES and 8-round Saturnin. The latter can be modeled as 4 hyperboxes followed by an MDS mixing
layer followed by 4 hyperboxes and an input difference with a single active hyperbox will have 4 active
hyperboxes after 8 rounds, with probability 1. In contrast, if the cluster classes are small, as in the case
of the unalignedXoodoo permutation, it is very unlikely that truncated differential attacks would have
an advantage over ordinary differential attacks.

4.6.4 Three-round trail clustering in Xoodoo

Recall that for Xoodoo, no 4-round trails exist with weight below 74 and Table 4.5 showed that trail
clustering in two-round differentials in Xoodoo is negligible, as expected because of its unaligned de-
sign. We investigate the conjecture that it is also the case for three rounds.

First, we present a generic technique to find all trails that have an enveloping differential compatible
with a given three-round trail core. We apply the technique to Xoodoo, for which it is very efficient.

Given the trail core (𝑎𝑎∗1, 𝑏𝑏∗1 , 𝑎𝑎∗2, 𝑏𝑏∗2 ), Proposition 14 shows that we can restrict ourselves to those tuples
(𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2) with 𝑎𝑎1 ∼ 𝑎𝑎∗1 and 𝑏𝑏2 ∼ 𝑏𝑏∗2 . The difference 𝑎𝑎∗1 defines a vector space 𝐴𝐴′ of all the states in
which a box is passive whenever it is passive in 𝑎𝑎∗1. If 𝑎𝑎1 ∈ [𝑎𝑎∗1]∼, then 𝑎𝑎1 ∈ 𝐴𝐴′. Similarly, 𝑏𝑏∗2 defines a
vector space𝐵𝐵′. If 𝑏𝑏2 ∈ [𝑏𝑏∗2 ]∼, then 𝑏𝑏2 ∈ 𝐵𝐵′. The vector space𝐵𝐵 𝐵 L(𝐴𝐴′) contains the candidate values for
𝑏𝑏1. Similarly, the vector space𝐴𝐴 𝐴 L−1(𝐵𝐵′) contains candidate values for 𝑎𝑎2. Because it preserves activity
patterns, N restricts the set of candidate values to those satisfying 𝑏𝑏1 ∼ 𝑎𝑎2. Hence, we can limit the search
to those 𝑥𝑥 𝑥𝑥𝑥  and 𝑦𝑦 𝑦𝑦𝑦 with 𝑥𝑥 𝑥𝑥𝑥 .

To find all valid trails of the form (Δin, 𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2, Δout), we first reduce the size of the space of all
trail cores (𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2) using a necessary condition. When this space is small enough, we exhaustively
search for a valid trail.

Wewrite𝐵𝐵 for a basis of𝐵𝐵 and𝐴𝐴 for a basis of𝐴𝐴. To reduce the dimension of the spaces, we will apply
an algorithm directly on their bases. First, we need the notion of isolated active bit.

Definition 46. A bit 𝑖𝑖 of 𝑏𝑏 𝑏 𝐵𝐵 is said to be an isolated active bit if 𝑏𝑏𝑖𝑖 = 1 and 𝑏𝑏′𝑖𝑖 = 0 for all 𝑏𝑏′ ∈ 𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵.

A basis vector having an isolated active bit determines the box activity of any linear combination that
includes it.

Proposition 15. If 𝑏𝑏 𝑏 𝐵𝐵 has an isolated active bit in position 𝑖𝑖, then any vector in the affine space 𝑏𝑏 𝑏
span(𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵 has the corresponding box activated.

Proof. If 𝑏𝑏 has an isolated active bit in position 𝑖𝑖, then the 𝑖𝑖th bit of any vector in 𝑏𝑏 𝑏 span(𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵 is
active. As a result, the box containing this bit is active.

Similar to how an isolated active bit always activates the corresponding box, a box is never activated if
no basis vector activates it.

Proposition 16. If the 𝑖𝑖th box is passive in every vector of𝐴𝐴, then the 𝑖𝑖th box is passive in all vectors of𝐴𝐴.
We say that box 𝑖𝑖 is passive in𝐴𝐴.

80



4.7 Dependence of round differentials

We define a condition that makes it possible to remove a basis vector from the basis without excluding
potentially valid trails.

Condition 1. We say that a basis vector 𝑏𝑏 𝑏 𝐵𝐵 satisfies the reduction condition if and only if it has an
isolated active bit in a box that is passive in𝐴𝐴. The same is true when swapping the role of 𝐵𝐵 and𝐴𝐴.

The following lemma shows that the reduction condition is sufficient to reduce the dimension of the
vector space we consider.

Proposition 17. If a basis vector 𝑏𝑏 𝑏 𝐵𝐵 satisfies Condition 1, then all valid differences before theN in the
middle are in span(𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵. The same is true when swapping the role of 𝐵𝐵 and𝐴𝐴.

Proof. As a consequence of Proposition 15 and Proposition 16, a valid difference before the nonlinear
layer cannot be constructed from 𝑏𝑏(𝑖𝑖𝑖 because it would contradict the fact that the activity pattern is
preserved through the nonlinear layer.

The algorithm now consists in repeatedly removing basis vectors from 𝐵𝐵 and 𝐴𝐴 that satisfy Condi-
tion 1 until this is no longer possible. This can be done efficiently by searching for pivots for a Gaussian
elimination among indices of vectors from𝐴𝐴′ (respectively 𝐵𝐵′) that correspond to never activated boxes
in 𝐵𝐵′ (respectively 𝐴𝐴′). Indeed, these pivots can be used to row-reduce the corresponding basis along
them, thus revealing an isolated active bit.

If the algorithm sufficiently decreased the dimensions, then we can exhaustively test all pairs (𝑏𝑏1, 𝑎𝑎2)∈
𝐵𝐵 𝐵 𝐵𝐵 (after reduction) according to the following criteria:

• (𝑏𝑏1, 𝑎𝑎2) is a valid differential over N;

• There exists aΔin such that both (Δin, 𝑎𝑎∗1) and (Δin, 𝑎𝑎1) are valid differentials over N;

• There exists aΔout such that both (𝑏𝑏∗2 , Δout) and (𝑏𝑏2, Δout) are valid differentials over N.

Applying ourmethod to all three-round trail cores of Xoodoo up to weight 50 [17] shows that there
exists no cluster for all these trails.

4.7 Dependence of round differentials

In this section we study the dependence of round differentials in the sense of Definition 30 in Sec-
tion 4.2.1. It has been found in [19] that the vast majority of trails over the Rijndael superbox have
dependent round differentials. We will investigate this for differential trails over three-round Xoodoo.
We expect that the dependence effects observed in Rijndael disappear in an unaligned cipher. Hence,
we now investigate this for differential trails over three-round Xoodoo.
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4 Thinking Outside the Superbox

4.7.1 Masks for differentials over nonlinear components

Wenote𝑉𝑉N(Δin, Δout) the set of output states that follow thedifferential (Δin, Δout)overN, i.e. 𝑉𝑉𝛮𝛮(Δin, Δout) =
N(𝑈𝑈N(Δin, Δout)). From [19], we have that𝑈𝑈N(Δin, Δout) and𝑉𝑉N(Δin, Δout) are affine if

|𝑈𝑈S𝑖𝑖(𝑃𝑃𝑖𝑖(Δin), 𝑃𝑃𝑖𝑖(Δout))| ≤ 4

for each S-box. Since this assumption holds for our four ciphers, both𝑈𝑈N(Δin, Δout) and𝑉𝑉N(Δin, Δout)
are affine and can be described by a system of affine equations on the bits of the state 𝑥𝑥. Each affine
equation can be written as 𝑢𝑢⊤𝑥𝑥 𝑥 𝑥𝑥with 𝑢𝑢 a 𝑏𝑏-bit vector called mask and 𝑐𝑐 a bit.
Given a three-round differential trail𝑄𝑄 𝑄𝑄𝑄 in, 𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2, Δout), one can define four sets of masks:

• 𝐴𝐴1, the masks that come from𝑉𝑉N(Δin, 𝑎𝑎1);

• 𝐵𝐵1, the masks that come from𝑈𝑈N(𝑏𝑏1, 𝑎𝑎2);

• 𝐴𝐴2, the masks that come from𝑉𝑉N(𝑏𝑏1, 𝑎𝑎2);

• 𝐵𝐵2, the masks that come from𝑈𝑈N(𝑏𝑏2, Δout).

These masks are said to be all independent if

|𝑈𝑈N ∘L ∘N ∘L ∘N(𝑄𝑄𝑄𝑄𝑄  𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏1|+|𝛣𝛣1|+|𝛣𝛣2|) = 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏1|+|𝛢𝛢2|+|𝛣𝛣2|) .

which is, per Definition 30, equivalent to the independence of round differentials.
We first present an efficient generic method for determining whether three-round trail masks are in-

dependent. Then we apply this method to Xoodoo. Since L is linear, 𝐴𝐴1 can be linearly propagated
through it to obtain a set of masks𝐴𝐴′

1 at the input of the second nonlinear layer. Similarly, we can prop-
agate𝐵𝐵2 through the inverse linear layer to obtain a set of masks𝐵𝐵′2 at the output of the second nonlinear
layer.

4.7.2 Independence of masks over a nonlinear layer

𝐵𝐵1 and 𝐴𝐴′
1 form sets of masks at the input of the second nonlinear layer. If the rank of 𝐶𝐶1 = 𝐵𝐵1 ∪ 𝐴𝐴′

1 is
the sum of the ranks of 𝐵𝐵1 and𝐴𝐴′

1, then 𝐶𝐶1 contains independent masks. The same strategy can be used
to test for dependence of masks in𝐶𝐶2 = 𝐴𝐴2 ∪ 𝐵𝐵′

2.
As for the independence of masks of the complete trail, we need to check for dependence between𝐶𝐶1

and 𝐵𝐵′2 or between𝐴𝐴′
1 and 𝐶𝐶2. We will apply an algorithm similar to the one we used in Section 4.6.4 to

reduce bases. However, here we use it to reduce the cardinalities of the mask sets.
The following lemma makes this possible.

Proposition 18. Let 𝐶𝐶1 and 𝐵𝐵′2 be two sets of masks before and after an S-box layer. If a mask 𝑢𝑢 in 𝐶𝐶1
satisfies Condition 1, then the number of states that satisfy the equations associated with the masks in both
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4.8 Conclusion

𝐶𝐶1 ∖ {𝑢𝑢𝑢 and 𝐵𝐵′2 is exactly two times the number of states before removing 𝑢𝑢. The same is true by swapping
the role of𝐶𝐶1 and 𝐵𝐵′2.

Proof. Since 𝑢𝑢 satisfiesCondition 1, let 𝑖𝑖 be the index of the isolated bit, 𝑗𝑗 be the index of the correspond-
ing S-Box and 𝑘𝑘 the number of masks in𝐵𝐵′2. Nomask in𝐵𝐵′2 is putting a constraint on any of the𝑚𝑚 bits of
the 𝑗𝑗th S-Box, thus the 2𝑏𝑏𝑏𝑏𝑏 solutions can be seen as 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 groups of 2𝑚𝑚 different states that only differ
in the𝑚𝑚 bits of the 𝑗𝑗th S-box. Since the S-box is invertible, the application of the inverse of the nonlinear
layer to a whole group of 2𝑚𝑚 vectors results in a group of 2𝑚𝑚 different states that, again, only differ on the
value of the 𝑗𝑗th S-box.

We can further divide those 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 groups each into 2𝑚𝑚𝑚𝑚 subgroups of 2 different states that only dif-
fer in the value of the 𝑖𝑖th bit. By definition on an isolated bit, either both or none of the two states inside
a subgroup satisfy all equations associated with the masks in𝐶𝐶1 ∖ {𝑢𝑢𝑢. Finally, inside a subgroup exactly
one of the two states will satisfy the equation associated with mask 𝑢𝑢. Thus, the number of solutions by
removing 𝑢𝑢 is multiplied by exactly two.

We first check for linear dependence inside𝐶𝐶1 by computing its associated rank. Then, we recursively
check if some mask in either 𝐶𝐶1 or 𝐵𝐵′2 satisfies Condition 1 and if it is the case we remove them from the
sets of masks.

There are three possible outcomes when applying this process to a three-round differential trail:

• If𝐶𝐶1 is not full rank, we can conclude that masks in 𝐵𝐵1 and𝐴𝐴′
1 are dependent;

• Else, if either set is empty, Proposition 18 applied at each step guarantees us that the number of
states satisfying the equations associated with themasks in both𝐶𝐶1 and𝐵𝐵′2 is equal to 2𝑏𝑏𝑏(|𝐶𝐶1|+|𝛣𝛣

′
2|),

that is to say the masks are independent;

• If none of the two conditions above are met, we cannot directly conclude about (in)dependence
between remaining masks but we can apply the same method to 𝐴𝐴1 and 𝐶𝐶2 and hope for a better
outcome.

4.7.3 Application to Xoodoo

This process is used to check for independence in differential trails over three rounds of Xoodoo. It has
been applied to the same differential trails as processed in Section 4.6.4. In all cases, the masks, and thus
round differentials, were found to be independent. This was not obtained by sampling, but instead by
counting the number of solutions, hence this independence is exact in the sense of Definition 30. As a
result, the DP of each such trail is the product of the DP values of its round differentials, which implies
that DP(𝑄𝑄𝑄 𝑄 𝑄−wr(𝑄𝑄𝑄.

4.8 Conclusion

We put forward alignment as a crucial property that characterizes the interactions between linear and
nonlinear layers w.r.t. the differential and linear propagation properties. We conducted experiments on
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4 Thinking Outside the Superbox

four S-box based primitives that otherwise represent different design approaches. We precisely defined
what it means for a primitive to be aligned and showed that Rijndael, Saturnin, and Spongent are
aligned, whereas Xoodoo is unaligned. Through these examples, we highlighted and analyzed different
effects of alignment on the propagation properties.

Acknowledgements. We thank Bart Mennink for helpful comments. Moreover, we would like to
thank the anonymous reviewers of an earlier version of this paper for their useful feedback. JoanDaemen
and Daniël Kuijsters are supported by the European Research Council under the ERC advanced grant
agreement under grant ERC-2017-ADGNr. 788980 ESCADA. This work is partially supported by the
French National Research Agency in the framework of the Investissements d’avenir programme (ANR-
15-IDEX-02).

A Histogram computations

In this section, we describe methods for computing histograms. First, we describe a general method
to obtain the histogram of an aligned function from the histograms of its box functions. Second, we
describe some methods to obtain the cluster histograms of the ciphers described in Section 4.4.

Almost all of our computations were done to full precision. The only exception is the case of comput-
ing the correlation weights for Rijndael, Saturnin, and Spongent. In this case, we took the integer
part of the intermediate results and computed on those numbers.

As a rule of thumb, the most interesting part of any histogram is its left tail, i.e., the part containing
the distribution of the low weights. As a consequence of this, we are satisfied if we are able to compute
a partial histogram that includes this tail. We see in the case of Rijndael and Xoodoo that this is
frequently all we can hope to expect.

A.1 Convolution

Let L = L0 × ⋯ × L𝑛𝑛𝑛𝑛 ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 be a function composed of box functions with respect to an ordered
partition Π. Computing a histogram of L exhaustively is often computationally infeasible. However,
the histograms of the box functions L𝑖𝑖 typically are feasible to compute thanks to the small box width.
Given the histograms of the L𝑖𝑖, it is possible to combine them to get the histogram of L itself. This
combining operation is a form of convolution and is therefore denoted as ∗. The idea is best illustrated
by an example.

Example 4. Consider Rijndael and suppose we wish to compute the convolution of the restriction weight
histograms of two of its S-boxes for a fixed output difference. We represent the histograms in two-column
notation, where we list the restriction weights in the first column, and for each one its image, i.e., the number
of input differences with the givenweight, in the second column. Tomake the representationfinite, a necessity
for performing computations on these objects, we restrict ourselves to those weights for which the image is non-
zero.
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A Histogram computations

[
0 1
6 1
7 126

] ∗ [
0 1
6 1
7 126

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 + 0 1 ⋅ 1
0 + 6 1 ⋅ 1
0 + 7 1 ⋅ 126
6 + 0 1 ⋅ 1
6 + 6 1 ⋅ 1
6 + 7 1 ⋅ 126
7 + 0 126 ⋅ 1
7 + 6 126 ⋅ 1
7 + 7 126 ⋅ 126

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

=

⎡
⎢
⎢
⎢
⎢
⎢

⎣

0 1
6 2
7 252
12 1
13 252
14 15876

⎤
⎥
⎥
⎥
⎥
⎥

⎦

To the end of abstracting the notion showcased in the example, suppose that there exist 𝑡𝑡 associative
binary operations ⊕𝑗𝑗 ∶ ℤ≥0 × ℤ≥0 → ℤ≥0 for 0 ≤ 𝑗𝑗 𝑗𝑗𝑗  𝑗 𝑗. For our purposes, these operations are
just + (regular addition) or ⋅ (regular multiplication) and we restrict ourselves to either 𝑡𝑡 𝑡𝑡  or 𝑡𝑡 𝑡𝑡 .
Furthermore, suppose that𝑇𝑇𝑖𝑖 ⊆ ℤ𝑡𝑡≥0 is an encoding of some histogram of L𝑖𝑖 for 0 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 . We think
of𝑇𝑇𝑖𝑖 as an 𝑠𝑠𝑠𝑠𝑠matrix for some 𝑠𝑠 𝑠 𝑠≥0 and index its rows as𝑇𝑇𝑖𝑖

𝑗𝑗 and its entries as𝑇𝑇𝑖𝑖
𝑗𝑗𝑗𝑗. We define the binary

convolution operator

∗ ∶ ℤ𝑡𝑡≥0 × ℤ𝑡𝑡≥0 → ℤ𝑡𝑡≥0

that combines sequences as

(𝑙𝑙0, … , 𝑙𝑙𝑡𝑡𝑡𝑡) ∗ (𝑚𝑚0, … ,𝑚𝑚𝑡𝑡𝑡𝑡) = (𝑙𝑙0 ⊕0 𝑚𝑚0, … , 𝑙𝑙𝑡𝑡𝑡𝑡 ⊕𝑡𝑡𝑡𝑡 𝑚𝑚𝑡𝑡𝑡𝑡)

We note that ∗ is associative, since the ⊕𝑗𝑗 are. Using this operator, it is possible to combine sequences
fromdifferent histograms in a sensibleway. Any sequence in the histogramofL is related to the sequences
in the histograms of the L𝑖𝑖 in the following way:

(𝑛𝑛0, … , 𝑛𝑛𝑡𝑡𝑡𝑡) = ∗
0≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗𝑗𝑖𝑖(𝑛𝑛0,…,𝑛𝑛𝑡𝑡𝑡𝑡)

𝑇𝑇𝑖𝑖
𝑗𝑗

where

𝐶𝐶𝑖𝑖(𝑛𝑛0, … , 𝑛𝑛𝑡𝑡𝑡𝑡) = {𝑗𝑗 𝑗𝑗 ≥0 ∶
𝑛𝑛𝑛𝑛
⨁

𝑙𝑙
𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖
𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑙𝑙 for 0 ≤ 𝑙𝑙 𝑙𝑙𝑙𝑙𝑙   𝑙

A.2 Mixing layers based onMDS codes

We show how to compute the box weight histogram and the cluster histogram of a mixing layer L that
is based on MDS codes. In the cipher built on top of L, we suppose that there is an S-box layer N. Let
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the ordered partitionΠ0 be defined by N. Moreover, we suppose that the size of the boxes ofΠ0 is𝑚𝑚.
Consider

L = L0 × ⋯ × L𝑠𝑠𝑠𝑠 ∶
𝑠𝑠𝑠𝑠
⨉
𝑖𝑖𝑖𝑖

𝔽𝔽𝑘𝑘𝑘𝑘2 →
𝑠𝑠𝑠𝑠
⨉
𝑖𝑖𝑖𝑖

𝔽𝔽𝑘𝑘𝑘𝑘2 .

Now, L defines an ordered partitionΠ1. Indeed, each of the 𝑠𝑠 boxes ofΠ1 is the union of 𝑘𝑘 boxes ofΠ0

of size𝑚𝑚. It follows thatΠ0 ≤ Π1, N is box-alignedwith respect to bothΠ0 andΠ1, andL is box-aligned
with respect toΠ1.

Definition 47. A function 𝑓𝑓 𝑓𝑓𝑓 𝑘𝑘2𝑚𝑚 → 𝔽𝔽𝑘𝑘2𝑚𝑚 is called an MDS function if the set {(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑘𝑘2𝑚𝑚} ⊆
𝔽𝔽2𝑘𝑘2𝑚𝑚 ≅ 𝔽𝔽2𝑘𝑘𝑘𝑘2 is anMDS code over 𝔽𝔽2𝑚𝑚 of minimum distance 𝑑𝑑.

The minimum distance 𝑑𝑑 is precisely the box branch number. Henceforth, we make the assumption
that the box functions L𝑖𝑖, with 0 ≤ 𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖, areMDS functions, i.e., that have branch number𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑.

First, Proposition 19 shows how to compute the boxweight histogramof L𝑖𝑖with respect to the subset
ofΠ0 consisting of the boxes indexed by 𝑖𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖 (they form a partition of the input space of
L𝑖𝑖).

Proposition 19. Let 𝐶𝐶 be an [2𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘 𝑘MDS code over 𝔽𝔽𝑞𝑞. The weight distribution of 𝐶𝐶 is given by
𝐴𝐴0 = 1,𝐴𝐴𝑤𝑤 = 0 for 1 ≤ 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤  , and

𝐴𝐴𝑤𝑤 = (
2𝑘𝑘
𝑤𝑤
)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤

∑
𝑖𝑖𝑖𝑖

(−1)𝑖𝑖(
𝑤𝑤
𝑖𝑖
)(𝑞𝑞𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −1)

for 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘     𝑘𝑘.

Proof. This is a specific case of Proposition 7.4.1 in [23].

As an example, in both MixColumns of Rijndael and MC of Saturnin we have 𝑘𝑘 𝑘 𝑘. Using
convolution, it is now possible to obtain the box weight histogram of L from those of the L𝑖𝑖.
Next, we show how to compute the L𝑖𝑖-box histogram. We put𝐶𝐶𝑚𝑚𝑚𝑚𝑚(w) = |[𝑎𝑎𝑎≈| for any 𝑎𝑎 𝑎𝑎𝑎 𝑘𝑘𝑘𝑘2 with

wΠ(𝑎𝑎𝑎𝑎 wΠ(L(𝑎𝑎𝑎𝑎𝑎  w. In other words,𝐶𝐶𝑚𝑚𝑚𝑚𝑚(w) does not depend on the box activity pattern of 𝑎𝑎, but
only on its box weight. A box activity pattern can be chosen in (2𝑛𝑛𝑘𝑘 ) Before stating the main result, we
prove some lemmas.

Proposition 20. We have𝐶𝐶𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 𝑘𝑘𝑘𝑘𝑘   𝑚𝑚 −1 .

Proof. Since L𝑖𝑖 is anMDS function, there exists a 𝑘𝑘 𝑘 𝑘𝑘matrix𝑀𝑀 such that𝐻𝐻 𝐻𝐻𝐻𝐻 𝐻𝐻𝑘𝑘) is a parity-check
matrix of an MDS code of dimension 𝑘𝑘. Let 𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆     with |𝑆𝑆𝑆𝑆𝑆𝑆   be a subset of the column
index space. The columns of𝐻𝐻 indexed by 𝑆𝑆 form a 𝑘𝑘𝑘𝑘𝑘 sub-matrix. Since𝐻𝐻 defines anMDS code, this
sub-matrix is invertible. This means that the columns of the reduced row echelon form of𝐻𝐻 indexed by
𝑆𝑆 form the identity matrix 𝐼𝐼𝑘𝑘. By permuting the columns of the reduced row echelon form, we obtain a
parity-check matrix of an equivalent code,𝐻𝐻′ = (𝑀𝑀′𝐼𝐼𝑘𝑘). This defines a linear mapM ∶ 𝔽𝔽𝑘𝑘2𝑚𝑚 → 𝔽𝔽𝑘𝑘2𝑚𝑚 given
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by M(𝑎𝑎𝑎 𝑎 𝑎𝑎′⊤𝑎𝑎. Now, let 𝑎𝑎 𝑎 𝑎𝑎𝑘𝑘𝑘𝑘2 with wΠ(𝑎𝑎𝑎 𝑎 wΠ(L(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎. Pick the subset 𝑆𝑆 in such a way
that it contains the index of one active box of (𝑎𝑎𝑎L(𝑎𝑎𝑎𝑎 and such that the other indices correspond to
𝑘𝑘𝑘 𝑘 passive boxes. The other 𝑘𝑘 active boxes are completely determined by this single active box through
M. Hence, we have only 2𝑚𝑚 −1  degrees of freedom.

Proposition 21. We have𝐶𝐶𝑚𝑚𝑚𝑚𝑚(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑚𝑚 −1) (2𝑚𝑚 −1−𝑘𝑘𝑘   .

Proof. Let 𝑎𝑎 𝑎 𝑎𝑎𝑘𝑘𝑘𝑘2 with wΠ(𝑎𝑎𝑎 𝑎wΠ(L(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎. By the same argument as given in Proposition 20,
we pick 𝑆𝑆 in such a way that it contains the indices of two active boxes of 𝑎𝑎. There are (2𝑚𝑚 −1) 2 ways of
choosing the vector 𝑎𝑎 such that it is active in two boxes. Then M determines the other 𝑘𝑘 boxes. Clearly
𝑘𝑘𝑘𝑘   𝑘 wΠ(𝑎𝑎𝑎 𝑎 wΠ(M(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎 (as there are only 𝑘𝑘 boxes at the output of M). We subtract the
number of vectors that lead to a box weight of 𝑘𝑘𝑘𝑘  According to Proposition 20, this number is 2𝑚𝑚 −1
for a fixed position of an active box. We can choose this position in 𝑘𝑘 ways. Hence, in total, we need to
subtract 𝑘𝑘𝑘𝑘𝑚𝑚 −1)  inputs. The result readily follows.

Proposition 22 states the main result. The L𝑖𝑖-box histogram follows directly from it.

Proposition 22. For 𝑘𝑘𝑘𝑘   𝑘 𝑘𝑘 𝑘 𝑘𝑘𝑘, the following recurrence relation holds:

𝐶𝐶𝑚𝑚𝑚𝑚𝑚(w)=  (2𝑚𝑚 −1) 𝑤𝑤𝑤𝑤𝑤 − ∑
1≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(
𝑘𝑘
𝑖𝑖
)𝐶𝐶𝑚𝑚𝑚𝑚𝑚(w − 𝑖𝑖𝑖

Moreover,𝐶𝐶𝑚𝑚𝑚𝑚𝑚(0)=1  .

Proof. Let 𝑎𝑎 𝑎 𝑎𝑎𝑘𝑘𝑘𝑘2 with wΠ(𝑎𝑎𝑎 𝑎 wΠ(L(𝑎𝑎𝑎𝑎 𝑎 w. By the same argument as given in Proposition 20,
pick 𝑆𝑆 such that it contains the indices of𝑤𝑤𝑤𝑤𝑤 active boxes. There are (2𝑚𝑚 −1) 𝑤𝑤𝑤𝑤𝑤 ways of choosing the
vector 𝑎𝑎 such that it is active in𝑤𝑤𝑤𝑤𝑤  boxes. It follows that 𝑘𝑘𝑘𝑘   𝑘 wΠ((𝑎𝑎𝑎M(𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 . We subtract the
number of vectors that lead to a box weight of 𝑘𝑘𝑘𝑘𝑘   for 1≤  𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      and obtain the result.

Again, using convolution, it is possible to obtain the cluster histogram from the L𝑖𝑖-box histograms.

A.3 Exhaustive search

Cluster histogram up to given boxweight

Let L ∶ 𝔽𝔽𝑏𝑏2 → 𝔽𝔽𝑏𝑏2 be a linear transformation. Suppose that we want to determine the cluster histogram,
but that it is infeasible to construct the whole histogram because L is not box-aligned nor does it have
any other properties that make it easy to do so. In this case, it is still possible to construct the cluster
histogram up to a given box weight. To this end, suppose that we have an algorithm similar to the Trail
Search described in [32] that generates a list of vectors up to a given weight.
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For a given difference 𝑎𝑎 𝑎 𝑎𝑎𝑏𝑏2 , consider the vector (𝑎𝑎𝑎L(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎2𝑏𝑏2 with wΠ(𝑎𝑎𝑎 𝑎 wΠ(L(𝑎𝑎𝑎𝑎 𝑎 w. We
wish to compute |[𝑎𝑎𝑎≈|. Consider the vector space spanned by the basis vectors that have the same box
activity pattern as 𝑎𝑎:

𝑉𝑉𝑉𝑉𝑉𝑉𝑉  ⟨ ⋃
0≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟Π(𝑎𝑎𝑎𝑖𝑖≠0

{𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖, 𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖, … , 𝑒𝑒𝑏𝑏(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}⟩

We compute a basis for L(𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉 𝑉𝑉𝑉L(𝑎𝑎𝑎𝑎 using Zassenhaus algorithm [26]. Then

𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 ≈| = |{𝑣𝑣 𝑣 L(𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉 𝑉𝑉𝑉L(𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎L(𝑎𝑎𝑎𝑎∼ ∧ L−1(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  ∼}|

and we increment𝑁𝑁Π,L(w, 𝑐𝑐𝑐 by one. Once we have considered all vectors of box weight w, the values of
𝑁𝑁Π,L(w, ⋅) are exact.

Three-round trail search Saturnin

During the first three rounds of Saturnin, all step functions are applied, in parallel, to disjoint slices.
Since we are interested in the tail of the differential or linear trail weight histogram, we may limit our
search for trails to a single slice. The cipher applies sixteen S-boxes to a slice and we write Π for the
corresponding partition. Clearly, an activity pattern with respect to Π can be encoded as a vector of
sixteen bits. We represent this vector as the following 4 × 4 binary matrix:

[

𝑟𝑟Π(𝑎𝑎𝑎3 𝑟𝑟Π(𝑎𝑎𝑎2 𝑟𝑟Π(𝑎𝑎𝑎1 𝑟𝑟Π(𝑎𝑎𝑎0
𝑟𝑟Π(𝑎𝑎𝑎6 𝑟𝑟Π(𝑎𝑎𝑎5 𝑟𝑟Π(𝑎𝑎𝑎4 𝑟𝑟Π(𝑎𝑎𝑎7
𝑟𝑟Π(𝑎𝑎𝑎9 𝑟𝑟Π(𝑎𝑎𝑎8 𝑟𝑟Π(𝑎𝑎𝑎11 𝑟𝑟Π(𝑎𝑎𝑎10
𝑟𝑟Π(𝑎𝑎𝑎12 𝑟𝑟Π(𝑎𝑎𝑎15 𝑟𝑟Π(𝑎𝑎𝑎14 𝑟𝑟Π(𝑎𝑎𝑎13

]

In this representation, each matrix row corresponds to the activity pattern of differences or linear masks
at the input of a singleMC in the first mixing layer. Similarly, a matrix column corresponds to the activ-
ity pattern of differences or linear masks at the output of a single MC in the second mixing layer. This
allows us to compute candidate activity patterns for which the weight of any differential or linear trail
that contains a difference or linearmask contained in that pattern does not exceed an upper bound on the
differential or linear trail weight that we set beforehand. Indeed, we generate all possible 4×4 binaryma-
trices, encoding all possible activity patterns. Each matrix row and each matrix column has a bit weight,
which corresponds to the boxweight of the differences and linearmasks at the input or output of a single
MC. SinceMC defines anMDS code of minimum distance 5, the differences or linear masks associated
with a matrix row of bit weight w contribute at least 5 − w to the differential or linear trail weight. A
similar argument can be given for the columns. This gives a lower bound on the actual differential or
linear trail weight of any trail comprising a difference or linear mask contained in that activity pattern.
We determine whether this lower bound is smaller than or equal to the upper bound that we set. The
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result is a collection of candidate activity patterns, the lower bound of which does not exceed our fixed
upper bound. To the end of determining the actual trail weights, we first switch back to the following
sequential representation as this makes it easier to apply the step functions:

[

𝑟𝑟Π(𝑎𝑎𝑎0 𝑟𝑟Π(𝑎𝑎𝑎1 𝑟𝑟Π(𝑎𝑎𝑎2 𝑟𝑟Π(𝑎𝑎𝑎3
𝑟𝑟Π(𝑎𝑎𝑎4 𝑟𝑟Π(𝑎𝑎𝑎5 𝑟𝑟Π(𝑎𝑎𝑎6 𝑟𝑟Π(𝑎𝑎𝑎7
𝑟𝑟Π(𝑎𝑎𝑎8 𝑟𝑟Π(𝑎𝑎𝑎9 𝑟𝑟Π(𝑎𝑎𝑎10 𝑟𝑟Π(𝑎𝑎𝑎11
𝑟𝑟Π(𝑎𝑎𝑎12 𝑟𝑟Π(𝑎𝑎𝑎13 𝑟𝑟Π(𝑎𝑎𝑎14 𝑟𝑟Π(𝑎𝑎𝑎15

]

Using convolution and exhaustive searchwithin the candidate activity patterns, we are able to find all the
differential and linear trails within that slice up to a given weight.

B Minimal sum-of-product forms

We have used the Espresso algorithm to get a minimal sum-of-products (SOP) form of the three ciphers
below. Note that addition denotes ‘or’, multiplication denotes ‘and’, and an overline denotes negation.

Xoodoo:

𝑌𝑌0 = 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2
𝑌𝑌1 = 𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2
𝑌𝑌2 = 𝑋𝑋0𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2

Saturnin:

𝑌𝑌0 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3
𝑌𝑌1 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1
𝑌𝑌2 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1
𝑌𝑌3 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2

Spongent:

𝑌𝑌0 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2
𝑌𝑌1 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3
𝑌𝑌2 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋2𝑋𝑋3 + 𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3
𝑌𝑌3 = 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3 + 𝑋𝑋0𝑋𝑋2𝑋𝑋3

+ 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3
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FromDeMorgan’s laws, it follows that𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋 𝑋 𝑍𝑍𝑍𝑍. In other words, the circuits of depth
two that can be derived from the SOPs above, consisting of a layer of (possibly multi-input) and gates,
followed by a layer of (possibly multi-input) or gates, can be converted into a circuit of depth two in
which each layer consists of (possibly multi-input) nand gates.

C Estimating the number of trails with 25 active S-boxes in
4-round Saturnin

A trail over 4 rounds of Saturnin is a trail in a hyperbox that has superboxes as S-boxes. This trail is
active in 5 superboxes and has 5 active boxes in each superbox.

There are (85) = 56ways to select the 5 active superboxes from the 8 superboxes.
In the central mixing layer there can be 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥MC instances active.
In each active MC, we have one degree of freedom as the choice of a single difference among the 5

active ones fixes the four others. This gives 15𝑥𝑥 choices for the middle differences.
Each active superbox nowhas 𝑥𝑥 active boxes at its input (or output), and shall have 5−𝑥𝑥 active boxes at

its output (or input). Consider the case 𝑥𝑥 𝑥 𝑥. For a given choice of the middle difference, the difference
at the input (or output) of a single S-box is fixed. For differential trails, the number of compatible output
differences depends on the concrete output difference but ranges from6 to 8with an average of exactly 7.
We think it is reasonable in this estimation to approximate this by exactly 7. For linear trails, the number
of input masks compatible with a given output mask is always 10.

So given a choice of the intermediate difference, there are 75 differential trail cores and 105 linear trail
cores.

This gives in total 56 × 15 × 75 differential trail cores and 56 × 15 × 105 Each of these trail cores has
in total 20 active S-boxes in the outer S-box layers. Every difference at the inside of such an active S-box
has 7 compatible differences at the outside. It follows that there are in total 56 × 15 × 75 × 720 ≈ 280 such
differential trails per hyperbox and as there are 4 hyperboxes, this totals to 282.
Everymask at the inside of such an active S-box has 10 compatiblemasks at the outside. It follows that

there are in total 56×15×105 ×1020 ≤ 292.5 such linear trails per hyperbox and as there are 4 hyperboxes,
this totals to 294.5.
These are only the trails with a single active MC in the middle mixing layer. We do not count the

other classes as their analysis is more involved and the final total number is much less. Hence this class
dominates the total number.

D Known trail bounds for up to 12 rounds

In Table 4.6 we list the trail bounds for our four ciphers for up to 12 rounds. For AES the numbers are
based on the existence of periodic trails with period 4 where the profile of the number of active S-boxes
is (1,4,1  6,4 ) and the fact that theminimumweight for the AES S-box is 6. For Saturnin the numbers
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are basedon the existence of periodic trailswithperiod8where theprofile of thenumber of active S-boxes
is (1, 4, 16, 4, 16, 64, 16, 4) and the fact that the minimumweight for the Saturnin S-box is 2.

E Why Xoodoo is not aligned

In this appendix, we provide a computer-assisted proof that Xoodoo is not aligned.
Let us assume that we can factor the linear layer of Xoodoo into L = π ∘M with M operating on

non-trivial superboxes. We can identify the input bits of M that lie in the same superbox with the two
following rules:

1. The output bits of L in the same box (column) depend on input bits from the same superbox;

2. Any two output bits that depend on the same input bit must also depend on input bits from the
same superbox.

Therefore, we construct a bipartite graph with the 128 output boxes on one side and the 384 input
bits on the other side, with edges connecting an output box to the input bits that it depends on. We
explicitly constructed this graph (see Figure 4.11) and checked that it is connected. This contradicts the
assumption that M operates on non-trivial superboxes.
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def buildGraph():
G = Graph()
for x in range(4):

for z in range(32):
G.add_vertex("out-{0}-{1}".format(x, z))
for y in range(3):

G.add_vertex("in-{0}-{1}-{2}".format(x, y, z))
for x in range(4):

for z in range(32):
out = "out-{0}-{1}".format(x, z)
G.add_edge(out, "in-{0}-{1}-{2}".format(x, 0, z))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+27)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+18)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+26)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+17)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+19)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+10)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+31)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+27)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+18)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+26)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+17)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+19)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+10)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 2, (z+13)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+16)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+ 7)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+15)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+ 6)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+ 8)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+31)%32))

return G

G = buildGraph()
G.is_connected()

Figure 4.11: Sage code to construct the graph detailed in the text and to check its connectivity.
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4 Thinking Outside the Superbox

Table 4.2: The cost of a round in cycles per byte on the ARMCortex-M4.

Cipher # cycles/byte

Rijndael [39] 10.0
Saturnin [12] 2.7
Spongent ?
Xoodoo [6] 1.1

Table 4.3: The cluster histograms of Rijndael and Saturnin.

w̃
𝑁𝑁 𝑁 𝑁𝑁𝑚𝑚𝑚𝑚𝑚

Rijndael superbox Saturnin superbox Saturnin hyperbox
𝑚𝑚 𝑚 𝑚𝑚 𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚 𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚𝑚 𝑚 𝑚

5 (56×  255) (56×  15) (56×6  5535)
6 (28×64  005)) (28×  165) (28×4  294574085)
7 (8×  16323825) (8×  2625) (8×  281444913315825)
8 (1 ×4 162570275) (1 × 39075) (1 × 18444492394151280675)

Table 4.4: The cluster histogram of SpongentMix of
Spongent.

w̃ 𝑁𝑁 𝑁 𝑁𝑁
2 (16×  1)
3 (48×  1)
4 (32 × 1) (36×  7)
5 (8×  1) (48×  25)
6 (12 × 79) (16×  265)
7 (8×  2161)
8 (1 ×4 1503)

Table 4.5: Partial cluster histogram (up to translation
equivalence) of Xoodoo.

w̃ 𝑁𝑁 𝑁 𝑁𝑁
4 (3 × 1)
7 (24×  1)
8 (600 × 1)
9 (2 × 1)
10 (442 × 1)
11 (10062 × 1)
12 (80218×  1)
13 (11676×  1)
14 (228531 × 1) (3 × 2)
15 (2107864×  1) (90 × 2)
16 (8447176×  1) (702 × 2)
⋮ ⋮

Table 4.6: Known lower bounds for weights of differential trails.

number of rounds
cipher source 1 2 3 4 5 6 7 8 12

Spongent [9] 2 48  12 ≥ 20 28 - - ≥ 72
AES [20] 6 30 54 150 ≥ 156 ≥ 180 ≥ 204 ≥ 300 ≥ 450
Saturnin [13] 2 10 19 ≥ 50 ≥ 58 ≥ 90 ≥ 122 250 ≥ 300
Xoodoo [15] 2 8 36 [74,8 0] ≥ 94 ≥ 104 ≥ 110 ≥ 148 ≥ 222
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5 Weak Subtweakeys in SKINNY

Daniël Kuijsters1, Denise Verbakel1, Joan Daemen1

1 – Radboud University, The Netherlands

Mycontributions. This chapter is based onwork accepted at Indocrypt 2022. As part of her bach-
elor’s thesis, Denise extended the software from the previous chapter to compute data and histograms
for the SKINNY cipher. The results she obtained were unexpected, prompting us to investigate and
seek an explanation, which we documented. I was responsible for the entirety of this chapter, including
reimplementing the software to verify the results, adding additional features, and writing the text.

Abstract. Lightweight cryptography is characterized by the need for low implementation cost, while
still providing sufficient security. This requires careful analysis of building blocks and their composition.

SKINNY is an ISO/IEC standardized family of tweakable block ciphers and a reduced-round variant
of it is used in theNIST lightweight cryptography standardizationprocess finalistRomulus. Wepresent
non-trivial linear approximations of two-round SKINNY that have correlation one or minus one and
that hold for a large fraction of all round tweakeys. Moreover, we show how these could have been
avoided.

5.1 Introduction

In 2018, NIST initiated a process for the standardization of lightweight cryptography [13], i.e., cryptog-
raphy that is suitable for use in constrained environments. A typical cryptographic primitive is built by
composing a relatively simple round function with itself a number of times. To choose this number of
rounds, a trade-off is made between the security margin and the performance.

One of the finalists in this standardization process is the Romulus [7] scheme for authenticated en-
cryptionwith associated data. This scheme is based on a reduced-round variant of the lightweight tweak-
able block cipher SKINNY [1].

Two of themost important techniques for the analysis of symmetric primitives are differential [2] and
linear cryptanalysis [11]. To reason about the security against these attacks, the designers of SKINNY
have computed lower bounds on the number of active S-boxes in linear and differential trails. However,
at the end of Section 4.1 of [1] they write:

The above bounds are for single characteristic, thus it will be interesting to take a look at
differentials and linear hulls. Being a rather complex task, we leave this as future work.
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5 Weak Subtweakeys in SKINNY

Building on thework of [3], [14] investigated clustering of two-round trails in SKINNY and in this paper
we report and explain its most striking finding.

By examination of two rounds, we argue why it is sensible to look at the substructure that consists of a
double S-boxwith a subtweakey addition in between. We study this double S-box structure both froman
algebraic point of view and a statistical point of view. We found that for some subtweakeys there are non-
trivial perfect linear approximations, i.e., that have correlation one orminus one. We present them in this
paper together with their constituent linear trails. For both the version of SKINNY that uses the 4-bit
S-box and the version that uses the 8-bit S-box, we present one non-trivial perfect linear approximation
of the double S-box structure that holds for 1/4 of all subtweakeys and four non-trivial perfect linear
approximations that each hold for 1/16 of all subtweakeys. In total, 1/4 of the subtweakeys isweak, i.e.,
it has an associated non-trivial perfect linear approximation. The linear approximations of the double
S-box structure can be extended to linear approximations of the full two rounds of SKINNY. From the
fact that the double S-box structure appears in four different locations, it follows that 1 − (3/4)4 ≈ 68%
of the round tweakeys is weak, i.e., two rounds have a non-trivial perfect linear approximation.

Despite requiring more resources to compute, this shows that for many round tweakeys two rounds
are weaker than a single round. Moreover, this also shows that the bounds on the squared correlations
of linear approximations that are based on counting the number of active S-boxes in linear trails may not
be readily assumed.

We conclude by showing how this undesired property could have easily been avoided by composing
the S-box with a permutation of its output bits, which has a negligible impact on the implementation
cost.

5.1.1 Outline and contributions

In Section 5.2 we remind the reader of the parts of the SKINNY block cipher specification that are rel-
evant to our analysis. We argue why it is reasonable to study the double S-box structure and explore its
algebraic properties. Section 5.3 serves as a reminder for the reader of the relevant statistical analysis tools
of linear cryptanalysis. Section 5.4 presents our findings from the study of the linear trails of the double
S-box structure. We show how the problem could have been avoided in Section 5.5. Finally, we state the
main message behind our findings in Section 5.6.

5.2 The SKINNY family of block ciphers

SKINNY [1] is a family of tweakable block ciphers. A member of the SKINNY family is denoted by
SKINNY-𝑏𝑏-𝑡𝑡, where 𝑏𝑏 denotes the block size and 𝑡𝑡 denotes the size of the tweakey [9]. The block size 𝑏𝑏
is equal to 64 bits or 128 bits. The tweakey 𝑡𝑡 is 𝑏𝑏, 2𝑏𝑏, or 3𝑏𝑏 bits.

The AES-like [6] data path of the SKINNY block cipher is the repeated application of a round func-
tion on a representation of the state as a four by four array of 𝑚𝑚-bit vectors, where 𝑚𝑚 is either four or
eight.
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5.2 The SKINNY family of block ciphers

Pairs (𝑖𝑖𝑖 𝑖𝑖𝑖 comprising a row index 𝑖𝑖 and column index 𝑗𝑗 with 0 ≤ 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖 are used to index into the
state array. For example, (0, 0) refers to the entry in the top left and (3,3)  to the entry in the bottom
right. The𝑚𝑚-bit entries 𝑥𝑥(𝑖𝑖𝑖𝑖𝑖𝑖 are of the form (𝑥𝑥(𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚, … , 𝑥𝑥(𝑖𝑖𝑖𝑖𝑖𝑖0 ).

The round function consists of the following steps in sequence: SubCells,AddConstants,AddRoundTweakey,
ShiftRows, and MixColumns.

𝑥𝑥3 𝑥𝑥0

(a) 4-bit S-box S4.

𝑥𝑥7 𝑥𝑥0

(b) 8-bit S-box S8.

Figure 5.1: Circuit-level representation of S4 and S8. (Figure adapted from [8].)

Figure 5.1 shows the circuit-level view of the S-boxes that are used in the SubCells step of SKINNY.

The block matrix that is used in the MixColumns step is equal to

𝑀𝑀 𝑀 (

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

) ,

where 0 denotes the zero matrix of size 𝑚𝑚 𝑚 𝑚𝑚 and 1 denotes the identity matrix of size 𝑚𝑚. Each of the
four columns of the state is multiplied by𝑀𝑀 in parallel.

The composition of two rounds is depicted in Figure 5.2.
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Figure 5.2: Two-round SKINNY. (Figure adapted from [8].)
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5.2 The SKINNY family of block ciphers

Consider the entry of the state at position (0, 1) in Figure 5.2. It is of the form 𝑌𝑌0 = 𝑥𝑥(0,1). This
expression propagates through the step functions of two rounds and leads to the following intermediate
expressions:

𝑌𝑌1 = S𝑚𝑚(𝑥𝑥(0,1))

𝑌𝑌2 = S𝑚𝑚(𝑥𝑥(0,1)) + 𝑘𝑘(0)

𝑌𝑌3 = S𝑚𝑚(S𝑚𝑚(𝑥𝑥(0,1)) + 𝑘𝑘(0))

𝑌𝑌4 = S𝑚𝑚(S𝑚𝑚(𝑥𝑥(0,1)) + 𝑘𝑘(0)) + 𝑘𝑘(1)

𝑌𝑌5 + 𝑌𝑌6 + 𝑌𝑌7 = S𝑚𝑚(S𝑚𝑚(𝑥𝑥(0,1)) + 𝑘𝑘(0)) + 𝑘𝑘(1) ,

Here, 𝑘𝑘(0) and 𝑘𝑘(1) are subtweakeys, which are linear expressions in the cipher key and tweak bits (assum-
ing that the tweakey does not consist entirely of cipher key bits). These linear expressions depend on the
round number, but they are known to the attacker. The tweak can be chosen by the attacker and the
cipher key is unknown to the attacker. By choosing the tweak, the attacker can attain all values of 𝑘𝑘(0)

and 𝑘𝑘(1) for a given cipher key.

The final expression shows that the sum of certain triples of state entries at the output of the second
round is equal to the application of twoS-boxes and subtweakey additions to a single entry of the input to
the first round. The second subtweakey addition does not have an important influence on the statistical
properties of this expression, so we remove it and turn our attention to the properties of the function

D𝑚𝑚𝑚𝑚𝑚 = S𝑚𝑚 ∘𝑇𝑇𝑚𝑚𝑚𝑚𝑚 ∘ S𝑚𝑚 ,

where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚 is defined by 𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥  for 𝑥𝑥 𝑥 𝑥𝑥𝑚𝑚2 . We will refer to D𝑚𝑚𝑚𝑚𝑚 as the double S-box structure.

For reasons of simplicity, we study SKINNY-64-𝑡𝑡, i.e., the version with 4-bit S-boxes. However, our
results can be extended to the case of 8-bit S-boxes as well.

By concatenating two copies of the 4-bit S-box circuit with a subtweakey addition layer in between
we obtain the circuit-level view of D4,𝑘𝑘 that is depicted in Figure 5.3. Consider the input 𝑥𝑥1. It passes
through an XOR gate, the subtweakey addition layer, and finally through a second XOR gate before
being routed to the third component of the output of D4,𝑘𝑘. If 𝑘𝑘3 = 𝑘𝑘2 = 0, then the XOR gates cancel
each other out and the third component of D4,𝑘𝑘 is equal to 𝑥𝑥1 + 𝑘𝑘0. This observation does not depend
on the value of 𝑘𝑘1.

Let us now derive this same result in an algebraic way. Of course, we could compute the algebraic
expression for D4,𝑘𝑘 directly, but it is more insightful to study the S-box and its inverse.

The 4-bit S-box is of the form

S4 = N4 ∘L4 ∘N4 ∘L4 ∘N4 ∘L4 ∘N4
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𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0

𝑇𝑇4,𝑘𝑘

Figure 5.3: Circuit-level representation of D4,𝑘𝑘. (Figure adapted from [8].)

where

N4(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) = (𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0 + 𝑥𝑥2 + 𝑥𝑥3 + 1) and

L4(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) = (𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥3) .

It follows that S4 = (S(3)4 , S(2)4 , S(1)4 , S(0)4 )where

S(3)4 = 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0 + 𝑥𝑥2 + 𝑥𝑥3 + 1

S(2)4 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 1

S(1)4 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0𝑥𝑥1 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0 + 𝑥𝑥3
S(0)4 = 𝑥𝑥0𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0𝑥𝑥1 + 𝑥𝑥0𝑥𝑥2 + 𝑥𝑥0𝑥𝑥3 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3

TheS-boxhas a generalizedFeistel structure [12]. Therefore, it is not difficult to deduce that the inverse
of 𝑇𝑇4,𝑘𝑘 ∘ S4 is of the form

𝐼𝐼4,𝑘𝑘 = (𝑇𝑇4,𝑘𝑘 ∘ S4)−1 = N4 ∘R4 ∘N4 ∘R4 ∘N4 ∘R4 ∘N4 ∘𝑇𝑇4,𝑘𝑘 ,
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where R4(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) = (𝑥𝑥0, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1). It follows that 𝐼𝐼4,𝑘𝑘 is of the form (𝐼𝐼(3)4,𝑘𝑘 , 𝐼𝐼
(2)
4,𝑘𝑘 , 𝐼𝐼

(1)
4,𝑘𝑘 , 𝐼𝐼

(0)
4,𝑘𝑘 )where

𝐼𝐼(3)4,𝑘𝑘 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0𝑥𝑥1 + 𝑥𝑥0𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2(𝑘𝑘3 + 1) + 𝑥𝑥1𝑥𝑥3(𝑘𝑘2 + 1) + 𝑥𝑥2𝑥𝑥3𝑘𝑘1
+ 𝑥𝑥1(𝑘𝑘2𝑘𝑘3 + 𝑘𝑘0 + 𝑘𝑘2 + 𝑘𝑘3) + 𝑥𝑥2(𝑘𝑘1𝑘𝑘3 + 𝑘𝑘1 + 1) + 𝑥𝑥3(𝑘𝑘1𝑘𝑘2 + 𝑘𝑘0 + 𝑘𝑘1 + 1)

+ 𝑥𝑥0(𝑘𝑘1 + 𝑘𝑘3) + 𝑘𝑘1𝑘𝑘2𝑘𝑘3 + 𝑘𝑘0𝑘𝑘1 + 𝑘𝑘0𝑘𝑘3 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1𝑘𝑘3 + 𝑘𝑘2 + 𝑘𝑘3 ,

𝐼𝐼(2)4,𝑘𝑘 = 𝑥𝑥0𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0(𝑘𝑘3 + 1) + 𝑥𝑥2(𝑘𝑘3 + 1) + 𝑥𝑥3(𝑘𝑘0 + 𝑘𝑘2) + 𝑥𝑥1 + 𝑘𝑘0𝑘𝑘3 + 𝑘𝑘2𝑘𝑘3
+ 𝑘𝑘0 + 𝑘𝑘1 + 𝑘𝑘2 ,

𝐼𝐼(1)4,𝑘𝑘 = 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2(𝑘𝑘3 + 1) + 𝑥𝑥3(𝑘𝑘2 + 1) + 𝑥𝑥0 + 𝑘𝑘2𝑘𝑘3 + 𝑘𝑘0 + 𝑘𝑘2 + 𝑘𝑘3 + 1 ,

𝐼𝐼(0)4,𝑘𝑘 = 𝑥𝑥0𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥0𝑥𝑥2(𝑘𝑘3 + 1) + 𝑥𝑥0𝑥𝑥3𝑘𝑘2 + 𝑥𝑥1𝑥𝑥2𝑘𝑘3 + 𝑥𝑥1𝑥𝑥3(𝑘𝑘2 + 1)

+ 𝑥𝑥2𝑥𝑥3(𝑘𝑘0 + 𝑘𝑘1) + 𝑥𝑥0𝑥𝑥1 + 𝑥𝑥0(𝑘𝑘2𝑘𝑘3 + 𝑘𝑘1 + 𝑘𝑘2 + 1) + 𝑥𝑥1(𝑘𝑘2𝑘𝑘3 + 𝑘𝑘0 + 𝑘𝑘3 + 1)

+ 𝑥𝑥2(𝑘𝑘0𝑘𝑘3 + 𝑘𝑘1𝑘𝑘3 + 𝑘𝑘0 + 1) + 𝑥𝑥3(𝑘𝑘0𝑘𝑘2 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1) + 𝑘𝑘0𝑘𝑘2𝑘𝑘3 + 𝑘𝑘1𝑘𝑘2𝑘𝑘3
+ 𝑘𝑘0𝑘𝑘1 + 𝑘𝑘0𝑘𝑘2 + 𝑘𝑘1𝑘𝑘3 + 𝑘𝑘0 + 𝑘𝑘1 + 𝑘𝑘2 + 1 .

We observe that if 𝑘𝑘3 = 𝑘𝑘2 = 0, then the component 𝐼𝐼(1)4,𝑘𝑘 differs from S(3)4 by the constant 𝑘𝑘0 for any
value of 𝑘𝑘1. This implies that D(3)

4,(0,0,𝑘𝑘1,𝑘𝑘0) = 𝑥𝑥1 + 𝑘𝑘0.

5.3 Linear cryptanalysis

To analyze D𝑚𝑚𝑚𝑚𝑚 in more detail, we use the statistical framework of linear cryptanalysis [5, 11].
The important concept here is a linear approximation, i.e., an ordered pair of linear masks (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢

𝔽𝔽𝑚𝑚2 × 𝔽𝔽𝑚𝑚2 that determine linear combinations of output and input bits, respectively. A mask 𝑢𝑢 defines a
linear functional

𝑥𝑥 𝑥 𝑥𝑥⊤𝑥𝑥 𝑥𝑥𝑥 0𝑥𝑥0 + ⋯ + 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚 .

We measure the quality of a linear approximation with the correlation between the linear functionals
defined by the masks.

Definition 48. The (signed) correlation between the linear functional defined by the mask 𝑢𝑢 𝑢 𝑢𝑢𝑚𝑚2 at the
output of a function 𝐺𝐺𝐺 𝐺𝐺𝑚𝑚2 → 𝔽𝔽𝑚𝑚2 and the linear functional defined by the mask 𝑣𝑣𝑣𝑣𝑣  𝑚𝑚2 at its input is
defined as

CG(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢
1
2𝑚𝑚 ∑

𝑥𝑥𝑥𝑥𝑥𝑚𝑚2

(−1)𝑢𝑢⊤G(𝑥𝑥𝑥𝑥𝑥𝑥⊤𝑥𝑥 .

The 2𝑚𝑚 × 2𝑚𝑚 matrix CG with entries CG(𝑢𝑢𝑢 𝑢𝑢𝑢 is called the correlation matrix of the function G. We
call a linear approximation with a correlation of one or minus one perfect.

In addition to specifying masks at the input and output of D𝑚𝑚𝑚𝑚𝑚, we may also specify intermediate
masks.
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Definition 49. A sequence (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑚𝑚2 ×𝔽𝔽𝑚𝑚2 ×𝔽𝔽𝑚𝑚2 is called a linear trail ofD𝑚𝑚𝑚𝑚𝑚 if it satisfies the following
conditions:

1. CS𝑚𝑚(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢;

2. CS𝑚𝑚(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣   .

Each of the trails contributes to the correlation of the linear approximation.

Definition 50. The correlation contribution of a linear trail (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢 overD𝑚𝑚𝑚𝑚𝑚 equals

CD𝑚𝑚𝑚𝑚𝑚
(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑣𝑣⊤𝑘𝑘CS𝑚𝑚(𝑢𝑢𝑢 𝑢𝑢𝑢CS𝑚𝑚(𝑣𝑣𝑣𝑣𝑣𝑣  𝑣

From the theory of correlation matrices [5], it follows that

CD𝑚𝑚𝑚𝑚𝑚
(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢

𝑣𝑣𝑣𝑣𝑣𝑚𝑚2

CD𝑚𝑚𝑚𝑚𝑚
(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢𝑢

=∑
𝑣𝑣𝑣𝑣𝑣𝑚𝑚2

(−1)𝑣𝑣⊤𝑘𝑘CS𝑚𝑚(𝑢𝑢𝑢 𝑢𝑢𝑢CS𝑚𝑚(𝑣𝑣𝑣𝑣𝑣𝑣  𝑣

5.4 Linear trails of the double S-box structure

We can now translate the observations from Section 5.2 into the language of linear cryptanalysis. The
observations state that the linear approximation (1000, 0010) of D4,(0,0,𝑘𝑘1,𝑘𝑘0) is perfect for all 𝑘𝑘0, 𝑘𝑘1 ∈𝔽𝔽 2.

One way of seeing this is directly from the fact that

(1000)⊤D4,(0,0,𝑘𝑘1,𝑘𝑘0) = D(3)
4,(0,0,𝑘𝑘1,𝑘𝑘0)

= 𝑥𝑥1 + 𝑘𝑘0
= (0010)⊤𝑥𝑥 𝑥𝑥𝑥 0 .

Hence, the correlation is one if 𝑘𝑘0 is zero and minus one otherwise.
An alternative view is the following. Due to the equivalence of vectorial Boolean functions and their

correlation matrices [5], equality of S(3)4 and 𝐼𝐼(1)4,𝑘𝑘 implies equality of row 1000 of CS4 and row 0010 of
C𝛪𝛪4,𝑘𝑘. The latter corresponds to column 0010 of𝐶𝐶𝛵𝛵4,𝑘𝑘∘S4. These are exactly the two vectors that we need to
multiply in order to computeCD4,𝑘𝑘

(1000, 0010). Using the orthogonality relations [10], it is not difficult
to show that this correlation is either one or minus one, depending on the constant difference between
S(3)4 and 𝐼𝐼(1)4,𝑘𝑘 , which only influences the sign.
In general, we have computed all the non-trivial perfect linear approximations for each of the 2𝑚𝑚 sub-

tweakeys. This was accomplished by considering all the possible linear trails over D4,𝑘𝑘. The results are
found in Table 5.1 for the case𝑚𝑚 𝑚 𝑚, i.e., for the 4-bit S-box, and in Table 5.2 for the case𝑚𝑚 𝑚 𝑚, i.e., for
the 8-bit S-box. The first column lists the output masks and the third column lists the input masks. An
asterisk denotes that the linear approximation holds for any subtweakey bit in that position. It turns out
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that in both cases such linear approximations exist for a quarter of the subtweakeys. We call subtweakeys
for which this property holds weak.

Consider a fixed subtweakey. If (𝑢𝑢1, 𝑤𝑤1) and (𝑢𝑢2, 𝑤𝑤2) are two perfect linear approximations, then their
sum (𝑢𝑢1 + 𝑢𝑢2, 𝑤𝑤1 + 𝑤𝑤2) is again a perfect linear approximation, as evidenced by the tables. Moreover, the
pair (0, 0) is always a perfect linear approximation. It follows that the perfect linear approximations for
a fixed subtweakey form a linear subspace of 𝔽𝔽𝑚𝑚2 × 𝔽𝔽𝑚𝑚2 .

5.5 Patching the problem

To patch the problem, we search within a specific subset of S-boxes that are permutation equivalent [4]
to the original.

Definition 51. Two functions F ∶ 𝔽𝔽𝑚𝑚2 → 𝔽𝔽𝑚𝑚2 and G ∶ 𝔽𝔽𝑚𝑚2 → 𝔽𝔽𝑚𝑚2 are called permutation equivalent if
there exist bit permutations 𝜎𝜎 and 𝜏𝜏 such that

F = 𝜏𝜏 𝜏 G ∘ 𝜎𝜎 𝜎

A bit permutation 𝜏𝜏 is a permutation of {0, … ,𝑚𝑚 𝑚 𝑚𝑚 that has been extended to 𝔽𝔽𝑚𝑚2 by

(𝑥𝑥𝑚𝑚𝑚𝑚, … , 𝑥𝑥0) ↦ (𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏, … , 𝑥𝑥𝜏𝜏𝜏𝜏𝜏) .

Many of the cryptographic properties of an S-box are preserved by permutation equivalence, e.g., the
algebraic degree, the differential uniformity, the linearity, and the branch number. Moreover, the impact
of a bit permutation on the implementation cost is negligible. For example, in hardware it amounts to
rewiring of the signals. We have restricted our search to those permutation equivalent S-boxes for which
𝜎𝜎 is the identity.

Any bit permutation applied to the output bits of S4 permutes the columns of its correlation matrix.
Indeed, we have

CG(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  CS4(𝑢𝑢𝑢𝑢𝑢
−1(𝑣𝑣𝑣𝑣𝑣

Table 5.3 lists the bit permutations τ and the ratio of subtweakeys forwhich there exist non-trivial per-
fect linear approximations. For example, the row “(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥3) 0” corresponds to the bit permutation
τ = L4 for which no subtweakeys are weak. It turns out that there exist many permutation equivalent
S-boxes for which the double S-box structure does not have non-trivial perfect linear approximations for
any subtweakey.

Similarly, for the 8-bit S-boxwe found that there existmany permutation equivalent S-boxes forwhich
there exist no non-trivial perfect linear approximations. An example of such an S-box is obtained by
applying the bit permutation τ(𝑥𝑥7, 𝑥𝑥6, 𝑥𝑥5, 𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) = (𝑥𝑥7, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0). Because the
number of possible bit permutations is large, we did not include them all here.
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5 Weak Subtweakeys in SKINNY

Table 5.1: Perfect linear approximations of S4 ∘𝑇𝑇4,𝑘𝑘 ∘ S4 and their constituent linear trails.

output intermediate input
mask mask mask subtweakey
𝑢𝑢 𝑣𝑣 𝑤𝑤 𝑘𝑘 CD4,𝑘𝑘

(𝑢𝑢𝑢 𝑢𝑢𝑢 C𝛵𝛵4,𝑘𝑘(𝑣𝑣𝑣 𝑣𝑣𝑣 CS(𝑢𝑢𝑢 𝑢𝑢𝑢 CS(𝑣𝑣𝑣𝑣𝑣𝑣

1000

0001

0010 00∗𝑘𝑘0 (−1)𝑘𝑘0
(−1)𝑘𝑘0 1/2 1/2

0101 (−1)𝑘𝑘0 −1/2 −1/2
1001 (−1)𝑘𝑘0 −1/2 −1/2
1101 (−1)𝑘𝑘0 −1/2 −1/2

1010

0001

1110 0001 1

−1 −1/4 1/4
0011 −1 1/4 −1/4
0100 1 −1/2 −1/2
0101 −1 1/4 −1/4
0110 1 −1/2 −1/2
0111 −1 −1/4 1/4
1001 −1 −1/4 1/4
1011 −1 1/4 −1/4
1101 −1 −1/4 1/4
1111 −1 1/4 −1/4

0010

0001

1100 0001 −1

−1 1/4 1/4
0011 −1 1/4 1/4
0100 1 1/2 −1/2
0101 −1 −1/4 −1/4
0110 1 −1/2 1/2
0111 −1 −1/4 −1/4
1001 −1 1/4 1/4
1011 −1 1/4 1/4
1101 −1 1/4 1/4
1111 −1 1/4 1/4

0010

0001

1110 0011 −1

−1 1/4 1/4
0011 1 1/4 −1/4
0100 1 1/2 −1/2
0101 −1 −1/4 −1/4
0110 −1 −1/2 −1/2
0111 1 −1/4 1/4
1001 −1 1/4 1/4
1011 1 1/4 −1/4
1101 −1 1/4 1/4
1111 1 1/4 −1/4

1010

0001

1100 0011 1

−1 −1/4 1/4
0011 1 1/4 1/4
0100 1 −1/2 −1/2
0101 −1 1/4 −1/4
0110 −1 −1/2 1/2
0111 1 −1/4 −1/4
1001 −1 −1/4 1/4
1011 1 1/4 1/4
1101 −1 −1/4 1/4
1111 1 1/4 1/4
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5.5 Patching the problem

Table 5.2: Perfect linear approximations of S8 ∘𝑇𝑇8,𝑘𝑘 ∘ S8 and their constituent linear trails.

output intermediate input
mask mask mask subtweakey
𝑢𝑢 𝑣𝑣 𝑤𝑤 𝑘𝑘 CD8,𝑘𝑘

(𝑢𝑢𝑢 𝑢𝑢𝑢 C𝛵𝛵8,𝑘𝑘(𝑣𝑣𝑣 𝑣𝑣𝑣 CS(𝑢𝑢𝑢 𝑢𝑢𝑢 CS(𝑣𝑣𝑣𝑣𝑣𝑣

01000000

00010000

00001000 00∗𝑘𝑘4∗∗∗∗ (−1)𝑘𝑘4
(−1)𝑘𝑘4 1/2 1/2

01010000 (−1)𝑘𝑘4 −1/2 −1/2
10010000 (−1)𝑘𝑘4 −1/2 −1/2
11010000 (−1)𝑘𝑘4 −1/2 −1/2

10010000

00001000

00000010 0001∗∗∗∗ −1

1 −1/2 1/2
00011000 −1 −1/4 −1/4
00101000 1 1/2 −1/2
00111000 −1 −1/4 −1/4
01011000 −1 1/4 1/4
01111000 −1 1/4 1/4
10011000 −1 1/4 1/4
10111000 −1 1/4 1/4
11011000 −1 1/4 1/4
11111000 −1 1/4 1/4

11010000

00001000

00001010 0001∗∗∗∗ 1

1 −1/2 −1/2
00011000 −1 −1/4 1/4
00101000 1 −1/2 −1/2
00111000 −1 1/4 −1/4
01011000 −1 1/4 −1/4
01111000 −1 −1/4 1/4
10011000 −1 1/4 −1/4
10111000 −1 −1/4 1/4
11011000 −1 1/4 −1/4
11111000 −1 −1/4 1/4

10010000

00001000

00001010 0011∗∗∗∗ 1

1 −1/2 −1/2
00011000 −1 −1/4 1/4
00101000 −1 1/2 −1/2
00111000 1 −1/4 −1/4
01011000 −1 1/4 −1/4
01111000 1 1/4 1/4
10011000 −1 1/4 −1/4
10111000 1 1/4 1/4
11011000 −1 1/4 −1/4
11111000 1 1/4 1/4

11010000

00001000

00000010 0011∗∗∗∗ −1

1 −1/2 1/2
00011000 −1 −1/4 −1/4
00101000 −1 −1/2 −1/2
00111000 1 1/4 −1/4
01011000 −1 1/4 1/4
01111000 1 −1/4 1/4
10011000 −1 1/4 1/4
10111000 1 −1/4 1/4
11011000 −1 1/4 1/4
11111000 1 −1/4 1/4
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5 Weak Subtweakeys in SKINNY

Table 5.3: Permutation equivalent S-boxes and their ratio of weak subtweakeys.

τ(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) Ratio of weak subtweakeys
(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0) 4/16
(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥0) 6/16
(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥0) 0
(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥0) 0
(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥0) 0
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥0) 2/16
(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥0, 𝑥𝑥1) 0
(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥0, 𝑥𝑥1) 0
(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥2) 0
(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥3) 0
(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥0, 𝑥𝑥2) 5/16
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥0, 𝑥𝑥3) 0
(𝑥𝑥3, 𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥1) 7/16
(𝑥𝑥2, 𝑥𝑥0, 𝑥𝑥3, 𝑥𝑥1) 0
(𝑥𝑥3, 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2) 0
(𝑥𝑥2, 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥3) 0
(𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥3, 𝑥𝑥2) 6/16
(𝑥𝑥1, 𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥3) 0
(𝑥𝑥0, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1) 10/16
(𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1) 8/16
(𝑥𝑥0, 𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2) 0
(𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3) 0
(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2) 0
(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 0

5.6 Conclusion

The main message that we want to communicate is that the composition of individually strong cryp-
tographic functions may produce a weaker function for a large subset of the round tweakey space. In
SKINNY, this weakness holds for any cipher key, because the subtweakeys are computed from the both
the cipher key and the tweak, the latter of which is chosen by the user. In small structures, such unde-
sired properties can be practically revealed through a combination of algebraic and statistical analysis.
This shows that counting the number of active S-boxes in trails may have little meaning. Such properties
could have been avoided by moving to a slightly different function at a negligible implementation cost.

We did not expect this kind of problem to exist for the 8-bit version of the SKINNY S-box. However,
like the 4-bit S-box, in the composition of the two 8-bit S-boxes, the first stage of the second S-box and
the final stage of the first S-box are the same, leading to cancellation. If the matrix that is used in the
MixColumns step did not have a row with a single one, then this double S-box structure would not exist.
As a result, this particular problem would not be there.
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Mycontributions. This chapter is basedonwork accepted at SelectedAreas inCryptography2024.
I contributed to the design of the ExpandBlock function, the selection of the bit shuffle 𝜋𝜋, and the
ordering of𝜋𝜋 and themixing layer 𝜃𝜃. Additionally, I was responsible for the comprehensive cryptanalysis
of the PRF, in collaboration with Yanis.

Abstract. This paper introduces the Koala PRF, which maps a variable-length sequence of 64-bit
input blocks to a single 257-bit output block. Its design focuses on achieving low latency in its imple-
mentation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with
the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the
8-fold iteration of a simple round function inspired by that of Subterranean. Based on careful prelim-
inary cryptanalysis, we made a variant of the Subterranean permutation by reordering and modifying
it in a way that does not introduce any implementation overhead and enhances the cryptographic resis-
tance of the resulting PRF. Indeed, we demonstrate that Koala exhibits a high resistance against integral,
cube, division property, and higher-order differential attacks. Additionally, we compare the hardware
implementation of Koala with the smallest latency with state-of-the-art low-latency PRFOrthros and
Gleeok and the block cipher Prince in the same ASIC synthesis setup. Our results show that Koala
outperforms these primitives not only in terms of latency but also with respect to various other perfor-
mance metrics.

6.1 Introduction

The design of cryptographic primitives withminimum evaluation time in hardware implementation, so-
called low-latency cryptography, is a relatively young line of research. Modern digital technologies often
require a high level of security, but are expected to operate within very short time frames.
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6 Koala: A Low-Latency Pseudorandom Function

Important examples of such technologies are memory encryption and integrity mechanisms provided
by, for example, IBM’s SecureBlue, Intel’s SGX, andAMD’s SEV. Smart cards, like the ones ofNXP and
STMicroelectronics, perform local memory encryption in an ultra-constrained setting.

Another example is formed by the secure caches in modern CPU’s. This application has received
significant attention in the last few years, for microarchitectural attacks, e.g., Meltdown and Spectre,
have revealed serious security shortcomings in widely deployed high-end processors. Many hardware-
based mitigations for such attacks call for a higher level of encrypted communication inside of CPU’s,
as well as between CPU’s and their surrounding hardware components. To implement new features of
this kind in the next generations ofmainstream processors, without causing a large performance penalty,
low-latency encryption primitives are among the most important building blocks. Suffice it to say that
the design of low-latency primitives is an important domain of research.

While various primitives havebeendevelopedwith a focus on low latency, a significantportionof them
are (tweakable) block ciphers. We just mention Prince [9, 10], Mantis [5], Qarma [2], Speedy [28],

BipBip [6] and Scarf [12].
Interestingly, in recent times low-latency pseudorandom functions (PRF) have been proposed in the

form of Orthros [4] andGleeok [1], allowing ultra-fast stream encryption or authentication of short
messages. Both are based on the sum-of-block-ciphers paradigm: To achieve beyond birthday bound
PRF security, in the former the output is the sum of two block cipher invocations and in the latter even
three. We investigate a different way to achieve 𝑛𝑛 bits of security, namely with a 2𝑛𝑛-bit permutation and
a feedforward, leading to a more efficient implementation in terms of area and latency.

In this paper, we present the design of a PRFwith a variable-length input and fixed-length output suit-
able for a low-latency implementation in hardware as anASIC.Koala is an instantiation of theKirby [29]
construction with a new permutation Koala-P inspired by Subterranean [18], and an additional input
encoding. Moreover, Koala can be used as a stream cipher by taking as input the nonce followed by a
counter. For this cipher the marginal cost per 256-bit keystream block is one call to Koala-P. We com-
pare the performance of Koala with that of Orthros and the two instances of Gleeok, to the best of
our knowledge the only PRFs in the literature with the main goal of providing a low-latency ASIC im-
plementation. Our synthesis results, in Table 6.4, show that Koala has a lower latency and outperforms
Orthros and Gleeok in various other performance measures. We believe that Koala is a promising
new addition to the family of low-latency cryptographic primitives, and we welcome any third-party
cryptanalysis.

Contribution. The main contributions of this paper are as follows:

• The design of Koala, a low-latency PRF that maps a variable-length sequence of 64-bit input
blocks to a single 257-bit output block.

• An integral cryptanalysis of Koala, using bit-based division properties and the open source imple-
mentation of all algorithms used.1

1 https://github.com/parisaeliasi/KoalaHW
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• An RTL design of Koala in Verilog, an evaluation of the corresponding ASIC performance, and
a comparison with Orthros Gleeok and Prince.

Organization of the paper. The paper is organized as follows. We establish some notation and
conventions in Section 6.2. In Section 6.3, we present the specification of the permutation Koala-P, the
pseudorandom functionKoala, and the security claimofKoala. Wepresent a short formalism todescribe
conditional cube attacks in Section 6.4 and in Section 6.5, we use this formalism and bit based integral
distinguisher to analyse Koala. Bounds on the weights of linear and differential trails over Koala-P are
provided in Section 6.6. In Section 6.7, we provide the rationale for all components of Koala. Finally, we
present a hardware implementation in Verilog in Section 6.8, together with area and latency figures for
implementation in ASIC. Appendices contains some figures, missing proofs for the interested reader,
along with avalanche behaviour and differential, linear and integral distinguishers.

6.2 Notation and conventions

We fix the notation and conventions that are used throughout the paper.
We denote the cardinality of a set 𝑆𝑆 by |𝑆𝑆𝑆. For sets 𝑆𝑆 and 𝑇𝑇, we write Maps[𝑆𝑆𝑆 𝑆𝑆𝑆 for the set of all

functions from 𝑆𝑆 to 𝑇𝑇. By the setℕ we mean the non-negative integers, i.e, 0 ∈ ℕ. Typically, 𝑛𝑛 and𝑚𝑚
denote elements ofℕ. A finite sequence 𝑠𝑠 𝑠 𝑠𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛𝑛𝑛) of elements of a set 𝑆𝑆 is called an 𝑛𝑛-tuple. In
particular, we reserve the word (bit) string for 𝑛𝑛-tuples over the set {0, 1}. We may also call a bit string
a block if it has a fixed length of either 64 or 257 bits. The 𝑛𝑛-bit string consisting of all ones is denoted
as 1𝑛𝑛. When we endow the set {0, 1} with the structure of a finite field, we write 𝔽𝔽2 instead. Indices of
tuples are computedmodulo 𝑛𝑛, i.e., these indices are assumed to be elements ofℤ/𝑛𝑛𝑛. If 𝑠𝑠 and 𝑠𝑠′ are two
bit strings, then we write 𝑠𝑠 𝑠 𝑠𝑠′ for the concatenation of 𝑠𝑠 and 𝑠𝑠′. For example, (0, 0, 1) ‖( 1, 0, 1) is equal
to (0, 0, 1, 1, 0, 1). We often treat 𝑛𝑛-bit strings as (bit) vectors 𝑢𝑢 𝑢𝑢 𝑢𝑢0, 𝑢𝑢1, … , 𝑢𝑢𝑛𝑛𝑛𝑛) in the 𝑛𝑛-dimensional
vector space 𝔽𝔽𝑛𝑛2 over the field 𝔽𝔽2. We write 𝑒𝑒𝑛𝑛𝑖𝑖 for the 𝑖𝑖th standard basis vector of 𝔽𝔽𝑛𝑛2 . That is to say, 𝑒𝑒𝑛𝑛𝑖𝑖 has
a 1 in position 𝑖𝑖 and zeros elsewhere. Sometimes, we refer to vectors as points. Wemake the set 𝔽𝔽𝑛𝑛2 into a
partially ordered set by defining 𝑢𝑢 𝑢 𝑢𝑢 if and only if 𝑢𝑢𝑖𝑖 ≤𝑣𝑣 𝑖𝑖 for all 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 . The Hamming weight of a
vector 𝑢𝑢 is defined as the number of its non-zero coordinates. That is, HW(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   𝑢 𝑢𝑢𝑖𝑖 ≠
0}|. We define an affine subspace of 𝔽𝔽𝑛𝑛2 to be any set of the form 𝑎𝑎 𝑎 𝑎𝑎, where 𝑎𝑎 𝑎𝑎𝑎 𝑛𝑛2 is a point and 𝐿𝐿
is a linear subspace of 𝔽𝔽𝑛𝑛2 . Let 𝑆𝑆 be a subset of 𝔽𝔽𝑛𝑛2 and 𝑓𝑓 a function defined on 𝔽𝔽𝑛𝑛2 . We write 𝑓𝑓𝑓𝑆𝑆 for the
restriction of 𝑓𝑓 to 𝑆𝑆.

6.3 Specification of Koala

Our design consists of two layers of abstraction: a permutation called Koala-P, and a PRF called Koala,
that consists of a prefix-free input encoding function and the instantiation of the Kirby construction
with Koala-P.
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P𝑠𝑠

𝑦𝑦0

P

𝑦𝑦1

P

𝑦𝑦2

𝑧𝑧Pk ‖ id

Figure 6.1: Illustration of Kirby applied to a 3-tuple of input blocks.

First, in Section 6.3.1, we recall the Kirby construction, introduced in [29]. Second, we specify the
Koala-P permutation in Section 6.3.2. Third, we present the specification of the Koala PRF in Sec-
tion 6.3.3 and its security claim in Section 6.3.4.

6.3.1 The Kirby construction

Kirby is a construction for building a variable-input-length pseudorandom function (VIL-PRF) from a
permutation. This construction is specified in Algorithm 3 and illustrated in Figure 6.1.

To summarize Algorithm 3, Kirby is parameterized by a 𝑏𝑏-bit permutation P and a key length 𝜅𝜅. It
operates on a 𝑏𝑏-bit state that is initialized with a 𝜅𝜅-bit secret key k and a (𝑏𝑏 𝑏 𝑏𝑏𝑏-bit identifier. Then, it
alternates between absorption of 𝑏𝑏-bit input blocks and transformations of the state by means of a call
to the permutation P and a feed-forward. The input tuple of strings is assumed to be a codeword in a
prefix code [13] (sometimes called a prefix-free code). It returns the final value of the 𝑏𝑏-bit state as the
output. The paper [29] contains a proof of multi-user PRF security in the random permutation model,
i.e., security against generic attacks.

From now on, we use the term key to refer to the master key k and secret to any intermediate state
unknown to the attacker.

Algorithm 3 Definition of construction Kirby[P, 𝜅𝜅𝜅 copied from [29], where P is a 𝑏𝑏-bit permutation
and 𝜅𝜅 is a positive integer.
Input

k A 𝜅𝜅-bit key string.
id A (𝑏𝑏 𝑏 𝑏𝑏𝑏-bit key identifier string.
𝑦𝑦 An 𝑛𝑛-tuple of 𝑏𝑏-bit blocks with 𝑛𝑛 𝑛 𝑛.

Output
𝑧𝑧 A 𝑏𝑏-bit block.

𝑠𝑠 𝑠 k ‖ id
𝑠𝑠 𝑠 𝑠𝑠 𝑠 P(𝑠𝑠𝑠
for 𝑖𝑖 𝑖 𝑖 to 𝑛𝑛 𝑛 𝑛 do

𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠𝑖𝑖
𝑠𝑠 𝑠 𝑠𝑠 𝑠 P(𝑠𝑠𝑠

end for
𝑧𝑧 𝑧𝑧𝑧
return 𝑧𝑧
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Figure 6.2: The Koala-P round function.

6.3.2 The Koala-P permutation

Koala-P is a permutation of 𝔽𝔽2572 parameterized by the number of rounds 𝑟𝑟 𝑟 𝑟. It is obtained by the
self-composition of a round function, which, in turn, consists of a sequence of step functions.

First, we introduce the step functions: a bit shuffle𝜋𝜋, amixing layer𝜃𝜃, a roundconstant addition 𝜄𝜄𝑗𝑗, and
a non-linear layer 𝜒𝜒. These functions are defined by how they compute the bit with index 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖
of a state vector 𝑠𝑠 𝑠𝑠𝑠 2572 according to the following rules:

𝜋𝜋 𝜋 𝜋𝜋𝑖𝑖 ← 𝑠𝑠121𝑖𝑖 ,

𝜃𝜃 𝜃𝜃𝜃 𝑖𝑖 ← 𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑖 ,

𝜄𝜄𝑗𝑗 ∶ 𝑠𝑠𝑖𝑖 ← {
𝑠𝑠𝑖𝑖 + 1 if 𝑖𝑖 𝑖 𝑖 and 𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗𝑗 𝑗

𝑠𝑠𝑖𝑖 otherwise ,

𝜒𝜒 𝜒𝜒𝜒 𝑖𝑖 ← 𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 .

Second, we define the round function R𝑗𝑗 parameterized by the round index 𝑗𝑗 as

R𝑗𝑗 = 𝜒𝜒 𝜒𝜒𝜒 𝑗𝑗 ∘ 𝜃𝜃 𝜃𝜃𝜃𝜃 

Note that the only difference between the round functions lies in the value of the round constant. Lastly,
we denote the composition of 𝑟𝑟 rounds as

Koala-P[𝑟𝑟𝑟 𝑟
𝑟𝑟𝑟𝑟
○
𝑗𝑗𝑗𝑗

R𝑗𝑗 .

6.3.3 The Koala PRF

The Koala PRF is composed of the following two parts:
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6 Koala: A Low-Latency Pseudorandom Function

• Kirby[Koala-P[8], 𝜅𝜅𝜅: the instantiation of Kirby with the permutation Koala-P[8] in which the
key length 𝜅𝜅 is left as a parameter.

• An encoding function EncodePrefixFree defined in Algorithm 5 that maps an n-tuple of 64-bit
blocks into a n-tuple of 257-bit blocks.

• An encoding of k and id as k||id||lenght(id) instead of k||id in the original Kirby construction,
with length the encoding of the bitlength of id encoded in a single byte.

The ExpandBlock function makes it possible to use 64-bit blocks as input to the Kirby instance. Each
64-bit input block is transformed into a 256-bit string by the ExpandBlock function defined in Algo-
rithm 4. Every 64-bit input block is split into a sequence of 32 2-bit strings. Each of these 2-bit strings
naturally encodes an integer value between 0 and 3. This value serves as an index of the single non-zero el-
ement in a 4-bit string. The bits of this string are then diffused to different positions of the corresponding
256-bit output string.

The 256-bit strings are each padded with the bit 0, except for the last string, which is padded with the
bit 1. This padding is what guarantees that the input tuple 𝑦𝑦 to Algorithm 3 is an element of a prefix
code.

The encodingof the k and id is injective, allowinguse of different lengthswithout risking state collision
for different keys. Concretely, given a 𝜅𝜅-bit key, k, a (257 − 𝜅𝜅𝜅-bit key identifier, id, and an 𝑛𝑛-tuple, 𝑑𝑑, of
64-bit blocks, we define Koala by

Koala[𝜅𝜅𝜅𝜅k, id, 𝑑𝑑𝑑 𝑑 Kirby[Koala-P[8], 𝜅𝜅𝜅𝜅k, id,EncodePrefixFree(𝑑𝑑𝑑𝑑 𝑑

6.3.4 The Koala security claim

We present a claim of multi-user PRF security of Koala in the case of 𝜇𝜇 users. We assume the existence
of 𝑠𝑠 identifiers and suppose that 𝜇𝜇𝑖𝑖 users share the 𝑖𝑖th identifier. Hence, we have 𝜇𝜇 𝜇 𝜇𝜇1 + ⋯ + 𝜇𝜇𝑠𝑠.

Claim 1. We consider an adversary that is restricted to the following resources:

• The computational complexity is𝑁𝑁 and it is equal to the number of evaluations of Koala-P[8].

• The data complexity is𝑀𝑀 and it is equal to the number of distinct input blocks that are processed by
Koala.

The advantage of an adversary in distinguishing an array of 𝜇𝜇 instances of Koala[𝜅𝜅𝜅 loaded with 𝜇𝜇 inde-
pendent 𝜅𝜅-bit keys, sampled randomly and uniformly, from an array of 𝜇𝜇 independent random oracles, is
upper bounded by

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
2257 + 2𝑁𝑁𝑁𝑁

2257 +
∑𝑠𝑠

𝑖𝑖𝑖𝑖 𝜇𝜇𝑖𝑖(𝜇𝜇𝑖𝑖 − 1)
2𝜅𝜅𝜅𝜅 +

𝑁𝑁max𝑖𝑖 𝜇𝜇𝑖𝑖
2𝜅𝜅 .
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6.4 Formalism for integral cryptanalysis

Algorithm 4 Definition of ExpandBlock.
Input

𝑠𝑠 A 64-bit block.
Output

𝑡𝑡 A 256-bit string.

for 𝑖𝑖 𝑖 𝑖 to 255 do

𝑡𝑡𝑖𝑖 ←

⎧{

⎨{
⎩

(𝑠𝑠2𝑖𝑖 + 1)(𝑠𝑠2𝑖𝑖𝑖𝑖 + 1) if 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖
(𝑠𝑠2𝑖𝑖 + 1)𝑠𝑠2𝑖𝑖𝑖𝑖 if 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖
𝑠𝑠2𝑖𝑖(𝑠𝑠2𝑖𝑖𝑖𝑖 + 1) if 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖
𝑠𝑠2𝑖𝑖𝑠𝑠2𝑖𝑖𝑖𝑖 if 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖
0 otherwise ,

where the indices of 𝑠𝑠 are computed modulo 64.

end for
return (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡255)

Algorithm 5 Definition of EncodePrefixFree
Require: 𝑛𝑛 𝑛 𝑛
Input

𝑑𝑑 An 𝑛𝑛-tuple of 64-bit blocks.
Output

𝑦𝑦 An 𝑛𝑛-tuple of 257-bit blocks.

for 𝑖𝑖 𝑖 𝑖 to 𝑛𝑛 𝑛 𝑛 do
𝑦𝑦𝑖𝑖 ← ExpandBlock(𝑑𝑑𝑖𝑖) ‖ 0

end for
𝑦𝑦𝑛𝑛𝑛𝑛 ← ExpandBlock(𝑑𝑑𝑛𝑛𝑛𝑛) ‖ 1
return (𝑦𝑦0, 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛𝑛𝑛)

This claim follows the proven bound of Kirby in [29] Lemma 1 page 15 against generic attacks using
a 𝜅𝜅-bit key.

6.4 Formalism for integral cryptanalysis

Together with differential and linear cryptanalysis, integral cryptanalysis form the three most important
attack vectors. We use integral attacks as an umbrella term for attacks relying on summing the outputs of
a function over awell-chosen input set, using different heuristics for constructing the set. To improve the
understandability of our explanations of the attacks mounted against Koala, we first describe the general
method used for integral attacks with the minimummathematical formalism necessary to describe such
attacks.
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6 Koala: A Low-Latency Pseudorandom Function

6.4.1 Framework of integral attacks

Integral attacks consist of an offline phase followed by an online phase:

Offline Phase is an analysis step where the adversary accesses the secret dependent polynomial repre-
sentations of the step functions of a primitive. They apply rewrite rules to these polynomial repre-
sentations in order to simplify them, e.g., to eliminate variables and lower the degree. Importantly,
the rewrite rules determine an affine input space𝑉𝑉. Using combinatorial arguments involving the
degree or by propagating an initial division property vector [36], the adversary is able to determine
the vector of coefficients of some target monomial. To be able to mount a successful attack, this
vector should either be a constant that does not depend on the secret at all or depend on the se-
cret in a way that leads to a system of equations that is easy to solve, e.g., linear dependence. The
outcome of this step is an affine input space𝑉𝑉 and a target monomial 𝑥𝑥𝑢𝑢.

Online Phase is an execution step where the adversary accesses a cryptographic oracle for a fixedmaster
key. They recover the vector of coefficients of the target monomial 𝑥𝑥𝑢𝑢 by summing over the affine
input space 𝑉𝑉 that was obtained during the offline phase. The vector of coefficients is then used
as a distinguisher or to set up a system of equations in the secret bits that may lead to the recovery
of the master key.

We restrict ourselves to input sets that formanaffine space. Within this restriction, examples of integral
attacks include higher-order differential cryptanalysis [27], square attacks [17], and (conditional) cube
attacks [20, 26]. We present a unified mathematical foundation upon which these attacks are built.

This section is organized as follows. In Section 6.4.2, we make explicit the link between functions
defined on an affine space and their representation on this space as a multivariate polynomial, called the
algebraic normal form. In Section 6.4.3, we introduce an notion of the derivative of a function and show
how it can be computed by means of the summation of outputs of the function.

6.4.2 Algebraic normal form

To understand how to find input spaces for an integral attack, we need to explain how to represent the
restriction of a vectorial Boolean function to some affine space as a tuple of multivariate polynomials:
the algebraic normal form (ANF). We present the necessary tools and results from computational com-
mutative algebra and make the relation between the algebraic normal form and substitutions, which
determine the input sets, explicit. We also illustrate in 5 the notation and terminology used. For an
accessible introduction to computational commutative algebra, we refer to the book by Cox et al. [14].

Amonomial in the variables𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑛𝑛 is a product of the form𝑥𝑥𝑢𝑢00 ⋯ 𝑥𝑥𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 with𝑢𝑢 𝑢 𝑢𝑛𝑛. To abbreviate,
we write this as 𝑥𝑥𝑢𝑢. The degree of the monomial 𝑥𝑥𝑢𝑢 is defined as 𝑢𝑢0 + ⋯ + 𝑢𝑢𝑛𝑛𝑛𝑛. Polynomials are finite
linear combinations of monomials with coefficients in 𝔽𝔽2. The degree of a polynomial is the largest of
the degrees of its monomials. The zero polynomial has degree −∞. We denote the set of polynomials in
the variables 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑛𝑛 and with coefficients in 𝔽𝔽2 by 𝑅𝑅𝑛𝑛 = 𝔽𝔽2[𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑛𝑛]. These variables correspond
to the bits which are controlled by an adversary, e.g., the input bits.
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6.4 Formalism for integral cryptanalysis

Let 𝑝𝑝0, … , 𝑝𝑝𝑛𝑛𝑛𝑛 be polynomials of the form 𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖 or 𝑝𝑝𝑖𝑖 = 𝑐𝑐𝑖𝑖 + ∑𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 for constants 𝑐𝑐𝑖𝑖 ∈ 𝔽𝔽2 and

coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝔽𝔽2. During cryptanalysis, we make use of a set of rewrite rules of the form 𝑥𝑥𝑖𝑖 → 𝑝𝑝𝑖𝑖, i.e.,
we substitute 𝑥𝑥𝑖𝑖 with the polynomial 𝑝𝑝𝑖𝑖. Rules of the form 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 are said to be trivial in the sense that
no substitution is performed. A set of rewrite rules defines a set of polynomials of the form 𝑥𝑥𝑖𝑖−𝑝𝑝𝑖𝑖, which
is completely specified by a tuple (𝐴𝐴𝐴𝐴𝐴 𝐴, where𝐴𝐴 𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖) is an 𝑛𝑛 𝑛 𝑛𝑛matrix over 𝔽𝔽2 and 𝑐𝑐 𝑐𝑐 𝑐𝑐0, … , 𝑐𝑐𝑛𝑛𝑛𝑛) is
a vector in 𝔽𝔽𝑛𝑛2 . The matrix𝐴𝐴 is in row echelon form, up to a permutation of its rows, which implies that
the order in which the corresponding rewrite rules are applied does not matter. The tuple (𝐴𝐴𝐴𝐴𝐴 𝐴 defines
the affine space𝑉𝑉 𝑉 𝑉𝑉𝑉 𝑉𝑉𝑉 𝑛𝑛2 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴 of points that satisfy the equation𝐴𝐴𝐴𝐴𝐴𝐴𝐴  .

We have seen that a rewrite rule of the form 𝑥𝑥𝑖𝑖 → 𝑝𝑝𝑖𝑖 gives us a relation of the form 𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑖𝑖. Moreover,
we have relations of the form 𝑥𝑥2𝑖𝑖 = 𝑥𝑥𝑖𝑖 due to the fact that the square on 𝔽𝔽2 is the identity map. We can
introduce these relations by working with polynomials modulo the ideal 𝐼𝐼 generated by the set

𝐺𝐺 𝐺𝐺𝐺𝐺 20 − 𝑥𝑥0, … , 𝑥𝑥2𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑛𝑛, 𝑥𝑥0 − 𝑝𝑝0, … , 𝑥𝑥𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑛𝑛𝑛𝑛} .

For our purposes, the central algebraic object is the quotient ring 𝑅𝑅𝑛𝑛/𝐼𝐼.

Polynomials in𝑅𝑅𝑛𝑛 give rise to elements of Maps[𝑉𝑉𝑉𝑉𝑉 2]. Indeed, for any point 𝑎𝑎 𝑎𝑎𝑎 , there is a unique
ring homomorphism 𝜀𝜀𝑎𝑎 ∶ 𝑅𝑅𝑛𝑛 → 𝔽𝔽2 with 𝜀𝜀𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝑎𝑎𝑖𝑖 given by substituting 𝑥𝑥𝑖𝑖 by 𝑎𝑎𝑖𝑖. This leads to a map
𝜙𝜙𝜙𝜙𝜙 𝑛𝑛 → 𝔽𝔽𝑉𝑉2 that is defined by 𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙 with 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑎𝑎(𝑝𝑝𝑝 for all 𝑎𝑎 𝑎𝑎𝑎 . The kernel of 𝜙𝜙 is equal to 𝐼𝐼.
By the first isomorphism theorem for rings [14, p. 247], there is an isomorphism 𝜙𝜙 between 𝔽𝔽𝑉𝑉2 and𝑅𝑅𝑛𝑛/𝐼𝐼.

The set 𝐺𝐺 forms a Gröbner basis [14, p. 78] for 𝐼𝐼 with respect to the lexicographic order. Define
𝑊𝑊 𝑊𝑊 𝑊𝑊 𝑊𝑊𝑊 𝑛𝑛2 ∶ 𝑢𝑢𝑖𝑖 = 0 if 𝑥𝑥𝑖𝑖 ≠ 𝑝𝑝𝑖𝑖} as the set of vectors for which the 𝑖𝑖th component is zero if 𝑥𝑥𝑖𝑖 is
eliminated by a substitution. The remainder of any polynomial 𝑝𝑝 𝑝𝑝𝑝 𝑛𝑛 on division by𝐺𝐺, denoted 𝑝𝑝

𝐺𝐺, is
unique and of the form

𝑝𝑝𝐺𝐺 = ∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑢𝑢𝑥𝑥𝑢𝑢 ,

for certain constant bits 𝛼𝛼𝑢𝑢 ∈ 𝔽𝔽2 [14, p. 83]. Therefore, the set of all possible remainders after division by
𝐺𝐺, which we denote as𝑅𝑅𝐺𝐺, forms a complete set of coset representatives of 𝐼𝐼 in𝑅𝑅𝑛𝑛. Indeed, let𝜓𝜓𝜓𝜓𝜓 𝑛𝑛 →
𝑅𝑅𝑛𝑛 be defined by 𝜓𝜓𝜓𝜓𝜓𝜓𝜓  𝑝𝑝𝐺𝐺 for all 𝑝𝑝 𝑝𝑝𝑝 𝑛𝑛. The kernel of 𝜓𝜓 is equal to 𝐼𝐼. By the first isomorphism
theorem for rings, there is an isomorphism 𝜓𝜓 between 𝑅𝑅𝑛𝑛/𝐼𝐼 and 𝑅𝑅𝐺𝐺.

To conclude, we have an isomorphism𝒩𝒩 𝒩 𝜓𝜓 𝜓 𝜙𝜙 between the set of Boolean functions defined on𝑉𝑉
and the set of remainders 𝑅𝑅𝐺𝐺. We are now able to make precise how a function is represented on𝑉𝑉.

Definition 52. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   2 be a Boolean function defined on 𝑉𝑉. The representation of 𝑓𝑓 as a mul-
tivariate polynomial, called the algebraic normal form (ANF) of 𝑓𝑓, is defined as the unique remainder
𝒩𝒩𝒩𝒩𝒩𝒩 upon division by𝐺𝐺.

The degree of a remainder 𝑝𝑝 𝑝𝑝𝑝 𝐺𝐺 with 𝑝𝑝 𝑝𝑝  is defined as deg(𝑝𝑝) = max{HW(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢     and 𝛼𝛼𝑢𝑢 ≠
0}.
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6 Koala: A Low-Latency Pseudorandom Function

Table 6.1: Truth table of 𝑓𝑓.

𝑥𝑥 000 001 010 011 100 101 110 111

𝑓𝑓𝑓𝑓𝑓𝑓 0 1 0 0 1 0 1 1

Definition 53. Let 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓2 be a Boolean function defined on𝑉𝑉. The algebraic degree of 𝑓𝑓, denoted by
deg(𝑓𝑓𝑓, is defined as the degree of its ANF.

If 𝑓𝑓 depends on a secret vector 𝑠𝑠 𝑠 𝑠𝑠𝜅𝜅2 , e.g., a secret key or state, then the coefficients 𝛼𝛼𝑢𝑢 of 𝒩𝒩𝒩𝒩𝒩𝒩
are Boolean functions of the secret bits, i.e., 𝛼𝛼𝑢𝑢 maps the secret 𝑠𝑠 to some bit 𝛼𝛼𝑢𝑢(𝑠𝑠𝑠 𝑠 𝑠𝑠2. In this case,
we can rewrite the definition of the degree as deg(𝑓𝑓) = max{HW(𝑢𝑢𝑢𝑢  𝑢𝑢 𝑢 𝑢𝑢 and there exists an 𝑠𝑠 𝑠
𝔽𝔽𝜅𝜅2 with 𝛼𝛼𝑢𝑢(𝑠𝑠𝑠 𝑠 𝑠𝑠. Note that our definitions match with the usual definitions of ANF and algebraic
degree in the case that both𝐴𝐴 and 𝑐𝑐 are zero.

There is a straightforward generalization of these notions to vectorial Boolean functions defined on
𝑉𝑉.

Definition 54. The algebraic normal form of 𝐹𝐹 𝐹𝐹𝐹𝐹 0, … , 𝑓𝑓𝑚𝑚𝑚𝑚)∶𝑉𝑉𝑉𝑉𝑉    𝑚𝑚2 is defined as 𝒩𝒩𝒩𝒩𝒩𝒩𝒩
(𝒩𝒩𝒩𝒩𝒩0), … ,𝒩𝒩𝒩𝒩𝒩𝑚𝑚𝑚𝑚))∈  𝑅𝑅𝑚𝑚

𝑛𝑛 . Its algebraic degree is defined as deg(𝐹𝐹𝐹𝐹  max{deg(𝑓𝑓0), … , deg(𝑓𝑓𝑚𝑚𝑚𝑚)}.

We illustrate how to apply rewrite rules to𝒩𝒩𝒩𝒩𝒩𝒩, where𝑓𝑓 is someBoolean function, in order to change
its properties, such as the presence of certain monomials. The resulting polynomial is the ANF of the
restriction of 𝑓𝑓 to the affine space determined by the rewrite rules.

Example 5. The function 𝑓𝑓𝑓 𝑓𝑓32 →𝔽𝔽 2 is defined by the truth table in Table 6.1. It follows that

𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩0, 𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2 .

Therefore, the algebraic degree of 𝑓𝑓 is 2. Now we make the isomorphism𝒩𝒩 implicit.
We apply the rewrite rule 𝑥𝑥1 → 𝑥𝑥2. This rule, together with the trivial rules, defines the matrix

𝐴𝐴 𝐴 (
000 
0 1 1
000 

) .

and the constant 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   . Clearly,𝐴𝐴 is in row echelon form, up to a permutation of its rows. Moreover,
𝑉𝑉𝑉𝑉  𝑉𝑉 𝑉𝑉𝑉 32 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴      32 ∶𝑣𝑣 1 = 𝑣𝑣2}. Whenwe restrict𝑓𝑓 to𝑉𝑉, i.e., when we consider𝑓𝑓𝑓𝑉𝑉 ∶𝑉𝑉𝑉𝑉𝑉   2,
we find that its ANF is equal to 𝑥𝑥0. The restriction has algebraic degree 1 and it depends on a single variable.
An alternative way of wording this is that we compose 𝑓𝑓 with the map 𝐿𝐿𝐿𝐿𝐿 22 →𝑉𝑉  given by (𝑥𝑥0, 𝑥𝑥1) ↦

(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥1) and that the algebraic normal form of 𝑓𝑓 𝑓 𝑓𝑓 is equal to 𝑥𝑥0.

Like in the example, we make implicit in the next section the correspondence between Boolean func-
tions and their representation as a tuple of remainders.
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6.4 Formalism for integral cryptanalysis

6.4.3 Properties of derivatives

The integral attacks that we consider in this section, rely on practically computable properties of the
derivative of a Boolean function. All definitions and results are extended to the case of vectorial Boolean
functions by applying them to each coordinate Boolean function.

Definition 55. For vectors 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛2 , define the derivative of the monomial 𝑥𝑥𝑣𝑣 with respect to 𝑢𝑢 by

𝜕𝜕𝑢𝑢𝑥𝑥𝑣𝑣 = {
𝑥𝑥𝑣𝑣𝑣𝑣𝑣 if 𝑢𝑢 𝑢 𝑢𝑢 𝑢

0 otherwise ,

and extend linearly to functions 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2. We call 𝜕𝜕𝑢𝑢𝑓𝑓 the derivative of 𝑓𝑓 with respect to 𝑢𝑢.

Note that this definition coincides with that of the usual partial derivative.

Example 6. Let 𝑓𝑓𝑓 𝑓𝑓32 → 𝔽𝔽2 be given by 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2. Its derivatives are equal to

𝜕𝜕(0,0,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 0 + 𝑥𝑥2 + 𝑥𝑥1𝑥𝑥2 𝜕𝜕(1,0,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓

𝜕𝜕(0,0,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 1 + 1 𝜕𝜕(1,0,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(0,1,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 2 𝜕𝜕(1,1,0)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

𝜕𝜕(0,1,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓 𝑓𝑓(1,1,1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓

The first important property of the derivative is the duality between the derivatives of 𝑓𝑓 and outputs
of 𝑓𝑓 on an affine space by means of integral.

Proposition 23. Let 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝑛𝑛2 . We have

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓 𝑓
0≤𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 and

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓
0≤𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 𝑓

See in Appendix A, 28 for the proof.
The following corollary shows how to compute the coefficient 𝛼𝛼𝑢𝑢 of 𝑥𝑥𝑢𝑢 in 𝑓𝑓 by summing over the

outputs of 𝑓𝑓 corresponding to inputs for which 𝑢𝑢 takes on all possible values.

Corollary 4. Let 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝑛𝑛2 . We have

𝛼𝛼𝑢𝑢 = ∑
0≤𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

Proof. This follows from the second equality in 23 and the fact that 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑢𝑢, by definition.

The second important property of the derivative concerns its degree.
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6 Koala: A Low-Latency Pseudorandom Function

Proposition 24. The degree of the derivative of 𝑓𝑓 with respect to 𝑢𝑢 satisfies

deg(𝜕𝜕𝑢𝑢𝑓𝑓) ≤ deg(𝑓𝑓) −HW(𝑢𝑢𝑢 𝑢

Proof. Bydefinition, wehave 𝜕𝜕𝑢𝑢𝑓𝑓 𝑓 𝑓𝑢𝑢𝑢𝑢𝑢 𝛼𝛼𝑣𝑣𝑥𝑥
𝑣𝑣𝑣𝑣𝑣. Let𝑤𝑤be such that𝛼𝛼𝑤𝑤 ≠ 0 anddeg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓 𝑓 HW(𝑤𝑤𝑤𝑤𝑤𝑤.

Using that 𝑢𝑢 𝑢𝑢𝑢  and that 𝑥𝑥𝑤𝑤 is a monomial in 𝑓𝑓, we find that deg(𝜕𝜕𝑢𝑢𝑓𝑓) = HW(𝑤𝑤 𝑤𝑤𝑤𝑤𝑤   HW(𝑤𝑤𝑤𝑤
HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓) −HW(𝑢𝑢𝑢.

The coefficient of any monomial 𝑥𝑥𝑢𝑢 with the Hamming weight of 𝑢𝑢 exceeding the degree of the func-
tion is 0.

Proposition 25. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 is the coefficient 𝛼𝛼𝑢𝑢 of 𝑥𝑥𝑢𝑢 in 𝑓𝑓. In particular, if
HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then this coefficient 𝛼𝛼𝑢𝑢 is 0.

Proof. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then deg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓) ≤ 0. This implies that 𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 is a constant, i.e.,
𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 for any 𝑎𝑎 𝑎 𝑎𝑎𝑛𝑛2 . In particular, this is true for 𝑎𝑎 equal to 0. By definition, it follows that
𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑢𝑢. If HW(𝑢𝑢𝑢 𝑢 deg(𝑓𝑓𝑓𝑓𝑓𝑓), then deg(𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓) < 0, which implies that 𝛼𝛼𝑢𝑢 is 0.

6.5 Integral attacks applied to Koala

In this sectionwe focus on the class of integral attacks. They forms an important attack vector to consider
in the analysis of Koala, due to the fact that the Koala-P round function has degree 2. In particular, we
restrict ourselves to analyzing the substructureℰ𝑟𝑟 of Koala in which only a single block is processed and
consider a round-reduced version of Koala-P.

Definition 56. Define an expansion function 𝛾𝛾 𝛾 𝛾𝛾2572 × 𝔽𝔽642 → 𝔽𝔽2572 by

𝛾𝛾𝛾𝛾𝛾𝛾 𝛾𝛾𝛾𝛾𝛾  ExpandBlock(𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥

The substructureℰ𝑟𝑟 ∶𝔽𝔽 2572 × 𝔽𝔽642 → 𝔽𝔽2572 is given by

ℰ𝑟𝑟(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      Koala-P[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

The summary of the following is that we believe that ℰ𝑟𝑟 with the number of rounds 𝑟𝑟 𝑟 𝑟 is secure
against integral attacks.

Wefirst investigate distinguishing bit-based division properties. The division propertywas introduced
in [35] as a generalization of integral distinguishers. Based on previous works [19, 24, 25, 34, 36, 37], we
created different tools to search for two-subset and two types of three-subset division properties within
round-reduce versionofKoala. Then,we look at cube and conditional cubedistinguishers, exploiting the
inner structure of the ExpandBlock function and the round function to search for integral distinguish-
ers with smaller input size. Based on the results found, we conjecture on the feasibility of key recovery
attacks using those distinguishers. In both cases, the goal of the attack is to find an affine subspace 𝑉𝑉 of
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6.5 Integral attacks applied to Koala

𝔽𝔽642 , the domain of the 64-bit input string 𝑥𝑥, such that the ANF of ℰ𝑟𝑟 on this subspace has a coefficient
that is independent of or linear in key variables, for some monomial in input variable.

6.5.1 Bit-based division property analysis

We divided our work into two steps, first using the two-subset division property and then using different
types of three-subset division property. For further explanation on the division property we refer to [35]
for basic concepts and the two subset division property, and to [24] for the three subset division property.

Using the algorithm from [34], and themodel from [19] for the two subset division property, we check
whether distinguishers exist within the round-reduced version of Koala. The model from [19] was very
powerful tomodel the large state ofKoala, and combinedwith the algorithm fromSun et al., wemanaged
tomodel the propagation of division trails and to compute the existence of distinguisher up to 6 rounds.
This technique, consisting in modeling the propagation of division trail using linear constraint, can lead
to false positive results due to the lossy modeling of the constraint. However, from a designer’s point
of view, finding no distinguisher is enough, as this model captures all valid two-subset division trails.
We found some distinguishers for up to 5 rounds but none for 6, showing the absence of exploitable
two-subset division property for 6 rounds.

Then, we look at the three-subset-division property. We also used the model from [19] to model the
propagation of division trail combinedwith the algorithm from [37]. For a specific set of input, we could
compute the coefficient of themonomial containing all input variables after a certain number of rounds.

The result obtained was the monomial’s presence, absence, or unknown status for each output coor-
dinate, meaning for the latter that either the tool did not find the result or that such input is unlikely to
result in an exploitable distinguisher. Due to the degree 2 round function used and the result foundwith
the two-subset division property, we assume that there are distinguishers for up to 5 rounds. Therefore,
we investigate 5 and 6 rounds distinguishers with our three-subset division property tools. As for five
rounds, the expected maximum degree is 64 (25 for the round function time 2 for the ExpandBlock).
This mean that for all secrets 𝑠𝑠 for each output bit coordinates ⨁

𝑥𝑥𝑥𝑥𝑥642

ℰ5(𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠 𝑠, leading to a 5-round

integral distinguisher. Therefore, we investigated for 6 rounds, and we found that with the same input
set, there is no exploitable distinguisher for each output coordinate. We assume that this result came

from the presence of monomials of the form
63

∏
𝑖𝑖𝑖𝑖

𝑥𝑥𝑖𝑖∏
𝑗𝑗𝑗𝑗𝑗𝑝𝑝

𝑠𝑠𝑗𝑗 for each coordinate 𝑝𝑝 after 6 rounds. There-

fore, we search if some quadratic secret dependency, meaning |𝐽𝐽𝑝𝑝| = 2, could lead to an exploitable
distinguisher. For all pairs of secret-bit tested, we did not found any distinguisher for 6 rounds. We pro-
vide in https://github.com/parisaeliasi/KoalaHW all code used to compute those results, and
we give in Appendix C some of the affine space leading to distinguisher for reduced round version.

6.5.2 Conditional cube attack

To push the analysis further, we consider what happens when we restrict our view of ℰ𝑟𝑟 to non-trivial
affine subspaces of 𝔽𝔽642 . These affine subspaces are obtained by applying substitutions that limit the in-
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6 Koala: A Low-Latency Pseudorandom Function

teraction of variables through the rounds. In other words, we looked at a subspace of the input vector
space that can decrease the degree of the ANF of specific output coordinates.

A variable 𝑥𝑥𝑖𝑖 is said to interact with a variable 𝑥𝑥𝑗𝑗 in 𝐹𝐹 if 𝑥𝑥𝑗𝑗 appears in 𝜕𝜕𝑒𝑒𝑛𝑛𝑖𝑖 𝐹𝐹. When it does not interact
with any other variable, we call it isolated.

Definition 57. Let 𝐹𝐹𝐹 𝐹𝐹𝑛𝑛2 → 𝔽𝔽𝑚𝑚2 be a vectorial Boolean function and let 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖. We call the variable
𝑥𝑥𝑖𝑖 isolated in 𝐹𝐹 if deg(𝜕𝜕𝑒𝑒𝑛𝑛𝑖𝑖 𝐹𝐹) ≤ 0, i.e., if the derivative is a constant. We call 𝐹𝐹 linear with respect to a set
of variables 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙 if these variables are isolated in 𝐹𝐹. By linearization of 𝐹𝐹, we mean the application of
substitutions, after which 𝐹𝐹 is linear with respect to the remaining variables.

Linearizing 𝛾𝛾: The following proposition shows that linearization of 𝛾𝛾with respect to the variables
𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙, by applying suitable substitutions that lead to an affine space 𝑉𝑉, causes the absence of the
monomial 𝑥𝑥𝑖𝑖1 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 in ℰ𝑟𝑟|𝑉𝑉. Intuitively, this is a consequence of the function having a much lower al-
gebraic degree when restricted to particular affine subspaces than it has on the entire vector space. For a
proof, we refer to Appendix A.

Proposition 26. Let 𝑟𝑟 𝑟 𝑟, 𝑙𝑙 𝑙 𝑙𝑟𝑟 + 1, and {𝑖𝑖1, … , 𝑖𝑖𝑙𝑙} ⊆ ℤ/64ℤ be a subset of indices of size 𝑙𝑙. If𝑉𝑉 is an
affine subspace of 𝔽𝔽642 such that 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙 are isolated in 𝛾𝛾𝛾𝑉𝑉, then 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉 = 0.

Each monomial of degree 2 in 𝛾𝛾 is of the form 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 for some index 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖. To linearize such a
monomial, i.e., to have it depend on only a single variable, we can restrict ourselves to substitutions of
the form 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑖𝑖 → 𝑎𝑎 for a constant 𝑎𝑎 𝑎𝑎𝑎 2.

In other terms, linearization of 𝛾𝛾fixes 32of the 64 input variables𝑥𝑥𝑖𝑖. Therefore, using 26 and choosing
𝑟𝑟 equal to 5, we find a distinguisher overℰ5.

Linearizing 𝛾𝛾 and R0: The following proposition shows how to decrease the number of variables
that are involved in the target monomial, i.e., to decrease the size of the input set over which we need to
sum to obtain the coefficient of this target monomial. For a proof, we refer to 30 in Appendix A.

Proposition 27. Let 𝑟𝑟 𝑟 𝑟, 𝑙𝑙 𝑙 𝑙𝑟𝑟, and {𝑖𝑖1, … , 𝑖𝑖𝑙𝑙} ⊆ ℤ/64ℤ be a subset of indices of size 𝑙𝑙. If𝑉𝑉 is an affine
subspace of 𝔽𝔽642 such that 𝑥𝑥𝑖𝑖1 is isolated inR0 ∘𝛾𝛾𝛾𝑉𝑉 and 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑙𝑙 are isolated in 𝛾𝛾𝛾𝑉𝑉, then 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉 = 0.

With 27, we sketch how touse a conditional cube attack [26] to recover particular bits of the secret. Let
𝑉𝑉𝑔𝑔 be an affine subspace of 𝔽𝔽642 that depends on a guess 𝑔𝑔 𝑔𝑔𝑔 𝑚𝑚2 for some subset of bits of the secret 𝑠𝑠. We
call𝑃𝑃𝑖𝑖 the property that𝑥𝑥𝑖𝑖1 is isolated inR0∘𝛾𝛾𝛾𝑉𝑉𝑔𝑔. The attack consists in finding such𝑉𝑉𝑔𝑔 forwhich a correct
secret guess will make𝑃𝑃𝑖𝑖 true and false for an incorrect guess. We obtain𝑉𝑉𝑔𝑔 by applying substitutions that
depend on 𝑔𝑔. For example,ℰ𝑟𝑟 adds 𝑥𝑥𝑖𝑖 to 𝑠𝑠𝑖𝑖, so if we apply the rewrite rule 𝑥𝑥𝑖𝑖 → 𝑔𝑔𝑗𝑗, where 𝑔𝑔𝑗𝑗 is a guess for
𝑠𝑠𝑖𝑖, then a correct guess for 𝑠𝑠𝑖𝑖 effectively removes the effect of 𝑠𝑠𝑖𝑖 in any further processing. To verify our
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6.6 Trail bounds of Koala-P

guess, we recover the coefficient of the monomial 𝑥𝑥𝑖𝑖1 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 inℰ𝑟𝑟|𝑉𝑉𝑔𝑔 by means of summation in the online
phase. Wewrite 𝑢𝑢 𝑢𝑅𝑅 𝑆𝑆 if 𝑢𝑢 is randomly and uniformly selected from the set 𝑆𝑆, and for 𝑠𝑠 𝑠𝑅𝑅 𝔽𝔽2572 , we have

𝑔𝑔 𝑔 𝑔𝑔𝑔𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑚𝑚)⟹ 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉𝑔𝑔(𝑠𝑠𝑠 𝑠𝑠𝑠  𝑠 𝑠

𝑔𝑔 𝑔 𝑔𝑔𝑔𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑚𝑚)⟹ Pr(𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉𝑔𝑔(𝑠𝑠𝑠 𝑠𝑠𝑠  𝑠) ≈ 1 .

We used that technique first to analyze a simpler version of our scheme: an Even-Mansour construc-
tion [21] inwhich the permutation is a round-reduced variant of the Subterranean permutation. As both
elements are alreadywell known, thiswas the starting point of our design. We found a key recovery attack
for 6 rounds, using 32 isolated variables. The attack led to the recovery of key bits 0 and 2, requiring three
days of computation on a desktop computer and it is possible to use this attack to recover each pair of
bits; each can be performed in parallel. Consequently, a theoretical attack on 7 and 8 rounds exist using
respectively64 and128 isolated variables. Those attackswouldwork the samewith theKoala-P permuta-
tion instead of the Subterranean permutation as the components of the round function are very similar.
However, together with the ExpandBlock function, we did not manage to attack the same number of
rounds. The restriction from 257 to 64 bits for the input reduces the number of possible input sets for
the attacker. With the degree 2 ExpandBlock function, it also reduces the number of rounds required
to reach themaximumdegree term in the ANF. Based on our observation, by using linearization, we can
obtain the degree estimation as shown in Table 6.10 in the Appendix C.

From the three-subset division property, we saw that the degree after 5 rounds reaches 64, following
the upper bound. Attempts at attackingmore than 5 rounds, the trivial input set containing all 64 input
variables can be used as a distinguisher, or the input set with 32 variables chosen carefully to linearize the
ExpandBlock function. However, none of those methods can attack 6 rounds as the input is too small.
Linearizing the input injection and the first round would mean that after 6 rounds, it could be possible
to find the output coordinate for which the maximum degree would be 32. To linearize one variable for
the input injection and the first round, we need to set 10 variables to constant, meaning that, at most, 6
variables can be linearized for these two rounds. As for the conditional cube attack above, we investigate
a combination of variables linearized for theExpandBlock function and linearized for theExpandBlock
function and the first round. So, let’s assume we linearize one variable for the input injection and the
first round. Then, we have 54 variables left, and to linearize those for the input injection, we reduce the
space to 27. This leads us to think it is impossible to attack 6 rounds using this technique.

6.6 Trail bounds of Koala-P

In this section, we present bounds on the weights of differential and linear trails over the Koala-P per-
mutation. We support this analysis with the best linear and differential trails for up to 3 rounds in Ap-
pendix D. Since we introduced a new permutation Koala-P, we decided to investigate first the permu-
tation alone without considering the input injection. However we believe that with the result provided
and the restriction on the input to 64-bit due to the input ExpandBlock function, it is very unlikely
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6 Koala: A Low-Latency Pseudorandom Function

Table 6.2: Lower bounds on the restriction weight of differential trails in Koala-P.

number of rounds 1 2 3 4 5 6 7 8

Koala-P 2 8 26 [52, 60] ≥ 54 ≥ 60 ≥ 78 ≥ 104
Subterranean 2 8 25 58 ≥ 62 ≥ 78 ≥ 80 ≥ 116

that a 7/8-round differential with high enough probability or a 7/8-round linear approximation with
high enough correlation could be found that would be useful in an attack on Koala.

6.6.1 Bounds on differential trails

To investigate the differential propagation properties of Koala-P, we used the differential trail search ap-
proach introduced in [31]. For more details, we refer the reader to [30, 31]. The general idea of this
approach is to generate all 2-round trail cores with high differential probability (DP) and extend them
iteratively to longer trail cores. A trail core represents a set of trails that are equal in all intermediate differ-
ences and only their input and the output difference are different. The restriction weight wr of a trail core
is the minimum among the restriction weights of all trails in it. For a differential trail𝑄𝑄, we use this re-
striction weight to approximate the differential probability DP(𝑄𝑄𝑄. Hence, if wr ≪ 𝑏𝑏 (the permutation
width), then DP(𝑄𝑄𝑄 𝑄 𝑄−wr(𝑄𝑄𝑄.

We report on the lower bounds on the restriction weights of trails for different numbers of rounds of
Koala-P and also Subterranean in Table 6.2. The bounds for Koala-P are tight for up to 3 rounds since
we scanned the space up to restriction weight 26.

For 4-round trails, we scanned the space up to restriction weight 51 and found there is no trail up to
this weight. During our search, we found a 4-round trail with restriction weight 60, implying that the
best 4-round trail should weigh between 52 and 60. This means that 4-round trail for Koala-P are likely
to have a lower bound close the one for Subterranean. For 5, 6, and 7 rounds, we found no trails, but
the space was scanned up to the limits listed in Table 6.2. Moreover, in the case of 8 rounds, since each
8-round trail can be divided into two 4-round trails and since all 4-round trails have weight at least 52,
each 8-round trail has weight at least 2 × 52 = 104.

6.6.2 Bounds on linear trails

For the linear trail search we could not build further on a similar work for Subterranean as there are no
results known. Instead,we adaptedworks onSimonandSpeck in [22, 32] to create amixed integer linear
programming (MILP)model for the propagation of linear masks. Ourmodel provides lower bounds on
the correlation weight of linear trails for a low number of rounds, where the correlation weight of a trail
is the binary log of its correlation squared [15]. We use the Gurobi optimizer [23] to solve the model and
find linear trails with the minimum correlation weight over 1,2,3 and 4 rounds.

During our trail search, we scanned the space up to correlation weight 26 and found a tight bound on
the correlation weight of up to 3 rounds. For 4 rounds, we found a trail with the weight 54. Since the

128



6.7 Design rationale of Koala

Table 6.3: Lower bounds on the correlation weight of linear trails in Koala-P.

number of rounds 1 2 3 4

correlation weight 2 8 26 [38, 54]

search is top-down, we only know that theminimumweight for a trail of 4 rounds is between 38 and 54.
Table 6.3 represents the lower bounds on the correlation weight of up to 4 rounds.

6.6.3 Clustering

Trails may cluster, differential trails that have the same input and output differences contribute to the
same differential. Similarly, linear trails that have the same input and output masks contribute to the
same linear approximation. Even if each contribution is small, the sum of all the contributions might
not be. Still, as studied in [8], in permutations such as Koala-P, themaximumDP of differentials and the
maximum correlation of linear approximations is typically very close to that of a single dominant trail.
We decided to leave the study of clustering as future work.

6.7 Design rationale of Koala

This section presents the rationale behind the design of Koala. The starting point of the design was the
Even-Mansour construction, instantiated with 8 iterations of the Subterranean round function for use
in counter mode. We selected the round function for its short critical path, consisting of one 2-bit NAND
gate and three 2-bit XOR gates, together with an INV gate. As we alluded to in Section 6.5, the evolution
from this initial design to Koala has been driven by the goal of resistance against integral attacks. Indeed,
whenwe allow an adversary to inject 257-bit blocks, a practical attack exists on 6 rounds and a theoretical
attack on 7 rounds. Hence, 8 roundswould not be sufficient. Instead of changing the number of rounds,
we started looking for changes in the design preferably with no or small implementation overhead.

The first step was to consider the round function itself. We changed 𝜄𝜄 to remove symmetry between
the rounds that could possibly be exploited in cryptanalysis, e.g., slide attacks [7]. We changed 𝜃𝜃 and 𝜋𝜋
to increase the number of variables that appear in the derivatives of the first few rounds for any variable.
Finally, we reversed the order of the step functions. In particular, we moved 𝜒𝜒 to the end of the round
to increase the diffusion of input before the non-linear layer of the first round. Also, at the permutation
output, any linear layer after the non-linear does not contribute to its cryptographic strength. The result
of these changes is the Koala-P permutation. However, those modifications alone were not enough to
prevent 6 and 7-round attacks working on Subterranean. The next step was to allow only injecting a
single 64-bit input block into the state instead of a 257-bit block. ThisExpandBlock function is tailored
to the Koala-P permutation in the sense that they have been designed together to resist integral attacks
as described in 6.5. The ExpandBlock function essentially cuts the dimension of any affine space that
an adversary can inject into half, and its implementation cost in terms of additional gates and gate delay
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is small compared to that of an extra round. Due to the input restriction to 64-bit, we adopted the
Kirby construction instead of Even-Mansour, as it allows for inputs consisting of an arbitrary number
of 64-bit blocks. It is very suitable for low-latency applications, has a tight security bound in multi-user
settings, andwe handle the requirement of prefix-free input to Koala with a padding at the output of the
ExpandBlock function.

6.8 Performance

We discuss a hardware architecture aimed for ASICs and report the synthesis results. The corresponding
Verilog code and a software reference code for generating test vectors can be found at https://github.
com/parisaeliasi/KoalaHW.

6.8.1 Hardware architecture of Koala

The block diagram for Koala is illustrated in Figure 6.3. It has one 257-bit state register 𝑆𝑆, a combina-
tional circuit for computing ℎ(𝑠𝑠𝑠 sqz) ∶= ExpandBlock(𝑠𝑠𝑠 𝑠 sqz, a circuit for computing Koala-P, and
control logic for absorbing and squeezing driven by two control signals: init and sqz.

- init = 1 the state is initialized with the image of key and id.

- init = 0 the operation is driven by sqz.

- sqz = 0 a non-final block absorbed, 𝑆𝑆 updated and no output,

- sqz = 1 a final block absorbed, 𝑆𝑆 not updated and output generated.

The circuit guarantees that the input toKoala is a prefix code by adding sqz in the input block, effectively
indicating a final block. In stream cipher operation one first initializes the state, absorbs the blocks of the
noncewith sqz = 0 and squeezes the keystream blocks by absorbing successive counter value blocks with
sqz = 1. Four 2-bit NOR gates and two INV gates can encode the 2-bit input word (𝑠𝑠2𝑖𝑖 and 𝑠𝑠2𝑖𝑖𝑖𝑖) to a
4-bit output word, as explained in Algorithm 4. Koala-P is implemented with a fully unrolled circuit,
where the logic of the 8 rounds is replicated and chained. Unrolling is the natural strategy to achieve
low-latency, since it allows the evaluation of the whole permutation in one clock cycle.

6.8.2 Hardware results and comparison

We compare Koala with two other low-latency PRFs: Orthros [4] and Gleeok [1]. Both provide
128-bit output blocks. For additional comparison, we also consider the 64-bit block cipher Prince [9]
and an instantiation of Koala where Koala-P is replaced by 8 rounds of the Subterranean permutation
denoted by Kirby+sub.

ForOrthros,Gleeok, andPrince,weused theRTLcodepublicly available [3, 11]. Note that these
circuits are completely combinational. In fact, they do not need any flip-flop to store the intermediate
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Figure 6.3: Block diagram of the Koala circuit.

cipher state. On the contrary, Koala’s circuit has the storage element 𝑆𝑆 to support variable-length inputs.
Nevertheless, Koala has smaller area than Orthros and Gleeok.

The RTL codes were synthesized with Cadence Genus version 21.15 using the standard cell library
Nangate 15nm. We ran the synthesis flow multiple times for each cipher with different timing con-
straints, until the clock period is just above the critical path of the circuit. In Table 6.4, we report the best
results in terms of maximum throughput/area2 for each cipher. The maximum throughput (MaxTp) is
intended here as themaximumnumber of bits that a circuit can output per second, and it is computed as
output width divided by latency. More results, including the minimum latency reached by each cipher,
are given in Table 6.13.

We can observe that Koala and Kirby+sub achieve the lowest latency and highest throughput among
all ciphers and have similar area. This confirms that the modifications we made to Subterranean round
function do not introduce significant implementation overhead while improving the security as shown
in Section 6.5.2. Koala takes twice the area of Prince, but compensates this with a 257-bit output, 4
times longer than that of Prince. Gleeok-128 occupies twice the area of Koala and its output is 128
bits, only half that of Koala. While Gleeok-256 has block width similar to that of Koala, but its area is
more than 5 times bigger. With respect to the metric MaxTp/Area2, Prince achieves the best tradeoff,
thanks to its very compact circuit. However, when we consider the lowest latency in Table 6.13, Koala
outperforms Prince, Orthros and Gleeok thanks to its small area and larger output width.

Table 6.4: Synthesis results for the Nangate 15nm library.
Cipher Output width Area Latency MaxTp MaxTp/Area

[bits] [𝜇𝜇m2] [GE] [ps] [Gbits/s] [Mbits/(s × 𝜇𝜇m2]
Koala 257 4175 21236 395 651 156

Kirby+sub 257 4167 21196 399 644 155
Prince 64 1696 8627 482 133 78.4

Orthros 128 5993 30482 400 320 53.4
Gleeok-128 128 9887 50291 400 320 32.4
Gleeok-256 256 26043 132462 550 465 17.8
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6 Koala: A Low-Latency Pseudorandom Function

6.9 Conclusion

With the design of Koala, we provide an open-source implementation of a new PRF for low-latency
that performs much better than Orthrosand Gleeokon several metrics. The security analysis per-
formed and supported with all open-source tools used, shows that using 8 rounds of Koala-P with the
ExpandBlock should be secure against known attacks.
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A Missing proofs

Proposition 28. Let 𝑓𝑓𝑓 𝑓𝑓𝑛𝑛2 → 𝔽𝔽2 and 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑛𝑛2 . We have

𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓
0≤𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 and

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓
0≤𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓

Proof. The first equality can be seen as follows. Using the ANF of 𝑓𝑓, we find that

𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓
0≤𝑤𝑤

𝛼𝛼𝑤𝑤(𝑥𝑥𝑥𝑥𝑥𝑥  𝑤𝑤 =∑
0≤𝑤𝑤

𝛼𝛼𝑤𝑤( ∑
0≤𝑢𝑢𝑢𝑢𝑢

𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢)

=∑
0≤𝑤𝑤

( ∑
0≤𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢) =∑
0≤𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑢𝑢)

=∑
0≤𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤)𝑎𝑎𝑢𝑢 =∑
0≤𝑢𝑢𝑢𝑢𝑢

(∑
𝑢𝑢𝑢𝑢𝑢

𝛼𝛼𝑤𝑤𝑥𝑥𝑤𝑤𝑤𝑤𝑤)

=∑
0≤𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

where we have applied the definition of the derivative and used the fact that 𝑎𝑎𝑢𝑢 = 1 if and only if 0 ≤ 𝑢𝑢𝑢
𝑎𝑎. The second equality follows from theMöbius inversion formula [33, p. 264] applied to the first.
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Proposition 29. Let 𝑟𝑟 𝑟 𝑟, 𝑙𝑙 𝑙 𝑙𝑟𝑟 + 1, and {𝑖𝑖1, … , 𝑖𝑖𝑙𝑙} ⊆ [0, 63] be a subset of indices of size 𝑙𝑙. If 𝑉𝑉 is an
affine subspace of 𝔽𝔽642 such that 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙 are isolated in 𝛾𝛾𝛾𝑉𝑉, then

𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉 = 0 .

Proof. This proof is in the same style as Theorem 2 from [26]. Let𝑉𝑉 be an affine subspace such that each
𝑥𝑥𝑖𝑖𝑗𝑗 is isolated in 𝛾𝛾𝛾𝑉𝑉. By linearity, it suffices to prove both 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 𝛾𝛾𝛾𝑉𝑉 = 0 and 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 Koala-P[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑉𝑉 =
0. The first equality is trivial, so we only prove the second. To that end, let 𝑓𝑓1, … , 𝑓𝑓𝑡𝑡 be the monomials
containing 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙 in the output of 𝛾𝛾𝛾𝑉𝑉. By definition, the degree of each 𝑓𝑓𝑗𝑗 is at most one with respect
to 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙. Now, any monomial 𝑇𝑇 in Koala-P[𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑉𝑉 of maximum degree with respect to 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 is
of the form

𝑇𝑇 𝑇𝑇𝑇 1𝑓𝑓2 ⋯𝑓𝑓ℎ for some ℎ ∈ ℤ≥0 with ℎ ≤ 2𝑟𝑟 ,

because the algebraic degree of each R𝑗𝑗 is 2. It follows that 𝑇𝑇 contains at most ℎ different 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑙𝑙.
Suppose now that

𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 𝑇𝑇 𝑇 𝑇𝑇

Then 𝑥𝑥𝑖𝑖1 ⋅ 𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 divides 𝑇𝑇, which implies that ℎ ≥ 𝑙𝑙. Therefore,

ℎ ≥ 𝑙𝑙 𝑙 𝑙𝑟𝑟 + 1 > 2𝑟𝑟

which is a contradiction. Since 𝑇𝑇 does not appear in the derivative, any lower degree monomials do not
appear either and the result follows.

Proposition 30. Let 𝑟𝑟 𝑟 𝑟, 𝑙𝑙 𝑙 𝑙𝑟𝑟, and {𝑖𝑖1, … , 𝑖𝑖𝑙𝑙} ⊆ [0, 63] be a subset of indices of size 𝑙𝑙. If𝑉𝑉 is an affine
subspace of 𝔽𝔽642 such that 𝑥𝑥𝑖𝑖1 is isolated inR0 ∘ 𝛾𝛾𝛾𝑉𝑉 and 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑙𝑙 are isolated in 𝛾𝛾𝛾𝑉𝑉, then

𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 ℰ𝑟𝑟|𝑉𝑉 = 0 .

Proof. This proof has been adapted from Theorem 2 from [26]. Let𝑉𝑉 be an affine subspace of 𝔽𝔽642 such
that 𝑥𝑥𝑖𝑖1 is isolated in R0 ∘ 𝛾𝛾𝛾𝑉𝑉 and 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑙𝑙 are isolated in 𝛾𝛾𝛾𝑉𝑉. By linearity, it suffices to prove both
𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 𝛾𝛾𝛾𝑉𝑉 = 0 and 𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 Koala-P[𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑉𝑉 = 0. The first equality is trivial, so we only prove the
second. To that end, let𝑓𝑓1, … , 𝑓𝑓𝑠𝑠 be themonomials containing 𝑥𝑥𝑖𝑖1 in R0 ∘𝛾𝛾𝛾𝑉𝑉. By definition, the degree of
each 𝑓𝑓𝑖𝑖 is exactly one with respect to 𝑥𝑥𝑖𝑖1. Similarly, let 𝑔𝑔1, … , 𝑔𝑔𝑡𝑡 be the monomials containing 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑙𝑙 in
R0 ∘ 𝛾𝛾𝛾𝑉𝑉. By definition the degree of each 𝑔𝑔𝑗𝑗 is at most two with respect to 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑚𝑚. Moreover, 𝑥𝑥𝑖𝑖1 does
not divide any 𝑔𝑔𝑗𝑗, because that would contradict the assumption that it is isolated. Now, any monomial
𝑇𝑇 in Koala-P[𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑉𝑉 of maximum degree with respect to 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 is of the form

𝑇𝑇 𝑇𝑇𝑇 1𝑓𝑓2 ⋯𝑓𝑓ℎ𝑔𝑔1𝑔𝑔2 ⋯ 𝑔𝑔ℎ′ for some ℎ, ℎ′ ∈ ℤ≥0 with ℎ + ℎ′ ≤ 2𝑟𝑟𝑟𝑟 ,
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because the algebraic degree of 𝐺𝐺 is 2. It follows that 𝑇𝑇 contains at most 2ℎ′ different 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑙𝑙 and at
most one 𝑥𝑥𝑖𝑖1. Suppose now that

𝜕𝜕𝑒𝑒64𝑖𝑖1 +⋯+𝑒𝑒64𝑖𝑖𝑙𝑙 𝑇𝑇 𝑇 𝑇 𝑇

Then 𝑥𝑥𝑖𝑖1 ⋅ 𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑙𝑙 divides 𝑇𝑇, which implies that 2ℎ′ ≥ 𝑙𝑙 and ℎ ≥ 1. Therefore,

ℎ + ℎ′ ≥ 1 + 𝑙𝑙
2 = 1 + 2𝑟𝑟

2 = 1 + 2𝑟𝑟𝑟𝑟 > 2𝑟𝑟𝑟𝑟 ,

which is a contradiction. Since 𝑇𝑇 does not appear in the derivative, any lower degree monomials do not
appear either and the result follows.

B Diffusion test

In Table 6.5 we use the definition of [16] for the avalanche dependency weight and entropy. We re-
port on the avalanche behaviour for the Subterranean permutation, the Koala-P permutation and the
Koala-P permutationwith the input injection. We provide at https://github.com/parisaeliasi/
KoalaHW the C code use to produce those result.

Table 6.5: Diffusion test for the Subterranean permutation, the Koala-P permutation and the Koala-P with the
ExpandBlock function. For each we compute the dependency (D), the weight (W) and the entropy
(E).

Subterranean Koala-P Koala-P + ExpandBlock
number
of round D W E D W E D W E

1 9 6.00 5.99 9 6.002 5.99 36 12.18 30.90
2 81 36.00 65.20 81 35.99 65.20 167 55.43 140.72
3 255 109.20 236.54 251 108.75 230.97 257 122.95 254.62
4 257 128.36 256.99 257 128.39 256.99 257 128.50 256.99

C Integral distinguishers

We give in the Table 6.6, Table 6.8 and Table 6.9 integral distinguishers found with our tool for reduced-
round versions of Koala. We represent the input affine space used with the list of input variable indexes,
and the output bit coordinate correspond to the output bit index after 𝑟𝑟 round where this affine space
leads to a integral distinguisher. We also provide at https://github.com/parisaeliasi/KoalaHW
all code to reproduce our result and to search for integral distinguisher.

Due to the input injection we can consider terms in monomials as a product of two input variable.
Therefore, we know in advance that if 𝑥𝑥2𝑖𝑖 appears than it will always be togetherwith 𝑥𝑥2𝑖𝑖𝑖𝑖. This strongly
reduces the search space for monomials.
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D Differential and linear trails

In this section we provide the trail with least weight for 1, 2 and 3 round as found by our tools. We
represent trails with a list of pair of indices, one for the round number and one for the index position
within the state.

E Additional hardware results

In Table 6.13, we present more synthesis results and highlight the best result for each metric.

Table 6.6: 1 Round integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29] 6, 233
[32, 33, 60, 61] 14, 44, 74
[0, 1, 36, 37] 48, 78
[16, 17, 52, 53] 184, 214
[2, 3, 38, 39] 65, 95
[8, 9, 12, 13] 97, 127
[10, 11, 14, 15] 114, 144, 174
[22, 23, 50, 51] 216, 246

Table 6.7: 2 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61] 157, 161, 164, 166, 168
[0, 1, 36, 37, 16, 17, 52, 53] 29, 33, 36, 39, 43
[2, 3, 38, 39, 22, 23, 50, 51] 62, 66, 69, 72, 73, 76
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Table 6.8: 3 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61,
0, 1, 36, 37, 16, 17, 52, 53] 87, 94, 97, 155, 165, 206, 213, 216
[2, 3, 38, 39, 8, 9, 12, 13, 10,
11, 14, 15, 22, 23, 50, 51] 38, 200

Table 6.9: 4 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61, 0, 1, 36, 37, 16, 17, 52,
53, 2, 3, 38, 39, 8, 9, 12, 13, 10, 11, 14, 15, 22, 23, 50, 51] 15, 49, 54, 84, 91, 94, 239

Table 6.10: Upper bound on the degree growth based on the type of linearization used.
number of rounds

type of linearization 1 2 3 4 5 6
0 round 4 8 16 32 64 128

ExpandBlock function 2 4 8 16 32 64
ExpandBlock function

+ first round 1 2 4 8 16 32

Table 6.11: Differential trail for Koala
Round Weight Indexes

1 2 [1, 0]
2 6 [2, 0], [2, 247], [2, 254]
3 18 [3, 0], [3, 65], [3, 72], [3, 75], [3, 141], [3, 148], [3, 151], [3, 247], [3, 254]

Table 6.12: Linear trail for Koala
Round Weight Indexes

1 2 [1, 0]
2 6 [2, 0], [2, 106], [2, 182]
3 18 [3, 0], [3, 26], [3, 82], [3, 102], [3, 106], [3, 158], [3, 177], [3, 182], [3, 233]
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E Additional hardware results

Table 6.13: Extended synthesis results on Nangate 15nm.
Cipher Output width Area Latency MaxTp MaxTp/Area MaxTp/Area2

[bits] [𝜇𝜇m2] [GE] [ps] [Gbits/s] [Mbits/(s × 𝜇𝜇m2)] [Gbits/(s ×mm4)]
Koala 257 4079.67 20750 472 544 133.34 32.715

4175.07 21236 395 651 155.92 37.326
5639.80 28686 300 857 151.95 26.933
6621.41 33678 290 886 133.80 20.213

Kirby+sub 257 4167.30 21196 399 644 154.53 37.089
5203.97 26469 300 857 164.68 31.633
6035.42 30698 290 886 146.80 24.329

Prince 64 1696.19 8627 482 133 78.41 46.152
1935.95 9847 450 142 73.38 37.947
2957.03 15040 410 156 52.75 17.852

Orthros 128 5898.98 30004 499 257 43.57 07.372
5978.75 30410 449 285 47.67 07.975
5993.05 30482 400 320 53.39 08.910
7295.73 37108 370 346 47.42 06.499
8556.58 43521 360 356 41.60 04.856

Gleeok-128 128 9726.98 49474 436 294 30.22 03.103
9887.61 50291 400 320 32.36 03.273
13270.55 67498 370 346 26.07 01.964

Gleeok-256 256 25986.71 132175 600 427 16.43 00.632
26043.19 132462 550 465 17.85 00.686
29288.50 148969 520 492 16.79 00.574
31468.54 160057 510 502 15.95 00.507
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Mycontributions. This chapter is basedonwork accepted at Eurocrypt 2021. Iwas responsible for
the linear cryptanalysis of the cipher during the design phase, which led to a break of the original design.
This was addressed by modifying the round constant addition layer. Additionally, I made significant
contributions to the algebraic cryptanalysis of the cipher.

Abstract. Motivated by new applications such as secure Multi-Party Computation (MPC), Fully
Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), the need for symmetric encryp-
tion schemes that minimize the number of field multiplications in their natural algorithmic description
is apparent. This development has brought forwardmany dedicated symmetric encryption schemes that
minimize the number of multiplications in 𝔽𝔽2𝑛𝑛 or 𝔽𝔽𝑝𝑝, with 𝑝𝑝 being prime. These novel schemes have lead
to new cryptanalytic insights that have broken many of said schemes. Interestingly, to the best of our
knowledge, all of the newly proposed schemes that minimize the number of multiplications use those
multiplications exclusively in S-boxes based on a powermapping that is typically 𝑥𝑥3 or 𝑥𝑥−1. Furthermore,
most of those schemes rely on complex and resource-intensive linear layers to achieve a lowmultiplication
count.

In this paper, we present Ciminion, an encryption scheme minimizing the number of field multi-
plications in large binary or prime fields, while using a very lightweight linear layer. In contrast to other
schemes that aim to minimize field multiplications in 𝔽𝔽2𝑛𝑛 or 𝔽𝔽𝑝𝑝, Ciminion relies on the Toffoli gate to
improve the non-linear diffusion of the overall design. In addition, we have tailored the primitive for the
use in a Farfalle-like construction in order to minimize the number of rounds of the used primitive, and
hence, the number of field multiplications as far as possible.
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7.1 Introduction

Recently, several symmetric schemes have been proposed to reduce the number of field multiplications
in their natural algorithmic description, often referred to as themultiplicative complexity. These ciphers
fall into two main categories. The first one contains ciphers that minimize the use of multiplications
in 𝔽𝔽2, for instance, Flip [53], Keyvrium [22], LowMC [4], and Rasta [33]. The second category is com-
prised of ciphers having a natural description in larger fields, which aremostly binary fields 𝔽𝔽2𝑛𝑛 and prime
fields 𝔽𝔽𝑝𝑝. Examples includeMiMC [3], GMiMC [2], Jarvis [8], Hades [40], Poseidon [39] and Vision and
Rescue [6]. The design of low multiplicative complexity ciphers is motivated by applications such as se-
cureMulti-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge
proofs (ZK). These recent ciphers based on specialized designs highly outperform “traditionally” de-
signed ones in these applications. The search of minimizing the multiplicative complexity while provid-
ing a sufficient security level is an opportunity to explore and evaluate innovative design strategies.

The sheer number of potentially devastating attacks on recently published designs implies that the de-
sign of schemes with lowmultiplicative complexity has not reached a mature state yet. Indeed, we count
numerous attacks on variants of LowMC [32, 58], Flip [34],MiMC [35], GMiMC [15, 19], Jarvis [1], and
Starkad/Poseidon [15]. Attacks that are performed on schemes defined for larger fields mostly exploit
weaknesses of the algebraic cipher description, e.g., Gröbner bases attacks on Jarvis [1] or higher-order
differential attacks onMiMC [35]. Nonetheless, attack vectors such as differential cryptanalysis [17] and
linear cryptanalysis [51] do not appear to threaten the security of these designs. Indeed, the latter two
techniques seem to be able to attack only a tiny fraction of the rounds compared to algebraic attacks.

Interestingly, the mentioned ciphers working over larger fields are inspired by design strategies pro-
posed in the 1990s to mitigate differential cryptanalysis. For example, MiMC resembles the Knudsen-
Nyberg cipher [55], Jarvis claims to be inspired by the design of Rijndael [27, 28], while Hades, Vision,
and Rescue take inspiration from Shark [59]. The latter ciphers have a linear layer that consists of the
application of a single MDSmatrix to the state. An important commonality between all those examples
is a non-linear layer that operates on individual field elements, e.g., cubing single field elements or com-
puting their inverse. Furthermore, design strategies naturally working over larger fields easily prevent
differential cryptanalysis. However, algebraic attacks seem to be their main threat. Therefore, it is worth
exploring different design strategies to increase the resistance against algebraic attacks.
Our Design: Ciminion. In that spirit, Ciminion offers a different design approach in which we do
not apply non-linear transformations to individual field elements. Instead, we use the ability of the mul-
tiplication to provide non-linear diffusion between field elements. Our cipher is built upon the Toffoli
gate [61], which is a simple non-linear bijection of field elements that transforms the triple (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 into
the triple (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎. The binary version of the Toffoli gate is used as a building block in modern ci-
phers, such as FRIET [60], which inspired our design. In addition to this, the S-box of Xoodoo [26] can
also be described as the consecutive application of three binary Toffoli gates. With respect to the linear
layer, we learned from ciphers like LowMC [4] that very heavy linear layers can have a considerably neg-
ative impact on the performance of applications [31]. Therefore, we decide to pair the Toffoli gate with
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Figure 7.1: Comparison of a Farfalle construction and a Hades-like scheme.

a relatively lightweight linear layer to construct a cryptographic permutation on triples of field elements.
Compared to the designs that use a non-linear bijection of a single field element, e.g., cubing in 𝔽𝔽2𝑛𝑛 for
odd 𝑛𝑛, we can define our permutation on any field, and then provide a thorough security analysis for
prime fields and binary fields.

We do not use a bare primitive in the applications, but we employ primitives in a mode of operation.
Indeed, instead of constructing a primitive of low multiplicative complexity, our goal is to provide a
cryptographic function of lowmultiplicative complexity. We achieve this by using a modified version of
the Farfalle construction to make it possible to perform stream encryption. Farfalle [12] is an efficiently
parallelizable permutation-based construction with a variable input and output length pseudorandom
function (PRF). It is built upon a primitive, and modes are employed on top of it. The primitive is a
PRF that takes as input a key with a string (or a sequence of strings), and produces an arbitrary-length
output. The Farfalle construction involves two basic ingredients: a set of permutations of a 𝑏𝑏-bit state,
and the so-called rolling function that is used to derive distinct 𝑏𝑏-bit mask values from a 𝑏𝑏-bit secret key,
or to evolve the secret state. The Farfalle construction consists of a compression layer that is followed by
an expansion layer. The compression layer produces a single 𝑏𝑏-bit accumulator value from a tuple of 𝑏𝑏-bit
blocks representing the input data. The expansion layer first (non-linearly) transforms the accumulator
value into a 𝑏𝑏-bit rolling state. Then, it (non-linearly) transforms a tuple of variants of this rolling state
which are produced by iterating the rolling function, into a tuple of (truncated) 𝑏𝑏-bit output blocks.
Both the compression and expansion layers involve 𝑏𝑏-bit mask values derived from the master key.

We slightly modify Farfalle (see Figure 7.3) and instantiate it with two different permutations: 𝑝𝑝𝐶𝐶 for
the compression part, and 𝑝𝑝𝛦𝛦 for the expansion part. Those two permutations are obtained by iterating
the same round function, but with a different number of rounds. In our construction, the permuta-
tion 𝑝𝑝𝐶𝐶 takes an input that is the concatenation of a nonce 𝒩𝒩 and a secret key, and it derives a secret
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Figure 7.2: Number of MPC multiplications of several designs over 𝔽𝔽𝑡𝑡𝑝𝑝, with 𝑝𝑝 𝑝 𝑝128 and 𝑡𝑡 𝑡 𝑡 (security level of
128 bits).

intermediate state from this input. Then, the intermediate state is updated by using a simple rolling
function, and fixed intermediate keys. From this intermediate state, the keystream for encrypting the
plaintext is derived by using the permutation 𝑝𝑝𝛦𝛦. In order to prevent backward computation, the out-
puts of the expansion layers are truncated. Our security analysis that is presented in section 7.4 shows
that 𝑝𝑝𝛦𝛦 requires a significantly lower number of rounds than 𝑝𝑝𝐶𝐶. The relatively low number of multi-
plications that is used per encrypted plaintext element leads to a remarkably overall low multiplicative
complexity. The full specification for Ciminion is presented in section 7.2. A detailed rationale of the
choices made during the design process is given in section 7.3. A reference implementation can be found
at https://github.com/ongetekend/ciminion.

AConcreteUseCase: Multi-PartyComputation. Theprimarymotivationof our design is to explore
the limits on the use of non-linear operations in cipher design, while limiting the use of linear operations,
and ensuring a secure design. The main body of our paper is thus dedicated to cryptanalysis which is
accompanied by one specific use-case, namely Secure Multi-Party Computation.

MPC is a subfield of cryptography that aims to create methods for parties to jointly compute a func-
tion over their inputs, without exposing these inputs. In recent years, MPC protocols have converged
to a linearly homomorphic secret sharing scheme, whereby each participant is given a share of each se-
cret value. Then, each participant locally adds shares of different secrets to generate the shares of the
sum of the secrets. In order to get data securely in and out of a secret-sharing-based MPC system, an
efficient solution is to directly evaluate a symmetric primitive within such system. In this setting, “tradi-
tional” PRFs based on, e.g., AES or SHA-3 are not efficient. Indeed, they were designed with different
computing environments in mind. Hence, they work over data types that do not easily match the pos-
sible operations in the MPC application. As developed in [42], “traditional” PRFs like AES and SHA-3
are rather bit/byte/word-oriented schemes, which complicate their representation using arithmetic in 𝔽𝔽𝑝𝑝
or/and 𝔽𝔽2𝑛𝑛 for large integer 𝑛𝑛, or prime 𝑝𝑝.
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From a theoretical point of view, the problem of secure MPC is strongly connected to the problem
of masking a cryptographic implementation. This observation has been made in [44, 45]. The intuition
behind is that both masking and MPC aim to perform computations on shared data. In more detail,
the common strategy behind these techniques is to combine random and unknownmasks with a shared
secret value, and to perform operations on these masked values. Only at the end of the computation,
the values are unmasked by combining them, in a manner that is defined by the masking scheme. In
our scheme, we use a linear sharing scheme, because affine operations (e.g., additions, or multiplications
with a constant) are non-interactive and resource efficient, unlike the multiplications that require some
communication between the parties. The number ofmultiplications required to perform a computation
is a good estimate of the complexity of anMPC protocol.

However, in practice, other factors influence the efficiency of a design. For instance, while one multi-
plication requires one round of communication, a batch ofmultiplications can be processed into a single
round in many cases. In that regard, Ciminion makes it possible to batch several multiplications due
to the parallel execution of 𝑝𝑝𝛦𝛦. Another alternative to speed up the processing of messages is to execute
some communication rounds in an offline/pre-computation phase before receiving the input to the com-
putation. This offline phase is cheaper than the online rounds. For example, in the case of Ciminion,
precomputing several intermediate states is possible by applying 𝑝𝑝𝐶𝐶 to different nonces𝒩𝒩. As a result, for
the encryption of arriving messages, those intermediate states only have to be expanded, and processed
by 𝑝𝑝𝛦𝛦 to encrypt the plaintext.
section 7.5 demonstrates that our design Ciminion has a lower number of multiplications compared

to several other schemes working over larger fields. The comparison of the number of multiplications in
MPCapplications to the ciphers that are presented in the literature, is shown inFigure 7.2, whenworking
over a field 𝔽𝔽𝑡𝑡𝑝𝑝 with 𝑝𝑝 𝑝 𝑝128 and 𝑡𝑡 𝑡 𝑡, andwith a security level of 128 bits (which themost common case
in the literature). It indicates that our design needs approximately 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡  𝑡 𝑡𝑡multiplications
compared to 12⋅  𝑡𝑡 multiplications that are required by HadesMiMC, or 60 ⋅ 𝑡𝑡 multiplications that is
needed by Rescue. These two schemes that have recently been proposed in the literature are our main
competitors. Additionally, our design employs a low number of linear operations when compared with
other designs present in the literature. Indeed, Ciminion grows linearly w.r.t. 𝑡𝑡, whereas the number
of linear operations grows quadratically in HadesMiMC and Rescue. That is because their rounds are
instantiated via the multiplication with a 𝑡𝑡 𝑡 𝑡𝑡 MDS matrix. Even if the cost of a linear operation is
considerably lower than the cost of a non-linear one in MPC applications, it is desirable to keep both
numbers as low as possible. Our design has this advantage.

7.2 Specification

7.2.1 Mode

In order to create a nonce-based stream-encryption scheme, we propose to work with the mode of op-
eration described in Figure 7.3. First, the scheme takes a nonce𝒩𝒩 along with two subkey elements 𝐾𝐾1
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Figure 7.3: Encryption with Ciminion over 𝔽𝔽2𝑛𝑛. The construction is similar over 𝔽𝔽𝑝𝑝 (⊕ is replaced by +, the addi-
tion modulo 𝑝𝑝).

and𝐾𝐾2 as input, and processes these input with a permutation 𝑝𝑝𝐶𝐶 to output an intermediate state. This
intermediate state is then processed by a permutation 𝑝𝑝𝛦𝛦, and truncated to two elements so that two
plaintext elements 𝑃𝑃1 and 𝑃𝑃2 can be encrypted. If more elements need to be encrypted, the intermediate
state can be expanded by repeatedly performing an addition of two subkey elements to the intermediate
state, then followed by a call to the rolling function rol. After each call to the rolling function rol, two
more plaintext elements 𝑃𝑃2𝑖𝑖 and 𝑃𝑃2𝑖𝑖𝑖𝑖 can be encrypted thanks to the application of 𝑝𝑝𝛦𝛦 to the resulting
state. We consider the field elements as atomic, and therefore, our mode can cope with a different num-
ber of elements without the need for padding. The algorithmic description of the mode of operation
that is described in Figure 7.3, is provided in App. I.

7.2.2 Permutations

We describe two permutations of the vector space 𝔽𝔽3𝑞𝑞 . They act on a state of triples (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎3𝑞𝑞 . The
first permutation is defined for a prime number 𝑞𝑞 𝑞 𝑞𝑞 of log2(𝑝𝑝𝑝 𝑝 𝑝𝑝 bits, while the second permutation
is specified for 𝑞𝑞 𝑞 𝑞𝑑𝑑. Both permutations are the result of the repeated application of a round func-
tion. Their only difference is the number of repeated applications that we call rounds. As presented in
Figure 7.3, we employ two permutations 𝑝𝑝𝐶𝐶 and 𝑝𝑝𝛦𝛦 that have respectively𝑁𝑁 and 𝑅𝑅 rounds.
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Round Function. We write 𝑓𝑓𝑖𝑖 for round 𝑖𝑖. It uses four round constants RC ℓ, with ℓ = 𝑖𝑖 for 𝑝𝑝𝐶𝐶, and
ℓ = 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖 for 𝑝𝑝𝛦𝛦. We assume that RC4ℓ ∉ {0, 1}. For each 𝑖𝑖 𝑖 𝑖, 𝑓𝑓𝑖𝑖 maps a state (𝑎𝑎𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖) at
its input to the state (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖) at its output, where the relation between these two states is

[
𝑎𝑎𝑖𝑖
𝑏𝑏𝑖𝑖
𝑐𝑐𝑖𝑖

] ∶= [
0 0 1
1 RC4ℓ RC4ℓ
0 1 1

] ⋅ [
𝑎𝑎𝑖𝑖𝑖𝑖
𝑏𝑏𝑖𝑖𝑖𝑖

𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑖𝑖𝑖𝑖

] + [
RC3ℓ
RC1ℓ
RC2ℓ

] .

7.2.3 The rolling function

Our rolling function rol is a simple NLFSR as depicted in Figure 7.5. The rolling function takes three
field elements 𝜄𝜄𝑎𝑎, 𝜄𝜄𝑏𝑏, and 𝜄𝜄𝑐𝑐 at the input. It outputs three field elements: 𝜔𝜔𝑎𝑎 ∶= 𝜄𝜄𝑐𝑐 + 𝜄𝜄𝑎𝑎 ⋅ 𝜄𝜄𝑏𝑏, 𝜔𝜔𝑏𝑏 ∶= 𝜄𝜄𝑎𝑎, and
𝜔𝜔𝑐𝑐 ∶= 𝜄𝜄𝑏𝑏. The latter variables form the input of the permutation 𝑝𝑝𝛦𝛦 in our Farfalle-like mode Figure 7.3.

7.2.4 Subkeys and round constants

Subkeys Generation. We derive the subkey material 𝐾𝐾𝑖𝑖 from two master keys𝑀𝑀𝑀𝑀1, and𝑀𝑀𝑀𝑀2. As a
result, the secret is shared in a compact manner, while the expanded key is usually stored on a device,
and used when needed. To expand the key, we use the sponge construction [14] instantiated with the
permutation 𝑝𝑝𝐶𝐶. The value IV𝛨𝛨 can be made publicly available, and is typically set to one.

Round Constants Generation. We generate the round constantsRC1ℓ, RC2ℓ, RC3ℓ, and RC4ℓ with
Shake-256 [13, 54]. The detail is provided in App. A.
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Table 7.1: Proposed number of rounds based on𝑓𝑓. The security level 𝑠𝑠must satisfy 64 ≤ 𝑠𝑠 𝑠 log2(𝑞𝑞𝑞, and 𝑞𝑞 𝑞 𝑞64,
where 𝑞𝑞 is the number of elements in the field.

Instance 𝑝𝑝𝐶𝐶 𝑝𝑝𝛦𝛦 (two output words per block)

Standard 𝑠𝑠 𝑠 𝑠 max{⌈ 𝑠𝑠𝑠𝑠𝑠
12

⌉, 6}

Data limit 2𝑠𝑠𝑠𝑠 elements 2(𝑠𝑠𝑠𝑠𝑠

3
max{⌈ 𝑠𝑠𝑠𝑠𝑠

12
⌉, 6}

Conservative 𝑠𝑠 𝑠 𝑠 max{(⌈3
2
⋅ 𝑠𝑠𝑠𝑠𝑠

12
⌉), 9}

7.2.5 Number of rounds and security claim for encryption

In this paper, we assume throughout that the security level of 𝑠𝑠 bits satisfies the condition 64 ≤ 𝑠𝑠 𝑠
⌊log2(𝑞𝑞𝑞𝑞. This implies that 𝑞𝑞 𝑞 𝑞64.

In Table 7.1, we define three sets of round numbers for each permutation in our encryption scheme:

• The “standard” set guarantees 𝑠𝑠 bit of security; in the following sections, we present our security
analysis that supports the chosen number of rounds for this case.

• For our MPC application, we propose a number of rounds if the data available to the attacker is
limited to 2𝑠𝑠𝑠𝑠; our security analysis that supports the chosen number of rounds for this case is
presented in App. F.

• Finally, we present a “conservative” number of rounds where we arbitrarily decided to increase the
number of rounds by 50% of the standard instance.

Since many cryptanalytic attacks become more difficult with an increased number of rounds, we en-
courage to study reduced-round variants of our design to facilitate third-party cryptanalysis, and to es-
timate the security margin. For this reason, it is possible to specify toy versions of our cipher, i.e., with
𝑞𝑞 𝑞 𝑞64 which aim at achieving, for example, only 32 bits of security.

7.3 Design rationale

7.3.1 Mode of operation

In order to provide encryption, our first design choice is to choose between a mode of operation that
is built upon a block cipher or a cryptographic permutation. In either case, a datapath design is neces-
sary. However, a block cipher requires an additional key schedule, unlike a cryptographic permutation.
If a designer opts for a block cipher, the key schedule can be chosen to be either a non-linear, an affine,
or a trivial transformation, where the round keys are equal to the master key apart from round con-
stants. In this case, the designer has to be careful, because a poor key schedule leads to weaknesses and
attacks [19]. Considering that the research in low multiplicative complexity ciphers is a relatively new
research area, we decided to limit our focus to the essential components of a primitive. Therefore, we
opted for permutation-based cryptography.
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Figure 7.7: Intermediate step in constructing Figure 7.3

Since we consider the application of low multiplicative ciphers in areas that have enough resources
to profit from parallel processing, we base our mode of operation on the Farfalle construction [12] as
depicted in Figure 7.1a. The Farfalle construction is a highly versatile construction that provides many
functionalities.

A Modified Version of Farfalle. As already mentioned in the introduction, our mode of operation
resembles the Farfalle construction. In this section, we explain and support the modifications that we
performed on the original Farfalle construction, as depicted in Figure 7.1a. The aim of those modifica-
tions is to both increase the resistance of the construction against algebraic attacks which are the most
competitive ones in our scenario, and to increase its efficiency in our target application scenario, that is to
say to minimize the number of multiplications. We focus first on the security aspect, before explaining
in further detail how we reach our efficiency goal.

Our first modification is for simplicity. Since the functionality provided by the Farfalle construction
to compress information is not needed, we merge 𝑝𝑝𝑐𝑐 and 𝑝𝑝𝑑𝑑 to a single permutation 𝑝𝑝𝐶𝐶.

Our second modification is to truncate the output. This prevents meet-in-the-middle style attacks
that require the knowledge of the full output.

The third modification is to manipulate different keys 𝐾𝐾𝑖𝑖 (see Figure 7.7) instead of employing the
same key 𝑘𝑘′ for each output block. Since we aim to have a permutation with a low degree, Gröbner bases
are the main threat. For the scheme that is depicted in Figure 7.7, an attacker has to exploit equations of
the form 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑖𝑖 = 𝑦𝑦 and 𝑓𝑓𝑓𝑓𝑓′)+  𝐾𝐾𝑖𝑖 = 𝑦𝑦′, with 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓′) = 𝑦𝑦 𝑦 𝑦𝑦′ for a Gröbner basis attack. We
describe this scenario in more detail in subsection 7.4.4.

Our last modification is to move the keys𝐾𝐾𝑖𝑖 from the output of 𝑝𝑝𝛦𝛦 to the input of our rolling func-
tion, and hence, effectively to the input of 𝑝𝑝𝛦𝛦 (Figure 7.3). Figure 7.3 is our final construction, and it
provides two main benefits. First, having the keys at the input does not make it possible to easily can-
cel them by computing the difference of the output as described before. Hence, this adds an additional
barrier in mounting successful Gröbner basis attacks. Second, we can use a simple non-linear rolling
function, because the addition of the key stream during the rolling function prevents the attacker from
easily detecting short cycles within it.
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Minimizing the Number of Multiplications. One main reason to use the Farfalle construction is
that its three permutations 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑑𝑑, and 𝑝𝑝𝑒𝑒 do not have to provide protection against all possible attack
vectors. Indeed, the permutation 𝑝𝑝𝑒𝑒 alone does not have to provide resistance against higher-order differ-
ential attacks [48, 49]. The latter are particular algebraic attacks that exploit the low degree polynomial
descriptions of the scheme. Resistance against higher-order differential attacks (higher-order attacks in
short) can be provided by the permutations 𝑝𝑝𝑐𝑐, and 𝑝𝑝𝑑𝑑, and it inherently depends on the algebraic degree
that a permutation achieves. Hence, requiring protection against higher-order attacks provides a lower
bound on the number of multiplications that are needed in a permutation. In a nutshell, since 𝑝𝑝𝑒𝑒 does
not have to be secure against higher-order attacks, we can use a permutation with fewer multiplications.
This benefits the multiplication count of the scheme, since the permutations 𝑝𝑝𝑐𝑐 and 𝑝𝑝𝑑𝑑 are called only
once independently of the number of output words.
TheRolling Function. An integral part of the Farfalle construction is the rolling function rol. The per-
mutations 𝑝𝑝𝑐𝑐 and 𝑝𝑝𝑒𝑒 (Figure 7.1a) in the Farfalle construction are usually chosen to be very lightweight,
such that the algebraic degree is relatively low. Hence, to prevent higher-order attacks, the rolling func-
tion is chosen to be non-linear. In our modified version, the same is true up to the intermediate con-
struction as depicted in Figure 7.7. In this case, rol has to be non-linear in order to use a permutation 𝑝𝑝𝛦𝛦
of low degree. For our final construction (Figure 7.3), we do not see any straightforward way to exploit
higher-order attacks due to the unknown keys at the inputs of 𝑝𝑝𝛦𝛦. Thus, we could use a linear rolling
function rol, but we rather choose to use a simple non-linear rol for Ciminion. That is because it makes
it possible to analyze the security of Figure 7.7, and to keep the same conclusion when we opt for the
stronger version of Figure 7.3. In addition, we present Aiminion in App. B, a version of our design
that does not follow this line of reasoning. Aiminion uses a linear rolling function, and nine rounds of
𝑝𝑝𝛦𝛦. We deem this version to be an interesting target for further analysis that aims to evaluate the security
impact of switching from a non-linear to a linear rolling function.
Generating the Subkeys. Insteadof sharing all subkeys𝐾𝐾𝑖𝑖 directly by communicatingparties to encrypt
messages, we specify a derivation of the subkeys𝐾𝐾𝑖𝑖 from twomaster keysMK1, andMK2. These subkeys
canbe generated in a single precomputation step. For the storage of the subkeys, trade-offs canbemade to
store as many subkeys as needed, and to split messages into lengths that match the stored subkey lengths.

7.3.2 The round function

Our round function is composed of three layers: a non-linear transformation, a linear transformation,
and a round constant addition. Like classical designs, we employ the same non-linear and linear transfor-
mations for each round, but with different round constant additions. This makes it easier to implement,
and to reduce code-size and area requirements. Nonetheless, some primitives that have been designed to
lower the multiplicative complexity use a different linear layer for each round, like in LowMC [4].

Non-linear Transformation. Most primitives operating in large fields have a variant of powering field
elements, e.g., 𝑥𝑥3 or 𝑥𝑥−1. These mappings became popular to guard against linear and differential crypt-
analysis due to their properties [55]. The most popular design that uses such mappings is the AES [28],
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7.3 Design rationale

where 𝑥𝑥−1 is used as part of its S-box. For ciphers that aim at a lowmultiplicative complexity, these power
mappings are interesting because they often have an inverse of high degree, which provides protection
against algebraic attacks. However, they impose some restrictions, e.g., themap 𝑥𝑥 𝑥 𝑥𝑥𝛼𝛼 for integer 𝛼𝛼 𝛼 𝛼
is a bijection in 𝔽𝔽𝑞𝑞 if and only if gcd(𝑞𝑞 𝑞 𝑞𝑞 𝑞𝑞𝑞 𝑞 𝑞 (e.g., 𝑥𝑥 𝑥 𝑥𝑥3 is a permutation over 𝔽𝔽2𝑛𝑛 for odd 𝑛𝑛 only).
Hence, one has to consider several power values 𝛼𝛼 in order for 𝑥𝑥𝛼𝛼 to stay a permutation for any field. In a
design that shouldmake it possible to be instantiated for awide variety of fields, considering those special
cases complicates the design of the cipher.

Instead of a power mapping, the non-linear element in our designs is the Toffoli gate [61]. Indeed,
algebraic attacks are the main threat against designs aiming to lower the multiplicative complexity, and
the multiplications are the main cost factor in our design. It thus seems counter intuitive to spend the
non-linear element on simply manipulating a single field element, as is the case for power mappings.
Therefore, we choose tomultiply two elements of the state, instead of operating on a single state element,
in order to increase the non-linear diffusion. Furthermore, the Toffoli gate is a permutation for any field,
and thereforewe are not restricted to a specific field. Wemitigate potential negative effects of the property
of the Toffoli gate to provide the same degree in forward and backward direction by mandating its use
only in modes that truncate the permutation output, and that never evaluate its inverse using the secret
key.

Linear Transformation. We present the linear transformation in its matrix form, the coefficients of
which must be carefully chosen. One possibility is to use an MDS matrix. Since an MDS matrix has
the highest branch number [24] among all possible matrices, it plays an important role in proving lower
bounds on the linear and differential trail weight. However, we do not need to rely onMDSmatrices as
the field multiplications already have advantageous properties against linear and differential attacks.

Another option is to randomly choose the coefficients of the matrix for each round, and then verify
that the matrix is invertible. This strategy was used in one of the first low multiplicative complexity
designs, namely LowMC [4]. However, the drawback is that random matrices contribute significantly
to the cost of the primitive in some scenarios, and the security analysis becomes more involved. Hence,
we have decided to use a much simpler linear layer.

In order to provide sufficient diffusion, complex equation systems, and lowmultiplicative complexity,
the degree of the functions that output equations depending on the input variables must grow as fast
as possible. By applying a single multiplication per round, the degree doubles per round in the best
scenario. However, this also depends on the linear layer. For instance, this layer could be a simple layer
permuting the elements (e.g., the 3 × 3 circulant matrix 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 ), for which the univariate degree
of a single element only grows according to a Fibonacci sequence. To ensure that the univariate degree
of a single element doubles per round, the result of the previous multiplication has to be reused in the
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

multiplication of the next round. This is also applicable to the inverse of the permutation. Hence, we
decided to use the following matrix for the linear layer:

𝑀𝑀 𝑀 [
0 0 1
1 RC4 RC4
0 1 1

] (and 𝑀𝑀−1 = [
0 1 −RC4
−1 0 1
1 0 0

] ),

Here, 𝑀𝑀0,2,𝑀𝑀1,2,𝑀𝑀−1
0,2,𝑀𝑀−1

1,2 ≠ 0 with 𝑀𝑀𝑖𝑖𝑖𝑖𝑖 denoting the element of the matrix 𝑀𝑀 at row 𝑖𝑖 and
column 𝑗𝑗. The use of the round constantRC4 ∉ {0, 1} is motivated by aiming to improve the diffusion,
and to avoid a weakness with respect to linear cryptanalysis that we discuss in subsection 7.4.1.

About Quadratic Functions. In addition to the matrix multiplication, another (semi-)linear transforma-
tion1 over a binary field 𝔽𝔽2𝑛𝑛 is the quadratic permutation 𝑥𝑥 𝑥 𝑥𝑥2. This transformation can be exploited
as a component in the round function (e.g., as a replacement of the multiplication by RC4) to both in-
crease the diffusion and the overall degree of the function that describes the scheme. However, we do not
employ it for several reasons. First, even if the quadratic permutation is linear over 𝔽𝔽2𝑛𝑛, its cost in an ap-
plication likeMPCmight not be negligible. Indeed, the quadratic permutation costs onemultiplication
as detailed in [42]. As a result, even if it makes it possible to reduce the overall number of rounds due to
a faster growth of the degree, the overall number of multiplications2 would not change for applications
like MPC. Secondly, the quadratic function is not a permutation over 𝔽𝔽𝑝𝑝 for a prime 𝑝𝑝 𝑝 𝑝. Thus, its
introduction implies having to work with two different round functions: one for the binary case and
one for the prime case. Since our goal is to present a simple and elegant general scheme, we decided not
to use it.

Round Constants. The round constants break up the symmetry in the design. They prevent the sim-
plification of the algebraic description of the round function. However, as we manipulate many round
constants, and since they influence the rounds in a complex manner, we use an extendable output func-
tion to obtain round constant values without an obvious structure. We performed some experiments
where we added round constants to one or two state elements. These instances provided simpler alge-
braic descriptions. Considering the small costs of manipulating dense round constants, we decide to use
three round constants to complicate the algebraic description of the cipher, even after a few rounds.

7.4 Security analysis

We present our security analysis of Ciminion with respect to “standard” application of the attacks that
are found in the literature. This analysis determines the required number of rounds to provide some
level of confidence in its security. Due to page limitation, further analysis is presented in App. D-E.

1A function 𝑓𝑓 over (𝔽𝔽𝔽 𝔽𝔽 is semi-linear if for each 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓. It is linear if it is semi-linear and if for
each 𝑥𝑥 𝑥 𝑥𝑥: 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓.

2A minimum number of multiplications is required to reach maximum degree, which is one of the property required by a
cryptographic scheme to be secure.
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7.4 Security analysis

First and foremost, the number of rounds that guarantees security up to 𝑠𝑠 bits are computed under
the assumption that the data available to the attacker is limited to 2𝑠𝑠, except if specified in a different
way. Moreover, we do not make any claim about the security against related-key attacks and known- or
chosen-key distinguishers (including the zero-sum partitions). The latter are out the scope of this paper.

We observe that the attack vectors penetrating the highest number of rounds are algebraic attacks.
On the contrary, traditional attacks, such as differential and linear cryptanalysis, are infeasible after a
small number of rounds. As detailed in the following, in order to protect against algebraic attacks and
higher-order differential attacks, we increase the number of rounds proportionally to the security level
𝑠𝑠. A constant number of rounds is added to prevent an adversary from guessing part of the key or the
initial or middle state, or to linearize part of the state. Hence, the numbers of rounds for 𝑝𝑝𝐶𝐶 and 𝑝𝑝𝛦𝛦 are
respectively 𝑠𝑠 𝑠 𝑠 and ⌈ 𝑠𝑠𝑠𝑠𝑠

12
+ 1.5⌉ for the standard security level.

7.4.1 Linear cryptanalysis

Linear cryptanalysis [51] is a known-plaintext attack that abuses high correlations [25] between sums of
input bits and sums of output bits of a cryptographic primitive. However, classical correlation analysis
is not restricted to solely primitives operating on elements of binary fields. In this section, we apply
the existing theory developed by Baignères et al. [9] for correlation analysis of primitives that operate on
elements of arbitrary sets to the permutations defined in section 7.2.
General Correlation Analysis. An application of the theory to ciphers operating on elements of bi-
nary fields is presented by Daemen and Rijmen [29]. Classical correlation analysis is briefly recalled in
App. C.1. In this section, we apply the theory to the more general case of primitives operating on ele-
ments of 𝔽𝔽𝑞𝑞 where 𝑞𝑞 𝑞 𝑞𝑞𝑑𝑑. Henceforth, we suppose that 𝑓𝑓 𝑓 𝑓𝑓𝑙𝑙𝑞𝑞 → 𝔽𝔽𝑚𝑚𝑞𝑞 .
Correlation analysis is the study of characters, and their configuration in the 𝑙𝑙-dimensional vector

space 𝐿𝐿2(𝔽𝔽𝑙𝑙𝑞𝑞) of complex-valued functions 𝔽𝔽𝑙𝑙𝑞𝑞 → ℂ. The space 𝐿𝐿2(𝔽𝔽𝑙𝑙𝑞𝑞) comes with the inner product

⟨𝑔𝑔𝑔 𝑔𝑔 𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔ℎ(𝑥𝑥𝑥, which defines the norm ‖𝑔𝑔𝑔𝑔  √⟨𝑔𝑔𝑔 𝑔𝑔𝑔 𝑔𝑔𝑔
𝑙𝑙

2 .
A character is an additive homomorphism from 𝔽𝔽𝑙𝑙𝑞𝑞 into 𝑆𝑆 𝑆𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆  𝑆𝑆𝑆𝑆 𝑆𝑆 𝑆. It is well-known that

any character on 𝔽𝔽𝑙𝑙𝑞𝑞 is of the form

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥  𝑥𝑥
2𝜋𝜋𝜋𝜋

𝑝𝑝
Tr𝑞𝑞𝑝𝑝(𝑢𝑢⊤𝑥𝑥𝑥 ,

for some 𝑢𝑢 𝑢𝑢𝑢 𝑙𝑙𝑞𝑞 . We recall that for 𝑞𝑞 𝑞 𝑞 we have that 𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑢𝑢⊤𝑥𝑥, which appears in classical
correlation analysis. Here, Tr𝑞𝑞𝑝𝑝(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  2+⋯+𝑥𝑥𝑝𝑝𝑙𝑙𝑙𝑙 ∈ 𝔽𝔽𝑝𝑝 is the trace function. For this reason, 𝑢𝑢⊤𝑥𝑥 is called
a vectorial trace parity and 𝑢𝑢 a trace mask vector. We call the ordered pair (𝑢𝑢𝑢 𝑢𝑢𝑢 a linear approximation of
𝑓𝑓, where 𝑢𝑢 is understood to be the mask at the input and 𝑣𝑣 to be the mask at the output of 𝑓𝑓.

We define the vectorial trace parity correlation in the following definition.

Definition 58 (Correlation).

C𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢
⟨𝜇𝜇𝑢𝑢, 𝜇𝜇𝑣𝑣 ∘ 𝑓𝑓𝑓
‖𝜇𝜇𝑢𝑢‖‖𝜇𝜇𝑣𝑣 ∘ 𝑓𝑓𝑓

= 1
𝑞𝑞𝑙𝑙
∑
𝑥𝑥𝑥𝑥𝑥𝑙𝑙𝑞𝑞

𝑒𝑒
2𝜋𝜋𝜋𝜋

𝑝𝑝
Tr𝑞𝑞𝑝𝑝(𝑢𝑢⊤𝑥𝑥𝑥𝑥𝑥⊤𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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𝑣𝑣 𝑣 𝑣𝑣

𝑐𝑐𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣

𝑢𝑢 𝑢𝑢𝑢 𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣
𝑢𝑢 𝑢𝑢𝑢 𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣

𝑦𝑦𝑥𝑥

𝑢𝑢 𝑢𝑢𝑢 𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣

⋅RC4ℓ

𝑣𝑣

𝑣𝑣

𝑐𝑐𝑙𝑙𝑣𝑣𝑐𝑐𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣

𝑐𝑐𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣

𝑐𝑐𝑙𝑙𝑣𝑣 𝑣 𝑣𝑣
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RC3ℓ

𝑢𝑢

𝑣𝑣
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Figure 7.8: Mask propagation in 𝑓𝑓

This helps us to define a more general linear probability metric as follows.

Definition 59 (Linear probability). LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢C𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢2

The idea is then to consider the permutation as a circuitmade of simple building blocks. Those blocks
correspond to the operators that we apply, and for which we attach to each edge a trace mask vector.
Importantly, these trace mask vectors are in one-to-one correspondence with characters. The goal of the
attacker is to construct a linear trail from the end of the permutation to the beginning, with the goal of
maximizing the linear probability of each building block. A list of the linear probabilities of each such
building block can be found in App. C.2 to deduce the result of the analysis.

On Three-round Linear Trails. Figure 7.8 illustrates how the linear masks propagate through the
round function when the linear probabilities of all building blocks are maximized. In this Figure, 𝑐𝑐ℓ ∶=
RC4ℓ. The attacker is able to choose 𝑢𝑢𝑢 𝑢𝑢𝑢 and𝑤𝑤 freely at the beginning of the first round, and afterwards,
a mask at the input of the next round is determined by a mask at the output of the former round. We
write 𝑅𝑅𝑖𝑖 for the 𝑖𝑖’th round function. Moreover, we use the notation 𝑐𝑐𝑖𝑖𝑖𝑖 ∶= 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗 and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ∶= 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘, where
the subscript refers to the round number. The masks evolve as follows:

(
𝑢𝑢
𝑣𝑣
𝑤𝑤
)

𝑅𝑅0−−→ (
𝑣𝑣

𝑐𝑐1𝑣𝑣 𝑣 𝑣𝑣
𝑢𝑢 𝑢𝑢𝑢 1𝑣𝑣 𝑣 𝑣𝑣

)
𝑅𝑅1−−→ (

𝑐𝑐1𝑣𝑣 𝑣 𝑣𝑣
𝑢𝑢 𝑢𝑢𝑢𝑢 1 + 𝑐𝑐12)𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣2)𝑤𝑤

𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   1 + 𝑐𝑐12)𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣2)𝑤𝑤
)

𝑅𝑅2−−→ (
𝑢𝑢 𝑢𝑢𝑢𝑢 1 + 𝑐𝑐12)𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣2)𝑤𝑤

(1+  𝑐𝑐3)𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   1 + 𝑐𝑐12 + 𝑐𝑐13 + 𝑐𝑐123)𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣2 + 𝑐𝑐3 + 𝑐𝑐23)𝑤𝑤
(1+  𝑐𝑐3)𝑢𝑢 𝑢𝑢𝑢𝑢   𝑢𝑢𝑢1 + 𝑐𝑐13 + 𝑐𝑐12 + 𝑐𝑐123)𝑣𝑣 𝑣 𝑣𝑣 𝑣 𝑣𝑣2 + 𝑐𝑐3 + 𝑐𝑐23)𝑤𝑤

) .
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7.4 Security analysis

An implicit assumption in both Figure 7.8, and themask derivation above, is that themasks at the output
of themultiplication and at the input of the third branch are equal. However, an attacker can onlymake
sure that this assumption is valid if the following system of equations has a non-zero solution:

(
1 𝑐𝑐1 1
1 1 + 𝑐𝑐1 + 𝑐𝑐12 1 + 𝑐𝑐2

1 + 𝑐𝑐3 1 + 2𝑐𝑐1 + 𝑐𝑐13 + 𝑐𝑐12 + 𝑐𝑐123 2 + 𝑐𝑐2 + 𝑐𝑐3 + 𝑐𝑐23

)(
𝑢𝑢
𝑣𝑣
𝑤𝑤
) = (

0
0
0
) .

If we denote by𝐴𝐴 thematrix above, then this happens if and only if thematrix is singular, i.e., if det(𝐴𝐴𝐴 𝐴
𝑐𝑐2𝑐𝑐3 + 1 = 0. If either 𝑐𝑐2 or 𝑐𝑐3 is equal to zero, then the condition does not hold. If both are non-zero,
then the condition is equivalent to requiring that 𝑐𝑐2 = −𝑐𝑐−13 . In this case, we can freely choose one value,
which determines the other. Hence, the probability that the condition holds is equal to 𝑞𝑞𝑞𝑞

𝑞𝑞2
< 1

𝑞𝑞
. Since

log2(𝑞𝑞𝑞 is the security parameter, this probability is negligible and there exists no three-round trail with
a linear probability of 1.

Clustering of Linear Trails. We have LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑄𝑄𝑄LT𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢
LP(𝑄𝑄𝑄, where LT𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢 is the set of

linear trails contained in (𝑢𝑢𝑢 𝑢𝑢𝑢. If we suppose now that an attacker is able to find more than 𝑞𝑞 linear
trails, i.e., if ∣LT𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢∣ > 𝑞𝑞, then we have LP𝑓𝑓(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢

1

𝑞𝑞
. However, log2(𝑞𝑞𝑞 is the security parameter,

therefore the latter condition is not feasible. In a nutshell, three rounds are sufficient to resist against
linear cryptanalysis.

RoundConstantMultiplicationNecessity. If themultiplicationby the roundconstant is notpresent,
orRC4ℓ = 1, then the masks evolve as follows over a single round:

(
𝑢𝑢
𝑣𝑣
𝑤𝑤
)

𝑓𝑓−1
−−→ (

𝑣𝑣 𝑣 𝑣𝑣
𝑣𝑣 𝑣𝑣𝑣𝑣   𝑣𝑣
𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢  

)
if 𝑢𝑢𝑢𝑢𝑢 and 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
−−−−−−−−−−−−−−→ (

𝑣𝑣
𝑣𝑣
0
)

𝑓𝑓−1
−−→ (

𝑣𝑣
𝑣𝑣
2𝑣𝑣
) ,

where (𝑥𝑥𝑥𝑥𝑥𝑥  is the mask vector at the input of the multiplication function, which, like 𝑢𝑢𝑢 𝑢𝑢𝑢 and 𝑤𝑤, can
be freely chosen. Hence, if we choose 𝑢𝑢 𝑢𝑢𝑢 , and 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥      , and since the characteristic of the
field is equal to two, then a one-round approximation with a linear probability of one can be chained
indefinitely. This is the reason behind including a multiplication by a non-trivial constant.

7.4.2 Differential cryptanalysis

Differential cryptanalysis exploits theprobability distributionof anon-zero inputdifference leading to an
output difference after a given number of rounds [17]. As Ciminion is an iterated cipher, a cryptanalyst
searches for ordered sequences of differences over 𝑟𝑟 rounds that are called differential characteristics/-
trails. A differential trail has a Differential Probability (DP). Assuming the independence of the rounds,
the DP of a differential trail is the product of the DPs of its one-round differences (Definition 60).
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Definition 60 (One-round differential probability). Let (𝛼𝛼𝑎𝑎, 𝛼𝛼𝑏𝑏, 𝛼𝛼𝑐𝑐) ∈ 𝔽𝔽3𝑝𝑝 be the input of the round, and
(𝛼𝛼∗𝑎𝑎, 𝛼𝛼∗𝑏𝑏, 𝛼𝛼∗𝑐𝑐 ) ∈ 𝔽𝔽3𝑝𝑝 the chosen non-zero input difference. The probability that an input difference is mapped
to an output difference (𝛽𝛽∗𝑎𝑎 , 𝛽𝛽∗𝑏𝑏 , 𝛽𝛽∗𝑐𝑐 ) ∈ 𝔽𝔽3𝑝𝑝 through one iteration of the round function 𝑓𝑓 is equal to

|𝑓𝑓𝑓𝑓𝑓∗𝑎𝑎 + 𝛼𝛼𝑎𝑎, 𝛼𝛼∗𝑏𝑏 + 𝛼𝛼𝑏𝑏, 𝛼𝛼∗𝑐𝑐 + 𝛼𝛼𝑐𝑐) − 𝑓𝑓𝑓𝑓𝑓𝑎𝑎, 𝛼𝛼𝑏𝑏, 𝛼𝛼𝑐𝑐) = (𝛽𝛽∗𝑎𝑎 , 𝛽𝛽∗𝑏𝑏 , 𝛽𝛽∗𝑐𝑐 )|
|𝔽𝔽3𝑝𝑝 |

.

The operation + is replaced by⊕ in 𝔽𝔽2𝑛𝑛 .

However, in general, the attacker does not have any information about the intermediate differences of
the differential trail. Hence, the attacker only fixes the input and the output differences over 𝑟𝑟 rounds,
andworkswithdifferentials. A differential is a collection of differential trails with fixed input and output
differences, and free intermediate differences. TheDP of a differential over 𝑟𝑟 rounds is the sumof all DPs
of the differential trails that have the same input and output difference over the same number of rounds
as the differential.

In this paper, we perform the differential cryptanalysis by grouping fixed differences in sets. Those sets
impose some conditions to satisfy between the differences of the branches of the round, and/or specify
that some differences at the input of the branches equal zero. Then, given an input difference, we study
the possible sets of output differences after a round, and we determine the DP that an input difference is
mapped into an output difference over a round. The goal is to find the longest differential trail with the
highest DP.

Toward this end, we build a state finite machine (more details in App. C.3) that represents all the
encountered sets of differences as states associated to their differential probabilities. To construct the
graph, we start with a difference of the form {(0, 0, 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥, and we search for the possible sets of
output differences until we have explored all the possibilities from each newly reached set. Hereafter, let
us assume that the difference 𝑥𝑥 is not zero. We see that an input difference from {(0, 0, 𝑥𝑥𝑥𝑥 is mapped
into anoutputdifference of the form {(𝑥𝑥𝑥RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 after one roundwithprobability one. Indeed, since
the input difference goes through the non-linear operation and stays unchanged, the output difference
is simply the result of the linear operation applied to the input difference. For the other cases, a non-zero
input difference propagates to an output difference over one round with probability equal to 𝑝𝑝−1 in 𝔽𝔽𝑝𝑝,
or 2−𝑛𝑛 in 𝔽𝔽2𝑛𝑛. From those results, we determine the differential over three rounds with the highest DP.

On Three-round Differentials. The differential trail in 𝔽𝔽𝑝𝑝 with the highest DP is

{(0, 0, 𝑥𝑥𝑥𝑥
prob. 1
−−−−−→ {(𝑥𝑥𝑥RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥

prob. 𝑝𝑝−1
−−−−−−−→ {(−RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 𝑥

prob. 𝑝𝑝−1
−−−−−−−→ {(0, 0, 𝑥𝑥𝑥𝑥 𝑥

where the fixed input difference 𝑥𝑥 is equal to another fixed value in the following rounds, and satisfies
the conditions imposed by the set (for details see App. C.3). Additionally, this differential trail holds if
and only if the round constantRC4ℓ introduced by the first round is equal to the round constantRC4ℓ
of the third round.
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In 𝔽𝔽2𝑛𝑛, we obtain almost the same state finite machine as in Figure 7.9. The only exception is that
the set of differences {(−RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 corresponds to {(RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥, because −𝑧𝑧 is equal to 𝑧𝑧 for each
𝑧𝑧 𝑧 𝑧𝑧2𝑛𝑛. Hence, the differential trail in 𝔽𝔽2𝑛𝑛 with the highest DP is

{(0,0,  𝑥𝑥𝑥𝑥
prob. 1
−−−−−→ {(𝑥𝑥𝑥RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥

prob. 2−𝑛𝑛
−−−−−−−→ {(RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥

prob. 2−𝑛𝑛
−−−−−−−→ {(0,0,  𝑥𝑥𝑥𝑥 𝑥

under the same conditions that in 𝔽𝔽𝑝𝑝.
In summary, a fixed difference from {(0,0,  𝑥𝑥𝑥𝑥 ismapped to the difference of the form {(𝑥𝑥𝑥RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥

after one round with probability one in 𝔽𝔽2𝑛𝑛 and in 𝔽𝔽𝑝𝑝. Moreover, as depicted in Figure 7.9, an input
difference can be mapped to an output difference of the form {(0,0,  𝑥𝑥𝑥𝑥 with DP 𝑝𝑝−1 (resp. 2−𝑛𝑛) if and
only if this difference is of the form {(−RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥. This means that the only possible differential trail
over three rounds with input and output differences of the form {(0,0,  𝑥𝑥𝑥𝑥 are the ones given before.
The DP of this differential trail is expressed in the following Proposition.

Proposition 31. A differential trail over three rounds has a probability at most equal to 𝑝𝑝−2 in 𝔽𝔽𝑝𝑝 and
2−2𝑛𝑛 in 𝔽𝔽2𝑛𝑛 .

The DP of all other differential trails over three round are at most equal to 𝑝𝑝−3 in 𝔽𝔽𝑝𝑝 and 2−3𝑛𝑛 in 𝔽𝔽2𝑛𝑛.
Since the security level 𝑠𝑠 satisfies 𝑠𝑠 𝑠 log2(𝑝𝑝𝑝 in 𝔽𝔽𝑝𝑝 and 𝑠𝑠 𝑠 𝑠𝑠 in 𝔽𝔽2𝑛𝑛, we therefore conjecture that three
rounds are sufficient to guarantee security against “basic” differential distinguishers. We thus choose to
have at least six rounds for the permutations 𝑝𝑝𝛦𝛦 and 𝑝𝑝𝐶𝐶, which is twice the number of rounds necessary
to guarantee security against “basic” differential/linear distinguishers. The minimal number of rounds
for the permutations should provide security against more advanced statistical distinguishers.

7.4.3 Higher-order differential and interpolation attacks

If a cryptographic schemehas a simple algebraic representation, higher-order attacks [48, 49] and interpo-
lation attack [46] have to be considered. In this part, we only focus on higher-order differential attacks.
We conjecture that the number of rounds necessary to prevent higher-order differential attacks is also
sufficient to prevent interpolation attacks (see details in App. D). This result is not novel, and the same
applies for other schemes, like MiMC, as further explained in [35].

Background. We recall from Figure 7.3 that an attacker can only directly manipulate a single element,
and the two other elements are the secret subkeys. We therefore operate with this single element to input
value sets, while keeping the two other elements fixed. Each output element is the result of a non-linear
function depending on the input element 𝑥𝑥, and two fixed elements that are the input of the permuta-
tion. Thus, we have 𝑓𝑓𝛮𝛮(𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 const, const) in 𝔽𝔽2𝑛𝑛, and 𝑓𝑓𝑝𝑝(𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 const, const) in 𝔽𝔽𝑝𝑝.
A given function 𝑓𝑓𝑝𝑝 over prime fields 𝔽𝔽𝑝𝑝 is represented by 𝑓𝑓𝑝𝑝(𝑥𝑥𝑥 𝑥 𝑥𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖 𝜅𝜅𝑖𝑖𝑥𝑥
𝑖𝑖 with constants 𝜅𝜅𝑖𝑖 ∈ 𝔽𝔽𝑝𝑝.

The degree of the function 𝑓𝑓𝑝𝑝(𝑥𝑥𝑥 that we denote by 𝑑𝑑𝔽𝔽𝑝𝑝, corresponds to the highest value 𝑖𝑖 for which
𝜅𝜅𝑖𝑖 ≠ 0. The same holds for a function 𝑓𝑓𝑛𝑛 working over binary extension fields 𝔽𝔽2𝑛𝑛. For the latter, 𝑓𝑓𝛮𝛮(𝑥𝑥𝑥 𝑥
⨁𝑑𝑑

𝑖𝑖𝑖𝑖 𝜅𝜅𝑖𝑖𝑥𝑥
𝑖𝑖 with 𝜅𝜅𝑖𝑖 ∈ 𝔽𝔽2𝑛𝑛, and 𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑛𝑛 is the degree of the function 𝑓𝑓𝑛𝑛(𝑥𝑥𝑥. Like previously, the degree is the

highest value 𝑖𝑖 for which 𝜅𝜅𝑖𝑖 ≠ 0. In 𝔽𝔽2𝑛𝑛, the function can as well be represented by its algebraic norm
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form (ANF) �⃑��⃗𝑓𝑓𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), whose output element 𝑗𝑗 is defined by its coordinate function𝑓𝑓𝑛𝑛𝑛𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) =
⨁𝑢𝑢𝑢𝑢𝑢𝑢1,…,𝑢𝑢2)

𝜅𝜅𝑗𝑗𝑗𝑗𝑗 ⋅ 𝑥𝑥
𝑢𝑢1
1 ⋅ … ⋅ 𝑥𝑥𝑢𝑢𝑛𝑛𝑛𝑛 with 𝜅𝜅𝑗𝑗𝑗𝑗𝑗 ∈ 𝔽𝔽2. The degree 𝑑𝑑𝔽𝔽𝑛𝑛2 of �⃑��⃗𝑓𝑓𝑛𝑛 corresponds to the maximal Hamming

weight of 𝑢𝑢 for which 𝜅𝜅𝑗𝑗𝑗𝑗𝑗 ≠ 0, that is to say 𝑑𝑑𝔽𝔽𝑛𝑛2 = max𝑖𝑖𝑖𝑖𝑖{ℎ𝑤𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑖𝑖 ≠ 0}.
For the last representation, as proved by Lai [49] and in[48], if we iterate over a vector space𝒱𝒱 having

a dimension strictly higher than 𝑑𝑑𝔽𝔽𝑛𝑛2 , we obtain the following result: ⨁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑛𝑛(𝑣𝑣𝑣𝑣𝑣   𝑣A similar result
has also been recently presented for the prime case in [35, Proposition 2]. More precisely, if the degree of
𝑓𝑓𝑝𝑝(𝑥𝑥𝑥 is 𝑑𝑑𝔽𝔽𝑝𝑝, then iterating over all elements of a multiplicative subgroup 𝒢𝒢 of 𝔽𝔽𝑡𝑡𝑝𝑝 of size |𝒢𝒢𝒢 𝒢 𝒢𝒢𝔽𝔽𝑝𝑝 leads
to∑𝑥𝑥𝑥𝑥𝑥 𝑓𝑓𝑝𝑝(𝑥𝑥𝑥𝑥𝑥𝑥  𝑝𝑝(0) ⋅ |𝒢𝒢𝒢 . The last sum is equal to zero modulo 𝑝𝑝 since |𝒢𝒢𝒢 is a multiple of 𝑝𝑝.
In order to provide security against higher-order differential attacks based on the presented zero-sums,

we choose the number of rounds of our permutation to have a function of a degree higher than our
security claim.
Overview of our Security Argument. In our construction, we assume that an attacker can choose
the nonce𝒩𝒩, which is the input of the permutation 𝑝𝑝𝐶𝐶. For the first call of this permutation, we want
to prevent an attacker to input value sets that always result in the same constant after the application of
the permutation 𝑝𝑝𝐶𝐶. This requirement is necessary, since we assume in the remaining analysis that the
output values of𝑝𝑝𝐶𝐶 are unpredictable by an attacker. We emphasize that if the output of the permutation
𝑝𝑝𝐶𝐶 is guaranteed to be randomly distributed, then this is sufficient to prevent higher-order differential
attacks. That is because the inverse of the final permutations 𝑝𝑝𝛦𝛦 is never evaluated, and the attacker
cannot construct an affine subspace in the middle of the construction.
Estimating the Degree of 𝑝𝑝𝐶𝐶: Necessary Number of Rounds. We study the evolution of the degrees
𝑑𝑑𝔽𝔽𝑝𝑝 and 𝑑𝑑𝔽𝔽2𝑛𝑛 for the permutation 𝑝𝑝𝐶𝐶 for which the round function 𝑓𝑓 (Figure 7.3) is iterated 𝑟𝑟 times. We
conclude that the degree of the permutation 𝑝𝑝𝐶𝐶 remains unchanged for two rounds, if an input element
is present at branch 𝑎𝑎, and the input at the branch 𝑏𝑏 is zero. For a higher number of rounds, the degree
increases. We have chosen the affine layer to ensure that the output of the multiplication can affect both
inputs of the multiplication in the next round. This should make it possible for the maximal possible
degree of the output functions to increase faster than having affine layers without this property. In the
best case, the maximal degree of the function can be doubled per round.

Considering both previous observations, a minimum of 𝑠𝑠 𝑠 𝑠 rounds are required to obtain at least
𝑑𝑑𝔽𝔽𝑝𝑝 ≈ 2𝑠𝑠, or 𝑑𝑑𝔽𝔽2𝑛𝑛 ≈ 2𝑠𝑠. As we want to ensure that the polynomial representation of 𝑝𝑝𝐶𝐶 is dense, it is then
advisable to addmore rounds as a safetymargin. In order to reach this goal, we arbitrarily decided to add
four more rounds.

7.4.4 Gröbner basis attacks

Preliminary. To perform a Gröbner basis [21] attack, the adversary constructs a system of algebraic
equations that represents the cipher. Finding the solution of those equations makes it possible for the
attacker to recover the key that is denoted by the unknown variables 𝑥𝑥1, ..., 𝑥𝑥𝑛𝑛 hereafter. In order to solve
this system of equations, the attacker considers the ideal generated by the multivariate polynomials that
define the system. AGröbner basis is a particular generating set of the ideal. It is defined with respect to
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a total ordering on the set of monomials, in particular the lexicographic order. As a Gröbner basis with
respect to the lexicographic order is of the form

{𝑥𝑥1 − ℎ1(𝑥𝑥𝑛𝑛), … , 𝑥𝑥𝑛𝑛𝑛𝑛 − ℎ𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛), ℎ𝑛𝑛(𝑥𝑥𝑛𝑛)},

the attacker can easily find the solution of the system of equations. To this end, onemethod is to employ
the well-known Buchberger’s criterion [21], which makes it possible to transform a given set of gener-
ators of the ideal into a Gröbner basis. From a theoretic point of view, state-of-the-art Gröbner basis
algorithms are simply improvements to Buchberger’s algorithm that include enhanced selection criteria,
faster reduction step by making use of fast linear algebra, and an attempt to predict reductions to zero.
The best well-known algorithm is Faugère’s F5 algorithm [11, 36].

Experiments highlighted that computing a Gröbner basis with respect to the lexicographic order is a
slow process. However, computing a Gröbner basis with respect to the grevlex order can be done in a
faster manner. Fortunately, the FGLM algorithm [37] makes it possible to transform a Gröbner basis
with respect to the grevlex order to another with respect to the lexicographic order. To summarize, the
attacker adopts the following strategy:

1. Using the F5 algorithm, compute a Gröbner basis w.r.t. the grevlex order.

2. Using the FGLM algorithm, transform the previous basis into a Gröbner basis w.r.t. the lexico-
graphic order.

3. Using polynomial factorization and back substitution, solve the resulting system of equations.

Henceforth, we consider the following setting: let𝐾𝐾 be a finite field, let𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴1, … , 𝑥𝑥𝑛𝑛] be the poly-
nomial ring in 𝑛𝑛 variables, and let 𝐼𝐼 𝐼 𝐼𝐼 be an ideal generated by a sequence of polynomials (𝑓𝑓1, … , 𝑓𝑓𝑟𝑟) ∈
𝐴𝐴𝑟𝑟 associated with the system of equations of interest.
Cost of the F5 Algorithm. In the best adversarial scenario, we assume that the sequence of polynomials
associated with the system of equations is regular.3 In this case, the F5 algorithm does not perform any
redundant reductions to zero.

Write 𝐹𝐹𝛢𝛢𝛢𝛢𝛢 for theHilbert-Series of the algebra𝐴𝐴𝐴𝐴𝐴 and𝐻𝐻𝛢𝛢𝛢𝛢𝛢 for itsHilbert polynomial. The degree of
regularity 𝐷𝐷reg is the smallest integer such that 𝐹𝐹𝛢𝛢𝛢𝛢𝛢(𝑛𝑛𝑛𝑛𝑛𝑛  𝛢𝛢𝛢𝛢𝛢(𝑛𝑛𝑛 for all 𝑛𝑛 𝑛 𝑛𝑛reg. The quantity 𝐷𝐷reg

plays an important role in the cost of the algorithm. If the ideal 𝐼𝐼 is generated by a regular sequence of
degrees 𝑑𝑑1, … , 𝑑𝑑𝑟𝑟, then its Hilbert series equals 𝐹𝐹𝛢𝛢𝛢𝛢𝛢(𝑡𝑡𝑡𝑡

∏𝑟𝑟
𝑖𝑖𝑖𝑖(1+𝑡𝑡𝑡𝑡𝑡

2+⋯+𝑡𝑡𝑑𝑑𝑖𝑖−1)

(1−𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛
. From this, we deduce that

deg(𝐼𝐼𝐼𝐼  ∏𝑟𝑟
𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖, and𝐷𝐷reg = 1 +∑𝑟𝑟

𝑖𝑖𝑖𝑖(𝑑𝑑𝑖𝑖 − 1).
The main result is that if 𝑓𝑓1, … , 𝑓𝑓𝑟𝑟 is a regular sequence in 𝐾𝐾𝐾𝐾𝐾1, … , 𝑥𝑥𝑛𝑛], then computing a Gröbner

basis with respect to the grevlex order using the F5 algorithm can be performed within

𝒪𝒪((
𝑛𝑛 𝑛𝑛𝑛 reg

𝐷𝐷reg
)
𝜔𝜔

)

3A sequence of polynomials (𝑓𝑓1, … , 𝑓𝑓𝑟𝑟) ∈ 𝛢𝛢𝑟𝑟 is called a regular sequence on 𝛢𝛢 if the multiplication map 𝑚𝑚𝑓𝑓𝑖𝑖 ∶
𝛢𝛢𝛢𝛢𝛢𝛢1, … , 𝑓𝑓𝑖𝑖𝑖𝑖⟩ → 𝛢𝛢𝛢𝛢𝛢𝛢1, … , 𝑓𝑓𝑖𝑖𝑖𝑖⟩ given by𝑚𝑚𝑓𝑓𝑖𝑖([𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖]=  [𝑔𝑔𝑔𝑔𝑖𝑖] is injective for all 2 ≤ 𝑖𝑖 𝑖𝑖𝑖 .
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operations in𝐾𝐾, where 2 ≤ 𝜔𝜔 𝜔 𝜔 is the matrix multiplication exponent.
Costs of Gröbner Basis Conversion and of Back Substitution. FGLM is an algorithm that converts a Gröb-
nerbasis of 𝐼𝐼with respect tooneorder, to aGröbnerbasis of 𝐼𝐼with respect to a secondorder in𝒪𝒪𝒪𝒪𝒪 deg(𝐼𝐼𝐼3)
operations in𝐾𝐾. Finally, as proved in [38], the cost of factorizing a univariate polynomial in𝐾𝐾𝐾𝐾𝐾𝐾 of de-
gree 𝑑𝑑 over 𝔽𝔽𝑝𝑝𝑛𝑛 for a prime 𝑝𝑝 is 𝒪𝒪𝒪𝒪𝒪3𝑛𝑛2 + 𝑑𝑑𝑑𝑑3).
Number of Rounds. After introducing the Gröbner Basis attack, we analyze the minimum number of
rounds that is necessary to provide security against this attack. However, we first emphasize that:

• there are several ways to set up the system of equations that describes the scheme. For instance,
we could manipulate more equations, and thus more variables, of lower degree. Alternatively, we
could work with less equations, and thus less variables, of higher degree. In addition, we could
consider the relation between the input and the output, or between the middle state and the out-
puts, and so on. In the following, we present some of these strategies, that seem to be the most
competitive ones;

• computing the exact cost of the attack is far from an easy task. As largely done in the literature,
we assume that the most expensive step is the “F5 Algorithm”. If the cost of such a step is higher
than the security level, we conclude that the scheme is secure against the analyzed attack.

AWeaker Scheme. Instead of using the model that is described in Figure 7.3, we analyze a weaker model
as illustrated in Figure 7.7. In the latter, the key is added after the expansion part, instead of before
the rolling function application. This weaker model is easier to analyze, and makes it possible to draw
a conclusion regarding the security of our scheme. Thus, we conjecture that if the scheme proposed in
Figure 7.7 is secure w.r.t. Gröbner Basis attack, then the scheme in Figure 7.3 is secure. Indeed, in the
scheme proposed in Figure 7.7, it is always possible to consider the difference between two or more texts
to remove the final key addition. For instance, given 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   𝑓 𝑓𝑓 and 𝑓𝑓𝑓𝑓𝑓′) + 𝐾𝐾 𝐾𝐾𝐾 ′, it follows that
𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓′)=𝑦𝑦𝑦𝑦𝑦    ′. As a result, the number of variables in the system of equations to be solved
remains constant independently of the number of considered outputs. However, in Figure 7.3, given
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔     and 𝑔𝑔𝑔𝑔𝑔′ + 𝐾𝐾𝐾𝐾𝐾𝐾  ′, this is not possible except if 𝑔𝑔𝑔𝑔𝑔 is inverted. Nevertheless, since it is
a truncated permutation, this does not seem feasible, unless the part of the output which is truncated is
either treated as a variable (that results to have more variables than equations) or guessed by brute force
(that results in an attack whose cost is higher than the security level, and 2𝑠𝑠 ≤ 𝑞𝑞). Such consideration
leads us to conjecture that the number of rounds necessary to make the scheme proposed in Figure 7.7
secure is a good indicator of the number of rounds necessary to make the scheme in Figure 7.3 secure as
well.
Input-Output Relation. The number of rounds must ensure that the maximum degree is reached. Based
on that, we do not expect that the relation that holds between the input and the output, makes it possible
for the attacker to break the scheme. In particular, let𝑁𝑁 be the nonce, and 𝑘𝑘1, 𝑘𝑘2 be the secret keys. If
we assume that a single word is output, then an equation of degree 2𝑟𝑟 can be expressed between each
input (𝑁𝑁𝑁𝑁𝑁 1, 𝑘𝑘2) ∈ (𝔽𝔽𝑞𝑞)3, and the output 𝑇𝑇 𝑇𝑇𝑇 𝑞𝑞 with 𝑟𝑟 the number of rounds. Hence, if there are
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two different initial nonces, then the attacker has to solve two equations in two variables. In that case,
𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 = 1+2 ⋅ (2𝑟𝑟 −1) ≈ 2𝑟𝑟𝑟𝑟. The cost of the attack is thus lower bounded by [(2+2

𝑟𝑟𝑟𝑟

2𝑟𝑟𝑟𝑟 )]
𝜔𝜔
≥ [ (1+2

𝑟𝑟𝑟𝑟)2

2
]
𝜔𝜔
≥

22𝑟𝑟𝑟𝑟, where 𝜔𝜔 𝜔𝜔 . Consequently, 22𝑟𝑟𝑟𝑟 ≥ 2𝑠𝑠 if the total number of rounds is at least ⌈ 𝑠𝑠𝑠𝑠
2
⌉ (e.g., 64 for

𝑠𝑠 𝑠𝑠𝑠 𝑠). Since the number of rounds for 𝑝𝑝𝐶𝐶 is 𝑠𝑠 𝑠 𝑠, this strategy does not outperform the previous
attacks as expected.

Finally, we additionally consider a strategy where new intermediate variables are introduced to reduce
the degree of the involved polynomials. We concluded that this strategy does not reduce the solving time
as it increases the number of variables.

Middle State-Output Relation. There is another attack strategy that exploits the relation between the
middle state and the outputs. In this strategy, only 𝑝𝑝𝛦𝛦 is involved, and several outputs are generated by
the same unknown middle state. For a given nonce𝑁𝑁, let (𝑥𝑥𝛮𝛮0 , 𝑥𝑥𝛮𝛮1 , 𝑥𝑥𝛮𝛮2 ) ∈ (𝔽𝔽𝑞𝑞)3 be the corresponding
middle state. Since the key is added after the permutation𝑝𝑝𝛦𝛦, wefirst eliminate the keyby considering two
initial nonces, and taking the difference of the corresponding output. This makes it possible to remove
all the secret key material at the end, at the cost of having three more unknown variables in the middle.4

Hence, independently of the number of outputs that are generated, there are six variables, and thus
simply the two middle states. That means that we need at least six output blocks, and an equivalent
number of equations. Since two words are output for each call of 𝑝𝑝𝛦𝛦, we have six equations of degree
2𝑟𝑟𝑟𝑟 and 2𝑟𝑟 for the first two words, 2𝑟𝑟 and 2𝑟𝑟𝑟𝑟 for the next two words, and so on. We recall that every
call of the rolling function increases the degree by a factor two, while the function that describes the
output of a single block has a maximum degree, namely 2𝑟𝑟 after 𝑟𝑟 rounds for one word, and 2𝑟𝑟𝑟𝑟 for the
other two words. Hence,𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 = 1 + (2𝑟𝑟𝑟𝑟 − 1) + 2 ⋅∑1

𝑖𝑖𝑖𝑖(2
𝑟𝑟𝑟𝑟𝑟 − 1) + (2𝑟𝑟𝑟𝑟 − 1) = 21 ⋅ 2𝑟𝑟𝑟𝑟 − 5 ≈ 2𝑟𝑟𝑟𝑟𝑟𝑟,

and the cost of the attack is lower bounded by

[(
6 + 2𝑟𝑟𝑟𝑟𝑟𝑟

2𝑟𝑟𝑟𝑟𝑟𝑟
)]

𝜔𝜔

≥ [(1 + 2
𝑟𝑟𝑟𝑟𝑟𝑟)6

6! ]
𝜔𝜔

≥ 212(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,

where 𝜔𝜔 𝜔𝜔 . Therefore, 212(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 2𝑠𝑠 if the number of rounds for 𝑝𝑝𝛦𝛦 is at least ⌈ 𝑠𝑠𝑠𝑠𝑠
12

− 3.4⌉ (e.g.,
9 for 𝑠𝑠 𝑠𝑠𝑠 𝑠). Like previously, potential improvement of the attack (e.g., an enhanced description of
the equations) can lead to a lower computational cost. We thus decided to arbitrarily add five rounds as
a security margin. We conjecture that at least ⌈ 𝑠𝑠𝑠𝑠𝑠

12
+ 1.5⌉ rounds for 𝑝𝑝𝛦𝛦 are necessary to provide some

security (e.g., 14 for 𝑠𝑠 𝑠𝑠𝑠 𝑠).

In addition, in order to reduce the degree of the involved polynomials, we studied the consequences of
introducing new intermediate variables in themiddle, e.g., at the output of the rolling function or among

4Another approachwould be to involve the keys in the analysis. However, since the degree of the key-schedule is very high, the
cost would then explode after few steps. It works by manipulating the degree of the key-schedule, or by introducing new
variables for each new subkeys while keeping the degree as lower as possible. This approach does not seem to outperform
the one described in the main text.
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the rounds5. In that regard, we did not improve the previous results. Moreover, we also considered a
scenario in which the attacker accesses more data, without being able to improve the previous results.

7.4.5 On the algebraic cipher representation

Algebraic attacks seem tobe themost successful attack vector on ciphers that have a simple representation
in larger fields, while restricting the usage of multiplications. Until now, we have mainly focused on the
growth of the degree to estimate the costs of the algebraic attacks that we considered. However, this
is not the only factor that influences the cost of an algebraic attack. It is well known that such attacks
(includinghigher-order, interpolation, andGröbner basis attacks) canbemore efficient if the polynomial
that represents the cipher is sparse. Consequently, it is necessary to study the algebraic representation of
the cipher for a feasible number of rounds.

To evaluate the number of monomials that we have for a given degree, we wrote a dedicated tool.
This tool produces a symbolic evaluation of the round function without considering a particular field
or specific round constants. Nevertheless, it considers the fact that each element in 𝔽𝔽2𝑛𝑛 is also its inverse
with respect to the addition. Since we do not instantiate any field and constants, the reported number
of monomials might deviate from the real number of monomials here, e.g., due to unfortunate choices
of round constants that sum to zero for some monomials. As a result, the entries in the tables are in fact
upper bounds, but we do not expect high discrepancies between the numbers reported in the tables and
the “real” ones.

Prime Case. First, we consider iterations of the round function 𝑓𝑓 over 𝔽𝔽𝑝𝑝. In Table 7.2, we evaluate
the output functions at 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 depending on the inputs 𝑎𝑎0, 𝑏𝑏0, and 𝑐𝑐0 after a certain number of
rounds 𝑖𝑖 𝑖 𝑖. We count in Table 7.2 the number of monomials for a certain multivariate degree up to
a fixed degree 𝑑𝑑𝔽𝔽𝑝𝑝. Higher degree monomials might appear, but they are not presented in the table. To
report this behavior, we do not input 0 in the table after the highest degreemonomial. The column ‘max’
indicates the maximal number of monomials that can be encountered for three variables. As reported
in Table 7.2, the number of monomials increases quite quickly, and we do not observe any unexpected
behavior, or missing monomials of a certain degree.
Binary Case. Table 7.3 provides the number of monomials of a certain degree in 𝔽𝔽2𝑛𝑛. We notice that the
diffusion is slower than in 𝔽𝔽𝑝𝑝, and it may be because of the behavior of the addition that is self inverse in
𝔽𝔽2𝑛𝑛. More discussions on the algebraic cipher representation in the binary case can be found in App. D.

7.5 Comparisonwith other Designs

In this section, we compare the performance of our design with other designs that are presented in the
literature for anMPCprotocol usingmasked operations. Wemainly focus on the number ofmultiplica-
tions in anMPC setting, which is often themetric that influences themost the cost in such a protocol. In
5For example, new variables can be introduced for each output of the rolling state. It results in having more equations with
lower degrees. Our analysis suggests that this approach does not outperform the one described in the main text.
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Table 7.2: Number of monomials of a certain degree for 𝔽𝔽𝑝𝑝.
Output Degree

Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

2
a 1 3 4 3 1
b 1 3 4 3 1
c 1 3 4 3 1

3
a 1 3 6 8 11 8 6 3 1
b 1 3 6 8 11 8 6 3 1
c 1 3 6 8 11 8 6 3 1

4
a 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
b 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
c 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1

5
a 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
b 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
c 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21

Table 7.3: Number of monomials of a certain degree for 𝔽𝔽2𝑛𝑛.
Output Degree

Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406

2
a 1 3 4 2 1
b 1 3 4 2 1
c 1 3 4 2 1

3
a 1 3 6 7 7 3 3 0 1
b 1 3 6 7 7 3 3 0 1
c 1 3 6 7 7 3 3 0 1

4
a 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
b 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
c 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1

5
a 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
b 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
c 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0

addition, we discuss the number of online and pre-computation/offline rounds, and we compare those
numbers to the ones specified for other schemes. The influence of the last two metrics on the overall
costs highly varies depending on the concrete protocol/application, and the concrete environment, in
which an MPC protocol is used, e.g., network of computers vs. a system on chip. Finally, we consider
the advantages and the disadvantages of our design w.r.t. the other ones.

7.5.1 MPC costs: Ciminion & relatedworks

Wecompare theMPCcost ofCiminionwith the cost of other designs that are published in the literature
with 𝑞𝑞 𝑞 𝑞128, and 𝑠𝑠 𝑠 𝑠𝑠𝑠 bits. We assume that the amount of data available to the attacker is fixed to
2𝑠𝑠𝑠𝑠 =2 64, which is the most common case. Due to page limitation, we limit our analysis to Ciminion
and HadesMiMC. The latter is the main competitive design currently present in the literature for the
analyzed application. The detailed comparison with other designs (includingMiMC, GMiMC, Rescue
and Vision) is provided in App. G. A summary of the comparison is given in Table 7.4 and 7.5 for the
binary and prime case, respectively.

Our design has the lowest minimum number of multiplications w.r.t. all other designs, in both 𝔽𝔽𝑝𝑝
and 𝔽𝔽2𝑛𝑛. In 𝔽𝔽𝑡𝑡𝑞𝑞 for 𝑞𝑞 𝑞 𝑞128, our design needs approximately 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡  𝑡 𝑡𝑡multiplications w.r.t.
12⋅  𝑡𝑡multiplications required by HadesMiMC or 60 ⋅ 𝑡𝑡 by Rescue. Additionally, our design has a low
number of linear operations compared to other designs. For instance, for large 𝑡𝑡 𝑡 𝑡, our design needs
approximately 50 ⋅ 𝑡𝑡 affine operations (sums and multiplications with constants) while HadesMiMC
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Table 7.4: Comparison on the MPC cost of schemes over 𝔽𝔽2𝑛𝑛𝑡𝑡 for 𝑛𝑛 𝑛 𝑛𝑛𝑛 (or 129), and a security level of 128
bits. With the exception of Vision (whose number of offline rounds is equal to max{20, 2 ⋅ ⌈ 136+𝑡𝑡

𝑡𝑡
⌉}),

the number of offline rounds for all other schemes is zero.

Scheme Multiplications (MPC) Online Rounds

element in 𝔽𝔽2𝑛𝑛𝑡𝑡 asymptotically (𝑡𝑡 𝑡 𝑡)

Ciminion 8 ⋅ 𝑡𝑡 𝑡 𝑡𝑡 8 104 + ⌈𝑡𝑡𝑡𝑡𝑡
MiMC-CTR 164 ⋅ 𝑡𝑡 164 82
Vision 𝑡𝑡 𝑡max{70, 7 ⋅ ⌈ 136+𝑡𝑡

𝑡𝑡
⌉} 70 max{50, 5 ⋅ ⌈ 136+𝑡𝑡

𝑡𝑡
⌉}

Table 7.5: Comparison on theMPC cost of schemes over 𝔽𝔽𝑝𝑝𝑡𝑡 for 𝑝𝑝 𝑝 𝑝128, and a security level of ≈128  bits. With
the exception of Rescue (whose number of offline rounds is equal to max{30; 6 ⋅ ⌈ 32.5

𝑡𝑡
⌉}), the number

of offline rounds for all other schemes is zero.

Scheme Multiplications (MPC) Online Rounds

element in 𝔽𝔽𝑝𝑝𝑡𝑡 asymptotically (𝑡𝑡 𝑡 𝑡)

Ciminion 14 ⋅ ⌈𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡 8 104 + ⌈𝑡𝑡𝑡𝑡𝑡
MiMC-CTR 164 ⋅ 𝑡𝑡 164 82
GMiMC𝑒𝑒𝑒𝑒𝑒𝑒 4 + 4𝑡𝑡 𝑡max{4𝑡𝑡2, 320} 4 ⋅ 𝑡𝑡 2+2  𝑡𝑡 𝑡max{2𝑡𝑡2, 160}
Rescue (𝛼𝛼 𝛼𝛼 ) 𝑡𝑡 𝑡max{60; 12 ⋅ ⌈ 32.5

𝑡𝑡
⌉} 60 max{20; 4 ⋅ ⌈ 32.5

𝑡𝑡
⌉}

HadesMiMC 12𝑡𝑡𝑡max{78+⌈log3(𝑡𝑡
2)⌉; 142} 12 max{45 + ⌈log3(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

requires approximately12⋅𝑡𝑡2+(157+4⋅max{32; ⌈log3(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 affineoperations. However, this advantage
comes at the price of havingmore online rounds than the other schemes. In particular, 104+⌈𝑡𝑡𝑡𝑡𝑡 online
rounds are required by our design whereas HadesMiMC and Rescue have respectively 78 and 20 online
rounds.
Ciminion. For 𝑞𝑞 𝑞𝑞 128, and a security level of 128 bits with data limited to 264, the permutation 𝑝𝑝𝐶𝐶
counts 90 rounds. In order to output 2𝑡𝑡′ − 1 ≤ 𝑡𝑡 𝑡𝑡 𝑡𝑡′ words, we call 𝑡𝑡′ times the permutation 𝑝𝑝𝛦𝛦 that is
composed of 14 rounds, and (𝑡𝑡′ − 1) times the rolling function. Therefore, for the binary and the prime
case, the cost of Ciminion inMPC applications to generate 𝑡𝑡words is

# multiplications: 14 ⋅ ⌈𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡  𝑡 𝑡𝑡𝑡𝑡𝑡    𝑡𝑡 𝑡 𝑡𝑡 𝑡

# online rounds: 104 + ⌈𝑡𝑡𝑡𝑡𝑡 𝑡

# affine operations: 99 ⋅ ⌈𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡𝑡   𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡

The number of online rounds depends on 𝑡𝑡, because the rolling function is serial. It is noteworthy that
the expansion part can be performed in parallel. We emphasize that the number of sums andmultiplica-
tions with a constant6 (denoted as “affine” operations) is proportional to the number ofmultiplications.
That is one of the main differences w.r.t. to the Hades construction as we argue afterwards.

6Each round counts six additions and one multiplication with a constant.
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HadesMiMC.HadesMiMC[40] is a block cipher that is proposed over𝔽𝔽𝑡𝑡𝑝𝑝 for a prime𝑝𝑝 such that gcd(𝑝𝑝𝑝
1, 3) = 1, and 𝑡𝑡 𝑡 𝑡. It combines 𝑅𝑅𝐹𝐹 = 2𝑅𝑅𝑓𝑓 rounds with a full S-box layer (𝑅𝑅𝑓𝑓 at the beginning,
and 𝑅𝑅𝑓𝑓 at the end), and 𝑅𝑅𝛲𝛲 rounds with a partial S-box layer in the middle. Each round is defined with
𝑅𝑅𝑖𝑖(𝑥𝑥𝑥𝑥  𝑥𝑥𝑖𝑖 +𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀, where𝑀𝑀 is a 𝑡𝑡 𝑡 𝑡𝑡MDSmatrix, and 𝑆𝑆 is the S-box layer. This layer is defined as
the concatenation of 𝑡𝑡 cube S-boxes in the rounds with full layer, and as the concatenation of one cube
S-Box and 𝑡𝑡 𝑡𝑡  identity functions in the rounds with partial layer.

In addition, hash functions can be obtained by instantiating a Sponge construction with the Hades
permutation, and a fixed key, like Poseidon & Starkad [39]. In [15], the authors present an attack on
Starkad that exploits a weakness in the matrix𝑀𝑀 that defines the MixLayer. The attack takes advantage
of the equation𝑀𝑀2 = 𝜇𝜇 𝜇𝜇𝜇. This attack can be prevented by carefully choosing theMixLayer (we refer to
[43] for further detail). There is no attack that is based on an analogous strategy that has been proposed
for the cipher7.

In order to guarantee some security,𝑅𝑅𝐹𝐹 and𝑅𝑅𝛲𝛲must satisfy a list of inequalities [40]. There are several
combinations of (𝑅𝑅𝐹𝐹, 𝑅𝑅𝛲𝛲) that can provide the same level of security. In that regard, authors of [40]
present a tool thatmakes it possible to find the best combination that guarantees security, andminimizes
the computational cost. For a security level of approximately log2(𝑝𝑝𝑝 bits, and with log2(𝑝𝑝𝑝 𝑝 𝑝𝑝, the
combination (𝑅𝑅𝐹𝐹, 𝑅𝑅𝛲𝛲)minimizing the overall number of multiplications is

(𝑅𝑅𝐹𝐹, 𝑅𝑅𝛲𝛲)=(6,max{⌈
log3(𝑝𝑝𝑝

2 ⌉ + ⌈log3(𝑡𝑡𝑡𝑡𝑡 𝑡log3(𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝log3(log2(𝑝𝑝𝑝𝑝𝑝} −2 ).

InMPC applications (𝑝𝑝 𝑝 𝑝128 and 𝑠𝑠 𝑠𝑠𝑠 𝑠 bits), the cost of HadesMiMC is

# multiplications: 2⋅  (𝑡𝑡 𝑡𝑡𝑡 𝐹𝐹 + 𝑅𝑅𝛲𝛲) = 12𝑡𝑡 𝑡max{78 + ⌈log3(𝑡𝑡
2)⌉;  142} ,

# online rounds: 𝑅𝑅𝐹𝐹 + 𝑅𝑅𝛲𝛲 = max{45 + ⌈log3(𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡

# affine operations: 2⋅  𝑡𝑡2 ⋅ 𝑅𝑅𝐹𝐹 + (4 ⋅ 𝑅𝑅𝛲𝛲 + 1) ⋅ 𝑡𝑡 𝑡 𝑡 𝑡𝑡𝑡 𝛲𝛲
≈ 12⋅  𝑡𝑡2 + (157 + 4 ⋅max{32; ⌈log3(𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡 𝑡

Parallel S-boxes can be computed in a single online round8. To compute the number of affine operations,
we considered an equivalent representation of the cipher in which the MixLayer of the rounds, with a
partial S-box layer, is defined by a matrix. In this matrix, only 3𝑡𝑡 𝑡 𝑡 entries are different from zero, that
is to say the ones in the first column, in the first row , and in the first diagonal. (A (𝑡𝑡 𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 𝑡𝑡𝑡
submatrix is an identity matrix.) The details are presented in [40, App. A]. Therefore, the total number
of affine operations required grows quadratically w.r.t. the number of rounds with full S-box layer, and
thus w.r.t. the number of multiplications.

7Themain problem, in this case, regards the current impossibility to choose texts in themiddle of the cipher by bypassing the
rounds with full S-Box layer when the secret key is present.

8We refer to [42] on how to evaluate 𝑥𝑥 𝑥 𝑥𝑥3 within a single communication round.
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Finally, we highlight that the number of multiplications is minimized when HadesMiMC takes as
input the entire message. Indeed, let us assume that the input message is split into several parts, and that
HadesMiMC is used in CTR mode (as suggested by the designers). In the analyzed case in which the
security level is of the same order of the size of the field 𝑝𝑝, the number of rounds is almost constant, and
independent of the parameter 𝑡𝑡 𝑡 𝑡. It follows that using HadesMiMC in CTR mode would require
more multiplications, because every process requires the computation of the rounds with a partial S-box
layer, whereas this computation is needed only once when the message size equals the block size. We
stress that a similar conclusion holds for Rescue/Vision, for which the total number of multiplications
would barely change when they are used inCTRmode, rather thanwhen themessage size is equal to the
block size.

7.5.2 Ciminion versus Hades: advantages and similarities

The previous comparison highlights that the twomost competitive designs forMPC applications with a
lowmultiplicative complexity areCiminion andHadesMiMC.Referring to Fig. 7.1, we further develop
the similarities and advantages between a block cipher based on a Hades design, and a cipher based on
Farfalle. We present a brief comparison between our new design and the “ForkCipher” design that is
proposed in [7] in App. G.2.
Similarities: Distribution of the S-Boxes.We focus our attention on the distribution of the S-boxes, or
more generally, the non-linear operations. Both strategies employ a particular parallelization of the non-
linear operations/S-boxes to their advantage, in order to minimize the number of non-linear operations.
More precisely, each step is composed of 𝑡𝑡 parallel non-linear operations in the external rounds, i.e., the
rounds at the end and at the beginning. Furthermore, each step is composed of a single non-linear oper-
ation in the internal rounds.

Both strategies take advantage of an attacker that cannot directly access the state in themiddle rounds,
because the state is masked both by the external rounds or phases, and by the presence of a key. In a
Farfalle design, the attacker knows that each output of the expansion phase always employs the same
value at the input, without accessing those inputs. In a Hades design, the attacker is able to skip some
rounds with a partial S-box layer by carefully choosing the texts (see [15]). However, they cannot access
the texts without bypassing the rounds with the full S-box layer that depends on the key.

Havingmiddle roundswith a single S-boxmakes it possible to reduce the overall number of non-linear
operations. In addition, they ensure some security against algebraic attacks. Indeed, even a single S-box
makes it possible to increase the overall degree of the scheme. For a concrete example, let (𝑅𝑅𝑐𝑐, 𝑅𝑅𝑚𝑚, 𝑅𝑅𝑒𝑒)
be the rounds for respectively the compression part, middle part and expansion part of Farfalle. Like
previously, let (𝑅𝑅𝐹𝐹, 𝑅𝑅𝛲𝛲)be thenumber of roundswith respectively a full and apartial S-box layer inHades.
The number of multiplications is respectively (𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑒𝑒) ⋅ 𝑡𝑡 𝑡𝑡𝑡 𝑚𝑚 and 𝑅𝑅𝐹𝐹 ⋅ 𝑡𝑡 𝑡𝑡𝑡 𝛲𝛲. If 𝑅𝑅𝛲𝛲 ≫ 𝑅𝑅𝐹𝐹 and
𝑅𝑅𝑚𝑚 ≫ 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑒𝑒. For a similar number of round, i.e., proportional to ≈ 𝑅𝑅𝛲𝛲 + 𝑅𝑅𝐹𝐹 or/and ≈ 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑒𝑒,
it is then necessary to reach the maximum degree. Our number of multiplications is lower compared to
a classical design where the rounds have a full S-box layer.
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Advantages. There aremajor differences betweenFarfalle-like designs andHades-like designs, because of
their primary intention. The Farfalle-like design aims to behave like a Pseudo-Random Function (PRF),
and the Hades-like design like a Pseudo-Random Permutation (PRP). The latter is used as a PRF in the
Counter mode (CTR).9 Under the assumption that affine operations are cheaper than non-linear ones,
designers of Hades defined the MixLayer as the multiplication with a 𝑡𝑡 𝑡 𝑡𝑡MDSmatrix. Consequently,
each round with full S-box layer counts 𝑡𝑡2 multiplications with constants. However, when 𝑡𝑡 𝑡 𝑡, linear
operations cannot be considered as free anymore, and their presences influence the overall performance.

This problem is not present in a Farfalle-like design. Indeed, by construction, in the first 𝑅𝑅𝑐𝑐 and the
last𝑅𝑅𝑒𝑒 rounds, theMixLayer is not required. That implies that the first three words are never mixed with
the following ones. On the contrary, the elements are simply added together to generate the input of
the compression phase. In addition, the expansion part’s input is generated through a non-linear rolling
functionwhose cost grows linearlywith 𝑡𝑡. Finally, since invertibility is not required, the number of input
words can be lower than the number of output words to design a function from 𝔽𝔽3𝑞𝑞 to 𝔽𝔽𝑡𝑡𝑞𝑞 for any 𝑡𝑡 𝑡 𝑡.
Thus, independently of the number of output words, one multiplication per round is present in the
compression phase, contrary to 𝒪𝒪𝒪𝒪𝒪𝒪 of a Hades-like scheme.

Acknowledgements. We thank Joan Daemen for his guidance and support and the reviewers of
Eurocrypt 2021 for their valuable comments that improved the paper. This work has been supported in
part by the European Research Council under the ERC advanced grant agreement under grant ERC-
2017-ADGNr. 788980ESCADA, theEuropeanResearchCouncil (ERC)under theEuropeanUnion’s
Horizon 2020 research and innovation programme (grant agreement No 681402), and the Austrian
Science Fund (FWF): J 4277-N38.

A Round constants generation – details

As mentioned in the main part, the round constants RC1ℓ, RC2ℓ, RC3ℓ, and RC4ℓ are generated using
Shake-256 [13, 54]. We detail this process in this section.

For prime fields, a byte sequence of the ASCII characters “GF(p)” is absorbed with p denoting the
numerical representation of the prime modulus. For instance, if we take the prime field 17, “GF(17)” is
absorbed which hexadecimal representation is 0x474628313729. The output sequence of Shake-256 is
then split into ⌈log2(𝑝𝑝𝑝𝑝-bit unsigned integers𝑍𝑍𝑖𝑖. These values𝑍𝑍𝑖𝑖 are next sequentially assigned toRC1ℓ,
RC2ℓ,RC3ℓ, andRC4ℓ for rising ℓ, as long as 1 < 𝑍𝑍𝑖𝑖 < 𝑝𝑝. Otherwise, we discard 𝑍𝑍𝑖𝑖, and we use instead
the next unsigned integer 1 < 𝑍𝑍𝑖𝑖 < 𝑝𝑝 of the sequence.
The round-constants generation process is analogous for fields over 𝔽𝔽2𝑛𝑛. In this case, we absorb a

byte sequence corresponding to the ASCII characters “GF(2)[X]/polynomial”, where the characters
“polynomial” is the hexadecimal representation in capital letters of the irreducible polynomial. For ex-
ample, in 𝔽𝔽28 with the irreducible polynomial 𝑥𝑥8 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 𝑥𝑥 , we absorb “GF(2)[X]/11B” that

9Thismeans that, in both cases, the cost of encryption and decryption is the same. That is because Farfalle-like andHades-like
designs are used as stream ciphers.
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is represented by 0x47462832295B585D2F313142 in hexadecimal. Thereafter, the output sequence of
Shake-256 is split into 𝑛𝑛-bit unsigned integers𝑍𝑍𝑖𝑖. These values𝑍𝑍𝑖𝑖 are then sequentially assigned toRC1ℓ,
RC2ℓ, RC3ℓ, and RC4ℓ for rising ℓ as long as 𝑍𝑍𝑖𝑖 > 1. Otherwise, we discard 𝑍𝑍𝑖𝑖, and we employ instead
the next unsigned integer 𝑍𝑍𝑖𝑖 > 1 of the sequence.

B Aiminion: An aggressive evolution of Ciminion

For Ciminion, we modify the Farfalle [12] construction, in order to obtain a stronger design with a
fewer successful attacks. In particular, moving the keys from the output of the construction (Figure 7.7)
to the inputs of 𝑝𝑝𝛦𝛦 (Figure 7.3) results in the two following observations.

1. The unknown keys 𝐾𝐾𝑖𝑖 at the inputs of 𝑝𝑝𝛦𝛦 prevent an attacker from knowing which inputs of 𝑝𝑝𝛦𝛦
form an affine space. Hence, the rolling function rol does not have to be non-linear to achieve this
property.

2. We cannot use the middle state-output relation (see subsection 7.4.4) to set up a system of equa-
tions to be solved usingGröbner bases. In fact, despite our attempts (not involving𝑝𝑝𝐶𝐶), the system
of equations is always under-determined. We have less equations than secret elements.

This leads us to Aiminion. Compared to Ciminion, we use the identity as rolling function rol, and
we fix the number of rounds to nine for 𝑝𝑝𝛦𝛦, if we solely consider statistical attacks as a threat. This is three
times the number of rounds where only bad differential/linear trails exists, as discussed in Table 7.6.

Table 7.6: Proposed number of rounds for Aiminion. The security level 𝑠𝑠 must satisfy 64 ≤ 𝑠𝑠 𝑠 log2(𝑞𝑞𝑞 and
𝑞𝑞 𝑞 𝑞64, where 𝑞𝑞 is the number of elements in the field.

Instance 𝑝𝑝𝐶𝐶 𝑝𝑝𝛦𝛦 (two words per block)

Data limit 2𝑠𝑠𝑠𝑠 elements 2(𝑠𝑠𝑠𝑠𝑠

3
9

Aiminionhas an lowernumber ofmultiplicationper elements thanCiminion. Indeed, it shifts from
eight for large 𝑡𝑡 to only 4.5. However, this comes at the cost of interrupting the chain of arguments for
security. In particular, probabilistically formed affine spaces at the inputs of 𝑝𝑝𝛦𝛦 might still be detectable.
We consider the evaluation of the complexity to find such an affine space as an interesting topic for future
evaluation.

C Statistical attacks – details

C.1 Classical correlation analysis

In this section, we present the notions of classical correlation analysis in a fashion that eases the transition
to the more general theory. In classical correlation analysis, we consider vectorial Boolean functions
𝑓𝑓 𝑓 𝑓𝑓𝑑𝑑2 → 𝔽𝔽𝑑𝑑2 . From a more abstract point of view, classical correlation analysis is the study of certain
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characters, and their configuration in the space 𝐿𝐿2(𝔽𝔽𝑑𝑑2 ) of complex-valued functions 𝔽𝔽𝑑𝑑2 → ℂ. Let 𝑆𝑆 𝑆
{𝑧𝑧 𝑧 𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧 be the multiplicative group of complex numbers of absolute value 1. An additive
character of 𝔽𝔽𝑑𝑑2 is a homomorphism from 𝔽𝔽𝑑𝑑2 (considered as an abelian group) into 𝑆𝑆. The 𝐿𝐿2(𝔽𝔽𝑑𝑑2 )-inner
product is given by

⟨𝜒𝜒𝜒 𝜒𝜒𝜒 𝜒 1
2𝑑𝑑

∑
𝑥𝑥𝑥𝑥𝑥𝑑𝑑2

𝜒𝜒𝜒𝜒𝜒𝜒𝜓𝜓𝜓𝜓𝜓𝜓𝜓

A parity of a vector𝑥𝑥𝑥𝑥𝑥  𝑑𝑑2 is the sumof a specific subset of its components. Anyparity of𝑥𝑥 canbewritten
as 𝑢𝑢⊤𝑥𝑥 for some 𝑢𝑢 𝑢𝑢𝑢 𝑑𝑑2 . We call 𝑢𝑢 amask. Eachmask 𝑢𝑢 defines a unique character 𝜒𝜒𝑢𝑢 ∶ 𝔽𝔽𝑑𝑑2 → ℂ∩ {−1,1}
given by

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑢𝑢⊤𝑥𝑥.

Together, these notions lead to the definition of correlation.

Definition 61 (Parity Correlation). The correlation between an input mask 𝑢𝑢 and output mask 𝑣𝑣 with
respect to a function 𝑓𝑓 is defined as

C𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   𝑢𝑢, 𝜒𝜒𝑣𝑣 ∘ 𝑓𝑓𝑓𝑓
1
2𝑑𝑑

∑
𝑥𝑥𝑥𝑥𝑥𝑑𝑑2

(−1)𝑢𝑢⊤𝑥𝑥𝑥𝑥𝑥⊤𝑓𝑓𝑓𝑓𝑓𝑓 .

The number of knownplaintext-ciphertext pairs required tomount a linear attack is inversely propor-
tional to the square of the correlation. Hence, the square of the correlation serves as a measure to assess
the effectiveness of a linear attack. It is called the linear probability.

Definition 62 (Linear Probability). The linear probability of an input mask 𝑢𝑢 and output mask 𝑣𝑣 with
respect to a function 𝑓𝑓 is defined as

LP𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢𝑢   C𝑓𝑓(𝑢𝑢𝑢𝑢𝑢𝑢 2 .

C.2 Proofs of linear probabilities

Proposition 32 (Orthogonality Relations). Let 𝜒𝜒 and 𝜓𝜓 be additive characters of 𝔽𝔽𝑞𝑞, then

∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒𝑏𝑏(𝑥𝑥𝑥𝜒𝜒𝑐𝑐(𝑥𝑥𝑥𝑥  {
0 if 𝑏𝑏 𝑏 𝑏𝑏𝑏
𝑞𝑞 otherwise.

Proposition 33 (Linear Probabilities of theMultiplication Function). Let𝑚𝑚 𝑚𝑚𝑚 𝑞𝑞 × 𝔽𝔽𝑞𝑞 → 𝔽𝔽𝑞𝑞 be given by
𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚, then the linear probabilities for all masks 𝑢𝑢 𝑢𝑢𝑢 2𝑞𝑞 at the input of𝑚𝑚 and masks 𝑣𝑣 𝑣𝑣𝑣 𝑞𝑞 at the
output of𝑚𝑚 are as seen in Table 7.7.
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𝑢𝑢1 𝑢𝑢2 𝑣𝑣 LP𝑚𝑚((𝑢𝑢1, 𝑢𝑢2), 𝑣𝑣𝑣
∗ ∗ 1 1

𝑞𝑞2

0 0 0 1
0 1 0 0
1 0 0 0
1 1 0 0

Table 7.7: Linear probabilities of𝑚𝑚 in 𝔽𝔽𝑞𝑞. A 0 denotes a zero value, a 1 denotes a non-zero value, and a ∗ denotes
any value.

Proof. Let 𝑣𝑣 𝑣 𝑣. If 𝑢𝑢1 = 0, then

LP𝑚𝑚(𝑢𝑢𝑢𝑢𝑢𝑢𝑢   ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢1𝑥𝑥 𝑥 𝑥𝑥2𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢2𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢2𝑦𝑦𝑦𝜒𝜒1(𝑣𝑣𝑣𝑣𝑣𝑣𝑣∣
2

= 1
𝑞𝑞2 ,

where the last equality is due to the fact that – by Proposition 32 – the inner sum equals 𝑞𝑞, if 𝑥𝑥 𝑥𝑥𝑥 −1𝑢𝑢2,
and 0 otherwise.

The case for which 𝑢𝑢2 = 0 is analogous to the previous one. Therefore, we can suppose that 𝑢𝑢1 ≠ 0,
and 𝑢𝑢2 ≠ 0. Let 𝑎𝑎 𝑎 𝑎𝑎𝑞𝑞, and 𝑏𝑏 𝑏𝑏𝑏 𝑞𝑞, be such that

𝑏𝑏 𝑏𝑏𝑏 1𝑥𝑥 𝑥 𝑥𝑥2𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦     2𝑦𝑦𝑦𝑦

Then,

LP𝑚𝑚(𝑢𝑢𝑢𝑢𝑢𝑢𝑢   ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢1𝑥𝑥 𝑥 𝑥𝑥2𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦∣
2

.

By multiplying it by |𝜒𝜒1(𝑏𝑏𝑏𝑏2 = 1:

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑏𝑏 𝑏𝑏𝑏 1𝑥𝑥 𝑥 𝑥𝑥2𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1((1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ∣
2

.

Note that 𝑎𝑎 𝑎𝑎  and 𝑣𝑣 𝑣 𝑣, hence:

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥′∈𝔽𝔽𝑞𝑞

∑
𝑦𝑦′∈𝔽𝔽𝑞𝑞

𝜒𝜒1(𝑥𝑥′𝑦𝑦′)∣
2

= 1
𝑞𝑞2 ,
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where the last equality is due to the fact that – by Proposition 32 – the inner sum equals 𝑞𝑞, if 𝑥𝑥′ = 0, and
0 otherwise.

Next, let us consider that 𝑣𝑣 𝑣𝑣 . From Proposition 32, we deduce that

LP𝑚𝑚(𝑢𝑢𝑢 𝑢𝑢 𝑢 {
1 if 𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢
0 otherwise.

Proposition 34 (Linear Probabilities of the Round Constant Addition). Let 𝑐𝑐 𝑐 𝑐𝑐𝑞𝑞 → 𝔽𝔽𝑞𝑞 be given by
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   𝑐 𝑐𝑐, then

LP𝑐𝑐(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 {
1 if 𝑢𝑢 𝑢𝑢𝑢 𝑢
0 otherwise,

for all masks 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑞𝑞.

Proof.

LP𝑐𝑐(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1(𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1(𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑢𝑢∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1((𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1((𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝜒𝜒1(𝑣𝑣𝑣𝑣𝑣∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1((𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢∣
2

.

The result now follows from Proposition 32.

Proposition 35 (Linear Probabilities of the Addition). Let 𝑎𝑎 𝑎𝑎𝑎 𝑞𝑞 × 𝔽𝔽𝑞𝑞 → 𝔽𝔽𝑞𝑞 be given by 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎    𝑎𝑎,
then

LP𝑎𝑎(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 {
1 if 𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢
0 otherwise,

for all masks 𝑢𝑢 𝑢 𝑢𝑢2𝑞𝑞 at the input of 𝑎𝑎, and masks 𝑣𝑣 𝑣𝑣𝑣 𝑞𝑞 at the output of 𝑎𝑎.
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Proof.

LP𝑎𝑎(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢⊤(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1(𝑢𝑢1𝑥𝑥 𝑥 𝑥𝑥2𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦    ∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1((𝑢𝑢1 −𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣   2 −𝑣𝑣𝑣𝑣𝑣𝑣 ∣
2

= ∣ 1𝑞𝑞2 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1((𝑢𝑢1 −𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜒𝜒1((𝑢𝑢2 −𝑣𝑣𝑣𝑣𝑣𝑣 ∣
2

.

By Proposition 32, both sums are non-zero if and only if 𝑢𝑢1 = 𝑢𝑢2 =𝑣𝑣 . In this case, they both evaluate to
𝑞𝑞.

Proposition 36 (Linear Probabilities of the Branch Duplication). Let 𝑑𝑑 𝑑 𝑑𝑑𝑞𝑞 → 𝔽𝔽𝑞𝑞 × 𝔽𝔽𝑞𝑞 be given by
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   , then

LP𝑑𝑑(𝑢𝑢𝑢 𝑢𝑢𝑢1,𝑣𝑣 2))=  {
1 if 𝑢𝑢 𝑢 𝑢𝑢1 +𝑣𝑣 2,
0 otherwise,

for all masks 𝑢𝑢 𝑢 𝑢𝑢𝑞𝑞 at the input of 𝑑𝑑, and mask (𝑣𝑣1,𝑣𝑣 2)∈𝔽𝔽  2𝑞𝑞 at the output of 𝑑𝑑.

Proof. Remember that LP𝑑𝑑(𝑢𝑢𝑢 𝑢𝑢𝑢1,𝑣𝑣 2))=  ∣ 1
𝑞𝑞
∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝜒𝜒𝑣𝑣1+𝑣𝑣2(𝑥𝑥𝑥∣
2

. By Proposition 32, the sum is non-

zero if and only if 𝑢𝑢 𝑢 𝑢𝑢1 +𝑣𝑣 2. In this case, it evaluates to 𝑞𝑞.

Proposition 37 (Linear Probabilities of a 𝔽𝔽𝑞𝑞-Linear Transformation.). Let 𝐿𝐿 𝐿𝐿𝐿 𝑚𝑚𝑞𝑞 → 𝔽𝔽𝑚𝑚𝑞𝑞 be a linear
transformation, then

LP𝐿𝐿(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 {
1 if 𝑢𝑢 𝑢 𝑢𝑢⊤𝑣𝑣𝑣
0 otherwise,

for all masks 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑚𝑚𝑞𝑞 .

Proof.

LP𝐿𝐿(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1(𝑢𝑢⊤𝑥𝑥 𝑥 𝑥𝑥⊤𝐿𝐿𝐿𝐿𝐿∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1(𝑢𝑢𝛵𝛵𝑥𝑥 𝑥 𝑥𝑥𝑥⊤𝑣𝑣𝑣⊤𝑥𝑥𝑥∣
2

= ∣1𝑞𝑞 ∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1((𝑢𝑢 𝑢𝑢𝑢 ⊤𝑣𝑣𝑣⊤𝑥𝑥𝑥∣
2

.

The result now follows from Proposition 32.
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D On interpolation attacks

C.3 Differential attacks – details

As mentioned in subsection 7.4.2, we built a state finite machine in Figure 7.9 that represents all sets of
encountered differences as states that are associated to their differential probabilities. We focus on the
prime case, but the results are analogous in 𝔽𝔽2𝑛𝑛.

In order to understand the Figure, we mention that:

• all entries are fixed differences, where (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥, with 𝑥𝑥 𝑥 𝑥𝑥, 𝑥𝑥 𝑥 𝑥𝑥, and 𝑧𝑧𝑧𝑧𝑧  .

• in order to simplify the Figure, we use only three letters 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 to denote the differences for each
branch. Most of the time, the value of the differences 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 at the input are not equal to the
value of the differences 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 at the output. For instance, if we consider the one-round difference
{(𝑥𝑥𝑥RC4𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥, the value of the input difference 𝑥𝑥 is usually not equal to the value
of the output difference 𝑥𝑥. Only in a few cases, the values of the differences 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 at the input are
exactly equal to the value of the differences 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 at the output. This is the case for {(0,0,  𝑥𝑥𝑥𝑥 𝑥
{(𝑥𝑥𝑥RC4𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 in 𝔽𝔽2𝑛𝑛.

• all arrows with a plain line represents a differential probability 𝑝𝑝−1 in 𝔽𝔽𝑝𝑝 (similarly, 2−𝑛𝑛 for the
analogous case in 𝔽𝔽2𝑛𝑛); except for the arrow with a doted line that has a probability one.

• an arrow starting with a diamond and ending with a hollow head indicates that the round con-
stantRC4 that is mentioned in the states before and after the considered round (↦), comes from
a previous round. In other words, if we consider the round ℓ, the round constant RC4𝑗𝑗 that
is written in the difference states before/after this round, is introduced in a round 𝑗𝑗 𝑗 𝑗. In
addition, it is possible that the round constant RC4ℓ of the considered ℓ-th round is equal to
the round constant of the previous or preceding state(s). This highly determines the output
state of {(−RC4𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥. For instance, if we examine the round ℓ that has the input differences
{(−RC4𝑗𝑗𝑗𝑗𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥, the output differences can be either {(𝑥𝑥𝑥RC4𝑗𝑗𝑗𝑗𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 or {(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 depend-
ing on whetherRC4𝑗𝑗𝑗𝑗 = RC4ℓ, if none of the output differences is equal to zero.

D On interpolation attacks

In our keyed mode that is depicted in Figure 7.3, the subkeys 𝐾𝐾𝑖𝑖 are derived from two master key ele-
mentsMK 1 andMK 2. We analyze in this section how an attacker can gather many equations with the
secrets𝐾𝐾1 and𝐾𝐾2 for the permutation 𝑝𝑝𝐶𝐶. As explained for higher-order differential attacks, the goal is to
guarantee that the output of 𝑝𝑝𝐶𝐶 appears to be randomly generated. For the sake of simplicity, we neglect
in these observations any further additions of key elements and application of 𝑝𝑝𝛦𝛦. Moreover, we study
the upper bounds on the number of monomials that is needed to solve a system of equations.
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Figure 7.9: Differential trails for the round function in 𝔽𝔽𝑝𝑝. The three-round differential trail with the highest DP
from subsection 7.4.2, is highlighted in yellow.

An upper bound on the number of monomials.

We know from subsection 7.4.3 that the number of rounds required to reach a degree 𝑑𝑑𝔽𝔽𝑝𝑝, or 𝑑𝑑𝔽𝔽2𝑛𝑛 , of
approximately 2𝑠𝑠 is 𝑠𝑠𝑠𝑠 for either𝐾𝐾1 and𝐾𝐾2. Hence, themaximumnumber of possible monomials 𝜇𝜇 of
the maximal possible combinations of𝐾𝐾1 and𝐾𝐾2 up to degree 2𝑠𝑠 is 22𝑠𝑠. This means that if the diffusion
is decent, the equations containing the secret variables are likely to have at least 2𝑠𝑠 monomials.

The number of rounds that provides resistance against higher-order differential attacks should also
guarantee sufficient protection against interpolation attacks [46] which use trivial linearization of all
monomials. Indeed, this attack strategy aims to construct a polynomial corresponding to the encryp-
tion function without any knowledge of the secret key. If an adversary can construct such an interpola-
tion polynomial without using the full code book, then they can potentially employ it to set up, e.g., a
key-recovery attack.

In order to set up the system of equations that describes the scheme, the attacker first needsmore than
2𝑠𝑠 inputs/outputs, which exceeds the security level. In the following, let us assume that the attacker can
collect 2𝑠𝑠 of such equations. In order to solve this system of equations, the adversary could substitute
each monomial by another variable in order to linearize the system. The cost of this attack is of 𝑂𝑂(2𝑠𝑠𝑠𝑠)
field operations with 𝜔𝜔 𝜔 𝜔. However, that is behind the security level, if the chosen number of rounds
guarantees security against the higher-order differential attack.
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E Other attack vectors and details

For completeness, we mention that the interpolation attack has a meet-in-the middle variant that sig-
nificantly reduces the number of monomials in the system of equations which describes our rounds.
However, in our construction that is illustrated in Figure 7.3, this variant is difficult to perform because
the output is always truncated. Hence, part of the output changes while remaining secret. Each collected
equation thus adds new secret variables to the system of equations. In that respect, we do not think
that an meet-in-the-middle style approach would work for a trivial linearization. Nonetheless, equation
solving approaches might succeed, like Gröbner bases that we discuss in subsection 7.4.4, but it is not
restricted to it. Therefore, we study the equation systems obtained after a few rounds in subsection 7.4.5
to reveal any special exploitable structures in the equation systems. For example, we search for sparse
equations.

Algebraic attack (over 𝔽𝔽2𝑛𝑛): caseRC4𝑖𝑖 = 1.

The behavior of our round function with the round constantsRC4𝑖𝑖 set to one is presented in Table 7.8.
If we compare the number of monomials in Table 7.8 with Table 7.3, the number of monomials in the
Table 7.8 is clearly lower. Furthermore, if we consider themonomials of degree three until the round six,
we only reach eight out of ten possible monomials, whereas we have all ten monomials in 𝔽𝔽𝑝𝑝 (Table 7.2).
A deeper study reveals that out of all possible monomials of degree three, 𝑎𝑎0𝑏𝑏0𝑐𝑐0 and 𝑐𝑐30 are missing. The
first one is lacking due to the use of the Toffoli gate, and hence, the value 𝑐𝑐0 is amended to 𝑎𝑎0𝑏𝑏0 + 𝑐𝑐0 at
the very beginning. In addition, 𝑐𝑐30 is missing due to the interaction in the linear part. Hence, we observe
that the polynomial is more sparse (or equivalently, less dense) than whenRC4𝑖𝑖 ≠ 1.

E Other attack vectors and details

In this section, we discuss attack vectors that are not directly covered by the previous sections. These
attack vectorsmostly include attacks exploiting strongly aligned round functions, but also distinguishers
only applicable to the permutation.

Truncated and impossible differential attacks.

A variant of differential cryptanalysis is the truncated differential cryptanalysis [48]. In the latter, the
attacker does not fix the values of the differences, but specifies conditions between the differences of the
branches of the round that should be satisfied, or fixes some differences at the input of the branches to
zero. The attacker works with truncated differential characteristics, which are a collection/set of several
differential characteristic.

Impossible differential cryptanalysis was introduced by Biham et al. [16] andKnudsen [47]. It exploits
differentials that occur with probability zero.
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

Regarding our scheme,wedonot expect these two attacks to outperform the attacks that are presented
in section 7.4. As an example, a truncated differential with probability one covering one round can be
used as starting point to present an impossible differential for two rounds:

{(0, 0, 𝑥𝑥𝑥𝑥
prob. 1
−−−−−→ {(𝑥𝑥𝑥RC4ℓ𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥

prob. 1
←−−−−− {(𝑦𝑦𝑦RC4ℓ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

where (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥.

Zero-sum distinguishers.

Zero-sum distinguishers [20] are so-called inside-out distinguishers on the permutation. With this type
of distinguishers, an attacker crafts an initial structure that is placed somewhere in the middle of the
permutation, and computes forward to the input and backward output of the permutation. An attacker
can compute a set of input and output values that sums to zero by carefully selecting and employing the
initial structure, and choosing the algebraic degree of the round function and the inverse of the round
function.

To prevent the use of such distinguishers against our round function, we need at least 2𝑠𝑠 rounds. We
are fairly confident that this distinguishing property is unlikely to extend towards distinguisher of the
usedmodes. For instance, zero-sumdistinguisher on fullKeccak-𝑝𝑝 [20] arewell known. On the contrary,
attacks on constructions that use 12 rounds of the Keccak permutation, and that exploit this property
are not known. This is half the number of rounds.

Boomerang and differential-linear distinguishers.

Boomerang [62] and differential-linear [50] distinguishers, and their variants, rely on chaining two good
differential/linear trails. As studied in section 7.4, we have at least one active multiplication per three
rounds in our trail. Those distinguishers are then rather unlikely. However, even if an attacker can find
good differentials, or linear hulls, a differential-linear/boomerang distinguisher can only cover up to six
rounds.

Zero-correlation attacks.

As their name suggest, these attacks exploit linear hulls with a zero correlation [18]. In general, those
linear hulls are found by a miss-in-the-middle approach. For example, we need to find two trails that
propagate some deterministic properties, and then to combine them, in order to ensure that the property
cannot be fulfilled. However, our permutations have at least nine rounds, and based on the results of our
differential and linear analysis, we assume that finding impossible differentials or zero-correlation linear
hulls is infeasible.
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F Security analysis – data limit 2𝑠𝑠𝑠𝑠

More attacks exploiting strong alignment.

As a cipher working natively on larger field elements, Ciminion could be considered to be strongly
aligned. Many more attack vectors exist that exploit strong alignment on ciphers, especially for AES
(see [41]). However, we conjecture that such attacks become quickly infeasible, because the security level
is tied to the size of the field element, and there is a huge number of rounds compared to the number of
field elements that form the state.

F Security analysis – data limit 2𝑠𝑠𝑠𝑠

For applications likeMPC, given a security level of 𝑠𝑠 bits, the data is limited to 2𝑠𝑠𝑠𝑠 (namely, related to the
birthday bound) instead of 2𝑠𝑠. For this reason, we analyze in this section the number of rounds that is
required toprovide security, if limiteddata is available to the attacker. We focusour attentiononalgebraic
attacks, which are the most powerful ones against our cipher. In the following, we demonstrate that a
lower number of rounds, w.r.t. the ones given previously, is sufficient to provide security. Additionally,
we verify that the chosen number of rounds guarantees security against statistical attacks.

Interpolation attack.

The amount of data that is available to the attacker highly impacts the interpolation attack. Indeed, this
attack can be set up if the number of texts is higher than or equal to the number of monomials that
defines the polynomial. Since the number of monomials is related to the degree of the polynomial, a
lower number of rounds (w.r.t. the one given previously) is sufficient to prevent this attack. In particu-
lar, assuming that the polynomial that describes the scheme is dense, since the degree grows as 2𝑟𝑟 after 𝑟𝑟
rounds, approximately 𝑠𝑠𝑠𝑠 rounds are sufficient to prevent the attack (for data limited to 2𝑠𝑠𝑠𝑠). We arbi-
trarily decided to increase the number of rounds for 𝑝𝑝𝐶𝐶 to 2/3 ⋅ 𝑠𝑠 to provide some extra security against
this attack.

Gröbner basis attack.

The Gröbner basis attack that is described in the previous sections, requires a few number of texts that
are much lower than 2𝑠𝑠𝑠𝑠. Hence, the analysis that is presented in subsection 7.4.4, can also be applied in
this case. The number of rounds for 𝑝𝑝𝐶𝐶 must thus be higher than 𝑠𝑠𝑠𝑠, while the number of rounds for
𝑝𝑝𝛦𝛦 must be equal to ⌈ 𝑠𝑠𝑠𝑠𝑠

12
+ 1.5⌉.

Statistical attacks.

Since the efficiency of statistical attacks depends on the amount of data that is available to the attacker,
a lower number of rounds w.r.t. the standard one is still sufficient to guarantee security. We arbitrarily
decided in this case to keep the same number of rounds as in the standard scenario, namely at least six
rounds.
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

Conclusion.

We conjecture that 2/3 ⋅ (𝑠𝑠 𝑠 𝑠𝑠 rounds for 𝑝𝑝𝐶𝐶, and ⌈
𝑠𝑠𝑠𝑠𝑠

12
+ 1.5⌉ rounds for 𝑝𝑝𝛦𝛦, are sufficient to provide a

security level of 𝑠𝑠 bits, if the amount of data available to the attacker is limited to 2𝑠𝑠𝑠𝑠. Due to argument
analogous the ones given in section7.4, this number of roundsprovides security against statistical attacks,
and higher-order differential attack.

G Relatedworks: MPC costs for several ciphers published in
the literature

G.1 Relatedworks

MiMC.

MiMC [3] is a scheme that has been proposed over 𝔽𝔽𝑞𝑞, where 𝑞𝑞 is either a prime 𝑝𝑝, or a power of 2 𝑞𝑞 𝑞 𝑞𝑛𝑛,
where gcd(𝑝𝑝 𝑝 𝑝𝑝 𝑝𝑝𝑝𝑝   or 𝑛𝑛 odd. The round function of the block cipher is defined as

𝑅𝑅𝑖𝑖(𝑥𝑥𝑥𝑥  𝑥𝑥3 ⊕ 𝑘𝑘 𝑘 𝑘𝑘𝑖𝑖 or 𝑅𝑅𝑖𝑖(𝑥𝑥𝑥𝑥  𝑥𝑥3 + 𝑘𝑘 𝑘 𝑘𝑘𝑖𝑖 ,

for a round constant 𝑐𝑐𝑖𝑖, and a master key 𝑘𝑘. In 𝔽𝔽𝑞𝑞𝑡𝑡, the cipher MiMC can be used in CTR-mode.
The number of rounds is equal to ⌈log3(𝑝𝑝𝑝𝑝, or ⌈𝑛𝑛 𝑛 log3(2)⌉. InMPC application, the cost to evaluate

a text in 𝔽𝔽𝑡𝑡 is thus given by

# multiplications: 2𝑡𝑡 𝑡𝑡 log3(𝑝𝑝𝑝𝑝 𝑝

(# online, # offline) rounds: (⌈log3(𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝

for both the binary and the prime case (it is sufficient to replace 𝑝𝑝with 2𝑛𝑛). We refer to [42] for a detailed
explanation about the possibility to evaluate 𝑥𝑥 𝑥 𝑥𝑥3 with a single communication round. Moreover,
evaluating 𝑥𝑥 𝑥 𝑥𝑥3 requires two multiplications in MPC applications in the binary case.
We make some observations. First of all, in a “classical” application, the number of multiplications in

the binary case can be divided by two, since 𝑥𝑥 𝑥 𝑥𝑥2 does not require any multiplication. Secondly, for
the Boolean case only, a new attack on full MiMC has been presented recently [35]. The latter attack
combines a distinguisher based on higher-order differential technique (that can cover up to ⌈(𝑛𝑛 𝑛𝑛𝑛𝑛 
log3(2)⌉−1 rounds) with an interpolation technique. Thatmakes it possible to find the secret key. Since
the data cost of such attack is half of the full code-book, it does not apply in this context, because we are
workingwith a PRF. Indeed, we only consider attackswhose complexities are below the birthday bound.

GMiMC𝑒𝑒𝑒𝑒𝑒𝑒.

GMiMC𝑒𝑒𝑒𝑒𝑒𝑒 [2] is a scheme fromGMiMC family over 𝔽𝔽𝑝𝑝𝑡𝑡. The round function is defined as

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡)→  (𝑥𝑥2 + (𝑥𝑥1 + 𝑘𝑘(𝑖𝑖𝑖)3, 𝑥𝑥3 + (𝑥𝑥1 + 𝑘𝑘(𝑖𝑖𝑖)3, … , 𝑥𝑥𝑡𝑡 + (𝑥𝑥1 + 𝑘𝑘(𝑖𝑖𝑖)3, 𝑥𝑥1).
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The detail regarding the key schedule is explained in [2]. We note that the round keys can be precom-
puted, thus they do not influence the cost inMPC applications. Under the assumption that 𝑝𝑝 𝑝 𝑝𝑝, and
for a security level of log2(𝑝𝑝𝑝 bits, the number of rounds is given by10

max{2 + 2 ⋅ (𝑡𝑡𝑡𝑡𝑡  2), ⌈2 ⋅ log3(𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝𝑝}.

More precisely, the designers deduced that 2 + (𝑡𝑡𝑡𝑡𝑡  2)/2 are sufficient to prevent differential attacks,
under the assumption that there is a differential trail for 𝑡𝑡𝑡𝑡𝑡  2 rounds with prob. 4 ⋅ 𝑝𝑝−2. However,
in [15], the authors demonstrated that such differential trail has a probability equal to 2 ⋅ 𝑝𝑝−1. Conse-
quently, they proved the existence of differential distinguishers that can cover the full cipher (and even
more). For this reason, we adapted the number of rounds as suggested by the authors of [2] (in a private
communication11).

With the same application as in MiMC, the MPC cost using GMiMC𝑒𝑒𝑒𝑒𝑒𝑒 is given by:

# multiplications: 2 ⋅max{2 + 2(𝑡𝑡𝑡𝑡𝑡  2), ⌈2 ⋅ log3(𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝𝑝} ,

(# online, # offline) rounds: (max{2 + 2(𝑡𝑡𝑡𝑡𝑡  2), ⌈2 ⋅ log3(𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝𝑝}, 0) .

Vision.

Vision [5] is an AES-like scheme that works over 𝔽𝔽2𝑛𝑛𝑡𝑡 for any 𝑛𝑛 𝑛 𝑛, and 𝑡𝑡𝑡𝑡  . The round function is
composed of two sub-rounds. It is defined as the following: 𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅2 ∘ 𝑅𝑅1(⋅), with

𝑅𝑅1(⋅)=  𝑘𝑘 𝑘𝑘𝑘 𝑘 [𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵] , and 𝑅𝑅2(⋅)=  𝑘𝑘′ ⊕𝑀𝑀𝑀  [𝐵𝐵−1 ∘ 𝑆𝑆𝑆𝑆𝑆] .

The S-box layer 𝑆𝑆𝑆𝑆𝑆 is defined as the concatenation of S-boxes that work at word level, and that are
defined as 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥 (where 1/0 ∶= 0). In addition, 𝐵𝐵𝐵𝐵𝐵 is defined as the concatenation of invertible
linearized polynomials that work at a word level, and that are defined as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  4 ⊕ 𝑏𝑏2 ⋅ 𝑥𝑥2 ⊕ 𝑏𝑏3 ⋅ 𝑥𝑥 𝑥𝑥𝑥 4.
In addition, 𝑀𝑀 is a 𝑡𝑡𝑡𝑡𝑡  MDS matrix. For a security level of 𝑛𝑛 bits, the number of rounds is equal to
max{10, 2⌈𝑛𝑛𝑛𝑛𝑛𝑛𝑛

8𝑡𝑡
⌉, 2⌈ 2𝑛𝑛

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
⌉}.

Concerning the number of multiplications, the only non-linear operation is the inverse. In a MPC
application, the inversion step can be evaluated by using the technique of Bar-Ilan and Beaver [10]. In
brief, given 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 s.t. 𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 (where 𝑦𝑦 𝑦 𝑦), the idea is to manipulate the equality 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥 rather
than 𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥. This procedure requires two communication rounds, andworks for all non-zero elements
𝑥𝑥 𝑥 𝑥𝑥2𝑛𝑛. In scenarios where the shared value is unlikely to be zero (i.e., if the field is large enough), this
technique can be used directly. Ignoring the zero test, the total cost of thismethod is one communication
round. In the latter, it is possible tomerge amultiplication, and an opening call. As presented in [5, App.

E.2 of Version: 20190520:100450], 𝐵𝐵𝐵𝐵𝐵 and 𝐵𝐵−1(⋅) require respectively two and three multiplications in

10The Gröbner basis attack does not outperform the interpolation attack under the assumption 𝑝𝑝 𝑝 𝑝𝑝.
11The goal is to guarantee that each differential trail has probability lower than 𝑝𝑝−2⋅𝑡𝑡 for a security level of log

2
(𝑝𝑝𝑝 bits.
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MPC.Like previously, to give an overview, instead of using𝐵𝐵−1(𝑥𝑥𝑥 𝑥 𝑥𝑥, the idea is toworkwith 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 
(remember that 𝐵𝐵𝐵𝐵𝐵 is semi-linear in the sense that 𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵  𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵).

It results that the cost in MPC protocol to working over 𝔽𝔽𝑡𝑡 (for a security level of 𝑛𝑛 bits) is given by

# multiplications: 7𝑡𝑡 𝑡max{10, 2⌈𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛8𝑡𝑡 ⌉, 2⌈ 2𝑛𝑛
(𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡⌉} ,

# online rounds: 5 ⋅max{10, 2⌈𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛8𝑡𝑡 ⌉, 2⌈ 2𝑛𝑛
(𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡⌉} ,

# offline rounds: 2 ⋅max{10, 2⌈𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛8𝑡𝑡 ⌉, 2⌈ 2𝑛𝑛
(𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡⌉} .

We refer to [5, Version: 20190520:100450] for all details about the number of online/offline rounds. In
this section, we solely recall that such numbers are independent of the number of S-boxes computed in
parallel.

In comparison, the number of multiplications in a “classical setting” is much higher. In particular,
using a square-and-multiply strategy, 𝑥𝑥 𝑥 𝑥𝑥−1 = 𝑥𝑥2𝑛𝑛−2 requires 𝑛𝑛𝑛𝑛multiplications and 𝑛𝑛𝑛𝑛 squarings
(see [5, App. F of Version: 20190520:100450]). In this case, the total number of multiplications is higher,
and is given by 2𝑡𝑡 𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡𝑡 max{10, 2⌈𝑛𝑛𝑛𝑛𝑛𝑛𝑛

8𝑡𝑡
⌉, 2⌈ 2𝑛𝑛

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
⌉} ∈ 𝒪𝒪𝒪𝒪𝒪𝒪𝒪𝒪𝒪  .

Rescue.

Rescue [5] is anAES-like scheme that works over 𝔽𝔽𝑝𝑝𝑡𝑡 for a prime 𝑝𝑝 𝑝 𝑝, and 𝑡𝑡 𝑡𝑡 . Let 𝛼𝛼 𝛼𝛼  be the lowest
integer s.t. gcd(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . The round function that is composed of two sub-rounds𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅2 ∘𝑅𝑅1(⋅)
is defined as follows:

𝑅𝑅1(⋅)=  𝑘𝑘 𝑘𝑘𝑘 𝑘 𝑘𝑘−1(⋅) , and 𝑅𝑅2(⋅)=  𝑘𝑘′ +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

The S-box layer 𝑆𝑆𝑆𝑆𝑆 is defined as the concatenation of S-boxes that work at word level, where as 𝑥𝑥 𝑥 𝑥𝑥𝛼𝛼

(and S-box−1(𝑥𝑥𝑥 𝑥 𝑥𝑥1/𝛼𝛼). 𝑀𝑀 is a 𝑡𝑡 𝑡 𝑡𝑡MDS matrix. For a security level of ≈ log2(𝑝𝑝𝑝 bits and 𝛼𝛼 𝛼𝛼 , the

number of rounds is equal to max{10, 2 ⋅ ⌈
log2(𝑝𝑝𝑝𝑝𝑝

4𝑡𝑡
⌉; 2 ⋅ ⌈

2 log2(𝑝𝑝𝑝

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡log2(𝑝𝑝𝑝𝑝𝑝𝑝
⌉}.

The only non-linear operations of Rescue to consider are the 𝛼𝛼, and inverse-𝛼𝛼 powermaps. For any ar-
bitrary large 𝛽𝛽, 𝑥𝑥 𝑥 𝑥𝑥𝛽𝛽 can be computed by adapting the exponentiation technique that was introduced
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by Damgård et al. [30]. This technique requires ⌈log2 𝛽𝛽𝛽 𝛽 𝛽multiplications. Hence, the cost in a MPC
protocol is given by

# multiplications:

𝑡𝑡 𝑡 𝑡𝑡𝑡log2 𝛼𝛼𝛼𝛼𝛼  𝛼 𝛼max{5; ⌈
log2(𝑝𝑝𝑝𝑝𝑝 

4𝑡𝑡 ⌉; ⌈
2 log2(𝑝𝑝𝑝

(𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡log2(𝑝𝑝𝑝 𝑝 𝑝𝑝
⌉} ,

# online rounds: 4⋅ max{5; ⌈
log2(𝑝𝑝𝑝𝑝𝑝 

4𝑡𝑡 ⌉; ⌈
2 log2(𝑝𝑝𝑝

(𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡log2(𝑝𝑝𝑝 𝑝 𝑝𝑝
⌉} ,

# offline rounds:

(2⌈log2 𝛼𝛼𝛼𝛼𝛼  𝛼 𝛼max{5; ⌈
log2(𝑝𝑝𝑝𝑝𝑝 

4𝑡𝑡 ⌉; ⌈
2 log2(𝑝𝑝𝑝

(𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡log2(𝑝𝑝𝑝 𝑝 𝑝𝑝
⌉} ,

where we refer to [5, Version: 20190520:100450] for more details about the number of online/offline
rounds.

In comparison, the number of multiplications is higher in a “classical setting”. In particular, 𝑥𝑥𝛼𝛼 re-
quires approximately ⌈log2 𝛼𝛼𝛼multiplications, while 𝑥𝑥1/𝛼𝛼 requires approximately ⌈log2 𝛼𝛼𝛼𝛼𝛼 log2 𝑝𝑝𝑝mul-
tiplications (see [5, App. F of Version: 20190520:100450]). For this reason, by applying a square-and-
multiply strategy, thenumberofmultiplications is higher, and approximately givenby2𝑡𝑡𝑡(2⌈log2 𝛼𝛼𝛼𝛼𝛼  log2 𝑝𝑝𝑝)⋅

max{5, ⌈
log2(𝑝𝑝𝑝𝑝𝑝

4𝑡𝑡
⌉; ⌈

2 log2(𝑝𝑝𝑝

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡log2(𝑝𝑝𝑝𝑝𝑝𝑝
⌉} ∈ 𝒪𝒪𝒪log2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝

G.2 About fork-like ciphers

Our design is based on a modified version of Farfalle that can be viewed as a generalization of the “Fork-
Cipher” design [7]. A ForkCipher design is instantiated by keyed permutations𝑃𝑃𝑘𝑘, 𝑃̂𝑃𝑘𝑘, 𝑃̃𝑃𝑘𝑘 over𝔽𝔽, which are
in general defined as the concatenation of a certain number of rounds of a given cipher. In this design,
every input 𝑥𝑥 𝑥𝑥𝑥  is mapped to

ForkP(𝑥𝑥𝑥 𝑥 𝑥𝑃̂𝑃𝑘𝑘 ∘ 𝑃𝑃𝑘𝑘(𝑥𝑥𝑥𝑥 𝑃̃𝑃𝑘𝑘 ∘ 𝑃𝑃𝑘𝑘(𝑥𝑥𝑥𝑥𝑥𝑥𝑥  2.

However, unlike our design, a Fork-like cipher is invertible. That is to say, given ForkP(𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥, the
following operations are possible:

Decryption: 𝑥𝑥 𝑥 𝑥𝑥−1
𝑘𝑘 ∘ 𝑃̂𝑃−1

𝑘𝑘 (𝑦̂𝑦𝑦𝑦𝑦𝑦  −1
𝑘𝑘 ∘ 𝑃̃𝑃−1

𝑘𝑘 (𝑦̃𝑦𝑦𝑦

Inversion: 𝑃̃𝑃𝑘𝑘 ∘ 𝑃̂𝑃−1
𝑘𝑘 (𝑦̂𝑦𝑦𝑦𝑦𝑦𝑦   and 𝑃̂𝑃𝑘𝑘 ∘ 𝑃̃𝑃−1

𝑘𝑘 (𝑦̃𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

None of them is possible in our design, because the input of the middle phase is obtained by adding the
outputs of the compression phase, and because of the truncation applied on the output words.
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Figure 7.10: Authenticated encryption with Ciminion plus Wegman-Carter MAC over 𝔽𝔽2𝑛𝑛. The construction is
similar over 𝔽𝔽𝑝𝑝 (⊕ is replaced by +, the addition modulo 𝑝𝑝).

H Towards an authenticated encryption scheme

A potential direction that can be explored when authenticated encryption is needed, is to pair our en-
cryption scheme with a Wegman-Carter MAC [23]. This makes it possible to process one ciphertext
element with one field multiplication as shown in Figure 7.10.

To bemore specific, to augmentCiminionwith the authentication of ciphertexts, a similar approach
toGHASHthat is part ofGCM[52], canbeused. In further detail, our constructionuses𝑇𝑇 𝑇 uhash(K̂ ,C)+
prf (𝒩𝒩𝒩, where uhash(K̂ ,C) = 𝐶𝐶1𝐾̂𝐾2𝑙𝑙𝑙𝑙 + 𝐶𝐶2𝐾̂𝐾2𝑙𝑙 + ⋯𝐶𝐶2𝑙𝑙𝐾̂𝐾2 + len(𝐶𝐶𝐶𝐾̂𝐾 with 𝐾̂𝐾 as secret key element,
len(𝐶𝐶𝐶 the number of field elements in 𝐶𝐶, and prf (𝒩𝒩𝒩 an instantiation that is part of our Farfalle-like
construction (Figure 7.3).

The security of the resulting Wegman-Carter MAC depends on the security of the used instance of
prf (𝒩𝒩𝒩, and the 𝜖𝜖-almost-Δ-universality of the universal hash function uhash(K̂ ,C) that is employed.
We have𝑃𝑃𝑃uhash(K̂ ,C)+uhash(K̂ ,C ′) = 𝐴𝐴𝐴 𝐴 𝐴𝐴 for any constant𝐴𝐴 over a uniformly random choice of
𝐾̂𝐾. FollowingMcGrew and Viega [52] for our choice of uhash(K̂ ,C), we have 𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖−𝑛𝑛 for 𝔽𝔽2𝑛𝑛, or
𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 for 𝔽𝔽𝑝𝑝, where 2𝑙𝑙 is themaximal number of elements per call to authenticated encryption or
decryption. Like mentioned by Procter [56], an adversary then has an advantage that is at most 𝛽𝛽𝛽𝛽 plus
the advantage in breaking prf (𝒩𝒩𝒩 for creating a forgery. In this case, 𝛽𝛽 is the total number of queries
that are made to the authenticated encryption or decryption. Hence, for maintaining a sufficient level
of security, the maximum length of messages, the maximum number of messages, and the verification
attempts have to be limited.
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Despite the latter restriction and other unfavorable properties [57] of this style of authentication, we
think that the efficiency benefits provided byWegman-Carter-styleMACs in scenarios where finite field
multiplication is the dominant cost factor, reasonably counterbalance its downsides.

I Algorithms

Algorithm 6: Encryption and decryption, where the finite field is either 𝔽𝔽2𝑛𝑛, or 𝔽𝔽𝑝𝑝.
Encryption

Require: key𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾2⌈𝑜𝑜𝑜𝑜𝑜,
nonce𝒩𝒩 𝒩𝒩𝒩 ,
plaintext 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃 𝑜𝑜

Ensure: ciphertext𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 𝑜𝑜

Processing Nonce
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← 𝒩𝒩‖𝐾𝐾1 ‖𝐾𝐾2
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← 𝑝𝑝𝐶𝐶(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)

Encrypting Plaintext
for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 do

𝑂𝑂1 ‖𝑂𝑂2 ‖𝑂𝑂3 ← 𝑝𝑝𝛦𝛦(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)
𝐶𝐶2𝑖𝑖𝑖𝑖 ← 𝑂𝑂1 + 𝑃𝑃2𝑖𝑖𝑖𝑖
if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖OR ⌈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 then

𝐶𝐶2𝑖𝑖 ← 𝑂𝑂2 + 𝑃𝑃2𝑖𝑖
end if
if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 then

𝑆𝑆2 ← 𝑆𝑆2 + 𝐾𝐾𝑖𝑖𝑖𝑖
𝑆𝑆3 ← 𝑆𝑆3 + 𝐾𝐾𝑖𝑖𝑖𝑖
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← rol(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)

end if
end forreturn𝐶𝐶1 ‖… ‖𝐶𝐶𝑜𝑜

Decryption

Require: key𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾2⌈𝑜𝑜𝑜𝑜𝑜,
nonce𝒩𝒩 𝒩𝒩𝒩 ,
ciphertext𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 𝑜𝑜

Ensure: plaintext 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃 𝑜𝑜

Processing Nonce
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← 𝒩𝒩‖𝐾𝐾1 ‖𝐾𝐾2
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← 𝑝𝑝𝐶𝐶(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)

Decrypting Ciphertext
for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 do

𝑂𝑂1 ‖𝑂𝑂2 ‖𝑂𝑂3 ← 𝑝𝑝𝛦𝛦(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)
𝑃𝑃2𝑖𝑖𝑖𝑖 ← 𝑂𝑂1 + 𝐶𝐶2𝑖𝑖𝑖𝑖
if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖OR ⌈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 then

𝑃𝑃2𝑖𝑖 ← 𝑂𝑂2 + 𝐶𝐶2𝑖𝑖
end if
if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 then

𝑆𝑆2 ← 𝑆𝑆2 + 𝐾𝐾𝑖𝑖𝑖𝑖
𝑆𝑆3 ← 𝑆𝑆3 + 𝐾𝐾𝑖𝑖𝑖𝑖
𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← rol(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)

end if
end forreturn 𝑃𝑃1 ‖… ‖𝑃𝑃𝑜𝑜

Algorithm 7: Generation of key elements, where the finite field is either 𝔽𝔽2𝑛𝑛 or 𝔽𝔽𝑝𝑝.
Generation of Key Elements
Require: master keyMK ∈{ 𝔽𝔽𝔽2,
IV𝛨𝛨 ∈ 𝔽𝔽

Ensure: key elements𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾𝑜𝑜

𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← IV𝛨𝛨 ‖MK 1 ‖MK 2
for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖 𝑖𝑖 do

𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3 ← 𝑝𝑝𝐶𝐶(𝑆𝑆1 ‖ 𝑆𝑆2 ‖ 𝑆𝑆3)
𝐾𝐾𝑖𝑖 ← 𝑆𝑆1

end forreturn𝐾𝐾1 ‖… ‖𝐾𝐾𝑜𝑜
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields
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Algorithm 8: Permutation 𝑝𝑝𝛮𝛮 and rolling function rol, where the finite field is either 𝔽𝔽2𝑛𝑛 or 𝔽𝔽𝑝𝑝.
Rolling Function rol
Require: 𝜄𝜄𝑎𝑎 ∈ 𝔽𝔽,
𝜄𝜄𝑏𝑏 ∈ 𝔽𝔽,
𝜄𝜄𝑐𝑐 ∈ 𝔽𝔽

Ensure: 𝜔𝜔𝑎𝑎 ∈ 𝔽𝔽,
𝜔𝜔𝑏𝑏 ∈ 𝔽𝔽,
𝜔𝜔𝑐𝑐 ∈ 𝔽𝔽

𝜄𝜄𝑐𝑐 ← 𝜄𝜄𝑐𝑐 + 𝜄𝜄𝑎𝑎 ⋅ 𝜄𝜄𝑏𝑏
𝜔𝜔𝑎𝑎 ← 𝜄𝜄𝑐𝑐
𝜔𝜔𝑐𝑐 ← 𝜄𝜄𝑏𝑏
𝜔𝜔𝑏𝑏 ← 𝜄𝜄𝑎𝑎

return 𝜔𝜔𝑎𝑎, 𝜔𝜔𝑏𝑏, 𝜔𝜔𝑐𝑐

Permutation 𝑝𝑝𝛮𝛮
Require: 𝑎𝑎 𝑎𝑎𝑎 ,
𝑏𝑏 𝑏𝑏𝑏 ,
𝑐𝑐 𝑐𝑐𝑐

Ensure: 𝑎𝑎 𝑎𝑎𝑎 ,
𝑏𝑏 𝑏𝑏𝑏 ,
𝑐𝑐 𝑐𝑐𝑐

for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 do
𝑐𝑐 𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐  
𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏
𝑎𝑎 𝑎 𝑎𝑎 𝑎 RC4i+E−N ⋅ 𝑏𝑏
𝑑𝑑 𝑑𝑑𝑑𝑑   RC1i+E−N
𝑎𝑎 𝑎𝑎𝑎𝑎   RC3i+E−N
𝑐𝑐 𝑐𝑐𝑐𝑐   RC2i+E−N
𝑏𝑏 𝑏𝑏𝑏

end forreturn 𝑎𝑎, 𝑏𝑏, 𝑐𝑐
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8 Propagation Properties of a
Non-linearMapping Based on Squaring
in Odd Characteristic

Joan Daemen1, Daniël Kuijsters1, Silvia Mella1, Denise Verbakel1

1 – Radboud University, The Netherlands

My contributions. This chapter is based on work accepted at BFA 2023. I was responsible for
writing most of the text and made a contribution by determining the exact values of the correlations of
the squaring mapping.

Abstract. Manymodern cryptographic primitives for hashing and (authenticated) encryptionmake
use of constructions that are instantiated with an iterated cryptographic permutation that operates on a
fixed-width state consisting of an array of bits. Often, such permutations are the repeated application of
a relatively simple round function consisting of a linear layer and a non-linear layer. These constructions
do not require that the underlying function is a permutation and they can plausibly be based on a non-
invertible transformation. Recently, Grassi proposed the use of non-invertible mappings operating on
arrays of digits that are elements of a finite field of odd characteristic for so-called MPC-/FHE-/ZK-
friendly symmetric cryptographic primitives. In this work, we consider a mapping that we call 𝛾𝛾 that has
a simple expression and is based on squaring. We discuss, for the first time, the differential and linear
propagation properties of 𝛾𝛾 and observe that these follow the same rules up to a relabeling of the digits.
This is an intriguing property that, as far as we know, only exists for 𝛾𝛾 and the binary mapping 𝜒𝜒3 that
is used in the cryptographic permutation Xoodoo. Moreover, we study the implications of its non-
invertibility on differentials with zero output difference and on biases at the output of the 𝛾𝛾 mapping
and show that they are as small as they can possibly be.

8.1 Introduction

The round functions in cryptographic permutations of the type Substitution-Permutation Networks
(SPN) consist of a non-linear layer and a linear layer. These layers are chosen and combined so that
there is no exploitable differential propagation from input to output or exploitable correlations between
input and output when used in the context of a construction like the sponge or duplex construction [6],
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8 Propagation Properties of a Non-linearMapping Based on Squaring in Odd Characteristic

Farfalle [5] or Even-Mansour [16]. The relevant properties of thesemappings over binary fields have been
studied extensively, leading to solid designs. However, in the last years there has been a growing interest
in similar functions operating on arrays of digits that are elements of a field of odd characteristic. For
instance, Kölbl et al. designed a ternary cryptographic hash function called Troika [20]. Other examples
are the symmetric primitives defined over F𝑛𝑛𝑝𝑝 likeMiMC [2], GMiMC [1], Poseidon [17], Ciminion [15],

and many others. These are designed to be efficient in the context of Secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK).

There are interesting differences between fields 𝔽𝔽2𝑑𝑑 of characteristic 2 and those of odd characteristic
that we will denote by 𝔽𝔽𝑞𝑞. For instance, addition and subtraction are the same in 𝔽𝔽2𝑑𝑑, but this is not the
case in 𝔽𝔽𝑞𝑞. In 𝔽𝔽2𝑑𝑑, squaring is a linear operation, whereas in 𝔽𝔽𝑞𝑞 squaring is a non-linear operation. In 𝔽𝔽2,
correlations between input and output bits have values that are rational and range from −1 to 1, but in
𝔽𝔽𝑝𝑝, correlations are complex numbers inside the closed unit disk.
This work investigates a mapping over 𝔽𝔽𝑛𝑛𝑞𝑞 that was recently proposed by Grassi [18] and that we call 𝛾𝛾.

This is the mapping defined over 𝔽𝔽𝑛𝑛𝑞𝑞 by 𝛾𝛾𝑖𝑖(𝑥𝑥𝑥 𝑥 𝑥𝑥𝑖𝑖 + 𝑥𝑥2𝑖𝑖𝑖𝑖 for 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 and for all 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 .
The paper is organized as follows. Section 8.2 deals with commonly used notation and conventions

that we follow. In Section 8.3 we recall the basic notions from differential cryptanalysis. An overview
of correlation analysis is presented in Section 8.4. In Section 8.5 we apply this existing theory to the
squaring transformation and derive its DP and LP values. Based on the squaring transformation, we
motivate the choice for 𝛾𝛾 in Section 8.6. The main contribution of this paper lies in Section 8.7 and
Section 8.8, where we study the differential and linear propagation properties of 𝛾𝛾, both in the forward
andbackward direction. Our results are useful in determining themaximumprobabilities of differentials
and differential trails over transformations making use of 𝛾𝛾 in their round function, as in computer-
assisted trail search [12]. Moreover, as the differential and linear propagation properties of 𝛾𝛾 follow the
same rules, our results are also useful to study the correlations of linear approximations and linear trails.
In Section 8.9 we study the collision probability and bias of linear combinations of output digits of 𝛾𝛾.
Finally, we conclude in Section 8.10.

8.2 Notation and conventions

We denote by 𝔽𝔽𝑞𝑞 the finite field of odd characteristic 𝑝𝑝, i.e., 𝑞𝑞 is equal to 𝑝𝑝𝑑𝑑 for some odd prime 𝑝𝑝 and
positive integer𝑑𝑑 𝑑 𝑑. Let𝔽𝔽𝑛𝑛𝑞𝑞 be the vector space of dimension𝑛𝑛 over the finite field𝔽𝔽𝑞𝑞. Given two vectors
𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 , we denote their vector subtraction by 𝑥𝑥 𝑥 𝑥𝑥, i.e., 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥. A vector 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 is indexed
by the set ℤ/𝑛𝑛𝑛. We denote its 𝑖𝑖th coordinate by 𝑥𝑥𝑖𝑖 and call it a digit. The dot product between 𝑥𝑥 and 𝑦𝑦
is defined as 𝑥𝑥⊤𝑦𝑦𝑦  𝑦𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖. We write 𝑒𝑒𝑖𝑖 for the vector with all digits equal to 0, except for the digit that
is indexed by 𝑖𝑖, which is equal to 1. The linear span of a set of vectors 𝑆𝑆 𝑆 𝑆𝑆𝑛𝑛𝑞𝑞 is denoted by Span(𝑆𝑆𝑆. A
digit is said to be active if it is non-zero. The Hamming weight HW(𝑥𝑥𝑥 of a vector 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 is the number
of active digits in the vector.

Let 𝑧𝑧 𝑧 C be a complex number. We denote its absolute value as |𝑧𝑧𝑧. We write 𝑧𝑧 for its complex
conjugate.
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8.3 Differential analysis

Let 𝐹𝐹 be a field, then we write 𝐹𝐹∗ for its multiplicative group 𝐹𝐹 𝐹 𝐹𝐹𝐹.

8.3 Differential analysis

First published by Biham and Shamir in [9], differential cryptanalysis is a chosen-plaintext attack that
exploits the non-uniformity of the distribution of differences at the output of a transformation when it
is applied to pairs of inputs with a fixed difference.

Any successful theory of cryptanalysis needs to address the problem of secret key translation. Differ-
ential cryptanalysis deals with this problem by considering differences, which are invariant under trans-
lation. Let 𝑥𝑥 𝑥 𝑥𝑥𝑛𝑛𝑞𝑞 and 𝑥𝑥∗ ∈𝔽𝔽 𝑛𝑛𝑞𝑞 be inputs of a transformation 𝛼𝛼 𝛼 𝛼𝛼𝑛𝑛𝑞𝑞 → 𝔽𝔽𝑛𝑛𝑞𝑞 and let their difference be
𝑎𝑎 𝑎 𝑎𝑎∗ − 𝑥𝑥. Likewise, let 𝑦𝑦 𝑦𝑦𝑦 𝑛𝑛𝑞𝑞 and 𝑦𝑦∗ ∈𝔽𝔽 𝑛𝑛𝑞𝑞 be outputs of 𝛼𝛼 and let their difference be 𝑏𝑏 𝑏𝑏𝑏 ∗ − 𝑦𝑦. The
(ordered) pair (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 containing the input and output difference is called a differential over 𝛼𝛼.
The differential (0,0)  is called trivial. The differential probability (DP) of a differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over the
transformation 𝛼𝛼 is defined as

DP𝛼𝛼(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎−𝑛𝑛∣{𝑥𝑥 𝑥 𝑥𝑥𝑛𝑛𝑞𝑞 ∶ 𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  ∣ .

If DP𝛼𝛼(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎, we say that 𝑎𝑎 and 𝑏𝑏 are compatible differences over 𝛼𝛼. For compatible differences 𝑎𝑎 and
𝑏𝑏, we define the weight of a differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over 𝛼𝛼 as

w𝛼𝛼(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎 log𝑞𝑞(DP𝛼𝛼(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎

A non-trivial differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over 𝛼𝛼 can only lead to a distinguisher if DP𝛼𝛼(𝑎𝑎𝑎 𝑎𝑎𝑎 differs significantly
from 𝑞𝑞−𝑛𝑛, which is the expected DP of any non-trivial differential over a randomly selected transforma-
tion of 𝔽𝔽𝑛𝑛𝑞𝑞 .

8.4 Correlation analysis

Correlation analysis of cryptographic primitives effectively is Fourier analysis on finite abelian groups.
As such, the theory is well-understood and this section serves as a recap. The ideas that we present here
are based on the works of Daemen [13], Baignères et al. [3], and Daemen and Rijmen [14]. Many of the
proofs can be found in the book by Hou [19].

8.4.1 Characters

Let (𝐺𝐺𝐺𝐺𝐺  be a finite abelian group and let 𝑒𝑒 be the (finite) exponent of𝐺𝐺, i.e., the smallest integer 𝑛𝑛 such
that 𝑛𝑛𝑛𝑛𝑛𝑛   for all 𝑎𝑎 𝑎𝑎𝑎 .

A character of 𝐺𝐺 is a homomorphism from 𝐺𝐺 into the subgroup of C∗ consisting of the 𝑒𝑒th roots of
unity. The set of characters of𝐺𝐺 is denoted by 𝐺̂𝐺 and it forms a group under the multiplication defined
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by (𝜒𝜒𝜒𝜒′)(𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎′(𝑎𝑎𝑎 for all 𝑎𝑎 𝑎 𝑎𝑎 and 𝜒𝜒𝜒 𝜒𝜒′ ∈ 𝐺̂𝐺. The groups 𝐺𝐺 and 𝐺̂𝐺 are isomorphic, but this
isomorphism is not canonical.

For a fixed isomorphism between 𝐺𝐺 and 𝐺̂𝐺 and for each 𝑎𝑎 𝑎 𝑎𝑎, we write 𝜒𝜒𝑎𝑎 for the image of 𝑎𝑎 under
this isomorphism. In particular, the character 𝜒𝜒0 that is defined by 𝜒𝜒0(𝑎𝑎𝑎 𝑎 𝑎 for all 𝑎𝑎 𝑎 𝑎𝑎 is called the
trivial character and it is the identity element of the group 𝐺̂𝐺.

Now, let (𝐺𝐺𝐺 𝐺𝐺 𝐺𝐺 be the commutative ring that is obtained by introducing a multiplicative structure
on𝐺𝐺. This is always possible by the fundamental theorem of finite abelian groups. A character 𝜒𝜒 𝜒 𝐺̂𝐺 is
called a generating character for𝐺𝐺 if𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏 for all 𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎. If a commutative ring has a generating
character for its additive group, then 𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏(𝑎𝑎𝑎. In the case that𝐺𝐺 is the direct sum
of 𝑛𝑛 copies of a commutative ring𝑅𝑅 and if𝑅𝑅has a generating character, say𝜙𝜙, thenwe obtain a generating
character 𝜒𝜒 for𝐺𝐺 by setting 𝜒𝜒𝜒𝜒𝜒1, … , 𝑎𝑎𝑛𝑛) = 𝜙𝜙𝜙𝜙𝜙1) ⋯ 𝜙𝜙𝜙𝜙𝜙𝑛𝑛). It holds that 𝜒𝜒𝑎𝑎(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ⊤𝑏𝑏𝑏, where
the multiplication in𝐺𝐺 is defined component-wise.

As an example, consider 𝐺𝐺 equal to 𝔽𝔽𝑞𝑞 and put 𝜔𝜔 𝜔 𝜔𝜔2𝜋𝜋𝜋𝜋𝜋𝜋𝜋. Let Tr ∶ 𝔽𝔽𝑞𝑞 → 𝔽𝔽𝑝𝑝 be the absolute trace
function that is defined by Tr(𝑥𝑥𝑥𝑥  𝑥𝑑𝑑𝑑𝑑

𝑖𝑖𝑖𝑖 𝑥𝑥
𝑝𝑝𝑖𝑖. This is a linear mapping. Each 𝑢𝑢 𝑢𝑢𝑢 𝑞𝑞 defines a generating

character 𝜒𝜒𝑢𝑢 for 𝔽𝔽𝑞𝑞 that is defined by

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥𝑥  Tr(𝑢𝑢𝑢𝑢𝑢, 𝑥𝑥 𝑥𝑥𝑥 𝑞𝑞 .

As a second example, consider 𝐺𝐺 equal to 𝔽𝔽𝑛𝑛𝑞𝑞 , which is a direct sum of 𝑛𝑛 copies of 𝔽𝔽𝑞𝑞. Hence, each
𝑢𝑢 𝑢𝑢𝑢 𝑛𝑛𝑞𝑞 gives a generating character 𝜒𝜒𝑢𝑢 for 𝔽𝔽𝑛𝑛𝑞𝑞 that is defined by

𝜒𝜒𝑢𝑢(𝑥𝑥𝑥𝑥𝑥𝑥  Tr(𝑢𝑢⊤𝑥𝑥𝑥, 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 .

8.4.2 The Fourier transform

Consider the set 𝐿𝐿2(𝐺𝐺𝐺 of functions 𝑓𝑓𝑓𝑓𝑓𝑓   C. Fix an ordering of the element of 𝐺𝐺, e.g., 𝐺𝐺𝐺
{𝑎𝑎0, … , 𝑎𝑎𝑛𝑛𝑛𝑛}. We write 𝜐𝜐𝑓𝑓 = (𝑓𝑓𝑓𝑓𝑓0), … , 𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛)) for the finite sequence of the output values of 𝑓𝑓. By
identifying a function 𝑓𝑓 with the vector 𝜐𝜐𝑓𝑓 ∈ C|𝐺𝐺𝐺, 𝐿𝐿2(𝐺𝐺𝐺 can be seen as a finite-dimensional complex
inner product space with inner product

⟨𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓
𝑎𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    2(𝐺𝐺𝐺𝐺

For any 𝑓𝑓 𝑓𝑓𝑓 2(𝐺𝐺𝐺, the inner product induces a norm by setting

‖𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓 𝑓𝑓𝑓
1

2 .
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8.4 Correlation analysis

The standard basis of 𝐿𝐿2(𝐺𝐺𝐺 is formed by the set of Dirac delta functions {𝛿𝛿𝑎𝑎 ∈ 𝐿𝐿2(𝐺𝐺𝐺 𝐺 𝐺𝐺 𝐺 𝐺𝐺𝐺, which
are defined by

𝛿𝛿𝑎𝑎(𝑏𝑏𝑏 𝑏 {
1 if 𝑎𝑎𝑎𝑎𝑎   𝑎

0 if 𝑎𝑎 𝑎 𝑎𝑎 𝑎

In the context of correlation analysis, the solution to the problemof secret key translation lies in chang-
ing the basis of 𝐿𝐿2(𝐺𝐺𝐺 to the set of characters of𝐺𝐺. For any 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎  , the corresponding characters satisfy
⟨𝜒𝜒𝑎𝑎, 𝜒𝜒𝑏𝑏⟩ = |𝐺𝐺𝐺𝐺𝐺𝑎𝑎(𝑏𝑏𝑏. By normalizing the characters, we obtain an orthonormal basis

Φ𝐺𝐺 = {𝜙𝜙𝑎𝑎 ∶𝑎𝑎𝑎𝑎𝑎𝑎    𝑎

where 𝜙𝜙𝑎𝑎 = |𝐺𝐺𝐺−
1

2 𝜒𝜒𝑎𝑎. By projecting 𝑓𝑓 ontoΦ𝐺𝐺, we find that

𝑓𝑓 𝑓 𝑓
𝑎𝑎𝑎𝑎𝑎

⟨𝑓𝑓𝑓𝑓𝑓 𝑎𝑎⟩𝜙𝜙𝑎𝑎 .

The operator ℱ∶ 𝐿𝐿2(𝐺𝐺𝐺 𝐺 𝐺𝐺2(𝐺𝐺𝐺 that is defined by ℱ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓 𝑎𝑎⟩ for all 𝑎𝑎𝑎𝑎𝑎   is called the
Fourier transform. By identifying a function 𝑓𝑓with 𝜐𝜐𝑓𝑓, the Fourier transform is best described as assign-
ing to𝑓𝑓 its coordinates in the normalized character basis. The Plancherel theorem asserts that the Fourier
transform is unitary, i.e., we have

⟨ℱ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓 2(𝐺𝐺𝐺 𝐺

Let us return to the question of how to address the problem of secret key translation. Let 𝑏𝑏 𝑏𝑏𝑏 . We
define the translation operator 𝑇𝑇𝑏𝑏 ∶ 𝐿𝐿2(𝐺𝐺𝐺 𝐺 𝐺𝐺2(𝐺𝐺𝐺 by (𝑇𝑇𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 for all 𝑎𝑎𝑎𝑎𝑎  . Moreover,
we define the modulation operator 𝑀𝑀𝑏𝑏 ∶ 𝐿𝐿2(𝐺𝐺𝐺 𝐺 𝐺𝐺2(𝐺𝐺𝐺 by (𝑀𝑀𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑏𝑏(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 for all 𝑎𝑎𝑎𝑎𝑎  .
The big insight is that translation turns into modulation when changing from the standard basis to the
normalized character basis, i.e.,

𝑇𝑇𝑏𝑏 = ℱ−1 ∘ 𝑀𝑀𝑏𝑏 ∘ ℱ, 𝑏𝑏 𝑏𝑏𝑏𝑏 

Let 𝐻𝐻 be a finite abelian group and let 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    be a mapping between 𝐺𝐺 and 𝐻𝐻. We want a
representation of 𝐹𝐹 in 𝐿𝐿2(𝐺𝐺𝐺. To that end, let 𝜒𝜒 be any character of 𝐻𝐻. We take as representation the
function 𝜒𝜒 𝜒𝜒𝜒𝜒𝜒𝜒   2(𝐺𝐺𝐺.

8.4.3 Correlation

We now specialize to the case that𝐺𝐺 and𝐻𝐻 are each equal to the vector space 𝔽𝔽𝑛𝑛𝑞𝑞 over the finite field 𝔽𝔽𝑞𝑞.
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Let 𝛼𝛼 𝛼 𝛼𝛼𝑛𝑛𝑞𝑞 → 𝔽𝔽𝑛𝑛𝑞𝑞 be a transformation of 𝔽𝔽𝑛𝑛𝑞𝑞 . We consider pairs (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 that we call linear ap-
proximations of 𝛼𝛼. We refer to 𝑢𝑢 as the outputmask and to 𝑣𝑣 as the inputmask. The linear approximation
(0, 0) is called trivial. The correlation of the linear approximation is defined as

C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢−
𝑛𝑛

2ℱ(𝜒𝜒𝑢𝑢 ∘ 𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝛼

We call the masks 𝑢𝑢 and 𝑣𝑣 compatible over 𝛼𝛼 if C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 is nonzero. In general, correlations are complex
numbers. The linear potential (LP) is a real number and related to a correlation by

LP𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢C𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢

If 𝑢𝑢 and 𝑣𝑣 are compatible over 𝛼𝛼, then we can define the weight of the linear approximation (𝑢𝑢𝑢 𝑢𝑢𝑢 as

w𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢 log𝑞𝑞(LP𝛼𝛼(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢

8.5 The squaring transformation

The squaring transformation 𝛽𝛽𝛽𝛽𝛽 𝑞𝑞 → 𝔽𝔽𝑞𝑞 is defined by 𝑥𝑥 𝑥 𝑥𝑥2 for all 𝑥𝑥 𝑥𝑥𝑥 𝑞𝑞. Because we study the case
of odd characteristic, 𝛽𝛽 is non-linear. We show that 𝛽𝛽 has the property that themaximal DP over all non-
trivial differentials is 𝑞𝑞−1, which is the smallest possible value. A similar property holds for the maximal
LP over all non-trivial linear approximations. In other words, we show that 𝛽𝛽 is a bent polynomial [11].
Note that this is an improvement from the case of characteristic 2, for which these values are both equal
to 2𝑞𝑞−1 and are obtained by, respectively, almost perfect nonlinear and bent functions [10].

First, by applying Theorem 5.33 from [21], we obtain that the correlation of any linear approximation
(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑞𝑞 × 𝔽𝔽𝑞𝑞 with 𝑢𝑢 𝑢 𝑢 of 𝛽𝛽 is equal to

C𝛽𝛽(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢−
1

2ℱ(𝜒𝜒𝑢𝑢 ∘ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽

=𝑞𝑞 −1∑
𝑥𝑥𝑥𝑥𝑥𝑞𝑞

𝜒𝜒1(𝑢𝑢𝑢𝑢2 −𝑣𝑣𝑣𝑣𝑣

= {
𝑞𝑞−

1

2 (−1)𝑑𝑑𝑑𝑑𝜒𝜒1(−𝑣𝑣2(4𝑢𝑢𝑢−1)𝜂𝜂𝜂𝜂𝜂𝜂 if 𝑝𝑝 𝑝 𝑝𝑝 mod 4),

𝑞𝑞−
1

2 (−1)𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝜒𝜒1(−𝑣𝑣2(4𝑢𝑢𝑢−1)𝜂𝜂𝜂𝜂𝜂𝜂 if 𝑝𝑝 𝑝 𝑝𝑝 mod 4),

where 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂   if 𝑢𝑢 is a square in 𝔽𝔽𝑞𝑞 and −1 otherwise. It follows that for all 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑞𝑞 with 𝑢𝑢 𝑢 𝑢we have
LP𝛽𝛽(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢−1. In particular, choosing 𝑣𝑣 equal to zero shows that any linear combination of output
digits of 𝛽𝛽 is imbalanced, i.e., the distribution of this linear combination is non-uniform. If 𝑢𝑢 is 0, then
for all nonzero 𝑣𝑣𝑣𝑣𝑣  𝑞𝑞 we have LP𝛽𝛽(0,𝑣𝑣𝑣𝑣𝑣   , and LP𝛽𝛽(0, 0)=  1.
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8.6 The 𝛾𝛾mapping

Second, consider the equation that relates the input 𝑥𝑥 𝑥 𝑥𝑥𝑞𝑞, the input difference 𝑎𝑎 𝑎𝑎𝑎 𝑞𝑞, and the output
difference 𝑏𝑏 𝑏𝑏𝑏 𝑞𝑞, i.e.,

𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏𝑏

=( 𝑥𝑥 𝑥𝑥𝑥𝑥 2 − 𝑥𝑥2

= 𝑥𝑥2 + 2𝑎𝑎𝑎𝑎𝑎  𝑎𝑎2 − 𝑥𝑥2

= 2𝑎𝑎𝑎𝑎𝑎  𝑎𝑎2 .

Assuming that 𝑎𝑎 𝑎 𝑎 and because the characteristic of 𝔽𝔽𝑞𝑞 is odd, we can solve for 𝑥𝑥 to find that 𝑥𝑥 𝑥
(2𝑎𝑎𝑎−1(𝑏𝑏 𝑏 𝑏𝑏2). Hence, there is exactly one solution to this equation. Dividing by the domain size, 𝑞𝑞,
then shows that DP𝛽𝛽(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎  −1. In particular, any nonzero input difference can propagate to a zero
output difference. If 𝑎𝑎 is 0, then for all nonzero 𝑏𝑏 𝑏𝑏𝑏 𝑞𝑞, we have DP𝛽𝛽(0, 𝑏𝑏𝑏 𝑏 𝑏 and DP𝛽𝛽(0,0)=   1.
We summarize these properties to make the symmetry between the differential and linear case appar-

ent:

• For all 𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑞𝑞)∗ and 𝑏𝑏𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑞𝑞, we have DP𝛽𝛽(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎  LP𝛽𝛽(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   −1;

• For all 𝑏𝑏𝑏 𝑏𝑏 𝑏 𝑏𝑏𝑏𝑞𝑞)∗, we have DP𝛽𝛽(0, 𝑏𝑏𝑏 𝑏 LP𝛽𝛽(0,𝑣𝑣𝑣𝑣𝑣   ;

• We have DP𝛽𝛽(0,0)=   LP𝛽𝛽(0,0)=   1.

8.6 The 𝛾𝛾mapping

Some modern block cipher modes, like GCM [23], CTR and OFB [22], do not use the inverse block
cipher. Similarly, constructions like sponge [7], duplex [6], and Farfalle [5], which are generally based on
permutations, do not use their inverse. Therefore, in such constructions permutations can be replaced
by transformations. An example is the GLUON family of lightweight hash functions [4], which makes
use of the sponge construction on top of a non-invertible map.

A cryptographic transformation can be used as long as collisions and imbalances in the output cannot
be exploited. This can be tackled by either ensuring that such imbalance is very small or by limiting the
attacker’s access to the input and output of the transformation by construction. For instance, in the
sponge and duplex constructions the attacker has control of only the outer part of the state and not of its
inner part. Therefore, if a collision requires a difference in the inner part of the state at the input of the
transformation, the attacker cannot inject it with input messages. Similarly, the attacker has no visibility
of the inner bits or digits of any outputmask. As another example, whitening keys can be added at input
and output, like in Farfalle [5], Even-Mansour [16], and Elephant [8].

We consider the problem of building a non-invertible mapping based on squaring that can be used as
non-linear layer in the round function of cryptographic transformations. When such transformations
are used in constructions that are usually instantiated with permutations, the non-invertibility of the
mapping should be difficult to exploit.
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8 Propagation Properties of a Non-linearMapping Based on Squaring in Odd Characteristic

By definition, such a non-linear layer has pairs of distinct inputs that are mapped to the same output,
i.e., collisions. A naive idea would be to apply 𝛽𝛽 to each digit of the state independently. The problem
with this approach is that each collision for 𝛽𝛽 is trivially extended to a collision for the entire non-linear
layer, giving rise to differentials with DP as high as 𝑞𝑞−1. They are easy to exploit as the adversary needs
access to only a single input digit to generate a local collision. Similarly, any bias in the output of 𝛽𝛽 is
trivially present in the output of the non-linear layer, giving rise to linear approximations with LP as
high as 𝑞𝑞−1. They are easy to exploit as the adversary needs access to only a single output digit to exploit
them. Themeasure of both is inversely proportional to the order of the field. Hence, unless the order of
the field is very large, this leads to unacceptable weaknesses in the cryptographic transformation.

Compared to the above, the non-linear layer in the round function of a cryptographic transformation
should have lower DP and LP and there should not exist local properties that can be extended to global
properties. We achieve this by making the DP of differentials of the form (𝑎𝑎𝑎 𝑎𝑎 and the LP of linear
approximations of the form (𝑢𝑢𝑢𝑢𝑢  small, i.e., equal to the inverse of the domain size. Moreover, any
differential over or linear approximation of the non-linear layer requires access to every digit of the state.

The work by Grassi [18] presents an analysis of a number of mappings based on 𝛽𝛽 that minimize the
probability of a collision in their output. We consider one of these mappings and call it 𝛾𝛾. Concretely,
the mapping 𝛾𝛾 𝛾 𝛾𝛾𝑛𝑛𝑞𝑞 → 𝔽𝔽𝑛𝑛𝑞𝑞 is defined, for all 𝑥𝑥 𝑥 𝑥𝑥𝑛𝑛𝑞𝑞 , by

𝛾𝛾𝑖𝑖(𝑥𝑥𝑥 𝑥 𝑥𝑥𝑖𝑖 + 𝑥𝑥2𝑖𝑖𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖

The remainder of this text is concerned with an analysis of the differential and linear propagation prop-
erties of 𝛾𝛾.

8.7 Differential propagation properties of 𝛾𝛾

Let (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 be a differential over 𝛾𝛾 and let 𝑥𝑥 𝑥 𝑥𝑥𝑛𝑛𝑞𝑞 be an input of 𝛾𝛾. The equations that relate the
input difference 𝑎𝑎 and the output difference 𝑏𝑏 are of the form

𝑏𝑏𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑎𝑎2𝑖𝑖𝑖𝑖 + 2𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖 (8.1)

We consider two cases in the analysis of these equations. In the first case, we fix the input difference 𝑎𝑎
and give a description of the set of compatible output differences 𝑏𝑏. From this, we are able to deduce that
DP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎𝑎 depends only on 𝑎𝑎 and whether 𝑏𝑏 is compatible with 𝑎𝑎 or not.

In the second, reverse case, wefix the output difference𝑏𝑏 andpresent an algorithm for the computation
of the set of compatible input differences 𝑎𝑎. We then derive an expression of the so-called minimum
reverse weight of this set. All these results can be directly applied to perform computer-aided trail search,
as described in [12], in cryptographic transformations instantiated with 𝛾𝛾 as the non-linear layer.

200



8.7 Differential propagation properties of 𝛾𝛾

8.7.1 Forward propagation from a given input difference

We observe that for an input difference 𝑎𝑎, the equations of Equation (8.1) are linear in the digits of 𝑥𝑥. We
make this explicit by writing them as a matrix equation of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

𝑏𝑏0
𝑏𝑏1
𝑏𝑏2
⋮

𝑏𝑏𝑛𝑛𝑛𝑛
𝑏𝑏𝑛𝑛𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

𝑎𝑎0 + 𝑎𝑎21
𝑎𝑎1 + 𝑎𝑎22
𝑎𝑎2 + 𝑎𝑎23

⋮
𝑎𝑎𝑛𝑛𝑛𝑛 + 𝑎𝑎2𝑛𝑛𝑛𝑛
𝑎𝑎𝑛𝑛𝑛𝑛 + 𝑎𝑎20

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 2𝑎𝑎1 0 0 ⋯ 0 0
0 0 2𝑎𝑎2 0 ⋯ 0 0
0 0 0 2𝑎𝑎3 ⋯ 0 0
⋮
0 0 0 0 ⋯ 0 2𝑎𝑎𝑛𝑛𝑛𝑛
2𝑎𝑎0 0 0 0 ⋯ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

𝑥𝑥0
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛𝑛𝑛
𝑥𝑥𝑛𝑛𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

.

Hence, the set of compatible output vectors 𝑏𝑏, which we denote by𝒜𝒜𝒜𝒜𝒜𝒜, forms an affine subspace of 𝔽𝔽𝑛𝑛𝑞𝑞 .
By affine subspace we mean the following. Let𝑊𝑊 be a linear subspace of 𝔽𝔽𝑛𝑛𝑞𝑞 and let 𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 . The coset
𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢 is called an affine subspace of 𝔽𝔽𝑛𝑛𝑞𝑞 and 𝑢𝑢 is called an offset. The affine subspace
𝒜𝒜𝒜𝒜𝒜𝒜 can be described by

𝒜𝒜𝒜𝒜𝒜𝒜 𝒜𝒜𝒜 𝒜𝒜𝒜𝒜 𝒜 Span{2𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 ∶ 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Two cosets 𝑢𝑢 𝑢𝑢𝑢  and 𝑣𝑣 𝑣𝑣𝑣  are equal if and only if 𝑢𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢. Therefore, we may add any linear
combination of the basis vectors to the offset without it changing the affine subspace that is defined.
Moreover, we may scale the basis vectors by any nonzero constant. Hence, a description of 𝒜𝒜𝒜𝒜𝒜𝒜 in
which the offset has minimal Hamming weight is given by

𝒜𝒜𝒜𝒜𝒜𝒜 𝒜𝒜𝒜 ′ + Span{𝑒𝑒𝑖𝑖 ∶ 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑖𝑖𝑖𝑖 ≠ 0} ,

where

𝑎𝑎′𝑖𝑖 = {
𝑎𝑎𝑖𝑖 if 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 ,

0 if 𝑎𝑎𝑖𝑖𝑖𝑖 ≠ 0 .

Clearly, the dimension of𝒜𝒜𝒜𝒜𝒜𝒜, which is defined as the dimension of the associated vector space, is equal
to the Hamming weight of 𝑎𝑎.

We are now ready to give a complete characterization of the distribution of differentials over 𝛾𝛾.

Proposition 38. Let (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 be a differential over 𝛾𝛾. Then 𝑏𝑏 is compatible with 𝑎𝑎, i.e., 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,
if and only if, for all 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖, we have 𝑏𝑏𝑖𝑖 = 𝑎𝑎𝑖𝑖 or 𝑎𝑎𝑖𝑖𝑖𝑖 ≠ 0, in which case 𝑏𝑏𝑖𝑖 can take on any value. Hence,

DP𝛾𝛾(𝑎𝑎𝑎𝑎𝑎𝑎𝑎   {
𝑞𝑞−HW(𝑎𝑎𝑎 if 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

0 if 𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏
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In otherwords, theDPof a valid differential, and thus its differential weight, is a constant that depends
only on the input difference.

8.7.2 Backward propagation from a given output difference

For a given output difference 𝑏𝑏, the compatible input differences do not form an affine space. However,
wewill show in this section how to efficiently generate all compatible input differences 𝑎𝑎withw𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎
𝑊𝑊 for someweight limit𝑊𝑊. To this end, we introduce the concept of compatible activity pattern. Given
a vector 𝑥𝑥 𝑥 𝑥𝑥𝑛𝑛𝑞𝑞 , its activity pattern 𝑥𝑥 is a vector in 𝔽𝔽𝑛𝑛𝑞𝑞 with 𝑥𝑥𝑖𝑖 equal to 1 if 𝑥𝑥𝑖𝑖 ≠ 0 and 0 otherwise.

Definition 63. An activity pattern is compatible with 𝑏𝑏 if there exists an input difference 𝑎𝑎 that is com-
patible with 𝑏𝑏 and for which 𝑎𝑎 equals this activity pattern.

The generation of all compatible input differences is done in twophases: in the first phase, we generate
the set of activity patterns compatible with 𝑏𝑏, and in the second phase, we determine for each compatible
activity pattern the set of compatible input differences with that pattern.

We generate the compatible activity patterns in a recursive way in Algorithm 9, making use of the
following proposition.

Proposition 39. Given a differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over 𝛾𝛾, the following properties hold:

1. if 𝑎𝑎𝑖𝑖 = 0 and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0 then 𝑎𝑎𝑖𝑖𝑖𝑖 = 0;

2. if 𝑎𝑎𝑖𝑖 = 0 and 𝑏𝑏𝑖𝑖𝑖𝑖 ≠ 0 then 𝑎𝑎𝑖𝑖𝑖𝑖 ≠ 0.

Proof. The two properties immediately follow from Equation 8.1. We have

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎2𝑖𝑖 + 2𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 ,

and 𝑎𝑎𝑖𝑖 = 0 implies 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖.

In Algorithm 9, we start with an empty list of compatible activity patterns 𝐿𝐿 (line 4) and a fully un-
specified activity pattern 𝑎𝑎 (line 6). Then we specify whether 𝑎𝑎𝑛𝑛𝑛𝑛 = 0 (line 6) or 1 (line 7) (and thus
whether 𝑎𝑎𝑛𝑛𝑛𝑛 is active or not) and based on this we incrementally determine the activity of all other digits
from𝑎𝑎𝑛𝑛𝑛𝑛 to𝑎𝑎0 using the procedurebuildActivity. In this procedure, when 𝑎𝑎𝑖𝑖 = 0weuse Proposition 39
to determine whether 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 or 0, otherwise we consider both possibilities (lines 16 and 17). When
a compatible activity pattern is fully determined (i.e., when 𝑖𝑖 𝑖𝑖  is reached) then it is added to list 𝐿𝐿
(line 12).

Given an output difference 𝑏𝑏 and a compatible input activity pattern 𝑎𝑎, we generate all compatible
differences with activity 𝑎𝑎 in Algorithm 10, making use of the following proposition.

Proposition 40. Given a differential (𝑎𝑎𝑎 𝑎𝑎𝑎 over 𝛾𝛾, the following properties hold:

1. if 𝑎𝑎𝑖𝑖 = 0, then 𝑎𝑎𝑖𝑖 = 0;
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8.7 Differential propagation properties of 𝛾𝛾

Algorithm 9 Generation of input activity patterns compatible with output difference 𝑏𝑏
1: Input: difference 𝑏𝑏 𝑏 𝑏𝑏𝑛𝑛𝑞𝑞 at output of 𝛾𝛾 and limit weight𝑊𝑊
2: Output: list 𝐿𝐿 of activity patterns 𝑎𝑎 compatible with 𝑏𝑏 at input of 𝛾𝛾
3:
4: 𝐿𝐿 𝐿 empty
5: 𝑎𝑎 𝑎 𝑎𝑛𝑛
6: 𝑎𝑎𝑛𝑛𝑛𝑛 ← 0; buildActivity(𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛
7: 𝑎𝑎𝑛𝑛𝑛𝑛 ←1 ; buildActivity(𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛
8:
9: procedure buildActivity(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  )
10: if (HW(𝑎𝑎𝑎 𝑎 𝑎𝑎) then return ▷HW is computed on the specified part of 𝑎𝑎
11: if (𝑖𝑖 𝑖 𝑖𝑖 then
12: if (𝑎𝑎𝑛𝑛𝑛𝑛 =1 OR 𝑏̃𝑏0 = 𝑎𝑎0) then add 𝑎𝑎 to 𝐿𝐿
13: return
14: end if
15: 𝑎𝑎′ ← 𝑎𝑎
16: if (𝑎𝑎𝑖𝑖 =1 OR 𝑏̃𝑏𝑖𝑖𝑖𝑖 =1 ) then 𝑎𝑎′𝑖𝑖𝑖𝑖 ←1 ; buildActivity(𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  ′, 𝑏𝑏𝑏𝑏𝑏𝑏
17: if (𝑎𝑎𝑖𝑖 =1 OR 𝑏̃𝑏𝑖𝑖𝑖𝑖 = 0) then 𝑎𝑎′𝑖𝑖𝑖𝑖 ← 0; buildActivity(𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  ′, 𝑏𝑏𝑏𝑏𝑏𝑏
18: return
19: end procedure

2. if 𝑎𝑎𝑖𝑖 =1  and 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, then 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖;

3. if 𝑎𝑎𝑖𝑖 =1  and 𝑎𝑎𝑖𝑖𝑖𝑖 =1 , then 𝑎𝑎𝑖𝑖 can be any value in 𝔽𝔽𝑞𝑞.

Proof. The first property follows from the definition of activity pattern. The other two properties im-
mediately follow from Equation 8.1.

In Algorithm 10, we start with an empty list of compatible input differences 𝐿𝐿 (line 4) and a fully
unspecified difference 𝑎𝑎 (line 5). We use the symbol ∗when the activity of a digit is unspecified. Thenwe
incrementally determine the value of all digits from 𝑎𝑎0 to 𝑎𝑎𝑛𝑛𝑛𝑛 using the procedure buildDifference. In
this procedure, we use Proposition 40 to determine whether 𝑎𝑎𝑖𝑖 =1  or 0 (lines 10-12 and 16-18). When
a compatible difference is fully determined (i.e., when 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖   is reached) then it is added to list 𝐿𝐿 (line
10-12).

8.7.3 Computing the minimum reverse weight of an output difference

Given an output difference 𝑏𝑏, let Ω(𝑏𝑏𝑏𝑏  𝑏𝑏𝑏 𝑏 𝑏𝑏𝑛𝑛𝑞𝑞 ∶ DP𝛾𝛾(𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎 be the set of input differences
that are compatible with 𝑏𝑏. The differentials (𝑎𝑎𝑎𝑎𝑎𝑎  over 𝛾𝛾 with 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎  can have different weights.
Following [12], theminimum reverse weight of an output difference 𝑏𝑏 is defined by

wrev
𝛾𝛾 (𝑏𝑏𝑏𝑏  min

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
w𝛾𝛾(𝑎𝑎𝑎𝑎𝑎𝑎  𝑎

We notice that the minimum reverse weight of a difference 𝑏𝑏 at the output of 𝛾𝛾 is fully determined by
its activity pattern and its compatible activity patterns with minimumHamming weight. In particular,
it can be computed as in the following Proposition, which uses the notion of run.
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Algorithm 10 Generation of input differences compatible with output difference 𝑏𝑏 and with activity
pattern 𝑎𝑎
1: Input: difference 𝑏𝑏 𝑏 𝑏𝑏𝑛𝑛𝑞𝑞 at output of 𝛾𝛾 and activity pattern 𝑎𝑎
2: Output: list 𝐿𝐿 of input differences compatible with 𝑏𝑏 at input of 𝛾𝛾with activity pattern 𝑎𝑎
3:
4: 𝐿𝐿 𝐿 empty
5: 𝑎𝑎 𝑎 𝑎𝑛𝑛
6: buildDifference(0, 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎
7:
8: procedure buildDifference(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   )
9: if (𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖 then
10: if (𝑎𝑎𝑖𝑖 = 0) then 𝑎𝑎′𝑖𝑖 ← 0; add 𝑎𝑎 to 𝐿𝐿
11: elsif (𝑎𝑎𝑖𝑖 =1 AND 𝑎𝑎0 = 0) then 𝑎𝑎′𝑖𝑖 ← 𝑏𝑏𝑖𝑖; add 𝑎𝑎 to 𝐿𝐿
12: else for each 𝑘𝑘 𝑘𝑘𝑘 𝑞𝑞 do 𝑎𝑎′𝑖𝑖 ← 𝑘𝑘; add 𝑎𝑎 to 𝐿𝐿
13: return
14: end if
15: 𝑎𝑎′ ← 𝑎𝑎
16: if (𝑎𝑎𝑖𝑖 = 0) then 𝑎𝑎′𝑖𝑖 ← 0; buildDifference(𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 ′, 𝑎𝑎𝑎𝑎𝑎 𝑎
17: elsif (𝑎𝑎𝑖𝑖 =1 AND 𝑎𝑎𝑖𝑖𝑖𝑖 = 0) then 𝑎𝑎′𝑖𝑖 ← 𝑏𝑏𝑖𝑖; buildDifference(𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 ′, 𝑎𝑎𝑎𝑎𝑎 𝑎
18: else for each 𝑘𝑘 𝑘𝑘𝑘 𝑞𝑞 do 𝑎𝑎′𝑖𝑖 ← 𝑘𝑘; buildDifference(𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 ′, 𝑎𝑎𝑎𝑎𝑎 𝑎
19: end procedure

Definition 64. Given 𝑥𝑥 𝑥𝑥𝑥 𝑛𝑛𝑞𝑞 , a run of length ℓ in 𝑥𝑥 is a sequence of ℓ active digits preceded and followed
by non-active digits, i.e., it satisfies 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖, … , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0 and 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 for some 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖.

Proposition 41. Givenadifference𝑏𝑏at the output of𝛾𝛾 composed by𝑚𝑚 runs of lengths ℓ𝑗𝑗, with 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  
1, then

wrev
𝛾𝛾 (𝑏𝑏𝑏𝑏

𝑚𝑚𝑚𝑚

∑
𝑗𝑗𝑗𝑗

⌈ℓ𝑗𝑗/2⌉ .

Proof. For a run starting in position 𝑖𝑖 and of length ℓ in 𝑏𝑏, the digit 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 must be 1. There can be at
most a single zero digit in between two active digits in the sequence 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖, … , 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖. It follows that for
each run of length ℓ in 𝑏𝑏, 𝑎𝑎 has at least ℓ/2 active digits if ℓ is even and (ℓ +1)/ 2 if ℓ is odd.

8.8 Linear propagation properties of 𝛾𝛾

In this section we analyze the correlation properties of the mapping 𝛾𝛾, starting with the correlation of
linear approximations of 𝛾𝛾.

Proposition 42. Let (𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢  𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 be a linear approximation of 𝛾𝛾. We have

C𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢
𝑛𝑛𝑛𝑛

∏
𝑖𝑖𝑖𝑖

C𝛽𝛽(𝑢𝑢𝑖𝑖 −𝑣𝑣 𝑖𝑖, 𝑢𝑢𝑖𝑖𝑖𝑖) .
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8.8 Linear propagation properties of 𝛾𝛾

Proof. If we rewrite the correlation of a linear approximation of 𝛾𝛾, we obtain

C𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢−𝑛𝑛 ∑
𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑞𝑞

𝜔𝜔Tr(𝑢𝑢⊤𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾⊤𝑥𝑥)

=𝑞𝑞 −𝑛𝑛 ∑
𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑞𝑞

𝜔𝜔Tr(∑𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖+𝑥𝑥

2
𝑖𝑖𝑖𝑖)−𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖)

=𝑞𝑞 −𝑛𝑛 ∑
𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑞𝑞

𝜔𝜔Tr(∑𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 (𝑢𝑢𝑖𝑖−𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖+𝑢𝑢𝑖𝑖𝑖𝑖𝑥𝑥

2
𝑖𝑖 )

=𝑞𝑞 −𝑛𝑛 ∑
𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑞𝑞

𝜔𝜔∑
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 Tr((𝑢𝑢𝑖𝑖−𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖+𝑢𝑢𝑖𝑖𝑖𝑖𝑥𝑥

2
𝑖𝑖 )

=𝑞𝑞 −𝑛𝑛 ∑
𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑞𝑞

𝑛𝑛𝑛𝑛

∏
𝑖𝑖𝑖𝑖

𝜔𝜔Tr((𝑢𝑢𝑖𝑖−𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖+𝑢𝑢𝑖𝑖𝑖𝑖𝑥𝑥2𝑖𝑖 )

=
𝑛𝑛𝑛𝑛

∏
𝑖𝑖𝑖𝑖

𝑞𝑞−1∑
𝑦𝑦𝑦𝑦𝑦𝑞𝑞

𝜔𝜔Tr((𝑢𝑢𝑖𝑖−𝑣𝑣𝑖𝑖)𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑦𝑦2)

=
𝑛𝑛𝑛𝑛

∏
𝑖𝑖𝑖𝑖

C𝛽𝛽(𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖, 𝑢𝑢𝑖𝑖𝑖𝑖) .

The resulting product from Proposition 42 is non-zero if each of the factors is non-zero. Note that
the correlation is non-zero if 𝑢𝑢𝑖𝑖𝑖𝑖 is non-zero, as was discussed in Section 8.5. Additionally, if 𝑢𝑢𝑖𝑖𝑖𝑖 is non-
zero, then 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 has to be equal to zero to get a non-zero correlation. In this case it should thus hold
that 𝑣𝑣𝑖𝑖 = 𝑢𝑢𝑖𝑖. From this reasoning, we can give a complete characterization of the distribution of linear
approximations of 𝛾𝛾.

Proposition 43. Let (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 be a linear approximation of 𝛾𝛾. Then 𝑢𝑢 is compatible with 𝑣𝑣, if and
only if, for all 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖, we have 𝑣𝑣𝑖𝑖 = 𝑢𝑢𝑖𝑖 or 𝑢𝑢𝑖𝑖𝑖𝑖 ≠ 0, in which case 𝑣𝑣𝑖𝑖 can take on any value. Hence,

LP𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 {
𝑞𝑞−HW(𝑢𝑢𝑢 if 𝑣𝑣 is compatible with 𝑢𝑢 𝑢

0 if 𝑣𝑣 is not compatible with 𝑢𝑢 𝑢

Observe that Proposition 38 and Proposition 43 are very much alike. Indeed, propagation of differ-
ences and propagation of masks over 𝛾𝛾 follow similar rules. First, output masks play the role of input
differences and input masks that of output differences. Second, indices are reversed, i.e., index 𝑖𝑖 in a
mask corresponds to index 𝑛𝑛𝑛𝑛𝑛𝑛    𝑛 in a difference, to account for this change in direction. The follow-
ing proposition is an immediate consequence.

Proposition 44. Let 𝜋𝜋𝜋 𝜋𝜋𝑛𝑛𝑞𝑞 → 𝔽𝔽𝑛𝑛𝑞𝑞 be the mapping defined by 𝜋𝜋𝑖𝑖(𝑥𝑥𝑥𝑥  𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for all 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖. Let (𝑢𝑢𝑢 𝑢𝑢𝑢
be a linear approximation of 𝛾𝛾. We have

LP𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 DP𝛾𝛾(𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
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From this, it follows thatwe can extend the results obtained in Section 8.7 tomasks. For a given output
mask 𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 , we can build the affine subspace with dimension HW(𝑢𝑢𝑢 of compatible input masks over
𝛾𝛾 as in Section 8.7.1. Moreover, for a given input mask 𝑣𝑣 𝑣𝑣𝑣 𝑛𝑛𝑞𝑞 , the output activity patterns compatible
with input masks over 𝛾𝛾 can be found by applying Algorithm 9. Using the resulting activity pattern 𝑎𝑎
and the inputmask 𝑣𝑣, all compatible outputmasks 𝑢𝑢 can be obtained as described inAlgorithm 10. Note
that there can be several compatible output masks 𝑢𝑢 for a given input mask 𝑣𝑣. Among them, there will
be one realizing the minimum value of w(𝑢𝑢𝑢 𝑢𝑢𝑢. Theminimum reverse weight of 𝑣𝑣 is defined as

wrev
𝛾𝛾 (𝑣𝑣𝑣 𝑣 min

𝑢𝑢𝑢LP𝛾𝛾(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
w𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢𝑢

and is determined by the decomposition of 𝑣𝑣 in a sequence of runs, as explained in Section 8.7.3.

8.9 On collision probability and bias

A collision in the output of 𝛾𝛾 occurs when 𝛾𝛾maps a pair of different inputs (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 to the same
output value. Assuming randomly and uniformly selected pairs of inputs, the probability of a collision
is given by

CP(𝛾𝛾𝛾𝛾  𝛾𝛾−2𝑛𝑛|{(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑛𝑛𝑞𝑞 × 𝔽𝔽𝑛𝑛𝑞𝑞 ∶ 𝑥𝑥 𝑥 𝑥𝑥 and 𝛾𝛾𝛾𝛾𝛾𝛾𝛾  𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 𝛾

Translating this into the language of differential analysis, we find that

CP(𝛾𝛾𝛾𝛾  𝛾𝛾−𝑛𝑛 ∑
𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑞𝑞 ∖{0}

DP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎𝑎

Proposition 45. Let 𝑎𝑎 𝑎𝑎𝑎 𝑛𝑛𝑞𝑞 ∖ {0}. If (𝑎𝑎𝑎 𝑎𝑎 is a differential withDP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎, then all digits of 𝑎𝑎 are
active andDP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎  −𝑛𝑛.

Proof. Let 𝑎𝑎 𝑎𝑎𝑎 𝑛𝑛𝑞𝑞 ∖ {0} be such that DP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎. The input difference 𝑎𝑎 is compatible with the
output difference 0 if the latter is contained in the affine space𝐴𝐴𝐴𝐴𝐴𝐴. This is the case if and only if 𝑎𝑎𝑖𝑖 ≠0
for 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖. Hence, DP𝛾𝛾(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎  −𝑛𝑛 by Proposition 38.

Clearly, there are (𝑞𝑞 𝑞 𝑞𝑞𝑛𝑛 input differences 𝑎𝑎 for which this property holds. Therefore, we find that

CP(𝛾𝛾𝛾𝛾𝛾  𝛾𝛾 𝛾𝛾𝛾 𝑛𝑛𝑞𝑞−2𝑛𝑛 .

Now, the collision probability of a function that is chosen randomly from the set of functions from 𝔽𝔽𝑛𝑛𝑞𝑞 to
𝔽𝔽𝑛𝑛𝑞𝑞 is equal to 𝑞𝑞−𝑛𝑛. Hence, the ratio between the collision probability of 𝛾𝛾 and that of a random function
is equal to (1−𝑞𝑞  −1)𝑛𝑛. If the order of the field is large, then this quantity approximates 1.

By symmetry, we obtain a similar result for the bias of any linear combination of output digits of 𝛾𝛾.

Proposition 46. Let 𝑢𝑢 𝑢 𝑢𝑢𝑛𝑛𝑞𝑞 ∖ {0}. If (𝑢𝑢𝑢 𝑢𝑢 is a linear approximation with LP𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢 , then all digits
of 𝑢𝑢 are active and LP𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢 −𝑛𝑛.
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8.10 Conclusion

Clearly, if either 𝑞𝑞 or 𝑛𝑛 is large, then these quantities are very small and it becomes difficult to exploit
them in practice.

8.10 Conclusion

When searching for trails over an iterated cryptographic transformation as described in [12], a number
of tools are required. These include an efficient method to compute the minimum reverse weight of a
given difference (resp. mask), and an efficient method to build all compatible input differences (resp.
output masks) over the non-linear layer for a given output difference (resp. input mask) and vice versa.
In this work we provided such tools for a mapping based on squaring that can be used as non-linear
layer in the construction of cryptographic transformations of 𝔽𝔽𝑛𝑛𝑞𝑞 . Interestingly, it turns out that for this
mapping, masks and differences follow the same propagation rules. This means that for a cryptographic
transformation that uses this mapping as the non-linear layer in its round function, one would need to
only perform either differential or linear trail search while obtaining insights and bounds for both.
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Part III

Miscellany

This part contains a summary of the thesis in the Dutch language, a description of the research data
management, and the curriculum vitae of the author.
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9 Samenvatting

Symmetrische cryptografie stelt twee partijen in staat om vertrouwelijke en integere communicatie tot
stand te brengen op basis van een gedeelde geheime sleutel. Vercijfering waarborgt vertrouwelijkheid;
het toevoegen van een authenticatietag beschermt de integriteit. Afhankelijk van het dreigingsmodel
richt de analyse van een symmetrische primitieve zich op het aantonen van onvoorwaardelijke veiligheid,
dan wel op veiligheid onder de aanname van een aanvaller met beperkte middelen.

Dit proefschrift onderzoekt de rol van structuur en willekeur in het ontwerp en de analyse van sym-
metrische primitieven. Structured Randomness, ofwel gestructureerde willekeur, duidt op het streven
om constructies te ontwerpen die, ondanks hun structuur, voor begrensde aanvallers niet te onderschei-
den zijn van willekeurig gekozen functies.

Het eerste deel ontwikkelt een theoretisch kader, waarin algebraïsche structuren, kansmodellen en
klassieke analysetechnieken, zoals differentiële, lineaire, integrale en algebraïsche crypto-analyse, aan bod
komen. Op basis hiervan worden in het tweede deel vijf bijdragen gepresenteerd, elk met een gerichte
aanvulling op de bestaande literatuur.

De eerste bijdrage formaliseert het bestaande begrip alignment; het onderscheid tussen aligned en un-
aligned primitieven ligt in de structurele groepering van bits. Erwordt een analysekader ontwikkeld voor
het evalueren van de interactie tussen lineaire en niet-lineaire lagen met betrekking tot differentiële en
lineaire propagatie. Een empirische vergelijking suggereert dat alignment aanleiding geeft tot specifieke
vormen van clustering in activiteitspatronen en padstructuren.

De tweede bijdrage analyseert tweerondige varianten van de blokcijfer Skinny, waarbij lineaire be-
naderingen met absolute correlatie één worden aangetoond voor een aanzienlijk deel van de mogelijke
ronde-tweakeys. Daarnaast wordt aangetoond hoe deze kwetsbaarheden vermeden hadden kunnen wor-
den door alternatieve ontwerpkeuzes. Deze analyse onderstreept dat het niet voldoende is om op zichzelf
staande veilige bouwblokken te gebruiken; het is de combinatie en compositie van deze bouwblokken die
uiteindelijk de veiligheid van het geheel bepaalt.

De derde bijdrage introduceert Koala, een pseudowillekeurige functie met lage latentie, gebaseerd
op de Kirby-constructie en een aangepaste variant van de Subterranean-permutatie. Het ontwerp is
geoptimaliseerd voor ASIC-implementaties. Een voorlopige crypto-analyse toont een hoge weerstand
tegen integrale, cube-, division property- en hogere-orde differentiële aanvallen. Daarnaast blijkt uit
vergelijkingdatKoalabestaande lage-latentiePRF’s overtreft in termenvan latentie en andereprestatieken-
merken.

De vierde bijdrage introduceert Ciminion, een cryptosysteem gebaseerd op Toffoli-poorten over
eindige lichamen. Het ontwerp is specifiek geoptimaliseerd voor gebruik in privacybeschermende reken-

213



9 Samenvatting

modellen, waarondermulti-party computation (MPC) en homomorfe vercijfering, met bijzondere aan-
dacht voor het minimaliseren van het aantal vermenigvuldigingen.

Devijfdebijdrage analyseert eenniet-lineaire transformatie gebaseerdopkwadrateren in eindige lichamen
metonevenkarakteristiek. Deze afbeelding vertoont symmetrische engunstigepropagatie-eigenschappen
in zowel differentieel als lineair opzicht, wat haar geschikt maakt voor toepassingen in onder meer MPC
en homomorfe vercijfering.

Gezamenlijk positioneren deze bijdragen zich op het raakvlak van theorie en praktijk, en dragen zij
bij aan een verdiept begrip van de wijze waarop structurele eigenschappen de veiligheid, efficiëntie en
toepasbaarheid van symmetrische cryptografie bepalen.
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10 Research data management

Many of the results presented in this thesis are based on data generated through simulations involving
cryptographic building blocks.

Throughout the project, data were securely stored and version controlled on Radboud University
infrastructure. For long-term preservation, the final datasets and the programs used to generate them
have been archived on Zenodo and are accessible via the following DOI:

https://doi.org/10.5281/zenodo.14030442

The data and programs are publicly available under theCreativeCommonsZero v1.0Universal (CC0
1.0) license and are accompanied by metadata that adhere to the FAIR principles (Findable, Accessible,
Interoperable, and Reusable). This approach ensures compliance with the standards of the academic
field andwith RadboudUniversity’s guidelines regarding transparency, accessibility, and the responsible
management of research data.
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