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ParTI

THEORY

This part is composed of an introduction to the area of research and to the theory upon which the re-

search chapters are based.






I INTRODUCTION

This is a thesis about the design and analysis of secrez-key cryptography. In accordance with standard
practice, we begin by dissecting each of these words and setting the scene.

‘The word cryprography is derived from the Ancient Greek words xpvmtég, which translates to “hidden”
or “secret”, and ypd@etv, which translates to “writing” [21]. Indeed, since ancient times, cryptography has
been used to make sure that the contents of a message that is transmitted between a sender and a receiver
through an insecure channel are not disclosed to an unauthorized entity, the adversary. This objective
is called confidentiality. Usually, a receiver also needs to detect if a message has been tampered with.
Hence, cryptography is also used to protect against message forgery. This objective is called znregrity.
A broader objective that encompasses integrity is authentication, which additionally verifies the origin
of the message. Further objectives can be defined, e.g., preventing denial-of-service attacks (to protect
availability of systems), stopping traffic analysis, etc. While these are important for security, we do not
consider them in this thesis.

We distinguish between two types of communication. In the first type of communication, sender and
receiver are separated in space. For example, the sender may be a client, the receiver may be a server and
the message may be a private datagram that the client sends to the server over the public Internet. In the
second type of communication, sender and receiver represent the same entity that communicates with
itself over zime. For example, the sender may be storing the message, a private file, on a disk and try to
recover it at a later time.

Cryptography achieves its objectives by transforming the message in a way that is difficult to predict
by the adversary. In the general setting, a message is divided into two parts that form the inputs to the
transformation: a part for which both confidentiality and integrity are required, and a part for which
only integrity is needed. The part requiring confidentiality and integrity is called the plaintext, and the
part requiring only integrity is called associated data.

To achieve confidentiality, the plaintext is transformed into a ciphertext through a process called ez-
cryption; the inverse process, which recovers the original plaintext, is called decryption. The methods used
for encryption and decryption are specified by a system called a cryptosystem, an encryption scheme, or a
cipher. In this context, the goal of a cryptosystem is to ensure that an adversary cannot (efficiently) learn
any information about the plaintext from public information, such as the ciphertext, except for some
properties such as length or format, depending on the scheme.

To achieve integrity, there exist two popular approaches. The first approach is for the cryptosystem to
produce a short piece of data called an authenticator, which serves as a fingerprint for both the plaintext

and the associated data. An authenticator is also called a zag or a message authentication code (MAC). The
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second approach is to treat the entire message as plaintext and add a highly structured part to it. With
high probability, a modified ciphertext decrypts to a plaintext for which the structured part is modified.

To make this possible, sender and receiver need to have access to a random element about which the
adversary has more uncertainty than they do. Hence, for simplicity, we make the assumption that the
sender and receiver have access to the same known sequence of randomly and uniformly generated sym-
bols from some alphabet set, e.g., a string of bits. We call this sequence the secret, key, or secret key, and
call this setting secret-key cryptography. Although secret-key cryptography primarily concerns systems
with a shared secret, its building blocks and techniques are also employed in settings without one, for
example in the construction of hash functions.

We assume that all details of the cryptosystem are known to the adversary. This is called Kerckboffs’s
principle [32]. Accordingly, we may think of secret-key cryptography as a tool for reducing security prob-
lems to the problem of protecting secret keys.

We do not concern ourselves with how this secret was generated and shared in the first place. This
key distribution is a problem in itself. In practice, it often (but not necessarily) makes use of public-key
cryptography, e.g., the Diffie-Hellman key exchange protocol [23].

Different cryptosystems can achieve the same security objectives. The deciding factor frequently re-
volves around implementation cost. In the remainder of this thesis, we explore how such cryptosystems

are designed, analyzed, and optimized for real-world constraints.



2 PRELIMINARIES

This chapter outlines the fundamental mathematical and theoretical concepts necessary for understand-
ing the research chapters. We assume that the reader has a working knowledge of the most basic notions
of set theory. Moreover, we assume that the reader has had exposure to algebraic structures and proba-

bility theory.

2.1 STRUCTURE AND RANDOMNESS

This section provides the language to discuss structure and randomness through algebra, probability
theory, and discrete mathematics. For (universal) algebra, we refer to [1] and [12]. For probability theory
as it applies to secret-key cryptography, a good summary is found in the appendix of [7]. For general

discrete mathematics, we refer to [39].

FUNCTIONS BETWEEN SETS. Let S, T, and U be sets. A function or mapping f from S to T is a subset
of §xT such that for each s € S thereis exactly onez € T'with (s, z) € f. Thisisabbreviatedas f: § — T’
and f(s) = ¢. In some cases, we do not want to give a name to a function. An anonymouns function is
defined by its assignment rule. We write this as s = . If S equals 7', we may call it a transformation.
We write Maps[S, 7] for the set of all functions from S to 7. For a subset 4 < S, the restriction of
f to A is the function f|;: 4 — T given by a — f(a) forall 2 € A. The kernel of f is the set
ker(f) := {(a,b) € S xS : f(a) = f(b)}. If ker(f) = {(s5,5) : s € S}, then f is called injective or one-to-
one. The f-image of A4 is defined as f(A4) := {f(a) : a € A}. If f(S) = T, then f is called surjective or
onto. The function is called bzjective if it is both injective and surjective. A bijective transformation of a
finite set S is called a permutation. The set of all permutations of S is denoted as Perms[S]. The domain
of fis S, its codomain is T, and its range is f(S).

Let f: S — Tand g: T — U, then the composition of f and g is the function g o f: § — U defined
by (g £)(s) = g(f(5)) forall s € S. The identity function ¢ on a set S is defined by &(s) = s for all
s € 8. If f is bijective, then there is a unique 7nverse function f™': 7" — S defined by £ o f = ¢. In
that case, we also call £ 7nvertible. An invertible function for which f -1 equals f'is called an znvolution.

‘Two functions are the same if they have the same domain, the same range, and are equal as sets.

PREDICATES. A predicate ¢ is a mathematical assertion that contains variables and that may be true or
false depending on the assignment of values from a set S to these variables. Denoting true as T and false

as 1, a predicate is thus a function ¢: § — {T, L}.
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ORrDERs. LetSbeaset. A partial order <on S isasubset of S xS that satisfies the following properties:
* (Reflexivity) For each s € S, (s,5) € <.
* (Antisymmetry) For each 7,5 € S, (7, 5) € <and (s,7) € <implies s = .
* (Transitivity) For each 7, 5,7 € S, (7, 5) € <and (s,7) € <implies (»,7) € <.

For example, < = {(0,0), (0,1), (1, 1)} is a partial order on the subset {0, 1} of the integers. Instead of
writing (7, s) € <, we use the notation » < s.

A rotal order < on S is a partial order on § with the additional property that » < sors < 7 for all
7,s € S. In other words, any two elements are comparable.

A well-order < on S is a total order on S with the property that every nonempty subset of S has a least
element with respect to <.

An example of a total order that is not a well-order is the usual order < on the real numbers.

FUNCTION FAMILIES AND SEQUENCES. Let [ be a set. A family of elements of S is a function from
Ito S. Technically, families of elements and functions are the same object, except that we view them
differently. Write s; for the element of S corresponding to 7 € 7. We denote the family ass = (s, : 7 € 1),
we call 7 the #ndex, and we call I the index set. We call the element ; the 7th component of s.

If I = {0,...,n — 1} for some positive integer 7 > 1, then we call 5 a finite sequence or tuple. We may
write z-tuple if we want to make the number of elements explicit. We identify 1-tuples with the single
element of which they are comprised. The total order on 7 (inherited by the integers) induces an order
on the elements of 5. Hence, it makes sense to speak of a smallest or largest element of s that satisfies
some predicate. To avoid confusion in the case that S is already ordered, we write leftmost for smallest
and rightmost for largest with respect to the order that is determined by 1.

Ifs: I — (X — Y)isafamily of functions from aset X toaset Y, then s can also be seen as a function
F:IxX — Y. Indeed, F(7, x) := 5;(x) for all x € X. By abuse of language, we may call s invertible if ;

is invertible for each 7 € 1.

EQUIVALENCE RELATIONS, PARTITIONS, AND QUOTIENTS. An equivalence relation ~ on aset S isa

subset of § x §' that satisfies the following properties:
* (Reflexivity) For each s € S, (s,5) € ~.
* (Symmetry) For each 7,5 € S, (7, 5) € ~implies (s,7) € ~.
* (Transitivity) For each , 5,7 € S, (7, 5) € ~and (s,£) € ~ implies (7, ) € ~.

Instead of writing (7, ) € ~, we use the notation » ~ 5. The equivalence class of s modulo ~ is the set
s/~:={t € §: 5~ r}. We may also write this as [s]_ or [s] if the relation used it clear from the context.
We can pick any ¢ € 5/~ asa representative of that class. The guotient spaceis theset S [~ := {s/~: s € S}.
The quotient map is the function ¢_: § — S5/~ defined by ¢_(s) = s/~ forall s € S. Importantly, the
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equivalence classes form a partition of S. Thatis, S = Upg/.B and for all B, C € S/~ such that B # C,
we have B n C = @. Each partition of a set arises in this way. Hence, if we want to study a function
f+ 8§ — T with the property that () = f(s) whenever » ~ s, then we need only to study it on a set of

representatives. A function with this property is called an znvariant of ~.

OPERATIONS. Let S be a nonempty set. Define S° := {@} and $” := §*~1 x § for integers # > 1. An
n-ary operation on S is a function f: §” — §. The number 7 is called the arity of f. A finitary operation
is an #-ary operation for some fixed 7. For example, a 0-ary operation is a function from {@} to S, which

can be identified with an element of S. In practice, we mostly work with 2-ary (or binary) operations.

CONGRUENCE RELATIONS. Let f be an n-ary operation on a set S for some positive integer 2 > 1.
Moreover, let a;, b; € S for7 = 0,...,n — 1. An equivalence relation ~ on S is called a congruence relation
with respect to fif f(ag, ..., a,-1) ~ f(by, ..., b,_) whenever a; ~ b; for7 = 0,...,n — 1. For example,

fix a positive integer 7 > 1. Define a relation ~ on the integers by
a ~bifandonlyifm | (a - b).

Then ~ is a congruence relation with respect to the usual addition and multiplication on the integers.

Typically, this is written as 2 = b (mod ).

ALGEBRAIC STRUCTURES.  An algebraic structure is an ordered pair 4 = (S, F) where S is the under-
lying set and F = (f; : 0 € I) is a family of finitary operations on S indexed by 7. The index set contains
operation symbols and for each such symbol 0 € I we write o for the operation in 4 indexed by o. Typ-
ically, we use the same symbol to refer to the algebraic structure and its underlying set and assume that
the operations are understood from the context. We call 4 finite if S is a finite set. The signature of A is
the function o: 7 — Z where o(0) is equal to the arity of 0/ for each o € I. Two algebraic structures are
called similar if they have the same signature.

Let S and T be similar algebraic structures. Then S is a substructure of T if S € T and if 0 = o | for

eacho e l.

DIrEcT PRODUCTS. Let (4; : 7 € ) be a family of algebraic structures with the same signature. The
direct product of (4; : i € I) is the algebraic structure 4 = ([, 4; (f; : 0 € J)) with the same
signature. The family of operations (f, : 0 € /) is defined as follows. Put n, := ¢(0). For each 7 € I, for

each o € J,and forall ay, ..., 4, 1 € [],_, 4;, we have

(OA (ags s ﬂn,,—l))z‘ = OA'F(ﬂO,z') e d(ng—l),z‘) .

For each 7 € I there is a projection operator Proj : [1,.;4: — 4, thatis defined by Proj (a) = a;.
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HOMOMORPHISMS BETWEEN ALGEBRAIC STRUCTURES.  Let S'and 7 be two similar algebraic struc-

tures. Put z, := o(0). A function f: § — T is called a homomorphism if for every o € I we have

f(os(dos () dna—l)) = OT(f(ﬂO)> 7f(dn0—l))

for all 4, ..., a,-1 € S. Itis called an Zsomorphism if f is a bijection. In this case, we call S and T’
isomorphic and denote thisas § = 7".

Suppose that /= § — T is a homomorphism. Let R be a congruence relation on S. Let ¢ be the
quotient map from S to S/R. Then ker(f) is a congruence relation, the map ¢ is a homomorphism,

and the unique function g from S /ker(f) to T satistying g o $yer(s) = [ is an isomorphism.
SEMIGROUPS. A semigroup is an algebraic structure (S, -) such that (2-6) ¢ = a-(b-c) foralla,b,c € S

MonNoiIps. A monoid is an algebraic structure (A, -, ¢) such that (A4,) is a semigroup and z - ¢ =
e-a=aforalae M

GrouPrs. A group is an algebraic structure (G, -, 1. ¢) such that (G, -, ¢) is a monoid and ¢ - g_l =
g_l g = eforallg € G. A group is called abelian it g - h = b - g forall g, b € G. The exponent of a
group is the smallest positive integer 2 > 1 such that ¢” = e forall g € G, where g” = g - - - ¢ (n times).
If such an 7 does not exist, the exponent is defined as 0. For each g € G, the coset of a subgroup H by ¢
isthesetg-H := {g-h: h € H}. The subgroup H defines an equivalence relation on G. Indeed, define
g~ hifg™ - b € H. The equivalence classes of this relation are the cosets of H. The order of a group is
its cardinality as a set. If G has finite order, then glG‘ = eforall ¢ € G by Lagrange’s theorem. We will

make implicit use of this identity when we perform arithmetic on exponents.

RINGS. Aringisanalgebraicstructure (R, +, -, —, 0, 1) such that (R, +, —, 0) isan abelian group, (R, -, 1)

is a monoid, and for all , 5, € R we have

r-(s+¢)=r-s+r-t,and

(r+s)-t=r-t+s-t.

The ring R is called commutative it r - s = s - r for all , 5 € R. The characteristic of R is the exponent of
the additive group of R.

Anideal of Ris asubset < R that is a subgroup of (R, +,—,0) and satisfies 7 - s € Jand s - € ] for
eachr € Rand s € I. Theset VI := {r € R : 7 € I for some n > 1} is called the radical of I. If I = VI,
then we say that / is radical. The ideal generated by a subset S < R is the smallest ideal that contains S.
We denote it as (S).

There is a correspondence between ideals of R and congruence relations on R. On the one hand, if 7
is an ideal, then we can define a congruence relation ~ on R with 7 = 0/~ by » ~ sifand only if r —s € I

forall 7,5 € R. On the other hand, if ~ is a congruence relation on R, then 0/~ is an ideal of R.
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The standard example of a ring is the set Z of integers with the usual addition, subtraction, and multi-
plication. In many cases, we consider subsets of Z that do not form a ring (or even a group). For example,

we write Z, for the set of nonnegative integers and Z., for the set of positive integers.

MODULES OVERARING.  Suppose that Risaring. An R-moduleisan algebraicstructure (M, +, =, 0, (/7),<z)

such that (A4, +, —, 0) is an abelian group and for all 2,6 € M and 7, s, € R we have

The span of a subset S < M, denoted as Span(S), is the subset of all finite R-linear combinations of
elements of S. We call S linearly independent it for all n = 1, 1y, ..., 5, € R, and distinct m,, ..., m, € S,

we have
nmy + - +nm, =0ifandonlyif =~ =7 =0.

If M contains a finite subset S with Span(S) = M, then M is called finitely generated. We call S a basis
if Span(S) = M and S is linearly independent. If A1 has a basis, then it is called a free R-module.
A finitely generated free R-module A1 is isomorphic to R” for some integer 2 > 1. The standard basis

of R”isthe set {¢/ : 1 <7 < n} with

1 ifi=j,
0 ifi#j.

Let M be a finitely generated free R-module with basis B = {4, ..., ,}. Moreover, let IV be a finitely
generated R-module with generating set S = {, ..., 5,,}. Suppose that ¢: M — N isa homomorphism
(also called an R-linear map), then it can be represented by an mxn matrix A with coefficients in the ring
R. The entries of A are determined by applying ¢ to the elements of B and writing the images in terms
of the elements of S. In particular, the matrix depends on the choice of both B and S. The transpose of

A, denoted as A7, is defined by 4] =4 Typically, we identify the function ¢ and the matrix 4.

FIELDS, VECTOR SPACES, AND AFFINE SUBSPACES. A field is a commutative ring F¥ with the property
that for every @ € F with 2 # 0 thereexistsa b € F such thatab = 1. A vector space is a free F-module that
we denote as 7. Its elements are called vectors. The cardinality of any basis of V" is called its dimension; it
can be finite or infinite. Substructures of V" are called (/inear) subspaces. An affine subspace of V" is a coset

A of asubspace U of V. In other words, 4 = v + U for some v € V.
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Table 2.1: Truth table of £(x) = (x5, ).
x 00 01 10 11
f(x) 00 00 10 11

POLYNOMIAL RINGS. A monomial in the variables x,, ..., x, is a product
n
x" = (2, e ,xn)(”l""’”") = H x;“
=1

where the #, > 0 are nonnegative integers. The degree of x* is equal to 3" ;. If Risaring, we can form
finite R-linear combinations of monomials. The resulting objects are called polynomials. In other words,
apolynomial in the variables x1, ..., %, with coefficients in R is an expression of the form z%zgu a,x" with
a, € R and only finitely many of the @, are non-zero. This ring is denoted as R[xy, ..., x,]. The degree of
a polynomial is the largest of the degrees of its monomials. It is defined as —coif the polynomial is zero.

A polynomial is called homaogeneous if its monomials all have the same degree.

FInITE FIELDS.  The order of any finite field is of the form ¢ = p” for some prime number p and
positive integer #z > 1. Because all finite fields of order g are isomorphic, we denote any one of them by
E,. In the case that 7 equals 1, the ring Z/ (p) is a finite field of order p.

A nonconstant polynomial f* € F, ] is called srreducible over F, if it is impossible to find nonconstant
polynomials ¢, » € F,[x] such that /' = gh. Given an irreducible polynomial /' € F,[x] of degree 7 > 2,
the ring F, [x]/(f) is a finite field of order p".

For both constructions of finite fields, we identify the set of equivalence classes with a set of represen-

tatives. For example, we take {0, ..., p — 1} as the underlying set of IFP.

BooLEAN FUNCTIONS. Functions ' — E are called Boolean functions. More generally, functions
E' — E” are called vectorial Boolean functions. They are completely specified by a truth table, which isa
tabular array, where each column corresponds to an input and the corresponding output of the function.

For example, the function x + (xg, %9x;) is specified by the truth table in Table 2.1.

STRINGS. Let S be a nonempty finite set. In this context, its elements are called symbols. Suppose a
designated zero symbol exists. A string over S is a finite sequence of symbols from S. The Hamming
weight of a string is equal to the number of its symbols that differ from the zero symbol. The set of
strings over S of length » > 0 is denoted as S”. The (unique) string of length 0 has no symbols. We
denote it as e. The set of all strings over S of length at most L is equal to S := UL, S". The set of all
strings over S is denoted as §* := U;2(S”. Moreover, the set S* \ {e} is denoted as S*. If s and ¢ are two
strings, then their concatenation is denoted as s || . A string s is a substring of a string # if there exist
strings # and v (possibly of length 0) such that # = # || s || v. In applications, a string s € S=< is often

divided into substrings of a fixed length, called blocks. We may need to pad s to align it with the block

10
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size by concatenating it with a padding string p(s), which is typically dependent on the length of s. For
example, the padding might involve appending a nonzero symbol followed by as many zero symbols as
needed to reach the next multiple of the block size. In this thesis, we often assume that S is a finite field

. . . . . ,, R
L with ¢ elements. Hence, we will typically view a string s € S” as a vector in E.

FINITE PROBABILITY SPACES. We model a random process with finitely many outcomes as a finite
probability space. A finite probability space is an ordered pair (€, ) consisting of a nonempty finite set
Q) and a probability measure z: P(Q) — [0, 1]. That s, u satisfies

* #(Q) =1,and
e u(AuB) = u(A4) + u(B) for any two disjoint subsets 4 and B of Q.

The set Q is called the sample space and its elements are the possible outcomes of the random process.
Subsets of Q) are called events. An event occurs if the outcome of the random process is included in the
event. The probability that the event 4 occurs is u(A4).

Let B be an event with ¢(B) > 0 and define u(A4 | B) = u(AnB)/u(B). Thisis called the conditional
probability that the event 4 occurs given that B occurs. With this definition, (Q, 4 + (4 | B)) isa
finite probability space.

‘Two events are said to be independent if u(A 0 B) = u(A)u(B).

RANDOM ELEMENTS. Let S be a nonempty finite set. A function X: Q — S is called a random
element of S. If S contains “objects”, we may abbreviate “random element of §” as “random object.”
For example, a random string is a random element of the set of strings. As the name suggests, we think
of X asan element of § and use it in expressions as such. We abstract away the process that is responsible
for producing the random element.

For any predicate ¢: S — {T, 1}, we write ¢(X) for the event {w € Q : ¢(X(w))}. We define the
distribution of X as the (induced) probability measure uy(B) = u(X € B) forall B < S. This makes S
into a finite probability space. The random element X is called uniform if uy (B) = |B|/|S|. We denote

$
a uniform random element of § as X < S.

GRAPHS. A graph is an ordered pair G = (V, E) of disjoint sets that satisty " N £ = @ and E <
{{u,v} + u € V,v € V}. The elements of V" are its vertices and the elements of E are its edges. For
an edge {#, v}, we call the nodes # and v its ends. To depict a graph, we draw its vertices as dots and
connect two dots with a line if they form an edge. A path P is a graph of the form V" = {v, ..., v, 1} and
E = {{vy, v}, .. {02, 0,1 }}. We say that Pisa path from vy to v, ;. Agraph G’ = (V', E') is called a
subgraph of G = (V,E) if V' < V and E' ¢ E. A graph is called connected if it contains (as a subgraph)
a path from # to v for every #,v € V. Let n > 2 be an integer. A graph is called n-partite it V can be
partitioned into 7 subsets 1, ..., ¥,y called Zevels such that every edge has its ends in different levels. In
the case that # equals 2, then we call the graph bipartite. If we only allow edges between ¥} and 7, ; for

each7 = 0,...,7 — 2, then we call the 7-partite graph ordered, although this is not standard terminology.

11
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2.2 PROVABLE SECURITY

In this section, we present two cryptosystems that are provably secure for some notion of security. Impor-

tantly, their security analysis makes no assumptions about the computation time budget of an adversary.

2.2.1 SECRET-KEY ENCRYPTION

Fix a finite abelian group G. Suppose that the sender and receiver want to communicate a messagem € G
over an insecure communication channel. How do we guarantee the confidentiality of the message? To
that end, the sender and receiver agree on a uniform random secret # «<— G for use as a so-called one-time
pad [42]. The sender encrypts the message 7 as ¢ := m + k and transmits the ciphertext ¢. The receiver

recovers 72 by computing 7 = ¢ — k.

How do we formalize that the one-time pad cryptosystem achieves confidentiality of the message?

Here is one attempt.

We view any function f as an oracle that prints f(x) when gueried with an input x. We allow queries
to be adaptive, i.e., the ith query may depend on the (7 — 1)th query, for some positive integer 7 > 1. In
practice, the number of times that /" may be queried is upper bounded by some positive integer 7 > 1.
If this is the case, we refer to the oracle as an #-time oracle. An oracle algorithm is an algorithm that uses
one or more oracles during its execution and returns either 0 or 1. Throughout this thesis, we model

adversaries as oracle algorithms, which may be probabilistic.

Let O and & be two [-tuples of oracles for some integer / > 1 with the property that for each 7 =
0, ...,/ — 1, the oracles O; and P have the same domain and codomain. Once we introduce the notion of
pseudorandomness, it will become apparent why we sometimes give &/ access to multiple oracles. Based
on the outcome of a random experiment in which a fair coin is flipped, an adversary o is given oracle
access to either O or P. The goal of & is to determine what the outcome was. Loosely speaking, its
output value, say d, encodes a binary statement of the form “I believe the outcome of the experiment to

be d.” The quality of o is measured by the l-distance between O and P, which is defined as
Ay (O, P) := |Pr[(0) = 1] — Pr[dd(P) = 1]].

Assume that the adversary is capable of choosing the message that is encrypted. Hence, fix any message.
From the point of view of the adversary, the corresponding ciphertext is a random element, because itisa
function of the uniform random secret and the message. By eavesdropping on the channel, the adversary
is sampling from the distribution of this ciphertext. If different messages induce identical ciphertext

distributions, then the ciphertext gives no information on the message.

$
Given a one-time pad k¥ <— G, letm — m+kforall m € G be the corresponding encryption function.
. . $ .
Moreover, given a uniform random element » < G, let m — rforall m € G be a uniform random

constant function. Importantly, we view both functions as one-time oracles. The advantage of @l in

12
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distinguishing between a ciphertext of the one-time pad cryptosystem and a uniform random element

of G is defined as

Ad random ciphertexts
Vin>m+k

() =Ay(m>m+kmer),

$
where the probabilities are computed with respect to k,7 < G. We claim that the advantage of any

adversary is 0. Indeed, for all 2, s € G, we have

Prlc = s] = Pr[m + k = 5]
=Prlk =5 —m]
=1/|G|.

In words, the distribution of the ciphertext is uniform for any given message. It does not matter whether
the adversary has oracle access to m + m + k or m + r; in both cases it receives a uniform random
element. As a consequence, the advantage is 0.

To conclude, we illustrate the importance of never reusing the one-time pad for multiple messages.
Suppose that the adversary knows two messages 72y, 72; € G that are encrypted with the same one-time

pad 4. It follows that
a-—¢=(m +k)—(my+k)=my—my.
Hence, knowing either 72 or 7, immediately reveals the value of the other.

2.2.2 SECRET-KEY MESSAGE AUTHENTICATION

In addition to eavesdropping, we allow the adversary to actively corrupt the message in the communi-
cation channel. To address this problem, sender and receiver compute a one-time authenticator in the
following way. We assume that the message is a polynomial 7 € E,[x] with 72(0) = 0 and deg(m) < d
for some positive integer 4 > 1. The sender and receiver agree on a pair of uniform random secrets
(r,5) i E, x E,. The sender computes the authenticator 2 := (7) + s and sends (2, 4) to the receiver.

The security of the authenticator is closely related to the probability of the adversary winning the

following game.
MAC SECURITY
* The adversary chooses a message 2 € I [x] and gives it to the challenger.

$ .
* The challenger computes secrets (7, 5) < E, x E, the authenticator 2 == m(7) + s, and gives 4 to

the adversary.

* The adversary computes (2, 2') for a new message m’ # m.

13
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The adversary wins the game if (7', 4') is a valid message-authenticator pair, i.e., if ' = m'(r) + s.
From the point of view of the adversary, given the pair (72, 2), each of the possible values for 7 is equally
likely. This is due to the addition of the one-time pad s. A forgery attempt (7', 2") with m' # m succeeds
ifm'(r)+s—a' = m(r)+s—a. Equivalently, it succeeds if m' (r) —m(r) +a—a’ = 0. Thisisa polynomial in
the variable 7 of degree at most 4. Hence, it has at most 4 roots. Itfollows that the probability of correctly
guessing 7 is at most d /4. Sender and receiver can make this probability arbitrarily small by choosing a

suitable 4.

2.2.3 MULTIPLE MESSAGES

Suppose that sender and receiver want to protect the integrity of an z-tuple of messages. To that end,
they share a secret € I, and a secret sequence (5, ..., 5,-1) € EJ'. The message number is used to index
into the sequence, e.g., the 7th message selects the secret s;. The sender computes an authenticator 4, for
the 7/th message as 2; := m;(r) +5;. Because it is important that each s; is used only once (as it is a one-time

pad), the index is called a nonce.

2.3 SECURITY ASSURANCE THROUGH CRYPTANALYSIS

We have seen that the confidentiality of a message can be protected by the application of the one-time
pad cryptosystem. We have also seen that forgeries of a message can be detected with high probability
by computing an authenticator and transmitting it along. Is this the whole story? The problem with
these cryptosystems is scalability; the number of secrets that the sender and receiver need to agree on is
proportional to the number of messages. By assuming that the amount of resources that is available to an
adversary is bounded, we are able to design cryptosystems that rely on a much smaller number of random
symbols for their security. Let us call such an adversary a bounded adversary.

How do we design a cryptosystem that relies on a short secret key? The usual approach is to define a
mode of operation, which is an algorithm that calls some underlying primitive. It may have other respon-
sibilities. For example, it may pad the input string, partition the padded string into blocks, or include
diversifier symbols. We define a primitive to be a function family that is indexed by a /arge set of keys
that have a short description, e.g., a single key may be described as 256 bits, but the cardinality of the set
of keys is 2°°. Examples of primitives are block ciphers and deck functions. A nonexample of a primitive
is a cryprographic permutation. Indeed, for our purposes, primitives allow for clearly specified security
definitions. Primitives may follow a dedicated design. Alternatively, they may be constructed on top of
some building block like a cryptographic permutation or an existing primitive.

How do we reason about the security of such a cryptosystem? In the so-called standard model, the
security of the mode is reduced to the pseudorandomness of the underlying primitive. Loosely speaking,
a primitive is PRE secure if it is statistically “close” to a uniform random function, as measured by a
particular distance function. Substituting “permutation” for “function” leads to the notion of a PRP-

secure primitive. Then there are SPRP-secure primitives, which allow for querying the inverses. If the
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primitive relies on some building block, then this building block is often modeled as a uniform random
element to be able to prove a bound on the aforementioned distance. For example, if the building block
is a cryptographic permutation, then this leads to the random permutation model, which is an example
of an ideal model.

What is the point of a proof in some ideal model? The answer is that it makes it possible to reason
about security against generic attacks. These are attacks that do not exploit the structure of the building
block. For a concrete cryptosystem, the designers make a security claim and rely on cryptanalysis to falsify
this claim. An example of a claim may be “there is no attack that is better than exhaustive key search”
or “we believe the distance function to be bounded as follows.” Hence, any such cryptosystem is only

conjectured to be secure against a bounded adversary. This is true for all practically usable cryptosystems.

2.3.1 RANDOM ORACLES

Suppose that an abelian group G is the z-fold direct product of an abelian group A with itself; i.e., sup-
pose that G = H” for some positive integer 7z > 1. In this case, we can view the one-time pad cryptosys-
tem of Section 2.3 as a mode of operation for a uniform random function. The one-time pad is of the
form k = (ky, ..., k,_1), which we can think of as a uniform random element of Maps[{0, ...,z — 1}, H]
by mapping the index 7 to the corresponding secret ;. It is an example of a fixed-length random ora-
cle [6]. Because the indices can be obtained by incrementing a counter, this mode is a simple variant of

the so-called counter mode of operation [24].

2.3.2 PSEUDORANDOMNESS

Fix finite sets K, X, and Y. Note that this finiteness assumption is not a restriction in practice, as we
can always choose sets of sufficiently large cardinality. We generalize the previous discussion to elements
of Maps[X, Y]. Suppose that we replace the uniform random element of Maps[X, Y], i.c., the random
oracle, in counter mode with a nonuniform random element of Maps[X, Y']. Loosely speaking, if no ad-
versary is able to detect this nonuniformity with high probability, then the replacement does not change
the security properties of the mode much. If this is the case, then we say that the nonuniform random ele-

mentis pseudorandom against any adversary. Let us formalize this, using the concrete security approach [5].

PRF sECURITY. Suppose that F: K x X — Y is a family of elements of Maps[X, Y] that is indexed by
afinite set K of keys. Moreover, we assume that it is based on some building block, e.g., a cryptographic
permutation. We view , as a (nonuniform) random element of Maps[.X, Y] by selecting a uniform ran-
dom element & i K. The pseudorandomness of F against an adversary & is measured by the advantage

of ¢ in distinguishing between Z; and a uniform random function, i.e.,

AR (o) = Ay (B, ),
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$ $
where the probabilities are computed with respect to k£ «— K, f* <= Maps[X, Y], and the random choices
that the adversary &/ makes (if any).

Recall that we are only considering bounded adversaries. We specify two important resource measures

that are associated with an adversary.

First, there is its online or data complexity, which is equal to the amount of data that is exchanged
between the adversary and the oracle, either % or f. For example, if X = ¥ = {0, 13<2" | then the data
complexity can be measured as the number of input bits to and output bits of the oracle. The quantity
| X| + Y| is a natural upper bound on the online complexity, as the unknown function is completely
specified by the set of all input-output pairs. In practice, an upper bound on the online complexity is
determined by the use case. For example, a system that implements the oracle may update the secret after

every  calls to the oracle, for some positive integer 7 > 1 that is relatively small.

Second, there is its offline or computational complexity, which is determined by all the computations
that the adversary can perform that do not require knowledge of the secret (this definition does not
exclude guessing the secret). It is often measured in a number of computationally equivalent calls to the
building block that it used to implement F. The cardinality of K is a natural upper bound on the offline
complexity, as trying out all the possible values for the secret is sufficient to break the scheme, assuming
that the online complexity is sufficiently large. We will make this more precise shortly. In practice, a more
useful upper bound that we may assume is determined by the financial resources that an adversary is able

and willing to invest.

Consider the set A(AM, N) of all adversaries that have online complexity at most A/ and have offline

complexity at most N. The PRF advantage function of F is defined as

AdVY (M, N) = sup{ed € A(M,N) : Advy ()} .
Loosely speaking, we call F a “PRF-secure function” if AdV;rF(M ,IN) is “small” for “practical” values
of M and N. Clearly, the meaning of these words depends on the use case. PRF-secure functions are

indistinguishable from uniform random functions by suitably bounded adversaries.

EXHAUSTIVE KEY SEARCH.  Clearly, lower bounds of the PRF advantage function are determined by
concrete adversaries (i.e., attacks). Here is an example of a generic attack on F that highlights the impor-
tance of an upper bound on the offline complexity. The attack o is called exhaustive key search. Suppose
that o is given an n-time oracle. It queries that oracle for inputs x;, ..., x,_;, obtains the corresponding
outputs y, ..., %,-1, and determines, offline, the subset of keys ¥ € K for which y; = £ (x;) holds, for
7 =0,..,n — 1. If this subset of keys is nonempty, then it outputs 0, i.e., it believes that the oracle is an

oracle for F, as opposed to a uniform random function. For this particular &/, we find that

AdV () = 1 - |K|/|Y)".
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To reiterate, without an upper bound on the offline complexity, the adversary can trivially distinguish

between F and a fixed-length random oracle.

RANDOM PERMUTATION MODEL. On the other hand, upper bounds of the PRF advantage func-
tion can typically be derived only when the underlying primitives are replaced by their uniform random
counterparts. Here is an example. Suppose that F is built around an z-tuple P = (B, ..., B,) of per-
mutations on some finite set Z for some positive integer » > 1. Denote the n-tuple of their inverses by
rl= (Pl_l, s P7Y). To define the pseudorandomness of F, the oracles in the definition are changed
from 5, and f to (F, P, P7') and (f, P, P™"), respectively. This model is called the random permutation

model.

SECURITY cLAIMS. If the analysis is performed with respect to the actual building blocks (as opposed
to the uniform random counterpart), upper bounds of the PRF advantage function are conjectural and
based on cryptanalysis. Such upper bounds typically appear in a so-called security claim. Security claims
may also refer to the infeasibility of specific adversaries. For example, a claim may state that there exists

no attack that is “better” than exhaustive key search.

SECURITY STRENGTH. Comparing the pseudorandomness of two function families is often bother-
some to do by comparing the upper bounds of the respective PRF advantage functions. Instead, we

would like to have a single number, the security strength [38]. The security strength of F is 7 bits if

IOg —_—
2\ AdvP (M, N

M+N )
<nn.
)

DEck FUNCTIONS. In this paragraph, we specialize to the case of variable-length input and variable-
length output. To that end, let S be a nonempty finite set of symbols. A doubly-extendable cryprographic
keyed (deck) function [16] is a function family F: K x Z,y x Z,o % (S*)* — S that satisfies the following
properties. It outputs an infinite sequence of symbols. From this infinite sequence, a finite subsequence
is obtained by specifying an offset and a length. It must allow for efficient incremental computation; given
any two sequences 5, ¢ € (S*)*, if s has already been processed, then the processing time of s || # should
depend only z. Moreover, the time it takes to generate additional output symbols should depend only on
the number of additional symbols that is requested. Both are accomplished by remembering the internal
state. The security of a deck function is measured by its PRF advantage function against a random oracle

with the same interface, and the security claim is expressed as an upper bound on this function.

Brock crpHERS.  In contrast with the counter mode of operation, some modes of operation require
to be invertible. In this paragraph, we therefore specialize to the case that X equals Y and F is invertible.
This is called a block cipher. Invertibility implies additional structure. Hence, we require a slightly differ-

ent notion of pseudorandomness to formalize what it means for F to be secure. The pseudorandomness
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of F against an adversary ¢/ is the advantage of ¢ in distinguishing between %, and a uniform random

permutation, i.e.,
Advy " (sl) = Dy (B, p) s

$ $
where the probabilities are computed with respect to k£ < K, p < Perms[X], and the random choices

that &/ makes (if any).

Consider the set A(A, N) of all adversaries that have online complexity at most A4 and have offline

complexity at most N. The PRP advantage function of F is defined as
AdvRP (M, N) = sup{d € A(M,N) : Advi" (o)} .

Loosely speaking, we call F a “PRP-secure block cipher” if Advit (M, N) is “small” for “practical” values
of M and N. PRP-secure block ciphers are indistinguishable from uniform random permutations by

suitably bounded adversaries.

While PRP security models the block cipher as an efficiently computable permutation that is indis-
tinguishable from a random permutation, it only considers access to the forward direction of the cipher.
The security definition implicitly relies on the invertibility of 4, but the inverse function itself does not
appear in it. To strengthen the model, one can also give the adversary access to the inverse oracle. The

resulting notion, where (%, £ 1) must be indistinguishable from (p, p!), is known as SPRP security.

Formally, the SPRP advantage of an adversary of against F is its advantage in distinguishing between

$
oracle access to (/, ;') and oracle access to (p, p~1), where k < K and p < Perms[X]. We write

AdvEP(el) = Ay (B BT, (0, p7Y)) -

Loosely speaking, we call F an “SPRP-secure block cipher” if Adv® (M, N) is “small” for “practical”
values of M and N.

PRP-PRF sWITCHING LEMMA. Sometimes, a mode that requires a PRF-secure function is instanti-
ated with a block cipher. How is the PRF security of a block cipher related to its PRP security? By defini-
tion, a permutation has no collisions, whereas a uniform random function is expected to have collisions.
Indeed, the probability that at least one collision occurs after  queries to a uniform random function is
approximately equal to #*/2|X|. This follows from the solution to the famous birthday problem [28].
The PRP-PRF switching lemma [11] uses this fact to bound the PRF advantage of a block cipher F in

terms of its PRP advantage. In particular, it states that
AdVY(of) < AdVPP (o) + ——
21X|
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for all adversaries & with access to an n-time oracle. This observation forms the foundation of the
Sweet32 attacks on the TLS protocol [9]. However, if | X| is sufficiently large, then the PRP-PRF switch

poses no problems.

2.3.3 CRYPTANALYSIS

Loosely speaking, cryptanalysis is about trying to falsify some security claim. Arguably the most impor-
tant branches of cryptanalysis of secret-key primitives are differential [10], linear [15, 37], algebraic [3],
integral [17], and higher-order differential cryptanalysis [35]. If a primitive is defined over a field of char-
acteristic 2, then the latter two are essentially the same. A detailed explanation of these techniques is
presented in later sections. What follows now is a very brief summary of the core ideas that underlie each

technique.

DIFFERENTIAL CRYPTANALYSIS. Differential cryptanalysis is the branch of cryptanalysis that deals
with the propagation of differences through a function. Concretely, let /: G — H be a function be-
tween finite abelian groups G and H. Moreover, let x i G be a uniform random element, let 2 € G be
an input difference, and let 4 € H be an output difference. The cryptanalyst is interested in the proba-
bility that the predicate f(x) — f(x — a) = b is true. This is called the differential probability (DP) of
the differential (a, b) over f.

For a uniform random £, the DP of any differential over f'is a random element of [0, 1] with expected
value ¢ = 1/|H| and variance o = 1/(|G||H]|). Indeed, the number of elements x € G that satisfy the
predicate is a random element of [0, | G|] that has, approximately, a Poisson distribution with expected
value and variance equal to 1 = |G|/|H| [20] if |G| is sufficiently large and |H| is sufficiently small.
Hence, any significant deviation from A could lead to a distinguishing attack. The number of samples
that is required to detect this deviation is approximately equal to the inverse of the DP of the differential.

Instead of considering individual input and output differences, the cryptanalyst may consider the
propagation of sets of differences. Given subsets 4 € G and B € H, we now consider the conditional
probability that the predicate f(x) — f(x) € B s true given that x — x" € 4. This generalization is called

truncated differential cryptanalysis.

LINEAR CRYPTANALYSIS. Linear cryptanalysis is the branch of cryptanalysis that deals with linear
approximations of functions. Concretely, let £, ¢: ' — E be two Boolean functions. The distance, say
9, between f and g is defined as the probability that £ (x) # ¢(x) for a uniform random element x i E.
The distance between £ and a subset P of Boolean functions is defined as §(f, P) := min{d(f,¢) : g €

n—1

o 4%+ a € B} is the set

P}. In particular, the cryptanalyst is interested in the case that P = {x — >
of linear functionals.

It turns out that a convenient quantity to work with is the correlation, say ¢, between f and g, which
isequaltoc = 1 —29. Let g € P and let / be a uniform random Boolean function, then ¢ is a random

element of [0, 1] that is approximated by a normal distribution with expected value z = 0 and variance
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Figure 2.1: The Feistel structure.

o* = 27" [20]. Any significant deviation from 0 could potentially lead to a distinguishing attack. The
number of samples that is required to detect this deviation is approximately equal to the inverse of 2.
We should note that zero-correlation attacks exist as well.

Shortly, we will see how to generalize this to functions between any two finite abelian groups and how
linear cryptanalysis effectively is Fourier analysis. In the Fourier domain, the Fourier transform turns
translations (e.g., by a subkey or a round constant) into modulations, which are much easier to deal with

and understand.

INTEGRAL CRYPTANALYSIS. Let X and Y be sets. Integral cryptanalysis is the branch of cryptanalysis
that deals with predicting the sum of outputs of a function f: X — ¥ over a multiset of inputs § ¢ X
In other words, the cryptanalyst is interested in the value of 3" ¢ f(s). Predictions are typically based
on the propagation of some integral property, e.g., knowing that if some input variable takes on all the
values, then some output variable will take on all the values. If X and Y are finite fields of characteristic 2,
then the “best” multisets S are often affine subspaces of X. In this case, an important subclass of integral
attacks is formed by the so-called higher-order differential attacks. These attacks rely on estimates of the

degree of a polynomial representation of f.

2.3.4 CONSTRUCTING BLOCK CIPHERS

A block cipher is designed with two properties in mind. First, for every key # € K, both  and E!
should be efficiently implementable. Second, it should withstand known cryptanalysis techniques.

Internally, the key is usually, but not always, processed by a key schedule, which is responsible for the
derivation of subkeys. The data is processed by a data path, which makes use of the subkeys. Hence,
subkeys flow from the key schedule into the data path, but data does not flow from the data path into
the key schedule.

The data path is usually obtained as the composition of a number of relatively simple round functions,
which are often the same, perhaps up to the addition of a round constant or subkey. There is a lot of
freedom in designing a round function. Importantly, any design should try to balance the computational
complexity, which depends on the computing environment, and the security that it offers. We summarize

important st7uctures that frequently make an appearance in the design of round functions.
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Figure 2.2: The SPN structure.

Suppose that the set of inputs forms a direct product of an abelian group G with itself. In that case,
we can design a function on that set that has the Feiszel structure [36]. Input pairs (x,x,) € Gx G
are transformed by the function (x,%,) = (%, + f(x,)) that is parameterized by some function
f+ G — G that may depend on a subkey. This is illustrated in Figure 2.1. An important property
of the Feistel structure is that it is invertible, regardless of the invertibility of f. Indeed, the inverse is
equal to (,9,) = (9 = f (%), ). Moreover, observe that the function (x, %) = (x,, ) is, in fact,
an involution. If the exponent of G is 2, then the function (x,%,) = (% + f(x,),,) is also an invo-
lution. In that case, encryption and decryption are essentially the same operation, the difference lying
in the order in which the subkeys are supplied. In other words, encryption and decryption can use the
same circuit in hardware. Another important property is that an SPRP-secure function can be obtained
from a PRF-secure function f (in that case, f should depend on a subkey) by repeating the structure 4
times [36].

Some functions have the SPN structure, which stands for substitution permutation network. It usu-

ally consists of the following layers, not necessarily in that order.

* (constant addition layer): This layer adds round constants and/or subkeys to the internal state.
Round constants introduce asymmetry between the different rounds. Subkeys add uncertainty

about the function’s internal state.

(nonlinear layer): This layer prevents straightforward linear modeling of the function. Usually, it
is composed of a number of S-boxes. An S-box has certain algebraic properties, e.g., its degree, and

statistical properties, e.g., its differential probabilities.

(linear layer): This layer consists of a transposition step that shuffles the symbols of the internal

state, and, optionally, a mixing step, that adds internal state symbols together.
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Figure 2.4: The full-state keyed duplex construction.
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It is the 7nteraction between the various layers that gives the function good cryptographic properties.
Informally, diffusion ensures that each output symbol is a function of every input symbol, and confision

means that this function is highly complex. The SPN structure is illustrated in Figure 2.2.

Some functions are based on the operations of modular addition, rotation, and bitwise addition (XOR).
They are said to have the ARX structure. One advantage of ARX-based functions is that they tend to
have efficient software implementations, each operation usually taking only a single CPU cycle to com-
pute. In particular, this is true for the addition operation, which exhibits good differential, linear, and
algebraic complexity. There are also several disadvantages. A hardware implementation of the addition
operation requires a circuit for the propagation of carry bits. Such a circuit has either a small area or a
short critical path, but not both. Moreover, the security of ARX structures is more difficult to analyze

compared to structures that are based on S-boxes.

Suppose that £ = (k, k1). The Even-Mansour construction [25] can be used to obtain a block cipher

from a cryptographic permutation. It is illustrated in Figure 2.3.

Note that some of these structures may appear as substructures of the others. For example, the f-
function that appears in the Feistel structure could have the SPN structure. In turn, the S-boxes that

appear in an SPN structure could have an ARX structure.

2.3.5 CONSTRUCTING DECK FUNCTIONS

We present a number of constructions of deck functions that are useful to know about for better under-

standing of the contents of this thesis.
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Figure 2.5: The Farfalle construction.

FULL-STATE KEYED DUPLEX CONSTRUCTION.  Figure 2.4 llustrates the full-state keyed duplex (FKD)
construction [18]. FKD is a serial construction that is based on a cryptographic permutation f that
operates on a b-bit state. A user can make two types of calls: initialization calls and duplex calls. In an
initialization call, akey index 4 is used to select a k-bit key from a key array K and it is loaded together with
a (b — k)-bit string iv into the state. Next, an 7-bit string Z is returned and a b-bit user-supplied string
o is injected into the state. In a duplex call, the state is transformed by £, an 7-bit string Z is returned to
the user and a b-bit user-supplied string & is injected into the state. Loosely speaking, the PRF security
of FKD is given in terms of a somewhat complicated looking upper bound on its ¢/-distance to the Ideal
eXtendable Input Function (IXIF). The IXIF has the same interface as the FKD, but is implemented

with a random oracle “under the hood.”

FARFALLE CONSTRUCTION. Figure 2.5 illustrates the Farfalle construction [8]. Farfalle is a parallel
construction that is based on a cryptographic permutation and it consists of a mask derivation layer,
a compression layer, and an expansion layer. Masks are derived from the input key and added to input
blocks. Each input block is transformed by a permutation in the compression layer, independently from
the other blocks. The resulting output blocks are added to each other into an accumulator. After being
transformed by another permutation, the accumulator is used to generate pseudorandom output blocks

in the expansion layer by adding different masks to it.
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2.3.6 CONSTRUCTING CRYPTOGRAPHIC PERMUTATIONS

A cryptographic permutation P is an element of the set Perms[X] that s efficiently implementable. In the
construction of some primitives, there is the requirement that its inverse Plis efficiently implementable
as well. Typically, the design of P closely follows that of the data path of a block cipher; it uses the same
structures that we have discussed in the corresponding subsection. Importantly, there is 70 dedicated
secret key input.

What it means for a cryptographic permutation to be secure cannot be formalized. Indeed, it is only
at the level of the primitive that uses P, where there 7s a secret key involved, that we are able to formally
define security, such as PRF security and PRP security. Loosely speaking, however, P should not have

any structural properties that allow for falsifying the security claim of the primitive that uses it.

2.4 IMPLEMENTATION SECURITY

So far, security has been defined in terms of an adversary that queries an oracle a number of times and
needs to determine which object it has access to. Crucially, the oracle is treated as a black box. Although
its specification is typically known, its secret key is not. In practice, an adversary may also be able to
exploit the interaction between the algorithm and its implementation.

Such implementation attacks are best classified along two independent axes. The first axis is the
method of access: non-invasive, semi-invasive, or invasive. Non-invasive methods operate entirely through
standard interfaces or external observation. Semi-invasive methods expose the chip’s internals without
damaging its internal structures. Invasive methods involve physically tampering with the chip.

The second axis is the type of technique used, such as side-channel analysis or fault injection. Side-
channel attacks rely on passively observing physical leakages, such as power consumption or electromag-
netic emissions, which may depend on secret data. Fault attacks, by contrast, involve actively disturbing
the device’s normal operation, e.g., by injecting voltage glitches or laser pulses, so that internal secrets can
be inferred from incorrect outputs. Both types of attacks can be mounted using any of the three access
methods, depending on the attacker’s capabilities.

Countermeasures against side-channel attacks often involve masking techniques that randomize in-
termediate computations. Fault attacks are typically mitigated by introducing redundancy or error de-
tection mechanisms. Physical protections, such as tamper sensors or shielding, can further increase resis-

tance against invasive and semi-invasive attacks.

2.5 ALGEBRAIC CRYPTANALYIS

In this section, we introduce the notion of a Grébner basis for an ideal and its application to computing
the solutions of a system of polynomial equations. As a motivating example, the cryptosystem itself can
be modeled as a system of equations in the secret symbols, which may allow for recovery of the secret.

Throughout, we write R, := k[x, ..., x,_;] for the set of polynomials in the variables x;, ..., x,_; and
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with coefficients in the field k. The interpretation of the variables depends on the model being used;
typically, the 7th variable represents the 7th input symbol.

Loosely speaking, a Grobner basis is a set of polynomials that generates the ideal and for which mul-
tivariate division always leads to a unique remainder, regardless of the order in which reductions are
applied. The standard algorithm for computing a Grobner basis is Buchberger’s algorithm. Most of the
state-of-the-art algorithms are essentially (sophisticated) optimizations of this algorithm. Buchberger’s
algorithm can be seen as a generalization of both the Gaussian elimination algorithm from linear algebra
and Euclid’s algorithm for computing the polynomial greatest common divisor. The contents of this

section are based on the exposition of [34].

2.5.1 MONOMIAL ORDERS

It is useful to have a unique representation of the polynomials in R,,. To that end, we equip R, with a

monomial order by identifying x* with the exponent vector & € Z%, and imposing an order on Z%.
Definition 1. A4 monomial order on R, is a relation > on the set Z, that satisfies:

* > isa well-order.

e Ifa>fandy € 22, thena+y > B+ y.

We write x* > xf if 2 > £ and use the convention that x* > 0 for all 2 € Z%;. An example of a
monomial order is the lexicographic order. It is important for reasoning about the shape of a Grobner

basis.
Definition 2. We bave a >, B if the leftmost nonzero component of o — {8 is positive.

A second example of a monomial order is the graded reverse lexicographic (grevlex) order. This order

is important for the computation of Grobner bases, as it leads to the shortest computation times.

.. o -1 -1 -1 -1 .
Definition 3. We bhave &t >y,epye B if cither Z::o a; > Z?:o B or Z?:o a= 2?20 B and the rightmost

nongero entry of a — f3 is negative.
Now that R,, is ordered, we can speak of leading monomial, leading term, etc.
Definition 4. Let f = 3 ¢,x* be a non-zero polynomial in R, and let > be a monomial order.
a

> We call multideg(f) = max.{a € Z% : ¢, # 0} the multidegree of f.
o The leading coefficient of f isle.(f) = lc(f) = Conuleideg(f)-
o The leading monomial of f islm,(f) = Im(f) = xmultides),

* The leading term of f is1lt.(f) = It(f) = le(f) Im(z).

Example 1. Consider f = xy + x5, + x, € B[xy, %1, %,] with the lexicographic order. Its multidegree is
equal to (1,0, 0), its leading coefficient is equal to 1, its leading monomial is equal to xo, and its leading

term is equal to x.
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2.5.2 MULTIVARIATE POLYNOMIAL DIVISION

Originally, Grobner bases were introduced to solve the ideal membership problem, which asks to decide
whether a polynomial £ is in the ideal (F) that is generated by polynomials F := {f, ..., f,,_1} or not.
If we suppose that f and the f; are elements of the univariate polynomial ring [x], then the problem is
easily solved. Indeed, the ideal (F) is generated by ¢ = ged(fp, ..., f,,-1). It follows that we only need to
check whether £ is a multiple of g. This is a simple application of the univariate division algorithm. Itis
this concept of division that we want to generalize to R,,.

As a first step, we recall how the univariate division algorithm works. Suppose that we wish to divide
f = ay+ax+ - +ax"byg = by+ bx+ - + b,x", assuming that both 2, and b,, are non-zero.
Notice that the terms of f and ¢ are ordered by degree. We divide the leading term (with respect to this
ordering) of f by the leading term of g. That is, we calculate g; = (a,x") / (,,x”) and recursively apply
this principle to f; := f'—g,¢ and g. When the leading term of ¢ no longer divides f; we end the recursion
and store Z:':)l g;ingand f; in 7. The polynomial ¢ is called the quotient and the polynomial 7 is called
the remainder.

Let us now try to mimic this procedure in R,,. Some definitions are in order. Let f and g be polyno-
mials in R,,. We say that f"is zop-reducible by g if Im(g) divides Im(f). The corresponding top-reduction
is given by f/ — (It(f) / It(g))g. The effect of a top-reduction is that the leading term of f is canceled. We
say that f is top-reducible by F if there exists an 7 € [0, 72 — 1] such that f is top-reducible by f;. When
no f; top-reduces f we say that f is zop-irreducible by F. When f is top-irreducible by F, we may proceed
and try to reduce f — lt(f). If there is a term of f that is divisible by a leading monomial of some f;, we
say that f is reducible by F. When f is no longer reducible, we call it irreducible and we end up with a
remainder 7. In general, this remainder is not unique, as it depends on the order in which the reductions

were applied.

Proposition 1. Let F = (fy, ..., fr,-1) be an m-tuple of polynomials in R, and fix a monomial order >.
Every polynomial f € R, can be written as

m—1

f:Zqiﬁ*'r

where gy, r € R, and either g;f: = 0 orlt(f) > lt(g;f;) fori € [0,m — 1). Moreover, we either have r equal
to 0 or r is a linear combination of monomials that are not divisible by any It(f;) fori € [0,m - 1]. We

will call r a remainder of f on division by F.

To obtain the quotients ¢; and the remainder 7, we apply Algorithm 1.
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Algorithm 1 Multivariate division

1:

-
[N S

—
W

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:

7«0

b« f

: Output: Polynomials 7, g,
. fori < 0,m - 1do
%<0

. end for
: while » # 0 do

Jj<0

divided < False

while ; < m A ~divided do

if le(f;) divides 1e(h) then
le(b)
h—h- @ ltq‘])
g4 B

9 9j ()
divided < True

else
jej+1

end if

end while

if 7divided then
h—bh-1ch)
7« r+lt(h)

end if

24: end while
25: Xeturn 7, go, ..., §p-1

vy 1 € R, such that f = Z:'Z)l g.fi+r.

Input: A sequence F = (fy, ..., f,,-1) of polynomials in R, a polynomial / € R,, and a monomial
order >.
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2.5.3 GROBNER BASES

Throughout, let 7 be any ideal of R, and fix some monomial order > on R,,. We are now ready to define

what a Grobner basis is.

Definition 5. A finite subset G = {gy, ..., g_1} < I is said to be a Grébner basis for I with respect to > if
every polynomial in I is top-reducible by G.

Proposition 2. There exists a Grobner basis G for I with respect to > and it generates I.

Multivariate division leads to a unique remainder if the order of the reductions is fixed. If we are
reducing modulo a Grobner basis, then the order does not matter. This is the content of the following

proposition.

Proposition 3. Let G = {gy, ..., g1} be a Grobner basis for I with respect to >. There exists a unique
polynomial r € R,, that satisfies the following.

e The polynomial r is irveducible by G, and
e thereisa g € I suchthat f = g +r.
The polynomial r is often called the normal form of f with respect to G and we denote it by f rem G.

Let us apply this to the ideal membership problem. We compute a Grobner basis G for the ideal (F)

with respect to > and compute f rem G. The normal form will tell us whether £ is in the ideal or not.
Corollary 1. The polynomial f is in I if and only if f rem G = 0.

Proof. Suppose that f € I. By proposition3 f rem G = f—g forsomeg € I. Itfollows that f rem G € /.
However, no term of f rem G is divisible by any lt(g) with ¢ € G. The fact that G is a Grébner basis then
implies that £ rem G = 0. To prove the converse, we assume that f rem G = 0. Again, by proposition

3, we deduce that there exists a ¢ € [ such that f = ¢ + (f rem G). Our assumption then implies that
f=g¢€l 0

In general, an ideal can have many different Grobner bases with respect to >. However, by imposing

some restrictions, it is possible to guarantee uniqueness.

Definition 6. A4 Grobner basis G for I with respect to > is said to be reduced if
e lc(g) = 1forall g € G, and
e grem G\ {g} =g forallg € G.

Proposition 4. The ideal I has a unique reduced Grobner basis with respect to >.
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2.5.4 SYSTEMS OF POLYNOMIAL EQUATIONS

Suppose that we are given a system of polynomial equations of the form fy = - = f,; = 0. The
equations define an ideal I = ({f;, ..., f5,-1}). Theset Z(/) := {a € k" : f(a) = Oforeach f € I}
contains the solutions to the equations. How do we obtain Z(J) from 7? It turns out that this is easy to
do when we have the reduced Grébner basis for 7 with respect to the lexicographic order.

To explain this, we need a few more definitions. An ideal 7 is called zero-dimensional if Z(I) contains
only finitely many points. Suppose that [ is a zero-dimensional ideal and let 7 € [0, 2 — 1]. We say that /

is in normal x;-position if any two points @, b € Z([) satisfy a; # b,.

Proposition 5. Let k be a field of characteristic 0 or a finite field. Moreover, let F be a sequence of poly-
nomials in R,. Purl = (F). Assume that I is zero-dimensional, radical, and in normal x,,_,-position.
Write m for | Z(I)|. Let G be the reduced Grobner basis for I with respect to the lexicographic order with

Xo > % > - > x,_1. Under these assumptions, G is of the form

{0 _go(xn—l):xl _gl(xn—1)>~-~>xn—2 _gn—z(xn—l):xzn—l _gn—l(xn—l)}

where each g, is a univariate polynomial in k(x,_,] of degree at most m — 1. In particular, this shows that
Z([) = {(gO(dz')7 7gn—2(ﬂz’): 41’) S [0’ m— 1]} >

where ag, ..., a,,_y are the roots of X' 1 — g,_1(%,_1).

The assumptions of Proposition 5 are not too restrictive. Indeed, if £ is a finite field, say E,, then the
ideal [ == I+ (xd = x5 e %1 =%, ) is zero-dimensional and radical. Ensuring that /, is in normal x,, ;-
position may require moving to an extension field of ]E] and a linear change of coordinates. However, this

is nota problem, as the solutions are guaranteed to be in E, due to the relations ¥ —xfori=0,...,n—1.

2.5.5 ALGORITHMS

Given the usefulness of Grobner bases, we address how to find such a basis. Buchberger gave the first al-
gorithm for computing a Grobner basis. His algorithm relies heavily on the concept of the S-polynomial

of two polynomials.
Definition 7. Let f, ¢ € R, be non-zero polynomials. The S-polynomial of f and g is defined as

x7

x7
S(f,g) = lt(f) 'f_ @ £
where x7 = lem(Im(f), Im(g)).

The S-polynomial of two polynomials is constructed in such a way that their leading terms are can-
celed. Buchberger’s criterion, which is stated in Proposition 6, gives us an algorithmic test for checking

whether a set of polynomials is a Grobner basis or not.
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Proposition 6. A finite subset F = {f;, ..., fi_1} is a Grobner basis for I with respect to > if and only if for
all pairs (4, j) of distinct indices the S-polynomial S(f;, ;) reduces to 0 modulo G.

Using Proposition 6, one readily obtains Buchberger’s algorithm, which is stated in Algorithm 2.

Algorithm 2 Buchberger’s algorithm

Input: A sequence of polynomials F = {f{, ..., /,,_1} and a monomial order >.
Output: A Grobner basis G for (F) with respect to >.
G« F
P «—Sort({(p,q) : p,q € G,p # q})
while P # @ do
(p,q) « the first element of P
P —P\{(p,9)}
7« S(p,q) remG
if 7 # 0 then
P —Sort(PU{(g,7): g €G})
G—Gu{r}
end if
end while
return G

Proposition 7. Buchberger’s algorithm 2 terminates in a finite number of steps and outputs a Grobner

basis for ({fo, .. » fr1})-

Proof. Write I = (F). We first prove correctness. We want to use proposition 6 to prove this. To thisend,
we need to show two things. First, that G is a subset of I during the entire execution of the algorithm.
Second, at theend S(g, b) rem G = O forall g, » € G with ¢ # h. Atthe start of the algorithm G = F < [.
During each iteration of the while loop G is augmented with 7. Since p, ¢ € 7 it follows that S(p, g) € I
and since G < I we deduce that » € 1. Therefore, G U {r} < I. Whenever we process a new pair, if the
remainder of the S-polynomial by G didn’t already equal zero, then we add the remainder. This ensures
that subsequent computation of the remainder will yield zero. Hence if the algorithm terminates we
have that S(g,h) rem G = O forall g,h € G with ¢ # h. Next, we prove that the algorithm indeed
terminates. Every time a nonzero remainder is added to G the ideal (It(G)) strictly increases. This leads
to an ascending chain of ideals in R,,. By Noetherianity of R, this chain eventually stabilizes. This means
that eventually the if-branch is never executed. Therefore the set P eventually becomes empty and the

algorithm terminates. O

IN pRACTICE.  Algorithm 2 is not very efficient. Every time an S-polynomial is reduced to zero, we
do not discover any new element of the Grobner basis. As the reduction step is the most time consum-
ing step, it is natural to consider strategies that avoid these useless reductions. Since it is impossible to
avoid reducing S-polynomials altogether, much effort has also gone in speeding up the reduction step.
Finally, the order in which critical pairs are processed has an effect on performance as well. This becomes

important when the input polynomials are comprised of terms having different degrees.
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From a theoretical point of view, state-of-the-art Grébner basis algorithms are simply improvements
to Buchberger’s algorithm that include enhanced selection criteria, a faster reduction step that makes
use of fast linear algebra, and an attempt to predict reductions to zero. A fast algorithm is Faugere’s F5
algorithm [4, 26].

Experiments highlighted that computing a Grébner basis with respect to the lexicographic order is
a slow process. Computing a Grobner basis with respect to the grevlex order can be done in a faster
manner. However, we need the lexicographic order to be able to apply Proposition 5. Fortunately, the
FGLM algorithm [27] makes it possible to transform a Grobner basis with respect to the grevlex order
to another with respect to the lexicographic order. To summarize, an adversary adopts the following

strategy:
1. Using the F5 algorithm, compute a Grébner basis with respect to the grevlex order.

2. Using the FGLM algorithm, transform the previous basis into a Grobner basis with respect to the

lexicographic order.

3. Using polynomial factorization and back substitution, solve the resulting system of equations.

CosToF THEFs ALGORITHM. In the bestadversarial scenario, we assume that the sequence of polyno-
mials associated with the system of equations is regular. A sequence of polynomials (£, ..., f,,-1) € R}

is called a regular sequence on R, if the multiplication map

mfR/{ﬁ)’ ﬁz} _’R/{ﬁ); ﬁz}

given by mﬁ(@]) = [g][fi] = [gf;] is injective for all 7 € [3,m — 1]. In this case, the F5 algorithm does
not perform any redundant reductions to zero.

Write R,, ; for the set of homogeneous polynomials of degree & in R, and I, for the set of homogeneous
polynomials of degree d in 1. The Hilbert function is defined as Iy ;;(d) = dim(R,, ;/I;) foralld > 0,
i.e., it maps d to the dimension of R, ;/1; as a vector space over k. Define the Hilbert series by Hy ;/(¢) =
Z:::O Iy i(d )#?. For sufficiently large d, the Hilbert function agrees with a univariate polynomial in d
over the rational numbers, called the Hilbert polynomial. The degree of regularity D, is the smallest
integer such that this is true. The quantity D, plays an important role in the cost of the algorithm. The
degree of I, denoted by deg([), is the dimension of R, /1 as a k-vector space. If the ideal 1 is generated by

a regular sequence of degrees dy, ..., d,,_;, then its Hilbert series equals

1+t+22 i1
HRnu(t)=H’°( (+_t)n _—
175, (1= %)
R

From this, we deduce that deg(7) = H:'Z)l diand Dy, = 1+ Zzgl(d,- -1).
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The main result is that if £, ..., f,,_; is a regular sequence on R,,, then computing a Grébner basis with

respect to the grevlex order using the F5 algorithm can be performed within

o (n + Dreg)‘”

Dreg

operations in k, where w € [2, 3] is the matrix multiplication exponent.

CosTs OF GROBNER BASIS CONVERSION AND OF BACK SUBSTITUTION. FGLM is an algorithm that
converts a Grobner basis for 7 with respect to one order, to a Grébner basis for 7 with respect to a second
orderin O(n deg(I)*) operations in 4. Finally, if # equals E,., the cost of factoring a univariate polynomial

in E,. [x] of degree d is O(dPn? + dn?), as proved in [29].

2.6 INTEGRAL CRYPTANALYSIS

Throughout this paper, we use integral attacks as an umbrella term for attacks relying on summing the
outputs of a function over a well-chosen input set, each using a different heuristic for constructing the
set. We restrict ourselves to input sets that form an affine space over the field .

This section is organized as follows. In subsection 2.6.1, we make explicit the link between functions
defined on an affine space and their representation on this space as a multivariate polynomial, called
the algebraic normal form. In subsection 2.6.2, we introduce an intuitive notion of the derivative of a
function and show how it can be computed by means of summation of outputs of the function. Finally,

we present the high-level idea behind an integral attack in subsection 2.6.4.

2.6.1 ALGEBRAIC NORMAL FORM

To understand how to find input spaces for an integral attack, we need to explain how to represent the
restriction of a vectorial Boolean function to some affine space as a tuple of multivariate polynomials:
the algebraic normal form (ANF). We present the necessary tools and results from computational com-
mutative algebra and make the relation between the algebraic normal form and substitutions, which
determine the input sets, explicit.

Variables correspond to the bits which are controlled by an adversary, e.g., the diversifier symbols. We
also refer to these symbols as the input symbols. Let py, ..., p,_; be polynomials of the form p; = x; or
pi=G+ 27.;.1“ a;;x; for constants ¢; € I and coefficients 4;; € I. During cryptanalysis, we make use of
a set of rewrite rules of the form x; — p,, i.e., we substitute x; with the polynomial p;. Rules of the form
x; — x; are said to be #77vial in the sense that no substitution is performed. A set of rewrite rules defines
aset of polynomials of the form x; — p;, which is completely specified by a tuple (4, ¢), where 4 = (4;;)
isan 7 x n matrix over &, and ¢ = (¢, ..., ¢,_1) is a vector in F'. The matrix 4 is in row echelon form, up

to a permutation of its rows, which implies that the order in which the corresponding rewrite rules are

32



2.6 Integral cryptanalysis

applied does not matter. The tuple (4, ¢) defines the affine space V' = {v € ' : Av = ¢} of points that
satisfy the equation 4v = .

We have seen that a rewrite rule of the form x; — p, give us a relation of the form x; = p;. Moreover,
we have relations of the form %7 = x; due to the fact that the square on E, is the identity map. We can

introduce these relations by working with polynomials modulo the ideal / generated by the set

2 2
G = {xo T XYy e Xp—1 T Xp—15 X0 _P05 ey Xp—1 _pnfl} .

For our purposes, the central algebraic object is the quotient ring R, /1.

Polynomials in R,, give rise to elements of Maps[/, E]. Indeed, for any point 2 € I/, there is a unique
ring homomorphism ¢,: R, — E with ¢,(x;) = 4; given by substituting x; by ;. This leads to a map
¢: R, — B thatis defined by ¢(p) = f with £(a) = ¢,(p) foralla € V. The kernel of ¢ is equal to 7.
By the first isomorphism theorem for rings [13, p. 247], there is an isomorphism 5 between F/ and R, /1.

The set G forms a Grébner basis [13, p. 78] for 7 with respect to the lexicographic order. Define
W =A{uekE :u = 0ifx; # p;} as the set of vectors for which the 7th component is zero if x; is
eliminated by a substitution. The remainder of any polynomial p € R, on division by G is unique and

of the form

premG = Z a,x",
uelV’
for certain constant bits «, € E [13, p. 83]. Therefore, the set of all possible remainders after division by
G, which we denote as R, forms a complete set of coset representatives of 7 in R,,. Indeed, let y: R, —
R, be defined by ¢ (p) = prem G forall p € R,. The kernel of  is equal to . By the first isomorphism
theorem for rings, there is an isomorphism ¥ between R,, /7 and Ry;.
To conclude, we have an isomorphism Aj; = ¥ o & between the set of Boolean functions defined on

V" and the set of remainders R;. We are now able to make precise how a function is represented on 7.

Definition 8. Let f: V' — K, be a Boolean function defined on V. The representation of f as a multi-
variate polynomial, called the algebraic normal form (ANF) of f, is defined as Ng (f).

The degree of a remainder p € R with p # 0isequal to deg(p) = max{HW(x) : # € W and «, # 0},

which follows from the definition and the algebraic relations between the variables.

Definition 9. Let f: V' — F be a Boolean function defined on V. The algebraic degree of f, denoted by
deg(f), is defined as the degree of its ANF.

If £ depends on a secret vector s € E, for some integer £ > 1, e.g., a secret key or state, then the
coefficients &, of N (f) are Boolean functions of the secret bits, i.e., #, maps the secret s to some bit
,(s) € E. In this case, we can rewrite the definition of the degree as deg(f ) = max{HW(«) : « €
IV and there exists an s € B with «,(s) # 0}. Note that our definitions coincide with the usual defini-

tions of algebraic normal form and algebraic degree in the case that both 4 and ¢ are zero.
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Table 2.2: Truth table of £.
X 000 001 010 011 100 101 110 111
f(x) 0 1 0 0 1 0 1 1

There is a straightforward generalization of these notions to vectorial Boolean functions defined on
V.

Definition 10. The algebraic normal form of F = (fy, ..., f_1): V' — B is defined as NV (F) =
(N(fo)s s N fruo1)) € R Its algebraic degree is defined as deg(F) = max{deg(fy), ..., deg(/,,-1)}-

We illustrate how to apply rewrite rules to //(f), where £ is some Boolean function, in order to change
its properties, such as the presence of certain monomials. The resulting polynomial is the ANF of the

restriction of £ to the affine space determined by the rewrite rules.

Example 2. The function f: B — B is defined by the truth table in Table 2.2. It follows that
N () (0, 21, 25) = X + % + 1%, -

Therefore, the algebraic degree of f is 2. Now we make the isomorphism N implicit.
We apply the rewrite rule x; — x,. This rule, together with the trivial rules, defines the matrix

S

Il
c o o
o = o
o = o

and the constant ¢ = (0,0, 0). Clearly, A is in row echelon form, up to a permutation of its rows. Moreover,
V={veB :Av=0}={veB : v =un}. Whenwerestrict f toV, i.c., when we consider f|,: V — B,
we find that its ANFis equal to xo. The restriction bas algebraic degree 1 and it depends on a single variable.

An alternative way of wording this is that we compose f with the map L: B — V given by (x, %,) >
(%0, 21, %1) and that the algebraic normal form of f o L is equal to x,.

Like in the example, we will make the correspondence between Boolean functions and their represen-

tation as a tuple of remainders implicit in the following sections.
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2.6.2 PROPERTIES OF DERIVATIVES

The integral attacks that we consider in this section, rely on practically computable properties of the
derivative of a Boolean function. All definitions and results are extended to the case of vectorial Boolean
functions by applying them to each coordinate Boolean function. We define a partial order < on B’ by
declaring # < vifand only if #; < v; for7 = 0,...,z — 1, interpreting elements of I, as the integers 0 and

1 and employing the standard total order on Z.

Definition 11. For vectors u,v € B, define the derivative of the monomial x* with respect to u by

2 ifu<o,

A
0,x" =

0 otherwise

and extend linearly to functions f: B — . We call 9, f the derivative of f with respect to n.

Note that this definition coincides with that of the usual partial derivative.

Example 3. Let f: B — E, be given by f(x) = %o + %, + x,%,. Its derivatives are equal to

000 f (%) = %0 + 2 + 312,
Ao f (%) =% +1
%0,1,0/ (%) = %

Ao, f(x) =1

dr00/ (¥) =1

I f(x) =0

9,10/ (x) =0

duanf(x) =0

The first important property of the derivative is the duality between the derivatives of f and outputs

of f on an affine space by means of summation.

Proposition 8. Let f: B — E and a,u € E'. We have

flw+a)= > 0f(x),and

O<u<a

0f(x)= > flx+a).

O<as<u
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Proof. The first equality can be seen as follows. Using the ANF of £, we find that

flx+a)= zocw(x+a)”’

O<w

a3 )

O<w O<usw

_ z( 3 x)

O<w \O<su<w

_ Z(Z H)

O<u \usw

Z(Z)

O<u \usw

5 (z )

O<u<a \usw

> 0fw),

O<u<a

where we have applied the definition of the derivative and used the fact that2* = 1ifand only if 0 < # <

a. The second equality follows from the M&bius inversion formula [40, p. 264] applied to the first. ]

The following corollary shows how to compute the coefficient «,, of ¥ in f by summing over the

outputs of f corresponding to inputs for which # takes on all possible values.
Corollary 2. Let f: B — E and a,u € B'. We bave

2= Y fla).

0<a<u
Proof. This follows from the second equality in 8 and the fact that d, £ (0) = «,,, by definition. O
The second important property of the derivative concerns its degree.

Proposition 9. The degree of the derivative of f with respect to u satisfies

deg(0,f) < deg(f) - HW (x).

Proof. By definition, wehaved, f = > _ 2,x"™". Letwbesuchthata, # 0anddeg(d,f) = HW (w—u).
Using that # < w and that x* is a monomial in £, we find that deg(d,f) = HW(w — #) = HW(w) —
HW(x) < deg(f) - HW(x). O

The coefficient of any monomial x* with the Hamming weight of # exceeding the degree of the func-

tion is 0.

Proposition 10. If HW(x) > deg(f (x)), then 0, f (x) is the coefficient a,, of x" in f. In particular, if
HW (%) > deg(f (x)), then this cocfficient a,, is 0.
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Proof. If HW () = deg(f(x)), then deg(@uf(x)) < 0. This implies that d,f(x) is a constant, ie.,
0,f(x) = 0,f(a) forany 4 € E'. In particular, this is true for  equal to 0. By definition, it follows that
0,f(0) = ,. THW () > deg(f(x)), then deg(()”f(x)) < 0, which implies that 2, is 0. O

2.6.3 DIVISION PROPERTIES

The various division properties are generalizations of the integral properties from [33]. In some cases,

they allow us to accurately predict the coefficient of a monomial in the ANF of a function.

Definition 12. Let X be a multisubset of &' and let K be a subset of B'. We say that X bas the K-division
property if for all u € B we have that

Z . unknown  if there exists a k € K such that k < u,
x =

xeX 0 otherwise.

We can trade computation time for a higher resolution.

Definition 13. Let X be a multisubset of ' and let K and L be subsets of . We say that X bas the
(K, L)-division property if for all u € B we bave that

unknown  if there exists a k € K such thatk < u,

Z X" =11 if there exists an | € Lsuch thatl = u,

xeX .
0 otherwise.

PROPAGATION RULES. Any function f/: ' — E” can be modeled as the composition of “copy and
expand”, “multiply and compress”, “add and compress”, and “secret key addition” functional blocks.
Hence, we give rules for the propagation of the (K, L)-division property through each of these blocks. In
this paragraph, the binary operator + denotes addition in Z and the binary operator @ denotes addition

in E. In other words, to compute the propagation of a division property, we treat bits as integers.
) p propag property, 3

Copy and expand. Consider the propagation through the copy and expand function
(x = (x(), X5 X5 w00 xn—l)) : ]an - ]an+1 .

Suppose that the multiset at the input has the (X, L)-division property. The multiset at the output
has the (K, L')-division property, where K" and L' are computed as follows. Write 4 «— 4 for the

insertion of the element # into the multiset 4. For each £ € K, do

K, s (0) 0: kla"-)kn—l) Ifko = 0)
(1,0, ky, ey by 1), (0,1, kyy oo oy y) iy = 1.
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Foreach/ € L,do

(0,004, 2,) ifly =0,
-
(1,0,0y, 0Ly 1), (0, 1,0y, el y)s (L1, 0y, e dyy)  ifly = 1.

'

Multiply and compress. Consider the propagation through the multiply and compress function
(x = (x()xl’xzs (] n—l)): ]an - ]an_l .

Suppose that the multiset at the input has the (K, L)-division property. The multiset at the output
has the (K, L')-division property, where K and L' are computed as follows. For each # € K, do

ko + Ky

K/<—(

> k2> e knfl) .

For each / € Lsuch that (), /;) equals (0,0) or (1,1), do
L« (

Add and compress. Consider the propagation through the add and compress function

Iy + 4

vy Zn_l) .

(5 = (%0 @ %y, Xy s %,_q)) : B — BF7LL

Suppose that the multiset at the input has the (K, L)-division property. The multiset at the output
has the (K”, L')-division property, where K" and L' are computed as follows, for each # € K and
I € L, respectively. For each & € K such that (k, #;) equals (0, 0), (1, 0), or (0, 1), do

K' — (ko +ky kg loyy)

Write 4 & a for the insertion of the element z into the multiset 4 if it is not present and removal
otherwise. For each / € L such that (/y, /;) equals (0, 0), (1,0), or (0,1), do

L2 (h+hh, .. 0,).

This propagation rule has the so-called cancellation property; in effect, we are only keeping those

vectors that appear an odd number of times.

Secret key addition. Let7 € [0, 7 — 1]. Consider the propagation through the function

(x = (xo, s X1 X T S5 X1 e s n—l)): IFZn - ]I:Zn
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thataddsasecretbit ; to x;. Forevery/ € Lwith/; = 0, weinsertthe vector (Jo, ..., ;15 1, L1505 L, )

into K. This propagation rule has the so-called unknown-producing property.

ALGORITHMS. Suppose that we can write /: E' — E”as f = OZ3 R, for some positive integer / > 1
and functional blocks R of the types that were described in the previous paragraph and with compatible
domains and codomains. Using the appropriate propagation rule of the previous paragraph, we compute
the (K1, L;,1)-division property at the output of R; from the (X, L;)-division property at the input of
R, forall7 € [0,/—1]. Conceptually, this leads to the following ordered (/+ 1)-partite graph G = (V, E).
Put ¥} = {(z,v) : v € K; U L;} for the ith level, where we put the index to make the nodes unique. The
set of nodes is equal to V" = U_oV. The set of edges E is formed by all unordered pairs {(z, v), (i + 1, w)}
(¢ € [0, /-1]) for which w is generated by v through a propagation rule. We summarize several algorithms

for finding sets of paths in, or, more generally, subgraphs of G.

Breadth-first search. The breadth-first search (BFS) algorithm traverses the graph level by level by ap-
plying the propagation rules to generate the nodes. Because it explores the entire graph, it requires
generation of every node, which makes it very expensive. Hence, we mention it for historical rea-

sons and because it is conceptually the easiest algorithm to understand.

Binary integer programming. By combining functional blocks and propagation rules, we may as-
sume that the R, are the round functions of . In this context, an /-round division trail is a path
in the graph that contains one node from each of the levels. We can specify a start node and an
end node, typically a standard basis vector. This determines a set of division trails. We can effi-
ciently model this set as a system of linear inequalities in variables that are required to be either 0
or 1. This is called a binary integer programming (BIP) model. Various models (for various divi-
sion properties) exist with different solving times. See, for example, [22] and [30]. At the time of

writing a popular solver for BIP models is the one by Gurobi.

Graph pruning. In many cases, we do not need to visit every node in the graph to be able to answer a
query like “does the 7th output bit of f"sum to zero over a given multiset X or not?” Like before,
we use the BFS algorithm to traverse each of the / levels. However, when we traverse the ;th level,
we use a BIP model of the propagation of the K-division property through / — j rounds of f to

efficiently identify subgraphs that we do not need to visit. For more details, we refer to [43].

2.6.4 FRAMEWORK OF AN INTEGRAL ATTACK
Integral attacks consist of an offline phase followed by an online phase:

Offline phase. The offline phase is an analysis step where the adversary accesses the polynomial repre-
sentations of the step functions of a primitive that depends on some secret. They apply rewrite
rules to these polynomial representations in order to simplify it, e.g., eliminating variables and low-
ering the degree. Importantly, the rewrite rules determine an affine input space V. Using combi-

natorial arguments involving the degree or by propagating an initial division property vector [41],
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the adversary is able to determine the vector of coefficients of some target monomial. To be able
to mount a successful attack, this vector should either be a constant that does not depend on the
secret at all or depend on the secret in a way that leads to a system of equations that is easy to solve,
e.g., linear dependence. The outcome of this step is an affine input space 7 and a target monomial
x*.

Online phase. The online phase is an execution step where the adversary accesses a cryptographic oracle
for a fixed secret. They recover the vector of coefficients of the target monomial x* by summing
over the affine input space 7 that was obtained during the offline phase. The vector of coefficients
is then used as a distinguisher or to set up a system of equations in the secret bits that may lead to

recovery of the secret.

2.7 DIFFERENTIAL CRYPTANALYSIS

Suppose that G and A are finite abelian groups and consider a function f: G — H between G and
H. Differential cryptanalysis of f is about answering the following question. Given a uniform random
elementx < G and afixed element A;, € G, what s the shape of the distribution of the random element
f(x) = f(x+A;,) € H? For example, what is the probability that the random element equals A, € H?
To study this question systematically, we introduce some basic terminology.

2.7.1 DIFFERENTIAL PROBABILITY

The tuple (Ay, Aoy) € G x H is called a differential over f, Ay, is called an input difference, and A,
is called an output difference. The main quantity of interest is the probability that a given differential

occurs.
Definition 14. The differential probability (DP) of (A, A,,,) #s defined as
DPf(Am! Aout) = Pr[f(x) _f(x + Am) = Aaut] .

The definition provides a concrete method to compute DP ¢ by counting the number of solutions to

the differential equation. This motivates the definition of a solution set.
Definition 15. The solution set of (A, A,,,) s the set
Zf(Az'm Aom) = {x e f(x) _f(x + Al’n) = Aom} .

Because x is a uniform random element, we readily obtain the following correspondence between DP ¢

and the cardinality of the solution set.

40
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Proposition 11. The DPof (A, A,,,) is equal to

|Zf(Al'n’ Aout) |

DPf(Az'rL’ Auut) = |G|

Tuples (¥, x + Ay,) with x € Zp(Ajy, Agye) are said to follow the differential (A, Agye)- If such tuples
exist, then we say that the input difference Ay, is compatible with the output difference A, over f and
call (A, Agye) a valid differential.

2.7.2 DIFFERENTIAL TRAILS

Suppose now that f'is obtained as the composition of % round functions. That is, we assume that
k-1
f=0R;.
=0

Here, R;: G; — G, is a function between finite abelian groups G; and G, ;. We write f[r] == R,._; °
- o Ry and define f[0] := id with id the identity function. To study differentials over f, we study the
propagation of differences through the R .

Definition 16. A k-round differential trail over f is a sequence

k
Q=(g9q",...g" e []G

=0

that satisfies DPRi(q(i), q(’v“)) >0fori=0,..,k-1

Let us further suppose that R; = 4; o L; e N, is the composition of a round constant addition, a linear

layer, and a non-linear layer. Sometimes we specify a higher-resolution differential trail as
Q = (b—ls a0, bO: bO: e A b/e: bk)

by giving the intermediate differences between N; and L; as well. They are related by the equations
by =1L,(a;) = gy fori =0,...,k—1.

We write DT (A, Aoye) for the set of all differential trails in the differential (A;,, Ayy,). These are
the trails with ¢© = Ay, and ¢® = A .. We call (A, Aoy the enveloping differential of the trails
in DT (A, Agur). If [DT (A, Agwd)| = 2, then we say that trails cJuster together in the differential
(Aips Agyr). By deleting the initial difference Ay, and final difference A, of a differential trail we are
left with a differential trail core A differential trail core obtained in this way is said to be in the differen-
tial (Aj,, Ayy)- Note that a differential trail core actually defines a set of differential trails with the same
inner differences.

Let E; be the event that corresponds to the predicate R, (£[7](x)) — R, (F[i](x) + 4?) = 47+, We

now define the DP of a differential trail.
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Definition 17. The DP of a differential trail is defined as

N5

7=0

k
DPA(Q) = [ | Pr[E-
i=0

Each round differential (¢*), 4#*V)) has a solution set Zy, (¢, 4%*V)). Consider the transformed set
of points Z; := f[i]™ (Zx, (4%, 4¥*1)) at the input of £. Foratuple (x, x+4®) to follow the differential
trail, it is required that x € Z¢(Q) = ﬂf;ol Z;. The DP of the trail is the fraction of states x that satisfy

this equation.

Proposition 12. The DP of a differential trail is equal to

12(Q)]
DP/(Q) = ﬂf.

Definition 18. The round differentials are said to be independent if the corresponding events are, i.c., if

k-1
DP/(Q) = [ [ PrlE]
=0
k-1
= H DPg (4%, 4*V) .

=0
Any given tuple (x,x + A,) follows exactly one differential trail. Hence, the DP of the differential
(Ajn, Agye) is the sum of the DPs of all differential trails with initial difference Ay, and final difference
A

out*

Proposition 13.

DP(A;A,,) = »  DPAQ).
QeDT(A,,A,0)

Proof-

DPf(Aionut) = Pr[f(x) _f(x + Ain) = Aout]
k-1

= > P - e+ A = A0 E
i=0

QeDT (A Agu)

= Z DP/(Q).

QeDT (A A0u)
(]

Given any differential (A, A,) over a round function R, itis typically easy to compute its DP value.
By specifying the intermediate differences we obtain a differential trail (A, 4, ¢, A,y). Suppose that N
is the application of 72 S-boxes in parallel. Thanks to the linearity of L, we have ¢ = L() and due to the
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fact that a difference is invariant under addition of a constant, all valid such differential trails are of the
form (Ags L7 (Ague)s Aowes Aowr)- Therefore, the differential (A, A,y) contains only a single trail and
its DP is the DP of the differential (A;,, L™ (A,,)) over N:

DPr (A Aoue) = [ [ DPs (Proj (i), Proj (L (Au0) -

0<j<m

Hence, the DP of a round differential is the product of the DP values of its S-box differentials.

2.7.3 RESTRICTION WEIGHT

The DP of a differential (Ay,, A,,.) depends on the cardinality of its solution set. In the following, we
suppose that G and / are vector spaces of dimension » over a finite field . If Z¢(A;,, A,y,) is an affine

dim Zp (A, B u)~

space, then the DP is equal to ¢ ”. This inspires the following definition.

Definition 19. The restriction weight of a differential (A, A,,,) that satisfies DP ¢(A,,, A,,;) > 0 s
defined as

Wr(Az'm Aaut) == logq Dpf(Az'm Aout) .

The weight represents the number of independent linear equations over E, that is necessary to describe
the solution set.

A tuple (x,x + ¢'©) follows a trail Q = (¢, ¢, ..., 4*)) if and only if x € Z4(Q). The solution
set of each round differential can be defined by a number of equations that is equal to the weight of this

round differential. For a differential trail, we sum the weights of the round differentials.

Definition 20. The restriction weight of a differential trail Q = (q(o), q(l), s q(k)) is defined as

k-1
w.(Q) = Z w, (g%, gDy .
i=0
We now explain the significance of this definition. If the round differentials are independent in the
sense of Definition 18, then we have that DP4(Q) = 479, Tn general, the approximation can not be
good if w,(Q) > 7, since DP£(Q) 2 47" if Q has any tuples following it.

2.8 LINEAR CRYPTANALYSIS

Linear analysis of cryptographic primitives effectively is Fourier analysis on finite abelian groups. As
such, the theory is well-understood and this section serves as a recap. The ideas that we present here are
based on the works of Daemen [15], Baignéres et al. [2], and Daemen and Rijmen [19]. Many of the
proofs can be found in the book by Hou [31].
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2.8.1 CHARACTERS

Let (G, +) be a finite abelian group and let ¢ be the (finite) exponent of G, i.e., the smallest integer 7 such
thatna = 0 forallz € G.

A character of G is a homomorphism from G into the subgroup of C* consisting of the eth roots of
unity. The set of characters of G is denoted by G and it forms a group under the multiplication defined
by (v7')(a) = y(a)y'(a) foralla € Gand y, ) € G. The groups G and G are isomorphic, but this

isomorphism is not canonical.

For a fixed isomorphism between G and G and for each 4 € G, we write y, for the image of 2 under
this isomorphism. In particular, the character y, that is defined by y,(2) = 1forall 2 € G is called the

trivial character and it is the identity element of the group G.

Now, let (G, +, ) be the commutative ring that is obtained by introducing a multiplicative structure
on G. This is always possible by the fundamental theorem of finite abelian groups. A character y € Gis
called agenerating character for G if y,(b) = y(ab) foralla, b € G. If a commutative ring has a generating
character for its additive group, then y,(6) = y(ab) = y(ba) = y,(a). In the case that G is the direct sum
of n copies of a commutative ring R and if R has a generating character, say ¢, then we obtain a generating
character y for G by setting y(ay, ..., 4,) = ¢(a;) - #(a,). It holds that y,(b) = y(ab) = ¢(a"b), where

the multiplication in G is defined component-wise.

As an example, consider G equal to ]Fq with g = pd and put w = 7P Let Tr: ]Fq — ]F[7 be the
absolute trace function that is defined by Tr(x) = Z;:)l »”. This is a linear mapping. Fach# € [
defines a generating character y, for E, that is defined by

Tr(ux) ,

2u(%) = w xel.
As a second example, consider G equal to ]Fq”, which is a direct sum of 7 copies of ]Fq. Hence, each
u € B gives a generating character y, for ' that is defined by

T(u"x) ,

Z(x) = " x e

2.8.2 THE FOURIER TRANSFORM

Consider the set C¢ of functions /: G — C. Fixan ordering of the element of G, e.g., G = {4y, ..., 4,1}
We write vy = (f(aq), .., f(4,-1)) for the finite sequence of the output values of f. By identifying a
function f with the vector vp € C‘G‘, CY can be seen as a finite-dimensional complex inner product

space with inner product

(o) => flagla),  fogeCl.
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2.8 Linear cryptanalysis

Forany f € CY, the inner product induces a norm by setting

Il = (£

The standard basis of C is formed by the set of Dirac delta functions {J, € C% : 4 € G}, which are
defined by

1 ifa=25b,
%(0) =
0 ifa#b.

In the context of linear analysis, the solution to the problem of secret key translation lies in changing
the basis of CY to the set of characters of G. For any 2,b € G, the corresponding characters satisfy

(x>1) = |G|3,(b). By normalizing the characters, we obtain an orthonormal basis
CDG={¢4:‘Z€G}:

where ¢, = |G| 2. By projecting f onto @, we find that

f = 2(]“’ ¢a>¢a .

aeG

The operator F: C% - € that is defined by F(f)(a) = (f,¢,) foralla € G is called the Fourier
transform. By identifying a function f with Vg, the Fourier transform is best described as assigning to f'its
coordinates in the normalized character basis. The Plancherel theorem asserts that the Fourier transform

is unitary, i.c., we have

(F(),F@) = (frg),  frgeC’.

Let us return to the question of how to address the problem of secret key translation. Let & € G. We
define the translation operator 7; : cl - ¢t by (7, /) (a) = f(a+b) foralla € G. Moreover, we define
the modulation operator A4 : c¢ - ¢t by (My,f)(a) = ¢,(a)f(a) foralla € G. Thebiginsight s that
translation turns into modulation when changing from the standard basis to the normalized character

basis, i.e.,

T,=F L oMy F,  beG.

Let H be a finite abelian group and let F: G — H be a mapping between G and H. We want a
representation of F in CC. To that end, let x be any character of H. We take as representation the

function y o F € CC.
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2.8.3 CORRELATION

We now specialize to the case that G and H are each equal to the vector space ]Fq” over the finite field IFq.
Leta: E} — E be a transformation of . We consider pairs (#,0) € B x E that we call linear ap-
proximations of a. We refer to u as the output mask and to v as the znput mask. The linear approximation

(0,0) is called trivial. The correlation of the linear approximation is defined as
Colt,0) =q 2 F(, > 2)(v).

We call the masks # and v compatible over a if C,,(u, v) is nonzero. In general, correlations are complex

numbers.

2.8.4 LINEAR TRAILS
Suppose now that « is obtained as the composition of % round functions. That is, we assume that

k-1
a= 0 R;.
=0

The analysis of a linear approximation of « relies on linear approximations of its rounds. This naturally

leads to the notion of a linear trail [14].

Definition 21. A sequence Q = (¢, 4V, ...,4") € (]Fq”)l€+1 that satisfies CR,.(q([),q(Hl)) # 0 for

0 <7 < k—1iscalled alinear trail.

We write LT (, v) for the set of all linear trails in the linear approximation («, v). These are the trails
with q(o) =unand q(k) = v. We call (#, v) the enveloping linear approximation of the trails in LT («, v). If
|LT (2, v)| = 2, then we say that trails c/uster together in the linear approximation (z, v).

By deleting the initial linear mask # and final linear mask v of a linear trail (z, q(l), s q(k'l), v) we are
left with a linear trail core. Alinear trail core obtained in this way is said to be in the linear approximation

(#,v). Note that a linear trail core actually defines a set of linear trails with the same inner linear masks.
Definition 22. The correlation contribution of @ linear trail Q over a equals
k-1
C,(Q) = H CR,(q("), 4"y
=0

From the theory of correlation matrices [14], it follows that

Cuwo)= > ClQ).

QELT (u,0)

Given any linear approximation (#, v) over around function R, itis easy to compute its correlation. By
specifying the intermediate linear masks we obtain a linear trail (#, 4, ¢, v). Thanks to the linearity of L,

we have b = L"(c) and due to the fact that a linear mask is invariant under addition of a constant, all valid
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such linear trails are of the form (x, L' (v), v, v). Hence the linear approximation (%, v) contains only a
single trail and its correlation contribution is the correlation of the linear approximation (%, L™ (v)) over

the S-box layer, where the round constant addition affects the sign:

Cr(0) = 1,(«0) [ Cs,(Proj (), Proj (L7(v)).

0<j<m
2.8.5 LINEAR POTENTIAL AND WEIGHT

Definition 23. The linear potential (LP) of @ linear approximation (u, v) is a real number and related

to the correlation by

LP,(#,v) = C,(#,0v)C,(u,0) .

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 24. If u and v are compatible over a, then we can define the correlation weight of the linear

approximation (u,v) as
w, (#,0) = — logq(LPa(”’ v)).

Definition 25. The correlation weight of a lincar trail Q = (¢, gV, ..., g®¥) is defined as
k-1

w.(Q) = Z we(q?, 4) .

=0

47






3 RESEARCH QUESTION

The central research question of this thesis is:

“Can we increase our understanding of how to design an efficient function family defined

over an arbitrary finite field that is conjectured to be PRF-secure?”

The meaning of the word efficiency depends on the computational context and the relevant performance
measure. In hardware implementations, typical measures include latency and throughput, whereas in
the context of garbled circuits, multiplicative depth is a more appropriate measure.

This thesis focuses on function families built on cryptographic permutations, with an emphasis on
studying the interaction between their components through the lenses of differential, linear, and integral
cryptanalysis.

In chapter 4, we discuss how aligned designs have been favored due to their inherent structure, which
facilitates combinatorial reasoning about trail bounds. However, it is precisely this structure that leads
to various clustering effects. In contrast, unaligned designs avoid such clustering. However, the lack of
structure in unaligned designs makes manual trail bound analysis impractical, necessitating the use of
computer programs. Given these considerations, I prefer unaligned designs, as I believe structure to be
the foundation of any kind of successful cryptanalysis.

In chapter 6, chapter 7, and chapter 8, the nonlinear layer is based on the multiplication, either be-
tween two field elements or as a squaring operation. This operation not only exhibits ideal differen-
tial and linear properties but also remains field-agnostic, making it a versatile building block for crypto-
graphic designs.

Rather than analyzing the cryptographic permutation in isolation, we state a security claim for the
overall primitive. This allows us to reduce the number of rounds in the permutation, improving ef-
ficiency without compromising the targeted notion of security. An example of this approach is given
in chapter 6.

Finally, chapter S demonstrates that combining strong individual components does not automatically
result in a secure construction. This observation underscores the importance of understanding how
cryptographic building blocks interact, highlighting the need for careful integration of components to

ensure security.
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My coNTRIBUTIONS. This chapter is based on work that was accepted at Crypto 2021. I contributed
significantly to its content, including the software for generating data and histograms, the attempt to
formalize the notion of alignment, and the writing of the text. The exceptions are subsection 4.6.4 and

section 4.7. Some shortcomings in our formalization have been addressed by Lambin et al. in [27].

ABSTRACT. The design of a block cipher or cryptographic permutation can be approached in many
different ways. One such approach, popularized by AES, consists in grouping the bits along the S-box
boundaries, e.g., in bytes, and in consistently processing them in these groups. This aligned approach
leads to hierarchical structures like superboxes that make it possible to reason about the differential and
linear propagation properties using combinatorial arguments. In contrast, an unaligned approach avoids
any such grouping in the design of transformations. However, without hierarchical structure, sophisti-
cated computer programs are required to investigate the differential and linear propagation properties
of the primitive. In this paper, we formalize this notion of alignment and study four primitives that are
exponents of different design strategies. We propose a way to analyze the interactions between the lin-
ear and the nonlinear layers w.r.t. the differential and linear propagation, and we use it to systematically
compare the four primitives using non-trivial computer experiments. We show that alignment naturally
leads to different forms of clustering, e.g., of active bits in boxes, of two-round trails in activity patterns,

and of trails in differentials and linear approximations.

4.1 INTRODUCTION

Modern block ciphers and cryptographic permutations consist of the iteration of a round function. In
many cases this round function consists of a layer of nonlinear S-boxes, a mixing layer, a shuffle layer
(AKA a bit transposition or bit permutation), and the addition of a round key (in block ciphers) or
constant (in cryptographic permutations).

Many papers investigate S-boxes and try to find a good compromise between implementation cost and

propagation properties or provide a classification of all invertible S-boxes of a given width, see, e.g., [28,
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4 Thinking Outside the Superbox

35]. Similarly, there is a rich literature on certain types of mixing layers. In particular, there have been
many papers written about finding maximum-distance separable (MDS) mappings or near-MDS map-
pings with minimum implementation cost according to some metric, see, e.g., [29, 38]. Building a good
cipher starts with taking a good S-box and mixing layer and the rich cryptographic literature on these
components provides us with ample choice. However, how these building blocks are combined in a

round function and the resulting propagation properties has received much less systematic attention.

A standard way for designing a good round function from an S-box and an MDS mapping is the one
followed in the Advanced Encryption Standard (AES) [33] and is known as the wide trail strategy [14, 21].
This strategy gives criteria for the shuffle layer and comes with easy-to-verify bounds for the differential
probability (DP) of differential trails (also known as characteristics) and the linear potential (LP) of linear
trails. These bounds and its simplicity have made it one of the most applied design strategies, and AES has
inspired a plethora of primitive designs, including lightweight ones. By adopting 4-bit S-boxes instead
of 8-bit ones and modern lightweight MDS layers in a smart structure, multiple lightweight ciphers have
been constructed. Many lessons were learned and this line of design has culminated in the block cipher

of the NIST lightweight competition candidate SATURNIN [13], a truly modern version of AES.

Naturally, there are alternative design approaches. A popular design approach is the one underlying
the 64-bit lightweight block cipher PRESENT [10]. Its round function has no MDS layer and simply
consists of an S-box layer, a bit shuffle, and a key addition. It gets its diffusion from the combination of
a smart choice of the bit shuffle and specific propagation criteria from its well-chosen S-box and doing
many rounds. The PRESENT line of design has also been refined in the form of the GIFT (64- and 128-bit)
block ciphers [2] and the cryptographic permutations of the SPONGENT lightweight hash function [9]

that is standardized in [1].

Another distinctive design approach is that of the cryptographic permutation of the SHA-3 stan-
dard [34], KEccak-f. Unlike PRESENT, its round function does have a mixing layer, and it actually has
all ingredients that AES has. Specifically, in their rationale, the designers also refer to the wide trail de-
sign strategy [7]. However, this wide-trail flavor does not appear to come with the simple bounds as in
the case of AES, and designers have to resort to tedious and time-consuming programming efforts to
obtain similar bounds. This is related to the fact that AES operates on bytes and KEccax-f on bits. The
Keccaxk-f designers have discussed the difference between these two design approaches in [18]. In that
paper, they have coined the term alignment to characterize this difference and supported it with some
propagation experiments on KEccak-f. The Keccaxk-f line of design has also been refined and led to
the 384-bit permutation that is used in XooDYAK [15], namely Xoopoo [16], a truly modern version

of KEccaxk-f.

This treatment is not exhaustive and other distinctive design strategies exist. Some of them do not
even use S-boxes or mixing layers, but they are based on alternating Additions with Rotations and XOR
(ARX) such as SaLsa [5], or they iterate very simple round functions many times such as SIMON [3].

In this paper we systematically analyze the impact of alignment on the differential and linear propa-

gation properties of ciphers. We show that certain design choices regarding how the S-box and mixing
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layers are combined have a profound impact on the propagation properties. We identify and name a
number of effects that are relevant in this context. Furthermore, we believe that this makes it possible to

give a meaningful and non-ambiguous definition of the term alignment.

To illustrate this, we study the four primitives RIJNDAEL-256 [20], SATURNIN, SPONGENT-384, and
Xoopoo. They have comparable width and all have a nonlinear layer consisting of equally-sized S-boxes
that have the lowest known maximum DP and LP for their dimensions, see Section 4.2. They represent
the three different design strategies, where we include both RIJNDAEL-256 and SATURNIN to illustrate
the progress made in the last twenty years. We investigate their difference propagation and correlation
properties, where for multiple rounds we adopt a fixed-key perspective. This, combined with the choice
of relatively wide primitives, is geared towards their usage in permutation-based cryptography, but most

findings are also relevant for the key-alternating block cipher case.

4.1.1 OUTLINE AND CONTRIBUTIONS

After discussing notation and conventions, we review the notions of differential and linear cryptanalysis
in Section 4.2. In Section 4.3 we show how the nonlinear layer defines a so-called box partition, and
we present a non-ambiguous definition of alignment. In Section 4.4 we present our four ciphers from
the perspective of alignment and compare the costs of their round functions. Surprisingly, SPONGENT,

despite being specified at bit level like KEccax-f, turns out to be aligned.

In Section 4.5 we recall the notions of bit and box weight as a measure of the mixing power of a linear
layer. We report on this mixing power by means of histograms of states by their weight before and after the
linear layer, rather than the usual branch number criterion. For all ciphers we observe a decay in mixing
power from bit to box weight and describe and name the effect that causes this: buddling. This effect
is more pronounced in aligned ciphers. This translates directly to the two-round differential and linear
trail weight distributions, and we list them for all four ciphers. For the two most competitive proposals,
we include histograms for three-round trails and a comparison for four rounds. Remarkably, despite
the fact that SATURNIN has a more expensive S-box layer and a mixing layer with better bit-level mixing

power, X0oDo0O has better differential and linear trail histograms for more than two rounds.

In Section 4.6, we show that trails that cluster necessarily share the same activity pattern, and we intro-
duce the dluster bistogram as a quantitative tool for the relation between the linear layer and the clustering
of two-round trails in ciphers. We see that there is more clustering in the aligned than in the unaligned
ciphers. We present the cluster histogram of the four primitives and, for three of them, we also analyze
their two-round trail weight histograms. We conclude with a discussion on the clustering of trails in two
and three rounds, and show that, at least up to weight 50, differentials over three rounds of Xoopoo

admit only one trail, hence they do not cluster.

Finally, in Section 4.7 we study the independence of round differentials in trails. We show that, again

at least up to weight 50, three-round differentials of Xo0oD0o0 are independent.
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The generation of our histograms was non-trivial and the computation methods could be considered
a contribution in themselves. See Section A after the paper. Software is available at https://github.

com/ongetekend/ThinkingOutsideTheSuperbox under the CCO license (public domain).

4.1.2 NOTATION AND CONVENTIONS

In this paper, we use the following conventions and notation. We write Z., for the nonnegative integers
and Z., for the positive integers. We write £ with £ € Z,, for nonnegative integer variables. In other
words, k is used as a placeholder for any nonnegative integer value.

Whenever we use indices, they always begin at 0. We define [0, ¥ — 1] = {f € Z,, : 0 <7 < k- 1}.
Given a set S and an equivalence relation ~ on S, we write [4]_ for the equivalence class of 2 € S. We
denote the cardinality of S by |S].

We study permutations f: E - E. Any block cipher is transformed into a permutation by fixing
the key, e.g., we fix all of its bits to 0.

We use the term szate for a vector of & bits. It is either a vector that the permutation is applied to,
a difference, or a linear mask (See Section 4.2). Given a state @ € E, we refer to its 7th component
as ;. In this paper, we consider index sets B, < [0, & — 1] that form an ordered partition. We write
Pa): B — ]FZ‘ 51 for the projection onto the bits of z indexed by B;.

We write ¢ for the 7th standard basis vector in Ef, i.c., for 7 € [0, & — 1] we have that e,-I;- =1ifi=j
and 0 otherwise. We write + for vector addition in Ef.

Permutations are typically built by composing a number of lightweight round functions,ie., f = R,_;°
o Ry o Ry for some » € Z.,. We write f[r] = R,_; o o R and define £[0] = id with id the identity
function. A round function is composed of step functions, i.e., R; = 1; o L; e N;, where N, is a nonlinear
map, L, is a linear map, and ¢; is addition of a round constant. Apart from the round constant addition,
these round functions are often, but not always, identical. For this reason, we will often simply write N
or L, without reference to an index if the context allows for this, and we call N the nonlinear layer of /
and L the linear layer of . We write 7 for the number of S-boxes of N and denote their size by 7. In this
context, we suppose that B, = {jm, ..., (j+1)m—13}.

Permutations of the index space are written as t: [0, & — 1] — [0, & — 1]. By shuffle (layer), we mean
alinear transformation 7: B — E given by 7(a) = P, 4, where P_ is the permutation matrix associated
with some T, i.e., obtained by permuting the columns of the (& x &) identity matrix according to 7.

Given a linear transformation L: B — E?, there exists a matrix M € E”* such that L(2) = M a. We
define its transpose L": ¥ — E by L"(2) = M" 2 and we denote the inverse of L", when it exists, by
L.

4.2 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

A major motivation behind the tools developed in this paper is better understanding of the interplay

between the linear and nonlinear layer in relation to differential and linear cryptanalysis. We want to be

60



4.2 Differential and linear cryptanalysis

able to use the associated language freely when discussing these tools. Therefore, in this section, we go

over the basic notions to make sure they are on hand when needed.

4.2.1 DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis [8] is a chosen-plaintext attack that exploits the non-uniformity of the distri-
bution of differences at the output of a permutation when it is applied to pairs of inputs with a fixed

difference. We call an ordered pair of an input and output difference (A;,, A,,,) € (E/)? a differential.

Definition 26. Let f: ¥ — B be a permutation and define Up(A,,,A,,,) = {x € B : f(x) + f(x +
D) = Do} Weeall Up(D,, D) the solution set of the differential (A, A,,,)-
Definition 27. The differential probability (DP)of a differential (A,,, ;) over the permutation f B —
B is defined as DP ¢ (A, A,,,) = W.

If there exists an ordered pair (x, x+A4;,) withx € Up(Ajy, Ayye), thenitis said to follow the differential
(Ains Agyr). In this case, we say that the input difference Ay, is compatible with the output difference A,

through £ and call (A, A,,,) a valid differential.
Definition 28. A sequence Q = (q(o), q(1>, s q(k)) € (]sz)k+1 that satisfies DPy_ (q("), q(”l)) > 0 for

0 <7 < k- 1iscalled a k-round differential trail.

Sometimes we specify a trail as Q = (b_y, 4, by, ... , 4 ;) by giving the intermediate differences be-
tween N, and L; as well, where 4; = L;(4;) = ¢;,1. We write DT (A, A,,.) for the set of all differential
trails in the differential (A, Agy), so with g© = Ay and g® = A . We call (Ay,, Aqy,) the enveloping
differential of the trails in DT (A, Ayy)- IF DT (Ajy, Agye) | > 1, then we say that trails duszer together
in the differential (A;, Agy.)-

By deleting the initial difference A;, and final difference A, of a differential trail

(Aim q(1)> s q(k71)> Aout)

we are left with a differential trail core. A differential trail core obtained in this way is said to be in the

differential (A;,, Ayy). Note that a differential trail core actually defines a set of differential trails with

n»
the same inner differences.
(i+1

We now define the DP of a differential trail. Each round differential (¢, 4“*V) has a solution set

U, (q(i), q(”l)). Consider the transformed set of points U; = f[7]™ (UR,.(q("), q(i+1))) attheinputof f.
For an ordered pair (x, x + 4'?) to follow the differential trail, it is required that x € Ur(Q) = ﬂf;ol U.
The fraction of states x that satisfy this equation is the DP of the trail.

1UF(Q)

20

Definition 29. The DP of a differential trail is defined as DP((Q) =

Definition 30. The round differentials are said to be independent zf°

k-1
DP(Q) = [ [ DPg (g%, 4%*Y).
=0
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4 Thinking Outside the Superbox

Any given ordered pair (x, x + A, ) follows exactly one differential trail. Hence, the DP of the differen-
tial (A;,, Aoy,) is the sum of the DPs of all differential trails with initial difference A, and final difference
A

out*

DPf(Axonut) = Z DPf(Q) .
QeDT (A, Agu)

Given any differential (A, A,,) over around function R, it s easy to compute its DP value. By speci-
fying the intermediate differences we obtain a differential trail (A, 6, ¢, A,.). Thanks to the linearity of
L, we have ¢ = L() and due to the fact that a difference is invariant under addition of a constant, all valid
such differential trails are of the form (A;,, L™ (Agu)s Aoue Ague). Therefore, the differential (A;,, Ayy.)
contains only a single trail and its DP is the DP of the differential (A;,, L™ (Aoy)) over the S-box layer:

DPy (Ains Agu) = [ | DPs (B(A0), BL™ (Aou))) -
0<j<n )
Hence, the DP of a round differential is the product of the DP values of its S-box differentials.

Definition 31. The restriction weight of a differential (A, A,,,) that satisfies DP p(A,,, A,,,) > 015
defined asw (0, D,,) = —log, DP£(A,,, A,

For a differential trail, we sum the weights of the round differentials.

Definition 32. The restriction weight of a differential trail Q = (q(o), q(l), s q(k>) is defined as

Z W, z+1)

If the round differentials are independent in the sense of Definition 30, then we have that DP f( Q) =
2-w(Q).

4.2.2 LINEAR CRYPTANALYSIS

Linear cryptanalysis [30] is a known-plaintext attack. It exploits large correlations (in absolute value)

between linear combinations of input bits and linear combinations of output bits of a permutation.

Definition 33. The (signed) correlation between the linear mask u € B at the input and the linear mask
v € B at the output of a function f: B — i defined as

I/l, I)) — Z( 1 u' x+0" f(x) .

xeB

If C(n,0) # O, then we say that # is compatible with v. We call the ordered pair of linear masks
(,v) a linear approximation. We note that in the literature (e.g., in the linear cryptanalysis attack by
Matsui [30]) the term linear approximation has several meanings. It should not be confused with what

we call a linear trail.
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Definition 34. A sequence Q = (4,4, ...,q") € (]le’)lw1 that satisfies CR,.(q("),q(‘v*”) # 0 for

0 <7 < k= 1iscalled alinear trail.

We write LT (1, v) for the set of all linear trails in the linear approximation (#, v), so with 4 = % and
g™ = v. We call («, v) the enveloping linear approximation of the trails in LT (x, v). If |LT(#,0)| > 1,
then we say that trails c/uster together in the linear approximation (z, v).

By deleting the initial linear mask # and final linear mask v of a linear trail (z, q(l), s q(k‘l), v) we are
left with a linear trail core. Alinear trail core obtained in this way is said to be in the linear approximation

(#,v). Note that a linear trail core actually defines a set of linear trails with the same inner linear masks.
Definition 35. The correlation contribution of 2 linear trail Q over f equals
k-1
Cf(Q) = H CRl(q(z)’ q(t+1)) .
=0
From the theory of correlation matrices [14], it follows that
Crmv)= > CHQ).

Q€LT (n,0)

Given any linear approximation (, v) over around function R, itis easy to compute its correlation. By
specifying the intermediate linear masks we obtain a linear trail (%, b, ¢, v). Thanks to the linearity of L,
we have b = L"(c) and due to the fact that a linear mask is invariant under addition of a constant, all valid
such linear trails are of the form (#, L"(v), v, v). Hence the linear approximation (#, v) contains only a
single trail and its correlation contribution is the correlation of the linear approximation (%, L™ (v)) over

the S-box layer, where the round constant addition affects the sign:

Cr(m0) = (-1)" [ Cs (B(#), B(LT(v)).

0<j<n

Definition 36. The linear potential (LP) of a linear approximation (u,v) is defined as LPp(u,v) =
Cr(n, )%

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 37. The correlation weight of a linear approximation (u,v) with LP (u,v) # 0 is given by
w(u,v) = — log2 LP(u,0).

Definition 38. The correlation weight of a linear trail Q = (q(o), q(l), s q(k)) is defined as

w.(Q) = Z we(g?, 4.

63



4 Thinking Outside the Superbox

4.3 BOX PARTITIONING AND ALIGNMENT

In this section, we consider the partition of the index space defined by the nonlinear layer N. The a/ign-
ment properties of the other step functions with respect to this partition have an important impact on
the propagation properties of the round function.

The nonlinear layer N consists of the parallel application of 7 S-boxes of size 7 to disjoint parts of the

state, indexed by B,. Formally, this means that we can write N as Sy x - x S, _; and that it is characterized

by
Do (SyxxS,1)=S;°Pfor0<i<n-1.

Hence, N defines a unique ordered partition Il = (By, ..., B,_;) of the index space [0, & — 1]. We call
Iy the box partition defined by N and the B, N-boxes. If there is no ambiguity, we call the box partition
IT and its members boxes.

Besides the box partition, it is clearly possible to define other partitions of the index space as well. We
call a partition non-trivial if it has at least two members. Between any two partitions of the index space

there may be a relation that we denote as refinement.

Definition 39. We call I1 a refinement of 11" and write I1 < I1' if for every (i, B,) € I1 there exists a
(> Bj') € I such that B; c B}.

Let IT be a partition of the index space consisting of % boxes, each of size /. We call a shuffle layer a
IT-shuffle if the associated permutation matrix can be partitioned into  identity matrices of dimension

(£ x [). If this is the case, then bit index permutation can be specified as a box index permutation.

Definition 40. We call ¢: BE-F aligned o I if we can decompose it as

k-1 k-1
/ !
gox=xq: XE - XK,
i=0 i=0
In this case, we call the ¢; box functions.

Definition 41. Given a round function that is composed of the parallel application N of equally-sized S-
boxes, a linear layer L, and the addition 1 of a round constant, we say it is aligned if it is possible to decompose

the linear layer L as L = weo M in such a way that
* wisa n-shuffle;
* M is aligned to a non-trivial partition Iy that satisfies Ty < Ty

We assume that the split between the linear and nonlinear layer is chosen so as to maximize the number of
S-boxes in N.

Note that ¢ does not play a role in the alignment properties. If all of the round functions of a primitive

are aligned, then we call the primitive aligned. If the primitive is zor aligned, then we call it unaligned.
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Any aligned primitive has a superbox structure [36], that is helpful when investigating distributions
and bounds on the DP of two-round differentials and the LP of two-round trails. We explain what this

means. Consider a two-round structure
ToMoNoemweMoN .

The final two linear steps w and M have no effect on the distributions, so we can simplify this expression to
NeomoeMeoN. Clearly, New = e N, with N’ := 771« N o . Hence, this is equivalent to e N'-MoN.
Discarding the shuffle layer at the end gives N'o M o N. Since IT = ITy < Ty, we can view this as
the parallel application of a number of superboxes. We call this a superbox layer. In a sequence of two
rounds, N" o M o N is a (composite) nonlinear layer and w o M o is a (composite) linear layer. If the latter
is aligned to a non-trivial partition IT such that ITy < IT, then we call this two-round structure aligned

to [Ty

4.4 THE CIPHERS WE INVESTIGATE

In this section we describe the round functions of the ciphers we investigate in this paper, their alignment

properties, and compare their implementation cost.

4.4.1 RIJNDAEL

RyNDAEL [20] is a block cipher family supporting all block and key lengths of & = 32k bits, with 4 <
k < 8, ie., ranging from 128 up to and including 256 bits. The case & = 128 is of great importance as
RiyNDAEL with that block length is the ubiquitous AES [33]. In this paper we investigate RIJNDAEL-256,
the instance with & = 256, a width closer to those of the other ciphers we investigate. In the remainder
of this paper we will write RIJNDAEL for RNDAEL-256.
The RiyNDAEL round function consists of four steps: a nonlinear layer SubBytes, a box shuffle ShiftR ows,

a mixing layer MixColumns, and round key addition AddRoundKey. As its name suggest, I1s,p,z., par-
titions the state in bytes and ShiftRows is a I, ,,-shuffle. The mixing layer, MixColumns, is aligned
to a non-trivial partition Iy, cozmns that corresponds to the 8 columns, each containing 4 bytes, and we
have ITg,5py0es < MuisCotumns- 1t follows that RINDAEL is aligned. Figure 4.1 shows RyNDAEL-128 that

is is easier to draw due to its dimensions, but the alignment properties for RIJNDAEL-256 are the same.

4.4.2 SATURNIN

The SATURNIN [13] block cipher has a 256-bit key and block length. The state has several representa-
tions: three-dimensional, two-dimensional, and flat. In three dimensions, the 256-bit state is represented
as a4 x 4 x 4 cube of 4-bit nzbbles. Nibbles in the cube are indexed by triples (x, y, z). A slice is a subset
of the nibbles with z constant. A sheet is a subset of the nibbles with x constant. A column is a subset of

the nibbles with x and z constant.
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II

MixColumns
S”hByté’S________________

MixColumns | MixColumns || MixColumns || MixColumns |

Figure 4.1: Alignment properties of RIJNDAEL.

The SATURNIN permutation is composed of a number of so-called super-rounds and a super-round
consists of two consecutive rounds with indices 27 and 27 + 1. Round 27 is composed as MC- S,
where MC is a mixing layer and S is a nonlinear layer. There are two different rounds with odd in-
dices. Round 47 + 1 is composed as follows: RC e RK e SRjL, o MC o SR . o S. Round 47 + 3 consists
of RCoRK s SRL, o MC o SRy © S. Here, RC denotes addition of a round constant, RK denotes
addition of a round key, and SRy, and SRy, shuffle nibbles. The partition ITg divides the state into
64 nibbles. The shuffles SR, and SR, are ITg-shuffles. The mixing layer MC is aligned to a non-
trivial partition Iy that divides the state into 16 columns, each consisting of 4 nibbles, and that satisfies
ITg < Iyc. Iefollows that SATURNIN is aligned. In a super-round we identify the sequence S e MC = S as
asuperbox layer with partition ITy;c and the linear layer of such a round is SRt e MC o SR ;... Thisisa
mixing layer that is aligned to a non-trivial partition I, that divides the state into 4 slices, each contain-
ing 4 columns, and we have ITyc < Il.. Similarly, for the other type of super-round, the mixing layer
is aligned to a non-trivial partition ITj,., that divides the state into 4 sheets, and we have ITyc < IT,...
It follows that the super-rounds of SATURNIN are aligned and hence have their own superboxes. These

have width 64 bits and we call them hyperboxes. Figure 4.2 shows the alignment properties of the steps.

4.4.3 SPONGENT

SPONGENT [9] is a sponge-based hash function family that uses a PRESENT-like permutation. The per-
mutation is defined for any & that is a multiple of 4. In this paper, we only consider the case b = 384, to
match the state size of the largest of the other permutations that we investigate, Xoopoo. The round
function of SPONGENT consists of three steps: a round constant addition 1Counter, a 4-bit S-box layer
sBoxLayer, and a bit shuffle pLayer.

The index permutation of the bit shuffle pLayer is:

96/ mod 383, ifj € [0, 382]
pLayer(j) =
383, if j = 383

As indicated by the Spongent designers in [9], we can decompose it into a mixing layer, followed by a box

shufHe:
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Figure 4.2: Alignment properties of SATURNIN.

1. SpongentMixLayer applies the same mixing function SpongentMix in parallel to the 24 sub-
groups (following the terminology of [9]). It is a bit shuffle associated with the index permutation
Tsubgroup: [0, 15] - [05 15]

|47 mod 15, ifj e [0, 14]
Tsubgmup(]) =
15, ifj=15
2. SpongentBoxShuffleis a box shuffle that is associated with the box index permutation
Thox * [Oa 95] - [01 95]
defined by:

Toox (7) = +24(7 mod 4) .
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Figure 4.4: Alignment properties of Xoop00.

The sBoxLayer defines a box partition IT corresponding to the 96 4-bit boxes. The box shuffle

sBoxLayer
SpongentBoxShuffle is a I pyerayer-shufHle. The bit shuffle Spongent MixLayer is aligned to a non-
trivial partition TlspongensatixLayer that divides the state into 96 16-bit subgroups, each grouping four

consecutive boxes, and we have IT < IT

sBoxLayer S It follows that SPONGENT is aligned.

Spongent MixLayer*
Figure 4.3 shows these steps and their alignment properties.

4.4.4 XO0ODOO

Xo00Dpoo [16] is a permutation with & = 384. The state consists of 3 equally sized horizontal planes,
each one consisting of 4 parallel 32-bit /anes. Alternatively, the state can be seen as a set of 128 columns

of 3 bits, arranged in a 4 x 32 array.

The round function of Xoopoo consists of the following five steps: a mixing layer &, a bit shuffle
Peast> found constant addition ¢, a nonlinear layer y, and a bit shuffle p ;. The y step applies the same
3-bit S-box to the columns of the state. The nonlinear layer y defines a box partition I'L, that corresponds
to the 128 columns. The bit shuffles p, and p,. perform translations of planes and are not aligned to
IL,. The mixing layer & defines no non-trivial box partition at all. Due to the properties of the p steps
and ¢ it is impossible to split the linear layer in a column shuffle and a mixing layer that is aligned to a
partition that IT, is a refinement of. In other words, Xoopoo is unaligned. See Section E for a more

formal proof. Figure 4.4 shows the alignment properties of the steps.
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4.4.5 ROUND cosT

In this section, we compare the implementation complexity of the round functions of the four ciphers.
This depends on the platform and the requirements. Platforms may range from low-end 8-bit CPUs to
multi-core high-end workstation CPUs, FPGAs, and even dedicated hardware. Requirements include
throughput, latency, usage of resources such as power and energy consumption, area in hardware, and
RAM/ROM usage in software. Moreover, protection against fault attacks and/or side channel attacks
may be required.

In our comparison of the round functions we let their three layers guide us: the S-box layer, the mixing
layer (if any), and the shuffle layer. We also discuss the presence of key addition in block ciphers and its

relative cost.

S-BOX LAYER

Given that our ciphers have invertible S-boxes with lowest known maximum DP and LP values that can
be achieved for their width, their implementation cost increases with width.

We report on the implementations with minimum number of binary XOR, binary AND/OR, and
unary NOT operations that we found in the literature. For SPONGENT we found no such numbers. We
have also determined a minimal sum-of-products (SOP) form in Boolean algebra of the S-boxes using
the Espresso algorithm [31] for two-level logic optimization. For RIJNDAEL, finding the minimal SOP
was infeasible. We refer to Section B for the SOP expressions. Using De Morgan’s laws, the SOP form
can be implemented by two layers of nand gates. Table 4.1 lists the number of nand gates per bit for each
of the S-boxes.

We can see in Table 4.1 that the cost of the SATURNIN and SPONGENT S-boxes is comparable. The
cost of the Xoop0o0 S-box is roughly half of that, but is only 3 bits wide instead of 4. The Rijndael
S-box is a roughly a factor 10 more costly than that of SATURNIN and SPONGENT, a very high price for
its better max DP/LP value. These numbers give an indication for the size of a hardware circuit and the
number of cycles in bit-sliced software implementations. The number of and/or operations is related to

the cost of masking countermeasures.

MIXING LAYER

SPONGENT has no mixing layer, so there is no cost. Xoon00-¢ requires 2 binary xor operations per bit,
while SATURNIN’s MC can be implemented with 2.25 binary xor operations per bit [13]. The circuit
depth for these computations is in both cases 4 xor gates. Despite the difference in design philosophy,
their computational costs are almost the same.

A simple implementation of RIyNDAEL’s MixColumns takes 3.875 binary xor operations per bit and
has a circuit depth of 3 xor gates. This was reduced to 97/32 ~ 3 additions per bit [25] at the expense
of a higher circuit depth. Despite the fact that both MixColumns and SATURNIN’s MC implement an
MDS mapping operating on 5 boxes, their costs diverge. The main difference between the two is that

MixColumns operates on bytes while MC operates on nibbles. However, this is not the reason for the
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higher cost per bit of MixColumns. The reason is that there have been significant advances in building

efficient MDS mappings and MC reaps the benefits of that.

SHUFFLE LAYER

RINDAEL, SPONGENT, and X00oD0O consist of the iteration of a single round function. In a hardware
architecture that implements the full round in combinational logic, a bit shuffle consists of wiring be-
tween gates. SATURNIN has three different rounds, so this is more complex in a hardware architecture in
which a single round is implemented in combinational logic. However, in a combinational block that
implements a sequence of four rounds, the shuffle operations do correspond to wiring.

We compare software implementation on a particular platform: the ARM Cortex-M4 processor. We
choose this because it is a popular lightweight platform for benchmarks and for three of our ciphers there
is assembly code available. On this platform, it is difficult to assess the cost of the shuffle layer in isolation
due to the barrel shifter. This feature of the ARM architecture allows applying (cyclic) shift operations
to one of the two operands in arithmetic and bitwise Boolean instructions at no additional cost. To
compare, we measure the number of cycles of the entire round function, revealing the marginal cost of
the shuffle layer. Table 4.2 lists the performance of the round functions of our four ciphers expressed in
number of cycles per byte as measured on a Cortex-M4 processor. In addition, it includes references to
the bit-sliced implementations that we have used in order to measure the cycle counts. In RIyNDAEL and
SATURNIN we removed any operations related to the key addition to make a fair comparison possible and
in SATURNIN we measured the number of cycles for 4 rounds and divided that by 4. We have notincluded
SPONGENT because we do not have access to any (optimized) assembly code. However, considering that

it was designed with hardware in mind, we do not believe it is competitive in software.

4.5 HuppLING

In this section, we describe a phenomenon that we call huddling. We present the bit and box weight his-
tograms as natural extensions of the bit and box branch numbers, respectively. Using these histograms,
we analyze the huddling properties of the ciphers described in Section 4.4. We see that these properties
are more pronounced in ciphers that are aligned. Finally, we look at the relation between huddling and

the distribution of trail weights.

4.5.1 DEFINITIONS OF BIT WEIGHT, BOX WEIGHT AND THEIR HISTOGRAMS

The weight of a two-round trail (g, 4, &, ¢,.) over N o Lo N can be bounded from below by the sum
of the number of active boxes at the input and output of L. This number is fully determined by « as
b = L(a) in differential trails and 2 = L (¥) in linear trails. The distribution of states 4 according to this
number determines the mixing power of the linear layer with respect to ITy.

First, we formally define what it means for a box to be active. To this end, we define an zndicator

Sfunction 1;: E — E with respect to a box partition ITby 1,(2) = 0if B(«) = 0and 1,(2) = 1 otherwise.
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We call the box B; active in the difference or linear mask @ € E if 1,(2) = 1 and passive otherwise. The
natural metric associated with box activity is the box weight of a, defined by wry(a) = {7 € [0, - 1] :
1,(a) # 0}|. Clearly, a box is active in a difference or linear mask if at least one of the bits in that box is
non-zero. We call the bit 7 active in 4 if a; = 1 and passive otherwise. The number of active bits is given
by the bir weight of a, i.e., wy(a) = |{ € [0, b — 1] : a; # 0}|. The activity pattern of a is defined by
H(a) = 2:01 1g,(a)é". Itis the vector whose 7th component is one if box B, is active and zero otherwise.

In order to quantify the mixing power of a linear transformation L, we consider the weight distri-
bution of (4, L(a)) over all differences or linear masks 2 € E and embed it in a histogram. This is a
well-known concept in coding theory, where weight distributions are embedded in so-called weight enu-

merator polynomials that classify the code [23].

Definition 42. The weight histogram of a linear transformation L: B — Fisa Sfunction Ny : Loy —

Z given by
Ny(k) = {a € B : w.(a) + w.(L(a)) = k}| .
The cumulative version on the same domain and codomain is given by

GLlk)=> M)

I<k

Here, - denotes either 2 or I

The tail of the histogram consists of the left-most values that correspond to low weight.

If the primitive is aligned, then  is a box shuffle and this implies that the box weight histograms of
L = Meowand M are the same. The superbox structure of an aligned primitive makes it possible to
use a divide-and-conquer approach to compute the weight histograms. Indeed, let S(w) = {v € Z%; :
Z;é v; = w} with s the number of superboxes. Then we can compute the weight histograms of M by
convolving the weight histograms of its box functions:

Mpew) = > [ Mag, (@) - (4.1)

veS(w) =0

We note that the differential branch number [14] is simply the smallest non-zero entry of this his-
togram, i.e, min{w > 0 : Ay (w) > 0}. The linear branch number is the smallest non-zero entry in the
corresponding histogram of L and can be different from its differential counterpart. This is not the case
for the mappings in this paper and we will omit the qualifier in the remainder. A higher branch number
typically implies higher mixing power. However, the weight histogram is more informative than just the
branch number. The number of differences or linear masks meeting the branch number is valuable in-
formation as well. In general, the weight histogram allows a more nuanced comparison of mixing layers

than the branch number.
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Figure 4.5: Cumulative bit weight and box weight histograms.

The box weight histogram is the relevant histogram in the context of the wide trail design strategy [21].
A linear layer that systematically has lower values in the tail of its box weight histogram than the other

does typically has fewer two-round trails with low weight, given equal nonlinear layers.

4.5.2 BIT AND BOX WEIGHT HISTOGRAMS

We discuss the cumulative bit and box weight histograms for the linear layers of our four ciphers, given
in Figure 4.5. We include the histogram for the identity function, assuming 4-bit S-boxes for the box
weight to allow for comparison with SPONGENT and SATURNIN.

The bit weight histogram for SPONGENT coincides with that of the identity permutation. This is
because its linear layer is a bit shuffle. As the identity permutation maps inputs to identical outputs, it
has only non-zero entries for even bit weights. Its bit branch number is 2. In conclusion, its mixing
power is the lowest possible.

The bit branch number of the mixing layer of RIJNDAEL, MixColumns, is 6, that of SATURNIN-MC
is S, and that of Xoopo00-f is 4.

Similar to SPONGENT, the bit weight histograms of RIyNDAEL and X0oD00 have only non-zero en-
tries at even bit weights. This is because both Xoop00-8 and RiyNpDAEL-MixColumns can be modeled
asa — (I+M)a for some matrix M € E2? with the property that the bit weight of M 4 is even for
all 2 € B, SATURNIN-MC cannot be modeled in that way and does have non-zero entries at odd bit
weights.

The bit weight histograms of RIJNDAEL and SATURNIN are very close and that of XooD0o0 is some-
what higher. The ranking per bit weight histogram reflects the computational resources invested in the
mixing layer: RIJNDAEL uses 3.5 additions per bit, SATURNIN 2.25, X00D0O 2, and SPONGENT 0.

In the box weight histograms we see the following. For SPONGENT the box branch number is 2, the
same as the bit branch number. However, the box weight histogram of SPONGENT has a lower tail than
the identity permutation. What it shows is the mixing power of SpongentMixLayer in our factorization

of pLayer, operating on 4-box superboxes.
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The box branch number of the linear layers of RiyNDAEL, MixColumns, and of SATURNIN-MC are
both 5, while for Xoopoo it is 4.

The discrepancy between the bit and box weight histogram brings us to the notion of bit huddling:
many active bits huddle together in few active boxes. We say that the bit huddling in a linear layer is high
if the concentration is high and we say that the bit huddling is Jow otherwise.

Huddling has an effect on the contribution of states « to the histogram, i.e., by definition we have that
wr(a) + wr(L(2)) < wy(a) +w,(L(a)). In words, from bit to box weight, huddling moves states to the
left in the histogram, thereby raising the tail. Huddling therefore results in the decay of mixing power at
box level as compared to bit level. In the absence of huddling, the bit and box weight histogram would
be equal. However, huddling cannot be avoided altogether as states do exist with multiple active bits in
a box (note that m > 2).

We see RIJNDAEL has hzgh bit huddling. In moving from bit weights to box weights, the branch
number decreases from 6 to 5 and the tail rises from being the lowest of the four to the highest. This
is a direct consequence of the large width of the RIJNDAEL S-boxes, namely 8, and the byte alignment.
Indeed, MixColumns only mixes bits within the 32-bit columns. We call this the superbox buddling effect.
Of course, there is a reason for these large S-boxes: they have low maximum DP/LP values. They were
part of a design approach assuming table-lookup implementations where the main impact of the S-box
size is the size of the lookup tables. Unfortunately table-lookups are expensive in dedicated hardware and
on modern CPUs lookup tables are kept in cache making such implementations susceptible to cache-
timing attacks [4].

SATURNIN, with its RIyNDAEL-like structure also exhibits the superbox huddling effect, though less
pronounced than RijNDAEL. From bits to boxes the branch number does not decrease and the tail rises
less than for RyNDAEL. Clearly, its smaller S-box size, namely 4, allows for less bit huddling. Due to its
alignment, SPONGENT exhibits the superbox huddling effect, but less so than SATURNIN. The reason
for this is the already high tail in the bit weight histogram, due to the absence of bit-level diffusion in the
mixing layer.

Finally, XooDpo0o0 has the Jowest bit huddling of the four primitives studied. This s the consequence of
two design choices: having very small S-boxes (3-bit) and the absence of alignment, avoiding the superbox

huddling effect altogether.

4.5.3 TWO-ROUND TRAIL WEIGHT HISTOGRAMS

We define the trail weight histogram analogous to Definition 42 with the change that

N (k) = | {rrails Q : w.(Q) = &},

where - is either 7 for differential trails or ¢ for linear trails. Like for the other diagrams, the lower the tail,
the lower the number of states with small weights, the better.
Figure 4.6 reports on the distribution of the weight of two-round differential and linear trails of our

four ciphers. To compute the trail weight histograms of the aligned ciphers, we convolved the histograms

73



4 Thinking Outside the Superbox

of the superbox structures (See Equation 4.1). The distribution of the linear trails for RIJNDAEL is an
approximation that was obtained by first taking the integer part of the correlation weights of its S-box to
allow for integer arithmetic. The other distributions are exact.

While RiyNDAEL performed the worst with respect to the box weight metric, we see that it performs
the best with respect to the trail weights. The reasons are the low maximum DP/LP value of its S-box
and its high branch number. However, as seen in Section 4.4.5, one pays a price in terms of the imple-
mentation cost. The relative ranking of the other ciphers does not change in moving from box weight to
trail weights. Still, Xoopoo loses some terrain due to its more lightweight S-box layer.

Despite the difference in design approach, Xoopoo and SATURNIN have quite similar two-round
trail weight histograms. It is therefore interesting how the trail weight histograms compare for three and

four rounds.

4.5.4 THREE-ROUND TRAIL WEIGHT HISTOGRAMS

We have computed the three-round differential and linear trail weight histograms for SATURNIN and
Xoopoo and give them in Figure 4.7. We did not do it for RIyNDAEL due to the prohibitively high cost
of its round function and neither for SPONGENT due to its non-competitive bounds for multiple-round
trails as reported in [9]. Hence, we focus on SATURNIN and X00D0O as exponents of the aligned and
unaligned wide-trail design approaches. Computing the three-round SATURNIN trail histograms turned
out to be very computationally intensive for higher weights (see Subsection A.3 for more details) and
we were forced to stop at weight 36. Still, the diagrams show the big difference in histograms between
SATURNIN and XooDOO.

Despite the fact that the box branch number of XooD00 is 4 and that of SATURNIN is 5, we see that
for three-round trails, Xoopoo performs much better than SATURNIN. In particular, Xoopoo has no
trails with weight below 36, whereas SATURNIN has about 23 linear trails with weight below 36, starting
from weight 18. Moreover, it has about 247 differential trails with weight below 36, starting from weight
19. This confirms the idea that branch number alone does not paint the whole picture and that these

histograms prove to be very useful in comparing the different design approaches.

4.5.5 FOUR ROUNDS AND BEYOND

We did not conduct experiments for four or more rounds, but can make use of available information.
According to [15], there exist no differential or linear trails over four rounds of Xoopoo with weight
below 74. In contrast, SATURNIN has roughly 2% four-round differential trails with 25 active S-boxes and

2245 such linear trails. See Section C for a derivation of this estimate. Since each S-box

it has more than
has a weight of 2 or 3, this implies many four-round differential trails with weights in the range [50, 75].
The linear trails have weights in the range [50, 100] due to the fact that active S-boxes have weight 2 or 4.
Naturally, in both cases there are also trails with 26, 27, ... active S-boxes and their number grows quickly

with the box weight due to the additional degrees of freedom in building them. It follows that the trend
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Figure 4.6: Two rounds: cumulative differential and linear trail weight histograms.
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Figure 4.7: Three rounds: cumulative differential and linear trail weight histograms.

we see in three-round trails persists for four-round trails: unaligned Xoopoo has a significantly lower
tail than aligned SATURNIN, despite its lighter round function and lower branch number.

For trails over five rounds and more we report on the known lower bounds on weight in Table 4.6 in
Section D. We see that up to 6 rounds XooD0o0 remains ahead of SATURNIN. For higher weights the
trail scan programs in XooDoo reach their computational limit and SATURNIN overtakes X00oDOO.
Advances in trail scanning are likely to improve the bounds for Xoopoo while for SATURNIN the cur-
rently known bounds are much more tight. For the whole range RIyNDAEL is well ahead and SPONGENT

is invisible with its weight of 28 for 6 rounds.

4.6 CLUSTERING

In this section, we investigate clustering of differential trails and of linear trails. The occurrence of such
clustering in two-round differentials and linear approximations requires certain conditions to be satis-
fied. In particular, we define an equivalence relation of states with respect to a linear layer and an S-box

partition that partitions the state space in candidate two-round trail cores and the size of its equivalence
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classes upper bounds the amount of possible trail clustering. This is the so-called cluster partition. We
present the partitions of our four ciphers by means of their cluster histograms. For all four ciphers, we
report on two-round trail clustering and for Xoopo0o in particular we look at the three-round case.
With its unaligned structure, we found little clustering in Xoopoo. However, the effects of clustering
are apparent in the aligned primitives RIINDAEL, SATURNIN, and SPONGENT, with them being most

noticeable in RIYNDAEL.
4.6.1 THE CLUSTER HISTOGRAM

To define the cluster histogram we need to define two equivalence classes.

Definition 43. Two states are box-activity equivalent if they have the same activity pattern with respect to
a box partition T1:

a~a ifand only if iy (a) = ny(a) .
We denote the set of states that are box-activity equivalent with a by [a] . and call it the box-activity class
of a.

Box-activity equivalence has an application in the relation between trail cores and differentials and

linear approximations.

Proposition 14. Two trail cores (ag, by ..., 4,5, b)) and (ag, by ... a7_y, b)_,) over a function
F=N,_joL,_;oN, yo-oLyoNy

that are in the same differential (or linear approximation) satisfy ay ~ ay and b,_, ~ b)_,.

Proof. Let (Ay,, Ayy) be the differential over £ that the trail cores are in. Since Nj and N,._, preserve
activity patterns, we have that A ~ ap, and Ay ~ ap,and A, ~ b,_»,and A, ~ b_,. From the symmetry

and transitivity of ~ it follows that @y ~ 2y and b, , ~ 5. O

Considering the case » = 2 in Proposition 14 immediately gives rise to a refinement of box-activity

equivalence.
Definition 44. Two states are cluster-equivalent with respect to a linear mapping L : E — F and a box
partition I1 if they are box-activity equivalent before L and after it (See Figure 4.8):

a~a ifandonlyifa~a and L(a)~L(d').
We denote the set of states that are cluster-equivalent with a by [a]. and call it the cluster class of a. The
partition of B accordin ¢ to these cluster classes is called the cluster partition.

Corollary 3. If two two-round trail cores (a,1(a)) and (a*,L(a")) over f = NoLeN are in the same
differential, then a~ a*.
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Figure 4.8: Partitions of E defined by ~and =.

Proof. If we apply Proposition 14 to the case » = 2, we have 2 ~ 4" and L(4) ~ L(a"). It follows that

a=a*. O

Corollary 3 shows that the defining differences of any two-round trail cores that cluster together are
in the same cluster class. It follows that if these cluster classes are small, then there is little clustering.

Forall 4" € [a]. the box weight wi; (") + wip(L(4)) is the same. We denote this weight by W([4].).

Definition 45. Let L : B — E be a lincar transformation. Let = be the equivalence relation given in
Definition 44. The cluster histogram Ny : Zyg x Zyy — Zsg of L with respect to the box partition T1 is
given by

Npp(ke) = [{lal. € B/~ :W([al.) = k A |[al-] = .

For a fixed box weight, the cluster histogram shows the distribution of the sizes of the cluster classes
with that box weight. Ideally, for small box weights, the cluster classes are all very small. Large cluster

classes of small weight may lead to two-round trails with a large DP or LP.

4.6.2 THE CLUSTER HISTOGRAMS OF OUR CIPHERS

Next, we present the cluster histograms of the superboxes of RIJNDAEL, SATURNIN, and SPONGENT and
of the SATURNIN hyperbox. Moreover, we present a partial cluster histogram of Xoopoo. The results
for RyNDAEL and SATURNIN are found in Table 4.3, for SPONGENT in Table 4.4, and for Xoopoo in
Table 4.5. In these tables, C denotes the cardinality of a cluster class and N denotes the number of cluster
classes with that cardinality. For instance, an expression such as (32 x 1) (36 x 7) means that there are 32
cluster classes of cardinality 1 and 36 classes of cardinality 7. Looking at W = 8 across the three tables, we
see that RIJNDAEL, SATURNIN, and SPONGENT have only a single cluster class containing all the states
with wrp(2) + wip(L(2)) = 8. In contrast, for X00D0O, each state « sits in its own cluster class. This
means that L(2) is in a different box activity class than L(4) forany & € [4]_and b # a.

Thanks to the fact that the mixing layers of RIJNDAEL and SATURNIN have the MDS property, the
entries of their cluster histograms are combinatorial expressions of #z, the box size, and 7, the number of

boxes. We describe these methods in detail in Subsection A.2.
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Table 4.4 gives the cluster histogram of SPONGENT’s superbox. For weights above 4 we see large cluster
equivalence classes.

Now, consider the cluster histogram of Xoopoo in Table 4.5. We see that up to and including box
weight 13, we have |[4].| = 1. For box weight 14, 15, and 16, we see that | [4].| < 2. Due toits unaligned
structure, it is less likely that equal activity patterns are propagated to equal activity patterns. Therefore,

many cluster classes contain only a single state.

4.6.3 TWO-ROUND TRAIL CLUSTERING

‘Two-round trail clustering in the keyed RIJNDAEL superbox was investigated in [22]. In that paper the
expected DP values of trails and differentials are studied, where expected means averaged over all keys.
We see considerable clustering in differentials with S active S-boxes. For these, the maximum expected
DP of differentials is more than a factor 3 higher than the maximum expected DP of 2-round trails, with
differentials containing up to 75 trails. For more active S-boxes the number of trails per differential is
much higher and hence clustering is worse, but their individual contributions to the expected DP are
much smaller and all differentials have expected DP very close to 2732, For fixed keys or in an unkeyed
superbox these differentials and trails have a DP that is a multiple of 273!, For trails this effect was studied
in [19].

In this section we report on our experiments on the other three of our ciphers where we compare
two-round differentials with differential trails and linear approximations with linear trails. Figure 4.9
shows the number of differentials and differential trails up to a given weight of the SATURNIN and the
SPONGENT superboxes. In both cases, we see that for low weight the histograms are close and as the
weight grows, these histograms diverge. For SATURNIN there are roughly 50 times more differentials
with weight 15 or less than differential trails with weight 15 or less. For SPONGENT this ratio is roughly
20. This divergence is due to two reasons: clustering and what we call c/ipping. Due to the large number
of differential trails and the limited width of the superbox, the trails cluster. This effect is especially strong
for trails with almost all S-boxes active and would give rise to many differentials with DP close to 27%¢ as
the superbox has width 16. What we observe is a majority of differentials with DP equal to 2715, This is
the result of the fact that any differential over a superbox has an even number of ordered pairs and hence
the minimum DP is 271, yielding weight 15. We call this effect clipping: the weight of differentials
cannot be strictly greater than 15. A trail over a &-bit superbox with weight w > & — 1 cannot have a
DP = 27V as this would imply a fractional number of pairs. This effect has been studied in AES and we
refer to Section 4.7 for a discussion.

Figure 4.10 shows the weight histograms for two-round differentials and linear approximations. The
full-state correlation weight histogram of SATURNIN was obtained from that of any of its columns by
first rounding the correlation weights to the nearest integer to make integer arithmetic possible. The full-
state correlation weight histogram of SPONGENT was obtained in a similar manner. The remainder of the
histograms is exact. Table 4.5 shows that in Xoopoo almost all differentials contain only a single trail.

This means that the clustering is negligible. Therefore, there is no difference between Figures 4.6 and 4.10
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Figure 4.10: Two rounds: cumulative restriction and correlation weight histograms.

for Xoopoo. For SATURNIN the clustering is the most striking. For linear trails we observe a similar
effect. For SPONGENT the clustering is less outspoken due to the fact that the trail weight histogram is
quite bad to start with.

The effect of clustering in four-round (or two super-round) SATURNIN is interesting. Four-round
SATURNIN consists of the parallel application of four 64-bit hyperboxes. The consequence is that for a
fixed key, the roughly 2'*” - 4 differentials that are active in a single hyperbox and have non-zero DP, all
have weight below 63. When computing expected DP values averaging the DP over all round keys, this
is closer to 64.

The cluster classes also determine the applicability of the very powerful truncated differential at-
tacks [24]. These attacks exploit sets of differentials that share the same box activity pattern in their input
difference and the same box activity pattern in their output difference. Despite the fact that the individ-
ual trails in these truncated differentials may have very low DP, the joint probability can be significant
due to the massive numbers. For two-round differentials the cluster classes are exactly the trail cores in a

given truncated differential. In Table 4.3 we see that the cluster classes for the RIJNDAEL superbox and
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SATURNIN hyperbox are very large. This clustering leads to powerful distinguishers for e.g., 4-round
AES and 8-round SATURNIN. The latter can be modeled as 4 hyperboxes followed by an MDS mixing
layer followed by 4 hyperboxes and an input difference with a single active hyperbox will have 4 active
hyperboxes after 8 rounds, with probability 1. In contrast, if the cluster classes are small, as in the case
of the unaligned Xoopoo permutation, it is very unlikely that truncated differential attacks would have

an advantage over ordinary differential attacks.

4.6.4 THREE-ROUND TRAIL CLUSTERING IN XOODOO

Recall that for X0op00, no 4-round trails exist with weight below 74 and Table 4.5 showed that trail
clustering in two-round differentials in XooDo0o0 is negligible, as expected because of its unaligned de-
sign. We investigate the conjecture that it is also the case for three rounds.

First, we present a generic technique to find all trails that have an enveloping differential compatible
with a given three-round trail core. We apply the technique to Xoopoo, for which it is very efficient.

Given the trail core (a3, b1, 45, b ), Proposition 14 shows that we can restrict ourselves to those tuples
(a1, by, ay, by) with ay ~ 4} and b, ~ b5. The difference 4} defines a vector space A’ of all the states in
which a box is passive whenever it is passive in 7. If @; € [4}]_, then a; € A'. Similarly, 5 defines a
vector space B'. If b, € [b5]_, then b, € B'. The vector space B = L(4') contains the candidate values for
by. Similarly, the vector space 4 = L™ (B’) contains candidate values for 4,. Because it preserves activity
patterns, N restricts the set of candidate values to those satisfying 4, ~ 4,. Hence, we can limit the search
to those x € Band y € 4 with x ~ y.

To find all valid trails of the form (Ay,, a1, by, a5, by, A), we first reduce the size of the space of all
trail cores (44, by, 45, b,) using a necessary condition. When this space is small enough, we exhaustively
search for a valid trail.

We write B for a basis of B and 4 for a basis of 4. To reduce the dimension of the spaces, we will apply

an algorithm directly on their bases. First, we need the notion of zsolated active bit.
Definition 46. A bit i of b € B is said to be an isolated active bit if b; = 1 and b} = 0 forall b’ € B\ {b}.

A basis vector having an isolated active bit determines the box activity of any linear combination that

includes it.

Proposition 15. Ifb € B has an isolated active bit in position i, then any vector in the affine space b +
_fp/,m(l_3 N\ A{b}) has the corresponding box activated.

Proof. If b has an isolated active bit in position 7, then the 7th bit of any vector in & + span (B\ {8} is

active. As a result, the box containing this bit is active. O

Similar to how an isolated active bit always activates the corresponding box, a box is never activated if

no basis vector activates it.

Proposition 16. If the ith box is passive in every vector of 1_4, then the ith box is passive in all vectors of A.
We say that box i is passive in A
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We define a condition that makes it possible to remove a basis vector from the basis without excluding

potentially valid trails.

Condition 1. We say that a basis vector b € B satisfies the reduction condition zf and only if it has an

isolated active bit in a box that is passive in A. The same is true when swapping the role of Band A.

The following lemma shows that the reduction condition is sufficient to reduce the dimension of the

vector Space we consider.

Proposition 17. Ifa basis vector b € B satisfies Condition 1, then all valid differences before the N in the
middle are in span (B \ Ab}). The same is true when swapping the role of B and A.

Proof. As a consequence of Proposition 15 and Proposition 16, a valid difference before the nonlinear
layer cannot be constructed from b9 because it would contradict the fact that the activity pattern is

preserved through the nonlinear layer. O

The algorithm now consists in repeatedly removing basis vectors from B and 4 that satisfy Condi-
tion 1 until this is no longer possible. This can be done efficiently by searching for pivots for a Gaussian
elimination among indices of vectors from A (respectively B') that correspond to never activated boxes
in B’ (respectively Z) Indeed, these pivots can be used to row-reduce the corresponding basis along
them, thus revealing an isolated active bit.

If the algorithm sufficiently decreased the dimensions, then we can exhaustively test all pairs (4, 2,) €

B x A (after reduction) according to the following criteria:
* (by,a,) is a valid differential over N;
* There exists a Ay, such that both (A,,, 47) and (A, 4;) are valid differentials over N;
* There exists a Ay, such that both (55, A, ) and (5, A,,) are valid differentials over N.
Applying our method to all three-round trail cores of XooD00 up to weight 50 [17] shows that there
exists no cluster for all these trails.
4.7 DEPENDENCE OF ROUND DIFFERENTIALS

In this section we study the dependence of round differentials in the sense of Definition 30 in Sec-
tion 4.2.1. It has been found in [19] that the vast majority of trails over the RIJNDAEL superbox have
dependent round differentials. We will investigate this for differential trails over three-round Xoopoo.
We expect that the dependence effects observed in RIyNDAEL disappear in an unaligned cipher. Hence,

we now investigate this for differential trails over three-round Xoopoo.
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4.7.1 MASKS FOR DIFFERENTIALS OVER NONLINEAR COMPONENTS

We note V' (Ajy, Agye) the setof outputsstates that follow the differential (A, A,y) over N, ice. Fir(Ai, Agye) =

in>

N(Un(Ajp, Agye))- From [19], we have that Uy (A, Agye) and Vi (Ayy, Agye) are affine if’
|US, (Pz'(Ain)3Pi(Aout)) | <4

for each S-box. Since this assumption holds for our four ciphers, both Uy (A, A,y) and Vig(Ay,, Ague)
are affine and can be described by a system of affine equations on the bits of the state x. Each affine
equation can be written as #'x + ¢ with « a b-bit vector called mask and ¢ a bit.

Given a three-round differential trail Q = (Ay,, 41, by, a5, b, A), one can define four sets of masks:
* A;, the masks that come from Vy(A;,, 41);
* B, the masks that come from Uy (6y, 4,);
* A,, the masks that come from V' (4, 4,);
* B,, the masks that come from Uy (b, Ayye)-

These masks are said to be all independent if
Un oo (Q)] = 20 (A BIED = gb=(lsls |l 1Bs)

which is, per Definition 30, equivalent to the independence of round differentials.

We first present an efficient generic method for determining whether three-round trail masks are in-
dependent. Then we apply this method to Xoopoo. Since L is linear, 4; can be linearly propagated
through it to obtain a set of masks 4] at the input of the second nonlinear layer. Similarly, we can prop-
agate B, through the inverse linear layer to obtain a set of masks B; at the output of the second nonlinear

layer.

4.7.2 INDEPENDENCE OF MASKS OVER A NONLINEAR LAYER

B, and 4] form sets of masks at the input of the second nonlinear layer. If the rank of C; = B; U 4] is
the sum of the ranks of B; and A4j, then C; contains independent masks. The same strategy can be used
to test for dependence of masks in C, = 4, U B;.

As for the independence of masks of the complete trail, we need to check for dependence between C;
and B; or between 4] and C,. We will apply an algorithm similar to the one we used in Section 4.6.4 to
reduce bases. However, here we use it to reduce the cardinalities of the mask sets.

The following lemma makes this possible.

Proposition 18. Let C; and By be two sets of masks before and after an S-box layer. If a mask u in C
satisfies Condition 1, then the number of states that satisfy the equations associated with the masks in both
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Cy \ {u} and B, is exactly two times the number of states before removing u. The same is true by swapping
the role of Cy and By,

Proof. Since u satisfies Condition 1, let 7 be the index of the isolated bit, 7 be the index of the correspond-
ing S-Box and 4 the number of masks in B;. No mask in B; is putting a constraint on any of the 72 bits of
the jth S-Box, thus the 20k solutions can be seen as 2075 groups of 2 different states that only differ
in the 7 bits of the jth S-box. Since the S-box is invertible, the application of the inverse of the nonlinear
layer to a whole group of 27 vectors results in a group of 2 different states that, again, only differ on the
value of the jth S-box.

We can further divide those 2%~ groups each into 27! subgroups of 2 different states that only dif-
fer in the value of the 7th bit. By definition on an isolated bit, either both or none of the two states inside
a subgroup satisfy all equations associated with the masks in C; \ {«}. Finally, inside a subgroup exactly
one of the two states will satisfy the equation associated with mask #. Thus, the number of solutions by

removing # is multiplied by exactly two. O

We first check for linear dependence inside C; by computing its associated rank. Then, we recursively
check if some mask in either C; or B, satisfies Condition 1 and if it is the case we remove them from the
sets of masks.

There are three possible outcomes when applying this process to a three-round differential trail:

* If C; is not full rank, we can conclude that masks in B; and 4] are dependent;

* Else, if either set is empty, Proposition 18 applied at each step guarantees us that the number of
states satisfying the equations associated with the masks in both C; and B, is equal to 20-(1GI+IB])

that is to say the masks are independent;

* If none of the two conditions above are met, we cannot directly conclude about (in)dependence
between remaining masks but we can apply the same method to 4, and C, and hope for a better

outcome.

4.7.3 APPLICATION TO XOODOO

This process is used to check for independence in differential trails over three rounds of Xoopoo. It has
been applied to the same differential trails as processed in Section 4.6.4. In all cases, the masks, and thus
round differentials, were found to be independent. This was not obtained by sampling, but instead by
counting the number of solutions, hence this independence is exact in the sense of Definition 30. As a
result, the DP of each such trail is the product of the DP values of its round differentials, which implies
that DP(Q) = 27%(Q),

4.8 CONCLUSION

We put forward alignment as a crucial property that characterizes the interactions between linear and

nonlinear layers w.r.t. the differential and linear propagation properties. We conducted experiments on
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four S-box based primitives that otherwise represent different design approaches. We precisely defined
what it means for a primitive to be aligned and showed that RIyNDAEL, SATURNIN, and SPONGENT are
aligned, whereas Xoopoo is unaligned. Through these examples, we highlighted and analyzed different

effects of alignment on the propagation properties.
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A HISTOGRAM COMPUTATIONS

In this section, we describe methods for computing histograms. First, we describe a general method
to obtain the histogram of an aligned function from the histograms of its box functions. Second, we
describe some methods to obtain the cluster histograms of the ciphers described in Section 4.4.

Almostall of our computations were done to full precision. The only exception is the case of comput-
ing the correlation weights for RINDAEL, SATURNIN, and SPONGENT. In this case, we took the integer
part of the intermediate results and computed on those numbers.

As a rule of thumb, the most interesting part of any histogram is its left tail, i.c., the part containing
the distribution of the low weights. As a consequence of this, we are satisfied if we are able to compute
a partial histogram that includes this tail. We see in the case of RiyNDAEL and XooDpoo0 that this is

frequently all we can hope to expect.

A.1 CONVOLUTION

LetL = Lyx-xL,  : B — F bea function composed of box functions with respect to an ordered
partition IT. Computing a histogram of L exhaustively is often computationally infeasible. However,
the histograms of the box functions L; typically are feasible to compute thanks to the small box width.
Given the histograms of the L;, it is possible to combine them to get the histogram of L itself. This
combining operation is a form of convolution and is therefore denoted as *. The idea is best illustrated

by an example.

Example 4. Consider RUNDAEL and suppose we wish to compute the convolution of the restriction weight
histograms of two of its S-boxes for a fixed outpur difference. We represent the histograms in two-column
notation, where we list the restriction weights in the first column, and for each one its image, i.c., the number
of input differences with the given weight, in the second column. 1o make the representation finite, a necessity
for performing computations on these objects, we restrict ourselves to those weights for which the image is non-

zero.
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[0+0 1-1
0+6 1-1 _ L
0+7 1-126 5
0 1 0 1 6+0 1-1
7 252
6 1 |x|l6 1|=|6+6 1-1 |=
2 1
7 126 |7 126 |6+7 1-126
13 252
7+0 126-1
14 15876
74+6 126-1 - -
17 +7 126-126]

To the end of abstracting the notion showcased in the example, suppose that there exist # associative
binary operations ®; : Z,g x Z,y — Zs, for 0 < j < ¢ — 1. For our purposes, these operations are
just + (regular addition) or - (regular multiplication) and we restrict ourselves to either # = 2 or z = 3.
Furthermore, suppose that 7% < Z% is an encoding of some histogram of L; for 0 < 7 <  — 1. We think
of T* as an s x ¢ matrix for some s € Z,, and index its rows as 7}" and its entries as Y;‘k We define the binary

convolution operator
x 1 Ly x Ly = Ly
that combines sequences as
(Los wves bemy) * (g oo s mey) = (Lo @0 Mgy e s bpoy @y 1,_y)

We note that  is associative, since the @ )j are. Using this operator, it is possible to combine sequences
from different histograms in a sensible way. Any sequence in the histogram of L is related to the sequences

in the histograms of the L; in the following way:

= b3 /
(ﬂo’ ,”t—l) 0<i<n—1 7;
JE€C; (ngssityy)
where
n—1 )
Ci(ngsosmyy) = {j €Ly : 691771 =mfor0</<r-1}
i=0

A.2 MIXING LAYERS BASED ON MDS CcODES

We show how to compute the box weight histogram and the cluster histogram of a mixing layer L that

is based on MDS codes. In the cipher built on top of L, we suppose that there is an S-box layer N. Let
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the ordered partition ITj be defined by N. Moreover, we suppose that the size of the boxes of T1 is 7.

Consider
s—1 s—1
L=Lyx=xLy: XE” - XE".
i=0 i=0

Now, L defines an ordered partition IT;. Indeed, each of the s boxes of I1; is the union of % boxes of T1
of'size m. It follows that IT, < IT;, N is box-aligned with respect to both I, and Iy, and Lis box-aligned

with respect to IT;.

Definition 47. A function [ : B, — B is called an MDS function if the set {(x, f(x)) : x € E) <
B = B is an MDS code over By, of minimum distance d.
The minimum distance 4 is precisely the box branch number. Henceforth, we make the assumption
that the box functions L;, with 0 < 7 < s—1,are MDS functions, i.e., that have branch number d = £+1.
First, Proposition 19 shows how to compute the box weight histogram of L, with respect to the subset
of T1 consisting of the boxes indexed by 7%, ..., (7 + 1)k — 1 (they form a partition of the input space of
L,).

Proposition 19. Let C be an 2k, k, k + 1] MDS code over ]Fq‘ The weight distribution of C is given by
Ay=1,4,=0forl <w<k+1,and

2%\ U E! {9\, s
Aw:(w) 2 D (z‘)(‘f -1)

=0
fork+1<w<2k
Proof. This is a specific case of Proposition 7.4.1 in [23]. (]

As an example, in both MixColumns of RIJNDAEL and MC of SATURNIN we have ¥ = 4. Using
convolution, it is now possible to obtain the box weight histogram of L from those of the L.

Next, we show how to compute the L;-box histogram. We put C,, ,(w) = |[4].| forany a € B with
wrp(4) + wr(L(2)) = w. In other words, C, . (w) does not depend on the box activity pattern of 4, but
only on its box weight. A box activity pattern can be chosen in (2:) Before stating the main result, we

prove some lemmas.
Proposition 20. We have C,,;(k+ 1) =27 - 1.

Proof. Since L; is an MDS function, there exists a & x &£ matrix M such that = (M1,) is a parity-check
matrix of an MDS code of dimension 4. Let S < [0, 2k — 1] with |S| = % be a subset of the column
index space. The columns of A indexed by S form a £ x £ sub-matrix. Since A defines an MDS code, this
sub-matrix is invertible. This means that the columns of the reduced row echelon form of / indexed by
S form the identity matrix ,. By permuting the columns of the reduced row echelon form, we obtain a

parity-check matrix of an equivalent code, H' = (M',). This defines a linear map M : B, - E, given
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by M(a) = M'""a. Now, leta € B with wi; (a) + wip(L(a)) = k + 1. Pick the subset S in such away
that it contains the index of one active box of (4, L(2)) and such that the other indices correspond to
k —1 passive boxes. The other £ active boxes are completely determined by this single active box through

M. Hence, we have only 2” — 1 degrees of freedom. O

Proposition 21. We have C,, ,(k +2) = (27 = 1)(2" = 1 - k).

Proof. Leta € E” with wy(2) + wip(L(a)) = &+ 2. By the same argument as given in Proposition 20,
we pick S in such a way that it contains the indices of two active boxes of 2. There are (2 — 1)? ways of
choosing the vector z such that it is active in two boxes. Then M determines the other & boxes. Clearly
k+1 < wp(a) + wip(M(a)) < & + 2 (as there are only £ boxes at the output of M). We subtract the
number of vectors that lead to a box weight of £ + 1 According to Proposition 20, this number is 2”7 — 1
for a fixed position of an active box. We can choose this position in £ ways. Hence, in total, we need to

subtract £(2” — 1) inputs. The result readily follows. O

Proposition 22 states the main result. The L;-box histogram follows directly from it.

Proposition 22. Fork + 1 < w < 2k, the following recurrence relation holds:
m w—k k R
Craw) = @"=1)F = 5 | |Cup(w =)

1<i<w—k-1

Moreover, C, ,(0) = 1.

Proof. Leta € B with wip(4) + wp(L(2)) = w. By the same argument as given in Proposition 20,
pick S such that it contains the indices of w — £ active boxes. There are (27 — 1)“™* ways of choosing the
vector 4 such thatitis active in w — & boxes. It follows that £ + 1 < w((2, M(a))) < w. We subtract the

number of vectors that lead to a box weight of & + 7 for 1 <7 < w — k — 1 and obtain the result. O

Again, using convolution, it is possible to obtain the cluster histogram from the L;-box histograms.

A.3 EXHAUSTIVE SEARCH
CLUSTER HISTOGRAM UP TO GIVEN BOX WEIGHT

Let L : B — E be a linear transformation. Suppose that we want to determine the cluster histogram,
but that it is infeasible to construct the whole histogram because L is not box-aligned nor does it have
any other properties that make it easy to do so. In this case, it is still possible to construct the cluster
histogram up to a given box weight. To this end, suppose that we have an algorithm similar to the Trail

Search described in [32] that generates a list of vectors up to a given weight.
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For a given difference a € E}, consider the vector (2, L(a)) € B2 with wip(a) + w(L(a)) = w. We
wish to compute |[4].|. Consider the vector space spanned by the basis vectors that have the same box

activity pattern as 4:

Via)= U & rclnmi}

O<i<n—1
i(a);#0

We compute a basis for L(V(2)) n V' (L(«)) using Zassenhaus algorithm [26]. Then
c=lal.| = o e L(F(a)) NV (L(a)) : v € [L(@)]. A L7(0) € [a] }|

and we increment N 1 (W, ¢) by one. Once we have considered all vectors of box weight w, the values of

Nppp(w, ) are exact.

THREE-ROUND TRAIL SEARCH SATURNIN

During the first three rounds of SATURNIN, all step functions are applied, in parallel, to disjoint slices.
Since we are interested in the tail of the differential or linear trail weight histogram, we may limit our
search for trails to a single slice. The cipher applies sixteen S-boxes to a slice and we write IT for the
corresponding partition. Clearly, an activity pattern with respect to IT can be encoded as a vector of

sixteen bits. We represent this vector as the following 4 x 4 binary matrix:

mla); ma), m@) ma)
m@s mla)s mlas mla);
m(a)e ma)s ma) mla)o

) (a)
m(@n m@is m@u ma)s

In this representation, each matrix row corresponds to the activity pattern of differences or linear masks
at the input of a single MC in the first mixing layer. Similarly, a matrix column corresponds to the activ-
ity pattern of differences or linear masks at the output of a single MC in the second mixing layer. This
allows us to compute candidate activity patterns for which the weight of any differential or linear trail
that contains a difference or linear mask contained in that pattern does not exceed an upper bound on the
differential or linear trail weight that we set beforehand. Indeed, we generate all possible 4 x 4 binary ma-
trices, encoding all possible activity patterns. Each matrix row and each matrix column has a bit weight,
which corresponds to the box weight of the differences and linear masks at the input or output of a single
MC. Since MC defines an MDS code of minimum distance S, the differences or linear masks associated
with a matrix row of bit weight w contribute at least 5 — w to the differential or linear trail weight. A
similar argument can be given for the columns. This gives a lower bound on the actual differential or
linear trail weight of any trail comprising a difference or linear mask contained in that activity pattern.

We determine whether this lower bound is smaller than or equal to the upper bound that we set. The

88



B Minimal sum-of-product forms

result is a collection of candidate activity patterns, the lower bound of which does not exceed our fixed

upper bound. To the end of determining the actual trail weights, we first switch back to the following

sequential representation as this makes it easier to apply the step functions:

m@)  ma)  mla), mla)s
ma)s  ma)s ma)s mla);
m(a)s  m(a)e mi(a) mla)n

(a)
m@n m@ns m@u m@s

Using convolution and exhaustive search within the candidate activity patterns, we are able to find all the

differential and linear trails within that slice up to a given weight.

B MINIMAL SUM-OF-PRODUCT FORMS

We have used the Espresso algorithm to get a minimal sum-of-products (SOP) form of the three ciphers

below. Note that addition denotes ‘or’, multiplication denotes ‘and’, and an overline denotes negation.

Xoodoo:

Saturnin:

Spongent:

Y = Xo X + XX X + Xo X X,
Y= XX + XX X + XXX,
%= XX + XX, X, + XXX,

Y= XoXszXa + Xo)TzX3 + A)TOXle_Xs +XX%X + ZXZZ
Y= XXX + XX 20X + X 60X, + XX,

= X050 + XXX, + XX %X + XX,

Y = %X 00 + XX 20X, + X + X1 X,

% = %X 00 + XX 60X + KX 00X + %X 6X + X 6X + XX X,

Y= %X 60X + XX 60X, + XX X + XX 60X, + XXX + X XX

% = %X + XX 60X + XX %X + X000 + X X6X + XX, 60X,

Yy = %X 00X + XX 60X, + XX 60X, + XX 60X + X X0 X; + XXX
+ XX, X, X,
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From De Morgan’s laws, it follows that XY + ZIW = XY - ZW. In other words, the circuits of depth
two that can be derived from the SOPs above, consisting of a layer of (possibly multi-input) and gates,
followed by a layer of (possibly multi-input) or gates, can be converted into a circuit of depth two in

which each layer consists of (possibly multi-input) nand gates.

C ESTIMATING THE NUMBER OF TRAILS WITH 25 ACTIVE S-BOXES IN

4-ROUND SATURNIN

A trail over 4 rounds of SATURNIN is a trail in a hyperbox that has superboxes as S-boxes. This trail is
active in S superboxes and has 5 active boxes in each superbox.

There are (f) = 56 ways to select the 5 active superboxes from the 8 superboxes.

In the central mixing layer there can be x € {1,2,3, 4} MC instances active.

In each active MC, we have one degree of freedom as the choice of a single difference among the 5
active ones fixes the four others. This gives 15* choices for the middle differences.

Each active superbox now has x active boxes at its input (or output), and shall have 5 - x active boxes at
its output (or input). Consider the case x = 1. For a given choice of the middle difference, the difference
at the input (or output) of a single S-box is fixed. For differential trails, the number of compatible output
differences depends on the concrete output difference but ranges from 6 to 8 with an average of exactly 7.
We think it is reasonable in this estimation to approximate this by exactly 7. For linear trails, the number
of input masks compatible with a given output mask is always 10.

So given a choice of the intermediate difference, there are 75 differential trail cores and 10° linear trail
cores.

This gives in total 56 x 15 x 7° differential trail cores and 56 x 15 x 10° Each of these trail cores has
in total 20 active S-boxes in the outer S-box layers. Every difference at the inside of such an active S-box
has 7 compatible differences at the outside. It follows that there are in total 56 x 15 x 7% x 72 ~ 2% such
differential trails per hyperbox and as there are 4 hyperboxes, this totals to 282,

Every mask at the inside of such an active S-box has 10 compatible masks at the outside. It follows that
there are in total 56 x 15x 10° x 1020 < 2925 such linear trails per hyperbox and as there are 4 hyperboxes,
this totals to 2°43,

These are only the trails with a single active MC in the middle mixing layer. We do not count the
other classes as their analysis is more involved and the final total number is much less. Hence this class

dominates the total number.

D KNOWN TRAIL BOUNDS FOR UP TO I2 ROUNDS

In Table 4.6 we list the trail bounds for our four ciphers for up to 12 rounds. For AES the numbers are
based on the existence of periodic trails with period 4 where the profile of the number of active S-boxes

is (1,4, 16, 4) and the fact that the minimum weight for the AES S-box is 6. For SATURNIN the numbers
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are based on the existence of periodic trails with period 8 where the profile of the number of active S-boxes

is (1,4, 16,4, 16, 64, 16, 4) and the fact that the minimum weight for the SATURNIN S-box is 2.

E WuYy X00D0OO IS NOT ALIGNED

In this appendix, we provide a computer-assisted proof that Xoopoo0 is not aligned.
Let us assume that we can factor the linear layer of Xoopoo into L = we M with M operating on
non-trivial superboxes. We can identify the input bits of M that lie in the same superbox with the two

following rules:
1. The output bits of L in the same box (column) depend on input bits from the same superbox;

2. Any two output bits that depend on the same input bit must also depend on input bits from the

same superbox.

Therefore, we construct a bipartite graph with the 128 output boxes on one side and the 384 input
bits on the other side, with edges connecting an output box to the input bits that it depends on. We
explicitly constructed this graph (see Figure 4.11) and checked that it is connected. This contradicts the

assumption that M operates on non-trivial superboxes.
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4 Thinking Outside the Superbox

def buildGraph():
G = Graph()
for x 1in range(4):
for z in range(32):
G.add_vertex("out-{0}-{1}".format(x, z))
for y 1in range(3):
G.add_vertex("in-{0}-{1}-{2}".format(x, y, z))
for x 1in range(4):
for z in range(32):
out = "out-{0}-{1}".format(x, z)
.add_edge(out, "in-{0}-{1}-{2}".format(x, 0, z))
.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+27)%32))
.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+18)%32))
.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+26)%32))
.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+17)%32))
.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+19)%32))
.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+10)%32))

OO0 o000

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+31)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+27)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+18)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+26)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+17)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+19)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+10)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 2, (z+13)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+16)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+ 7)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+15)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+ 6)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+ 8)%32))
G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+31)%32))
return G

G = buildGraph()
G.1is_connected()

Figure 4.11: Sage code to construct the graph detailed in the text and to check its connectivity.
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4 Thinking Outside the Superbox

Table 4.2: The cost of a round in cycles per byte on the ARM Cortex-M4.

Cipher # cycles/byte
RiyNDAEL [39] 10.0
SATURNIN [12] 2.7
SPONGENT ?
Xo0Do0o [6] 1.1

Table 4.3: The cluster histograms of RIJNDAEL and SATURNIN.

NxC,,
W RINDAEL superbox SATURNIN superbox SATURNIN hyperbox
m=8n=4 m=4,n=4 m=16,n =4
5 (56 x 255) (56x15) (56 x 65535)
6 (28 x64005)) (28 x 165) (28 x 4294574085)
7 (8x16323825) (8 x 2625) (8 x 281444913315825)
8 (1x4162570275) (1x39075) (1 x 18444492394151280675)
Table 4.4: The cluster histogram of SpongentMix of Table 4.5: Partial cluster histogram (up to translation
SPONGENT. equivalence) of Xoopoo.
wNxC w NxC
2 (16x1) 4 (3x1)
3 (48x1) 7 (24x1)
4 (32x1)(36x7) 8 (600 x 1)
5 (8x1) (48x25) 9 (2x1)
6 (12x79) (16 x 265) 10 (442 x 1)
7 (8x2161) 11 (10062 x 1)
8 (1x41503) 12 (80218 x 1)
3 (11676 x 1)

13 (

14 (228531 x 1) (3x2)

15 (2107864 x 1) (90 x 2)
16 (8447176 x 1) (702 x 2)

Table 4.6: Known lower bounds for weights of differential trails.

number of rounds

10 19 >S50 =58 =290 =122 250 =300
8 36 [74,80] >94 =104 =110 =148 =222

SATURNIN | [13]
Xoopoo [15]

cipher source | 1 2 3 4 5 6 7 8 12
SPONGENT | [9] 2 4 8 12 >20 28 - - =72
AES [20] 6 30 54 150 >156 =180 =204 =300 =450
2
2
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S WEeaAK SUBTWEAKEYS IN SKINNY
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My coNTRIBUTIONS. This chapter is based on work accepted at Indocrypt 2022. As part of her bach-
elor’s thesis, Denise extended the software from the previous chapter to compute data and histograms
for the SKINNY cipher. The results she obtained were unexpected, prompting us to investigate and
seek an explanation, which we documented. I was responsible for the entirety of this chapter, including

reimplementing the software to verify the results, adding additional features, and writing the text.

ABSTRACT. Lightweight cryptography is characterized by the need for low implementation cost, while
still providing sufficient security. This requires careful analysis of building blocks and their composition.

SKINNY is an ISO/IEC standardized family of tweakable block ciphers and a reduced-round variant
ofitis used in the NIST lightweight cryptography standardization process finalist RomuLus. We present
non-trivial linear approximations of two-round SKINNY that have correlation one or minus one and
that hold for a large fraction of all round tweakeys. Moreover, we show how these could have been

avoided.

5. INTRODUCTION

In 2018, NIST initiated a process for the standardization of lightweight cryprography [13], i.e., cryptog-
raphy that is suitable for use in constrained environments. A typical cryptographic primitive is built by
composing a relatively simple round function with itself a number of times. To choose this number of
rounds, a trade-off is made between the security margin and the performance.

One of the finalists in this standardization process is the RoMULUS [7] scheme for authenticated en-
cryption with associated data. This scheme is based on a reduced-round variant of the lightweight tweak-
able block cipher SKINNY [1].

‘Two of the most important techniques for the analysis of symmetric primitives are differential [2] and
linear cryptanalysis [11]. To reason about the security against these attacks, the designers of SKINNY
have computed lower bounds on the number of active S-boxes in linear and differential trails. However,

at the end of Section 4.1 of [1] they write:

The above bounds are for single characteristic, thus it will be interesting to take a look at

differentials and linear hulls. Being a rather complex task, we leave this as future work.
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5 Weak Subtweakeys in SKINNY

Building on the work of [3], [14] investigated clustering of two-round trails in SKINNY and in this paper
we report and explain its most striking finding.

By examination of two rounds, we argue why it is sensible to look at the substructure that consists of a
double S-box with a subtweakey addition in between. We study this double S-box structure both from an
algebraic point of view and a statistical point of view. We found that for some subtweakeys there are non-
trivial perfect linear approximations, i.e., that have correlation one or minus one. We present them in this
paper together with their constituent linear trails. For both the version of SKINNY that uses the 4-bit
S-box and the version that uses the 8-bit S-box, we present one non-trivial perfect linear approximation
of the double S-box structure that holds for 1/4 of all subtweakeys and four non-trivial perfect linear
approximations that each hold for 1/16 of all subtweakeys. In total, 1/4 of the subtweakeys is weak, i.c.,
it has an associated non-trivial perfect linear approximation. The linear approximations of the double
S-box structure can be extended to linear approximations of the full two rounds of SKINNY. From the
fact that the double S-box structure appears in four different locations, it follows that 1 — (3/4)* = 68%
of the round tweakeys is weak, i.e., two rounds have a non-trivial perfect linear approximation.

Despite requiring more resources to compute, this shows that for many round tweakeys two rounds
are weaker than a single round. Moreover, this also shows that the bounds on the squared correlations
of linear approximations that are based on counting the number of active S-boxes in linear trails may not
be readily assumed.

We conclude by showing how this undesired property could have easily been avoided by composing
the S-box with a permutation of its output bits, which has a negligible impact on the implementation

cost.

5.1.1 OUTLINE AND CONTRIBUTIONS

In Section 5.2 we remind the reader of the parts of the SKINNY block cipher specification that are rel-
evant to our analysis. We argue why it is reasonable to study the double S-box structure and explore its
algebraic properties. Section 5.3 serves as a reminder for the reader of the relevant statistical analysis tools
of linear cryptanalysis. Section 5.4 presents our findings from the study of the linear trails of the double
S-box structure. We show how the problem could have been avoided in Section 5.5. Finally, we state the

main message behind our findings in Section 5.6.

5.2 THE SKINNY FAMILY OF BLOCK CIPHERS

SKINNY [1] is a family of tweakable block ciphers. A member of the SKINNY family is denoted by
SKINNY-b-, where b denotes the block size and # denotes the size of the tweakey [9]. The block size b
is equal to 64 bits or 128 bits. The tweakey ¢ is b, 2b, or 34 bits.

The AES-like [6] data path of the SKINNY block cipher is the repeated application of a round func-
tion on a representation of the state as a four by four array of m-bit vectors, where 7 is either four or

eight.
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5.2 The SKINNY family of block ciphers

Pairs (7, /) comprising a row index 7 and column index 7 with 0 < 7, j < 3 are used to index into the
state array. For example, (0,0) refers to the entry in the top left and (3,3) to the entry in the bottom
right. The m-bit entries x*/ ) are of the form (x,(,llﬁ, s xél’])).

The round function consists of the following steps in sequence: SubCells, AddConstants, AddR ound Tweakey,
ShiftRows, and MixColumns.

x |

_DW_L) b, Hosdbs

jﬁi o T

| j& o T
> EENIPENT,

L= e

(a) 4-bit S-box S,. (b) 8-bit S-box Sg.

Figure 5.1: Circuit-level representation of S, and Sg. (Figure adapted from [8].)

Figure 5.1 shows the circuit-level view of the S-boxes that are used in the SubCells step of SKINNY.

The block matrix that is used in the MixColumns step is equal to

—_ O =
oS = O O
e = Y
S O O

where 0 denotes the zero matrix of size 72 x 7, and 1 denotes the identity matrix of size 7. Each of the

four columns of the state is multiplied by A/ in parallel.

The composition of two rounds is depicted in Figure 5.2.
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5 Weak Subtweakeys in SKINNY

((MixColumns ]
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%

Figure 5.2: Two-round SKINNY. (Figure adapted from [8].)

102



5.2 The SKINNY family of block ciphers

Consider the entry of the state at position (0, 1) in Figure 5.2. It is of the form ¥y = x®. This
expression propagates through the step functions of two rounds and leads to the following intermediate

expressions:

(OD) 4 £

s, (x00) 1 £))

S, (xOD) + £O) 4 M
S, (xOD) + k) 4 50|

o

I
»w v » » »
P I I T

Here, £ and &1 are subtweakeys, which are linear expressions in the cipher key and tweak bits (assum-
ing that the tweakey does not consist entirely of cipher key bits). These linear expressions depend on the
round number, but they are known to the attacker. The tweak can be chosen by the attacker and the
cipher key is unknown to the attacker. By choosing the tweak, the attacker can attain all values of £

and £ fora given cipher key.

The final expression shows that the sum of certain triples of state entries at the output of the second
round is equal to the application of two S-boxes and subtweakey additions to a single entry of the input to
the first round. The second subtweakey addition does not have an important influence on the statistical

properties of this expression, so we remove it and turn our attention to the properties of the function
Dm,k = Sm Ly © Sm >

where 7,,,; is defined by x > x + k for x € B". We will refer to D, ; as the double S-box structure.

For reasons of simplicity, we study SKINNY-64-, i.e., the version with 4-bit S-boxes. However, our

results can be extended to the case of 8-bit S-boxes as well.

By concatenating two copies of the 4-bit S-box circuit with a subtweakey addition layer in between
we obtain the circuit-level view of Dy, that is depicted in Figure 5.3. Consider the input x;. It passes
through an XOR gate, the subtweakey addition layer, and finally through a second XOR gate before
being routed to the third component of the output of Dy . If k3 = &, = 0, then the XOR gates cancel
each other out and the third component of D, is equal to x; + ky. This observation does not depend

on the value of 4;.

Let us now derive this same result in an algebraic way. Of course, we could compute the algebraic

expression for Dy, directly, but it is more insightful to study the S-box and its inverse.

The 4-bit S-box is of the form

Sy =NyoL,oN,oL,oN,oL N,
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5 Weak Subtweakeys in SKINNY
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Figure 5.3: Circuit-level representation of D, ;. (Figure adapted from [8].)

where

Ny (23, 20, 21, %) = (263, %, X1, %0203 + %9 + % + 43 + 1) and

L (2035 5, %15 %) = (303, %1, X5 ¥3) -

It follows that S = (Sf), 55}2), Sil), 55}0)) where

3
Si):x/lx3+x0+xl+x3+1
2
Si):x1x2+x1+x2+x3+l
1
Sg) = X1X%X3 +x0x1 +x1x2 +x1x3 +9le3 +X0 +x3

0
SE} ) = XpX1X% + X1 X X3 + XX + Xpx + XX3 + X1X3 + X+ + X3

The S-box has a generalized Feistel structure [12]. Therefore, itis not difficult to deduce that the inverse
of T; 4, » S, is of the form

Ly = (71,/«°S4)71 =NyoR o Ny o R o Ny o Ry o Ny oZ g,
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5.3 Linear cryptanalysis

where R (3, 25, 1, %) = (%0, %3, %5, %7). It follows that I ; is of the form ([4(?, 14(;), [4(}6), 14(,2)) where

14(;) = X003 + XXy + XX + 0% (k3 + 1) + 225 (ky + 1) + mx3ky
+ xy (kokes + ko + by + k3) + 0y (ks + by + 1) + 03 (kykoy + kg + oy + 1)
+ xo(ky + k3) + kykoks + koky + koks + kiky + kiks + ky + ks,

1) = xows + 0 + (ks + 1) + (ks + 1) + x5k + ko) + 31 + koks + ko
+kyt+k +h,

1) = sy + (ks + 1) + x5 (ks + 1) + 3 + koks + kg + ey ki + 1,

1Y) = xoxyws + x5 + Xy (ks + 1) + Xy + x13k5 + 2103 (ky + 1)
+ 20003 (ko + ky) + xpx) + X (koks + Ry + Ry + 1) + 2 (kokes + kg + k3 + 1)
+ 2, (koks + kiks + ko + 1) + x5 (koky + ki + ky) + kokokes + ko
+ koky + koky + kyky + ko + ky + ko + 1.

We observe that if k3 = k, = 0, then the component 14(}() differs from Sf) by the constant &, for any

value of k;. This implies that DS()O,O,kl,k“) = x; + k.

5.3 LINEAR CRYPTANALYSIS

To analyze D,, , in more detail, we use the statistical framework of linear cryptanalysis [5, 11].
The important concept here is a linear approximation, i.e., an ordered pair of linear masks (x,v) €
E” x " that determine linear combinations of output and input bits, respectively. A mask # defines a

linear functional
X 1 X = ugXy o+ Uy Xy g -

We measure the quality of a linear approximation with the correlation between the linear functionals

defined by the masks.

Definition 48. The (signed) correlation between the linear functional defined by the mask u € B at the
output of a function G: B* — B and the linear functional defined by the mask v € B at its input is
defined as
1 o
Colmv) = 55 > (~1) 00,
xeB”

The 27 x 27 matrix Cg with entries C (%, v) is called the correlation matrix of the function G. We
call a linear approximation with a correlation of one or minus one perfect.

In addition to specifying masks at the input and output of D, ;, we may also specify intermediate

masks.
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5 Weak Subtweakeys in SKINNY

Definition 49. A sequence (u, v, w) € B"xE"xE" is called a linear trail of D,,, , if it satisfies the following

conditions:
1. Cg (n,0) # 0;
2. Cg (v,w) #0.
Each of the trails contributes to the correlation of the linear approximation.

Definition 50. The correlation contribution of @ linear trail (u, v, w) over D, ;, equals
CDm,k (”s v, w) = (_l)ka CSm (”: ZJ) CSm (l}, w) .
From the theory of correlation matrices [5], it follows that

Cp,,(#,0) = Z Cp,,, (1, 0,w)

vel”

—Z ”/“CS (,0) Cg (v5w) .

vel”

5.4 LINEAR TRAILS OF THE DOUBLE S-BOX STRUCTURE

We can now translate the observations from Section 5.2 into the language of linear cryptanalysis. The
observations state that the linear approximation (1000, ©010) of Dy 9,0, 4, i perfect for all &y, £; € I.

One way of seeing this is directly from the fact that

(3)
(1000) " Dy (0,0.4,k0) = D (0,0,4,.4)
=x + ko

= (0010)"x + k.

Hence, the correlation is one if & is zero and minus one otherwise.

An alternative view is the following. Due to the equivalence of vectorial Boolean functions and their
correlation matrices [5], equality of Si and k 1mphes equality of row 1000 of Cg and row 0016 of
C L The latter corresponds to column 0010 of CYZ,k°S4' These are exactly the two vectors that we need to
multiply in order to compute Cp,, (1000, 0010). Using the orthogonality relations [10], it is not difficult
to show that this correlation is either one or minus one, depending on the constant difference between
Sf) and 14(}6), which only influences the sign.

In general, we have computed all the non-trivial perfect linear approximations for each of the 2 sub-
tweakeys. This was accomplished by considering all the possible linear trails over D ;. The results are
found in Table S.1 for the case m = 4, i.e., for the 4-bit S-box, and in Table S.2 for the case m = 8, i.e., for
the 8-bit S-box. The first column lists the output masks and the third column lists the input masks. An

asterisk denotes that the linear approximation holds for any subtweakey bit in that position. It turns out
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5.5 Patching the problem

that in both cases such linear approximations exist for a quarter of the subtweakeys. We call subtweakeys
for which this property holds weak.

Consider a fixed subtweakey. If (#1, w;) and (u,, w,) are two perfect linear approximations, then their
sum (#; + #,, wy + w,) is again a perfect linear approximation, as evidenced by the tables. Moreover, the
pair (0, 0) is always a perfect linear approximation. It follows that the perfect linear approximations for

a fixed subtweakey form a linear subspace of E” x F".

5.5 PATCHING THE PROBLEM

To patch the problem, we search within a specific subset of S-boxes that are permutation equivalent [4]

to the original.

Definition 51. Two functions ¥: E' — E" and G: B — B are called permutation equivalent zf

there exist bit permutations o and v such that
F=7:Gog.
A bit permutation T is a permutation of {0, ..., m — 1} that bas been extended to " by

(xm—l) e xO) = (xz'(m—l)> s xr(o)) .

Many of the cryptographic properties of an S-box are preserved by permutation equivalence, e.g., the
algebraic degree, the differential uniformity, the linearity, and the branch number. Moreover, the impact
of a bit permutation on the implementation cost is negligible. For example, in hardware it amounts to
rewiring of the signals. We have restricted our search to those permutation equivalent S-boxes for which
o is the identity.

Any bit permutation applied to the output bits of S, permutes the columns of its correlation matrix.

Indeed, we have
Ce(,v) = Cs, (1,771 (0)) -

Table 5.3 lists the bit permutations T and the ratio of subtweakeys for which there exist non-trivial per-
fect linear approximations. For example, the row “(x,, x;, %y, 23) 0” corresponds to the bit permutation
T = L, for which no subtweakeys are weak. It turns out that there exist many permutation equivalent
S-boxes for which the double S-box structure does not have non-trivial perfect linear approximations for
any subtweakey.

Similarly, for the 8-bit S-box we found that there exist many permutation equivalent S-boxes for which
there exist no non-trivial perfect linear approximations. An example of such an S-box is obtained by
applying the bit permutation T(x7, xg, X5, X4, X3, X2, X1, %) = (%7, X5, X6, X4, X3, %2, X, %) . Because the

number of possible bit permutations is large, we did not include them all here.
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5 Weak Subtweakeys in SKINNY

Table 5.1: Perfect linear approximations of S 7 ;, o S and their constituent linear trails.

output | intermediate | input
mask mask mask | subtweakey
u v w k Cp,, (t,w) | Cg,(v,0) | Cs(w,0) | Cs(v,w)

0001 (-1 1/2 1/2

1000 o1l 0010 00xk, (-1 (_I)ZB -2 -1z
1001 (-n)* -1/2 -1/2
1101 (-1)% -1/2 | -1)2
0001 -1 -1/4 1/4
0011 -1 1/4 -1/4
0100 1 -1/2 -1/2
0101 -1 1/4 -1/4

1010 o110 1110 0001 1 ! -1/2 -1/2
0111 -1 -1/4 1/4
1001 -1 -1/4 1/4
1011 -1 1/4 -1/4
1101 -1 -1/4 1/4
1111 -1 1/4 -1/4
0001 -1 1/4 1/4
0011 -1 1/4 1/4
0100 1 1/2 -1/2
0101 -1 -1/4 -1/4

0010 o110 1100 0001 -1 ! -1/2 172
0111 -1 -1/4 -1/4
1001 -1 1/4 1/4
1011 -1 1/4 1/4
1101 -1 1/4 1/4
1111 -1 1/4 1/4
0001 -1 1/4 1/4
0011 1 1/4 -1/4
0100 1 1/2 -1/2
0101 -1 -1/4 -1/4

0010 o110 1110 0011 -1 -1 -1/2 -1/
0111 1 -1/4 1/4
1001 -1 1/4 1/4
1011 1 1/4 -1/4
1101 -1 1/4 1/4
1111 1 1/4 -1/4
0001 -1 -1/4 1/4
0011 1 1/4 1/4
0100 1 -1/2 -1/2
0101 -1 1/4 -1/4

1010 o110 1100 0011 1 -1 -1/2 172
0111 1 -1/4 -1/4
1001 -1 -1/4 1/4
1011 1 1/4 1/4
1101 -1 -1/4 1/4
1111 1 1/4 1/4
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5.5 Patching the problem

Table 5.2: Perfect linear approximations of Sg o7 , ° Sg and their constituent linear trails.

output | intermediate input
mask mask mask subtweakey
u v w k Cp,, (1, w) | Cg (0,0) | Cs(w,0) | Cs(v,w)
00010000 (-1)& 1/2 1/2
91010000 —1)k -1/2 -1/2
01600000 | | e | 00001000 OO*kyxkxx (-1)% 5_1;,& —1;2 —1;2
11010000 (-1)% -1/2 -1/2
00001000 1 -1/2 1/2
00011000 -1 -1/4 -1/4
00101000 1 1/2 -1/2
00111000 -1 -1/4 -1/4
01011000 -1 1/4 1/4
10010000 00000010 | 000Lkkx* -1
01111000 -1 1/4 1/4
10011000 -1 1/4 1/4
10111000 -1 1/4 1/4
11011000 -1 1/4 1/4
11111000 -1 1/4 1/4
00001000 1 -1/2 -1/2
00011000 -1 -1/4 1/4
00101000 1 -1/2 -1/2
00111000 -1 1/4 -1/4
01011000 -1 1/4 -1/4
11010000 00001010 | 000Lkkx* 1
01111000 -1 -1/4 1/4
10011000 -1 1/4 -1/4
10111000 -1 -1/4 1/4
11011000 -1 1/4 -1/4
11111000 -1 -1/4 1/4
00001000 1 -1/2 -1/2
00011000 -1 -1/4 1/4
00101000 -1 1/2 -1/2
00111000 1 -1/4 -1/4
01011000 -1 1/4 -1/4
10010000 00001010 | 00L1Lkkxx 1
01111000 1 1/4 1/4
10011000 -1 1/4 -1/4
10111000 1 1/4 1/4
11011000 -1 1/4 -1/4
11111000 1 1/4 1/4
00001000 1 -1/2 1/2
00011000 -1 -1/4 -1/4
00101000 -1 -1/2 -1/2
00111000 1 1/4 -1/4
01011000 -1 1/4 1/4
11010000 00000010 | 00Llkkxx -1
01111000 1 -1/4 1/4
10011000 -1 1/4 1/4
10111000 1 -1/4 1/4
11011000 -1 1/4 1/4
11111000 1 -1/4 1/4
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5 Weak Subtweakeys in SKINNY

Table 5.3: Permutation equivalent S-boxes and their ratio of weak subtweakeys.

(3, %, %1, %) | Ratio of weak subtweakeys
(4635 %65, %1, %) 4/16
(2, 23, 21, %) 6/16
(x x11x2!x0) 0
(x xl’x3sx0) 0
(%1, %3, 2, %) 0
(01, %, 23, %) 2/16
(23, %2, 20, X7) 0
(%, 23, X, 1) 0
(x xlsxo’”l) 0
(%, %1, X5 23) 0
(1, 23, 20, %) 5/16
(xl’xQ’xO’xS) 0
(23, %0, %2, %7) 7/16
(2%, 205 263, X1 ) 0
(x X0> X1, X ) 0
(22, %o, %1, %3) 0
(201, %05 23, %) 6/16
(%1, %5 22, 23) 0
(0, 3, %5, %7) 10/16
(%95 %2, 23, X7) 8/16
(%05 23, 21, %) 0
(%05 2 27, %3) 0
(%9 %15 %3, %) 0
(%05 %1, %, 23) 0

5.6 CONCLUSION

The main message that we want to communicate is that the composition of individually strong cryp-
tographic functions may produce a weaker function for a large subset of the round tweakey space. In
SKINNY, this weakness holds for any cipher key, because the subtweakeys are computed from the both
the cipher key and the tweak, the latter of which is chosen by the user. In small structures, such unde-
sired properties can be practically revealed through a combination of algebraic and statistical analysis.
This shows that counting the number of active S-boxes in trails may have little meaning. Such properties

could have been avoided by moving to a slightly different function at a negligible implementation cost.

We did not expect this kind of problem to exist for the 8-bit version of the SKINNY S-box. However,
like the 4-bit S-box, in the composition of the two 8-bit S-boxes, the first stage of the second S-box and
the final stage of the first S-box are the same, leading to cancellation. If the matrix that is used in the
MixColumns step did not have a row with a single one, then this double S-box structure would not exist.

As aresult, this particular problem would not be there.
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My coNTRIBUTIONS.  This chapter is based on work accepted at Selected Areas in Cryptography 2024.
I contributed to the design of the ExpandBlock function, the selection of the bit shuffle 7, and the
ordering of 7 and the mixing layer 6. Additionally, I was responsible for the comprehensive cryptanalysis

of the PRF, in collaboration with Yanis.

ABSTRACT. This paper introduces the Koala PRF, which maps a variable-length sequence of 64-bit
input blocks to a single 257-bit output block. Its design focuses on achieving low latency in its imple-
mentation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with
the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the
8-fold iteration of a simple round function inspired by that of Subterranean. Based on careful prelim-
inary cryptanalysis, we made a variant of the Subterranean permutation by reordering and modifying
it in a way that does not introduce any implementation overhead and enhances the cryptographic resis-
tance of the resulting PRF. Indeed, we demonstrate that Koala exhibits a high resistance against integral,
cube, division property, and higher-order differential attacks. Additionally, we compare the hardware
implementation of Koala with the smallest latency with state-of-the-art low-latency PRF ORTHROS and
GLEEOK and the block cipher PRINCE in the same ASIC synthesis setup. Our results show that Koala
outperforms these primitives not only in terms of latency but also with respect to various other perfor-

mance metrics.

6.1 INTRODUCTION

The design of cryptographic primitives with minimum evaluation time in hardware implementation, so-
called low-latency cryptography, is a relatively young line of research. Modern digital technologies often

require a high level of security, but are expected to operate within very short time frames.
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6 Koala: A Low-Latency Psendorandom Function

Important examples of such technologies are memory encryption and integrity mechanisms provided
by, for example, IBM’s SecureBlue, Intel’s SGX, and AMD’s SEV. Smart cards, like the ones of NXP and
STMicroelectronics, perform local memory encryption in an ultra-constrained setting.

Another example is formed by the secure caches in modern CPU’s. This application has received
significant attention in the last few years, for microarchitectural attacks, e.g., Meltdown and Spectre,
have revealed serious security shortcomings in widely deployed high-end processors. Many hardware-
based mitigations for such attacks call for a higher level of encrypted communication inside of CPU’s,
as well as between CPU’s and their surrounding hardware components. To implement new features of
this kind in the next generations of mainstream processors, without causing a large performance penalty,
low-latency encryption primitives are among the most important building blocks. Suffice it to say that
the design of low-latency primitives is an important domain of research.

While various primitives have been developed with a focus on low latency, a significant portion of them
are (tweakable) block ciphers. We just mention PRINCE [9, 10], MANTIS [5], QaRMA [2], SPEEDY [28],
BipBrp [6] and Scarr [12].

Interestingly, in recent times low-latency pseudorandom functions (PRF) have been proposed in the
form of ORTHROS [4] and GLEEOK [1], allowing ultra-fast stream encryption or authentication of short
messages. Both are based on the sum-of-block-ciphers paradigm: To achieve beyond birthday bound
PREF security, in the former the output is the sum of two block cipher invocations and in the latter even
three. We investigate a different way to achieve 7 bits of security, namely with a 2z-bit permutation and
a feedforward, leading to a more efficient implementation in terms of area and latency.

In this paper, we present the design of a PRF with a variable-length input and fixed-length output suit-
able for alow-latency implementation in hardware as an ASIC. Koala is an instantiation of the Kirby [29]
construction with a new permutation Koala-P inspired by Subterranean [18], and an additional input
encoding. Moreover, Koala can be used as a stream cipher by taking as input the nonce followed by a
counter. For this cipher the marginal cost per 256-bit keystream block is one call to Koala-P. We com-
pare the performance of Koala with that of ORTHROS and the two instances of GLEEOK, to the best of
our knowledge the only PRFs in the literature with the main goal of providing a low-latency ASIC im-
plementation. Our synthesis results, in Table 6.4, show that Koala has a lower latency and outperforms
OrTHROS and GLEEOK in various other performance measures. We believe that Koala is a promising
new addition to the family of low-latency cryptographic primitives, and we welcome any third-party

cryptanalysis.

CoNTRIBUTION.  The main contributions of this paper are as follows:

* The design of Koala, a low-latency PRF that maps a variable-length sequence of 64-bit input
blocks to a single 257-bit output block.

* Anintegral cryptanalysis of Koala, using bit-based division properties and the open source imple-

mentation of all algorithms used.!

1 https://github.com/parisaeliasi/KoalaHwW
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* An RTL design of Koala in Verilog, an evaluation of the corresponding ASIC performance, and

a comparison with ORTHROS GLEEOK and PRINCE.

ORGANIZATION OF THE PAPER. The paper is organized as follows. We establish some notation and
conventions in Section 6.2. In Section 6.3, we present the specification of the permutation Koala-P, the
pseudorandom function Koala, and the security claim of Koala. We presenta short formalism to describe
conditional cube attacks in Section 6.4 and in Section 6.5, we use this formalism and bit based integral
distinguisher to analyse Koala. Bounds on the weights of linear and differential trails over Koala-P are
provided in Section 6.6. In Section 6.7, we provide the rationale for all components of Koala. Finally, we
present a hardware implementation in Verilog in Section 6.8, together with area and latency figures for
implementation in ASIC. Appendices contains some figures, missing proofs for the interested reader,

along with avalanche behaviour and differential, linear and integral distinguishers.

6.2 NOTATION AND CONVENTIONS

We fix the notation and conventions that are used throughout the paper.

We denote the cardinality of a set S by |S|. For sets S and 7, we write Maps[S, 7] for the set of all
functions from S to 7'. By the set N we mean the non-negative integers, i.e, 0 € N. Typically, » and m
denote elements of N. A finite sequence s = (5, 5, ... , 5,_1) of elements of a set S is called an z-tuple. In
particular, we reserve the word (bit) string for #-tuples over the set {0, 1}. We may also call a bit string
a block if it has a fixed length of either 64 or 257 bits. The n-bit string consisting of all ones is denoted
as 1”. When we endow the set {0, 1} with the structure of a finite field, we write E, instead. Indices of
tuples are computed modulo 7, i.e., these indices are assumed to be elements of Z/#Z. If s and s" are two
bit strings, then we write s || s’ for the concatenation of s and s". For example, (0,0,1) || (1,0, 1) is equal
0 (0,0,1,1,0,1). We often treat z-bit strings as (bit) vectors # = (u, #y, ..., #,_;) in the zn-dimensional
vector space B over the field E,. We write ¢ for the 7th standard basis vector of E'. That is to say, ¢ has
alin position 7 and zeros elsewhere. Sometimes, we refer to vectors as points. We make the set B into a
partially ordered set by defining # < v if and only if #; < v; for all / € Z/»nZ. The Hamming weight of a
vector # is defined as the number of its non-zero coordinates. Thatis, HW(«x) = |{¢ : 7 € Z/nZ A u; #
0}|. We define an affine subspace of B to be any set of the form « + L, where 2 € E is a point and L
is a linear subspace of E'. Let S be a subset of 5’ and f a function defined on F'. We write f|g for the

restriction of /' to S.

6.3 SPECIFICATION OF KoaLa

Our design consists of two layers of abstraction: a permutation called Koala-P, and a PRF called Koala,
that consists of a prefix-free input encoding function and the instantiation of the Kirby construction
with Koala-P.

115
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Figure 6.1: Illustration of Kirby applied to a 3-tuple of input blocks.
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First, in Section 6.3.1, we recall the Kirby construction, introduced in [29]. Second, we specify the
Koala-P permutation in Section 6.3.2. Third, we present the specification of the Koala PRF in Sec-

tion 6.3.3 and its security claim in Section 6.3.4.

6.3.1 THE KIRBY CONSTRUCTION

Kirby is a construction for building a variable-input-length pseudorandom function (VIL-PRF) from a
permutation. This construction is specified in Algorithm 3 and illustrated in Figure 6.1.

To summarize Algorithm 3, Kirby is parameterized by a b-bit permutation P and a key length x. It
operates on a b-bit state that is initialized with a x-bit secret key k and a (b — «x)-bit identifier. Then, it
alternates between absorption of 4-bit input blocks and transformations of the state by means of a call
to the permutation P and a feed-forward. The input tuple of strings is assumed to be a codeword in a
prefix code [13] (sometimes called a prefix-free code). It returns the final value of the b-bit state as the
output. The paper [29] contains a proof of multi-user PRF security in the random permutation model,
i.e., security against generic attacks.

From now on, we use the term key to refer to the master key k and secret to any intermediate state

unknown to the attacker.

Algorithm 3 Definition of construction Kirby[P, x] copied from [29], where P is a b-bit permutation
and « is a positive integer.

Input
k  Ax-bitkey string.
id A (b - x)-bit key identifier string.
y  Ann-tuple of b-bit blocks with 7 > 1.
Output
z A b-bitblock.
sk id
s<—s@®P(s)
fori =0ton—1do
S 5Dy
s« s@dP(s)
end for
z s
return z
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Figure 6.2: The Koala-P round function.

6.3.2 THE KOALA-P PERMUTATION

Koala-P is a permutation of B parameterized by the number of rounds » < 8. It is obtained by the
self-composition of a round function, which, in turn, consists of a sequence of step functions.

First, we introduce the step functions: a bit shuffle 7, amixinglayer 4, around constant addition ¢, and
anon-linear layer y. These functions are defined by how they compute the bit with index 7 € Z/257Z

of a state vector s € B> according to the following rules:

TS 1214
PSS T S Tt S0

s+1 ifi=0and; ¢ {2,5,6},

L5 <
5 otherwise,

XS 5+ St S5
Second, we define the round function Rj parameterized by the round index ; as
R.:zo[joeoyz"

7

Note that the only difference between the round functions lies in the value of the round constant. Lastly,

we denote the composition of 7 rounds as

r=1
Koala-P[r] = O R;.
/=0

6.3.3 THE Koara PRF

The Koala PRF is composed of the following two parts:
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6 Koala: A Low-Latency Psendorandom Function

* Kirby[Koala-P[8], x]: the instantiation of Kirby with the permutation Koala-P[8] in which the

key length « is left as a parameter.

* An encoding function EncodePrefixFree defined in Algorithm 5 that maps an n-tuple of 64-bit
blocks into a n-tuple of 257-bit blocks.

* An encoding of k and id as k||id||lenght(id) instead of k||id in the original Kirby construction,
with length the encoding of the bitlength of id encoded in a single byte.

The ExpandBlock function makes it possible to use 64-bit blocks as input to the Kirby instance. Each
64-bit input block is transformed into a 256-bit string by the ExpandBlock function defined in Algo-
rithm 4. Every 64-bit input block is split into a sequence of 32 2-bit strings. Each of these 2-bit strings
naturally encodes an integer value between 0 and 3. This value serves as an index of the single non-zero el-
ement in a 4-bit string. The bits of this string are then diffused to different positions of the corresponding
256-bit output string.

The 256-bit strings are each padded with the bit 0, except for the last string, which is padded with the
bit 1. This padding is what guarantees that the input tuple y to Algorithm 3 is an element of a prefix
code.

The encoding of the k and id is injective, allowing use of different lengths without risking state collision
for different keys. Concretely, given a x-bit key, k, a (257 — «)-bit key identifier, id, and an -tuple, d, of
64-bit blocks, we define Koala by

Koala[x](k,id, d) = Kirby[Koala-P[8], x] (k, id, EncodePrefixFree(d)) .

6.3.4 THE KOALA SECURITY CLAIM

We present a claim of multi-user PRF security of Koala in the case of z users. We assume the existence

of s identifiers and suppose that g; users share the 7th identifier. Hence, we have g = py + - + ;.
Claim 1. We consider an adversary that is restricted ro the following resources:
e The computational complexity is N and it is equal to the number of evaluations of Koala-P[8).

* The data complexity is M and. it is equal to the number of distinct input blocks that are processed by
Koala.

The advantage of an adversary in distinguishing an array of  instances of Koala|x] loaded with p inde-
pendent x-bit keys, sampled randomly and uniformly, from an array of u independent random oracles, is

upper bounded by

MM-1) 2NM Zj:l @i = 1) N max; g
2257 * 2257 2x+1 i3 :
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Algorithm 4 Definition of ExpandBlock.
Input
s A 64-bitblock.
Output
t A 256-bitstring.

for: = 0to255do

(52[ + 1)(521'-%-1 + 1) ifi e [05 31] >

(527 + D)sina ifi € [32,63],

= 2i(0m +1) if7 € [64,95],
$i%41 if € [96,127],
0 otherwise ,

where the indices of s are computed modulo 64.

end for
return (¢, 4, ... , byss)

Algorithm 5 Definition of EncodePrefixFree

Require: 7 > 1
Input
d  An n-tuple of 64-bit blocks.
Output
y  Ann-tuple of 257-bit blocks.

for;=0ton—-2do

y; < ExpandBlock(d;) || 0
end for
9,-1 < ExpandBlock(d,_;) | 1
return (Yo, Y1, -+ Y1)

This claim follows the proven bound of Kirby in [29] Lemma 1 page 15 against generic attacks using

ax-bit key.

6.4 FORMALISM FOR INTEGRAL CRYPTANALYSIS

Together with differential and linear cryptanalysis, integral cryptanalysis form the three most important
attack vectors. We use integral attacks as an umbrella term for attacks relying on summing the outputs of
afunction over a well-chosen input set, using different heuristics for constructing the set. To improve the
understandability of our explanations of the attacks mounted against Koala, we first describe the general
method used for integral attacks with the minimum mathematical formalism necessary to describe such

attacks.
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6.4.1 FRAMEWORK OF INTEGRAL ATTACKS
Integral attacks consist of an offline phase followed by an online phase:

Offline Phase is an analysis step where the adversary accesses the secret dependent polynomial repre-
sentations of the step functions of a primitive. They apply rewrite rules to these polynomial repre-
sentations in order to simplify them, e.g., to eliminate variables and lower the degree. Importantly,
the rewrite rules determine an affine input space 7. Using combinatorial arguments involving the
degree or by propagating an initial division property vector [36], the adversary is able to determine
the vector of coefficients of some target monomial. To be able to mount a successful attack, this
vector should either be a constant that does not depend on the secret at all or depend on the se-
cret in a way that leads to a system of equations that is easy to solve, e.g., linear dependence. The

outcome of this step is an affine input space 7" and a target monomial x*.

Online Phase is an execution step where the adversary accesses a cryptographic oracle for a fixed master
key. They recover the vector of coefficients of the target monomial x* by summing over the affine
input space 7 that was obtained during the offline phase. The vector of coefficients is then used
as a distinguisher or to set up a system of equations in the secret bits that may lead to the recovery

of the master key.

We restrict ourselves to input sets that form an affine space. Within this restriction, examples of integral
attacks include higher-order differential cryptanalysis [27], square attacks [17], and (conditional) cube
attacks [20, 26]. We present a unified mathematical foundation upon which these attacks are built.

This section is organized as follows. In Section 6.4.2, we make explicit the link between functions
defined on an affine space and their representation on this space as a multivariate polynomial, called the
algebraic normal form. In Section 6.4.3, we introduce an notion of the derivative of a function and show

how it can be computed by means of the summation of outputs of the function.

6.4.2 ALGEBRAIC NORMAL FORM

To understand how to find input spaces for an integral attack, we need to explain how to represent the
restriction of a vectorial Boolean function to some affine space as a tuple of multivariate polynomials:
the algebraic normal form (ANF). We present the necessary tools and results from computational com-
mutative algebra and make the relation between the algebraic normal form and substitutions, which
determine the input sets, explicit. We also illustrate in S the notation and terminology used. For an
accessible introduction to computational commutative algebra, we refer to the book by Cox et al. [14].
A monomial in the variables xy, ..., x,_; isa product of the form x° - x,"' with # € N”. To abbreviate,
we write this as x*. The degree of the monomial x* is defined as #y + - + #,_;. Polynomials are finite
linear combinations of monomials with coefficients in F,. The degree of a polynomial is the largest of
the degrees of its monomials. The zero polynomial has degree —co. We denote the set of polynomials in
the variables x;, ..., x,_; and with coefficients in E, by R, = E [, ..., 5,_;]. These variables correspond

to the bits which are controlled by an adversary, e.g., the input bits.
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6.4 Formalism for integral cryptanalysis

x; for constants ¢; € I and

Let py, ..., p,—1 be polynomials of the form p; = x, or p; = ¢; + Z] 4
coefficients a;; € E. During cryptanalysis, we make use of a set of rewrite rules of the form x; — p, ie.,
we substitute x; with the polynomial p;. Rules of the form x; — x; are said to be #77vzal in the sense that
no substitution is performed. A set of rewrite rules defines a set of polynomials of the form x; — p;, which
is completely specified by a tuple (4, ¢), where 4 = (a;;) is an 7 x n matrix over B, and ¢ = (g, .., ,-1) is
avector in E'. The matrix A is in row echelon form, up to a permutation of its rows, which implies that
the order in which the corresponding rewrite rules are applied does not matter. The tuple (4, ¢) defines
the affine space V' = {v € B : Av = ¢} of points that satisfy the equation 4v = c.

We have seen that a rewrite rule of the form x; — p;, gives us a relation of the form x; = p;. Moreover,
we have relations of the form 57 = x; due to the fact that the square on E is the identity map. We can

introduce these relations by working with polynomials modulo the ideal / generated by the set

2 2
G = {%5 = X0 o5 X1 = %y—15 X0 = P0s o+ s Xm1 = Pr-1} -

For our purposes, the central algebraic object is the quotient ring R, /1.

Polynomials in R, give rise to elements of Maps[V/, ]. Indeed, for any point « € V, there is a unique
ring homomorphism ¢,: R, — ]F2 with g,(x;) = 4; given by substituting x; by ;. This leads to a map
¢: R, — B thatis defined by ¢(p) = f with f(a) p) forall @ € V. The kernel of ¢ is equal to /.
By the first isomorphism theorem for rings [14, p. 247], there is an isomorphism ¢ between F/ and R, /1.

The set G forms 2 Grobner basis [14, p. 78] for / with respect to the lexicographic order. Define
W ={ue€FE :u = 0ify;, # p;} as the set of vectors for which the 7th component is zero if x; is
eliminated by a substitution. The remainder of any polynomial p € R, on division by G, denoted [TG, is

unique and of the form

—G
7= ax

uelv’
for certain constant bits &, € E [14, p. 83]. Therefore, the set of all possible remainders after division by
G, which we denote as R, forms a complete set of coset representatives of 7 in R,,. Indeed, lety: R, —
R, be defined by ¢ (p) = EG forall p € R,. The kernel of ¢ is equal to 7. By the first isomorphism
theorem for rings, there is an isomorphism ¥ between R,, /7 and Rg;.
To conclude, we have an isomorphism N = ;7 o E between the set of Boolean functions defined on /”

and the set of remainders R;. We are now able to make precise how a function is represented on 7.
Definition 52. Let f: V' — E be a Boolean function defined on V. The representation of | as a mul-
tivariate polynomial, called the algebraic normal form (ANEF) of f, is defined as the unique remainder
N(f) upon division by G.

The degree of a remainder p € R with p # 0 is defined as deg(p) = max{HW(%) : # € Wanda, #

0}.
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Table 6.1: Truth table of £.
X 000 001 010 011 100 101 110 111
f(x) 0 1 0 0 1 0 1 1

Definition 53. Let f: V — K, be a Boolean function defined on V. The algebraic degree of f, denoted by
deg(f), is defined as the degree of its ANF.

If # depends on a secret vector s € E, e.g., a secret key or state, then the coefficients 2, of N(f)
are Boolean functions of the secret bits, i.e., #, maps the secret s to some bit z,(s) € E. In this case,
we can rewrite the definition of the degree as deg(f ) = max{HW(#) : # € 17 and there existsan s €
E with ,(s) # 0}. Note that our definitions match with the usual definitions of ANF and algebraic
degree in the case that both 4 and ¢ are zero.

There is a straightforward generalization of these notions to vectorial Boolean functions defined on

V.

Definition 54. The algebraic normal form of F = (fy, ..., f-1): V. — B is defined as N (F) =
(N(f0)s s N(frao1)) € R Its algebraic degree is defined as deg(F) = max{deg(fy), ..., deg(f,-1)}-

We illustrate how to apply rewrite rules to #'(f), where f'is some Boolean function, in order to change
its properties, such as the presence of certain monomials. The resulting polynomial is the ANF of the

restriction of / to the affine space determined by the rewrite rules.

Example 5. The function f E - Fis defined by the truth table in Table 6.1. It follows that
N () (0, %1, 25) = X + % + %1%, -

Therefore, the algebraic degree of f is 2. Now we make the isomorphism N implicit.
We apply the rewrite rule x, — x,. This rule, together with the trivial rules, defines the matrix

N

Il
c o o
o~ o
o = o

and the constant ¢ = (0,0, 0). Clearly, A is in row echelon form, up to a permutation of its rows. Moreover,
V={veB :Av=0}={ve B : v = v} Whenwerestrict f toV, i.c., when we consider f|,: V — B,
we find that its ANF is equal to x,. The restriction bas algebraic degree 1 and it depends on a single variable.

An alternative way of wording this is that we compose f with the map L: B — V given by (x, %,) >
(%0, 21, 1) and that the algebraic normal form of f o L is equal to x,.

Like in the example, we make implicit in the next section the correspondence between Boolean func-

tions and their representation as a tuple of remainders.
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6.4 Formalism for integral cryptanalysis

6.4.3 PROPERTIES OF DERIVATIVES

The integral attacks that we consider in this section, rely on practically computable properties of the
derivative of a Boolean function. All definitions and results are extended to the case of vectorial Boolean

functions by applying them to each coordinate Boolean function.

Definition 55. For vectors u,v € B, define the derivative of the monomial x° with respect to u by

X7 fus<o,

0 otherwise

and extend linearly to functions = ¥ — . Wecall 9, f the derivative of f with respect to n.
Note that this definition coincides with that of the usual partial derivative.

Example 6. Let f: E — Ebe given by f(x) = xy + %, + x1%. {ts derivatives are equal to

‘)(0,00 S (%) = 29 + 2 + 2% a(l,0,0)f(x)

doon)f(x) =% +1 d101)f(x) =0
d0,1,0f (%) = % d1,1,0f (%) =0
a(0,1 1 f(x) =1 a(1,1,1)f(x) 0

The first important property of the derivative is the duality between the derivatives of f/ and outputs

of f on an affine space by means of integral.

Proposition 23. Let f: &' — F and a,u € B'. We have

fle+a)= > 0,f(x),and

O<u<a

0f(x) = > flx+a).

O<as<u

See in Appendix A, 28 for the proof.
The following corollary shows how to compute the coefficient @, of x* in f by summing over the

outputs of f corresponding to inputs for which # takes on all possible values.

Corollary 4. Let [ B — K and a,n € B'. We bave

= > f@

O<as<u

Proof. 'This follows from the second equality in 23 and the fact that 9, £(0) = «,, by definition. O

The second important property of the derivative concerns its degree.
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Proposition 24. The degree of the derivative of f with respect to u satisfies

deg(0.f) < deglf) ~ HW(w).

Proof. By definition, wehaved, f = 3" _ «,x"™. Letwbesuchthata, # 0anddeg(d,f) = HW(w~u).
Using that # < w and that x* is a monomial in £, we find that deg(buf) = HW(w — #) = HW(w) —
HW (x) < deg(f) - HW(x). O

The coefficient of any monomial x* with the Hamming weight of # exceeding the degree of the func-

tion is 0.

Proposition 25. If HW(x) > deg(f (%) ), then 0, f (x) is the coefficient o, of x" in f. In particular, if
HW () > deg(f (x)), then this coefficient e, is 0.

Proof. It HW () = deg(f(x)), then deg(()” S (x)) < 0. This implies that J,f(x) is a constant, i.e.,
0,f(x) = 0,f(a) for any a € E'. In particular, this is true for 2 equal to 0. By definition, it follows that
9,/ (0) = a,. THW (x) > deg(f(x)), then deg(ﬁuf(x)) < 0, which implies that #,, is 0. O

6.5 INTEGRAL ATTACKS APPLIED TO KOoALA

In this section we focus on the class of integral attacks. They forms an importantattack vector to consider
in the analysis of Koala, due to the fact that the Koala-P round function has degree 2. In particular, we
restrict ourselves to analyzing the substructure &, of Koala in which only a single block is processed and

consider a round-reduced version of Koala-P.

Definition 56. Dcfine an expansion function y: B x B4 — B by

y(s,x) = (ExpandBlock(x) || 1) + 5.
The substructure 6,: B> x Bg* — B>’ is given by
.(5,x) = y(5,x) + Koala-P[] (y(s, %)) .

The summary of the following is that we believe that &, with the number of rounds » > 6 is secure
against integral attacks.

We first investigate distinguishing bit-based division properties. The division property was introduced
in [35] as a generalization of integral distinguishers. Based on previous works [19, 24, 25, 34, 36, 37], we
created different tools to search for two-subset and two types of three-subset division properties within
round-reduce version of Koala. Then, welook at cube and conditional cube distinguishers, exploiting the
inner structure of the ExpandBlock function and the round function to search for integral distinguish-
ers with smaller input size. Based on the results found, we conjecture on the feasibility of key recovery

attacks using those distinguishers. In both cases, the goal of the attack is to find an affine subspace V" of
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]F264, the domain of the 64-bit input string «, such that the ANF of &, on this subspace has a coefficient

that is independent of or linear in key variables, for some monomial in input variable.

6.5.1 BIT-BASED DIVISION PROPERTY ANALYSIS

We divided our work into two steps, first using the two-subset division property and then using different
types of three-subset division property. For further explanation on the division property we refer to [35]
for basic concepts and the two subset division property, and to [24] for the three subset division property.

Using the algorithm from [34], and the model from [19] for the two subset division property, we check
whether distinguishers exist within the round-reduced version of Koala. The model from [19] was very
powerful to model the large state of Koala, and combined with the algorithm from Sun et al., we managed
to model the propagation of division trails and to compute the existence of distinguisher up to 6 rounds.
This technique, consisting in modeling the propagation of division trail using linear constraint, can lead
to false positive results due to the lossy modeling of the constraint. However, from a designer’s point
of view, finding no distinguisher is enough, as this model captures all valid two-subset division trails.
We found some distinguishers for up to S rounds but none for 6, showing the absence of exploitable
two-subset division property for 6 rounds.

Then, we look at the three-subset-division property. We also used the model from [19] to model the
propagation of division trail combined with the algorithm from [37]. For a specific set of input, we could
compute the coefficient of the monomial containing all input variables after a certain number of rounds.

The result obtained was the monomial’s presence, absence, or unknown status for each output coor-
dinate, meaning for the latter that either the tool did not find the result or that such input is unlikely to
resultin an exploitable distinguisher. Due to the degree 2 round function used and the result found with
the two-subset division property, we assume that there are distinguishers for up to 5 rounds. Therefore,
we investigate 5 and 6 rounds distinguishers with our three-subset division property tools. As for five
rounds, the expected maximum degree is 64 (2° for the round function time 2 for the ExpandBlock).

This mean that for all secrets s for each output bit coordinates EB %5(s,x) = 0, leading to a 5-round
xeES*

2
integral distinguisher. Therefore, we investigated for 6 rounds, and we found that with the same input

set, there is no exploitable distinguisher for each output coordinate. We assume that this result came

63

from the presence of monomials of the form H x; H 5; for each coordinate p after 6 rounds. There-
=0 jej,

fore, we search if some quadratic secret dependency, meaning | ]},| = 2, could lead to an exploitable

distinguisher. For all pairs of secret-bit tested, we did not found any distinguisher for 6 rounds. We pro-
vide in https://github.com/parisaeliasi/KoalaHW all code used to compute those results, and
we give in Appendix C some of the affine space leading to distinguisher for reduced round version.
6.5.2 CONDITIONAL CUBE ATTACK

To push the analysis further, we consider what happens when we restrict our view of &, to non-trivial

affine subspaces of Ef*. These affine subspaces are obtained by applying substitutions that limit the in-
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teraction of variables through the rounds. In other words, we looked at a subspace of the input vector
space that can decrease the degree of the ANF of specific output coordinates.
A variable «; is said to interact with a variable x; in /' if x; appears in d,»F. When it does not interact

with any other variable, we call it isolated.

Definition 57. Let F: B — B be a vectorial Boolean function and let i € Z[nZ. We call the variable
x; isolated zn F if deg(ac;zF ) < 0, Ze., f the derivative is a constant. We call F linear with respect to a set
of variables x; , ... , x; if these variables are isolated in F. By linearization of F, we mean the application of

substitutions, after which F is linear with respect to the remaining variables.

LINEARIZING y:  The following proposition shows that linearization of y with respect to the variables
Ky eee s Xy by applying suitable substitutions that lead to an affine space ¥, causes the absence of the
monomial x; -, in &,|;. Intuitively, this is a consequence of the function having a much lower al-
gebraic degree when restricted to particular affine subspaces than it has on the entire vector space. For a

proof, we refer to Appendix A.

Proposition 26. Lerr > 0,1 > 2" + 1, and {z,, ..., 4} € Z|64Z be a subset of indices of size l. If V is an
64 . . B
affine subspace of &* such that x;, ..., x; are isolated in y |y, then ‘}e,-i‘ " +e§4%, | =0.

Each monomial of degree 2 in y is of the form x;x;,; for some index 7 € Z/64Z. To linearize such a
monomial, i.e., to have it depend on only a single variable, we can restrict ourselves to substitutions of
the form x; — x;,; and x; — a fora constantz € F.

In other terms, linearization of  fixes 32 of the 64 input variables x;. Therefore, using 26 and choosing

7 equal to 5, we find a distinguisher over &;.

LINEARIZING y AND Ry:  The following proposition shows how to decrease the number of variables
that are involved in the target monomial, i.e., to decrease the size of the input set over which we need to

sum to obtain the coefficient of this target monomial. For a proof, we refer to 30 in Appendix A.

Proposition 27. Letr 2 1,1 2 2", and {iy, ..., i} € Z|64Z be a subset of indices of size l. If V is an affine
subspace of B* such that x; isisolated in Ryoy|y and x, ..., x; areisolated in 'y, then 3‘1(14 ot q(rgr | =0.

With 27, we sketch how to use a conditional cube attack [26] to recover particular bits of the secret. Let
V; be an affine subspace of E* that depends on a guess ¢ € B” for some subset of bits of the secret s. We
call 2 the property that x; isisolated in Ry | v Theatrack consists in finding such 7, for which a correct
secret guess will make £ true and false for an incorrect guess. We obtain /;, by applying substitutions that
depend on g. For example, &, adds «; to s;, so if we apply the rewrite rule x; — g;, where g; is a guess for

5, then a correct guess for s; effectively removes the effect of ; in any further processing. To verify our
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6.6 Trail bounds of Koala-P

guess, we recover the coefficient of the monomial x; - x, in &, | v, by means of summation in the online
phase. We write # € S if # is randomly and uniformly selected from the set.S, and for s € B>, we have
g = (51‘1’ ’J‘z‘m) = aef;“+~-+ef;*'%r|l{g(5a =0,

g7 (Sper) = Pr(aﬂ,’s4+‘,‘+es4%,|yg(;,~) # O) ~1.

1 i

We used that technique first to analyze a simpler version of our scheme: an Even-Mansour construc-
tion [21] in which the permutation is a round-reduced variant of the Subterranean permutation. Asboth
elements are already well known, this was the starting point of our design. We found a key recovery attack
for 6 rounds, using 32 isolated variables. The attack led to the recovery of key bits 0 and 2, requiring three
days of computation on a desktop computer and it is possible to use this attack to recover each pair of
bits; each can be performed in parallel. Consequently, a theoretical attack on 7 and 8 rounds exist using
respectively 64 and 128 isolated variables. Those attacks would work the same with the Koala-P permuta-
tion instead of the Subterranean permutation as the components of the round function are very similar.
However, together with the ExpandBlock function, we did not manage to attack the same number of
rounds. The restriction from 257 to 64 bits for the input reduces the number of possible input sets for
the attacker. With the degree 2 ExpandBlock function, it also reduces the number of rounds required
to reach the maximum degree term in the ANF. Based on our observation, by using linearization, we can
obtain the degree estimation as shown in Table 6.10 in the Appendix C.

From the three-subset division property, we saw that the degree after 5 rounds reaches 64, following
the upper bound. Attempts at attacking more than 5 rounds, the trivial input set containing all 64 input
variables can be used as a distinguisher, or the input set with 32 variables chosen carefully to linearize the
ExpandBlock function. However, none of those methods can attack 6 rounds as the input is too small.
Linearizing the input injection and the first round would mean that after 6 rounds, it could be possible
to find the output coordinate for which the maximum degree would be 32. To linearize one variable for
the input injection and the first round, we need to set 10 variables to constant, meaning that, at most, 6
variables can be linearized for these two rounds. As for the conditional cube attack above, we investigate
acombination of variables linearized for the ExpandBlock function and linearized for the ExpandBlock
function and the first round. So, let’s assume we linearize one variable for the input injection and the
first round. Then, we have 54 variables left, and to linearize those for the input injection, we reduce the

space to 27. This leads us to think it is impossible to attack 6 rounds using this technique.

6.6 TRAIL BOUNDS OF KoALA-P

In this section, we present bounds on the weights of differential and linear trails over the Koala-P per-
mutation. We support this analysis with the best linear and differential trails for up to 3 rounds in Ap-
pendix D. Since we introduced a new permutation Koala-P, we decided to investigate first the permu-
tation alone without considering the input injection. However we believe that with the result provided

and the restriction on the input to 64-bit due to the input ExpandBlock function, it is very unlikely
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6 Koala: A Low-Latency Psendorandom Function

Table 6.2: Lower bounds on the restriction weight of differential trails in Koala-P.

number of rounds 1 2 3 4 5 6 7 8
Koala-P 2 8 26 [52,60] >S4 > 60 >78 > 104
Subterranean 2 8 25 58 > 62 >78 > 80 > 116

that a 7/8-round differential with high enough probability or a 7/8-round linear approximation with

high enough correlation could be found that would be useful in an attack on Koala.

6.6.1 BOUNDS ON DIFFERENTIAL TRAILS

To investigate the differential propagation properties of Koala-P, we used the differential trail search ap-
proach introduced in [31]. For more details, we refer the reader to [30, 31]. The general idea of this
approach is to generate all 2-round #7ail cores with high differential probability (DP) and extend them
iteratively to longer trail cores. A trail core represents a set of trails that are equal in all intermediate differ-
ences and only their input and the output difference are different. The restriction weight w, of a trail core
is the minimum among the restriction weights of all trails in it. For a differential trail Q, we use this re-
striction weight to approximate the differential probability DP(Q). Hence, if w, < & (the permutation
width), then DP(Q) ~ 27%(Q).

We report on the lower bounds on the restriction weights of trails for different numbers of rounds of
Koala-P and also Subterranean in Table 6.2. The bounds for Koala-P are tight for up to 3 rounds since
we scanned the space up to restriction weight 26.

For 4-round trails, we scanned the space up to restriction weight 51 and found there is no trail up to
this weight. During our search, we found a 4-round trail with restriction weight 60, implying that the
best 4-round trail should weigh between 52 and 60. This means that 4-round trail for Koala-P are likely
to have a lower bound close the one for Subterranean. For S, 6, and 7 rounds, we found no trails, but
the space was scanned up to the limits listed in Table 6.2. Moreover, in the case of 8 rounds, since each
8-round trail can be divided into two 4-round trails and since all 4-round trails have weight at least 52,

each 8-round trail has weight at least 2 x 52 = 104.

6.6.2 BOUNDS ON LINEAR TRAILS

For the linear trail search we could not build further on a similar work for Subterranean as there are no
resultsknown. Instead, we adapted works on StMON and SPECK in [22, 32] to create a mixed integer linear
programming (MILP) model for the propagation of linear masks. Our model provides lower bounds on
the correlation weight of linear trails for a low number of rounds, where the correlation weight of a trail
is the binary log of its correlation squared [15]. We use the Gurobi optimizer [23] to solve the model and
find linear trails with the minimum correlation weight over 1,2,3 and 4 rounds.

During our trail search, we scanned the space up to correlation weight 26 and found a tight bound on

the correlation weight of up to 3 rounds. For 4 rounds, we found a trail with the weight 54. Since the
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6.7 Design rationale of Koala

Table 6.3: Lower bounds on the correlation weight of linear trails in Koala-P.

number of rounds 1 2 3 4

correlation weight 2 8 26 [38,54]

search is top-down, we only know that the minimum weight for a trail of 4 rounds is between 38 and 54.

Table 6.3 represents the lower bounds on the correlation weight of up to 4 rounds.

6.6.3 CLUSTERING

Trails may cluster, differential trails that have the same input and output differences contribute to the
same differential. Similarly, linear trails that have the same input and output masks contribute to the
same linear approximation. Even if each contribution is small, the sum of all the contributions might
not be. Still, as studied in [8], in permutations such as Koala-P, the maximum DP of differentials and the
maximum correlation of linear approximations is typically very close to that of a single dominant trail.

We decided to leave the study of clustering as future work.

6.7 DESIGN RATIONALE OF KOoALA

This section presents the rationale behind the design of Koala. The starting point of the design was the
Even-Mansour construction, instantiated with 8 iterations of the Subterranean round function for use
in counter mode. We selected the round function for its short critical path, consisting of one 2-bit NAND
gate and three 2-bit XOR gates, together with an INV gate. As we alluded to in Section 6.5, the evolution
from this initial design to Koala has been driven by the goal of resistance against integral attacks. Indeed,
when we allow an adversary to inject 257-bit blocks, a practical attack exists on 6 rounds and a theoretical
attack on 7 rounds. Hence, 8 rounds would not be sufficient. Instead of changing the number of rounds,
we started looking for changes in the design preferably with no or small implementation overhead.

The first step was to consider the round function itself. We changed  to remove symmetry between
the rounds that could possibly be exploited in cryptanalysis, e.g., slide attacks [7]. We changed ¢ and 7
to increase the number of variables that appear in the derivatives of the first few rounds for any variable.
Finally, we reversed the order of the step functions. In particular, we moved y to the end of the round
to increase the diffusion of input before the non-linear layer of the first round. Also, at the permutation
output, any linear layer after the non-linear does not contribute to its cryptographic strength. The result
of these changes is the Koala-P permutation. However, those modifications alone were not enough to
prevent 6 and 7-round attacks working on Subterranean. The next step was to allow only injecting a
single 64-bit input block into the state instead of a 257-bit block. This ExpandBlock function is tailored
to the Koala-P permutation in the sense that they have been designed together to resist integral attacks
as described in 6.5. The ExpandBlock function essentially cuts the dimension of any affine space that

an adversary can inject into half, and its implementation cost in terms of additional gates and gate delay
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6 Koala: A Low-Latency Psendorandom Function

is small compared to that of an extra round. Due to the input restriction to 64-bit, we adopted the
Kirby construction instead of Even-Mansour, as it allows for inputs consisting of an arbitrary number
of 64-bit blocks. It is very suitable for low-latency applications, has a tight security bound in multi-user
settings, and we handle the requirement of prefix-free input to Koala with a padding at the output of the

ExpandBlock function.

6.8 PERFORMANCE

We discuss a hardware architecture aimed for ASICs and report the synthesis results. The corresponding
Verilog code and a software reference code for generating test vectors can be found athttps: //github.

com/parisaeliasi/KoalaHW.

6.8.1 HARDWARE ARCHITECTURE OF KoALA

The block diagram for Koala is illustrated in Figure 6.3. It has one 257-bit state register S, a combina-
tional circuit for computing (s, sqz) := ExpandBlock(s) || sqz, a circuit for computing Koala-P, and

control logic for absorbing and squeezing driven by two control signals: init and sqz.
- init = 1 the state is initialized with the image of key and id.
- init = 0 the operation is driven by sqz.
- sqz = 0 a non-final block absorbed, S updated and no output,
- sqz = 1 afinal block absorbed, S not updated and output generated.

The circuit guarantees that the input to Koala is a prefix code by adding sqz in the input block, effectively
indicating a final block. In stream cipher operation one first initializes the state, absorbs the blocks of the
nonce with sqz = 0 and squeezes the keystream blocks by absorbing successive counter value blocks with
sqz = 1. Four 2-bit NOR gates and two INV gates can encode the 2-bit input word (s5; and 5,;,;) to a
4-bit output word, as explained in Algorithm 4. Koala-P is implemented with a fully unrolled circuit,
where the logic of the 8 rounds is replicated and chained. Unrolling is the natural strategy to achieve

low-latency, since it allows the evaluation of the whole permutation in one clock cycle.

6.8.2 HARDWARE RESULTS AND COMPARISON

We compare Koala with two other low-latency PRFs: ORTHROS [4] and GLEEOK [1]. Both provide
128-bit output blocks. For additional comparison, we also consider the 64-bit block cipher PRINCE [9]
and an instantiation of Koala where Koala-P is replaced by 8 rounds of the Subterranean permutation
denoted by KIrRBY+sub.

For ORTHROS, GLEEOK, and PRINCE, we used the RTL code publicly available [3, 11]. Note that these

circuits are completely combinational. In fact, they do not need any flip-flop to store the intermediate
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sqz

sqz o

Figure 6.3: Block diagram of the Koala circuit.

cipher state. On the contrary, Koala’s circuit has the storage element S to support variable-length inputs.

Nevertheless, Koala has smaller area than ORTHROS and GLEEOK.

The RTL codes were synthesized with Cadence Genus version 21.15 using the standard cell library
Nangate 15nm. We ran the synthesis flow multiple times for each cipher with different timing con-
straints, until the clock period is just above the critical path of the circuit. In Table 6.4, we report the best
results in terms of maximum throughput/area® for each cipher. The maximum throughput (MaxTp) is
intended here as the maximum number of bits that a circuit can output per second, and itis computed as
output width divided by latency. More results, including the minimum latency reached by each cipher,

are given in Table 6.13.

We can observe that Koala and KirBY-+sub achieve the lowest latency and highest throughput among
all ciphers and have similar area. This confirms that the modifications we made to Subterranean round
function do not introduce significant implementation overhead while improving the security as shown
in Section 6.5.2. Koala takes twice the area of PRINCE, but compensates this with a 257-bit output, 4
times longer than that of PRINCE. GLEEOK-128 occupies twice the area of Koala and its output is 128
bits, only half that of Koala. While GLEEOX-256 has block width similar to that of Koala, but its area is
more than 5 times bigger. With respect to the metric Mapr/Areaz, PrINCE achieves the best tradeoff,
thanks to its very compact circuit. However, when we consider the lowest latency in Table 6.13, Koala

outperforms PRINCE, ORTHROS and GLEEOK thanks to its small area and larger output width.

Table 6.4: Synthesis results for the Nangate 15nm library.

Cipher Output width Area Latency  MaxTp MaxTp/Area
[bits] [um?]  [GE] [ps] [Gbits/s]  [Mbits/ (s x xm?]

Koala 257 4175 21236 395 651 156
KIrBY+sub 257 4167 21196 399 644 155
PRINCE 64 1696 8627 482 133 78.4
ORTHROS 128 5993 30482 400 320 53.4
GLEEOK-128 128 9887 50291 400 320 32.4
GLEEOK-256 256 26043 132462 550 465 17.8
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6 Koala: A Low-Latency Psendorandom Function

6.9 CONCLUSION

With the design of Koala, we provide an open-source implementation of a new PRF for low-latency
that performs much better than OrRTHROSand GLEEOKON several metrics. The security analysis per-
formed and supported with all open-source tools used, shows that using 8 rounds of Koala-P with the

ExpandBlock should be secure against known attacks.
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A MISSING PROOFS

Proposition 28. Let f: B — E and a,u € E. We have

flx+a)= > 0,f(x),and

O<wu<a

0f(x) = > flx+a).

O<as<u

Proof. The first equality can be seen as follows. Using the ANF of £, we find that

flx+a)= szw(x+a)"’ = Z“W( Z xwuﬂu)

O<w O<w O<u<w

“S[Z e - 5[5 e
= > AfW),
0<u<a

where we have applied the definition of the derivative and used the fact that 4 = lifand only if 0 < # <

a. The second equality follows from the M&bius inversion formula [33, p. 264] applied to the firse. [
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A Missing proofs

Proposition 29. Lezr > 0,1 22" + 1, and {iy, ..., i} < [0, 63] be a subset of indices of size I. If V is an
affine subspace of B* such that X5 oee s Xy are isolated in y |y, then

0664+*'~+E34%V|V =0.

1

Proof. This proof is in the same style as Theorem 2 from [26]. Let /” be an affine subspace such that each
x;, s isolated in y|. By linearity, it suffices to prove both d,6s .., 67|y = 0 and 4., sKoala-P[r]ey |, =

bl el
0. The first equality is trivial, so we only prove the second. To that end, let f;, ..., f; be the monomials
containing ;,, ..., x; in the output of y |- By definition, the degree of each /; is at most one with respect
t0 %; , ... » ;. Now, any monomial 7" in Koala-P[r] ¢ y| ;- of maximum degree with respect to x; x; - x; is

of the form
T=Hph~f, forsomeheZ,,withh<2",

because the algebraic degree of each Rj is 2. It follows that 7" contains at most 4 different Ky e s Xy

Suppose now that
aé‘f’f‘+---+éa'(;4T #0.
Then «; - x; - %, divides 7', which implies that b > /. Therefore,
h>2[>22"+1>2"

which is a contradiction. Since 7" does not appear in the derivative, any lower degree monomials do not

appear either and the result follows. O

Proposition 30. Lerr > 1,1 2 2, and {7y, ..., 4} < [0, 63] be a subset of indices of size I. If V' is an affine
subspace of B* such that x;, 15 isolated in Ry o y |y and %, ..., x; are isolated in y |y, then

a€64+“~+€34%}“|V =0.

1

Proof. This proof has been adapted from Theorem 2 from [26]. Let /” be an affine subspace of E* such

that «; is isolated in Ry © y|) and x;

> %, are isolated in y|[j. By linearity, it suffices to prove both

aq_? o +5347/| y = 0and asgq . +ES:.Koala—P[r] o[y = 0. The first equality is trivial, so we only prove the
second. To thatend, let £, ..., /; be the monomials containing x; in Ry y|;. By definition, the degree of

each f; is exactly one with respect to x; . Similarly, let gy, ..., g, be the monomials containing x; , .

5 in
Ry © 7| By definition the degree of each g is at most two with respect to x, ..., x; . Moreover, x; does
not divide any g because that would contradict the assumption that it is isolated. Now, any monomial

T in Koala-P[r] * y|} of maximum degree with respect to ;, x;, - %, is of the form

T =fh1hgigs gy forsomeh,h' € Z,ywithh+h <2771,
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6 Koala: A Low-Latency Psendorandom Function

because the algebraic degree of G is 2. It follows that 7" contains at most 24" different x; , ..., x;, and at

most one x; . Suppose now that

ae-“+-u+e“T #0.
7 i

Then x;, - x; - x; divides 7', which implies that 25" 2 /and b 2 1. Therefore,

r

/ 2
h+h21+=-=14+==14+2"1>2"1
2 2

which is a contradiction. Since 7" does not appear in the derivative, any lower degree monomials do not

appear either and the result follows. O

B DiIrrusION TEST

In Table 6.5 we use the definition of [16] for the avalanche dependency weight and entropy. We re-
port on the avalanche behaviour for the Subterranean permutation, the Koala-P permutation and the
Koala-P permutation with the input injection. We provide at https://github.com/parisaeliasi/

KoalaHW the C code use to produce those result.

Table 6.5: Diffusion test for the Subterranean permutation, the Koala-P permutation and the Koala-P with the
ExpandBlock function. For each we compute the dependency (D), the weight (W) and the entropy

(E).
Subterranean Koala-P Koala-P + ExpandBlock
number |y |y E |D| W E |D| W E
of round
1 9 6.00 5.99 9 6.002 5.99 36 12.18 30.90
2 81 36.00 65.20 81 35.99 65.20 | 167 | 55.43 140.72
3 255 | 109.20 | 236.54 | 251 | 108.75 | 230.97 | 257 | 122.95 | 254.62
4 257 | 128.36 | 256.99 | 257 | 128.39 | 256.99 | 257 | 128.50 | 256.99

C INTEGRAL DISTINGUISHERS

We give in the Table 6.6, Table 6.8 and Table 6.9 integral distinguishers found with our tool for reduced-
round versions of Koala. We represent the input affine space used with the list of input variable indexes,
and the output bit coordinate correspond to the output bit index after 7 round where this affine space
leads to a integral distinguisher. We also provide at https://github.com/parisaeliasi/KoalaHWw
all code to reproduce our result and to search for integral distinguisher.

Due to the input injection we can consider terms in monomials as a product of two input variable.
Therefore, we know in advance that if x,; appears than it will always be together with x,;, ;. This strongly

reduces the search space for monomials.
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D Differential and linear trails

D DIFFERENTIAL AND LINEAR TRAILS

In this section we provide the trail with least weight for 1, 2 and 3 round as found by our tools. We
represent trails with a list of pair of indices, one for the round number and one for the index position

within the state.

E ADDITIONAL HARDWARE RESULTS

In Table 6.13, we present more synthesis results and highlight the best result for each metric.

Table 6.6: 1 Round integral distinguisher

Affine Space | Output Bit Coordinate
[24, 25, 28, 29] 6,233
[32, 33, 60, 61] 14, 44,74
[0, 1, 36, 37] 48,78
[16,17, 52, 53] 184, 214
[2,3,38,39] 65,95
(8,9,12,13] 97,127
[10, 11, 14, 15] 114, 144, 174
[22,23,50,51] 216, 246

Table 6.7: 2 Rounds integral distinguisher
Affine Space Output Bit Coordinate
[24, 25, 28, 29, 32, 33, 60, 61] | 157, 161, 164, 166, 168
[0, 1, 36, 37, 16, 17, 52, 53] 29, 33, 36, 39, 43
[2,3,38,39,22,23,50,51] | 62,66,69,72,73,76
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6 Koala: A Low-Latency Psendorandom Function

Table 6.8: 3 Rounds integral distinguisher
Affine Space Output Bit Coordinate
[24, 25, 28, 29, 32, 33, 60, 61,
0, 1,36,37,16,17,52,53] |87, 94, 97, 155, 165, 206, 213, 216
[2,3,38,39,8,9,12,13, 10,
11, 14, 15, 22, 23, 50, 51] 38,200

Table 6.9: 4 Rounds integral distinguisher
Affine Space Output Bit Coordinate
(24, 25, 28, 29, 32, 33, 60, 61, 0, 1, 36, 37, 16, 17, 52,
53,2,3,38,39,8,9,12,13, 10, 11, 14, 15, 22, 23, 50, 51] | 15, 49, 54, 84, 91, 94, 239

Table 6.10: Upper bound on the degree growth based on the type of linearization used.

number of rounds

3 4 5 6
16 | 32 | 64 | 128
8 |16 | 32| 64

type of linearization 1

0 round 4

ExpandBlock function | 2

ExpandBlock function
+ first round

—
N oo N

4| 8 | 16| 32

Table 6.11: Differential trail for Koala

Round | Weight Indexes
1 2 1, 0]
2 6 [2,0], [2, 247, [2, 254]
3 18 | [3,0],[3,65], [3 721, [3 75], [3, 141], [3, 148], [3, 151], [3, 247], [3, 254]

Table 6.12: Linear trail for Koala

Round | Weight Indexes
1 2 1, 0]
2 6 2,01, [, 106], [2, 182]
3 18 | [3,0], [3, 26, [3, 82], [3, 102], [3, 106], [3, 158], [3, 177], [3, 182], [3, 233]
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E Additional hardware results

Table 6.13: Extended synthesis results on Nangate 15nm.

Cipher  Output width Area Latency MaxTp MaxTp/Area MaxTp/Area”
[bits] [¢m?] [GE] [ps]  [Gbits/s] [Mbits/(s x um?)] [Gbits/(s x mm*)]
Koala 257 4079.67 20750 472 S44 133.34 32.715
4175.07 21236 395 651 155.92 37.326
5639.80 28686 300 857 151.95 26.933
6621.41 33678 | 290 886 133.80 20.213
KirBy+sub 257 4167.30 21196 399 644 154.53 37.089
5203.97 26469 300 857 164.68 31.633
6035.42 30698 | 290 886 146.80 24.329
PRINCE 64 1696.19 8627 482 133 78.41 46.152
1935.95 9847 450 142 73.38 37.947
2957.03 15040 410 156 52.75 17.852
ORTHROS 128 5898.98 30004 499 257 43.57 07.372
5978.75 30410 449 285 47.67 07.975
5993.05 30482 400 320 53.39 08.910
7295.73 37108 370 346 47 .42 06.499
8556.58 43521 360 356 41.60 04.856
GLEEOK-128 128 9726.98 49474 436 294 30.22 03.103
9887.61 50291 400 320 32.36 03.273
13270.55 67498 370 346 26.07 01.964
GLEEOK-256 256 25986.71 132175 600 427 16.43 00.632
26043.19 132462 550 465 17.85 00.686
29288.50 148969 520 492 16.79 00.574
31468.54 160057  S10 502 15.95 00.507
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My coNTRIBUTIONS.  This chapteris based on work accepted at Eurocrypt 2021. I was responsible for
the linear cryptanalysis of the cipher during the design phase, which led to a break of the original design.
This was addressed by modifying the round constant addition layer. Additionally, I made significant

contributions to the algebraic cryptanalysis of the cipher.

ABSTRACT. Motivated by new applications such as secure Multi-Party Computation (MPC), Fully
Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), the need for symmetric encryp-
tion schemes that minimize the number of field multiplications in their natural algorithmic description
is apparent. This development has brought forward many dedicated symmetric encryption schemes that
minimize the number of multiplications in B, or E,, with p being prime. These novel schemes have lead
to new cryptanalytic insights that have broken many of said schemes. Interestingly, to the best of our
knowledge, all of the newly proposed schemes that minimize the number of multiplications use those
multiplications exclusively in S-boxes based on a power mapping that is typically x3 orx~1. Furthermore,
most of those schemes rely on complex and resource-intensive linear layers to achieve a low multiplication
count.

In this paper, we present CIMINION, an encryption scheme minimizing the number of field multi-
plications in large binary or prime fields, while using a very lightweight linear layer. In contrast to other
schemes that aim to minimize field multiplications in B, or E,, CIMINION relies on the Toffoli gate to
improve the non-linear diffusion of the overall design. In addition, we have tailored the primitive for the
use in a Farfalle-like construction in order to minimize the number of rounds of the used primitive, and

hence, the number of field multiplications as far as possible.
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

7.1 INTRODUCTION

Recently, several symmetric schemes have been proposed to reduce the number of field multiplications
in their natural algorithmic description, often referred to as the multiplicative complexity. These ciphers
fall into two main categories. The first one contains ciphers that minimize the use of multiplications
in B, for instance, Flip [53], Keyvrium [22], LowMC [4], and Rasta [33]. The second category is com-
prised of ciphers having a natural description in larger fields, which are mostly binary fields E,, and prime
fields E,. Examples include MiMC [3], GMiMC [2], Jarvis [8], Hades [40], Poseidon [39] and Vision and
Rescue [6]. The design of low multiplicative complexity ciphers is motivated by applications such as se-
cure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge
proofs (ZK). These recent ciphers based on specialized designs highly outperform “traditionally” de-
signed ones in these applications. The search of minimizing the multiplicative complexity while provid-
ing a sufficient security level is an opportunity to explore and evaluate innovative design strategies.

The sheer number of potentially devastating attacks on recently published designs implies that the de-
sign of schemes with low multiplicative complexity has not reached a mature state yet. Indeed, we count
numerous attacks on variants of LowMC [32, 58], Flip [34], MiMC [35], GMIiMC [15, 19], Jarvis [1], and
Starkad/Poseidon [15]. Attacks that are performed on schemes defined for larger fields mostly exploit
weaknesses of the algebraic cipher description, e.g., Grébner bases attacks on Jarvis [1] or higher-order
differential attacks on MiMC [35]. Nonetheless, attack vectors such as differential cryptanalysis [17] and
linear cryptanalysis [S1] do not appear to threaten the security of these designs. Indeed, the latter two
techniques seem to be able to attack only a tiny fraction of the rounds compared to algebraic attacks.

Interestingly, the mentioned ciphers working over larger fields are inspired by design strategies pro-
posed in the 1990s to mitigate differential cryptanalysis. For example, MiMC resembles the Knudsen-
Nyberg cipher [55], Jarvis claims to be inspired by the design of Rijndael [27, 28], while Hades, Vision,
and Rescue take inspiration from Shark [59]. The latter ciphers have a linear layer that consists of the
application of a single MDS matrix to the state. An important commonality between all those examples
is a non-linear layer that operates on individual field elements, e.g., cubing single field elements or com-
puting their inverse. Furthermore, design strategies naturally working over larger fields easily prevent
differential cryptanalysis. However, algebraic attacks seem to be their main threat. Therefore, itis worth
exploring different design strategies to increase the resistance against algebraic attacks.

Our Design: CiMINION. In that spirit, CIMINION offers a different design approach in which we do
not apply non-linear transformations to individual field elements. Instead, we use the ability of the mul-
tiplication to provide non-linear diffusion between field elements. Our cipher is built upon the Toffoli
gate [61], which is a simple non-linear bijection of field elements that transforms the triple (4, 4, ¢) into
the triple (4, b, ab + ¢). The binary version of the Toffoli gate is used as a building block in modern ci-
phers, such as FRIET [60], which inspired our design. In addition to this, the S-box of Xoodoo [26] can
also be described as the consecutive application of three binary Toffoli gates. With respect to the linear
layer, we learned from ciphers like LowMC [4] that very heavy linear layers can have a considerably neg-

ative impact on the performance of applications [31]. Therefore, we decide to pair the Toffoli gate with
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Figure 7.1: Comparison of a Farfalle construction and a Hades-like scheme.

arelatively lightweight linear layer to construct a cryptographic permutation on triples of field elements.
Compared to the designs that use a non-linear bijection of a single field element, e.g., cubing in B, for
odd 7, we can define our permutation on any field, and then provide a thorough security analysis for

prime fields and binary fields.

We do not use a bare primitive in the applications, but we employ primitives in a mode of operation.
Indeed, instead of constructing a primitive of low multiplicative complexity, our goal is to provide a
cryptographic function of low multiplicative complexity. We achieve this by using a modified version of
the Farfalle construction to make it possible to perform stream encryption. Farfalle [12] is an efficiently
parallelizable permutation-based construction with a variable input and output length pseudorandom
function (PRF). It is built upon a primitive, and modes are employed on top of it. The primitive is a
PRF that takes as input a key with a string (or a sequence of strings), and produces an arbitrary-length
output. The Farfalle construction involves two basic ingredients: a set of permutations of a b-bit state,
and the so-called rolling function that is used to derive distinct 4-bit mask values from a b-bit secret key,
or to evolve the secret state. The Farfalle construction consists of a compression layer that is followed by
an expansion layer. The compression layer produces a single b-bit accumulator value from a tuple of 4-bit
blocks representing the input data. The expansion layer first (non-linearly) transforms the accumulator
value into a b-bit rolling state. Then, it (non-linearly) transforms a tuple of variants of this rolling state
which are produced by iterating the rolling function, into a tuple of (truncated) 4-bit output blocks.
Both the compression and expansion layers involve 4-bit mask values derived from the master key.

We slightly modify Farfalle (see Figure 7.3) and instantiate it with two different permutations: p¢ for
the compression part, and gy for the expansion part. Those two permutations are obtained by iterating
the same round function, but with a different number of rounds. In our construction, the permuta-

tion pc takes an input that is the concatenation of a nonce /' and a secret key, and it derives a secret
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Figure 7.2: Number of MPC multiplications of several designs over F;, with p = 2! and ¢ > 2 (security level of
128 bits).

intermediate state from this input. Then, the intermediate state is updated by using a simple rolling
function, and fixed intermediate keys. From this intermediate state, the keystream for encrypting the
plaintext is derived by using the permutation pg. In order to prevent backward computation, the out-
puts of the expansion layers are truncated. Our security analysis that is presented in section 7.4 shows
that p requires a significantly lower number of rounds than pc. The relatively low number of multi-
plications that is used per encrypted plaintext element leads to a remarkably overall low multiplicative
complexity. The full specification for CIMINION is presented in section 7.2. A detailed rationale of the
choices made during the design process is given in section 7.3. A reference implementation can be found

at hteps://github.com/ongetekend/ciminion.

A Concrete Use Case: Multi-Party Computation. The primary motivation of our design is to explore
the limits on the use of non-linear operations in cipher design, while limiting the use of linear operations,
and ensuring a secure design. The main body of our paper is thus dedicated to cryptanalysis which is

accompanied by one specific use-case, namely Secure Multi-Party Computation.

MPC is a subfield of cryptography that aims to create methods for parties to jointly compute a func-
tion over their inputs, without exposing these inputs. In recent years, MPC protocols have converged
to a linearly homomorphic secret sharing scheme, whereby each participant is given a share of each se-
cret value. Then, each participant locally adds shares of different secrets to generate the shares of the
sum of the secrets. In order to get data securely in and out of a secret-sharing-based MPC system, an
efficient solution is to directly evaluate a symmetric primitive within such system. In this setting, “tradi-
tional” PRFs based on, e.g., AES or SHA-3 are not efficient. Indeed, they were designed with different
computing environments in mind. Hence, they work over data types that do not easily match the pos-
sible operations in the MPC application. As developed in [42], “traditional” PRFs like AES and SHA-3
are rather bit/byte/word-oriented schemes, which complicate their representation using arithmetic in ]Fp

or/and B, for large integer 7, or prime p.
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7.2 Specification

From a theoretical point of view, the problem of secure MPC is strongly connected to the problem
of masking a cryptographic implementation. This observation has been made in [44, 45]. The intuition
behind is that both masking and MPC aim to perform computations on shared data. In more detail,
the common strategy behind these techniques is to combine random and unknown masks with a shared
secret value, and to perform operations on these masked values. Only at the end of the computation,
the values are unmasked by combining them, in a manner that is defined by the masking scheme. In
our scheme, we use a linear sharing scheme, because affine operations (e.g., additions, or multiplications
with a constant) are non-interactive and resource efficient, unlike the multiplications that require some
communication between the parties. The number of multiplications required to perform a computation
is a good estimate of the complexity of an MPC protocol.

However, in practice, other factors influence the efficiency of a design. For instance, while one multi-
plication requires one round of communication, a batch of multiplications can be processed into a single
round in many cases. In that regard, CIMINION makes it possible to batch several multiplications due
to the parallel execution of pg. Another alternative to speed up the processing of messages is to execute
some communication rounds in an offline/pre-computation phase before receiving the input to the com-
putation. This offline phase is cheaper than the online rounds. For example, in the case of CIMINION,
precomputing several intermediate states is possible by applying pc to different nonces #. Asaresult, for
the encryption of arriving messages, those intermediate states only have to be expanded, and processed
by pr to encrypt the plaintext.

section 7.5 demonstrates that our design CIMINION has a lower number of multiplications compared
to several other schemes working over larger fields. The comparison of the number of multiplications in
MPC applications to the ciphers thatare presented in the literature, is shown in Figure 7.2, when working
overafield Fj withp = 2128 and ¢ > 1, and with a security level of 128 bits (which the most common case
in the literature). It indicates that our design needs approximately # + 14 - [£/2] = 8 - r multiplications
compared to 12 - # multiplications that are required by HadesMiMC, or 60 - # multiplications that is
needed by Rescue. These two schemes that have recently been proposed in the literature are our main
competitors. Additionally, our design employs a low number of linear operations when compared with
other designs present in the literature. Indeed, CIMINION grows linearly w.r.t. ¢, whereas the number
of linear operations grows quadratically in HadesMiMC and Rescue. That is because their rounds are
instantiated via the multiplication with a # x # MDS matrix. Even if the cost of a linear operation is
considerably lower than the cost of a non-linear one in MPC applications, it is desirable to keep both

numbers as low as possible. Our design has this advantage.

7.2 SPECIFICATION

7.2.1 MODE

In order to create a nonce-based stream-encryption scheme, we propose to work with the mode of op-

eration described in Figure 7.3. First, the scheme takes a nonce /" along with two subkey elements K;
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Figure 7.3: Encryption with CiMINION over E,. The construction is similar over E, (@ is replaced by +, the addi-
tion modulo p).

and K, as input, and processes these input with a permutation p. to output an intermediate state. This
intermediate state is then processed by a permutation g, and truncated to two elements so that two
plaintext elements A and 2 can be encrypted. If more elements need to be encrypted, the intermediate
state can be expanded by repeatedly performing an addition of two subkey elements to the intermediate
state, then followed by a call to the rolling function 70/. After each call to the rolling function 7o/, two
more plaintext elements P; and P;,; can be encrypted thanks to the application of g to the resulting
state. We consider the field elements as atomic, and therefore, our mode can cope with a different num-
ber of elements without the need for padding. The algorithmic description of the mode of operation

that is described in Figure 7.3, is provided in App. 1.

7.2.2 PERMUTATIONS

We describe two permutations of the vector space ]E; . They act on a state of triples (a,b,¢) € ]F;. The
first permutation is defined for a prime number g = p of log, (p) = d bits, while the second permutation
is specified for g = 24, Both permutations are the result of the repeated application of a round func-
tion. Their only difference is the number of repeated applications that we call rounds. As presented in

Figure 7.3, we employ two permutations p¢ and py that have respectively /N and R rounds.
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Round Function. We write f; for round 7. It uses four round constants RCy, with ¢ = 7 for p¢, and
¢ =7+ N — R for pr. We assume that RC4, ¢ {0,1}. Foreach 7 > 1, f; maps a state (4,_1,5;_1,¢_;) at

its input to the state («;, 4, ¢;) at its output, where the relation between these two states is

a; 0 0 1 a;_y RC3,
bz' =1 RC4( RC4( . bt'—l + RCJ( .
G 0 1 1 Gt azy by RC2,

7.2.3 THE ROLLING FUNCTION

Our rolling function 7o/ is a simple NLFSR as depicted in Figure 7.5. The rolling function takes three
field elements ¢,, 4, and ¢, at the input. It outputs three field elements: @, := 1, + ¢, - 4, @, := 1,, and

@, = . The latter variables form the input of the permutation py in our Farfalle-like mode Figure 7.3.

7.2.4 SUBKEYS AND ROUND CONSTANTS

Subkeys Generation. We derive the subkey material K from two master keys MK, and MK,. Asa
result, the secret is shared in a compact manner, while the expanded key is usually stored on a device,
and used when needed. To expand the key, we use the sponge construction [14] instantiated with the

permutation pc. The value 77 can be made publicly available, and is typically set to one.

Round Constants Generation. We generate the round constants RC1,, RC2y, RC3;, and RC4, with
Shake-256 [13, 54]. The detail is provided in App. A.
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Table 7.1: Proposed number of rounds based on f. The security level s must satisfy 64 < s < log2 (g),and g = 2%,
where ¢ is the number of elements in the field.

Instance ‘ Pc ‘ pr (two output words per block)
Standard s+6 max{ 5127 R 6}

Data limit 2/2 elements Z(ST%) max{ +37 6
Conservative s+6 max{([z . %]), 9}

7.2.5 NUMBER OF ROUNDS AND SECURITY CLAIM FOR ENCRYPTION

In this paper, we assume throughout that the security level of s bits satisfies the condition 64 < s <
[logz(q)J. This implies that g > 2.

In Table 7.1, we define three sets of round numbers for each permutation in our encryption scheme:

* The “standard” set guarantees s bit of security; in the following sections, we present our security

analysis that supports the chosen number of rounds for this case.

* For our MPC application, we propose a number of rounds if the data available to the attacker is
limited to 2°/%; our security analysis that supports the chosen number of rounds for this case is

presented in App. F.

* Finally, we present a “conservative” number of rounds where we arbitrarily decided to increase the

number of rounds by 50% of the standard instance.

Since many cryptanalytic attacks become more difficult with an increased number of rounds, we en-
courage to study reduced-round variants of our design to facilitate third-party cryptanalysis, and to es-
timate the security margin. For this reason, it is possible to specify toy versions of our cipher, i.e., with

q< 2%% which aim at achieving, for example, only 32 bits of security.

7.3 DESIGN RATIONALE

7.3.1 MODE OF OPERATION

In order to provide encryption, our first design choice is to choose between a mode of operation that
is built upon a block cipher or a cryptographic permutation. In either case, a datapath design is neces-
sary. However, a block cipher requires an additional key schedule, unlike a cryptographic permutation.
If a designer opts for a block cipher, the key schedule can be chosen to be either a non-linear, an affine,
or a trivial transformation, where the round keys are equal to the master key apart from round con-
stants. In this case, the designer has to be careful, because a poor key schedule leads to weaknesses and
attacks [19]. Considering that the research in low multiplicative complexity ciphers is a relatively new
research area, we decided to limit our focus to the essential components of a primitive. Therefore, we

opted for permutation-based cryptography.
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Since we consider the application of low multiplicative ciphers in areas that have enough resources

to profit from parallel processing, we base our mode of operation on the Farfalle construction [12] as
depicted in Figure 7.1a. The Farfalle construction is a highly versatile construction that provides many
functionalities.
A Modified Version of Farfalle. As already mentioned in the introduction, our mode of operation
resembles the Farfalle construction. In this section, we explain and support the modifications that we
performed on the original Farfalle construction, as depicted in Figure 7.1a. The aim of those modifica-
tions is to both increase the resistance of the construction against algebraic attacks which are the most
competitive ones in our scenario, and to increase its efﬁciency in our target application scenario, that is to
say to minimize the number of multiplications. We focus first on the security aspect, before explaining
in further detail how we reach our efficiency goal.

Our first modification is for simplicity. Since the functionality provided by the Farfalle construction
to compress information is not needed, we merge p, and p; to a single permutation pc.

Our second modification is to truncate the output. This prevents meet-in-the-middle style attacks
that require the knowledge of the full output.

The third modification is to manipulate different keys K; (see Figure 7.7) instead of employing the
same key &’ for each output block. Since we aim to have a permutation with a low degree, Grébner bases
are the main threat. For the scheme that is depicted in Figure 7.7, an attacker has to exploit equations of
the form f(x) + K; = yand f(x') + K; = y', with f(x) — f(x") = y — y' for a Grébner basis attack. We
describe this scenario in more detail in subsection 7.4.4.

Our last modification is to move the keys K; from the output of g to the input of our rolling func-
tion, and hence, effectively to the input of g (Figure 7.3). Figure 7.3 is our final construction, and it
provides two main benefits. First, having the keys at the input does not make it possible to easily can-
cel them by computing the difference of the output as described before. Hence, this adds an additional
barrier in mounting successful Grébner basis attacks. Second, we can use a simple non-linear rolling
function, because the addition of the key stream during the rolling function prevents the attacker from

easily detecting short cycles within it.
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Minimizing the Number of Multiplications. One main reason to use the Farfalle construction is
that its three permutations p,, p,, and p, do not have to provide protection against all possible attack
vectors. Indeed, the permutation p, alone does not have to provide resistance against higher-order differ-
ential attacks [48, 49]. The latter are particular algebraic attacks that exploit the low degree polynomial
descriptions of the scheme. Resistance against higher-order differential attacks (higher-order attacks in
short) can be provided by the permutations p,, and p,, and it inherently depends on the algebraic degree
that a permutation achieves. Hence, requiring protection against higher-order attacks provides a lower
bound on the number of multiplications that are needed in a permutation. In a nutshell, since p, does
not have to be secure against higher-order attacks, we can use a permutation with fewer multiplications.
This benefits the multiplication count of the scheme, since the permutations p, and p, are called only
once independently of the number of output words.

The Rolling Function. An integral part of the Farfalle construction is the rolling function 7o/. The per-
mutations p, and p, (Figure 7.1a) in the Farfalle construction are usually chosen to be very lightweight,
such that the algebraic degree is relatively low. Hence, to prevent higher-order attacks, the rolling func-
tion is chosen to be non-linear. In our modified version, the same is true up to the intermediate con-
struction as depicted in Figure 7.7. In this case, 70/ has to be non-linear in order to use a permutation pg
of low degree. For our final construction (Figure 7.3), we do not see any straightforward way to exploit
higher-order attacks due to the unknown keys at the inputs of pz. Thus, we could use a linear rolling
function 7o/, but we rather choose to use a simple non-linear 7o/ for CimiN1ON. That is because it makes
it possible to analyze the security of Figure 7.7, and to keep the same conclusion when we opt for the
stronger version of Figure 7.3. In addition, we present AIMINION in App. B, a version of our design
that does not follow this line of reasoning. AIMINION uses a linear rolling function, and nine rounds of
2r- We deem this version to be an interesting target for further analysis that aims to evaluate the security
impact of switching from a non-linear to a linear rolling function.

Generating the Subkeys. Instead of sharing all subkeys K; directly by communicating parties to encrypt
messages, we specify a derivation of the subkeys K; from two master keys MK, and MK, . These subkeys
can be generated in a single precomputation step. For the storage of the subkeys, trade-offs can be made to

store as many subkeys as needed, and to split messages into lengths that match the stored subkey lengths.

7.3.2 THE ROUND FUNCTION

Our round function is composed of three layers: a non-linear transformation, a linear transformation,
and a round constant addition. Like classical designs, we employ the same non-linear and linear transfor-
mations for each round, but with different round constant additions. This makes it easier to implement,
and to reduce code-size and area requirements. Nonetheless, some primitives that have been designed to
lower the multiplicative complexity use a different linear layer for each round, like in LowMC [4].

Non-linear Transformation. Most primitives operating in large fields have a variant of powering field
elements, e.g., x* or x*. These mappings became popular to guard against linear and differential crypt-

analysis due to their properties [55]. The most popular design that uses such mappings is the AES [28],
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where x7! is used as part of its S-box. For ciphers that aim at alow multiplicative complexity, these power
mappings are interesting because they often have an inverse of high degree, which provides protection
against algebraic attacks. However, they impose some restrictions, e.g., the map x +> x“ for integer « > 2

isabijection in I if and only if gcd(g - 1,2) = 1 (e.g, x = X3

is a permutation over E, for odd 7 only).
Hence, one has to consider several power values « in order for x* to stay a permutation for any field. Ina
design that should make it possible to be instantiated for a wide variety of fields, considering those special

cases complicates the design of the cipher.

Instead of a power mapping, the non-linear element in our designs is the Toffoli gate [61]. Indeed,
algebraic attacks are the main threat against designs aiming to lower the multiplicative complexity, and
the multiplications are the main cost factor in our design. It thus seems counter intuitive to spend the
non-linear element on simply manipulating a single field element, as is the case for power mappings.
Therefore, we choose to multiply two elements of the state, instead of operating on a single state element,
in order to increase the non-linear diffusion. Furthermore, the Toffoli gate is a permutation for any field,
and therefore we are not restricted to a specific field. We mitigate potential negative effects of the property
of the Toffoli gate to provide the same degree in forward and backward direction by mandating its use
only in modes that truncate the permutation output, and that never evaluate its inverse using the secret

key.

Linear Transformation. We present the linear transformation in its matrix form, the coefficients of
which must be carefully chosen. One possibility is to use an MDS matrix. Since an MDS matrix has
the highest branch number [24] among all possible matrices, it plays an important role in proving lower
bounds on the linear and differential trail weight. However, we do not need to rely on MDS matrices as

the field multiplications already have advantageous properties against linear and differential attacks.

Another option is to randomly choose the coeflicients of the matrix for each round, and then verify
that the matrix is invertible. This strategy was used in one of the first low multiplicative complexity
designs, namely LowMC [4]. However, the drawback is that random matrices contribute significantly
to the cost of the primitive in some scenarios, and the security analysis becomes more involved. Hence,

we have decided to use a much simpler linear layer.

In order to provide sufficient diffusion, complex equation systems, and low multiplicative complexity,
the degree of the functions that output equations depending on the input variables must grow as fast
as possible. By applying a single multiplication per round, the degree doubles per round in the best
scenario. However, this also depends on the linear layer. For instance, this layer could be a simple layer
permuting the elements (e.g., the 3 x 3 circulant matrix cz7¢(0, 0, 1)), for which the univariate degree
of a single element only grows according to a Fibonacci sequence. To ensure that the univariate degree

of a single element doubles per round, the result of the previous multiplication has to be reused in the
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multiplication of the next round. This is also applicable to the inverse of the permutation. Hence, we

decided to use the following matrix for the linear layer:

0 0 1 0 1 -RC4
M=|1 RC4i RC4 (and M1lt=[-1 0 1)
0 1 1 1 0 0

Here, My, My 5, M5, M7, # 0 with M; ; denoting the element of the matrix A/ at row 7 and
column ;. The use of the round constant RC4 ¢ {0, 1} is motivated by aiming to improve the diffusion,
and to avoid a weakness with respect to linear cryptanalysis that we discuss in subsection 7.4.1.

About Quadratic Functions. In addition to the matrix multiplication, another (semi-)linear transforma-
tion! over a binary field B, is the quadratic permutation x — x2. This transformation can be exploited
as a component in the round function (e.g., as a replacement of the multiplication by RC#4) to both in-
crease the diffusion and the overall degree of the function that describes the scheme. However, we do not
employ it for several reasons. First, even if the quadratic permutation is linear over B, its cost in an ap-
plication like MPC might not be negligible. Indeed, the quadratic permutation costs one multiplication
as detailed in [42]. As a result, even if it makes it possible to reduce the overall number of rounds due to
a faster growth of the degree, the overall number of rnultiplications2 would not change for applications
like MPC. Secondly, the quadratic function is not a permutation over F, for a prime p # 2. Thus, its
introduction implies having to work with two different round functions: one for the binary case and
one for the prime case. Since our goal is to present a simple and elegant general scheme, we decided not
to use it.

Round Constants. The round constants break up the symmetry in the design. They prevent the sim-
plification of the algebraic description of the round function. However, as we manipulate many round
constants, and since they influence the rounds in a complex manner, we use an extendable output func-
tion to obtain round constant values without an obvious structure. We performed some experiments
where we added round constants to one or two state elements. These instances provided simpler alge-
braic descriptions. Considering the small costs of manipulating dense round constants, we decide to use

three round constants to complicate the algebraic description of the cipher, even after a few rounds.

7.4 SECURITY ANALYSIS

We present our security analysis of CIMINION with respect to “standard” application of the attacks that
are found in the literature. This analysis determines the required number of rounds to provide some

level of confidence in its security. Due to page limitation, further analysis is presented in App. D-E.

'A function f over (F, +) is semi-linear if for each x, y € F: f(x + y) = f(x) + f(y). Itis linear if it is semi-linear and if for
cachx € F: f(a-x) = a- f(x).

2A minimum number of multiplications is required to reach maximum degree, which is one of the property required by a
cryptographic scheme to be secure.
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First and foremost, the number of rounds that guarantees security up to s bits are computed under
the assumption that the data available to the attacker is limited to 2°, except if specified in a different
way. Moreover, we do not make any claim about the security against related-key attacks and known- or
chosen-key distinguishers (including the zero-sum partitions). The latter are out the scope of this paper.

We observe that the attack vectors penetrating the highest number of rounds are algebraic attacks.
On the contrary, traditional attacks, such as differential and linear cryptanalysis, are infeasible after a
small number of rounds. As detailed in the following, in order to protect against algebraic attacks and
higher-order differential attacks, we increase the number of rounds proportionally to the security level
s. A constant number of rounds is added to prevent an adversary from guessing part of the key or the
initial or middle state, or to linearize part of the state. Hence, the numbers of rounds for p¢ and pg are

respectively s + 6 and [% + 1.5} for the standard security level.

7.4.1 LINEAR CRYPTANALYSIS

Linear cryptanalysis [51] is a known-plaintext attack that abuses high correlations [25] between sums of
input bits and sums of output bits of a cryptographic primitive. However, classical correlation analysis
is not restricted to solely primitives operating on elements of binary fields. In this section, we apply
the existing theory developed by Baigneres et al. [9] for correlation analysis of primitives that operate on
elements of arbitrary sets to the permutations defined in section 7.2.
General Correlation Analysis. An application of the theory to ciphers operating on elements of bi-
nary fields is presented by Daemen and Rijmen [29]. Classical correlation analysis is briefly recalled in
App. C.1. In this section, we apply the theory to the more general case of primitives operating on ele-
ments of]Fq where g = pd. Henceforth, we suppose that f ]Fql — Iqu.

Correlation analysis is the study of characters, and their configuration in the /-dimensional vector

space Lz(]Fq[ ) of complex-valued functions ]Fql — C. The space LZ(]F;) comes with the inner product

—_— l
(g,h) = > g(x)h(x), which defines the norm |¢g|| = {/(g, 2) = 9.
A character is an additive homomorphism from ]Fql into S = {z € C: |z| = 1}. Itis well-known that

any character on ]Fql is of the form

2mi

- TrZ(uTx)

Xu(x) =e? ,

for some # € ]Fql. We recall that for g4 = 2 we have that y,(x) = (-1)*"*, which appears in classical
. . 11 . . . .

correlation analysis. Here, Trz (%) = x+22++a? € E, is the trace function. For this reason, u" xis called

a vectorial trace parity and u a trace mask vector. We call the ordered pair (#, v) a linear approximation of

> where « is understood to be the mask at the input and v to be the mask at the output of f.

We define the vectorial trace parity correlation in the following definition.

Definition 58 (Correlation).

27i

(s o f) i 2 s T (" v—0" f(x))
!

Crluyv) = ——— =
70 = e A1~ 7
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Figure 7.8: Mask propagation in f

This helps us to define a more general linear probability metric as follows.

Definition 59 (Linear probability). LP/(x,v) = | Cf(x, v) |2

The idea is then to consider the permutation as a circuit made of simple building blocks. Those blocks
correspond to the operators that we apply, and for which we attach to each edge a trace mask vector.
Importantly, these trace mask vectors are in one-to-one correspondence with characters. The goal of the
attacker is to construct a linear trail from the end of the permutation to the beginning, with the goal of
maximizing the linear probability of each building block. A list of the linear probabilities of each such

building block can be found in App. C.2 to deduce the result of the analysis.

On Three-round Linear Trails. Figure 7.8 illustrates how the linear masks propagate through the
round function when the linear probabilities of all building blocks are maximized. In this Figure, ¢ :=
RC4,. The attacker is able to choose #, v, and w freely at the beginning of the first round, and afterwards,
a mask at the input of the next round is determined by a mask at the output of the former round. We
write R; for the 7’th round function. Moreover, we use the notation ¢; = gc; and ¢ = g, where
the subscript refers to the round number. The masks evolve as follows:

u v qu+w
R\) Rl
v|—=| qr+w |—| z+(q+ag)v+(l+o)w

w u+ v+ w u+(1+g+aq)+(l+o)w

u+ (g +tep)v+ (L+o)w
R
= Q+g)u+(Q+q+eqp+az+an)v+(l+o+a+oa3)w

(I+g)u+(1+2q+c3+a+an)v+ 2+o+a+o3)w
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Animplicit assumption in both Figure 7.8, and the mask derivation above, is that the masks at the output
of the multiplication and at the input of the third branch are equal. However, an attacker can only make

sure that this assumption is valid if the following system of equations has a non-zero solution:

1 q 1 u 0
1 1+ +ac, 1+¢o v]|=10].
1+ 1+2q+c3+a+ay 2+6+g+o3)\w 0

If we denote by A the matrix above, then this happens if and only if the matrix is singular, i.c., if det(4) =
66 + 1 = 0. Ifeither ¢ or ¢ is equal to zero, then the condition does not hold. If both are non-zero,
then the condition is equivalent to requiring that ¢, = —¢3’ 1 In this case, we can freely choose one value,
which determines the other. Hence, the probability that the condition holds is equal to # <L Since
log 2(q) is the security parameter, this probability is negligible and there exists no three-round trail with

alinear probability of 1.
Clustering of Linear Trails. We have LP¢(x,0) > > Qe T, (wo) LP(Q), where LT 4(1, v) is the set of

linear trails contained in (%, v). If we suppose now that an attacker is able to find more than ¢ linear
g 1 . .

trails, i.e., if ‘LTf(u, v)| > g, then we have LP f(u, v) > -. However, logz(q) is the security parameter,

therefore the latter condition is not feasible. In a nutshell, three rounds are sufficient to resist against

linear cryptanalysis.

Round Constant Multiplication Necessity. If the multiplication by the round constant is not present,

or RC4, = 1, then the masks evolve as follows over a single round:

u v+ X v
if u=v and x=y=w=0 s
v|—|v+tw +)/ R v —> | v

w u+ov+w 0 2v

where (x, y) is the mask vector at the input of the multiplication function, which, like #, v, and w, can
be freely chosen. Hence, if we choose # = v,and x = y = w = 0, and since the characteristic of the
field is equal to two, then a one-round approximation with a linear probability of one can be chained

indefinitely. This is the reason behind including a multiplication by a non-trivial constant.

7.4.2 DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis exploits the probability distribution of a non-zero input difference leading to an
output difference after a given number of rounds [17]. As CIMINION is an iterated cipher, a cryptanalyst
searches for ordered sequences of differences over 7 rounds that are called differential characteristics/-
trails. A differential trail has a Differential Probability (DP). Assuming the independence of the rounds,
the DP of a differential trail is the product of the DPs of its one-round differences (Definition 60).
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Definition 60 (One-round differential probability). Lez (2,2, 2,) € ]F; be the input of the round, and
(ap, 05, ) € ]Fp3 the chosen non-zero input difference. The probability that an input difference is mapped
to an output difference (B;, B, ;) € ]F; through one iteration of the round function f is equal to

|f(d; + “; + 0‘: + “c) _f(“m 2p> d[) = ([g;ug[::ﬂ;)'
5| '

The operation + is replaced by @ in Ey.

However, in general, the attacker does not have any information about the intermediate differences of
the differential trail. Hence, the attacker only fixes the input and the output differences over » rounds,
and works with differentials. A differential is a collection of differential trails with fixed input and output
differences, and free intermediate differences. The DP of a differential over » rounds is the sum of all DPs
of the differential trails that have the same input and output difference over the same number of rounds

as the differential.

In this paper, we perform the differential cryptanalysis by grouping fixed differences in sezs. Those sets
impose some conditions to satisfy between the differences of the branches of the round, and/or specify
that some differences at the input of the branches equal zero. Then, given an input difference, we study
the possible sets of output differences after a round, and we determine the DP that an input difference is
mapped into an output difference over a round. The goal is to find the longest differential trail with the

highest DP.

Toward this end, we build a state finite machine (more details in App. C.3) that represents all the
encountered sets of differences as states associated to their differential probabilities. To construct the
graph, we start with a difference of the form {(0,0,x)|x # 0}, and we search for the possible sets of
output differences until we have explored all the possibilities from each newly reached set. Hereafter, let
us assume that the difference x is not zero. We see that an input difference from {(0, 0, x)} is mapped
into an outputdifference of the form {(x, R C4,x, x)} after one round with probability one. Indeed, since
the input difference goes through the non-linear operation and stays unchanged, the output difference
is simply the result of the linear operation applied to the input difference. For the other cases, a non-zero
input difference propagates to an output difference over one round with probability equal to p’l in ]FP,

or 27" in B,.. From those results, we determine the differential over three rounds with the highest DP.

On Three-round Differentials. The differential trail in ]F]D with the highest DP is
prob. 1 prob. p’l prob. [7’1
{(0,0,x)} —— {(x, RC4px, x)} —— {(-RC4px,x,0)} —— {(0,0,x)},

where the fixed input difference x is equal to another fixed value in the following rounds, and satisfies
the conditions imposed by the set (for details see App. C.3). Additionally, this differential trail holds if
and only if the round constant RC4, introduced by the first round is equal to the round constant RC4,
of the third round.
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In B, we obtain almost the same state finite machine as in Figure 7.9. The only exception is that
the set of differences {(~RC4,x, x, 0)} corresponds to {(RC4,x, x, 0)}, because —z is equal to z for each
z € B,. Hence, the differential trail in ,, with the highest DP is

rob. 1 rob. 277 rob. 27"
{(0,0, %)} T {(x, RC4px, %)} ~——> {(RC4yx, x,0)} T {(0,0,%)},

under the same conditions that in L.

In summary, a fixed difference from {(0, 0, x) } is mapped to the difference of the form {(x, RC4,x, x)}
after one round with probability one in E, and in E,. Moreover, as depicted in Figure 7.9, an input
difference can be mapped to an output difference of the form {(0, 0, x)} with DP p~* (resp. 27*) if and
only if this difference is of the form {(-=RC4,x, x, 0)}. This means that the only possible differential trail
over three rounds with input and output differences of the form {(0, 0, x)} are the ones given before.

The DP of this differential trail is expressed in the following Proposition.

Proposition 31. A differential trail over three rounds bas a probability at most equal to p= in E, and

2n
277 in .

The DP of all other differential trails over three round are at most equal to 7 in E, and 27" in E,..
Since the security level s satisfies s < log, (p) in E and s < 7 in B, we therefore conjecture that three
rounds are sufficient to guarantee security against “basic” differential distinguishers. We thus choose to
have at least six rounds for the permutations pr and pc, which is twice the number of rounds necessary
to guarantee security against “basic” differential/linear distinguishers. The minimal number of rounds

for the permutations should provide security against more advanced statistical distinguishers.

7.4.3 HIGHER-ORDER DIFFERENTIAL AND INTERPOLATION ATTACKS

If a cryptographic scheme has a simple algebraic representation, higher-order attacks [48, 49] and interpo-
lation attack [46] have to be considered. In this part, we only focus on higher-order differential attacks.
We conjecture that the number of rounds necessary to prevent higher-order differential attacks is also
sufficient to prevent interpolation attacks (see details in App. D). This result is not novel, and the same
applies for other schemes, like MiMC, as further explained in [35].

Background. We recall from Figure 7.3 that an attacker can only directly manipulate a single element,
and the two other elements are the secret subkeys. We therefore operate with this single element to input
value sets, while keeping the two other elements fixed. Each output element is the result of a non-linear
function depending on the input element x, and two fixed elements that are the input of the permuta-
tion. Thus, we have fiy(x) = p(x, const, const) in B, and f,(x) = p(x, const, const) in L,

A given function f, over prime fields E, is represented by f,(x) = Z’:Ol x;x" with constants x; € L,
The degree of the function f,(x) that we denote by dJFP, corresponds to the highest value 7 for which
x; # 0. The same holds for a function f, working over binary extension fields E,.. For the latter, fi/(x) =
@j{:o x;x" with x; € E,, and dgsy is the degree of the function f,(x). Like previously, the degree is the

highest value 7 for which x; # 0. In E,, the function can as well be represented by its algebraic norm
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—

form (ANF) £, (xy, ..., x,), whose output element / is defined by its coordinate function £, ;(xy, ..., %,) =
EBu:( wity) it a2 with %;, € B. The degree d]anofj_f; corresponds to the maximal Hamming
weight of # for which x;,, # 0, thatis to say dgy = max;,{hw(?) | x; # 0}.

For the last representation, as proved by Lai [49] and in[48], if we iterate over a vector space 7" having
adimension strictly higher than dg, we obtain the following result: @, ., /(v) = 0. A similar result
has also been recently presented for the prime case in [35, Proposition 2]. More precisely, if the degree of
Jp(x) is dFﬁ, then iterating over all elements of a multiplicative subgroup & of E; of size |G| > d][:l’ leads
03 . fr(x) = £,(0) - |€]. Thelast sum is equal to zero modulo p since | €| is a multiple of p.

In order to provide security against higher-order differential attacks based on the presented zero-sums,
we choose the number of rounds of our permutation to have a function of a degree higher than our
security claim.

Overview of our Security Argument. In our construction, we assume that an attacker can choose
the nonce W, which is the input of the permutation p¢. For the first call of this permutation, we want
to prevent an attacker to input value sets that always result in the same constant after the application of
the permutation p¢. This requirement is necessary, since we assume in the remaining analysis that the
output values of p are unpredictable by an attacker. We emphasize thatif the output of the permutation
pc is guaranteed to be randomly distributed, then this is sufficient to prevent higher-order differential
attacks. That is because the inverse of the final permutations py is never evaluated, and the attacker
cannot construct an affine subspace in the middle of the construction.

Estimating the Degree of p.: Necessary Number of Rounds. We study the evolution of the degrees
d]Fp and dy,, for the permutation p¢ for which the round function f*(Figure 7.3) is iterated 7 times. We
conclude that the degree of the permutation p. remains unchanged for two rounds, if an input element
is present at branch 4, and the input at the branch & is zero. For a higher number of rounds, the degree
increases. We have chosen the affine layer to ensure that the output of the multiplication can affect both
inputs of the multiplication in the next round. This should make it possible for the maximal possible
degree of the output functions to increase faster than having affine layers without this property. In the
best case, the maximal degree of the function can be doubled per round.

Considering both previous observations, a minimum of s + 2 rounds are required to obtain at least
d]Fp =~ 2',ordy, = 2°. As we want to ensure that the polynomial representation of p is dense, it is then
advisable to add more rounds as a safety margin. In order to reach this goal, we arbitrarily decided to add

four more rounds.

7.4.4 GROBNER BASIS ATTACKS

Preliminary. To perform a Grobner basis [21] attack, the adversary constructs a system of algebraic
equations that represents the cipher. Finding the solution of those equations makes it possible for the
attacker to recover the key that is denoted by the unknown variables x;, ..., x, hereafter. In order to solve
this system of equations, the attacker considers the ideal generated by the multivariate polynomials that

define the system. A Grobner basis is a particular generating set of the ideal. It is defined with respect to
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a total ordering on the set of monomials, in particular the lexicographic order. As a Grobner basis with

respect to the lexicographic order is of the form

{xl - hl(xn)’ ey Xy T hn—l(xn)5 hn(xn)}:

the attacker can easily find the solution of the system of equations. To this end, one method is to employ
the well-known Buchberger’s criterion [21], which makes it possible to transform a given set of gener-
ators of the ideal into a Grébner basis. From a theoretic point of view, state-of-the-art Grobner basis
algorithms are simply improvements to Buchberger’s algorithm that include enhanced selection criteria,
faster reduction step by making use of fast linear algebra, and an attempt to predict reductions to zero.
The best well-known algorithm is Faugere’s F5 algorithm [11, 36].

Experiments highlighted that computing a Grébner basis with respect to the lexicographic order is a
slow process. However, computing a Grébner basis with respect to the grevlex order can be done in a
faster manner. Fortunately, the FGLM algorithm [37] makes it possible to transform a Grobner basis
with respect to the grevlex order to another with respect to the lexicographic order. To summarize, the

attacker adopts the following strategy:

1. Using the F5 algorithm, compute a Grébner basis w.r.t. the grevlex order.

2. Using the FGLM algorithm, transform the previous basis into a Grobner basis w.r.t. the lexico-

graphic order.
3. Using polynomial factorization and back substitution, solve the resulting system of equations.

Henceforth, we consider the following setting: let K be a finite field, let 4 = K[x;, ..., x,] be the poly-
nomial ring in 7 variables, and let / < A be an ideal generated by a sequence of polynomials (f;, ..., /) €
A” associated with the system of equations of interest.

Cost of the F5 Algorithm. In the best adversarial scenario, we assume that the sequence of polynomials
associated with the system of equations is regular.? In this case, the F5 algorithm does not perform any
redundant reductions to zero.

Write £ for the Hilbert-Series of the algebra A /I and Hy, for its Hilbert polynomial. The degree of
regularity D The quantity D

reg 18 the smallest integer such that £, (n) = Hy;;(n) foralln > D,,. reg

plays an important role in the cost of the algorithm. If the ideal 7 is generated by a regular sequence of
[ (et

r— . From this, we deduce that

degrees dy, ..., d,, then its Hilbert series equals Iy (z) =
deg(Z) = H;l diand Dy = 1 + Z::I(d,~ -1).

The main result is that if f{, ..., /. is a regular sequence in K[xy, ..., x,], then computing a Grobner

basis with respect to the grevlex order using the F5 algorithm can be performed within

o (n + Dreg)”’
Dreg
A sequence of polynomials (fis->fr) € A is called a regular sequence on A if the multiplication map mp

A[(fis o5 fic) = A[(fis o fio) given by m([g]) = [g][£] = [gf] is injective forall 2 < 7 < 7.
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operations in K, where 2 < w < 3 is the matrix multiplication exponent.

Costs of Grobner Basis Conversion and of Back Substitution. FGLM is an algorithm that converts a Gréb-
ner basis of  with respect to one order, to a Grébner basis of / with respect to asecond orderin O( deg(1)?)
operations in K. Finally, as proved in [38], the cost of factorizing a univariate polynomial in K[x] of de-
gree d over L, for a prime p is O(dPn? + dn?).

Number of Rounds. After introducing the Grébner Basis attack, we analyze the minimum number of

rounds that is necessary to provide security against this attack. However, we first emphasize that:

e there are several ways to set up the system of equations that describes the scheme. For instance,
we could manipulate more equations, and thus more variables, of lower degree. Alternatively, we
could work with less equations, and thus less variables, of higher degree. In addition, we could
consider the relation between the input and the output, or between the middle state and the out-
puts, and so on. In the following, we present some of these strategies, that seem to be the most

competitive ones;

* computing the exact cost of the attack is far from an easy task. As largely done in the literature,
we assume that the most expensive step is the “F5 Algorithm”. If the cost of such a step is higher

than the security level, we conclude that the scheme is secure against the analyzed attack.

A Weaker Scheme. Instead of using the model that is described in Figure 7.3, we analyze a weaker model
as illustrated in Figure 7.7. In the latter, the key is added after the expansion part, instead of before
the rolling function application. This weaker model is easier to analyze, and makes it possible to draw
a conclusion regarding the security of our scheme. Thus, we conjecture that if the scheme proposed in
Figure 7.7 is secure w.r.t. Grobner Basis attack, then the scheme in Figure 7.3 is secure. Indeed, in the
scheme proposed in Figure 7.7, it is always possible to consider the difference between two or more texts
to remove the final key addition. For instance, given f(x) + K = y and f(x) + K = ', it follows that
f(x) = f(x') = y = y. Asaresult, the number of variables in the system of equations to be solved
remains constant independently of the number of considered outputs. However, in Figure 7.3, given
g(x+K) = yand g(x" + K) = 5/, this is not possible except if ¢(-) is inverted. Nevertheless, since it is
a truncated permutation, this does not seem feasible, unless the part of the output which is truncated is
either treated as a variable (that results to have more variables than equations) or guessed by brute force
(that results in an attack whose cost is higher than the security level, and 2° < ¢). Such consideration
leads us to conjecture that the number of rounds necessary to make the scheme proposed in Figure 7.7
secure is a good indicator of the number of rounds necessary to make the scheme in Figure 7.3 secure as
well.

Input-Output Relation. The number of rounds must ensure that the maximum degree is reached. Based
on that, we do not expect that the relation that holds between the input and the output, makes it possible
for the attacker to break the scheme. In particular, let N be the nonce, and k;, , be the secret keys. If
we assume that a single word is output, then an equation of degree 2" can be expressed between each

input (N, k1, k) € (]Fq)3, and the output 7" € F, with » the number of rounds. Hence, if there are
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two different initial nonces, then the attacker has to solve two equations in two variables. In that case,

r+1 @ r+1y2 1@
Dy =1+2:(2"-1) = 2"+, The cost of the attack is thus lower bounded by [(2;‘ )] > [%] >

22+ where w > 2. Consequently, 22+1 > 25 if the total number of rounds is at least {%] (e.g., 64 for
s = 128). Since the number of rounds for pc is s + 6, this strategy does not outperform the previous

attacks as expected.

Finally, we additionally consider a strategy where new intermediate variables are introduced to reduce
the degree of the involved polynomials. We concluded that this strategy does not reduce the solving time

as it increases the number of variables.

Middle State-Outpur Relation. There is another attack strategy that exploits the relation between the
middle state and the outputs. In this strategy, only py is involved, and several outputs are generated by
the same unknown middle state. For a given nonce N, let (', x1¥, %3") € (]Fq)3 be the corresponding
middle state. Since the key is added after the permutation pg, we first eliminate the key by considering two
initial nonces, and taking the difference of the corresponding output. This makes it possible to remove

all the secret key material at the end, at the cost of having three more unknown variables in the middle.*

Hence, independently of the number of outputs that are generated, there are six variables, and thus
simply the two middle states. That means that we need at least six output blocks, and an equivalent
number of equations. Since two words are output for each call of pg, we have six equations of degree
21 and 2" for the first two words, 2" and 2”*! for the next two words, and so on. We recall that every
call of the rolling function increases the degree by a factor two, while the function that describes the
output of a single block has a maximum degree, namely 2" after » rounds for one word, and 271 for the
other two words. Hence, Dy, = 1+ (271 = 1) +2- ZLO(Z’” —1)+ (272 -1) =21-2771 =5 = 2734
and the cost of the attack is lower bounded by

r+3.4\1% 743, »
(6 +27" )] [(1 +2743 4)6] > 212(-+3.4)-19
0rH34 = 6! = )

where & > 2. Therefore, 22034719 > 25 if the number of rounds for py, is at least [% - 3.4] (e.g.»
9 for s = 128). Like previously, potential improvement of the attack (e.g., an enhanced description of
the equations) can lead to a lower computational cost. We thus decided to arbitrarily add five rounds as
a security margin. We conjecture that at least [% + 1.5] rounds for py; are necessary to provide some

security (e.g., 14 for s = 128).

In addition, in order to reduce the degree of the involved polynomials, we studied the consequences of

introducing new intermediate variables in the middle, e.g., at the output of the rolling function or among

*Another approach would be to involve the keys in the analysis. However, since the degree of the key-schedule is very high, the
cost would then explode after few steps. It works by manipulating the degree of the key-schedule, or by introducing new
variables for each new subkeys while keeping the degree as lower as possible. This approach does not seem to outperform
the one described in the main text.
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the rounds®. In that regard, we did not improve the previous results. Moreover, we also considered a

scenario in which the attacker accesses more data, without being able to improve the previous results.

7.4.5 ON THE ALGEBRAIC CIPHER REPRESENTATION

Algebraic attacks seem to be the most successful attack vector on ciphers that have a simple representation
in larger fields, while restricting the usage of multiplications. Until now, we have mainly focused on the
growth of the degree to estimate the costs of the algebraic attacks that we considered. However, this
is not the only factor that influences the cost of an algebraic attack. It is well known that such attacks
(including higher-order, interpolation, and Grobner basis attacks) can be more efficient if the polynomial
that represents the cipher is sparse. Consequently, itis necessary to study the algebraic representation of
the cipher for a feasible number of rounds.

To evaluate the number of monomials that we have for a given degree, we wrote a dedicated tool.
This tool produces a symbolic evaluation of the round function without considering a particular field
or specific round constants. Nevertheless, it considers the fact that each element in E, is also its inverse
with respect to the addition. Since we do not instantiate any field and constants, the reported number
of monomials might deviate from the real number of monomials here, e.g., due to unfortunate choices
of round constants that sum to zero for some monomials. As a result, the entries in the tables are in fact
upper bounds, but we do not expect high discrepancies between the numbers reported in the tables and

the “real” ones.

Prime Case. First, we consider iterations of the round function f over ]FP' In Table 7.2, we evaluate
the output functions at #;, b, and ¢; depending on the inputs 4, &, and ¢, after a certain number of
rounds 7 > 2. We count in Table 7.2 the number of monomials for a certain multivariate degree up to
a fixed degree de' Higher degree monomials might appear, but they are not presented in the table. To
report this behavior, we do not input 0 in the table after the highest degree monomial. The column ‘max’
indicates the maximal number of monomials that can be encountered for three variables. As reported
in Table 7.2, the number of monomials increases quite quickly, and we do not observe any unexpected
behavior, or missing monomials of a certain degree.

Binary Case. Table 7.3 provides the number of monomials of a certain degree in E,.. We notice that the
diffusion is slower than in ]I}, and it may be because of the behavior of the addition that is self inverse in

E... More discussions on the algebraic cipher representation in the binary case can be found in App. D.

7.5 COMPARISON WITH OTHER DESIGNS

In this section, we compare the performance of our design with other designs that are presented in the
literature for an MPC protocol using masked operations. We mainly focus on the number of multiplica-

tions in an MPC setting, which is often the metric that influences the most the cost in such a protocol. In

SFor example, new variables can be introduced for each output of the rolling state. It results in having more equations with
lower degrees. Our analysis suggests that this approach does not outperform the one described in the main text.
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Table 7.2: Number of monomials of a certain degree for E,.

Outpur Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 27
max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
a 1 3 4 3 1
2 b 1 3 4 3 1
< 13 4 3 1
a 1 3 6 8 11 8 6 3 1
3 b 136 8 11 8 6 3 1
< 136 8 11 8 6 3 1
a 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
4 b 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
c 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
a 1 3 6 10 15 21 28 36 45 53 62 70 79 87 9% 104 113 104 9% 87 79 70 62 53 45 36 28 21
5 b 1 3 6 10 15 21 28 36 45 S3 62 70 79 87 9 104 113 104 96 87 79 70 62 53 45 36 28 21
< 1 3 6 10 15 21 28 36 45 53 62 70 79 87 9 104 113 104 9% 8 79 70 62 53 45 36 28 21
Table 7.3: Number of monomials of a certain degree for E..
Outpur Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 27
max 1 3 6 10 15 21 28 36 45 S5 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
a 1 3 4 2 1
2 b 13 4 2 1
< 13 4 2 1
a 136 7 7 3 3 0 1
3 b 136 7 7 3 3 0 1
c 136 7 7 3 3 0 1
a 136 9 15 14 19 12 13 5 6 2 3 0 0 0 1
4 b 136 9 15 14 19 12 13 5 6 2 3 0 0 0 1
< 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
a 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
S b 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
< 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0

addition, we discuss the number of online and pre-computation/offline rounds, and we compare those
numbers to the ones specified for other schemes. The influence of the last two metrics on the overall
costs highly varies depending on the concrete protocol/application, and the concrete environment, in
which an MPC protocol is used, e.g., network of computers vs. a system on chip. Finally, we consider

the advantages and the disadvantages of our design w.r.t. the other ones.

7.5.1 MPC cosTs: CIMINION & RELATED WORKS

We compare the MPC cost of CIMINION with the cost of other designs that are published in the literature
with g = 2128 and 5 = 128 bits. We assume that the amount of data available to the attacker is fixed to
2¢/2 = 264 which is the most common case. Due to page limitation, we limit our analysis to CIMINION
and HadesMiMC. The latter is the main competitive design currently present in the literature for the
analyzed application. The detailed comparison with other designs (including MiMC, GMiMC, Rescue
and Vision) is provided in App. G. A summary of the comparison is given in Table 7.4 and 7.5 for the
binary and prime case, respectively.

Our design has the lowest minimum number of multiplications w.r.t. all other designs, in both ]F‘Z,
and E.. In ]E; for g = 212, our design needs approximately ¢ + 14 - [#/2] = 8 - # multiplications w.r.t.
12 - £ multiplications required by HadesMiMC or 60 - # by Rescue. Additionally, our design has a low
number of linear operations compared to other designs. For instance, for large # > 1, our design needs

approximately SO - ¢ affine operations (sums and multiplications with constants) while HadesMiMC
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7 Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields

Table 7.4: Comparison on the MPC cost of schemes over E,’ for z = 128 (or 129), and a security level of 128

bits. With the exception of Vision (whose number of offline rounds is equal to max{ZO, 2 [ITHH),

the number of offline rounds for all other schemes is zero.

Scheme ‘ Multiplications (MPC) ‘ Online Rounds
‘ elementin E,* asymptotically (¢ > 1) |
CIMINION 8-r+89 8 104 + [£/2]
MiMC-CTR 164 -t 164 82
Vision r-max{70,7. [ 2]} 70 max{50,5 - [2]}

Table 7.5: Comparison on the MPC cost of schemes over ]F[,’ forp = 2128 and a security level of ~ 128 bits. With

the exception of Rescue (whose number of offline rounds is equal to max{30;6 - [E}}), the number
t

of offline rounds for all other schemes is zero.

Scheme ‘ Multiplications (MPC) ‘ Online Rounds

‘ element in E,' asymptotically (£ > 1) ‘
CIMINION 14-[¢/2] + ¢+ 89 8 104 + [£/2]
MiMC-CTR 164 -t 164 82
GMiMC,, 4 + 4¢ + max{4s%, 320} 4-t 2+ 2¢ + max{27%, 160}
Rescue (2 = 3) t - max{60; 12 - [32_5]} 60 max{20; 4 - [#]}

13

HadesMiMC | 12¢+max{78+ [log3 (£9)]; 142} 12 max{45 + [log3(t)]; 77}

requires approximately 12-£%+(157+4-max{32; [log3 (£)1})-¢ affine operations. However, this advantage
comes at the price of having more online rounds than the other schemes. In particular, 104+ [#/2] online
rounds are required by our design whereas HadesMiMC and Rescue have respectively 78 and 20 online
rounds.

CiMINION. For g = 2128, and a security level of 128 bits with data limited to 2%, the permutation p.
counts 90 rounds. In order to output 2¢ —1 < ¢ < 2¢ words, we call # times the permutation py that is
composed of 14 rounds, and (¢' — 1) times the rolling function. Therefore, for the binary and the prime

case, the cost of CiMINION in MPC applications to generate # words is

# multiplications: 14-[¢/2]+(t-1)+90~8-r+89,
# online rounds: 104 + [£/2],
# affine operations: 99-[¢/2] + 629 = 50 - ¢ + 629.

The number of online rounds depends on ¢, because the rolling function is serial. It is noteworthy that
the expansion part can be performed in parallel. We emphasize that the number of sums and multiplica-
tions with a constant® (denoted as “affine” operations) is proportional to the number of multiplications.

That is one of the main differences w.r.t. to the Hades construction as we argue afterwards.

“Each round counts six additions and one multiplication with a constant.
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HadesMiMC. HadesMiMC [40] is a block cipher that is proposed over I for a prime p such thatged(p—
1,3) = 1,and ¢ > 2. It combines Rz = 2Ry rounds with a full S-box layer (Rp at the beginning,
and Ry at the end), and Ry rounds with a partial S-box layer in the middle. Each round is defined with
R;(x) = k; + M x S(x), where M is a t x t MDS matrix, and S is the S-box layer. This layer is defined as
the concatenation of # cube S-boxes in the rounds with full layer, and as the concatenation of one cube

S-Box and 7 — 1 identity functions in the rounds with partial layer.

In addition, hash functions can be obtained by instantiating a Sponge construction with the Hades
permutation, and a fixed key, like Poseidon & Starkad [39]. In [15], the authors present an attack on
Starkad that exploits a weakness in the matrix A1 that defines the MixLayer. The attack takes advantage
of the equation * = - I. This attack can be prevented by carefully choosing the MixLayer (we refer to
[43] for further detail). There is no attack that is based on an analogous strategy that has been proposed

for the cipher7.

In order to guarantee some security, Ry and Rp must satisfy a list of inequalities [40]. There are several
combinations of (Rp, Rp) that can provide the same level of security. In that regard, authors of [40]
present a tool that makes it possible to find the best combination that guarantees security, and minimizes
the computational cost. For a security level of approximately log2 () bits, and with Iog2 (p) > ¢, the

combination (Rg, Rp) minimizing the overall number of multiplications is

lo
(Rp, Rp) = (6, maxH g;(p )

+ [log, (1)]; [log, (p)] - 2|log, (log, (p))J} - 2).

In MPC applications (p ~ 2128 and 5 = 128 bits), the cost of HadesMiMC is

# multiplications: 2 (¢-Rp + Rp) = 12¢ + max{78 + [log3(r2)] 5142},
# online rounds: Rp + Rp = max{45 + [IogS(t)]; 77%,
# affine operations: 22 Re+(4-Rp+1)-t=2-Rp
=122 + (157 + 4 - max{32; [log, (£)1}) - 2.

Parallel S-boxes can be computed in a single online round®. To compute the number of affine operations,
we considered an equivalent representation of the cipher in which the MixLayer of the rounds, with a
partial S-box layer, is defined by a matrix. In this matrix, only 37 — 2 entries are different from zero, that
is to say the ones in the first column, in the first row , and in the first diagonal. (A (r = 1) x (¢ - 1)
submatrix is an identity matrix.) The details are presented in [40, App. A]. Therefore, the total number
of affine operations required grows quadratically w.r.t. the number of rounds with full S-box layer, and

thus w.r.t. the number of multiplications.

7The main problem, in this case, regards the current impossibility to choose texts in the middle of the cipher by bypassing the
rounds with full S-Box layer when the secret key is present.
8We refer to [42] on how to evaluate x — x* within a single communication round.
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Finally, we highlight that the number of multiplications is minimized when HadesMiMC takes as
input the entire message. Indeed, let us assume that the input message is split into several parts, and that
HadesMiMC is used in CTR mode (as suggested by the designers). In the analyzed case in which the
security level is of the same order of the size of the field p, the number of rounds is almost constant, and
independent of the parameter # > 2. It follows that using HadesMiMC in CTR mode would require
more multiplications, because every process requires the computation of the rounds with a partial S-box
layer, whereas this computation is needed only once when the message size equals the block size. We
stress that a similar conclusion holds for Rescue/Vision, for which the total number of multiplications
would barely change when they are used in CTR mode, rather than when the message size is equal to the

block size.

7.5.2 CIMINION VERSUS HADES: ADVANTAGES AND SIMILARITIES

The previous comparison highlights that the two most competitive designs for MPC applications with a
low multiplicative complexity are CiMINION and HadesMiMC. Referring to Fig. 7.1, we further develop
the similarities and advantages between a block cipher based on a Hades design, and a cipher based on
Farfalle. We present a brief comparison between our new design and the “ForkCipher” design that is
proposed in [7] in App. G.2.

Similarities: Distribution of the S-Boxes. We focus our attention on the distribution of the S-boxes, or
more generally, the non-linear operations. Both strategies employ a particular parallelization of the non-
linear operations/S-boxes to their advantage, in order to minimize the number of non-linear operations.
More precisely, each step is composed of # parallel non-linear operations in the external rounds, i.e., the
rounds at the end and at the beginning. Furthermore, each step is composed of a single non-linear oper-
ation in the internal rounds.

Both strategies take advantage of an attacker that cannot dzrectly access the state in the middle rounds,
because the state is masked both by the external rounds or phases, and by the presence of a key. Ina
Farfalle design, the attacker knows that each output of the expansion phase always employs the same
value at the input, without accessing those inputs. In a Hades design, the attacker is able to skip some
rounds with a partial S-box layer by carefully choosing the texts (see [15]). However, they cannot access
the texts without bypassing the rounds with the full S-box layer that depends on the key.

Having middle rounds with a single S-box makes it possible to reduce the overall number of non-linear
operations. In addition, they ensure some security against algebraic attacks. Indeed, even a single S-box
makes it possible to increase the overall degree of the scheme. For a concrete example, let (R, R,,,, R,)
be the rounds for respectively the compression part, middle part and expansion part of Farfalle. Like
previously, let (Rr, Rp) be the number of rounds with respectively a full and a partial S-box layer in Hades.
The number of multiplications is respectively (R, + R,) - ¢ + R,, and R - £ + Rp. If Rp > Ry and
R,, > R, + R,. For a similar number of round, i.e., proportional to ~ Rp + Rpor/and = R, + R, + R,
itis then necessary to reach the maximum degree. Our number of multiplications is lower compared to

a classical design where the rounds have a full S-box layer.

168



A Round constants generation - details

Advantages. There are major differences between Farfalle-like designs and Hades-like designs, because of
their primary intention. The Farfalle-like design aims to behave like a Pseudo-Random Function (PRF),
and the Hades-like design like a Pseudo-Random Permutation (PRP). The latter is used as a PRF in the
Counter mode (CTR).” Under the assumption that affine operations are cheaper than non-linear ones,
designers of Hades defined the MixLayer as the multiplication with a # x t MDS matrix. Consequently,
each round with full S-box layer counts 2 multiplications with constants. However, when # > 1, linear
operations cannot be considered as free anymore, and their presences influence the overall performance.

This problem is not present in a Farfalle-like design. Indeed, by construction, in the first R, and the
last R, rounds, the MixLayer is not required. Thatimplies that the first three words are never mixed with
the following ones. On the contrary, the elements are simply added together to generate the input of
the compression phase. In addition, the expansion part’s input is generated through a non-linear rolling
function whose cost grows linearly with #. Finally, since invertibility is not required, the number of input
words can be lower than the number of output words to design a function from ]F; to I} forany ¢ > 1.
Thus, independently of the number of output words, one multiplication per round is present in the

compression phase, contrary to O(z) of a Hades-like scheme.
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A ROUND CONSTANTS GENERATION — DETAILS

As mentioned in the main part, the round constants RC1y, RC2,, RC3,, and RC4, are generated using
Shake-256 [13, 54]. We detail this process in this section.

For prime fields, a byte sequence of the ASCII characters “GF (p)” is absorbed with p denoting the
numerical representation of the prime modulus. For instance, if we take the prime field 17, “GF (17)” is
absorbed which hexadecimal representation is 0x474628313729. The output sequence of Shake-256 is
then splitinto [log , (p)]-bit unsigned integers Z;. These values Z; are next sequentially assigned to RC1,,
RC2, RC3¢, and RC4; for rising ¢, as long as 1 < Z; < p. Otherwise, we discard Z;, and we use instead
the next unsigned integer 1 < Z; < p of the sequence.

The round-constants generation process is analogous for fields over E,.. In this case, we absorb a
byte sequence corresponding to the ASCII characters “GF (2) [X]/polynomial”, where the characters
“polynomial” is the hexadecimal representation in capital letters of the irreducible polynomial. For ex-

ample, in Bs with the irreducible polynomial 2%+ 5% + 2% + x + 1, we absorb “GF (2) [X]/11B” that

*This means that, in both cases, the cost of encryption and decryption is the same. Thatis because Farfalle-like and Hades-like
designs are used as stream ciphers.
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is represented by 0x47462832295B585D2F313142 in hexadecimal. Thereafter, the output sequence of
Shake-256 is splitinto #-bit unsigned integers Z;. These values Z; are then sequentially assigned to RC1,,
RC2¢, RC3y, and RC4, for rising ¢ as long as Z; > 1. Otherwise, we discard Z;, and we employ instead

the next unsigned integer Z; > 1 of the sequence.

B AIMINION: AN AGGRESSIVE EVOLUTION OF CIMINION

For CIMINION, we modify the Farfalle [12] construction, in order to obtain a stronger design with a
fewer successful attacks. In particular, moving the keys from the output of the construction (Figure 7.7)

to the inputs of p (Figure 7.3) results in the two following observations.

1. The unknown keys K; at the inputs of p prevent an attacker from knowing which inputs of pg

form an affine space. Hence, the rolling function 7o/ does not have to be non-linear to achieve this
property.

2. We cannot use the middle state-output relation (see subsection 7.4.4) to set up a system of equa-
tions to be solved using Grobner bases. In fact, despite our attempts (not involving pc), the system

of equations is always under-determined. We have less equations than secret elements.

This leads us to AiMINION. Compared to CIMINION, we use the identity as rolling function 70/, and
we fix the number of rounds to nine for g, if we solely consider statistical attacks as a threat. This is three

times the number of rounds where only bad differential/linear trails exists, as discussed in Table 7.6.

Table 7.6: Proposed number of rounds for AimINION. The security level s must satisfy 64 < 5 < logz(q) and
q > 2% where g is the number of elements in the field.

Instance ‘ Pc ‘ 2r (two words per block)

2(5+6) ‘
3

Data limit 2/2 elements ‘ 9

AIMINION has an lower number of multiplication per elements than CIMINTON. Indeed, it shifts from
eight for large 7 to only 4.5. However, this comes at the cost of interrupting the chain of arguments for
security. In particular, probabilistically formed affine spaces at the inputs of pz might still be detectable.
We consider the evaluation of the complexity to find such an affine space as an interesting topic for future

evaluation.

C STATISTICAL ATTACKS — DETAILS

C.1 CLASSICAL CORRELATION ANALYSIS

In this section, we present the notions of classical correlation analysis in a fashion that eases the transition
to the more general theory. In classical correlation analysis, we consider vectorial Boolean functions

I B — E. From a more abstract point of view, classical correlation analysis is the study of certain
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characters, and their configuration in the space I2(E) of complex-valued functions B — C. LetS =
{z € C: |z| = 1} be the multiplicative group of complex numbers of absolute value 1. An additive
character of ! isa homomorphism from B (considered as an abelian group) into S. The L2(E)-inner
product is given by
W¥) = 57 Y AP,
xeB
A parity of avectorx € E is the sum of a specific subset of its components. Any parity of x can be written
as " x for some # € E. We call  a mask. Each mask # defines a unique character y,, : B —Cn{-1,1}
given by
) = (1)

Together, these notions lead to the definition of correlation.

Definition 61 (Parity Correlation). The correlation between an input mask u and output mask v with

respect to a function [ is defined as

1 T o T
Cf(u, v) = (Zm){v of) = ﬁ 2(_1);: w0’ flx)

xE]Fz‘i

The number of known plaintext-ciphertext pairs required to mount a linear attack is inversely propor-
tional to the square of the correlation. Hence, the square of the correlation serves as a measure to assess

the effectiveness of a linear attack. It is called the linear probability.

Definition 62 (Linear Probability). The linear probability of an input mask u and output mask v with
respect to a function f is defined as
LPs(u,v) = Cp(n, ).

C.2 PROOFS OF LINEAR PROBABILITIES

Proposition 32 (Orthogonality Relations). Let y and y be additive characters of B, then

Sz = 0 T

o q otherwise.

Proposition 33 (Linear Probabilities of the Multiplication Function). Letm : E, x E, — E, be given by
m(x,y) = xy, then the linear probabilities for all masks u € ]qu at the input of m and masks v € ]Fq at the

output of m are as seen in Table 7.7.
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w v | LP,((uy,1),0)
* * 1 q—lz
0O 0 0 1
0O 1 0 0
1 0 0 0
1 1 0 0

Table 7.7: Linear probabilities of 72 in ]Fq A 0 denotes a zero value, a 1 denotes a non-zero value, and a * denotes
any value.

Proof. Letv # 0.1fu; = 0, then

LP,,(#,v) =

z 2){1(“195 + 1,y — vxy)

xely yek,

2 Zj{l(%z}’ - vxy)

xely yek,

7’

z 2){1 (%27))(1 Ux)’)

xely yek,

where the last equality is due to the fact that — by Proposition 32 - the inner sum equals g, if x = v™'#,,

and 0 otherwise.

The case for which #, = 0 is analogous to the previous one. Therefore, we can suppose that #; # 0,

and#, # 0. Leta € ]Fq, and b € ]Fq, be such that
b+umx+uy —vxy = (1+ax)(b+ uyy).

Then,

LP,,

Z Z)ﬁ mx + 1y = vxy)| .

xek, yek,

By multiplying it by |7, (0)|* =

ZZ;(I b+ uyx + uyy — vxy)

q xE]F ye]F

ZZ;(I ((1+ ax) (b +vy))| .

xel yek,

Note that 2 # 0 and v # 0, hence:

Z Z;a x)’

x'€E,
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where the last equality is due to the fact that — by Proposition 32 - the inner sum equals ¢, if x" = 0, and

0 otherwise.

Next, let us consider that v = 0. From Proposition 32, we deduce that

1 ifu=(0,0),

0 otherwise.

LP,,(#,0) = {

Proposition 34 (Linear Probabilities of the Round Constant Addition). Let ¢ : E — E, be given by
c(x) = x+¢ then
1 ffu=v,

0 otherwise,

LP.(#,0) = {

for all masks u,v € ]Fq‘

Proof-
2 2
1 1
LP (#,v) = —Z;(l(ux—vc(x)) = |- Z;(I(ux—v(x+£))
xek, 9 xel;
2 2
1 1 —_—
= =D n(w-vx-0)| =|=> n((-0v)x)pw0)
9 xek, 9 xel,
2
1
==> -0 .
9 xqu
The result now follows from Proposition 32. O

Proposition 35 (Linear Probabilities of the Addition). Leza : E, xE, — E, be given by a(x,y) = x + y,
then

1 ifu=(v,0),

LP, («,v) =
ala0) 0 otherwise,

2 .
for all masks u € ]E] at the input of a, and masks v € ]Fq at the output of a.
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Proof.

LP,(u,v)

—ZZ;(I (2, 9) = va(x,y))

xek, yek,

= iz ZZ;(I(ulx+uzy—v(x +7))

7 xek, yek,

= —ZZ;(I 1= 0)x + (4 = v)y)

xek, yek,

= Z;a 0)x) > (- 0)y)

xek, yek;

By Proposition 32, both sums are non-zero if and only if #; = #, = v. In this case, they both evaluate to
q. O

Proposition 36 (Linear Probabilities of the Branch Duplication). Let d : E, — E, x E, be given by
d(x) = (x, x), then

1 ifu=uv+0v,
LPyGu (o)) =] L T
0 otherwise,

or all masks u € T, at the input of d, and mask (v, v,) € B2 at the output of d.
y p 1Y) €l p
2

Proof. Remember that LP,(x, (v;,1,)) = . By Proposition 32, the sum is non-

Z Zu Zvﬁ—uz (x)

ve]F
zero if and only if # = v; + v,. In this case, it evaluates tog. O

Proposition 37 (Linear Probabilities of a F-Linear Transformation.). Ler L = B — E be a lincar
transformation, then

ifu=L",

otherwise,

LP;(u,0) = { é

for all masks u,v € B

Proof-
2 2
LP;(u,0) = 1 Z;(l(uTx —-v'Lx)| = 1 Z;(l(uTx - (L)"x)
9 xe]Fq 9 xe]l-;,
2
Z x1((n=LTv)x)
ve]F
The result now follows from Proposition 32. O
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C.3 DIFFERENTIAL ATTACKS — DETAILS

As mentioned in subsection 7.4.2, we built a state finite machine in Figure 7.9 that represents all sets of
encountered differences as states that are associated to their differential probabilities. We focus on the
prime case, but the results are analogous in E,.

In order to understand the Figure, we mention that:
* all entries are fixed differences, where (x, y,2) # 0, withx # y, x # z,and z # .

* in order to simplify the Figure, we use only three letters x, y, z to denote the differences for each
branch. Most of the time, the value of the differences x, y, z at the input are zot equal to the
value of the differences x, y, z at the output. For instance, if we consider the one-round difference
{(x, RC4x,x)} = {(0, x, y)}, the value of the input difference x is usually not equal to the value
of the output difference x. Only in a few cases, the values of the differences x, y, z at the input are
exactly equal to the value of the differences x, y, z at the output. This is the case for {(0, 0, x)} —
{(x, RC4x,x)} in E,.

* all arrows with a plain line represents a differential probability p'l in ]FP (similarly, 27" for the

analogous case in B, ); except for the arrow with a doted line that has a probability one.

* an arrow starting with a diamond and ending with a hollow head indicates that the round con-
stant RC4 that is mentioned in the states before and after the considered round (), comes from
a previous round. In other words, if we consider the round ¢, the round constant RC4 ' that
is written in the difference states before/after this round, is introduced in a round ; < ¢. In
addition, it is possible that the round constant RC4, of the considered ¢-th round is equal to
the round constant of the previous or preceding state(s). This highly determines the output
state of {(~RC4x, x,0)}. For instance, if we examine the round ¢ that has the input differences
{(=RC4x,x,0)}, the output differences can be either {(x, RC4;4x, %)} or {(x, 3, 2)} depend-

ing on whether RC4,, = RC4,, if none of the output differences is equal to zero.

D ONINTERPOLATION ATTACKS

In our keyed mode that is depicted in Figure 7.3, the subkeys K; are derived from two master key ele-
ments MK | and MK ,. We analyze in this section how an attacker can gather many equations with the
secrets K and K for the permutation pc. As explained for higher-order differential attacks, the goal is to
guarantee that the output of p¢ appears to be randomly generated. For the sake of simplicity, we neglect
in these observations any further additions of key elements and application of pz. Moreover, we study

the upper bounds on the number of monomials that is needed to solve a system of equations.
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<
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<«
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—» X » 0 —» X <€ X
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x - X X f—t X
RC4 x — RCyy y € 0
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: [
: | [y
0 L— x 0 L—> 0
0 L_RC4x > RCy x [« X
X y — 1 x 0
Al t A
L x -RCy4 x L— x |&
RCy x > x — 0
0o [« 0 L )

Figure 7.9: Differential trails for the round function in L, The three-round differential trail with the highest DP
from subsection 7.4.2, is highlighted in yellow.

AN UPPER BOUND ON THE NUMBER OF MONOMIALS.

We know from subsection 7.4.3 that the number of rounds required to reach a degree d]FP, or dy,, of
approximately 2° is 5 + 2 for either K and K. Hence, the maximum number of possible monomials z of
the maximal possible combinations of K; and K; up to degree 2* is 2%, This means that if the diffusion

is decent, the equations containing the secret variables are likely to have at least 2 monomials.

The number of rounds that provides resistance against higher-order differential attacks should also
guarantee sufficient protection against interpolation attacks [46] which use trivial linearization of all
monomials. Indeed, this attack strategy aims to construct a polynomial corresponding to the encryp-
tion function without any knowledge of the secret key. If an adversary can construct such an interpola-
tion polynomial without using the full code book, then they can potentially employ it to set up, e.g., a

key—recovery attack.

In order to set up the system of equations that describes the scheme, the attacker first needs more than
2* inputs/outputs, which exceeds the security level. In the following, let us assume that the attacker can
collect 2° of such equations. In order to solve this system of equations, the adversary could substitute
each monomial by another variable in order to linearize the system. The cost of this attack is of O(2°?)
field operations with @ > 2. However, that is behind the security level, if the chosen number of rounds

guarantees security against the higher-order differential attack.
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For completeness, we mention that the interpolation attack has a meet-in-the middle variant that sig-
nificantly reduces the number of monomials in the system of equations which describes our rounds.
However, in our construction that is illustrated in Figure 7.3, this variant is difficult to perform because
the output is always truncated. Hence, part of the output changes while remaining secret. Each collected
equation thus adds new secret variables to the system of equations. In that respect, we do not think
that an meet-in-the-middle style approach would work for a trivial linearization. Nonetheless, equation
solving approaches might succeed, like Grébner bases that we discuss in subsection 7.4.4, but it is not
restricted to it. Therefore, we study the equation systems obtained after a few rounds in subsection 7.4.5
to reveal any special exploitable structures in the equation systems. For example, we search for sparse

equations.

ALGEBRAIC ATTACK (OVER B,): cCASE RC4; = 1.

The behavior of our round function with the round constants RC4; set to one is presented in Table 7.8.
If we compare the number of monomials in Table 7.8 with Table 7.3, the number of monomials in the
Table 7.8 is clearly lower. Furthermore, if we consider the monomials of degree three until the round six,
we only reach eight out of ten possible monomials, whereas we have all ten monomials in F, (Table 7.2).
A deeper study reveals that out of all possible monomials of degree three, 2¢8,¢, and @ are missing. The
first one is lacking due to the use of the Toffoli gate, and hence, the value ¢ is amended to 2yb, + ¢, at
the very beginning. In addition, cg is missing due to the interaction in the linear part. Hence, we observe

that the polynomial is more sparse (or equivalently, less dense) than when RC4; # 1.

E OTHER ATTACK VECTORS AND DETAILS

In this section, we discuss attack vectors that are not directly covered by the previous sections. These
attack vectors mostly include attacks exploiting strongly aligned round functions, but also distinguishers

only applicable to the permutation.

TRUNCATED AND IMPOSSIBLE DIFFERENTIAL ATTACKS.

A variant of differential cryptanalysis is the truncated differential cryptanalysis [48]. In the latter, the
attacker does not fix the values of the differences, but specifies conditions between the differences of the
branches of the round that should be satisfied, or fixes some differences at the input of the branches to
zero. The attacker works with truncated differential characteristics, which are a collection/set of several

differential characteristic.

Impossible differential cryptanalysis was introduced by Biham ez a/. [16] and Knudsen [47]. It exploits

differentials that occur with probability zero.
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Regarding our scheme, we do not expect these two attacks to outperform the attacks that are presented
in section 7.4. As an example, a truncated differential with probability one covering one round can be

used as starting point to present an impossible differential for two rounds:
rob. rob.
£0,0,)} 225 (v, RC#, )} # {(0,0,9)} £ {0, RCo,2)}

where (x, ) # 0.

ZERO-SUM DISTINGUISHERS.

Zero-sum distinguishers [20] are so-called inside-out distinguishers on the permutation. With this type
of distinguishers, an attacker crafts an initial structure that is placed somewhere in the middle of the
permutation, and computes forward to the input and backward output of the permutation. An attacker
can compute a set of input and output values that sums to zero by carefully selecting and employing the
initial structure, and choosing the algebraic degree of the round function and the inverse of the round

function.

To prevent the use of such distinguishers against our round function, we need at least 2s rounds. We
are fairly confident that this distinguishing property is unlikely to extend towards distinguisher of the
used modes. For instance, zero-sum distinguisher on fu// Keccak-p [20] are well known. On the contrary,
attacks on constructions that use 12 rounds of the Keccak permutation, and that exploit this property

are not known. This is half the number of rounds.

BOOMERANG AND DIFFERENTIAL-LINEAR DISTINGUISHERS.

Boomerang [62] and differential-linear [50] distinguishers, and their variants, rely on chaining two good
differential/linear trails. As studied in section 7.4, we have at least one active multiplication per three
rounds in our trail. Those distinguishers are then rather unlikely. However, even if an attacker can find
good differentials, or linear hulls, a differential-linear/boomerang distinguisher can only cover up to six

rounds.

ZERO-CORRELATION ATTACKS.

As their name suggest, these attacks exploit linear hulls with a zero correlation [18]. In general, those
linear hulls are found by a miss-in-the-middle approach. For example, we need to find two trails that
propagate some deterministic properties, and then to combine them, in order to ensure that the property
cannot be fulfilled. However, our permutations have at least nine rounds, and based on the results of our
differential and linear analysis, we assume that finding impossible differentials or zero-correlation linear

hulls is infeasible.
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MORE ATTACKS EXPLOITING STRONG ALIGNMENT.

As a cipher working natively on larger field elements, CIMINION could be considered to be strongly
aligned. Many more attack vectors exist that exploit strong alignment on ciphers, especially for AES
(see [41]). However, we conjecture that such attacks become quickly infeasible, because the security level
is tied to the size of the field element, and there is 2 huge number of rounds compared to the number of

field elements that form the state.

F SECURITY ANALYSIS — DATA LIMIT 2¢/2

For applications like MPC, given a security level of s bits, the data is limited to 2s/2 (namely, related to the
birthday bound) instead of 2*. For this reason, we analyze in this section the number of rounds that is
required to provide security, if limited data is available to the attacker. We focus our attention on algebraic
attacks, which are the most powerful ones against our cipher. In the following, we demonstrate that a
lower number of rounds, w.r.t. the ones given previously, is sufficient to provide security. Additionally,

we verify that the chosen number of rounds guarantees security against statistical attacks.

INTERPOLATION ATTACK.

The amount of data that is available to the attacker highly impacts the interpolation attack. Indeed, this
attack can be set up if the number of texts is higher than or equal to the number of monomials that
defines the polynomial. Since the number of monomials is related to the degree of the polynomial, a
lower number of rounds (w.r.t. the one given previously) is sufficient to prevent this attack. In particu-
lar, assuming that the polynomial that describes the scheme is dense, since the degree grows as 2" after »
rounds, approximately s/2 rounds are sufficient to prevent the attack (for data limited to 2¢/2). We arbi-
trarily decided to increase the number of rounds for p to 2/3 - 5 to provide some extra security against

this attack.

GROBNER BASIS ATTACK.

The Grobner basis attack that is described in the previous sections, requires a few number of texts that
are much lower than 25/2. Hence, the analysis that is presented in subsection 7.4.4, can also be applied in
this case. The number of rounds for pc must thus be higher than 5/2, while the number of rounds for

e must be equal to {% + 1.5].

STATISTICAL ATTACKS.

Since the efficiency of statistical attacks depends on the amount of data that is available to the attacker,
a lower number of rounds w.r.t. the standard one is still sufficient to guarantee security. We arbitrarily
decided in this case to keep the same number of rounds as in the standard scenario, namely at least six

rounds.
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CONCLUSION.

. s+19 . .
We conjecture that2/3 - (s + 6) rounds for p¢, and [7 + 1.5] rounds for py, are sufficient to provide a
security level of s bits, if the amount of data available to the attacker is limited to 2° /2. Due to argument
analogous the ones given in section 7.4, this number of rounds provides security against statistical attacks,

and higher-order differential attack.

G RELATED WORKS: MPC COSTS FOR SEVERAL CIPHERS PUBLISHED IN

THE LITERATURE

G.1 RELATED WORKS
MiIMC.

MiMC [3] is a scheme that has been proposed over ]Fq, where ¢ is either a prime p, or a power of 2 4 = 2%,
where ged(p = 1,3) = 1 or  odd. The round function of the block cipher is defined as

Rx)=x@kog or Ri(x)=x*+k+g,

for a round constant ¢;, and a master key £. In ]th, the cipher MiMC can be used in CTR-mode.
The number of rounds is equal to [log3 (p)],or[n- log3 (2)]. In MPC application, the cost to evaluate

a text in F is thus given by

# multiplications: 2t - [log3 1,
(# online, # offline) rounds: ([log3 (»)1,0),

for both the binary and the prime case (it is sufficient to replace p with 2”). We refer to [42] for a detailed
explanation about the possibility to evaluate x — x3 with a single communication round. Moreover,
evaluating x — x° requires two multiplications in MPC applications in the binary case.

We make some observations. First of all, in a “classical” application, the number of multiplications in
the binary case can be divided by two, since x — x% does not require any multiplication. Secondly, for
the Boolean case only, a new attack on full MiMC has been presented recently [35]. The latter attack
combines a distinguisher based on higher-order differential technique (that can cover up to [(z - 1) -
log3 (2)] -1 rounds) with an interpolation technique. That makes it possible to find the secret key. Since
the data cost of such attack is half of the full code-book, it does not apply in this context, because we are

working with a PRF. Indeed, we only consider attacks whose complexities are below the birthday bound.

GMIMC”f.

GMiIMC,, s [2] is a scheme from GMiMC family over IFP'. The round function is defined as

Xy X ) = (o + (o0 + EOY xe + (2, + £D)3 X + (2 + £D)3
1> 3 ey b} 5 ey 5 X1).
( 2 t) ( 2 ( 1 k ) 3 ( 1 ) t ( 1 k ) 1)
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The detail regarding the key schedule is explained in [2]. We note that the round keys can be precom-
puted, thus they do not influence the cost in MPC applications. Under the assumption that p > ¢, and

for a security level of log2 (p) bits, the number of rounds is given by°
max{2+2- (¢ + ), [2- log, (p)] +2¢}.

More precisely, the designers deduced that 2 + (¢ + #2) /2 are sufficient to prevent differential attacks,
under the assumption that there is a differential trail for # + #* rounds with prob. 4 - p~. However,
in [15], the authors demonstrated that such differential trail has a probability equal to 2 - p71. Conse-
quently, they proved the existence of differential distinguishers that can cover the full cipher (and even
more). For this reason, we adapted the number of rounds as suggested by the authors of [2] (in a private

communication?).

With the same application as in MiMC, the MPC cost using GMiMC,, ; is given by:

# multiplications: 2 max{Z +2(+£2),[2- log3 ()] + Zt} ,
(# online, # offfine) rounds:  (max{2 + 2(¢ + £2), [2 - log, (p)] + 2¢},0).

VISION.

Vision [5] is an AES-like scheme that works over E,‘ for any #» > 3, and # > 2. The round function is

composed of two sub-rounds. It is defined as the following: R(:) = R, * R;(+), with
Ri()=k®Mx[B-S()], and  Ry() =K @®Mx[B-5()].

The S-box layer S(-) is defined as the concatenation of S-boxes that work at word level, and that are
defined as x > 1/x (where 1/0 := 0). In addition, B(-) is defined as the concatenation of invertible
linearized polynomials that work at a word level, and that are defined as B(x) = x* @ b, - x> ® by - x ® by,
In addition, A is a ¢ x t MDS matrix. For a security level of 7 bits, the number of rounds is equal to

max{lO,Z[MHSLZ{ 2 ”
8t (t+1) (n—4)

Concerning the number of multiplications, the only non-linear operation is the inverse. In a MPC

application, the inversion step can be evaluated by using the technique of Bar-Ilan and Beaver [10]. In
brief, given x, 9,z s.t. x/y = z (where y # 0), the idea is to manipulate the equality x = y - z rather
than x/y = z. This procedure requires two communication rounds, and works for all non-zero elements
x € E,. In scenarios where the shared value is unlikely to be zero (i.e., if the field is large enough), this
technique can be used directly. Ignoring the zero test, the total cost of this method is one communication
round. In the latter, it is possible to merge a multiplication, and an opening call. As presented in [S, App.

E.2 of Version: 20190520:100450], B(-) and B~!(-) require respectively two and three multiplications in

19The Gréobner basis attack does not outperform the interpolation attack under the assumption p > ¢.
'The goal is to guarantee that each differential trail has probability lower than p= for a security level of log, () bits.
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MPC. Like previously, to give an overview, instead of using B~ (x) = y, the idea is to work with y = B(x)
(remember that B(-) is semi-linear in the sense that B(x @ y) = B(x) @ B(y)).

It results that the cost in MPC protocol to working over F (for a security level of 7 bits) is given by

o n+t+8 2n

# multiplications: 7t max{lO 2[ LZ + )0 _4)”’
) n+t+ 8 2n

# online rounds: 5- max{lO 2[ w 2 e 4)”,
) n+t+8 2n

# offline rounds: 2- max{IO 2[ } 2 G+ )= 4)}}

We refer to [S, Version: 20190520:100450] for all details about the number of online/offline rounds. In
this section, we solely recall that such numbers are independent of the number of S-boxes computed in

parallel.

In comparison, the number of multiplications in a “classical setting” is much higher. In particular,

using a square-and-multiply strategy, x — xl=x"2

requires 72 — 2 multiplications and 7 — 1 squarings
(see [S, App. F of Version: 20190520:100450]). In this case, the total number of multiplications is higher,

and is given by 2¢ - (n — 2) -max{lO,ZV+l+8] [(Hl ( 4)” €eO(n-t).

RESCUE.

Rescue [5] is an AES-like scheme that works over ]I}' foraprimep > 3,and ¢ > 2. Leta > 3 be the lowest
integers.t. ged(p — 1, 2) = 1. The round function that is composed of two sub-rounds R() = R, R, (")

is defined as follows:
Ri(:)=k+MxS(), and Ry()=k + MxS().

The S-box layer S(-) is defined as the concatenation of S-boxes that work at word level, where as x — x*

(and S-box"1(x) = x/%). M isa ¢ x t MDS matrix. For a security level of ~ log, (p) bits and & = 3, the

lo; 2 2o,
number of rounds is equal to max{l() 2- [ ke ],2~ { 5, ?) H
(¢+1)-(log, (p)-1)

The only non-linear operations of Rescue to consider are the «, and inverse-« power maps. For any ar-

bitrary large 8, x — xf can be computed by adapting the exponentiation technique that was introduced
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by Damgird et al. [30]. This technique requires [log 8 8] + 2 multiplications. Hence, the cost in a MPC
protocol is given by

# multiplications:

log, (p) +2 2log, (p)
¢+ (4flog, a] +4) - maX{Sy{ : DR (lozg () - 1)”
2
It 2 21
# online rounds: 4- maX{S, [ ng(P - (t+1)- ;)Iizg(]z;) -1) H
2
# offline rounds:
logz(p) +2

4t

Zlogz(p
e+ 1) logz(p) - I)H

where we refer to [S, Version: 20190520:100450] for more details about the number of online/offline

(2[log2 a] +2) - maX{S; [

rounds.

In comparison, the number of multiplications is higher in a “classical setting”. In particular, x* re-

quires approximately [log 8 «] multiplications, while xlla

requires approximately [log2 al + [log2 p] mul-
tiplications (see [S, App. F of Version: 20190520:100450]). For this reason, by applying a square-and-

multiply strategy, the number of multiplications is higher, and approximately given by 2t~(2[log2 a] + [log2 2l )

ax{ 1og2 >+2] [ 2log, () “e@(logz([?)'f)~

(¢+1)-(log, (p)-1)

G.2 ABOUT FORK-LIKE CIPHERS

Our design is based on a modified version of Farfalle that can be viewed as a generalization of the “Fork-
Cipher” design [7]. A ForkCipher design is instantiated by keyed permutations 73, ]Ai, B over F, which are
in general defined as the concatenation of a certain number of rounds of a given cipher. In this design,

every input x € Fis mapped to
ForkP(x) = (B} » B(x), B} ° B(v)) € F*.

However, unlike our design, a Fork-like cipher is invertible. That is to say, given ForkP(x) = (3, 7), the

following operations are possible:

Decryption: x=p"to IA{I(}A’) =p"'e 1’%—1@):
Inversion: I'i ° ji_l(f') =y andi’}; ° fi_l@) =j

None of them is possible in our design, because the input of the middle phase is obtained by adding the

outputs of the compression phase, and because of the truncation applied on the output words.
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Figure 7.10: Authenticated encryption with CIMINION plus Wegman-Carter MAC over E,. The construction is
similar over E, (& is replaced by +, the addition modulo p).

H TOWARDS AN AUTHENTICATED ENCRYPTION SCHEME

A potential direction that can be explored when authenticated encryption is needed, is to pair our en-
cryption scheme with a Wegman-Carter MAC [23]. This makes it possible to process one ciphertext

element with one field multiplication as shown in Figure 7.10.

To be more specific, to augment CIMINION with the authentication of ciphertexts, a similar approach
to GHASH thatis part of GCM [52], can be used. In further detail, our construction uses " = ubash(K, C)+
prf (W), where ubash(K,C) = GK* + GKY + . CZIIQ'Z + len(C)K with K as secret key element,
len(C) the number of field elements in C, and prf (/) an instantiation that is part of our Farfalle-like

construction (Figure 7.3).

The security of the resulting Wegman-Carter MAC depends on the security of the used instance of
prf (W), and the e-almost-A-universality of the universal hash function whash (K, C) thatis employed.
We have P(uhash(K, C) +ubash(K, C') = A) < efor any constant 4 over a uniformly random choice of
K. Following McGrew and Viega [52] for our choice of ubash(K, C), we have e < (21 + 1)27" for ., or
¢ < (2/+1)/p for E,, where 2/ is the maximal number of elements per call to authenticated encryption or
decryption. Like mentioned by Procter [56], an adversary then has an advantage that is at most ¢ plus
the advantage in breaking prf (/) for creating a forgery. In this case, £ is the total number of queries
that are made to the authenticated encryption or decryption. Hence, for maintaining a sufficient level
of security, the maximum length of messages, the maximum number of messages, and the verification

attempts have to be limited.
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Despite the latter restriction and other unfavorable properties [57] of this style of authentication, we

think that the efficiency benefits provided by Wegman-Carter-style MACs in scenarios where finite field

multiplication is the dominant cost factor, reasonably counterbalance its downsides.

I ALGORITHMS

Algorithm 6: Encryption and decryption, where the finite field is either By, or E,.

Encryption

Require: key K € {F}2l/2,
nonce N € F,
plaintext P € {F}*
Ensure: ciphertext C € {F}’

Processing Nonce
SIS 1S5 — MK 1K
SIS 1S5 < pe(Si 115 1155)
Encrypting Plaintext
fori=1,..,[0/2] do
01101105 = pe(Si 15,11 55)
Gir — O+ By
if/<[0/2] OR [0/2]=0/2 then
Qi - 02 + PZ;'
end if
if /< [0/2] then
$ <5+ K
§ =5 +K,
S S 1S5 7ol (S 115511 53)
end if
end forreturn C; || ... | C,

Decryption

Require: key K € {F}21°/2I,
nonce /N € F,
ciphertext C € {F}’

Ensure: plaintext P € {F}*

Processing Nonce
SIS 1S« NK K,
SIS 1185 < pe(Si 1S, 11S3)
Decrypting Ciphertext
fori=1,...,[0/2] do
O 01105« pe(Si 15, 1153)
By — 01+ Gy
ifi<[0/2] OR [0/2]=0/2 then
Py — O+ Gy
end if
if i <[o/2] then
S5 +Ky
$ =5 +Ki
Sy 1185 rol(Sy 115, 11S5)
end if
end forreturn B, | ... | B

Algorithm 7: Generation of key elements, where the finite field is either B, or E,.

Generation of Key Elements

Require: master key MK € {F}?,
IV eF
Ensure: key clements K € {F}*

SIS NSy« Vg | MK, | MK,
for:=1,...,0do
SIS 1S5 < pe(Syll S 11S5)
K; — 8
end forreturn K || ... | K,
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Table 7.8: Number of monomials of a certain degree, where all inputs are considered as variables in .. All round constants RC4; equal 1.

Output Degree
Round Variable 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
max 1 3 6 10 15 21 28 36 45 S5 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
a 1 1 1
1 b 1 3 1
c 1 2 1
a 1 3 4 2 1
2 b 1 3 4 2 1
c 1 3 4 2 1
a 1 3 6 6 6 2 2 0 1
3 b 136 6 6 2 2 0 1
c 13 6 6 6 2 2 0 1
a 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1
4 b 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1
c 1 3 6 8 12 10 6 4 6 2 2 0 2 0 0 0 1
a 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0
5 b 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0
c 1 3 6 8 12 14 10 12 12 12 10 4 6 4 4 0 6 2 2 0 2 0 0 0 2 0 0 0
a 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0
6 b 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0
c 1 3 6 8 12 14 14 16 12 24 14 20 10 12 12 8 12 12 12 4 10 4 4 0 6 4 4 0
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Algorithm 8: Permutation gy and rolling function 7o/, where the finite field is either B, or E,.

Rolling Function 7o/ Permutation py
Require: 4, € F, Require: z € T,
y € F, be F,
,eF ceF
Ensure: o, € F, Ensure: 2 € F,
w, € F, bekF,
w €F ceF
Lty fori=1,...,Ndo
W, — 1, ce—c+a-b
W, — be—b+c
Wy 1, a<—a+RCé ;b

d—a+RCl g n
a<—c+RC3; N
c—b+RC2 ;N
return @, @y, &, b—d
end forreturn 4, b, ¢

187



REFERENCES

1. M.R.Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Liiftenegger, C. Rechberger, and M. Schofneg-
ger. “Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlousand MiMC”.
In: ASIACRYPT. Vol. 11923. LNCS. Springer, 2019, pp. 371-397.

2. M.R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A. Roy, and M.
Schofnegger. “Feistel Structures for MPC, and More”. In: ESORICS. Vol. 11736. LNCS. Springer,
2019, pp. 151-171.

3. M.R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC: Efficient Encryp-
tion and Cryptographic Hashing with Minimal Multiplicative Complexity”. In: ASIACRYPT.
Vol. 10031. LNCS. 2016, pp. 191-219.

4. M.R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. “Ciphers for MPC and
FHE”. In: EUROCRYPT. Vol. 9056. LNCS. 2015, pp- 430-454.

5. A.Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of Symmetric-Key Primi-
tives for Advanced Cryptographic Protocols. Cryptology ePrint Archive, Report 2019/426. 2019.

6. A.Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of Symmetric-Key Prim-
itives for Advanced Cryptographic Protocols”. JACR Trans. Symmetric Cryptol. 2020:3, 2020,
pp- 1-45.

7. E.Andreeva, V. Lallemand, A. Purnal, R. Reyhanitabar, A. Roy, and D. Vizir. “Forkcipher: A New
Primitive for Authenticated Encryption of Very Short Messages”. In: ASLACRYPT. Vol. 11922.
LNCS. Springer, 2019, pp. 153-182.

8. T.AshurandS. Dhooghe. MARVELlous: a STARK-Friendly Family of Cryptographic Primitives.
Cryptology ePrint Archive, Report 2018/1098. 2018.

9. T. Baignéres, J. Stern, and S. Vaudenay. “Linear Cryptanalysis of Non Binary Ciphers”. In: SAC.
2007, pp. 184-211.

10. J. Bar-Ilan and D. Beaver. “Non-Cryptographic Fault-Tolerant Computing in Constant Number
of Rounds of Interaction”. In: ACM Symposium. ACM, 1989, pp. 201-209.

11. M. Bardet, ]J. Faugeére, and B. Salvy. “On the complexity of the FS Grobner basis algorithm”. /.
Symb. Comput. 70, 2015, pp. 49-70.

12.  G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer. “Farfalle: parallel
permutation-based cryptography”. LACR Trans. Symmetric Cryptol. 2017:4, 2017, pp. 1-38.

13.  G.Bertoni,]J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 submission (Version 3.0).
2011.

14.  G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. Ecrypt Hash Workshop
2007.2007.

188



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

References

T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. Naya-Plasencia, L.
Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. “Out of Oddity - New Cryptanalytic Techniques against
Symmetric Primitives Optimized for Integrity Proof Systems”. In: CRYPTO. Vol. 12172. LNCS.
Springer, 2020, pp. 299-328.

E. Biham, A. Biryukov, and A. Shamir. “Cryptanalysis of Skipjack Reduced to 31 Rounds Using
Impossible Differentials”. In: EUROCRYPT. Vol. 1592. LNCS. Springer, 1999, pp. 12-23.

E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like Cryptosystems”. In: Advances
in Cryptology - CRYPTO *90, 10th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1990, Proceedings. Ed. by A. Menezes and S. A. Vanstone. Vol. 537.
Lecture Notes in Computer Science. Springer, 1990, pp. 2-21. DOI: 10.1007 /3-540-38424-
3\_1. URL: https://doi.org/10.1007/3-540-38424-3%5C_1.

A.Bogdanov and M. Wang. “Zero Correlation Linear Cryptanalysis with Reduced Data Complex-
ity”. In: FSE. Vol. 7549. LNCS. Springer, 2012, pp. 29-48.

X. Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. Cryptology ePrint Archive,
Report 2019/951. 2019.

C. Boura, A. Canteaut, and C. De Canniere. “Higher-Order Differential Properties of Keccak and
Luffa”. In: FSE. Vol. 6733. LNCS. Springer, 2011, pp. 252-269.

B. Buchberger. “A theoretical basis for the reduction of polynomials to canonical forms”. SIGSAM
Bull. 10:3, 1976, pp. 19-29.

A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and R. Sirdey.
“Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression”. /.
Cryprology 31:3, 2018, pp. 885-916.

L. Carter and M. N. Wegman. “Universal Classes of Hash Functions (Extended Abstract)”. In:
STOC. ACM, 1977, pp. 106-112.

J. Daemen. Cipherand hash function design, strategies based on linear and differential cryptanalysis,
PhD Thesis. K.U.Leuven, 1995.

J. Daemen, R. Govaerts, and J. Vandewalle. “Correlation Matrices”. In: Fast Software Encryption:
Second International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings. Ed. by B.
Preneel. Vol. 1008. Lecture Notes in Computer Science. Springer, 1994, pp. 275-285. poI: 10.
1007/3-540-60590-8\_21. URL: https://doi.org/10.1007/3-540-60590-8%5C_21.

J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. “The design of Xoodoo and Xooftt”. ZACR
Trans. Symmetric Cryptol. 2018:4, 2018, pp. 1-38. DOI: 10.13154/tosc.v2018.14.1-38.

J. Daemen and V. Rijmen. “The Block Cipher Rijndael”. In: CARDIS. Vol. 1820. LNCS. 1998,
pp. 277-284.

J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer, 2002.

189



29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

190

J. Daemen and V. Rijmen. “The Design of Rijndael: The Advanced Encryption Standard (AES)”.
In: Springer, 2020. Chap. Correlation Analysis in GF(2n), pp. 181-194.

1. Damgird, N. Fazio, and A. Nicolosi. “Non-interactive Zero-Knowledge from Homomorphic
Encryption”. In: TCC. Vol. 3876. LNCS. 2006, pp. 41-59.

I. Dinur, D. Kales, A. Promitzer, S. Ramacher, and C. Rechberger. “Linear Equivalence of Block
Ciphers with Partial Non-Linear Layers: Application to LowMC”. In: EUROCRYPT. Vol. 11476.
LNCS. Springer, 2019, pp. 343-372.

1. Dinur, Y. Liu, W. Meier, and Q. Wang. “Optimized Interpolation Attacks on LowMC”. In: ASI-
ACRYPT. Vol. 9453. LNCS. Springer, 2015, pp. 535-560.

C.Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List, F. Mendel, and C. Rech-
berger. “Rasta: A Cipher with Low ANDdepth and Few ANDs per Bit”. In: CRYPTO. Vol. 10991.
LNCS. 2018, pp. 662-692.

S.Duval, V. Lallemand, and Y. Rotella. “Cryptanalysis of the FLIP Family of Stream Ciphers”. In:
CRYPTO. Vol. 9814. LNCS. Springer, 2016, pp. 457-475.

M. Eichlseder, L. Grassi, R. Liiftenegger, M. @ygarden, C. Rechberger, M. Schofnegger, and Q.
Wang. “An Algebraic Attack on Ciphers with Low-Degree Round Functions: Application to Full
MiMC”. In: ASIACRYPT. Vol. 12491. LNCS. Springer, 2020, pp. 477-506.

J.-C. Faugere. “A new efficient algorithm for computing Grobner bases without reduction to zero
F5”. In: ISSAC. ACM, 2002, pp. 75-83.

J. Faugere, P. M. Gianni, D. Lazard, and T. Mora. “Efficient Computation of Zero-Dimensional
Grobner Bases by Change of Ordering”. /. Symb. Comput. 16:4, 1993, pp. 329-344.

G. Genovese. “Improving the algorithms of Berlekamp and Niederreiter for factoring polynomials
over finite fields”. . Symb. Comput. 42:1-2, 2007, pp. 159-177.

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Poseidon: A New Hash
Function for Zero-Knowledge Proof Systems”. In: USENIX Security 21. USENIX Association,
2021.

L. Grassi, R. Liiftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. “On a Generaliza-
tion of Substitution-Permutation Networks: The HADES Design Strategy”. In: EUROCRYPT.
Vol. 12106. LNCS. 2020, pp. 674-704.

L. Grassi, C. Rechberger, and S. Renjom. “A New Structural-Differential Property of 5-Round
AES”. In: EUROCRYPT. Vol. 10211. LNCS. 2017, pp- 289-317.

L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. “MPC-Friendly Symmetric Key
Primitives”. In: CCS. ACM, 2016, pp. 430-443.

L. Grassi, C. Rechberger, and M. Schofnegger. Weak Linear Layers in Word-Oriented Partial SPN
and HADES-Like Ciphers. Cryptology ePrint Archive, Report 2020/500. 2020.



44,

45.

46.

47.

48.

49.

50.

S1.

S2.

53.

S4.

SS.

S6.

S7.

S8.

S9.

60.

References

V. Grosso, F. Standaert, and S. Faust. “Masking vs. multiparty computation: how large is the gap
for AES?” J. Cryprographic Engineering 4:1, 2014, pp. 47-57.

Y. Ishai, A. Sahai, and D. A. Wagner. “Private Circuits: Securing Hardware against Probing At-
tacks”. In: CRYPTO. Vol. 2729. LNCS. Springer, 2003, pp. 463-481.

T. Jakobsen and L. R. Knudsen. “The Interpolation Attack on Block Ciphers”. In: FSE. Vol. 1267.
LNCS. Springer, 1997, pp. 28-40.

L.R. Knudsen. DEAL - A 128-bit Block Cipher. 1998.

L.R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994. Ed. by B. Preneel.

Vol. 1008. Lecture Notes in Computer Science. Springer, 1994, pp. 196-211. DOI: 10.1007/3~
540-60590-8\_16. URL: https://doi.org/10.1007/3-540-60590-8%5C_16.

X. Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In: Commaunications and Cryp-
tography: Two Sides of One Tapestry. Springer US, 1994, pp. 227-233.

S.K. Langford and M. E. Hellman. “Differential-Linear Cryptanalysis”. In: CRYPTO. Vol. 839.
LNCS. Springer, 1994, pp. 17-25.

M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances in Cryptology - EURO-
CRYPT *93, Proceedings. Ed. by T. Helleseth. DOI: 10.1007/3-540-48285-7\_33.

D. A.McGrew and]. Viega. The Security and Performance of the Galois/Counter Mode of Operation
(Full Version). Cryptology ePrint Archive, Report 2004/193. 2004.

P. Méaux, A. Journault, F. Standaert, and C. Carlet. “Towards Stream Ciphers for Efficient FHE
with Low-Noise Ciphertexts”. In: EUROCRYPT. Vol. 9665. LNCS. Springer, 2016, pp. 311-343.

NIST. FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. 2015S.

K. Nybergand L. R. Knudsen. “Provable Security Against a Difterential Attack”. /. Cryprology 8:1,
1995, pp. 27-37.

G. Procter. A Security Analysis of the Composition of ChaCha20 and Poly1305. Cryptology ePrint
Archive, Report 2014/613. 2014.

G. Procter and C. Cid. “On Weak Keys and Forgery Attacks Against Polynomial-Based MAC
Schemes”. /. Cryprol. 28:4, 2015, pp. 769-795.

C.Rechberger, H. Soleimany, and T. Tiessen. “Cryptanalysis of Low-Data Instances of Full LowMCv2”.

IACR Trans. Symmetric Cryptol. 2018:3, 2018, pp. 163-181.

V. Rijmen, J. Dacmen, B. Preneel, A. Bosselaers, and E. De Win. “The Cipher SHARK”. In: FSE.
Vol. 1039. LNCS. 1996, pp. 99-111.

T. Simon, L. Batina, J. Daemen, V. Grosso, P. M. C. Massolino, K. Papagiannopoulos, F. Regaz-
zoni, and N. Samwel. “Friet: An Authenticated Encryption Scheme with Built-in Fault Detection”.
In: EUROCRYPT. Vol. 12105. LNCS. 2020, pp- 581-611.

191



61. T. Toffoli. “Reversible Computing”. In: JCALP. Vol. 85. LNCS. Springer, 1980, pp. 632-644.
62.  D.A.Wagner. “The Boomerang Attack”. In: FSE. Vol. 1636. LNCS. Springer, 1999, pp. 156-170.

192



8 PROPAGATION PROPERTIES OF A
NON-LINEAR MAPPING BASED ON SQUARING

IN OpD CHARACTERISTIC

Joan Daemen?, Daniél Kuijsters®, Silvia Mella!, Denise Verbakel®
1 — Radboud University, The Netherlands

My coNTRIBUTIONS. This chapter is based on work accepted at BFA 2023. I was responsible for
writing most of the text and made a contribution by determining the exact values of the correlations of

the squaring mapping.

ABSTRACT. Many modern cryptographic primitives for hashing and (authenticated) encryption make
use of constructions that are instantiated with an iterated cryptographic permutation that operates on a
fixed-width state consisting of an array of bits. Often, such permutations are the repeated application of
arelatively simple round function consisting of a linear layer and a non-linear layer. These constructions
do not require that the underlying function is a permutation and they can plausibly be based on a non-
invertible transformation. Recently, Grassi proposed the use of non-invertible mappings operating on
arrays of digits that are elements of a finite field of odd characteristic for so-called MPC-/FHE-/ZK-
friendly symmetric cryptographic primitives. In this work, we consider a mapping that we call y that has
a simple expression and is based on squaring. We discuss, for the first time, the differential and linear
propagation properties of 7 and observe that these follow the same rules up to a relabeling of the digits.
This is an intriguing property that, as far as we know, only exists for y and the binary mapping y; that
is used in the cryptographic permutation Xoop0o. Moreover, we study the implications of its non-
invertibility on differentials with zero output difference and on biases at the output of the y mapping

and show that they are as small as they can possibly be.

8.1 INTRODUCTION

The round functions in cryptographic permutations of the type Substitution-Permutation Networks
(SPN) consist of a non-linear layer and a linear layer. These layers are chosen and combined so that
there is no exploitable differential propagation from input to output or exploitable correlations between

input and output when used in the context of a construction like the sponge or duplex construction [6],
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Farfalle [S] or Even-Mansour [16]. The relevant properties of these mappings over binary fields have been
studied extensively, leading to solid designs. However, in the last years there has been a growing interest
in similar functions operating on arrays of digits that are elements of a field of odd characteristic. For
instance, Kolbl et al. designed a ternary cryptographic hash function called Troika [20]. Other examples
are the symmetric primitives defined over FZ like MiMC [2], GMiMC [1], Poseidon [17], Ciminion [15],
and many others. These are designed to be efficient in the context of Secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK).

There are interesting differences between fields B« of characteristic 2 and those of odd characteristic
that we will denote by . For instance, addition and subtraction are the same in Fy, but this is not the
case in IFq. In B4, squaring is a linear operation, whereas in IFq squaring is a non-linear operation. In ,

correlations between input and output bits have values that are rational and range from —1 to 1, but in

E,

correlations are complex numbers inside the closed unit disk.
This work investigates a mapping over I that was recently proposed by Grassi [18] and that we call y.
This is the mapping defined over E by ;(x) = v; + x% fori € Z/nZ and forall x € B

The paper is organized as follows. Section 8.2 deals with commonly used notation and conventions
that we follow. In Section 8.3 we recall the basic notions from differential cryptanalysis. An overview
of correlation analysis is presented in Section 8.4. In Section 8.5 we apply this existing theory to the
squaring transformation and derive its DP and LP values. Based on the squaring transformation, we
motivate the choice for y in Section 8.6. The main contribution of this paper lies in Section 8.7 and
Section 8.8, where we study the differential and linear propagation properties of y, both in the forward
and backward direction. Our results are useful in determining the maximum probabilities of differentials
and differential trails over transformations making use of y in their round function, as in computer-
assisted trail search [12]. Moreover, as the differential and linear propagation properties of y follow the
same rules, our results are also useful to study the correlations of linear approximations and linear trails.

In Section 8.9 we study the collision probability and bias of linear combinations of output digits of .

Finally, we conclude in Section 8.10.

8.2 NOTATION AND CONVENTIONS

We denote by E, the finite field of odd characteristic p, i.e., ¢ is equal to pd for some odd prime p and
positive integer d > 0. Let I be the vector space of dimension 7 over the finite field E,. Given two vectors
x,y € E?, we denote their vector subtraction by x — y,i.e, x =y = x + (=1)y. A vector x € ]Fq” is indexed
by the set Z/nZ. We denote its 7th coordinate by x; and call it a digiz. The dot product between x and y
isdefinedasxTy = Z?:_Ol %;%;. We write ¢; for the vector with all digits equal to 0, except for the digit that
is indexed by 7, which is equal to 1. The linear span of a set of vectors S ¢ E" is denoted by Span(S). A
digit is said to be active if it is non-zero. The Hamming weight HW (x) of a vector x € E' is the number
of active digits in the vector.

Let 2 € C be a complex number. We denote its absolute value as |z|. We write Z for its complex

conjugate.
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8.3 Differential analysis

Let F be a field, then we write F* for its multiplicative group F \ {0}.

8.3 DIFFERENTIAL ANALYSIS

First published by Biham and Shamir in [9], differential cryptanalysis is a chosen-plaintext attack that
exploits the non-uniformity of the distribution of differences at the output of a transformation when it
is applied to pairs of inputs with a fixed difference.

Any successful theory of cryptanalysis needs to address the problem of secret key translation. Differ-
ential cryptanalysis deals with this problem by considering differences, which are invariant under trans-
lation. Letx € o and x* € 5 be inputs of a transformation «: B - and let their difference be
a = x* — x. Likewise, let y € ]Fq” and y* € ]Fq" be outputs of 2 and let their difference be & = y* — y. The
(ordered) pair (4, b) € E x Y containing the input and output difference is called a differential over a.
The differential (0, 0) is called t77vial. The differential probability (DP) of a difterential (a, &) over the

transformation « is defined as

DP,(a,b) = ¢

{xe]Fq”:a:(x+a)—a(x)=b}|.

If DP,,(a, b) > 0, we say that 2 and b are compatible differences over a.. For compatible differences 2 and

b, we define the weight of a differential (4, b) over « as
w,(a,b) = - logq(DPd (a,0)) .

A non-trivial differential (4, &) over « can only lead to a distinguisher if DP, (4, b) differs significantly
from g, which is the expected DP of any non-trivial differential over a randomly selected transforma-

tion of £

8.4 CORRELATION ANALYSIS

Correlation analysis of cryptographic primitives effectively is Fourier analysis on finite abelian groups.
As such, the theory is well-understood and this section serves as a recap. The ideas that we present here
are based on the works of Daemen [13], Baigneres et al. [3], and Daemen and Rijmen [14]. Many of the
proofs can be found in the book by Hou [19].

8.4.1 CHARACTERS

Let (G, +) be a finite abelian group and let ¢ be the (finite) exponent of G, i.e., the smallest integer 7 such
that na = O forallz € G.
A character of G is a homomorphism from G into the subgroup of C* consisting of the eth roots of

unity. The set of characters of G is denoted by G and it forms a group under the multiplication defined
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by (yy')(a) = y(a)y'(a) foralla € Gand g,y € G. The groups G and G are isomorphic, but this

isomorphism is not canonical.

For a fixed isomorphism between G and G and for each 4 € G, we write y, for the image of z under
this isomorphism. In particular, the character y, that is defined by y,(2) = 1forall 2 € G is called the

trivial character and it is the identity element of the group G.

Now, let (G, +,-) be the commutative ring that is obtained by introducing a multiplicative structure
on G. This is always possible by the fundamental theorem of finite abelian groups. A character y € Gis
called a generating character for G if y,(b) = y(ab) foralla, b € G. If a commutative ring has a generating
character for its additive group, then y,(6) = y(ab) = y(ba) = y,(a). In the case that G is the direct sum
of n copies of a commutative ring R and if R has a generating character, say ¢, then we obtain a generating
character y for G by setting y(ay, ..., 4,) = ¢(a;) - #(a,). It holds that y,(b) = y(ab) = $(a"h), where

the multiplication in G is defined component-wise.

As an example, consider G equal to ]Fq and put w = AP Let Tr: ]Fq — ]FP be the absolute trace

function that is defined by Tr(x) = Zj;ol x”. Thisis a linear mapping. Each # € F, defines a generating
character y, for E, that is defined by

Zu(x) = @110 xek.

As a second example, consider G equal to ]Fq”, which is a direct sum of 7 copies of ]Fq. Hence, each

u € B gives a generating character y, for I’ that is defined by

T(u"x) ,

Z(x) = " xe B

8.4.2 THE FOURIER TRANSFORM

Consider the set L*(G) of functions f: G — C. Fix an ordering of the element of G, e.g., G =
{40, s a,_1}. We write vy = (f(ag), ., f(4,-1)) for the finite sequence of the output values of /. By
identifying a function f with the vector v € clel, L*(G) can be seen as a finite-dimensional complex

inner product space with inner product

(o) =D flag@,  fgel*G).

acG

Forany f € L*(G), the inner product induces a norm by setting

Il = (£ 107
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8.4 Correlation analysis

The standard basis of Z*(G) is formed by the set of Dirac delta functions {§, € L*(G) : 4 € G}, which
are defined by

1 ifa=25b,
%(0) =
0 ifazb.

In the context of correlation analysis, the solution to the problem of secret key translation lies in chang-
ing the basis of L?(G) to the set of characters of G. Forany 4, b € G, the corresponding characters satisfy

(x> 25) = |G|3,(b). By normalizing the characters, we obtain an orthonormal basis
®G={¢a:ﬂEG}:

where ¢, = |G| 2y,. By projecting f onto @, we find that

F=2 (8-

aeG

The operator F: L*(G) — L*(G) that is defined by F(f)(a) = (f, 4,) foralla € G is called the
Fourier transform. By identifying a function f with vp, the Fourier transform is best described as assign-
ing to f'its coordinates in the normalized character basis. The Plancherel theorem asserts that the Fourier

transform is unitary, i.e., we have
(F(N,F@) = (9, f.geL*(G).

Let us return to the question of how to address the problem of secret key translation. Let & € G. We
define the translation operator 7;: L*(G) — L*(G) by (I,£)(a) = f(a + b) forall 2 € G. Moreover,
we define the modulation operator M,: L*(G) — L*(G) by (M,f)(a) = ¢y(a)f(a) foralla € G.
The big insight is that translation turns into modulation when changing from the standard basis to the

normalized character basis, i.e.,

T,=F oM, F  beG.

Let H be a finite abelian group and let F: G — H be a mapping between G and H. We want a
representation of F in L*(G). To that end, let y be any character of H. We take as representation the
function y o F € L*(G).

8.4.3 CORRELATION

We now specialize to the case that G and H are each equal to the vector space ]Fq” over the finite field ]Fq.
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Leta: E} — E be a transformation of E. We consider pairs (#,0) € B x E that we call /inear ap-
proximations of 2. We refer to u as the output mask and to v as the input mask. The linear approximation

(0,0) is called z7ivial. The correlation of the linear approximation is defined as
Colusv) = q 2 F (g, > a)(v) .

We call the masks # and v compatible over a if C,,(u,v) is nonzero. In general, correlations are complex

numbers. The linear potential (LP) is a real number and related to a correlation by
LP,(u,v) = C,(u,0)Cp(,0) .
If # and v are compatible over 2, then we can define the weight of the linear approximation (#, v) as

w,(#,0) = — logq(LP%(u, v)).

8.5 THE SQUARING TRANSFORMATION

The squaring transformation 3: E, — E, is defined by x + »” for all x € E,. Because we study the case
of odd characteristic, 4 is non-linear. We show that £ has the property that the maximal DP over all non-
trivial differentials is q‘l, which is the smallest possible value. A similar property holds for the maximal
LP over all non-trivial linear approximations. In other words, we show that 8 is a bent polynomial [11].
Note that this is an improvement from the case of characteristic 2, for which these values are both equal

to 247! and are obtained by, respectively, almost perfect nonlinear and bent functions [10].

First, by applying Theorem 5.33 from [21], we obtain that the correlation of any linear approximation

(u,0) € E, x E, with # # 0 of 8 is equal to

o) = 4 :F (7, 2 H)(0)
=47 Z;(l (#x® = vx)

xqu

7 (1) (<o (4) pe)  ifp=1 (mod 4),
qii(—l)d‘lz'd;(l(—vz(/m)‘l);;(u) ifp=3 (mod 4),

where 5(«) = 1if u is a square in , and —1 otherwise. It follows that for all #, v € E, with « # 0 we have
LPy(u,v) = g~*. In particular, choosing v equal to zero shows that any linear combination of output
digits of 4 is imbalanced, i.e., the distribution of this linear combination is non-uniform. If # is 0, then
for all nonzero v € E, we have LP4(0, v) = 0,and LP(0,0) = 1.
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8.6 They mapping

Second, consider the equation that relates the input x € ]Fq, the input difference z € ]Fq, and the output

difference b € E,ie,

b=p(x+a)-p(x)
= (x+a)—x*
= x% +2ax + a* — x*

=2ax +a*.

Assuming that 2 # 0 and because the characteristic of EI is odd, we can solve for x to find that x =
(2a)71(b — 4%). Hence, there is exactly one solution to this equation. Dividing by the domain size, g,
then shows that DPg(4,6) = ¢7". In particular, any nonzero input difference can propagate to a zero
output difference. If  is 0, then for all nonzero & € I, we have DP;(0,6) = 0 and DP,(0,0) = 1.

We summarize these properties to make the symmetry between the differential and linear case appar-

ent:
* Foralla,u € (I})" and b, v € T, we have DP4(a, b) = LPy(u, 0) = g
* Forall b,v € (L))", we have DP4(0,6) = LP4(0, v) = 0;

* We have DP(0,0) = LP4(0,0) = 1.

8.6 THE y MAPPING

Some modern block cipher modes, like GCM [23], CTR and OFB [22], do not use the inverse block
cipher. Similarly, constructions like sponge [7], duplex [6], and Farfalle [S], which are generally based on
permutations, do not use their inverse. Therefore, in such constructions permutations can be replaced
by transformations. An example is the GLUON family of lightweight hash functions [4], which makes
use of the sponge construction on top of a non-invertible map.

A cryptographic transformation can be used as long as collisions and imbalances in the output cannot
be exploited. This can be tackled by either ensuring that such imbalance is very small or by limiting the
attacker’s access to the input and output of the transformation by construction. For instance, in the
sponge and duplex constructions the attacker has control of only the outer part of the state and not of its
inner part. Therefore, if a collision requires a difference in the inner part of the state at the input of the
transformation, the attacker cannot inject it with input messages. Similarly, the attacker has no visibility
of the inner bits or digits of any output mask. As another example, whitening keys can be added at input
and outpug, like in Farfalle [5], Even-Mansour [16], and Elephant [8].

We consider the problem of building a non-invertible mapping based on squaring that can be used as
non-linear layer in the round function of cryptographic transformations. When such transformations
are used in constructions that are usually instantiated with permutations, the non-invertibility of the

mapping should be difficult to exploit.
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By definition, such a non-linear layer has pairs of distinct inputs that are mapped to the same output,
i.e., collisions. A naive idea would be to apply 4 to each digit of the state independently. The problem
with this approach is that each collision for 8 is trivially extended to a collision for the entire non-linear
layer, giving rise to differentials with DP as high as g7'. They are easy to exploit as the adversary needs
access to only a single input digit to generate a local collision. Similarly, any bias in the output of 2 is
trivially present in the output of the non-linear layer, giving rise to linear approximations with LP as
high as g7!. They are easy to exploit as the adversary needs access to only a single output digit to exploit
them. The measure of both is inversely proportional to the order of the field. Hence, unless the order of

the field is very large, this leads to unacceptable weaknesses in the cryptographic transformation.

Compared to the above, the non-linear layer in the round function of a cryptographic transformation
should have lower DP and LP and there should not exist local properties that can be extended to global
properties. We achieve this by making the DP of differentials of the form (4,0) and the LP of linear
approximations of the form (#,0) small, i.e., equal to the inverse of the domain size. Moreover, any

differential over or linear approximation of the non-linear layer requires access to every digit of the state.

The work by Grassi [18] presents an analysis of a number of mappings based on 4 that minimize the
probability of a collision in their output. We consider one of these mappings and call it y. Concretely,

the mapping y: I — E7 is defined, for all x € I, by
%) =x+xh,  P€Z/nZ.

The remainder of this text is concerned with an analysis of the differential and linear propagation prop-

erties of y.

8.7 DIFFERENTIAL PROPAGATION PROPERTIES OF Y

Let (a,0) € I} x I} be a differential over y and let x € I’ be an input of . The equations that relate the

input difference « and the output difference 4 are of the form
by = a; + aty + 24;1%41, [ €Z|nZ. (8.1)

We consider two cases in the analysis of these equations. In the first case, we fix the input difference 4
and give a description of the set of compatible output differences 4. From this, we are able to deduce that

DP, (4, b) depends only on 2 and whether & is compatible with z or not.

In the second, reverse case, we fix the output difference b and present an algorithm for the computation
of the set of compatible input differences 2. We then derive an expression of the so-called minimum
reverse weight of this set. All these results can be directly applied to perform computer-aided trail search,

as described in [12], in cryptographic transformations instantiated with y as the non-linear layer.
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8.7 Differential propagation properties of y

8.7.1 FORWARD PROPAGATION FROM A GIVEN INPUT DIFFERENCE

We observe that for an input difference 4, the equations of Equation (8.1) are linear in the digits of x. We

make this explicit by writing them as a matrix equation of the form

by ay + 42 0 24 0 0 0 0 %
by a, + a3 0 0 24 0 0 0 X
by a + a3 0 0 0 2a 0 0 %
= +
b, 2 Ayy ¥ a4y 0 0 24, || %2
b,y a4, 1 + a5 24 0 0 X1

Hence, the set of compatible output vectors &, which we denote by & («), forms an affine subspace of ]Fq”.
By affine subspace we mean the following. Let /77 be a linear subspace of E and let # € E. The coset
u+W ={u+w:weW}iscalled an affine subspace of E}' and # is called an offset. The affine subspace
d(a) can be described by

A(a) = y(a) + Span{2a;¢,_ : i € Z/nZ} .

Two cosets # + W and v + W are equal if and only if # — v € 1. Therefore, we may add any linear
combination of the basis vectors to the offset without it changing the affine subspace that is defined.
Moreover, we may scale the basis vectors by any nonzero constant. Hence, a description of () in

which the offset has minimal Hamming weight is given by
A(a) =4 + Span{e : i € Z/nZ and a;,, # 0},
where

' a;

0 ifa;, #0.

ifa; .1 =0,

Clearly, the dimension of & (#), which is defined as the dimension of the associated vector space, is equal

to the Hamming weight of a.

We are now ready to give a complete characterization of the distribution of differentials over y.

Proposition 38. Let (a,b) € B x B} be a differential over y. Then b is compatible with a, i.c., b € d(a),

ifand only if, for all i € Z[nZ, we have b; = a; or a;,; # 0, in which case b; can take on any value. Hence,

q—HW(a) lfb € éﬂ(d) ,
0 if'b ¢ d(a).

DP,(4,) =
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In other words, the DP of a valid differential, and thus its differential weight, is a constant that depends

only on the input difference.

8.7.2 BACKWARD PROPAGATION FROM A GIVEN OUTPUT DIFFERENCE

For a given output difference &, the compatible input differences do not form an affine space. However,
we will show in this section how to efficiently generate all compatible input differences 2 with w,, (2, ) <
W for some weight limit 7. To this end, we introduce the concept of compatible activity pattern. Given

avector x € I, its activity pattern X is a vector in E}' with &; equal to 1 if x; # 0 and 0 otherwise.

Definition 63. An activity pattern is compatible with b if there exists an input difference a that is com-
patible with b and for which 4 equals this activity pattern.

The generation of all compatible input differences is done in two phases: in the first phase, we generate
the set of activity patterns compatible with 4, and in the second phase, we determine for each compatible
activity pattern the set of compatible input differences with that pattern.

We generate the compatible activity patterns in a recursive way in Algorithm 9, making use of the

following proposition.

Proposition 39. Given a differential (a, b) overy, the following properties bold:
1 ifa;=0andb,_, = 0then a;_; = 0;
2. ifa; =0andb;_y # 0 then a;,_y # 0.

Proof. The two properties immediately follow from Equation 8.1. We have
by = a;_; +a? +2a,x;,

and 4; = 0 implies 4, ; = a, ;. O

In Algorithm 9, we start with an empty list of compatible activity patterns L (line 4) and a fully un-
specified activity pattern 4 (line 6). Then we specify whether 2, ; = 0 (line 6) or 1 (line 7) (and thus
whether 4,,_; is active or not) and based on this we incrementally determine the activity of all other digits
from a,,_, to 4, using the procedure buildActivity. In this procedure, when Z; = 0 we use Proposition 39
to determine whether Z;_; = 1 or 0, otherwise we consider both possibilities (lines 16 and 17). When
a compatible activity pattern is fully determined (i.e., when 7 = 0 is reached) then it is added to list L
(line 12).

Given an output difference 4 and a compatible input activity pattern 4, we generate all compatible

differences with activity 4 in Algorithm 10, making use of the following proposition.
Proposition 40. Given a differential (a, b) overy, the following properties hold:

1. ifd; =0, then a; = 0;
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8.7 Differential propagation properties of y

Algorithm 9 Generation of input activity patterns compatible with output difference &

1: Input: difference & € E at output of  and limit weight 177
2: Output: list L of activity patterns 2 compatible with & at input of y
3:
4 L < empty
S: d«— "
6: a,_; < 0; buildActivity(n — 1,2,b, W)
7: a,_ < 1;buildActivity(n — 1,4, b, W)
8:
9: procedure buildActivity(z, , b, W)
10: if (HW(2) > I?7) then return > HW is computed on the specified part of 2
11: if ( = 0) then B
12: if (4,_; = 1OR 4, = 4;) thenadd Zto L
13: return
14: end if
150 d«—a

16 if(4 =10RY, =1)thend, , « 1;buildActivity(i - 1,4, 5, W)
17: if (Z; = 1OR §,_; = 0) then Z;_; « 0; buildActivity(: — 1,4, 6, W)
18: return

19: end procedure

2. ifd; =landa;, =0, then a; = by
3. ifa; = land d;y = 1, then a; can be any value in I,

Proof. The first property follows from the definition of activity pattern. The other two properties im-

mediately follow from Equation 8.1. O

In Algorithm 10, we start with an empty list of compatible input differences L (line 4) and a fully
unspecified difference  (line 5). We use the symbol * when the activity of a digit is unspecified. Then we
incrementally determine the value of all digits from 4, to 4,,_; using the procedure buildDifference. In
this procedure, we use Proposition 40 to determine whether ; = 1 or 0 (lines 10-12 and 16-18). When
a compatible difference is fully determined (i.e., when 7 = # — 1 is reached) then it is added to list L (line
10-12).

8.7.3 COMPUTING THE MINIMUM REVERSE WEIGHT OF AN OUTPUT DIFFERENCE

Given an output difference b, let Q(b) = {2 € E' : DP,(4,6) > 0} be the set of input differences
that are compatible with 4. The differentials (4, 6) over y with @ € Q(b) can have different weights.
Following [12], the minimum reverse weight of an output difference & is defined by
W (0) = min w,(a.0).
We notice that the minimum reverse weight of a difference & at the output of y is fully determined by
its activity pattern and its compatible activity patterns with minimum Hamming weight. In particular,

it can be computed as in the following Proposition, which uses the notion of 7.
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Algorithm 10 Generation of input differences compatible with output difference & and with activity
pattern 4

1: Input: difference 4 € E} at output of y and activity pattern &

2: Output: list L of input differences compatible with & at input of y with activity pattern 7
3:

4 L < empty

St oa «— *"

6: buildDifference(0, 4, 2, b)

7:

8: procedure buildDifference(z, 4, 2, b)

9: if ( = n— 1) then

10: if (2; = 0) then 2, < 0;addato L

11: elsif (Z; = 1 AND 4, = 0) then 4, < b;add ato L
12: else for each « € E, do 4, «— kyaddato L

13: return

14: end if

15: 4 —a

16: if (Z; = 0) then 4; < 0; buildDifference(i + 1,4, 2, b)

17: elsif (Z; = 1 AND 4,,, = 0) then 4; < b; buildDifference(: + 1,4', 4, b)
18: else for each € I, do 4 < k; buildDifference(7 + 1,4, Z,b)

19: end procedure

Definition 64. Given x € ]Fq”, a run of length € in x is a sequence of € active digits preceded and followed

by non-active digits, i.e., it satisfies X;, X;, 15 ..., Xppp-y # 0 and x;_y = x;,0 = 0 for some i € ZnZ.

Proposition 41. Given a differenceb at the output of y composed by m runs of lengths €j, withj =0, ...,m—
1, then

wi(b) = > [6/2].

J=0

Proof. For a run starting in position 7 and of length ¢ in b, the digit 4;,,_; must be 1. There can be at
most a single zero digit in between two active digits in the sequence &;, Z;, 1, ..., d;4¢_1.. It follows that for
each run of length ¢ in b,  has at least ¢/2 active digits if ¢ is even and (€ + 1) /2 if ¢ is odd. O

8.8 LINEAR PROPAGATION PROPERTIES OF Y

In this section we analyze the correlation properties of the mapping y, starting with the correlation of

linear approximations of .

Proposition 42. Let (u,0) € ' x I be a lincar approximation of y. We have

n-1
Cy(u: l}) = H C[@(”t — U ”z’—l) .
=0
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Proof. If we rewrite the correlation of a linear approximation of y, we obtain

Cylu0) = g > A

xely
—n Tr(zn_lu (42 )*U-x)
=g S WS e
xely
n-1 2
Ve PRUIN ORI
xely
-1
— q—n Z a)zi:o Tr((u[—v[)xﬁru,-,le)
xely
n-1
— q—n Z H wTr((u,»—u,»)x,-+ui_1x,z)
xely' =0
n-1
[ S et
i=0 yek;
n-1

C{@ (ui U ”t’—l) .

Il
=]

O

The resulting product from Proposition 42 is non-zero if each of the factors is non-zero. Note that
the correlation is non-zero if #;_; is non-zero, as was discussed in Section 8.5. Additionally, if #;_; is non-
zero, then v; — #; has to be equal to zero to get a non-zero correlation. In this case it should thus hold
that v; = #,;. From this reasoning, we can give a complete characterization of the distribution of linear

approximations of y.

Proposition 43. Let (u,v) € B x B} be a lincar approximation of y. Then u is compatible with v, if and
only if; for all i € Z|nZ, we have v; = u; or u;_y # 0, in which case v; can take on any value. Hence,
-HW(x)

q if v is compatible with u

LP, (#,0) =
0 if v is not compatible with u .

Observe that Proposition 38 and Proposition 43 are very much alike. Indeed, propagation of differ-
ences and propagation of masks over ¥ follow similar rules. First, output masks play the role of input
differences and input masks that of output differences. Second, indices are reversed, i.e., index 7 in a
mask corresponds to index 2 — 7 — 1 in a difference, to account for this change in direction. The follow-

ing proposition is an immediate consequence.

Proposition 44. Let w: ) — B be the mapping defined by m(x) = x,_,_y forall i € Z[nZ. Let (u,v)

be a linear approximation of y. We have

LP, (u,0) = DP, (7 (), z(v)) .
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From this, it follows that we can extend the results obtained in Section 8.7 to masks. For a given output
mask # € L, we can build the affine subspace with dimension HW (#) of compatible input masks over
y as in Section 8.7.1. Moreover, for a given input mask v € E,": the output activity patterns compatible
with input masks over y can be found by applying Algorithm 9. Using the resulting activity pattern &
and the input mask v, all compatible output masks # can be obtained as described in Algorithm 10. Note
that there can be several compatible output masks # for a given input mask ». Among them, there will

be one realizing the minimum value of w(x, v). The minimum reverse weight of v is defined as

“(v) = min  w, (%0
7 ( ) wLP, (1,0)>0 7( ? )

and is determined by the decomposition of v in a sequence of runs, as explained in Section 8.7.3.

8.9 ON COLLISION PROBABILITY AND BIAS

A collision in the output of y occurs when y maps a pair of different inputs (v, y) € E x I} to the same
output value. Assuming randomly and uniformly selected pairs of inputs, the probability of a collision

is given by
CP(y) = 7" |{(x,9) € B xE:x# yandy(x) = y(9)} .

Translating this into the language of differential analysis, we find that

CP(y) =g > DP,(a,0).
a€F\{0}
Proposition 45. Let a € I \ {0}. If (4, 0) is a differential with DP,(a,0) > 0, then all digits of a are
active and DP, (a,0) = g7".
Proof. Let a € E} \ {0} be such that DP, (4,0) > 0. The input difference « is compatible with the

output difference 0 if the latter is contained in the affine space 4(4). This is the case if and only if 2; # 0
fori € Z/nZ. Hence, DP, (4,0) = 47" by Proposition 38. O

Clearly, there are (g — 1)” input differences # for which this property holds. Therefore, we find that

CP(y) = (g-1)"q7".

Now, the collision probability of a function that is chosen randomly from the set of functions from I to
]Fq” is equal to ¢7”. Hence, the ratio between the collision probability of y and that of a random function
isequal to (1 — g71)". If the order of the field is large, then this quantity approximates 1.

By symmetry, we obtain a similar result for the bias of any linear combination of output digits of .

Proposition 46. Let u € I \ {0}. If (u,0) is a lincar approximation with LP, (u,0) > O, then all digits

—n

of u are active and LP,(u,0) = g7".
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8.10 Conclusion

Clearly, if either g or # is large, then these quantities are very small and it becomes difficult to exploit

them in practice.

8.10 CONCLUSION

When searching for trails over an iterated cryptographic transformation as described in [12], a number
of tools are required. These include an efficient method to compute the minimum reverse weight of a
given difference (resp. mask), and an efficient method to build all compatible input differences (resp.
output masks) over the non-linear layer for a given output difference (resp. input mask) and vice versa.
In this work we provided such tools for a mapping based on squaring that can be used as non-linear
layer in the construction of cryptographic transformations of E'. Interestingly, it turns out that for this
mapping, masks and differences follow the same propagation rules. This means that for a cryptographic
transformation that uses this mapping as the non-linear layer in its round function, one would need to

only perform either differential or linear trail search while obtaining insights and bounds for both.
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9 SAMENVATTING

Symmetrische cryptograﬁe stelt twee partijen in staat om vertrouwelijke en integere communicatie tot
stand te brengen op basis van een gedeelde geheime sleutel. Vercijfering waarborgt vertrouwelijkheid;
het toevoegen van een authenticatietag beschermt de integriteit. Afhankelijk van het dreigingsmodel
richt de analyse van een symmetrische primitieve zich op het aantonen van onvoorwaardelijke veiligheid,
dan wel op veiligheid onder de aanname van een aanvaller met beperkte middelen.

Dit proefschrift onderzoekt de rol van structuur en willekeur in het ontwerp en de analyse van sym-
metrische primitieven. Structured Randomness, ofwel gestructureerde willekeur, duidt op het streven
om constructies te ontwerpen die, ondanks hun structuur, voor begrensde aanvallers niet te onderschei-
den zijn van willekeurig gekozen functies.

Het eerste deel ontwikkelt een theoretisch kader, waarin algebraische structuren, kansmodellen en
klassicke analysetechnieken, zoals differenti€le, lineaire, integrale en algebraische crypto-analyse, aan bod
komen. Op basis hiervan worden in het tweede deel vijf bijdragen gepresenteerd, elk met een gerichte
aanvulling op de bestaande literatuur.

De eerste bijdrage formaliseert het bestaande begrip alignment; het onderscheid tussen aligned en un-
aligned primitieven ligt in de structurele groepering van bits. Er wordt een analysekader ontwikkeld voor
het evalueren van de interactie tussen lineaire en niet-lineaire lagen met betrekking tot differentiéle en
lineaire propagatie. Een empirische vergelijking suggereert dat alignment aanleiding geeft tot specificke
vormen van clustering in activiteitspatronen en padstructuren.

De tweede bijdrage analyseert tweerondige varianten van de blokcijfer SKINNY, waarbij lineaire be-
naderingen met absolute correlatie één worden aangetoond voor een aanzienlijk deel van de mogelijke
ronde-tweakeys. Daarnaast wordt aangetoond hoe deze kwetsbaarheden vermeden hadden kunnen wor-
den door alternatieve ontwerpkeuzes. Deze analyse onderstreept dat het niet voldoende is om op zichzelf
staande veilige bouwblokken te gebruiken; het is de combinatie en compositie van deze bouwblokken die
uiteindelijk de veiligheid van het geheel bepaalt.

De derde bijdrage introduceert KoavLa, een pseudowillekeurige functie met lage latentie, gebaseerd
op de KirBY-constructie en een aangepaste variant van de SUBTERRANEAN-permutatie. Het ontwerp is
geoptimaliseerd voor ASIC-implementaties. Een voorlopige crypto-analyse toont een hoge weerstand
tegen integrale, cube-, division property- en hogere-orde differentiéle aanvallen. Daarnaast blijkt uit
vergelijking dat KoaLA bestaande lage-latentie PRF’s overtreft in termen van latentie en andere prestaticken-
merken.

De vierde bijdrage introduceert CIMINION, een cryptosysteem gebaseerd op TOFFOLI-poorten over

eindige lichamen. Het ontwerp is specifiek geoptimaliseerd voor gebruik in privacybeschermende reken-
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9 Samenvatting

modellen, waaronder multi-party computation (MPC) en homomorfe vercijfering, met bijzondere aan-
dacht voor het minimaliseren van het aantal vermenigvuldigingen.

De vijfde bijdrage analyseert een niet-lineaire transformatie gebaseerd op kwadrateren in eindige lichamen
met oneven karakteristiek. Deze afbeelding vertoont symmetrische en gunstige propagatie—eigenschappen
in zowel differentieel als lineair opzicht, wat haar geschikt maakt voor toepassingen in onder meer MPC
en homomorfe vercijfering.

Gezamenlijk positioneren deze bijdragen zich op het raakvlak van theorie en praktijk, en dragen zij
bij aan een verdiept begrip van de wijze waarop structurele eigenschappen de veiligheid, efficiéntie en

toepasbaarheid van symmetrische cryptografie bepalen.
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I O RESEARCH DATA MANAGEMENT

Many of the results presented in this thesis are based on data generated through simulations involving
cryptographic building blocks.

Throughout the project, data were securely stored and version controlled on Radboud University
infrastructure. For long-term preservation, the final datasets and the programs used to generate them

have been archived on Zenodo and are accessible via the following DOI:
https://doi.org/10.5281/zenodo.14030442

The data and programs are publicly available under the Creative Commons Zero v1.0 Universal (CCO
1.0) license and are accompanied by metadata that adhere to the FAIR principles (Findable, Accessible,
Interoperable, and Reusable). This approach ensures compliance with the standards of the academic
field and with Radboud University’s guidelines regarding transparency, accessibility, and the responsible

management of research data.
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